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Abstract

Carbon nanotubes (CNTs) have attracted the attention of the sci-
entific community since their discovery in the 90s. They are an ex-
cellent material for the development of research fields as diverse as
nanomechanics or quantum transport. Nanotube mechanical res-
onators are endowed with exceptional properties, including extremely
small mass, ultra narrow cross-section, and operation over a large fre-
quency range from 10 kHz to 10 GHz. They are also fantastic sensors
of both mass adsorption and forces.

Its electric transport properties are remarkably the long ballistic
transport of charge carriers, strong electron-electron interaction, and
the important role of the spin and valley degrees of freedom. It is
possible to observe a wide range of quantum transport phenomena
ranging from single-electron tunneling to Kondo physics and Fabry-
Pérot interference. It should be noted that the electrical transport and
mechanical motion of suspended nanotubes can be coupled by a large
amount.

In the first part of this thesis, we present an advanced ultra-
sensitive fabrication method that allows us to build and functionalize
a nanotube cantilever for optical measurements. We grow a platinum
particle at the end of the nanotube in order to increase laser reflection.
For this, we track the material deposition on the cantilever through the
electromechanical coupling with the electron beam during the process.

Next, we show electron transport measurements in high-quality
devices with high transmission. While high-temperature measure-
ments indicate electron-electron correlations, low-temperature trans-
port characteristics point towards single-particle Fabry-Perot interfer-
ence. We observe this effect both by modifying the temperature and
by tuning the source-drain voltage. This effect is attributed to the in-
terplay between fluctuations and quantum interactions in a correlated
Fabry-Pérot regime.

In the last part, we show that it is possible to couple the mechan-
ical movement of the CNT to the electron transport. By applying an
electron current through the system, we can either cool or amplify the
mechanical motion of the eigenmode. We cooled the nanoresonator
down to 4.6 = 2.0 quanta of vibration. The instabilities present in elec-
tron transport measurements are attributed to self-oscillation induced
by the backaction amplification. These effects have an electrothermal
origin. This method can be used in the future to cool NEMS into the
quantum regime.






Resumen

Los nanotubos de carbono (CNTs) han suscitado el interés de la
comunidad cientifica desde su descubrimiento en la década de los
90. Son un excelente material para el desarrollo de campos de in-
vestigacion tan diversos como la nanomecdénica o el transporte cudn-
tico. Los resonadores mecanicos de nanotubos estin dotados de
propiedades excelentes, incluyendo una masa extremadamente pe-
quefia, una seccion transversal ultra estrecha, y funcionamiento en un
amplio rango de frecuencias de 10 kHz a 10 GHz. También son fantas-
ticos sensores de la absorcién de masas y fuerzas.

Sus propiedades de transporte eléctrico son notablemente el largo
transporte balistico de los portadores de carga, una fuerte interacciéon
electrén-electrén y el importante papel de los grados de libertad de
espin y valle. Es posible observar un ancho rango de fenémenos cuén-
ticos que van desde la el efecto tunel de un solo electrén hasta la fisica
de Kondo y la interferencia de Fabry-Pérot. Cabe sefialar que el trans-
porte eléctrico y el movimiento mecanico de los nanotubos suspendi-
dos pueden ser acoplados en gran medida.

En la primera parte de esta tesis, presentamos un método de fab-
ricacién avanzado ultra-sensitivo que nos permite construir y fun-
cionalizar un cantilever de nanotubo para medidas 6pticas. Crecemos
una particula de platino en el extremo del nanotubo con el fin de au-
mentar la reflexion laser. Para ello, rastreamos la deposicién del mate-
rial en el cantilever a través del acoplamiento electromecénico con el
haz de electrones durante el proceso.

Seguidamente, mostramos medidas de transporte de electrones en
dispositivos de alta calidad con una alta transmisiéon. Mientras que
las medidas a alta temperatura indican correlaciones electrén-electrén,
caracteristicas de transporte a baja temperatura apuntan hacia inter-
ferencia de Fabry-Pérot. Observamos este efecto tanto al modificar la
temperatura como al variar el voltaje fuente-drenador. Este efecto se
atribuye a la relacion entre las fluctuaciones y las interacciones cuan-
ticas en un régimen de Fabry-Pérot correlacionado.

En la dltima parte, mostramos que es posible acoplar el
movimiento mecanico del CNT al transporte de electrones. Al aplicar
una corriente de electrones a través del sistema podemos enfriar o
amplificar el movimiento mecanico del modo propio. Enfriamos el
nanoresonador hasta 4.6 &= 2.0 cuantas de vibracién. Las inestabili-
dades presentes en el transporte de electrones son atribuidas a la au-
tooscilacién inducida por la amplificacién de retroaccién. Estos efec-
tos tienen un origen electrotermal. Este método puede ser usado en el
futuro para enfriar NEMS al régimen cudantico.
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Chapter 1

Introduction

Nowadays, mechanical resonators have become a fundamental part
of our daily life. We can find them in numerous devices that we con-
stantly use. Specifically, micro-electromechanical systems (MEMS) are
present in our cars, mobile phones, speakers, and computers, among
many other devices. Accelerometers, gyroscopes, pressure sensors,
bio-sensors or mirror arrays are designed using MEMS. Few commer-
cial examples can be seen in Fig. 1.1. These type of systems are also
an essential tool in research.Many breakthroughs are being achieved
thanks to them. Some examples include the creation of the atomic
force microscopy (AFM) achieved in 1986 [1], the ground state cool-
ing of the mechanical resonator eigenmode in 2010 [2] and the first
observation of gravitational waves in 2015 [3].

As R. Feynman stated in 1959: "There is plenty of room at the bot-
tom". The miniaturization but specially the change of scope from a
top-down to a bottom-up approach have allowed the reduction of
the size of mechanical systems. We are now in the times of nano-
electromechanical systems (NEMS).

a ’ b C

FIGURE 1.1: Examples of commercial MEMS. (a)

Part of a chemoresistive gas sensor based on MEMS

microheater. (b) A commercial gyroscope that is part

of a low-power three-axis angular rate sensor. (c)

MEMS microphone designed to be incorporated in

a next generation of smaller, more efficient, higher
quality hearing aids.
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The mechanical motion of both MEMS and NEMS has been suc-
cessfully coupled to other degrees of freedom. These systems include
the charges of single-electron transistors [4-12], the Copper pairs of
superconducting circuits [13], the quantum states of qubits [14], su-
perfluids [15, 16], microwave radiation [17, 18], and electron or nuclear
spins [19-21]. In this work we study in detail a system based on a car-
bon nanotube (CNT) which is used as both a single-electron transistor
(SET) and a mechanical resonator (as depicted in Fig. 1.2(a)) so that
the mechanical properties and the electronic transport are intrinsically
coupled.

CNTs are carbon based hollow cylinders with exceptional mechan-
ical and electrical properties. They possess a high strength and a very
low mass. Among its mechanical properties, the following stand out:
The tunability of its resonance frequency [22], the possibility of push-
ing it to the GHz frequency range [23, 24] and the high Q factor [25, 26].
This makes them excellent sensors. For example, they have been used
in mass sensing experiments with an unprecedented resolution [27].
In addition, the force and displacement sensitivity have been demon-
strated to reach values low enough to be able to detect the magnetic
force created by a single nuclear spin [28, 29].

We here highlight the electronic properties of nanotubes. It is pos-
sible to have ambipolar transport, where the electronic transport can
be carried by either holes or electrons by tuning the sign of the CNT
electrochemical potential [30, 31]. Different transport regimes can be
observed [32], from Coulomb Blockade [31, 33-36] and Kondo [37-40],
where electron correlations dominate, to Fabry-Pérot interference [41,
42], where the wave-particle duality of the charge carriers manifests.
The charge carrier mobility is extraordinarily high allowing the cre-
ation of an electron-waveguide in a CNT transistor. Fig. 1.2(b) shows
the usual conductance curve of an ultraclean CNT where different
regimes can be clearly distinguished.

Due to the coupling of the mechanical motion to other degrees
of freedom, mechanical systems have been cooled to the quantum
regime [43-45]. Different MEMS and NEMS have reached the ground
state but not CNTs [18, 46, 47]. The motion of mechanical systems has
been also amplified leading to self-oscillation [48-50]. In NEMS based
on CNTs, the coupling between electron transport and the mechanical
motion leads to important backaction effects. This enabled the control
of the resonance frequency and the dissipation [7, 8]. New instabili-
ties in quantum transport has been attributed to the electromechanical
coupling [8]. However, cooling of the mechanical motion has never
been achieved in a CNT-based NEMS.

This thesis explores all the intriguing phenomena associated to
suspended nanotubes. We report on advances in the fabrication and
functionalization of CNT force sensors. We present low temperature
transport measurements in ultra-high quality CNT quantum dots. We
focus in an intermediate regime where no clear energy scale dominates
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FIGURE 1.2: Characterization of a CNT elec-
tromechanical resonator. (a) Scanning electron mi-
croscopy (SEM) image of a CNT-based resonator
suspended over a gate electrode and clamped be-
tween source and drain electrodes. (b) Electrical
conductance of a CNT-based single electron transis-
tor (SET) as function of the DC gate voltage mea-
sured at cryogenic temperatures.

and both electron correlations and interference effects are important.
The transition between these different transport regimes is studied in
detail. Finally, the interplay between mechanical motion and electron
transport in a weak coupling regime is analyzed. We either cool or
amplify the mechanical motion of the eigenmode of a CNT resonator.
We discuss the origin of this backaction effect. Our work shows that
the origin of the instabilities observed in quantum transport is related
to self-oscillation.
The thesis structures as follows:

o Chapter 2 presents the crystalline structure of CNTs and its main
electronic and mechanical properties.

e Chapter 3 introduces the basics of electron transport in quantum
dots, with a special attention to nanotube-based devices. The
concept of noise and its main contributions to nanotube devices
is also introduced.

e Chapter 4 builds the the framework to understand mechanical
resonators. Here we introduce the concept of backaction.

e Chapter 5 presents the fabrication methods used to produce
ultra-high quality electrical devices based on suspended nan-
otubes. An advanced fabrication and functionalization process
to prepare a CNT force sensor for optomechanical measurements
is also described in this chapter.
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o Chapter 6 discusses the measurement setup used in the experi-
ments presented in this work. Different methodologies are pre-
sented to quantify the quality of the filtering and thermalization
by measuring the electronic temperature of the system.

o Chapter 7 reports electron transport measurements in ultra-
clean CNTs with high transmission. Here, we study the energy
scales of the system and the interplay between quantum inter-
ference and electron correlations.

o Chapter 8 demonstrates a simple yet powerful method to cool
or amplify the eigenmode of a CNT resonator based on the use
of a DC electron current.
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Chapter 2

Carbon nanotubes

In this chapter we introduce the basic properties of carbon nanotubes.
First we introduce the material and its history, describing the connec-
tion between graphene and carbon nanotubes. Then, we review the
mechanical and electronic properties of the carbon nanotubes using
their crystallographic structure.

2.1 Introduction

Graphene is a two dimensional material based in an atomically thin
layer of carbon atoms arranged in a hexagonal lattice, while a carbon
nanotube (CNT) can be understood as a rolled-up graphene sheet. In
electron transport, it is considered one dimension, when the sub-band
spacing is larger than the thermal energy and the elastic length. In
both cases the carbon atoms are bonded by covalent bonds. Graphene
is considered to be the basic building block of graphite, which con-
sists in graphene sheets stacked by Van de Waals interaction. CNTs
are classified in two categories according to their number of layers:
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon
nanotubes (MWCNTs). SWCNTs consist in one individual rolled-up
sheet with a diameter about one nanometer. MWCNTs are an arrange-
ment of multiple concentric shells of SWCNTs stacked together.

Basically, CNTs were known long before graphene. CNTs were ex-
perimentally discovered by Jjima in 1991 [51], while graphene was iso-
lated for the first time by Andre Geim and Konstantin Novoselov in
2004 [52]. CNTs can be synthesized by different fabrication processes,
such as chemical vapour deposition (CVD) [53], laser ablation [54] and
arc discharge [51, 55]. CVD is the most common fabrication process;
we used it in the experiments shown in this thesis. The length of the
tubes obtained by this mean can range from few hundred nanometers
to few millimeters depending on the process parameters [56, 57]. Ad-
ditionally, other characteristics like the radius, the purity or the num-
ber of CNTs can be tuned with the fabrication parameters [58, 59].
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FIGURE 2.1: Lattice and band-structure of

graphene. (@) The characteristic honeycomb
lattice of a graphene flake with an inter-atomic
distance ap and the unit cell defined by the vectors
a1 and a5. (b) The band-structure where the K and K
points of the hexagonal first Brillouin zone are high-
lighted. The orbitals 7 and 77* merge at these points
defining the electronic properties of graphene. (c)
The characteristic linear energy dispersion at low
energy around the K and K points. The figures b
and ¢ have been adapted from [60].

Both materials share many of their properties. Next, we will pro-
ceed by presenting the basic mechanical and electronic properties of
CNTs which, in some cases, can be explained directly from the inher-
ent characteristics of graphene. This will allow us to understand the
uniqueness of these systems and motivate their use nanoscience.

2.2 Electronic properties

The CNT electronic properties can be directly explained from the
band-structure of graphene. Therefore, we start by introducing the
key properties of graphene. In Fig. 2.1, we can see the honeycomb
lattice of graphene , where the carbon-carbon bonds have a length of
ap = 0.142nm, together with its band-structure. The unit cell in the lat-
tice is defined by the vectors 47 and 43 and it contains only two carbon
atoms.

Every carbon atom contains four covalent electrons, three of them
are hybridized in a strong sp? orbital while the electrons which con-
tribute to the electronic transport belong to the p, orbital. The elec-
trons in the sp? orbital play an important role in the elastic properties
of the material which we discuss in the next section. They don’t con-
tribute to the electronic properties since its energy is far from the Fermi
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energy Eg. The electrons in the p, orbital, which lay perpendicular to
the lattice, form the delocalized 7r-bonds. If we calculate the lower
energy 7m-band structure using the tight binding model, we obtain the
following energy dispersion relation for the valence and conductance
band:

E(k) = :tyo\/3+2cos(%'ﬁ’1) +2cos(k - ) 4+ 2cos(k - (@, — 7)),
@.1)

where 7 represents the nearest hopping energy and the positive and
negative solution denote the two sub-bands which converge into the
charge neutrality point, which can be observed in Fig. 2.1(b) and
Fig. 2.1(c). These symmetric bands form a cone shape located at the
vertices of the Brillouin zone. This symmetry suggests that electrons
and holes have the same properties in graphene. Two of these six
points are non-equivalent due to symmetry reasons. These two points
are the so-called K and K’ valleys. Near the charge neutrality point, the
energy dispersion relation can be approximated by a linear dispersion
relation

E(K) ~ +ho |k|. (2.2)

If 79 = 3 eV, the Fermi velocity is v = V3avg/2h =~ 10° m/s. The
electrons in these states behave as massless particles and are called
relativistic Dirac Fermions. Since at the charge neutrality point (de-
scribed around Ep = 0) the two sub-bands touch together, graphene is
known as a zero-band gap semiconductor.

Now, let’s understand the properties of a nanotube. The electronic
properties of such a structure are determined by the symmetry of the
crystalline lattice. The vector C= ayn + aym with n,m € Z, is known
as the chiral vector and accounts for the axis symmetry. It connects
lattice sites on opposite sides of the surface that are superposed when
the graphene is rolled up forming a nanotube. The angle between the
vectors C and d; defines the chiral angle 0 as despicted in Fig. 2.2. Ba-
sically, 6 refers to the angle between the axis of the CNT and the orien-
tation of the lattice. The chirality or chiral angle of the nanotube can be
determined by the integer numbers n and m. Finally, a nanotube with
the so-called chiral indices (n, m) is armchair for (n, m = n), zig-zag if
(n,0), and chiral for arbitrary (n,m).

The electronic properties of SWCNTs can be calculated from the
band structure of graphene applying periodical boundary conditions
around the circumference. It depends on the chirality of the tube
which determines if the SWCNT is metallic or semiconductor. The
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FIGURE 2.2: Defining a CNT from a graphene
sheet. The CNT surface is defined by the chiral
vector C and the translation vector T. Addition-
ally, the electronic properties are also defined by the
surface area. The 3 different species of CNTs; arm-
chair (n,n), zig-zag (n,0), and chiral (1, m) are rep-
resented by their characteristic vectors.

boundary conditions are introduced trough the zone-folding approx-
imation which states that the wave vector x, is quantized in the di-
rection of the C vector of the tube. The electrons move freely in the
axial direction so the transversal vector x| is not quantized when the
nanotube is sufficiently long.

There is one sub-band per quantized x; vector. As for the
graphene case, the electronic transport is given by the states in the
sub-band with E(x) around Ep. If at least one sub-band crosses the
K-points, the CNT is metallic, while in the opposite case the CNT is
semiconducting, as shown in Fig. 2.3. The energy band gap of semi-
conducting CNTs is given by Eg = % eV, where d is the diameter of
the CNT in nm. Finally, we emphasize that a comparatively small en-
ergy gap emerges in metallic nanotubes that are not armchair due to
the curvature of the system..

As is the case for graphene, CNTs show extraordinary high elec-
tron mobility [35, 61], and ambipolar effect [30, 31]. Therefore, the
implementation of CNTs in a field-effect transistor layout has been ex-
tremely successful.
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2.3 Mechanical properties

As we mentioned, CNTs possess an extraordinary high strength. It
originates from the hybridized sp? carbon-carbon bonds and can be
quantified by the Young Modulus. The low mass density combined
with the high stiffness make CNTs an ideal material to implement in
electromechanical systems.

The elastic properties of the material are characterized by the
Young modulus E and the tensile strength ;. The Young modulus
accounts for the linear dependence of the stress ¢ as function of the
strain €; in other words, it describes the in-plane strength of the mate-
rial. The tensile strength refers to the maximum stress that the mate-
rial can withstand before fracturing or irreversibly deforming. These
two values have been experimentally measured in CNTs. The Young
modulus in CNTs has been experimentally found in the TPa regime.
The Young modulus can be measured: by pulling the two sides of a
CNT with AFM tips [62], or by pushing and consequently stretching
the CNT with an AFM tip from the top [63], or from thermal vibration
measurements using an electronic microscope [64]. In the case of o, it
has been determined around few tens of GPa [62].
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Chapter 3

Quantum transport in
CNT devices

In the following chapter we present the singularities of the electronic
transport in nanotube quantum dots. We introduce the relevant en-
ergy scales of such a system. Next, we cover the different transport
regimes, from regimes like Coulomb-Blockade or Kondo, which are
characterized by strong electron correlations, to Fabry-Pérot, where
the wave-particle duality of the electrons strongly manifests as quan-
tum interference. The constant interaction model (CI) is used to
present the Coulomb-Blockade regime and its figures of merit. Next,
we will focus on the the Fabry-Pérot regime, which is relevant for the
experiments presented in this work. Finally, we introduce the shot
noise in quantum dots, which emanates from the granularity of the
electron current.

3.1 Introduction

The bloom of what we know as quantum transport experimental re-
search originated in the 90’s due to the improvement in the nanofabri-
cation techniques. Before, the electronic transport in macroscopic sys-
tems was well described by the classical treatment of electrons as parti-
cles. These improvements on the nanofabrication techniques allowed
the scientific community to miniaturize the systems to a dimension
smaller than the coherence length of an electron. In these microscopic
systems the wave-particle duality of the electrons manifests and dif-
ferent quantum transport phenomena were explored.

A quantum dot defines a zero-dimensional system where the elec-
tron wave function is confined in all three directions. The energy of
these electrons is quantized as a consequence of the confinement and
it can only adopt certain values. The discrete energy spectrum can be
observed at room temperature in nanoscale objects but at a tempera-
tures below 1K the confinement can be achieved in micrometer size
objects.
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Quantum Dot

FIGURE 3.1: Quantum dot schematic. The quantum

dot (QD) is capacitively coupled to the source, the

drain, and the gate electrodes through the capaci-

tances Cs, Cq, and Cy. Electrons can tunnel in and

out of the quantum dot through the source and drain

electrodes. The tunneling is quantified by means of
the tunneling rates I's and I'p.

Quantum dot devices can be made from various systems such
as metallic islands, molecules, nanowires or single wall carbon nan-
otubes. A quantum dot can be connected to leads consisting of stan-
dard metals, ferromagnets or superconducting materials. Finally, its
Fermy energy can be tuned by a gate electrode

3.2 Carbon nanotube quantum dots

As we mentioned, quantum dots can be made of carbon nanotubes. If
we contact the nanotube ends to a source and a drain electrode and
we capacitively couple it to a gate electrode we can achieve the termi-
nal transistor layout (see Fig. 3.1). Because of the finite length of the
nanotube, the confinement of the electrons results in quantized energy
levels at sufficiently low temperature, so that the system dimension is
not longer one but zero. The source and drain electrodes act as reser-
voirs of electrons that can tunnel into and out of the nanotube. Finally,
the gate electrode can tune the electrochemical potential of the quan-
tum dot.

3.2.1 Energy scales

Along with the thermal energy kgpT imposed by the environment,
other energy scales define the behaviour of the quantum transport
through the quantum dot. We define four different energy scales:

e Thermal energy: The thermal energy kgT refers to the internal
energy of the system due to its temperature. The experiments
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presented in this work were done in a dilution refrigerator that
can reach a temperature of 15 mK. The relevant temperature for
quantum transport experiments is the electronic temperature.
As we present in Chap. 6, we achieved a minimum electronic
temperature of 25 mK. This temperature corresponds to an en-
ergy kpTe ~ 2ueV.

e Charging energy: This is the Coulomb energy to pay when
adding one electron in the quantum dot. It expresses as E. =
e2/ Cr, where ¢ is the elemental charge and Cr the total capac-
itance of the quantum dot. Ct accounts for the capacitance of
the source, drain and gate electrodes Ctr = Cs + Cq + Cg. The
charging energy of nanotube quantum dots is typically between
1 meV to 100 meV.

o Level spacing energy: As we previously introduced, the energy
levels in a quantum dot are quantized. In a quantum dot with
length L, the level spacing is given by the interference condition
AE = hvpm /L, where v represents the Fermi velocity. The level
spacing energy of nanotube quantum dots is around few meV.

o Tunneling rate: The rate at which the electrodes exchange elec-
trons with the nanotube is known as the tunneling rate. Each
electrode has its own tunneling rate: I's and I'p for the source
and drain electrodes, respectively. This rate is mainly set by the
electronic density of states in the reservoirs and the overlap of
the wavefunction of the electrode and the quantum dot. Finally,
we usually refer to the tunneling broadening il't = 1(I's + I'p)
which characterises the total coupling between the dot and the
reservoirs. It usually takes values from few peV’s to the meV
range and, as we will see next, it largely defines the transport
regime in the quantum dot.

3.2.2 Transport regimes

The transport regime is determined by the comparison between the
energy scales of the system AE, E, kgT, and I't.

Coulomb blockade

We here consider that the thermal energy kpT and the tunnelling rate
I't are smaller than the level spacing kgT,I'tT < AE. On the other
hand, the level spacing is usually smaller than or comparable to the
charging energy AE < E..

The Coulomb blockade regime is dominated by the Coulomb re-
pulsion between electrons. Once an electron tunnels into the quantum
dot, the charge is fixed and no other electron can tunnel into the dot
until the electron tunnels out. This regime is characterized by very
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FIGURE 3.2: Schematic of the energy levels in a
quantum dot. The energy levels are defined through
the electrochemical potential y: The source and
drain electrodes are characterized by ys and iy re-
spectively (the separation between them is defined
by eVyq). (a) There is no current flowing through the
devices. (b) The Nth electronic level lays now be-
tween ps and g and the number of electrons fluc-
tuates between N and N — 1 setting the conduction
through the dot.

opaque tunnel barrier so that the tunnelling rate I't between the dot
and the reservoir is very small, resulting in a large lifetime of the elec-
trons inside the dot. Alternatively, it can be also seen as a small energy
broadening. The single electron tunneling transport in a CNT quan-
tum dot was reported long time ago in two pioneer works [33, 36].

This regime is characterized by kT <« E.. The temperature has
to be low enough in order to avoid thermally induced charge fluctua-
tions in the quantum dot. Additionally, the number of charges inside
the system has to be well defined. Therefore, the time At to charge
or discharge the dot has to be low enough. Starting from the Heisen-
berg’s uncertainty principle AEAt = E.At > h and knowing that the
charge time is given by the RC-time At = RtCt, where Ry is the re-
sistance of the tunnelling barrier. There is a minimum value of the
resistance R > Rx = h/e?. Here, Ry = h/e? ~ 25.813 KQ is the Von
Klitzing constant.

The constant interaction (CI) model [65] is a simple, yet powerful
model to understand the electronic transport in the Coulomb block-
ade regime. There are two important assumptions that need to be
made within the framework of this model. First, the Coulomb inter-
actions among electrons in the dot are captured by a total capacitance
Cr. Second, the charging energy is independent of those interactions,
therefore it does not depend on the number of electrons in the dot.
Considering these assumptions, the total energy of a N-electron dot
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U(N) with a source-drain voltage V 4 applied on the source, is given

by

U(N) = — + Y en (3.1)

where e is the elemental charge, N the number of electrons and V,;, and
Cy; are the applied voltage and the capacitance of the source, drain
or gate, respectively. The electrostatic energy is represented by the
two first terms of Eq. 3.1. Finally, the last term of Eq. 3.1 accounts for
the occupied single-particle energy levels. It is convenient to use the
electrochemical potential y which is defined as the minimum energy
required to add the Nth electron to the quantum dot uy = U(N) —
U(N—1):

€2 1 3
uN = o (N 2) +e ( ) tmem> +en. (3.2)

m=1

Here, a,;, = C,,/Cy is the lever arm of the contact m. The lever arm
is very useful since it allows us to convert the applied gate voltage
into energy. The electrochemical potential increases while increasing
the number of electrons N, creating a ladder structure as shown in
Fig. 3.2. The energy needed to add an electron in the system is known
as the adding energy E,q4q(N). It takes into account the electrostatic
energy E. and the spacing between the energy levels AE:

2
Eaqd(N) = pN+1 — N = N1 — €N+ %T = Ec +AE. (3.3)

When the potential level of the quantum dot lies in the window
created between the electrochemical potential of the source (ys) and
the drain (y14) we observe electronic transport. When the electrochem-
ical potential of the quantum dot follows the hierarchy us > u > ugq,
where —eVyq = us — g, an electron typically tunnel into the dot from
the source and then tunnel out to the drain (as shown in Fig. 3.2(b)).
A second electron can tunnel onto the dot but only after that the first
electron has tunneled out. This effect is known as single-electron tun-
neling.

Since the size of a quantum dot is small, the capacitance is also
very small and consequently the charging energy takes large values.
If the energy level of the dot remains out of the window defined by
the electrochemical potential of source and drain, the quantum dot
electron number is fixed and there is no current flowing through it.
This is the so-called Coulomb Blockade.
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FIGURE 3.3: Schematic representation of the quan-
tum dot conductance G and the corresponding en-
ergy levels. G is represented as function of the
gate voltage Vg together with the corresponding
schematic of the energy level distribution for one
electronic shell in two different cases: (a) The elec-
tronic shell contains four electrons due to the val-
ley and the spin degeneracy.(b) In this case there
is a two-fold symmetry due to the spin degeneracy
while there is a lifting due to the valley degeneracy.
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In Fig. 3.3, by sweeping the gate voltage V; and measuring the
current, we obtain traces with regular peaks. This peaks represent
the situation where an energy level falls in the bias window leading
to single-electron tunneling current. The region between the peaks
stands for the case where the number of electrons in the dot is fixed
and there is not current flowing through it. AE can be extracted from
the separation between the current peaks as described in Fig. 3.3. In
the case of valley and spin degeneracy there is a fourfold degener-
acy, as depicted in Fig. 3.3(a). In the case that the valley degeneracy
is lifted, the periodicity changes as shown in Fig. 3.3(b). The lifting
of the valley degeneracy may be caused by the scattering at the elec-
trodes which creates a mismatch between the two valleys in the carbon
nanotube band-structure.

When increasing the source-drain voltage one or more excited
states can enter into the window defined by Vgq. The electron can tun-
nel either through the ground or the excited state increasing the total
current.

In the so-called Coulomb Blockade diamond measurement. The
differential conductance Ggj¢ is measured while sweeping Vg and Vg,
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FIGURE 3.4: Charge stability diagram schematic.
The differential conductance Gg;s¢ is shown as a func-
tion of the source-drain voltage V,q and the gate
voltage Vg for a system with spin degeneracy but
without the valley degeneracy. The blue lines rep-
resent the evolution of the conductance peaks repre-
sented in Fig.3.3(b). The surfaces inside these lines
(light blue) are the so-called Coulomb Diamond re-
gions where the transport is not allowed because the
charge in the system is fixed (the number of charges
is depicted as N). The blue lines can be used to ex-
tract the important energies of the system (E. and
AE). The number of electrons outside the diamond-
shaped regions (dark blue) can fluctuate since more
allowed states enter in the bias window.

as shown in Fig. 3.4. Inside the diamond-shaped regions (light blue)
the number of electrons is fixed and no current is measured. The ad-
dition energy E,4q can be directly read from such a measurement.

As we mentioned before, two Coulomb peaks at zero bias are

spaced by £add  The height of the Coulomb Diamonds corresponds
P Y eng g P

to eVaqg = E,qq and the slopes of the diamonds are given by the ca-
pacitances of the device. The positive slope of the Coulomb diamond

issy = % (when the drain electrode is grounded) while the neg-

. . @ .
ative one is s_ = —¢%. The gate lever-arm can be determined from

1
these slopes as 0y = ——.
P &~ Torl+s]
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FIGURE 3.5: Spin-flip co-tunnelling. The spin up

electron in the dot jump out to be replaced by a spin

down electron leading to a final state in which the

spin of the electron in the dot changed its sign. The

spin in the dot is coupled to the spins in the elec-
trode, forming a spin singlet.

Kondo regime

In this regime the thermal energy kgT is clearly smaller than the tun-
nelling rate kgT < I't. The rest of the energy scales follows the same
hierarchy as that in the Coulomb Blockade case I't < AE < E..

When the dot becomes more transparent and the resistance ap-
proaches Rk, high-order processes need to be taken into account.
Therefore, quantum fluctuations are observed in the electron number
even in the Coulomb Blockade regime.

The conductance is given by elastic cotunneling processes [66]. In
this high-order process, an electron can tunnel out the dot, leaving it
temporarily in a classically forbidden state known as a virtual state.
This process is allowed by the Heisenberg uncertainty principle if an-
other electron immediately tunnels into the dot. In conclusion, the ini-
tial and final energy are the same but an electron has been transported
through the dot.

The spin of the electron plays a central role. The initial energy state
must have a spin and the final state has a spin that may be in the other
direction. As a consequence, the net spin of the dot may be flipped
during the event as depicted in Fig. 3.5. The spins of the electrons
in the dot and the reservoirs are entangled. Therefore, there is a new
ground state of the system as a whole spin singlet. The spins in the
dot is screened by the spins of the electrons in the reservoir.

The Kondo effect in quantum dots was reported for the first time in
1998 [67, 68]. Later, this effect was also observed in carbon nanotube
SETs [37].

There are various effects in transport measurements associted with
the Kondo effect. First, there is an even-odd asymmetry in the gate
voltage dependence of the conductance. When we have an even num-
ber of electrons in the dot the net spin is zero, while when we have
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FIGURE 3.6: Schematic of some of the main fea-
tures of the Kondo effect in a CNT quantum dot.
(a) Schematic of the conductance G as function of
the gate voltage V; in three different cases: T < Tx
green line, T < Tk red line, and T >> Tg blue line.
(b) Schematic of the conductance G as function of the
temperature T. G decreases logarithmically by in-
creasing the temperature when the number of elec-
trons is odd. (c) Schematic of the zero-bias Kondo
resonance known as Kondo ridge.

an odd number the total spin is non-zero, resulting in the Kondo ef-
fect. Upon lowering the temperature, the conductance decreases in the
even case, while is increases in the odd case. Second, the conductance
in the middle of the Kondo valleys increases logarithmically by reduc-
ing the temperature until the saturation point 2¢2/h at the lowest tem-
perature 3.6(b). This value corresponds to the so-called unitary limit
of conductance [69]. This situation is equivalent to a completely trans-
parent quantum dot. Usually we expect that charging effects and the
tunnel barriers block the electron tunneling but in the Kondo regime
the electrons can tunnel in an unimpeded way. Third, the conductance
has a zero-bias resonance in the conductance G due to the Kondo res-
onance at the Fermi energy of the reservoirs 3.6(c), this feature is also
known as Kondo ridge. The full-width half maximum of the reso-
nance gives an estimation of T.

We present measurements showing signatures of the Kondo effect
in Chap. 7 and Chap. 8.

Fabry-Pérot interference

The Fabry-Pérot regime is characterized by a high tunnelling rate I't
so that kT, E. < I't. In this case, I'T can approach the level spacing
I't <AE.

This regime is characterized by transparent barriers. Electrons
can tunnel in and out of the quantum dot fast enough so the charg-
ing effects are no longer dominant. The dot is considered open
and interference phenomena becomes relevant. The right- and left-
moving electron waves scatter at the interfaces with the reservoirs cre-
ating an effect analogous to the optical Fabry-Pérot interferometer (see
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FIGURE 3.7: Fabry-Pérot regime in a coherent

electron-waveguide. (a) Schematic of the device il-

lustrating that the multiple electron reflections give

rise to an interference pattern. (b) A diagram of

the basis wavefunctions used to define the scattering
matrices Sy, Sg, S, and St.

Fig. 3.7(a)). The characteristic interference pattern of transport mea-
surements in this regime is explained by the modulation of the wave
number k of electrons by sweeping V,; and V4. Analogous to the opti-
cal cavity case, where the transmitted intensity is also modulated, the
period of the modulation is inversely proportional to the length L of
the electron cavity.

In this type of devices, the carbon nanotube acts as a coherent
electron-waveguide, where the resonant cavity is created between the
two nanotube-reservoir interfaces. Therefore, the current is carried
by two spin-degenerate, one-dimensional transport modes with lin-
ear dispersion. the maximum expected value of G, corresponding to
two transport channels, is 4¢? /i when the electrons move ballistically
through the conductor.

We present a simple theoretical framework based on a scattering
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matrix approach to describe transport in the Fabry-Pérot regime [70-
72]. In this model, 4x4 scattering (S) matrices characterize the elec-
tron transmission and reflection at each interface, S;, and S for the
left (source) and right (drain) interfaces. The matrix that describes the
transmission through the CNT is denoted as Sy;. The basis wave func-
tions that describe the system are outlined in Fig. 3.7(b). We define
the transmission matrix St as the combination of the three different
scattering matrices of the system.

ST = 5L ® SN ® Sr. (3.4)

The generalized matrices of both interfaces can be written in terms of
four submatrices of finite order:

Stk Six
SLR = (S S%?R , (3.5)

where 5 iy LR are 2x2 submatrices that take into account the transmission
and reflection at the interfaces. For the sake of simplicity, we will ig-
nore the inter-mode mixing between the channels. The matrices S; 12/ 21
can be described by a diagonal matrix:

12/21 _ (rLr 0
SR = ( 0 rL,R) / (3.6)
here r1 R represent the reflection coefficients of each interface.
We also define the transmission part of the scattering matrix 511}1{22
as a diagonal matrix:
t 0
511/22 LR ) 3.7)
0 fLR

where t] r are the transmission coefficients of each interface.

The phase of the electronic wave function changes as a function
of the gate voltage and the source-drain voltage. It leads to the inter-
ference pattern. It is important to mention that the two propagating
modes in a carbon nanotube possess different wave vectors kq and k},
which is the most important difference with respect to the single-mode
optical cavity. The matrix Sy is also diagonal in absence of electron
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scattering between the two modes in the nanotube:

e 0 0 0
(st o _ |0 €2 0 0
N = ( 0 sg) o o &n o[ 3.8)

0 0 0 e

where S{} = S22 = S and ¢ and ¢, account for the phase accumu-
lated by the electrons corresponding to the two modes, respectively.
The matrix St can by calculated from the matrices Sy, Sr and S,
by matrix combination [70-72]. We write the generalized expression
for the submatrix S1! which contains the transmission coefficients.

S} = SPSY(1 - SRSYSH SR 1SF =

tLtRei‘Pl
11 412 R 0
_ tT tT _ | 1—rprre® ) (3'9)
= tle tsz - 0 tp tre'?2
1—rprre?¢2

The total transmission of the system can be expressed as
ij|?
T= Y ‘tT’ . (3.10)
ij=1,2

The values of t? correspond to the different elements of the matrix Si!
defined in Eq. 3.9. Finally, we can write G in terms of Eq. 3.10

(3.11)
4e? |t |tr|”

S 14 | frel® — 2| | cos (241 (Vg Via))

An example of an oscillating pattern is presented in Fig. 3.8. We
numerically simulated G as function of Vg at zero bias using Eq. 3.11.
We assumed symmetric and transparent interfaces. We also calculated
¢1,2 using the standard experimental parameters in our CNT quantum
dots [41]. The oscillation representative of the Fabry-Pérot interference
pattern is captured by this model although we would need a more
elaborated model to describe other effects such as the secondary os-
cillations as observed in previous studies on ultraclean CNTs [42, 73].
We present detailed measurements in Chap. 7 and Chap. 8.
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FIGURE 3.8: Conductance oscillations in the Fabry-

Pérot regime. Calculation of the conductance G as

function of the gate voltage Vg in a CNT quantum

dot with almost perfectly transparent and symmet-

ric barriers using Eq. 3.11. The phase ¢ has been

calculated following the work of Liang and cowork-
ers [41].

3.3 Noise in a quantum dot

We define the noise in our system as the random fluctuations over
time of a physical quantity around its mean value. For example, if we
consider the current I(¢)!, its fluctuations from the average value are
defined as 01(t) = I(t) — (I(t)). Therefore, the autocorrelation function
Gi(7) is

Gilt,7) = (DIt + 7)) :/ I(O)I(t+ 7)*dt, (3.12)
where (I(t)) is the statistical average and I(t)* is the complex conju-
gate of I(t). The Wiener-Kinchin theorem states that the autocorrela-
tion function of I(t) is the Fourier transform pair of its power spectral

1We use the convention I(w) = [ I(t)ei!dt. and I(t) = 5= [T N(w)e“ dw



36 Chapter 3. Quantum transport in CNT devices

density (PSD)?. The double-sided PSD Sl (w) is defined as

58 () = /:” (DI(¢ + 7)) dr. (3.13)

In the classical limit, the autocorrelation function is symmetric in
time Gy(t) = Gy(—t). Consequently, the PSD is also symmetric in fre-
quency Sy(w) = Sip(—w) for a frequency range far from the quantum
limit icw > kgT. The PSD detected experimentally in this work is
what is considered as the classical PSD.

We introduce the main sources of noise in the system:

e 1/f noise: The origin of this noise in electronic devices emanates
from the slow current fluctuations due to the small changes in
the device properties. It is present in every material and its value
is proportional to the current but decays inversely with the fre-
quency. It was first reported by J. B. Johnson [74] and was de-
scribed by W. Schottky [75].

In order to avoid this noise we built a measurement setup whose
characteristic frequency is in the MHz range. We present the
details of the measurement scheme in Chap. 5.

o Thermal noise: The thermal noise originates from the finite tem-
perature of the system. The number of charges may fluctuate
due to the thermal fluctuations leading to voltage and current
fluctuations when the system is in equilibrium V4 = 0.

This noise is known as the Johnson-Nyquist noise. It was first
reported by J. B. Johnson [76] and its theoretical framework was
develop by H. Nyquist [77]. The mathematical expression can be
directly derived from the fluctuation-dissipation theorem as

Syy = 4KpTR. (3.14)

Thermal noise is frequency independent up to the quantum limit
(white noise). We use the Jonhson-Nyquist noise as a thermome-
ter in Chap. 6.

The displacement in a suspended carbon nanotube quantum
dot also fluctuates due to the finite temperature as we show in
Chap. 4.

2We need to clarify that Sy corresponds to the single-sided PSD which contains only
information of the positive frequency components. The double-sided PSD S{ contains
both components and it relates with the single-sided PSD as Syj(w > 0) = ZSIdI(w > 0).
Through this thesis we refer to the single-sided PSD since our experimental equipment
directly outputs it.
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e Quantum noise: When the frequency is above the limit iw >
kT, the PSD is not symmetric. Therefore, in this regime the ab-
sorbed and emitted noise is no longer the same (see the intro-
duction to the quantum noise by Schoelkopf and coworkers in
Ref. [78]). The zero point fluctuations (zpf) of the nanotube are
responsible of this noise. Since we work in the few MHz regime
we do not need to take into account its contribution.

e Shot Noise: The system moves out of equilibrium when a Vg
is applied and is larger than kgT. Since the current consists of
a flow of discrete charges, it creates current fluctuations. It was
described by Schottky [75].

The shot noise, based on the assumption that the statistics of
electrons passage is Poissonian, reads

SH = 2€<I>. (3.15)

In phase coherent electron devices, the shot noise can be finite.

The Fano factor is then defined as
Su

2e(I)"

F= (3.16)

It was first introduced by Fano [79]. In the Coulomb Blockade
regime, the shot noise is suppressed a facor two in a double bar-
rier quantum dot [80, 81], leading to a Fano factor F ~ 1/2.
While in a quantum point contact, where the conductance is
maximum G = 2¢%/h, the transport can become noiseless [82].
We can find that in this case, F goes to zero at the position of the
quantized conductance plateaus, where the quantum channels
are fully transmitting. In addition, in some materials the shot
noise gives information on the charge carriers: For instance, in a
hybrid system based in a superconductor material, the shot noise
is twice as large compared to that in the normal metal phase
since the charge is carried by a Copper pair g = 2¢ [83].

In Chap. 6, we will expand the shot noise theory in order to cal-
culate the total contribution of the shot noise together with the
thermal noise in the current PSD. We use it as a thermometer
to determine the electronic temperature of the carbon nanotube
quantum dot.
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Chapter 4

Basics of nanomechanical
resonators

We provide the theoretical framework needed to understand the me-
chanical behaviour of the carbon nanotube resonators presented in
this work. We first introduce the simplest model, the linear harmonic
oscillator. Two scenarios are presented, one to describe the response to
an external linear driving force and the second to describe the Brown-
ian thermal motion. We follow with the non-linear description of the
oscillator. Then, we model the carbon nanotube as a double clamped
beam. Finally, we present the backaction effects and their fundamental
limitation in a carbon nanotube electro-mechanical resonator.

4.1 The linear harmonic oscillator

The linear harmonic oscillator represents the simplest model of a car-
bon nanotube electro-mechanical resonator. This model captures the
basic features of a mechanical system with an arbitrary geometry. We
first study for simplicity the case where no external driving is applied
and there is no damping. Next, we introduce the equation of motion
for the general case of a damped resonator. The system is described
by the Hooke’s law

F(t) = —kz(t), 4.1)

where k is the spring constant and z () represents the vertical displace-
ment in the time domain. According to the Newton’s second law the
restoring force F has to be equal to the effective mass ¢ multiplied
by the acceleration of the system %(t), F = megZ(t). The equation of
motion for such a system is

d?z

meffﬁ +kz(t) = 0. (4.2)
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The solution of Eq. 4.2 takes the form of z(t) = zg exp(—iwpt + i¢p).
Where wy is the angular mechanical resonant frequency and zy and
¢ are the amplitude and phase of the motion, respectively. The reso-
nant frequency is given by wg = v/k/meg. In a more realistic case the
damping, or friction, slows down the motion of the mechanical oscil-
lator. Therefore, in addition to the restoring force there is a force due
to the friction proportional to the velocity Z(t), Fyic = meLoZ(t). The
equation of the motion of a damped oscillator reads as

d2z dz
meffﬁ + kZ(t) + meffI“OE = F(i’). (4.3)

The linear mechanical damping is quantified by I'y. F(t) acts as an
additional external time dependent force that drives the system (this
case is further discussed below).

The quality factor Q which accounts for the interaction with the
environment is considered an important figure of merit in the field of
mechanical oscillators.

Q=2 Total energy
N Energy lost per cycle /

In the approximation of small losses, I'y < wy, the quality factor can
be approximated as Q = wp/Awy.

For convenience we usually work in the frequency domain instead
of the time domain. Therefore, we need to perform the Fourier trans-
form on Eq. 4.3. We rewrite it as

(4.4)

2(w) = x(w)F(w), (4.5)
where yx is the mechanical susceptibility which reads as
1

xlw) = Mgt (w3 — w? — iTyw) (46)

Equation 4.5 describes the linear response of the mechanical res-
onator in the frequency domain. From the experimental point of view,
we work with the power spectral density (PSD) of the noise in the dis-
placement, which reads

Sy (w) = [x(w)]? Spp(w). 4.7)

Spr(w) is the PSD of the external force acting on the mechanical res-
onator. It can have different origins as we will develop further below.
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FIGURE 4.1: Amplitude and phase of the motion

for an harmonic oscillator coherently driven. The

amplitude of motion is maximized when the driving

signal and the mechanical oscillator are in resonance

(wo = wq). The motion is then 77/2 dephased with
respect to the driving force.

4.1.1 Coherent driving

First, we present the case in which the external force F(t) is a coherent
sinusoidal driving force

F(t) = F4cos(wgqt), (4.8)

where Fj is the amplitude of the driving force and wy is the frequency
of the drive tone. Using Eq. 4.3, the displacement and the phase in the
frequency domain take the following form

2(wq) = 4 ! , (49)

et /(@ — w§)? + (Towa)?

¢$(wq) = arctan (M) . (4.10)
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FIGURE 4.2: Thermal displacement power spectral
density for an harmonic oscillator. The thermal dis-
placement PSD following Eq. 4.13 is represented as a
function of the frequency. The area below the curve
corresponds to the variance of the displacement of
the harmonic oscillator which is directly linked with
its temperature through the equipartition theorem.

Analysing Eq. 4.9 and Eq. 4.10, we see that the amplitude z(wq) maxi-
mizes when the driving tone in resonance with the mechanical oscilla-
tor. At this point the phase corresponds to ¢(wg) = 71/2. The specific
shape of z(wq) and ¢(wq) are depicted as a function of f4 in Fig. 4.1.

4.1.2 Incoherent driving

The external drive can also take an incoherent form. It can simply
be caused by the energy exchange with the environment. We previ-
ously saw that the interaction with the environment is quantified by
the factor Q. The coupling with the environment also manifests as
a fluctuating driving force which leads to the well-known Brownian
motion. This effects is well explained by the fluctuation-dissipation
theorem [84], which states that in thermal equilibrium, the losses of
the resonator are related to the external fluctuating thermal forces act-
ing on it.
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Using the linear response theory in the framework of the
fluctuation-dissipation theorem [85, 86], the PSD of the single-sided
thermal force noise is expressed as

4kpT 1
Sf(w) = —==Im (x(w)) 4.11)

where kp is the Boltzmann constant and T the temperature of the me-
chanical resonator. We can approximate St (w) classically (in the ap-
proximation of small losses) as

St (w) = 4kpTmexT. (4.12)

We see that Sif (w) is independent of the frequency.
We can calculate the PSD of the mechanical resonator’s thermal
displacement using Eq. 4.7 as,

4k TT

th _
Sp(w) = Mgt (w3 — w?)2 + (Tow)?]’

(4.13)

We now focus in the mean energy U. In thermal equilibrium, the
mean energy of a linear harmonic oscillator reads

U= %meff<th> + %k<th> = kgT, (4.14)
where the first term accounts for the kinetic energy and the second one
for the potential energy. The average energy U is equal to the thermal
energy kpT in the approximation where the thermal energy is bigger
than the phonon energy, kT >> hw. Following the equipartition the-
orem for a harmonic oscillator, the contribution of the kinetic energy
must be equal to the contribution of the potential energy. Therefore,
we have that %meff(z'fh> = %k(zfﬁ = lkpT.

kgT © 1
@) = poa = [ S @.15)
etrro

We also know that the variance of the displacement (z% )! corresponds
to the area under the curve represented by the Eq. 4.13. Accordingly,
we can estimate the mode temperature of the mechanical oscillator by
integrating the PSD (see Fig. 4.2).

n the following chapters, we refer to the variance of the displacement (z% ) as 6z°.
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FIGURE 4.3: Nonlinear response of the amplitude

of motion as a function of driving frequency for a

Duffing resonator. Different curves correspond to
different driving forces (adapted from [87]).

Finally, its important to mention that the thermal occupation n of
a mechanical mode at a frequency w and T is defined by the Bose-
Einstein distribution:

v
e(%) —1

Equation 4.16 allows us to quantify how far is the mechanical oscilla-
tor from the ground state, as we show in Chap. 8.

n= (4.16)

4.2 The nonlinear harmonic oscillator

The linear harmonic oscillator is a good approximation for small am-
plitude vibrations which involve linear restoring forces. When driv-
ing the resonator to large amplitude vibrations, nonlinear restoring
forces become sizeable converting a linear harmonic oscillator into
the so-called Duffing resonator. Carbon nanotube electro-mechanical
resonators possess a small dynamical range which leads to the ap-
pearance of nonlinearities at comparatively small displacements [88].
These nonlinear restoring forces can originate, for example, from geo-
metrical reasons, external nonlinear potentials, the way the resonator
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is clamped or the actuation and the detection mechanism used to in-
teract with the resonator [87]. In order to correctly describe the mo-
tion of such a resonator, we need to introduce an additional term in
the equation of motion. This additional term is proportional to the cu-
bic displacement of the mechanical oscillator so that the equation of
motion is

d?z(t dz(t
meff% + kz(t) + meglo Z(t ) + &Za(t) = F(¥), (4.17)

where « is the Duffing nonlinear constant. In the limit of small ampli-
tude, the driven amplitude z(wq) can be calculated as

F(t 1
z(wq) =~ () 5 . (4.18)
Zmeffwo O 3 5 2 5
—wo 13 —
(du}o B g meffwgz ) + (ZQ)

If we look closely to Eq. 4.18, we can see that above a certain am-
plitude there are three possible solutions and two of them are sta-
ble. Therefore, a bistable and hysteretic behaviour is expected when
sweeping the frequency of the driving tone. The behaviour of the am-
plitude is represented in Fig. 4.3. The amplitude of motion as a func-
tion of the driving frequency is well described by a Lorentzian func-
tion for small driving forces only. Above a threshold, the resonant
frequency shifts to higher or lower frequency depending on the sign
of the a constant. We could also consider the non-linear dissipation,
which is present in carbon nanotube resonators [89]. It often appears
in the damping mechanisms that accompany every mechanical res-
onator. This effect has been modelled as a term vz?(t) dfi(tt) ,wherevisa
constant. This new term modifies the z(wq) response and it decreases
the magnitude of the response when it is appreciable. Therefore, the
responsivity is decreased as the driving amplitude is increased in the
presence of nonlinear damping.

In Chap. 8 signatures of self-sustained motion of a carbon nan-
otube resonator are presented. This regime depends on the nonlinear
response of the mechanical resonator.

4.3 Euler-Bernoulli beam theory

We describe now the mechanical properties of a double clamped beam
using the continuum mechanics to describe a carbon nanotube electro-
mechanical resonator. Specifically, we focus on the Euler-Bernoulli
beam theory which is a simplification of the theory of elasticity [90].
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FIGURE 4.4: Schematic of the modelling of the

CNT as a double clamped beam in the Euler-

Bernoulli beam theory framework. The beam de-

flects in the z axis, and it has dimensions Lxwxt,

cross-section area A and moment of inertia I. It is
under a load K and tension T.

We simplify the nanoresonator as a double clamped beam made of
an isotropic and linear elastic material as shown in Fig. 4.4. The coor-
dinate system defines x along the direction of the beam and v, z per-
pendicular to it. We assume that the cross-section A is symmetric and
the forces are applied in the z direction. In this model we only consider
the flexural modes of vibration. We only consider the displacement in
the z axis. Therefore the problem reduces to two dimensions

We first solve the Euler-Bernoulli equation which allows us to un-
derstand the motion of the resonator. The spring constant may be af-
fected by the changes of the tension (as we present in Chap. 8).

We look at the energy of the mechanical resonator. This energy
has various contributions, for example, the elastic energy of the beam
Uelas- It accounts for the energetic contribution of the bending and the
elongation effects. It reads as

1 /L 322\ 2 EA (L /9z\? 0z 2
Uelas = E‘/() (EI <ax2> + (TO + ﬁ 0 <ax> dx (ax) dx.
(4.19)

E denotes the elastic modulus of the material, I is the moment of in-
ertia and L corresponds to the length of the beam. The first term of
the integral accounts for the flexural rigidity and the second one cor-
responds to the extensional rigidity. The total tension T is divided
into the built-in tension Ty and an additional term accounting for the
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tension induced by the displacement.

EA (L /3z\?
T=To+ o ; (ax> dx. (4.20)

We also need to consider the kinetic energy of the resonator Uyy,.

1 L 0z

2
) dx, (4.21)

where p is the mass density. Finally, we need to take into account
and external force K in the z direction. Its energetic contribution is

expressed as Ugyyee = % fOL Kzdx. Finally, the total energy that accounts
for all these three contributions reads as

1 L
Ureal = /O (pAz'z L EIZ"? 4+ T2 + Kz) dx, (4.22)

here z” is the second derivative of z with respect to x, z’ the first deriva-
tive with respect to x and z the first derivative with respect to ¢.

We now proceed to calculate the equation of motion through the
Lagrangian of the system:

L= % (pAz'2 —EIZ" —TZ? + Kz) . (4.23)

Knowing the Lagrangian of the beam, we can solve the Euler-
Lagrange equation to find the equation of the motion.

dL 9 [dL 92 /9L d [dL
FET (82) o (az) T (az> =0 (4.29)

Therefore, the Euler-Bernoulli equation for the static and dynamic dis-
placement of a double clamped beam beam reads

pAZ'Z — K—EIZ" +T7", (4.25)

where 2" is the fourth derivative with respect to x and Z is the second

derivative with respect to t. We divide the displacement into a static
and a dynamic component:

Z(x,t) = zs X ¢ps(x) + 21 (f) X ¢p1(x), (4.26)

here z; is the maximum static displacement, z; () is the maximum dy-
namic displacement, and ¢s(x) and ¢;(x) are the normalized static
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and dynamic profiles of the displacement. We consider the case of a
single mechanical mode with the shape:

¢s(x) = ¢1(x) = sin(mx/L), (4.27)

this is a valid approximation when the beam is under tensile tension.
We insert Eq. 4.26 and Eq. 4.27 into Eq. 4.25, we multiply Eq. 4.25 by
¢1(x), and we finally integrate it from 0 to L to get

% — —p; [EIZS (%)4 + Tyzs (%)2 + %zﬁ (%)4 - iK]
_p; {Ez (%)4 1T (%)2 n ZEAzg (7;)4] 21 (1) (4.28)

_ E’izs (2)4} 2(1) - [4’; (2)4} ().

The first bracket, which represents the sum of the static terms, is inde-
pendent of z1(t) and it has to be equal to zero in a static equilibrium
position.

T\ 4 m\2 EA z;/m\* 4
Elz (f) + Tozs (f) + =2 (Z) - —K=0. (4.29)
We note that zs can be expressed as function of the external force

and the elastic characteristics of the beam. Finally, the equation of
motion for a double clamped beam is

—= = azi(t) — a7 (1) — azz (1) (4.30)

If we compare Eq. 4.30 with Eq. 4.17, the spring constant k is pro-
portional to &;. In the studied case there is no coefficient proportional
to Z and we didn’t include any dissipation in the quantification of

utotal .

4.4 Backaction in NEMS

In this section we introduce the concept of backaction in a nanome-
chanical resonator through the linear response theory [85, 86, 91, 92].
The backaction can modify the eigenmode dynamics, including its ef-
fective temperature, the dissipation, and the resonance frequency.
The backaction is usually associated with the effect of the detec-
tor on the object of study. In the classical case of a single electron
transistor coupled to a nanomechanical resonator, we understand the
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detector as the quantum conductor used to measure the position. The
case of a carbon nanotube electro-mechanical resonator goes as fol-
lows. The detector and resonator constitute the same entity. The posi-
tion is electrically detected using the electron current flowing through
the mechanical oscillator. As a result of this measurement, the elec-
tron fluctuations perturb its position which reacts back in the electron
transport in a closed cycle with a certain delay time Tqel,y. We can
apply the linear response theory in order to understand how the back-
action of the quantum conductor affects the oscillator. We study the
case when the conductor and the resonator are weakly coupled and
the current responds linearly to the motion of the system. In order
to study the backaction in a CNT-based NEMS, we are interested in
studying how the position z is coupled with the quantum conductor.
The Hamiltonian that represents the linear coupling between the po-
sition and its detection expresses as

Hiye = —A%2-F, (4.31)

where A is the coupling constant which has to be small enough to
allow the linear description of the system. The operators 2 and F rep-
resent the position and quantity in the conductor that couples to the
motion of the oscillator, respectively.

The detection of the position creates a backaction force on the os-
cillator. The fluctuating backaction force is related to the operator F.
Therefore, the unsymmetrized quantum force noise writes as

Spr(w) = / IR, B(0)]yetat, 4.32)

—00

where ([£(t),F(0)]) is the expected value of the commutator
[E(t), E(0)]. Note that now Sgg refers to the quantum PSD as opposed
to the classical one presented in Eq. 3.13 2.

We now recover the equation of motion Eq. 4.3 in presence of an
external incoherent driving force (thermal force) and the backaction
force introduced above. This backaction force is expressed as a fluctu-
ating force 6f(t) and an average force fayg(t).

d? d
mefde;Z +kz(t) + meffroﬁ =0fo(t) +0f(t) + favg(t).  (4.33)

As we saw above, meffro% and 6 fy(t) describe the effects of the
thermal bath on the oscillator, Iy and dfy(t) corresponding to the
damping rate and the fluctuating force, respectively. The fluctuating

2Note that in this section we talk about to the double-sided PSD and we refer to it as
Sgr for convenience
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force of the thermal bath is directly related with the bath temperature
T as

hw
S (w) = megTohw coth 2T (4.34)

We recover the usual result shown in Eq. 4.12 in the classical approxi-
mation fiw < kgT and taking the single-sided PSD.

The other terms in Eq. 4.33 describe the backaction effect on the
resonator. We can understand part of this effect as having an addi-
tional thermal bath. The term éf represents the fluctuating part of
the backaction force. Its power spectral density is directly determined
by the symmetrized noise Sgp(w) = 1/2Spr(w) + Spr(—w). In con-
trast to 0f(t), favg(t) is the average value of the backaction force.
We generalize fayg(t) as the sum of a conservative force (in-phase
with the motion) and a damping force (out-of-phase with the motion),
favg(t) = feons(t) + faamp(t). We develop the two components as

faamp(1) = —test [ T(t = D)2(0)dT, (4.35)
feons () = /_o; a(t — 1)z(t)dT. (4.36)

If we now use the standard quantum linear response relations we ob-
tain

xer(t) = — 0 [F(1, FO))), 37

(4.38)

Mk(w) = a(w) = —A? (=Re[xrr(w)]), (4.39)

where 6(t) represents the unit step function, 6(t) = 0 or 1 when t < 0
or t > 0 respectively.
We can understand the backaction as follow: Eq. 4.38 quantifies
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how the damping generated by the backaction is related to the suscep-
tibility xrr and the asymmetric force noise associated with the back-
action.

We can define the effective temperature T,y associated with the
thermal bath as

Sk (w) = meffr(w)hw coth (4.40)

_tw
2kpTess
When the oscillator possesses a high quality factor it is likely that
the effect of the backaction is constant over the mechanical frequency
bandwidth, so that we can set I'(w) = T'(wyp).

Finally, Eq. 4.33 tells us that the mechanical oscillator has a total
damping rate I'(wp) + I'p and a temperature Ty, that characterizes its
thermal state

ToT 4 T'(wo) Tegs

ro + F(wo) (4'41)

Ty =

Here the damping I'(wy) can take positive or negative values depend-
ing on the detector state.

Chapter 8 describes measurements pointing to backaction in a
CNT electro-mechanical resonator.
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Chapter 5

Carbon nanotube
fabrication and
engineering

Parts of this chapter have been published in:

Mass Sensing for the Advanced Fabrication of Nanomechanical
Resonators

G. Gruber, C. Urgell, A. Tavernarakis, A. Stavrinadis, S. Tepsic, C. Ma-
gen, S. Sangiao, ]. M. de Teresa, P. Verlot, and A. Bachtold

Nano Lett., 19, 69876992, (2019)

This chapter divides in two parts. We first describe the fabrica-
tion process of the devices used to perform the experiments shown in
Chap. 7 and Chap. 8. Finally, we present an advanced fabrication pro-
cess of carbon nanotube mechanical sensors that allows to monitor the
mass while engineering the device.

5.1 Device fabrication

The fabrication process of the carbon nanotube electro-mechanical res-
onators used in this work is based on a chemical vapour deposition
(CVD) growth done in the last step of the fabrication process. It en-
sures the purity of the nanotube since it is kept away from all kind of
chemical substances used during fabrication.

5.1.1 Prepatterned chips

The prepatterned chips are fabricated on highly resistive silicon (5i)
wafers covered with a thermally grown silicon dioxide (SiO,) layer of
600 nm and a silicon nitride (Si3Ny) layer of 100 nm. The purpose is
to isolate the wafer from the device so no RF signal from the device
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FIGURE 5.1: Scanning electron microscopy (SEM)
images of different devices. (a) Image of a stan-
dard device where different catalyst islands can be
clearly seen on top of the source electrode . (b) Ultra-
long CNT grown using the fast-heating method over
a wide trench.Its total length surpassess 100um. (c)
CNT suspended over a gate electrode and grown on
a prepatterned device. The green arrows in b and ¢
are used to highlight the CNT position.

could leak to the wafer. An array of gate electrodes is defined by UV-
photolithography followed by a reactive ion ecthing (RIE) process. A
final wet etching process is used to etch an undercut in the SiO, layer
to avoid any future short between the metallic electrodes. Afterwards
the gate electrode is made by metal deposition of 5 nm of tungsten (W)
and 75 nm of platinum (Pt). The source and drain electrodes are also
patterned using a UV-photolithography process but without any ad-
ditional etching. The thickness of the source and drain metallic layer is
again 5 nm of W and 75 nm of Pt. The separation between source and
drain varies between 1ym and 1.5ym and the nominal separation be-
tween the gate electrode and the top of the source and drain electrodes
is 350 nm.

5.1.2 CVD growth process of carbon nanotubes

Here we describe the different CVD processes we carry out to fabri-
cate ultraclean and ultralong devices. In order to grow carbon nan-
otubes on a prepatterned chip, we first spin the chips with a PMMA
layer. Then, we pattern openings in the PMMA layer at a distance of
few micrometers from the trench trough an electron-beam lithography
process. Afterwards, we deposit a catalyst solution on top of the chip.
The catalyst dries during 2 minutes in ambient conditions and then,
the chips are baked on a hotplate at 150 °C for 5 minutes. The catalyst
consists in a solution of methanol (CH3OH) containing iron (Fe) cata-
lyst nanoparticles mixed with molybdenum (Mo) which is used to en-
hance the catalytic behaviour of the Fe. The nanoparticles are trapped
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in a alumina (Al>O3) nanoporous structure to prevent any aggrega-
tion. A lift-off process is needed to remove all the catalyst except the
patterned islands, an example can be seen in Fig. 5.1(a) where the cat-
alyst island can be clearly distinguished. An oxygen plasma process
is used to remove all the organic residues on the surface. Finally, The
chips are moved inside a quartz tube placed in the oven to perform
the CVD growth. The CVD process is based on the decomposition of
methane (CHy) in an argon (Ar) and hydrogen (H) atmosphere. This
process is carried out at 830 °C for around 10 minutes to prevent that
the metal electrodes melt and short the circuit.

Ultraclean but short carbon nanotubes are obtained by perform-
ing the growth process in a rich Ar atmosphere (500ml, /min) while
flushing Hj (100ml, /min) and CHy (550ml, /min). An example can
be seen in Fig. 5.1(c) where a nanotube is suspended over a trench
with 1ym width. The devices shown in Chap. 7 and Chap. 8 were
grown using this method. The nanotubes presented later in this chap-
ter were grown by using a different method. When the length of the
tubes has to be longer than 5 — 10um the "fast-heating" method[93] is
used. This method consists in rapidly sliding the substrate inside the
oven to create a gradient of temperature between the substrate and
the outer part of the quartz tube. This gradient of temperature creates
a convection flow which lifts the catalyst nanoparticles promoting a
"kite-mechanism" for the nanotube growth [94]. This growth mech-
anism allows to produce long carbon nanotubes. In order to create
even longer tubes the Ar flow can be reduced (100ml,/min) while
the Hj is increased (200ml, /min) keeping the same amount of CHy
(550ml,, /min). Ultralong nanotubes exceeding 100pm are grown us-
ing this method. An example is shown in Fig 5.1(b).

5.2 Advanced fabrication of carbon nanotube
nanomechanical sensors

We report on a nanomechanical engineering method to monitor
matter growth in real time via e-beam electromechanical coupling.
This method relies on the exceptional mass sensing capabilities of
nanomechanical resonators. Focused electron beam induced deposi-
tion (FEBID) is employed to selectively grow platinum particles at the
free end of singly clamped nanotube cantilevers. The electron beam
has two functions: it allows both to grow material on the nanotube and
to track in real time the deposited mass by probing the noise-driven
mechanical resonance of the nanotube. On the one hand, this detec-
tion method is highly effective as it can resolve mass deposition with
a resolution in the zeptogram range; on the other hand, this method is
simple to use and readily available to a wide range of potential users,
since it can be operated in existing commercial FEBID systems without
making any modification. The presented method allows to engineer
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hybrid nanomechanical resonators with precisely tailored functional-
ity. It also appears as a new tool for studying growth dynamics of
ultra-thin nanostructures, opening new opportunities for investigat-
ing so far out-of-reach physics of FEBID and related methods.

5.2.1 Introduction

Nanomechanical devices are exquisite sensors of mass deposition [27,
95-97] and external forces[28, 29, 98-100]. These sensing capabilities
enabled advances in mass spectrometry[101-103], surface science[15,
104-109], scanning probe microscopy[110, 111], and magnetic reso-
nance imaging[20, 21, 112]. The highest sensitivity is achieved with
carbon nanotube resonators[27, 29] because of their tiny mass com-
pared to the other operational mechanical resonators. However, a
general challenge with such small transducers is to provide them with
a physical function, which can be e.g. magnetic, chemical, or opti-
cal. Conventional nanofabrication processes, such as electron-beam
lithography and reactive-ion etching, are difficult to employ with such
small suspended structures without altering their sensing capabilities.
Developing new methods to engineer nanoscale resonators with high
precision and providing them with a specific functionality is in high
demand as it would enable a whole range of new technological and
scientific applications.

5.2.2 Carbon nanotube nanomechanical sensors

In this section we report a nanofabrication method enabling
ultra-sensitive, versatile functionalization of carbon nanotube res-
onators[113, 114] inside a scanning electron microscope (SEM). Using
focused electron beam induced deposition (FEBID)[115-119], we re-
port the mass-controlled growth of Pt particles on carbon nanotube
nanomechanical sensors, enabling their optomechanical funcionaliza-
tion[120]. The deposited mass is tracked in real time by monitoring
frequency changes of the noise-driven oscillations of the nanotube res-
onator. Measuring the nanomechanical vibrations relies on e-beam
electromechanical coupling[121, 122] and is accomplished using the
same electron-beam as that used for FEBID. We demonstrate the high
sensitivity and versatility of this method, which enables us to address
mass changes over more than six orders of magnitude, with a resolu-
tion down to the zg range.

5.2.3 Sample and setup characteristics

The samples consist of carbon nanotubes grown via chemical vapor
deposition on silicon substrates. The nanotubes stick to the surface
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due to Van der Waals forces. Some nanotubes extend over the sub-
strate edge, forming cantilevers. We used cantilevers with lengths be-
tween 1ym and 15um and spring constants between 10~7 N/m and
2.6-10~%4 N/m in order to investigate the robustness of our method.

All SEM and FEBID experiments were conducted in a Zeiss Auriga
field emission electron microscope equipped with a gas injection sys-
tem (GIS). The acceleration voltage of the electron beam was 5kV and
the typical beam current was 200pA. The precursor gas was methylcy-
clopentadienyl(trimethyl)platinum(IV) in order to grow a Pt deposit
onto the sample surface when illuminated by the electron beam[123].
All the experiments reported below have been completed with the GIS
nozzle being placed ~ 500um above the substrate.

A schematic of the experimental setup used for the deposition ex-
periments is depicted in Fig. 5.2(a). The electron beam is set onto the
apex of the nanotube in spot mode while monitoring the secondary
electron (SE) current Isg. The signal is displayed in the frequency do-
main via fast Fourier transform (FFT). The data is real-time processed
using a fast peak-search custom computer program, enabling us to ex-
tract the mechanical resonance frequency at a rate between typically
0.5Hz and 5Hz.

5.2.4 Mass sensing for advanced fabrication

Fig. 5.2(b) shows a nanotube before and after the deposition process
with the deposited particle clearly visible. Furthermore, the free end
of the nanotube appears blurred due to the motion fluctuations. The
spring constant k can be extracted from the variance of the displace-
ment §z2 using the equipartition theorem

 kgT

k= B
622’

(5.1)
where kg is the Boltzmann constant and T is the temperature[121].
Fig. 5.2(c) shows the SE current profiles taken along the dashed lines
marked in Fig. 5.2(b) before and after the deposition with Gaussian fits
to determine 0z2. The resulting spring constant k = 2.1 (2) - 107 N/m
is the same in both cases. This shows that k is not affected by the
deposition process and any permanent changes in the mechanical res-
onance frequency are consequently associated with mass deposition
(see further discussion below). Specific care was dedicated to avoid
broadening of the observed peak by back-action phenomena during
imaging[121]. This was achieved by averaging multiple frames using
the fastest scanning speed (122ms/frame).

The mass of the Pt particle is monitored in real time during its for-
mation. This is done by continuously acquiring the resonance spec-
trum of the noise-driven vibrations of the nanotube with the electron-
beam. We typically use high resolution bandwidth settings in order
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FIGURE 5.2: (a) Schematic of the setup: The elec-
tron beam is set on the apex of the suspended nan-
otube cantilever, creating a secondary electron (SE)
current, which is detected and fed into a spectrum
analyzer. Using the gas injection system (GIS) a
nanoparticle is grown on the nanotube, resulting in
a shift of the observed resonance frequency. (b) SEM
images of a nanotube before and after the deposi-
tion of a particle, with 3x magnified view of the
apex (right side). (c) Profiles of the SE current Igg
along the dashed lines marked in b with Gaussian
fits (solid lines). (d) Typical resonance signal used
to measure the resonance frequency. (e) Monitoring
of the resonance frequency during the deposition; at
t~ 2s the GIS valve was opened and at t~ 11s it
was closed and the beam exposure stopped. (f) De-
posited mass determined from e using Eq. 5.3.

to enable a high sampling rate. Fig. 5.2(d) shows a typically obtained
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signal used to count the frequency for the mass detection. The reso-
lution bandwidth of the measurement in this case was BW = 3 kHz.
The resonance frequency fres relates to the effective mass m* of the
mechanical eigenmode via the equation:

1 |k
fres = 7\ e (5.2)

Fig. 5.2(e) shows the evolution of fres over time. Here, the GIS
nozzle was opened at t ~ 2s. The electromechanical interaction then
becomes strongly non-linear, resulting in a strong amplification of the
electromechanical spectrum and the appearance of a large number of
peaks at multiples of the fundamental resonance frequency. We at-
tribute this behaviour to the increasing interaction volume resulting
from the deposition process. Our frequency counting algorithm in-
cludes a dynamical discrimination procedure enabling to unambigu-
ously keep track of the fundamental resonance frequency in real-time.
As shown on Fig.5.2 (e), fres decreases over time, which is the expected
evolution in presence of mass adsorption.

The deposition was limited to the apex of the nanotube, such that
the spring strength can be reasonably assumed to remain unchanged.
Therefore, the deposited mass Am (t) yields to a frequency shift, inde-
pendent from the shape of the eigenmode[101]:

k 1 1

res,0

where frest and fres0 are the resonance frequencies measured dur-
ing the deposition at time t and prior to the deposition, respec-
tively[27, 95-97, 101-105, 107, 109]. In the limit of high signal-to-noise
ratio, the mass determination does weakly depend on the SE emission
rate. Additionally, we performed optomechanical measurements[120]
in order to gain independent confirmation of the post-deposition me-
chanical properties. These measurements ensure that the electrome-
chanical coupling has negligible impact on the mechanical resonance
frequency and that the observed changes are due to mass deposition.

Fig. 5.2(f) displays the corresponding evolution of the deposited
mass over time. After some transient regime, the deposition becomes
linear in time, allowing us to extract the deposition rate Rgep, =
1.98fg/s from a linear fit. Att ~ 11s the GIS valve was closed and
the beam exposure was stopped to avoid spurious growth. The reso-
nance frequency at the end was fres = 56.1 (5) kHz and the total mass
of the particle seen in Fig. 5.2(b) is (15.5 £2.0) fg. Optomechanical
measurements of this resonator yield to a post-deposition mechanical
resonance frequency fp = 57.04kHz with a quality factor Q ~ 3000
at room temperature. Besides further confirming the mass-induced
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origin of the measured frequency change, this measurement demon-
strates that the deposition using FEBID does not degrade the mechani-
cal properties of the nanotube resonator, which is crucial in the context
of functionalizing nanomechanical resonators.

5.2.5 Fabrication statistics

Using the above-described methodology, a large set of hybrid nan-
otube cantilevers were fabricated and characterized. Fig. 5.3(a) shows
the determined deposition rates and final masses of the deposited par-
ticles for each experiment. The dashed lines indicate how the deposi-
tion rate and deposited mass are related via the deposition time. The
observed variations arise from different modes of operations (see fur-
ther discussion below), to which have been assigned distinct colors.
Note that even within the same mode of operation, the obtained re-
sults are widely dispersed. This is because FEBID is a highly com-
plex process where various interdependent parameters may affect the
growth rate[124]. These include the focus of the electron beam, the
temperature of the substrate, the temperature and flux of the precursor
molecules, and the pressure of residual gas in the chamber. The depo-
sition rate is also affected by the amplitude of the nanotube vibrations,
since the amplitude can be larger than the electron-beam diameter, re-
sulting in a net decrease of the effective deposition cross-section. The
different GIS operation modes as well as illustrative results are dis-
cussed in the following.

We start with the default operation mode of the GIS, which was
also used for the measurements in Fig. 5.2. When the nozzle is opened
the precursor gas is released into the chamber resulting in a strong
increase of the chamber pressure. The pressure typically saturates in
the range p = (7 — 11) x 10~° mbar, while the background vacuum
pressure is typically &~ 1 x 10~®mbar. It results in measured depo-
sition rates between 0.28 fg/s and 11 fg/s. Fig.5.3 (b) shows a typical
measurement in this operation mode, demonstrating a constant depo-
sition rate Rqep = 0.34fg/s over a time as long as 50s. The deposited
mass is more than 30 times larger than the initially measured mass of
the nanotube cantilever.

We explored lower Pt deposition rates by reducing the pressure.
This is achieved by first purging the GIS nozzle with precursor
molecules and then pumping the chamber for several minutes. As
such, we investigated deposition of precursor molecules in a pressure
range p = (1—1.7) x 10~® mbar resulting in observed deposition rates
ranging between 0.93ag/s and 8.5ag/s. A typical mass deposition
measurement in this low-pressure regime is displayed in Fig. 5.3(c).
The SEM image after the deposition reveals a small Pt particle. The de-
position rate Rgep = 0.93ag/s is equivalent to roughly 2900 Pt atoms
or 1800 precursor molecules per second.
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FIGURE 5.3: (a) Deposition rate and deposited mass
for all the fabricated devices, with deposition times
tgep in the range between 1s and 10min. The dif-
ferent operation modes are marked by different col-
ors, and exemplary measurements are shown in b-d.
(b) Mass deposition in default GIS operation mode
(GIS nozzle open, precursor in the chamber at a pres-
sure in the range of p = (7 — 11) x 10~°mbar).
(c) Mass deposition in low-pressure mode (GIS noz-
zle closed, precursor residuals in the chamber with
p = (1-17) x 10"®mbar). (d) Mass deposition
in the background vacuum regime (after more than
24h of pumping, p = (0.8 — 1) x 10~®mbar). The
SEM images on the right show each nanotube be-
fore and after the deposition. The spring constants
determined before and after the deposition are k =
6.2(5) x 1077 N/m for b, k = 1.57 (7) x 107> N/m
for ¢, and k = 1.00 (3) x 107® N/m for d.
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The lowest deposition rates were attained by pumping the cham-
ber for more than 24 h with the GIS nozzle closed and heated so resid-
ual precursor molecules could desorb from the nozzle and be pumped
away. It is assumed that in this regime the chamber gas is predomi-
nantly composed of organic molecules resulting in e-beam deposition
of amorphous carbon. The base pressure in this background vacuum
regime was in the range p = (0.8 — 1) x 10~° mbar and the observed
deposition rates were between 5.8 zg /s and 77 zg/s. The lowest value
Rgep = 5.8zg/s with 2s integration time was observed in the experi-
ment shown in Fig. 5.3(d) and is equivalent to about 290 C atoms per
second. Computing the Allan deviation of the resonance frequency
with 2s integration time results in an effective mass resolution of 13zg.
This estimation includes the spurious contribution of the deposition
of C atoms, so that it represents an upper bound of the mass resolu-
tion of the nanotube resonator. The deposited mass of 330 zg does not
result in a distinctive feature on the nanotube in the SEM images. In
this case, the electromechanical measurement enables us to reveal the
evolution of the structure that is totally invisible in the SEM image. Be-
sides controlling the growth process, this demonstrates the relevance
of e-beam electromechanical coupling as a powerful complementary
embedded tool to scanning electron microscopy.

5.2.6 Conclusions

In summary, we have reported a method allowing high-resolution
mass monitoring of the growth of a Pt nanoparticle on a nanotube res-
onator via in situ electromechanical readout in a FEBID system. The
method can be readily employed in any existing SEM or STEM setup
without requiring any further modification. The demonstrated mass
and time resolution offers a precise control on the deposited mass
to engineer nanomechanical sensors, especially since various mate-
rials can be grown with FEBID [125, 126]. This may lead to new
advances in one- and two-dimensional [110, 111] magnetic force mi-
croscopy [127] and magnetic resonance force microscopy [20, 112, 128].
Our technique may also be employed with semiconducting nanowire
resonators made from e.g. GaN, SiC, and InAs [122, 129-131] as well
as microfabricated top-down resonators [100, 132-138].
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Chapter 6

Measurement setup

We present in this chapter the cryostat and its wiring where carbon
nanotube electro-mechanical resonators are measured. Different im-
provements in the setup regarding filtering, thermalization and better
thermometry are presented. Note that the last improvements were
implemented after the experiments presented in Chap. 7 and Chap. 8.

6.1 Experimental setup description

The low temperature experiments are carried out in two dilution re-
frigerators, the models Triton 200 and Triton 400 from Oxford Instru-
ments with a base temperature of 15 mK. The measurement setup is
designed to perform noise measurements and transmission measure-
ments from few Hz’s to hundreds of MHz's. The system is made up of
radiofrequency (RF) lines, DC lines and a RF read-out scheme. The RF
lines consist of UT85-5SS-SS stainless steel radio-frequency cables from
the room temperature stage to the 700 mK still stage. From the still
plate to the mixing chamber (MC) the lines are formed of UT85-Nb-
Nb niobium cables to avoid any thermal exchange between different
stages. All the radiofrequency lines are attenuated using cryogenic at-
tenuators as shown in the setup schematic (Fig. 6.1). The attenuation
consists of 10dBat T =45K,20dBatT =35K,6dBat T = 700 mK.
There are an additional 20 dB on the source line at the MC. The RF line
employed for the gate electrode has additional 10 dB at the MC from a
directional coupler ZX30-9-4-S+ from Mini-circuits, which physically
isolates the gate line. Regarding the DC lines, a thermocoax Cu/Nb
cable (around 100(2) is used from room temperature to the MC. A
UT85-Nb-Nb radio-frequency cable is also used for the read-out line
from the MC to the still plate, from the still stage to room temperature
UTB85-S5-SS or UT85-Cu-Cu radio-frequency cable is used (depending
on which dilution fridge model).

The RF lines are filtered as follow. A VLFX-225+ filter from Mini-
circuits is used in the gate line. DC-blocks are placed outside the fridge
in order to prevent the injection of low frequency noise from the RF
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FIGURE 6.1: Schematic of the setup. Both the DC

and the RF lines of the setup are represented to-

gether with the cryogenic wiring. All the amplifica-

tion chain is represented. The inset shows an image

of the homemade RLC circuit. We can distinguish all

the RLC components along with the epoxy to better
thermalize the circuit.

sources through the RF lines. The DC lines are filtered at room tem-
perature using rt-filters. The high frequency noise is filtered at base
temperature by using powder filters. The low frequency noise in the
DC line is also filtered using bias tees ZFBT-6GW+ from Mini-circuits.
The bias tee also mixes the RF with the DC signal. A VLFX-80+ filter
from Mini-circuits is placed in the read-out line together with an RLC
circuit made of a ultra-high precision 10KQ2 SMD resistor, two high
frequency 33uF inductors, and the intrinsic capacitance of the circuit
together with an additional 10pF SMD multilayer ceramic capacitor
mounted on the PCB (see the Fig. 6.1 inset). The signal is amplified at
low temperature by a high electron mobility transistor (HEMT) ampli-
fier [139, 140] and at room temperature by a SA-220F5 NF low noise
amplifier as in [15, 29]. Finally, the sample is located in a cooper sam-
ple box covered by a metallic shield to isolate it from the RF environ-
mental noise.

The DC voltages are applied to the sample and to the HEMT am-
plifier using SIM928 SRS isolated voltage sources and high stability
isolated voltage DC sources BE2142 BiLT from Itest. The RF signals
are generated with a Rohde & Schwarz SMB 100A microwave signal
generator and a zurich lock-in amplifier UHFLI 600 MHz. We mea-
sure the output signal using again the UHFLI 600 MHz lock-in input
port.
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6.2 Cryogenics

Advancing towards the temperature reduction is mandatory in order
to study quantum phenomena. As mentioned in the previous section,
our dilution refrigerators achieve a base temperature of 15 mK but the
temperature of the electrons inside our quantum circuit differs from
this value. Therefore, the electron temperature T, and the cryostat
temperature T decouple. RF heating, bad thermalization and electrical
noise transmitted through the circuit lines are the dominant heating
effects. Aiming to keep the heat leak as small as possible, every line
is filtered and thermally anchored to the cryostat as explained in the
previous section.

6.2.1 Thermalization

Here, we present the strategies to thermalize the system. First of all,
we fabricate every thermalization element using materials with a high
thermal conductivity.

The thermalization of every the RF line is done through the attenu-
ators that thermally anchor the inner conductor to every stage. The DC
line coaxial cables are pressed between two gold-plated oxygen-free
copper clamps thermally anchored at every stage to achieve a good
thermalization. As previously demonstrated [141, 142], the thermal-
ization of the device is mainly done through the electrical contacts.
Therefore, the RLC printed circuit board (PCB) is screwed to its oxi-
gen free copper box to improve the thermal anchoring. The thermal
link between the sample contacts and the PCB is done by aluminium
wirebonds.

In order to better thermalize the RLC resonator a silver-filled epoxy
(EPO-TEK H20E) was added on the PCB after the experiments shown
in Chap. 7 and Chap. 8. The current RLC resonator can be observed in
the inset of Fig. 6.1. The improvement of thermalization is formidable,
the details will be discussed in the next section.

6.2.2 Effective electron temperature

We need to find a reliable way to determine the effective temperature
T¢ of our samples since the MC temperature of our dilution refrigera-
tor is not reliable to determine it. Two methods based on current fluc-
tuation measurements are presented to quantify the electronic tem-
perature of either the overall circuit on the MC plate or the quantum
electron device. These fluctuations are a very robust thermometer.

Johnson-Nyquist noise of the RLC circuit

The Johnson-Nyquist noise accounts for the electrical noise in the cir-
cuit. This is the intrinsic electronic noise generated by the thermal
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FIGURE 6.2: RLC Johnson-Nyquist noise. (a) Volt-
age power spectral density Syy at a given cryostat
temperature of 15mK. The height of the peak S{,I\{,
corresponds to Eq. 3.14. The measured curve is
smoothed. (b) We plot the height S{% at different
temperatures T. The saturation point can be clearly
observed between 20mK and 30mK.

agitation of the charge carriers inside an electrical conductor in equi-
librium, which happens regardless of any applied voltage. The power
spectral density (PSD) is described by Eq. 3.14. Which we previously
described as a white noise in Chap. 3.

Taking advantage of the Johnson-Nyquist we can estimate the tem-
perature of the electrons at the MC level. In the experiments presented
in Chap. 7 and Chap. 8 we couldn’t cool the RLC below 70 mK due to
bad thermalization [29]. The improvements described in the previous
section lead to an important reduction of the Tg;.

The current noise of the RLC resistor is converted into voltage by
the RLC filter. It is amplified by both the HEMT amplifier and the
room temperature amplifier. By using a Fourier transformation, we
record the PSD of the voltage noise Syy at an specific T, an example is
depicted in Fig. 6.2(a). Finally, we measure Syy at different tempera-
tures to extract the saturation point, see Fig. 6.2(b).

A clear saturation of the Johnson-Nyquist noise is observed be-
tween 20 mK and 30 mK. The current and voltage noise of the HEMT
remain constant during the MC temperature sweep since the ampli-
fier is kept at a constant temperature on the 3.5 K plate. The only noise
contribution that depends on the temperature comes from the RLC
resonator current fluctuations. In conclusion, we can state that the
electronic noise going from the RLC resonator to the nanotube device
thermalize at about 25 mK.
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FIGURE 6.3: Carbon nanotube shot noise. (a) Cur-
rent power spectral density multiplied by the effec-
tive gain Gt - Sy as function of the applied DC bias
Vsq at a cryostat temperature of 15mK. (b) Normal-
ized excess of current noise ASy as function of the
source-drain voltage V4. We extract an electronic
temperature T,; = 27mK from this specific curve.

Shot Noise of a carbon nanotube nanoresonator
The excess of PSD ASy(Vyq) for a short quantum conductor is ex-
pressed as

ASi(Vea) = Su(Vsa) — Su(0). (6.1)
It can be approximated in the standard scattering approach to a two

terminal conductor in the zero-temperature approximation [143-145]:

Si(Vsa)
Gr

e Vsd
2kg Ty

262 4
=5 Y T (1= 1) |eVeg coth —2kgTy|, (6.2)
n=1

where Gr is the effective gain of the amplification chain, e the elemen-
tal charge, h the planck constant, V4 the source-drain bias applied to
the carbon nanotube and T, corresponds to the transmission probabil-
ity per conduction channel. In the case of a carbon nanotube quantum
conductor, we consider 4 conduction channels due to the spin and val-
ley degeneracy.

We perform the shot noise measurements of carbon nanotube res-
onators at the base temperature of the dilution refrigerator. The cur-
rent noise fluctuations of the shot noise are converted into voltage
through the total impedance of the system. The system consist of the
resistance of the RLC resistor and the impedance of the carbon nan-
otube. As in the previous case, the Syy is amplified and recorded.
The shot noise measurements are carried out at different V4 values
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around the effective zero source-drain bias as shown in Fig. 6.3. Using
the Eq. 6.2, we are able to extract T, with only two fitting parameters,
T itself and 7,(1 — 7,). We systematically extract an electron tem-
perature around 27 &+ 5 mK as a result of the fitting of multiple traces.
These results proved to be independent of the applied gate voltage
Vg showing the robustness of this method. We can conclude that the
strategies used to enhance the measurement setup lead to more than
a factor 2 improvement of T, with respect to the results shown in
Chap. 7 and Chap. 8 which correspond to the setup configuration pre-
sented in ref. [29].
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Chapter 7

Fabry-Pérot Oscillations in
Correlated CNTs

Parts of this chapter have been published in::

Fabry-Pérot Oscillations in Correlated Carbon Nanotubes

W. Yang, C. Urgell, S. L. De Bonis, M. Margariska, M. Grifoni and A.
Bachtold

Phys. Rev. Lett., 125, 187701, (2020)

We report the observation of an intriguing behavior in the trans-
port properties of nanodevices operating in a regime between the
Fabry-Pérot and the Kondo limits. Using ultrahigh quality nanotube
devices, we study how the conductance oscillates when sweeping the
gate voltage. Surprisingly, we observe a fourfold enhancement of the
oscillation period upon decreasing temperature, signaling a crossover
from single-electron tunneling to Fabry-Pérot interference. These re-
sults suggest that the Fabry-Pérot interference occurs in a regime
where electrons are correlated. The link between the measured corre-
lated Fabry-Pérot oscillations and the SU(4) Kondo effect is discussed.

7.1 Introduction

Electron interactions and quantum interference are central in meso-
scopic devices. The former are due to the electronic charge and give
rise to many-body effects; the latter emerges due to the wave-like
properties of an electron. Resonant ballistic devices with a few con-
duction modes and moderate coupling to electrodes are sensitive to
both of these electronic properties. On the one hand, quantum inter-
ference between electron waves backscattered at the boundaries be-
tween the mesoscopic system and the metallic electrodes gives rise
to resonant features in the transmission, analogous to the light trans-
mission in an optical Fabry-Pérot cavity [70]. On the other hand, if
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the electron spends enough time in the mesoscopic device before be-
ing transmitted, Coulomb repulsion can also become important giving
rise to Coulomb blockade and single-charge tunneling effects [65]. De-
spite considerable efforts, the interplay between electron interactions
and quantum interference remains poorly understood from both an
experimental and a theoretical point of view, due to the many-body
character of the problem. This is the topic of the present chapter.

7.2 Interaction or interference

Carbon nanotubes (CNTs), semiconducting nanowires, and edge
channels of the quantum Hall effect are ideal quasi one-dimensional
(1D) systems to study both electron correlations and quantum inter-
ference. In fact, various many-body effects including Coulomb block-
ade [33, 36, 146], Wigner phases [147-150], Luttinger liquid [151, 152]
and Kondo physics [37, 40, 153-162] as well as Fabry-Pérot and Mach-
Zehnder oscillations resulting from electron interference [41, 42, 73,
163-166] have been observed in these multi-mode 1D systems.

It is possible to switch from interaction- to interference-governed
transport regimes by tuning the tunnel couplings at the interface be-
tween the wire and the electrodes, I's and I'p for the source (S) and
drain (D) electrodes. Which transport regime dominates crucially
depends on how large the tunneling broadening #I' = h(I's + I'p)
is compared to other energy scales, in particular to the charging en-
ergy Ec, being the electrostatic cost to add another (charged) electron
to the wire [32]. In the so-called quantum dot limit, characterized
by iI' <« Ec, tunneling events in and out of the wire are rare and
Coulomb charging effects are dominant. They give rise to Coulomb
blockade phenomena and incoherent single-electron tunneling in the
regime 7' < kgT < Ec. By decreasing temperature, one expects co-
herent single electron tunneling for kgT ~ hI' < Ec, where the width
of the Coulomb peaks is determined by I'; at even lower temperatures,
when spin-fluctuations become relevant, the Kondo effect emerges as
the dominant transport mechanism. In the opposite limit of large
transmission, iI' > Ec, interference effects give rise to the charac-
teristic Fabry-Péerot patterns, which can be easily calculated from a
non-interacting single-particle scattering approach [41]. In the focus of
this chapter is the intermediate transmission regime 7" ~ Ec > kgT
when no clear hierarchy of energy scales exists.

An experimental hallmark of both interaction- and interference-
dominated transport is the modulation of the conductance when
sweeping the electrochemical potential, that is, by varying the gate
voltage Vg. In the incoherent tunneling regime, the alternance of
single-electron tunneling and Coulomb blockade physics results in fi-
nite conductance peaks with a period in V; of the order of e/Cg [65],
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FIGURE 7.1: Schematics of the device and low-
temperature transport characteristics. (a) Three-
terminal device with a suspended CNT contacted to
source (S), drain (D), and gate (G) electrodes. (b)
Gate voltage dependence of the conductance at zero
source-drain voltage of device I at T = 15mK mea-
sured after the current annealing step. An oscillat-
ing voltage with amplitude smaller than kgT /e is ap-
plied to measure the differential conductance.

where —e is the (negative) electron charge and Cy is the capacitance be-
tween the nanotube and the gate electrode; see Fig. 7.1(a). In contrast,
in the interference-dominated regime, the conductance modulation of
the Fabry-Pérot oscillations arises from the electron wave phase ac-
cumulated during a round trip along the nanotube. The presence of
valley and spin degrees of freedom gives rise in CNT interferometers
to oscillations of period AVy = 4e/Cg [41].

In this chapter, we improve the quality of nanotube devices to an
unprecedented level. We discover a crossover of the conductance os-
cillation period between ¢/ Cg and 4e/Cg upon sweeping temperature.
Above helium temperature, the period is e/ Cg with oscillations ampli-
tudes pointing to coherent single-electron tunneling in an open quan-
tum dot configuration. Atlow temperature, the period becomes 4e/Cg
and the oscillations feature typical characteristics of Fabry-Pérot inter-
ference. These unexpected data are a clear signature of the interplay
between interaction and quantum interference.
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7.3 Electron transport measurements

We grow nanotubes by chemical vapor deposition on prepatterned
electrodes [167]. The nanotube is suspended between two metal elec-
trodes, see Fig. 7.1. We clean the nanotube in the dilution fridge at base
temperature by applying a high constant source-drain voltage V4 for
a few minutes (see Sec. A.1.1 of the App. A). This current-annealing
step cleans the nanotube surface from contamination molecules ad-
sorbed when the device is in contact with air.The energy gap of the
two nanotubes discussed in this chapter is on the order of 10 meV (for
details see the App. A). The length of the two suspended nanotubes
inferred by scanning electron microscopy (SEM) is about 1.5um.

Figure 7.1(b) shows the modulation of the differential conductance
Gaigs of device I as a function of Vg in the hole-side regime at 15 mK.
Rapid conductance oscillations are superimposed on slow modula-
tions. Since the conductance remains always large, that is above e2/h,
we attribute the rapid oscillation to the Fabry-Pérot interference with
period in gate voltage being AV = 4¢/Cg. The slow modulation may
be caused by the Sagnac interference [42, 73], the additional backscat-
tering due to a few residual adatoms on the CNT, the symmetry break-
ing of the electronic wave function by the planar contacts of the device,
or any combination of these.

A crossover to a regime dominated by the charging effects in an
open interacting quantum dot is observed upon increasing tempera-
ture. Specifically, by sweeping the temperature from 15 mK to 8 K
the amplitude of the oscillations gets smaller. Further, the oscillation
period gets four times lower, changing from 4e/Cg at 15 mK to e/Cg
at 8 K, see Figs. 7.2(a) and 7.2(c)-7.2(e). The period in Vj is calibrated
in units of e/Cg using the measurements in the electron-side regime,
where regular Coulomb oscillations are observed at 8K, as shown in
Fig. 7.2(b). The same behavior is observed in device II, Figs. 7.3(a)
and 7.3(b). The 4e/Cg oscillations vanish above 4K in both devices,
whereas the e¢/Cg oscillation amplitude is suppressed to almost zero
below ~ 1K in device I and below ~ 0.1K in device II, see Figs. 7.2(f)
and 7.3(b).

7.4 Energy hierarchy

Our interpretation of a temperature-induced crossover between two
seemingly distinct transport regimes is confirmed by measured maps
of the differential conductance as a function of source-drain and gate
voltages at T = 15mK and T = 8K, as shown in Fig. 7.4(a) and
7.4(d), respectively. The low-temperature data feature the regular
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FIGURE 7.2:

Temperature-induced crossover
from an interference-dominated to a charging-
controlled regime in device I. (a), (b) Oscillations of
the conductance Gg¢(Vy) versus gate voltage Vg in
the hole- and electron-doped regimes. (c) Evolution
of the oscillation period for a series of different
temperatures. The range of Vg shown in this figure
is highlighted in panel a by a dashed rectangle.
(d) Temperature dependence of the conductance
associated with a peak and a dip, as indicated by
arrows in c. (e) Fast Fourier transform (FFT) of
the Ggig(Vg) traces at 15 mK and 8 K measured
for Vg between —1.0V and —0.3V. (f) Temperature
dependence of the FFT amplitude associated with
the 4e/Cg period oscillations and the e¢/Cg period
oscillations.

chess-board-like Fabry-Pérot interference pattern [41], while the high-
temperature data show smeared Coulomb diamonds. Such measure-
ments further allow us to extract important energy scales for our de-
vice. The characteristic bias V; indicated by the arrow in Fig. 7.4(a)
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yields a single-particle excitation energy AE = eV} ~ 1.7meV. This
value is consistent with what is expected from a nanotube with length
L ~ 1.5ym. Assuming the linear dispersion (k) = hvrk, with longi-
tudinal quantization k, = n7t/L and the Fermi velocity vr = 10°m/s,
ityields AE = e(k,4+1) — €(kn) = hoprmr/L ~ 1.4meV.

The charging energy is estimated from the charge stability dia-
gram measurements at 8K, Fig. 7.4(d); from the Coulomb diamond,
indicated by the dashed lines, a charging energy Ec ~ 3.6meV is ex-
tracted. Further, we estimate il' ~ Ec because of the strong smearing
of the diamonds in Fig. 7.4(d) and the weak conductance modulation
at 8K in Fig. 7.2(a). The energy hierarchy in our experiment is thus
Ec ~ hT ~ AE > kgT.

The evolution of the 15 mK conductance oscillations as a func-
tion of the source-drain bias shows that both oscillations coexist over
a large bias range, albeit with modulated strengths, see Figs. 7.4(a)-
7.4(c). The main trend is that the oscillation period changes from
4e/Cg at zero bias to e/Cg at high bias. By contrast, the evolution
in perpendicular magnetic field shows that the conductance peaks are
split in two, with the splitting in gate voltage being linear in magnetic
field; see Figs. 7.3(c) and 7.3(d). This is attributed to the Zeeman split-
ting, since the associated g-factor is 2.4 &= 0.4. The error in the estima-
tion arises from the uncertainty in the lever arm. These data indicate
degeneracy of the four electron levels associated to the spin and valley
degrees of freedom.

7.5 Interpretation in terms of Fabry-Pérot in a
correlated system

We examine possible origins of the temperature-induced period
change. Let us first assume that interactions are not important. Then,
upon lowering temperature, noninteracting Fabry-Pérot oscillations
are expected to emerge when the thermal smearing becomes smaller
than the single-particle excitation energy. However, thermal smearing
is associated to a characteristic temperature Ty, ~ AE/kp ~ I'/kp =~
20 K, which is rather different from the measured crossover temper-
ature Tc ~ 3K in Fig 7.2(f) and 7.3(c). In addition, thermal smear-
ing cannot explain the suppression at low temperature of the ¢/Cg
oscillations due to coherent single-electron tunneling. Therefore, ther-
mal smearing is not at the origin of the measured period change. The
single-particle Fabry-Pérot interference theory does not explain our
findings. The cause of the fourfould variation of the period could not
be explained considering only charge fluctuations.

The high-temperature measurement of the charging effect in an
open quantum dot indicates electron correlation. When reducing
temperature, the associated e¢/Cg conductance oscillations disappear
smoothly to give rise to the 4e¢/Cg oscillations. The smoothness of



7.5. Interpretation in terms of Fabry-Pérot in a correlated system 75

0.015

a b e e s
~ 04 % °
Py > o
< S
% < 4 ‘° 0.010
et T o2l = o~ 4e/C, period | -
o w = . °° o elC, period
® o
oo
O
0.0 > 210,005
0 2 4 6 8
T (K)
C ] = d [+ o .
' 401 e -1.7V
A 15V 4
—_ -1.42V 4/n
= < 30 -1.33V .
L B -1.24v
£ - 20
o 2 »
10 2
| |
0

B(T)

FIGURE 7.3: Measurements on device II. (a) Con-
ductance traces for a series of different temperatures.
(b) Temperature dependence of the FFT amplitude
associated with the 4e/Cq and the e/ Cg period oscil-
lations. (c) Conductance traces for different perpen-
dicular magnetic fields at 15 mK. (d) Peak splitting
as a function of magnetic field for the conductance
peaks at different gate voltages.

the crossover suggests that the Fabry-Pérot-like oscillations also oc-
cur in a regime where electrons are correlated. Such oscillations
have similarities but also differences compared to the SU(4) Kondo
effect in carbon nanotubes, occurring in the weak tunneling regime
Ec > hI' > kpT [159, 168]. In the Kondo effect, the tunneling cou-
pling is low enough compared to the charging energy to allow full lo-
calization of the charge within the dot, but it is large enough compared
to the Kondo energy to enable both spin and valley fluctuations [40].
This results in a crossover from charging effects at high temperature
to the increased conductance of Kondo resonances at zero tempera-
ture with a fourfold enhancement of the oscillation period [32, 154,
168]. In contrast to our observations, though, in the SU(4) Kondo ef-
fect, the conductance alternates between large values close to 4¢?/h
at oscillation maxima and almost zero at the minima [159, 168]; see
also Sec. A.1.2 of App. A. In our annealed devices, the tunneling cou-
pling is large; iI' ~ Ec. The charge is no longer strongly localized
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within the dot. As a result, our devices are in a regime where there are
also charge fluctuations in the nanotube in addition to spin and valley
fluctuations. This might be at the origin of the crossover of the con-
ductance oscillation period observed in this chapter, similar to what
happens in the SU(4) Kondo regime [32, 154, 168], but with conduc-
tance minima clearly distinc from zero. We emphasize that the low
temperature linear conductance Gg;ff(Vy) data alone do not allow one
to distinguish between non-interacting and correlated Fabry-Pérot os-
cillations. However, the smooth modulation between e/ Cg and 4e/ Cg
oscillations upon increasing the bias (see Fig. 7.4(c)) further supports
our hypothesis of correlated Fabry-Pérot regime.

7.6 Conclusions

Our work provides a comprehensible phenomenology of transport in
nanotubes when both interference and interaction are involved. The
findings presented in this chapter have been possible thanks to the
high quality of the devices, since otherwise disorder leads to irregular
Gaiff(Vg) modulations that are difficult to interpret. The main results
are summarized as follows: (i) We measure a fourfold enhancement of
the oscillation period of Gg¢(Vy) upon decreasing temperature, sig-
naling a crossover from coherent single-electron tunneling to Fabry-
Pérot interference; both oscillations coexist at the crossover tempera-
ture. (ii) Upon increasing the source-drain bias at low temperature,
both oscillations coexist over a large bias range. (iii) The Sagnac-like
modulation pinpoints the quantum interference nature of the Fabry-
Pérot oscillations at zero bias. (iv) The magnetic field data suggest a
fourfold spin and orbital degeneracy at zero-magnetic field.

The unexpected temperature-induced crossover, possibly related
to charge, spin, and valley fluctuations, raises an important question:
How does the strength of charge fluctuations compare to that of spin
and valley fluctuations in our experiment? Indeed, when the elec-
tron transmission approaches one in open fermion channels, the elec-
tron shot noise is suppressed to zero [144], indicating that there are
no longer any charge, spin, and valley fluctuations in nanotubes; by
contrast, in the lower I' limit of SU(4) Kondo, spin and valley fluc-
tuate, but not the charge.It is then natural to ask how the crossover
temperature for these more open interacting channels compare with
the well-known Kondo temperature of closed quantum dots. How-
ever, a quantitative description of our experiment constitutes a theo-
retical challenge. It will be interesting to measure shot noise [169-172]
and the backaction of the electro-mechanical coupling [10] (like in the
Chap. 8) to further characterize these correlated Fabry-Pérot oscilla-
tions.
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FIGURE 7.4: From Fabry-Pérot patterns to blurred
Coulomb diamonds in device 1. (a) Map of the
differential conductance as a function of Vyq and
Vg at 15 mK. From the position of the arrow the
single-particle excitation energy is extracted. (b) Dif-
ferential conductance traces for a series of differ-
ent source-drain voltages at 15 mK. (c) Source-drain
voltage dependence of the FFT amplitude associated
with the 4e/Cg and the e/Cq period oscillations at
15 mK. The curves are obtained by doing a FFT of
the Gy (V) trace for each V4 value.(d) A map of
the differential conductance as a function of V4 and
Vg at 8K. The dashed lines highlight the contours of
the Coulomb diamonds.
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Chapter 8

Cooling and
Self-Oscillation in a
Nanotube
Electro-Mechanical
Resonator

Parts of this chapter have been published in:

Cooling and Self-Oscillation in a Nanotube Electro-Mechanical Res-
onator

C. Urgell, W. Yang, S. L. De Bonis, C. Samanta, M. ]J. Esplandiu, Q.
Dong, Y. Jin and A. Bachtold

Nature Phys., 16, 32-37, (2020)

Nanomechanical resonators are used with great success to cou-
ple mechanical motion to other degrees of freedom, such as photons,
spins, and electrons [43, 173]. The motion of a mechanical eigenmode
can be efficiently cooled into the quantum regime using photons [43—
45], but not with other degrees of freedom. Here, we demonstrate
a simple yet powerful method for cooling, amplification, and self-
oscillation using electrons. This is achieved by applying a constant
(DC) current of electrons through a suspended nanotube in a dilution
fridge. We demonstrate cooling down to 4.6 £ 2.0 quanta of vibrations.
We also observe self-oscillation, which can lead to prominent instabil-
ities in the electron transport through the nanotube. We attribute the
origin of the observed cooling and self-oscillation to an electrothermal
effect. This work shows that electrons may become a useful resource
for cooling the mechanical vibrations of nanoscale systems into the
quantum regime.
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8.1 Introduction

The vibrations of mechanical resonators have been coupled to elec-
trons in different transport regimes, such as single-electron tunnel-
ing [5-9, 174, 175], Kondo [176], and quantum Hall effect [177, 178].
Because mechanical resonators are excellent force sensors, a small elec-
trostatic force created by electrons generates a large displacement of
the resonator. Conversely, the displacement reacts back on the elec-
trons by a sizeable amount. This backaction of electrons on the res-
onator has been frequently studied by measuring the change in res-
onance frequency and in energy decay rate of vibrations [5-9, 174-
178]. In principle, the backaction of electrons can also be used to
suppress and amplify thermal vibrational fluctuations and to gener-
ate self-oscillation by applying a DC electron current [49, 91]. Re-
ducing the thermal displacement fluctuations of a mechanical eigen-
mode is equivalent to cooling it according to the equipartition the-
orem. Signatures of a modest cooling down to ~ 200 quanta as
well as self-oscillation were observed over a decade ago in a pioneer
work [12] where a resonator is coupled to a superconducting single-
electron transistor. Meanwhile, many theoretical schemes have been
proposed to cool mechanical vibrations using electrons in different
electron transport regimes; see for instance Refs. [179-183]. However,
these cooling schemes could not be implemented due to experimental
difficulties. In this chapter, we show efficient backaction cooling in a
current-biased suspended nanotube precooled in a dilution fridge.

Carbon nanotubes are a versatile system for the study of both
electron transport and nanomechanics. Different electron transport
regimes can be reached by tuning the transmission of electrons be-
tween the nanotube and electrodes [32]. Interaction can lead to elec-
tron attraction, Kondo behaviours, and Wigner states [32, 147, 184].
On the other hand, carbon nanotubes are so small that they make the
lightest mechanical resonators fabricated thus far. Cooling a nanotube
resonator in a dilution fridge leads to high quality factors [25, 26]. Asa
result, the force sensitivity of the resonator is record high [29], and the
effect of the electron-vibration coupling is expected to be especially
large.

8.2 Fabrication and measurement scheme

Suspending a carbon nanotube between two metal electrodes is key to
form a nanomechanical resonator and to carry out state-of-the-art elec-
tron transport measurements. This suppresses the electron backscat-
tering in the nanotube due to the charge impurities and the rugosity of
the substrate. We grow the carbon nanotube between two metal elec-
trodes in the last step of the fabrication process using chemical vapour
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FIGURE 8.1: Characterization of the nanotube

electro-mechanical resonator. Measurement
schematic and scanning electron microscopy image
of the suspended nanotube. Voltages V,q and Vg
are applied to electrodes S and G, respectively.
Electrode D is connected to a RLC resonator and a
high-electron-mobility-transistor (HEMT) amplifier.

deposition in order to minimise residual contamination [25]. Measure-
ments are carried out by applying a DC voltage to the source electrode
(Vsa) and the gate electrode (V) patterned at the bottom of the trench;
see Fig. 8.1. We detect the electrical current from the drain electrode
using a RLC resonator with frequency wrrc = 27t -1.27 MHz and a
high-electron-mobility-transistor amplifier [29, 113].

8.3 Characterization of the device

We record the differential conductance G of the device by applying
an oscillating voltage Vi to the source electrode with the frequency
set at wrpc. Using a capacitive transduction scheme [29], we measure
thermal vibrations with resonance frequency wy by applying VZ§ at the
frequency wy — wric. In order to avoid perturbations from the mea-
surement, we keep the amplitude of V& much smaller than kgT/e,
where kg is the Boltzmann constant, T the temperature of the cryostat,
and e the electron charge. All the measurements presented here are
carried out at the base temperature of the fridge except when stated
differently.

Electron transport measurements indicate that electrons are in the
Kondo regime [32]. A regular shell filling with Kondo ridges at zero
source-drain bias is observed upon sweeping Vg; see Figs. 8.2(a) and
8.2(b). Unlike normal Coulomb blockade, Gqj¢f increases in every sec-
ond conductance valleys when decreasing temperature. This shows
the SU(2) nature of the Kondo effect in this device.

Energy decay measurements of thermal vibrations reveal that the
quality factor Q = 6.8 - 10 is remarkably high when compared to pre-
vious works [25, 26, 29]. This is also higher than the quality factor
inferred from the spectral resonance linewidth, since the energy de-
cay rate I'gecay is smaller than the spectral resonance linewidth I'yiqin;
see Figs. 8.3(a) and 8.3(b). The difference is attributed to dephasing.
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FIGURE 8.2: Characterization of the nanotube

electro-mechanical resonator. (a) Differential con-

ductance as a function of Vg and V. Yellow ar-

rows indicate regions of conductance instabilities.

(b) Differential conductance as a function of Vg with
Vsg = 0mV.

The resonance frequency can be tuned by sweeping both Vg and Vyq4;
as in Figs. 8.3(e) and 8.3(f). The slopes dwg/dVg and —dwy/dVyq are
often rather similar, suggesting that they are related to the same ori-
gin, that is, the mechanical tension induced by the static displacement
of the nanotube. Thermal vibrations can be cooled with the cryostat
down to ~ 70 mK; like in Fig. 8.3(f). We attribute the saturation of the
displacement variance at low temperature to the electric noise in the
circuit.

8.4 Conductance instabilities

We observe instabilities in the conductance arising periodically in Vg;
see arrows in Fig. 8.2(b). They emerge at finite source-drain bias in
charge stability diagram measurements. In these instability regions,
the peaks in conductance are truncated, Figs. 8.4(a-c), and conduc-
tance traces as a function of V; appear noisy; see Fig. 8.4(d). While
similar conductance instabilities were previously reported [8], we will
show below that these instabilities are related to large-amplitude vi-
brations.
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FIGURE 8.3: Characterization of the nanotube
electro-mechanical resonator. (a) Displacement
spectral density. (b) Energy decay obtained from
the autocorrelation of the time (t) trace of X2 4+Y?,
where X and Y are the two quadratures of thermal
vibrations. The pink line indicates an exponential
decay. (c) Decay rate I'yecay and spectral resonance
width I'yqm as a function of Vg with Vg = 0 mV.
(d,e) Resonance frequency as a function of V; and
Vsq- Weset Vg = 0mVind and Vg = —560 mV in
e. (f) Variance of the displacement of thermal vibra-
tions as a function of temperature at Vg = —185mV.

The measured conductance instabilities originate from the switch-
ing of the mechanical motion between thermal noise and self-
oscillation (Fig. 8.5). Upon sweeping V4 through the instability re-
gion, the variance of the displacement 6z> dramatically increases
(Fig. 8.5(a)), and the decay rate gets suppressed towards zero near the
border of the instability region (shaded in yellow in Fig. 8.5(b)). These
two experimental facts point to the development of self-oscillation.
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FIGURE 8.4: Conductance instabilities. (a) Differ-
ential conductance as a function of Vg and Vg. Yel-
low arrows in the different panels indicate regions of
conductance instabilities. (b,c) Differential conduc-
tance as a function of V4 for two different V; values.
(d) Differential conductance as a function of V.

The phase-space and the histogram of the two quadratures of the mo-
tion can be described by the superposition of the distributions of a
donut and a Gaussian-like peak (Figs. 8.5(h,i)), suggesting that the
motion switches back and forth between self-oscillation with high 62>
and thermal noise with low 622 (Sec. B.3 of App. B). This switching
is further supported by the fact that the resonance lineshape is un-
usually broad, as in Fig. 8.5(g); indeed, the large linewidth is then re-
lated to the large fluctuations of §z> and the resonator nonlinearity.
Pure self-oscillation with narrow resonance lineshape can also be ob-
served without any switches to thermal vibrations; this often happens
at higher V4 values. The shift in resonance frequency due to electron
backaction (Fig. 8.5(c)) is difficult to quantify, since the resonance fre-
quency also depends on the mechanical tension induced by Vg, the
temperature rise of the nanotube lattice due to Joule heating, and the
variance of the displacement through the mechanical nonlinearity.

8.5 Backaction cooling
Mechanical vibrations are cooled down to 4.6 + 2.0 quanta at Vg =

—943 mV upon increasing the source-drain bias to Viq4 ~ 0.565 mV;
Figs. 8.6(a-c). Cooling is accompanied with a strong increase of the
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FIGURE 8.5: Self-oscillation at V; = —616 mV. (a)
Variance of the displacement as a function of V4.
The yellow shaded area represents the region with
self-oscillation. (b) Decay rate and spectral reso-
nance width as a function of Vyq. The pink line
is the expected decay rate using Eq. 8.1. (c) Reso-
nance frequency as a function of V4. (d-f) Displace-
ment spectral density, the phase-space of the two
quadratures of the motion, and the associated his-
togram at Vgqg = 0.15 mV. (g-i) Same as d-f but at
Vsa = 0.25 mV. The arrows in (i) indicate the donut
distribution. The confidence interval (CI) error bars
in a,b arise from the uncertainty in the fitting of the
measurement of the resonance lineshape and the en-
ergy decay to a Lorentzian and an exponential decay,
respectively.

decay rate (Fig. 8.6(d)), indicating a backaction effect. This efficient
cooling occurs when the transconductance is negative and large; see
Fig. 8.1(e). We observe cooling at other V; values when the transcon-
ductance is negative as well (Sec. B.2 of App. B). The determination
of the number of quanta is robust against the hypothetical miscalibra-
tion of the amplification chain and of the attenuation along the coaxial
cables (Sec. B.1 of App. B). The uncertainty in the transconductance,
which enters into the transduction of the displacement, is 5.7 % of its
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FIGURE 8.6: Cooling at Vg = —943 mV. (a) Variance
of the displacement as a function of V4. (b,c) Dis-
placement spectral density at two different V4. Here
n is the quanta number. (d) Decay rate and spectral
resonance width as a function of V4. The pink line is
the expected decay rate using Eq. 8.1. (e) Transcon-
ductance as a function of V4. (f) Bath temperature of
mechanical vibrations as a function of V4 for three
different Vi values. The solid lines indicate the de-
pendence expected from Joule heating; see text. The
CI error bars in a,d arise from the uncertainty in
the fitting of the measurement of the resonance line-
shape and the energy decay to a Lorentzian and an
exponential decay, respectively. The error bars in f
arise from the uncertainties in 6z and T'decay-

value at Vg = —943 mV and Vyq ~ 0.565 mV. As explained above,
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the frequency shift due to backaction cannot be quantified, since the
frequency shift depends on various other effects that are difficult to
disentangle experimentally.

The nanotube experiences Joule heating due to the current flowing
through the resonator. Backaction cooling predicts that the phonon
occupation at finite bias is given by n(Vq) = Tbatbath/Tdecay (Vsd)
where #pan, = kTpath /fiwg is the thermal phonon number and Iy,
is the coupling to the thermal bath. We would achieve much lower
phonon occupation, if the bath temperature Ty, was given by the
cryostat temperature, while setting I',,y, to the measured decay rate
at zero-bias. This indicates that Joule heating is sizable. We deduce
the bath temperature from the measured values of 7 and I'gecay [185,
186]; see Fig. 8.6(f) . The temperature rise can be well described by
Joule heating for different V,; values using the phenomenological rela-
tion Ty = Tgib + 17GVS2 , as in Fig. 8.6(f), where T\(/)ib is the measured
vibration temperature at zero-bias, G is the conductance, and 7 is the
same constant for all the V; values. The temperature rise is not ac-
counted for by the electrostatic force associated to the electron shot
noise of the nanotube, since the temperature rise does not depend lin-
early on Vg4 and it is independent of V; to a first approximation. The
shot noise of the suspended nanotube behaves in the usual way with
a Fano factor between 0.2 and 0.3 (Sec. B.4 of App. B).

8.6 Origin of the backaction effect

Here, we discuss the possible origins of the observed backaction. It
could be related to the usual backaction in electro-mechanical res-
onators [5-9, 174-176], where conducting electrons generate an elec-
trostatic force on the nanotube and the retardation of the force is given
by the transmission of electrons between the nanotube and electrodes.
However, we do not observe resonance frequency dips when sweep-
ing Vg (Fig. 8.2(d)), showing that the strength of this backaction is
weak. Moreover, this backaction predicts modest cooling at the con-
ductance peaks [49, 91], which is the opposite of what is observed in
Fig. 8.3, that is, self-oscillation near conductance peaks. This shows
that the backaction measured in electro-mechanical resonators at zero
source-drain bias cannot describe our results at finite bias. Another
possible mechanism could be related to the retardation created by
the circuit, where the vibration-induced current noise of the nanotube
generates a retarded electrostatic force due to the capacitance of the
circuit. However, the predicted decay rate is too weak to produce the
cooling observed in Figs. 8.6(a) and 8.6(c). We conclude that backac-
tion with electrostatic origins cannot account for our findings.

We attribute the origin of the backaction to an electrothermal ef-
fect [187], which is an analogue of the photothermal backaction often
observed in opto-mechanical resonators [48]. The power GVS2d of Joule
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heating modifies the mechanical tension in the nanotube through the
effective thermal expansion coefficient of the device. This results in
a net displacement 6z of the resonator when the nanotube is bent by
e.g. the static electrostatic force associated with V. This displacement
reacts back on the dissipated power via 6G = ‘;—552 with a delay given
by both the capacitance of the circuit and the thermalization time of
the device [187]. This electrothermal effect modifies the decay rate by

C 2
B,z V2. (8.1)

Here, Cg is the capacitance between the nanotube and the gate elec-
trode, Cé is its derivative with respect to z, and z; is the static displace-
ment. We use « as a free parameter in our analysis, since & depends
on various quantities that are difficult to quantify. These include the
thermalization time, the effective thermal expansion coefficient, and
the three-dimensional profile of the static bending of the nanotube.
The electron transport in the device controls the electrothermal

backaction through df‘ﬁéﬁ. When d{?‘;‘;‘f is positive and large, the total

decay rate of the resonator can become effectively negative, leading
to self-oscillation. When ddG—‘ﬂgf is strongly negative so that Al'p, >>

I'path, the vibrations are efficiently cooled. Equation 8.1 reproduces
qualitatively the decay rate measured when increasing V.4 towards
the self-oscillation regime shaded in yellow in Fig. 8.5(b) and to the
strong cooling regime in Fig. 8.6(d) (see pink lines). See Sec. B.6 of
App. B for more discussion on the different backactions.

8.7 Displacement sensitivity

Our detection method enables excellent displacement sensitivity. The

imprecision noise S; © can reach the level of the displacement noise of
the zero-point fluctuations at resonance frequency,

S = \/2h/ mawoT widths (8.2)

where m is the effective mass (Sec. B.5 of App. B). Interestingly, the
imprecision noise in this detection scheme can be further suppressed
by setting the device transconductance to a higher value, while keep-
ing the electron shot noise to a lower level compared to the Johnson-
Nyquist noise by applying the source-drain voltage bias below kgT.
The imprecision noise reads

-1
i 1dGy; Ce i
imp L aadiff ac _8 mp
5 = <2 dv, L<°>'lsdcg> St 83)
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Here Simp is the current noise floor associated to the high-electron-
mobility-transistor amplifier noise, the Johnson-Nyquist noise of the
circuit, and the electron shot noise through the nanotube device,
which can be tuned with V{ and V.

8.8 Conclusions

Electrothermal cooling is a striking effect, since it takes advantage of
Joule heating to cool mechanical vibrations. In addition, this cooling
mechanism is efficient at temperatures close to the quantum regime.
The electrothermal cooling method is simple, since it consists in apply-
ing a DC current of electrons through a suspended nanoelectronic de-
vice. The measurements of thermal vibrations are similar to the noise
measurements on electronic devices carried out by many groups [188—
190]. Electrothermal cooling allows us to demonstrate the lowest occu-
pation number achieved with a resonator based on a low-dimensional
nanoscale material [29, 48, 185, 186]. Future studies may enable
ground-state cooling. This may be achieved by enhancing the back-
action rate (Eq. 8.1) using devices with higher transconductance and
stronger coupling to the gate (to increase the Cy /Cq ratio). It will then
be interesting to investigate the lowest measurement noise related to
the imprecision noise and the quantum backaction noise, which arises
from the electrostatic force noise associated to the electron shot noise.
Cooling is also promising for enhancing the polaronic nature of charge
carriers in a single-electron tunneling device [191]. This might offer
the possibility to tune the zero-frequency electrical conduction of an
electro-mechanical device.
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Chapter 9

Conclusions

9.1 Summary

Throughout this thesis, we studied in detail CNT electro-mechanical
resonators putting emphasis on the electron transport properties and
the effects of the electromechanical coupling. Ultra-high quality de-
vices were investigated at cryogenic temperature in an ultra-low noise
environment providing a great platform to study quantum phenom-
ena at the nanoscale.

In Chap. 5, we presented a new method to engineer CNT nanome-
chanical sensors. This technique allows us to monitor the mass growth
of a Pt nanoparticle on the nanotube tip with high-resolution. We take
advantage of a nanomechanical read-out by collecting secondary elec-
trons in a FEBID system. This method can be easily used in any SEM
or STEM setup without further modification.

In Chap. 6, we characterized the electronic temperature of the sys-
tem after introducing major upgrades. We demonstrated more than a
factor two reduction in the electron temperature.

In Chap. 7, we introduced ultra-clean transport measurements in
suspended CNT devices. The ultra-high quality of the devices al-
lowed us to investigate the quantum nature of the electron transport.
The measurements present features of both interference and interac-
tion between electrons. The fourfold enhancement of the conduc-
tance oscillation period while decreasing the temperature indicates the
crossover from single-electron tunnelling to Fabry-Pérot interference.
Both transport regimes coexist over a narrow temperature range.but
over a large a long source-drain bias range. In summary, charge, spin
and valley fluctuations governs the crossover between the different
regimes.

In Chap. 8, we studied the coupling between the mechanical mo-
tion and the electron transport in CNT electro-mechanical systems.
The backaction force has been observed trough the cooling and heat-
ing of the nanoresonator’s eigenmode. The system has been cooled
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to a record occupation number of 4.6 quanta. Additionally, we re-
lated the presence of the well-known transport instabilities to the self-
oscillation in the CNT’s motion. We attributed the backaction mech-
anism to an electrothermal origin. This is a simple and striking effect
which takes advantage of Joule heating to efficiently cool the CNT’s
mechanical thermal vibrations close to the quantum regime. In conclu-
sion, ultra-clean CNTs are an excellent platform to study the interac-
tion between motion and electron transport because of their extremely
high sensitivity to tiny forces.

9.2 OQOutlook

The mass and time resolution achieved in Chap. 5, together with the
possibility of using different materials with FEBID [125, 126], may
lead to new advances in different fields including magnetic force mi-
croscopy [20, 110-112, 127, 128]. This technique can be applied to other
systems such as semiconducting nanowires [122, 129-131] and micro-
fabricated top-down resonators [100, 132-138].

In Chap. 6, we showed how to reduce the electron temperature of
suspended nanotube devices down to 25 mK. New strategies could
be implemented to keep pushing down the electron temperature us-
ing better filtering and thermalization strategies [141, 142]. This is
important to demonstrate the ground-state cooling of a CNT electro-
mechanical resonator. If we enhance the backaction rate (Eq. 8.1) us-
ing devices with higher transconductance and stronger coupling to
the gate (to increase the C,,/ Cg ratio), we could enhance the effect of
backaction. We could also try to reduce the imprecision noise of the
system towards the quantum limitation [192] and study the quantum
backaction noise, which arises from the electrostatic force noise asso-
ciated to the electron shot noise. The cooling effect is also promising
in order to enhance the polaronic nature of charge carriers in CNT
nanoresonators [191]. This might offer the possibility to tune the zero-
frequency electrical conduction of an electro-mechanical device.

Another interesting line of research consists in further exploring
the quantum transport through such high-quality nanotube devices.
A quantitative understanding of the data presented in Chap. 7 is miss-
ing; the temperature induced crossover is not captured by any existing
theoretical model. It would be interesting to compare the strength of
charge, spin, and valley fluctuations when tuning temperature and
the coupling rate between the nanotube and the leads. When the elec-
tron transmission approaches one in open fermion channels, the elec-
tron shot noise is suppressed to zero [144], indicating that there are no
longer any charge, spin, and valley fluctuations in the nanotube; by
contrast, in the lower I' limit of SU(4) Kondo, spin and valley fluctu-
ate, but not the charge. It is then natural to ask how the crossover tem-
perature for these more open interacting channels compare with the
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well-known Kondo temperature of closed quantum dots. We should
measure the shot noise of the system [169-172] to further explore these
correlated Fabry-Pérot oscillations. Since we presented a fabrication
technique (see App. A) that allows us to tune the energy hierarchy
of high-quality nanotube devices, we could characterize the quantum
transport in a wide variety of transport regimes.
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Appendix A

Additional information on
Chapter 7

A.1 Experimental section

A.1.1 High-quality nanotubes obtained by current an-
nealing

We grow nanotubes by chemical vapor deposition on prepatterned
electrodes using the technique described in Ref. [167]. The nanotube
is suspended between two metal electrodes Fig. A.1(a). We clean the
nanotube in the dilution fridge at base temperature by applying a high
constant source-drain voltage V4 for a few minutes. The highest ap-
plied value of Vg4 is usually chosen by ramping up the bias until the
point when the current starts to decrease, see Fig. A.1(b). This current-
annealing step cleans the nanotube surface from contamination. This
procedure allows us to adsorb helium monolayers uniformly along
nanotubes, indicating that the nanotube is essentially free of adsorbate
contamination [15]. Figs. A.1(c,g) show the modulation of the differ-
ential conductance Ggjf of device I as a function of V; in the hole-side
regime at 15 mK before and after annealing, respectively. The current
annealing results in regular conductance modulation.

In the annealed sample rapid conductance oscillations are super-
posed on slow modulations, see Fig. A.1(d). Since the conductance
remains always large, we attribute the rapid oscillation to the Fabry-
Pérot interference with period in gate voltage being AV, = 4e/Cg.
The first interpretation of slow modulation coming to mind is the so-
called Sagnac interference, due to the gradual change of the Fermi ve-
locity when sweeping Vg,[42, 73], caused by the trigonal warping. In
the dispersion of non-interacting electrons trigonal warping manifests
at energies further than ~ 200 meV away from the charge neutrality
point, while the range of single-particle energies scanned in our ex-
periment is of the order of ~ 56 meV (estimated from ~ 40 peaks
visible in Fig. 7.1(b) of Chap. 7, separated by AE ~ 1.4 meV). Un-
less the interactions bring the trigonal warping effects closer to the
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FIGURE A.l:  Current annealing and low-
temperature transport characteristics. (a)

Three-terminal device with a suspended CNT
contacted to source (S), drain (D), and gate (G) elec-
trodes.(b) Current-voltage characteristic of device
ITat T = 15 mK. The arrow indicates when the
current starts to decrease while increasing V. The
highest voltage used for current annealing is usually
around this value.(c-g) Gate voltage dependence of
the conductance Gg;¢(V) of device I at T = 15 mK
measured before current annealing and after differ-
ent current annealing steps. The measurements in
d-g have been carried out in a second cool-down,
while all the other presented data of device I have
been recorded in the first cool-down. An oscillating
voltage with amplitude smaller than kgT/e is
applied to measure the differential conductance.

charge neutrality point, an alternative explanation of the slow modu-
lation is needed. One possibility is the beating caused by the presence
of a symmetry breaking mechanism which introduces additional val-
ley mixing and/or another characteristic length scale into the system.
The pattern of the secondary interference is completely changed each
time that we do a current-annealing of the device, see Fig. A.1(de).
We attribute this modification either to the atomic rearrangement of
the platinum electrodes in the region near the nanotube, so that the
intervalley backscattering rate at the contacts changes [42], or to the
changed position of residual adatoms near the contacts.
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A

FIGURE A.2: Resistance of device I as a function of
gate voltage for different temperatures.

The effect of the annealing on device II are discussed in the next
subsection, see Fig. A 4.

A.1.2 Electron transport properties

In this subsection we provide additional data to further characterize
device I and II discussed in the main text.

Size of the energy gap- The energy gap of the two nanotubes dis-
cussed in this work is on the order of 10 meV. The size of the energy
gap can be obtained by recording the dependence of the resistance on
Vg at different temperatures [32], see Fig. A.2. The order of magni-
tude of the band gap Eg is obtained from the temperature at which
the resistance in the gap gets high, Eg ~ kgT.

Temperature dependence of device I- In Fig. A.3 is shown a selection of
Gaifr(Vg) traces of device I at different temperatures. We select the Vg
ranges for which data are presented in the main text. The change in
period of the oscillations with temperature is observed for all the gate
voltage ranges.

Change from intermediate to strong coupling upon annealing - Finally,
we show in Fig. A 4 the effect of successive annealing steps on the map
of the differential conductance as a function of Vyq and Vg of device
II. Remarkably, before annealing regions of very low differential con-
ductance alternate with regions of high conductance in a way which
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FIGURE A.3: Series of Ggys(Vy) traces at different
temperatures of device I. We select the V;; ranges for
which data are presented in the main text.

is reminiscent of the SU(2)xSU(2) Kondo effect seen in other CNT-
based quantum dots [32]. Here, as seen from the conductance trace
in Fig. A.4(d), within a periodicity of four electrons, an enhancement
of the conductance is seen in the odd valleys. After the first annealing,
a stronger coupling to the leads favours a conductance enhancement
also in the intermediate valley, a signature of the formation of an SU(4)
Kondo state. The second annealing leads to an even larger coupling
to the leads, and the Kondo features are no longer seen at low bias.

Rather, a checkerboard pattern typical of Fabry-Pérot interference is
the dominant feature.
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FIGURE A .4: Differential conductance as a function
of Viq and V; of device II after various annealing
steps at T = 15 mK. (a) Before annealing, the cou-
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ing step the differential conductance is overall larger
and Fabry-Pérot features are seen. (d) Conductance
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Appendix B

Additional information on
Chapter 8

B.1 Calibration of the displacement

Electron-vibration coupling no only leads to backaction [5-9, 14, 174—
178, 193-197] but also enables the detection of vibrations [22, 25, 26,
29, 113]. Mechanical vibrations are electrically detected using a RLC
resonator and a HEMT amplifier cooled at liquid-helium temperature
(Fig. 8.1(a) in Chap. 8 [29]). Displacement modulation is transduced
capacitively into current modulation by applying an input oscillating
voltage Vi across the nanotube. The frequency wyq /27 of the oscil-
lating voltage is set to match wyq = wp £ wrrc. Thermal vibrations
are measured by recording the current noise at ~ wgrrc. The current
01 is related to the displacement of the nanotube by

51 = poz, (B.1)
1dGaitt ., acCs

B=- V,Vas 8. (B.2)
2 dvy BC

The spectral density S, of the displacement noise is obtained from the
measured spectral density of the current noise using Eqs. B.1 and B.2.

The calibration of the number of quanta is obtained in a reliable
way thanks to the equipartition theorem

mw3éz* = kyT. (B.3)

In practice, we measure the spectral density of the current noise to
quantify the variance of the current 12, associated to the mechan-
ical resonance of thermal vibrations. The measurement of 412, as
a function of temperature in Fig. 8.1(a) in the main text determines

2
m (g—z) = 2.5 x 1073%kg - m? using Eqs. B.1-B.3. This allows us to

quantify the effective temperature Ty, of the thermal vibrations at any
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FIGURE B.1: Coulomb blockade measurements.
Differential conductance Gg;fs as a function of gate
voltage at 10 K and zero source-drain bias.

Vg and Vyq values by measuring 6% and de‘ff and using

Cg 2 4w 5
Ty, = m cr G (Hres (B.4)
g kg ( diff VgVac)

Importantly, the determination of Ty, does not depend on the hy-
pothetical inaccurate calibration of the attenuation along the coaxial
cables created by thermal contraction and of the amplification chain.
Indeed, such inaccurate calibration, if sizeable, would have an effect

2
on Vi and m (%) , but it would be canceled out when determining

Tyip. We systematically measure de‘“ at any Vi and V; values. The

number of quanta of vibrations is obtalned using n = kg%o‘b

fi the reduced Planck constant.

In order to quantify S,, and 8z2, we estimate the capacitance Cg
from the separation AVy = 23.1 mV between two conductance peaks
in the Coulomb blockade regime at large positive Vg values (Fig. B.1).
We obtain Cg = ¢/AVy = 6.94 x 107 '8 E. We get Cy = 7 x 107 2F/m
from the measurement of the variance of the displacement as a func-
tion of temperature using m = 2.7 ag.

The energy decay rate I'jecay is estimated by measuring the time
trace of the two quadratures of thermal vibrations and by quantifying
the autocorrelation of the amplitude squared. From these time trace
measurements, we also obtain the phase-space of the two quadratures

— § with
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FIGURE B.2: Electron transport measurements.

(a,b) Differential conductance and transconductance

as a function of Vyq and V; measured at the base

temperature of the fridge. (c¢) Transconductance as
a function of V; measured at Vo4 = 0.7 mV.

and the associated histogram (Fig. 8.3 of main text).

B.2 Relation between electron transport and
vibration cooling

Figs. B.2(a)b) show that the measurements of Gy;fs and & d;ff as func-

tions of Vy and V4 are remarkably regular over a large range of gate
voltage. This reflects the high quality of the nanotube. The shell filling
with Kondo ridges at zero source-drain bias is observed over the full
range of V. The instability in the conductance discussed in Figs. 8.1(b)
and 8.2(d) of the main text appears periodically in gate voltage over
the full Vg range as well.
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FIGURE B.3: Cooling at different Vg values. (a-c)

Displacement power spectral density of thermal vi-

brations showing low occupation number in regions
dG,

where “79 is strongly negative.
g

Figs. B.2(b,c) show that regions with strongly negative ddc—‘gg‘“
emerge periodically in Vg at finite source-drain voltage. This occurs
for Vyq in the range between 0.4 mV and 1.1 mV. We observe efficient

cooling in these strongly negative % regions, as demonstrated by
the measured spectra of thermal vibrations in Figs. B.3(a-c).

B.3 Self-oscillation

The vibrations of the nanotube in the instability region switch back
and forth between thermal motion and self-oscillation, as it can be
seen in the time traces of one of the two quadratures (X) and of the
amplitude (R) in Fig. B.4. In these traces, the amplitude of thermal vi-
brations is low, whereas the amplitude in self-oscillation is high. These
switches between thermal motion and self-oscillation occur randomly
in time.
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FIGURE B.4: Time domain measurements. (a-c)

Three different time traces of one quadrature X

(blue) and the corresponding amplitude R (orange)

at Vogg = 0.25 mV for V; = —616 mV, plotted from
the Fig. 8.5(h) in Chap. 8

Pure self-oscillation can also be observed without any switches to
thermal vibrations. See for instance Fig. B.5. This often happens at
high Vg4 values.

B.4 Shot Noise measurement

Here, we describe how we measure the shot noise of the nanotube
device. The spectral density of the current noise Syj is transformed
into spectral density of voltage noise Syy through the total impedance
Ziot = (Rgi%f + Zﬁﬁc)’l, where Ryji is the nanotube differential
resistance and Zgic is the effective impedance of the RLC circuit.
The voltage fluctuations, which are amplified by the high-electron-
mobility-transistor amplifier (HEMT), are measured at the frequency
wrrc = 27 - 1.27 MHz over ~ 80 kHz bandwidth. Our noise mea-

surement contains the background contribution S?Ig related to the
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FIGURE B.5: Pure self-oscillation. (a) Displacement

spectral density at Vsq = 1.2mV and Vg = —616 mV.

(b) The phase-space of the two quadratures of the

motion. (¢) Histogram associated to the phase-space
inb.

Johnson-Nyquist noise of the total circuit and of the HEMT noise. This
background contribution is independent of the source-drain voltage
Vsd, so that it can be quantified from the current noise measured at
Vsd = 0 mV. After the substraction of this background contribution,
we determine the Fano factor F of the nanotube device at finite Vg4
from the measured current noise using F = Syj(Vyq)/(2elsq), where e
is the electron charge, and Iy4 is the DC current at a given source-drain
bias V4 (Fig. B.6).
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B.5 Displacement sensitivity

The current noise floor S}mp at wry ¢ sets the displacement imprecision

noise S of the detection method using

-1
i 1dGy; Cq i
imp _ [ 1 diff ac_ 8 mp B
st (2 Vs Sdcg> gimp. (B.5)

The current noise floor at zero source-drain bias is given by the HEMT
noise and the Johnson-Nyquist noise of the circuit. When increas-
ing the bias, the contribution of the electron shot noise dominates the
displacement sensitivity (Fig. B.7(a)). The Vyq dependence of the im-
precision displacement noise is obtained using Eq. B.5 (Fig. B.7(b)).
The imprecision noise can reach the level of the displacement noise

S;pf = /21 /mwol'yigm of the zero-point fluctuations at resonance fre-
quency (Fig. B.7(c)).
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FIGURE B.7: Displacement sensitivity. (a,b) Cur-

rent noise floor and displacement imprecision noise

as a function of V4. (c) Same as (b) but with the dis-

placement imprecision noise normalised by the dis-

placement noise of the zero-point fluctuations at res-
onance frequency.

B.6 Backaction

B.6.1 Retardation time due to the circuit

Fig. B.8 shows the simplified electrical circuit used to evaluate the elec-
trostatic and the electrothermal backactions when the retardation is
given by the circuit. We consider the impedances relevant at the res-
onance frequency of the resonator. The nanotube with conductance G
is connected on the source electrode to the capacitance Crc =~ 60 pF of
the coaxial cable and the resistance Rsy = 50 () of an attenuator, which
form the impedance of the circuit

Zr = (Rgol n ichC) - (B.6)

The mechanical vibrations modulate the nanotube conductance by the
amount 6G. When a DC voltage V4 is applied to the source electrode
nanotube, the conductance modulation generates an oscillating cur-
rent di,c at the frequency close to wy. The current flowing through Zr
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creates an oscillating voltage v, on the source electrode, so that

OVac = —OlacZT, (B.7)
Oiac = 0GVq + Gvge. (B.8)
Reference [187] made a similar analysis as here. The difference in the
two analysis comes from the fact that our device is biased with a con-

stant voltage, while the device in Ref. [187] is biased with a constant
current.

6Vac S -

1 G+ 86G
Rso I ZC:i(D_(:RC

FIGURE B.8: Simplified electrical circuit.

The retardation time Tz of the backaction on the vibrations is of
the order of 1/wy. The retardation time is related to the delay of the
modulation of §v,. with respect to §G. We thus express dv,. as

Zr 1 — iwRs50Crc
0Uge = ————0GV,q ~ —Rsgpg——————F0G Vg, B.9
ac 1 +ZTG sd 501 +WZR§0C%{C sd ( )

where we use R50G << 1 in the last equality. The argument of the
complex number in the numerator is ¢ = —arctan (wRs50Cgrc), so that
the retardation time is

arctan (woRs0Crc)

Tre = o . (B.10)

From the values of Crc, Rsp, and wy =~ 27 - 92 MHz, we get that
woR50Crc = 1.7. Therefore, the retardation time trc of the circuit
is of the order of 1/wqy. The estimation wytrc ~ 1 is relevant, since
this enhances cooling [198].

B.6.2 Electrostatic backaction with the retardation due
to the circuit

As described in the last subsection, the modulation of the voltage dvac
on the source electrode is due to the vibration-induced modulation of
the conductance, when the nanotube is biased with a constant voltage.
Assuming symmetric electrical contacts, the voltage modulation on
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the nanotube is dunT = %Jvac. This results in the electrostatic force

1 CéVgR50;_lw¢CRCa—GVSd5Z. (B.11)

OF = C.V,buonT = — =
gCUNT
& 2 + w2REChe 92

The real part of this backaction force leads to the shift of the spring
constant, and the imaginary part to the shift of the decay rate. Using
F= —mAFback% and % = iwz, we get

R dGgier (CeVe)?
50 ) aiti \“78)" (g

Bkacc = 3
back = 2 \1+ (R50(UCRc)2 dVg Cg

AT . — L < R3,Crc )deiff (CgVe)?
back —

— Vsq(B.1
2m \ 1+ (R500JCRC)2 dVg Cg sa(B-13)

The retardation time of the backaction on the vibrations is about 1/ wj.

This backaction cannot account for our data. Eq. B.13 cannot ac-
count for the efficient cooling in Figs. 8.6(a,c) shown in Chap. 8, since
the predicted AI' is one order of magnitude smaller than that mea-
sured in Fig. 8.6(d) of in Chap. 8.

B.6.3 Electrothermal backaction with the retardation
due to the circuit

The closed loop of the backaction goes as follows. The dissipated
power increases the temperature of the device. The effective thermal
expansion of the device leads to the displacement of the nanotube.
This displacement reacts back on the dissipated power via 6G = %—S(Sz.
The delay of the retardation time is Trc.

The dissipated power of the voltage-biased nanotube is P = (G +
3G)(Veq + 6vac)?. The first-order expansion of the power reads

ZG
7 G VadG (B.14)

6Py = V4G —2

The first term of this equation leads to backaction when taking into
account the thermalization time of the device, as discussed in the next
subsection. The second term results in the change of the decay rate
because of the retardation of the circuit. This is what is discussed here.
The modulation of the dissipated power leads to the modulation

of the mechanical tension in the nanotube. The tension modula-
tion depends on the temperature profile along the nanotube and the
electrodes, which is something hard to know precisely especially at
low temperature when the electron transport is quasi-coherent [70].
In what follows, we assume for simplicity that the dissipation oc-
curs solely in the nanotube, and that temperature rises by 6T =
OPTon/ Cheat- Here, Cpeat is the heat capacity of the nanotube and 7, is
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the thermalization time of the nanotube. We do an additional simpli-
fication using Tpn =~ L/v =~ 0.1 ns, where L is the nanotube length and

v ~ 10* m/s is the phonon velocity in nanotubes [199]. Assuming that
the thermal expansion is solely occurring in the nanotube, the nan-
otube expands by ‘STL = atpcdT where atgc is the thermal expansion
coefficient of the nanotube. Using Hook’s law, the change of the me-
chanical tension is given by 6 Tjoch = 27t7Epg %L where E>g = 340N/m
is the two-dimensional Young’s modulus of graphene and r the nan-
otube radius. Overall, the mechanical tension is related to the dissi-
pated power by

atecExq T

6Tmech = N o rerépy. (B.15)

heat

We emphasize that we would get a linear relation between the tension
and the power as in Eq. B.15 albeit with a different ratio 0 Tynecn /0P,
if we were considering dissipation in the electrodes and/or thermal
expansion of the electrodes.

The modulation of the mechanical tension generates a shift in the
spring constant and in the decay rate. For this, we use the Euler-
Bernoulli equation that reads

ES (L /dZ\?
Tmech+i 0 (dx) dx

where p is the nanotube mass density, S the nanotube cross-sectional
area, Z the displacement at the coordinate x along the nanotube axis,
t the time, E the nanotube three-dimensional Young’s modulus, and
I the moment of inertia. We assume that the restoring force is solely
given by the mechanical tension, as it is the case in our experiment, so

that EI% — 0. We set

d2z
- (B.16)

2 4

P i

Z(x,t) = zs X ¢ps(x) + 21 (t) X ¢p1(x). (B.17)

Here, ¢s(x) and ¢;(x) are the profiles of the static deformation and
the measured eigenmode with max(¢s(x)) = max(¢;(x))=1, whereas
zs and z1 (t) are the associated time dependent displacements. We use
$s(x) = ¢1(x) = sin(mx/L), a good approximation since the nan-
otube is under tensile tension. The equation of motion is obtained by
multiplying the Euler-Bernoulli equation by ¢ (x) and integrating it
along x. The mechanical tension is Tipech = Tg\e h — 9Tmech where

Tgle «h 18 the time-independent tension in the nanotube. The time-

dependent tension creates a term proportional to z1. The real part of
this term induces a shift in the spring constant, and the imaginary part
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leads to a shift in the decay rate,

1 dGa Cg 2
Ak = _o B.1
back = &M CrcRao dVy Gy Vezs Vg, (B.18)
dGaiss Cg 2
Alpack = —« dVé @VngVsdr (B.19)

K =

L Cheat m (wCRcR50)2 +1 ' .

The retardation time of the backaction on the vibrations is about 1/ wy,
thatis, T ~ 2 ns.

We now compare the measurements of the decay rate as a func-
tion of Vg4 in Fig. 8.5(b) and Fig. 8.6(d) in Chap. 8 with Eq. B.19 (pink

lines). We estimate that the static displacement is z; = —0.97 nm

at Vo = —616 mV and z; = —2.08 nm at V; = —943 mV using
Cy V2 o . .

zo=—1% ni’u‘)/% from the derivation of the Euler-Bernoulli equation. We

0

use Cpeat = 1.6 - 10722 J /K from Ref. [200] where the specific heat ca-
pacity of nanotubes is 3 - 107> J/gK at 0.1 K. The only free parame-
ter left is the thermal expansion coefficient. From the comparison be-
tween the measurements and this model, we get atgc = 9 - 10-81/K.
Although we did not find any report on atpc for nanotubes, graphene,
and graphite at such low temperatures, the order of magnitude that
we get is rather realistic. The temperature modulation involved in the
backaction at Vg = —943 mV is estimated to be 40 xK and 0.4 mK at
Vsa = 0.1 mV and Vgq = 0.565 mV, respectively.

To finish this subsection, we discuss the third-order expansion of
the power modulation related to Eq. B.14, since it is relevant for the
self-oscillation regime. The third-order expansion reads

2
5Py = V4,6G? (HZ;TG) . (B.21)

Carrying out the same derivation as that described above, we obtain

two additional backaction force terms, that is, a Duffing force and a

2dz dGgif

nonlinear decay force of the form z* 2. Depending on the sign of vy’

the nonlinear decay force can be negative, so that this force further
increases the amplification, especially when the amplitude of motion
is large. The exact derivation of the nonlinear decay force is difficult
due to its renormalization by the other nonlinear forces. The study of
this nonlinear force is beyond the scope of this work.
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B.6.4 Electrothermal backaction with the retardation
due to the thermalization time of the device

In contrast to the backaction discussed in the last subsection, this
backaction arises from the modulation of the power éP; = Vs2d5G
in Eq. B.14 associated to the thermalization time of the device. The
derivation of the backaction is similar to that above. The time-
dependent tension that is induced by J P; creates a force F proportional
to z1 in the equation of motion. The shift in the decay rate is given by
ATpack = %%Tph when the thermalization time T}, is much shorter
than wq [198]. As a result, we obtain

dGaitr Cg 2
ATpak = —a dv; @ngsvsd, (B.22)
arpcEpd T
o= T eh (B.23)
Lm Cheat

When we compare the measured Vg3 dependence of the decay rate
with this model, the agreement is satisfactory. The functional form of
Eq. B.22 is the same as that in Eq. B.19 when the retardation is due to
the circuit. From the comparison between the measurements and this
model, we get argc = 3 - 1072 1/K, which is smaller that the value
obtained when the retardation is due to the circuit. The temperature
modulation involved in the backaction at V; = —943 mV is estimated
to be 0.8 mK and 9 mK at V4 = 0.1 mV and Vg4 = 0.565 mV, respec-
tively.
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