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Abstract 
Infrastructure maintenance programs establish schedules for routine inspections of highway bridges 

with little consideration of their current conditions.  The time interval between two inspections is traditionally 

set based on experience and on engineering judgment.  For example, in the US considerable expenditures are 

incurred to meet the required biennial routine inspection of all bridges many of which may be in good 

condition.  It is therefore of great interest for the engineering community to develop an approach to control 

inspection schedules of individual bridges and minimize their associated costs using rational criteria that 

account for the lower risk of postponing the inspection of bridges that are subject to reduced deterioration 

mechanisms and low traffic loadings. The implementation of such a risk-based approach would go a long 

way in helping optimize the limited resources available for maintaining the vast highway infrastructure 

system.  

The object of this Ph.D. dissertation is to develop a rational approach for determining a risk-based 

optimum time interval between bridge inspections.  The proposed theoretical approach subsequently serves 

for proposing a simple procedure that is implementable in routine practice by bridge engineers using easily 

available bridge-specific data. 

To illustrate the proposed procedure using actual bridge data, the work uses highway data from the 

state of New York (NYS) in the United States of America (USA) in the form of Weigh-in-Motion (WIM) 

truck traffic data and bridge records provided through the National Bridge Inventory (NBI) database.  These 

data are used to develop a theoretical framework able to define the capacity of bridges probabilistically and 

the risk of bridge failure if a bridge’s inspection is deferred for a limited period of time. 

Typically, a bridge structure’s load carrying capacity is estimated by means of a linear elastic analysis 

to determine the effects of applied nominal legal or design loads on the most critical members even though 

member strength is evaluated based on ultimate limit state. Such an approach is known to provide a fair level 

of precision and conservative results.  While the approach takes into consideration the level of deterioration 

of the most critical bridge members based on field inspection reports, it ignores the actual intensity and 

frequency of heavy truckloads, the actual bridge system behavior, or the forecast of bridge deterioration 

between inspection intervals. In this study, actual bridge truck data obtained from WIM systems are used to 

estimate the maximum loads on the bridge that may be quite different from the nominal legal or design loads 

set in bridge codes and specifications.  Also, the effect of system behavior is considered by implementing 

structural analysis models that take into account the non-linear behavior of the material constituents and the 

evolution of the load distribution when bridge members undergo post-yielding deformations.  This enables 

the study to reach a greater level of accuracy than standard calculation procedures and to consider the 

improved performance of bridges with structurally redundant configurations.  Furthermore, strength 

deterioration over time is included in the model by studying load rating historical data extracted from the 

NBI database. 
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Probabilistic models of system behavior and loading are applied to obtain a probabilistic assessment 

of the risk of deferring the inspection interval of a bridge of interest.  The optimum bridge inspection interval 

is obtained by minimizing the risk of bridge failure obtained by combining the probability of failure and the 

cost of failure.  The latter is calculated by estimating the costs of potential failure-related casualties, bridge 

reconstruction, traffic disruption, environmental impact and bridge inspection cost. 

The calculations performed in this dissertation based on data collected in the state of New York are 

limited to simple span composite steel-concrete superstructures that constitute a large proportion of short to 

medium span bridges in North America.  However, the same concepts can be extended to other types of 

superstructures and other regions of the world as appropriate data become available. 

The conclusions of this study include the demonstration of the inadequacy of utilizing a standard two-

year inspection interval for all bridges.  To overcome this problem a simplified procedure is proposed for an 

easy practical engineers’ application. 

 

Keywords: Bridge Inspection, Structural Redundancy, Highway Bridges, Live load, Structural 

Reliability, Probabilistic Risk Assessment, Deterioration Models. 
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Los programas de mantenimiento de infraestructuras establecen planes periódicos de inspección 

básica en los cuales el posible estado de los puentes en el momento de la inspección tiene relativamente poca 

importancia.  El intervalo temporal entre dos inspecciones se fija sobre la base de la práctica habitual y sobre 

experiencia pasada.  Por ejemplo, en los Estados Unidos de América una gran parte del presupuesto de gasto 

destinado al mantenimiento de la red de infraestructuras se deriva al plan de inspecciones bienales de puentes 

aunque en muchos casos muestran buenas condiciones estructurales.  Por esta razón, es de suma importancia 

para la comunidad el desarrollo de protocolos para controlar el plan de inspección de puentes y minimizar 

los costes asociados a través de criterios racionales, para poder destinar los recursos asignados a inspección 

allí donde más falta hacen. Dichos criterios tienen que ser capaces de reconocer aquellos puentes que 

presentan mayor riesgo debido a la exposición a procesos de deterioro y a sobrecarga de tráfico intenso y 

minimizar los costes de inspección asociados.  La implementación de estrategias basadas en criterios de 

riesgo permite optimizar el presupuesto total disponible para el mantenimiento de las redes de carreteras 

El objeto de esta tesis doctoral es el desarrollo de un procedimiento racional basado en el cálculo del 

riesgo para determinar el intervalo óptimo entre dos inspecciones básicas.  El enfoque teórico propuesto se 

emplea posteriormente para la aplicación en la práctica de dichos criterios utilizando datos de partida   fáciles 

de obtener para el usuario final que esté interesado en aplicar el método para un puente en concreto. 

La metodología propuesta en este trabajo se materializa a través de los datos disponibles de la red de 

carreteras del estado de Nueva York (NYS) en Estados Unidos de América (USA), desde mediciones de 

tráfico del tipo Weigh-in-Motion (WIM) hasta informaciones en el marco de la base de datos del National 

Bridge Inventory (NBI).  Esos datos se utilizan para desarrollar una base metodológica capaz de calcular la 

capacidad portante de superestructuras desde el punto de vista probabilista y cuantificar el incremento de 

riesgo que supone incrementar el intervalo de la inspección básica, actualmente fijado en dos años 

En la práctica actual, el cálculo de la capacidad portante de puentes sujetos a sobrecarga de tráfico (en 

estado límite de servicio y último) se lleva a cabo a partir de modelos típicamente elástico-lineales en los que 

se evalúan los esfuerzos para el elemento más crítico y sucesivamente se considera el cálculo no lineal para 

la verificación de dicho elemento.  Este enfoque está aceptado y ha demostrado su validez y fiabilidad en 

numerosas aplicaciones.  Sin embargo, a pesar de que estos modelos pueden tener en cuenta el deterioro 

detectado en las campañas de inspección, normalmente no consideran sobrecargas de tráfico realistas, el 

comportamiento estructural del conjunto del puentes y no sólo de sus elementos por separado, o la evolución 

posible  del deterioro entre intervalos de inspección.  En este estudio, se emplean datos de tráfico real 

obtenidos de sistemas WIM para estimar la sobrecarga de tráfico máxima esperada que puede ser bastante 

diferente de la que típicamente sugieren los códigos de diseño y evaluación estructural de puentes.  De la 

misma manera, la respuesta conjunta de la estructura se tiene en cuenta en este trabajo utilizando modelos 

capaces de simular el comportamiento no-lineal de los materiales y la evolución de la redistribución de los 

esfuerzos cuando la estructura se encuentra en rangos de deformaciones próximos a rotura.  Esto permite 
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mejorar el cálculo de la capacidad estructural y detectar aquellos puentes cuya configuración tipológica y 

topológica resulta en un comportamiento redundante que no es posible tener en cuenta en los modelos de 

cálculo tradicionales.  Además, se incluye en el modelo el deterioro de los materiales tras estudiar datos 

históricos sobre la pérdida de capacidad portante de una gran cantidad de puentes seleccionados del NBI. 

Para el cálculo de los intervalos de inspección se emplea el concepto de riesgo, que a su vez se basa 

en modelos de cálculo probabilistas.  El intervalo de inspección óptimo se obtiene minimizando el riesgo de 

fallo obtenido combinando la probabilidad de fallo con el coste asociado.  El coste del fallo se obtiene 

estimando los costes potenciales relativos como víctimas, heridos, reconstrucción del puente, interrupción 

del tráfico vehicular, impacto ambiental y coste de inspección. 

Los cálculos llevados a cabo en esta tesis están basados en datos de la región del estado de Nueva 

York y limitados a puentes simplemente apoyados con superestructura mixta acero-hormigón que constituye 

una importante tipología en el ámbito norteamericano.  Sin embargo los mismos conceptos pueden ser 

aplicados a otras regiones del mundo a medida que la información necesaria se encuentre disponible. 

El estudio demuestra la ineficiencia de utilizar un intervalo de inspección de dos años para todos los 

puentes y propone una metodología simplificada para calcular el intervalo de inspección recomendado para 

ser implementada en la práctica ingenieril de una forma sencilla. 

 

Palabras clave: Inspección de puentes, Redundancia estructural, Sobrecarga de tráfico, Fiabilidad 

estructural, Riesgo, Deterioro.  
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Resum 
Els programes de manteniment de infraestructures estableixen plans periòdics d’inspecció bàsica en 

els quals l’estat actual dels ponts té relativament poca importància a l´hora de definir l´interval de temps.  

L’interval temporal entre dues inspeccions es basa normalment en la practica habitual i en la experiència 

passada.  Per exemple, als Estats Units d’Amèrica una gran part del pressupost de despesa destinat al 

manteniment de la xarxa d’infraestructures es deriva al pla d’inspeccions biennal de ponts tot i que, aquests, 

en molts casos mostren bones condicions estructurals.  Per això la comunitat enginyeril està interessada en 

el desenvolupament de protocols que controlin el pla d’inspecció de ponts i que minimitzin els costos 

associats a traves de criteris racionals.  Aquets criteris han de ser capaços de reconèixer els ponts que 

presenten un risc alt  degut a la elevada  exposició a processos de deteriorament i a sobrecarrega de tràfic 

intens i minimitzar els costos d’inspecció associats.  L’implementació d’estratègies basades en el càlcul del 

risc permet optimitzar el pressupost total disponible per al manteniment de les xarxes de carreteres. 

L’objecte d’aquesta tesi doctoral es el desenvolupament d’un procediment racional basat en el càlcul 

del risc  per a estimar l’interval òptim entre dues inspeccions bàsiques.  L’estratègia teòrica proposada es fa 

servir posteriorment per a la aplicació practica d’aquests criteris utilitzant dades inicials  fàcils d’obtenir per 

l’usuari final que estigui interessat en aplicar el mètode per a un pont en concret. 

La metodologia proposada en aquest treball utilitza dades de la xarxa de carreteres del estat de Nova 

York (NYS) als Estats Units d’Amèrica (USA), a partir de mesures de tràfic del tipus Weigh-in-Motion 

(WIM) i de informacions provinents  de la base de dades del National Bridge Inventory (NBI).  Aquestes 

dades es fan servir per a desenvolupar una eina metodològica  capaç de calcular la capacitat estructural de 

superestructures des del punt de vista probabilista i quantificar l’increment de risc al que la societat està 

sotmesa en cas de decidir incrementar l’interval d’inspecció per damunt dels 2 anys. 

El càlcul de la capacitat resistent de ponts subjectes a sobrecarrega de tràfic (en estat límit de servei i 

últim), típicament es du a terme a partir de models globals elàstic-lineals on s’avaluen els esforços per 

l’element més crític i a continuació es considera el càlcul no lineal per a aquest element de manera aïllada.  

Aquesta estratègia està acceptada i ha demostrat la seva validesa i efectivitat en nombroses   aplicacions. .  

Malgrat  aquests models poden tenir en compte el deteriorament detectats per les campanyes d’inspecció, 

normalment no consideren sobrecarregues de tràfic realistes, el comportament estructural  conjunt dels 

diferents elements del pont o la evolució del deteriorament entre intervals d’inspecció.  En aquest estudi, es 

fan servir dades de tràfic real obtingudes de sistemes WIM per a estimar la sobrecarrega de tràfic màxima 

esperada que pot ser força diferent de la que típicament suggereixen els codis de disseny i avaluació 

estructural de ponts.  A més, l’efecte de resposta global del pont es té en compte en aquest treball utilitzant 

models capaços de simular el comportament no-lineal dels materials i l’evolució de la redistribució dels 

esforços quan l’estructura es troba en rangs de deformacions propers a l´esgotament de la estructura.  Això 

permet millorar el càlcul de la capacitat estructural i detectar els ponts amb una configuració que resulta ser 
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redundant i que no es manifesta en models de càlcul tradicionals.  A més, en el model teòric, s’inclou el 

deteriorament dels materials arran d’estudiar la pèrdua de capacitat d’una gran quantitat de ponts seleccionats 

del NBI al llarg del seu període de servei. 

Per al càlcul dels intervals d’inspecció es fa servir el concepte de risc, que a la vegada es basa en 

models de càlcul probabilistes.  L’interval d’inspecció òptim s’obté minimitzant el risc de fallada obtingut 

combinant la probabilitat de fallada amb el cost associat.  El cost de fallada s’obté estimant els costos 

potencials relatius com víctimes, ferits, reconstrucció del pont, interrupció del tràfic vehicular, impacte 

ambiental i cost d’inspecció. 

Els càlculs duts a terme en aquesta tesi estan basats en dades de la regió del estat de Nova York i 

limitats a ponts simplement recolzats amb superestructura mixta acer-formigó que constitueix una important 

tipologia en el àmbit nord americà.  No obstant, els mateixos conceptes poden ser aplicats a altres regions 

del mon a mesura que la informació necessària estigui a disposició. 

L’estudi demostra la ineficiència d’utilitzar un interval d’inspecció de dos anys per a tots els ponts i 

proposa una metodologia simplificada per calcular l’interval d’inspecció recomanat per ser implementat en 

la practica ingenieril d’una manera senzilla. 

 

Paraules clau: Inspecció de ponts, Redundància estructural de ponts, Ponts d’autopista, Sobrecarrega 

de tràfic, Fiabilitat estructural, Càlcul probabilista del risc, Models de deteriorament.  
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1 Introduction 

1.1  Background 

A visual inspection forms the first step of a bridge’s condition assessment process on the basis of 

which more accurate evaluations, such as non-destructive or coupon testing, may be undertaken if warranted 

and preliminary decisions on maintenance are made.  Bridge owners adopt different policies for managing 

infrastructure lifelines depending on many factors with an overall goal of minimizing monetary outlays while 

maintaining an adequate safety level for the infrastructure.  The main objective of the first visual inspection 

stage is to identify damaged bridges and prioritize maintenance budget allocations to those in worst condition. 

Although different owners have different rules for ranking bridges, field experience of the inspectors 

and the judgment of the engineering team are still key factors in influencing decisions on what additional in-

depth bridge condition evaluations, numerical analysis processes and maintenance strategies should be 

undertaken.  Automated bridge management with the help of permanent monitoring devices is being 

employed for few specific bridges, but a completely automated bridge management system does not seem 

feasible at this point in time because of the high cost of applying health monitoring devices at large scale.  

Despite rapid advancement in the field, such as the implementation of National Bridge Element (NBE) 

inspection and the adoption of AASHTOWare, additional research effort is needed to further reduce the 

subjectivity in some aspects of the current bridge assessment process. 

The routine visual inspection process, which is carried out for all bridges, has peculiarities depending 

on regulations as well as owner needs and requirements.  Routine inspections are normally performed every 

two years and usually involve a general evaluation of the structure using limited sets of tools.  Inspection 

reports document the appraisal of the inspectors, describe the level of deterioration, and include photos of 

deteriorated components.  The simple visual inspection may be followed up with in-depth inspections for 

bridges flagged as critical. 

In the US, the current National Bridge Inspection Standards (NBIS, 2004) mandate that bridges 

undergo routine inspections on a two-year schedule.  Given a total of more than 600,000 bridge in the US 

and that a typical inspection of a short to medium span bridge costs about, $ 6,000, the bridge inspection 

mandate alone is costing the US over than two billion dollars per year.  The amount spent on bridge inspection 

alone forms a significant proportion of US Federal government outlays on all projects to improve roadway 

safety and mobility, repair aging bridges and highways, and promote the efficient movement of freight.  In 

fact, fiscal year 2019, FHWA (Federal Highway Administration) has requested $ 46.0 billion for streamlining 

highway infrastructure project delivery (FHWA, 2019a). 

Bridge condition ratings extracted from the NBI database show that the typical 2-year interval used 

for routine inspections may be too conservative for newly constructed bridges or bridges where the 

environmental conditions are favorable leading to low structural deterioration over time.  The variation of 
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bridge condition can be evaluated by analyzing the trends of condition ratings over short periods of time.  

Figures 1-1, 1-2 and 1-3 give histograms showing how long it takes for condition ratings obtained from NBI 

of decks, superstructures and substructures respectively to change from their current status. The data 

represent the condition of roughly 17,000 bridges of the New York State (NYS) infrastructure network.  For 

the part labelled “0”, the figures give four bins (2 years, 3, years, 4 years and 5 years) these bins give the 

percentage of bridges that had remained in the same condition rating they currently have for the different 

previous four year time intervals.  The bin labelled “1” shows the percent of bridges where the condition 

rating value experienced an improvement by one condition rating level within a given time interval (e.g. due 

to repair).  Likewise, the percent of bridges that have shown a decrease by one condition rating classification 

(in the last years) are shown in the group of bins labelled “-1”. The group of bins labelled “-2” gives the same 

information for the bridges that underwent a two-level reduction in condition rating.  For example, Figure 

1-2 shows that 69% of the bridge superstructures remain in the same condition for at least 2 years, 64% have 

remained in the same condition in the last 3 years, 58% have remained in the same condition for the last 4 

years and 54% have remained in the same condition for the last 5 years.  The histograms in Figures 1-2 and 

1-3 give roughly similar percentages.  Overall, the figures show that that more than 50% of NYS bridges 

have maintained their current condition ratings for the last 5 years. 

 

 

Figure 1-1. Deck condition rating variation for 2, 3, 4 and 5-year intervals. 
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Figure 1-2. Superstructure condition rating variation for 2, 3, 4 and 5-year intervals. 

 

 

Figure 1-3. Substructure condition rating variation for 2, 3, 4 and 5-year intervals. 

 

After determining the condition of bridge components, each bridge’s load carrying capacity is 

determined to provide its load rating.  Current procedures for evaluating a bridge structure’s load carrying 

capacity use linear elastic analyses to determine the effects of applied nominal legal or design loads on the 

most critical member even though member strength assessment is based on ultimate limit state. Such an 

approach is known to provide conservative results which are very suitable for designing and constructing 

new bridges but often underestimates the ability of existing bridges to carry current loads.  This is because, 

after applying code-specified live load factors, factored nominal legal loads and design loads may not 

accurately reflect the maximum loads applied on the bridge and the analysis procedure does not accurately 

reflect the non-linear behavior of the bridge’s material constituents and the interaction between the members 

that often lead to a higher system capacity than that of the individual members. 
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In order to improve current asset management procedures, the Moving Ahead for Progress in the 21st 

Century Act (MAP-21) amended 23 U.S.C. 119 to require State Departments of Transportation (DOTs) to 

develop risk-based Transportation Asset Management Plans (TAMPs). On October 24, 2016, the FHWA 

adopted a final TAMP rule that elaborates on the MAP-21 requirements. This asset management requirement 

is applicable to all transportation assets including highway bridges. It is however noted that the recently 

adopted risk-based method for bridge condition and safety evaluation procedures are mostly based on a 

subjective assessment of the risk rather than rigorous risk assessment principles. 

The above information explains the great interest expressed by the engineering community to develop 

rational criteria for controlling the schedule of bridge inspections that will help optimize the bridge inspection 

process and improve infrastructure management practices in order to direct the limited available resources 

toward upgrading those bridges in most need of rehabilitation or replacement.  Simplified risk-informed 

procedures have been recently proposed to help achieve that goal.  In particular, there is a keen interest in 

delaying the inspection of bridges that have low risk of failure. While the use of simplified risk-informed 

procedures is desired for efficient implementation in routine bridge engineering practice, the validity of any 

proposed simplified procedures must be verified by comparing their outcomes to those obtained from more 

rigorous risk analysis methods. 

1.2 Research Objectives 

The main goal of this Ph.D. dissertation is to develop a risk-based approach to determine optimum 

bridge inspection schedules that take into consideration the probability of bridge failure and the direct and 

indirect consequences of failure.  Evaluating the probability of bridge failure involves the reliability analysis 

of bridge structural systems taking into consideration a statistical evaluation of bridge loads and the expected 

deterioration of bridge members over time between inspections and the capability of the bridge system to 

withstand damage through structural redundancy.  Specifically, the objectives of the study can be described 

as follows: 

• Analyze Weigh-in-Motion (WIM) truck traffic data to calibrate probabilistic live load models 

that will reflect current loading of bridges for application during the reliability analysis of 

highway bridge structural systems. 

• Use NBI data on load rating to establish a probabilistic model of bridge member deterioration 

between inspection intervals.  

• Calculate system reliability of typical bridge configurations using efficient simulation 

methods.  These calculations should account for the non-linear behavior of structural 

members and the interaction of the members to reflect the intrinsic redundancy in bridge 

structures.   
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• Canvass the literature to collect models that quantify the direct and indirect consequences of 

bridge failures and their impact on the users and the environment. 

• Develop a rigorous risk-based procedure for determining an optimum bridge inspection 

schedule that accounts for the probability of bridge failure, the consequences of failure and 

the cost of inspection using bridge specific structural data and other information provided by 

the NBI. 

1.3 Methodology 

The concept of risk is used in many fields of engineering to recognize that not all engineered products 

have the same importance, which is defined by the purpose they serve and the likelihood of their failure.  

Specifically, for the proper assessment of a highway bridge, it is important to not only evaluate its reliability 

but also to determine its importance within the infrastructure network.  The application of risk-informed 

methods in structural engineering has been advancing in the design of buildings where the design process 

accounts for the importance of the structure by setting buildings into classes related to the demand on the 

structure.  For example, both Eurocode 8 (CEN, 2004) and ASCE 7-16 (2017) for the seismic design of 

buildings and other structures define importance classes depending on the purpose of the structure or its 

expected type of occupancy and the chances that a local failure would lead to a system’s failure.  This 

somewhat rough classification ensures that the different activities the structure is expected to accommodate 

are identified and prioritized by society.  Likewise, Eurocode 0 (CEN, 2002) defines, for general structures, 

three classes of consequences (CC1, CC2 and CC3) and associates a target reliability index to each of them.  

Once again, the different classes are linked to different degrees of loss of human life or economic, social and 

environmental consequences.  In fact, it is convenient to evaluate the importance of a structure by evaluating 

the consequences of its interrupted service and its resilience.  Once this point is set, it is easier to establish a 

classification of structure importance even for structures that serve the same purpose. 

A general definition of risk is often presented in terms of the probability of failure times the 

consequences of failure (Equation 1-1).  The consequences are often set in monetary terms in order to 

simplify the risk assessment process and easily combine different types of consequences. A simplified 

formulation of risk can be presented as (Ang & Tang, 2004): 

 Risk = 𝑝 × C (1-1)

 

where 𝑝  if the probability of failure and C is the consequence of failure (or loss) which can be expressed in 

monetary terms to assess the costs of failure, which may include direct costs, such as the cost of the structure 
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and loss of life, as well as indirect costs, such as user costs, economic losses, and environmental, societal, 

and political impacts. 

A risk-based approach for bridge inspection purposes should account for the variation of risk with 

time.  In fact, both the probability of failure through demand and capacity and the consequences of failure 

vary over time. Demand in the bridge evaluation process is due to truck traffic loads and capacity represents 

the ability of the structure to resist the applied loads.  Specifically, the probability of failure depends on the 

evolution of live load over time due to changes in heavy traffic volume and the increase in the expected 

maximum load for longer return periods.  Likewise, structural resistance changes due to deterioration or 

repair.  Additionally, the uncertainties in the models used in evaluating the probability of failure would 

increase over time because forecasting future loads and structural material properties and the associated 

behavior of the structure become more difficult as projection time increases.  Some of these time-dependent 

uncertainties could be controlled through various means. For example, a bridge mounted with a health 

monitoring system is less risky than a bridge inspected periodically because the variation of the structural 

parameters of the monitored bridge are constantly known while in the second case the parameters can only 

be estimated with some accuracy only at inspection while their estimation between inspections carry higher 

levels of uncertainty.  Similarly, the costs of failure may increase over time due to inflation and changes in 

the value of money as well as economy-driven variations in traffic and in the importance of the bridge to the 

users and the community it serves.  Also, bridge repair and rehabilitation costs may depend on the levels of 

damage accumulated over time and the frequency and type of maintenance actions it undergoes.  In summary, 

cost projections are subject to uncertainties due to political, economic and environmental factors. 

 

Figure 1-4. Risk over time for an inspected bridge and for a non-inspected bridge. 
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These concepts are used in this work to define a model for evaluating risk over time, as shown 

qualitatively in Figure 1-4 where 𝑇  represents the time when the last previous inspection was performed.  

The risk 𝑅  at time 𝑇  can be calculated based on the assessed level of deterioration and the accuracy of the 

method used for the condition assessment (e.g. visual inspection or more advanced methods).  Curve A 

represents the evolution of risk over time assuming that no additional intermediate information about risk is 

available.  That is, risk can only be estimated by projecting information available at time T0 and therefore its 

assessment includes high levels of uncertainty obtained by the statistical analysis of a large population of 

bridges.  On the other hand, a theoretical curve B can be defined assuming that accurate assessment of risk 

over time may be available for example through continuous bridge condition and load monitoring as well as 

more accurate assessment of economic activities and other changes in the community served by the specific 

bridge under study. This increased knowledge about the state of a specific bridge would generally lead to a 

smaller increase of the risk in curve B over time than that described by curve A, primarily due to the reduction 

in the uncertainties associated with determining the parameters and random variables that are used to estimate 

the risk.  The difference between curves A and B represents the risk tolerance of society and bridge owners 

who may be willing to accept the higher risk represented by curve A associated with delaying the inspection 

and the condition assessment process and reducing the associated cost outlays. On the other hand, when the 

difference between the two curves reaches an intolerable level, it may be more efficient to obtain an improved 

assessment of the bridge by undertaking an inspection and incurring the associated cost of condition 

assessment and improved assessment of risk.  Thus, the difference between curves A and B at any given time 

represents the increased risk due to not performing the inspection.  When the cost of inspection, 𝐶  at time 𝑇∗ is lower than the relative difference, ∆𝑅, between the estimated risks in curves A and B, it becomes more 

efficient to incur the expense of performing an inspection and obtaining a better assessment of the safety and 

probability failure of the bridge as well as improving the assessment of the consequences of failure.  In other 

words, 𝑇∗ represents the time where the increased risk associated with delaying bridge inspection is no longer 

justifiable due to the fact that the lower cost of inspection will bring about a higher confidence in the safety 

of the bridge and “higher peace of mind" so to speak.  If the bridge inspection does not lead to significant 

improvements in the risk of failure, then appropriate actions for rehabilitating or replacing the bridge should 

be considered.  

This Ph.D. dissertation will develop methods to help bridge engineers perform such risk assessment 

procedure using easy to collect bridge data. The risk assessment will assist bridge owners in making decisions 

based on rational criteria that take into consideration all relevant structural, economic and societal factors. 
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1.4 Dissertation Outline 

To achieve the above stated objectives, this dissertation is divided into eight chapters as follows: 

• Chapter 1 gave a brief background and stated the justification for this proposed research.  The 

chapter also stated the objectives of the study and gave a brief summary of the proposed 

research approach. 

• In Chapter 2, the state of the art related to the main topics of interest to this Thesis is reviewed.  

A brief introduction of the inspection procedures carried out in Europe and US is presented.  

Next, typical methods for including system behavior in structural calculations and the 

consideration of structural redundancy are described based on information in the existing 

literature.  Finally, the main concepts of risk-based structural assessment approaches are 

reviewed. 

• Chapter 3 deals with the US NBI database and describes the specific data it contains.  The 

sub-set of bridges extracted from the NBI for NYS is described along with the strategy used 

to back calculate the geometric characteristics of bridges. 

• In Chapter 4, the models used for evaluating the resistance of bridges are presented and the 

assumptions made for performing the structural analysis are explained.  Also, the probabilistic 

resistance deterioration model calculated from load rating historical values is described. 

• Chapter 5 deals with the calibration of a live load model suitable for system reliability analysis 

of bridges.  A methodology is proposed to calibrate the live load model using Weigh-In-

Motion (WIM) traffic data. 

• In Chapter 6, structural reliability analysis concepts are outlined along with the methods used 

to calculate the reliability index for structural systems. 

• In Chapter 7, the cost of failure is estimated by means of information obtained from the 

literature including direct (demolition, repair and reconstruction) and indirect costs (traffic 

delay, environmental impact and accident costs).  A step-by-step procedure is proposed to 

conveniently apply the calculation for practical application. 

• In Chapter 8, the risk-based approach is applied for a representative set of NYS composite 

steel bridges to obtain the recommended inspection interval.  The method is presented as a 

step-by-step procedure for practical application. A numerical example is presented to provide 

guidance on the application of the method.  The results obtained for a large population of real 

bridges is presented and discussed.  Finally, the results obtained in the Thesis are summarized 

and possible future research directions are highlighted. 

• Finally, in Chapter 9, the results obtained in the Thesis are summarized and possible future 

research directions are highlighted. 
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2 Review of the State of the Art 

This chapter outlines the state of the art of the main important technical issues needed to achieve the 

objectives of this Thesis.  The first part deals with inspection processes carried out by European countries 

and the US. The second part describes recent research on modeling structural system behavior.  The last part 

reviews how risk-based methods were used in previous bridge engineering-related studies. 

2.1 Overview of Bridge Condition Assessment 

A survey was conducted a few years ago to compare bridge assessment procedures employed in 

different European countries (SAMARIS, 2006).  The countries involved in the survey were Austria, 

Slovenia, Czech Republic, Norway, Poland and Hungary.  In addition, the results of the survey were 

complemented by an extensive review of existing policies related to bridge assessment in Denmark, France, 

Germany, Spain, Switzerland and the United Kingdom.  In these countries, in general, visual inspections are 

carried out every one or two years by maintenance personnel who are familiar with bridge data collection 

procedures but do not have special training in bridge structural behavior or structural safety assessment.  

Major follow-up inspections and structural assessments are subsequently carried out by bridge engineers 

every one to ten years.  The survey noted that traffic data measurements, such as Weigh-In-Motion (WIM) 

data, were regularly recorded but not used for the safety assessment and that decisions on bridge maintenance 

and rehabilitation were more commonly based on the visual condition of bridge components rather than 

structural safety calculations.  One of the weaknesses of the SAMARIS project (SAMARIS, 2006) was the 

lack of information from the remaining European countries.  Furthermore, the information provided by the 

participating countries did not lead to a straight-forward comparison due to differences in bridge management 

practices.  Although a common inspection protocol does not exist for all Europe and each country is using 

particular inspection and condition assessment procedures, a common feature divided the inspection process 

into three main levels: 1) routine inspection (around every 2 years), 2) major (around every 5 years) and 3) 

detailed inspection (when it becomes necessary).  The lack of data and the absence of a common approach 

in Europe hinder at the moment the possibility of developing a full risk-based inspection program, and 

therefore other sources of information are sought in this Thesis.  In COST 345 report, (Brady et al., 2004) 

point out that the systematic collection of information carried out by the private sector has led to the loss of 

valuable information that private companies have no incentive to provide to the administrations if not strictly 

required by contract.  Specifically, the short-term view of the private sector may not be in the best interest of 

the long-term needs of the public sector especially when addressing assets with 50-200 years lifespan. 

In the United States, bridge inspection regulations are established by each state’s Department of 

Transportation (DOT) to comply with minimum requirements outlined by the Federal Highway 

Administration (FHWA) as set in the National Bridge Inspection Standards (NBIS 2004, 2009). The 

regulations usually require that routine inspections of every bridge be undertaken every two years.  The data 
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recorded for each bridge are then assembled into the NBI to generate a comprehensive database for all US 

bridges for use to properly plan bridge maintenance strategies (FHWA, 1995).  Recently, the Moving Ahead 

for Progress in the 21st Century Act (MAP-21, 2012) set the objectives for bridge inspection long term 

policies and the FHWA proposed an update of the NBIS, to meet the MAP-21 requirements.  These objectives 

include a proposal for departments of transportations to use different bridge inspection intervals based on a 

bridge’s level of risk. 

Bridge inspection standard procedures have evolved in the US since the institution of NBIS in 1971, 

when the bases of inspection policies were first established.  A comprehensive summary of the bridge 

inspection program history in the US is presented by Ryan et al. (2012).  Different types of inspections are 

established with different objectives and degrees of detail.  The classification of inspections is commonly 

accepted in the entire US territory as demanded by the FHWA (T. W. Ryan et al., 2012) and adopted by each 

state inspection manual published by state departments of transportation to complement the specifications 

set by the AASHTO (American Association of State Highway and Transportation Officials) Manual for 

bridge evaluation (AASHTO, 2018).  This latter document defines seven types of inspection along with their 

specific objectives. These consist of: inventory (or initial), routine, in-depth, fracture critical member, 

underwater, damage and special inspection. The focus of this work is on routine inspection.  Routine 

inspections are performed periodically to monitor the trends of deteriorations pointed out in previous 

inspections, and to update the items in the NBI file related to each bridge.  This inspection is generally 

performed with simple tools and relies on visual observation of the bridge’s elements.  Inspectors are also 

required to identify critical locations of the structure deserving special attention and in-depth inspection. 

In order to show synthetically the basic standard practice of some European and American countries 

a summary of the findings is presented in Table 2-1.  The objective of this table is to give a first impression 

of the comparison of the first level of bridge inspection approaches, mostly represented by visual inspection, 

being a full understanding of each country’s policy reached by looking at the corresponding bibliographic 

reference.  For a comprehensive review of the inspection standard practices carried out by different country 

authorities the reader can refer to SAMARIS (2006) and NCHRP 375 (Hearn, 2007). 
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Table 2-1. Summary of visual inspection current practice in different countries. 

Country Current practice Reference 

USA Routine inspection 
2-year 

Bridge Inspector’s Reference Manual 
(T. W. Ryan et al., 2012) 

Canada (Ontario) Detailed visual inspection 
2-year  

Ontario structure inspection manual 
(Ontario Ministry of Transportation, 2008) 

Spain Inspección Básica 
15 months 

Guía de inspecciones básicas de obras de paso 
(Dirección General de Carretera, 2009) 

Italy Ispezione Ordinaria 
2-year 

Linee guida per la classificazione e gestione del 
rischio, la valutazione della sicurezza ed il 
monitoraggio dei ponti esistenti 
(Ministero delle Infrastrutture e dei Trasporti, 
2020) 

United Kingdom General Inspection 
2-year 

Inspection of highway structures (CS 450) 
(Highways England, 2020) 

Germany 

Major Test – 6-year, inspection of 
all components 
 
Minor Test – 3 year after Major test 

Highway Structures Testing and Inspection (DIN 
1076) 
(Deutschland Bundesministerium für Verkehr, 
1999) 

 

Table 2-1 shows that a similar current practice based on a time interval between inspections of 

approximately 2 years based on condition state is observed more or less in most countries inspection 

programs.  Therefore, although this Thesis is focused on US bridges, the concepts here developed can be 

seen in a broader perspective than just the case of USA. 

The MAP-21 (2012) specifically mentions NCHRP (National Cooperative Highway Research 

Program) report 782 (Washer et al., 2014) as a starting point for a risk-based inspection program, whereas 

additional work has been published by the same research team (Washer, Connor, Nasrollahi, & Provines, 

2016; Washer, Connor, Nasrollahi, & Reising, 2016).  Washer et al. (2014) observed that the standard two-

year inspection interval may be too conservative for newly constructed bridges in the first ten years of their 

lives, when they are likely to experience only minor defects, but that the two-year interval may be an 
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excessively large period for bridges approaching the end of their service lives.  The research found that 

inspection intervals up to 72 months could be applied to bridges in particularly favorable condition in terms 

of their risk of failure.  The work developed in NCHRP 782 defines occurrence factors (OF) as possible 

causes of failure and consequence factors (CF) as likely outcomes of damage to an element.  Both OF and 

CF are assigned values between 1 and 4 and implemented into a risk matrix similar to the one shown in 

Figure 2-1 where the top right element has the highest risk and the lower left the lower risk. 

 

 

Figure 2-1. Qualitative risk matrix (left) and inspection interval linked to the risk matrix (right). 

 

Thus, the NCHRP 782 report proposes a practical approach to relate typical causes of failure and their 

consequences in a qualitative fashion using condition rating as the basis for assessing risk and a subjective 

ranking proposed by a panel of experts.  It is noted that the NBI condition rating assigns each bridge a value 

between 0 and 9 where a condition rating of 3 indicates that a bridge is in serious condition due to loss of 

section, deterioration, spalling, or significant cracking. 

The relationship between condition rating historical data and inspection interval was further 

summarized by Nasrollahi and Washer (2015) who analyzed historical trends of condition ratings to assemble 

statistical relationships between inspection intervals and bridge condition ratings.  They compared the 

probability of failure to a target probability of failure set by the authority.  The link between OC and CF and 

their application to case studies is performed by Reliability Assessment Panels (RAP) as a group of experts 

familiar with the infrastructure under study and the inspection process.  A main conclusion of Nasrollahi and 

Washer (2015) work was that the inspection interval could exceed the standard 24 months for those bridges 

showing good condition rating.  An example application of this methodology is proposed for bridges in Chile 

by Valenzuela et al. (2010) where a RAP of 20 experts subjectively calibrated an equation to define an index 

of bridge risk-based on bridge condition.   
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While the Nasrollahi & Washer (2015) work can be suitable to set inspection time intervals by 

establishing a common target probability of failure for a network of bridges, the work can be improved by 

considering the consequences of failure so that the target can be set based on risk criteria in keeping with the 

MAP-21 (2012) requirements.  Furthermore, Nasrollahi and Washer (2015) use the condition rating as the 

basis for defining bridge failure when in reality condition ratings are subjective indicators assigned based on 

visual inspection related to local deteriorations and damages.  It is noted that the reduction in condition rating 

may indicate a possible reduction in member capacity but it cannot assess the actual capacity.  Additionally, 

the approach does not consider the demand (or the load) on the structure, and relies on a non-objective 

evaluation of the structural consequences of the observed damage and the global structural safety.  On the 

other hand, load ratings are the result of a structural analysis that takes into account the actual state of the 

bridge by considering the structural effects of loss of material, bearing misalignment, loss of foundation 

support, and other relevant factors into a structural analysis model, which gives each deterioration (intensity 

and location) the appropriate weight into the safety assessment procedure. It is therefore clear that condition 

rating is not a valid indicator of a bridge’s structural safety and that load rating rather than condition rating 

should be used as the basis for applying risk-based inspection strategies. 

Clause 4.2.4 of the AASHTO MBE (2018) mentions that states and the FHWA are responsible for 

assigning criteria to determine which bridges can have their inspection intervals reduced based on structural 

capacity and engineering judgment.  Similarly, the FHWA Technical advisory T5140.21 (FHWA, 1988) 

allows increasing the inspection interval for bridges that present particularly favorable conditions (e.g. newly 

constructed bridges) following accepted engineering criteria.  However, in current practice, the possibility of 

reducing the inspection interval is not normally considered because of the vague criteria of using 

“engineering judgement” which may be difficult to defend.  It is expected that if more objective criteria are 

developed, the aforementioned recommendation to use of a risk-based approach for condition rating 

combined with the (FHWA, 1988) advisory would encourage engineers to use risk-based inspection methods 

for inspection program optimization   

The USA infrastructure network currently includes a total of 616,096 bridges listed in the NBI 

database which combines data provided by every state.  This database is public, available online for 

downloading (FHWA, 2019b) and it contains a specific file for each bridge in the American territory for each 

year since 1992.  The information in each file includes each bridge’s location, geometric properties, load 

rating, traffic data, critical characteristics, posting, inspection interval and condition rating among other 

useful items.  A key information provided by the NBI is the load rating, measured in total tons of live load 

that the most critical member of the bridge can carry before the member’s limit capacity is reached. This load 

rating can therefore be used to back calculate the structural capacity of the critical bridge member. Thus, as 

explained above, the load rating is considered to be a better indicator of the bridge’s safety than the condition 

rating which is only a ranking of the apparent deterioration of the bridge members that does not reflect the 



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 35 

inherent capacity the bridge members to carry load.  In particular, the evolution of the load rating over time 

would provide a good indicator of the effect of time-related deterioration on bridge safety. 

2.2 Structural System Behavior of Bridges 

Traditional bridge design and load rating procedures have focused on studying the safety of individual 

components without explicitly accounting for the reserve strength that the system may have and its ability to 

continue to carry load after the damage or even the complete failure of one or more components.  In recent 

years, this ability has commonly been labelled as “structural redundancy”.  Researchers have proposed 

various definitions of structural redundancy and robustness and methods to quantify them as summarized by 

Anitori, Casas & Ghosn (2013) and Cavaco et al. (2013).  The redundancy of superstructures was studied by 

Ghosn and Moses (1998) and Ghosn and Yang (2014) in NCHRP reports 406 and 776 who developed 

procedures to calibrate a system factor that can be incorporated in the design and load rating equations to 

adjust the resistance factors applied on the nominal resistance given by AASHTO MBE (2018) and AASHTO 

LRFD (2017).  A similar study was carried out for bridge substructures by Liu et al. (2000) in NCHRP report 

458.  In the work by Ghosn and his colleagues, a redundant bridge is defined as a structure capable of resisting 

additional load after one of its main member fails by redistributing the load among the remaining members.  

The three aforementioned NCHRP studies outline deterministic and probabilistic approaches to numerically 

calculate the redundancy and robustness of bridge superstructures and substructures.  For example, a 

quantification of redundancy can be achieved by defining redundancy as the additional structural reliability 

provided by the system compared to the reliability against first member failure. The reliability measure of 

redundancy is described by Equation 2-1: 

 ∆𝛽 = 𝛽 − 𝛽  (2-1)

 

where 𝛽  is the reliability index related to the failure of one member; 𝛽 is the reliability index 

related to the failure of the system.   

In order to ensure that the bridge is able to carry a part of the load (for example emergency vehicles) 

while damaged an additional structural robustness measure is given in Equation 2-2: 

 ∆𝛽 = 𝛽 − 𝛽  (2-2)

 

where 𝛽  is the reliability index related to the failure of one member; 𝛽 is the reliability index 

related to the failure of a system in a damage state. 
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The relative reliability measures ∆𝛽  and ∆𝛽  are used to define redundant and non-redundant bridges 

by comparing the values calculated for an individual bridge structure to threshold levels labeled as target 

relative reliability indices.  The relative reliabilities calculated for different bridge configurations are used to 

calibrate system factors that can be easily implemented by bridge engineers during design and load rating 

processes. 

Because an accurate risk assessment requires the consideration of system failure rather than just 

member failure as traditional load rating processes do, similar concepts to those proposed in NCHRP reports 

406 (Ghosn & Moses, 1998), 776 (Ghosn & Yang, 2014) and 458 (Liu et al., 2000) for accounting for system 

behavior and recognition of redundant structures should be used and implemented into the structural analysis 

process to define the risk of failure of bridges and help define an optimum inspection interval. 

A risk-based assessment of bridges should also account for the fact that the nominal legal loads used 

for rating existing bridges in AASHTO MBE (2018) or the design loads set for new bridges or inventory 

ratings as set in AASHTO LRFD (2017) do to not accurately model the load demand on highway bridges.  

Live loads are intuitively the most uncertain and challenging parameters needed to model the global 

probabilistic safety of bridges evaluated using structural system reliability analysis.  A comprehensive 

historical perspective of the evolution of nominal vehicular live loads in America can be found in the 

Transportation Research Board (TRB) circular E-C104 (2006).  For the purposes of this work, it is 

worthwhile recalling that typical bridge designs before 1993 were performed using the HS-20 live load. In 

1993, AASHTO introduced the HL93 live load to ensure that bridge member designs achieved a uniform 

level of reliability which the older specifications did not achieve.  

Because the nominal live load models were meant to ensure that bridge designs achieve uniform 

reliability but by themselves do not reflect the actual maximum live loads applied on bridge structures, 

several researchers developed procedures to use vehicular monitoring instrumentations to collect data that 

can be used to update the code-specified live load models and to obtain a more accurate evaluation of the 

safety of existing structures.  For example, Ghosn et al. (2011) and Sivakumar, Ghosn, and Moses (2011) 

provide guidelines describing how to collect weight in motion (WIM) data from traffic monitoring stations 

and use these to calibrate a probabilistic live load model to evaluate the safety and reliability of existing 

structures.  Similar procedures can be implemented to include the statistical characterization of actual live 

load and be directly used in reliability analyses of bridges and risk assessment procedures. In particular, 

(Anitori, Casas, & Ghosn, 2017) developed models based on New York state WIM data that are appropriate 

for the advanced structural analysis and assessment of bridges including finite element based reliability 

analysis. 
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2.3 Risk-Based Methods in Bridge Engineering 

Once the demand, in the form of live load, and the response, in the form of bridge capacity, are defined 

probabilistically the probability of failure of bridges can be calculated and linked with the consequences of 

failure to quantify the risk of a bridge’s failure.  Risk-based approaches are used in different fields of 

engineering to evaluate the efficacy of engineering processes in terms of meeting the expectation of society 

in a most optimum way.  Risk analyses provide an answer to the intuitive concept which recognizes that even 

a structure that has a very small margin of safety with respect to the demand can still be acceptable if the 

consequences of its failure are small.  For example, a bridge with little traffic volume serving a remote rural 

area should have a lower priority for future maintenance investment than a bridge with the same safety margin 

(or probability of failure) but located along a major route and thus associated with a failure with high impact 

in terms of economic losses for its users and the community it serves. 

A challenging factor in calculating the risk associated with the failure of a structure is related to the 

evaluation of the consequences of failure.  Several studies have been published about this topic for different 

engineering applications. For building structures, Janssen et al. (2012) set a list of consequences to consider 

when performing a risk-analysis and they give some guidance for calculating the associated cost. Imam and 

Conover (2012) outline a similar list for bridge structures which can be of value for bridge related risk 

assessment studies. 

Tanner and Hingorani (2015) review the application of risk methods to building structures focused on 

European regulations, setting risk acceptance criteria related to individuals and society and distinguish 

between the risk of new and existing structures.  In this context, the occupancy area of different types of 

buildings was divided into two groups: a) low occupancy buildings such as residential buildings, and b) high 

occupancy such as assembly halls, theaters, cinemas and grandstands. This classification was used to 

calculate the risk associated with different structural failure modes.  The consequence of failure is represented 

by the number of fatalities linked to a specific occupied area in a type of building and is compared to a set of 

desirable risks to persons and to society to determine a non-subjective target reliability index value for each 

building class that can serve as a rational basis for code calibration. 

Economic factors are considered by Steenbergen et al. (2015) for structures in general.  They point 

out that risk analysis should be used to minimize the total service-life cost. They observed that economic 

losses may be of little importance when compared to the loss of life.  Steenbergen’s team (2015) also studied 

a database of bridge collapses, excluding failures during construction, and they proposed a linear equation to 

determine the number of fatalities as a function of span length.  Specifically, they observed that reliability 

indices based on economic cost vary with time and decrease as the design life is approached. A minimum 

level of reliability is defined based on ensuring human safety. 

Along the same line COST action 345 (Brady et al., 2004) provides a broad view of European 

countries infrastructure maintenance procedures and an estimation of bridge replacement and running costs.  
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Running costs include those due to maintenance, repair renewal, management and inspection.  The qualitative 

risk matrix shown in Figure 2-2 is presented to link the consequences of failure and their likelihood and 

decide what level of inspection should be conducted. 

 

Figure 2-2. Risk matrix to determine the degree of inspection to apply to the structure. 

 

In the field of life cycle assessment, NCHRP report 483 (Hawk, 2003) provides a comprehensive 

approach for assessing the life cycle costs of bridges. These include agency cost, such as inspection, 

demolition, repair and reconstruction including materials, personnel and equipment costs, and user cost 

including those with detour, crash and bridge work.  Life-cycle analyses deal mostly with long term 

evaluations in terms of structural performances using the reliability index or risk as criteria, therefore they 

rely on continuous updating of input data on the structure and its function.  In the same line of life cycle cost 

benefit calculation but for a different engineering problem risk-based concepts were recently used by Ryan 

and Stewart (2020).  This study aims at giving insight of the climate change related adaptation for timber 

power poles accounting for the regional variability of climate change in Australia.  In this case, one of the 

cost elements is represented by the so called “risk reduction value” that is defined as the monetary risk 

brought by implementing the climate adaptation strategy for power poles.  In other words it is recognized 

that risk can be treated as a cost that is properly scaled according to its probability of occurrence, and therefore 

be included into life-cycle analyses or cost-benefit of resources allocation as in this Thesis. 

The estimation of user costs is of particular interest for the transportation sector, where bridges form 

key links of the network.  In this sense, NCHRP report 824 (Hirschman, Da Silva, Strauss-Wieder, & 

Tompkins, 2016) assesses  the cost of truck freight travel time.  A detailed breakdown of transport costs is 

provided for truck trip alternative analysis where the major truck-related delay costs are identified and 

divided into direct variable truck transportation cost (hourly value of expected hours of delay), on-dock 
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penalties due to delivery delay, and cargo related supply chain. The latter set includes the cost of capital 

incurred from delays in getting intermediate inputs to production facilities, opportunity cost of delayed final 

sales, administration and management, insurance, product spoilage, reduced production efficiencies. 

An interesting analysis of the consequences of failure was performed in NCHRP project 24-25 (Stein, 

2007) for failures of bridges due to flood-induced foundation scour as these represent the main cause of 

bridge failures (Smith, 1976; Wardhana & Hadipriono, 2003).  The study by (Stein, 2007) evaluates the 

consequences of failure using a homogenized economic approach, giving valuable numerical models for 

practical implementation.  Models to obtain dollar amounts for user costs as a function of detour length for 

bridges exposed to different levels of Average Daily Traffic (ADT), vehicle occupancy, and average value 

of time for each user as well as direct costs in terms of repair, demolition and reconstruction are provided.  It 

is interesting to observe that NCHRP project 24-25 (Stein, 2007) recognizes the ADT as the unique parameter 

linked to the number of fatalities unlike Steenbergen et al. (2015) that refers to bridge span length.  It appears 

reasonable to conclude that, due to the small number of bridge failures, it is difficult to identify the main 

factors that determine the number of fatalities which probably depends on both factors as well as other factors 

such as the distribution of traffic in different seasons, days of the week, or the hours of the day. 

Given the current emphasis on sustainability and the ramification on the health of the community 

affected by bridge failures and associated congestion and traffic disruptions, researchers have also included 

environmental costs in their assessment of the costs of bridge failures.  Environmental costs are defined by 

the impact on human health and climate related to several pollutants that are introduced into the atmosphere 

after a failure event occurs and the associated increased traffic congestion and changes in detour paths.  These 

pollutants are identified by Ahn et al. (2013) and guidance is provided on the economic impact on society in 

terms of monetary expense per travelled distance by the FHWA (2012) among other studies. 

2.4 Chapter conclusion 

Previous research efforts outlined in the different sections of this chapter highlight current work in 

both Europe and the US to develop inspection procedures based on rational risk-informed principles.  In fact, 

researchers have already recommended procedures in that vein.  In the US a database of bridges (NBI) is 

available in the public domain, which makes the research effort applicable to various structures rather than 

focused on individual bridges as usually done in Europe.  This partly justifies the focus of this work on US 

bridges.  However, even though much of the community agrees that a risk-based approach represents the 

most effective method to manage existing bridge inspection programs, its implementation in routine 

engineering practice remains a challenge that requires additional work.  In fact, the basic concepts of risk 

analysis have been well known for a long time, but it is important for researchers to synthetize them, extract 

only the relevant parts and provide a simple tool that can be implemented in bridge management practice.  

The review of existing literature on the subject indicates that the following critical tasks still require special 

attention: 
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1) Assessment of likelihood of failure based on rational calculations instead of qualitative 

considerations. 

2) Proposing a comprehensive quantitative assessment of failure consequences including 

environmental aspects for risk application. 

3) A clear step-by-step procedure for the application of risk-based concepts for practicing engineers. 
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3 Analysis of Bridge Database 

The NBI is a collection of files describing the most important characteristics of the bridges in the U.S.  

The number of bridges in the NBI database is approximately 600,000.  The bridge data are recorded and 

updated annually by the state Departments of Transportation (DOT) and published by the Federal Highway 

Administration (FHWA) in a standardized format (FHWA, 1995).  The file entries provide basic information 

(labelled as items) for each bridge including its location, type of service, traffic indices, detour length, 

geometry, topology, deterioration condition, and other inspection related data.  The information is used by 

agencies to plan budget allocation and to keep bridge conditions under control.  The backbone of each bridge 

entry is represented by the different reports, which are not in the public domain and thus not available for 

this work, that describe with high detail the operations carried out for each bridge during its service life.  

These reports include inspection reports, information on the repairs, element replacements and safety 

assessments performed over the years.   

Bridge NBI annual updates are available for download (FHWA, 2019b) starting from the year 1992.  

This historical perspective allows for studying changes of bridge conditions over time, with the understanding 

that the causes of the changes for any bridge condition are usually difficult to assess.  For example, condition 

ratings or load ratings may show an increase from one year to another year, and although one can assume 

that a repair or replacement has taken place for that specific bridge although no direct mention of the actual 

reasons for that performance increase is given in the NBI files.  Likewise, bridge condition rating decreases 

may be assumed to be linked to deterioration but no explicit explanation is provided in the NBI entries. 

Assessing the safety of bridges between inspection cycles requires an estimation of the level of 

additional deterioration that may take place in the short term and how this deterioration would reduce the 

load carrying capacity of these bridges.  Because such information is not readily available, the objective of 

this chapter is to develop an approach that utilizes raw NBI bridge data to model a bridge’s structural 

performance in terms of the system’s load carrying capacity and its evolution over time due to the 

deterioration of its constituent materials. 

3.1 Definition of Bridge Population Set 

A set of bridges is extracted from the NBI database for New York state bridges (approximately 17,000 

bridges) to meet the objectives of this work.  The bridge selection criteria are divided in several parts: 

1) Only bridges in the State of New York are considered.  This work is focused on NY State bridges 

because the Weigh-In-Motion (WIM) truck traffic information available for this study had been 

collected at WIM stations in New York.  

2) Only steel-concrete composite bridges are considered.  This structural type is typical in the US in 

general and in NY State in particular. 
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3) Only bridges whose Load Factor Rating (LFR) is recorded in the NBI files are considered because 

they represent the majority of cases and allow for a uniform approach for calculations. 

4) Only bridges for which photos are available are considered (source Google Maps Street view).  

These photos will help determine the number of main girders in the bridge to complement the 

dimension data available in the NBI database.  In fact, in order to correctly calculate the structural 

capacity of a bridge it is necessary to know the number of beams of the superstructure from photos 

available on the internet. This requirement has imposed an important limitation on the number of 

bridges that can be studied.  The picture extraction process is shown in detail in Appendix A for 

an example bridge. 

After point 1 to 3 are applied to the database a set of 6412 bridges are filtered, and after point 4 a total of 279 

bridges representative of the former group is extracted.  In order to keep the representability of the full 6412 

bridges a configuration analysis is performed.  Specifically, it is of interest to ensure that all ranges of load 

rating, detour length, span length, ADTT and bridge width are covered.  The general picture of these four 

variables in the bridge group is shown in the four subplots of Figure 3-1. 

 

 

Figure 3-1. Statistics for the 6412 bridge subset in terms of span length, ADDT, bridge width and detour length. 
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Looking at these statistics the subset defined by applying the 4th filter of the former list to ensure that the new 

bridge set is defined as much as possible by the permutation of the parameters listed in Table 3-1, leading to 

a final subset of 279 bridges labelled as set 1.  The statistics for the for set 1 in terms of load rating, detour 

length, span length, ADTT and bridge width are shown in Figure 3-2. 

 

Table 3-1. Bridge properties permutation for the final filter. 

Span 
length ADDT Width Detour 

m trucks 
per day m km 

20 0 7 0 
40 500 15 10 
60 1000 25 100 
80 5000 35 150 

100 20000 200 
 

 

Figure 3-2. Statistics for the 279 bridge subset in terms of span length, ADDT, bridge width and detour length. 
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It is noted that is not the purpose of the filtering process to match the histograms of Figure 3-1 with the ones 

of Figure 3-2.  Instead, the presence of at least one of each bridge configuration generated by the permutation 

of the parameters in Table 3-1 is ensured and for each of them pictures are found to determine the number of 

beams.  Therefore, it must not surprise the difference in the percentage of bridges with 20 m span length, 

which is more dominant in the first set than in set 1. 

As already mentioned, the last step of this database filtering process is represented by the online 

research of pictures from which the number of beams is determined.  The geographical localization from 

latitude and longitude values along with the pictures found online with the corresponding sources is shown 

in Appendix A. 

The load carrying capacity of each bridge in this subset is calculated and the cost of failure is estimated to 

finally determine the risk of its failure.  It is noted that the database under study can be easily refined and 

expanded in future works as additional details on bridges of interest are made available. 

3.2 Load Rating Methodology 

In this work, the capacity of each bridge is calculated from the operating Rating Factors (RF) stored 

in NBI item 64.  This parameter represents the capacity of the bridge in terms of the maximum permissible 

load level to which the structure may be subjected depending on the rating vehicle’s configuration and is 

expressed in total mass in metric tons.  The rating vehicle’s classification is also expressed in metric tons 

where, for example, MS18 represents the HS-20 Legal truck having a total mass of 32.4 metric tons.  It is 

recalled, that the truck number identifier for the HS- series gives the sum of the load of the drive axle plus 

the axle loads under the trailer.  For the purpose of load rating the AASHTO Manual for Condition Evaluation 

of Bridges (AASHTO, 2003) allows different methods for load rating. These include the Load and Resistance 

Factor Rating (LRFR) method, in addition to the traditional Allowable Stress Rating (ASR) and Load Factor 

Rating (LFR) method (Mlynarski, Wassef, & Nowak, 2011).  The Federal Highway Administration (1995) 

mentions that the Load Factor Rating (LFR) method is the preferred method even though it gives the option  

state agency to express load ratings in any other method and units,  all of which are listed in item 65 of the 

NBI as outlined in Table 3-2. 
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Table 3-2. Available rating methods. 

Code Description 

1 Load factor (LFR) reported in metric tons using MS18 loading. 

2 Allowable Stress (ASR) reported in metric tons using MS18 loading. 

3 Load and Resistance Factor Rating (LRFR) reported in metric tons using MS18 loading. 

4 Load testing reported in metric tons using equivalent MS18 loading. 

5 No rating analysis performed. 

6 Load Factor (LFR) rating reported by rating factor (RF) method using MS18 loading. 

7 Allowable Stress (ASR) rating reported by rating factor (RF) method using MS18 loading. 

8 Load and Resistance Factor Rating (LRFR) rating reported by rating factor (RF) method using HL-
93 loading. 

 

Load Factor (LFR) rating method is described in AASHTO MBE (2018) Appendix A, both for intact and 

deteriorated bridges and consists of the following rules: 

1) Both the live load 𝛾 and the dead load factor 𝛾  are 1.3. 

2) A single MS-18 (HS-20) rating truck is used for the analysis weighing 325 kN. 

3) The dynamic amplification is calculated with the expression 𝐼𝑀 = 1 + .  ) ≤ 1.3 (with 𝐿 the 

span length in meters). 

4) The lateral load distribution factor for most two-lane girder bridges is equal to 𝐷𝐹 = 𝑆 1.7⁄  where 𝑆 

is the spacing between main longitudinal beams (with 𝑆 expressed in meters). 

Operating load rating (𝑅𝐹) and bridge capacity (𝐶) are therefore related to each other by the Equation 

3-1: 

 

𝑅𝐹 = 𝐶 − 𝛾 𝐷𝐿 𝛾   𝐿𝐿  𝐼𝑀  𝐷𝐹 (3-1)

 

where 𝐷𝐿 is the dead load effect, 𝐿𝐿 is the live load effect.  

To find the capacity 𝐶 given the rating factor, RF, the live load LL, impact factor IM and distribution 

factor DF, it is necessary to know the dead load DL.  The dead load itself depends on the member dimensions 

which are not provided in the NBI data files.  The procedure can be represented in terms of minimizing a 

tolerance tol which gives the difference between the estimated capacity 𝐶 and the combination of factored 

dead and live loads where the dead loads are estimated based on member dimensions that are consistent with 
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the capacity 𝐶.  This relationship can be represented as the minimization of the term 𝑡𝑜𝑙 given in Equation 

3-2: 

  𝐶 − 𝑅𝐹 𝐼𝑀 𝐷𝐹 𝛾 𝐿𝐿 + 𝛾 𝐷𝐿) 𝑡𝑜𝑙 (3-2)

 

The calculation of the single terms of Equation 3-2 and the iterative calculation to solve it are described in 

the next section. 

3.3 Back Calculation of Bridge Member Capacity 

The objective of Equation 3-2 is to find a solution for the member capacity 𝐶 able to minimize the 

tolerance of the inequality. 

The MS-18 rating vehicle has the configuration presented in Figure 3-4 where x gives the location of 

the front axle of the truck relative to the left end of the bridge. Xg gives the location of the center of gravity 

of the truck relative to the front of the truck. The live load effect 𝐿𝐿 can be calculated with an MS-18 truck 

located on the influence line of the considered effect such as the one shown in Figure 3-3. 

 

Figure 3-3. Live load beam model. 

 

Figure 3-4. Influence line example for a 30 m bridge. 
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In order to automate the live load calculations these are repeated for a set of generic span lengths to give a 

curve of maximum live load moment effect versus span length as shown in Figure 3-5.  The maximum 

moment load effects in Figure 3-5 are normalized relative to the maximum moment produced by a point load 

having the same weight of the MS-18 truck (325 kN). 

 

 

Figure 3-5. Normalized MS-18 truck effect versus span length. 

 

The capacity term is calculated using the following simplified composite beam criteria. 

• The slab thickness is 20 cm per experience of typical 8 in slab thickness observed in 

composite bridges.  The material considered in this study for the concrete deck is 24 MPa 

(3.5 ksi). 

• The ratio beam depth/span length  𝐻 𝑆𝐿⁄  is kept between 0.033 and 0.036.  The 

recommendation is taken from AASHTO LRFD (2017) Table 2.5.2.6.3-I. 

• The web thickness is 𝑤 = 𝐻 150⁄ .  This recommendation is the minimum proportion to 

avoid local buckling in the web, and it is therefore used as a dimensioning criteria for 

unstiffened webs as per AASHTO LRFD (2017) 6.10.2.1.1. 

• The flanges width is 𝑏 = 𝑏 = 𝐻/2.  The flange width is established from engineering 

judgement being the code minimum recommended 𝑏 𝐻/6 as per AASHTO LRFD (2017) 

6.10.2.2-2. 
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• The top flange thickness is 𝑡 = 𝐻/24. This value is recommended by AASHTO LRFD 

(2017) 6.10.2.2-1. 

• The steel used for the calculation is 345 MPa yielding strength (50 ksi). 

The bottom flange thickness 𝑡𝑠 is changed iteratively and both the capacity 𝐶 and the dead load 𝐷𝐿 are 

updated at each iteration.  The bottom flange thickness providing the smallest tolerance 𝑡𝑜𝑙 is selected to 

represent the steel beam design.  This back-calculation is used to regenerate the geometry of the steel beams 

of the set of bridges under study (set 1) that is not explicitly reported in the NBI database entry and is 

necessary to perform the structural analysis at all levels (system and member).  A detailed example of the 

capacity calculation of the composite member is presented in Appendix C. 

Separately, the transverse reinforcement of the concrete slab is designed according to AASHTO 

LRFD (2017).  A detailed example of this calculation is provided in Appendix D. 

3.4 Probabilistic Member Deterioration Model 

The historical data withdrawn from the NBI database can be used to analyze the deterioration trend 

of bridges over the years.  In this case the load rating recorded in item 64 should include loss of steel thickness 

due to deterioration as well as other interventions such as repair or element replacement.  A different set of 

bridges (different from set 1) is considered for the deterioration part. In fact, as will be shown in further 

sections, several bridge deterioration trend data cannot be used and set 1 would result in a too small 

population.  In the next sections the criteria to select set 2 bridges and how they are used to come up with an 

annual deterioration ratio are explained. 

3.4.1 Bridge data and Load Rating historic data 

The historical data extracted from the NBI database can be used to analyze the deterioration trend of 

bridges over the years.  It is assumed that reduction in the load rating recorded in item 64 of the NBI is 

primarily due to loss of steel thickness due to corrosion while increases in load ratings are due to interventions 

such as repair or element replacement.  A different set of bridges than set 1 is considered for modeling 

deterioration effect to consider a larger number of bridges.  Therefore, a new set 2 of bridges is selected as 

explained below. 

3.4.2 Bridge data and Load Rating historic data 

The 2018 NBI database for NYS consists of 17521 bridges 2426 of which are simple span steel-

concrete composite bridges. Load rating data are available for each of these bridges for every year since 

1992.  Figure 3-6 gives the load rating (LR) in metric tons for three example bridges over the years. 
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Figure 3-6. Bridge 000000001001439 (left), bridge 000000001001639 (center) and bridge 000000001011240 load 
rating over year of inspection. 

 

Several observations can be made from the plots in Figure 3-6: 

1. The load factor is often increasing.  It is assumed that it is due to a repair which would 

improve member capacity. 

2. More than one load rating are given for some years.  For example, for the left plot (Figure 

3-6) there are 2 values for the rating in 1996.  Specifically, a value of 54 tons is recorded in 

the NBI data of 1997 and 34.4 tons in the data of 1998.  There is not enough information to 

understand the reason behind this difference.  It is possible that the 1996 inspection report 

information is reevaluated in subsequent years. 

3. The load rating values remain constant for many consecutive years.  This may indicate that 

even if deterioration is taking place, only significant levels of deterioration would lead to 

reduction in load rating. 

The long periods of time during which the load rating remains essentially unchanged may represent 

what one may call “incubation periods” before the inception of serious degradation in the structural capacity 

of the bridge members.  This incubation period may depend on many hard to quantify factors, such as the 

age of the bridge, the quality of the construction and the material properties, and the type of previous repairs 

if any. The data also show that once deterioration commences, it leads to a reasonably constant rate of 

reduction in the load rating (see Figure 3-6 left).  Because it is difficult to determine the incubation period, 

for the purposes of this study, it is assumed that the risk assessment is being undertaken either at the onset of 

or during the course of degradation.  Because of the observed constant rate of reduction in the load rating 

after the onset of deterioration, in this report the deterioration of bridges is quantified using an annual 

deterioration rate that represents the yearly decrease in load rating.  Even though the reason for the decrease 

in the load rating is not available, it is further assumed that the most relevant deterioration process is that of 

the corrosion of the primary steel girders. 

A preliminary filtering is needed to remove all the bridge entries that are not valid according to a set of 

criteria that are outlined next: 
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1) Different rating methods are used in the US and their associated load rating values are recorded in 

the NBI files. Because the most common rating method is that labeled as #1 in Table 3-2, only load 

factors calculated with that method are used in these calculations to maintain consistency. 

2) Spikes in the load rating historic data are those that show a load rating value at time T, 𝐿𝑅 𝑇), higher 

from those at time T+1, 𝐿𝑅 𝑇 + 1) and time T-1, 𝐿𝑅 𝑇 − 1) where 𝐿𝑅 𝑇 + 1) = 𝐿𝑅 𝑇 − 1).  This 

situation is illustrated in Figure 3-7, where the spiked observed in 2015 is considered as an erroneous 

entry. 

 

Figure 3-7. Example of spike in load rating. 

 

3) If different load rating values are recorded in the NBI files for the same year, the average of these is 

considered for that year. For example, in the plot shown in Figure 3-8 the final load rating for the 

year 2008 value is calculated as (65.3+69.9)/2=67.6 

 

Figure 3-8. Example of different Load Rating for the same year. 
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4) The last acceptable data point 𝐿𝑅  that ends a series of decreasing load rating values is the one rating 𝐿𝑅 = 𝐿𝑅 𝑇) that is lower than the one that comes after it 𝐿𝑅 𝑇 + 1) 𝐿𝑅 𝑇) = 𝐿𝑅 . An example 

is shown in Figure 3-9. 

  

Figure 3-9. Example of last valid point in the load rating historic series. 

 

5) The first acceptable point 𝐿𝑅 = 𝐿𝑅 𝑇) in a series is found going backwards from 𝐿𝑅  until the 

following inequality is verified 𝐿𝑅 𝑇 − 1) ≤ 𝐿𝑅 𝑇) = 𝐿𝑅 .  An example is shown in Figure 3-10. 

 

  

Figure 3-10. Example of first valid point in the load rating historic series. 

 

6) Once 𝐿𝑅  and 𝐿𝑅  are identified, the values in between may be fitted with a straight line, as shown 

in Figure 3-11. 
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Figure 3-11. Valid load rating range and linear fit. 

 

7) The minimum number of years over which the deterioration rate is calculated is 3 years because 2 

data points are too few to establish a trend.  For example, the load rating series plotted in Figure 3-12 

is ignored. 

  

Figure 3-12.  Discharged data series (too few valid data). 

 

8) Once a valid set of deteriorating load rating values is established, deterioration rate is calculated from 

the slope of the linear fit.  A calculation example is presented in Appendix B. 

3.5 Multiple bridge data fitting 

The filter described in the previous section is applied to the entire population of bridges in NYS to 

find the population of bridges with a valid deterioration ratio.  From the original 2426 bridges, 1330 bridges 

present a valid decreasing load rating deterioration and can therefore be labeled as set 2.  The results are 
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sorted and organized into a cumulative distribution plot in order to represent the deterioration ratio as a 

statistical variable (Figure 3-13). 

 

Figure 3-13. Cumulative distribution of the deterioration Rate (DR). 

 

As can be seen from Figure 3-14, the purple line represents the cumulative distribution of the entire set 2, 

with an average DR=1.36%.  However, it is found convenient to group the bridges into three groups of high 

(DR>1.00%, average DR=3.40%), medium (0.20%>DR>1.00%, average DR=0.50%) and low 

(DR<0.20%,average DR=0.07%) deterioration rate.  The group boundaries can be better visualized by cutting 

off the values larger than 5% as shown in Figure 3-14. 

 

Figure 3-14. Deterioration rate (zoom view of the x-axis) cumulative distribution and limit values for the 
deterioration ratio groups. 

 

As already mentioned, the number of valid bridges is 1330 and the three groups contain 34%, 40% and 31% 

of the total for the high, medium and low deterioration rate respectively. 
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The results obtained in this subsection are key for the definition of the response of bridge systems 

when deterioration is present.  In fact, as will be explained in Chapter 4, the deterioration rates obtained will 

be inputted as random variables to perform a probabilistic simulation for the response of the bridge.  Here, it 

is noted that the analytical description of the cumulative probability distribution of the variable (represented 

by appropriate probability functions) has been attempted by the author of this work, but no commonly used 

predefined probability function successfully fitted the distribution of the deterioration rate.  For this reason, 

the input for the simulation process will be a cumulative probability function defined by the extracted discrete 

probability values. 

3.6 Reliability of Bridge Inspection 

The outcomes of bridge inspections are affected by uncertainties of different kinds and these 

uncertainties are dragged throughout the entire chain of calculation of the evaluation process.  Generally 

speaking, inspection uncertainties can be divided into probability of detection and sizing accurateness.  The 

probability of detection consists of using a certified result obtained with a precise detection method to 

compare it the performances of less precise tools.  The results are typically presented in the form of true 

positive, true negative and false positive and false negative.  The number of true positive calls divided by the 

total number of observations for a given defect may be considered an indicator of the probability of detection.  

Once the defect is known, the accurateness of the defect properties observed by different inspectors can also 

be statistically analyzed, treated as a regular random variable and described with a statistical distribution 

function and its parameters. 

Also, performances can be evaluated at defect level or at index level.  In case of defect level, the 

effectiveness of visual inspection is studied by looking at the shape and intensity of the defect within the 

member and it can be compared with inspection efficiencies of other disciplines, as aviation or mechanical 

engineering.  On the other hand, if the performance of the inspection is studied with regard to indexes, there 

is less focus on the defect itself and more interest in the human interpretation of the observation and its 

translation into, for example, condition rating. 

Phares et al. (2001) and Moore et al. (2001) studied the performances of 49 bridge inspectors from 25 

states in the US inspecting six in-service and decommissioned highway bridges.  The study was performed 

with a representative population of inspectors in terms of years of experience and without any knowledge of 

previous inspection reports or information about the bridges.  The study was mostly focused on visual 

inspection in the context of standard Routine Inspection and concluded that 95% of main bridge elements 

condition rating may vary within two rating points of the average.  The statistical characterization of the 

condition rating process performed over the six test bridges shows a bias of 1.06 and a COV of 15% for 

superstructures. 
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Similarly Tenžera et al. (2012) studied the reliability of visual inspection in the evaluation of bridge 

condition in Croatia.  The difficulties linked to a uniform response in visual inspection is observed to be 

dependent on a number of psychological factors, such as expectations, attitude, type of education, quantity 

of information, motivation, sociocultural influences etc.  While the effort of the latest inspection strategies is 

directed towards a reduction of the possible differences in the interpretation of bridge deterioration a relevant 

effort is still needed.  The investigation was performed with 15 inspectors with considerable experience in 

visual inspection procedures according to the Croatian standards.  Five bridges were rated according to a six-

category scale from 0 (no damage) to 5 (extensive damage registered).  Unlike other studies, where a baseline 

inspection is present from which a sort of bias factor can be calculated, in this study the baseline is the median 

of the rating provided by all the inspectors.  Thus no bias factor can be calculated.  While the study is carried 

out for different elements of each bridge, the interest of our work is on superstructure, where the standard 

deviations for the main girder are between 0.4 and 0.7, while for the entire superstructure ranges between 0.7 

and 0.9. 

It is noted that, while the probability of detection is constant for automated processes it is not observed 

to be constant for a visual inspection, where a given defect is often associated with a level of deterioration, 

as pointed out by Faber and Sorensen (2002).  For example, fatigue cracks in steel elements can be associated 

with a probability of detection near to zero when they are almost nonexistent, to 25 mm, where a probability 

of detection of 0.8 is obtained (Kwon & Frangopol, 2011).  In the context of life-cycle cost optimization of 

bridge elements affected by fatigue crack, Orcesi and Frangopol (2011) studied the contribution of Visual 

Inspection (VI), Magnetic Particle Inspection (MPI) and Ultrasonic Inspection (USI) and included their 

probability of detection.  Specifically, unlike previously observed, they use a fix 60% for VI for the 

probability of detection of fatigue cracks. 

A comprehensive evaluation of the inspection accuracy and efficiency is performed by Campbell et 

al. (2019) and further studied by Campbell et al. (2020) where several possible parameters influencing the 

inspection efficiency are studied for a set of representative inspectors.  The following conclusions are 

highlighted: 

• Detection rate mostly increases with increasing time of inspection (but not in some cases). In 

fact, after many inspections performed on the same bridge and detecting always the same 

damage pattern, the attention of the inspector to old damages (more severe than the current 

ones) decreases.  This is why rotating inspectors is important but may not be enough if the 

inspector has access to previous inspection reports. 

• Cracks in steel are infrequent and difficult to detect, while corrosion is easier to detect in 

general.  However, it depends on the accessibility of the defect from the inspector. 

• The most important factors for inspection accuracy are found to be related with the 

characteristics of the individual performing it (not in some cases though). 
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• It is not clear if experience in inspector is a positive or negative feature for damage detection. 

• Other factors are temperature and ambient lighting. 

• In the paper 30 inspectors were tested.  The real damage state of the different structures were 

a-priori perfectly known. 

• The detection rate of fatigue cracks was between 31% and 86%.  The mean was 65% and 

standard deviation 14%. 

The state of the art about this topic is still not particularly developed to be applied conveniently in 

calculations.  In fact, these studies should be repeated, several times up to a point where results reproducibility 

could be reasonably guaranteed, and all the variables into play correctly identified and characterized for a 

wide population of bridges and bridge types and structural details.  In addition, the safety calculations are 

seldom based on synthetic indices, as load rating in the present work, for which no uncertainty indication is 

found in literature. 

In this work, the statistics obtained by Phares et al. (2001) and Moore et al. (2001) for the condition 

rating are used as an uncertainty factor for the member capacity inspection. It is noted that also Santamaria 

et al. (2020) used this information to predict performance of concrete bridges and include numerically the 

subjectivity of the inspectors.  The relationship between condition rating and member capacity are based on 

the guidelines provided by the Illinois Department of Transportation (2016), where loss of section due to 

corrosion is linked to condition rating (Figure 3-15). 

 

Figure 3-15. Condition Rating linked to corrosion level as per the Illinois Department of Transportation (2016). 

 

A linear relationship between these values is built and shown in Figure 3-16. 
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Figure 3-16. Linear relationship between corrosion level and condition rating. 

 

The loss of sectional capacity is found by sectional analysis of all bridges in set 1 to convert the uncertainties 

in condition rating into uncertainty in member capacity as shown in Table 3-3. 

 

Table 3-3. Conversion of condition rating bias to capacity bias. 

CR 
nominal 

CR mean 
(bias=1.06) 

Corrosion 
nominal 
(from linear fit) 

Corrosion 
mean 
(from linear fit) 

Capacity bias 
(from sectional 
analysis) 

1 1.06 64% 63% 0.97 
2 2.12 52% 50% 0.97 
3 3.18 39% 37% 0.97 
4 4.24 26% 23% 0.96 
5 5.3 14% 10% 0.95 

 

The results show that the 1.06 bias factor, showing that inspectors tend to overestimate the condition rating 

by 6% can be represented by a capacity reduction ranging between 0.95 to 0.97.  This very narrow range can 

be conservatively simplified for all levels of corrosion with a single 0.95 factor applied to sectional capacity.  

This calculation shows that the inspection uncertainties and capacity are linearly related, allowing to extend 

the same COV=15% observed for condition rating to sectional capacity. 

3.7 Chapter conclusion 

In this chapter, the National Bridge Inventory data were presented with particular focus on the specific entries 

of interest for this work.  It is important to notice that the choice of publishing this large and reasonably 

CR
corrosion
(Illinois DOT)

corrosion
(linear fit)

6 2.0% 1.2%
5 10.0% 13.8%
4 30.0% 26.4%
3 40.0% 39.0%
2 50.0% 51.6%

y = -0.126x + 0.768
R² = 0.9805
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complete amount of data by the US authority, unlike the common practice of most of other countries, 

increases the volume of research studies on studying the long term performance of the highway infrastructure 

network with great advantage for the US community. 

The bridge entries were filtered to identify a suitable set of bridges for the risk analysis process carried 

out in this work.  Ideally, it would be desirable to analyze the full set of over 600’000 bridges present in the 

USA.  However, the selection of a smaller dataset has several technical reasons.  Firstly, the bridge types 

need to be restricted, because the objective of the study is to develop a framework for the risk analysis of 

bridges.  Because the development of a new framework requires an iterative process that explores various 

options, it is easier to work with a limited set of data and the process can be eventually implemented for all 

types of bridges.  Also, because the parametric structural analysis needs to be automated and only bridge 

systems with common characteristics (but different configurations) can be modeled this way a selection is 

needed.  In this case, we have selected to illustrate the proposed framework on simple span bridges, which 

form a very common type for composite steel girder-concrete deck resisting systems.  Another reason is that 

in this work, as will be explained in Chapter 5, the traffic loads are specialized for the New York state bridge 

network.  Thus, only bridges of this region were considered for consistency.  The results of these concepts 

are the definition of the bridge population labelled as set 1. 

This chapter proposed an approach for quantifying the reduced performance of bridges over time by 

studying the load rating historical data available from the NBI database data.  It must be noted that the load 

rating value by itself is an extremely synthetic metric, which needs several assumptions to back calculate the 

corresponding geometry but can be conveniently used for very common type bridges such as composite steel 

girders with concrete decks.  The results obtained in this chapter will be used to set different inspection 

intervals based on each of the three deterioration levels.  The deterioration rate represents one of the 

parameters that will be used carry out the calculations for the evaluation of the inspection interval, and 

therefore the practicing engineer will be required to identify which of the three levels of deterioration is more 

adequate for the bridge under study.  The engineer has the freedom to assess the deterioration category based 

on the environmental exposure of the bridge to aggressive chemicals, exposure to deicing salts or indirectly 

to level of snow precipitation.  However, in case the data to assess the deterioration rate are not available, the 

deterioration rate may be estimated from the NBI database historic load rating series as explained in 

Appendix B. 

Finally, a brief description of the state of the art in terms of estimation of the uncertainties associated 

with the inspection process is outlined for its application in Chapter 6 to the reliability calculation.
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4 Bridge System Capacity 

In order to perform the structural analysis and therefore to calculate the safety of bridges a model to 

describe the response of the structure resisting the demand of the acting loads must be defined.  Structural 

models may be defined with different degrees of complexity depending on the objective of the calculation, 

the available structure’s data and the availability of computational power, among other factors. 

Specifically, simplified line analysis procedures have been routinely applied in the US to study the 

response of multi-girder bridges, where the distribution of the live load to the most critical longitudinal 

member can be conservatively defined by simplified formulas such as those provided in AASHTO LRFD 

(2017) specifications for design and evaluation purposes.  A more accurate approach to describe the response 

of these kind of bridges is the use of finite element models, based on 1-D, 2-D or 3-D elements or a 

combination of them to give different degrees of detail of the local behavior of the structural elements as well 

as the overall bridge response.  A most typical solution used by structural engineers is to use simple 1-D 

elements to model the main load carrying components (e.g. longitudinal girders, substructure), and 2-D and 

3-D elements for specific critical components, such as connections, bearings and regions of concentrated 

loads.  Furthermore, engineers may have to decide whether to employ simple linear elastic material or more 

complex non-linear material models.  Similarly, the analysis can assume small deformations whereby the 

initial geometry is essentially maintained throughout the analysis process or a more complex geometric non-

linear approach where the geometry of the structures is updated as the load increases. 

In this work, bridge superstructures are modeled by means of frame elements organized in a 2-D 

grillage, where it has been observed that material non-linearity must be included to correctly represent the 

interaction among members defining the system behavior and geometric non-linearity can be ignored since 

the deformations of the structure are not large enough to modify the behavior of the structure even up to 

failure.  This approach was found to give accurate results to determine the failure load of typical multi-girder 

bridges when compared to more advanced 3-D finite element models and experimental test results (Linzhong 

Deng, Ghosn, Znidaric, & Casas, 2001; Ghosn & Casas, 1996; Ghosn, Casas, & Xu, 1996) 

The structural analysis is carried out using the calculation core provided by the OPENSEES 

framework (McKenna, 2011) and additional TCL (Tool Command Language) code (https://www.tcl.tk/) for 

pre- and post-processing of the analysis. 

To obtain the structural reliability of the bridge systems the nonlinear analysis program is 

implemented into a simulation algorithm that considers the uncertainties in the input variables and assembles 

the results in probability distribution functions. 
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4.1 Grillage Analysis Model 

The structural analysis carried out in this work is based on the plane frame grillage model.  The 

grillage model consists of a set of orthogonal longitudinal and transverse frame elements each representing 

a specific load transfer mechanism within the bridge system.  The grillage method is developed for composite 

steel-concrete bridges and the mechanical properties of each element of the grillage are assigned based on 

the recommendations of Hambly (1991).  The different parts of the grillage are shown in Figure 4-1, where 

the longitudinal and transverse elements are identified. 

 

 

Figure 4-1. Typical Grillage model for a multi-girder bridge. 

a) Longitudinal members model the Composite action of the girder and slab;  
b) Additional transverse member model the effect of cross beams and diaphragms. 

 

Longitudinal elements are used to represent the flexural behavior of the main longitudinal girders along with 

the composite action of the concrete slab on top of it, while transverse elements are used to describe the 

behavior of the slab distributing the load among the longitudinal elements according to their stiffness.  A 

ratio between longitudinal and transverse elements between 0.5 and 2.0 is employed as suggested by Hambly 

(1991).  Multi-girder bridges usually include intermediate cross-frames for the temporary bracing of the 

girders during construction.  The effect of these temporary elements on the behavior of global behavior of 

the bridge can be generally ignored according to Hambly (1991) and according to an additional check 

performed in this work.  Typical cross-frame steel configurations and their design can be found in Appendix 

E and their influence in a full bridge model is shown to be negligible as further explained in Appendix F. 

Since live loads are usually defined by a group of point loads that can be located anywhere on the bridge 

surface and the valid load input for the grillage is represented by concentrated loads at the nodes, auxiliary 

elements can be implemented to connect the actual load application point to the nearest available grillage 

node, making sure that the stiffness of these elements is small enough to avoid any interference with the 

bridge element frames (Figure 4-2). 
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Figure 4-2. Auxiliary elements for live load application at grillage nodes. 

 

The initial stiffness of the elements are calculated by the moment of inertia of each frame element’s 

cross section including the composite effect of different materials within the section (steel, concrete, rebar) 

where necessary.  However, as explained in the next section, the initial stiffness of each element is modified 

as the materials enter their nonlinear ranges to define the evolution of these stiffnesses as the load increases. 

4.2 Non-linear Behavior of Bridge Members 

The linear elastic grillage defined in the initial stages of analysis is a standard tool for bridge design 

and evaluation, familiar for many engineers Hambly (1991).  However, one of the goals of this work is to 

include an accurate representation of the system behavior of the bridge in the non-linear range of deformation.  

Specifically, in the push-down analysis that will be explained in the next section, the longitudinal elements 

yield as the live load increases reducing their stiffness which causes a larger proportion of the load is expected 

to transfer to other longitudinal elements because of their still large stiffness.  Likewise, transverse elements 
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allow the load transfer from one element to the other and their efficiency depends on the state of their 

materials that can also undergo non-linear deformations. 

The first step to define the non-linear stiffness that will be inputted into the grillage model is to define 

the non-linear behavior at the material level.  Concrete, structural steel and steel rebar stress strain constitutive 

models are defined, as shown in Figure 4-3. 

 

 

Figure 4-3. Concrete (left), reinforcing steel and structural steel (right) constitutive models. 

 

The concrete stress-strain relationship in compression is obtained by the equations proposed by Popovics 

(1973) as presented in Equation 4-1: 

 𝑓 = 𝑓′ 𝜀𝜀 𝑛𝑛 − 1 + 𝜀𝜀  (4-1)

 

Where 𝑓′  is the nominal concrete compressive strength (24 MPa or 3,500 Psi in this work), 𝑓  is the concrete 

strain at any strain 𝜀 , 𝜀  is the peak strain (0.002 in this work) and 𝑛 is a parameter depending on the values 

of the tangent 𝐸  and secant 𝐸  stiffnesses, as specified in Equations 4-2, 4-3 and 4-4. 

 

𝑛 = 𝐸𝐸 − 𝐸  (4-2)

 𝐸 = 4700 𝑓′  (4-3)
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𝐸 = 𝑓′𝜀  (4-4)

 

In Equation 4-3, the tangent stiffness 𝐸  and the concrete strength 𝑓′  must be taken in MPa. 

The tensile branch of the stress-strain curve is taken as linear up to the tensile stress 𝑓′  calculated according 

to AASHTO LRFD (2017) as presented in Equation 4-5: 

 𝑓′ = 0.62 𝑓′  (4-5)

 

On the other hand a bilinear symmetric stress-strain curve for steel is used with an elastic stiffness of  𝐸 = 210,000 MPa, a yielding stress of 340 MPa (50 ksi) for structural steel and of 413 MPa (60 ksi) for 

rebar steel, and a horizontal plastic range with a ultimate strain of 0.10. 

Moment curvature (𝑀 − 𝜑) curves such as that shown in Figure 4-4 are preliminarily calculated to 

determine the variation of the flexural stiffness of longitudinal and transverse frame elements as they undergo 

plastic deformation following the stress-strain relationship of the material constituents already described 

(Figure 4-4). 

 

 

Figure 4-4. Sectional analysis of the main longitudinal elements. 

 

Only the positive moments (sagging moments) are considered in the 𝑀 − 𝜑 since only simple span bridges 

are analyzed in this work.  However, for members far from the load application where negative moments 

(hogging moments) may appear, the linear negative stiffness will still be valid since it is expected that these 



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 64 

moments will be small.  The 𝑀 − 𝜑 curve is simplified to speed up the analysis into three lines defined by 

the origin and three additional points according to the following criteria: 

1) The first point is located where the bottom edge of the beam reaches the yielding strain 

2) The last point of the curve is located where one of the materials (usually the concrete) reaches its 

ultimate strain (0.035 for concrete or 0.10 for steel) 

3) Once the first and last points are defined, an intermediate point is located to better approximate the 

theoretical 𝑀 − 𝜑 curve.  The intermediate point is iteratively changed to find the optimum position 

that provides the minimum difference between the area bounded by the theoretical curve and the 

multilinear curve in the post-yielding range. 

While the moment curvature curve correctly describes the flexural behavior of the longitudinal members 

throughout their length, transverse element present a slightly more complex mechanism.  In fact, both positive 

and negative non-linear behavior must be considered and even though sectional analysis can be performed 

at the cracked section, the rest of the uncracked member and its tension stiffening effect must be considered.  

Three stages can be recognized in the flexural behavior of transverse reinforced concrete members as shown 

in Figure 4-5. 

 

Figure 4-5. Typical sectional behavior of a cracked section within a reinforced concrete section. Extracted from 
Nilson (2011). 
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Referring to Figure 4-5, it can be observed that in the first loading stage (Figure 4-5 a) the member is still 

uncracked and every section’s (shown in Figure 4-5 b) flexural stiffness can be modeled using the elastic 

moment of inertia of the gross concrete section so that the stresses in the concrete follow a linear distribution 

augmented by the contribution of the steel reinforcement (as shown in Figure 4-5 c).  As the load increases, 

equally spaced cracks start to form at the bottom (tension side) of the member (Figure 4-5 d) when the tensile 

stress of the concrete reaches the modulus of rupture in those sections.  The strain and the stress distribution 

appear as shown in Figure 4-5 e, while between cracks uncracked zones are still present.  When the crack 

develops the bottom reinforcing steel has to absorb the force previously resisted by the concrete in tension 

but the strains of the concrete in compression are still in the linear range of the concrete stress-strain curve.  

In the last stage (Figure 4-5 f), as the load on the member increases, the reinforcing steel yields and the 

compression stresses in the concrete have a non-linear profile up to the failure point that is reached when the 

top compression concrete strain its limit value. 

The flexural stiffness of slab elements, as already mentioned, is a key element to correctly model the 

force distribution among longitudinal members.  For this reason, it is recognized that an equivalent moment 

of inertia 𝐼  must be considered when some of the sections are cracked while other are not according to the 

Equation 4-6 (Branson, 1977): 

 

𝐼 = 𝑀𝑀 𝐼 + 1 − 𝑀𝑀 𝐼 ≤ 𝐼  (4-6)

 

Where 𝑀  is the moment level under consideration related to the equivalent stiffness, 𝑀  is the cracking 

moment, 𝐼  is the section gross inertia, 𝐼  is the inertia of the cracked section. 

The moment of inertia of the gross section 𝐼  can be found by applying Equation 4-7: 

 

𝐼 = 112 𝑏ℎ + 𝑛 𝐴 , 𝑦 + 𝐴 , 𝑦  (4-7)

 

Where 𝑏 and ℎ are the base and height of the rectangular cross section, 𝐴 ,  and 𝐴 ,  are the top and 

bottom steel areas respectively and 𝑦  is the centroid of the cross section. 

The cracking moment 𝑀  can be found by applying Equation 4-8: 
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𝑀 = 𝑓′ 𝐼𝑦  (4-8)

 

In order to find the cracked moment of inertia, the neutral axis must be found first from Equation 4-9 

determined by the equilibrium of the cross section in the second stage (Figure 4-5 e) including the top 

reinforcement. 

 

𝑥 = −𝐸 𝐴 , + 𝐴 , + 𝐸 𝐴 , + 𝐴 , + 2𝐸 𝐸 𝑏 𝑑𝐴 , + 𝑐 𝐴 ,𝐸 𝑏  (4-9) 

 

Where 𝑑 is the effective depth of the section, hence the distance from the top edge to the centroid of the bottom 

reinforcing steel, and 𝑐  is the distance from the top edge to the centroid of the top reinforcing steel. 

The cracked stiffness is therefore calculated with Equation 4-10: 

 

𝐸 𝐼𝑐𝑟 = 𝐸 𝐴 , 𝑑 − 𝑥) 𝑑 − 13 𝑥  (4-10) 

 

These equations are applied to the slab elements obtaining moment curvature relationships as shown in Figure 

4-6. 

 

 

Figure 4-6. Moment curvature curve for the second stage to account for the equivalent stiffness of the cracked 
member (zoom on the first part of the curve, the plastic deformation part is not shown for clarity). 
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Referring to Figure 4-6, the direct result of the sectional analysis of the cracked section is shown in black 

line, the analytical cracked stiffness calculated with Equation 4-10 matches the numerical results in the 

second stage (after the crack has formed) and the green curve shows the equivalent stiffness that takes into 

account cracked and uncracked sections along the length of member.  In order to improve the efficiency, a 

trilinear curve is used to describe each concrete member’s  𝑀 − 𝜑 curve calculated with the following steps: 

1) The initial slope starting at the origin corresponds to the uncracked stiffness. 

2) The second point moment represents the yielding of the reinforcing steel and the third and the last 

point represents the crushing of the concrete (ultimate concrete strain 0.035). 

3) The curvature at which yielding occurs is calculated with the yielding moment and the equivalent 

stiffness defined in Equation 4-10.  Therefore, the third slope of the curve is known. 

4) The stiffness of the second segment is found by calculating the tangent of Equation 4-10 at the 

yielding moment (tangent of the green line at the yielding moment). 

5) Since the first slope and the second slope are known the resulting first point is known. 

An example of a complete moment curvature curve is shown in Figure 4-7. 

 

 

Figure 4-7. Moment curvature curve of the cracked section and 3-point curve implemented in the grillage 
model. 

 

Non-linear 𝑀 − 𝜑 curves are placed at five intermediate nodes of the bridge model each with a specific 

integration length according to the Legendre quadrature rule (Neuenhofer & Filippou, 1998) for each 

longitudinal and transverse frame element. 
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4.3 Structural Analysis 

The objective of the structural analysis is to calculate the load carrying of each bridge by means of a 

push-down analysis in which the dead load is applied first, and the live load is applied incrementally, while 

updating every member’s stiffenss according to its 𝑀 − 𝜑 curve at each load increment up to the failure of 

one main longitudinal element.  It is noted that the load increments need to be applied sequentially since the 

superposition of loads valid for linear elastic analysis is not valid for non-linear analysis.  As already 

mentioned, only material nonlinearities are considered because the effects of the geometric non-linearity 

have been shown to be of little consequence for simply supported bridges and for small spans.  In fact, failure 

is normally reached when concrete crushes, and at this load stage, normally, the deflection is small enough 

to prevent any second order effect and to allow a small-displacement analysis. 

The mathematical representation of the equilibrium between external and internal forces at any load 

level is expressed by Equation 4-11: 

 𝐾 ∙ ∆r = ∆R (4-11) 

 

Where 𝐾  is the global stiffness matrix of the structural system, ∆r is the vector of the displacement 

increments and ∆R is the vector of load increments.  The global stiffness matrix, which itself is non-linear 

depending on the load level, is formed by assembling the contributions of the different frame elements.  

Therefore, in order to obtain the non-linear response of the structure, an iterative incremental step-by step 

analysis is performed using standard numerical analysis tools (Taylor, Hinton, Owen, & Oñate, 1984).  For 

example the Newton Raphson method consists in numerical iterations through the equilibrium Equations 4-

12 and 4-13: 

 𝐾 ∙ ∆r = ∆R = ∆𝑅 ) − ∆𝑅 )  (4-12) 

 

and 

 r = r + ∆r  (4-13) 
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Where the subscript 𝑛 refers to the load step while 𝑘 refers to the iteration within a specific load step.  ∆𝑅 )  

is the vector of externally applied load increments at step 𝑛 and ∆𝑅 )  is the internal resisting load 

increments. 

A correct initial and subsequent slope of each iteration step is of interest to increase the efficiency of 

the algorithm.  The simplest approach is to determine the tangent slope and update it at the beginning of each 

step (Figure 4-8) and is labeled as Standard Newton Raphson (SNR) method. 

 

 

Figure 4-8. Standard Newton-Raphson (SNR) procedure for non-linear solution algorithms 

 

An alternative approach is keep the slope of the iteration curve based on the initial tangent slope.  This method 

is labeled as Modified Newton-Raphson (MNR) (Figure 4-9). 
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Figure 4-9. Modified Newton-Raphson (MNR) procedure for non-linear solution algorithms 

 

While the MNR method allows faster but a large number of iterations, the SNR method allows slower but 

fewer iterations.  In general, a good compromise it to employ the MNR method for the first few iterations, 

where there is a chance that the initial elastic behavior of structures may well be modelled by a solver where 

the change of slope will not be critical, and switching to SNR method when the change of slope on the non-

linear algorithm becomes critical. 

The non-linear analysis can be carried out by force control or displacement control procedures Figure 

4-10.  The force control option consists of finding the displacement vector ∆r  which produces an internal 

force vector ∆𝑅 )  balancing the applied force increment ∆𝑅 )  while the displacement control 

option consists of finding the internal force vector ∆𝑅 )  balancing the applied force ∆𝑅 )  which 

produces an applied displacement increment ∆r . 

 

Figure 4-10. Displacement (left) and load (right) control procedure. 

 

The non-linear solver methods outlined in this section are implemented in the software OPENSEES 

(McKenna, 2011) and used in this work to carry out the non-linear structural analysis of the bridges under 
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study.  In this work, several tests have been carried out to select the most efficient algorithm among SNR, 

MNR and different combinations of both methods since it very important to reduce the time to analyzes as 

much as possible which in this case was kept on the other of 1 to 2 seconds.  The results show that using the 

SNR method led to a slight (e.g. 3%) improvement in calculation time compared to that of the MNR method 

and is therefore used for the calculations both of the preliminary sectional analysis and for the consequent 

system structural analysis. 

Even though the displacement control may lead to a better estimation of the maximum displacement 

of a bridge system, force control method are able to provide acceptable convergence to the ultimate load 

carrying capacity of the system.  On the other hand, the displacement control algorithm is able to reach a 

displacement slightly larger than the displacement at ultimate capacity which can be used to back calculate 

(with interpolation) the correct value of the ultimate capacity. 
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4.4 Validation of the numerical model 

The validity of grillage models for linear elastic systems has been extensively studied by Hambly 

(1991) and O’Brien and Keogh (1999) while Ghosn and Casas (1996) demonstrated their validity for the 

non-linear analysis of multi-girder bridges.  The document Evaluation of existing highway bridge systems by 

Ghosn and Casas (1996) compares the results of several bridge load tests to numerical analyses with based 

on the simplified non-linear grillage concluding that this model is valid to evaluate the overall behavior of 

most of common bridge types.  The aforementioned document was used as the basis for the nonlinear 

modelling applied in this work.  A comparison between the results of a FEM model of a bridge configuration 

which is very similar to the ones used in this work is provided by Gheitasi and Harris (2015) to load test 

results performed by Kathol et al. (1995). 

In this document, the results of the full-scale laboratory test of a simply supported three-beam bridge 

spanning 21.3 m as provided by Kathol et al. (1995) are compared to those obtained using the grillage 

analysis.  The cross section of the bridge under study is shown in Figure 4-11. 

 

Figure 4-11. Kathol et al. (1995) test bridge cross section (units are in meters). 

 

The live load is applied to approximate the effect of two side-by-side HS-20 trucks (with a slight 

change to the axle spacing) as shown in Figure 4-12.  The point loads are applied by 12 post-tensioned rods 

fastened to 12 steel plates with dimensions of 500 X 200 mm on the top surface of the bridge deck and passed 

through the floor of the structural deck and individually connected to hydraulic rams. 
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Figure 4-12. Kathol et al. (1995) test bridge system off loads. 

 

The bridge’s material properties are summarized inTable 4-1. 

 

Table 4-1. Material properties for the tested bridge. 

concrete 
concrete strength f'c MPa 39.0 

tensile stress f'c MPa 2.3 
secant stiffness 

modulus Ec MPa 29564 

structural steel       
yielding stress fsy MPa 248.2 
ultimate stress fsu MPa 400.0 

Young's modulus Ess MPa 200000 

reinforcing steel       
yielding stress fry MPa 496.4 
ultimate stress fru MPa 827.4 

Young's modulus Ers MPa 200000 
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The results are shown in Figure 4-13, where the applied load versus the center beam’s deflection is 

plotted for the original test, the FEM model and the grillage model proposed for this work. 

 

 

Figure 4-13. Load capacity versus deflection of the central beam.  Adapted from Gheitatsi and Harris (2015). 

 

The prediction of the overall response of the bridge as a result of the simplified grillage analysis shows 

acceptable agreement with the detailed Finite Element Method and the test results.  This means that for 

evaluating the overall response of the bridge, specifically the ultimate load carrying capacity the grillage 

model is valid.  In fact, the calculations performed by Ghosn and Casas (1996) are expected to be extended 

to practically all types of bridges after identifying the properties of the longitudinal and transverse sections.  

It is clear though that the FEM model is able to provide more details than the grillage model such as local 

stress distributions, local nonlinearities, lateral displacement of bottom flanges, that cannot be calculated with 

the grillage model.  However, such details are not of interest in this work.  As a matter of fact, Kathol et al. 

(1995) explains that the test was stopped due to a localized failure of the concrete deck in the central part of 

the slab due to the concentrated loads which prevented the bridge from developing its full global failure 

mechanism that is the actual objective of this work.  In fact, local deck failures, which will certainly 

inconvenience traffic on the bridge, do not lead to the collapse of the structure.  
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4.5 Probabilistic Model of System Resistance 

The non-linear analysis performed in this study is capable of calculating the load carrying capacity of 

a bridge expressed in terms of the live load multiplier which when applied to the basic nominal live load 

causes the bridge to fail when the bridge member properties are set at their nominal resistance values.  

However, one main objective of this work is to account for the uncertainties in estimating the values of the 

parameters that determine a bridge’s load carrying capacity and developing a probabilistic approach to 

quantify the bridge’s safety in terms of its structural reliability as will be further explained in Chapter 6. 

The description of the system resistance in statistical terms is based on defining a joint random 

variable 𝑅 − 𝐷𝐿 (𝑅 =System resistance, 𝐷𝐿 =Dead Load), which gives the capacity in terms of the 

maximum live load that the bridge can carry.  The statistical characterization of 𝑅 − 𝐷𝐿 is performed by 

generating a set of bridges for analysis where each bridge is characterized by a combination of randomly 

generated input variables that meet their known statistical properties.  The outcome of all the analyses are 

assembled into histograms of 𝑅 − 𝐷𝐿 that help determine the statistical distribution function of the bridge 

capacity and related parameters. 

The uncertainties used in determining the dead load 𝐷𝐿 are summarized in Table 4-2 as extracted 

from Sivakumar et al. (2011). 

 

Table 4-2. Random variables for dead load Sivakumar et al. (2011). 

Random variable Bias COV Distribution 

Steel weight 1.03 5.0% Normal 

Concrete weight 1.05 10.0% Normal 

Asphalt weight 1.00 25.0% Normal 

Barrier weight 1.03 5.0% Normal 

 

The statistical variables relevant for the definition of the resistance 𝑅, depend on the variability of the 

material mechanical properties as obtained by Nowak and Collins (2013) and summarized in Table 4-3.  The 

inspection uncertainties are taken from Phares et al. (2001) and Moore et al. (2001) as explained in Section 

3.6. 
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Table 4-3. Resistance uncertainties for longitudinal and transverse elements. 

Random variable Bias COV Distribution 

Composite concrete steel longitudinal members 

Concrete strength 1.21 15.5% Log-normal 

Steel yielding stress 1.05 10.0% Normal 

Material and fabrication 1.07 8.0% Normal 

Analysis factor 1.05 6.0% Normal 

Inspection uncertainties 0.95 15% Normal 

Reinforced concrete transverse members 

Concrete strength 1.21 15.5% Log-normal 

Reinforcing steel yielding 
stress 1.13 3.0% Normal 

Material and fabrication 1.12 12% Normal 

Analysis factor 1.00 6.0% Normal 

 

For the analysis of deteriorated bridges, the moment curvature curves are modified according to the 

deterioration rates and their statistical descriptions determined in section 3 of this Thesis (Figure 3-13).  The 

modification of the moment curvature curve is applied by scaling the ultimate moment and the associated 

plastic branch, and defining a new intercept with the linear branch which remains unchanged as described in 

Figure 4-14. 

 

 

Figure 4-14. Modification of the moment curvature curve to account for deterioration in bridge member 
capacity. 
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In order to find the probability distribution, which describes the random variable 𝑅 − 𝐷𝐿 along with its 

parameters, a simulation process must be carried out.  The simulation process consists of generating a set of 𝑛 samples of one bridge representing (each identified with the subscript 𝑖) a possible scenario of 𝑚 input 

variables (each identified with the subscript 𝑗) that lead to a possible output response of the bridge (Figure 

4-15). 

 

 

Figure 4-15. Generation of input data and calculation of output for bridge sample. 

 

The most straightforward method to generate a set of n bridge samples is through a Monte Carlo 

Simulation (MCS), where a realization of each variable 𝑗 is randomly generated based on its statistical 

properties for each bridge sample i.  This process itself is repeated n times to create n bridge samples.  The 

number of bridge samples does not need to be defined a priori but the sampling is continued until the 

statistical properties of the output converge to a stable outcome.  For example, the bridge’s live load carrying 

capacity represented by the 𝑅 − 𝐷𝐿 variable can be described by a normal probability distribution and 

therefore the mean and standard deviation updated after calculating the result of every sample until the 

parameters reach stable values.  Although MCS has the advantage of being theoretically simple and easy to 

implement its major drawback is the high computational cost due to the high number of samples needed to 

obtain stable results. 

One of the alternatives to MCS is the use of stratified-random sampling usually labeled as Latin 

Hypercube Simulation (LHS) which consists of extracting 𝑛 values from each of the 𝑚 random variables 

equal to the total number of samples (Iman & Conover, 1982).  A value for each parameter is selected 

randomly from each interval generating a matrix of 𝑛x𝑚 random variables as shown in Equation 4-14. 
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𝑉 ⋯ 𝑉 ⋯ 𝑉 = ⎣⎢⎢
⎢⎡𝑣 ⋯ 𝑣 ⋯ 𝑣⋮ ⋱ ⋮𝑣 ⋯ 𝑣⋮ ⋱𝑣 𝑣 ⎦⎥⎥

⎥⎤
 (4-14) 

 

Where 𝑉  is the n-dimensional vector describing the j-th random variable set of n realizations, and 𝑣  are the 𝑉  vector elements at the generic i-th realization. 

A visualization of the selected process of selecting values for each random variable from each 

cumulative probability distribution for a two-dimension problem where 𝑛 = 5 and 𝑚 = 2 is shown in Figure 

4-16. 

 

 

Figure 4-16. LHS variable values for an example simulation with where 𝒏 = 𝟓 and 𝒎 = 𝟐. 

 

The two plots on the left in Figure 4-16 represent the two random variables of the example and the 

stratification of each of them into five sub-domains from which each sample value is extracted.  Therefore, 

the extracted values are organized into a matrix as shown in the right matrix in Figure 4-16.  This matrix 

shows how the two sets of extracted values are paired to cover the whole area of the matrix as much as 

possible and no point appears in each line or column twice. 

The generic pairing of the random variable samples is associated with a correlation between each 

couple of random variables 𝑉  and 𝑉  defined by Equation 4-15: 
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𝜌 𝑉 , 𝑉 ) = ∑ 𝑣 , − 𝑉 𝑣 , − 𝑉∑ 𝑣 , − 𝑉 𝑣 , − 𝑉  (4-15) 

 

Where the vinculum sign indicates mean value.  The different correlations between the various random 

variables can be organized into a symmetric 𝑚x𝑚 correlation matrix Ρ shown in Equation 4-16 

 

Ρ = ⎣⎢⎢
⎢⎡ 1 ⋱ 𝑆𝑦𝑚1𝜌 𝑉 , 𝑉 ) ⋱ 1 ⎦⎥⎥

⎥⎤ (4-16) 

 

The correlation between two variables indicates systematic dependency with a coefficient of 𝜌 = 1 for a 

strong increasing correlation and 𝜌 = −1 for a strong decreasing correlation.  As shown in Figure 4-17, the 

noisier the correlation is the lower is, the absolute value of 𝜌 and a coefficient 𝜌 = 0 indicating uncorrelated 

variables.  In other words, the correlation coefficient indicates the noisiness and direction of a linear 

relationship, but it does not give the slope nor other characteristics of non-linear relationships between each 

pair of random variables (Figure 4-17). 

 

 

Figure 4-17. Several sets of couples of variables with the related correlation coefficient (extracted from 
https://en.wikipedia.org/wiki/Correlation_and_dependence). 
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For example, the correlation between the strength of different materials must be set to 0.0, because 

the value of one variable is independent of the value of the other.  On the other hand, the strength of concrete 

cast at different locations is likely to present some dependency with a correlation coefficient greater than 0.0, 

even though, generally speaking, it is reasonable to assume that the material properties are homogenous 

within the concrete volume, reducing the concrete strength to one unique variable. 

In principle, the correlation matrix obtained by the random pairing of the different sample input values 

in LHS may not provide an acceptable correlation matrix.  Therefore, a mathematical algorithm may be used 

to change the pairing of the variable values with the objective of matching the correlation matrix obtained 

from the sampling process to a desired correlation matrix.  A full description of the restricted pairing process 

may be found in the work by Iman and Conover (1982). 

In this work a correlation 𝜌 = 0 is considered between each pair of random variables summarized in 

Table 4-2 and Table 4-3 because they have no physical dependency between each other.  It is noted, that the 

concrete strength applied to the slab for the transverse and longitudinal elements could be treated as two 

random variables with perfect correlation.  However, in this analysis, we use a unique concrete strength 

random variable and, assign the same concrete strength value to the longitudinal and transverse elements at 

each simulation run because this option is computationally more efficient than having two perfectly 

correlated variables. 

Therefore, the objective correlation matrix for the restricted pairing process is represented by the 

identity matrix with dimensions 𝑚x𝑚 where 𝑚 = 13 is equal to the total number of random variables. 

4.6 Example Probabilistic Analysis of Bridge System Capacity 

An example probabilistic analysis of a bridge system is performed in this section to illustrate the 

simulation procedure and extract some useful results for latter implementation in the risk analysis process.  

The capacity of the bridge system analyzed in this study is conveniently represented by the joint variable R-

DL, (where R=system resistance, DL=dead load).  The statistical properties of this joint variable 

automatically account for the uncertainties in all the random variables that control the load carrying capacity 

of the bridge system including the distribution of the applied load among the bridge members. 

The probabilistic study of the system capacity is first performed with a full Monte Carlo simulation, 

where the random variables outlined in Table 4-3 are applied to one of the bridges of set 1.  The bridge, 

identified in the NBI data file by the label 000000001006922, carries 2 traffic lanes, its span length is 38.1 

m, and, its total width is 13.0 m.  It is composed of 5 parallel longitudinal beams spaced 2.60 m center to 

center.  A simulation campaign is performed to study the convergence of the statistical parameters that 

describe the R-DL variable at failure.  The total calculation time for a 106 simulation runs is 160 hours making 

the average calculation time for a non linear analysis of one bridge sample approximately equal to 0.5 

seconds.  It must be noted that these 0.5 seconds include pre and post processing times as well as the time 
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for storing the results.  This low analysis time, reflects the high optimization that has been obtained in the 

structural analysis code, since no standard calculation program would be able to perform this non-linear 

calculation in such a short interval.  Specifically, the code for pre and post processing and storage is 

programmed and optimized in Tlc/tk language in the context of this work, while the structural calculation 

algorithm is taken from the OPENSEES framework which is reasonably fast. 

The statistical parameters of the R-DL variable for this bridge are evaluated by plotting the histogram 

of the MCS output on a normal probability plot, after observing that a normal probability gives the best fit 

among many probability distribution functions (Figure 4-18). 

 

Figure 4-18. Probability plot for the 106 sample simulation of the random variable R-DL. 

 

The same curve fit process is performed with different number of simulation runs providing different 

degrees of precision of the probability distribution parameters (bias and coefficient of variation) as outlined 

in Figure 4-19. 
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Figure 4-19. Convergence of bias and coefficient of variation of system capacity of example bridge with 
number of Monte Carlo simulations. 

 

The maximum number of MCS runs is preset to 106 simulations to define the baseline for the values of COV 

of the R-DL random variable and are used to compare the results of other simulations and check accuracy.  

The relations between the number of runs and the percent difference from the values obtained with 106 runs 

are shown in Figure 4-19 where the bias factor (orange dots) converges faster than the COV (blue dots).  

Convergence will be considered to have been achieved when the absolute value of the error in the bias factor 

is smaller than 1%, and the error in the COV is smaller than 5%. 

The converged values of the average R-DL (fitted in the normal probability plot with a coefficient of 

regression R2=0.99 as shown in Figure 4-18) is 989.4 kNm with a standard deviation of 237.4 kNm.  The 

mean is compared to the nominal value of 846.6 kNm (deterministic value) indicating that the bias is 1.17 

and the coefficient of variation is 24%.  This result can be compared to the typical bias for member capacity, 

as for example, given by Nowak and Lind (1987) for evaluating the moment capacity of composite steel 

girders equal to 1.12 with a COV=10%.  Similarly, Bhattacharya et al. (2009) use a bias of 1.11 and a COV 

12%.  It is noted, that the typical values that are provided in the literature are for member resistance and do 

not include inspection uncertainties, while the simulation in this study gives the random variable of the entire 

system R-DL and includes inspection uncertainties. 

The same sensitivity analysis performed with the Monte Carlo simulation is performed with the 

simplified Latin Hypercube Simulation described in Section 4.5.  The LHS calculations are calculated to 

simulate the capacity of the bridge system for different deterioration rates and time intervals as shown in 

Figure 4-20. 
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Figure 4-20. Statistical parameters for the system capacity for different deterioration rates and exposure 
periods. 

 

The top part of Figure 4-20 presents the nominal R-DL value already calculated (deterministic value) 

while the bottom four matrices give mean values, bias factors, standard deviations and coefficients of 

variations for each case analyzed.  Each 4x3 matrix represents the change of the variable R-DL resulting from 

three levels of deterioration (high, medium and low) and different years of deterioration.  The deterioration 

rates are included in the calculation by adding a 14th random variable representing the statistical variation of 

the cumulative histograms plotted in Figure 3-13 for each deterioration rate.  The percent reduction in 

member capacity for a given time period 𝐷𝑅 𝑇) is calculated as 𝐷𝑅 × 𝑇 where 𝐷𝑅 is the annual deterioration 

rate and 𝑇 is the time interval in years. 

Nominal
capacity
(kNm)

846.6

Mean value Bias

high medium low high medium low
1 952.3 982.4 988.9 1 1.12 1.16 1.17
2 915.0 976.6 988.9 2 1.08 1.15 1.17
4 856.6 965.1 988.8 4 1.01 1.14 1.17
6 807.1 953.6 988.7 6 0.95 1.13 1.17

Standard deviation COV

high medium low high medium low
1 239.0 237.4 238.3 1 25% 24% 24%
2 247.0 236.6 238.3 2 27% 24% 24%
4 255.0 234.8 238.3 4 30% 24% 24%
6 243.2 232.6 238.3 6 30% 24% 24%
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Figure 4-21. Sensitivity of the R-DL parameter for the example bridge executed with LHS for different number 
of runs. 

 

The calculation of the random variable R-DL is performed for each bridge with the aforementioned 

LHS to reduce the computation effort compared to a crude MCS.  Figure 4-21 shows how fast the statistical 

parameters obtained using LHS converge to the final results of 106 MCS runs.  Specifically Figure 4-21 

shows that the error in determining the COV is more sensitive to the number of LHS runs compared to the 

bias factor.  However, the effectiveness of the LHS is remarkable, considering that with close to 20 runs the 

error is around 3%.  The results obtained in the LHS sensitivity analysis are reported in Table 4-4 to provide 

a better sense of the order of magnitude of the errors obtained.  The sensitivity analysis demonstrates that for 

this specific case a LHS with 15 runs may already provide acceptable values with the aforementioned target 

errors of 5% for the COV and 1% for the bias factor.  It is noted that the limitations in the LHS algorithm are 

such that not much improvement can be achieved in the bias with a higher number of simulations but that 

the COV can be reduced significantly to an error of 0.6% by doubling the number of simulations to 50.  In 

any case, the results shown in Table 4-4 confirm that for both the bias and for the COV the precision obtained 

by the number of runs confirms that the 25 runs LHS found in the previous case provides acceptable errors 

in terms of COV and bias factor. 
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Table 4-4. Sensitivity of the R-DL parameter for the example bridge executed with LHS for different number of 
runs. 

# of 
sample nominal mean st dev bias COV err bias err COV 

  kN kN kN - - - - 
15 846.6 991.4 249.6 1.17 0.25 0.2% 4.9% 
20 846.6 991.0 244.7 1.17 0.25 0.2% 2.9% 
25 846.6 990.3 244.0 1.17 0.25 0.1% 2.7% 
30 846.6 989.4 242.0 1.17 0.24 0.0% 1.9% 
50 846.6 989.5 236.0 1.17 0.24 0.0% 0.6% 

 

Another interesting parameter to be studied is the influence of the live load pattern on the R-DL 

parameter since the calculations shown so far are performed with two side-by-side trucks where nominal 

weight of the AASHTO Legal Load truck is used for the internal truck and a truck having the configuration 

of the Legal Load is used for the external truck but with an amplified weight equal to 2.4.  The explanation 

on how the weights are determined will be explained in Chapter 5.  The bridge capacity (R-DL) is obtained 

by incrementing the applied loads until bridge superstructure system failure R-DL is equal to the total 

incremented weight on the bridge.  The simulation process is also repeated with only one Legal truck on the 

bridge. 

 

 

 

Figure 4-22. Sensitivity of the R-DL parameter for the example bridge executed with LHS for different number 
of runs. 1-truck configuration. 
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Table 4-5. Sensitivity of the R-DL parameter for the example bridge executed with LHS for different number of 
runs. 1-truck configuration. 

n_sample nominal mean st dev bias COV err bias err COV 
  kN kN kN - - - - 

15 738.0 872.0 193.0 1.18 0.22 1.1% 7.8%
20 738.0 871.0 194.0 1.18 0.22 1.0% 7.2%
25 738.0 870.4 195.4 1.18 0.22 0.9% 6.4%
30 738.0 870.4 196.0 1.18 0.23 0.9% 6.2%
50 738.0 869.1 199.0 1.18 0.23 0.8% 4.6%

 

The results for the one-truck loading plotted in Figure 4-22 and listed in Table 4-5 show that the convergence 

of the R-DL statistical parameters presents acceptable precision with an error smaller than 5% after 50 runs.  

Furthermore, the bias factor of 1.18 and the COV of 0.23 is consistent with the results obtained with the two-

lane load pattern.  The conclusion is that the dependency of the system capacity statistical parameters on the 

load pattern (1 or 2 trucks) is negligible. 

Thus, for the rest of the study LHS is performed for each bridge with 50 LHS runs, because the results 

shown in Figure 4-21 and 4-22 and Table 4-4 and 4-5 show that this number of runs provides sufficient 

degree of precision.  The results obtained for the different bridge configurations can be visualized by 

observing their dependency to the ratio MDL/Mu (nominal dead load moment of the member over nominal 

member capacity) 

 

Figure 4-23. Bias factor of the R-DL (or equivalently LL in the y-axis) versus the ratio between dead load 
moment and ultimate moment of a member for the full set 1 of bridges. 
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Figure 4-24. COV of the R-DL versus the ratio between dead load moment and ultimate moment of a member 
for the full set 1 of bridges. 

 

Figure 4-23 shows how the bias factor of the system R-DL varies versus the ratio between dead load 

moment and ultimate moment of a member for the full set 1 of bridges. Figure 4-24 gives the COV of the 

system R-DL versus the member MDL/Mu ratio. 

Figures 4-23 and 4-24 show that bridges where the dead load is more predominant in relation to the 

capacity of the bridge members have a higher bias factor and a higher COV for the system R-DL.  The 

explanation of this trend depends on the relation between the margin R-DL available to carry the live load.  

In general, at low values of applied live load the bridge response remains in the linear range and progressively 

moves into non-linear range as the applied live load increases.  It must be recalled that, as shown in Figure 

4-14, the uncertainties are higher in the non-linear range of the response.  Therefore, when the bridge has 

very little capacity left for live load, the a higher proportion of the live load is applied when the bridge is in 

the non-linear stage where the uncertainties are higher than for the early stages of loading.  On the other hand, 

when a large amount of live load is applied when the bridge is still in its linear elastic range the uncertainties 

in estimating the response are on the low end.  Likewise, the trend in the bias factor is directly related to the 

proportions of R and DL in the R-DL random variable as shown in the values given in Figure 4-20, the bias 

in member resistance, R, is higher than the bias in member dead load, DL and thus in R and DL of the system.  

In other words, R-DL bias and COV are smaller for those bridges where a large part of the capacity is 

consumed by the dead load, as expected. 

Another interesting trend to observe is the relationship between the bias and COV of the load carrying 

capacity of the bridge member and the load carrying capacity of the system represented by the R-DL of the 

member and system respectively.  This is achieved by the plot shown in Figure 4-25 where the bias factor of 

the member ultimate moment minus dead load moment (𝑀 − 𝑀 ) on the x-axis is compared to the bias 
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factor of the system capacity minus total dead load (𝑅 − 𝐷𝐿) on the y-axis.  Figure 4-25 shows that there is 

an approximate linear relationship between member and system results both in terms of bias factor and COV 

although the linear relationship is not perfect because of the different bridge configurations effect on system 

behavior including the nonlinear cracking and yielding of the slab in the transverse direction. 

 

 

Figure 4-25. Bias factor (left) and COV (right) of the member ultimate moment minus dead load moment (Mu-
MDL) versus bias factor (left) and COV (right) of the system capacity minus total dead load (R-DL) on the y-axis. 
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4.7 Chapter conclusion 

In this chapter, the resistance side of the bridge system’s safety equation has been assessed along with 

its full description as a random variable to allow its implementation in a reliability analysis.  The analysis is 

implemented to a nonlinear grillage model of the bridge to assess its system behavior, hence accounting for 

its ability to redistribute loads after one or more members exhibit nonlinear deformation. 

While many different strategies are available in the literature to calculate system capacity to assess 

the reliability of bridges, this work requires extremely efficient and fast algorithms because a large number 

of calculations need to be performed to find the statistics of system resistances of several different bridges 

each with a different configuration, each of which must be evaluated for different deterioration rates and for 

different exposure periods.  For these reasons, a simplified and fast nonlinear grillage analysis is adopted to 

study the global response of bridges as an alternative to a more precise but computationally demanding FEM 

model.  The grillage results are determined to be accurate for the purposes of this study where the local 

response of each detail of the bridge is not needed. 

Furthermore, the statistics of the system capacity are assessed for later implementation in a simplified 

system reliability analysis.  This key element is first calculated with a MCS for a specific example bridge, 

and afterwards compared with the more efficient LHS.  A suitable number of LHS runs is established by 

observing that after 50 runs, the statistical parameters of the calculated load carrying capacity of the bridge 

system reach acceptable converged values.  LHS is therefore used for the system reliability analysis of the 

full set 1 of bridges (279 bridges). 

A review of the results of the simulations shows how the system R-DL random variable relates to the 

ratio of member dead load to member ultimate capacity.  The trend observed shows higher values of bias 

factor and COV for those bridges with a high level of dead load.  For the bridges of set 1, it is observed that 

the bias ranges between 1.1 and 1.2 and the COV ranges between 20 to 30%.  This information will be used 

in Chapter 6 to develop a simplified reliability analysis process for use in the practical probabilistic risk 

analysis process.  
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5 Live load model 

The calculation of the probability of failure of bridge systems is based on the numerical representation 

of the response of the bridge as well as the demand over it in terms of applied load.  In the previous chapter 

described the dead load model adopted for this study. This chapter is dedicated to the probabilistic modeling 

of the live load intensity and its effects on structural members.  Live loads for bridges are represented by the 

maximum load occurring over a specific period of exposure that depends on the type of analysis being carried 

out.  Structural codes (AASHTO, 2017; CEN, 2003) provide guidance to determine the traffic live load using 

a widely used deterministic approach in combination with live-load safety factors.  However, the assumptions 

made for the code-calibrated nominal live loads and associated load factors may not be applicable for all 

types of bridges and analysis procedures.  Furthermore, when, as is the case in this work, a more accurate 

probabilistic analysis is required, a recalibration of the live loads may be necessary to better account for the 

uncertainties associated with estimating the critical vehicle weights and other live load characteristics. 

The recalibration of the live load model requires input traffic data collected at stations that give 

accurate representation of actual traffic over bridges.  In this work, traffic data recorded using weigh-in-

motion (WIM) technology at representative stations in NYS are used to model the live load.  

The data are used to calibrate a live load model suitable for structural analysis, in particular for 

analyzing composite steel girder-concrete slab bridges taking into consideration the structural configuration 

of the bridge including span length, number of beams and beam spacing.  The model will include statistical 

parameters applicable for reliability analyses. 

Most of the contents of this chapter have been published in the papers by Anitori et al. (2013; 2016). 

5.1 WIM Database 

The weigh-in-motion (WIM) data used in this work are the result of a one-year long monitoring 

campaign carried out at 20 WIM stations spread around the New York State highway network and analyzed 

by Ghosn et al. (2015) after applying filtering protocols proposed by Sivakumar et al. (2011) to eliminate 

unreliable data.  For each WIM station’s set of data, a number of traffic characteristics was determined, 

including the total number of vehicles recorded at each site, the average daily truck traffic ADTT, defined as 

the number of trucks per day recorded at each site averaged over one year of measurements, and the number 

of overweight (OW) trucks, defined as the number of trucks that exceed the legal weight limits applicable to 

the state of New York.  Additional details on these topics can be found in Fiorillo and Ghosn (2014) and in 

Ghosn et al. (2015).  Table 5-1 lists each station’s traffic characteristics. 
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Table 5-1. Traffic characteristics for each WIM station. 

Station ID No. of vehicles % OW ADTT

1281 27221 19.2 76 

1400 652304 18.6 1832 

1800 305100 22.6 851 

2680 154740 24.4 429 

3311 1225061 18.4 3481 

4342 477552 14.2 1329 

4483 113220 16.3 322 

5183 467485 21.2 1298 

5281 114761 26.4 317 

6282 67350 21.3 186 

6340 107884 20.1 335 

6482 822958 17.3 2299 

7100 454588 23.3 1293 

7181 149752 26.6 414 

7381 273144 12.4 779 

8280 1733022 11.7 4804 

8382 1277280 14.3 3605 

9121 1149657 15.2 3861 

9580 561431 21 1555 

9631 226993 25.5 651 

 

5.2 Effects of Truck Loads on Short to Medium Span Bridges 

Based on the dimensions of typical truck configurations in the database and the type of bridges and 

span length being analyzed, it has been observed that there is a low probability of fitting two consecutive 

trucks in the same lane.  Therefore, for short to medium span bridges (15 to 60 m) under consideration, the 

maximum load effect is governed by the presence of a single truck per lane.  As already mentioned, this work 

focuses on the analysis of simple span steel-concrete composite bridges which represent a very common 

structural type in many countries and within the United States, especially in the state of New York.  A set of 

100 configurations representative of the existing steel-concrete composite bridge population having the 

combination of the geometric parameters listed in Table 5-2 was established for analysis. 
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Table 5-2. Bridge configurations for structural analysis. 

Span length (m) 15, 20, 30, 40, 60 

Number of beams 4, 6, 8, 10 

Beam spacing (m) 1.2, 1.8, 2.4, 3.0, 3.6 

 

The set of bridges in Table 5-2 is analyzed to find the load effect in terms of bending moment for each 

of the trucks in the WIM database.  Each truck’s data include the number of axles, the axle spacings and the 

axle weights.  The design of the bridge members is performed using the same criteria described in Chapter 

4. 

Due to the large number of analyses to be performed for each vehicle and for the different possible positions 

of the vehicle along the longitudinal axis of the lane and lateral position, the analysis is performed using a 

set of influence surfaces.  The influence surfaces are found by placing a unit point load at a specific node of 

the grillage representing the main members of the bridge and recording the corresponding moment produced 

at the midspan of the bridge, which is the most critical location for a point load over a simple span.  .  The 

process is repeated by moving the point load to every node of the grillage to define a contour diagram where 

the ordinate in the map at a specific point represents the moment effect of a unit point load at the most critical 

location of a specific member.  The influence surfaces are plotted using normalized node coordinates; both 

longitudinally (normalized with respect to span length) and transversally (normalized with respect to bridge 

width).  As an example, Figure 5-1 shows the influence surface for the two members of a multi-girder bridge, 

where member 1 is the edge girder and member 2 is the next girder.  In the example shown in Figure 5-1 the 

effect of a point load (-1.0 kN) applied at the location of the red arrow produces a moment on the external 

member of 12 kN.m. 
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Figure 5-1. Example of moment influence surfaces for the section at midspan of a 30 m four-girder bridge with 
1.8 m beam spacing, for the (a) first and (b) second member. 

 

Once the influence surfaces are drawn, the maximum bending moment is determined  by positioning 

each truck’s axle at the appropriate node of the influence surface and by multiplying the ordinate at each 

node by the weight of the axle at that node and superposing the effects of all the axles.   

For example, consider a single or two side-by-side AASHTO HL-93 design trucks moving along a 

path where the exterior wheel is half way between the two external girders over the 30 m four-girder bridge 

with 1.8 m beam spacing whose influence surfaces are depicted in Figure 5-1.  The fraction of the load effect 

of one truck carried by the most loaded internal girder is 0.34 and it is 0.50 for the external member for the 

case where one lane only is loaded by the HL-93 truck.  The fraction of the loads carried by the internal 

girder is 0.54 and that carried by the external girder is 0.57 for the for the 2-lane loaded case. These are 

compared to the AASHTO distribution factors that would be equal to 0.32 for the internal and 0.50 for the 

external member when the bridge is loaded by a single lane after removing the multiple lane factor, and 0.45 

for the internal and 0.55 for the external member for the 2-lane case.  The relatively small differences in the 

results may be due to the specific characteristics of the bridge analyzed in this example and the positioning 

of the loads.  The AASHTO LRFD load distribution factors are calibrated by fitting equations through the 

results of hundreds of bridge grillage analyses similar to the analyses performed in this work.  The accuracy 
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of the grillage models was verified by comparing the results of a number of cases with those of more advanced 

3-D finite element analyses and field test results (Zokaie, Mish, & Imbsen, 1995). 

5.3 Load effect on bridge members from single lane traffic 

The moment effects for all the vehicles in the WIM database, were collected and organized in 

histograms similar to the ones shown in Figures 5-2 and 5-3. 

 

 

Figure 5-2. Histograms of maximum moment in the first four longitudinal members from the edge due to traffic 
load in lane 1 of a 30 m bridge with 10 beams at 1.8 m. 



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 95 

 

Figure 5-3. Histograms of maximum moment in the first four longitudinal members from the edge due to traffic 
load in lane 2 of a 30 m bridge with 10 beams at 1.8 m. 

 

From Figures 5-2 and 5-3 and the analyses of the other bridges, it is observed that the moment effect 

of the vehicles passing over the most external lane is primarily carried by the external girder and the load 

effect on the interior girder decreases so that the fourth girder carries negligible fraction of the total moment 

effect.  On the other hand, the effect of vehicles passing over an internal lane (say the passing lane) is more 

widely distributed among the first four members of the bridge as shown in Figure 5-3. 

5.4 Statistical Analysis of Load Effect 

The extrapolation of the load effect histograms to calibrate a nominal live load model for application 

during the design of bridges has been  used by Nowak (1999) and implemented in the AASHTO LRFD.  In 

that study, Nowak (1999) employed a simple method to extrapolate the maximum load effect from truck data 

collected during a survey undertaken in 1975 in Ontario Canada.  The simple method was found to be 

reasonable because the Ontario data available at the time was biased toward the heaviest 20% of the trucks 

crossing the survey site.  The approach may not be necessarily accurate for other data sets although it was 

widely used in other research projects (Jo, Onoufriou, & Crocombe, 2005; Khorasani, 2010).  According to 

Nowak’s method, the load effect data are assumed to fit a normal distribution.  Assuming a certain number, 
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N, of trucks crossing the bridge during the reference period, the expected maximum load effect is obtained 

using the 1/N fractile of the standard normal probability function.  This truck weight fractile provides the 

number of standard deviations by which the maximum load exceeds the mean value.  However, other 

researchers (Ghosn, Sivakumar, & Miao, 2013; Sivakumar et al., 2011; Soriano, Casas, & Ghosn, 2017) 

observed that the entire data set does not follow a normal distribution but that the upper tail of the load effect 

distribution (heaviest vehicles) can have the statistical characteristics of the upper tail of a fictitious standard 

distribution curve.  In particular, it was found that the upper 5% of the sample load effect data could be fitted 

with the tail end of a normal distribution.  For example, as shown in Figure 5-4, the tail end of the load effect 

cumulative histogram, matches very well with that of normal cumulative probability distribution.  It is noted 

that in Figure 5-4, the cumulative distrbutions are plotted on a normal probability scale for a 40 m bridge. 

 

 

Figure 5-4.  Normal distribution probability plot and linear fit of the 5% upper tail. 

 

The abscissa in Figure 5-4 gives the ratio of the moment effect of the vehicles in the WIM database 

and the effect of the AASHTO HL-93 design load, while the ordinate gives the normal deviate corresponding 

to the probability of exceeding a given load effect value as assembled from histograms similar to those in 

Figures 5-2 and 5-3.  The probability plot would give a straight line when the data plotted follow a normal 

distribution.  In the case of Figure 5-4, the entire population of data does not follow a straight line, but the 

upper 5% population does.  The regression analysis used to find the best parameters of the fitting line for the 

upper 5% shows a coefficient of regression 𝑅 = 0.99, where a coefficient of 1.00 indicates a perfect fit.  

Similar results in terms of goodness of fit are obtained for the set of bridges analyzed in this work as discussed 

in section 5.2 and in other cases analyzed by Sivakumar et al. (2011) confirming that the 5% upper tail of the 

load effect data can be well described by the upper 5% of a normal distribution.  Fitting the tail end by that 

of a hypothetical normal distribution will facilitate the projection of the data to estimate the expected 

maximum load over a bridge’s service period as will be presented further in this document. 



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 97 

The fitting of the upper 5% tail of load effect calculated from WIM data with that of a normal 

distribution is repeated for the full set of bridges presented in section 5.2 and for the first four members of 

each bridge.  For example, Table 5-3 lists the mean values and the standard deviations of the equivalent 

normal probability distributions of the moment load effects in the most loaded beams of bridges of different 

span-lengths. These statistics are for equivalent normal distributions whose tail ends match the upper 5% of 

the load effects of the vehicle population collected at New York WIM site 9121.  This WIM station recorded 

more than one million vehicles over a 1-year period.  

 

Table 5-3. Normal distribution parameters for the upper 5% of the load effect for the most external member for 
bridges of different span length. 

Span 
length 

(m) 

Mean of normal distribution that fits the 
upper tail of MWIM/MHL93 histogram 

 

Standard Deviation of normal distribution that fits 
the upper tail of MWIM/MHL93 histogram 

 

15 -0.01 0.39 

20 -0.03 0.34 

30 -0.02 0.36 

40 -0.01 0.37 

60 0.00 0.34 

 

From Table 5-3, it is observed that the load effect divided by that of the HL-93 design load the mean 

value of is close to zero and the standard deviation ranges between 0.34 to 0.39 for all cases considered.  

However, these results need to be projected to give the maximum effect in an exposure period such as the 

75-year exposure for new designs as specified by the AASTHO LRFD or a 100-year exposure as specified 

by the Eurocodes. Alternatively, a smaller exposure time used for evaluation analyses according to AASHTO 

MBE.  In this work, different exposure periods are considered for different intervals between inspections as 

will be explained in sections 5.8 and 5.9. 

5.5 Multiple presence of trucks 

In general, it has been observed that the maximum load effect in a single lane of a simply supported 

bridge is governed by individual trucks when the bridge is less than approximately 60 m (200 ft) in length as 

noted by Nowak (1999), Ghosn et al. (2013), Fu et al. (2013), Ghasemi et al. (2016).  However, for multi-

lane bridges and longer and continuous spans, the analysis must take into account the probability that the 

maximum effect may be due to the presence of more than one truck in different lanes, different spans or 

within the same lane when the span length is long.  For example, the work carried out by O’Brien and Enright 

(2011) where the traffic load effect was obtained by the analysis of traffic data from bridges in the 

Netherlands and Czech Republic concluded that for bridges with span lengths greater than 45 m, high lane 
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distribution factors and very high traffic volumes, the governing load scenario consists of the presence of 

more than a single truck per lane.  Due to the different truck characteristics observed in the WIM dataset 

analyzed in this work, which shows that the heaviest trucks are significantly longer than those observed in 

the Netherlands or the Czech Republic, and also due to the different lane distribution factors observed for the 

types of multi-girder bridges studied as compared to the values assumed by O’Brien and Enright (2011), it 

is herein assumed that the case of one truck per lane or two side-by-side trucks govern as also recommended 

by Nowak (1999), Fu et al. (2013), Ghasemi et al. (2016).   

The plot in Figure 5-5 shows the frequency distribution of the normalized total moment at the mid-

span of a 60 m long single span when one lane of the bridge is loaded and compares it to that obtained when 

the traffic is occupying two lanes. 

 
Figure 5-5. Normalized moment histogram for a 60 m (200 ft) span bridge. 

 

The effect of multi-lane vehicular load was considered by Ghosn and Moses (1985), Ghosn and Moses 

(1986), Nowak (1999) and more recently by O’Brien and Enright (2011).  The approach followed by Nowak 

(1999) is based on the observation that there is a correlation between the weights of trucks in two adjacent 

lanes, where a coefficient of correlation smaller than 1.00 indicates that the moment effect due to two trucks 

cannot simply be represented by two equal trucks with the same Gross Vehicle Weights (GVW) although it 

is not excluded a priori.  A correlation coefficient equal to 1.00 indicates that the moment effect due to multi-

presence of two trucks is always caused by two similar trucks with the same weight.  Specifically, full 

correlation is represented by ρ=1.00, partial correlation by ρ=0.50 and no correlation by ρ=0.00.  The results 

listed in Table 5-4 provide the parameter Z which is the normal standard deviate of the probability of 

occurrence for a given number of simultaneous occurrences, N, such that ( )NZ 11−Φ−= .  The return 

period, T, given in the last column of Table 5-4 for each value of Z is found by extrapolating the load effect 
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database assuming a normal distribution.  These return periods can then be used to determine which truck 

weight should be used in each lane to simulate the maximum load effect. 

 

Table 5-4. Return periods, T, for different correlation coefficients in two-lane load events. 

Number of lanes loaded N Z T 

   (number of events) (st. norm. 
variate)  

One  20 000 000 5.33 75 years 

Two 

ρ=0.00 Lane 1 1 500 000 4.83 5 years 
 Lane 2 1 0.00 average 

ρ=0.50 Lane 1 150 000 4.36 6 months 
 Lane 2 1 000 3.09 1 day 

ρ=1.00 Lane 1 50 000 4.11 2 months 
 Lane 2 50 000 4.11 2 months 

 

Following the results in Table 5-4, Nowak (1999) assumed that trucks in side-by-side configurations 

represent 1/15 of the truck loading events, truck weights in side-by-side events are correlated and thus the 

maximum 75-year load effect can be simulated by placing the maximum 2-month truck in each lane.  

However, these assumptions that are based on the limited data available at the time, may not be always valid.  

In fact, analyzing large numbers of WIM sites in New York, Sivakumar et al. (2011) observed that: 

1) As already explained earlier and shown in Figure 5-4, the load effects of heavy trucks do not 

generally follow normal probability distributions but that only the upper 5% in the tail end 

matches that of fictitious normal distribution;  

2) The percentage of trucks involved in multi-presence events vary with the truck traffic volume 

represented by the Average Daily Truck Traffic (ADTT); and  

3) The weights of trucks in side-by-side or closely following configurations are uncorrelated. 

Using a limited set of European traffic data, O’Brien and Enright (2011) observed that in some cases 

the weights of closely spaced trucks show low levels of correlation.  Thus, they demonstrated that, in some 

cases the loading of two-lane bridges up to 45 m in length is governed by either one truck in only one lane 

or two side-by-side trucks, but that in other cases the governing scenario is a mixture of both event types, 

and that for longer spans in the range of 35 to 45 m, simulations showed that one truck in one lane in 

combination with two trucks in the other lane produce bending moments close to the characteristic 1000-year 

load. Thus, O’Brien and Enright conclude that “the characteristic 1000-year load shows that for bridges with 

low lateral transfer, the critical loading event for bending moment is typically an extremely heavy vehicle in 

the slow lane (80% to 90% of the 1000-year GVW), sometimes with a standard vehicle (in the range 30 to 
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50 t) in the fast lane – which is consistent with Turkstra’s load combination rule (1980).  For bending 

moments in bridges with high lateral distributions, the characteristic load can be represented by a very heavy 

vehicle (60% to 80% of 1000-year GVW) in the slow lane with a moderately heavy vehicle (50 to 60 t) in 

the fast lane. 

However, the observations made by O’Brien and Enright may not be consistent with the data collected 

in other countries or other sites.  WIM data analyzed by Sivakumar et al. (2011) have shown that the 

percentage of trucks that arrive at a site side-by-side ranges between 1% to 2% for short to medium span 

bridges up to 60 m in length, with a high value of 6% for long span bridges with heavy truck volumes.  In 

this work, it is assumed that 2% of the trucks cross a bridge side-by-side with another truck which is 

consistent with a typical ADTT of 2000. 

5.6 Analytical approach for multiple presence of trucks 

The assumption of lack of correlation between consecutive vehicles is demonstrated in Figure 5-6 for 

NYS data, where the weight of each vehicle is compared to the weight of the subsequent or adjacent one, 

showing no particular trend (2015).  Similar observations were made in NCHRP 12-83 (Wassef, Kulicki, 

Nassif, Mertz, & Nowak, 2014) where data from different sites were showed that some level of correlation 

was observed for closely travelling trucks of medium weight but no correlation was noted between the 

weights of closely travelling very heavy trucks. 

 

 
Figure 5-6. Correlation of consecutive trucks in lane 1, 2 and 3 and in different lanes (adopted from Ghosn et 

al., 2015). 

Therefore, given the probability distribution of the load effect of each truck in a side-by-side 

configuration, the probability density function of the effect of two trucks can be calculated with Equation 5-

1 as: 
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𝑓 𝑆) = 𝑓 𝑆 + 𝑥 ) 𝑓 𝑥 )𝑑𝑥  (5-1)

 

where 𝑥1 is the effect of the truck in lane 1 and 𝑥  is the effect of the truck in lane 2, 𝑓 𝑆) is the probability 

distribution function of the multi-lane effects for the joint event 𝑆 = 𝑥 + 𝑥 , 𝑓 … ) is the probability 

distribution function of the effects of the trucks in lane 1 and 𝑓 … ) is the probability distribution function 

of the effects of trucks in lane 2.  It was observed by Ghosn et al. (2013) and Sivakumar et al. (2011), that in 

many cases, the frequency distributions of the truck weights in different lanes are similar and, therefore, the 

same distribution function can be assumed for 𝑓 … ) and 𝑓 … ) .  Because many WIM datasets do not 

provide information on which lane a truck occupies when the data was recorded, the assumption of same 

load histograms for all lanes has also been adopted in previous research by Fiorillo (2015) and Ghosn et al. 

(2015). 

Other than the input parameters, the main difference between the multi-presence approach adopted by 

Sivakumar et al. (2011) and Ghosn et al. (2013) and subsequently by Soriano et al. (2017) compared to that 

of Nowak (1999) is that the latter calculates the truck load effect independently for each lane, then assumes 

different correlations between the weights of the trucks in side-by-side configurations. The approach adopted 

here finds the load effect of two-lane loads using Equation 5-1 and then executes the projection using the 

expected number of multiple-presence events, N, within the service life, T. 

If the tail of the load effect distribution is modeled as the combined effect of two independent normal 

distributions, as it can be certainly done when dealing with the upper 5 % maximum effects as explained 

earlier, then the convolution approach of Equation 5-1 simplifies and the resulting probability distribution 

can be described by the tail of a new normal distribution with the statistical parameters calculated with 

Equations 5-2 and 5-3: 

 𝜇 = 𝜇 + 𝜇   (5-2) 

 𝜎 = 𝜎 ) + 𝜎 )  (5-3) 

 

where 𝜇𝑥1 and 𝜇𝑥2 are the mean values of the normal distributions that fit the upper 5% of the actual 

distributions of the load effects of the trucks in lane 1 and 2 respectively and 𝜎𝑥1 and 𝜎𝑥2 are the associated 

standard deviations; 𝜇𝑆 and 𝜎𝑆 are the mean and standard deviation of the distribution that fits the tail end of 

the combined load effect.  
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5.7 Statistical Projection of Extreme Load Effect 

The histograms of the load effects of the entire population of trucks shown in Figures 5-2 and 5-3 are 

based on one-year observation for each WIM station.  However, the load effect needs to be adapted to the 

exposure time of the bridge under study representing the service or design life the structure to consider the 

possibility that the maximum load is not captured by the WIM data collected.  The statistical projection 

approach proposed by Sivakumar et al. (2011) and implemented by Ghosn et al. (2013) and Soriano et al. 

(2017) is adopted in this study.  The approach assumes that the WIM data gathered during the monitoring 

period is representative of the truck population over the entire service life of the bridge and that the bridge 

loading process remains stationary over time. Therefore, it is very important that the data collection period 

be carefully planned to collect a substantial amount of data that provide an adequate statistical representation 

of the extreme trucks through ensuring a high confidence levels in the statistics of the upper 5% of the data. 

While the effects of individual trucks or a combination of trucks may be represented by histograms 

such as those in Figure 5-5 or presented in mathematical expressions such as Equation 5-1, bridge engineers 

are interested in ensuring the safety of bridges when they are exposed to the maximum possible loads that 

may take place within their service lives. The projection of the load effect to find the maximum load in a 

specific time interval requires the application of extreme value theory which can be greatly simplified if the 

upper 5% of the load effect histograms can be represented by a normal distribution as demonstrated in section 

5.4.  In fact, the maximum load effect of data that fit a normal distribution is known to follow an Extreme 

Value Type I (Gumbel) distribution, the statistical parameters of which are obtained by means of Equations 

5-4 and 5-5 (Ang & Tang, 2007): 

 

𝛼 = ) (5-4) 

𝑢 = μ + σ 2𝑙𝑛 𝑁) − ) ))  (5-5) 

 

where 𝛼  and 𝑢  are the inverse measure of dispersion and the most probable value of the Type I distribution; 

The mean value of the load effect for one event is μ = μ  and its standard deviation σ = σ  for 

two-lane loadings or μ = μ  and σ = σ  for one-lane loading are the mean value and the 

standard deviation of the normal distribution that produces a tail end that matches the upper 5% the truck 

load effect data; 𝑁 is the number of load repetitions expected during the bridge’s service life.  

The statistics of the Type I extreme value distribution 𝛼  and 𝑢  are subsequently used to find the 

mean of the maximum load effect, 𝐿 , its standard deviation, σ  and its coefficient of variation V  
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for any reference service life during which 𝑁 load repetitions are expected, by means of Equations 5-6, 5-7 

and 5-8: 

 𝐿 = μ = 𝑢 .  (5-6) 

 σ = √  (5-7) 

 V =  (5-8) 

 

The procedure described in this section can be directly implemented to study the safety of a particular 

bridge if a set of representative WIM data is available for the bridge site.  However, the analysis may be 

tedious and demanding especially if an entire set of bridges needs to be analyzed.  Therefore, a calibration 

process is performed in the next section to provide a synthetic representation of the live load effect for more 

straightforward use. 

 

5.8 Live Load Model 

The results obtained by the application of Equations 5-6, 5-7 and 5-8 may be directly used to calculate 

the safety of bridge systems in a probabilistic methodology.  However, a simplified formulation is proposed 

in this work where the live load model is described by a set of point loads similar to the nominal live loads 

used in design and evaluation processes.  The objective is to reproduce the same maximum load effect on 

bridge members calculated in Section 5.7 with a set of forces linked to a typical truck configuration.  It is 

noted that the same load effect can be obtained by different truck load configurations with different nominal 

weights of each axle, but it is convenient to adopt configurations from the AASHTO standard trucks to 

provide a live load model that engineers and researchers are familiar with.  In this sense, Ghosn et al. (2015, 

2011, 2013) showed that 3-S2 semi-trailers form the vast majority of trucks traveling on US highways and 

that these trucks produce the largest load effects on the main members of medium span bridges.  Similarly, 

the effects of heavy trucks on short span bridges (less than 30 m) are mostly governed by single unit trucks, 

which can best be modeled by AASHTO Type 3 legal trucks.  For these reasons, it is proposed that the 

maximum load effects on short to medium span single lane and two-lane bridges be simulated by analyzing 

the combined effects of either one or two side-by-side trucks having the configurations of the AASHTO 3-

S2 or Type 3 Legal Trucks shown in Figure 5-7. 
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Figure 5-7. AASHTO Type 3 and 3-S2 Legal Truck configurations and corresponding nominal axle weight. 

 

Because the nominal axle weight used shown in Figure 5-7 provide a lower load effect than the one 

calculated with the mean value of the projected load effect as obtained from Equations 5-6, 5-7 and 5-8, a 

correction factor 𝛼 is calibrated to adjust the AASHTO truck weights as shown in Figure 5-8. 

 

Figure 5-8. Section view of side-by-side truck loading pattern. 

Two different load patterns are proposed: the first is represented by one eccentric truck multiplied by 

the factor 𝛼 and the second represented by two side-by-side trucks where the most external truck is multiplied 
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by the factor 𝛼 while the internal truck is used with its nominal weight.  The proposed 𝛼 factor serves both 

as a multiple presence factor and an overweight factor.  The calibration of the parameter 𝛼 is executed such 

that the maximum load effect produced by the single AASHTO legal truck of weight 𝛼𝑃 or two side-by-side 

trucks of weights 𝑃 and 𝛼𝑃  on the most critical main member is equal to the maximum load effect obtained 

from Equation 5-6 for the member. 

During the structural analyses performed in this study, the following assumptions are made regarding 

the transverse placement of the trucks to simulate the worst loading conditions:  

• The distance between the most external wheel and the edge of the deck is 1.2 m (barrier + 

curb + clearance). 

• The truck wheels are spaced at 1.8 m. 

• For the two-truck cases, the transversal distance between trucks is 1.2 m, unless the deck 

width is smaller than 7.2 m in which case the distance between trucks is reduced to satisfy 

the distance from the edge criteria set in the first bullet. 

The longitudinal position of the trucks to be employed during the analysis is the one that produces 

the highest value for the load effect and it has to be calculated for each truck in its own lane separately.  The 

calibration of 𝛼 is carried out by equating the mean of the maximum load effect produced by Equation 5-6 

to the legal truck load effect using Equation 5-9: 

 𝛼 = ,  (5-9) 

 

For two-lane loadings, the parameter α  of the legal truck in the main drive lane is obtained according to 

Equation 5-10: 

 

𝛼 = ,  (5-10) 

 

where 𝐿 ,  is the mean value of the maximum load effect obtained from Equation 5-6 over 𝑘 loaded traffic 

lanes, and 𝐸  is the effect of the legal truck (3-S2 or type 3) located in such a way as to produce the 

maximum effect position in lane 𝑖. 
The calibration process consists of calculating 𝐿  using Equation 5-6 for all the combinations of 

the bridge configurations listed in Table 5-2 repeated for each of the truck records collected from the twenty 
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WIM stations.  𝐿  and the corresponding parameter α are calculated for bending moments for exposure 

periods, T= 1, 2, 3, 4, 5 and 6 years. 

The results obtained from Equations 5-9 and 5-10 are approximated with a simplified polynomial 

expression, as proposed by Anitori et al. (2017) as a function of beam spacing, number of beams and span 

length of the bridge under study, and described by Equation 5-11: 

 

𝛼 . = 𝐽 + 𝑎 . + 𝑏 . + 𝑐 + 𝑎 . + 𝑏 . + 𝑐  (5-11) 

 

The symbols in Equation 5-11 are defined as: 𝑆𝐿 is the span length, 𝐵𝑆 is the beam spacing, 𝑁𝐵 is 

the number of beams, 𝐽 is a constant coefficient and 𝑎 … 𝑐  are regression coefficients. 

The coefficient 𝐽 in Equation 5-11 depends on the exposure time and is defined for 1-lane and 2-lane 

load patterns as well as for Type 3 and 3-S2 truck configurations.  The values of 𝐽 for each case are listed in 

Table 5-5. 

 

Table 5-5. Values of the constant J for different exposure intervals, one and two lane load pattern and 3-S2 and 
Type 3 truck configurations. 

 3-S2 Type 3 
Exposure 

(years) 1-lane 2-lane 1-lane 2-lane 

1 2.19 1.35 1.15 0.89 
2 2.25 1.44 1.21 0.99 
3 2.29 1.50 1.24 1.05 
4 2.31 1.54 1.27 1.09 
5 2.34 1.57 1.30 1.11 
6 2.35 1.60 1.31 1.14 

 

The coefficients 𝑎 … 𝑐  are regression coefficients that give different weights for each bridge 

parameters.  The values are listed in Table 5-6.  
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Table 5-6. Coefficients of Equation 5-11 for analysis of shear and moments under one-lane and two-lane 
loadings for 3-S2 and Type 3 truck configurations. 

 3-S2 Type 3 
  1 Lane 2 Lanes 1 Lane 2 Lanes 𝑎  0.263 0.38 1.828 1.378 𝑏  0.001 0.066 0.047 0.152 𝑐  0.245 0.178 0.908 0.273 𝑎  -0.086 -0.112 -0.074 -0.017 𝑏  0.001 -0.006 -0.016 -0.051 𝑐  -0.103 -0.059 -0.389 -0.113 

 

5.9 Probabilistic Live Load Model 

While the coefficients and constants in Tables 5-5 and 5-6 are sufficient for performing deterministic 

bridge analyses, a probabilistic format for the live load model is needed if the engineer decides to carry out 

a reliability analysis of a bridge structure.  Specifically, the probabilistic format must account  for the 

variability in the applied load and the associated modeling uncertainties (Ghosn et al., 2011, 2013).  

Therefore, the load effect in a reliability analysis using the results for the α parameter generated in this paper 

or similar simulations can be represented as the product of the following random variables for the two-lane 

loading case, as shown in Equation 5-12: 

 𝐿𝐿 = 𝑊 ∙ 1 + 𝛼 ∙ 𝑆𝑡𝑆) ∙ 𝑀𝑜𝑑 ∙ 𝐷𝑦𝑛 (5-12) 

 

or using Equation 5-13 for the one-lane case 

 𝐿𝐿 = 𝑊 ∙ 𝛼 ∙ 𝑆𝑡𝑆 ∙ 𝑀𝑜𝑑 ∙ 𝐷𝑦𝑛 (5-13) 

 

where 𝑊  is the deterministic load effect of the nominal weight of the AASHTO 3-S2 Legal Truck having 

a total weight equal to 320 kN or the Type 3 Legal Truck with a gross weight equal to 222 kN; 𝑀𝑜𝑑 is the 

load effect model uncertainties, 𝑆𝑡𝑆 is the site to site variability accounting for the uncertainty in defining a 

load value representing different WIM stations, 𝐿𝐿 is the total live load effect intensity.  Detailed statistics 

of the random variables in Equations 5-12 and 5-13 are provided in Table 5-7. 
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Table 5-7. Random variables associated with the parameter α. 

Symbol Random variable Mean COV Distribution Reference 

𝛼 
Weight multiplier of 

the truck on main 
drive lane 

From 
Equations 5-9 

and 5-10 

1-lane loading 4.0% 
Gumbel Present 

study 2-lane loading 8.0% 

𝑆𝑡𝑆 
Site to site variability 
from different WIM 

stations 
1.00 

Mean 15.0% 
Normal Present 

study Low, Medium and High 
OW 6.0% 

𝐷𝑦𝑛 
Dynamic 

amplification due to 
moving vehicles 

1-lane loading 
1.13 1-lane loading 9.0% 

Normal (Nowak, 
1999) 2-lane loading 

1.10 2-lane loading 5.5% 

𝑀𝑜𝑑 Load effect model 
(grillage) 1.00 8.0% Normal 

(Sivakumar 
& Ghosn, 

2011) 

 

The statistical values for the dynamic amplification factors listed in Table 5-7 as suggested by Nowak 

(1999) are found to be in line with the ones proposed by numerical studies and experimental investigations 

(Lu Deng, Cai, & Barbato, 2011; Ghosn & Moses, 1985, 1986; Ghosn, Moses, & Gobieski, 1986; González, 

2010; O’Brien, González, & Žnidarič, 2012). 

 

5.10 Chapter conclusion 

In this chapter, a methodology is developed to define a live load model for the refined analysis of 

multi-girder bridge systems.  This methodology was implemented to calibrate a live load model using WIM 

data recorded at several New York State locations.  This live load has the great advantage to be convenient 

for system reliability analysis because it accounts for all relevant load related variables and parameters. 

This live load will be used in this work to represent the live load demand of the basic safety equation.  

It must be recalled that bridge structures are not only threatened by traffic overload, but by several other 

sources of extreme events such as foundation scour, vessel or vehicle impact, earthquakes or winds.  While 

the probability of failure linked with these other extreme events may be relevant for specific cases, supporting 

traffic load is the main purposes of highway bridges and thus is the focus of this work. 

The live load defined in this chapter is specifically used for the system reliability analysis that will be 

explained in Chapter 6 which is main component of risk assessment as will be further explained in Chapter 

8.  
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6 Reliability Analysis of Bridge Structural Systems 

Establishing the safety of a structure is usually assured by following design criteria and guidelines 

published at the national or regional levels.  Engineers are familiar with procedures for analyzing typical 

engineered structures and design these to meet pre-set criteria.  However, in order to ensure that established 

criteria and safety factors provide sufficiently safe designs, code writers usually calibrate these to meet target 

levels of structural reliability or safety.  In other words, the structural code committees quantify the 

requirements of the society in terms of safety to people and economic efficiency, and translate them into 

usable engineering models associated with appropriate safety factors and criteria for design purposes.  Similar 

approaches are proposed in this study for developing a method for determining adequate bridge inspection 

intervals based on risk assessment criteria.  Risk-based methods require the definition of limit state equations 

and numerical analysis methods for determining the reliability of a bridge structure which subsequently will 

be combined with the consequences of failure.  This chapter describes the reliability analysis procedure 

implemented in this study as a main component of the risk analysis process. 

6.1 Reliability analysis 

A set of terms must first be defined to familiarize the reader with the reliability analysis framework.  

The definitions used herein follow the concepts explained by Nowak and Szersezen (2001).  The first term 

to be defined is failure.  A structure fails when it does not fulfill its original purpose after some external 

perturbation is applied.  It is therefore clear that there cannot be a unique definition of failure but it is simply 

related to a specific loss of performance.  The point at which the loss of performance occurs is defined as a 

limit state and is normally preceded by an adjective (e.g. ultimate, serviceability, fatigue) that specifies the 

nature of the loss of performance.  The limit state is further defined by a set of possible structure and external 

perturbation (actions) conditions leading to the limit state.  Therefore, the limit state can be imagined as a 

curve separating the acceptable range of structural performances from the unacceptable range.  In other 

words, the limit state curve is a boundary between the set of safe and unsafe performances.  The reason why 

different configurations of the structure and actions exist is due to the fact that structure and actions are 

modeled with certain degrees of uncertainty, allowing infinite definitions of the problem with different 

probabilities of occurrence whose study is defined as probabilistic analysis. 

In order to better explain the bases of the probabilistic analysis a simple case of a beam with resistance 

moment 𝑅 (capacity) loaded by a point load representing a truck that produces a moment 𝑄 (demand).  The 

uncertainties of the resistance 𝑅 and the demand 𝑄 can be mathematically represented by a probability 

distribution curve as shown in Figure 6-1. 
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Figure 6-1. Limit state function, safety margin and probability of failure definitions (extracted from Novak 
(2001)). 

  

As can be seen from the figure, many realization of the resistance have higher values than those of 

the load, meaning that in many situations there is additional resistance than strictly required.  In addition, it 

is normal to observe a higher uncertainty in the load effect rather than the resistance values and this is 

observed by looking at the corresponding spreads of the probability distributions.  If the load effect is 

subtracted from the resistance, the resulting limit state is expressed in terms of the variable 𝑍 = 𝑅 − 𝑄 

defined a probabilistic measure of the margin of safety. 

The variable 𝑍 assumes negative values for unsafe bridges (shaded area of Figure 6-1) and positive 

values in the safe region.  The probability of failure is defined by Equation 6-1: 

  

𝑃 = 𝑃 𝑍 0) = 𝑓 𝑥 ) 𝑑𝑥  (6-1)

 

where 𝑓 𝑥 ) is the joint density function defined as the limit state equation of the 𝑛 random variables that 

define the variable 𝑍. 

The probability of survival is usually described mathematically through the reliability index 𝛽 based on the 

assumption that the limit state function Z follows a normal distribution, according to Equation 6-2: 

  𝛽 = −Φ 𝑃   (6-2)

 

Where 𝛽 is the reliability index, Φ ∙) is the inverse function of the standard normal cumulative distribution. 
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A convenient interpretation of the reliability index 𝛽 is that it represents the distance (specifically, the number 

of standard deviations) the mean of the margin of safety 𝑍 is away from failure when 𝑍 = 0. 

6.2 Limit State Equation 

The limit state equation 𝑍 = 𝑓 𝑥 ) is the combination of different random variables both for the 

demand 𝑄 and for the response part 𝑅.  However, for the sake of simplicity, the 2-variable example (demand 𝑄 and capacity  𝑅) used in the previous section are still used to define the space of state variables as the limit 

state equation curve defined by the function 𝑓 𝑄, 𝑅) in the 𝑄, 𝑅 coordinate system as shown in Figure 6-2. 

 

 

Figure 6-2 Space of state variables for the simple 2-variable case (extracted from Novak (2001). In the 2-
dimensional (left) and in the 3-dimensional space (right). 

 

The probability of failure can be visualized graphically as the integral of the joint density function (a surface 

in a 2-dimensional space) in the failure zone, as expressed by Equation 6-1. 

In the present work the number of variables are more than two and a graphical representation is not 

possible.  The system safety is represented by the limit state inequality shown in Equation 6-3: 

 𝑅 − 𝐷𝐿) − 𝐿𝐿 1 + 𝛼) ∙ 𝑀𝑜𝑑 ∙ 𝐷𝑦𝑛 ∙ 𝑆𝑡𝑆 0  (6-3)

 

Where 𝑅 − 𝐷𝐿 is the joint random variable representing the available capacity after subtracting the 

dead load part which can be estimated as explained in Chapter 4 of this Thesis.  The demand 𝑄 is expanded 

as explained in Chapter 5 where 𝐿𝐿 is the truck load effect (3-S2 truck with base line weight equal to 320 kN 

or the Type 3 truck with base line weight equal to 222 kN), 𝐷𝑦𝑛 is the dynamic amplification due to moving 

vehicles, 𝑀𝑜𝑑 load effect model uncertainty (grillage) and 𝑆𝑡𝑆 is the site-to-site variability of the traffic load 
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(refer to  for the numerical values and probability distribution type and parameters).  Equation 6-3 is valid 

for a two-lane model.  The one-lane live load equation is obtained by substituting the term 1 + 𝛼) with 𝛼 

defined in Equation 5-9. 

The objective of the reliability analysis is to find the probability that 𝑍 > 0 as expanded in Equation 

6-1 condition to be false. 

6.3 Solution method for reliability 

The calculation the reliability index for the simple case of two normally distributed random variables 

(𝑄, 𝑅), assuming a simple limit state equation as shown in Figure 6-1, can be solved in closed form by the 

simple Equation 6-4: 

 𝛽 = 𝜇 − 𝜇𝜎 + 𝜎  
(6-4)

 

Where 𝜇  and 𝜇  are the mean and 𝜎  and 𝜎  the standard deviations of the random variables 𝑅 and 𝑄.  The 

probability of failure would be easily calculated by applying inversely Equation 6-2.  However, for more 

complex limit state equations, a closed form equation may not be available and numerical methods need to 

be used such as the crude Monte Carlo Simulation (MCS) or the Latin Hypercube Simulation (LHS) 

described in Chapter 4 of this Thesis.  Other available methods include the Importance Sampling technique, 

First Order Reliability Method (FORM), Second Order Reliability Method (SORM) among others.  While 

MCS and LHS are used for sampling the 𝑅 − 𝐷𝐿 variable in Chapter 4, a comprehensive understanding of 

these methods may be obtained in Nowak and Szersezen (2001), Ang and Tang (2007) and Lui and Chen 

(2005). 

In this work, the probability of failure associated with Equation 6-3 is calculated with the FORM 

method that allows the calculation of the reliability index given the distributions and the corresponding 

parameters of each terms of the limit state equation.  According to FORM, any random variable 𝑥  that does 

not follow a normal distribution is first transformed into an equivalent variable that follows a normal 

distribution depending on the value of the realization at which it is being evaluated according to any of the 

different methods available in literature, such as the Simple (Paloheimo & Hannus, 1974). Normal Tail 

(Ditlevsen, 1981) or the Rosenblatt (Rosenblatt, 1952) or the Nataf (Nataf, 1962) Transformation.  For a 

comprehensive description of these transformation methods and their comparison refer to Melchers and Beck 

(2018).  Subsequently, each normal (or normalized) probability random variable is further transformed into 

a reduced variable 𝑢 , having zero mean and a unit standard deviation, using the Equation 6-5: 
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𝑢 = 𝑋 − 𝜇𝑥𝜎𝑥  (6-5)

 

The transformed limit state equation 𝑓 𝑥 , … , 𝑥 ) becomes 𝑓 𝑢 , … , 𝑢 ).  The space corresponding to 

the reduced variables is described, for the simple case of two random variables, with concentric circles of 

equiprobability Figure 6-3.  The space of the reduced variables can be visualized in two dimensions in the 

graph shown in Figure 6-3, where the limit state function in the normalized space, 𝑓 𝑢 , … , 𝑢 ) is shown 

along with the tangent to the equipotential circle defining the minimum distance between the origin and the 

limit state design function.  Figure 6-3 allows to graphically visualize the definition of the reliability as the 

shortest distance from the origin in reduced space to the limit state surface.  

 

Figure 6-3. Reliability analysis formulation in the reduced variable space. Adapted from Ellingwood et al.(1980). 

 

As shown in Figure 6-3, the point 𝑢∗, … , 𝑢∗ ) on the limit state surface, that corresponds to the 

aforementioned minimum distance, can be determined by solving the set of Equations 6-6, 6-7 and 6-8: 

 

𝛼 = 𝜕𝑓𝜕𝑢∑ 𝜕𝑓𝜕𝑢  
(6-6)



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 114 

𝑢∗ = −𝛼 𝛽 (6-7)

 𝑓 𝑢∗, … , 𝑢∗ ) = 0 (6-8)

 

where 𝛼  is the unit directional vector of the 𝑖 − 𝑡ℎ random variable in the normalized space and 𝛽 is the 

reliability index. 

The solution is found by changing the values of the factors 𝛼  to obtain the minimum distance from 

the linearized limit state equation and the origin in the reduced space.  The design point, defined as the point 

that gives the shortest distance to the origin on the reduced space, corresponds to the point in the original 

random variable space by means of Equation 6-9: 

 𝑋∗ = 𝜇𝑥 1 − 𝛼 𝛽𝑉  (6-9)

 

Such that 𝑓 𝑢∗, … , 𝑢∗ ) = 0. 

 

The FORM algorithm described above is available in the reliability analysis module of the software 

OPENSEES and detailed information for its implementation are described by Haukaas and Der Kiureghian 

(2004). 

6.4 Reliability analysis results 

The FORM algorithm described in the previous subsection is used to calculate the reliability index of 

the 279 bridges contained in set 1.  The limit state equation that defines the border between safe and unsafe 

designs has already been defined by Equation 6-3 and the possible values of the random variables are 

summarized in Table 5-7 for the demand with the live load definition provided in Chapter 5 and in the values 

shown in Figure 4-20 with the capacity and dead load statistical characterization provided in Chapter 4.  The 

full explanation and relevant sources behind the statistics of each random variable and its distribution 

function are provided in Chapter 4 and Chapter 5 for capacity/dead load and live load respectively and 

summarized in Table 6-1.  
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Table 6-1. Input for the FORM reliability algorithm. 

Variable probability 
distribution nominal value bias COV 

Capacity 
(R-DL) 

normal 

depends on: 
-result of system 

nonlinear analysis 

depends on: 
-bridge configuration 

-deterioration rate 
-exposure years 
(e.g.Figure 4-23) 

depends on: 
-deterioration rate 
-exposure years 
(e.g. Figure 4-24) 

Demand 
(α-LL) 

gumbel 

depends on: 
-span length 
(Figure 5-7) 

depends on: 
-bridge configuration 

-exposure time 
(Equation 5-11, 
Table 5-5 and 

Table 5-6) 

depends on: 
-number of traffic lanes 

(Table 5-7) 

Site to 
site 
variability 

normal 
1.00 

(Table 5-7) 
1.00 

(Table 5-7) 
15.0% 

(Table 5-7) 

Dynamic 
amplificat
ion 
factor 

normal 

1.00 
(Table 5-7) 

depends on: 
-number of traffic lanes 

(Table 5-7) 

depends on: 
-number of traffic lanes 

(Table 5-7) 

Model 
(grillage) normal 

1.00 
(Table 5-7) 

1.00 
(Table 5-7) 

8.0% 
(Table 5-7) 

 

The capacity random variable parameters depend on the result of the structural analysis, and on the 

deterioration rate that also increases as the exposure time does.  In other words, for each bridge, a set of 

matrices similar to the ones shown in Figure 4-20 for an example bridge is calculated.  On the demand side 

of the equation the nominal truck configuration is Type 3 for span lengths shorter than 30 m and 3-S2 Legal 

for bridges spanning more than 30 m.  The transformation from nominal to average maximum live load, 

including site to site variability, dynamic amplification and model uncertainties is calculated according to the 

concepts explained in Chapter 5 and summarized in Table 5-7. 

The 279 results obtained by applying the FORM algorithm can be better visualized to study the range 

of reliability indices obtained by observing some of the trends that have been found to be relevant in Figures 

6-4 to 6-11. 
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Figure 6-4. System reliability index vs. Load Rating (top) and residuals plot (bottom). 

 

The first plot shown in Figure 6-4 relates the reliability index calculated in this Chapter with the LFR 

Legal Load Rating provided in the NBI database.  As expected, the data plotted in Figure 6-4 (top) shows 

that, the reliability index increases as the load rating increases. For the purpose of following the trend, the 

plot of residuals is also provided in Figure 6-4 (bottom).  The residuals plot shows that for a fixed load rating 

value the reliability index can vary within a range of plus/minus 1.0 with a standard deviation of 0.28.  The 

spread in the residuals is related because the load rating assesses the member capacity, while the reliability 

index, as calculated in this study, assesses the system’s capacity and thus for structures with an equal load 

rating the ones with a better system behavior (more redundancy) have a higher reliability index.  Hence, 

neither the LFR nor the LRFR methods are expected to provide perfect relationship between the reliability 

index and Load Rating, even though the latter has been calibrated with member reliability criteria.  For this 

reason, the trends do not lay along perfect curves but always present some degree of scatter. 

Other than the relation between reliability index and load rating depicted in Figure 6-4, it has been 

difficult to establish relations between the system reliability index and other specific structural properties or, 

physical characteristics (such as beam spacing, span length or number of beams).  This is because each bridge 
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is associated with different values of load ratings that is the main controlling factor of the bridge capacity.  

Therefore, in the next set of plots a third variable is plotted in different colors to help put into context the 

effect of other parameters on the relation between the reliability indices and the load rating. 

 

Figure 6-5. System reliability index vs. span length and point colors representing Load Rating (Operational). 

 

The plot shown in Figure 6-5 puts into relation the reliability index with the span length and helps 

understand that the reliability index decreases as the span length increases for the same load rating values.  It 

is observed that the influence of the other parameters cause a variation of about plus/minus 1.0 in the beta 

values.  However, the spread around the trend line for the reliability indices of bridges with high load rating 

(yellowish points) indicating that the influence of parameters other than span length is relatively smaller than 

for bridges with low load ratings (bluish points).  On the other hand, the reliability index seems to be less 

dependent on the number of beams as illustrated in Figure 6-6, while beam spacing is an important parameter 

and its influence on the reliability index is noticeable, as shown in Figure 6-7. 
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Figure 6-6. System reliability index vs. Number of beams and point colors representing Load Rating 
(Operational). 

 

 

 

Figure 6-7. System reliability index vs. Beam spacing and point colors representing Load Rating (Operational). 

 

In Figure 6-7, the effect of beam spacing by itself may be difficult to observe.  However, it may be more 

relevant to look at the bridge’s aspect ratio defined as the beam spacing divided by the span length (BS/SL).  
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The resulting plot is shown in Figure 6-8 illustrating the increasing trend in reliability index as the beam 

spacing increase and as the span length decreases. 

 

 

Figure 6-8. System reliability index vs. aspect ratio and Load Rating (Operational). 

 

To further study the effect of a bridge’s aspect ratio (span length and beam spacing) and load rating 

on the reliability index a sensitivity analysis is performed on a generic bridge rather than bridges in set 1 

varying only one variable at the time.  The sensitivity analysis is performed on a base bridge having a span 

length of 30 m formed by 6 beams spaced 2.5 m having Operating Load Rating RF=1.2 according to the LFR 

rating method. 
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Figure 6-9. Sensitivity analysis of reliability index versus number of beams. 

 

The first sensitivity analysis is performed over bridges with increasing widths obtained by increasing 

the different number of beams as shown in Figure 6-9 showing that the reliability index increases 

asymptotically as the number of beams increases as expected. This is because even though the additional 

beams are located far from the application of the traffic load, it is still possible to observe significant load 

transfer laterally for the smaller number of beams, due to the transverse load stiffness provided by the deck.  

However, as the number of beams increases, the improvement in the reliability index is minimal because the 

additional beams are less effective when they are farther away from the applied traffic load. 

 

 

Figure 6-10. Sensitivity analysis of reliability index versus beam spacing. 
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The second sensitivity analysis is performed to study the effect of beam spacing as shown in in Figure 

6-10.  The series identified with red squares in Figure 6-10 show that increasing the beam spacing increases 

the reliability of the bridge.  In this case, the load rating of the member is kept constant at a value of RF=1.2 

by readjusting the girder design (bottom flange thickness).  In addition, a change in the slab width inevitably 

implies that the dead load is also changed accordingly.  In this case, the increase in member capacity due to 

the increase in slab width and girder dimensions is more relevant than the increase of the dead load and the 

increase in tributary live load on the most critical beam, explaining the increase in system capacity. 

The series identified with the black dots, however, demonstrates that, if the beam designed with the 

2.5 m spacing configuration is kept unchanged for the bridges with 1.75 m and 3.0 m, the reliability decreases 

as the beam spacing increases.  In this case, the increase in member capacity is relatively small (only due to 

the increase in slab width) and the increase in dead load and tributary live load on the most critical member 

explain the decrease in system capacity. 

One should note that the case, where only the beam spacing is changed without changing the beam 

capacity (black dots in Figure 6-10) is not realistic because beam design accounts for beam spacing.  This 

case is analyzed to only study the trends. 

The third sensitivity analysis is executed to study how the transverse slab properties affect the system 

reliability index.  The sensitivity analysis is performed on the base bridge (span length of 30 m, 6 beams 

spaced 2.5 m and Operating LFR Load Rating of RF=1.2) after multiplying the slab stiffness and reinforcing 

steel area (top and bottom) by different ratios.  The results are listed in Table 6-2 and a graphic visualization 

of the trends is shown in Figure 6-11. 

 

Table 6-2. Sensitivity of the reliability index to slab stiffness and slab resistance (rebar area). 

 Stiffness multiplyier 
 0.1 0.5 1.0 2.0 5.0 10.0 

St
ee

l a
re

a 
m

ul
tip

ly
er

 

0.50 2.253 2.286 2.291 2.294 2.298 2.301 
0.80 2.256 2.301 2.316 2.326 2.333 2.338 
1.00 2.257 2.302 2.326 2.344 2.355 2.360 
1.25 2.247 2.303 2.328 2.354 2.357 2.364 
2.00 2.235 2.304 2.338 2.370 2.383 2.392 
5.00 2.255 2.336 2.369 2.380 2.400 2.419 
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Figure 6-11. Sensitivity of the reliability index to slab stiffness and slab resistance (rebar area). 

 

While in the first stages of the load increment the bridge all elements, including the slab, will be in its 

linear elastic range of internal stresses, the bridge elements undergo non-linear stresses as the load increases.  

The results show that, as expected, the reliability decreases as the stiffness and rebar area multipliers 

decrease, since these two characteristics influence the system ability to redistribute loads.  However, as the 

two multipliers increase the subsequent increase in system reliability is slower reaching a plateau for high 

values of slab stiffness and resistance due to the fact that the transverse behavior of the bridge cannot be 

improved because a very high transverse beam stiffness will spread the load equally to all the beams even 

when the live load is located on an the extreme lane of the bridge.  This will cause all the beams to fail 

simultaneously producing an upper limit for the bridge system capacity. 

6.5 Chapter conclusion 

After defining the statistical characteristics of the resistance and load demand for bridges as described 

in Chapters 4 and 5 respectively, a system reliability analysis process can be performed for any composite 

steel girder bridge following the procedure outlined in this chapter.  The reliability index is a direct measure 

of the safety of bridge structural systems and is calculated for all the 279 bridges in set 1. 
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A sensitivity analysis showed that the Operating load rating and the span length have major effects 

on the reliability index of multi-girder composite steel bridges.  Factors that have a lesser influence on the 

reliability index include the beam spacing and the number of beams. 

The reliability analysis will determine a bridge’s probability of failure, which when multiplied by the 

consequences of failure will provide a measure of the risk associated with each bridge and how it changes 

with the level of deterioration over time.  As will be seen in the next two chapters, the information extracted 

from the reliability analysis will help determine an optimum, inspection interval which is the main objective 

of this work. 
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7 Cost analysis of Failure Consequences 

In this section, the cost of bridge failure is estimated and monetized in terms of dollar amounts and 

used as a comprehensive measure of the consequences of a bridge’s failure and its impact on society.  The 

cost of bridge failure has been studied by many authors (Fiorillo, 2015; Frangopol, Dong, & Sabatino, 2017; 

Neves & Frangopol, 2005) with particular focus on bridge life-cycle assessment and maintenance.  In general, 

assessing a cost of failure in absolute terms is a difficult task because of the uncertainties in evaluating the 

specific factors that must be considered and associate these with dollar amount.  For these reasons, cost 

analyses are best used for comparing design alternatives and for decisions involving prioritization of a single 

bridge or a group of bridges, which could be parts of a bridge network or a sub-population.  In such cases, 

the cost acts as a uniform and rational attribute for a bridge or a design alternative.  In this work, the cost of 

failure is used to quantify the risk after determining the probability of failure as will be demonstrated in 

Chapter 8. 

7.1 Characterization of the Cost of Failure for Highway Infrastructures 

The quantification of the risk associated with an event is, from a general point of view, dependent on 

the consequences of the occurrence of that event.  While the term consequences is a general term, one can 

refer to the cost of losses, which provides a quantification of the consequences of a failure of an infrastructure 

facility such as those of bridges assessed in this work.  The term cost may be assumed to entirely depend on 

the valuation of the benefit or losses associated with a certain product as noted by Lee (1995).  In addition, 

cost refers to the tradeoffs between uses of resources, that in general can be related to money, time, land, loss 

of an opportunity to enjoy a benefit, or loss of lives (Litman, 2009). 

The definition of cost is also associated with political decision processes, which are by their very 

nature part of the political debate itself.  For example, Tanner and Hingorani (2015) associates the cost of 

building failure, in a broad sense, with the loss of human life because as he states “the risk to personal 

integrity takes precedence over all others”.  While this approach may be acceptable for problems where there 

are a constrained set of consequences as may be assumed for residential buildings, it may be overly simplified 

for infrastructure problems that affect different sets of constituents ranging from the single user to the general 

community and the environment.  Therefore, many researchers used different approaches even for buildings.  

For example, Steenbergen et al. (2015) separates the consequences of failures in buildings and other 

structures considering the economic value of the loss as one item and the loss of lives as a second separate 

item.  However, it is more practical to avoid dealing with two different parameters, and to assign a single risk 

value for each structure under study.  In this sense, Steenbergen et al. (2015) pointed out that a problem arises 

when using a unique cost evaluation which mixes measurable market costs of products to non-market costs, 

such as human loss of lives or decrease of life quality including psychological impact or anxiety which in the 

views of some researchers may be considered unethical.  For example, from a political and mass 
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communication point of view, it may not be acceptable to value human lives and vehicle fuel in a same 

basket, since the audience is probably going to reject this approach even though at a global scale, that is what 

a political decision making process is about.  In this work the approach used by several researchers in this 

field (Frangopol et al., 2017; Hawk, 2003; D. B. Lee, 1995), consisting of adopting a unique cost value linked 

to a bridge collapse is used for simplicity since it correctly reflects the value consumers place on applying 

resources to alternative options. 

To obtain an estimated of the cost of failure, a categorization of the different consequences to take 

into account is necessary.  The losses resulting from the failure of a bridge represented by their monetary 

costs, are the sum of the costs related to the structure itself and to the bridge owner labeled as direct or agency 

costs and the costs to the community labelled as indirect or society costs.  The total Direct Cost (𝐶 ) includes 

those of demolition, repair or reconstruction of partially or totally failed structures.  On the other hand, the 

Indirect Costs are those due to vehicle congestion and delays (𝐶 ), accidents due to detour (𝐶 ), 

environmental impact (𝐶 ) and fatalities and injuries (𝐶 ).  It must be noted that parts of the indirect costs, 

which are considered in this study, already exist regardless of whether the bridge fails or not.  Such costs 

include those related to vehicle ownership, operational maintenance cost of running a vehicle.  Therefore, 

this study will only consider the additional part of these costs that come about due to the failure of the bridge. 

Furthermore, even though the total cost of failure is borne by society as a whole, there is a part of the 

cost borne by the government that are imposed indirectly even on non-users through taxes and tolls and will 

be labeled as external.  Other costs such as vehicle operation costs that are borne by bridge users directly 

affected by the bridge failure will be labelled as internal costs.  Other costs such as health issues from 

environmental air pollution due to congestion may be borne both by society at large and the users.  For 

example, Zhang and Batterman (2013) observed that increased health problems due to traffic congestion 

affects mostly the vehicle users directly and the population living at about 100 m distance from the roadway 

during a congestion event.  Therefore, one part of the cost may be borne by the individuals privately, such as 

medicines, private health insurance increased rates or loss of productivity (affecting the individual salaries) 

while other costs may be borne by the public health system, loss of productivity (affecting the efficiencies of 

economic units or public agencies) being carried by society as a whole.  Determining if a cost is internal or 

external is not a straight forward task and several examples of costs that can be either internal or external 

depending on the point of view of the researcher conducting the study (Delucchi, 1997). 

Another characterization of costs is whether they are fixed or variable.  Conventional transport mode 

cost estimation considers as variable those costs that increase as a result of the occurrence of a certain event 

and that automatically decrease as the event occurrence reduces.  Fixed costs are not affected by consumption, 

and can be further subdivided into past unrecoverable costs (such as an alternative design study that is never 

going to be built) and programmed costs (such as programmed road surface maintenance).  However, this 

classification depends on the perspective of the problem under study and the definition of fixed and variable 
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cost used in this work are adapted to the bridge failure event.  Therefore, it is recognized that after a bridge 

failure the user is required to bypass the missing infrastructure link by increasing its expenditure with a direct 

proportion (and thus variable) to the extra route needed to get to the same previously planned destination.  

On the other hand, fixed costs will be associated uniquely with the actual failed structure and are not 

dependent on the traffic volume or the disruption time of the infrastructure link under examination. 

Another classification of the costs involved in the field of infrastructure is market or non-market cost.  

Some goods, such as structural materials, vehicle fuel or maintenance are part of competitive market and are 

used to establish their price and their cost.  On the other hand, non-market costs are associated with those 

goods or events whose consequences of vehicle emissions on health (as the costs of a car accident) are not 

regularly traded in a market. 

Finally, in a more philosophical way, the cost of the occurrence of an event is not independent on the 

point of view from which this is established.  In fact, a lower cost may be considered by an individual not 

aware of the elements making up the full cost of an event and being the scope of the cost estimation a way 

to determine the consequences of an event, it may be of interest to take into account the perceived cost instead 

of the actual cost.  For example, vehicle users tend to consider the cost of the vehicle itself as the perceived 

cost, being the actual cost a much more complex sum of factors as insurance, fuel, maintenance etc.  In 

particular cases such as bridge failures, the cost estimation may be performed at different levels: from the 

point of view of citizens, of the technical engineer responsible of the infrastructure budget allocation or of 

the public administration.  Assuming that the engineer is able to determine the correct actual cost, the public 

administration should adopt this point of view without filters, while the cost perception of the regular citizen 

may be biased by the way the information is conveyed and by the different possible political views and ethical 

values that may give the impression of a different cost from the actual and therefore to a perceived cost.  It 

is noted that the perceived cost is not necessarily lower than the actual cost.  In fact, the consequences of the 

occurrence of an event may be perceived as larger than the actual ones.  For example, when taking into 

account the delay of a bridge inspection that, even if rationally justified by engineering calculation, may led 

to an increase in people anxiety and its consequent cost on society, meaning that the delay on a policy towards 

the possibility that a bridge may fail, brings to a large perceived cost, that contributes to even higher health 

related costs. 

As a last point, the costs considered in this chapter must be quantifiable in order to be summed to the 

total cost.  For this reason, the different costs considered in the next subsections are the results found in 

published literature documents from different fields.  In this sense, for instance, the estimation of market 

costs is more reliable than non-market values.  Market costs are associated with events that occur much more 

frequently than events linked to non-market values.  It can therefore be stated that the quality of a cost 

estimation depends on the frequency of occurrence of that event or likewise in the probability that past similar 

events costs are estimated with sufficient precision to be extrapolated for future events. 
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7.2 Time dependent aspects of cost 

Several economic factors influence the variation of costs over time. These include the discount rate, 

inflation/deflation and price elasticity (Stein, 2007).  The discount rate defines the interest rate charged to 

banks from central banks (e.g. Federal Reserve in the US and Central European Bank in Europe) to finance 

loans for final users.  The discount rate has fluctuated over the years depending on economic conditions.  As 

shown in Figure 7-1, the discount rate at which the US Federal Reserve has been financing banks fell to 

almost zero immediately after the latest financial crises of 2008 only to rise slightly to about 2% over the last 

few years, with an average rate in 2019 of 2.16%. (The Federal Reserve, 2020).  The projected discount rate 

for the year 2020 is expected to be 1.75% (The Federal Reserve, 2019a). The discount rate allows for an 

objective comparison of costs incurred at different points in time by considering the opportunity value of 

time.  The opportunity value of time reflects the economic return that could be earned if funds were applied 

for alternatives other than for the activity being considered (e.g., the funds could be earning interest) or the 

compensation that must be paid to induce people to defer an action to later. Adjusting for the opportunity 

value of time is known as discounting (Demos, 2006).  

Inflation and deflation are respectively the increase and decrease of prices over time as a result of 

supply and demand in an economic system.  A steady 2-3% annual inflation rate is considered desirable by 

American and European authorities to propel consumption and ensure a value of savings over time (Central 

European Bank, 2020; The Federal Reserve, 2019b).  However, in a free market economy, the central bank 

authorities cannot easily achieve the target inflation rate, but can only stimulate the economic response of 

citizens by adjusting the discount rate and controlling the money supply.  Nevertheless, as shown in Figure 

7-2 over the last few years, the US inflation rate has remained within the target value averaging about 2.0% 

over the last 3 years. 

 

 

Figure 7-1. Discount rate in the US established by the Federal Reserve. 
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The estimated future costs must, therefore, be adjusted based on expected inflation rate and a discount 

from the actual price of a good must be taken when the investor is using federal funds. 

Price elasticity is defined as the percentage change in the consumption of a good caused by a one-

percent change in its price.  Prices of goods can be categorized, with different levels of degrees, as elastic or 

non-elastic depending on the sensitivity of consumers to the price of a good.  This concept is useful to 

determine the uncertainties in calculating the cost of failures for cost-benefit studies over an appropriate time 

interval. 

In this work, the costs of failure are updated from the year they are established to the present (2020) 

considering the inflation rate of previous years. Future costs are adjusted based on an expected inflation rate 

of 2% and a discount rate equal to 1.75% as forecast by the Federal Reserve.  However, possible changes in 

consumer behavior due to price elasticity is not considered as suggested in NCHRP 24-25 (Stein, 2007) 

where it is stated that given an estimated price elasticity on the order of 3% no significant effect on consumer 

surplus is expected. 

As stated by Demos (2006), analytical “adjustments for inflation and discounting are entirely separate 

concerns, and they should not be confused by attempting to calculate both at once”.  Instead, future costs and 

benefits of a project should be expressed in constant dollars and then discounted to the present at a discount 

rate that reflects only the opportunity value of time (known as a real discount rate).  This is because public 

sector project benefits should be dependent only upon real gains (cost savings or expanded output), rather 

than purely price effects.  According to Demos (2006) one commonly used approach for discounting is based 

on the “Relocation in Time”.  According to this approach, a single figure can be “moved” (transformed into 

an equivalent value) backward or forward in time.  The comparison can be made using the present worth 𝑃𝑊 ) which can be calculated with Equation 7-1: 

 𝑃𝑊 𝑦𝑒𝑎𝑟 ) = 𝐹𝑉 𝑦𝑒𝑎𝑟 ) 11 + 𝐼  (7-1)

 

Where 𝐼𝒅 is the expected discount rate for each year under consideration and 𝐹𝑉 ) is the future known 

value, 𝑦𝑒𝑎𝑟  is the year to which the value is being updated from the original known value in 𝑦𝑒𝑎𝑟  year. 

In this work, the effect of inflation is considered in two ways: to adjust historic data to current costs, 

or to study how costs will be affected if actions are deferred. The costs of failure extracted from available 

literature are used in this work after updating these to 2020 dollars using real inflation historic data 

(thebalance.com, 2020) by means of Equation 7-2 and the values plotted in Figure 7-2 for each US dollar 

record year.  The costs for deferring actions, will use the same equation but with a projected interest rate of 

2%. 
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𝑃𝑊 𝑦𝑒𝑎𝑟 ) = 𝑃𝑉 𝑦𝑒𝑎𝑟 ) 1 + 𝐼 ) (7-2)

 

The function 𝑃𝑉 ∙) in Equation 7-2 stands for monetary value in 𝑦𝑒𝑎𝑟  and 𝐼  is the inflation rate for each 𝑖 
year obtained from historical data.  

Future cost projection can therefore be calculated in a single equation considering a real discount 

rate (𝐼 ) as the difference between inflation and discount rate and considering this difference as a constant 

value for the next 𝑛 years, leading to Equation 7-3: 

 

𝑃𝑊 = 𝑃𝑉 11 + 𝐼  (7-3)

 

The suggested value for the real discount rate used by Demos (2006) was 4%, as historically used in Colorado 

Department of Transportation (CDOT) calculations, but that was before the economic crisis of 2008 took 

place.  For this reason, at present time, and considering that in this work no time projections for periods 

longer than 6 years are made and assuming that public funds are borrowed from a central bank institution, it 

seems reasonable to use a 0% real discount rate, since both inflation and discount rate are expected to be 

around 2%, simplifying Equation 7-3 to 𝑃𝑊 = 𝑃𝑉 meaning that the present cost is equivalent to the projected 

cost. 

The sections that follow will provide models for estimating the costs of bridge failures as documented 

in the literature over previous years and will update these to the year 2020 based on the inflation data shown 

in Figure 7-2. 

 

Figure 7-2. Historic inflation rate for US economy. 
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7.3 Cost Models 

7.3.1 Direct Cost 

Direct (or agency) costs are costs associated with the repair of the damaged parts of a bridge or the 

demolition and reconstruction of an entire bridge after a bridge failure.  A construction cost of 1679.17 $ 𝑚⁄  is calculated by Fiorillo (2015) using the unit costs for construction contained in RSMeans 

database (2009) as a function of the bridge total surface.  A demolition cost of 31.78 $ 𝑚⁄  is used according 

to the Federal Emergency Agency (FEMA, 2010) as a function of the bridge material total volume.  These 

values calculated for 2015 are further updated to 2020 leading to a construction cost of 1859.58 $ 𝑚⁄  and 

a demolition cost of 35.2 $ 𝑚⁄  including disposal of construction waste and recycling. 

7.3.2 Cost of Operating Vehicles 

Disruption time is the length of time the bridge is expected to be out of service due to its failure.  

Specifically, disruption time, expressed in day of closure, 𝑇, gives the time for the repair or demolition and 

reconstruction operations  required to restore a bridge to its previous service condition. It can be 

approximated as a function of the construction cost according to Jiang and Wu (2004) who established a 

regression model based on 102 bridges in Indiana, described by Equation 7-4: 

 𝑇 = 𝛼 ln 𝐶 − 𝛾 (7-4)

 

Where 𝐶  is the expected construction cost in US dollars, 𝛼 and 𝛾 are calibrated coefficients of the regression 

model that are related to the construction and road type. 

 

Table 7-1. Coefficients α and γ for Disruption Time (Jiang & Wu, 2004) 

Construction Type 𝛼 𝛾 
Superstructure Repair 26.67 259 
Bridge Replacement Interstate 41.26 445 
Bridge Replacement State 30.86 310 

 

The disruption time is of great interest for life-cycle calculations as well as for design alternative evaluation 

when bridge availability is a requirement.  For example, the recent trend of employing Accelerated Bridge 

Construction (ABC) focuses on design approaches where the cost of the project includes a wide range of 

factors other than mere construction cost.  In this sense, vehicle operating costs sustained by infrastructure 

users are estimated with the equation and values suggested by Khan (2015) for ABC projects where vehicle 
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operating cost 𝐶  is calculated as the sum of the cost due to the detour length and the cost due to the users´ 

time loss are modeled as shown in Equation 7-5: 

 

𝐶 = 𝐶  𝐷 𝐴𝐷𝑇 𝑇 + 𝐶  𝑂 1 − 𝜌100 + 𝐶 𝜌100 𝐷 𝐴𝐷𝑇 𝑇𝑆  (7-5)

 

Where 𝐶  is the unit cost of running a vehicle per km (0.366 $ per km); 𝐷 is the detour length in kilometers, 

which can be obtained from the NBI database; 𝐶  is the value of time per adult (13.46 $ per hour); 𝑂 is the 

average occupancy rate per vehicle (1.35); 𝜌 is the ratio of 𝐴𝐷𝑇𝑇 𝐴𝐷𝑇⁄  in percent; 𝐶  is the value of time 

per truck (26.93 $ per hour); and 𝑆 is the average detour speed in congested condition is 20.92 km/h according 

to Sjödin et al. (1998).  The proportion between light-weight and heavy vehicles is the difference between 

Average Daily Traffic (ADT, NBI item 29) and Average Daily Truck Traffic (ADTT, NBI item 109).  A 

similar equation is also used by Thompson (2017) for the analysis of risk during the life-cycle cost analysis 

in the AASHTOware bridge management system. 

7.3.3 Cost of Accidents due to Detour 

After a bridge is closed to traffic, an additional cost is imposed on the users due to the longer route 

that they have to drive to bypass the failed bridge.  Additionally, the increased travel distance implies an 

increase in the total number of accidents. 

The accident rate related to the standard use of the infrastructure network in the United States may be 

found in several studies carried out by the National Highway Traffic Safety Administration (NHTSA).  Both 

fatality and injury rates are measured in Vehicle per Mile Travelled (VMT), and normally it is expressed in 

terms of 100 Million VMT.  Accordingly, the values used in this work are set at 1.13 fatalities per 100 Million 

VMT as per 2018 data (NHTSA, 2019) and 77 injured per 100 Million VMT as per the latest available data 

of 2015 (NHTSA, 2016).  The number of fatalities (𝑛 ) and injured (𝑛 ) is therefore calculated 

with Equations 7-6 and 7-7: 

 

𝑛 = 1.1310 𝐴𝐷𝑇  𝑇 𝐷  11.609 (7-6)

 

𝑛 = 77.0010 𝐴𝐷𝑇  𝑇 𝐷  11.609 (7-7)

 

Where 1.609 is the factor to convert miles to kilometers. 
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The number of vehicles involved (𝑛 ) in an accident for calculating the cost of property damage 

estimated by Equation 7-8: 

 

𝑛 = 𝑛 + 𝑛𝑂  (7-8)

 

Where 𝑂 is the average vehicle occupancy. 

The next step is the calculation of the economic cost of each accident item.  A first attempt to this 

problem is assessed by Lee (1995), observing that the cost of loss of life for society can be approximately 

estimated to be $ 1 million by comparing it to the usual amount covered by insurances to compensate the 

beneficiaries of life insurances.  It is understood, that this is an average number, since usually insurance 

companies provide different compensation based on the consequence of a fatality, as for instance, age of the 

deceased individual and the condition of dependents, such as a spouse, children, or elderly live-in relatives.  

A more detailed and recent study for evaluating the costs of accidents was carried out by Blincoe et al. (2015) 

for the National Highway Traffic Safety Administration recognizing different kinds of accidents and different 

degrees of injury as well as property damage (PDO) for estimating the consequences of motor vehicle crashes 

in the US.  The cost of each fatality was found to be $ 1,393,169 per person while the cost for property 

damage was found to be $ 2,785 per vehicle in 2010 US dollars.  The severity of injury is classified into six 

levels (Gennarelli & Wodzin, 2008) listed in Table 7-2. These costs and the breakdown of the different factors 

are listed in Table 7-3. 

 

Table 7-2. AIS-code for severity of injuries (Gennarelli & Wodzin, 2008). 

AIS-Code Injury Example AIS % prob. of death 

1 Minor Superficial laceration 0 

2 Moderate Fractured sternum 1 – 2 

3 Serious Open fracture of humerus 8 – 10 

4 Severe Perforated trachea 5 – 50 

5 Critical Ruptured liver with tissue loss 5 – 50 

6 Maximum Total severance of aorta 100 
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Table 7-3. Summary of unit costs of crashes in 2010 dollars (Gennarelli & Wodzin, 2008). 

  PDO Vehicle MAIS0 MAIS1 MAIS2 MAIS3 MAIS4 MAIS5 Fatal 
  $/vehicle $/person $/person $/person $/person $/person $/person $/person 
Medical Care 0  0 2,799 11,453 48,620 136,317  384,273  11,317 
EMS 28  21 89 194 416 838  855  902 
Market Prod. 0  0 2,726 19,359 64,338 140,816  337,607  933,262 
Household Prod. 60  45 862 7,106 22,688 37,541  95,407  289,910 
Insurance Adm. 191  143 3,298 4,659 15,371 28,228  72,525  28,322 
Workplace Costs 62  46 341 2,644 5,776 6,361  11,091  11,783 
Legal Costs 0  0 1,182 3,351 12,402 26,668  82,710  106,488 
Prop. Damage 2,444  1,828 5,404 5,778 10,882 16,328  15,092  11,212 
Total 2,785  2,083 16,701 54,544 180,493 393,097  999,560  1,393,196 

 

The composite cost of injury per person is calculated from the proportion of each injury severity over the 

total as shown in Table 7-4, resulting in $ 13,691 per person in 2010 US dollars. 

 

Table 7-4. Cost of injuries. 

injury 
severity 

n. people 
injured  percentage total cost 

of injuries injury cost 

      $ $/person 
MAIS0 4,583,265 53.9% 2,083 1,123 
MAIS1 3,459,200 40.7% 16,701 6,793 
MAIS2 338,730 4.0% 54,544 2,172 
MAIS3 100,740 1.2% 180,493 2,138 
MAIS4 17,086 0.2% 393,097 790 
MAIS5 5,749 0.1% 999,560 676 
total 8,504,770     13,691 

 

The costs updated to 2020 are $ 1,678,357 per fatality, $ 16,493 per person for injury and $ 3,355 per vehicle 

for property damage. 

7.3.4 Environmental Cost 

The costs related to the impact of gas emissions of vehicles during the disruption of traffic due to 

bridge failure are defined as environmental costs.  A comprehensive summary of the different emissions can 

be found in USEPA (1996) for different transportation modes.  The most important emissions pointed out by 

Ahn et al. (2013) are listed as: 

• Carbon monoxide (𝐶𝑂): which is a toxic gas caused by incomplete combustion emitted by vehicle 

tailpipes damaging human health and contributing to climate change. 

• Dioxide (𝐶𝑂2): which is a product of combustion emitted during the production of the fuel itself and 

from vehicle tailpipes damaging human health and contributing to climate change.  Dioxides dissipate in 
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the environment and have more global impact than Carbon monoxide, that is more responsible for the 

costs near the emission source. 

• Volatile organic compounds (𝑉𝑂𝐶) such as hydrocarbon (HC), which are mostly related to fuel 

production and vehicle tailpipes and have an impact on human health besides being ozone precursors. 

• Nitrogen oxides (𝑁𝑂 ) and nitrous oxide (𝑁𝑂 ) which are different types of compounds, some of which 

are toxic, and have an impact on human health besides being ozone precursors.  Their source is vehicle 

tailpipes. 

• Fine particulate matter (𝑃𝑀 ).  These inhalable particles are defined by their diameter in micrometers.  

Typically 𝑃𝑀  or 𝑃𝑀 .  with particle diameters of 10 and 2.5 micrometers respectively are emitted by 

vehicle tailpipes but are also the product of brake and tire wear and road dust and affect directly human 

health. 

The different contaminants can be divided into exhaust emissions from tailpipes and non-exhaust 

emissions, for instance, from tire and break wear.  In general, the compound environmental costs caused by 

the aforementioned emissions are responsible for damage to human health including shortness of breath, 

respiratory and other diseases and death, and include, among the non-health damage, structural deterioration, 

decreased visibility and ecological degradation.  A more detailed description of the exposure and health 

effects of the pollutants can be found in HEI (2010) and Read (1994).  The evaluation of the cost of emissions 

is performed by many researchers at very different levels of precision.  Usually, complex emission models 

are used to estimate the emission given a certain number of boundary conditions.  A popular model developed 

by the USEPA (United States Environmental Protection Agency) are the MOBILE (USEPA, 2003) model or 

the more modern MOVES (USEPA, 2015).  The latter model allows to realistically consider vehicle speed 

within a simulation unlike the former where only average speed may be inputted.  The importance of this 

latest model refinement is shown, in Figure 7-3 and is of particular importance for saturated traffic conditions 

(congestion).  It can be shown that both very low and very high speeds increase the emissions significantly 

recognizing the range of speeds for which vehicle are expected to be efficient and those speeds that are 

expected to be reached with less frequently. 



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 135 

 

Figure 7-3. Vehicle emission by speed (Figure taken from Litman (2009) with the results obtained by TRB 
(1995)). 

 

Zhang and Batterman (2013) studied the impact of air pollution on people exposed to contamination 

due to vehicle emissions such as driving commuters or individuals living near major roadways.  Zhang and 

Batterman (2013) distinguished between the length of time of congestion when the capacity of the roadway 

is exceeded.  In this sense, the emissions occurring during normal traffic conditions are merely proportional 

to the number of vehicles in the normal traffic flow.  On the other hand, when congestion takes place a non-

linear and more severe increase in air pollutants is observed.  Specifically, these congestion increases are 

related to the lower average speed (involving frequent “speedups and slowdowns” and “starts and stops”), 

which increases travel time and exposure on a per vehicle basis and reduces the dispersion of the pollutants 

due to reduced air turbulence that increases the concentration of the pollutants. 

In this work, the additional detour length needed to by-pass a failed or closed bridge is considered to 

be congested.  It cannot be determined a priori if the unavailability of a bridge within a network will occur 

in congestion conditions.  However, it is reasonable to assume that the alternative path, which is supporting 

its own traffic volume is unlikely to have been designed for the additional volume detoured from the failed 

structure which may lead to exceeding its traffic capacity.  Therefore, the alternative path will be in 

congestion condition during much of the bridge’s disruption time. 

The amount of each pollutant and therefore its cost is defined for cars, light trucks and heavy trucks.  

The percentage of heavy trucks is calculated by Fiorillo (2015) to be 87% of the total of the total ADTT on 

NYS highway network based on WIM traffic data.  The environmental impact cost (𝐶 ) can be calculated 

according to Equation 7-9: 
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𝐶 = 𝐴𝐷𝑇 − 𝐴𝐷𝑇𝑇) 𝐶 + 0.87 𝐴𝐷𝑇𝑇 𝐶 + 0.13 𝐴𝐷𝑇𝑇 𝐶 𝑇 (7-9) 

 

Where 𝐶  𝐶  and 𝐶  is the sum of the costs of all the pollutants for cars, light trucks and heavy trucks 

respectively.  It is noted that the part of the air pollution generated in rural areas is expected to be less relevant 

that the one in urban areas, because some of the cost is borne by the individuals living in the vicinity of the 

roadway and rural areas have a smaller population density than urban areas.  Instead, costs linked to green 

house gas emissions are similar for rural and urban environments. 

The relationship between urban and rural average environmental cost is estimated as 1.16 considering normal 

traffic conditions according to FHWA (2012) and as 10.0 according to Litman (2009) and Maiback et. al 

(2008) as a demonstration of the large differences that can be observed from different researchers as a result 

of the many different calculation uncertainties in these kinds of cost models. 

Finally, the congestion regime of traffic is expected to increase the environmental cost per unit length 

travelled.  The ratio between congested and free flow cost conditions is also affected by differences deriving 

from the traffic and location circumstances being a factor of 2.0 a reference value provided by Zhang et al. 

(2011). 

The final cost rates used in this study are found in the comprehensive study carried out by Litman (2009), 

updated to 2020 dollars and are multiplied by 2.0 to consider the traffic congestion regime and are 

summarized in Table 7-5. 

 

Table 7-5. Environmental unit cost ($ per vehicle per kilometer travelled) based on Litman (2009). 

 

Non GHG 
environmental 

rural 

Non GHG 
environmental

urban 

Greenhouse 
Gas Costs 

rural 

Greenhouse 
Gas Costs 

urban 
Vehicle 0.010 0.160 0.039 0.049 

Light Truck 0.018 0.289 0.054 0.067 
Heavy Truck 0.034 0.477 0.243 0.199 

 

The average cost per VMT (Vehicle per mile travelled) is variable depending the proportion of trucks and 

other vehicles for each bridge analyzed in set 1 ranging from 5.0 to 10.0 cents of dollar for rural areas and 

from 25 to 30 cents for urban areas as shown in the histogram of Figure 7-4.  The classification of rural or 

urban environment is based on the bridge location as indicated in NBI item 26. 
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Figure 7-4. Environmental cost (in cents of dollar per VMT) versus number of bridges in set 1. 

 

Additional detail on the assumptions and methods utilized to determine these costs and in general how 

the considerable debate around this topic can be found in the EPA report The Benefits and Costs of the Clean 

Air Act, 1990 – 2020 (2011). 

7.3.5 Quantifying Fatalities and Injuries due to Bridge Collapse 

Finally, the cost of fatalities and injured after a bridge failure is considered as the number of 

occurrence multiplied by its related cost.  For example, NCHRP document 107 (Stein, 2007) established a 

relationship between the number of fatalities due to bridge failures and average daily traffic volume expressed 

in terms of ADT (Table 7-6). 

 

Table 7-6. Number of lives lost in bridge failure (Stein, 2007). 

Average Daily Traffic (ADT) Number of Lives Lost 
ADT<100 0 
100≤ADT<500 1 
500≤ADT<1000 2 
1000≤ADT<5000 2 
ADT≥5000 (Not an interstate or arterial) 5 
ADT≥5000 (interstate or arterial) 10 

 

Another practical approach for the estimation of the cost due to loss of lives is linking it to the cost of 

construction.  For example Saydam (2013) calculates the total cost of loss of lives due to bridge collapse as 

five times the construction cost of the bridge.  This approach has the advantage of the ease of application and 

the number of fatalities doesn’t need to be quantified, but it may look an over simplification since the same 

construction cost can be assigned to a quite different type of bridge being the shape of the bridge and its  type 

necessarily sensitive properties. 
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For this reason, several researchers attempted at relating the number of fatalities to some structural 

parameters, as span length.  In this sense, Imam and Chryssanthopoulos (2012) states that there is only a 

weak correlation between number of fatalities and span length, while Caspeele et al. (2016) and Steenbergen 

et al. (2015) show more optimistic relationships. 

It must be emphasized though, that not necessarily all bridge failures imply fatalities or injured.  In 

fact, Spector and Gifford (1986) found that an average of 100 small bridges fall every year without fatalities, 

or very few as observed by Lee at al. (2013) and that the fatalities are concentrated in a small number of 

failure events (Wardhana & Hadipriono, 2003).  For these reasons, the parameter under study is more 

precisely the number of fatalities conditional on the probability of getting at least one in a bridge failure 

(probability of casualty or mortality).  For instance, the approach followed by Caspeele et al. (2016) for 

residential buildings is based on the definition of three consequence classes CC1, CC2 and CC3 associated 

with the increasing conditional probability of casualty 0.01, 0.05, and 0.20 respectively, whereas a fixed 

value of 0.055 is suggested for bridges.  These values are used in conjunction with the probability of failure 

to calculate the number of casualties, or likewise to set a reliability index once the expected number of 

fatalities is found.   

Another approach is presented by Steenbergen et al. (2015) and Caspeele et al. (2016), who relate the 

number of fatalities to bridge span length by means of linear regression of a set of real data, coming up with 

an average value of 0.09 times the span length.  The dataset of bridges used has span lengths up to 500 m as 

shown in Figure 7-5 (left plot).  For completeness the same bridge data set analyzed by Steenbergen et al. 

(2015) are also analyzed in this study for number of injuries in Figure 7-5 (right plot) obtaining a linear fit 

of -0.022 SL+25.872 with a negative slope indicating a counterintuitive decrease of injured as span length 

increases and an R-squared coefficient as low as 0.006 indicating practically no correlation between data and 

model.  This means that the linear regression cannot be used for injuries as is or at least it is not an acceptable 

representation for this set of bridge collapse events. 
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Figure 7-5. Number of fatalities versus span length on the left (Steenbergen et al., 2015). Number of injured 
versus span length on the right (Present study). 

 

The comparison of these estimation models with real failure event can be performed for two cases for 

which data are available.  For instance, the I-35W Mississippi River Bridge collapse in 2007 caused 13 

fatalities and 145 injuries.  In this specific case, the severity of the injuries have been made public by the 

National Transportation Safety Board (NTSB, 2007) indicating that 34 injuries were classified as “serious”, 

111 as “minor” and 32 additional cases as “none or unknown”. Since the main span length of this bridge is 

139 m, the aforementioned linear regressions defined in Figure 7-5 provides an expected number of 12.6 

fatalities.  The comparison to the model suggested above show that the number of fatalities is equivalent to 

that predicted by the regression.  Similarly, the application of Table 7-6 criteria to this failure event led to 10 

fatalities, given that an ADT 14’000 and considering that the bridge is located in Interstate 35W.  So, again, 

this alternative criteria to obtain the number of fatalities based on amount of traffic gives good results for the 

I-35 W bridge. 

Another example is represented by the Mianus River Bridge collapsed in 1983 after the failure of a 

critical connection (pin and hanger) in a main load bearing element due to intrinsic difficulties in the 

inspection of these elements in a this bridge’s non-redundant structural configuration, led to 3 fatalities and 

3 serious injured (Scheer, 2010),  Given a main span length of 30 m, the linear regression in Figure 7-5 

provides an expected number of 2.7 fatalities which are on the same order as those observed from the collapse 

event.  Also, the application of Table 7-6 criteria to this bridge leads to 5 fatalities, given that an ADT 9’100 

is obtained considering that the bridge is located in Connecticut route 104. Again, the two criteria based on 

span length or ADT result in quite good predictions. 
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The more recent work carried out by Proske (2020), attempts at estimating the number of fatalities 

per year due to bridge collapses, besides giving a quite complete global view and state of the art on this topic.  

In this paper, the number of fatalities 𝑁 is estimated according Equation 7-10: 

 𝑁 = 𝑈 𝑘 𝑁  (7-10) 

 

Where 𝑘  is the conditional probability of getting at least one fatality given a bridge collapse and are 

dependent on the 𝑖  cause of collapse, 𝑈  is the probability of failure and 𝑁  is the maximum expected 

number of fatalities which is found by the author to be 3.03 for road bridges, 180 for railway bridges and 92 

for the general case after performing a statistical analysis on a bridge population of 235 severe bridge 

collapse.  The summation sign over the 𝑖  addends represent different possible modes of failure. 

For what the application of these figures to this work, the number of fatalities can be estimated 

multiplying the 𝑘 𝑁  for road bridges.  The values of 𝑘  can be 0.8 for bridge overload, while the expected 

number of fatalities can be 3.03 for road bridges or 92 for the general case as suggested by Proske (2020) 

resulting in an upper bound of 73.6 and a lower bound of 2.4 expected fatalities given any bridge collapse, 

irrespective of its geometry or type.  In the context of this Thesis the minimum and maximum span lengths 

of set 1 is 12 m and 75 m leading to a minimum and maximum number of fatalities (according to Figure 7-5 

left) of 1.1 and 6.8 which is in the low range of the results obtained with Proske’s (2020) proposal and close 

enough to the expected number of fatalities for road bridges (3.03). 

The failure events suggested by Steenbergen et al. (2015) are incremented with new cases taken from 

Scheer (2010) getting to 22 cases as presented in Table 7-7. 
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Table 7-7. Bridge failure cases for fatalities/injured statistics (Scheer, 2010; Steenbergen et al., 2015). 

Bridge Country Year Span/ 
length (m) Fatalities Injured 

Duplessis Bridge Montreal - Canada 1951 55 4 0 
Naga city Philippines 1972 40 145 200 
Reichs bridge Austria 1976 241 1 0 
Poulding country culvert Ohio - USA 1983 10 5 4 
Sungsu truss bridge Korea 1994 120 32 17 
Koror Babelhuap bridge Palau 1996 241 2 4 
Amsterdam bridge New York - USA 1987 34 10 0 
Kaohsiung Taiwan 2000 91 1 22 
East of Porto bridge Portugal 2001 200 70 0 
Northern bypass bridge Pakistan 2007 70 6 0 
Brooklyn bridge (Harrodsburg) Kentuky - USA 1953 76 0 1 
Ariccia Italy 1967 312 2 0 
Silver Bridge Ohio - USA 1967 500 46 9 
Sunshine Skyway Bridge Florida - USA 1980 370 35 1 
Queen Isabella Texas - USA 1996 72 8 3 
I40 Oklahoma - USA 2002 158 14 11 
I35, Minneapolis  Minnesota - USA 2007 139 13 145 
Tarcoles Costa Rica 2009 82 5 30 
E313 Viersel Belgium 40 2 17 
Mianus River Bridge Connecticut - USA 1983 30 3 3 
Cleddau Bridge Wales 1970 70 4 5 
Severn River Bridge UK 1960 115 5 0 

 

Similar results as those obtained by Steenbergen et al. (2015) are obtained in this work for a different 

set of events more suited for the bridge population under study.  The fitting population is found by removing 

from Table 7-7 data span lengths longer than 85 m similar to the span length used in set 1, by removing cases 

with zero injured or fatalities, and by removing the Naga City and Amsterdam bridge as they are considered 

outliers. The removal of those cases with zero fatalities and injured is explained because this estimation 

model is conditional on the presence of a fatality in the collapse event.  In a further step, the estimation will 

be corrected to take into account of the presence of bridge collapses without fatalities (probability of 

mortality). 

The linear regression shown in Figure 7-6 and executed to determine the relationship between 

fatalities and span length of 0.09𝑆𝐿 found by Steenbergen et al. (2015) and already shown in Figure 7-5 

slightly decreases to 0.076 𝑆𝐿.  Similarly the relationship between number of injured and span length is 

found to be 0.154𝑆𝐿. 
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Figure 7-6. Relation between number of casualties (left) or injuries (right) versus span length smaller than 85 
m. 

 

As can be observed by looking at the R-square fitting coefficients, the correlation between fatalities and span 

length shows relatively strong fit, while a weaker fit is observed in the case of injuries.  Nevertheless, the 

high level of uncertainties linked to the presence of vehicles during a bridge collapse is not expected to lead 

to higher confidence as those provided by the other methods outlined earlier. 

It is recalled that these estimation models are conditional to the presence of fatalities in the bridge 

collapse event (probability of mortality or casuality).  This means that the number of fatalities need to be 

reduced to take into account those events of bridge collapse without fatalities.  Therefore, the expected 

number of fatalities and injured must be multiplied by the probability of mortality expressed by many authors 

for different circumstances and comprehensively presented by Proske (2020).  As already mentioned, a 

coefficient of 0.8 is suggested by Proske (2020) for overload failure modes and 0.055 from Caspeele et al. 

(2016) for the general case.  The latter value (0.055) seems more suitable for the general case treated in this 

work and will therefore be adopted. 

Some additional remarks are due to the evaluation of the ratio of injuries to fatalities as previously 

found in Figure 7-6 (right) to be 2.0.  Previous studies on building population subjected to severe seismic 

events in Japan show ratios of 48 in the decade of the 50s and 60s and a decrease to 7 in the 80s 90s as 

observed by Wyss and Trendafiloski (2011).  Likewise, the FWSI (fatalities and weighted serious injuries) 

is used for railway accidents being 0.1 for severe injury and 0.01 for minor injury.  This derives in ratios of 

10 and 100 respectively.  It is recalled that a ratio of 77/1.13=68.14 is used in Subsection 7.3.3 for road 

vehicle crashes.  However, in the case of bridge collapse a smaller ratio is observed.  For instance, the work 

presented by Garg et al. (2020), outlines that the proportion of injuries to fatalities in bridge collapses in 

India, shown in a year wise plot (Figure 7-7), results in a rough proportion of 1.5:1. 
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Figure 7-7. Injuries and fatalities from bridge failure events in India (Garg et al., 2020). 

 

Again, the authors of the paper highlight the high contribution of railway bridge collapses in the count 

of fatalities and injuries that in general involve higher numbers of fatalities and injured than road bridges.  In 

addition, being the paper focused on solely Indian bridges, a direct extrapolation to American or European 

bridges may not be straightforward.  Despite the results obtained in these cases, road bridge failures may 

present different singularities, and again, the amount of data available in literature is poor.  A trend 

investigation of the aforementioned ratio from 1850 to the present presented by Proske (2020) for bridge 

collapses in general, showing that higher values of the ratio injured/fatalities of the order of 1.0 or 2.0 should 

be used for road bridges.  It must be emphasized that the injuries regression analysis alone, due to the scarcity 

of the data, may not be rigorous enough to be used as a prediction tool.  However, the ratio obtained with the 

regression shown in Figure 7-6 of injured over fatalities of 2.0 is in good agreement with the results obtained 

by Garg et al. (2020) of 1.5 and with the aforementioned range suggested by Proske (2020) consistently 

observed in each author’s datasets. 

The specific circumstances related to the collapse of the I-35 and Mianus bridges explained previously 

each of these two bridges are a clear example of how difficult is to find a correlation between a specific 

bridge parameter or traffic properties and number of casualties.  For this reason, it would be reasonable to 

hypothesize that casualties would be related to ADTT, bridge length or the combination of both.  One can 

also hypothesize that loading patterns, bridge elevation and other geometric configurations, or specific 

circumstances occurring during the failure, as special maintenance operations may influence the numbers 

and severity of casualties.  It should also be mentioned that the fluctuations of the traffic volume during the 

day lead to different degrees of occupancy of the bridge, therefore a bridge with a high ADT does not 

necessarily cause a high fatalities and injured toll if the failure occurs at a time of the day with a low traffic 
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volume.  Unfortunately, the limited database currently available is not sufficiently broad to perfectly model 

the effects of all potential factors. 

Once the number of events (fatalities and injured) is found, the corresponding unit costs need to be 

estimated and associated to each of the two items.  The cost of fatalities is easier to establish because there 

are no degrees of severity involved and its value can be taken as the one calculated for car crashes in Table 

7-4 as $ 1,393,196 in 2010 and $ 1,678,357 updated to 2020 US dollars.  On the other hand, defining the cost 

of injuries is a much harder task for several reasons.  First, most of the bridge toll information is provided in 

the form fatalities/injuries, without a specification of the degree of severity of the injured, unlike car crashes 

that are a much more frequent events and injured are well documented.  Second, many minor injuries may 

be documented but still contributing very little to the total cost of toll, and sometimes, when only the total 

number of injured is available and an average cost of injuries is calculated, an unrealistic cost is found.  For 

the same reason minor injuries are more likely to be undocumented. 

One of the few bridge collapse that provides a reasonable amount of information about injuries is the 

aforementioned case of the Mississipi river bridge.  The compensation settlement related to each fatality and 

injury are publicly available.  For this particular bridge the average compensation for each of the 11 fatalities 

was $ 760,000, (for a partial total of 8,360,000 $ which is 23.8% of the total cost) and for each of the 34 

severe injured was $ 723,000 (for a partial total of $ 24,582,000 which is 70.0% of the total cost) and for 

each of the 111 who suffered minor injury was $ 19,500 (for a partial total of $ 2,164,500 which is 6.2% of 

the total cost).  Looking at these figures it can be concluded that, the fatalities and severe injuries essentially 

make up the total cost of toll.  Additionally, while at first sight the aforementioned proportion between 

injuries and fatalities of 1:1 or 2:1 may be strongly out, it can be observed that, from the economical point of 

view, and if only the severe injured are considered, the proportion obtained is 3:1, which is only slightly off 

the rough proportion suggested earlier.  The cost of fatality and severe injury found for this bridge are smaller 

than the ones found for car crashes, but still on the same order of magnitude. 

For the Mianus bridge collapse, only the total amount of the compensation is available, being $ 

7,800,000.  If the proportion found for the Mississipi bridge between fatality and sever injury cost of 1.05 is 

assumed the cost of each of the 3 fatality is $ 1,330,000 and the cost of each of the 3 injured is $ 1,270,000  

which is reasonably in the range of expected costs compared to the values presented in Table 7-4. 

In this work, the cost of injury is assumed as 0.95 the cost of fatality (1/1.05 found above), being it 

the best estimate available to the knowledge of the author of this work and as a consequence of the data 

available, bearing in mind that further research should be carried out in the future for an improvement of the 

these figures.  
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7.3.6 Cost of Inspection 

Besides the consequences of bridge failure calculated in terms of cost to society the last cost to be 

evaluated is the cost of routine inspection.  The different parts composing the total cost of inspection are 

estimated as provided by Hassan S. (personal communication, December 22, 2019): 

• Field inspection hours: 14 hours for Team Leader (senior engineer with Professional 

Engineer’s License, at a rate of 60.00 $/hour) and 14 hours for Assistant Team Leader (junior 

engineer, rate 35.00 $/hour). 

• Expenses: $ 2,500 for a bucket truck to access the bridge 

• Load rating hours: for the multi-girder configuration analyzed in this work 12 hours for load 

rating engineer (rate 45.00 $/hour) and 4 hours for load rating reviewer (rate 60.00 $/hour). 

• Salary overhead: An average multiplier of 2.6 is assumed on salaries. 

The resulting cost of inspection is $ 8,000, with 75% of the cost being due to the visual inspection and 25% 

to the post-processing of the data collected.  These values are in agreement with the cost range between $ 

4,500 to 10,000 reported by Zulfiqar et al. (2014).  

7.4 Summary and calculation example 

The summary of the models and equations obtained through the chapter and further used in this work is 

presented in Table 7-8. 

Table 7-8. Models and equations used in this work to define the total cost of bridge failure. 

Cost Item Equation source 

Demolition 35 𝑉 (FEMA, 2010) 

Reconstruction 1860 𝑆 (RSMeans, 2009) 

Congestion and delay Equation 7-5 (Khan, 2015) 

Accidents due to detour Equations 7-6, 7-7, and 7-8 (NHTSA, 2019) (Blincoe et al., 2015) 

Environmental Equation 7-9 (FHWA, 2012) 

Fatalities 𝐹 = 0.0762𝑆𝐿 × 0.055 (NHTSA, 2019) (Present study) 

Injuries 2.0 𝐹 (Garg et al., 2020; NHTSA, 2018; Proske, 
2020) (Present study) 

 

The following symbols are used in Table 7-8: 𝑉 bridge volume, 𝑆 bridge surface, 𝑆𝐿 bridge span length, and 𝐹 number of fatalities. 

In order to better understand the calculation process, all the figures involved in the calculation and the 

application of the equations summarized in Table 7-8 a calculation example is performed with one of the 

bridges of set 1 in Appendix G.   



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 146 

7.5 Final Remarks on the Cost of Bridge Failure 

The total cost 𝐶 is the sum of the direct cost 𝐶  and the indirect costs 𝐶 , 𝐶 , 𝐶 and 𝐶 .  The 

different studies referenced above clearly demonstrate the difficulties in establishing absolute cost estimates 

for each cost category due to the lack of sufficient numbers of case studies.  It is therefore noted that the 

models adopted in this work for the cost estimation are as accurate as the available literature allows and a 

word of caution must be given for the use of these values in other contexts different from the one pursued in 

this work. 

Likewise, for a better understanding of the importance of the different cost items within the 279 

bridges of set 1 a histogram of cost percentages is presented in Figure 7-8 sorted by ascending ADT and 

Figure 7-9 sorted by ascending detour length. 

 

 

Figure 7-8. Relative cost contribution for each of the 279 bridges of set 1 (bridges sorted by ascending ADT). 
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Figure 7-9. Relative cost contribution for each of the 279 bridges of set 1 (bridges sorted by ascending detour 
length). 

 

In general, it can be observed that the indirect cost importance increases as the ADT and Detour length 

increase.  However, the trend is not strong and clean when the two parameters are checked alone.  In order 

to overcome this problem the bin x-axis of the histogram is more conveniently represented with the joint 

parameter Detour length times ADT as shown in Figure 7-10 

 

 

Figure 7-10. Relative cost contribution for each of the 279 bridges of set 1 (bridges sorted by ascending detour 
length by ADT). 

 

From these figures, the maximum and minimum contribution to the total cost and therefore the possible 

relevance of each cost item is presented in Table 7-9. 
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Table 7-9. Maximum and minimum percentage of cost by cost type for the bridges under study (set 1). 

  min max 
System reconstruction cost 0.1% 78.0% 
Environmental cost 0.0% 10.6% 
Indirect cost 0.0% 94.7% 
Cost of accidents due to detour 0.0% 1.6% 
Cost of fatalities and injured due to failure 0.0% 56.2% 

 

The following conclusions can be drawn from the observation of the cost calculated for set 1 and the analysis 

of Table 7-9, Figures 7-8, 7-9 and 7-10: 

1) The accidents occurring during the disruption time along the detour are observed to be in general 

small compared to other costs. 

2) The environmental and the indirect costs increase in importance as the detour length or the ADT 

increase, as expected even though the environmental costs are less relevant. 

3) The cost of failure of those bridges with zero detour length (e.g. twin bridges) is composed of 

demolition and reconstruction, and fatalities and injured in a fairly equal proportion. 

The costs estimated in this chapter are used to calculate the risk of bridges by its combination with the results 

obtained in previous chapters and especially with the probability of failure obtained in Chapter 6.
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8 Risk-based Optimization of Inspection Intervals 

The purpose of bridge inspection programs is to assess the load carrying capacity of existing bridge 

structures and identify those that are at high risk of failure in order for the authorities to take necessary actions 

to reduce that risk.  Thus, risk optimization implicitly is the main purpose of bridge inspection processes even 

though risk assessment is not explicitly formulated in current procedures. The quantification of risk in 

engineering applications aims to provide a measure of the consequences of a potential hazard or a set of 

hazards that an engineered system could possibly be vulnerable to.  In this work, the hazard of interest is the 

failure of a deteriorating bridge structure, calculated with the methods outlined in Chapter 6, whose structural 

capacity, evaluated as explained in Chapter 4, is vulnerable to the effects of heavy live loads, estimated for a 

specific exposure period as explained in Chapter 5, where the consequences of failure on society is monetized 

using the models proposed in Chapter 7.  The combination of these factors provides a quantified measure of 

the risk associated with the failure of a specific bridge in a state of deterioration exposed to heavy truck 

traffic.  While the quantification of risk is possible using the tools developed in the previous chapters, the 

determination of an optimum bridge inspection schedule requires the establishment of acceptable criteria that 

reflects the specific characteristics of each bridge susceptible to failure from the effects of heavy truck loads. 

It has been argued that the mandatory biennial routine inspection of all US bridges has expended a 

significant proportion of the limited funds available for maintaining the US infrastructure.  According to 

current practice, a biennial inspection is performed even for bridges that have been recently built, 

rehabilitated or have otherwise shown very good condition during recent inspections and thus are known to 

present very low risk of failure.  As already mentioned in Chapter 2, to reduce the efforts of the cost of 

inspections, the Federal Highway Administration is working on modifying the National Bridge Inspection 

Standards (NBIS) to allow for more flexible bridge inspection practices including the increase of inspection 

intervals when possible (FHWA, 2019b).  The approach that the FHWA is implementing is based on an 

assessment of the risk with a certain degree of subjectivity and without an explicit consideration of factors 

that control this risk as mentioned in Section 2.1.  In fact, the FHWA procedure uses condition rating as the 

basis for defining bridge failure when in reality condition ratings are subjective indicators assigned based on 

visual inspection related to local deterioration and damage.  The condition rating does not distinguish between 

the risk associated with a deteriorated overdesigned bridge which can still carry significant load or that of an 

underdesigned bridge that does not meet minimum safety criteria even undamaged.  On the other hand, load 

ratings, as used in this work, are more suitable metrics to evaluate the capacity and therefore the probability 

of failure of bridges. 

To address the inherent limitations of the FHWA procedure and enhance its efficacy, this study has 

set as its objective the development of a more robust risk procedure.  The proposed methodology would help 

determine an optimum bridge inspection interval based on an objective risk assessment process that utilizes 

a well-established and widely accepted methodology and relevant data that are readily available to the 
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engineering community.  Another advantage of the present method is that it determines the inspection interval 

can in bridge-by-bridge basis, overcoming the difficulties of a network-based analysis similar to one of the 

methods proposed by Thompson et al.(2012).  In fact, by combining all the structures of a network one loses 

focus on individual bridges and may “sacrifice” individual bridges for the global benefit and ignoring the 

importance of each bridge to the particular community it serves.  Furthermore, from a practical point of view, 

obtaining the necessary information for a risk-based determination of an optimum inspection interval of a 

single bridge is easier than gathering information of an entire infrastructure network. 

For application in engineering practice of the method proposed in this Dissertation, the evaluating 

engineer requires all usual information related to the bridge characteristics (geometry and materials and other 

information available from the NBI database).  Additionally, an estimation of the annual reduction in the 

bridge load carrying capacity as established from previously performed field inspections and load rating 

calculations (which can be easily extracted from NBI files from multiple previous years) is needed. 

The sections of this chapter will first establish risk-based criteria for determining the optimal 

inspection interval followed by a description of the proposed methodology which will be illustrated using 

convenient examples and results presentation and discussion. 

8.1 Inspection Interval Criteria 

Let us assume that a bridge has been inspected at time T0 and, based on its load rating calculations, it 

was found to have a risk estimated to be equal to R0.  Due to its deterioration over time and possible increases 

in the expected maximum live load that it will be exposed to as its service life increases, its risk will increase 

over time as illustrated in the curve labelled A in Figure 8-1.  Curve A represents the assessed risk accounting 

for the large aleatory and epistemic uncertainties in modeling future maximum loads on the bridge, the 

response of the bridge to these loads including the effect of future deterioration.  The uncertainties related to 

the deterioration implied in Curve A are relatively large because they are based on the statistics of a large 

population of bridges that have the same general characteristics of the bridge being evaluated as explained 

in Chapter 2.  In reality, the risk associated with this particular bridge represents only one realization from 

the entire population of bridges.  Therefore, the bridge-specific risk can be represented by another curve that 

can be obtained by vastly reducing the uncertainties related to bridge deterioration.  The bridge-specific curve 

can be obtained by focusing the evaluation of the deterioration rate on observations made on previous years’ 

load ratings of this specific bridge.  Hence, the expected bridge-specific risk over time may increase at a 

slower rate than the general risk curve.  This can be modelled using the curve labelled B in Figure 8-1.  In 

particular, improving the estimate of the bridge-specific risk can be achieved by performing regular 

inspections or monitoring which provide improved assessments of the bridge’s load carrying capacity and its 

evolution over time.  Therefore, at any point of time, the difference between the general risk curve A and the 

expected bridge specific curve B, depicted in Figure 8-1 by ΔR, represents the reduction in the uncertainties 
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in the load carrying capacity of the bridge obtained by an improved estimate of the deterioration state of the 

bridge. 

 

Figure 8-1. Determination of inspection time interval. 

 

The additional cost ΔR that society pays to delay the inspection process, can only be tolerated if it is 

lower than the cost associated with obtaining an improved assessment of the risk that would ease “the fears” 

of the society with regard to the safety of using this bridge.  Improving the estimate of the risk requires the 

performance of field inspection.  Therefore, it is clear that incurring the cost of performing an inspection 

pays off when the difference between the estimated general risk exceeds the expected bridge-specific risk by 

the cost of performing a bridge inspection.  Therefore, the optimum time to perform an inspection depicted 

in Figure 8-1 by T* is when the reduction in estimating the risk is equal to the cost of inspecting the bridge 

or when ΔR=Cinsp. 
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Figure 8-2. Inspection interval limited by the RLIM. 

 

Naturally, even though T* would be the optimum time to inspect the bridge from a cost-benefit 

perspective, the risk should not exceed society’s pre-established level of risk-tolerance as represented by an 

upper limit value RLIM.  For example, RLIM may represent the risk associated with a rating factor RF=1.0 

which historically has been used as the criterion for deciding on posting or rehabilitating bridges.  Therefore, 

in this Thesis the time to perform a bridge inspection is proposed to be set at the lower of T* (when the 

general estimate of risk is equal to the cost of inspection) or TLIM which is the time when the general estimate 

of the risk on (curve A) exceeds a limit risk (RLIM) associated with a rating factor smaller than 1.0, as shown 

in Figure 8-2. 

The TLIM limitation is needed to avoid that the inspection interval becomes too large for weaker 

bridges, even if they are experiencing slow deterioration rates.  In this sense, since this limitation is applied 

to curve A, that accounts for the uncertainties associated with estimating the deterioration rate based on a 

large population of bridges (as analyzed in section 3.5), the proposed approach for determining the optimum 

inspection interval includes a safety factor against unexpected deterioration rates different from the one 

observed at the specific bridge under study. 

Even though in most cases performing the bridge inspection at the time calculated using this proposed 

procedure may reveal that the actual risk is lower than that originally estimated, in some instances it may 

reveal that it is higher than the originally estimated risk (e.g. curve B may have shifted upward at a faster rate 
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than expected).  In the latter case and depending on the results of the improved risk assessment, the owners 

may decide to keep the bridge open, perform necessary maintenance, load post, or rehabilitate the bridge.  

The cost of performing the inspection is justified in either case i.e. whether the improved estimate is lower 

than the previously estimated risk (thus easing the fear of the public) and even more so if the risk is found to 

be higher so that necessary actions may be taken.  It is possible that the proposed risk-based determination 

of the inspection interval may indicate that inspection be performed at more frequent intervals than the usual 

two years. 

 

 

Figure 8-3. Inspection interval based on inspection cost. 

 

In order to better visualize how the inspection interval defined earlier is optimum, the “delayed 

inspection” curve and the cut-off inspection cost are plotted in Figure 8-3.  The red curve of the figure shows 

that until the cost of delaying the inspection is smaller than the inspection cost, it would be cost-effective to 

delay the inspection.  When the cost of delaying the inspection increases above the inspection cost, delaying 

the inspection is no longer cost-efficient. 

It is reasonable to expect that the proposed approach that would lead to delayed inspections would 

increase the anxiety of a society accustomed to the regular two-year inspection cycle.  While it is not possible 

to quantify this aspect at the moment and include it in the present calculations, several researchers have 

conceptually discussed issues related to risk tolerance and risk perception which may require further study 
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before possible implementation in structural risk analysis processes.  The reader may refer to Bell et al. (2006) 

and Nowak and Collins (2013) for further information. 

The direct application of the concepts explained in this section is next described and labeled as “full-

fledged method”, while a “simplified procedure” is proposed further for a more practical calculation of the 

inspection intervals. 

8.2 Full-fledged Method Example 

The application of the method developed in the previous section is illustrated using an example bridge 

before applying to all the bridges in set 1.  The first step of the routine inspection process consists of 

performing the inspection report on the specific type of location of the defects and assigning a condition 

rating for the bridge.  The second step is performed by the evaluation engineer who receives the inspection 

report and studies the type, extent and location of the defects, then projects their effect on the structural 

properties of the components.  The evaluation engineer performs the load rating following the guidelines as 

set in the state regulations or AASHTO MBE (2018).  Furthermore, the information is entered into the NBI 

data file and collected by the FHWA at the national level. 

The additional steps necessary to apply the method developed in this work would be performed in 

conjunction with the load rating calculation process. 

Let us apply the process to bridge ID 1000871 of set 1 as an example.  This bridge is formed by 7 

parallel beams spaced 2.5 m and spanning 24.6 m.  The load rating assigned to this bridge is RF=2.5. 

First, the deterioration rate needs to be calculated.  Since the engineer in charge of the evaluation has 

access to the historical inspection reports and previous load rating calculations, the trend in the loss of load 

carrying capacity can be calculated.  However, in case the information is insufficient the procedure described 

in Appendix B can be used.  It is recalled that the deterioration rate is calculated for the member capacity, 

not for the load rating.  In this example, it is assumed that after inspection and assessment of the type of 

deterioration, the engineer found a deterioration rate in member capacity equal to 2.0%.  Following the 

grouping given in Chapter 3, high deterioration rate is defined as 3.4% and the medium deterioration rate is 

defined as 0.5% thus the bridge under study falls between these two categories.  However, it is here 

recommended to classify bridges conservatively, especially if the deterioration rate is based on unprecise 

data as is often the case.  Therefore, in this example the bridge is classified using the high deterioration rate 

group. 

Thus, the risk is calculated following the calculation process described in this Thesis in Chapters 4-5-

6 for the probability of failure and the cost calculation as performed in Chapter 7.  The risk calculation is 

developed for: 
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1) A range of six years considering the deterioration uncertainties obtained by the statistical analysis 

performed in section 3.5.  This would lead to curve A in Figure 8-1. 

2) The same six-year range but assuming that the deterioration rate is deterministic which in this 

case conservatively assumes 3.4% reduction in member strength capacity per year (Figure 8-1 

curve B) 

3) Finally, the calculation of the risk threshold is obtained assuming a load rating equal to 1.0. 

The results of the application of the steps 1) and 2) are reported in Table 8-1 and plotted in Figure 8-4. 

 

Table 8-1. Risk and relative risk over time for example bridge. 
 Risk ΔRisk 

 $ x 1000 

year Curve A Curve B Curve A- 
Curve B 

0 2.8 2.8 0.0 
1 4.9 3.6 1.3 
2 10.7 4.5 6.2 
4 23.9 6.1 17.9 
6 33.2 8.0 25.2 

 

 

Figure 8-4. Risk and relative risk over time for the example bridge. 

 

Because the risk threshold calculated in step 3), which is found to be $ 60,200 is higher than any risk 

projected in the next six years as calculated from step 1) it does not control the inspection period.  Hence, the 

inspection interval can be calculated as a function of the inspection cost.  The differences between the risk 

values calculated in steps 1) and 2) (Figure 8-4 black line minus dashed black line) for the period of 0 to 6 

years are plotted in Figure 8-5.  Assuming that the cost of inspection is $ 20,000, a horizontal straight line 
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can be drawn to intercept the relative risk curve at that level which would indicate that the optimum inspection 

time is of 4.6 years, that is conservatively rounded down to 4 years. 

 

Figure 8-5. Inspection time calculation for high deterioration rate and inspection cost equal to $ 20’000. 

 

A sensitivity analysis compares the optimum inspection period assuming different inspection costs 

(from $ 4,000 to $ 40,000) and three possible deterioration rates (high, medium and low). These results are 

summarized in the column chart of Figure 8-6. 

 

 

Figure 8-6. Inspection interval as a function of inspection cost and deterioration rate for bridge ID 1000871 of 
set 1. 
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The column chart of Figure 8-6 shows that in the case of low and medium deterioration, the inspection 

interval can be safely set at 6 years.  If the bridge is experiencing high deterioration rate, the inspection 

interval would range between 6 years if the inspection cost exceeds $ 40,000 down to 2 years if the inspection 

cost is on the order of $ 10,000 and even one-year interval would be justified if the inspection cost is less 

than $ 4,000. 

The calculations are repeated for bridge 1001429 with 5 beams spaced at 2.5 m spanning 31.0 m.  In 

this case, the load rating is 1.7 meaning that the threshold risk linked to a load rating equal to 1.0 is more 

likely to limit the inspection interval compared to the previous bridge example.  The results are summarized 

in the column chart of Figure 8-7. 

 

 

Figure 8-7. Inspection interval as a function of inspection cost and deterioration rate for bridge ID 1001429 of 
set 1. 

 

As can be seen from Figure 8-7, for high deterioration rates and high inspection costs, the cost-

effectiveness criterion to establish the inspection interval cannot be applied.  Instead, the inspection time is 

limited (accounting for a proper safety margin as explained in Section 8.1) to 3 years to avoid that the bridge 

capacity falls below acceptable values between inspections.  On the other hand, for low and medium 

deterioration rates the inspection interval can be safely set to 6 years. 

8.3 Analysis of a Set of Bridges 

In this section, the inspection interval is calculated for the entire population of bridges in set 1.  As 

done in Section 8.2, the results of the risk analysis are rounded for practical purposes.  The first modification 

limits the inspection interval to 6 years in those cases where the inspection interval is larger than 6.  In other 

cases, the inspection intervals are conservatively rounded down to the lower integer.  Finally, the inspection 
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interval that should theoretically be performed in an interval of less than 1 year are rounded up to 1 year.  In 

fact, this latter circumstance presents itself when the capacity of the bridge is very sensitive to deterioration 

and assigning this bridge a 1-year routine inspection interval is essentially raising a flag to alert the authorities 

of the high risk it causes.  For this reason, inspection intervals smaller than 1-year should be set on the basis 

of bridge specific condition and in those cases, the need for more in-depth inspections should be considered 

if the bridge has not been already scheduled for rehabilitation. 

Table 8-2. Percentage of bridges and their corresponding inspection intervals based on deterioration rate and 
cost of inspection. 

 

 

 

Figure 8-8. Percentage of bridges and their corresponding inspection interval based on deterioration rate and 
cost of inspection. High, medium and low deterioration rates clockwise. 

 

Inspection
cost ($)

4k 10k 20k 40k 4k 10k 20k 40k 4k 10k 20k 40k

1 77% 56% 41% 26% 18% 7% 3% 1% 1% 0% 0% 0%
2 11% 19% 14% 16% 7% 4% 1% 1% 0% 0% 0% 0%
3 5% 7% 17% 14% 5% 4% 3% 1% 0% 0% 0% 0%
4 4% 8% 9% 11% 6% 5% 3% 1% 0% 0% 0% 0%
5 0% 3% 3% 5% 3% 4% 3% 1% 0% 0% 0% 0%

> 6 2% 9% 16% 28% 61% 77% 88% 95% 99% 100% 100% 100%

High deterioration rate (3.4%) Medium deterioration rate (0.5%) Low deterioration rate (0.07%)



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 159 

While the full list of results for set 1 bridges is presented in Appendix H the corresponding statistics 

are synthesized in Table 8-2 and Figure 8-8.  The results are calculated assuming three categories of 

deterioration rates for the entire set 1 of bridge population.  For example, the histogram shown in Figure 8-8 

(upper-left) shows that if all the bridges are subject to the deterioration rates and the inspection cost is $ 

4,000, 80% of the bridges would show that it would be cost-effective to inspect them within a one-year 

period.  The percentage of bridges for which a one-year inspection would decrease as the cost of inspection 

increases.  When the cost of inspection is $ 10,000 the percentage is about 60%, when the cost $ 20,000 the 

percentage of bridges is 40% and when the cost is $ 40,000 the percentage is 25%. 

Similarly, lower bridge percentages are associated with larger inspection periods.  On the other hand, 

for medium and low deterioration rates (Figure 8-8 upper right corner and lower row) larger percentages of 

bridges would need to be inspected with a larger inspection interval.  One of the conclusions that can be 

drawn from Figure 8-8 (down) is that a 6-year interval can be used for almost all bridges if they show low 

deterioration trends over the previous recent years. 

 

Table 8-3. Percentage of bridges showing an optimum inspection interval smaller larger or equal to the 
standard 2-year interval. 

 

Inspection
cost ($) 4k 10k 20k 40k 4k 10k 20k 40k 4k 10k 20k 40k

<2 77% 56% 41% 26% 18% 7% 3% 1% 1% 0% 0% 0%
2 11% 19% 14% 16% 7% 4% 1% 1% 0% 0% 0% 0%
>2 11% 26% 45% 58% 75% 89% 96% 98% 99% 100% 100% 100%

High deterioration rate (3.4%) Medium deterioration rate (0.5%) Low deterioration rate (0.07%)
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Figure 8-9. Percentage of bridges showing an optimum inspection interval smaller, larger or equal to the 
standard 2-year interval. High, medium and low deterioration rates clockwise. 

 

The inspection intervals can also be compared to the standard two-year inspection interval currently 

used by the State DOTs.  Table 8-3 and Figure 8-9 show the percentage of bridges for which the inspection 

interval is shorter equal or longer than two years respectively.  The results presented in the histogram of 

Figure 8-9 (top-left) show that even in the most conservative situation where bridges are exposed to high 

deterioration rates, a significant percentage of bridges can be inspected in intervals longer than the standard 

2-year interval. This percentage ranges between 15% to 55% as the inspection cost increases from $ 4,000 to 

$ 4,000.  However, for this high deterioration rate, a large number of bridges also shows the necessity of 

being inspected in less than 2 years.  In the case of medium and low deterioration rates, between 65 and 100% 

would need to be inspected within a time interval larger than two years. 
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Table 8-4. Percentage of bridges for which the condition RF=1.0 is governing.  Only for high deterioration rate. 

Inspection
cost ($) 4k 10k 20k 40k 

 
1 0% 1% 1% 2% 
2 0% 1% 0% 1% 
3 0% 2% 2% 3% 
4 0% 0% 1% 2% 
5 0% 0% 0% 0% 

total 1% 4% 4% 8% 
 

 

Figure 8-10. Percentage of bridges for which the condition RF=1.0 is governing as a function of inspection cost 
for high deterioration rate.  In the bin axis the inspection interval that is imposed by such condition. 

 

It is also interesting to show the influence of the limitation of the risk linked to a rating factor RF=1.0 

(Table 8-4 and Figure 8-10).  The results presented in Table 8-4 and Figure 8-10 are based on the assumption 

that all the bridges are experiencing a high level of deterioration rate that is because for medium and low 

deterioration rates the inspection interval of none of the bridges analyzed is controlled by the maximum risk 

threshold corresponding to a rating factor RF=1.0.  It is recalled that a load rating RF=1.0 guarantees a certain 

margin of safety determined by the rating method employed.  However, the authority may set a more stringent 

risk threshold based on a load rating larger than 1.0, which corresponds to increasing the global safety factor, 

with the consequence of more bridges being limited by this condition requiring lower inspection intervals for 

those bridges.  As a conclusion, the current rating factor limit of 1.0 governs the inspection interval for 8% 

of the bridges assuming the most adverse conditions (high deterioration rates an inspection cost equal to $ 

40’000 as can be seen by the last bin of Figure 8-10 labeled as “total”). 
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The last result to be presented is an economical evaluation of the current 2-year standard inspection 

interval in the context of the present work.  In fact, while the proposed method is able to calculate the 

inspection time given a cost of inspection, the optimum inspection cost given a fixed inspection interval can 

also be calculated.  Therefore, it is possible to evaluate for each bridge of set 1 what is the maximum 

inspection cost that would be optimum according to the risk-based method assuming that the standard 2-year 

inspection interval cannot be modified (Table 8-5 and Figure 8-11). 

 

Table 8-5. Percentage of bridge in different inspection costs worth 2-year inspection cost categories assuming 
a fixed 2-year inspection. 

Inspection 
cost ($) <4k >4k 

<10k 
>10k 
<20k 

>20k 
<40k >40k 

  
High deterioration rate (3.4%) 11% 15% 19% 16% 39% 
Medium deterioration rate (0.5%) 29% 23% 13% 11% 23% 
Low deterioration rate (0.07%) 36% 22% 10% 11% 21% 

 

 

Figure 8-11. Bridge percentages associated with inspection costs worth 2-year inspection for the three 
deterioration rate scenarios. 

 

For example, Figure 8-11, shows that in the case of high deterioration rate (blue column), 11% of bridges 

would require inspection every 2-year if their inspection cost is lower than $ 4’000.  On the other hand 15% 

of the bridge population would require a 2-year inspection interval if the cost of inspection ranges between 

$ 4’000 and $ 10’000 and so on.  Obviously, assuming less severe deterioration rates (medium in red and 

low in green) the 2-year inspection interval would be required for cheaper inspection costs than if the 

deterioration rate is high. 
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8.4 Simplified Risk Analysis Procedure 

8.4.1 Conceptual approach 

The calculations performed in the previous section to determine the optimum inspection time interval 

involve a complex analysis that may be difficult to perform on a regular basis in engineering practice.  A 

simplified procedure is therefore necessary to provide engineers with a practical method to calculate the 

recommended inspection time interval.  In order to do that, a simple and familiar format is proposed, taking  

standard format similar to that commonly used in engineering practice (Washer, Connor, Nasrollahi, & 

Provines, 2016) but unlike those previously recommended studies, the proposed approach is calibrated using 

the results of the advanced risk assessments presented in the previous sections of this chapter.  It is noted that 

the method proposed in this work is not based on absolute risk, but is formed by a cost–benefit analysis 

combined with a risk acceptance threshold corresponding to a minimum load rating value RF=1.0.  

Accordingly, the standard definition of the risk in Equation 8-1 must be adapted to the simplified procedure 

proposed in this chapter.  The standard format for the calculation of risk is based on the following conceptual 

definition of risk described in Equation 8-1: 

 𝑅𝑖𝑠𝑘 = 𝐻𝑎𝑧𝑎𝑟𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 × 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 (8-1)

 𝐻𝑎𝑧𝑎𝑟𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 represents the probability of occurrence of a specific hazard or a set of simultaneous 

hazards in a specific period of time.  In this work the hazard is the combination of maximum expected live 

load obtained in Chapter 5 and the environmental deterioration of the bridge as calculated in Chapter 3.  

While in the full-fledged method the live load is adapted to the structural configuration as explained in 

Chapter 5, in the simplified procedure there is no specific input dedicated to the live load due to it’s small 

influence in the final results.  On the other hand, the deterioration rate is entered as an explicit input that is 

based on the classification of the bridge into three categories of high, medium or low deterioration rate, as 

explained in Chapter 3 and will be further explained for the simplified procedure 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 represents the susceptibility of a structure to suffer a local damage after the hazard is 

triggered.  In this work the vulnerability of the bridge is represented by the resistance of the bridge (Chapter 

4) and will be considered as an explicit input in the simplified procedure. 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 represents the capability of the structure to carry the load in a deteriorated state using the system 

behavior that includes the load transfer among different elements after damage.  In other words, it is the 

ability of a structure to withstand events like fire, explosions, impact or consequences of human error, without 

being damaged to an extent disproportionate to the original cause.  In the simplified procedure this term is 

considered to be dependent on the bridge configuration as observed from the results obtained in Chapter 6. 
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 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 of failure represent the impact of the bridge’s failure on the bridge users.  The community 

the bridge is intended to serve in terms of economic losses, disruption of community functions and impact 

on the environment as explained in Chapter 7.  However, because the determination of optimum inspection 

interval is based on a comparison between the cost of failure and the cost of inspection as explained in Section 

8.1 it is herein proposed to represent the consequences in terms of the ratio of the cost of failure over the cost 

of inspection 𝐶 𝐶⁄ . 

It is noted that the approach used in this work for the full risk analysis method unifies the 𝐻𝑎𝑧𝑎𝑟𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑, 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 and 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 into the probability of system failure, since the 

deterioration level as well as the live load configuration and load distribution are all included in the reliability 

analysis as explained in Chapter 3.  The simplified approach will separate these terms for practical 

implementation to avoid the need to perform a full-fledged reliability analysis. 

8.4.2 Calibration of the simplified procedure (general outline) 

As a result of the previous subsection, the simplified procedure seeks to provide a way to assess the 

four parameters recalling those of Equation 8-1: 

I. The deterioration rate (to represent the 𝐻𝑎𝑧𝑎𝑟𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑). 

II. The load rating (RF) (to represent the 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦). 

III. The structural configuration which is reflected by SL=Span length and BS=beam spacing (to 

represent the 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠). 

IV. The relationship between cost of bridge failure and cost of inspection 𝑘 = 𝐶 𝐶⁄  (to represent the  𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠). 

The calibration process is based on the following steps (labelled as calibration steps) that are outlined briefly 

below and will be explained in detail further in this section: 

1) All the bridges of set 1 are redesigned for a uniform level of syetem reliability. The target value 

used in this case is the average value of system reliability index obtained for the whole set of 

bridges under study. 

2) A load rating is back calculated for each redesigned bridge and defined as reference load rating 𝑅𝐹 . 

3) The relative Risk over time curves (difference between curve A and B shown in Figure 8-5) are 

recalculated for the redesigned bridges.  Furthermore, the values in the y-axis are normalized with 

the cost of failure 𝐶.  These normalized curves are calculated for all bridges and the average curve 

is calculated.  The average curves are calculated for the three deterioration rates as conceptually 

shown in Figure 8-12. 
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Figure 8-12. Relationship between inspection interval and the normalized value CI/C.  Each curve is the 
average of all set 1 bridges for each corresponding deterioration rate. 

 

4) The value of 𝑘  is calculated for the inspection intervals 1, 2, 4 and 6 years and organized in table 

format as conceptually shown in Table 8-6. 

Table 8-6. Inspection interval as a function of the deterioration rate and the ratio kR=(C/CI)R, for bridges with a 
uniform reliability level (associated with the reference load rating). 

 

The rows in Table 8-6 represent the deterioration rates, the columns represent the inspection 

intervals and the coefficients of the table represent the values of the reference ratio 𝑘 = 𝐶 𝐶⁄ )  

for bridges with a uniform level of reliability (the subscript R stands for reference). 

At this point, the inspection interval is found for bridges with a uniform level of reliability.  Likewise, it can 

be stated that the inspection interval can be found for bridges with a load rating matching the reference load 

rating.  However, real bridges are associated with different system reliability levels depending on their 

member based load rating and on their structural configuration.  Therefore, the inspection interval calculated 

in the previous calibration steps must be corrected for different reliability levels.  Since the final user of the 

simplified procedure cannot easily calculate the reliability index the bridge under study, the parameter used 

herein is the relationship between the real load rating (as found in the NBI database) and the reference load 

rating defined in point 2). 

1 2 4 6
High deterioration rate
Medium deterioration rate
Low deterioration rate

Inspection interval
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5) The reference load rating calculated in point 2) is shown to depend on the bridge configuration; 

therefore, a functional equation is defined to relate the structural configuration with the reference 

load rating. 

Once the reference load rating is defined for each bridge it is necessary to investigate how the ratio between 

the actual load rating and the reference load rating influences the elements of the Table 8-6.  For this purpose 

the ratio 𝜔 between the actual load rating and the reference load rating is considered as shown in Equation 

8-2: 

 

𝜔 = 𝑅𝐹𝑅𝐹  (8-2) 

 

Likewise, the ratio 𝜃 between the reference 𝐶 𝐶⁄  and the 𝐶 𝐶⁄  effectively found for the bridge under study 

is defined in Equation 8-3: 

 

𝜃 = 𝐶 𝐶⁄ )𝐶 𝐶⁄ = 𝑘𝑘  (8-3) 

 

6) A sensitivity analysis of 𝜃 depending on the different possible values of 𝜔 for all deterioration 

rates is performed.  As a result, a functional equation is found to define 𝜃 as a function of 𝜔. 

In summary, a general calibration is carried out for bridges with a uniform level of reliability and for 

each deterioration ratio from point 1) to 4) and the results are adapted to each structural configuration and 

load rating value in points 5) and 6).  In the next subsection the calibration process is presented with further 

detail. 

8.4.3 Calibration of the simplified procedure (step details) 

In this subsection the calibration steps are analyzed in detail and more information is given on the 

simplifications applied. 

Calibration step 1 

In this step the bridges of set 1 are redesigned to meet a uniform reliability level.  The redesign process 

is iterative, and consists of changing the load rating until the reliability index equals the reference one.  The 

value used for the reference reliability index is not of crucial importance, as it only represents a base point.  

However, it is convenient to use a reasonable value shown to be as common as possible within the bridges 

of set 1.  For this reason a reliability index 𝛽 = 3.0 is chosen since it is the average value of set 1.  The 
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iterative process leading to the required reliability index can be visualized in the example of Figure 8-13 

where the convergence is reached in 6 steps. 

 

 

Figure 8-13. Convergence in 6 steps of the required reliability index and calculation of the reference load 
rating. 

 

Calibration step 2 

The load rating associated with this reliability index, different for each of the 279 bridges is defined 

as reference load rating (the results are shown in calibration step 5).  It is noted that the uniform level of 

reliability is set at system level, while the reference load rating is still calculated with the standard rules of 

the LFR rating method and therefore at member level.  The plot in Figure 8-14 shows the lack of uniformity 

in the reference load ratings, which is an indirect manifestation of the different system behaviors (robustness) 

that can be observed for each bridge. 

 

 

Figure 8-14. Distribution of reference load rating for set 1. 
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Calibration step 3 

After the bridges are redesigned for a uniform system reliability index in calibration step 1 the risk 

analysis is performed.  Specifically, the curve A-curve B (as in Figure 8-2) over time relationship is 

calculated.  The resulting relative risk curve over time (similar to the one shown in Figure 8-5) is calculated 

and then the y-axis divided by the total cost 𝐶.  This curve is calculated for all bridges of set 1 and for high, 

medium and low deterioration rates.  Figures 8-15, 8-16 and 8-17 show for each deterioration rate, the average 

curve (black line) along with the lower and upper bound (red markers) of all the bridges of set 1. 

 

 

Figure 8-15. 1/kR over time for high deterioration rate. The black line represents the average value of the curve 
and the red markers show the maximum and minimum value of the curve for the entire set 1. 

 

 

Figure 8-16. 1/kR over time for medium deterioration rate. The black line represents the average value of the 
curve and the red markers show the maximum and minimum value of the curve for the entire set 1. 
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Figure 8-17. 1/kR over time for low deterioration rate. The black line represents the average value of the curve 
and the red markers show the maximum and minimum value of the curve for the entire set 1. 

 

Calibration step 4 

As shown in the previous step, the curve 1/𝑘  over time is different for each bridge.  The 

simplification applied in the previous step is that the average curve over all bridges of set 1 are considered.  

In fact, it can be seen from Figures 8-15, 8-16 and 8-17 that while the curves may range inside the red markers 

for set 1 bridges, the average value is plotted with a black line.  Therefore the recommended inspection 

interval for bridges designed with a uniform level of system reliability is shown in Table 8-7 as a function of 

the deterioration rate and the coefficient 𝑘 . 

 

Table 8-7. Recommended inspection interval based on deterioration rate and on kR. 

 Inspection interval 
  1 2 4 6 
High deterioration rate 1.8.E+03 4.1.E+02 1.7.E+02 1.1.E+02 
Medium deterioration rate 1.1.E+04 6.1.E+03 3.0.E+03 1.9.E+03 
Low deterioration rate 1.5.E+05 1.4.E+05 1.2.E+05 1.1.E+05 

 

A table similar to Table 8-7 will be used by the final user to establish the inspection interval.  However, 

this table is defined for bridges with a system reliability index 𝛽 = 3.0, therefore, the next two steps 

are dedicated to correct the table values depending on the specific characteristics of each bridge. 

Calibration step 5 

In this calibration step the relationship between the system reliability index (kept as constant) and the 

corresponding reference load rating is studied (as defined in calibration step 2).  If this system reliability 

index is kept constant the resulting reference load rating will be as high as the robustness of the bridge is low.  
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Consequently, it is expected that different structural configurations lead to different values of reference load 

rating.  Furthermore, a functional relationship between some structural parameters and the reference load 

rating is needed to calculate the reference load rating in a straightforward way, avoiding the system reliability 

calculation, difficult to perform for practicing engineers.  For these reasons, several combinations of 

structural parameters have been analyzed in this work, in relation with the relative load rating, with the 

conclusion that the best configuration parameter is the aspect ratio span length over beam spacing 𝑆𝐿 𝐵𝑆⁄ , as 

shown in Figure 8-18. 

 

 

Figure 8-18. Reference load RFR rating versus beam spacing over span length (SL/BS) plot. 

 

The aforementioned relationship is shown to be very well described by an exponential function described in 

Equation 8-4: 

 𝑅𝐹 = 𝑎  𝑒  × ⁄  (8-4) 

 

Where 𝑎 = 0.855 and 𝑏 = 0.0633. 

The 𝑅  factor is found to be 0.7781, where 1.0 is a perfect fit.  While all other fitting attempts have lead to a 

smaller 𝑅  factor, the goodness of this approximation will be studied in the next subsection, with the total 

error in estimating the inspection interval, when the coefficients will be part of an optimization process. 

Calibration step 6 

Once the relative load rating is found from step 5, it must be put into relation with the real load rating 

as reported in the NBI database or found by the structural analysist in the evaluation process by means of the 
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ratio 𝜔 defined in Equation 8-2.  Therefore, this parameter is compared with the variation of relative cost 𝑘 = 𝐶 𝐶⁄  from the reference design to the actual bridge. For this reason the parameter 𝜃 is defined in 

Equation 8-3.  In other words, the objective is to find a functional relationship between 𝜔 and 𝜃. 

For this purpose, a sensitivity analysis is performed with different values of 𝜔.  It is recalled that 𝜔 =1.0 is exactly the condition where the load rating of the bridge is equal to the reference load rating, which 

implies a uniform system reliability index of 3.0 for all bridge configurations.  Besides the aforementioned 𝜔 = 1.0, the ratios considered are 0.5, 0.8, 1.2 and 2.0.  For each case analyzed, the resulting 𝑘 from Equation 

8-2 is found and, as a consequence, 𝜃 from Equation 8-3.  The relationship between 𝜔 and 𝜃 is plotted in 

Figure 8-19 for high deterioration rate and for 1–year inspection interval which corresponds to the first row 

and first column element of Table 8-7. 

 

 

Figure 8-19. Example of relationship between ω and θ. 

 

The power function is found to provide the better fit and maximum 𝑅  factor suggesting a relationship of the 

form described by Equation 8-5: 

 𝜔 = 𝑎  𝜃  (8-5) 

 

The curve plotted in Figure 8-19 is also plotted for all bridges in set 1, for all deterioration rates and 

for all inspection intervals obtaining a global average value of 𝑎 = 1.0 and 𝑏 = −0.5.  Again, the 

goodness of this simplification will be studied in the next subsection and be part of an optimization process. 
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Table 8-8. Parametrical study of Equation 8-4 for set 1. 𝑎  𝑏  
min 0.64 -1.66 
max 1.56 -0.14 
mean 1.00 -0.50 

 

8.4.4 Verification of the simplified method with bridge set 1 

In this subsection, the inaccuracies of the simplified procedure compared to the full-fledged method 

to calculate the inspection interval as per Section 8.3 are evaluated.  It is important to mention that a simplified 

method is inevitably associated with a certain degree of inaccuracy or error, which is the price to pay for a 

less expensive and less cumbersome calculation.  While several fitting coefficients are reported during the 

calibration steps outlined in subsection 8.4.3, it is found practical to just assume these as starting values, look 

at the errors between simplified and full-fledged method and eventually optimize the coefficients found 

during the calibration steps. 

In order to carry out the comparison, the simplified procedure calibrated in subsection 8.4.3 is applied 

to the same cases developed in section 8.3.  Therefore the same matrix made of 3 (deterioration rates) x 4 

(inspection cost) x 279 (bridges) elements reported in Appendix H for the full-fledged method is calculated 

for the simplified procedure for a total of 3348 inspection interval calculation cases. 

Conceptually, it is important to maximize the number of cases where the inspection interval calculated 

with the simplified procedure matches the one calculated with the full-fledged method.  Additionally, the 

number of cases where the inspection interval suggested with the simplified method is larger than the one 

calculated with the full-fledged method (meaning that the simplified method is providing unconservative 

results) should be minimized, and be as close as possible to zero.  The first condition is described by Equation 

8-6: 

 

𝑒𝑟𝑟 = 𝑛 + 𝑛  3348 × 100 (8-6) 

 

Where 𝑛  is the number of cases where the full-fledged method results match with no error the simplified 

procedure and 𝑛  the still acceptable case where the results of the simplified procedure are only 1 year off 

the full-fledged method result, but on the safe side.  On the other hand, the second condition is expressed by 

Equation 8-7: 
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𝑒𝑟𝑟 = ∑ 𝑛  3348 × 100 (8-7) 

 

Where 𝑛  is the number of cases where the results are unconservative and therefore 𝑖 is a negative value.  For 

example, the expression 𝑛 = 3 would mean that the simplified method gives an inspection interval 2 years 

larger than the full-fledged method (for example 2 years versus 5 years respectively). 

From this point, the simplified procedure can be seen as a mathematical optimization problem.  In 

fact, a set of input parameters (load rating, structural configuration, deterioration rate, cost of inspection and 

cost of failure) and output values (inspection intervals) are linked to each other by a set of functions 

(Equations 8-4, 8-5 and Table 8-7) whose coefficients (𝑎  and 𝑏  for Equation 8-4, 𝑎  and 𝑏  for Equation 

8-5 and the 12 𝑘  coefficients in Table 8-7) must be optimized to meet the required performances (maximize 𝑒𝑟𝑟  and minimize 𝑒𝑟𝑟 ).  The starting point of the optimization process with the coefficients calibrated in 

subsection 8.4.3 are 𝑒𝑟𝑟 = 92.7% and 𝑒𝑟𝑟 = 3.6%. 

As a result of a trial and error process as well as coefficient sensitivity studies the following 

modifications are found to be effective: 

1) The following values are used for the calculation coefficients 𝑏 = −0.476, 𝑎 = 0.880 and 𝑏 = 0.600 instead of −0.500, 0.855 and 0.633 respectively.  These values are found by 

analyzing the sensitivity of the errors to their variation and obtaining the most convenient set of 

coefficients. 

2) For high deterioration rates the inspection interval must be limited to 2 years if the load rating is 

smaller than 1.8.  Similarly, for medium deterioration rates the inspection interval must be limited 

to 3 years if the load rating is smaller than 1.3. 

3) The values of Table 8-7 are decreased as per Table 8-9. 

 
Table 8-9. Inspection interval based on deterioration rate and on kR after the optimization process. 

 Inspection interval 
  1 2 4 6 
High deterioration rate 1.8.E+03 2.4.E+02 8.7.E+01 5.3.E+01 
Medium deterioration rate 1.2.E+04 3.6.E+03 1.6.E+03 9.1.E+02 
Low deterioration rate 1.6.E+05 1.4.E+05 1.3.E+05 1.1.E+05 

 

The results of applying these rules are 𝑒𝑟𝑟 = 88.2% and 𝑒𝑟𝑟 = 0.0%.  It is noted that this optimization 

problem cannot be solved mathematically but rather judging the different values of 𝑒𝑟𝑟  and 𝑒𝑟𝑟  critically 

at each change of coefficients.  In fact, even though the initial value of 𝑒𝑟𝑟 = 3.6% was already small, it 

was clear that an additional effort was needed to further reduce the unsafe outcomes of the simplified 
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procedure to zero, even though the price to pay would be to reduce the accuracy of the method (from 92.7% 

to 88.2%).  The fulfilment of this requirement implies that for the remaining 7.8% of the cases the 

recommended inspection interval is equal or greater than two year compared to the full-fledged method 

results.  The final errors calculated and the aforementioned modifications to coefficients and equations which 

replace the initial values found in subsection 8.4.3 are considered sufficiently accurate and in the few cases 

where the simplified procedure provides inaccurate results they are on the safe side.  In order to better 

visualize the final calibration results for set 1 bridge population a column chart is plotted where the vertical 

columns represent the result of the simplified procedure and the red line represents the full-fledged method 

outcome. 
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Figure 8-20. Inspection interval calculated with the simplified procedure (column chart) and full-fledged 
method (red line for the high deterioration rate.  Plot a), b), c) and d) (from top to bottom) represent an 

inspection cost of $ 4,000, $ 10,000, $ 20,000, $ 40,000 respectively. 
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Figure 8-21. Inspection interval calculated with the simplified procedure (column chart) and full-fledged 

method (red line for the medium deterioration rate.  Plot a), b), c) and d) (from top to bottom) represent an 
inspection cost of $ 4,000, $ 10,000, $ 20,000, $ 40,000 respectively. 
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The column charts plotted in Figure 8-20 and 8-21 show the bridges of set 1 increasingly sorted according to 

the full-fledged method inspection interval (red line) and its corresponding inspection interval calculated 

with the simplified procedure (black columns).  As can be seen the black columns do not perfectly fit the red 

line, but always provide a smaller and therefore conservative inspection interval.  In this sense, in order to 

obtain a better fit, a small number of unconservative results (inspection interval calculated with the simplified 

procedure longer than the one calculated with the full-fledged method) should be accepted. 

8.4.5 Step-by step simplified procedure application 

The application of the simplified procedure calibrated in subsection 8.4.3 and finally optimized in 

Subsection 8.4.4 is presented in this subsection through the flowchart shown in Figure 8-22, where the 

column INPUT summarizes the initial data to be collected from the user to find the OUTPUT required by 

the procedure and summarized in the corresponding right column. 

 

 

Figure 8-22. Inspection interval calculation with step-by-step simplified procedure. 
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In the first step the bridge is identified by its span length (SL) and beam spacing (BS).  These two 

parameters are used as input to calculate the reference load rating (𝑅𝐹 ) with Equation 8-8. 

 𝑅𝐹 = 0.88 𝑒  × ⁄ .  (8-8) 

 

In the second step the ratio 𝜔 between the load rating (𝑅𝐹) obtained from the NBI file and the 

reference load rating (𝑅𝐹 ).calculated in the first step is calculated with Equation 8-9: 

 

𝜔 =  𝑅𝐹𝑅𝐹  (8-9) 

 

The 𝜔 parameter is inputed into Equation 8-10 to find the correction 𝜃 to be applied to Table 8-9. 

 𝜃 =  𝜔 .  (8-10) 

 

In the third step the ratio 𝑘 failure cost 𝐶 over inspection cost 𝐶  is calculated and divided by the 

correction coefficient 𝜃 to find the parameter 𝑘 .  Below the formulation is reported in Equation 8-11: 

 

𝑘 = 𝐶𝐶 1𝜃 = 𝑘𝜃 (8-11) 

 

Therefore, the parameter 𝑘  and the deterioration rate are used to withdraw the inspection interval as shown 

in Figure 8-23 (linear interpolation can be used for intermediate cases) and Table 8-10. 

 

 

Figure 8-23. Calculation of the inspection interval. Conceptual application. 
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Table 8-10. Calculation of the inspection interval. Numerical values. 

 Inspection interval 
  1 2 4 6 
High deterioration rate 1.8.E+03 2.4.E+02 8.7.E+01 5.3.E+01 
Medium deterioration rate 1.2.E+04 3.6.E+03 1.6.E+03 9.1.E+02 
Low deterioration rate 1.6.E+05 1.4.E+05 1.3.E+05 1.1.E+05 

 

For high deterioration rates the inspection interval must be finally limited to 2 years if the load rating 

is smaller than 1.8.  Similarly, for medium deterioration rates the inspection interval must be limited to 3 

years if the load rating is smaller than 1.3.  The result of this calculation must be rounded down to the nearest 

integer.  An example of this step-by-step procedure is presented in the next subsection. 

 

8.4.6 Illustrative Example of the Simplified Procedure 

In this subsection the simplified procedure is applied to an example bridge spanning 34.7 m with a 

superstructure made of 4 beams spaced 2.45 m.  The reference load rating is found to be 𝑅𝐹 =0.88 𝑒 . .  ⁄ × . ) = 2.06 according to Equation 8-8. 

Since the load rating found in the NBI database is 2.62 the parameter 𝜔 is found to be 2.62 2.06 ⁄ =1.27 and, consequently, the parameter 𝜃 is  1.27 . = 0.60 according to Equation 8-9 and 8-10 

respectively. 

The failure cost is calculated according to the procedure presented in Chapter 7 and is found to be $ 

1,813,000.  It is assumed that the cost of inspection is $ 40,000 leading to a parameter 𝑘 = 75.541 according 

to Equation 8-11. 

Since the bridge is observed to lose member capacity at a 3% annual rate, the deterioration rate is 

classified as high and, together with the parameter 𝑘 found earlier, the inspection interval can be calculated 

by linear interpolation of the values found in Table 8-10 as 4 + 6 − 4) 75 − 87) 53 − 87)⁄ = 4.7 𝑦𝑒𝑎𝑟𝑠, 

rounded down to 4 years. 
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8.5 Chapter Conclusion 

This chapter describes a procedure to decide on optimum inspection intervals based on the risk of 

bridge failure.  The inspection time considered in this chapter refers to the so called “routine inspection” that 

is typically performed every two years for all bridges in the US and in similar intervals in other countries.  

The aim of this method is to overcome the limitations of a fixed 2-year inspection interval applied to all 

bridges. 

This Thesis is focused on optimizing the inspection for single structures instead of full infrastructure 

networks.  The method requires as input bridge specific parameters typically available to engineers such as 

structural configuration and dimensions, material properties and other information available from the NBI 

database.  Therefore, the method is entirely based on objective measures. 

The results obtained in this chapter are calculated for the entire set 1 of bridges, generated in Chapter 

3 as a representative population of structures of all the possible configurations of steel concrete composite 

bridges in New York State.  For this reason, these results can, as a first research attempt, be considered to 

represent the actual infrastructure network of New York State.  In this sense additional studies on different 

structural types and in different states are recommended to strengthen the validity of the method proposed 

herein. 

The analysis of the results obtained for set 1 shows that it is possible to optimize the inspection interval 

and adapt it to each bridge to take into account both the cost-effectiveness of the inspection expenditure and 

the safety of the assessed structures.  Specifically, if the engineer in charge of the assessment is able to 

confirm that the deterioration rate is relatively low, meaning that the loss of member capacity per year is 

smaller than 0.5%,and the load rating is sufficiently far from RF=1.0, he/she can recommend extending the 

inspection interval from the typical 2-year cycle.  The number of years that the inspection interval can be 

increased can be calculated following the numerical method described in Section 8.2 or the simplified 

procedure described in Section 8.4. 

It is noted that the risk limit set at a load rating RF=1.0 can be increased by the appropriate authority 

to increase the global level of safety assuming that the additional cost can be borne by the available budget.  

However, it is observed that the current load rating obtained from the NBI database for the bridges forming 

set 1, are relatively high and therefore the inspection interval of only a small percentage of bridges is governed 

by this limitation (7% of the total in the worst possible deterioration rate and inspection cost scenario). 

The typical 2-year inspection interval, currently used for all bridges, is also analyzed statistically from 

the cost-effectiveness point of view.  The results show that, some bridges should be inspected with an interval 

smaller than two years while many others would require an inspection interval greater than two years.  

Overall, it seems that on average, a two-year inspection interval is reasonable, but is not necessarily optimum 

for some bridges. While, depending on the cost of inspection, the two-year interval may be unnecessarily 
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increasing the risk.  This means that the method presented in this work can be employed to redistribute the 

bridge inspection cost more efficiently by reorganizing the inspection schedule of the bridges in a given 

jurisdiction without increasing the total costs. 
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9 Conclusions and future research 

9.1 Thesis conclusion 

The research carried out in this Thesis is aimed at developing a methodology to rationally calculate 

the time interval between two bridge inspections, with the objective of improving the less efficient standard 

routine inspection typically performed every two years for all bridges.  The methodology is demonstrated in 

the case of composite I-beam bridges located in New York State.  However, since a similar 2-year inspection 

interval policy can be observed in most countries, the concepts here developed can be seen in a broader 

perspective than just the case of USA. 

One of the specific features of the method proposed in this Thesis is that it determines the inspection 

interval on a bridge-by-bridge basis, overcoming the difficulties of a network-based analysis.  In fact, by 

combining all the structures of a network one loses focus on individual bridges and may “sacrifice” individual 

bridges for the global benefit and ignoring the importance of each bridge to the particular community it 

serves.  Furthermore, from a practical point of view, obtaining the necessary information for a risk-based 

determination of an optimum inspection interval of a single bridge is easier than gathering information of an 

entire infrastructure network.  In fact, even if the data was available, the analysis of a large set of bridges 

linked to an entire infrastructure network may not be the goal of a structural analyst or administration, while 

a relatively quick response may be needed for a specific bridge under study.  For application in engineering 

practice of the method proposed in this Thesis, the evaluating engineer requires all usual information related 

to the bridge characteristics (geometry and materials and other information available from the NBI database). 

Several other contributions and conclusions are assessed in this work that is worth highlighting, 

besides the aforementioned main goal. 

The first contribution is the definition of deterioration rates from the available NBI load rating data 

provided by the FHWA through the NBI database.  In this sense, three levels of deterioration rates are defined 

around the values of 3.4 % for high deterioration rate, 0.5% for medium deterioration rate and 0.07% for low 

deterioration rate.  This contribution can be found in Chapter 3 along with a discussion on the inspection 

uncertainties and a method to include them in the reliability calculation adapting the statistics found in the 

literature about visual inspection uncertainties (Moore et al., 2001; Phares et al., 2001). 

The second contribution is the development of a live load model specifically calibrated for NYS 

bridges to be used in structural analysis in Chapter 4.  The model outlined, is particularly suit for reliability 

analysis where the statistical characteristics representing the uncertainties of the traffic parameters are needed 

to calculate the safety margin in probabilistic models.  The procedure developed can also be used to calibrate 

a different live load model for other regions after providing site-specific WIM data.  It must be emphasized 

these results are valid for the state of New York, and may reasonably be extended to other states of the US, 

but should be validated or adapted to be also used outside this state or outside the US.  In this sense, the 
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collaboration with the authority may involve investments to carry out these kinds of necessary campaigns, 

including data recording, filtering and post-processing. 

The third contribution is the development of a convenient procedure to calculate the reliability of 

bridges with a very limited number of samples using the efficient Latin Hypercube simulation combined with 

the First Order Reliability Method (FORM) to compute the reliability index as explained in Chapter 6.  

Furthermore, this procedure allows the calculation to include system non-linear behavior and post-elastic 

redistribution of efforts among bridge members.  For this reason, this method implicitly includes the intrinsic 

redundancy of multi-beam bridges that cannot be directly considered with standard linear elastic models and 

that have been extensively studied by Ghosn & Moses (1998) and Ghosn and Yang (2014). 

The fourth contribution of this work is the collection of the state of the art about the consequences of 

bridge failure in terms of monetary cost as outlined in Chapter 7.  As a result of this research, a step-by step 

procedure to calculate the cost of failure is presented to be used in combination with the probability of failure 

obtained in Chapter 6 to address the failure risk of bridges.  In particular, while some costs present an 

extensive literature data and are relatively easy to define (demolition and reconstruction costs) most of them 

represented a challenge of data interpretation because of the differences found in the source of information 

and the different disciplines involved (indirect, environmental, fatalities and injuries due to the collapse and 

accidents due to detour).  Although in some cases additional data would be desirable to refine the estimations, 

the model finally defined in Chapter 7 is the best approximation possible to the knowledge of the author of 

this Thesis. 

While these four contributions may alone be of interest for research purpose, they are combined in 

the workflow of this Thesis to assess the inspection interval of bridges based on risk, which is the ultimate 

objective of this work.  In fact, the original motivation of this Thesis was providing engineers with rational 

arguments to justify the possibility of an extended inspection interval to the public administration in those 

cases where favorable conditions of bridges are observed and the standard two year inspection interval for 

routine inspections appears overly conservative.  The fact that a risk-based method is used is the consequence 

of an extensive research trend that is being developed by different researchers (Nasrollahi & Washer, 2015; 

Washer et al., 2014) and is also recognized in the US as the official research path to improve the infrastructure 

budget allocation and to guarantee safety (MAP-21 2012) . The method proposed in this work is based in the 

comparison between the inspection cost and the increased risk due to the uncertainty in terms of deterioration 

propagation over time.  As already mentioned earlier, the probability of failure upon which the risk is 

calculated is based on the capacity of bridges including system behavior and its post yielding internal forces 

redistribution, and therefore includes the intrinsic structural redundancy and robustness of multi-beam 

bridges.  Therefore, redundant bridges will be automatically assigned with larger inspection intervals than 

non-redundant bridges. 
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The analysis of the results obtained for set 1 shows that it is possible to optimize the inspection interval 

and adapt it to each bridge to take into account both the cost-effectiveness of the inspection expenditure and 

the safety of the assessed structures.  Specifically, if the engineer in charge of the assessment is able to defend 

that the deterioration rate is not high, meaning that the loss of member capacity per year is smaller than 

0.5%,and the load rating is sufficiently far from RF=1.0, he can recommend to extend the inspection interval 

from the typical 2-year.  The number of years that the inspection interval can be increased from the standard 

2-year interval could be calculated following the numerical procedure described in Section 8.2 which would 

provide a calculation of the inspection interval from a rigorous risk-approach point of view.  However, for 

standard practice the more suitable simplified procedure presented in Subsection 8.4.5 can be adopted.  

Besides providing simple tools to calculate the inspection interval for bridges, one of the main conclusions 

of this Thesis, obtained by applying the risk-based procedure to a full representative set of bridges, is that the 

standard 2-year inspection interval may lead to inefficient budget allocation of bridge maintenance programs. 

It should be noted that the calculation performed is considered valid under the assumption of short 

term projections which is limited in this Thesis to six years.  For example, the deterioration rate obtained in 

Chapter 3 can be described by a linear trend in the short period, but different trend shapes can be observed 

for longer exposition intervals.  Also, the cost estimation and projection outlined in Chapter 7 is acceptable 

for a the aforementioned six-year time window but may not be valid for larger intervals.  Lastly, although it 

is not possible to quantify the additional anxiety of the citizen in proposing a delay in the inspection interval 

overly large inspection intervals are not proposed even for very favorable conditions and even in those cases 

where the calculation allow them. 

It is worth mentioning that the method proposed in this Thesis can be seen as a simplified cost benefit 

model applied to a limited time window within the entire lifespan of each bridge.  This peculiarity is an 

advantage and a limitation at the same time.  In fact, typical life-cycle calculations presented by other 

researchers (Demos, 2006; Frangopol et al., 2017; Hawk, 2003; Orcesi & Frangopol, 2011; P. C. Ryan & 

Stewart, 2020; Thompson, 2017), are much more complex and present a larger number of variables than the 

present study.  However, a simple cost-benefit model as the one presented in this work is easier to apply at a 

more general scale, allows the definition of the inspection interval with relatively few and typically available 

input data.  It can be stated that the complexity of the model used is inversely related to the applicability and 

adaptation of such model to a larger bridge population.  Therefore, the simplicity of this cost-benefit model 

is justified by the objective of a broad application, that is linked with the improvement of the budget 

allocation of the public administration, instead of the optimization of one or a limited number of structures. 

Finally, it must be emphasized that although guidance is provided by the FHWA to establish 

qualitatively if a bridge is eligible to an inspection interval larger than two years, a rational procedure is 

defined in this work as a support to the already existing rules.  For this reason, the method proposed in this 

work must be seen as a partial method able to support decision based on a broader point of view about the 
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bridge condition.  In this sense, it is recommended that sufficient experience is developed by the engineering 

community before the method proposed in this Thesis is adopted as a standard procedure. 
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9.2 Future Research 

From the point of view of the practical application of the method developed in this work, among the 

different few steps that must be carried out to calculate the inspection interval, the engineer must establish 

the deterioration rate for each bridge.  It has been shown in Chapter 3 and Appendix B that the calculation of 

this parameter is fairly simple, and can be performed by any engineer by looking at the load rating value 

contained in the NBI database for the same bridge at different ages.  Even though this method can be 

implemented into a spreadsheet and be very straightforward, it would be desirable to simplify it even more, 

for example linking the deterioration rate to a specific territory, or to the bridge exposure to deicing salts, 

industrial or marine environment, or weather exposure like snow precipitation, or traffic intensity.  All these 

variables may simplify the calculation and be used as an input to typify deterioration rates for example 

through isoline maps.  Also, the deterioration rates can be linked to the real cause of the deterioration to get 

a better insight of the loss of performance of the bridge and confirm or improve the deterioration rate 

calculation proposed in Chapter 3. 

Future applications of the proposed methodology necessarily imply analyzing a broader set of bridges 

including and specializing the results of different standard bridge types (precast concrete beams, truss bridges 

etc.) and in a more advanced research stage, for non standard bridges (cable-stayed or arch bridges).  

Furthermore, the real application of this method should be performed with full collaboration of the bridge 

authority, providing complete documentation for the calibration process.  For example, a complete definition 

of the geometry of the bridges by design or as-built drawings are needed to remove the design assumptions 

that are necessarily needed in this work to come up with the steel section according to the code and carry out 

the structural analysis.  The same applies for material properties.  Also, the deterioration is calculated in this 

work as a loss of performance from historical data.  This approach is practical and pragmatic, avoiding to 

take care of complex corrosion mechanisms and deterioration models, with high uncertainties that certainly 

deserve a separate study.  However, full access to inspection report and material deterioration detail may 

validate the method proposed in this work or adjust it properly for a more rational use. 

Another aspect that should be treated in future research is the application of the method by practitioner 

engineers.  At present, a single engineer can conveniently apply the full-fledged methodology as well as the 

simplified procedure to calculate the inspection intervals.  While the inaccuracy of the simplified procedure 

is shown to be acceptable, the administration could prefer the more precise full-fledge methodology to 

optimize even more the budget allocation dedicated to bridge maintenance.  In order to fulfil this purpose an 

automatization of the calculation should be implemented by using predefined digital forms to be filled by 

engineers before providing the correct inspection interval as output in order to speed up and standardize the 

process.  This can be achieved by a computer program or by an interactive webpage in a similar way as the 

AASHTOware package of softwares has been doing in the recent years.  With such a tool, the practicing 
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engineer would apply the full-fledge methodology, but the inputs would still be simple enough or even 

automatic, with only minimum check performed by the analyst.  
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Appendix A:  Bridge Picture Extraction from Online Resources 

The first step to obtain the pictures of NBI bridges and to count the number of beams is to find the 

bridge coordinates from latitude and longitude information provided in the NBI database, items 16 and 17 

respectively.  Bridge ID 000000001066120 is used for the example.  After that, different views are selected 

to count “by eye” 11 beams. 

 

 

Figure A-1. NYC area plan view. 

https://www.google.com/maps/place/40%C2%B049'40.9%22N+73%C2%B049'04.5%22W/@40.8044283,-
73.956545,11z/data=!4m5!3m4!1s0x0:0x0!8m2!3d40.8280278!4d-73.8179056?hl=en 
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Figure A-2. Bridge location plan view. 

https://www.google.com/maps/place/40%C2%B049'40.9%22N+73%C2%B049'04.5%22W/@40.8281673,-
73.8195799,16.75z/data=!4m5!3m4!1s0x0:0x0!8m2!3d40.8280278!4d-73.8179056 
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Figure A-3. 3-D view of the bridge. 

 

 

Figure A-4. 
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Figure A-5. 

 

 

Figure A-6. 
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Figure A-7. 

 

 

Figure A-8. 
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Figure A-9. 

 

 

Figure A-10. 
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Figure A-11. 

 

 

Figure A-12. 
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Figure A-13. 

 

 

Figure A-14. 
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Figure A-15. 

 

 

Figure A-16. 
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Figure A-17. 

 

 

Figure A-18. 
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Figure A-19. 
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Appendix B:  Fit example of the deterioration ratio 

Bridge 1011240 of the NBI database shows a valid set of load rating for the calculation of the 

deterioration ratio and therefore the linear fit is performed over the valid points of the plot shown Figure B-

1. 

 

 

Figure B-1. Valid load rating deterioration data series. 

 

A simplified calculation of the capacity is performed. 

The dead load is calculated extending the results obtained for set 1 to the rest of bridges where the 

curve relating span length and dead load moment for simple span bridges up to 75-m in length is plotted in 

(Figure B-2) and fitted through a second order polynomial. 

 

Figure B-2. Factored dead load effect (bending moment) versus span length. 
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Specifically, being this bridge 24.6 m span length 

 

5.77 x 24.62 - 123.65 x 24.6 + 1218.89=1668.9 kNm 

 

The impact factor is I=1+50/(24.5 / 0.304+125)=1.24 

 

A beam spacing of 8ft (2.4 m) is considered because it is not possible to obtain the exact beam spacing 

for all the bridges under consideration.  Therefore the lateral load distribution is 0.7 since 8/11≈0.7. 

 

The maximum moment due to HS-20 truck is calculated interpolating values in the plot shown in 

Figure 3-5 and multiplying by 1/4 x SL x P, where SL is the span length and P is the truck weight. 

 

For this case 1/4 x 24.5 x 325 =1990.6 kNm, the influence line effect from the plot shown in Figure 

3-5 is 0.790, leading to a maximum live load of 1572.6 kNm. 

Finally 0.7 x LL x I x γLL= 0.7 x 1572.6 x 1.24 x 1.3=1774.5 kNm 

 

The capacity 𝐶 can therefore be obtained for each year as 𝐶 = 𝑅𝐹  𝛾   𝐿𝐿  𝐼𝑀  𝐷𝐹 + 𝛾 𝐷𝐿 

obtaining the plot shown in Figure B-3 for the valid time interval 2006-2016. 

 

Figure B-3. Linear fit of capacity over the valid time interval. 
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The capacity at time 0 (2005, the first of the valid series) is 141615-67.6x2005=6077.0 kNm,  

The capacity after 1 year is 141615-67.6 x (2005+1)=6009.4 kNm 

Therefore the capacity deterioration ratio is 1-6009.4 /6077.0 =0.01112.  
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Appendix C:  Main Girder Design 

In the next pages the design of the main girder of bridge 1002840 is presented. 

 

 

Bridge Properties
Beam spacing BS ft 6.99
Slab thickness ST in 8.00

Beam geometry

Top flange thickness in 0.63
Top flange width in 15.35
Top flange exentricity in 0.00

Bottom flange thickness in 1.19
Bottom flange width in 15.35

Web thickness in 0.47
Web inclination deg 0.00

Beam depth in 30.31

Properties

Area non composite in2 41
Inertia non composite in4 6578

Beam geometry

Top flange thickness in 0.63
Top flange width in 15.35
Top flange exentricity in 0.00

Bottom flange thickness in 1.19
Bottom flange width in 15.35

Web thickness in 0.47
Web inclination degree 0.00

Beam depth in 30.31
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Concrete

Concrete weight kip/ft3 0.15

Slab concrete strength f'c,b ksi 3.5
Concrete Young's modulus Ec,b ksi 3587

Steel

Steel weight kip/ft3 0.49

Steel yielding strenght Fy ksi 50
Steel Young's modulus Es ksi 29000
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Bottom flange area in2 18.3
Bottom flange centroid (from the bottom) y in 1
Bottom flange static moment (from the bottom) y in3 11

Bottom flange local moment of inertia yloc (weak axis) in4 2.15
Bottom flange local moment of inertia xloc (strong 
axis) in4 359

Section centroid (from the bottom) y in 12

Top flange inertia y in4 3033
Web Inertia y in4 1044
Bottom flange inertia y in4 2501

Moment of Inertia y in4 6578

Top flange section modulus y Stop,y in3 365
Bottom flange section modulus y Sbot,y in3 535

Materials

Steel

Steel yielding strenght Fy ksi 50
Steel Young's modulus Es ksi 29000

Concrete

Slab concrete strength f'c,b ksi 3.5
Concrete Young's modulus Ec,b ksi 3587

n - 8.5
3n - 25.6
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Composite section geometry

Slab thickness in 8.0
Slab width riight (towards outside) in 42
Slab width left (towards traffic) in 42
Section dimensions

Top flange thickness in 0.630
Top flange width in 15.4
Top flange exentricity in 0.0

Bottom flange thickness in 1.189
Bottom flange width in 15.4

Web thickness in 0.472
Web inclination degrees 0.0

Beam depth in 30.3

Beam property

Slab area As in2 671
Slab area (effective) Ac,eff in2 671
Slab local centroid (from the bottom) in 34

Top steel area (within the effective width, from the 
bottom) in2 0
Top steel centroid (within the effective width, from the 
bottom) in 38

Bottom steel area (within the effective width, from the 
bottom) in2 0
Bottom steel centroid (within the effective width, from 
the bottom) in 30

Section properties for n

Slab area (effective, with n) Ac,eff,n in2 78.7
Composite section centroid in 26.7
Slab local moment of inertia (effective, with n) Ix,loc in4 420

Composite area n A in4 120
Moment of inertia of the composite section with n in4 20149
Section modulus bottom flange with n in3 754
Section modulus top flange with n in3 5610
Section modulus top concrete with n in3 1738



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 219 

 

 

 

 

Section properties for 3n

Slab area (effective, with 3n) Ac,eff,n in2 26.2
Composite section centroid in 20.8
Slab local moment of inertia (effective, with 3n) Ix,loc in4 139.9

Moment of inertia of the composite section with 3n in4 14502
Section modulus bottom flange with 3n in3 696
Section modulus top flange with 3n in3 1530
Section modulus top concrete with 3n in3 830

Positive plastic flexure

bs in 83.9
 ts in 8.0
 haunch in 0.0
 bc in 15.4
 tc in 0.63
 D in 28.5
 tw in 0.47
 bt in 15.4
 tt in 1.19
 Fy ksi 50
 Fc ksi 3.5

Plastic moment 45280
Neutral Axis (Y in the AASHTO formula, carefull) 0.05
Case of analysis 2
Web in compression dw 0.0

0.21

Plastic moment Mp kip-ft 3773
Yielding moment My kip-ft 2880

Compactness condition

Slenderness of the compressed web l=2Dcp/wt 0.0
Slenderness limit for compressed web 3.76*(Es/Fy)^0.5 90.6

use Mp

Plastic moment (considering web slenderness) Mp kip-ft 3773

Ultimate moment Mu kip-ft 3773

Ultimate moment Mu kNm 5116
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Ultimate

Bending SF - 1.00

Structure DL - 1.30
Superimposed DL - 1.30
Live Load - 1.30

Steel yielding strenght Fy ksi 50

Unfactored moment structural DL kip-ft 592.32
Unfactored moment superimposed DL kip-ft 273.50

Factored moment structural DL kip-ft 568
Factored moment superimposed DL kip-ft 356

Section modulus non composite section in3 535
Section modulus composite section n in3 754
Section modulus composite section 3n in3 696

Yielding moment My kip-ft 2880

Yielding moment (based on unfactored) My kip-ft 2877
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Appendix D:  Concrete Deck Design 

In the next pages the design of the concrete deck of bridge 1002840 is presented. 

 

 

 

 

Bridge Properties
Beam spacing BS ft 9.27
Slab thickness ST in 8.00
Span length SL ft 112.17
Clear cover CC in 1.00
Top flange width (approximated) in 14.81

Concrete

Slab concrete strength f'c,b ksi 3.50
Concrete Young's modulus Ec,b ksi 3587
Modulus of rupture fr ksi 0.41

Steel

Steel yielding strenght Fy ksi 50.00
Steel Young's modulus Es ksi 29000.00

Composite section properties

Material stiffness relationship n - 8.09

Wearing surface

Asphalt load AL kip/ft3 0.14
Asphalt load (3 inches thickness) AL kip/ft2 0.04

Unfactored moment WS (positive) MwsPos kip-ft 0.15
Unfactored moment WS (negative) MwsNeg kip-ft 0.25

Parapet

Asphalt load PLNom kip/ft 0.41

COG parapet pbs ft 0.70
Unfactored moment WS (negative) MppNeg kip-ft 1.62
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Concrete Self Weight

Concrete weight kip/ft3 0.15

Unfactored moment SW (positive) MswPos kip-ft 0.43
Unfactored moment SW (negative) MswNeg kip-ft 0.72

Live Load

Unfactored moment SW (positive) MLLPos kip-ft 6.45
Unfactored moment SW (negative) MLLNeg kip-ft 4.82

Ultimate

Structure DL - 1.25
Superimposed DL - 1.50
Superimposed DL (unfavourable) - 0.90
Live Load - 2.20

Factored positive moment MposULS kip-ft 12.5
Factored negative moment MnegULS kip-ft 14.3

Ultimate section resistance

Bending SF - 0.90

Effective depth (assuming rebar #5) deff in 6.69
Slab concrete strength f'c ksi 3.50
Steel yielding strenght Fy ksi 50.00

Bottom rebar area As,bot in2/ft 0.53
Spacing (assuming rebar #5) s in 7.04

Stress block depth a,pos in 0.74
Unfactored ultimate moment Mu,pos kip-ft 13.92

Top rebar area As,top in2/ft 0.61
Spacing (assuming rebar #5) s in 6.11

Stress block depth a,nog in 0.85
Unfactored ultimate moment Mu,neg kip-ft 15.89
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Appendix E:  Cross Bracing Design 

In the next pages the design of the cross-bracing of bridge 1002840 is presented. 

 

 

 

Bridge Properties
Beam spacing BS ft 9.27
Slab thickness ST in 8.00
Span length SL ft 112.17
Number of beams NB - 6.00
Beam depth d in 44.42

Bracing spacing Lb ft 28.04

Connection plate thickness tp in 0.50

Section Properties

Bottom chord
Depth d in 4.0000
Thickness t in 0.3125

Diagonals
Depth d in 4.0000
Thickness t in 0.3125

Concrete

Slab concrete strength f'c,b ksi 3.50
Concrete Young's modulus Ec,b ksi 3587
Modulus of rupture fr ksi 0.41

Steel

Steel yielding strenght Fy ksi 50.00
Steel Young's modulus Es ksi 29000.00

Composite section properties

Material stiffness relationship n - 8.09



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 224 

 

 

Wind load

Wind load p ksf 0.05
Asphalt load (3 inches thickness) d in 44.42

Wind load per unit length w k/ft 0.093

Bottom chord

Force on bottom chord Pw kips 2.60

Diagonals

Force on diagonals Pw kips 0.23

Section Properties

Depth d in 4.0000
Thickness t in 0.3125

Area A in2 2.40

cog y (from bottom) cog,y in 1.12
cog x (from left) cog,x in 1.12

Inertia y I,y in4 3.71
Inertia x I,x in4 3.71
Inertia xy I,xy in4 -2.21
Inertia z I,z in4 7.43
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Connection properties

The force on the angle is introduced with a plate 
welded on the exterior of one leg

x of the force applied x1 in -0.31
y of the force applied y1 in 2.00

x of the force applied (respect cog) x2 in -1.43
y of the force applied (respect cog) y2 in 0.88

Distance from the cog to the point r in 1.68
Angle from the cog x axis to the point θ º 148.19

New angle θ º 103.19

x of the force applied (respect cog, in principal axis) x3 in -0.38
y of the force applied (respect cog, in principal axis) y3 in 1.63
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Edges

top

x edge x1 in 0.00
y edge y1 in 4.00

x of the edge (respect cog) x2 in -1.12
y of the edge (respect cog) y2 in 2.88

Distance from the cog to the point r in 3.09
Angle from the cog x axis to the point θ º 111.14

New angle θ º -45.00

x of the force applied (respect cog, in principal axis) x3 in 0.00
y of the force applied (respect cog, in principal axis) y3 in 0.00

right

x edge x1 in 4.00
y edge y1 in 0.00

x of the edge (respect cog) x2 in 2.88
y of the edge (respect cog) y2 in -1.12

Distance from the cog to the point r in 3.09
Angle from the cog x axis to the point θ º -21.14

New angle θ º -66.14

x of the force applied (respect cog, in principal axis) x3 in 1.25
y of the force applied (respect cog, in principal axis) y3 in -2.83
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Design of bottom chord 

 

 

corner edge

x edge x1 in 0.00
y edge y1 in 0.00

x of the edge (respect cog) x2 in -1.12
y of the edge (respect cog) y2 in -1.12

Distance from the cog to the point r in 1.58
Angle from the cog x axis to the point θ º -135.00

New angle θ º -180.00

x of the force applied (respect cog, in principal axis) x3 in -1.58
y of the force applied (respect cog, in principal axis) y3 in 0.00

Force

Force on element Pw kips 2.60

Safety factor (Strength III) γW - 1.40

Force on bottom chord (Factored) Pu kips 2.60

Force on bottom chord about the major axis 
(Factored) (Pu x e) Mw kips-in 4.24

Force on bottom chord about the major axis 
(Factored) (Pu x ez) Mz kips-in 0.99

L-shaped section

Unbraced length (minor axis) Lb,min in 55.6
Unbraced length (major axis) Lb,max in 111.2

K factor (effective length) (4.6.2.5) K - 0.75
Limit slenderness - 140

rz,min in 0.30
ry,max in 0.60
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Design according to AISC LRFD

Axial compression

Buckling critical stress based on the minor principal axis

Slenderness λc - 0.7

Selection of the equation based on the b/t ratio
b/t - 12.8
b/t,lim1 - 10.7

FALSE
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Buckling critical stress based on the y-axis

Slenderness λc - 0.9

Verification of reduction factor - TRUE

Critical buckling stress 1 Fcr1 ksi 34.4
Critical buckling stress 2 Fcr2 ksi 55.8

Critical buckling stress Fcr ksi 34.4

Lower chord critical stress

Resistant Factor - 0.90
Critical stress nominal Pn ksi 82.6
Critical stress resistant Pr ksi 74.4

Force on bottom chord (Factored) Pu kips 2.60
Verification - TRUE

Flexure

Verification when the tip of the angle is in compression

b/t - 12.8
b/t,lim1 - 13.0

TRUE

Moment resistance1 Mnw1 kips-in 444.40

b/t,lim2 - 21.9
TRUE

Moment resistance2 Mnw2 kips-in 448.74

Reduction factor Q3 - 1.89

Moment resistance3 Mnw3 kips-in 750.5

Moment resistance3 Mnw kips-in 444.4
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The procedure presented in this appendix are also applied for the design of the diagonals of the cross-

frame. 

  

Lateral-torsional buckling

Elastic lateral-torsional buckling capacity Mob kips-in 187.47

Yield moment My kips-in 104.75

Verification (Mob>My) TRUE

Lateral torsional buckling capacity Mnw kips-in 109.51

Verification (Mnw<1.5My) TRUE

Verification (Mnw>Muw) TRUE
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Appendix F:  Comparison of the Grillage Model with and without 
Cross-Bracings 

In this appendix the effects of the cross-bracings on the global bridge behavior is evaluated.  These 

elements are originally designed for the temporary construction phases as explained in Appendix E.  

Furthermore, the effect on the flexibility and internal forces of the cross-frames has already been shown by 

Hambly (1991) to be of little relevance for discontinuous cross-frames (Figure F-1). 

 

Figure F-1. Frame model carried out by Hambly (1991) comparing no cross-frame (a) and discontinuous cross-
frame (b) in terms of displacements (above) and bending moments (below). 

 

The calculation reported below are meant to check and confirm that the transverse behavior of the bridge is 

sufficiently described by using only slab elements.  Instead of a plane element of the cross-frame only a full 

modified grillage is compared to a standard grillage without cross-frames as shown in Figure F-2. 
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Figure F-2. Grillage with no cross-frame (left) and modified with cross-frame (right). 

 

The input of the two models are the same except for the cross-frame elements added representing steel L-

shape profiles organized in a k-configuration and shown in Figure F-3. 

 

 

Figure F-3. Cross-frame geometry for the full superstructure (left) and cross frame detail and section employed 
for the frames (right). 

 

Finally, longitudinal elements represent composite slab-girder behavior and transverse elements represent 

the slab behavior between girders. 

The results show that the two models provide similar results in terms of deflections Figure F-4 and 

moment Figure F-5 in the main longitudinal element, even in a simple linear elastic model. 
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Figure F-4. Maximum deflection of the grillage without cross-frames (left) and with cross frames (right). 

 

 

Figure F-5. Maximum moment of the grillage without cross-frames (left) and with cross frames (right). 

 

Both the maximum deflection and maximum moment are practically the same value, allowing to conclude 

that it is possible to ignore the cross-frame system in the modelling of composite slab-girder superstructure. 
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Appendix G:  Cost estimation calculation detail 

The cost estimation calculations are outlined below for the example bridge NBI 000000001003209, ID 21 of 

set 1. 

G.1. Cost of demolition and reconstruction 

The dimensions of the example bridge are descripted in Figure G 1. 

 

Figure G 1. Example bridge cross section. 

 

The cost of reconstruction is related to the surface of the bridge calculated as its width (42.6 m) by its 

length (22.0 m) resulting in 𝑆 = 22.2 × 42.6 = 945.72𝑚 . 

The equation outlined in subsection 7.3.1 is used resulting in 1859.58 $ 𝑚⁄ ×  945.72𝑚 =$ 1,758,651. 

The cost of demolition is related to the volume of the bridge calculated in Table G 1. 

 

Table G 1. Bridge volume calculation. 

Slab 
volume 

(per 
beam) 

Steel 
volume  

(per beam) 

Asphalt 
volume 

(per 
beam) 

m3/m m3/m m3/m 
0.510 0.02583x1.1 0.251 



Candidate: 
 

Advisor:

Giorgio Anitori 
 

Prof. Joan Ramon Casas Rius 
 

Risk-based highway bridge inspection intervals 236 

 

The total is calculated as the volume per beam by the number of beams by the bridge length 0.7894 × 22.2 × 17 = 297.92 𝑚 .  The steel volume is multiplied by a factor of 1.1 to account for diaphragms and 

joints. 

The equation outlined in subsection 7.3.1 is used resulting in 35.2 $ 𝑚⁄ ×  297.28𝑚 = $ 10,464. 

The cost of demolition and reconstruction is $ 1,769,115. 

G.2. Disruption Time 

The disruption time is calculated with Equation 7-4 for Interstate bridge replacement 𝑇 =𝛼 ln 𝐶 − 𝛾 = 41.26 ln 1,758,651 − 445 = 148.32 𝑑𝑎𝑦𝑠 

G.3. Indirect Cost 

The cost of operating vehicle is the sum of the cost of delay and the cost of time loss according to 

Equation 7-5. 

The unit cost of automobile delay is 35.2 $ ℎ⁄  the detour length is 8 𝑘𝑚, the 𝐴𝐷𝑇 is 63,722 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, and the disruption time 148.32 𝑑𝑎𝑦𝑠, the percentage of heavy trucks is 4%, the 

average vehicle occupancy 1.35 𝑝𝑒𝑟𝑠𝑜𝑛𝑠,  

 𝐶 = 

= 𝐶  𝐷 𝐴𝐷𝑇 𝑇 + 𝐶  𝑂 1 − 𝜌100 + 𝐶  𝜌100 𝐷 𝐴𝐷𝑇 𝑇𝑆 = 

= 0.36622 × 8 × 63,722 × 148.32 + 13.46 ×  1.35 1 − 4100 + 26.93 4100 8 × 63,722 × 148.3220.92  

= $ 27 689 886 + $ 66 940 707 = $ 94′630′592 

 

The indirect cost is $ 94′630′593. 

G.4. Accidents due to detour 

The number of fatalities, injured and property damage due to detour during the disruption time is 

calculated with Equation 7-6, 7-7 and 7-8. 
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𝑛 = 1.1310  𝐴𝐷𝑇  𝑇 𝐷  11.609 = 1.1310 63,722 × 148.32 × 8  11.609 = 0.53 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 

𝑛 = 77.0010 𝐴𝐷𝑇  𝑇 𝐷  11.609 = 77.0010 63,722 × 148.32 × 8  11.609 = 36.18 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 

𝑛 = 𝑛 + 𝑛𝑂 = 0.53 + 36.181.35 = 27.19 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

 

These values are multiplied by the nominal corresponding cost. 𝐶 , = 0.53 × 1,678,357 = $ 889,529 𝐶 , = 36.18 × 16,493 = $ 596,717 𝐶 , = 27.19 × 3,355. = $ 91,222 

 

The cost of accidents due to detour is $ 1′577′468. 

 

G.5. Environmental Cost 

The environmental cost is calculated according to Equation 7-9 considering rural environment. 

The 𝐴𝐷𝑇 is 63,722 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, the 𝐴𝐷𝑇𝑇 is 2,549 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, 𝐶 = = 𝐴𝐷𝑇 − 𝐴𝐷𝑇𝑇) 𝐶 + 0.87 𝐴𝐷𝑇𝑇 𝐶 + 0.13 𝐴𝐷𝑇𝑇 𝐶  𝑇= = 63,722 − 2,549) 0.0304 + 0.87 × 2,549 × 0.0449 + 0.13 × 2,549 × 0.1714  8 × 148.32= = $ 2,392,138 

 

The environmental cost is $ 2,392,138. 

 

G.6. Fatalities and injuries 

The number of fatalities due to bridge failure is calculated with the equation 0.0762 SL and with a 

probability of mortality of 0.055.  The number of injured is calculated as twice the number of fatalities. 
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𝑛 = 0.0762 × 𝑆𝐿 × 0.055 = 0.0762 × 22.2 × 0.055 = 0.093 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 𝑛 = 2.0 𝑛 = 2.0 × 0.093 = 0.0186 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 

𝑛 = 𝑛 + 𝑛𝑂 = 0.0903 + 0.01861.35 = 0.207 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

 

These values are multiplied by the nominal corresponding cost. 𝐶 , = 0.093 × 1,678,357 = $ 156,087 𝐶 , = 0.093 × 1,594,439 = $ 296′566 𝐶 , = 0.207 × 3,355 = $ 694 

 

The cost of fatalities and injured due to failure is $ 453′347. 

 

G.7. Total cost 

The total cost and the summary of the different cost contributions are summarized in Table G 2. 

 

Table G 2. Cost summary and total cost of bridge failure. 

  Cost Percentage 
System reconstruction cost  $                   1,769,115  1.8% 
Environmental cost  $                   2,392,138  2.4% 
Indirect cost  $                 94,630,593  93.9% 
Accidents due to detour  $                   1,577,468  1.6% 
Fatalities and injuried  $                      453,347  0.4% 

Total  $               100,822,662  
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Appendix H:  Results of Inspection Interval 

In the next pages the inspection interval results are presented. 

The following abbreviations have been used in the tables: 

NB = Number of beams 

SL = Span length 

BS = Beam spacing 

RF = Load rating factor 
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