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Abstract

A theoretical and computational study of the mechanics of
biomembranes interacting with curved proteins

Caterina Tozzi

Organelles are the smallest functional parts of eukaryotic cells. Among them,

some are membrane-bound such as the nucleus, the endoplasmic reticulum,

or the Golgi apparatus, each of them with essential biological functions. In

order to accomplish cell functions, membranes enclosing these organelles con-

tinuously adapt their shapes through the out-of-equilibrium interaction with

macro-molecules, notably proteins.

During the life of cells, proteins are main actors in membrane bending dynam-

ics since they have the ability to impinge their curvature onto the membrane,

and generate transiently highly curved structures, such as tubes and spherical

buds. How proteins can remodel the different organelles has been broadly

studied in equilibrium, but a clear understanding of the complex chemo-

mechanical problem that drives membrane reshaping out-of-equilibrium is still

lacking.

In the first Part of the thesis we develop a general theoretical and computa-

tional framework for the dynamics of curved proteins adhered to lipid mem-

branes. The theory is based on a nonlinear Onsager’s principle, a variational

method for irreversible thermodynamics. The resulting governing equations

and numerical simulations provide a foundation to understand the dynamics

of curvature sensing, curvature generation, and more generally membrane cur-

vature mechano-chemistry, as illustrated by a selection of test cases. We show

that continuum modeling is a powerful instrument to describe the protein-

membrane interaction. However, this model does not account for the orienta-

tional order of proteins and its derivation lacks a microscopic basis.

To address these limitations, in the second Part of the thesis we develop a

mean-field density functional theory to predict the orientational order and

evaluate the free-energy of ensembles of elongated and curved objects, such
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as BAR proteins, on curved membranes. This kind of protein may adopt

different states of orientational order, from isotropic to nematic. The theory

is tightly coupled to the microscopic properties of the proteins and explains

how a density-dependent isotropic-to-nematic transition is modified by the

anisotropic underlying curvature of the membrane. This work lays the ground

to understand the interplay between the molecular organization of proteins

and the membrane shape dynamics. We explore the coexistence of isotropic

and nematic phases on differently curved lipid membranes. We explain, both

experimentally and through modelling, how a BAR protein binds on differently

curved membrane templates and reshapes them based while modifying their

microscopic organization. Our results broaden our understanding of the re-

shaping dynamics by BAR proteins on mechanically constrained membranes,

and provide a framework to understand biological responses involving BAR

proteins to membrane-mediated mechanical stimuli.
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Chapter 1

Introduction

Lipid membranes and intrinsically-curved proteins

Cells are complex structures based on a hierarchical compartmentalisations

into subunits, called organelles, which play specialised biological functions,

such as the nucleus, the Golgi apparatus, the endoplasmic reticulum or mi-

tochondria [3]. The organelles compartmentalisation is supported by lipid

membranes, soft materials made of lipids that when exposed to water self-

assemble into two specular sheets, where the hydrophobic tails of lipids are

directed to the center of the bilayer and the hydrophilic phosphate head points

to the external environment (see Fig. 1.1). The thickness of these structures

ranges between 2 and 5 nm, equivalent to the length of two lipids, while on

the other dimension they can range from 100nm, in cases of small vesicles,

to 100 µm, in large eukaryotic cells. Because of this size discrepancy, lipid

bilayers can be modeled as continuous surfaces. Often, lipid bilayers organise

in spherical structures called vesicles, although they equally assume shapes

with higher degree of topological complexity [4]. Lipid membranes are semi-

permeable layers that mechanically confine the organelles from the cytoplasm

and the cell from the exterior environment and simultaneously regulate the

chemical exchanges at cellular and subcellular scales. In living cells, lipid

1



1. Introduction

Figure 1.1: A schematic view of the different organelles and membrane structures
that we can find in cells (center), and transmission electron micrographs of some of
them. Nucleus and Endoplasmic Reticulum from ”The Cell, 2nd Edition by Don W.

Fawcett”. Mitochondria from ”Molecular biology of the cell, 6th edition by Bruce
Alberts”. Golgi Apparatus from ”Membrane curvature and mechanisms of dynamic

cell membrane remodelling, Nature by McMahon and Gallop”. Cartoon to zoom
into the specular layers composing the lipid membrane.

membranes also fulfil a mechanical role dynamically regulating their shapes

in order to accommodate external stimuli and internal cell functions such as

vesicular transport, cell division or to unfold membrane reservoirs under stress

[5]. The ability of membranes to provide adaptability and stability during the

dynamic shape transformations derives from their mechanical duality. On one

hand their fluid composition preserves their integrity during the remodelling.

Indeed lipids can easily flow and tilt, distributing inohomogeneously between

the two leaflets of the membrane during reshaping. On the other hand, out

of plane, membranes accommodate deformation in the form of bending and

stretching, like elastic solid shells [6]. Cytoskeletal dynamics, changes of pH

in the surrounding environment [7] or protein recruitments can be the onset

for lipid unbalance between the two monolayers forming defects and a conse-

quent membrane bending [8]. In some cases the shape changes are drastic and

permanent as the case of microvilli or the dendritic tree, but usually highly

curved membrane features last for a limited period of time, as the case of

2



Figure 1.2: The phospholipid bilayer is shaped by protein interaction. (a)
Hydrophobic insertion, (b) scaffolding of intrinsically curved proteins, (c) entropic

repulsion of bulky disordered domains.

vesicular trafficking or caveolar structures, where intrinsically curved proteins

impinge their curvatures on the membrane. Under specific cell needs, pro-

teins can assemble and form a protein coat able to generate local membrane

curvature and temporarily stabilize highly curved shapes, as tubular struc-

tures [9] or caveolae necks [10], and later disassemble when the proteins coat

dissolves. Proteins can curve lipid membranes through different mechanisms,

one is through wedge-like hydrophobic insertions into the upper part of one

of the monolayer, that induces a packing imbalance between the monolayers

and favore bending [11, 12, 8]. Another mechanism by which a protein or

a protein coat impinge high curvature on a surface is by scaffolding, where

two necessary conditions to force the membrane bending are strong affinity of

the proteins with the polar head of the lipids, so that the proteins-membrane

binding energy exceeds the membrane-bending energy, and bending rigidity of

the protein coat to be stronger then the membrane bending rigidity [4]. Other

mechanisms by which proteins bend membranes are related to asymmetrical

crowding of bulky disordered domains [13], where the entropic proteins in-

teraction induces bending to reduce the crowding of proteins, or to anchored

polymers [14] as in the glycocalyx [15] interacting at a distance from the bi-

layer mid-plane (see Fig. 1.2).
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1. Introduction

Highly nonlinear membrane chemo-mechanics

As argued above the interaction between membrane and curved proteins poses

an intriguing chemo-mechanical problem: the membrane experiences drastic

changes in shape implicating nonlinear geometries, while membrane hydro-

dynamics and other chemical inputs, as proteins sorption or crowding, elicit

chemical nonlinearity. All these processes are tightly coupled between them

and act at the same time, leading to a highly nonlinear chemo-mechanical

problem. To better understand the dynamics behind this interplay many

biophysical studies have been performed under controlled conditions, where

artificial lipid membranes were exposed to purified proteins [16]. At low pro-

teins concentration it has been observed that proteins can sense curvature and

preferentially bind or diffuse to particular membrane curvature [17] as probed

in assays involving polydisperse vesicle suspensions [18], vesicles with mem-

brane tethers [19, 20] or supported lipid bilayers on wavy substrates [21]. At

higher concentration, proteins can impinge their curvature on the lipid mem-

brane driving curvature generation, when incubated with liposomes [9], can

stabilise membrane tubes [13, 22], and can dynamically trigger protein-rich

tubular protrusions out of tense vesicles [23, 20, 24]. The ability of proteins to

sense and generate curvature is also related with the mechanical state of the

membrane. The shape transformations induced by protein binding require

a buffer of area from the adjacent membrane and the curvature generation

process works against the membrane tension and can be inhibited when the

membrane tension is large enough. This kind of mechano-chemical coupling,

tested in-vitro by exposing aspirated vesicles to BAR proteins [24], has phys-

iological implications during the mechano-protection of stressed cells by the

release of membrane area through disassembly of caveolae [5], or in the regu-

lation of clathrin-mediated endocytosis by membrane tension [25].
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BAR domains, a special class of proteins

Some curved proteins such as those containing the BAR domain (Amphiphysin,

Endophilin, F-CHo) and others like dynamin, EHD2, etc. are called ”banana

shaped” because they are curved and elongated. These specific proteins can

impinge anisotropic curvatures on the membranes upon binding through a

scaffolding effect [26], which allows them to tubulate liposomes[9], stabilise

tubular necks in Caveolae [10] or bind to necks of budding vesicles and drive

endocytic transport [27]. The generation of anisotropic curvature has been

associated with a nematic ordering of the elongated proteins along the high-

curvature direction at very high coverage [28, 29]. Besides anisotropic cur-

vature, elongated proteins can also create isotropically curved (spherical) do-

mains, as F-BARs in the initial stages of assembly of clathrin coats [30] or dur-

ing fast endocytosis by endophilin [31]. This suggests a multi-functionality of

curved and elongated proteins and a correlation between curvature anisotropy,

density, and nematic order. Controlled in-vitro experiments capturing this in-

terplay have been elusive. Giant Unilamellar Vesicles (GUVs) exposed to

curved and elongated proteins exhibit very little change in membrane shape

below a tension-dependent protein coverage threshold, above which very thin

protein-rich tubules are violently shed by the vesicle [24], and in GUVs-tether

systems, the high membrane tension strongly reduces the ability of the mem-

brane to change shape [32, 20].

Modelling lipids membrane embedded with proteins

A number of theoretical and computational studies at various scales has been

developed to understand the interaction between curved proteins and mem-

branes. At the nanoscale, all-atom molecular dynamics have described curva-

ture generation by single domains [33] and curvature maintenance by multiple

proteins [34]. Reaching a micron, coarse-grained molecular dynamics have fol-

lowed the aggregation of multiple proteins to cooperatively form protein-rich

curved domains [35, 36, 37, 38]. Models treating proteins as discrete objects
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1. Introduction

in a continuum membrane have examined membrane-mediated protein-protein

interactions [39, 40, 41], or the spontaneous curvature induced by anchored

polymers [42, 43]. A fundamental obstacle to upscale such models to mul-

tiple interacting proteins, however, is the non-additive nature of membrane-

mediated pairwise interactions [44]. Reaching larger scales, continuum models

combining the Helfrich curvature energy [45, 6] with thermodynamic models

of mixtures [46, 47] have been quite successful in recapitulating and interpret-

ing quantitative in-vitro measurements, see [48, 49] for two recent reviews.

These models suggest that, rather than two different mechanisms, curvature

sensing and generation are two manifestations of the same mechano-chemical

coupling. They have provided a background to understand the emergence

of heterogeneous protein-rich curved domains using linear stability analysis

[50, 51], or curvature sorting of proteins in equilibrium and at fixed shape

between tubes and vesicles [32, 52, 20, 53] or on wavy surfaces [54]. Also in

equilibrium, protein-membrane interactions allowing for shape changes were

studied in [55]. With a few exceptions under rather restrictive conditions

[56, 57], previous theories of the interaction between curved proteins and mem-

branes have focused on equilibrium. Yet, cellular functions are fundamentally

out-of-equilibrium.

Coarse grained MD and Monte-Carlo simulations have been used to under-

stand the interplay between elongated curved proteins and membrane shap-

ing, including the relative role of scaffolding and helical insertions in curvature

sensing and generation [58, 59, 29], or the self-organization of membranes and

protein ensembles [60, 61, 41, 37, 62, 63]. Complementary to such micro- or

mesoscale models, continuum models can provide further analytical insight

and have the potential to reach longer time- and length-scales. However, pre-

vious continuum models examining the interplay between membrane shape

and orientational order make strong assumptions on protein density and ne-

matic order [64, 65], and are phenomenological in nature, introducing free

energy functionals lacking a microscopic basis [66, 67]. Thus, there is a need

for the development of effective field theories capturing the microscopic details

of protein interactions on lipid membranes.
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Structure of the thesis

We first present a summary chapter to introduce the Onsager’s variational

formalism, a powerful method to describe the dynamics of dissipative sys-

tems, such as the one describing lipid bilayers. This framework provides a

systematic way to write the governing equations of complex systems, where

the dynamics emerge from the competition between energy release rate and

dissipation. This theory was more extensively introduced in [68, 69, 70].

The thesis is organised in two Parts. Part I focuses on the interaction

of isotropically curved protein and membranes. In particular how such pro-

teins interact with dynamical surfaces and their ability to sense and generate

curvature.

We use the Onsager’s framework to describe the protein-membrane highly

coupled problem and we build a nonlinear and self-consistent continuum the-

ory that combines the chemistry and the mechanics involved in the system.

The main ingredients in the free energy include the curvature energy of the

membrane with a protein-induced spontaneous curvature, the entropy of mix-

ing of proteins, and protein-protein interactions. We present a selection of

numerical calculations showing the ability of the theory to describe curvature

sensing, generation, and more generally the intimate chemo-mechanical cou-

pling of the membrane-protein system under the restriction of axisymmetry.

The work is a report of the published paper:

• ”Out-of-equilibrium mechanochemistry and self-organization of fluid mem-

branes interacting with curved proteins”, Tozzi, Caterina, Nikhil Walani,

and Marino Arroyo, New journal of physics 21.9 (2019): 093004.

Continuum modelling is a promising way to capture the dynamical re-

shaping of membranes embedded with proteins, but at the same time it can

be disconnected from the relevant microscopic details, as in the case of BAR

proteins, where their molecular organisation directly affects the membrane

shape transitions. To this end, in Part II of the thesis we develop a mean-
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1. Introduction

field density functional theory, that is an extension of the work presented by

Nascimiento [2], to predict the orientational order and evaluate the free-energy

of ensembles of elongated and curved objects on bent membranes. This the-

ory depends on the microscopic properties of the particles and explains how

a density-dependent isotropic-to-nematic transition is modified by anisotropic

curvature. The theory also allows us to examine the coexistence of isotropic

and nematic phases on differently curved templates.

This work has been published here:

• ”A theory of ordering of elongated and curved proteins on membranes

driven by density and curvature”, Caterina Tozzi, Nikhil Walani, Anabel-

Lise Le Roux, Pere Roca-Cusachs, Marino Arroyo, Soft Matter, 2021

(doi.org/10.1039/D0SM01733G).

In Chapter 6 and 7 we describe the isotropic-to-nematic transition of pro-

teins on curved membranes of fixed shape. The theory can be used to under-

stand the organization of elongated and curved proteins on membranes whose

shape is restricted, as in the case of small vesicles [71], of supported lipid

bilayers on wavy substrate [72], or of living cells on substrate with topograph-

ical features [73]. However, the membrane dynamics is a main ingredient to

capture the two-way interplay between membrane shape and protein cover-

age and order. To address this point we present a self-consistent continuum

chemo-mechanical model based on our mean-field theory, with the scope of

predicting the role of BAR proteins isotropic-nematic organisation in mem-

brane remodelling. We focus on the out-of-equilibrium dynamics accounting

for membrane elasticity and hydrodynamics, proteins sorption, orientational

order and diffusion. We study theoretically and experimentally the dynamical

binding of BAR proteins on mechanically bent lipid membranes. The results

allow us to characterize a variety of dynamical reshaping events depending

on membrane shape and proteins arrangement. The experimental work pre-

sented in this thesis was performed by our collaborators at the Institute for

Bioengineering of Catalonia (IBEC).

A more extensive description is in our publication:
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• ”Dynamic Mechanochemical feedback between curved membranes and

BAR protein self-organization”, Anabel-Lise Le Roux, Caterina Tozzi,

Nikhil Walani, Xarxa Quiroga, Dobryna Zalvidea, Xavier Trepat, Mar-

garita Staykova, Marino Arroyo, Pere Roca-Cusachs, bioRxiv (2020).

.

In summary, the work done in this thesis aims at a complete and deep

understanding of the mechanisms involved in protein-membrane interaction.

We have developed two general theoretical frameworks that capture the dif-

ferent chemo-mechanical responses of lipid membranes interacting in one case

with isotropically bent proteins and in the other with uniaxially elongated

proteins. Furthermore, we have also developed a mean-field theoretical study

that relates the microscopic properties of the proteins with the free energy

of the membrane-protein system. In this way we have been able to explore

the density-dependent isotropic-to-nematic phase transition that characterizes

BAR proteins in a dense packing limit or on anisotropic curvatures.
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Part I

Isotropically curved proteins
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Chapter 2

A model for the mechanics of

lipid membranes and

intrinsically-curved proteins

In this chapter we present a general continuum model that describes the

protein-membrane chemo-mechanical interaction, built following Onsager’s

variational formalism [68, 69, 70], a variational method used for irreversible

thermodynamical problems. A major point of this principle is that it can be

applied to fully non-linear settings suitable to describe complex soft-matter

problems, including elasticity, low Reynolds number hydrodynamics and reaction-

diffusion system. The fundamental idea of the Onsager’s formalism is to derive

the time evolution of the system through a minimization problem that includes

energy released, energy dissipated and energy exchanged by the system. In our

model the main ingredients in the free energy include the curvature energy of

the membrane with a protein-induced spontaneous curvature, the entropy of

mixing of proteins, and protein-protein interactions. As it evolves, the system

dissipates energy through the drag between proteins and the membrane, and

through lipid shear viscosity as the membrane changes shape. We particularize
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2. A model for the mechanics of lipid membranes and
intrinsically-curved proteins

this general theory to an axisymmetric configuration.

2.1 Setup, Kinematics and Balance Laws

We model the lipid bilayer as a material surface Γ parametrized by r(θα, t),

where (θ1, θ2) are Lagrangian coordinates labelling material particles and t

denotes time. The model proposed here does not explicitly describe each of

the two monolayers [74, 75]. Accounting for the bilayer architecture may be

pertinent to some molecular curving mechanisms, such as shallow insertions

into one of the monolayers, whereas the model developed here could apply

to interactions that equally affect both monolayers such as scaffolding or full

insertion of transmembrane proteins [76]. Using standard differential geometry

[77], we use this parametrization to define the tangent vectors at each material

point as gα = ∂r/∂θα, which form the natural basis of the tangent space, and

the metric tensor with covariant components gαβ = gα · gβ. The components

gβγ of the inverse of the metric tensor follow from the relations gαβg
βγ = δγα.

The unit normal to the surface is n = (g1 × g2)/
√
g, where g = det gαβ. The

local curvature of the surface k is characterized by the second fundamental

form, which measures changes in the normal and whose components in the

natural basis are kαβ = n·∂gα/∂θβ. The invariants of the second fundamental

form are its trace H = trk = kαβg
αβ (twice the mean curvature) and its

determinant K = det{k} = det kαβg
βγ (Gaussian curvature). Throughout

the text, ∇ denotes the covariant derivative or surface gradient and ∇· the

surface divergence.

The dynamics of the surface are determined by its Lagrangian velocity,

which can be decomposed into tangential and normal components as

V =
∂r

∂t
= v + vnn. (2.1)

As a result of this flow, the metric tensor changes with time. Its material

time derivative, a partial derivative in our Lagrangian setting, is called the

rate-of-deformation tensor of the surface [78, 75],

d =
1

2

∂g

∂t
=

1

2
(∇v +∇vT )− vnk, (2.2)
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2.1. Setup, Kinematics and Balance Laws

Figure 2.1: The state of the system, given by the shape of the bilayer mid-surface
and by the protein area fraction, can evolve as a result of the membrane velocity

(V ), tangential (v) and normal (vn), and of the diffusive velocity of proteins relative
to the membrane (w).

and includes the usual term accounting for deformation resulting from tan-

gential flows, and a term accounting for deformation resulting from shape

changes, which involves the normal velocity and the curvature. The rate of

change of local area follows as

tr d = ∇ · v − vnH. (2.3)

We adopt a mean field description of proteins in terms of a scalar field φ(θα, t)

measuring their local area fraction. In doing so, we assume that proteins are

isotropic, or in a regime in which entropic effects dominate over orientational

order. In the second Part of the thesis we will account for the nematic order

of proteins, pertinent for instance to elongated membrane proteins with BAR

domains [9, 37, 41].

Balance of mass

Denoting by ρl(θ
α, t) the lipid areal density, balance of mass of lipids requires

∂ρl/∂t + ρl trd = 0. Note that in this equation ∂ρl/∂t coincides with the

material time-derivative since we consider a Lagrangian parametrization. This

equation ignores the area fraction occupied by protein insertions, which except

for channels is much smaller than the area fraction occupied by the membrane

protein at the periphery of the bilayer, see Fig. 2.1. At moderate tensions we

can assume that lipids are inextensible, and hence their density constant.
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2. A model for the mechanics of lipid membranes and
intrinsically-curved proteins

Consequently, lipid membrane inextensibility requires that

trd = 0. (2.4)

Since proteins are a diffusive species, balance of mass of proteins can be ex-

pressed as
∂φ

∂t
+ φ trd+∇ · (φw) = 0 on Γ, (2.5)

where w is the diffusive velocity relative to the Lagrangian coordinates and we

have ignored protein sorption. Again, because of our Lagrangian parametriza-

tion, ∂φ/∂t coincides with the material time-derivative φ̇.

2.2 Energetics, dissipation and power input

To describe the dynamics of protein-membrane interactions, as introduced

before, we adopt the nonlinear Onsager’s formalism of dissipative dynamics

[79, 70, 69], according to which the time evolution of the system follows a

minimization principle where energy release and dissipation compete. In the

present context, the state variables r and φ determine the elastic energy (as-

sociated to bending) and the chemical energy (entropy and self-interactions)

of the system, whereas the variables characterizing changes in the state of

the system, here V and w, determine energy dissipation through shear vis-

cous forces in the membrane and friction as proteins move relative to the

membrane. Onsager’s formalism provides a transparent method to derive the

governing equations even in the presence of strong nonlinearity, here caused

mechanically by the very large deformations of the membrane and chemically

by molecular crowding in protein-rich domains.

Energetics

To describe the bending energy of the membrane, we follow a classical Helfrich

model [45, 6, 80], ignoring the Gaussian curvature terms for simplicity but

including a spontaneous curvature that depends on protein density. Assuming
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2.2. Energetics, dissipation and power input

a linear dependence of preferred curvature on protein density, a common form

of the bending energy is

Fb =

∫
Γ

κ

2
(H − C̄φ)2 dS, (2.6)

where κ is the bending modulus and C̄ encodes the curving strength of pro-

teins. Other variants of this model have been proposed [48] and further dis-

cussed in Section 4.5.

For the free energy of the proteins on the surface, we adopt a Flory-Huggins

[46, 47] model accounting for the entropy of mixing and for protein-protein

interactions

Fp =

∫
Γ

{
kBT

ap
[φ log φ+ (φm − φ) log (φm − φ)] +

χ

2ap
φ2 +

µ0

ap
φ

}
dS. (2.7)

In this equation, kBT is the thermal energy, ap is the area on the membrane

of a single protein so that φ/ap is the number density, the term involving φm

(a saturation area fraction) accounts for the entropy of uncovered spaces, χ

determines the strength and sign (attractive or repulsive) of protein-protein

interactions, and µ0 is a reference chemical potential. Variants of this model

have been used to understand the linear stability of fully mixed states [50, 51]

or to examine protein sorting by curvature at fixed shape [32, 54, 20].

Depending on the parameters and the boundary conditions, the model

can lead to phase separation. For instance, negative χ promotes demixing

and coexistence of a protein-rich and depleted phases. To regularize phase

boundaries, we consider a term penalizing the gradient, which can be inter-

preted as a non-local interaction of proteins

Fnl =

∫
Γ

Λ

2ap
|∇φ|2 dS, (2.8)

Λ being a material parameter. The length scale of this interaction is of the

order ∼
√

Λ/|χ|, which, for a planar membrane, determines the thickness of

the interface between protein-rich and depleted domains. Without this term,

there is no energetic penalty to domain boundaries and the equations may
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2. A model for the mechanics of lipid membranes and
intrinsically-curved proteins

become ill-posed [81]. Total free energy of this system is then given by

F = Fb + Fp + Fnl =

∫
Γ
W (H,φ, |∇φ|2) dS, (2.9)

where W represents the total energy density of the membrane-protein compos-

ite system. We note that this form of energy density is not the most general

that can be conceived for diffusing proteins on an inextensible fluid membrane

without orientational order. For instance, the energy could also depend on

the scalar invariant ∇φ · k∇φ [82].

A central thermodynamic quantity that drives protein diffusion and sorp-

tion is the chemical potential µ [69], measuring the amount of work required

to add a molecule at a particular membrane location. The chemical potential

can be identified from the variational derivative of F with respect to φ as

δφF =

∫
Γ
µ
δφ

ap
dS =

∫
Γ

[
D2W δφ+D3W δ(|∇φ|2)

]
dS, (2.10)

where DiW denotes the partial derivative of W with respect to its i-th argu-

ment. Because this variation is taken at fixed shape, δ(|∇φ|2) = 2∇φ · ∇δφ.

Using the notation WH = D1W , Wφ = D2W , and W∇φ = 2D3W ∇φ, and

integrating by parts, we obtain

δφF =

∫
Γ
(Wφ −∇ ·W∇φ)δφ dS +

∫
∂Γ

(δφ)W∇φ · ν dl (2.11)

with ν representing the in-plane normal at the edge ∂Γ. Ignoring the boundary

term, comparison of the two equations above allows us to identify the chemical

potential from Eq. 2.9 as,

µ = ap(Wφ−∇ ·W∇φ) = µ0− apκC̄(H − C̄φ) + kBT log
φ

φm − φ
+χφ−Λ∆φ,

(2.12)

where ∆ denotes the surface Laplacian. This expression clearly shows the

contributions to the chemical potential given by bending elasticity, entropy

and protein self-interactions.
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2.2. Energetics, dissipation and power input

Dissipation

Having described the mechanisms through which membrane and proteins store

energy, we now detail the dynamical modes through which the system dissi-

pates energy. Lipid bilayers in a fluid phase behave like interfacial viscous

Newtonian fluids [7, 83]. Here, we ignore dissipative forces resulting from

inter-monolayer slippage [74, 75, 84]. Having assumed that the membrane is

locally inextensible, trd = 0, the dissipation potential accounting for in-plane

shear can be written as

Dm =

∫
Γ
η d : d dS, (2.13)

where η is the in-plane shear viscosity of the membrane and the rate-of-

deformation tensor d is given by Eq. 2.2 [83].

Protein transport is characterized by the collective protein velocity w rel-

ative to the lipids in the membrane, which has already appeared in the state-

ment of balance of proteins, see Eq. 2.5. As a single protein moves relative to

the lipids, it experiences a drag force given by −ξw, where ξ is the molecular

drag coefficient. By superposition in a dilute approximation, a collection of

proteins characterized by local number density φ/ap experiences a drag force

per unit area given by −ξφw/ap. The associated dissipation potential can

then be written as

Dp =

∫
Γ

ξ

2ap
φ|w|2 dS. (2.14)

For simplicity, we ignore the dissipation occurring in the bulk fluid. This

approximation could break down if fast shape changes occurred over length-

scales larger than the Saffman-Dellbrück length, of about 1 to 10 microns [83,

85]. In most situations, however, fast curvature generation by proteins leads

to much smaller geometric features [24, 86, 87]. Thus, the total dissipation

potential of the system is given by:

D[v, vn,w] = Dm + Dp. (2.15)
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Power input

Let us consider a membrane patch Γ, possibly with smooth boundary ∂Γ. In

absence of body forces or sorption of proteins from the bulk, power can only

be supplied to the system through edge tractions, moments or flux of proteins

at a given chemical potential. Assuming that Γ is a material surface, and thus

no lipids can flow through ∂Γ, we write the power input functional as

Pext =

∫
∂Γ

µb
ap

(φw)·ν dl−
∫
∂Γ

(Fτv·τ+Fνv·ν+Fnvn) dl+

∫
∂Γ
Mν ·ṅ dl, (2.16)

where µb is a fixed chemical potential for proteins at the boundary, e.g. main-

tained by a protein reservoir, τ is a unit tangent vector along ∂Γ so that

ν = τ × n, Fτ , Fν and Fn are traction components at the boundary, M is a

bending moment per unit length, and ṅ represents the material time deriva-

tive of the surface normal. We can express the last integral in terms of our

dynamical variables v and vn using the relation

ν · ṅ = −∇vn · ν − τ(v · τ )− κν(v · ν), (2.17)

where τ = kν ·τ is the geodesic torsion of the boundary curve and κν = kν ·ν
its normal curvature [88, 89]. Each of these terms can be defined on Neumann

parts of the boundary ∂Γ.

2.3 Governing equations

Onsager’s variational principle

The Onsager’s recipe, used to derive the dissipative dynamics of the problem,

accounts for the minimization of the Rayleghian functional as

R = Ḟ + D + Pext, (2.18)

where Ḟ is the rate of change of the energy [69, 70]. To enforce local inex-

tensibility, see Eq. 2.4, and possibly the incompressibility of the fluid enclosed

by the membrane, we introduce a Lagrange multiplier field σ (contributing to
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2.3. Governing equations

membrane tension) and a Lagrange multiplier p (pressure difference) to form

the Lagrangian

L = Ḟ + D + Pext +

∫
Γ
σ trd dS − p

∫
Γ
vn dS. (2.19)

Since Γ is a material surface, the rate of change of energy can be written as

Ḟ =

∫
Γ
(Ẇ +W trd) dS (2.20)

where Ẇ is the material time-derivative of the energy density and is given by

Ẇ = WHḢ +Wφφ̇+D3W
d

dt

(
|∇φ|2

)
. (2.21)

Note carefully that, because |∇φ|2 = gαβφ,αφ,β with φ,α = ∂φ/∂θα involves

the inverse of the metric tensor, which depends on the membrane configu-

ration, the time derivative in the last term involves not only φ̇ but also the

velocity of the surface. Indeed,

d

dt

(
gαβφ,αφ,β

)
= −2∇φ · d · ∇φ+ 2∇φ · ∇φ̇. (2.22)

Using the above equation, the relation Ḣ = v · ∇H + ∆vn + vn(H2 − 2K)

[83], balance of mass of proteins in Eq. 2.5 and the divergence theorem, we

can express the rate of change of the energy by explicitly highlighting its

dependence on the variables w and V = v + vnn

Ḟ =

∫
Γ

∇µ
ap
· (φw) dS

+

∫
Γ

[
WH∇H +∇

(
µφ

ap

)
−∇W + 2D3W∇ · (∇φ⊗∇φ)

]
· v dS

+

∫
Γ

[
∆WH +WH(H2 − 2K) +

µ

ap
φH −WH + 2D3Wk : (∇φ⊗∇φ)

]
vn dS

−
∫
∂Γ

µ

ap
(φw) · ν dl −

∫
∂Γ

2D3W (∇φ · ν)∇ · (φw) dl +

∫
∂Γ

(
W − µφ

ap

)
v · ν dl

−
∫
∂Γ

(∇WH · ν)vn dl +

∫
∂Γ
WH(∇vn · ν) dl −

∫
∂Γ

2D3W (∇φ · v)(∇φ · ν) dl.

(2.23)
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In the literature dealing with the Cahn-Hilliard equation, related to our model,

the second term in the fourth line is set to zero by requiring the natural high-

order boundary condition ∇φ · ν = 0 on ∂Γ [90]. As a result, the last integral

over the edge also vanishes. Similarly, we can express the constraint of local

area conservation as∫
Γ
σ trd dS = −

∫
Γ
∇σ · v dS −

∫
Γ
σvnH dS +

∫
∂Γ
σv · ν dl. (2.24)

To obtain the governing equations of the system, we substitute the above

relations in Eq. (2.19), minimize the Lagrangian with respect to {w,v, vn} and

maximize it with respect to {σ, p}. Surface integrals in the two expressions

above contribute to the Euler-Lagrange governing equations whereas boundary

terms identify the Neumann boundary conditions. The resulting equations for

the specific choice of W given in Section 2.2 are discussed below.

Transport of proteins

Minimizing the Lagrangian with respect to the diffusive velocity, δwL = 0, we

obtain the diffusive flux of membrane proteins consistent with Fick’s law

φw = −φ∇µ
ξ

in Γ. (2.25)

Substituting the above relation in Eq. 2.5 and using the inextensibility of the

lipid membrane we obtain

ξ

ap
φ̇−∇ · (φ∇µ) = 0, (2.26)

which can be expanded recalling Eq. 2.12 and rearranged to yield the transport

equation for proteins

ξφ̇+∇ ·
[
apκC̄∇Hφ−

(
χeffφ+

kBTφm
φm − φ

)
∇φ+ Λφ∇(∆φ)

]
= 0, (2.27)

where we have defined the effective interaction between proteins as χeff =

χ+ apκC̄
2. For vanishing spontaneous curvature (C̄=0), this governing equa-

tion ceases to depend explicitly on the curvature of the underlying surface,
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2.3. Governing equations

although it does depend on its geometry through the covariant derivative,

and it reduces to a nonlinear Cahn-Hilliard equation [91] on the surface with

a density-dependent diffusion coefficient

D(φ) =
1

ξ

(
χeffφ+

kBTφm
φm − φ

)
. (2.28)

For χ = 0, Λ = 0 and φ � φm, Eq. 2.27 reduces to the linear diffusion

equation. For C̄ 6= 0, the curvature gradient introduces a bias in the diffusion

with drift velocity

wdrift = apκC̄∇H/ξ, (2.29)

driving curved proteins along or against the curvature gradient depending on

the sign of C̄. At steady state, drift and diffusive transport must balance and

yield a divergence-free flux.

In-plane force balance

Minimization of the Lagrangian respect to the in-plane velocity, δvL = 0,

yields

∇σ − φ∇µ
ap

+ 2η∇ · d = 0, (2.30)

where the first term accounts for the tension required to impose lipid mem-

brane inextensibility, the second term is a force density on the fluid mem-

brane resulting from the relative motion of proteins, see Eq. 2.25, and the

third term represents tangential dissipative forces due to membrane viscosity,

which strongly depend on curvature and involve both tangential and normal

velocities as discussed in detail elsewhere [83, 92].

In the common situation of an incompressible Stokes flow with a dilute

diffusing species, the drag force density due to protein motion, the second

term in Eq. 2.30, does not contribute to the hydrodynamics because φ∇µ can

be expressed as a gradient and grouped with the Lagrange multiplier enforcing

incompressibility in all the governing equations [69]. Here, however, this is not

the case. Indeed, introducing Eq. 2.12 into 2.30 we obtain

∇σeff − Λ

ap
∇ · (∇φ⊗∇φ)dev +

ξ

ap
φwdrift + 2η∇ · d = 0 (2.31)
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where (a⊗a)dev = a⊗a− (|a|2/2)g is the deviatoric component of this rank-

one tensor, and we identify the effective membrane tension (the hydrostatic

part of the stress tensor) as

σeff = σ +
kBT

ap
φm log(φm − φ)− χeff

2ap
φ2 +

Λ

ap
φ∆φ. (2.32)

Since the third term in Equation 2.31 cannot be expressed as a gradient, the

drift contribution to protein transport generates a tangential force density in-

troducing an explicit coupling between hydrodynamics and protein transport.

This protein-induced force just requires the presence of curved proteins and a

curvature gradient and can drive flows out-of-equilibrium. Furthermore, as a

result of the fundamental in-plane/out-of-plane coupling mediated by curva-

ture [92], this force density can induce out-of-plane forces and shape changes.

At steady state, since wdrift is in general different from zero, Eq. 2.31 shows

that we can expect a non-uniform effective membrane tension in the presence

of gradients of curvature. The second term in Eq. 2.31 further contributes to

a non-uniform and also non-hydrostatic membrane tension in equilibrium, in

this case associated to gradients in φ.

Going back to the notion of effective tension σeff , one way to think about

it is just as a Lagrange multiplier enforcing local inextensibility. However,

Eq. 2.32 provides further insight about this tension. The first term, σ can be

interpreted as the membrane tension of the lipids. The second term is the os-

motic tension due to the presence of proteins. In the limit φ� φm, this term

becomes −kBTφ/ap, recovering the Van’t Hoff’s equation. The third term

accounts for the fact that attractive/repulsive proteins increase/decrease sur-

face tension. The last term is a non-local tension that can become significant

at phase boundaries. Thus, σeff is a measure of tension in the composite

membrane-protein system. We refer to Appendix A.1 for a complementary

and detailed derivation of the stress in the present theory.
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2.3. Governing equations

Force balance normal to the surface

Minimization with respect to the normal component of the velocity, δvnL = 0,

yields

κ

[
∆(H − C̄φ) + (H − C̄φ)

(
H2

2
− 2K

)
− H2C̄φ

2

]
− σeffH − p+

Λ

ap
k : (∇φ⊗∇φ)dev − 2ηd : k = 0,

(2.33)

where the first term corresponds to an out-of-plane force density due to mem-

brane curvature elasticity, and hence coupled to the protein density, the second

to fourth terms account for Laplace’s law, and the last term is a normal viscous

force density due to membrane shear, studied in detail in [83, 92].

Boundary Conditions

In the chemo-mechanical problem studied here, we can impose Dirichlet bound-

ary conditions in part of the boundary ∂Γ for the different fields. For instance,

reasonable Dirichlet conditions for the mechanical part of the problem include

fixing v · τ = v̂τ , v · ν = v̂ν , vn = v̂n and ∇vn · ν = ω̂ on a part of ∂Γ, where

v̂τ , v̂ν , v̂n and ω̂ are Dirichlet data. For the chemical problem, the Dirichlet

boundary condition is prescribing φw · ν = ĵb on part of ∂Γ.

On parts of the boundary where Dirichlet boundary conditions are not

specified, we obtain the following Neumann boundary conditions by extrem-

izing the Lagrangian and collecting terms at the boundary:

µb = µ, M = WH , Fν = W − µφ

ap
+ σ − κνM + 2η ν · d · ν,

Fn = −∇WH · ν, Fτ = −τM + 2η τ · d · ν.
(2.34)

The first condition sets the chemical potential in the Neumann part of the

boundary, whereas the next four equations set the applied torque and force

per unit length. The in-plane force can be further recast in a form clearly

showing the contributions of the effective surface tension and bending energy
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as

Fν =
κ

2
H2 + σeff − κνM + 2η ν · d · ν. (2.35)

For surfaces at equilibrium with flat boundaries, the forces normal to the

boundary per unit length transmitted by the membrane is tangential and

given by σeff .

Time-scales of shape and protein density relaxation

The chemo-mechanical model described by the transport equation for proteins

(2.27), membrane inextensibility (2.4), force balance in-plane (2.31) and out-

of-plane (2.33) exhibits multiple intrinsic relaxation time-scales. To examine

the competition of mechanical and chemical relaxation time-scales, we con-

sider the simplest cases of shape disturbances whose relaxation is driven by

bending elasticity and dragged by membrane viscosity, and of protein density

disturbances entropically penalized and dragged by the friction between pro-

teins and the lipid membrane. Such mechanical relaxation occurs during the

characteristic time τm = ηS̄/κ, where S̄ is the surface area of the disturbance.

The characteristic time for protein diffusion is τp = ξS̄/(kBT ). Their ratio is

thus
τm
τp

=
kBTη

κξ
≈ η

20ξ
, (2.36)

where we have used the common estimate for the bending stiffness κ ≈ 20kBT .

In turn, ξ is related to the membrane surface viscosity η through the Saffman-

Delbrück theory [93], which states that

ξ =
4πη

log(2Lsd/`a)− γ
, (2.37)

where Lsd ≈ 5 µm is the ratio of membrane and bulk viscosity, `a ≈ 1 nm is the

effective radius of the protein and γ ≈ 0.577 is the Euler Mascheroni constant.

Using this estimation we obtain, ξ ≈ 2πη, which results in τm/τp ≈ 1/(40π).

Thus, mechanical relaxation occurs nearly two orders of magnitude faster

than protein relaxation by diffusion. Although other phenomena accounted

for in our general theory (such as protein self-interaction, drift by curvature
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gradients, or mechanical forces due to the presence of curved proteins on the

membrane) can influence the dynamics of the system, this simple estimate

establishes that in general protein transport can be expected to be the slow

process.

2.4 Axisymmetric formulation

Under the assumption of axisymmetry, pertinent to many structures result-

ing from protein-membrane interactions, the shape of the membrane can be

parametrized in terms of the distance to the z axis and the z coordinate of its

generating curve (ρ(u, t), z(u, t)), where u is a Lagrangian coordinate labeling

material particles in the interval [0, 1] and t is time. Protein area fraction

does not depend on the azimuthal angle and thus can be expressed as φ(u, t).

For closed surfaces, smoothness of the surface at the poles is guaranteed by

the conditions ρ(0, t) = 0, z′(0, t) = 0 and ρ(1, t) = 0, z′(1, t) = 0, where (·)′

denotes the partial derivative with respect to u. For an open patch, we re-

place the condition at u = 1 by z(1, t) = 0, z′(1, t) = 0. The diffusive protein

velocity can be expressed as w(u, t) = w(u, t)t(u, t), where t = (ρ′, z′)/a is

the unit tangent vector to the generating curve and a(u) =
√
ρ′(u)2 + z′(u)2

is the speed of this curve.

From the generating curve, we can compute the mean curvature of the

surface as

H =
1

a

(
b

a2
+
z′

ρ

)
, (2.38)

where b(u) = −ρ′′(u)z′(u) + ρ′(u)z′′(u) [85]. Noting that the element of area

is dS = 2πaρ du, this expression allows us to compute the bending energy

Fb[ρ, z;φ] in Eq. (2.6).

As a reference surface Γ̄ with local radius ρ̄ and speed ā is mapped to the

current surface Γ with radius ρ and speed a, the local areal stretch at each

point is J = (aρ)/(āρ̄). Thus, membrane inextensibility can be expressed

as J = 1, or aρ = āρ̄. As shown in [85], the membrane dissipation poten-

tial in Eq. 2.13 for an axisymmetric inextensible membrane described with
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Lagrangian coordinates can be expressed as

Dm[ρ̇; ρ, z] =

∫ 1

0
2η

(
ρ̇

ρ

)2

2πaρ du. (2.39)

Balance of mass of proteins in Eq. 2.5 for an inextensible membrane can

be expressed in the present setting as 0 = φ̇ + (ρφw)′/(aρ). Plugging the

expression for w issued from Onsager’s principle, we rewrite Eq. 2.27 under

axisymmetry as

ξφ̇+
1

aρ

{
ρ

a
apκC̄φH

′ − ρ

a

[
χeffφ+

kBTφm
(φm − φ)

]
φ′ +

ρ

a
ΛφL

′
(φ)

}′
= 0, (2.40)

where

L(φ) =
1

aρ

[(
ρ

a

)′
φ′ +

ρ

a
φ′′
]

(2.41)

is the surface Laplacian of φ.
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Chapter 3

Numerical approximation

Here, we discretize the governing equations for the protein-membrane dynam-

ical model with a Galerking method. In particular we use B-Spline approxi-

mations to numerically rapresents the physical fields in the space-discretized

form and backward Euler approximation for time-discretization.

To perform numerical calculations, we use a Galerkin finite element ap-

proach based on a B-Spline approximation of the different fields. We numeri-

cally represent the state variables as

{φ(u, t), ρ(u, t), z(u, t)} =

N∑
J=1

BJ(u){φJ(t), ρJ(t), zJ(t)}, (3.1)

where BJ are cubic B-spline basis functions, and {φJ(t), ρJ(t), zJ(t)} are the

J−th control points of the state variables at time t [94]. This approximation

provides C2 continuity, enough for our formulation, which requires at least C1

continuity for square integrable curvatures and protein Laplacians.

To move forward in time, we adopt a staggered approach in which we first

evolve the protein density field at fixed membrane shape, and then update

shape at fixed protein distribution. To obtain the concentration of proteins

φn+1 at time tn+1, we assume a given shape of membrane {ρn, zn} at time
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3. Numerical approximation

tn = tn+1 −∆tn, use a backward Euler approximation to discretize Eq. 2.40

in time, multiply this equation with a test function ψ(u), integrate over the

surface and integrate by parts. For simplicity of our exposition, we assume no

flux of proteins through the boundary to obtain

ξ

∫ 1

0
(anρn)

(
φn+1 − φn

∆tn

)
ψ du+

∫ 1

0

ρn

an

(
χeffφn+1 +

kBTφm
φm − φn+1

)
φn+1′ψ′ du

+

∫ 1

0
apκC̄H

n

[(
ρn

an

)′
φn+1ψ′ +

ρn

an
φn+1′ψ′ +

ρn

an
φn+1ψ′′

]
du

+

∫ 1

0

Λ

anρn

[(
ρn

an

)′
φn+1′ +

ρn

an
φn+1′′

][(
ρn

an

)′
φn+1ψ′

+
ρn

an
φn+1′ψ′ +

ρn

an
φn+1ψ′′

]
du = 0.

(3.2)

We note that we have further integrated by parts the term involving H ′

to lower the smoothness requirements of the theory. Replacing Eq. 3.1 into

3.2 and choosing the test function ψ = BI , we obtain N discrete equations for

φJ , I = 1, . . . N as

N∑
J=1

[
MIJ + ∆tnKIJ(φn+1)

]
φn+1
J = ξ

∫ 1

0
anρnφnBI du, (3.3)

where
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MIJ = ξ

∫ 1

0
anρnBIBJ du

KIJ(φn+1) =

∫ 1

0

ρn

an

(
χeffφn+1 +

kBTφm
φm − φn+1

)
B′IB

′
J du

+

∫ 1

0
apκC̄H

n

[(
ρn

an

)′
B′IBJ +

(
ρn

an

)
B′IB

′
J +

(
ρn

an

)
B′′IBJ

]
du

+

∫ 1

0

Λφn+1

anρn

[(
ρn

an

)′
B′I +

ρn

an
B′′I

][(
ρn

an

)′
B′J +

ρn

an
B′′J

]
du

+

∫ 1

0
Λ L(φn+1)B′IB

′
J du.

(3.4)

Since the matrix KIJ depends on the unknown, the system of equations

in Eq. 3.3 is nonlinear and we solve it using Newton’s method.

To solve the mechanical problem, we fix protein area fraction to φn+1

and write down an incremental Lagrangian accounting for the rate of change

of the free energy, for membrane dissipation, and for local area and volume

constraints

Lm[ρn+1, zn+1, σn+1, pn+1] =
F[ρn+1, zn+1;φn+1]− F[ρn, zn;φn+1]

∆tn

+ Dm

[
ρn+1 − ρn

∆tn
; ρn, zn

]
− pn+1

∆tn
(V n+1 − V n)

+
1

∆tn

∫ 1

0
σn+1(an+1ρn+1 − anρn)2π du.

(3.5)

The Lagrange multiplier σn+1 is also discretized in space using B-splines.

However, rather than cubic, we use quadratic B-spline basis functions for

this field to obtain a stable formulation [95, 96]. To move forward in time,

we obtain the mechanical unknown at time tn+1 by numerically solving the

algebraic optimization problem

{ρn+1
I , zn+1

I , σn+1
I , pn+1} = argmax

p̃n+1,σ̃n+1
I

argmin
ρ̃n+1
I ,z̃n+1

I

Lm[ρ̃n+1
I , z̃n+1

I , σ̃n+1
I , p̃n+1].

(3.6)
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3. Numerical approximation

As described above, this Lagrangian method will in general lead to significant

distortions of the numerical grid. For robustness and accuracy of the numerical

methods, we periodically perform mesh reparametrizations of the generating

curve.
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Chapter 4

Numerical experiments

In this Chapter we examine a series of specific numerical examples that re-

produce the main processes realted to the protein-membrane complex: curva-

ture sensing, curvature generation and the intimate chemo-mechanical positive

feedback of the membrane-protein system. We introduce two variants of the

continuum model proposed in Chapter 2, one accounting for protein’s bending

elasticity and the other addressing membrane bending by crowding of bulky

off-membrane protein domains [97, 98].

4.1 Selection of parameters

We choose as the energy scale the bending rigidity of the membrane κ =

20 kBT . As the length and time-scales, we choose `0 = 50 nm and τp =

`20ξ/(kBT ). Considering a membrane viscosity of η = 5 · 10−9 N s/m and

the relation ξ = 2πη discussed in Section 2.3, we obtain that ξ ≈ 3 · 10−8 N

s/m, the diffusion coefficient of proteins is D = kBT/ξ ≈ 1.3 · 10−13 m2/s and

τp ≈ 0.02 s. In the absence of measurements, we choose Λ/ap = 1kBT large

enough so that, when phase separation occurs, domain boundaries have a finite

thickness and simulations are devoid of numerical oscillations indicative of ill-

33



4. Numerical experiments

conditioning, and small enough so that the dynamics of the problem are not

significantly affected by this parameter. With these units, in our calculations

we set the non-dimensional coefficients κ̄ = 1, ¯̄C = 2 (corresponding to 1/C̄ ≈
25 nm), āp = 0.04 (corresponding to ap ≈ 100 nm2), kBT/āp = 1.25 , ξ̄/āp =

1.25 and η̄ = 1/(40π). We finally note that, to avoid numerical solutions with

unreasonably thin necks, thinner than the bilayer thickness, we introduce a

term that limits the minimum radius of a neck structure to about ε ∼ 7.5 nm

by adding an energy contribution of the form

Fneck =

∫
Γs

γ

(ρ− ε)2
dS, (4.1)

where Γs is the entire surface excluding a small region near the poles and γ =

0.1 kBT . We checked that this potential only affected the solutions close to

the neck.

4.2 Curvature sensing and generation starting

from a prolate vesicle

Curvature sensing is a phenomenon by which curved membrane proteins mi-

grate to regions of the membrane with higher/preferred curvature. Hence,

a necessary condition is the existence of a curvature gradient. We first con-

sidered a prolate vesicle as shown in Fig. 4.1(a). This vesicle is obtained by

minimization of bending energy at constant area S = 4πR2
0, with R0 = 500

nm, at fixed reduced volume v = 0.93. At t = 0, the vesicle is covered with

a homogeneous area fraction of curved proteins (φ̄ = 0.15) with spontaneous

curvature C̄ = 1/25 nm−1. We assume that the proteins are non-interacting

and thus choose χ = −apκC̄2 so that χeff = 0. The initial homogeneous

distribution of proteins is preferred entropically, but is not optimal from the

point of view of bending energy, which favors protein migration towards the

poles. The competition between these two free energy contributions leads to

a non-uniform chemical potential of proteins and drives protein transport.

Since ∇φ = 0 at t = 0, protein transport is initially due exclusively to gradi-

ents in curvature with the diffusive velocity coinciding with the drift velocity
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4.2. Curvature sensing and generation starting from a prolate vesicle

Figure 4.1: Snapshots of shape and protein coverage during the relaxation
dynamics on a prolate membrane vesicle, and time evolution of changes in energies

(total, bending and chemical) for an average and initially uniform protein area
fraction of (a) φ̄ = 0.15 and (b) φ̄ = 0.35. (c) Final equilibrium states depending on
the saturation density φm = {0.75, 0.95, 1, 1.1}, which stops the feedback between

curvature generation and protein transport. (d) Equilibrium states as vesicle
pressure is incremented by steps, while allowing for volume changes, showing a
mechanically-induced dissolution of a highly curved and protein-rich membrane

domain.

wdrift = apκC̄∇H/ξ. Estimating the average gradient of mean curvature

from the prolate shape, we estimate the time required for drift transport

to induce a gradient in protein density as τ1 ≈ R0/|wdrift| ≈ 0.3 s. Sub-
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sequently, the dynamics are governed by a competition between drift and

diffusive transport, driving proteins towards equilibrium over a time scale

τ2 ≈ R2
0/D(φ̄) ≈ 1.36 s. Thus, we estimate that the total time scale of relax-

ation is given by τ ≈ τ1 + τ2 ≈ 1.66 s. These estimates are consistent with the

results shown in Fig. 4.1(a), where we show a few selected snapshots of protein

distribution during the equilibration dynamics, along with the time-evolution

of the changes in the total energy, ∆F, and of different components of it. The

figure shows that equilibration takes place in a time commensurate to τ , and

that protein migration towards the poles is driven by bending energy, which

decreases during the dynamics, but opposed by Fp + Fnl. In this example,

where the total number of proteins on the membrane is low, their area frac-

tion in the protein-rich poles is far from the saturation area fraction φm = 1

and membrane shape does not change.

To examine the ability of proteins to generate membrane shape, we re-

visited the previous example but increased the amount of protein by setting

an initial homogeneous area fraction of φ̄ = 0.35, see Fig. 4.1(b). At early

times, the dynamics parallel those of the previous example, with drift motion

of proteins towards the poles, followed by balancing diffusive fluxes. However,

now the amount of protein creates a sufficiently large spontaneous curvature

C̄φ to modify the shape of the vesicle, which develops a symmetry-breaking

transition (ii). At this point, a positive feedback is established during which

higher curvature attracts more proteins, which in turn locally increase curva-

ture, and so on. We observe that during this process, the systems develops

a cascade of rapid pearling events of duration τm, which create new curva-

ture gradients and thus are followed by the partial equilibration of protein

coverage over a time-scale of τp. Similar pearled tubular morphologies have

been experimentally and computationally observed in bilayers with isotropic

spontaneous curvature caused by anchored polymers [14, 99], in cells as a re-

sult of crowding of the grycocalyx [15] or by asymmetric lipid swelling due

to changes in pH [100]. We note that if proteins induce anisotropic sponta-

neous curvature, for instance because they are elongated and adopt nematic

order, experiments and molecular models suggest that one can expect tubular
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protein-rich protrusions of uniform radius [9, 37, 41] rather than pearled pro-

trusions as we find here. We leave models capturing nematic ordering of curved

proteins for future work. This pearling cascade and positive feedback loop be-

tween curvature and protein coverage continues until proteins almost reach

their saturation density φm in the highly curved domain. In equilibrium, the

system reaches a heterogeneous state where a protein-rich and highly curved

pearled tube coexists with a depleted vesicle.

To further examine the role of the saturation area fraction φm in setting the

equilibrium state, we repeated the previous simulation considering different

values of φm. Figure 4.1(c) shows that the depth of the pearling cascade is

indeed controlled by this parameter. For φm = 0.75, the saturation density

and equilibrium is reached after the first pearl has formed. As the saturation

area coverage is increased, the number of pearls, and the tube length and

curvature progressively increase. Thus, in a model governed by the energies in

Eqs. (2.6,2.7), protein saturation controlled by φm limits the positive feedback

loop between curvature and area coverage.

Curvature generation by membrane proteins involves recruitment of mem-

brane area into protein-rich protrusions, and therefore should depend on

membrane tension as shown experimentally [24]. To examine this mechan-

ical coupling, we started from an equilibrium state showing a highly curved

protein-rich tube and increased the pressure difference in steps, thus allow-

ing for volume changes in the vesicle. Initially, p0 = 13 Pa and σeff ≈ 0.003

mN/m. Figure 4.1(d) shows that as pressure, and thus tension, increase, mem-

brane area is released from the protein-rich tube, which becomes shorter and

more concentrated (p1 = 55 Pa, p2 = 65 Pa). Beyond p3 = 250 Pa corre-

sponding to σeff ≈ 0.064 mN/m, the entire protrusion is eliminated and the

proteins uniformly spread over the membrane. This example thus shows the

mechanically-induced dissolution of a protein-rich curved domain.

The transition between states of low curvature and homogeneous protein

distribution and localized states has been classically analyzed assessing the

linear stability of the uniform state [50, 24], summarized in Appendix A.2.

According to this analysis, a purely mechanical instability (Euler buckling)
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takes place when σeff < 0, while a purely chemical instability (phase separa-

tion) takes place when D(φ̄) < 0, see Eq. (2.28). In addition to these standard

instabilities, the system can also exhibit a chemo-mechanical instability involv-

ing shape and protein patterning, which in the ideal case of a planar infinite

membrane can happen when Appendix (A.2) [24]

κ|C̄| −

[
κ

ap

(
χeff +

kBTφm
(φm − φ̄)φ̄

)
︸ ︷︷ ︸

aeff

] 1
2

≥

√
σeffΛ

ap
. (4.2)

This equation allows us to understand qualitatively the mechanically-induced

disappearance of a mechano-chemical pattern as σeff increases in Fig. 4.1(d),

as well as the emergence of such a pattern when φ̄ increases as in Fig. 4.1(a,b),

where χeff = 0.

4.3 Sensing on a tube and shape stabilization

To further study the mechano-chemistry of membrane-protein interactions, we

then considered a setup that mimics controlled in-vitro experiments, where a

curvature gradient is established by pulling a highly curved membrane tether

out of a vesicle [22, 101, 32, 20]. We consider the same vesicle size and reduced

volume as in the previous examples, and gradually increase the distance be-

tween the poles. As in experiments [102], our simulations show that beyond

an extension, the system breaks symmetry and a thin tube elongates from one

of the poles, see Fig. 4.2(a)-i. Starting from this configuration, we load the

vesicle with a uniform distribution of proteins with area coverage φ̄ = 0.15.

The protein dynamics are similar to the previous examples, with a progressive

enrichment of the highly curved tube over a time period of about the diffusive

time-scale τ2 ≈ 4πR2
0/D(φ̄) ≈ 17 s, where now proteins need to migrate a

longer distance on average to one of the two poles, Fig. 4.2(c). At equilibrium

and for this low protein coverage, proteins have barely modified the shape of

the vesicle-tube system, Fig. 4.2(a)-iii. However, their presence has a notice-

able mechanical effect in the force required to keep the tether in place, which
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Figure 4.2: (a) Dynamics of curvature sensing by proteins on a vesicle with a tube
stabilized by a displacement constraint at a lower average density φ̄ = 0.15.

Dynamics of the reaction force (b), average tubular density φt and height changes
(∆h) (c) before and after the release of the displacement constraint. (d) Evolution

of reaction force for higher average densities φ̄ = {0.2, 0.25, 0.3} and (e) average
tubular density for different average densities showing a density-dependent

stabilization of protein-rich curved protrusions.

decreases by more than two-fold, Fig. 4.2(b). This kind of behavior has been

experimentally observed for BAR proteins and dynamin [22, 20, 101]. For this

protein coverage, however, the amount of protein is insufficient to stabilize the
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tube and following the release of the displacement constraint, the tube retracts

and the protein-rich domain dissolves into the vesicle, Fig. 4.2(a-c). At higher

protein coverage, the proteins drawn to the tube are able to modify visibly

its shape by inducing slight pearling, they further reduce the tether force,

and the larger protein amount is able to stabilize highly curved and protein-

rich protrusions upon release of the constraint, Fig. 4.2(d,e), in agreement

with in-vitro experiments [20, 101]. Furthermore, the transition to a strongly

pearled protrusion upon force removal (iii-iv) closely mimics the shape trans-

formations in membrane protrusions bent by crowding of the glycocalyx upon

disassembly of enclosed actin filaments [15].

4.4 Bud formation and tension-induced dissolution

Buds constitute a prototypical membrane motif, and are involved in endo/

exocytosis [103] or in tensional buffering of the plasma membrane through

caveolae [5]. Although the formation of such buds requires the synergistic

interaction of multiple proteins and lipids, they can be abstracted as curved

protein-rich membrane domains [87, 104]. To understand the fundamental

mechanism of bud formation, we consider a flat discoidal patch of membrane

covered with a homogeneous distribution of proteins (φ̄ = 0.1) at t = 0. We

assume that the membrane is flat at its edge and that proteins cannot flow

in or out from the boundary. We apply radial tractions at the boundary

corresponding to an isotropic membrane tension of σeff ≈ 3 · 10−3 mN/m, at

the lower end of membrane tension in mammalian cells [105].

According to Eq. (4.2), the parameters C̄ = 2/25 nm−1 and aeff/ap ≈ 0.4

mN/m should make the initially uniform and flat state unstable, leading to a

chemo-mechanical pattern. In agreement with this prediction from the linear

stability analysis, our nonlinear, yet axisymmetric, calculations show the spon-

taneous formation of a budded protein-rich domain as shown in Fig. 4.3(a),

reminiscent of caveolae. As shown in the figure, this process leads to a signifi-

cant reduction in the projected area of the membrane patch, and thus during

bud formation chemical energy is released to perform mechanical work against
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4.5. Two alternative models of membrane-protein interaction

Figure 4.3: (a) Spontaneous formation of budded protein-rich domain from a flat
membrane with homogeneously distributed proteins in the initial state and (b)

dissolution of the bud under sudden stress increase, releasing projected membrane
area.

the applied tension.

A critical function of caveolae is the mechano-protection of cells subjected

to stretching of the plasma membrane [5]. These budded domains provide a

membrane reservoir, which upon tension increase, can be released to buffer

membrane tension and avoid lysis [106]. To test the ability of our model

to reproduce this phenomenology, we suddenly increased membrane tension

to 0.5 mN/m within 0.6 s. As a result and in agreement with Eq. (4.2),

the budded domain rapidly disassembles, leaving a flat patch with uniformly

distributed proteins, Fig. 4.3(b), consistent with the increased mobility of

caveolar components following tension-induced disassembly [5].

4.5 Two alternative models of membrane-protein

interaction

Proteins with bending elasticity

The curvature model considered up to this point, based on Eq. (2.6), assumes

that protein cooperativity increases the spontaneous curvature of the surface.
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However, an alternative model can be conceived in which curved proteins have

a stiffness of their own, which results in an effective density-dependent stiffness

of the protein shell on the membrane [48]. In this case, the curvature energy

of the composite membrane-protein system can be written as

Fb =

∫
Γ

κ

2
H2 dS +

∫
Γ

κp(φ)

2
(H − Cp)2 dS, (4.3)

where Cp is the intrinsic curvature of proteins and κp(φ) a density-dependent

stiffness of the protein coat. The resulting membrane shape is hence the result

of the competition between elastic bending energies of proteins and of the lipid

bilayer. This model has been used to study the response of membranes with

stiff protein coats [107]. Assuming a linear dependence of κp on the protein

area fraction, κp(φ) = κ̄pφ, and a chemical energy given by Eqs. (2.7,2.8) as

before, the chemical potential of proteins now takes the form

µ = µ0 + apκ̄p(H − Cp)2 + kBT log
φ

φm − φ
+ χφ− Λ∆φ. (4.4)

Invoking Onsager’s principle with the same dissipation potentials as before,

we obtain an alternative protein transport equation

ξφ̇+∇ ·
[
apκ̄p(Cp −H)∇Hφ−

(
χφ+

kBTφm
φm − φ

)
∇φ+ Λφ∇(∆φ)

]
= 0, (4.5)

where the density-dependent diffusion coefficient

D(φ) =
1

ξ

(
χφ+

kBTφm
φm − φ

)
(4.6)

has the same structure as the one in Eq. 2.28. In contrast, the drift velocity

wdrift = a0κ̄p(Cp − H)∇H/ξ is now qualitatively different, in that its sign

relative to ∇H can change in space and time depending on the sign of Cp−H,

whereas in the previous model (wdrift = a0κC̄∇H/ξ) it just depended on

the sign of the constant C̄. Focusing on the case in which both C̄ and Cp

are positive for concreteness, in the model based on Eq. (2.6) the drift term

always favors protein transport towards regions of higher curvature, whereas

in the model based on Eq. (4.3) this will be the case only as long as membrane
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4.5. Two alternative models of membrane-protein interaction

Figure 4.4: Comparison of the equilibrium shapes obtained for different values of
the saturation area fraction φm and spontaneous curvature Cp for the model

governed by the bending energy in Eq. (4.3).

curvature is smaller than the preferred protein curvature. As a result, in the

model presented in this Section the positive feedback between curvature and

protein coverage stops once membrane curvature reaches Cp. Recall that,

as discussed in Section 4.2, in the previous model this positive feedback was

only stopped by the saturation of protein coverage as φ approached φm. We

tested this idea computationally by examining the equilibrium shape predicted

by the model based on Eq. (4.3) with κp = 40kBT and Cp = 1/25 nm−1, of a

slightly deflated vesicle with the same reduced volume v = 0.93 and an average

protein concentration φ̄. Figure 4.4 shows that the system equilibrates at a

state with a protein-rich domain where H ≈ Cp/2 and where φ ≈ 0.5 is lower

than φm = 0.75. The curvature of the protein-rich domain is controlled by

the competition of membrane and protein elasticity, which in turn depends

on protein coverage. This calculation shows that in this model φm does not

select the curvature of the protein-rich domain. To further confirm this, we

observe that increasing φm = 1 does not change the equilibrium state. In

contrast, increasing Cp by 17.5% and 20% led to more curved protrusions

with a larger number or pearls. Eventually, as protrusions become increasingly

concentrated in protein at high values of Cp, protein density reaches saturation

and hence φm starts playing a role.
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Membrane bending by protein crowding

Up to this point, we have assumed that proteins interact at the mid-plane

of the lipid membrane. However, this approximation clearly breaks down for

membrane proteins with bulky disordered domains [13, 23] or anchoring long

polymers [15]. In this situation, the interaction between proteins leading to

bending can be overwhelmingly dominated by the entropic repulsion of these

disordered domains/polymers, which interact a few nanometers away from the

lipid membrane. Figure 4.5(a) illustrates this mechanism.

Ignoring reconfigurations of the disordered domain/polymer blob [42], we

assume that they interact on a surface Γ+ at a distance d from the surface

representing the lipid membrane, Γ. Thus, the free energy of the proteins can

be written as

Fp =

∫
Γ+

kBT

ap

[
φ+ log

(
φ+
)

+ (φm − φ+) log
(
φm − φ+

)]
dS+

+

∫
Γ+

χ

2ap
(φ+)2 dS+ +

∫
Γ+

µ0

ap
φ+ dS+, (4.7)

where φ+ is the area fraction of proteins on Γ+, ap is the area on this

surface of each bulky protein domain, and φm is the saturation area fraction

of bulky domains on Γ+.

We next refer this energy to the bilayer mid-surface. If the separation

between Γ and Γ+ is small, dH � 1, then the area element of Γ+ is related

to that of Γ according to

dS+ ≈ (1 + dH) dS. (4.8)

Denoting by n+ = φ+/ap the number density of proteins on Γ+, the above

relation shows that we can express the number density on Γ using the relation

n+ ≈ n/(1 + dH) ≈ n(1 − dH). This relation clearly shows how curvature

changes density, as illustrated in Fig. 4.5(a) where positive/negative curvature

increases/decreases n+ at fixed n. Even if the area fraction does not make

strict sense on Γ, we can formally define it on the bilayer mid-plane as φ = apn
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4.5. Two alternative models of membrane-protein interaction

and hence

φ+ ≈ φ

1 + dH
≈ φ(1− dH). (4.9)

Denoting by w the diffusive velocity of proteins relative to the bilayer velocity

at the membrane mid-plane, protein balance of mass is still given on Γ by

Eq. (2.5).

Using Eqs. 4.8 and 4.9, noting that for small dH we have that log(1 + dH) ≈
dH, further assuming that log[φm−φ(1−dH)] ≈ log(φm − φ)+φdH/(φm−φ),

which holds true provided that φ is not too close to φm, and neglecting terms

proportional to (dH)2, we can rewrite Eq. (4.7) as integral over the lipid sur-

face Γ as

Fp =

∫
Γ

kBT

ap
[φ log φ+ (φm − φ) log(φm − φ) + φmdH log(φm − φ)] dS

+

∫
Γ

χ

2ap
φ2(1− dH) dS +

∫
Γ

µ0

ap
φdS.

Combining this chemical energy with a simple Helfrich energy for the bare

bilayer, Fb = κ/2
∫

ΓH
2 dS, we obtain

Fb + Fp =

∫
Γ

κ

2
H[H − 2C(φ)] dS +

∫
Γ

kBT

ap
[φ log φ+ (φm − φ) log(φm − φ)] dS

+

∫
Γ

χ

2ap
φ2 dS +

∫
Γ

µ0

ap
φdS, (4.10)

where we have defined the protein-induced spontaneous curvature by crowd-

ing of off-membrane bulky domains/polymer blobs as

C(φ) =
d

apκ

(χ
2
φ2 − kBTφm log(φm − φ)

)
. (4.11)

The formal similarity between this expression for Fb+Fp and that obtained in

Section 2.2 is remarkable, the only difference being that before, the density-

dependent spontaneous curvature was simply C(φ) = C̄φ and now it is given

by Eq. (4.11). Note that the term proportional to (C̄φ)2 in the bending energy
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4. Numerical experiments

Figure 4.5: (a) Illustration of the model accounting for protein crowding of
off-membrane bulky domains interacting on a surface Γ+ located at a distance d

from the bilayer mid-plane Γ. For a fixed number density n on Γ, the figure shows
how positive/negative curvature leads to increase/decrease of area fraction of

proteins on Γ+. (b) If proteins are confined to a membrane domain (in red), then an
increase in the number of proteins can be accommodated by membrane bending,

which reduces the crowding of bulky domains. (c) Equilibrium configurations
obtained by increasing the protein average area fraction within a region of constant

area.(d) Corresponding jumps in mean curvature as a function of the density
dependent spontaneous curvature C(φ).

of the previous model can be dropped by re-defining χ as χeff , and thus it does

not affect the structure of the free energy.

In-vitro experiments examining membrane bending by protein crowding

[13, 23] confined proteins to membrane domains. Not being able to diffuse

freely, proteins became increasingly confined, leading to severe membrane re-

modeling. See Fig. 4.5(b). Here, we consider this situation, by allowing φ

to differ from zero only over a subdomain Γp ⊂ Γ. Over the interface given

by ∂Γp, we thus have an initial jump in protein area fraction of φ̄, the initial
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4.5. Two alternative models of membrane-protein interaction

average area fraction over the subdomain. Across the interface ∂Γp, forces

and moments need to be continuous. Since the energy depends on curvature,

jumps in the normal are not allowed but finite jumps in curvature are [108, 80].

Using the expression for the bending moment derived in Eq. 2.34 adapted to

the free energy density in Eq. (4.10), continuity of bending moments across the

interface leads to the condition κ(H − C(φ))|i = κH|o, where the subscripts

indicate whether the quantity is evaluated on the inside or on the outside of

the interface. We thus conclude that the jump in mean curvature across the

interface needs to coincide with the protein-induced spontaneous curvature

inside the protein-rich domain, JHK = C(φ). To test these ideas, we con-

sidered various average protein area fractions, φ̄ = {0.1, 0.3, 0.6, 0.9}, within

a domain of diameter 250 nm in a membrane patch of diameter 2.5µm. We

assumed that d = 1 nm and χ/ap = 6 mN/m (net repulsive protein-protein in-

teraction). As shown in Fig. 4.5(c) increasing the number of proteins leads to

increasing curvature, going from very shallow caps to buds, which in all cases

very precisely follow the predicted relation for the jump in mean curvature,

Fig. 4.5(d).
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Chapter 5

Summary

In the first part of this thesis, we have proposed a novel theoretical and com-

putational framework to model and simulate the coupled dynamics of lipid

membranes and intrinsically curved proteins. In particular, we have focused

on the shape transitions assumed by the lipid membranes and on the proteins

distribution. More precisely,

• We have proposed a general continuum theory that analyzes the out-

of-equilibrium configurations that lipid membranes assume when they

interact with intrinsically-curved proteins. We have built the problem

through the Onsager’s formalism, a general framework for modeling

dissipative systems, and the differential geometry of fluid deformable

surfaces. The resulting governing equations exhibit a tight interplay

between geometry and protein transport. We have particularized the

problem to an axisymmetric configuration, which we have implemented

numerically with a direct numerical approach.

• We have exercised the previous model in a selection of numerical sim-

ulations that capture the ability of the model to describe curvature

sensing, generation, stabilization, and tension-induced disassembly of
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protein-rich curved domains. We have proposed three variants of the

model: a common model where spontaneous curvature is proportional

to protein density develops a positive feedback between curvature and

protein density, only stabilized by protein saturation. An alternative

model accounting for the bending elasticity of the protein coat does not

exhibit this feature. In this case, the positive feedback between mem-

brane curvature and protein coverage stops once membrane curvature

reaches the one of proteins. A variant of the model where bending is

induced by crowding of bulky off-membrane protein domains is formally

equivalent to the first model, albeit with a nonlinear relation between

protein-induced spontaneous curvature and protein density.
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Part II

Elongated and curved

proteins
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Chapter 6

Ordering of proteins on a

plane: a density-dependence

phase transition

In this Chapter we present a mean-field theory that describe the isotropic-

to nematic-phase transition of elongated and curved molecules. To build the

theory we adapt a recent work presented by [2] for hard ellipsoidal particles to

the 2D case. The theory is a correction of the Onsager’s classical theory that

was limited to relatively low coverage and large aspect ratio of particles. The

crucial difference with Onsager’s study [109] is the enforcement of a compact

support of the orientational probability distribution beyond a certain spatial

density. In this scenario we consider elongated proteins (such as the ones

containing BAR domains) to be 2D elliptical particles that do not overlap.

We write the free-energy of these particles in terms of number density of

proteins and their angular distribution. Through the solution of a nonlinear

system of algebraic equations we are able to compute the free-energy density

landscape as a function of protein coverage and nematic order. The theory

exhibits the density-dependent discontinuous isotropic-to-nematic transition
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on planar membranes. We also show how different aspect ratios of particles

can affect the ordering transition and the maximum packing limit of a system.

6.1 Mean field approximation

We consider proteins to be 2D elliptical particles such that the length of their

major and minor axes are given by 2a and 2b as shown in Fig. 6.1. The state

of protein i, qi, is given by its position on a surface Γ, ri and orientation over

the unit circle S, given by the angle γi of the long axis of the ellipse relative

to a fixed direction on the surface. We assume that proteins are rigid, non-

overlapping but otherwise non-interacting. Thus, for two particles with states

q1 and q2, their interaction potential U is purely repulsive and can be defined

as

U(q1, q2) =

∞ if particles overlap,

0 otherwise.
(6.1)

The configurational free energy forN identical proteins up to additive constant

is given by

Fe = − 1

β
ln

1

N !

∫
ΩN

e−βΣ1≤i<j≤NUi,j dq1 . . . dqN , (6.2)

where β = 1/kBT and Ω is the domain in phase space for each of the proteins,

accounting for the translational and orientational degrees of freedom. Since

all the proteins are equivalent, invoking a mean field approximation and a

passage to the continuum limit (see [2] for further details), the free energy can

be written as

Fe =
1

β

∫
Ω
ρ(q) ln(ρ(q)) dq − 1

β

∫
Ω
ρ(q) ln[1−W (q)] dq (6.3)

where ρ(q) is the number density of particles with state q and W (q) is the

average fraction of excluded area for a given particle, i.e. the fraction of phase

space inaccessible to a particle due to presence of other particles. This quantity

is postulated to take the form[2]

W (q1) = λ

∫
Ω
ρ(q2)

[
1− e−βU(q1,q2)

]
dq2, (6.4)
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6.1. Mean field approximation

where λ is an adjustable parameter discussed in Fig. 6.1 accounting for the

high-density packing. We note that in the dilute limit, the first term in

Eq. (6.3) is dominant, and thus in this limit λ does not play an important

role. We further express the number density of proteins in terms of positional

and orientational contributions

ρ(q) = φ(r)f(r, γ), (6.5)

so that
∫
S f(r, γ)dγ = 1 and

∫
Γ φ(r)dr = N . Substituting the above relation

into Eq. (6.4), we obtain

W (q1) = λ

∫
S

∫
Γ
φ(r2)f(r2, γ2)

[
1− e−βU(r1,γ1,r2,γ2)

]
dr2 dγ2, (6.6)

where we note that dr2 should be interpreted as the element of area on the

surface Γ. Note that the term between square brackets is zero unless r1 and r2

are within a small distance commensurate to the particle size. Thus, assum-

ing that φ varies slowly in this length-scale, it is reasonable to approximate

φ(r2)f(r2, γ) ≈ φ(r1)f(r1, γ) in the equation above, finding

W (q1) = λφ(r1)

∫
S
f(r1, γ2)Ae(γ1, γ2) dγ2, (6.7)

where Ae(γ1, γ2) is given by

Ae(γ1, γ2) =

∫
Γ

[
1− e−βU(r1,γ1,r2,γ2)

]
dr2. (6.8)

The integrand in this expression is 0 unless the two particles overlap, in which

case it is 1. It thus contains purely geometric information and can be inter-

preted as the excluded area per particle for two particles oriented along the

angles γ1 and γ2. Note that, by translational invariance, it is independent of

r1, and by rotational invariance is should depend on γ1 and γ2 through their

difference.

Introducing Eqs. (6.5,6.7) into Eq. (6.3), we can write the configurational

free energy of the system as

Fe =
1

β

∫
Γ
φ(r) lnφ(r) dr

+
1

β

∫
Γ
φ(r)

{∫
S
f(r, γ) [ln f(r, γ)− ln g(r, γ)] dγ

}
dr,

(6.9)
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Figure 6.1: (a) Contact configuration of two ellipses in the plane. The modulus of
the vector joining the centers, R = |R|, is the so-called distance of closest approach

for two ellipses whose major axis forms an angle ω = γ1 − γ2, where γα is the
orientation of each of the ellipses with respect to a fixed direction. This distance

obviously depends on ω, on the length of the major and minor axes, 2a and 2b, but
also on the location of the contact point, parametrized by the angle ξ. (b)

Illustration of the calculation of the excluded area (shaded in green) for a given ω.
(c) Excluded area per particle for different ellipses of fixed area as a function of
cosω. The excluded area is normalized by the area of an ellipse πab and all the

ellipses with different aspect ratios a/b have the same area. Elongated ellipses need
to align to reduce the excluded area per ellipse. Dots represent the excluded area

computed numerically with high accuracy while the solid line corresponds to a
least-squares fit with the second-order polynomial approximation in Eq. (6.15). (d)

Schematic view for the choice of λ in Eq. (6.4) estimated through the relation
aeff = λAe [2], where aeff is the average area effectively occupied by one particle in

the rectangle and given by aeff = Arect/Nparticles = 4ab and Ae is the excluded area
for a pair of particles with parallel long axis, Ae = 4πab.

where we have defined

g(r, γ) = 1− λφ(r)

∫
S
f(r, γ2)Ae(γ, γ2) dγ2. (6.10)

We note that for circular particles, this free energy reduces to that of a Van

der Waals gas. We also note that, even though Ae is scale dependent (it has

units of area), φ is also scale dependent in such a way that g is dimensionless

and scale-independent.

6.2 Excluded area for two ellipses

To evaluate the free-energy in Eq. (6.9), we need to evaluate Ae(γ1, γ2). For

this, we note that the excluded area between two ellipses can be computed in
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6.2. Excluded area for two ellipses

terms of the distance of closest approach R, see Fig. 6.1(a,b), as[110]

Ae(γ1, γ2) =
1

2

∫
S
R2(ω, ξ, a, b) dξ. (6.11)

The calculation of R(ω, ξ, a, b) is algebraically complex[111]. It can be shown

that R solves the equation

0 = 4(f2
1 − 3f2)(f2

2 − 3f1)− (9− f1f2)2, (6.12)

where

fα = 1 +G−
(
R

a
sin θα

)2

−
(
R

b
cos θα

)2

, for α = 1, 2, (6.13)

with θ1 = ξ, θ2 = ξ − ω, and

G = 2 +

(
a

b
− b

a

)2

sin2 ω. (6.14)

The above equations allow us to computeAe(γ1, γ2) numerically, see Fig. 6.1(c),

which shows how the dependence of the excluded area on particle alignment

depends on the aspect ratio.

The average fraction of excluded area for a given particle W (q) is only

relevant at high packing but we are estimating it using the excluded area

between two particles, Ae. To reconcile these two quantities through the

parameter λ, we follow [2]. In a dense packing limit, such as in Fig. 6.1(d),

W (q) should approach 1, which we can express as the number density of

particles φ = Nparticles/Atot times an effective area per particle aeff in such

a dense arrangement. We thus obtain aeff = 4ab. Examining Eq. (6.7), in

this high-packing limit 1 ≈ λ(Nparticles/Atot)Ae, where Ae is the excluded area

between two ellipsoidal particles with parallel long axis, i.e. Ae = 4πab. We

thus conclude that λ = 1/π ≈ 1/3.

Since Ae(γ1, γ2) depends on the orientations of the particles through ω =

γ1 − γ2, it can be approximated by an expansion of Legendre polynomials

depending on cosω as

Ae(γ1, γ2) = B0 +B2P2(cosω) + · · · (6.15)
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where B0 and B2 are constants depending on a and b, and P2(x) = x2 −
1/2. Note that by symmetry arguments, only even polynomials appear in the

expansion. The expansion can be extended to higher order but the second-

order approximation already provides a good approximation, see Fig. 6.1(c).

Interestingly, the second order expansion allows us to express Ae(γ1, γ2) in

terms of the symmetric and traceless tensor

σ(γ) =
1

2
[2`(γ)⊗ `(γ)− I] , (6.16)

where I is the surface identity and `(γ) is the local orientation of proteins. The

latter can be expressed in an arbitrary orthonormal frame of the tangent plane

to the surface {λ,µ} as ` = cos γ λ+sin γ µ, see Fig. 6.1. This tensor describes

the local (or microscopic) second moment of the orientation of proteins, and

as shown later, it leads to a theory where orientational order appears through

the classical nematic tensor Q.

By noting that `(γ1) · `(γ2) = cosω, a direct calculation shows from

Eq. (6.15) that

λAe(γ1, γ2) = c− dσ(γ1) : σ(γ2), (6.17)

where, c = λB0 and d = −λB2 depend on a and b and can be computed by

fitting a second order polynomial in cos γ to Ae(γ1, γ2).

6.3 Optimizing the orientational distribution

Given a density field φ, we can find the optimal angular distribution at each

point in space r by minimizing the free energy in Eq. (6.9) with respect to

f subject to the normalization constraint. To minimize the free energy and

account for this constraint, we introduce the Lagrangian functional

L[f, µ] =

∫
S
f (ln f − ln g) dγ + µ

(∫
S
f dγ − 1

)
, (6.18)

where µ is a Lagrange multiplier field. Since we perform this minimization

point-wise, we drop for notational simplicity the dependence on r of f , g, µ,

φ and all quantities depending on these fields.
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Recalling Eq. (6.17), we have

g(γ) = 1− φ(c− dσ(γ) : Q), (6.19)

where we have introduced the nematic tensor describing the average particle

orientation

Q =

∫
S
f(γ)σ(γ) dγ = 〈σ(γ)〉 . (6.20)

Note that Q inherits from σ the properties of being symmetric and traceless.

We further introduce the auxiliary tensor

ψ = dφ

∫
S

f(γ)

g(γ)
σ(γ) dγ, (6.21)

which is also symmetric and traceless. The stationarity condition can then be

written as

0 = δfL =

∫
S

(ln f − ln g −ψ : σ + µ) δfdγ, (6.22)

for all admissible variation δf , and thus the term between parentheses must

vanish. It is clear that when g → 0, then necessarily f → 0. We can thus

define the support of f(γ) as S+ = {γ ∈ (−π, π) such that g(γ) > 0}. Deter-

mining µ though the normalization of f , we find an expression for the angular

probability density function

f(γ) =


g(γ)eσ(γ):ψ∫

S+ g(γ′)eσ(γ′):ψ dγ′
if γ ∈ S+

0 otherwise.

(6.23)

We note that this expression is far from being explicit, since g depends on

Q, which in turn depends on f , and ψ also depends on f . However, as

developed below, it allows us to evaluate the free energy. We also note that the

probability density function f vanishes in a region of the orientational space

as the areal number density of proteins φ increases, and thus g in Eq. (6.19)

becomes negative. As discussed in [2, 112], this is critical to quantitatively

predict density based ordering for moderately elongated particles. Finally,
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due to the symmetry of particles with respect to to rotations by π, it follows

that f(γ) = f(γ + π).

Since Q is symmetric and traceless, it has two real eigenvalues of opposite

sign and it is diagonal in an orthonormal eigenframe. We let {λ,µ} be this

eigenframe. Thus, the nematic tensor can be expressed as

Q =
S

2
(λ⊗ λ− µ⊗ µ) , (6.24)

where we call S the order parameter, which contracting the above relation

and Eq. (6.20) with λ⊗ λ can be expressed as

S =
〈

2 (` · λ)2 − 1
〉

= 2 〈P2(cos γ)〉 , (6.25)

where γ is the angle between the nematic direction λ and the direction of a

microscopic particle, `. Combining Eqs. (6.16) and (6.24), we also find that

σ : Q = SP2(cos γ), and thus

g(γ) = 1− φ[c− dSP2(cos γ)]. (6.26)

A traceless symmetric tensor such as ψ can be expressed in the eigenframe

of Q as

ψ =
ψ

2
(λ⊗ λ− µ⊗ µ) +

ψ̄

2
(λ⊗ µ+ µ⊗ λ). (6.27)

We show next that in fact, {λ,µ} is also an eigenfame of ψ, and thus ψ̄ = 0.

With the above representation of ψ, we find that

σ : ψ = ψP2(cos γ) + ψ̄ sin γ cos γ. (6.28)

The condition that {λ,µ} is an eigenframe of Q implies that 0 = λ ·Q ·µ and

hence

0 =

∫
S+

f(γ)λ · σ(γ) · µ dγ =

∫
S+

f(γ) sin γ cos γ dγ. (6.29)

Noting that S+ is symmetric about γ = 0 since g(γ) is an even function,

Eq. (6.26), and using the symmetry f(γ) = f(γ + π), the above relation
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6.4. Free-energy landscapes on planar surfaces

implies that

0 =

∫
S+∩(−π/2,π/2)

g(γ)eσ(γ):ψ sin γ cos γ dγ

=

∫
S+∩(−π/2,π/2)

g(γ) sin γ cos γ eψP2(cos γ)eψ̄ sin γ cos γ dγ

=

∫
S+∩(0,π/2)

g(γ) sin γ cos γ eψP2(cos γ)
(
eψ̄ sin γ cos γ − e−ψ̄ sin γ cos γ

)
dγ,

where in the last step we have used the fact that g(γ) sin γ cos γ eψP2(cos γ)

is an odd function of γ. Since in the integration domain S+ ∩ (0, π/2) the

function g(γ), sin γ and cos γ are strictly positive, it follows that the integral

above is strictly positive if ψ̄ > 0 and strictly negative if ψ̄ < 0, and we

thus conclude that ψ̄ = 0, that Q and ψ have the same eigenframe, and that

σ : ψ = ψP2(cos γ).

Combining this last expression with Eqs. (6.23,6.25,6.26), we find that

S = 2

∫
S+ P2(cos γ) {1− φ [c− dSP2(cos γ)]} eψP2(cos γ)dγ∫

S+ {1− φ [c− dSP2(cos γ)]} eψP2(cos γ)dγ
. (6.30)

Importantly, the above relation provides an implicit relation for the auxiliary

variable ψ(φ, S) given the particle number density φ and the order parameter

S. With these expressions, the configurational free-energy in Eq. (6.9) can be

rewritten as

Fe[φ, S] =
1

β

∫
Γ
φ

{
lnφ+

Sψ

2

− ln

∫
S+

{1− φ [c− dSP2(cos γ)]} eψP2(cos γ)dγ

}
dr,

(6.31)

in terms of the fields φ(r) and S(r). We note that, given the lack of a preferred

orientation, this effective free-energy depends on the nematic tensor Q only

through S, and whenever S 6= 0, the nematic direction is arbitrary.

6.4 Free-energy landscapes on planar surfaces

Figure 6.2 shows the landscape of the energy density, the integrand in Eq. (6.31),

as a function of density and order parameter. The figure shows that, as area
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fraction becomes large, the energy grows rapidly irrespective of S and blows

up at finite density, defining a region of inaccessible states where g(γ), see

Eq. (6.26), becomes negative. Given the density φ, we can minimize the en-

ergy profile with respect to S to determine the degree of order in equilibrium

as a function of φ, defining the equilibrium path shown by red dots in the fig-

ure. For low area-fraction, proteins maximize their entropy by being randomly

oriented and hence S = 0 is the only solution branch. As density increases

beyond a threshold, we observe the emergence of another stable branch char-

acterized by high protein order. There is a range of densities where both the

disordered and the ordered branches coexist. Density-based ordering for such

elliptical molecules thus proceeds through a first order phase transition. The

procedure described here, which adapts that in [2] to 2D systems with ellipti-

cal particles, predicts how the energy landscape depends on the particle aspect

ratio. As shown in Fig. 6.3, increasing it decreases the size of the region of

accessible states, decreases the threshold density of the phase transition, and

increases the maximum packing limit.
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Figure 6.2: Free-energy density landscape as a function of protein coverage,
expressed as the area fraction apφ with ap the area of a protein, and of nematic

order S. We consider ellipses with aspect ratio a/b = 3 on a flat membrane. Dots
represent minima (red) and maxima (white) of the energy profile for fixed φ. The

diagrams on top illustrate states i, ii and iii.
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Chapter 7

Protein self-organization

based on curved surfaces

Here, we extend the mean-field theory for the ordering of elongated and curved

particles, presented in Chapter 6, to include the elastic curvature energy of

proteins, that we consider to depend on their orientation and on the second

fundamental form of the underlying surface. In particular, we examine how

differently bent membranes can affect the isotropic-to nematic transition and

we predict the ordering of molecules on spheres and cylinders of various radii.

To complete the study we also look at the coexistence of phases (isotropic or

nematic) in chemical equilibrium on planar membranes and on curved tem-

plates with negative Gaussian curvature.

7.1 Accounting for the bending energy and

membrane curvatue

Having described the phase transition of ellipses on flat surfaces, we now

consider curved proteins adhered to a curved lipid membrane approximated

as a surface. We assume that the configurational free energy derived in the
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7. Protein self-organization based on curved surfaces

previous section is not significantly affected by curvature. This is a reasonable

approximation since Gaussian curvature, locally affecting the local metric of

the surface, would need to be very large, in the order of 1/(ab), to significantly

affect our calculation of excluded area.

Elongated membrane proteins can couple to curvature through various

mechanisms acting at different planes. Shallowly inserting into the membrane,

amphipathic domains can induce curvature by increasing monolayer packing

or through a wedge effect. The charged and curved surface of a protein with

high affinity with the membrane can create a scaffolding effect on the surface of

the bilayer. Finally, attached polymers or partially disordered protein domains

can induce a crowding effect at a distance off the membrane surface [113, 23,

15]. Since this latter mechanism strongly depends on density but should not

depend much on protein orientation, we ignore it here and refer to other

works where it is theoretically modeled [114, 42, 115, 15]. Focusing on the
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Figure 7.1: (a) Illustration of the eigenframe {λ,µ} of the nematic tensor Q,
where λ is the nematic direction, and of the eigenframe {v1,v2} of the second
fundamental form of the surface k, where these vectors determine directions of

maximum and minimum curvature of the surface. We also illustrate a microscopic
direction `, the angle γ between the nematic direction λ and `, and the angle θ

between the two eigenframes. (b) An adsorbed protein along vector ` samples the
normal curvature of the surface in this direction.

scaffolding and wedge effects, which should depend on protein orientation, we

can compute the curvature of the membrane along the long axis of the protein

given by vector `, Fig. 7.1(b), as k` = `·k·` where k is the second fundamental
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7.1. Accounting for the bending energy and membrane curvatue

form of the surface characterizing its local curvature. Similarly, ks = s · k · s
is the curvature of the membrane along the short protein axis given by s.

With these directional curvatures at hand and assuming that the protein

curvatures along and perpendicular to the long axis conform to the curvature

of the underlying surface in these directions, we consider a natural form of the

elastic bending energy of a protein as [116, 60, 37]

U b =
κ‖ap

2
(k` − C̄‖)2 +

κ⊥ap
2

(ks − C̄⊥)2, (7.1)

where κ‖ and κ⊥ are the bending rigidities (with units of energy) of a protein

along its long and short axes, and where C̄‖ and C̄⊥ are the corresponding

preferred curvatures.

To obtain more explicit expressions of k` and ks, we note that both the

nematic tensor Q, see Eq. (6.20), and the second fundamental form of the

surface are symmetric tensors, and hence they possess respective tangential

orthonormal eigenframes, {λ,µ} for Q and one given by the principal curva-

ture directions {v1,v2} for k, Fig. 7.1(a). The principal curvatures of the sur-

face are the corresponding eigenvalues k · vi = kivi, i = 1, 2. In general, these

two eigenframes are different and are rotated by an angle θ, Fig. 7.1(a), which

can be assumed to lie in the interval θ ∈ (−π/2, π/2] since eigenvectors can be

flipped. We can express one frame in terms of the other as λ = cos θv1−sin θv2

and µ = sin θv1 + cos θv2. From the definitions of angles γ and θ, the an-

gle between the principal curvature direction v1 and a microscopic particle

direction ` is γ − θ, and hence

k` = k1 cos2(γ − θ) + k2 sin2(γ − θ), (7.2)

ks = k1 sin2(γ − θ) + k2 cos2(γ − θ). (7.3)

These expressions thus show that the elastic bending energy of a protein

Eq. (7.1) depends on the principal curvatures of the surface at the location

of the particle, k1 and k2, and on the angle between the particle axis and the

direction of maximum curvature, γ − θ.
Combining this bending energy, or in principle any other protein bending

energy depending on particle orientation, with the configurational free energy
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7. Protein self-organization based on curved surfaces

discussed in Section 1 for N proteins, Eq. (6.1), we obtain the free energy

F∗ = − 1

β
ln

1

N !

∫
ΩN

e−β(Σ1≤i<j≤NUi,j+Σ1≤i≤NU
b
i ) dq1 . . . dqN . (7.4)

As shown in [117, 2], the above free energy can be approximated by the mean

field energy

F∗ ≈ F = − 1

β
ln

1

N !

〈∫
Ω
e−β

∑
2≤j≤N U1,je−βU

b
1 dq1

〉N
(7.5)

= − 1

β
ln

1

N !

(∫
Ω

〈
e−β

∑
2≤j≤N U1,je−βU

b
1

〉
dq1

)N
, (7.6)

where in the second line we have changed the order of integration and where

the ensemble average

〈f〉 =

∫
ΩN−1

f p(q2, . . . , qN ) dq2 . . . dqN , (7.7)

is with respect to the probability distribution of N − 1 particles given by

p(q2, . . . , qN ) =
e−β(Σ2≤i<j≤NUi,j+Σ2≤i≤NU

b
i )∫

ΩN−1 e
−β(Σ2≤i<j≤NUi,j+Σ2≤i≤NU

b
i ) dq2 . . . dqN

. (7.8)

The mean free approximation is an upper bound to the exact free energy.

Unlike the hard-core repulsion energy, which depends on the configuration

of other proteins, the bending energy of a protein molecule does not depend

on the configuration of other proteins. We can thus write

F = − 1

β
ln

1

N !

(∫
Ω

〈
e−β

∑
2≤j≤N U1,j

〉
e−βU

b
1 dq1

)N
= − 1

β
ln

1

N !

(∫
Ω

[1−W (q1)]e−βU
b
1 dq1

)N (7.9)

or equivalently

F = − 1

β
ln

1

N !

(∫
Ω

[1−W (q)]e−βU
b(q) dq

)N
(7.10)
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7.1. Accounting for the bending energy and membrane curvatue

with W (q) as defined before in Eq. (6.4). Following [2], we discretize the phase

space in subdomains Ω = ∪iΩi, each with Ni particles, and obtain free energy

within this domain Fi after using Stirling’s approximation as

Fi = − 1

β
ln

(
1

Ni

∫
Ωi

[1−W (qi)]e
−βUb(qi) dqi

)Ni

. (7.11)

Thus, the total free energy is given by

F =
∑
i

Fi = − 1

β
ln
∏
i

(
1

Ni

∫
Ωi

[1−W (qi)]e
−βUb(qi) dqi

)Ni

. (7.12)

Assuming Ni ≈ ρ(qi)∆qi and passing onto the continuum limit, we obtain

F =
1

β

∫
Ω
ρ(q) ln ρ(q) dq − 1

β

∫
Ω
ρ(q) ln[1−W (q)] dq

+

∫
Ω
ρ(q)U b(q) dq.

(7.13)

Further, separating the particle density ρ into spatial and orientational com-

ponents as mentioned in Eq. (6.5), we obtain the expression for free energy

F[φ, f ] =
1

β

∫
Γ
φ lnφdr +

1

β

∫
Γ
φ

{∫
S
f [ln f − ln g] dγ

}
dr

+

∫
Γ
φ

∫
S
fU b dγ dr.

(7.14)

As before, we find the optimal particle angle distribution f by minimizing the

free energy, resulting in an effective energy that will depend on S as before,

but now also on θ and hence on the full nematic tensor Q. Analogously to

before, we introduce the Lagangian

L =

∫
S
f
[
ln f − ln g + U b

]
dγ + µ

(∫
S
f dγ − 1

)
. (7.15)

Minimization with respect to f requires that

0 = δfL =

∫
S

[
ln f − ln g −ψ : σ + U b + µ

]
δfdγ, (7.16)
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where the auxiliary symmetric and traceless tensor ψ was defined in Eq. (6.21),

and hence, with the same argument leading to Eq. (6.23), we find that

f(γ) =
g(γ) eσ(γ):ψ e−U

b∫
S+ g(γ′) eσ(γ′):ψ e−Ub dγ′

(7.17)

if γ ∈ S+ and 0 otherwise.

As before, we express ψ in the eigenframe of Q as

ψ =
ψ

2
(λ⊗ λ− µ⊗ µ) +

ψ̄

2
(λ⊗ µ+ µ⊗ λ). (7.18)

However, we cannot make the same argument as before to conclude that ψ̄ = 0

because, unless θ = 0 or θ = π/2, U b is not an even function of γ, see

Eqs. (7.2,7.1). Recalling Eq. (6.28), we can write the angular probability

distribution

f(γ) =
[1− φ (c− dSP2)] eψP2 eψ̄ sin γ cos γ e−U

b∫
S+ [1− φ (c− dSP2)] eψP2 eψ̄ sin γ′ cos γ′ e−Ub dγ′

, (7.19)

where P2 stands for P2(cos γ). In Section 1, we used Eq. (6.25) to determine

ψ. Now, however, we need two equations since we also need to determine ψ̄.

For this, we recall that 0 = λ ·Q ·µ leading to Eq. (6.29). Thus, we have two

conditions

0 =2

∫
S+

P2 [1− φ (c− dSP2)] eψP2 eψ̄ sin γ cos γ e−U
b
dγ

− S
∫
S+

[1− φ (c− dSP2)] eψP2 eψ̄ sin γ cos γ e−U
b
dγ, (7.20)

0 =

∫
S+

sin γ cos γ [1− φ (c− dSP2)] eψP2 eψ̄ sin γ cos γ e−U
b
dγ, (7.21)

the second of which was trivially satisfied previously as the integrand is an

odd function of γ for ψ̄ = 0 and U b = 0. Now, however, these two relations

provide a system of nonlinear equations to solve for ψ and ψ̄.

Examining the above equations, it is clear that f(γ), ψ and ψ̄ depend

on φ and S, but also on θ, k1 and k2 through U b. Plugging Eq. (7.19) into
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Eq. (7.14), we obtain a computable expression of the free energy accounting

for the curvature energy of the proteins

F[φ, S, θ, k1, k2] =
1

β

∫
Γ
φ

{
lnφ+

Sψ

2
(7.22)

− ln

∫
S+

{1− φ [c− dSP2(cos γ)]} eψP2(cos γ) eψ̄ sin γ cos γ e−U
b
dγ

}
dr.

It is interesting to note that, as mentioned earlier, in the special case that

the nematic direction λ is aligned with one of the principal directions, θ = 0

or θ = π/2, then ψ̄ = 0, U b becomes an even function of γ, and hence f(γ)

is symmetric with respect to the nematic direction. For a general nematic

orientation relative to the principal curvatures, however, f is not symmetric

about the nematic direction.

We also note that, following a standard procedure, the chemical potential

of proteins can be obtain by taking the functional derivative of Eq. (7.22)

with respect to φ, and that subsequently a grand canonical thermodynamic

potential can be defined where the chemical potential replaces φ as an inde-

pendent variable. However, since ψ and ψ̄ implicitly depend on φ through

Eqs. (7.20,7.21), this calculation is not straightforward.

7.2 Optimizing θ

The free energy in Eq. (7.22) can then be minimized with respect to θ to yield

an effective energy

F̂[φ, S, k1, k2] = min
θ∈(−π/2,π/2)

F[φ, S, θ, k1, k2]. (7.23)

This process identifies the energetically optimal nematic orientation relative

to the curvature of the surface. To do that, we make L stationary with respect

to θ to find

0 =

∫
S+

g(γ)eσ:ψe−U
b ∂U b

∂θ
dγ. (7.24)

71



7. Protein self-organization based on curved surfaces

a b

c

0

0.2

0.4

0.6

0.8

1
Cylinder

O
rd

er
 (

S
)

0

0.2

0.4

0.6

0.8

1
Cylinder

O
rd

er
 (

S
)

0

0.2

0.4

0.6

0.8

1
Sphere

O
rd

er
 (

S
)

0.3 0.450.150 0.6 0.75
Protein coverage ( )

0.3 0.450.150 0.6 0.75
Protein coverage ( )

0.3 0.450.150 0.6 0.75
Protein coverage ( )

 
2

 
3

 
1

 
0

E
ne

rg
y 

de
ns

ity
 (

)

d

O
rd

er
 (

S
)

0.3 0.450.150 0.6 0.75
Protein coverage ( )

 
0

 
2

 
3

 
1

 
-1

0

0.2

0.4

0.6

0.8

1

E
ne

rg
y 

de
ns

ity
 (

)

Cylinder

Figure 7.2: (a)-(d) Energy density contours as a function of density and order on
spherical and cylindrical surfaces of different radii (R = 150 nm for the sphere,
R = 150, 15 and 10 nm for cylinders), and for a protein preferred curvature of

C̄ = 1/15 nm−1. Red dots denote stable states, which minimize the free energy for a
given protein coverage.

Expanding the last term in the integral, we find

0 =

∫
S+

g(γ)eσ:ψe−U
b [
k1 cos2(γ − θ) + k2 sin2(γ − θ)− C̄

]
(7.25)

(k1 − k2) cos(γ − θ) sin(γ − θ) dγ.

This equation, together with Eqs. (7.20,7.21), provides a system of three non-

linear equations for three unknowns, ψ, ψ̄ and θ. For a sphere, k1 = k2,

this equation is an identity showing that any direction is equally possible.

Suppose that ψ̄ = 0 and θ = 0. In this case, U b is an even function of γ,

Eqs. (7.21,7.25) are identically satisfied, and Eq. (7.20) provides an equation
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Figure 7.3: (a,c) Angular probability distribution f(γ) plotted against γ − θ, i.e.
against the angle of a particle relative to the direction of maximum curvature of the
cylinder v1, Fig. 7.1. The inset pictorially illustrates the state of the system, where

the double-ended arrow indicates the nematic direction. (b,d) Protein net
orientation expressed as the angle θ between the nematic direction and v1 as a

function of density and order for the cylindrical surfaces in Fig. 7.2(b) and (d). In
(b), θ = 0 everywhere.

for ψ. Thus, there is always a solution with ψ̄ = 0 and θ = 0 but in general

there may be others and their relative stability must be examined to select

the ground state.

7.3 Free energy landscapes on curved surfaces

In all the calculations, we choose κ⊥ = 0 and, unless otherwise stated, κ‖ =

27 kBT , in the order of recent estimates for I-BAR proteins using an assay

based on unilamellar vesicles connected to membrane nanotubes and thermo-
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Figure 7.4: (a)-(d) Energy density contours as a function of density and order on
cylindrical surfaces of different radii (R = 150, 75 and 15 nm, with C̄ = 15 nm−1 )

considering different bending stiffnesses for the protein coat (κ‖ = 27 kBT , and half
and twice of this value). Red dots denote stable states, which minimize the free

energy for a given protein coverage.

dynamical models for protein-membrane interactions [118, 119] and compara-

ble to previously used parameters in other theoretical models [120]. We also

consider an aspect ratio of a/b = 3. The longitudinal preferred curvature

C̄‖ = C̄ and the curvature of the surface is varied and indicated in each figure.

Energy density landscapes exhibiting the isotropic-to-nematic transition

for proteins on spherical and cylindrical surfaces are shown in Fig. 7.2 (a-

d) using the expression given by Eq. (7.22) and minimizing the energy with

respect to θ (the angle between the net orientation of proteins and the max-
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7.3. Free energy landscapes on curved surfaces
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Figure 7.5: (a) Energy landscapes in the (θ − S) plane for high protein coverage
(φap = 0.66) and cylinders of decreasing radius. (b) Energy landscape in the (θ− S)

plane for a thin cylinder (C̄R = 2/3) and varying coverage.

imum curvature direction) as described in the previous section. We depict

stable equilibrium states minimizing the free energy for a given protein cov-

erage with respect to S and θ with red dots. For a sphere, Fig. 7.2(a), the

isotropic curvature does not bias alignment along any specific direction and

hence the phase transition is solely driven by entropic interactions. In fact,
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7. Protein self-organization based on curved surfaces

examining Eq. (7.14), it is clear that since U b does not depend on orientation,

the last bending term in the free energy density is simply linear in φ and

hence does not alter the path of minimizers marked by red dots. As a result,

the system shows the same discontinuous transition upon crowding as in the

planar case.

On anisotropically curved surfaces such as cylinders with radiusR, proteins

are biased to orient along specific directions to favourably adapt their curva-

ture to that of the underlying surface, Fig. 7.2(b-d). This creates a competition

between a curvature-dependent bias and the entropic part of the free energy,

which leads to partial order (finite S) even in the dilute limit. Furthermore,

this curvature bias changes the character of the isotropic-to-nematic transi-

tion, which now becomes continuous. Not surprisingly, this effect is stronger

on thinner tubes, Figs. 7.2(b-c) and 7.4, and for stiffer proteins, Fig. 7.4.

Our model not only provides the free energy landscape as a function of

φ and S but also the nematic orientation relative to the direction of maxi-

mum curvature of the cylinder v1 (Fig. 7.1) given by θ and represented in

Fig. 7.3(b,d), and the distribution of protein orientations f(γ), which we rep-

resent relative to v1, i.e. against γ − θ, Fig. 7.3(a,c). Figure 7.3(b) illustrates

the observation that for C̄R ≥ 1 the optimal nematic orientation is always that

of maximum curvature of the cylinder, θ = 0. Figure 7.3(a) shows the angular

distribution for two values of protein coverage marked in (b). Both distri-

butions are unimodal and symmetric about the direction given by v1 but as

coverage increases, order increases as well and the distribution becomes more

localized and compactly supported.

For cylinders with higher curvature than that of proteins, C̄R < 1, the

situation is more complex since now proteins aligned with v1 will be bent

beyond their spontaneous curvature whereas proteins forming an angle α with

v1 given by cos2 α = C̄R, see Eq. 7.2, will store no elastic energy. The

isotropic-to-nematic transition becomes discontinuous again, Fig. 7.2(d), and

the nematic direction is along v1 for low S but θ becomes different from zero for

larger order, Fig. 7.3(d). Interestingly, at low densities when θ = 0, the angular

distribution is bimodal, broad, and symmetric about v1, indicating a state
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7.4. Coexistence of isotropic and nematic phases

where proteins are disordered but preferentially adopt orientations forming

a finite angle with the direction of maximum curvature, which is too curved

compared to the protein curvature. This detailed information is lost if the

nematic state is described in terms of a moment of f such as the nematic tensor

Q or equivalently S and θ alone, rather than in terms of the full distribution.

For high density, we find that the system adopts a non-symmetric, very narrow

and compactly supported distribution (or a symmetry-related distribution),

indicative of a nematic state with nematic direction forming a finite angle

with v1, consistent with the fact that F-BAR proteins at high coverages adopt

increasingly helical arrangements on increasingly thinner tubes [28].

The symmetry-breaking transition for thin tubes at high coverages can be

nicely examined through free energy maps at given coverage and radius as a

function of θ (the angle between nematic direction and v1) and S. On the one

hand, we can observe how at fixed high-coverage and as the cylinder radius

decreases, a single minimum given by θ = 0 splits into two minima given by

θ = ±θ0 when C̄R < 1, Fig. 7.5(i). Similarly, given a high-curvature cylin-

der, as coverage increases the optimal nematic direction switches from being

aligned with v1 to adopting either one of two symmetry-related orientations,

Fig. 7.5(j).

We finally note that the model proposed here can be used to quantify

the free energy of curved elongated particles on other surfaces, such as those

of negative curvature.Figure 7.8 shows the isotropic-to-nematic transition on

surfaces with locally zero mean curvature, i.e. surface with principal curva-

tures equal in magnitude and opposite in sign. The results are similar to

those on cylinders, albeit with a larger bias towards nematic states, compare

Fig. 7.2(b,c) and Fig. 7.8(a-c).

7.4 Coexistence of isotropic and nematic phases

Coarse-grained simulations suggest the possibility of coexistence between isotropic

and nematic phases [37]. To examine such coexistence using our theory, we

first consider the situation of a flat membrane. Figure 7.6(a) shows the land-
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7. Protein self-organization based on curved surfaces
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Figure 7.6: (a) Lowest energy density as a function of protein coverage for ellipses
on a flat membrane, i.e. the energy along the minimum-energy path marked with
red dots in Fig. 6.2. The color code represents order, highlighting the parts of the
energy landscape corresponding to isotropic and to nematic phases. The slopes of

the tangent lines represent the rate of change of energy density with respect to
protein coverage, i.e. the chemical potential. The red line is doubly tangent (a

Maxwell line) to the isotropic and nematic branches and represents a situation of
coexistence in which protein number is fixed, see zoom in (b). If proteins can be
exchanged with a bulk solution where they have a given chemical potential, then
coexistence of isotropic and nematic phases does not require the double tangency

constraint (c).

scape of minimum free energy as a function of protein coverage, which as

discussed earlier and shown here with the color representing order, has an

isotropic and a nematic branch. The slope of the energy density as a func-

tion of protein coverage is precisely the chemical potential of proteins in a

78



7.4. Coexistence of isotropic and nematic phases

given state. For coexistence of isotropic and nematic phases in equilibrium,

the chemical potentials of the two phases should be equal. If the number of

proteins populating these two phases is fixed with average density φ̄, then co-

existence additionally requires the double tangency condition, see Fig. 7.6(a,b)

and the line with slope µcoex following the Maxwell construction. Thus, under

these conditions, coexistence is possible only when φiso < φ̄ < φnem. When the

membrane can exchange proteins with a bulk solution with chemical potential

µbulk, the double tangency condition is no longer required and coexistence

requires simply that µbulk = µiso = µnem, see Fig. 7.6(c). This slightly relaxes

the possibility of coexistence but the figure shows that it can only occur in a

rather narrow range of densities.
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Figure 7.7: Energy landscape for a sphere with radius Rs = 10/C̄ and a tube
with radius Rt = 2/C̄. Three different isotropic-nematic states of coexistence in an
ensemble in which proteins can be exchanged with a bulk solution are highlighted

by pairs of tangents with the same slope.

Since as discussed earlier the energy landscape on spheres is that of a

planar surface with a tilt proportional to φ, the conditions for coexistence

are similar. On tubes, however, there exists essentially no isotropic phase,

and as illustrated in Fig. 7.7 the energy is convex in φ, leaving no room for

coexistence. Yet, as suggested by experiments where thin tubes are pulled

off giant vesicles and exposed to a solution with BAR proteins [20], it is
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7. Protein self-organization based on curved surfaces

reasonable to expect isotropic-nematic coexistence in cylinder-sphere systems

in equilibrium. Indeed, for moderate coverages, spheres adopt an isotropic

state whereas thin-enough tubes are in a significantly nematic state. It is thus

possible to find infinitely many equilibrium states of coexistence over a broad

range of bulk chemical potentials, Fig. 7.7, in all of which area coverage and

order are higher on the tube.
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Figure 7.8: (a)-(c) Energy density contours as a function of density and order for
surfaces of negative Gaussian curvature and zero mean curvature, with principal
curvatures of magnitude R = 1500, 150 and 15 nm, with C̄ = 15 nm. Red dots

denote stable states, which minimize the free energy for a given protein coverage (d)
Free energy profiles for selected radii in a catenoid along the equilibrium paths, such
that C̄R1 = −C̄R2 = 1, 2, 3.3, 5, 10, 20, 50. The chemical potential of proteins is the
slope of these curves. The black dots are the tangent points to the same chemical

potential µ = 0.55 kBT/ap and they are in chemical equilibrium. (e) Protein
coverage in chemical equilibrium for selected radii in a catenoid, same of (d),

exposed to diffent chemical potentials, µap/(kBT ) = −1, 0.55, 1.5 and 4.

We finally examine the arrangement of proteins at fixed chemical potential

on a surface of non-uniform Gaussian curvature and zero mean curvature, a
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7.4. Coexistence of isotropic and nematic phases

catenoid. Fig. 7.8(d) graphically depicts a catenoid with curved proteins in

the inside of the surface, which can model a membrane neck, and shows the

energy profile, color coded with nematic order, at different locations on the

catenoid with different curvature. The points in each curve with a common

tangent (black dots) allow us to identify the equilibrium coverage and nematic

order at each location on the catenoid at fixed chemical potential. As shown

in Fig. 7.8(e)(f), the thinner neck exhibits an enrichment in coverage and

increased nematic order, so that at the thinnest section of the neck protein

coverage is close to saturation and alignment (along the symmetry axis of the

catenoid) is above 0.8. We also note that the contrast between the neck region

and the rest of the surface is larger when the fixed protein chemical potential

is lower. Interestingly, the protein configurations at the neck predicted by

our model significantly differ from those resulting from a phenomenological

continuum model in [67]. We should also note that the prediction of the

coverage and nematic fields presented here is purely local and does not penalize

in any way gradients in these fields [1].
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Chapter 8

Dynamic of BAR proteins

and curved membranes

Due to the curved shape and membrane binding of Bin/Amphiphysin/Rvs

(BAR) domains, proteins containing such domains have the interesting ability

of reshaping membranes. Furthermore, as we discussed in Chapter 7, because

of their elongated shape they can align along a preferred direction, adopt-

ing a nematic organization that impinges anisotropic curvature on the mem-

brane. For instance, incubation of small vesicles with a high concentration

of BAR proteins leads to tubules covered by a dense protein scaffold where

the elongated molecules are nematically arranged [121, 122]. In a different

system, GUVs with sufficiently high bound protein density rapidly expel thin

protein-rich tubes in a tension dependent manner [123]. On thin membrane

tubes pulled out of giant unilamellar vesicles (GUVs), BAR proteins can also

change the radius of the tube and the force required to hold it [124]. Be-

yond these well-known cases, in many physiological situations BAR proteins

interact with pre-existing curved membrane templates. Such templates can

include for instance invaginations caused by nanoscale topographical features

on the cell substrate [125], mechanical folds [126, 127], or endocytic structures

83



8. Dynamic of BAR proteins and curved membranes

[128, 129]. Due to their affinity for curved membranes, BAR proteins are thus

bound to reshape such templates in ways that could be important in processes

ranging from endocytosis to the sensing of topographical or mechanical cues

in the cell environment. However, the dynamics of membrane reshaping by

BAR proteins, and how it depends on initial membrane shape, remains elusive.

To answer this question, we developed a theoretical and computational

modeling, combined with a novel experimental system, to study the reshaping

of cellular-like membrane structures of a broad range of shapes and sizes.

The experimental study that we present in this thesis was performed by our

collaborators at the Institute for Bioengineering of Catalonia (IBEC), more

experimental details are provided in our recent work [1].

8.1 Experimental setup

Supported lipid bilayer

In our system, we create curved membrane features off a supported lipid bi-

layer by lateral mechanical compression. As previously shown in vitro [126]

and in cells [127], once stretch is applied to membranes and subsequently re-

leased, excess membrane area is stored in protrusions of tubular or spherical

shape. The size and shape of tubes or spherical caps depends on the relative

magnitude of excess area and excess enclosed volume. Controlling stretch,

but also osmolarity, it is thus possible to generate tubules, buds, or spheri-

cal caps. In contrast with tubes pulled out of GUVs, where a tip force and

tension are required to stabilize their shape, in our system tubes are stabi-

lized osmotically without a pulling force. These protrusions emerging from a

flat supported lipid bilayer (SLB) can serve as model system for membrane

templates such as endocytic buds, or topographically/mechanically induced

structures (Fig.8.1a). Further experimental insight, such as the lipid mem-

brane composition, the stretching device and more in general the experiment

procedure, can be find in [1].
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8.1. Experimental setup

Proteins injection

We capture protein binding to these curved templates starting from the injec-

tion of fluorescently labelled amphiphysin in the bulk solution on top of the

pSLB (patterned supported lipid bilayer) (Fig. 8.1a). The fluorescence signal

from both the pSLB and amphiphysin (in different channels) was subsequently

monitored as a function of time. Once injected, the protein bound to the tubes

and buds (Fig. 8.1b,left), and after further adsorption from the bulk started

to reshape them (Fig. 8.1b,right), into geometrically heterogeneous structures

with coexistence of small spherical and tubular features .

To understand the physical mechanisms underlying our observations, we

developed a theoretical framework considering the dynamics of lipid tubes and

buds with low coverage (since protein is injected once structures are formed)

and low curvature (since the structures are made markedly thinner by Am-

phiphysin) upon exposure to BAR proteins. Theoretically, various computa-

tional studies using coarse-grained simulations of elongated and curved objects

moving on a deformable membrane have suggested the self-organization of re-

gions with high anisotropic (cylindrical) curvature with high-protein coverage

and strong nematic order [130, 60, 41]. None of these works, however, pre-

dicted or observed the tube-sphere complexes that appear in our experiments

(Fig.8.1b). Neither theoretical continuum models for the free-energy of curved

and elongated molecules on membranes cannot predict whether the system is

in an isotropic or nematic phase, nor the nematic direction, and instead ne-

matic order and direction are fixed [64, 65].
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Figure 8.1: a, Representative images of the mechanical stimulation of the pSLB,
showing both lipid and protein fluorescence images. In the resting initial state,

excess liposomes stand on top of the pSLB. With strain, the liposomes incorporate
in the pSLB. Upon release, excess lipids are expelled in the form or tubes or buds.
At this stage, fluorescent Amphiphysin is gently microinjected on top of pSLB and

its binding to the tubes and buds is monitored with time. b, Membrane tubes
(green inset) and buds (purple inset) before (left) and after (right) being reshaped

by Amphiphysin. Scale bar, 5 µm.
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Chapter 9

Modeling the dynamical

interplay between deformable

membranes and elongated

and curved proteins

In this Chapter we present a continuum model that captures the dynamics

rising from the interplay between BAR proteins and mechanically-bent lipid

membranes. Here, we employ the same continuum framework used in Chap-

ter 2 for dissipative systems, based on the Onsager’s principle. In addition to

protein diffusion and membrane elasticity and hydrodynamics, we account for

sorption dynamics of proteins [69] and their orientational order [131].

With this extended theory, we can predict the coupled dynamics of pro-

tein area fraction φ, the shape of the membrane surface Γ parametrized by

x(u, v, t), and nematic order. Orientational order is quantified by the traceless
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9. Modeling the dynamical interplay between deformable
membranes and elongated and curved proteins

and symmetric tensor

Q = S

(
λ⊗ λ− 1

2
I

)
, (9.1)

capturing two important pieces of information: the order parameter S taking

values between 0 and 1, where 0 corresponds to an isotropic organization of

proteins and 1 to the maximum degree of order, and the net protein orienta-

tion given by the unit vector λ. I is the identity tensor on the surface. In the

following, we denote by k the second fundamental form or curvature of the

surface.

To model the free energy of an ensemble of elongated and curved proteins

on a curved membrane, our aim is to use the microscopically derived theory

of Chapter 7. However, the evaluation of this theory requires the solution of a

nonlinear system of equations, which is not practical in numerical simulations.

For this reason we develop later an explicit parametrization of the theory of

Chapter 7.

9.1 Modeling the state prior to protein exposure

Prior to protein exposure, we model the formation of membrane protrusions

following the conceptual and computational approach in [126] under the as-

sumption of axisymmetry. We consider an inextensible membrane patch Γ of

radius 1 µm interacting with a support through an interaction energy density

per unit surface area U(z), where z is the separation between the membrane

and the substrate. The free energy of the membrane is

Fm[x] =

∫
Γ

k0

2
H2 dS +

∫
Γ
U(z) dS, (9.2)

where k0 is the bending stiffness of the membrane and H = (tr k)/2 is the

mean curvature and dS is the area element of Γ. To model the dynamics

and as described elsewhere [83, 115, 75], we introduce a dissipation potential

accounting for membrane viscosity Dm[v], and obtain the governing equations
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9.2. Modeling the protein-membrane interaction dynamics

of the system by minimizing the Rayleighian functional

d

dt
Fm[v] +Dm[v] +

∫
Γ
σ tr d dS + p

∫
Γ
v · n dS (9.3)

with respect to the membrane velocity v, where d is the rate-of-deformation

tensor of the membrane, n is the outer normal to the surface, and the surface

tension σ and pressure p are Lagrange multipliers that enforce the local inex-

tensibility of the membrane and global incompressibility of the fluid enclosed

between the membrane and the substrate.

Excess membrane resulting from lateral compression and excess enclosed

volume resulting from osmotic imbalances lead to a variety of equilibrium

membrane protrusions, which include long tubules, spherical buds and shal-

low spherical caps as mapped in [126]. All of these protrusions are observed in

our experimental system. To study the effect of proteins on each of these types

of structures, we prepared protrusions in equilibrium by laterally compress-

ing the flat membrane and increasing the enclosed volume to V with respect

to V0 (the reference volume computed for a planar membrane at the equilib-

rium separation z0). Upon compression, the membrane delaminates to form

a shallow spherical cap. By further increasing lateral compression and/or the

enclosed volume, we obtained equilibrium structures consisting of spherical

buds connected to the supported part of the bilayer by a narrow neck, or long

tubular protrusions, see Fig. 9.1-a.

9.2 Modeling the protein-membrane interaction

dynamics

Proteins on the membrane are represented by two fields, their area fraction

φ and their nematic tensor Q, which in our axisymmetric setting can be

represented by the order parameter S and the angle θ with respect to the

azimuthal direction e1, see Fig. 9.1b.

Given the free-energy of the elongated and curved proteins on the mem-

brane Fp[x, φ, S, θ], to be specified later and which depends on x through the
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a
b

b
R0

U(z0)V0

Figure 9.1: (a) Illustration of the initial state of the system, in which the planar
adhered membrane sits on a substrate at the equilibrium separation z0 (left) and

upon compression and excess enclosed volume, develops a variety of protrusions as
described in the text. (b) In our axisymmetric model, the principal directions of

curvature coincide with the symmetry directions e1 and e2. The angle θ
characterizes the orientation of an elongated molecule or of the nematic direction on

the membrane.

curvature of the membrane, we can define the total free energy of the system

as

F[x, φ, S, θ] =Fm[x] + Fp[x, φ, S, θ] +

∫
Γ

Λφ
2
|∇φ|2 dS +

∫
Γ

ΛS
2
|∇S|2 dS (9.4)

+

∫
Γ

Λθ
2
|∇θ|2 dS, (9.5)

where the last three terms regularize the phase boundaries between regions of

different protein coverage, order and orientation.

We can write the Rayleighian functional of the membrane-protein system

as

d

dt
F[v,w, Ṡ, θ̇] +Dm[v] +Dp[w, Ṡ, θ̇] +

∫
Γ
σ tr d dS + p

∫
Γ
v · n dS, (9.6)

where w is the net diffusive velocity of proteins relative to the lipids and

Dp[w, Ṡ, θ̇] is the dissipation potential of proteins accounting for translational,

order and rotational drag. Minimization of the Rayleighian with respect to

v leads to the equations of mechanical equilibrium govering shape dynamics.

Minimization with respect to w leads to a generalized Fick’s law relating w to

the gradient of the chemical potential of the proteins, whereas minimization

with respect to Ṡ and θ̇ leads to configurational balance equations. Here, we

90



9.3. Free-energy of the elongated and curved proteins on a membrane

assume that S and θ relax much faster than x and φ. Combining Fick’s law

with the equation of balance of mass for proteins

∂φ

∂t
+ φ trd+∇ · (φw) = r, (9.7)

where r is the sorption rate, we obtain a nonlinear diffusion-reaction equation

for the protein density. All these equations are self-consistently coupled in

this formalism. We refer to the first Part of the thesis for a full account of

this formulation and of its computational axisymmetric implementation using

a Galerkin finite element method based on B-Spline approximations.

We model sorption with a modified Langmuir model given by[69]

r = kAcbulk(φmax − φ)e−βµmech − kDφ, (9.8)

where kA is an adsorption rate constant, cbulk the bulk concentration of pro-

teins, µmech is the mechanical part (associated with their bending elasticity)

of the chemical potential of proteins on the membrane, 1/β is the thermal

energy, and kD is a desorption rate constant. The exponential part of the ad-

sorption term models an adsorption mechanism by which a curved molecule

in solution must conform to the membrane curvature by a thermal fluctuation

to become a membrane-bound protein, analogously to the case of binding of

flexible adhesion molecules [132]. This has kinetic and thermodynamic conse-

quences, as adsorption becomes faster and equilibrium coverage higher when

the membrane curvature is close to the spontaneous curvature of the protein.

9.3 Free-energy of the elongated and curved

proteins on a membrane

Summary of the mean-field density functional theory

Following the mean field approach presented in Chapter 6 and 7, we can

write the free-energy of the ensemble of elongated molecules in terms of the

position-dependent number density of proteins ψ, related to the area fraction
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by φ = apψ where ap is the area of a protein, and the angular distribution f

of proteins as

Fp[x, ψ, f ] =
1

β

∫
Γ
ψ lnψ dS +

1

β

∫
Γ
ψ

{∫
S
f [ln f − ln g] dγ

}
dS

+

∫
Γ
ψ

∫
S
fU b dγ dS,

(9.9)

where 1/β = kBT is the thermal energy and the set S = [−π, π) represents

all possible orientations of molecules. The first term models the positional

entropy of proteins, the second term accounts for orientational entropy and

the excluded area though the function g(ψ, γ) = 1− ψ[c− dSP2(cos γ)] (with

c and d parameters that depend on the geometry of the particles and P2(x) =

x2 − 1/2), and the last term models the bending elasticity of proteins. The

function U b(k, γ) is the bending energy of an adsorbed protein oriented along

the tangential vector ` forming an angle γ with a fixed direction and is given

by

U b(k, γ) =
κpap

2
(k` − C̄)2, (9.10)

where κp is its bending rigidity (with units of energy), C̄ is its preferred

curvature along the long axis, and k` = ` · k · ` is the normal curvature of the

surface along the long direction of the protein. Equation (9.9) allows us to

identify the mechanical part of the chemical potential of proteins as

µmech =

∫
S
fU b dγ. (9.11)

Minimization of Fp with respect to the angular distribution f yields an

effective free energy depending only on the nematic tensor

Q =

∫
S
f(γ) `(γ)⊗ `(γ) dγ − 1

2
I. (9.12)

Since Q is traceless and symmetric, it can be expressed as in Eq. (9.1). In the

axisymmetric setting considered here, Q can be parametrized by S and the

angle θ between the nematic direction λ and the azimuthal direction. Denoting

by k1 and k2 the principal curvatures of the surface at any point (which in
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9.3. Free-energy of the elongated and curved proteins on a membrane

the axisymmetric setting considered here are along symmetry directions), we

can express the free energy of the proteins as

Fp[x, ψ, S, θ] =

∫
Γ
Fp(ψ, S, θ, k1, k2) dS, (9.13)

where the evaluation of Fp(ψ, S, θ, k1, k2) involves the solution of a nonlinear

system of algebraic equations with two unknowns, see [131]. Importantly, the

only material parameters in this theory are the long and short axes of the

ellipse modeling a protein, its preferred curvature C̄ and its bending stiffness

κpap, for which estimates are available.

To summarize, this theory allows us to evaluate the free energy of pro-

teins and study the isotropic-to-nematic transition on membranes adopting

simple geometric motifs observed in our experiments, such as spheres and

cylinders of various radii. On spheres, the free energy above is independent

of θ whereas on cylinders it is minimized for θ = 0 (proteins aligned with the

direction of curvature) as long as the cylinder radius is larger than 1/C̄. Min-

imization with respect to θ allows us to compute the free-energy profile as a

function of area coverage φ and order S alone, see Fig. 9.2 and Fig. 9.3. These

figures shows that the free-energy landscape exhibits an order- and coverage-

dependent forbidden region due to crowding effects. It also shows that, for

a planar and a spherical configuration, the model predicts a sharp and dis-

continuous isotropic-nematic phase transition with a range of intermediate

protein coverages exhibiting coexistence of the two phases. The landscape

on cylindrical surfaces is different in several ways. There, the isotropic-to-

nematic transition is continuous and the isotropic phase is ordered even at

low φ, particularly for thin tubes, due to the bias introduced by anisotropic

curvature.

Explicit parametrization of the theory

The mean field theory that we have just recapitulated connects the micro-

scopic statistical physics with continuum physics and predicts the density-

and curvature-dependent isotropic-to-nematic transition of proteins, but is
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cumbersome to evaluate and integrate in the computational framework de-

scribed in Section 9.2 and in [115]. For this reason, we fit the free energy of

proteins given by the mean field theory, Fp, to an explicit functional form that

we denote as F̂p. Replacing Fp by F̂p is done for purely practical reasons. To

identify an ansatz for the functional form of F̂p, we examine Eq. (9.9).

Focusing first on the first two integrals in this equation, which do not de-

pend explicitly on θ, and noting that 〈P2(cos γ)〉 = S/2 where 〈 〉 denotes the

average with respect to f [131], we postulate the entropic part of the ansantz

as

F̂p,entropy[x, φ, S] =
A1

βap

∫
Γ

{
φ lnφ− φ ln

[
1− φ

(
c− S2

2
d

)]}
dS+

A2

βap

∫
Γ
φS2dS − A3

βap

∫
Γ
φ ln(1− S)dS,

(9.14)

where A1, A2 and A3 are non-dimensional fitting coefficients. The first integral

accounts for positional entropy and excluded area, the second integral is a

quadratic approximation to the order entropy, and the last integral allows

us to fit the fast increase in the free-energy landscape for large φ and S,

Fig. 9.2a1,b1.

Focusing now on the last term of Eq. (9.9), to propose an explicit functional

form for the curvature energy of proteins, we note that

∫
S
f(γ)U b dγ =

κpap
2

∫
S
f(γ)

(
k : `⊗ `− C̄

)2
dγ

=
κpap

2

∫
S
f(γ)

(
k ⊗ k :: `⊗ `⊗ `⊗ `− 2C̄k : `⊗ `+ C̄2

)
dγ

=
κpap

2

[
k ⊗ k :: 〈`⊗ `⊗ `⊗ `〉 − 2C̄k : 〈`⊗ `〉+ C̄2

]
.

(9.15)

where : denotes the double contraction of second-order tensors, :: the contrac-

tion of fourth-order tensors, and 〈 〉 the average with respect to f . We note

that A = 〈`⊗ `〉 = Q+ 1
2I. Invoking the Doi closure [133] according to which

〈`⊗ `⊗ `⊗ `〉 :: C ≈ 〈`⊗ `〉 ⊗ 〈`⊗ `〉 :: C where C is a fourth-order tensor,
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9.3. Free-energy of the elongated and curved proteins on a membrane

we can approximate the curvature part of the proteins free energy as∫
Γ
ψ

∫
S
fU b dγ dS ≈

∫
Γ
φ
κp
2

(
k : A− C̄

)2
dS =

∫
Γ
φ
κp
2

(
H + k : Q− C̄

)2
dS

=

∫
Γ
φ
κp
2

[
(1− S)H + Skλ − C̄

]2
dS

=

∫
Γ
φ
κp
2

[
H + S

k1 − k2

2
(2 cos2 θ − 1)− C̄

]2

dS,

(9.16)

where kλ = λ · k · λ is the normal curvature along the nematic direction.

We checked that this approximation to the curvature part of the free energy

was insufficient to closely fit the free energy of cylinders (particularly the

minimum energy paths and isotropic-to-nematic transition in Fig. 9.2a) and

for this reason we consider an expanded ansantz for the curvature free energy

of proteins of the form

F̂p,curv[x, φ, S] =

∫
Γ
φ
κp
2

[
H + S

k1 − k2

2
(2 cos2 θ − 1)− C̄

]2

dS

+

∫
Γ
φ
κp
2
S

3∑
i=0

Bi
C̄i−2

(
k1 − k2

2
(2 cos2 θ − 1)− C̄

)i
dS,

(9.17)

where Bi are nondimensional fitting parameters. We note that the new term

in the second line only adds a constant unless curvature is anisotropic. Com-

bining Eqs. (9.14,9.17), we obtain an explicit form of the protein free-energy

functional F̂p = F̂p,entropy + F̂p,curv approximating the mean field functional

Fp and amenable to numerical calculations.

To fit the parameters Ai, we first focused on the purely entropic interaction

of elliptical proteins on a flat membrane, which we evaluated with the mean

field model in Eq. 9.9. We then fitted the functional proposed in Eq. 9.14 to

the mean field landscape using a nonlinear least-squares method. In a second

step, we included the bending energy in the mean field model, computed the

free-energy landscape for flat, spherical and cylindrical configurations with

different curvatures, see Fig. 9.2a, and used these free-energy landscapes to

fit Bi using nonlinear leasts-squares.
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See Fig. 9.3 for a comparison of the free-energy profiles obtained with both

models. Although there are noticeable differences, these are small and the

approximate functional F̂p captures quantitatively the most salient features of

the mean field model including the curvature-dependent isotropic-to-nematic

transition.

We note that if the radius of curvature of a cylindrical membrane is larger

than that of the protein 1/C̄, then the free energy is minimized for θ = 0

[131]. Thus, although we fitted the mean fit model to include the smaller

radii, in all our simulations radii of curvature were larger than 1/C̄, and thus

the free-energy functional can be simplified by setting 2 cos2 θ − 1 = 1.
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Figure 9.2: (a) Landscape of the free-energy density computed with the mean
field model in Eq. (9.13) and described in detail in Chapter 6 and 7 for membranes
of different curvature (flat, spherical and cylindrical with radii larger or equal to the
intrinsic radius of a protein 1/C̄). (b) Analogous landscapes of free-energy density

with the explicit model F̂p = F̂p,entropy + F̂p,curv given by Eqs. (9.14,9.17) fitted to
the mean field model. By minimizing the free-energy density with respect to S for a

given protein coverage φ we find equilibrium paths φ(S). Stable branches are
marked with red dots and unstable ones by white dots in (a) and (b).
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Figure 9.3: (a) Comparison of the stable branches in the φ− S plane with both
models (color is energy density). (b) Comparison of the stable branches in the

φ−energy plane with both models (color is order).
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Chapter 10

Results and discussion

10.1 Selection of parameters

Following [126], we assume a Morse potential for U(z) with a membrane-

support equilibrium distance of z0 = 4.4 nm and adhesion energy −U(z0) ≈
1.5 mJ/m2. For the material properties of the lipid membrane, we consider

k0 = 20 kBT for the bending stiffness and η = 5 · 10−9 Nsm−1 for the 2D

viscosity. We consider N-BAR proteins to be elliptical with semi-axis lengths

a = 7.5 nm and b = 2.5 nm, leading to the non-dimensional constants c =

15.66 and d = 6 appearing in the expression for the free-space as a function

of density and order in Eq. (9.14). We assume that these proteins have an

intrinsic curvature of 1/C̄ = 15 nm, an area on the membrane of ap ≈ 58 nm2,

and a protein bending rigidity of φmaxkp = 20 kBT at saturation (φmax ≈ 0.75)

based on a rigidity of the membrane-protein compound of 40 kBT [134, 41,

130]. We consider a diffusion coefficient for proteins of Dp = 0.13 µm2/s.

The fitting procedure of the functional given by Eqs. (9.14,9.17) results in

A1 = 1.25, A2 = 0.7, A3 = 0.5, B0 = 1.61, B1 = −2.49, B2 = 1.32 and

B3 = −0.43. We consider an adsorption rate of kA = 1/30 µM−1 s−1 and

desorption rate to kD = 1/1800 s−1, in the order of that consider in previous

works in a related system [124]. In the absence of measurements, we choose
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10. Results and discussion

Λφ/ap = 10kBT and ΛS/ap = Λθ/ap = 1kBT large enough so that, when phase

separation occurs, domain boundaries have a finite thickness and simulations

are devoid of numerical oscillations signal of ill-conditioning, and small enough

so that the dynamics of the problem are not affect by these parameters.

10.2 Time-scales

Our chemo-mechanical model for protein-membrane interaction captures many

different phenomena occurring at different time-scales. To interpret our simu-

lations and understand the observed dynamics, we examine next the timescales

of the major phenomena. We have already mentioned that we assume that

orientational order relaxes very fast. We approximate the time required for

membrane shape dynamics as τm ∼ S̄η/k0 where S̄ is the typical surface area

of a geometric feature [135], leading to the estimate τm ≈ 0.01 s. The timescale

for protein diffusion is τp ∼ `2/Dp where ` is either the radius of a spheri-

cal bud or the length of a tube where proteins diffuse. For the membrane

protrusions studied here, we estimate τp to be a few seconds. The timescale

for protein adsorption can be approximated as τA ≈ 1/kAcbulk, which in our

experimental conditions ranges between a few seconds to minutes depending

on concentration. Thus, even if these estimates are crude, the system exhibits

a significant scale separation, except at high protein concentrations where

protein adsorption and diffusion may compete. In experiments there is an-

other time-scale associated to bulk transport of proteins in the medium, not

accounted for in the model.

10.3 Simulation protocol for protein-membrane

interaction

To computationally examine the effect of BAR proteins on pre-existing mem-

brane protrusions, we start from tubular or spherical protrusions in mechanical

equilibrium as those in Fig. 9.1a and following the protocol described in Sec-

tion 9.2. Then, we prescribe the protein concentration in the medium, cbulk,
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10.3. Simulation protocol for protein-membrane interaction

and computationally track the dynamics of the system as described in Section

9.3 with the explicit free energy of proteins described in Section 9.3. Accord-

ing to Eq. (9.8), protein adsorption is faster in highly curved regions of the

membrane, such as necks of spherical buds. Furthermore, curvature gradients

also generate gradients of chemical potential that drive protein diffusion on

the membrane towards highly curved regions. As these regions, with possibly

anisotropic curvature, become enriched, nematic order progressively develops,

giving rise to the protein dynamics and reshaping described later.

In the actual system with many membrane protrusions interacting with

proteins, the reshaping of one protrusion may result in lipid and enclosed wa-

ter exchange with the rest of the system, in particular with the adhered part

of the membrane surrounding it. Since in our computational model we study

one protrusion in isolation, we need to specify a mechanical ensemble control-

ling lipid and enclosed volume exchange between a protrusion and the adhered

membrane. In our simulations, we consider an inextensible and axisymmetric

membrane patch. During dynamical simulations, we fix the volume enclosed

between the membrane patch and the substrate to its initial value. At the

boundary of the patch, we impose a constant membrane tension given by the

membrane tension in the equilibrium state prior to protein exposure. Thus

the edge of the patch can move to accommodate lipid exchange between the

protrusion and the adhered part of the membrane. The protrusion can also

exchange water with the adhered part of the system, either because the later

is changing its size or because the membrane is changing its separation z with

the substrate. We found that modifying the mechanical ensemble, e.g. fixing

the projected area of the patch instead of tension or pressure difference instead

of enclosed volume, had some effect on the dynamics but did not fundamen-

tally modify the protein dynamics and reshaping mechanisms described here.

With our ensemble, however, elongation of the neck of a bud did not lead to

significant shrinkage of the spherical bud, as observed in many experimental

instances, but rather to membrane exchange between the protrusion and the

adhered part (Movie 10.1). We identified that this was due to the limited abil-
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ity of the protrusion to expel enclosed volume underneath the adhered part

in our simulations, and when this volume exchange was eased, for instance by

considering a more compliant membrane-substrate interaction, we recovered

the experimental phenomenology of bud consumption upon neck elongation

(Movie 10.2).

10.4 Mean-filed theory supports coexistence of

spheres and cylinders in dynamical

structures.

On flat membranes and for elliptical particles of the size and aspect ra-

tio of Amphiphysin, as already shown in Chapter 7, the theory predicts

an entropically-controlled discontinuous isotropic-to-nematic transition dur-

ing which the system abruptly changes from low to high order as protein

coverage increases above φ ≈ 0.5, in agreement with previous results in 3D

[2], Fig. 9.2a. On curved surfaces, our model also accounts for the elastic

curvature energy of proteins, which depends on the curvature of the surface,

and on their intrinsic curvature and orientation relative to the surface di-

rections of principal curvatures (Fig.10.1a). We then examined the protein

free-energy landscape on spherical surfaces, which according to the theory co-

incides with that of the flat membrane with a bias proportional to φ times

the bending energy of proteins on the curved surface. Thus, the minimum en-

ergy paths as density increases (red dots in Fig.10.1b-e) and hence the abrupt

isotropic-to-nematic transition persist regardless of sphere radius, Fig.10.1b,

c, noting that on a complete sphere the nematic phase necessarily involves

defects [37]. On cylindrical surfaces, however, curvature is anisotropic and

the energy landscape is fundamentally modified according to our theory as

proteins can lower their free energy by orienting along a direction of favorable

curvature. The competition between protein bending and entropy results in a

continuous isotropic-to-nematic transition (Fig.10.1d) and a significant degree

of orientational order even at low coverage when the tube curvature is com-
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10.4. Mean-filed theory supports coexistence of spheres and cylinders in
dynamical structures.

parable to that of the protein (Fig.10.1e). The model thus predicts how the

nematic ordering of the curved and elongated membrane depends on coverage,

curvature, and curvature anisotropy.
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Figure 10.1: a, Schematic diagram of a BAR domain interacting with a lipid
membrane. Protein elastic energy depends on surface curvature and protein

orientation. For cylindrical surface, curvature is maximal (dark green) and minimal
(light green) along perpendicular directions. b-e, Energy density landscape

according to our mean field density functional theory depending on protein coverage
φ, nematic alignment S, and the shape and size of the underlying membrane (sphere
or cylinder as illustrated on top of each plot). Red dots denote states of equilibrium
alignments S for a given protein coverage φ, i.e. minimizers of the free energy along
vertical profiles, depicting the transition from isotropic (i) to nematic phase (ii-iii).
The white region in the energy landscape is forbidden due to crowding. b-c, show
discontinuous transitions for protein alignment on isotropically curved membranes.
d-e, show continuous transitions for anisotropically curved membrane. The intrinsic

protein radius of curvature is 1/C̄ = 15 nm.

We then studied whether the model predicted the experimentally observed

coexistence of thin tubes (which according to the theory should have higher
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coverage and order) and larger spheres (which should have lower coverage and

isotropic organization). We examined the energy landscape along the mini-

mizing paths (red dots) for spheres and tubes of varying radius (Fig. 10.2).

Since the slope of these curves is the chemical potential of proteins on the mem-

brane, which tends to equilibrate with the fixed chemical potential of dissolved

proteins in the medium, points of chemical coexistence are characterized by

a common slope (red circles). This figure shows the largely non-unique com-

binations of geometry and membrane coverage compatible with coexistence

in chemical equilibrium between higher-coverage nematic phases on cylinders

and lower-coverage isotropic phases on spheres, supporting plausibility of such

coexistence in the dynamical structures.
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Figure 10.2: Free energy profiles for spheres and cylinders of different sizes along
the equilibrium paths. The chemical potential of proteins is the slope of these

curves. All points marked with red circles have the same chemical potential at the
tangent points µb and hence are in chemical equilibrium.

10.5 Dynamics: simulations and experiments

Starting from membrane protrusions in mechanical equilibrium (tubular or

spherical, Fig. 9.1a) off a supported bilayer in the absence of proteins and for
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10.5. Dynamics: simulations and experiments

a fixed membrane tension and enclosed volume [126, 127], this model predicts

the dynamics of membrane shape, φ, and S following a sudden increase of

dissolved protein concentration in the medium (Fig. 10.3).
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Figure 10.3: Schematic of reshaping dynamics involving membrane relaxation,
and protein binding, diffusion and ordering.

Bud reshaping

First, we considered the dynamics of a spherical bud connected to the sup-

ported bilayer by a neck. As per the model, proteins should adsorb on the

entire membrane but at a faster rate at the neck, where membrane curvature

is more favourable than on the vesicles or on the flat part. Furthermore, due

to a local gradient in chemical potential, proteins are further recruited by

diffusion towards the neck, where they rapidly adopt a nematic order (Fig.

10.1e) in contrast with the isotropic order in the vesicle. The lower energy of

proteins on the thin neck (Fig. 10.2) outweighs both the higher membrane

curvature energy of a tube relative to a larger vesicle and the entropic penalty

of a local protein enrichment. This leads to a progressive elongation of the

neck into a thin tube with higher coverage and nematic order (Fig. 10.4a, and

Movie 10.1). If the protrusion is allowed to exchange enclosed volume with

the adhered part of the membrane, tube elongation occurs at the expense of

the vesicle area (Fig. 10.4b and Movie 10.2). According to our simulations,

the radius of these thin tubes is of about 15 nm, close to the radius of tubes
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scaffolded by Amphiphysin (see Fig. 10.5a). Consistent with model predic-

tions, the experimental observations systematically captured the growth of

thin necks connecting shrinking vesicles to the supported bilayer (Fig. 10.4a,

Fig. 10.5b,c and Movie 10.3). The contrast of nematic order between vesi-

cles and tubes predicted by our simulations was not accessible experimentally.

However, another hallmark of the isotropic-nematic coexistence suggested by

the model is a protein enrichment on the tube relative to the vesicle. For

a wide range of bud diameters and protein concentrations, our simulations

predicted a stable and approximately two-fold higher protein concentration

in tubular versus bud regions (Fig. 10.4c-right). When we estimated this

experimentally, this enrichment was confirmed (Fig. 10.4c-left).
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Figure 10.4: a, Results of simulations (left) and experiments (right) showing bud
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enclosed by the protrusion is eased by considering a softer substrate interaction. b,
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estimation of relative protein enrichment between mean coverage on the tube (φ̄t)

and mean coverage on the vesicle (φ̄v) for buds of different sizes exposed to different
protein concentrations.

Experimentally, we found that a threshold bulk concentration was required

for the growth of such tubes within the observed time frame (no growth ob-

served at 0.05µM after 1100s, see Fig. 10.5c). We also found that the higher the

concentration, the faster reshaping occurred. We thus systematically studied

how increasing concentrations of protein in the bulk affected model outcome

and reshaping over time. This led to a dynamical diagram of bud shape as

a function of time and protein concentration (Fig. 10.6a). We note that we

lacked a precise experimental control of the dynamics of protein delivery to

the membrane due to diffusive and possibly advective transport from the in-
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jection to the observation point, and hence a fully quantitative comparison

between theory and experiment regarding the time-scales of reshaping was

not possible. However, our simulations assuming instantaneous exposure of

protein in solution also show a strong concentration dependence in the re-

shaping dynamics (Fig. 10.6a). Increasing protein concentration decreases

the time required to initiate tubulation, representative of the time at which

proteins nematically arrange (Fig. 10.5b). This was experimentally confirmed

by measuring the times of tubulation initiation (Fig. 10.6b) and by looking at

the protein binding curves on the buds. Such curves were obtained by plotting

the mean intensity of the protein fluorescence on buds over time, until tubu-

lation starts (See [1] for the protocol followed to estimate the protein coverage

on the tubes or buds over time). The protein concentration triggering tubu-

lation was reached faster at higher concentration (Fig. 10.6c and compare

Movies 10.3 and 10.4, in which tube elongation starts much faster at 0.5µM

bulk Amphiphysin concentration versus 0.25µM). Representative images of

the reshaped state of buds at increasing times are plotted in Fig. 10.5c.
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elongation times are marked with an arrow.

Tube reshaping

Then, we considered the reshaping dynamics of tubes, which were frequently

formed upon compression. For low protein concentration, proteins adsorbed

onto the tubes and did not lead to an observable reshaping. Unlike the tubes

that spontaneously relax into buds in absence of proteins (see Fig. 10.7), the
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10.5. Dynamics: simulations and experiments

other exposed to 0.05µM bulk protein concentration maintain their morphol-

ogy proving the stabilization role of BAR proteins.

Control with no injection
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Figure 10.7: Control in which no protein is injected on top of the pSLB. Scale
bar, 5 µm.

At higher concentrations, however, we systematically found that tube re-

shaping was initiated by the formation of a sequence of pearls ( Fig. 10.8b

and Movies 10.5 and 10.6). Previous results have shown the formation of

pearled membrane tubes as a result of a sufficiently large isotropic and uni-

form spontaneous curvature [115, 136, 137]. Indeed, we hypothesized and our

simulations show that, if initial tubes were large-enough, then at low coverage

they should exhibit a largely uniform and isotropic arrangement of molecules

(Fig. 10.8d, e), hence impinging an isotropic spontaneous curvature on the

membrane leading to pearling (Fig. 10.8f; in the absence of a nematic tran-

sition, no further reshaping would follow this pearling phase). The pearling

instability produces several membrane necks along the tube. If coverage is

high enough, sufficiently many proteins may be drawn to those necks. This

triggers an isotropic-to-nematic transition, a progressive elongation of thin
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tubes, and a consumption of spheres analogous to that described above in

membrane buds (Fig. 10.8b). Analogously to the case of bud elongation, we

built a dynamical diagram of tube shape as a function of bulk protein concen-

tration and time (Fig. 10.8c). Increasing concentration decreases the time to

initiate pearling, which was also observed experimentally ( Fig. 10.8d, e) and

compare the earlier tube pearling observed in Movie 10.6, 0.25µM bulk Am-

phiphysin concentration, with Movie 10.7 at 0.35 µM.). Concentration also

accelerates the subsequent transitions from uniform to pearled tubes, then to

pearls connected by tubes ( Fig. 10.8c, Fig. 10.9). This configuration was sta-

ble for long times in simulations and experiments (though such reshaped tubes

collapsed on themselves, likely due to the related loss of tension [123, 138] this

phase is best observed in the movie, see Movie 10.7).
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For both tubes and buds, we evaluated the protein coverage required to

trigger reshaping. Though measuring protein coverage in our experimental

set up is very challenging, we developed a protocol to obtain an estimate. We
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10.5. Dynamics: simulations and experiments

performed a classical calibration of the protein fluorescence versus coverage

[139], and subsequently corrected the data by a geometrical factor taking into

account the out-of-plane loss of signal and the geometrical signal integration of

non-planar structures ( Fig. 10.10a). As a result, initiation of bud elongation

or tube pearling occurred at ≈ 0.4 and ≈ 0.25 − 0.35 coverage respectively,

approximately matching theoretical predictions (Fig. 10.10a, b).
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Figure 10.10: a, Binding curves of the protein binding to several buds (left) or
tubes (right) at 0.25 µM (green colours) or 0.35 µM (orange colours) bulk protein

concentration. We used the protocol described in [1] to plot the protein coverage on
tubes or buds over time. Tube elongation from buds (left) starts when the plot

ends, tube pearling (right) starts when the plot ends. b, Bud and tube reshaping
upon protein adsorption and corresponding protein average coverage on the

membrane protrusions.

Taken together, our results show that membrane curved templates exposed

to sufficiently high concentrations of BAR proteins evolve towards uniformly

thin and protein-rich nematic tubes. During the process, heterogeneous inter-

mediates are formed, exhibiting mixtures of low curvature and low isotropic
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10. Results and discussion

coverage regions with others of high cylindrical curvature, high coverage, and

nematic order.

Lysis of pressurized shallow caps

Finally, we evaluated the case of shallow spherical cap protrusions, which

develop when hypo-osmotic shocks are generated both in vitro and in cells

[126, 127]. In this case, the membrane needs to accommodate a significant

excess volume of liquid with little excess membrane area, leading to a struc-

ture under significant tension [126]. Under these conditions of small excess

area, shape changes are very difficult. Our model predicts that upon exposure

of such shallow caps to BAR proteins, shape changes are negligible. Instead,

tension in the membrane sharply increases, potentially leading to membrane

tearing [140, 141] (Fig. 10.11). Accordingly (acknowledging as before that

direct comparison of concentrations in experiments and simulations is not

straightforward), shallow spherical caps formed by a hypo-osmotic shock in

our experimental system were not visibly reshaped by Amphiphysin even at

significant concentrations (Fig. 10.11), and teared and collapsed upon expo-

sure to higher Amphiphysin concentrations (Fig. 10.11).
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area are prone to membrane lysis. Right, Initial and final states of pressurized caps
(obtained from an hypoosmotic shock) upon incubation with Amphiphysin. At 2.5

µM concentration, lysis of the caps can be observed. Scale bars, 5 µm.
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Movie 10.1: Numerical simulation of the reshaping of a lipid bud of initial
diameter 850 nm following protein binding from a protein bulk concentration of 0.5
µM. Color is protein coverage (left) and order (right). Membrane tension is fixed to
that prior to protein exposure and the volume enclosed between the membrane and

the substrate is fixed. https://www.youtube.com/watch?v=B9spR9iexNg

Movie 10.2: Numerical simulation of the reshaping of a lipid bud of initial
diameter 850 nm following protein binding from a protein bulk concentration of 0.5
µM. Color is protein coverage (left) and order (right). Membrane tension is fixed to

that prior to protein exposure and the exchange of the volume enclosed by the
protrusion is eased by considering a softer substrate interaction.

https://youtu.be/yVebSpxSwCg

Movie 10.3: Time sequence of the reshaping of lipid tubes and buds formed
through pSLB destretch, before and after incubation with 0.5 µM Amphiphysin.
Fluorescence images show the membrane marker (left) and Amphiphysin marker

(right). Insets show magnifications of the regions marked with squares.
https://youtu.be/k7nSvMWipXA
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10. Results and discussion

Movie 10.4: Time sequence of the reshaping of lipid tubes and buds formed
through pSLB destretch, after incubation with 0.25 µM Amphiphysin. Fluorescence
images show the membrane marker (left) and Amphiphysin marker (right). Insets

show magnifications of the regions marked with squares.
https://youtu.be/EBSX11XeLrc

Movie 10.5: Numerical simulation of the reshaping of a lipid tube of initial
diameter 260 nm following protein binding from a bulk concentration of 0.5 µM.

Color is protein coverage (left) and order (right). https://youtu.be/s_O_xMcXJbg

Movie 10.6: Time sequence of the reshaping of lipid tubes and buds formed
through pSLB destretch, before and after incubation with 0.25 µM amphiphysin.
Fluorescence images show the membrane marker (left) and amphiphysin marker

(right). Insets show magnifications of the regions marked with squares.
https://youtu.be/pAQFvdqF5AI
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10.5. Dynamics: simulations and experiments

Movie 10.7: Time sequence of the reshaping of lipid tubes and buds formed
through pSLB destretch, before and after incubation with 0.35 µM amphiphysin.
Fluorescence images show the membrane marker (left) and amphiphysin marker

(right). Insets show magnifications of the regions marked with squares.
https://youtu.be/I0AL0H-8e2c
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Chapter 11

Summary and future work

In this second Part of the thesis we have presented an extensive study on

elongated and curved proteins. Firstly, we have developed a mean field theory

that captures the microscopic self-organization of elongated particles. Using

this theory we have analysed the isotropic-to-nematic phase transition and

how this self-organization depends on proteins coverage and on the curvature

or anisotropy of the underlying membrane. The strong point of this theory

is the connection from a micro- to a mesoscale to evaluate the free-energy

landscape of proteins on selected surfaces. Later, to have a broader picture

of the role of BAR proteins in many physiological situations, we have intro-

duced a dynamical model, where the mean field theory is coupled with one of

membrane dynamics. We have examined, both experimentally and through

modelling, how BAR proteins dynamically interact with mechanically-induced

membrane templates. We have captured protein binding to these curved tem-

plates starting from low protein coverage. We have demonstrated and char-

acterised reshaping at low concentration, low curvature, and low tension, a

highly relevant scenario in cells. As suggested by the mean field theory, the

events can be generally understood by an isotropic-to-nematic phase transi-

tion, in which low curvature structures with isotropic protein orientation and
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curvature progress towards highly curved lipid tubes with nematic protein ar-

rangement, in a manner such that both phases coexist during the reshaping

process.

More specifically:

• In Chapter 6 we have presented an adaptation to 2D of the work done by

[2], where we focus on the orientational order of hard elliptical particles

on planar surface. The free-energy landscape of the system is expressed

in terms of the net orientation of proteins relative to the principal curva-

ture directions θ, of the classical order parameter S, and of the number

density f , and it depends on the aspect ratio of the proteins. We have

shown that, on planar surfaces, the system exhibits a density-dependent

discontinuous isotropic-to-nematic transition. We have also studied how

the density-dependence transition changes when we consider particles of

different aspect ratios.

• In Chapter 7 we have extended the mean-field density functional theory

presented in Chapter 6 to study the ordering of elongated and curved

proteins on differently curved fixed shapes. In this case, the free-energy

landscape also depends on the intrinsic curvature of the proteins, on

their bending rigidity, and on the second fundamental form of the mem-

brane. In addition to the free-energy landscape, we have provided the

orientational probability distribution of proteins. We have shown that,

on spherical surfaces the system exhibits a density-dependent discon-

tinuous isotropic-to nematic transition, as on planar membranes, while

this transition is continuous on surfaces with anisotropic curvature such

as cylinders or catenoids. We have shown that anisotropic curvature

biases the system towards a slightly nematic state even at low protein

concentrations. When the curvature of cylindrical membranes is higher

than that of the proteins, then the orientational distribution becomes

bimodal at low densities and asymmetric with respect to the principal

direction of curvatures at high densities. Our theory has also allowed
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us to examine the coexistence of isotropic and nematic phases under

different conditions.

• We have used a novel experimental set up that tests the reshaping abil-

ity of BAR proteins depending on their orientational order. The experi-

mental data used in this thesis have been provided and analysed by our

collaborators at the Institute for Bioengineering of Catalonia (IBEC).

• In Chapter 9 we have proposed a continuum model for membranes and

BAR protein dynamics. Here, in addition to protein diffusion and mem-

brane elasticity and hydrodynamics (already presented in Chapter 2),

we have accounted for protein sorption and orientational order. To cap-

ture the isotropic-to-nematic transition in the continuum framework we

have started from the mean field theory presented in Chapters 6 and

7 and we have fitted an explicit functional form, that accurately re-

produces the salient features of the microscopic problem, including the

curvature-dependent isotropic-to-nematic transition.

• Through numerical simulations we have shown that the reshaping dy-

namics emerge naturally from the fundamental physics of membrane me-

chanics and its chemo-mechanical interaction with elongated and curved

proteins, generating a non-trivial feedback between membrane stimula-

tion and subsequent response. We have selected a series of numerical

simulations and experimental data that characterize the reshaping pro-

cess of BAR proteins on mechanically bent membranes, showing the

interplay between membrane mechanical stimuli and BAR protein re-

sponse. First, we have tested the sorption dynamics of BAR proteins on

a variety of spherical buds of different sizes connected to the supported

bilayer by a neck. The membrane curvature favores a faster binding of

proteins on the neck where they nematically orient, in contrast with the

isotropic organization of proteins on the vesicle. The inhomogeneous

distribution and orientation of proteins along the membrane leads to a

progressive elongation of the neck into a thin tube at the expense of the
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vesicle area. Afterwards, we have characterized the reshaping dynamics

of tubes that exhibit an initial sequence of pearls explained as an instabil-

ity caused by the isotropic and uniform spontaneous curvature induced

by the proteins. Pearling then evolves to a progressive elongation of the

necks, that become tubes merging or consuming the initial pearls. For

both the templates we have computed the protein coverage required to

trigger the reshaping, which agree with the experimental data. Finally,

we have considered the sorption on a shallow spherical cap protrusion

and we have tracked how the membrane tension increases, eventually

leading to membrane tearing.

Our formulation also sets the basis for future works:

• Several species:

The theoretical framework used in this thesis could be easily extended

for systems that account for several species. In the recent work [142],

our theory has been used to describe the transport for procollagen ex-

port, that involve the diffusion and interaction of two membrane-bound

species (COPII and TANGO1). Furthermore, our model could be ex-

tended to describe more complex systems that account for membrane

reshaping due to the action of proteins coupled with cortex or cytoskele-

ton. This would lead to a broader understanding of the mechanics in-

volved in the evolution of different organelles in cells.

• Three-dimensional description:

Although many cellular structures adopt axisymmetric shapes, others do

not. Our theoretical framework can successfully describe the membrane-

protein interaction also in 3D, but the subsequent limitation to axisym-

metry and the corresponding numerical approximation represent the

main obstacles to study nonaxisymmetric shapes or ensembles of sev-

eral domains. A fully 3D description would make it possible to study

the case of multiple interacting caveolae or rosettes [5] and to address

the open question related to the mechano-protection role of Caveolae in

cells.
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Appendix A

A.1 Stress Vectors

We identify the stress for the membrane-protein system considered here. We

first note that, for a surface, stress can expressed in terms of stress vectors

with tangential and normal components, σα = σαβgβ+σαnn, performing power

against V;α [88], which can be expressed as

V;α = (vγgγ + vnn);α = (vγ ;α − vnkγα) gγ + (vγkγα + vn,α)n. (A.1)

Here, ();α denotes covariant differentiation and (),α partial differentiation. On-

sager’s formalism naturally allows us to identify each contribution to the stress.

For this, we write the Lagrangian in Eq. (2.19), ignoring external power input,

enclosed volume constraints, freezing protein diffusive transport and assuming

for simplicity a closed surface, since our interest here is in the stress, as

δ

(
Ḟ + D +

∫
Γ
σ trd dS

)
=

∫
Γ

(σ̂α + σ̃α + σ̄α) · δV;α dS = −
∫

Γ
σα;α · δV dS,

(A.2)

where σ̂α, σ̃α, σ̄α are the stress vectors associated to the free-energy, dissipa-

tion, and inextensibility constraint, and the total stress vector is the sum of

these contributions. The expression in the right-hand side leads to the tangen-

tial and normal contributions of the stress in the mechanical Euler-Lagrange

equation since

σα;α =
(
σαβgβ + σαnn

)
;α

=
(
σαβ ;α − σαnkβα

)
gβ +

(
σαβkαβ + σαn ;α

)
n. (A.3)
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We focus first on the free-energy part of the stress and use the fact that for a

Lagrangian parametrization δV;α = δġα. To identify the stress we assume that

proteins do not diffuse, hence the energy only depends on the configuration of

the membrane and invoking the chain rule we can write

σ̂α =
∂W

∂gα
+
W

J

∂J

∂gα
. (A.4)

Since protein transport is frozen for this calculation, W depends on gαβ and

kαβ and we have [80, 143]

∂W

∂gα
= 2

(
∂W

∂gαβ

)
gβ + kβµ

∂W

∂kαµ
gβ −

(
∂W

∂kαβ

)
;β

n. (A.5)

Using Jacobi’s relation, we further have

∂J

∂gα
= 2

(
∂J

∂gαβ

)
gβ = Jgαβgβ. (A.6)

Substituting the above relation in last term of Eq. A.4, we obtain

W

J

∂J

∂gα
= Wgαβgβ. (A.7)

For the free energy density of the membrane considered here, W (H,φ, |∇φ|2),

we have
∂W

∂gαβ
= D1W

∂H

∂gαβ
+D2W

∂φ

∂gαβ
+D3W

∂|∇φ|2

∂gαβ
. (A.8)

Using H = kηγg
ηγ and the relation ∂gηγ/∂gαβ = −gηαgγβ, we obtain

∂H

∂gαβ
= −kαβ. (A.9)

Invoking balance of mass of proteins, δφ = −φδJ/J , we have

∂φ

∂gαβ
= −φ

J

∂J

∂gαβ
= −φ

2
gαβ. (A.10)

The equation above can be further used to obtain

∂|∇φ|2

∂gαβ
=
∂(φ,ηφ,γg

ηγ)

∂gαβ
= 2

∂φ,η
∂gαβ

φ,γg
ηγ − φ,ηφ,γgηαgγβ. (A.11)
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The first term in the right-hand side can be further simplified to φ∆φgαβ by

going back to the definition of stress in Eq. (A.2) and integrating by parts.

The derivatives of energy density with respect to second fundamental form

are given by
∂W

∂kαβ
= D1W

∂H

∂kαβ
, where

∂H

∂kαβ
= gαβ. (A.12)

Substituting all the above relations into Eq. A.4, we obtain the free-energy

contribution to the stress vectors as{
−D1Wkαβ + (W −D2Wφ)gαβ + 2D3W

[
φ∆φgαβ − gα · (∇φ⊗∇φ) · gβ

]}
gβ

− (D1W ),βg
αβn = σ̂α.

(A.13)

Taking the variation of the dissipation potential, a direct calculation allows

us to identify σ̃α = 2ηdαβgβ. Similarly, we can identify the component due

to inextensibility as σ̄α = σgαβgβ. These equations above specify the total

stress vectors σα = σ̂α + σ̃α + σ̄α for the protein-membrane system. A

calculation shows that the tangential and normal components of the equation

σα;α + pn = 0 coincide with the tangential and normal statements of force

balance in Eqs. (2.30) and (2.33).

A.2 Stability Analysis

We summarize here the classical linearized stability analysis around a flat

square membrane Γ0 of lateral size L covered with homogeneous distribution

of proteins with area fraction φ̄. We analyze stability of this homogeneous

equilibrium configuration for perturbations in shape and protein density. Plac-

ing the flat membrane in the x− y plane and considering shape perturbations

described by a Monge parametrization, r = xi+yj+h(x, y)k, the areal stretch

ratio can be computed as

J =
√

1 + |∇h|2. (A.14)

A perturbation in height of the membrane results in changes in local area and

balance of mass of proteins requires that the area fraction of proteins should
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reduce to φ̄/J . We consider density perturbations about φ̄/J to uncouple them

from the perturbations in height. We thus express perturbed area-fractions as

φ̃ =
φ̄

J
+ φ, (A.15)

where φ is the perturbation.

Expressing the free energy of Section 2.2 in the reference configuration Γ0

Ẽ =

∫
Γ0

{
κ

2
(H − C̄φ̃)2 +

kBT

ap
[φ̃ log φ̃+ (φm − φ̃) log (φm − φ̃)]

+
1

2ap
χφ̃2 +

Λ

2ap
|∇φ̃|2 +

µ0

ap
φ̃

}
J dx dy +

∫
Γ0

σJ dx dy,

(A.16)

and expanding it up to second order in φ and h we obtain

δ2E =

∫
Γ0

{
κ

2
(∆h)2 + σeff |∇h|2

2
− κ(∆h)C̄φ+

aeff

2ap
φ2 +

Λ

2ap
|∇φ|2

}
dx dy,

(A.17)

where σeff and aeff are the effective surface tension and self interaction of pro-

teins defined in Eqs. (2.32) and (4.2). To evaluate the integral in Eq. (A.17),

we Fourier transform the perturbations to write

h =
∑
q

hqe
iq·r0 , φ =

∑
q

φqe
iq·r0 (A.18)

for r0 = xi + yj and q = 2π
L {nx, ny} where nx, ny ∈ Z, leading to

δ2E = L2
∑
q

[(
κ

2
q4

)
hqh−q +

(
σeff

2
q2

)
hqh−q +

(
κC̄q2

2

)
(hqφ−q + h−qφq)

+

(
aeff

2ap

)
φqφ−q +

(
Λ

2ap
q2

)
φqφ−q

]
.

(A.19)

and further to

δ2E = L2
∑
q

p∗q ·Apq, (A.20)

where pq = {hq, φq}, p∗q its complex conjugate and

A =


κq4 + σeffq2

2

κC̄q2

2
κC̄q2

2

aeff + Λq2

2ap

 . Unstable modes can develop when this ma-

trix ceases to be positive definite. Obvious conditions for instability are
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A.2. Stability Analysis

σeff < 0 (Euler buckling) and aeff < 0 (purely chemical phase separation).

More interesting chemo-mechanical modes of instability develop when both of

these quantities are positive but det(A) < 0 or

(κq4 + σeffq2)(aeff + Λq2)/ap − κ2C̄2q4 ≤ 0. (A.21)

Since σeff, aeff > 0, for real unstable modes to exist we require that

κ|C̄| −
√
κ(aeff/ap) ≥

√
σeffΛ/ap. (A.22)

A similar analysis applies to the free energy discussed in Section 4.5, where

now

Ẽ =

∫
Γ0

{
κ

2
H2 +

κ̄pφ̃

2
(H − Cp)2 +

kBT

ap
[φ̃ log φ̃+ (φm − φ̃) log (φm − φ̃)]

+
1

2ap
χφ̃2 +

Λ

2ap
|∇φ̃|2 +

µ0

ap
φ̃

}
J dx dy +

∫
Γ0

σJ dx dy.

(A.23)

The second variation has the same structure as Eq. (A.17), the difference being

in the interpretation of the coefficients. Now, we have

δ2E =

∫
Γ0

{
κ+ κ̄pφ̄

2
(∆h)2 + σeff |∇h|2

2
− κ̄p(∆h)Cpφ+

aeff

2ap
φ2 +

Λ

2ap
|∇φ|2

}
dx dy,

(A.24)

where

σeff = σ +
kBT

ap
[φm log (φm − φ̄)]− χ

2ap
φ̄2

aeff = χ+ kBT
φm

(φm − φ̄)φ̄
.

(A.25)

Following the same procedure as before, we obtain the following condition for

a chemo-mechanical instability

κ̄p|C̄p| −
√

(κ+ κ̄pφ̄)(aeff/ap) ≥
√
σeffΛ/ap. (A.26)

Qualitatively this condition is similar to that in Eq. (A.26). However, there is

one subtle difference since now aeff and σeff are independent of the spontaneous

curvature of the proteins, which was not the case before.

129





Bibliography

[1] A.-L. Le Roux, C. Tozzi, N. Walani, X. Quiroga, D. Zalvidea,

X. Trepat, M. Staykova, M. Arroyo, and P. Roca-Cusachs, “Dynamic

mechanochemical feedback between curved membranes and bar protein

self-organization,” bioRxiv, 2020.

[2] E. S. Nascimento, P. Palffy-Muhoray, J. M. Taylor, E. G. Virga, and

X. Zheng, “Density functional theory for dense nematic liquid crystals

with steric interactions,” Physical Review E, vol. 96, no. 2, p. 022704,

2017.

[3] B. Alberts, D. Bray, K. Hopkin, A. D. Johnson, J. Lewis, M. Raff,

K. Roberts, and P. Walter, Essential cell biology. Garland Science, 2013.

[4] Y. Shibata, J. Hu, M. M. Kozlov, and T. A. Rapoport, “Mechanisms

Shaping the Membranes of Cellular Organelles,” Annual Review of Cell

and Developmental Biology, vol. 25, no. 1, pp. 329–354, 2009.
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M. Arroyo, D. Navajas, et al., “Physical principles of membrane remod-

elling during cell mechanoadaptation,” Nature communications, vol. 6,

no. 1, pp. 1–11, 2015.

[128] E. Boucrot, A. P. Ferreira, L. Almeida-Souza, S. Debard, Y. Vallis,

G. Howard, L. Bertot, N. Sauvonnet, and H. T. McMahon, “Endophilin

marks and controls a clathrin-independent endocytic pathway,” Nature,

vol. 517, no. 7535, pp. 460–465, 2015.

[129] H.-F. Renard, M. Simunovic, J. Lemière, E. Boucrot, M. D. Garcia-

Castillo, S. Arumugam, V. Chambon, C. Lamaze, C. Wunder, A. K.

Kenworthy, et al., “Endophilin-a2 functions in membrane scission in

clathrin-independent endocytosis,” Nature, vol. 517, no. 7535, pp. 493–

496, 2015.

[130] H. Noguchi, “Membrane tubule formation by banana-shaped proteins

with or without transient network structure,” Scientific reports, vol. 6,

p. 20935, 2016.

[131] C. Tozzi, N. Walani, A.-L. Le Roux, P. Roca-Cusachs, and M. Arroyo,

“A theory of ordering of elongated and curved proteins on membranes

driven by density and curvature,” Soft Matter, 2021.

[132] D. Kaurin and M. Arroyo, “Surface tension controls the hydraulic frac-

ture of adhesive interfaces bridged by molecular bonds,” Physical review

letters, vol. 123, no. 22, p. 228102, 2019.

[133] J. Feng, C. V. Chaubal, and L. G. Leal, “Closure approximations for the

doi theory: Which to use in simulating complex flows of liquid-crystalline

polymers?,” Journal of Rheology, vol. 42, no. 5, pp. 1095–1119, 1998.

[134] M. Simunovic, E. Evergren, I. Golushko, C. Prévost, H.-F. Renard,

L. Johannes, H. T. McMahon, V. Lorman, G. A. Voth, and P. Bassereau,

146



Bibliography

“How curvature-generating proteins build scaffolds on membrane nan-

otubes,” Proceedings of the National Academy of Sciences, vol. 113,

no. 40, pp. 11226–11231, 2016.

[135] M. Rahimi and M. Arroyo, “Shape dynamics, lipid hydrodynamics, and

the complex viscoelasticity of bilayer membranes,” Physical review E,

vol. 86, no. 1, p. 011932, 2012.

[136] F. Campelo and A. Hernández-Machado, “Model for curvature-driven

pearling instability in membranes,” Physical review letters, vol. 99, no. 8,

p. 088101, 2007.

[137] I. Tsafrir, D. Sagi, T. Arzi, M.-A. Guedeau-Boudeville, V. Frette,

D. Kandel, and J. Stavans, “Pearling instabilities of membrane tubes

with anchored polymers,” Physical review letters, vol. 86, no. 6, p. 1138,

2001.

[138] M. Simunovic and G. A. Voth, “Membrane tension controls the assembly

of curvature-generating proteins,” Nature communications, vol. 6, no. 1,

pp. 1–8, 2015.

[139] C. Prévost, F.-C. Tsai, P. Bassereau, and M. Simunovic, “Pulling mem-

brane nanotubes from giant unilamellar vesicles,” JoVE (Journal of Vi-

sualized Experiments), no. 130, p. e56086, 2017.

[140] M. Simunovic, C. Mim, T. C. Marlovits, G. Resch, V. M. Unger, and

G. A. Voth, “Protein-mediated transformation of lipid vesicles into tubu-

lar networks,” Biophysical journal, vol. 105, no. 3, pp. 711–719, 2013.

[141] G. S. Ayton, E. Lyman, V. Krishna, R. D. Swenson, C. Mim, V. M.

Unger, and G. A. Voth, “New insights into bar domain-induced mem-

brane remodeling,” Biophysical journal, vol. 97, no. 6, pp. 1616–1625,

2009.

147



[142] I. Raote, M. Chabanon, N. Walani, M. Arroyo, M. F. Garcia-Parajo,

V. Malhotra, and F. Campelo, “A physical mechanism of tango1-

mediated bulky cargo export,” Elife, vol. 9, p. e59426, 2020.

[143] R. Capovilla and J. Guven, “Stresses in lipid membranes,” Journal of

Physics A: Mathematical and General, vol. 35, pp. 6233–6247, July 2002.


	Abstract
	Contents
	List of Figures
	Introduction
	Isotropically curved proteins
	A model for the mechanics of lipid membranes and intrinsically-curved proteins
	Setup, Kinematics and Balance Laws
	Energetics, dissipation and power input
	Governing equations
	Axisymmetric formulation

	Numerical approximation
	Numerical experiments
	Selection of parameters
	Curvature sensing and generation starting from a prolate vesicle
	Sensing on a tube and shape stabilization
	Bud formation and tension-induced dissolution
	Two alternative models of membrane-protein interaction

	Summary

	Elongated and curved proteins
	 Ordering of proteins on a plane: a density-dependence phase transition
	Mean field approximation
	Excluded area for two ellipses
	Optimizing the orientational distribution
	Free-energy landscapes on planar surfaces

	 Protein self-organization based on curved surfaces
	Accounting for the bending energy and membrane curvatue
	Optimizing 
	Free energy landscapes on curved surfaces
	Coexistence of isotropic and nematic phases

	Dynamic of BAR proteins and curved membranes
	Experimental setup

	Modeling the dynamical interplay between deformable membranes and elongated and curved proteins
	Modeling the state prior to protein exposure
	Modeling the protein-membrane interaction dynamics
	Free-energy of the elongated and curved proteins on a membrane

	 Results and discussion
	Selection of parameters
	Time-scales
	Simulation protocol for protein-membrane interaction
	Mean-filed theory supports coexistence of spheres and cylinders in dynamical structures. 
	Dynamics: simulations and experiments

	Summary and future work
	
	Stress Vectors
	Stability Analysis

	Bibliography


