
UNIVERSITAT POLITÉCNICA DE CATALUNYA
ESCOLA TÉCNICA SUPERIOR D'ENGINYERS

DE CAMINS, CANALS I PORTS

DEPARTAMENT DE MATEMÀTICA APLICADA III

ARBITRARY LAGRANGIAN-EULERIAN FORMULATION
OF QUASISTATIC NONLINEAR PROBLEMS

ANTONIO RODRÍGUEZ FERRAN

ADVISOR: ANTONIO HUERTA CEREZUELA

BARCELONA, JULY 1996

-r POD r*»1!

UNIVERSITAT POLITÈCNICA DE CATALUNYA
ESCOLA TÈCNICA SUPERIOR D'ENGINYERS

DE CAMINS, CANALS I PORTS

UNIVERSITAT
POLITÈCNICA
°E CATALUNYA

DEPARTAMENT DE MATEMÀTICA APLICADA III

ARBITRARY LAGRANGIAN-EULERIAN FORMULATION
OF QUASISTATIC NONLINEAR PROBLEMS

by

ANTONIO RODRIGUEZ FERRAN

t¡w<s™Kw.,,cW¡u^f

ADVISOR: ANTONIO HUERTA CEREZUELA

BARCELONA, JULY 1996

A l'Agnès

ACKNOWLEDGEMENTS

I want to express my gratitude and acknowledgement to all the people who, in one way

or another, have helped me during this work:

Antonio Huerta, my thesis advisor, for his guidance, for the many hours he dedicated to me

and for his permanent encouragement; Manuel Casteleiro, who offered me the chance to join

in teaching and research tasks; Pedro Díez, for all the time we spent discussing about our

theses; Pep Sarrate and Nuria Montolío, for their continuous help, especially in my relation

with computers; Miguel Ángel Bretones, who is always ready to help -no matter how busy

he is with his own things-, for his enthusiastic cooperation; Juanjo Egozcue and the people

of the Departament de Matemàtica Aplicada III (DMA3) and the Escola Tècnica Superior

d'Enginyers de Camins, Canals i Ports (ETSECCPB), for the good athmosphere; Ramon

Codina and Carlos Garcia Garino, for fruitful discussions; Jean Doñea, Folco Casadei and

Pierre Pegón, from the Joint Research Centre of the European Commission (Ispra), for

their most interesting comments and remarks and their accessibility; Alain Millard and

Lionel Bohar, from the Commissariat à l'Energie Atomique (France), for all their help with

CASTEM 2000; Raúl Giménez, for an excellent work with the drawings; the ETSECCPB,

the DMA3, the Universitat Politècnica de Catalunya, the Human Capital and Mobility

ERB-4050-PL-94-1116 and DGICYT PB94-1200, for their financial support.

All my family, for all the support and patience over these years; my parents, for their per-

manent contribution to my education and well-being; my wife, Agnès, for her cooperation,

encouragement, patience and love.

CONTENTS

1. Introduction l

1.1 Scope and objectives 1

1.2 Contents 4

2. An introduction to a useful tool for research:
object-oriented codes 7

2.1 Preliminaries 7

2.2 Basic features of object-oriented codes 9

2.3 An object-oriented code: CASTEM 2000 11

2.4 CASTEM 2000, a useful tool for research ,.. 12

3. Nonlinear equation solvers and Lagrange multipliers 17

3.1 Introduction 17

3.2 Preliminaries 19

3.3 Newton-Raphson methods 21

3.4 The Quasi-Newton family 24

5.4.1 Introduction 24

3.4.2 Rank-two Quasi-Newton methods: DFP and BFGS 26

3.4.3 Rank-one Quasi-Newton methods: Broyden 31

3.4.4 Secant-Newton methods 39

il _ Contents

3.5 Numerical examples 43

3.5.1 Introduction 43

3.5.2 Tesi SWELL 45

3.5.3 Test THERMAL 47

3.5.4 Tesf TWO HOLES 53

3.5.5 Tesi BRIDGE 58

3.6 Concluding remarks 63

4. Two stress update algorithms for large strain
solid mechanics 67

4.1 Introduction 67

4.2 Large strain solid mechanics in convected frames 68

4.2.1 Introductory remarks 68

4.2.2 Kinematics 69

4.2.3 The dragging-along process 71

4.2.4 The strain and rate-of-deformation tensors 73

4.2.5 The stress tensor 75

.4.2.6 The governing equations 75

4.3 Two stress update algorithms for large strains 77

4.3.1 Introductory remarks 77

4.3.2 Two stress update algorithms 77

4.3.3 Error analysis of the algorithms 82

4.3.4 The strain increment and the midpoint rule 85

4.4 Numerical implementation 87

4.4.1 From convected frames to Cartesian coordinates 87

4.4.2 Implementation in a small-strain code 92

Contents ———. III

4.5 Numerical examples 9/

4.5.1 Introduction 97

4.5.2 Simple shear 97

•4.5.3 Uniaxial extension 106

4.5.4 Extension and compression 110

4.5.5 Dilatation 115

4.5.6 Extension and rotation 118

4.5.7 Test NECKING 126

4.5.5 Tesi SHELL 128

4.6 Concluding remarks 133

4. A The midstep material com ponents of the modulus tensor 134

4.B Stress update for shear-free deformation paths 135

5. Arbitrary Lagrangian-Eulerian quasistatic analysis 139

5.1 Introduction 139

5.2 Basic ALE equations 141

5.2.1 ALE kinematics 141

5.2.2 ALE transient analysis 147

5.2.5 ALE quasistatic analysis 150

5.2.4 Finite element discretization 153

5.3 State-of-the-art in ALE stress update 154

5.3.1 Preliminaries 154

5.3.2 Literature review 156

5.4 ALE stress update in quasistatic analysis 160

5.4.1 Preliminaries 160

5.4.2 Algorithm 1: Lax-Wendroff update 164

IV ' — . Contents

5.4.3 Algorithm 2: Godunov-like update 167

5.4.4 Algorithm 3: simple interpolation procedure 170

5.4.5 Limitations on the time-step 173

5.5 Numerical examples 175

5.5.J Test HILL 175

5.5.2 Test NECKING 178

5.5.3 Test COINING 183

5.6 Concluding remarks 188

6. Conclusions 189

A. A review of nonlinear equation solvers 193

B. The two stress update algorithms in
Cartesian coordinates 243

C. A note on a numerical benchmark test:
an axisymmetric shell under ring loads 261

References 275

Chapter 1

INTRODUCTION

1.1 Scope and objectives

Many processes of practical interest in engineering and industry involve large defor-

mations, and a combination of sophisticated nonlinear theories, advanced numerical

methods and computer resources are needed for their adequate numerical modelling.

Large deformations can occur during the manufacturing stage. This is the case, for

instance, with various techniques for the forming of metals, polymers and other materi-

als (forging, rolling, extrusion, drawing, sheet-metal forming, injection molding, among

others), see NUMIFORM (1995). It is also possible that a structure or component

undergoes large strains under normal working conditions. Some examples are the struc-

tural behaviour of box girder bridges and other relatively slender structures, or the

large elastic deformations of rubber or rubber-like materials used in shock-absorbers,

seals or vibration-isolation bearings. Finally, large deformations can also be associated

to exceptional/accidental loads: impact problems, brittle and ductile fracture, buckling

and post-buckling response of flexible structures (Crisfield, 1991).

A good understanding of these large deformations processes is essential in engineering

practice. It allows, for instance, to improve the design of metal forming processes, re-

sulting in a higher quality of manufactured parts and a longer working life for the tools;

Introduction Chapter 1

to assess the functionality of a component or structure; to predict the ultimate load

carrying capacity and the post-peak behaviour of structures, thus evaluating structural

safety,...

This required knowledge was traditionally acquired through experience, empirical

rules and experimental testing. A standard approach for studies of deformation in

metal forming processes, for instance, was the use of grid networks affixed to the piece

(either on the surface or in the interior, a difficult task that involves cutting the billet

in half, affixing the grid network and putting the two parts back together), see Dieter

(1976). During the last decades, however, numerical simulation has received increased

attention and is nowadays an essential tool for the modelling of complex phenomena in

many engineering disciplines (civil, mechanical, aeronautical, chemical,...).

Large deformation processes are geometrically nonlinear by nature, because the snape

of the deformed body is unknown a priori. Moreover, many engineering materials (steel,

aluminium and other metals, concrete and other geomaterials, ...) show a nonlinear

material behaviour under large strains. As a consequence, a geometrically and mate-

rially nonlinear problems results. This means that classical linear theories —such as

infinitesimal elasticity— are not valid, and that more advanced, nonlinear theories

are needed. The development of nonlinear theories that account for large strains and

increasingly complex nonlinear material responses has been one of the main concerns

of continuum mechanics in the second half of this century. Two basic issues of

nonlinear continuum mechanics are large strain kinematics (Truesdell & Toupin, 1960)

and large-strain constitutive theories, which originated as extensions of the small-strain

counterparts, see for instance Khan & Huang (1995).

If a nonlinear theory is used, the governing equations of continuum mechanics are

nonlinear partial differential equations (PDEs). An analytical solution to these PDEs

is typically not available, and an approximate solution must be obtained by means

of numerical methods. First, a discretization technique, such as finite differences,

boundary elements or, most notably, the finite element method (Hughes, 1987; Bathe,

1982; Zienkiewicz & Taylor, 1991) is employed to transform the nonlinear PDEs into

nonlinear systems of algebraic equations. An analytical solution to these nonlinear sys-

Section 1.1 Scope and objectives

terns is also commonly unavailable, and it must be approximated by means of iterative

nonlinear solvers, (Orthega o£ Rheinboldt, 1970; Dennis & Schnabel, 1983).

The effective implementation, testing and application of these numerical algorithms

relies heavily in the use of appropriate computer resources. The growing complexity

of the numerical simulations performed (from 2-D to 3-D; from tens or hundreds of de-

grees of freedom to tens of thousands, or even several millions;...) has been parallel to

the rapid development in computing power, both in terms of hardware (faster, cheaper

computers) and software (better, more robust codes).

In fact, the succesful numerical simulation of a large deformation process is only possi-

ble with the adequate combination of nonlinear continuum mechanics, numerical

methods and computer science, which can be regarded as the three basic pillars of

nonlinear computational mechanics. As remarked by Oden (1970), "In the mid-

dle ground [between computational sciences and computational mechanics] lies a fertile

and potentially important field: numerical analysis of nonlinear continua. It represents

a marriage of modern theories of continuous media and modern methods of numerical

analysis, so that, with the aid of electronic computation, quantitative information on the

nonlinear behavior of solid and structures can be obtained. " (Nonlinear) computational

mechanics is clearly an interdisciplinary field which involves engineers, mathematicians

and physicists, among others.

In many large deformation processes in solid mechanics, inertia forces are negligi-

ble when compared to the other forces acting on the body, and the process is called

quasistatic. This is the situation, for example, with some forming processes (NUMI-

FORM, 1995). Although accelerations might not be small in absolute terms, internal

forces associated to deformation are much larger then inertia forces, and the latter can

be disregarded.

These quasistatic processes involve large strains and large boundary motion, so an

adaptive technique is needed. In this work, the arbitrary Lagrangian-Eulerian (ALE)

formulation is employed. The ALE formulation originated in fluid dynamics for tran-

sient problems, see Doñea (1983). The basic objective of this work is to offer a clear

adaptation of the ALE formulation to quasistatic problems, and to present a

Introduction Chapter 1

methodology for ALE quasistatic analysis.

Many approaches can be found in the literature for the statement and numerical time-

integration of large strain constitutive equations. There is little information, however,

on the accuracy of the numerical algorithms. Another goal of this work is to present

a general strategy for the a-priori analysis of the accuracy of stress update

algorithms.

Two issues which are basic in nonlinear computational mechanics in general, and in

ALE quasistatic analysis in particular, are the choice of a programming environment

and the solution of nonlinear systems of algebraic equations.

An object-oriented code (CASTEM 2000) has been employed as the basic research

tool in this work, (Verpeaux & Millard, 1988). In these codes, information is stored

and manipulated as objects which directly represent the entities required in a finite

element computation. Throughout this work, it will be attempted to illustrate the

suitability of object-oriented codes for research tasks.

CASTEM 2000 uses the Lagrange-multiplier technique to impose linear constraints

(associated to boundary conditions) to the nonlinear system of equilibrium equations.

This technique, which is not standard in nonlinear computational mechanics, see Bathe

(1982) and Crisfield (1991), is well adapted to the object-oriented approach. In such a

situation, another goal of this work is to adapt nonlinear equation solvers to the

object-oriented, Lagrange-multiplier context.

1.2 Contents

Some basic notions about object-oriented codes in general, and CASTEM 2000 in par-

ticular, can be found in Chapter 2. The applicability of object-oriented codes for both

real engineering computations and research tasks is illustrated with various examples.

The adaptation of the most widely used nonlinear solvers (Newton-Raphson meth-

ods, Quasi-Newton methods, Secant-Newton methods) to CASTEM 2000 (that is, to an

object-oriented code and Lagrange multipliers) is presented in Chapter 3. Three topics

Section 1.2 Contents

are covered: algorithmic development, convergence analysis and numerical implemen-

tation. Some tests are employed to assess the effectiveness and relative performance of

the different algorithms.

Two simple stress update algorithms for large strains are discussed in Chapter 4.

The two algorithms, originally developed in a fixed Cartesian frame (Bathe et a/., 1975;

Pinsky, et ai., 1983), are presented here with a convected frame formalism. The use

of convected frames enables a unified presentation of both algorithms and, more im-

portantly, the development of a general strategy for the a-priori accuracy analysis of

algorithms for the numerical time-integration of nonlinear constitutive equations. Some

implementation aspects are also discussed.

Chapter 5 is dedicated to the ALE analysis of quasistatic processes. It has been

attempted to offer a unified presentation of the ALE formulation of quasistatic and

transient nonlinear solid mechanics. The nonlinear systems of equations arising from

the finite element discretization of the momentum balance are solved with the methods

of Chapter 3. The material terms in the ALE constitutive equation are handled with

the stress update algorithms of Chapter 4. Various explicit algorithms are employed for

the treatment of the convective terms in the ALE constitutive equation.

It can be seen from this outline that the ALE analysis of quasistatic problems has

served as motivation for research in more fundamental areas of numerical analysis and

computational mechanics, such as the solution of nonlinear systems of equations and

the time-integration of nonlinear constitutive equations. In fact, some of the results of

this work apply to other problems (apart from ALE quasistatic analysis), as illustrated

with the numerical examples at the end of each Chapter. In exchange for this global

approach to the problem, some relevant issues for more realistic simulations (a general

ALE remeshing algorithm, friction and lubrification in the piece-tool interface,...) are

not addressed here.

Due to the various topics covered, there is a state-of-the-arf review within each Chap-

ter, instead of a general overview in a separate Chapter. For the same reason, some

concluding remarks are made at the end of each Chapter. These conclusions are sum-

marized in Chapter 6, which also outlines the future research.

Introduction Chapter 1

Chapter 2

AN INTRODUCTION TO A USEFUL TOOL

FOR RESEARCH: OBJECT-ORIENTED

CODES

2.1 Preliminaries

The Finite Element Method (FEM) is nowadays regarded as one of the most power-

ful and versatile techniques for the numerical solution of partial differential equations,

(Bathe, 1982; Hughes, 1987; Zienkiewicz & Taylor, 1991; Zienkiewicz & Morgan, 1983;

Oñate, 1991). It is a basic tool for the numerical simulation of a vast range of phenomena

in the fields of science and engineering.

A global finite element computation can be regarded as a sequence of elementary

processes -which are relatively simple but, at the same time, general enough so as to

be useful in different situations-. The various stages in a computation (for a standard

elastic analysis: input, mesh generation, evaluation of elemental stiffness matrices and

assembly of the global stiffness matrix, evaluation of the load vector, solution of the lin-

ear system of equations, postprocess) correspond to one or several of these elementary

processes.

8 An introduction to a useful tool for research: object-oriented codes Chapter 2

Conventional codes are designed to solve a certain range of problems (2-D elastic

analysis, for instance) and it is sometimes cumbersome to modify them to extend their

applicability. The main cause, (Dubois-Pèlerin et a/., 1992; Miller 1991) is that they

are function-oriented (or procedure-oriented). In conventional codes, the elementary

processes are carried out by subroutines written in a "classical" programming language:

C, Pascal or, in most cases, FORTRAN. Each of these subroutines performs a given

function. Emphasis is put on functions, and the variables (i.e. the data) play a sec-

ondary role. In fact, a conventional code is basically a sequence of calls to functions

that perform operations on the variables.

The use of subroutines allows for a certain modularity of the code, in exchange for a

careful definition of information transfer between the different modules. Since the code

is organized as a sequence of functions, it is typically not easy in large codes to keep

track of a variable.

As remarked by Dubois-Pèlerin et al. (1992), maintenance and extension of large

function-oriented codes is a very difficult task, because of two major drawbacks: se-

quenciality of actions and weak data types (or data structures).

Sequenciality of actions. A conventional code has a predefined information flow pat-

tern -represented by the "main" module-, which is not easy to change. Each function

(i.e. each subroutine) is designed to operate at a given point in the flowchart. Typically

it assumes a certain current state of the problem variables, so it cannot be moved to

another point in the flowchart.

Weak data types. A conventional code uses very rudimentary variables: scalars,

arrays,... As a consequence, all the required quantities in a finite element analysis must

be translated into such variables. The finite element mesh, for instance, is represented

by a matrix of nodal coordinates and a connectivity matrix (which, in fact, are han-

dled as arrays of numbers, not as true matrices). This translation process is often a

tedious and error-prone task. It forces the programmer to concentrate on the technical

details, rather than in the basic steps required to perform the analysis. Moreover, these

rudimentary variables have very limited information and capabilities.

Section 2.2 Basic features of object-oriented codes

As a result, according to Dubois-Pèlerin et al. (1992), "a procedure handles data with-

out really controlling them. The control is external", thus limiting procedure-oriented

codes.

In an attempt to overcome the limitations of conventional codes, the first finite element

object-oriented codes (OOC) have appeared recently, (Miller, 1991; Dubois-Pèlerin et

al, 1992; Mackie, 1992; Galindo, 1994). The aim is a greater flexibility of the code,

both from the user's and the programmer's viewpoint: the range of applicability should

be as large as possible, and further modification and improvement of the code should

be a relatively simple task.

The essential feature of the object-oriented codes is the storage and manipulation of

information as objects which are of a more complex nature than variables in function-

oriented codes. The basic idea is that higher complexity means more information, so

the manipulation of these objects is an easier task than the manipulation of variables

in a conventional code.

In a finite element object-oriented code, these objects directly represent the entities

needed to solve the problem. It is no longer necessary for the user to translate them

into more rudimentary variables. In computational mechanics, the required objects

are nodes, meshes, nodal fields (displacements or loads), fields-by-element (strains or

stresses), stiffness and mass matrices,.. .In an OOC, for instance, the mesh is an object

in itself, which can be manipulated as an entity: it may be plotted, deformed by a dis-

placement field, support a certain finite element formulation (plane stress, plane strain,

plate, shell,...).

2.2 Basic features of object-oriented codes

In this Section, some basic concepts about object-oriented codes are briefly reviewed.

More information can be found in Miller (1991), Dubois-Pèlerin et al. (1992), Mackie

(1992), Galindo (1994) and Bretones et al. (1995).

An object is characterized by a set of data (the object's attributes) and a set of asso-

ciated operations (the object's methods), see Dubois-Pèlerin et al. (1992). For instance,

10 An introduction to a useful tool for research: object-oriented codes Chapter 2

a Rectangle object can be defined with the attributes WIDTH, HEIGHT, X-COORDINATE

OF CENTRE, Y-COORDINATE OF CENTRE and with methods for initializing it, computing

its area or translating it (Galindo, 1994).

In an OOC, an object communicates with other objects by sending messages to them.

When an object receives a message, it performs the requested operation (which must

be one of the object's methods). This operation is carried out by accessing the object's

attributes. In this manner, all the information about an object is enclosed within the

object itself, and can only be reached by sending a message to the object. This feature is

called data encapsulation (Dubois-Pèlerin et al, 1992; Miller, 1991; Galindo, 1994),

and ensures that information is not scattered all over the code in various arrays.

Objects of the same kind are grouped into classes. Each object is then an instance

(i.e. a "materialization") of its class. The classes are organized in a class hierarchy, which

provides an inheritance mechanism. Inheritance allows the sharing of attributes and

methods that are common to more than one class, thus precluding unnecessary code

duplications. For example, the classes of symmetric, skew-symmetric, banded and di-

agonal matrices can all be defined as subclasses of the superclass of matrices. The

attributes and methods that are general to all matrices are directly inherited by the

subclasses, and only the new attributes and methods specific to each subclass must be

defined. •

Another important feature of OOC is polymorphism, which allows objects of differ-

ent classes to react in a different, appropriate manner to the same message. For instance,

the message "compute your own area" can be sent to objects of class Rectangle, Circle

or Triangle, and is adequately handled by each of these classes.

The basic features of an object-oriented code are summarized in Box 2.1.

Section 2.3 An object-oriented code: CASTEM 2000 11

• Object: a set of attributes and methods.

• Class: group of objects of the same kind.

• Objects intercommunicate by sending messages to each other.

• Data encapsulation: all infomation is enclosed within the object. Prevents

scattering of information.

• Inheritance: common attributes and methods can be shared. Avoids code

duplications.

• Polymorphism: the same message is correctly understood by objects of

different classes. Provides flexibility.

Box 2.1 Basic features of object-oriented codes

2.3 An object-oriented code: CASTEM 2000

An object-oriented code, CASTEM 2000, is used as the basic research tool in this

work. This code has been developed by the Laboratoire d'Analyse Mécanique des Struc-

tures (L. A.M.S.) of the Commissariat à l'Énergie'Atomique (France) and is basically

dedicated to the thermo-mechanical analysis of solids and structures, see Verpeaux &

Millard (1988) or Bretones et d. (1995).

In CASTEM 2000, elementary processes of a finite element computation are repre-

sented by means of operators, which manipulate one or more existing objects to create

a new object, see L.A.M.S. (1988). The task of sending messages to the objects is carried

out by these operators, not by the objects themselves. The code may then be regarded

as a programming environment, where sentences of GIBIANE, an internal interactive

object-oriented language, are employed to carry out the analysis. These GIBIANE

sentences have the form

new-object = OPERATOR old-object-l old_object_2... ; (2.1)

12 . An introduction to a useful tool for research: object-oriented codes Chapter 2

For instance, in the GIBIANE sentence

line = DROITE 10 pointl point2; (2.2)

two existing objects of class Point are manipulated with operator DROITE to create a

new object of class Mesh, made up of 10 elements.

More than 400 operators are currently available. Some fundamental operators are

SURFACE (to generate 2-D meshes), RIGIDITE (to build stiffness matrices) and RESOUDRE

(to solve linear systems of equations). As an example of how a problem is solved with

GASTEM 2000, the GIBIANE file for a simple 2-D elastic analysis is shown in Box 2.2.

An object is defined in GASTEM 2000 by its name, its type (or class) and its value.

The name of the object is chosen by the user and allows its manipulation with the

GIBIANE language. The type or class of an object refers to a certain data structure.

Some of the available classes of objects are: Integer, Real, Point, Mesh, Model, Ma-

terial, Stiffness matrix, Nodal field, Field-by-element, The value of an

object enables the access to the information it contains.

Thus, elementary processes in a FEM analysis are represented by operators, and

the required quantities are represented by objects. In such an environment, the

user/developer can concentrate on what to do (i.e. which steps and quantities are

needed for the analysis), rather than worry about ho'1" to do it.

A very useful facility provided by GASTEM 2000 is that a set of sentences of the type

(2.1) can be defined as a metaoperator (Soria & Pegón, 1992; Bretones et aï., 1995),

which is subsequently treated as a new operator.

2.4 CASTEM 2000, a useful tool for research

All these features make CASTEM 2000 a valid tool for research, teaching and engi-

neering applications. It can be employed for standard finite element analysis, by using

the existing objects and operators, as done in the example in Box 2.2. Such simple

examples can also be used to teach the FEM. The object-oriented environment allows

the student to focus on the basic concepts.

Section 2.4 GASTEM 2000, a useful tool for research . 13

The code can also be employed for real engineering analysis. To illustrate this point,

the structural analysis of a bridge is shown in Subsection 3.5.5. Various firms currently

use the commercial version of the code.

More relevant to this work is the fact that the code is also a valid tool to implement

and test new developments, by defining new metaoperators. In this work, new metaop-

erators have been written for the solution of nonlinear systems of equations (Chapter

3), for the time-integration of the constitutive equation in large strain solid mechanics

(Chapter 4) and for ALE quasistatic analysis -remeshing and stress transport- (Chapter

5).

Various workteams currently cooperate in the extension of CASTEM 2000 to solve

new problems (L.A.M.S. ; Laboratoire de Mécanique et Technologie, Cachan (France);

Institute for Systems and Safety of the Joint Research Centre of the European Commis-

sion, Ispra (Italy); Departament de Matemàtica Aplicada III, Universitat Politècnica

de Catalunya (Spain)), see for instance Pegón (1993) and Bretones et al. (1995). The

independency between operators and the sharing of new metaoperators by the various

groups greatly facilitates this common task. Extendibility is enabled by the object-

oriented nature of the code. For instance, it has been recently used to simulate sound

propagation by solving the Helmholtz equation, (Ortiz, 1993), to test artificial bound-

ary conditions for semiir%iite domains (Ausaverri, 1993), and to study the formation

of plastic hinges in frames (Bretones, 1993).

.14 _ An introduction to a useful tool for research: object-oriented codes Chapter 2

* PLANE STRESS ANALYSIS OF A STEEL SHEET WITH
* A CLAMPED SIDE AND SUBJECTED TO A CONCENTRATED LOAD

* Setting of general options: two-dimensional problem; plane stress

* analysis; bilinear quadrilateral elements; graphics in X-Windows
*

OPTION DIMENSION 2 MODE PLAN CONTRAINTE ELEMENT QÜA4 TRACE X
*

* Mesh generation

* 1) Definition of the vertexes pi, p2, p3 and p4 of the sheet

* 2) Definition, via operator DROITE, of lines 11, 12, 13 and 14

* 3) Mesh generation with operator DALLER

* 4) Mesh display with operator TRACE
*

pi = 0. 0. ; p2 - 1. 0. ; p3 = 1. 0.5 ; p4 = 0. 0 . 5 ;

11 = pi DROITE 5 p2 ; 12 = p2 DROITE 5 p3 ;

13 = p3 DROITE 5 p4 ; 14 = p4 DROITE 5 pi ;

meshl = DALLER 11 12 13 14 ;

TITRE"'Mesh' ; TRACER meshl ;

*

* Model and material
* 1) Definition of mechanical model with operator MODE

* 2) Definition of material parameters with operator MATE
*

modi = MODE meshl MECANIQUE ELASTIQUE ISOTROPE ;

mati = MATE modi YOUNG 2.1e7 NU 0.3 RHO 7.85 ;

Notes:

- Lines beginning with * are comments

- For code lines, uppercase letters have been employed for operators and lowercase

letters for objects

Box 2.2 GIBIANE file for a 2-D elastic analysis

Section 2.4 GASTEM 2000, a useful tool for research 15

* Boundary conditions

* 1) Concentrated load in point p3 via operator FORCE

* 2) Restrained displacements in side 11 via operator BLOQUER
*

loadS = FORCE FX 5000. FY 3000. p3 ;

bel » BLOQUER DEPLACEMENT 11 ;

*

* Stiffness matrix
* 1) Internal stiffness matrix with operator RIGIDITE

* 2) Assembly of internal and boundary stiffnesses with operator ET
*

stiffl = RIGIDITE modi matl ;

stiff2 = stiffl ET bel ;
*

* Solver

* 1) Solution of linear system with operator RESOUDRE
*

displ = RESOUDRE stiff2 loadS ;

*

* Postprocess and results

* 1) Stress with operator SIGMA

* 2) Von Mises stress with operator VMISES

* 3) Display with operator TRACE
*

tensl = SIGMA modi matl despl ;

vmisl = VMISES modi tensl ;

TITRE 'Von Mises stress ' ; TRACE supl modi vmisl ;

Box 2.2 GIBIANE file for a 2-D elastic analysis (continued)

GASTEM 2000 employs the Lagrange-multiplier technique to impose the boundary

conditions, see Chapter 3.

16 An introduction to a useful tool for research: object-oriented codes Chapter 2

Chapter 3

NONLINEAR EQUATION SOLVERS AND

LAGRANGE MULTIPLIERS

3.1 Introduction

If the Finite Element Method (or any other discretization technique) is employed, a

quasistatic problem in nonlinear mechanics is transformed into a nonlinear system of

equations, complemented with some constraints that represent the boundary conditions.

Many useful boundary conditions have the form of linear constraints on the system's un-

knowns: restrained or prescribed displacements, skewed supports, symmetric or cyclic

boundary conditions, rigid inclusions,...

The nonlinear system of equations, which expresses static equilibrium, is typically

solved with an incremental-iterative strategy (Bathe, 1982; Crisfield, 1991), based on

the linearization of the nonlinear system. Various algorithms can be found in the litera-

ture to impose the linear constraints into the linear system to be solved at each iteration.

For one-point constraints, involving only one degree of freedom (d.o.f.), the implementa-

tion is often performed directly by adjusting rows and columns, see for instance Crisfield

(1991). This procedure, however, is not readily extended to the general case of multiple

multipoint constraints, with several d.o.f. involved in each constraint (and, eventually,

18 — — Nonlinear equation solvers and Lagrange multipliers Chapter 3

some d.o.f. shared by more them one constraint). On the other hand, the Lagrange-

multiplier technique (Zienkiewicz & Taylor, 1991; Barlow, 1982) is general, but has the

drawback that the dimension of the system of equations is increased.

To remedy this situation, more advanced algorithms have appeared recently (Barlow,

1982; Shephard, 1984; Webb, 1990; Schreyer & Parsons, 1995). They are based on

transforming the original system by imposing the constraints. The common goal is to

obtain symmetric and positive definite (SPD) stiffness matrices (when the nature of the

problem allows, of course) and to maintain or reduce by the number of constraints the

dimension of the problem.

As commented in Chapter 2, an object-oriented code is employed as the program-

ming environment in this work. One of the requirements of such codes is that the

various objects (which directly represent the quantities needed for the analysis) must

be independent from one another. In such a context, the Lagrange-multiplier technique

is a natural way to impose linear constraints. Indeed, as shown in Section 3.3, the

stiffness and the linear constraints are then represented by two distinct objects: the

stiffness matrix K and the constraint matrix A. These two objects are combined to

form an enlarged matrix, but the original stiffness matrix K is not transformed in any

way, contrary to the previously cited methods. If different sets of constraints must be

implemented for the same problem, it suffices to build the corresponding constraint

matrices A, A', A",... In view of this situation, and in spite of the increase in the

dimension of the problem, the Lagrange-multiplier technique is chosen here to impose

linear constraints.

The goal of this Chapter is to show how various nonlinear equation solvers can be

adapted to handle linear constraints imposed via Lagrange multipliers (Vila et al., 1995;

Rodríguez-Ferran et al., 1996). It is shown that the adaptation is rather straightforward

for Newton-Raphson methods (Section 3.3), but more involved for Quasi-Newton and

Secant-Newton methods (Section 3.4). Emphasis is put on some issues which are spe-

cific to the Lagrange-multiplier context. A classical presentation of the different solvers

can be found in Appendix A.

Section 3.2 Preliminaries -- 19

3.2 Preliminaries

The notation of nonlinear mechanics will be employed here to state the problem. The

basic ideas and the algorithms, however, can be extended to other nonlinear problems.

After finite element discretization, (Zienkiewicz &: Taylor, 1991), static equilibrium

in nonlinear mechanics is typically expressed as a nonlinear system of n equations com-

plemented with m linear constraints

*•(«) = /mt(«) - /ext + /reac = 0 (3.1a)

Au = b (3.16)

In the equilibrium equation (3. la), u is the vector of nodal displacements, /int(
w) is

vector of internal forces, which depends nonlinearly on displacements, /ext is the vector

of applied external forces, /reac is the vector of reaction forces and r(tt) is the vector of

residual (off-balance) forces, which are null if equilibrium is verified. For simplicity, it

is assumed that the external loads /ext are independent from displacements. Equation

(3.1b) represents the linear constraints, with A an m x n rectangular matrix and 6 a

vector with the prescribed values of the constraints. It allows to represent the most fre-

quent boundary conditions: prescribed displacements (that is, «,- = 6,- for i = 1 . . . m),

skewed supports, rigid inclusions, periodic or symmetric boundary conditions (see Sec-

tion 3.5) or, more generally, any equality constraint between the degrees of freedom of

the problem. The reaction forces /reac in Eq. (3. la) are necessary so that the constraints

(3.1b) are verified.

Remark 3.1: In Eq. (3. la), /ext represents only the known applied loads, so

the reaction forces /reac must be written explicitly in the equilibrium equation.

A different and common choice, (Bathe, 1982; Crisfield, 1991), however, is to

write simply

K«) = /mt(«) - /ext = 0, (3.2)

and assume that some components of /ext are unknown a priori, because reac-

tions are included in /ext-

20 . . Nonlinear equation solvers and Lagrange multipliers Chapter 3

A standard approach to solve Eqs. (3.1) is to employ the constraints (3.1b) to re-

duce the order of the problem, from n to n — m. This reduction is typically performed

by transforming the tangent stiffness matrix and residual vector that arise from the

linearization of Eq. (3.la), (Bathe, 1982; Shephard, 1984; Crisfield, 1991).

Another possible approach is the Lagrange-multiplier technique, (Barlow, 1982;

Zienkiewicz & Taylor, 1991). In this case, the reaction forces are written as

/reac = A A, (3-3)

where T means transpose, A is a vector of m Lagrange multipliers (one per constraint),

and Eqs. (3.1) are rewritten as

!•!(«, A) = /int(u) - /ext + ATA = 0 1

ra(ti) = Au — 6 = 0 J

In Eq. (3.4), TÍ measures equilibrium, and ra measures compliance of the constraints.

These constraints are added to the nonlinear equations, and the Lagrange multipliers

A are added to the displacements u as unknowns. Equation (3.4) is then an enlarged

system of order n + m,

r(a?) = 0, (3.5)

where the notation x = (u, A) and r = (rx, ra) has been used. Thus, both displacements

and Lagrange multipliers are regarded as problem unknowns.

Remark 3.2: When the Lagrange-multiplier technique is employed, the dimen-

sion of the problem is increased (from n to n + m), Eq. (3.5). In exchange for

this disadvantage, Lagrange multipliers allow to implement general linear con-

straints, Eq. (3.1b), in a direct way. Note that handling linear constraints is

very simple for the simple case of m prescribed d.o.f. but becomes rather more

involved for multipoint constraints, see Bathe (1982). In fact, the imposition of

Section 3.3 Newton-Raphson methods , 21

general constraint relationships in finite element analyses is a topic of current

research, see Barlow (1982), Shephard (1984) Webb (1990), Schreyer & Parsons

(1995).

The basic goal of this Chapter is to show how various nonlinear solvers can be adapted

to solve Eq. (3.5) in an efficient way. The key idea is exploiting the partial linearity

of Eq. (3.4) (rx is linear with respect to A and ra is linear with respect to «). Thus,

whenever possible, the algorithms of the next Sections seek to work only with the dis-

placements u, which are the fundamental unknowns, and not with the enlarged vector

x.

3.3 Newton-Raphson methods

The nonlinear system (3.la) is typically solved with an incremental-iterative strategy,

(Bathe, 1982; Crisfield, 1991; Zienkiewicz & Taylor, 1991). The displacements u are

updated according to

nuk+l = nuk + 6uk+l, (3.6)

where n denotes instant tn
 nnd k is the iteration counter. If the full Newton-Raphson

method is employed, the iterative correction 8u*+1 is computed as

K(nuk}8uk+l = -r(nuk), (3.7)

where K(u} = dr/du = df-mi/du is the tangent stiffness matrix. This stiffness matrix

is singular, because constraints are not accounted for and rigid motions are not pre-

cluded. Various methods have been devised to impose the constraints (3.1b) into the

linear system (3.7), see Barlow (1982), Shephard (1984), Schreyer & Parsons (1995).

One common approach is to employ the constraints to write m dependent (or slave)

d.o.f. in terms of various independent (or master) d.o.f. The vector of displacements

is then split into three subvectors: slave d.o.f., master d.o.f. and unconstrained d.o.f.

22 Nonlinear equation solvers and. Lagrange multipliers Chapter 3

(i.e. unaffected by the constraints). By eliminating the slave d.o.f., the linear system

(3.7) is transformed into a system of order n — m

nKJ.6uk
F

+l = - "rf , (3.8)

where the subscript F denotes free d.o.f. (i.e. master and unconstrained d.o.f.) and
nKp is a regular matrix (except at limit points). Various strategies can be employed to

produce nKj? and "fp, see for instance Crisfield (1991), Shephard (1984), and will be

denoted here with the generic name of Transformation Method, to emphasize that

the singular linear system (3.7) is transformed into the regular system (3.8).

A very similar approach can be used if the Lagrange-multiplier technique is chosen to

impose boundary conditions. In this case, the iterative scheme is

nxk+1 = n (3.9)

that is, both displacements u (free and dependent d.o.f.) and Lagrange multipliers A

are updated. In analogy with Eq. (3.7), the iterative correction Sx +1 is obtained from

J(nxk)Sxk+l = -r(nxk), (3.10)

where J(x) = dr/dx is the Jacobian matrix. Recalling Eq. (3.4), the Jacobian matrix

can be expressed as

/du K(u) iT-,

O J

(3.11)

.dra/du dra/dX.

The key point of Eq. (3.11) is that the tangent stiffness matrix K(u] is the only vari-

able block-matrix in J(x), The rest of the block-matrices are constant, thus reflecting

that r(x) is partially linear. By employing Eq. (3.11), the linear system (3.10) can be

written explicitly as

rK(nuk)

0

-ri(nuk, nXk)

s\k+l

nfT text
n\k (3.12)

0

Section 3.3 Newton-Raphson methods 23

Equation (3.12) has various interesting features. As commented previously, the tan-

gent stiffness matrix K is singular, because it does not include the constraints. The

Jacobian matrix J, however, is regular, because the block-matrices A and A™ account

for both the linear constraints and the variation in reaction forces respectively. It can

be easily checked that, since constraints are linear, the residual ra is null after the

first iteration, so the correction in displacements must satisfy null boundary conditions,

A 8u, ~*~* = 0. As for reaction forces, both the current value at iteration k and the

iterative correction appear explicitly in Eq. (3.12). So, contrary to what happened in

Eq. (3.8), displacements and reactions are computed simultaneously.

Since the reaction forces are linear on the Lagrange multipliers, Eq. (3.3), the system

(3.12) can be rearranged into the more compact form, (Pegón &: Anthoine, 1994),

K(nuk) AT i f Suk+l >| f «/ext - n/fnt ï

(3.13)

A O J I Xk+1 J I 0 J

where total Lagrange multipliers nA + , and not the iterative correction nS\ + appear

in the vector of unknowns, so there is no need to update them. Note, however, that

equilibrium cannot be checked with the RHS in Eq. (3.13), because it does not include

reaction forces, so the full residual vector r^ is still needed for convergence control.

Moreover, the original formulation (3.12) allows for a more natural implementation of

Quasi-Newton and Secant-Newton methods, as shown in the next Section. For these

two reasons, Eq. (3.12) is preferred over Eq. (3.13).

To avoid the recomputation of the tangent stiffness matrix required by the full

Newton-Raphson method, various modifications have been classically employed, see

Crisfield (1991). For instance, in the modified Newton-Raphson method, the stiffness

matrix is computed just once per increment; in the initial stress method, the initial elas-

tic matrix is used throughout the analysis. With these modifications, the quadratic rate

of convergence of the full Newton-Raphson method is lost and only linear convergence

is achieved. These two methods can be adapted to a Lagrange-multiplier context in a

straightforward manner, simply by replacing nKk in the Jacobian matrix, Eq. (3.12),

with nK® or ®K respectively.

24 Nonlinear equation solvers and Lagrange multipliers Chapter 3

In conclusion, if a Newton-Raphson is employed in combination with the Lagrange-

multiplier technique, the corresponding stiffness matrix K is enlarged into a Jaco-

bian matrix J which accounts for both the linear constraints and the reaction forces,

Eq. (3.12), instead of transformed into the stiffness matrix -K"p, Eq. (3.8). It must be

remarked, however, that these two approaches are equivalent and lead to the same

solutions. Indeed, manipulating matrix K to get matrix Kp or enlarging it into ma-

trix J are two algebraically equivalent ways of imposing the linear constraints into the

nonlinear system.

3.4 The Quasi-Newton family

3.4.1 Introduction

The basic idea of (direct) Quasi-Newton methods is to employ secant approxima-

tions to the tangent stiffness matrix Kf which are easy to compute, (Dennis & Moré,

1977). By doing so, the stiffness matrix is neither recomputed from scratch at every

iteration (full Newton-Raphson method) nor kept constant for several iterations (mod-

ified Newton-Raphson methods), but updated in a simple manner. This results in a

good balance between computational cost per iteration and convergence properties: a

superlinear rate of convergence is obtained, see Dennis & Moré (1977).

The condition of "secant approximation" to the tangent stifnness matrix is expressed

by the so-called Quasi-Newton equation, (Dennis & Schnabel, 1983). If a Transforma-

tion Method is employed to impose the boundary conditions, this equation reads

Bfiu^rJ-r*-1, (3.14)

where B& is a secant approximation to the tangent stiffness matrix K^- Equation (3.14)

states that B^ must "pass through" the last two iterations (up-1,rp) and (ti|,rp).

From here on, the left superscripts denoting time are dropped to ease the notation.

For implementation purposes, inverse Quasi-Newton methods are often preferred,

(Matthies & Strang, 1979; Soria & Pegón, 1990). In this case, secant approximations

Section 3.4 The Quasi-Newton family _____ — _—. 25

Hp to the inverse of the tangent stiffness matrix are employed. An inverse version of

the Quasi-Newton equation, Eq. (3.14), is then employed.

Either for direct or inverse Quasi-Newton methods, the Quasi-Newton equation must

be complemented with some additional conditions to completely define Bp (direct QN)

or Hp (inverse QN). These additional requirements are characteristic of every particular

Quasi-Newton method. The final output is a simple update scheme of the form

B¡. = B¡rl+MJ¡ (3.15)

for direct Quasi-Newton methods or

H| = Hp~l + _V| (3.16)

for inverse Quasi-Newton methods, where Mp and NJ. are modification matrices of

low rank (typically, one or two). Two common choices for Bp (or Hp) are the tangent

stiffness matrix at the beginning of the increment or the initial elastic stiffness matrix

(or its inverses).

If the Quasi-Newton methods are used in combination with Lagrange multipliers,

then the natural approach is to approximate the Jacobian matrix J. The (direct)

Quasi-Newton equation is now

Bk6xk = rk-rk-\ (3.17)

and states that a secant approximation B to J must "pass through" the points

(u*~1,r*~1) and (uk,rk). Again, additional conditions are necessary to define matrix

B in a unique way.

It must be remarked that, with this approach, matrix B is not required a priori to

maintain the structure of the Jacobian matrix (i.e. the three constant block-matrices A,

AT and 0). Two questions then arise: do the resulting matrices B automatically have

the structure of the Jacobian matrix, although it is not explicitly required? And, more

importantly: are the obtained Quasi-Newton methods the same as if a Transformation

Method is employed? This point has been addressed for the most usual Quasi-Newton

methods and, as shown next, the answer depends on the particular method.

26 - Nonlinear equation solvers and Lagrange multipliers Chapters

3.4.2 Rank-two Quasi-Newton methods: DFP and BFGS

In a wide range of problems, tangent stiffness matrices Ap are symmetric and posi-

tive definite. An appropriate condition additional to the Quasi-Newton equation (3.14)

is then hereditary symmetry and positive-definiteness, (i.e. Bk (or Hk) is SPD

if Bk~l (or Hk~l) is SPD). This requirement leads to the DFP method (direct QN)

and the BFGS method (inverse QN), see Dennis & Moré (1977). The BFGS method

is often preferred to the DFP method (Matthies & Strang, 1979; Soria & Pegón, 1990;

Crisfield, 1991), and is also chosen in this work. The DFP method will be employed

here to discuss the implementation of rank-two methods.

DFP method

Combining the Quasi-Newton equation (3.14) with the requirement of hereditary SDP

results in, (Dennis & Moré, 1977),

_ „k-i- SDFP+

where rp contains the residual forces in the free d.o.f., j/£ is an auxiliary vector de-

fined as yp := rp — r^~ , MJ, is a rank-two modification matrix and B^p 1S a secant

approximation to Kp.

In a Lagrange- multiplier context, the requirement of hereditary SDP must be added

to the adapted Quasi-Newton equation (3.17). This renders

k - l ,Mk- R*-1 4- r y y r E r k LM - BDFP + t T t ~ y (y

Equation (3.19) is almost identical formally to Eq. (3.18). However, it is very impor-

tant to keep in mind that x contains all displacement d.o.f. and Lagrange multipliers,

r represents the enlarged residual vector defined in Eq. (3.5), and -Bj)FP is a secant

approximation to the Jacobian matrix J, not to the stiffness matrix.

Section 3.4 The Quasi-Newton family 27

To answer the questions at the end of last Subsection, the structure of the modifica-

tion matrix M must be carefully investigated. Is it a full matrix, thus affecting all the

block-matrices in -B^pp? Or does it have some null block-matrices?

By expressing r* as (r^,ra) and y as (yx , J/a), the matrix M in Eq. (3.19)

can be written as
-M,

'ai

M*

M„kj

(3.20)

where the block-matrices M~- are

Vi (Vj) • (3.21)

It will be assumed that the common choice nx® = n~^x is made (i.e., the converged

solution in a time-step is employed as initial approximation for the next time-step).

The first iteration (prediction) is performed with matrix B^p- After that, the first

auxiliary vector y is then a full vector

(3.22)

0) I -nA6 J I nA6 J lt/a
]

because r® includes both the agrément in the external loads and in the prescribed val-

ues of the linear constraints. Note that, on the other hand, only the first subvector of

r1 is non-zero, because the linear constraints are exactly satisfied after the prediction.

Equation (3.22) states that there is a jump in the value of the residual vector r for

the nonlinear equilibrium equations and, more importantly, for the linear constraint

equations, and this has a crucial influence in the structure of the modification matrix

of the DFP update.

Indeed, by combining Eqs. (3.19)-(3.22), it can be checked that the secant approxi-

mation to the Jacobian matrix after the prediction is

Rl r,0¿*DFP - -ÖDFP

I 33

(3.23)

28 Nonlinear equation solvers and Lagrange multipliers Chapter 3

where K is the stiffness matrix of -B^pp- Since y1 is a full vector, M1 is a full matrix

and the four block-matrices are affected by the update. As a result, the advantages

associated to the linearity of the constraints are lost. If the matrix •Bppp, Eq. (3.23),

is employed to compute the next correction <5a:2, the second block-equation reads

{A = 0, (3.24)

instead of A Su = 0, as for the Newton-Raphson methods. This means that v? does

not verify the linear constraints, the associated residual ra is non-zero and the iterative

process must cancel both T^ and ra, not only rx (in spite of this drawback, the method

is valid, because it is the standard DFP method applied to the nonlinear system of

equations (3.5)).

This unwanted behaviour can be suppressed in a very simple way. Let the first two

iterations be performed with the initialization matrix -Bppp (i.e. the DFP update is not

activated after the prediction; first, a modified Newton-Raphson iteration is performed).

After that, the auxiliary vector y has the form y — (yx ,0), because ra
2 = ra* = 0.

If the DFP update is now plugged in, the secant matrix B 1S

»DFP = B£FP + M2 =

A1!

0

(3.25)

where only the stiffness matrix is modified, because MU is the only non-zero block-

matrix in M2, see Eq. (3.21). In a generic iteration &, the secant approximation to the

Jacobian matrix is

D«-"DFP =

iT-,

O J

(3.26)

where the summation ranges from 2 to &, reflecting that the update is not performed

after the prediction. With this minor change, a matrix B with the structure of the

Jacobian matrix, Eq. (3.11), is obtained.

Section 3.4 The Quasi-Newton family . . 29

Remark S.S: The need for this change in the generic DFP update scheme can

be circumvented if the initial approximation nx verifies the linear constraints,

(i.e. A nuQ = "&). Then ra° = 0, the auxiliary vector y1 has the form (yx
 1,0),

.Mu is the only non-null block-matrix in Af* and -B^pp has the structure of a

Jacobian matrix. Note, however, that choosing the right initial approximation
nx® may not be a straightforward task. For the simple case of prescribed dis-

placements (u,- = 6; for ¿ = 1... m), "a;0 is easily taken as (n~lu+ nA6, "-1A),

but in the general case where each constraint affects more than one d.o.f., the

problem becomes more involved.

Remark 3.4'- In fact, using the same matrix for the first two iterations, (that is,

using the modified Newton-Raphson method for the first two iterations) as done

in Eq. (3.26), can be interpreted precisely as a way to choose a "good" initial

approximation. Indeed, nx = n~*x does not comply with the constraints,

but after the prediction, nx does. If "a; is regarded as an "improved initial

approximation", then Eq. (3.26) represents the generic DFP update scheme.

To end this Subsection, one last point needs to be addressed: are the DFP methods

represented by Eq. (3.18) (Transformation Method) and Eq. (3.26) (Lagrange-multip^er

technique) equivalent?

To answer this question, the two modification matrices JVfp and JWXi must be com-

pared. Recalling that y — (t/,. ,0) for k > 2, the block-matrix MU. can be put

as

71 Jf "• V*r / - **. - ' * V £ M* ™ / A » ™ \ •*•

('

Equations (3.18) and (3.27) show that, as expected, JVfp and MH have the same struc-

ture, but there are some subtle differences: the scalar products in JVfp only involve free

d.o.f., while the scalar products in Jkfii involve full vectors. In a general case, where

both free and slave d.o.f. change during the iteration process, (¿wF)Tî/p ^ (¿w*)Tyi*

30 —— — Nonlinear equation solvers and Lagrange multipliers Chapter 3

and (¿mp)Trp ^ (Aw*)Tri
fc, so the two DFP methods are not algebraically equivalent,

although they are entirely analogous.

The two DFP methods do coincide in the particular (but very frequent) case where the

linear constraints (3.1b) are simply m prescribed displacements, u,- = 6,-. The iterative

correction in displacements can be put as Su = (£wp,0). Only the free d.o.f. must be

iteratively corrected, because the prescribed d.o.f. are set to their known values b{ during

the prediction and not further modified. In such a situation, the inequalities of the previ-

ous paragraph turn into equalities, (£w|)TJ/| = (5w*)Tî/i* and (5up)Trp = (£u*)Tri*

and the two DFP methods (Transformation Method and Lagrange-multiplier technique)

are algebraically equivalent.

BFGS method

The inverse counterpart of the DFP method is the BFGS method, which is often

regarded as the most popular Quasi-Newton method, (Dennis & Moré, 1977). In a

Lagrange-multiplier context, the BFGS update is

=HBFGS + N =

(3.28)

where ifop/^c is a secant approximation to \J , the inverse of the Jacobian matrix.

Since the BFGS is an inverse Quasi-Newton method, it is difficult to check if the pattern

of the Jacobian matrix is respected directly from Eq. (3.28). To do that, Eq. (3.28) must

be inverted to produced the so-called direct version of the BFGS method, (Dennis &

Moré, 1977),

^BFGS = ^BFGS + M = BBFGS + fgxk\Tyk
 + rgxk\Trk' (3>29)

The same arguments previously used for the DFP method apply here. For k > 2, the

only non-zero block-matrix of M is AdTn , which can be expressed as

™ k _ yih(yik)T , y
1

fc(^fc)T

Section 3.4 The Quasi-Newton family ___ 31

and the matrix -BßpQg cau be written as -B¿FP' ̂ ' (3-26).

Remark 3.5: For both the DFP and BFGS methods, there are compact

product expressions of the update schemes, Eqs. (3.19) and (3.28), which are

amenable to efficient algorithmic implementations, see (Matthies & Strang,

1979; Soria & Pegón, 1990, Brodlie ei al, 1973).

In conclusion, for the rank-two Quasi-Newton methods, the natural approach repre-

sented by the Quasi-Newton equation (3.17) yields matrices -BoFP and -BßFGS which

automatically have the three constant block-matrices of the Jacobian matrix, although

this is not required a priori. To achieve this result, it is necessary to perform the first two

iterations with the modified Newton-Raphson method, see Remarks 3.3 and 3.4. More-

over, the resulting Quasi-Newton methods are completely analogous (or even identical,

for single-d.o.f. constraints) to the methods obtained if linear constraints are imposed

with a Transformation Method.

Convergence properties

In the Lagrange-multiplier context of this work, the DFP and BFGS methods rep-

resented by Eqs. (3.19) and (3.28) respectively are the standard methods applied to

the nonlinear system r(x) — 0, Eq. (3.5). As a consequence, the usual convergence

theorems for rank-two Quasi-Newton methods directly apply: under certain regularity

conditions, the two methods converge locally and superlinearly to a solution x* of the

nonlinear system (that is, |jxfc+1 — x*|| < ck\\xk — x*\\ for some sequence {ck} that

converges to 0, provided that \\x® — x*\\ < £ and \\B® — J*\\ < £), see Broyden et al.

(1973) and Dennis & Schnabel (1983).

3.4.3 Rank-one Quasi-Newton methods: Broyden

In some nonlinear problems, tangent stiffness matrices are not SDP. This is the sit-

uation, for instance, in non-associated plasticity, (Crisfield, 1991), or in materially-

nonlinear thermal problems, see Soria & Pegón (1990) and Section 3.5. In such cases,

32 - — — - - — _ Nonlinear equation solvers and Lagrange multipliers Chapter 3

hereditary SDP is no longer an appealing feature of the Quasi- Newton update scheme,

and other requirements can be more interesting.

For the Broyden method, (Dennis & Schnabel, 1983), this requirement is that two con-

secutive matrices B and J3 have the same behaviour in all directions except Su™

(note that the Quasi- Newton equation (3.14) already determines how J3* transforms

Bzp = B~zF for V * F J _ i u . (3.31)

Combining Eqs. (3.14) and (3.31) leads to the update scheme

Jb\T

where M is a rank-one matrix.

In the context of Lagrange multipliers, Eq. (3.31) is transformed into

Bkz = Bk~iz for Vz_L£x f c , (3.33)

which renders, together with the (adapted) Quasi-Newton equation (3.17), the update

scheme
r>fc _ fík-l , T^rk _ r>fc-l , T

~ ^Broyden + 1V1 ~ -"Broyden +

As commented for the rank-two methods, Eqs. (3.32) and (3.34) are formally very sim-

ilar but have important differences: the former provides secant approximations to the

stiffness matrix KY, while the latter approximates the Jacobian matrix J .

Recalling that rk = (î*!fe,0) for k > 1 and Sxk — (6uk,8Xk), the rank-one modifica-

tion matrix Mk of Eq. (3.34) can be expressed as

Mk =

0 0

(3.35)

Section 3.4 The Quasi-Newton family 33

Equation (3.35) has an important difference with the rank-two methods of the previous

Subsection: there are two non-zero block-matrices. This means that the secant matrix

in a generic iteration k is

BBroyden

O

(3.36)

It can be seen that Bj}TOV¿en does no^ have the structure of the Jacobian matrix, be-

cause the block-matrix A is modified. Moreover, the Lagrange multipliers appear

explicitly in the modification matrix. As a consequence, the Broyden method repre-

sented by Eq. (3.36) (Lagrange multipliers) is not the same that results from Eq. (3.32)

(Transformation Method).

To recover the Broyden method associated to a Transformation Method in a Lagrange-

multiplier context, the natural approach represented by the Quasi-Newton equation

(3.17) must be changed. The basic idea is to impose a priori that the resulting B has

the three constant block-matrices of the Jacobian matrix. It consists of two steps:

1,- Obtain a secant approximation J3n to the tangent stiffness matrix K :

o k „a-i ~'11 (3.37)

2.- Enlarge B^ with the constant block-matrices A , A and 0 to get a secant

approximation to the Jacobian matrix:

'Partial

»11

O J

(3.38)

The subscript Partial denotes that only the tangent stiffness matrix is secantly ap-

proximated, thus profiting from the partial linearity of the problem. On the other hand,

34 Nonlinear equation solvers and Lagrange multipliers Chapter 3

the matrix Bgr0yden °^ ̂ ' (3.36) will be denoted as ßf-otal fr°m here °n, to emphasize

that the whole Jacobian matrix is approximated.

To perform step 1.-, both the Quasi-Newton equation (3.17) and the additional condi-

tion (3.33) must be adapted to-this alternative approach. Imposing that the full Bp t- ,

verifies the original Quasi-Newton equation (3.17) renders

r B,

O J

Suk

S\k

(3.39)

O

The first-block equation in Eq. (3.39) reads

(3.40)

which is thé Quasi-Newton equation for matrix BU .

Regarding the additional condition (3.33), it can be recast as

-i = B»*-1** for x 1 Su (3.41)

Combining Eqs. (3.40) and (3.41) yields the update scheme

= B, *-1
'ii (3.42)

so the secant approximation to the Jacobian matrix in a generic iteration k is

* *'i''(fo'')T 1 x

'Partial ~

O J

(3.43)

where Bpartjaj has, by construction, the structure of a Jacobian matrix. When com-

paring the Broyden methods represented by Eq. (3.32) (Transformation Method) and

Eq. (3.43) (Lagrange multipliers, partial version), the same remarks made for the rank-

two methods apply. In a general case, the slave d.o.f. change during the iterations,

. This means that the two Broyden methods are veryso

similar but not identical. For the particular case of single-d.o.f. constraints, however,

up = (6uk)^6uk and the two Broyden methods are identical.

Section 3.4 The Quasi-Newton family _______—__—. 35

Convergence properties

If the standard Broyden update is applied to the nonlinear system r(x) = 0, Eq. (3.5),

the total Broyden method represented by Eq. (3.34) is obtained. As a consequence, in a

Lagrange-multiplier context, the standard convergence theorem for the Broyden method

applies to the total Broyden method. This theorem (Broyden et al, 1973; Dennis &

Schnabel, 1983), is similar to the one for rank-two methods: under some regularity

conditions, the Broyden method converges superlinearly to a solution x* of r(x) = 0,

provided that the initial approximations x" and ß are sufficiently close to x* and J*

respectively.

The partial Broyden method, on the other hand, is obtained by the modified approach

'represented by Eqs. (3.37) and (3.38). This method can be regarded as a "least-change

secant method", as defined in Dennis & Schnabel (1983).

Least-change secant methods are designed for nonlinear systems with Jacobian ma-

trices of the form

J(x) = J^x) + Ja(x), (3.44)

where Ji(x) must be secantly approximated but J_(x) can be easily computed. To

build secant approximations ßx(x) to «7x(x), least-change secant methods proceed in

three steps, see Dennis & Schnabel (1983):

1.- Decide the secant condition (i.e. the modified Quasi-Newton equation) that ma-

trices BI(X) must verify.

2.- Choose an affine subspace A defined by properties such as symmetry or sparsity

that all the approximants .Bi(x) should have.

3.- Select BI^ to be the matrix closest to Bj. that simultaneously i) verifies the

secant condition of step 1.- and it) belongs to the affine subspace A selected in step

2.-. In this manner, J3i is the least-change update to B^ * with the desired

properties.

It can be checked that the partial Broyden method fits into this framework. Recalling

the expression of the Jacobian matrix, Eq. (3.11), it can be seen that the matrices Ji(x)

36 Nonlinear equation solvers and Lagrange multipliers Chapter 3

and Ja(ic) for the nonlinear system under consideration, Eq. (3.5), are

o oJ
Ja(ic) = J3 =

0 A

LA o

T n

(3.45)

where J?(x) is, in fact, a constant matrix Ja.

By combining Eqs. (3.44) and (3.45), it can be verified that the modified Quasi-

Newton equation for the partial Broyden method, Eq. (3.40), can be put as

= rk - (3.46)

which is the secant condition for matrix B^ .

Regarding the choice of the a affine subspace A, all the approximations J3X are

required to have the sparsity pattern of Jj.(x) (i.e. the three null block-matrices, see

Eq. (3.45)). This requirement defines A.

Finally, the additional condition (3.33) can be interpreted as requiring J3X to be the

matrix closest to B-¡_ * (measured on the Frobenius norm) which verifies Eq. (3.46)

and has the sparsity pattern of «/1(23).

Since the partial Broyden method is a least-change secant method, the general conver-

gence theorem of Dennis & Walker (1981) applies. The theorem states the superlinear

convergence of these type of methods under certain conditions. In particular, if some

regularity assumptions are made, a sufficient condition for local superlinear conver-

gence to a solution x* of the nonlinear system is that Jx(œ*) belongs to the affine

subspace A.

For the partial Broyden method, this sufficient condition is trivially verified, because

A is selected precisely by imposing the sparsity pattern of Ji(x). In conclusion, the

partial Broyden method is locally and superlinearly convergent.

Section 3.4 The Quasi-Newton family — - - . - - — _ 37

The inverse Broyden method

From an algorithmic viewpoint, the inverse Broyden method is preferred to the direct

Broyden method just discussed, see Dennis & Moré (1977) and Soria & Pegón (1990).

The basic idea is to employ the Sherman & Morrison lemma, see Sherman & Morrison

(1949) and Box 3.1, to invert the direct update formula. This lemma gives an explicit
np ____

expression for the inverse of B + aß , that is, a rank-one modification of matrix B.

The total Broyden method, Eq. (3.34), corresponds to or = r and ß = (X fe^c fc>
^O*C J OX

and can be inverted into

k-1 k f f .ff
-"Total V " T o t a l /o A7\, (3-47)

where -ííj>otal approximates «7 , the inverse of the Jacobian matrix.

Let or and ß 6 Dl" and assume that B is a real n-dimensional regular matrix.
Then:

rr\

1. The matrix B + aß is regular if and only if

2. If a T¿ 0, then the inverse of B + aß*- is

(B + aßT)~l = B-1 - ^B-laß^B-1.

Box 3.1 The Sherman & Morrison lemma

For the partial Broyden method, this inversion procedure is not so straightforward.

The update scheme for matrix BU, Eq. (3.42), cannot be inverted via the Sherman

& Morrison lemma because matrix BH, which is an approximation of the full stiff-

ness matrix K, is singular. As commented previously, the transformed stiffness matrix

38 — — — — — • — • — — _ Nonlinear equation solvers and Lagrange multipliers Chapter 3

Kp and the Jacobian matrix J are typically regular, but the full stiffness matrix K is

singular, because the former include the boundary conditions while the latter does not.

For this reason, the Sherman & Morrison lemma must be applied to the full matrix

J3p ,. ,, which is regular because A accounts for boundary conditions. To that aim, it

is necessary that the update formula for the block-matrix jBn can be transformed into

an update formula for .Bpartial °f ^ne f°rin

Partial = 4lrlial+«V)T. (3-48)

Recalling that rk = (rx*,0) for k > 1, it can be checked that Eq. (3.48) holds for ak =

rk and 8k — (-,t LVTC "t.,0), and then it can be inverted with the Sherman &; Morrison^ v(o«fc)1ou
lemma into

fjk-1 rk(guk rtflirk-l
frk _ rrJfc-1 ""Partial vou '">> ""Partial
"Partial - ^Partial (6uk

Comparing Eqs. (3.47) and (3.49) clearly shows that the only difference between the

total and partial Broyden methods lies in the definition of vector ß : the whole vector

of unknowns Sxk is employed for the total Broyden method, while only displacements

Su (that is, the fundamental unknowns) are used in the partial Broyden method.

The inverse Broyden method is typically implemented by means of a recurrent prod-

uct formula which relates H k to the initialization matrix H°, (Engelman et al, 1981;

Soria & Pegón, 1990). This procedure has been adapted to both the partial and total

Broyden methods that arise in a Lagrange-multiplier context, see Box 3.2.

It can be seen in Box 3.2 that the two algorithms are identical, except for the defi-

nition of vector ß in step 8. It is also worth mentioning that the scalar products in

steps 9. and 10. involve only the displacement d.o.f. for the partial Broyden method,

but both displacements and Lagrange multipliers for the total Broyden method.

In conclusion, for the rank-one Broyden method, the natural approach associated to

the Quasi-Newton equation (3.17) leads to the total Broyden method, with matrices

B™ taj that do not maintain the structure of the Jacobian matrix. Contrary to what

Section 3.4 The Quasi-Newton family .—_ 39

happens for rank-two methods, it is necessary to require a priori that constant block-

matrices A, A* and 0 remain unchanged. This is achieved by means of an alternative

approach, represented by Eqs. (3.37) and (3.38), where only the tangent stiffness ma-

trix is secantly approximated. The resulting partial Broyden method is the analogue

of the Broyden method with linear constraints imposed via a Transformation Method.

The relative performance of the total and partial Broyden methods will be assessed in

Section 3.5 with some numerical examples.

3.4.4 Secant-Newton methods

The major drawback of the inverse Quasi-Newton methods is that the computational

cost per iteration increases at each iteration. For the inverse Broyden method, this

can be checked from Box 3.2, where the number of stored vectors (steps 7. and 8.)

and of scalar products (steps 7., 9. and 10.) increase with the iteration counter k.

A similar situation is found with the BFGS method, (Crisfield, 1991; Soria & Pegón,

1990).

The Secant-Newton methods, (Crisfield, 1991), were developed to remedy this prob-

lem. The basic idea is to replace matrix ff^-l wifa the initialization matrix H® in

the update schemes. In this manner, H is computed at each iteration from the same

matrix if , not from the matrix if of the previous iteration. From an algorithmic

stand, this results in a constant number of scalar products and stored vectors, that is,

a constant cost per iteration, (Crisfield, 1991). The simplifying strategy is general, so

a Secant-Newton method can be obtained from every inverse Quasi-Newton method.

Thus, in a Lagrange-multiplier setting, it is possible to devise two Secant Broyden

methods (total and partial) and one Secant BFGS method.

40 Nonlinear equation solvers and Lagrange multipliers Chapter 3

FOR EVERY LOAD-STEP:

1.— Choose an initial approximation z" and compute the residual vector r^.

2.— Compute the initialization matrix J3 .

3.— Solve the linear system B" Sx * = —r" and store 8x .

4.— Update x = a; + 5x and compute r .

5.— Convergence control: if x is good enough, exit.

6,— Solve the linear system B° v = — rfe.

7.— For k = 1 set £ = v.

For fc > 1 recover a;1, 8xl for ¿ = 1,... fc — 1 from storage and compute

1

8.— Recover ^x from storage and define ß :

TOTAL : ßk = (Suk, tfA*) =

PARTIAL: * = tfii*,0

9.— Compute and store a;̂ =

10.- Compute and store Sxk+í =t+

11.- Update x¿+1 = xk + Sxk+l and compute rk+1.

12.— Convergence control: if x "^1 is good enough, exit.

13.— Set AT <— ¿ + 1 and go back to 6.

Box 3.2 Total and partial Broyden methods

Section 3.4 The Quasi-Newton family - ___ 41

The Secant BFGS method

If matrix -HgipAs is replaced with matrix -iigpr-c m *^e B^GS method, Eq. (3.28),

it renders, after accounting for the relation 8x "*" = -i^BFGS^"7*) an(^ some manipula-

tion, (Crisfield, 1991),

8xk+l = (1 + C}Sxk+l - C6xk + [C-(l + C}B + C A] 6xk, (3.50)

where Sxk is the solution to the linear system -BßFGS^ = ~r ' anc^ ̂ e scal&rs -^>

B and C involve scalar products between vectors Sx , Sx , Sx +*, r and r*. For

the same reasons pointed out for the (Quasi-Newton) BFGS method, it is necessary to

perform the first two iterations with the initialization matrix, and use the Secant BFGS

update, Eq. (3.50), for k > 2.

The Secant Broyden method

Two Secant Broyden methods can be obtained if linear constraints are imposed via

Lagrange multipliers: a total Secant Broyden method, where Hz, ~, j is replaced with

•^Total m ^ie *°*a^ Broyden method, Eq. (3.47), and a partial Secant Broyden method,

with a similar transformation performed in Eq. (3.49). After some manipulation, these

changes lead to the algorithms shown in Box 3.3. As remarked for the (Quasi-Newton)

Broyden methods, the only difference resides in the definition of vector ß . The two

Secant Broyden methods will be compared by means of some numerical experiments in

Section 3.5.

42 Nonlinear equation solvers and Lagrange multipliers Chapter 3

FOR EVERY LOAD-STEP:

1,— Choose an initial approximation x® and compute the residual vector

2.— Compute the initialization matrix B®.

3.— Solve the linear system J3° Sx1 = — r° and set &B1 =

4.— Update a;* = ar + Sx^ and compute r*.

5.— Convergence control: if ar is good enough, exit,

fc«-l

6.— Solve the linear system J3° Sxk = —rk.

7.— Recover Sx from storage and define ß :

TOTAL : 0* = (6uk, 6Xk) = 6x

PARTIAL: ßk = (6uk,Q)

8.- Compute p = (ßk

9- Compute 6xk+l = (1 + p)8xk+l + pSxk - pSxk.

10.- Update xk+1 = xk + 5x¿+1 and compute rk+l.

11,— Convergence control: if x +* is good enough, exit.

12.— Set A: <— k + 1 and go back to 6.

Box 3.3 Total and partial Secant Broyden methods

Section 3.5 Numerical examples — 43

3.5 Numerical examples

3.5.1 Introduction

The algorithms just discussed have been implemented in GASTEM 2000, an object-

oriented code that employs the Lagrange-multiplier technique to handle linear con-

straints, see Chapter 2. For that purpose, new metaoperators have been written in the

object-oriented language GIBIANE, thus extending the code's capabilities.

Several numerical tests in the fields of nonlinear mechanical and thermal analysis

have been performed. Four of these numerical tests are shown in this Section, with the

purpose of:

1,— Showing that the various methods can be effectively implemented in the object-

oriented, Lagrange-multiplier environment of this work.

2.— Assessing the relative performance of the different nonlinear solvers.

3.— Comparing the partial and total Broyden methods, both for Quasi-Newton and

Secant-Newton versions.

It has been attempted to cover the most relevant issues: SPD/non-symmetric stiffness

matrices; one-point constraints/multipoint constraints; academic tests/more realistic

analyses, etc

The four presented tests are:

Tesi: SHELL (Subsection 3.5.2)

Brief description: axisymmetrical shell with an apex load

Source of nonlineariiy: large strains

Linear constraints: restrained d.o.f.

Basic feature: structural finite elements

44 Nonlinear equation solvers and Lagrange multipliers Chapter 3

Test: THERMAL (Subsection 3.5.3)

Brief description: nonlinear diffusion of heat in a cyclic domain

Source of nonlinearity: temperature-dependent conductivity

Linear consírainís: cyclic/periodic boundary conditions

Basic feature: non-symmetric Jacobian matrices

Tesi: TWO HOLES (Subsection 3.5.4)

Brief description: strip under compression with two perforations

Source of nonlinearity: large strains and elastoplaticity

Linear constraints: central symmetry in boundary conditions

Basic feature: central symmetry and localization

Tesi; BRIDGE (Subsection 3.5.5)

Brief description: structural analysis of an existing bridge

Source of nonlinearity: nonlinear material behaviour and large strains

Linear constraints: restrained d.o.f.

Basic feature: engineering analysis

Section 3.5 Numerical examples 45

3.5.2 Test SHELL

The first example is a well-known benchmark test in nonlinear mechanics, see

Zienkiewicz &: Taylor (1991). An axisymmetrical shell, see Figure 3.1, is clamped at

its border (i.e. displacements and rotations are restrained) and loaded with a vertical

force in its apex (r — 0). The shell is made of an elastic material but undergoes large

deformations, so a geometrically nonlinear problem results. To account for large strains,

the Updated Lagrangian formulation (Bathe, 1982) is employed, in combination with

the second-order stress update algorithm discussed in Chapter 4.

A load-controlled incremental-iterative analysis is performed. A total load of P = 801b

is applied in 16 load-steps. A relative criterion in displacements with a tolerance of

e = 10~^ is used as the basic convergence criterion, and convergence in forces is also

checked. Figure 3.2 shows the load P versus the deflection of the apex, v.

t=0.01576 in

E=10x106lb/in2

i/=0.3

0.08598 in

Figure 3.1 Test SHELL. Problem statement

The test has been performed with all the implemented nonlinear solvers. Table 3.1

shows their computational cost, both in terms of total number of iterations and CPU

time.

46 Nonlinear equation solvers and Lagrange multipliers Chapter 3

90

80 .

70 -

60 .

50 -

40 .

30 _

20 -

10 .

i l 1 l 1 1 1 1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Figure 3.2 Test SHELL. Load vs. deflection curve

Method

Full Newton-Raphson

Modified Newton-Raphson

Partial Broyden (QN)

Total Broyden (QN)

BFGS (QN)

Partial Secant-Broyden

Total Secant-Broyden

Secant-BFGS

Iterations

74

301

189

—

130

225

—

—

CPU time

—

175%

136%

—

100%

137%

—

—

Table 3.1 Test SHELL. Computational cost of various methods

Section 3.5 Numerical examples —_ \~¡

It can be noted from Table 3.1 that the full Newton-Raphson metùod is superior to

the rest in this case. The CPU time is not shown for this method because it is imple-

mented at the operator level in the object-oriented code, while all the other methods

are implemented as metaoperators, which are computationally less efficient. Among the

Quasi-Newton methods, the best is the BFGS. This is an expected result, because the

Jacobian matrices are symmetric for this problem. Second comes the partial Broyden

method. The total Broyden method does not converge (a maximun number of 50 iter-

ations per step is set). Among the Secant-Newton methods, the only one that achieves

convergence is the partial Secant-Broyden method.

3.5.3 Test THERMAL

The second test studies the nonlinear diffusion of heat, see Soria & Pegón (1990). Non-

linearity is associated to a non-constant, temperature-dependent thermal conductivity

K of the form

K(T) = 1 + 2Tm, (3.51)

where T is the temperature. For this problem, the conductivity matrices (and hence

the Jacobian matrices) are non-symmetric, see Soria & Pegón (1990).

The problem domain is a hollow disc with six rectangular perforations, see Figure

3.3. The boundary conditions, also shown in Figure 3.3, are: prescribed temperature in

the inner circle (T = 0) and in the rectangular inclusions (T = 10), and a convection

condition in the outer circle.

Since the problem has a cyclic periodicity of angle Tr/3, the solution must have the

same periodicity. This allows to solve the problem with only one-sixth of the total

domain, see Figure 3.4. The temperature is set to be equal (pointwise) in the two

straight lines, thus imposing the periodicity in the solution. This linear constraint can

be implemented in a simple and efficient manner thanks to the combination of Lagrange

multipliers and object-oriented environment: the two straight lines are two independent

objects, and the constraint matrix A is produced with an appropriate operator. The

resulting temperature field is shown in Figure 3.5.

48 Nonlinear equation solvers and Lagrange multipliers Chapter 3

Figure 3.3 Test THERMAL. Domain, mesh and boundary conditions

periodic

periodic

Figure 3.4 Test THERMAL. One-sixth of domain

Section 3.5 Numerical examples 49

lio

0.00
2.50
5.00
7.50
7.75
8.00
8.25
8.50
8.75
9.00
9.25
9.50
9.75

.00

Figure 3.5 Test THERMAL. Temperature field

Figure 3.6 Test THERMAL. Temperature field. Problem solved over the whole domain

50 _____________________ Nonlinear equation solvers and Lagrange multipliers Chapters

As a verification, the problem was also solved over the whole domain of Figure 3.3. As

expected, the obtained solution, see Figure 3.6, is in total agreement with the previous

one.

This test is also employed to compare the Quasi-Newton and the Secant-Newton

methods for a problem with non-symmetric matrices. An iterative analysis with a sin-

gle increment has been carried out with the two Broyden methods (total and partial)

and the BFGS method.

For the Quasi-Newton methods, the parameter m in Eq. (3.51) is set to 2. The results

can be seen in Figure 3.7, which shows the convergence history (logarithm of the rela-

tive error versus iterations), and in Table 3.2, which displays the computational cost.

The partial Broyden method is clearly superior to the BFGS method (as expected,

since Jacobian matrices are not symmetric) and to the total Broyden method. It is

also worth mentioning that the effect of the increasing cost per iteration associated to

Quasi-Newton methods (see Subsection 3.4.4) is manifest in Table 3.2: the total Broy-

den methods takes 1.56 as many iterations as the partial Broyden method, but twice as

much CPU time.

When attempting to solve the same problem with the Secant-Newton methods, they

fail to convergé. The value of m in Eq. (3.51) is lowered to 1.5, thus decreasing the

problem's nonlinearity, which can then be solved with the Secant-Newton methods. The

results are shown in Figure 3.8 (convergence history) and in Table 3.3 (computational

cost). The situation is similar to the one found for Quasi-Newton methods. Again, the

partial Secant-Broyden method is the best, followed by the Secant-BFGS and the total

Secant-Broyden methods. It is worth noting that the total version of the Secant-Broyden

method takes 1.74 as many iterations and 1.75 as much CPU time as the partial version,

thus reflecting the constant cost per iteration associated to Secant-Newton methods (see

Subsection 3.4.4).

Section 3.5 Numerical exam pies 51

Error
10E1-

10EO

10E-1

10E-2

10E-3

10E-4

10E-5

10E-6

10E-7

Iterations

BFGS

* Partial Broyden (QN)

a Total Broyden (QN)

10 15 20 25 30 35

Figure.3.7 Test THERMAL. Convergence history for Quasi-Newton methods

Method

Partial Broyden (QN)

Total Broyden (QN)

BFGS (QN)

Iterations

24

34

27

CPU time

100%

168%

150%

Table 3.2 Test THERMAL. Computational cost for Quasi-Newton methods

52 Nonlinear equation solvers and Lagrange multipliers Chapter 3

Error
10EO

10E-1

10E-2

10E-3

10E-4

10E-5

10E-6

10E-7

Iterations

I I L_

Secant-BFGS

Partial Secant-Broyden

Total Secant-Broyden

10 15 20 25 30 35 40 45 50

Figure 3.8 Test THERMAL. Convergence history for Secant-Newton methods

Method

Partial Secant-Broyden

Total Secant-Broyden

Secant-BFGS

Iterations

37

47

41

CPU time

100%

125%

110%

Table 3.3 Test THERMAL. Computational cost for Secant-Newton methods

Section 3.5 Numerical examples — _ — _ - 53

3.5.4 Test TWO HOLES

A strip with two perforations, see Figure 3.9, is subjected to uniaxial compression.

This test is inspired in an example found in Zienkiewicz & Huang (1990). In this ref-

erence, the two holes are along the longitudinal axis of symmetry, so only a quarter of

the specimen is modelled. Here the position of the two holes is altered. The domain

has central symmetry with respect to its centre, 0, but there are no axes of symmetry,

see Figure 3.9.

Thanks to the central symmetry, the problem can be solved by modelling only half

the specimen, see Figure 3.10. The finite element mesh, also shown in Figure 3.10, has

been obtained through a process of adaptive remeshing, which combines an unstruc-

tured quadrilateral mesh generator (Sarrate, 1996; Sarrate et a/., 1993; Montolío et aí.,

1995), and an a-posteriori error estimator for nonlinear finite element analysis, see Díez

et aï. (1995), Huerta et al. (1996). The sequence of meshes obtained during the process

of adaptive remeshing can be seen in Figure 3.11.

The required boundary conditions in line AB, see Figure 3.10, are 1) restrained dis-

placements in the centre O and 2) symmetric displacements with respect to O along

line AB. For any pair of opposed nodes A1 and J?', this means

(3.52)

where ux and uy are the displacement components. This results in a set of linear

constraints, which are handled via Lagrange multipliers (see Chapter 3). In the object-

oriented environment of this work, objects OA and OB (of class Mesh) are created,

so these linear constraints can be imposed with just one sentence of the GIBIANE

language, see Section 2.3.

A displacement-controlled, plane strain analysis of the piece, with large deforma-

tions and nonlinear material behaviour, has been performed. To handle large strains,

the second-order stress update algorithm discussed in Chapter 4 has been employed.

Elastoplastic behaviour is modelled by a bilinear law.

54 Nonlinear equation solvers and Lag.ange multipliers Chapter 3

O

o

Figure 3.9 Test TWO HOLES. Problem domain

Figure 3.10 Test TWO HOLES. Computational domain and finite element mesh

Section 3.5 Numerical examples 55

Figure 3.11 Test TWO HOLES. Sequence of meshes obtained during adaptive remeshing

56 Nonlinear equation solvers and Lagrange multipliers Chapter 3

Figure 3.12 shows the equivalent plastic strain over the deformed shape. The band for-

mation due to strain concentration is clearly visible. The effect of the central-symmetry

boundary conditions is also apparent, with a "mysterious" band appearing from nowhere

in the bottom left corner. Of course, this band is originated by the hole in the other half

of the specimen. This can be seen in Figure 3.13, where the plastic strain is depicted

over the whole piece. The deformed line AB is also shown in Figure 3.13. As prescribed,

this line is symmetric with respect to point O.

Various of the nonlinear solvers of Sections 3.3 and 3.4 have been employed. The

time-step is automatically updated, as suggested by Crisfield (1990). The results are

shown in Table 3.4. None of the Newton-Raphson methods allows to carry out the

complete computation. For the full Newton-Raphson method, the iterative process di-

verges at about 54% of the total planned displacement. The modified Newton-Raphson

and initial stress methods, on the other hand, exhibit a extremely slow convergence

(no convergence in 500 iterations for a time-step at about 36% of the analysis), and

are disregarded. The complete analysis can be performed, on the contrary, with two

Quasi-Newton methods: the partial Broyden and the BFGS, see Table 3.4. In view of

the behaviour of the full Newton-Raphson method, the elastic stiffness matrix ®K is

used in the initialization matrix J3 , see Subsection 3.4.1. Regarding the total Broyden

method, it diverges at about 86% of the total analysis.

Method

Full Newton-Raphson

Modified Newton-Raphson

Initial stress

Partial Broyden (QN)

Total Broyden (QN)

BFGS (QN)

Time-steps

—

—

—

33

—

35

Iterations

—

—

—

492

—

451

Fraction of analysis

54%

36%

36%

100%

86%

100%

Table 3.4 Test TWO HOLES. Behaviour of various nonlinear solvers

Section 3.5 Numerical examples 57

Figure 3.12 Test TWO HOLES. Deformed shape and equivalent plastic strain

Figure 3.13 Test TWO HOLES. Equivalent plastic strain on the full domain

58 _____^_^_^________ Nonlinear equation solvers and Lagrange multipliers Chapter 3

3.5.5 Test BRIDGE

The goal of this test is to check the object-oriented code and the nonlinear solvers in

a realistic engineering situation. For this purpose, an a-posteriori structural analysis of

an existing bridge is performed.

The Onze de Setembre bridge is a slab-on-girder bridge, built in Barcelona in 1995. It

is a 60m, simply supported, single-span structure. The 6 girders have a variable height

(minimum 1.887m - maximum 2.460m), and the thickness of the wings is also variable

(minimum 15mm - maximum 30mm). The concrete slab has a constant thickness of

0.20m. Diaphragms are placed every 12m to add torsional stiffness.

Both linear and nonlinear analyses have been made, in cooperation with Miguel Angel

Bretones (Bretones, 1996). In the linear analysis, the real loading test is numerically

reproduced. Afterwards, a nonlinear analysis allows to simulate the bridge failure. The

fact that a real structure is being analyzed a posteriori has enabled a realistic mod-

elling. All the geometrical definition has been taken from the project plans. Material

parameters are obtained from the in-situ quality control testing during construction.

During the linear computation, the whole construction process is simulated. The

basic steps are:

1.— Collocation of the steel girders and diaphragms

2.— Metallic formwork for concrete slab

3.— In-situ concreting of the slab

4.— Setting of concrete

5.— Superimposed dead load (paviment...)

6,— Loading test

The object-oriented environment considerably eases this detailed simulation. The var-

ious structural elements (girders, diaphragms, slab) are defined as objects, see Figure

3.14, and then sequentially assembled, thus reproducing the construction process. The

final result is the model of Figure 3.15 (only one-fourth of the bridge is modelled due

to symmetry). The setting of concrete in the slab is simply simulated, just by changing

the elasticity modulus, one of the object's attributes.

Section 3.5 Numerical examples 59

Figure 3.14 Test BRIDGE. Structural elements are defined as objects

Figure 3.15 Test BRIDGE. Complete model is obtained by assembling elements

60 Nonlinear equation solvers and Lagrange multipliers Chapter 3

The loading test on the real bridge consisted in a symmetric load of 229.5T, and

resulted in an average mid-span deflection of 36.2mm. The numerical simulation yields

a value of 37.3mm, with a discrepancy of only 3.2%. This good agreement is obtained

thanks to the realistic simulation, enabled by the availability of accurate geometrical

and material data.

In a second stage, a nonlinear analysis is carried out. Steel is modelled as an elastic-

perfectly-plastic material with Von Mises yield surface and a yield stress of 260MPa.

A nonlinear moment-curvature diagram is employed for concrete. Large strains are

handled by the second-order stress update algorithm of Chapter 4.

The total load versus mid-span deflection curve is shown in Figure 3.16. It can be

seen that there is an increase in elastic stiffness, which is associated to the setting of

concrete (in the first part of the curve, the concrete has no bearing capacity).

Load ST)

3000

2500

2000

1500

1000

500

Mid-span deflection (m)

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

Figure 3.16 Test BRIDGE. Total load versus mid-span deflection

Section 3.5 Numerical examples 61

The plastification of the steel girders begins for a total load of 1770T, which is ob-

tained for a live load four times that of the loading test. Figure 3.17 shows the Von

Mises stress distribution corresponding to this load level. It is interesting to note that

the first zone to plastify is not the mid-span section, but is located under the second

diaphragm from mid-span, see Figure 3.17. This effect is caused by the variable girder

height and wing thickness. If the load is further increased, the plastification zone rapidly

progresses. This can be seen in Figure 3.18, which shows the Von Mises stress for a

total load of 2481T.

To reduce to a minimum the computation of stiffness matrices, this problem has been

solved with the initial stress method and with the Secant-Newton methods initialized

with the elastic stiffness matrix. Figure 3.19 shows the accumulated iterations versus

the total load. It can be seen that, up to the inception of plastification (1770T), the four

methods behave very similarly. When the load increases, however, differences appear.

To reach the load level of Figure 3.18, for instance, the initial stress method takes about

twice the number of iterations of the partial Secant-Broyden and Secant-BFGS meth-

ods. As in the previous examples, the partial version of the Secant Broyden method

outperforms the total version.

62 Nonlinear equation solvers and Lagrange multipliers Chapter 3

Von Mises stress (MPa)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

Figure 3.17 Test BRIDGE. Von Mises stress for a total load of 1770T

100

120

140

160

180

200

220

240

260

Figure 3.18 Test BRIDGE. Von Mises stress for a total load of 2481T

Section 3.6 Concluding remarks 63

Accumulated iterations

400

Secant-BFGS

Total Secant-Broyden

Partial Secant-Broyden

Initial stress method

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Figure 3.19 Test BRIDGE. Accumulated iterations versus total load

3.6 Concluding remarks

In this Chapter, the most common nonlinear solvers have been adapted to handle

linear constraints via the Lagrange-multiplier technique. The original nonlinear system

of equations is enlarged by taking the linear constraints as additional equations and the

Lagrange multipliers as additional unknowns. The resulting Jacobian matrix consists

of four block-matrices, of which only the tangent stiffness matrix is variable.

The adaptation of the Newton-Raphson methods to the Lagrange-multiplier frame-

work is straightforward. Once a stiffness matrix is selected -either the current tangent

stiffness matrix (full Newton-Raphson), the tangent stiffness matrix at the beginning of

the increment (modified Newton-Raphson) or the elastic stiffness matrix (initial stress

method)-, the Jacobian matrix is formed by enlarging it with the constraint matrix that

64 . Nonlinear equation solvers and Lagrange multipliers Chapter 3

accounts for the linear constraints and the associated reaction forces. A standard itera-

tive process then allows to update simultaneously the displacements and the Lagrange

multipliers.

The treatment of Quasi-Newton and Secant-Newton methods is rather more involved.

It has been shown that there are two approaches to obtain secant matrices: the natural

approach and an alternative approach which profits from the partial linearity of the

enlarged system of equations.

The natural approach consists of employing the standard Quasi-Newton equation and

the standard additional conditions (which are specific to each particular Quasi-Newton

method) to define the updates. It is not required a priori that the resulting secant

matrix has the structure of the Jacobian matrix.

With the alternative approach, the secant matrices are explicitly required to maintain

the block-structure of the Jacobian matrix. This is achieved by using a modified Quasi-

Newton equation and modified additional conditions to obtain secant approximations

to the tangent stiffness matrix. This secant matrix is then enlarged with the three

constant block-matrices of the Jacobian matrix.

For rank-two Quasi-Newton methods (BFP and BFGS), the two approaches lead to

the same algorithms. In other words, if the natural approach is taken, the the secant

matrices automatically have the structure of the Jacobian matrix, although it is not

requested a priori. The resulting methods, moreover, are basically the same that arise

if a Transformation Method is employed to impose the linear constraints.

For Broyden's method, the situation is quite different. The natural approach leads to

secant matrices which do not have the structure of the Jacobian matrix. The associated

method is called here total Broyden to emphasize that the whole Jacobian matrix is

secantly approximated. The alternative approach leads to the partial Broyden method

(i.e. only the tangent stiffness matrix is secantly approximated), in which secant matri-

ces respect, by construction, the three constant block-matrices of the Jacobian matrices.

This partial Broyden method is the analogue of the Broyden method with linear con-

straints imposed via a Transformation Method. It has been shown that the Sherman &

Section 3.6 Concluding remarks — 65

Morrison lemma can be employed to produce inverse versions of both Broyden methods.

Various numerical experiments have shown the superiority of the partial Broyden

method over the total Broyden method. This is also true for the Secant-Newton sim-

plifications of both methods.

The numerical examples also illustrate that the Lagrange-multiplier technique allows

to implement multipoint linear constraints in a simple way, and that object-oriented

codes are valid tools both for research and realistic applications.

66 . Nonlinear equation solvers and Lagrange multipliers Chapter 3

Chapter 4

TWO STRESS UPDATE ALGORITHMS FOR

LARGE STRAIN SOLID MECHANICS

4.1 Introduction

Two basic types of nonlinearity are encountered in nonlinear solid mechanics: mate-

rial (inelastic constitutive behaviour) and geometric (large strains). Nonlinear material

behaviour is typically described by a rate-form constitutive equation, relating the rate

of stress to the rate of strain and some internal variables, (Malvern, 1969). If defor-

mations are large, then the changing configuration must be accounted for when stating

and handling the rate-form constitutive equation.

In this Chapter, two stress update algorithms for the numerical time-integration of

hypoelastic laws in large strain analysis are discussed, and an accuracy analysis of the

algorithms is presented. That is, the order of the time discretization error associated to

each algorithm is evaluated by means of standard tools in numerical analysis. Therefore,

an a priori knowledge of the accuracy for each algorithm is provided.

The accuracy analysis is enabled by the use of a convected frame formalism. Con-

vected frames are attached to the body and deform with it; thus, the statement and

time-integration of the constitutive equation becomes a straightforward task. In fact,

68 Two stress update algorithms for large strain solid .nechanics Chapter 4

if convected frames are chosen as reference, any standard finite difference scheme can

be employed for the numerical time-integration of the constitutive equation, and the

truncation error can be determined in the usual way.

The use of convected frames has also allowed a complete derivation of both algorithms

from a general and unified perspective, in spite of the important differences inherent

to both methods. The two methods have been previously presented in a fixed frame

setting, see Bathe et al. (1975) and Pinsky et al. (1983). The first algorithm, (Bathe

et al., 1975), uses the full strain tensor including quadratic terms to account for large

strains, and it is first-order accurate in time. The second algorithm, (Pinsky et al.,

1983), employs the same strain measure as in small strain analysis but computed in the

midstep configuration. It is second-order accurate in time.

After the error analysis, the two stress update algorithms are adapted to a fixed frame

setting in order to be easily implemented in an existing nonlinear finite element code.

A set of numerical experiments are then performed to validate the two algorithms, both

for elastic and plastic analysis. These numerical tests corroborate the accuracy analysis.

This Chapter is organized as follows. The basic notions of large strain solid mechanics

in a convected frame context are reviewed in Section 4.2. Section 4.3 deals with the

two stress update algorithms. After some introductory remarks in Subsection 4.3.1, the

two algorithms are presented in Subsection 4.3.2. The error analysis is then developed

in Subsections 4.3.3 and 4.3.4. The adaptation to Cartesian coordinates and the imple-

mentation in a small-strain code is discussed in Section 4.4. Various numerical examples

are presented in Section 4.5. Finally, some concluding remarks are made in Section 4.6.

4.2 Large strain solid mechanics in convected frames

4.2.1 Introductory remarks

A common approach in continuum mechanics is to use a fixed orthonormal frame,

denoting each spatial point by its Cartesian coordinates with respect to that frame. It

is also possible, however, to employ convected material coordinates. By doing so, every

Section 4.2 Large strain solid mechanics in convected frames _______ _____^_________ 69

material particle is identified, throughout the deformation process, by the same material

coordinates, which are convected by the body motion. The reference is then a field of

material convected frames, associated to material coordinates at every point.

This represents a fully Lagrangian approach: not only the description focuses on

the motion of material particles, but also on a reference field of material convected

frames which deform with the body. These convected frames may never be orthonor-

mal. Moreover, according to Truesdell and Toupin (1960), "the mathematical difficulties

which accompany the material description have limited its use to two special ends: prob-

lems in one dimension and the proof of general theorems. " However, in exchange for

these difficulties (which are minor, since only a few, very basic concepts in differen-

tial geometry are required), the use of convected frames considerably simplify both the

statement and the numerical time-integration of constitutive equations for large strain

solid mechanics. For this reason, a convected frame formalism will be employed here to

present the two stress update algorithms.

4.2.2 Kinematics

Consider the motion of a deformable body Û through the usual Euclidean space 1R .

The position of its particles is referred to a fixed ortlionormal frame (O, ea), which is

the frame of the observer, see Figure 4.1. Let Op = zQea be the current position vector

at time t of the material particle initially located at OP = Zaea, where the convention

of summation on repeated indices is adopted.

The body fi can be regarded as an ordered set of material points M. In consequence,

these points may be related to an embedded mapping manifold C(fi) of curvilinear

material coordinates xl . Each material particle M is identified by three material coor-

dinates (z*, x^, x^) which are convected by the body motion, thus remaining "attached"

to the particle. For instance, a possible choice of material coordinates is the initial or-

thonormal coordinates, xl = Zl.

The motion of the body is expressed by

(4-1)

70 Two stress update algorithms for large strain solid mechanics Chapter 4

» -l_Ûfpp'—dz oa=

Figure 4.1 Fixed and material reference frames

which gives the orthonormal coordinates za at time t of the particle with material coordi-

nates xl. Throughout the Chapter, Latin indices are employed for material components

and Greek indices for orthonormal components.

To present the basic features of convected frames, let us focus on two neighbouring

material points. At the current time í, consider the material point M(x*) located at the

geometrical point p. Any geometrical point p1 in the vicinity of p may be referenced to

the orthonormal frame by

pp' = dzaea. (4.2)

On the other hand, point p' may also be considered the location of the material point

M'(xi + dxl), see Figure 4.1. Then, the basis vectors (7,- of the natural reference frame

Section 4.2 Large strain solid mechanics in convected frames - 71

at the material point M(xl) are implicitly defined by

pp1 = dx1'«/;. (4.3)

Combining Eqs. (4.1)-(4.3), the relation between the vectors ea of the orthonormal

frame and the vectors <7,- of the natural reference frame field is easily derived as

a 3 \
ea. (4.4).

Í/X

Starting from the motion defined by Eq. (4.1), the current velocity of the material

point M(x!) is obtained after partial derivation with respect to time as

(4.5)

4.2. 3 The dragging-ahng process

The comparison between the definitions of (jr,- and v given respectively at Eqs. (4.4)

and (4.5) allows to derive the fundamental relation

(46)

A graphical interpretation of this relation is shown in Figure 4.2. For simplicity, all

material coordinates x3 are fixed except x1. Two neighbouring material points, M(x*)

and M'(x* + dx1), are under consideration:

i) At current time í, they occupy the geometrical locations p(xl,¿) and p'(x* +dxl,¿),

and llpp'H = IbiCOdo:«'!!.

ü) At timei-f d£, they occupy the locations p+(xl, t + dt) and p'+(x*+dxl,í + d¿), with

\\pp+\\ = \\vdt\\ and llp+py = UflTfi* + d*)dïí||.

It can be seen in Figure 4.2 how the vector field ud¿, which transforms p into p.f and

p' into pij., also transforms the vector g{(xj ,t) into the vector §i(xj ,t + d¿). In other

72 Two stress update algorithms for large strain solid mechanics Chapter 4

v(x'+dx',t)dt

Figure 4.2 Dragging-along process of the reference frame field

words, <7,- is dragged along (or convected) by the vector field vdt, hence by the motion

itself. Therefore, the natural reference frame is convected by the body motion.

The main consequence, underlined by Oldroyd (1950), is the following: "the device

of representing all tensor quantities (say A) associated with the material by their con-

vected components (say AIJ) allows similar quantities associated with the same material

point at different times to be added, component by component, to give a similar tensor

quantity as the sum. "

For instance, in the current reference frame field (M,0;), the quantities /¿ Ai:i(t')dt'

and dAtJ /dt are still components of a tensor field, although they involve adding or

subtracting components A*i at different instants. This situation is in sharp contrast

with the one encountered with a fixed orthonormal frame. If A is represented by its

Section 4.2 Large strain solid mechanics in convected frames - ___ 73

orthonormal components Aaß, then L Aaß(t')dt' and dAa@/dt are not components

of a tensor field. The basic idea is that Aa@(t\) and Aaß(t%) are referred to different

configurations, and they must be transformed into a common configuration before they

can be added or subtracted, see Pinsky et al. (1983).

This different behaviour makes material coordinates especially attractive for the devel-

opment and numerical treatment of integro-differential constitutive relationships, which

must be objective (that is, meaningful for the body, but independent from the ob-

server's viewpoint). Indeed, by employing material coordinates which are convected

by body motion itself, all the discussions about the verification of the principle of

material frame-indifference (see Truesdell and Noll, 1965), also called objectivity

principle, a priori disappear.

Regarding the numerical treatment, any rate-form constitutive equation may be in-

tegrated in time using any standard finite difference scheme, because all the quantities

appearing in these schemes have a tensorial meaning related to the body and can be

directly combined, as pointed out above.

4.2.4 The strain and rate-of-deformation tensors

Once kinematics and the dragging- along process have been presented, the next re-

quired ingredient is a measure of strain and strain rate. The starting point is the cur-

rent separation ds between two neighbouring material points M(zl) and M'(xl + dx1).

Combining Eqs. (4.2) and (4.3), ds can be represented as

(ds)2 = pp' • pp' = dzQdzQ = (9i • gj)dx¡dxJ = flrydz'dxJ, (4.7)

where gjj are the covariant components of the metric tensor field G in the convected

frame. An important scalar associated to G is the ratio of spatial unit volume to

material unit volume ^/g, (Pegón & Guélin, 1986), given by

(4.8)

74 - Two stress update algorithms for large strain solid mechanics Chapter 4

Both G and ^/g contain information about the current configuration of the body.

Note, for instance, that if the initial orthonormal coordinates are taken as material co-

ordinates (a:1 = Z1), then in the initial configuration G is the identity tensor and ^/g is

one, thus reflecting an undeformed state.

The deformation between the initial time t = 0, which is chosen as a reference, and

the current time t can be obtained by comparing the two separations ds(t) and ds(0).

Recalling the definition of the metric tensor, Eq. (4.7), the difference between the two

separations is expressed as

[ds(t) - (ds(0) = [9ij(t) - 9ij(Q)} ddx = 2 eíj-(í)dz'dx> . (4.9)

Thanks to the dragging- along process, see Figure 4.2, <7¿j(0) is a quantity memorized

at time t = 0 but which still has a tensorial meaning at time i, so it can be subtracted

from gij(i) to define the components of a meaningful strain tensor e, which is in fact

the well-known Almansi- Euler strain tensor.

The rate-of-deformation tensor d can be defined in the current reference frame field

(M, <7,-) simply by taking the time derivative of e¿¿(¿),

It is possible to show that d is indeed the symmetric part of the velocity gradient in

the convected frame. If such definition of d is adopted, it is possible to define the strain

tensor e a posteriori according to

£ij(t)= dij^dt'. (4.11)
j o

Note that, as commented previously, the use of material components to represent

tensors has enabled a straightforward definition of strain and strain rate measures,

Eqs. (4.9>(4.1lj.

Section 4.2 Large strain solid mechanics in convected frames _ __ 75

4.2.5 The stress tensor

The next essential ingredient is a stress measure. To describe the current stress state

at the material point M(a:*), the Cauchy analysis in curvilinear coordinates leads to

the introduction of the relative stress tensor ff(M, í), (Brillouin, 1949). In the fixed

orthonormal frame, the components aaß of a are those of the classical Cauchy stress

tensor. The material components at] are related to aaß by the transformation rule

• («>

4.2.6 The governing equations

For a wide range of problems in solid mechanics, it is a common assumption that i)

mechanical and thermal effects are uncoupled and ii) the density is a constant. The

mechanical problem then involves the momentum balance and the constitutive equation.

The weak form of the momentum balance is the so-called balance of virtual power,

which equates the virtual power of internal forces and the virtual power of external

forces, (Hughes, 1987; Zienkiewicz & Taylor, 1991). These virtual powers are global

quantities, obtained through integration over the whole domain. The convected mate-

rial approach allows to merge two attractive features: dealing with current quantities

associated with the current state of the body 0 and, at the same time, being attached

to a time invariant mapping C*(fi) of material coordinates. The integration domain

is therefore C(f2) throughout the whole body motion.

As for the constitutive equation, it is typically written in rate form, relating a stress

rate to a certain measure of strain rate, (Malvern, 1969). If material coordinates are

employed, a stress rate tensor can be defined in the current reference frame field (M,flf,-)

simply by taking the time derivative of alj ,

TW = ̂ . (4.13)

This is the well-known Truesdell stress rate, see Truesdell (1953). This particular rate

was introduced because, very physically, during the dragging-along process of the stress

76 - Two stress update algorithms for large strain solid mechanics Chaplor 4

it gives priority to the resultant force vector rather than to the stress tensor itself, see

also Truesdell (1955). Many other stress rates have been employed in nonlinear solid

mechanics, but a review of the various choices is beyond the scope of this work.

The Truesdell rate can be employed to write a general nonlinear rate-form constitutive

equation as

' .»). (4.14)

where A may depend both on the strain rate (symbolically represented in Eq. (4.14)

by velocity v) and the state of stress (and, eventually, some internal variables). A

particular case of this general expression is the hypoelastic constitutive law

(4.15)

which states the linear dependence of the Truesdell rate on the rate-of-deformation

tensor. CIJ are the material components of the fourth-order elastic modulus tensor.

As commented previously, the use of convected frames guarantees a priori the ob-

jectivity of the constitutive equation (4.14), because it is stated in terms of material

components (i.e., associated to the body and not to the observer's frame). Numerical

time-integration is also straightforward. The stress rate can be discretized, by means of

a simple finite difference formula, into

where tn+9 is an intermediate instant between tn and in+\ = in + At. Again, the

use of material components is essential to allow <7y(tn+l) and ^(¿n) to be subtracted

and yield meaningful tensorial quantities. This is not the situation if a fixed orthonor-

mal frame is employed: as shown in Pinsky et al. (1983), Rodríguez- Ferran & Huerta

(1996) and in Section 4.4, oaß(tn+\) and crQP(tn) have to be transformed into a com-

mon configuration before they can be subtracted, thus making the time-integration of

the constitutive equation more elaborate.

Section 4.3 Two stress update algorithms for large strains : __ 77

4.3 Two stress update algorithms for large strains

4.3.1 Introductory remarks

The FEM is commonly employed to solve the weak form of the momentum balance.

If inertia terms are neglected (quasistatic process), the displacements u are employed as

the fundamental unknowns, and the Lagrange-multiplier technique is chosen to impose

the boundary conditions, see Chapter 3, the resulting system of nonlinear equations is,

Eq. (3.5),

r(aj) = 0, (4.17)

where x and r are the enlarged vectors of unknowns and residuals, respectively.

As commented in Chapter 3, Eq. (4.17) is typically solved in an incremental man-

ner. The vector of unknowns is then Az = (Au, AA) from one (known) equilibrium

configuration of the body at time tn to a new (unknown) equilibrium configuration at

time in-fi, a time-increment Ai later. The resulting nonlinear system at each incre-

ment may be solved by a number of iterative techniques, see Chapter 3 and Crisfield

(1991), Dennis & Schnabel (1983), Ortega & Rheinboldt (1970). The two key ideas

are that i) a linearized form of Eq. (4.17) is used to get an initial prediction and suc-

cessive corrections to Aaj and ii) the constitutive equation (4.14) must be integrated

over the time-increment after each iteration to get the stresses at tn+i and check the

equilibrium. In fact, the time-integration of the constitutive equation is a key point in

nonlinear solid mechanics and affects fundamentally the accuracy of the global solution,

(Hughes, 1984).

4.3.2 Two stress update algorithms

Two algorithms for the numerical time-integration of the constitutive equation will

be presented in this Subsection. An intuitive approach will be made. First, a restric-

tion will be imposed on the problem, to get a particular version of the algorithms in a

straightforward manner. Then the restriction will be removed, and the general expres-

sions of the algorithms will be obtained. A more rigorous course will be followed in the

78 - Two stress update algorithms for large strain solid mechanics Chapter 4

next Subsection, where an error analysis for both algorithms is performed.

Profiting from the simple expression of the Truesdell rate in material components,

Eq. (4.13), the rate-form constitutive equation (4.14) can be integrated over the time-

increment. For the hypoelastic equation (4.15), for instance, it yields

(4.18)

where left superscripts denote time (i.e., natj = crlj(fn)).

Assume for the moment that the material components C^kl are constant. With this

simplifying restriction, the RHS of Eq. (4.18) can be put, recalling Eq. (4.11), as

Cijkl n dkl(t)dt = C1*1 [»+leu -
 nekl] = C«"Aew, (4.19)

Jtn

where A£¿./ are the material components of the increment of strain tensor. Recalling the

definition of the strain tensor in Eq. (4.9), the strain increment Ae¿/ can be obtained

as
l an+1za dn+lza n a n a

-2

Remark 4-1'- The increment of strain Ae¿/ is a purely kinematical quantity,

independent from material behaviour.

Remark 4-^' Equation (4.20) allows to compute Ae/./ from the orthonormal

coordinates nza and n+^za, which are available in the incremental analysis. No

assumption about the body motion between tn and ¿n+i is required.

Combining Eqs. (4.18) and (4.19), a stress update algorithm can be written as

"+V> = V'' + Cf'wAew. (4.21)

with Ae¿/ computed according to Eq. (4.20). It must be remarked that, in this par-

ticular case of constant material components C"J , the algorithm given by Eq. (4.21)

Section 4.3 Two stress update algorithms for large strains - 79

has no time-discretization error, because it has been obtained through exact time-

integration of the constitutive equation, with no need of numerical time-integration.

In many cases, however, the material components of C are not constant. A common

assumption in computational mechanics is that of constant orthonormal components

cctßfö ^ writ;ten jn terms of the Lamé constants A and /x as

CQ^6 = XSQß67§ + 1* (SajSß6 + SQS6ßj) , (4.22)

where 8aß is the Kronecker delta. If the orthonormal components Ca^ are constant,

the material components C1^ are not. That means that the stress update algorithm

(4.21) must be modified by specifying when C*i is evaluated. Two possible choices,

resulting in two stress update algorithms, will be shown next.

First algorithm

The first choice is to evaluate Ct} at the beginning of the increment, tn. The in-

crement of strain A£J¡./ presented in Eq. (4.20) is written in an equivalent form, using

only quantities at *„, after substitution of n+lza = nza + Aza in Eq. (4.20). The stress

algorithm is then:

n+V' = V + nC#WAew. (4.23a)

1 \dnza d(&za} d(Aza) dnza

~ x x dxi Q¿ -J • (4>23&)

Remark 4-3: The expressions of Aej./ in Eqs. (4.20) and (4.23b) are equiva-

lent, so the strain increment employed in the first algorithm is still the exact

one.

Remark 4-4: However, the stress update algorithm is no longer exact. Con-

trary to what happened in the particular case of constant CIJ , Eq. (4.21), the

last term in Eq. (4.23a) is not the exact value of the stress increment, but an

approximation affected by a time-discretization error. An error analysis will be

performed in the next Subsection.

80 Two stress update algorithms for large strain solid mechanics Chapter 4

Second algorithm

An intuitively better approach is a time-centered scheme, where quantities are eval-

uated at the midstep instant t j_. However, since an incremental strategy has been

adopted, the only available kinematical data are the orthonormal coordinates at the

beginning and the end of the time-step. Nothing is known about the body motion be-

tween tn and in+l- As a consequence, an hypothesis is needed to evaluate quantities at

í .l. A common choice is to assume that the velocity is constant within the time-step,
**"T* o

va = Aza/Aí. The midstep configuration is then

«-±Aza. (4.24)

•t
The bar is used to emphasize that the expressions of va and n~*~2za are based on the

constant-velocity assumption. Equation (4.24) allows to express the strain increment

given by Eq. (4.20) in an equivalent form, employing midstep orthonormal coordinates.

The stress update algorithm is

n+1 _ti n_ij' i nH-íï/'·iU"'' A „ IA oc \1 ¿r •> = ff J + 2O A££/. (4.zoo)

i l _ _ . _ . _ . _ . _ i l

1

2 dxk dx' dxk dxl (4.256)

where n+2C*J are the material components of the modulus tensor computed at the

midstep under the constant-velocity assumption.

Remark 4.5: The constant-velocity assumption is just a computational conve-

nience that allows to compute the exact strain increment in terms of midstep

quantities, Eq. (4.25b). In fact, no restriction is placed on the true body mo-

tion between tn and in+i and, similarly to Remark 4-3, the expressions of A£¿/

in Eqs. (4.20) and (4.25b) are equivalent.

Remark 4.6: The stress update algorithm given by Eqs. (4.25), however, is

not exact. As remarked for the first algorithm, the last term in Eq. (4.25a) is

not the exact stress increment, but only an approximation.

Section 4.3 Two stress update algorithms for large strains -̂ 81

Remark 4-7: The two stress update algorithms, Eqs. (4.23) and (4.25), are

identical if the material components of the modulus tensor are constant,

Eq. (4.21). They differ, however, for variable Clikl. The error analysis of the

next Subsection shows that the time-centered strategy of the second algorithm

is indeed more accurate than the forward scheme of the first algorithm.

The two presented algorithms treat rigid rotations correctly. Indeed, if the body

undergoes a rigid rotation, the separation between its particles does not change, thus

resulting in a null strain increment, Eq. (4.9). Since the two algorithms employ the ex-

act strain increment, Eqs. (4.23b) and (4.25b), they both correctly predict no variation

in the material stress components, n"^1alj = nall. This behaviour of a stress update

algorithm is trivially verified if a convected frame is employed but must be carefully

checked if a fixed reference frame is used, see Pinsky et al. (1983) and Rodríguez-

Ferran & Huerta (1994,1996). In the literature this behaviour is often referred to as

incremental objectivity, (Hughes, 1984; Hughes & Winget, 1980). However, the

strain increment Ae¿/ being null does not necessarily imply the motion between tn and

in-f 1 to be a rigid rotation. Infinitely many other paths are possible, including such

simple ones as the parallel translation of all the material points, depicted in Figur" 4.3,

which may cause loading/unloading effects. Since an incremental analysis is performed,

nothing is known about the body motion during the time-step. As a consequence,

assuming a rigid rotation and demanding the numerical algorithm to perform in ac-

cordance with that choice is an observer's choice. Although this choice may be very

reasonable, it has, contrary to the principle of objectivity, no physical justification. For

this reason, the term priority on rigid motion (i.e., rigid rotations are assumed when

possible) is preferred here.

Moreover, the treatment of rigid rotations is not the only concern. Although both

algorithms behave identically for this particular test, the error analysis and the nu-

merical examples show that the general behaviour is quite different. These differences

are in accuracy, on the numerical implementation and, also, on the response to several

82 Two stress update algorith-ns for large strain solid mechanics Chapter 4

Initial
configuration

Final
configuration

Figure 4.3 Two possible paths from an initial to a final configuration

non-rigid deformation paths different from simple rigid rotation. Thus, the performance

of large strain algorithms must be evaluated beyond rigid motion into a more general

error analysis.

It is important to note that both algorithms can be adapted to handle rate-form

elastoplastic constitutive equations. As commented in Pinsky et al. (1983), the key

idea is to profit the additive decomposition of the rate-of-deformation tensor d into

elastic and plastic parts to perform an operator split of the constitutive equation.

4.3.3 Error analysis of the algorithms

The two algorithms are compared with the help of various numerical tests in Section

4.5. The basic goal of the comparison is to show with numerical experiments the supe-

rior performance of the second algorithm. A theoretical justification of such behaviour

is presented here, where the error associated to the time discretization is analyzed. The

analysis shows that the second algorithm is second-order accurate in time, while the

Section 4.3 Two stress update algorithms for large strains - _____ 83

first one is only first-order accurate.

To perform the error analysis, a more rigorous approach than in the presentation of

the algorithms is followed, accounting from the start with variable material components

CtJ . If finite differences are employed to discretize the hypoelastic equation (4.15),

the midpoint rule renders

(4.26)

which can be rearranged into

n+lffij = nffij + n^ctjKi / Af n+^ i + O(A^)_ (4,27)

The constant- velocity assumption has not been introduced in Eq. (4.27), so n

and n~"~2ii£/ are thp true midstep values. It is shown in the next Subsection that

Ai n+2d¿¿ is a third-order approximation to the strain increment Ae¿/,

Aew = Ai n+2dw + 0(Ai3). (4.28)

Note that, since n+2t/£/ is an instantaneous quantity which does not depend on Ai,

Eq. (4.28) also states that the strain increment is

Substituting Eq. (4.28) into Eq. (4.27) gives

0(Ai3). (4.29)

Apart from the error term, which was not accounted for in the presentation of the

algorithms, the only difference between Eq. (4.29) and the algorithms, Eqs. (4.23) and

(4.25), is in the material components of the modulus tensor. The error analysis is

completed by studying the effect of replacing n+aCÍJ'W in Eq. (4.29) by nC^kl (first

algorithm) or by ""^c-7 (second algorithm),

84 - Two stress update algorithms for large strain solid mechanics Chapter 4

First-order algorithm

A first-order Taylor's expansion shows that

O(&t), (4.30)

Combining Eqs. (4.28), (4.29) and (4.30) results in

ki + 0(A¿2). (4.31)

Equation (4.31) only differs from the first stress update algorithm, Eqs. (4.23), on the

error term. Since this error is order 2 for one time-step (from tn to ¿«+1), the global

error is order 1. In conclusion, the first algorithm is first-order accurate in time.

Second-order algorithm

As shown in Appendix 4. A, the constant-velocity assumption provides second-order

approximation in the midstep material components of the modulus tensor,

0(A<2). (4.32)

Substituting Eq. (4.32) into Eq. (4.29), and employing the expression of Ae¿./ in

Eq. (4.28) yields

V-> = naij + "Hc^Aet/ + 0(Ai3), (4.33)

which, except for the error term, coincides with the second algorithm, Eq. (4.25). Since

the error is order 3 for one time-step, the global error is order 2. In conclusion, the

second algorithm is second-order accurate in time.

Section 4.3 Two stress update algorithms for large strains • 85

4.3.4 The strain increment and the midpoint rule

The superiority of a time-centered approach (second-order algorithm) over a forward

scheme (first-order algorithm) is illustrated by the error analysis just presented. As a

further justification, it is shown here that, if a generalized trapezoidal rule is employed

to integrate the hypoelastic equation (4.15),

»+ ni + n+6Cijkl (Ai n+0dk¡) ; 0 < 0 < 1, (4.34)

the midpoint rule (0 = 1/2), in combination with the constant- velocity assumption, is

the only one which works with the exact strain increment.

The material components of the rate-of-deformation tensor defined in Eq. (4.10) can

be put more explicitly, considering Eqs. (4.4), (4.6) and (4.7), as

dv«(
dkl(t} = 2 - + ~ ~ - • (4<35)

If the velocity is assumed constant within the time-step, va — Aza/Ai, the body

motion from tn to ín_f i is represented by

n+9-a = nza + ̂ or^ Q < 0 < 1. (4.36)

By modifying Eq. (4.35) according to Eq. (4.36), the approximation to the rate-of-

deformation based on the constant-velocity assumption can be written as

n+e, ardkl = 2Â7 U* 0*' + + 2d~ ~~ • (4'37)

Comparing Eq. (4.37) to the exact expression of the strain increment employed in

Eq. (4.23b) gives

0 = i (4.38)

Since Ai n+ö dj.\ is employed as an approximation to the strain increment in the trape-

zoidal rule, see Eq. (4.34), it can be concluded from Eq. (4.38) that the midpoint rule

(0 = 1/2) is the only one which allows to compute the exact strain increment.

86 • Two stress update algorithms for large strain solid mechanics Chapter 4

Remark 4-8: Because of Eq. (4.38), the second-order algorithm, Eq. (4.25),

can be interpreted as a direct application of the midpoint rule.

Remark 4-9: Since Eq. (4.38) states that the midpoint rule is the only one

which allows to compute the exact strain increment, the first-order algorithm,

Eqs. (4.23), is not deduced from the general trapezoidal rule particularized at

0 = 0. In an effort to obtain better accuracy, the first-order algorithm employs

the exact strain increment expressed in a convenient form, Eq. (4.23b), instead

of a forward-in-time approximation of Aej./, such as Aí "e

Remark J^.IQ: It must be observed that in Hughes (1984) the midpoint rule

only allows to compute the most accurate value of the strain increment, in-

stead of the exact value. The discrepancy is due to the different setting: a

fixed frame is employed in Hughes (1984), and the strain increment is defined

there as
/*

•/¿n

However, according to Malvern (1969) "there is no physical significance to such

an integration at one apace point even in a steady flow simulation. "

The mid-point rule also ensures that a second-order approximation for the position

and the velocity is achieved,

(4.39)

By combining Eqs. (4.35), (4.37) and (4.39), it is possible to conclude that second-

order approximation is also obtained for the rate-of-deformation tensor,

0(Ai2), (4.40)

Section 4.4 Numerical implementation ___^ 87

which, after substitution in Eq. (4.38) yields the relation employed for the error analysis,

Eq. (4.28):

= Ai "+2dw + C?(Ai3).

4.4 Numerical implementation

4.4.1 From converted frames to Cartesian coordinates

The convected frame formalism may be employed to develop a large strain finite ele-

ment code, thus resulting in a direct treatment of constitutive equations. Most existing

large strain codes, however, use a fixed frame. Moreover, one of the goals of this Chapter

is to present a simple way of enhancing a small strain code -written in a fixed frame-

into a large strain code. For this reason, the adaptation of the algorithms presented

above to a fixed orthonormal frame is shown next. It will be assumed that the initial

orthonormal coordinates are employed as material coordinates, xl = Zl.

First-order algorithm

The transformation rule between the contravariant material and orthonormal com-

ponents is shown in Eq. (4.12) for the stress tensor. A similar relation holds for the

fourth-order modulus tensor, namely

CiJU = ßj6
V9 dz<* ' ('

Various representations of the strain increment in a fixed frame are possible, depend-

ing on which configuration they are referred to. Three common choices, see Hughes

(1984), are the Lagrangian strain increment (referred to the configuration at ¿n), the

midstep strain increment (at t j_) and the Eulerian strain increment (at in+i). The

first-order algorithm uses quantities at the beginning of the step, so the Lagrangian

strain increment is chosen,

« «]
• (4>42)

88 -- Two stress update algorithms for large strain solid mechanics Chapter 4

In this equation the superscript n emphasizes that "Ae^j/ are the orthonormal com-

ponents of the strain increment referred to the configuration at tn. By using the ex-

pression of the material components of the strain increment of the first-order algorithm,

Eq. (4.23b), it can be checked that the relation between Aej./ and "Ae^ is

n f i gn v (4-43)

Using the transformation rules given by Eqs. (4.12), (4.41) and (4.42) in Eq. (4.23a)

yields, after some manipulation,

The partial derivatives that appear in Eq. (4.44) are the orthonormal components

of the deformation gradient JP and its inverse, see Malvern (1969). In an incremental

analysis, the incremental deformation gradient nA that relates the configuration at the

beginning of the time-step to the configuration at the end of the step, see Pinsky et al.

(1983) and Figure 4.4, is defined as

nA = n+lF • nF~l (4.45)

By modifying Eq. (4.44) according to Eq. (4.45) and taking into account that ^fg =

det(.F), the first-order algorithm is finally written in a fixed orthonormal frame, using

compact notation, as

-[n<r+ nC: nAe]-"ylT (4.46a)j Âdet("yl)

Remark ^.11: The incremental deformation gradient nA is employed in

Eq. (4.46a) to push forward both the stress at time tn and the stress incre-

ment, also referred to the configuration at tn, to the final configuration at time

Section 4.4 Numerical implementation 89

Remark 4-12: The midstep configuration is not needed in this algorithm. As

a counterpart, however, quadratic terms are required to compute the strain

increment referred to the configuration at ¿n, Eq. (4.46b).

fln+1

Figure 4.4 Incremental deformation gradients

90 ̂ - Two stress update algorithms for large strain solid mechanics Chapter 4

Second-order algorithm

A similar process is carried out for the second-order algorithm. Since this algorithm

employs midstep quantities, the midstep strain increment, (Hughes, 1984), is chosen to

represent the increment of strain in the fixed frame,

As previously commented, the bar remarks that 2 Ae^j/ is referred to the midstep

configuration associated to the constant-velocity assumption. To study the relation

between A£¿/ and n~*"2 Ae^j/, it is convenient to use the expression of the material

components of the strain increment of Eq. (4.25b). It can be checked then that

<4-48'

Transforming Eq. (4.25a) from material to orthonormal components with the aid of

the transformation rules of Eqs. (4.12), (4.41) and (4.48) results in

n+i„aß _

(4.49)

^_ ^
^'

Since the midstep configuration is involved, the incremental deformation gradient

2yl is required, it is expressed as

and relates the midstep configuration to the end-of-step configuration, see Pinsky et

al. (1983) and Figure 4.4. With the hel

written in a fixed orthonormal frame as

al. (1983) and Figure 4.4. With the help of n+2/l, the second-order algorithm can be

Section 4.4 Numerical implementation _^ 91

(4.5U)

Remark 4-13: The incremental deformation gradients "A and n+iA are em-

ployed in Eq. (4.51a) to push forward the stress at time tn and the stress

increment, referred to the midstep configuration, to the final configuration at

time ¿n+i, so they can be properly added to yield a relevant tensor in this con-

figuration. This transformation is essential, since orthonormal components of a

tensor at different instants cannot be directly added, .because they are referred

to different configurations (Pinsky et a/., 1983).

Remark 4-14-' The choice of the rnidstep configuration allows to compute the

strain increment as the symmetrized gradient of the increment of displacements,

with no quadratic terms. Because of this, Eqs. (4.51) provide a straightforward

generalization to large strains of the classical small strain analysis.

As commented previously the stress update algorithms present more elaborated ex-

pressions in a fixed frame, Eqs. (4.46) and (4.51), than in a convected frame, Eqs. (4.23)

and (4.25). As explained in Remarks 4.11 and 4.13, quantities in a fixed frame must

be transformed into a common configuration before they can be combined. If, from

the start, a fixed frame context is chosen to state and time-integrate the rate-form

constitutive equation, as done in Bathe et al. (1975) and Pinsky et al. (1983), these

transformations are performed by means of pull-back and push-forward operators. A

classical presentation of the two algorithms using an orthonormal fixed frame can be

found in Appendix B and in Rodriguez- Ferran & Huerta (1996).

92 _ Two stress update algorithms for large strain solid mechanics Chapter 4

4.4.2 Implementation in a small-strain code

It is shown in this Subsection that both stress update algorithms can be employed to

add large-strain capabilities to a small-strain FE code in a simple way.

The basic idea is that the incremental deformation gradients required in Eqs. (4.46a)

and (4.51a) can be computed in a straightforward manner using quantities that are

available in a small strain code. Consider, for instance, the incremental deformation

gradient nA relating On to fin+lj Eq. (4.45). Recalling the definition of F and the ex-

pression of incremental displacements, it can be easily checked that nA can be written

as
aç^)_

~ -

If an Updated Lagrangian formulation is used, (Bathe, 1982), the configuration Í2n

is taken as a reference to compute the incremental displacements. In such a context, -
nA can be computed from Eq. (4.52) with the aid of standard nodal shape functions,

by expressing Au in terms of the nodal values of incremental displacements. Since

the derivatives of shape functions are available in a standard FE code, (Hughes, 1987;

Zienkiewicz & Taylor, 1991), no new quantities must be computed to obtain nA.

As for n+2yl, it can be computed as

(4.53)

SO
n+2/l can also be directly computed with the aid of the shape functions, once the

configuration of the mesh has been updated from iîn to 0, ±.

As a result, the only two additional features that are required to handle large strains

are (1) the updating of mesh configuration, and (2) the computation of incremen-

tal deformation gradients, Eqs. (4.52) and (4.53). This can be seen by comparing

the schematic algorithm for a small-strain analysis with nonlinear material behaviour,

shown in Box 4.1 with the large-strain versions, depicted in Box 4.2 (first stress update

algorithm) and Box 4.3 (second stress update algorithm). In Boxes 4.2 and 4.3 (large

Section 4.4 Numerical implementation __^_——_————__—^^-^_^__^^_ 93

strains), the modifications with respect to Box 4.1 (small strains) are highlighted with

boldface, and a star, *, is employed to designate additional steps.

Regarding the computational cost, it can be seen in Boxes 4.2 and 4.3 that the second

algorithm is more expensive. Indeed, the second algorithm requires two configuration

updates (from íïn to fi_ , i and from ß_ , i to ßn+l) and, more importantly, the com-
* 2 2

putation of the incremental deformation gradients and Jacobians in two different con-

figurations at each iteration. Whereas the first algorithm only requires one computation

for each iteration. Thus, the computational cost per iteration of the second algorithm

will be taken as approximately twice that of the first algorithm (this factor of two is an

overestimation, because steps of the stress update —such as the plastic corrector— are

performed once in both algorithms, but this factor is valid as a first approximation for

comparison purposes).

94 Two stress update algorithms for large strain solid mechanics Chapter 4

FOR EVERY TIME-INCREMENT [

FOR EVERY ITERATION k WITHIN THE TIME-INCREMENT;

1.— Compute the incremental displacements Aw by solving a linearized form of
the equilibrium equation

2.— Compute the incremental strains Ae as the symmetrized gradient of dis-
placements:

AAe* = - dz dZ

3.— Compute the elastic trial incremental stresses A<r*rjaj via the elastic modulus
tensor:

4.— Compute the elastic trial stresses at in+i:

°"trial=

5.— Compute the final stresses <r at tn+i by performing the plastic correction

6.— Compute the internal forces /^ by integrating the stresses a

7.— Check convergence. If it is not attained, go back to step 1.

Box 4.1 Small-strain analysis with nonlinear material behaviour

Section 4.4 Numerical implementation 95

FOR EVERY TIME-INCREMENT [*„,<„+i];

FOR EVERY ITERATION k WITHIN THE TIME-INCREMENT;

1,— Compute the incremental displacements Au by solving a linearized form of
the equilibrium equation

2.— Compute the incremental strains Ae accounting for quadratic terms,
Eq. (4.46b):

^-5 00»*)

3.— Compute the elastic trial incremental stresses A<7*r¡aj via the elastic modulus
tensor:

= C :

* Compute the incremental deformation gradient n/l, Eq. (4.52), and
its determinant "J

4.— Compute the elastic trial stresses at ¿n+b pushing forward both na and
Aflrf^j from configuration fîn to un+i, F~. (4.46a):

„k n T—l n /i n_ n ¿T • n T—l n * (\ _k \ n jTa t r i a l = / A <r A + J A ^A<rtria, J A

* Update the configuration from On to On+i by using the incremental
displacements of the current step

5.— Compute the final stresses ak at tn+\ by performing the plastic correction

6.— Compute the internal forces f-k
ni by integrating the stresses <rk

7.— Check convergence. If it is not attained, recover configuration On and go
back to step 1.

Box 4,2 First stress update algorithm

96 Two stress update algorithms for large strain solid mechanics Chapter 4

FOR EVERY TIME-INCREMENT [in,*n+i];

FOR EVERY ITERATION k WITHIN THE TIME-INCREMENT;

1,— Compute the incremental displacements AM* by solving a linearized form of
the equilibrium equation

* Update the configuration from Í2n to O , j.

2.— Compute the incremental strains Ae as the symmetrized gradient of dis-
placements, Eq. (4.51b):

3.— Compute the elastic trial incremental stresses Atf r j a j via the elastic modulus
tensor:

Aafrial = C : Ae*

if Compute the incremental deformation gradients "A and
Eqs. (4.52) and (4.53), and its determinants nj and n+2 J

4.— Compute the elastic trial stresses at fn+b pushing forward "<r and
to fin+i, Eq. (4.51a):

~ n nA na n
trial

* Update the configuration from O . j_ to Í2n-fi

5.— Compute the final stresses a at tn+\ by performing the plastic correction

6,— Compute the internal forces /^t by integrating the stresses a

7.— Check convergence. If it is not attained, recover configuration fin and go
back to step 1.

Box 4.3 Second stress update algorithm

Section 4.5 Numerical examples __ 97

4.5 Numerical examples

4.5.1 Introduction

The two algorithms presented previously are compared with the help of various sim-

ple deformation paths (simple shear, uniaxial extension, extension and compression,

dilatation, extension and rotation) and two benchmark tests in nonlinear mechanics:

the necking of a circular bar and a shell under ring loads. Both elastic and elastoplastic

cases are considered.

Elastic behaviour will be represented by a modulus tensor with constant orthonormal

components which depend on the Lamé parameters A and /í. All the simple deforma-

tion paths have been performed with a null Poisson's coefficient, resulting in À = 0 and

\i = E/2, with E the Young's modulus. A bilinear elastoplastic law is employed for the

plastic cases, with a plastic modulus of Ep = E/WQ and a yield stress of cry = E/2.

A general result is that the values predicted with the first algorithm are more depen-

dent on the number of time-increments than for the second one. This behaviour, which

is in agreement with the error analysis, has been detected in the simple deformation

paths and in both benchmark tests.

•4.5.2 Simple shear

The problem statement for the simple shear test is shown in Figure 4.5, where the

initial (t — 0) and final (t — 1) configurations are presented. The initial stress field is

zero. The equations of motion are

x(t) = X + Yt ,
' (4.54)

y(t) = Y

If the rate-form hypoelastic behaviour is employed, Eq. (4.54) can be transformed

98 Two stress update algorithms for large strain solid mechanics Chapter 4

t
t=0

Figure 4.5 Simple shear test. Initial and final configurations

into the set of ordinary differential equations

Ò'XX -~ 2<7Zy = 0

¿xy - &yy — E/2

àyy = 0

(4.55)

which, complemented with null initial conditions, may be solved to provide the analyt-

ical solution

^

E
<Txy(t) = —t

ayy(t} = 0

(4.56)

Section 4.5 Numerical examples , ___^^ 99

The two algorithms have been employed, with different values of the time-step (1, 2,

3, 5, 10, 20, 50 increments), to integrate the constitutive equation for the deformation

path (4.54), from t = 0 to t = 1.

Figure 4.6 presents the results for the elastic case (1, 5, 50 increments). It can be

seen that the second-order algorithm gets, for the three components of stress, the exact

analytical values, whereas the first one grossly overestimates stresses when not enough

increments are employed, and demands a small time-step to get close to the analytical

solution. The output of a small strain analysis (1 increment), is also presented in Figure

4.6: the null ayy and linear axy are correctly predicted, but this linear analysis is not

able to reproduce quadratic axx, Eq. (4.56), caused by a quadratic strain.

Taking the analytical solution (4.56), the error in the final stress (t — 1) can be com-

puted and plotted versus the number of time-increments. In a log-log scale, an straight

line with a slope equal to the order of the algorithm is expected (that is, 1 for the first

algorithm and 2 for the second). To compute an average observed slope, a straight line

is fitted via least-squares interpolation. The results are shown in Figure 4.7. Only the

first algorithm is shown, because the second one provides the exact analytical solution

(except for rounding errors) for any number of time-steps. It can be seen that for the

three components of stress, Figures 4.7a, 4.7b and 4.7c, the observed slopes are very

close to the expected value of 1 (1.09 for axx, 1-16 for axy and 1.00 for eryy). The

first-order accuracy of the first algorithm is thus corroborated by this simple test.

The shear test has also been performed in the elastoplastic case. The results are

presented in Figure 4.8 (1, 10, 50 increments). As in the elastic problem, the first-order

algorithm grossly overestimates the final stress if only one increment is employed, while

the second-order one provides much more accurate values. With a higher number of

time-steps, both algorithms converge to the same response. It may be observed that, of

course, when plastification starts (around í = 0.6), the curves differ from their elastic

counterparts of Figure 4.6.

100 Two stress update algorithms for large strain solid mechanics Chapter 4

SIGMAXX/E

1.75

1.50.

1.25.

1.00.

0.75.

0.50.

0.25.

0.00

-0.25-

-0.50

0.00 0.20

SIGMAXY/E

1.75

1.50.

1.25.

1.00.

0.75.

0.50.

0.25.

0.00

-0.25.

-0.50

0.40 0.60 0.80 1.00 1.20

Fig. 4.6a

Small strain

Second

Second

Second

First

First

First

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.6b

Section 4.5 Numerical examples 101

SIGMA YÏ/E

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

-0.25!

-0.50

HUE

0.00 0.20 0.40 0.60 0.80 1.00

D Small strain

A Second

A Second

A Second

v First

v First

v First

1.20

Fig. 4.6c

Figure 4.6 Simple shear test, elastic analysis. Stress vs. time curves computed with the two
algorithms (1, 5 and 50 time-steps) and small-strain analysis (1 time-step), a) axx.
b) <Tzy. C) O-yy

A small strain analysis, this time with 50 increments to account for material nonlin-

earity, is again not satisfactory. As commented above, axx is incorrectly kept at its zero

initial value throughout the first steps of the computation, with elastic behaviour. As

cfyy is also zero, the only non-zero stress is axy, and the elastic stress tensor is

a =
0 axy

axy 0
(4.57)

that is, a fully deviatoric tensor. As the plastic correction, once plastification begins,

is carried along precisely along the deviatoric part of the stress tensor, axy is the only

component of stress affected by plastification, while axx and &yy keep their elastic be-

haviour. The need for a large strain analysis is again demonstrated.

102 Two stress update algorithms for large strain solid mechanics Chapter 4

ERROR IN SIGMAXX/E

10E1

10EO

10E-1 .

10E-2 .

10E-3 .

10E-4 .

10E-5

First (Slope: 1.09)

INCREMENTS

1

10EO

4 6 1

10E1

4 6 1

10E2

Fig. 4.7a

ERROR IN SIGMAXY/E

10E1

10EO

10E-1 .

10E-2 -

10E-3 .

10E-4 -

10E-5

First (Slope: 1.16)

INCREMENTS

i t
1 2

10EO

4 6 1

10E1

4 6 1

10E2

Fig. 4.7b

Section 4.5 Numerical examples 103

ERROR IN SIGMAYY/E

10E1

10EO .

10E-1 .

10E-2 .

10E-3 .

10E-4 .

10E-5
1

10EO

v First (Slope: 1.00)

INCREMENTS

4 6 1

10E1

4 6 1

10E2

Fig. 4.7c

Figure <».7 Simple shear test, elastic analysis. Error in the final value of stress (t = 1) vs.
number of time-steps (1, 2, 3, 5, 10, 20, 50). a) axs. b) <rxy. c) <ryy

104 Two stress update algorithms for large strain solid mechanics Chapter 4

SIGMAXX/E
0.40,

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.8a

SIGMAXY/E

0.40

0.35.

0.30.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.8b

Section 4.5 Numerical examples 105

SIGMAYY/E

-0.1 OI

0.00 0.20 0.40 0.60 0.80 1.00

Fig. 4.8c

1.20

Figure 4.8 Simple shear test, elastoplastic analysis. Stress vs. time curves computed with the
two algorithms (1, 5 and 50 time-steps) and small-strain analysis (1 time-step), a)

. fa) <Txy. yy

106 Two stress update algorithms for large strai., solid mechanics Chapter 4

t=0 t=1

Figure 4.9 Uniaxial extension test. Initial and final configurations

4.5.3 Uniaxial extension

A unit square is subjected to uniaxial extension in the x direction, see Figure 4.9.

The equations of motion are

x(t)=X(l+t)

y(0 = Y

and the analytical solution of the hypoelastic constitutive equation is

(4.58)

axx(t) = Et

axy(t) = 0

<Tyy(t) = 0

(4.59)

Section 4.5 Numerical examples 107

The two algorithms correctly predict null values for axy and &yy- Differences are

found, on the contrary, for axx- while the first algorithm grossly overestimates it, the

second one slightly underestimates it, see Figure 4.10. It can be seen in Figure 4.10

that, for this particular test, a small strain analysis, with one time-step, produces the

exact solution. This is due to the fact that the two sources of error (neglecting quadratic

terms in the strain tensor and the time-discretization error) compensate each other. Of

course, this is not the situation in a general case, as shown for the other tests.

SIGMAXX/E

4.50

4.00.

0.20 0.40 0.60 0.80 1.00 1.200.00 u./u U.1U u.bu u.au i.uu i.¿u

Figure 4.10 Uniaxial extension test, elastic analysis. Horizontal normal stress axx vs. time
curves computed with the two algorithms (1, 5 and 50 time-steps) and small-
strain analysis (1 time-step)

The error in the final value of axx versus the number of time-steps is presented in

Figure 4.11. The observed slopes for the two algorithms are in this case 1.13 for the first

algorithm and 1.95 for the second one, in very good agreement with expected values of

1 and 2 respectively.

The plastic response is presented in Figure 4.12. When plastification begins at i = 0.5,

108 Two stress update algorithms for large strain solid mechanics Chapter 4

the plastic correction is performed along the deviatoric part of the stress tensor, thus

resulting in an increase of ayy at the expense of axx. Again, the second-order algo-

rithm behaves much better than the first one if a small number of time-increments is

employed, especially for axx, see Figure 4.12a. With a large number of time-steps (50),

the two algorithms provide very similar results, different from the small strain analysis,

see Figure 4.12b.

ERROR IN SIGMAXX/E

10E1

10EO .

10E-1

10E-2 .

10E-3 .

10E-4 .

10E-5
1

10EO

First (Slope: 1.13)

Second (Slope: 1.95}

INCREMENTS

4 6 1

10E1

4 6 1

10E2

Figure 4.11 Uniaxial extension test, elastic analysis. Error in the final value of horizontal
normal stress axx (t = 1) vs. number of time-steps (1, 2, 3, 5, 10, 20, 50)

Section 4.5 Numerical examples 109

SIGMAXX/E

1.80

1.60.

1.40.

1.20.

1.00.

0.80.

0.60.

0.40.

0.20.

0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

SIGMAYY/E

0.18

-0.0

Fig. 4.12a

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.12b

Figure 4.12 Uniaxial extension test, elastoplastic analysis. Stress vs. time curves computed
with the two algorithms (1, 10 and 50 time-steps) and small-strain analysis (50
time-steps), a) axx. b) ayy

110 Two stress update algorithms for large strain solid mechanics Chapter 4

t=0

t=1

Figure 4.13 Extension and compression test. Initial and final configurations

4,5.4 Extension and compression

A unit square undergoes extension in the z direction and compression in the y direc-

tion, with no change in volume, see Figure 4.13. The equations of motion are

x(t) = X(l + t)

y(0 = Y ¡(I + t)
(4.60)

Section 4.5 Numerical examples Ill

and the analytical solution for the elastic case is

ffxy(t) = 0

E _1

(4.61)

Again, both algorithms are capable of predicting null axy for the elastic test, but

differences appear for axx and 0yy, see Figure 4.14. The observed orders are in this case

1.15 (first algorithm) and 1.93 (second algorithm) for axx, see Figure 4,15a, and 0.87

(first algorithm) and 1.99 (second algorithm) for &yy, see Figure 4.15b.

As for the plastic test, results are shown in Figure 4.16. Once again, convergence to

the "reference" solution (with 50 time-increments) is faster with the second algorithm,

while the small strain analysis yields a qualitatively different response.

112 Two stress update algorithms for large strain solid mechanics Chapter 4

SIGMAXX/E
8.00.

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.14a

SIGMAYY/E

0.20

0.10

0.00

-0.10

-0.20

-0.30

-0.40

-O.SO

-0.60

-0.70

-0.80

TIME

Small strain

A Second

A Second

A Second

v First

v First

v First

0.00 0.20 0.40 o.eo 0.80 1.00 1.20

Fig. 4.14b

Figure 4.14 Extension and compression test, elastic analysis. Stress vs. time curves com-
puted with the two algorithms (1, 5 and 50 time-steps) and small-strain analysis
(1 time-step), a) <rxt. b) <ryy

Section 4.5 Numerical examples 113

ERROR IN SIGMAXX/E

10E1

10EO .

10E-1 .

10E-2 .

10E-3 .

10E-4 .

First (Slope: 1.15)

10E-5

Second ¡Slope: 1.93)

J 1_

INCREMENTS

_l 1 1
1 2

10EO

4 6 1

10E1

4 6 . 1

10E2

Fig. 4.15a

ERROR IN SIGMAYY/E

10EO

10E-1 .

10E-2 .

10E-3 .

10E-4 .

10E-5

Fig. 4.15b

Figure 4.15 Extension and compression test, elastic analysis. Error in the final value of stress
(t = 1) vs. number of time-steps (1, 2, 3, 5, 10, 20, 50). a) <rxs. b) <Tyy

114 Two stress update algorithms for large strain solid mechanics Chapter 4

SIGMAXX/E
0.75

0.60.

0.45.

0.30-

0.15-

0.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Pig. 4.16a

SIGMAYY/E

0.15,.

o-.io

0.05

0.00

-0.05

-0.10

-0.15

-0.20

-0.25!

TIME

Small strain

Second

Second

Second

First

First

First

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.16b

tïgure 4.16 Extension and compression test, elastoplastic analysis. Stress vs. time curves
computed with the two algorithms (1, 10 and 50 time-steps) and small-strain
analysis (50 time-steps), a) axx. b) trvv

Section 4.5 Numerical examples 115

t=1

t=0

Figure 4.17 Dilatation test. Initial and final configurations

4.5.5 Dilatation

A unit square undergoes biaxial extension, see Figure 4.17. The equations of motion

are

y(t} = Y(l + t)
(4.62)

and the analytical solution is

<7*y(<) = 0 (4.63)

116 Two stress update algorithms for large strain solid mechanics Chapter 4

As in the two previous tests, both algorithms provide qualitatively correct results, in

the sense that &Xy is zero and axx equals ayy for any number of time-steps and in both

elastic and plastic modes. There are sharp differences, however, concerning convergence

behaviour. For the elastic case, for instance, the second algorithm provides a better

prediction with one time-increment than the first one with five, see Figure 4.18. It

can be seen in Figure 4.19 that, once again, the algorithms behave as expected. The

computed slopes are in this case 1.11 for the first algorithm and 1.97 for the second one.

A similar comparison is valid in the plastic test, where one increment with the second

algorithm gets closer to the reference solution than ten steps of the first algorithm, see

Figure 4.20.

SIGMAXX/E - SIGMAYY/E

1.60_

1.40

1.20

1.00

0.80

0.60

0.40

0.20

o.od
TIME

0.00 0.20 0.40 0.60 0.80 1.00

u Small strain

A Second

A Second

A Second

v First

v First

v First

1.20

Figure 4.18 Dilatation test, elastic analysis. Normal stress vs. time curves computed with the
two algorithms (1, 5 and 50 time-steps) and small-strain analysis (1 time-step)

Section 4.5 Numerical examples 117

ERROR IN SIGMAXX/E - ERROR IN SIGMAYY/E

10EO

10E-1 .

1QE-2 .

10E-3 .

10E-4 .

10E-5

Figure 4.19 Dilatation test, elastic analysis. Error in the final value of normal stress (í = 1)
vs. number of time-steps (1, 2, 3, 5, 10, 20, 50)

SIGMAXX/E - SIGMAYY/E

1.20

1.00-

0.80

0.60-

0.40

0.20

0.00

TIME

Small strain

A Second

A Second

A Second

7 First

7 First

v First

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 4.20 Dilatation test, elastoplastic analysis. Normal stress vs. time curves computed
with the two algorithms (1, 10 and 50 time-steps) and small-strain analysis (50
time-steps)

118 Two stress update algorithms for large strain solid mechanics Chapter 4

t=0

Figure 4.21 Extension and rotation test. Problem statement

(4.64)

4.5.6 Extension and rotation

In this last deformation path, a unit square undergoes a uniaxial extension and a

superposed rigid rotation, see Figure 4.21. The equations of motion are

x(t) = X(l + t) cos(27Ti) - Y sin(2irí)

y(í) = X (l + <)sin(27Tí) + Y cos(2xt)

and the analytical solution is

ffxx(t) = Et cos2(27fi)

<rxy(t) = Et sin2(27TÎ)

(Tyy(í) = Et SÍn(27TÍ) COS(27TÎ)

(4.65)

Section 4.5 Numerical examples — . 119

which is, as expected, a rotation of the solution to the uniaxial extension test, Eq. (4.59).

The output of the elastic analysis with 1, 5 and 50 time-steps can be seen in Figure

4.22. If only one increment is employed, the rotation part of the motion is not cap-

tured and the predicted stress is identical to that of the uniaxial extension test. With a

higher number of steps, the comparative performance of the two algorithms is different

from that of the previous tests. For the stress components axy and ayy, for instance,

the first algorithm is the one which predicts correct null final values for any number

of time-increments. In fact, this result illustrates a more general behaviour. As shown

in Appendix 4.B for a general shear-free deformation path (i.e., the original square is

transformed into a rectangle), the first algorithm correctly predicts null shear stresses

for any number of time-steps, while the second one does not.

As for the stress component axx, the first algorithm performs better if a reduced

number of time-steps (5) is employed, and a larger number is required for the second

algorithm to produce more accurate results. This behaviour is illustrated by Figure

4.23a, where the error curves for axx of the two algorithms intersect each other. Again,

the observed order of both schemes (1.07 for the first one and 2.30 for the second one) is

in accordance with the expected values. Figures 4.23b and 4.23c show the convergence

behaviour of the second algorithm for the other two stress components. It can be seen

that the convergence to the exact analytical val^e is very fast, especially for <7yy, Figure

4.23c.

The outcome of the plastic analysis is depicted in Figure 4.24. Once again, a small-

strain analysis with nonlinear material behaviour turns out to be completely unsatis-

factory, providing a solution which is qualitatively different from that of a large-strain

analysis.

120 Two stress update algorithms for large strain solid mechanics Chapter 4

SIGMAXX/E
4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

-0.50

-1.00

TIME

Q Small strain

A Second

A Second

A Second

v First

v First

v First

0.00 0.20 0.40 0.60 0.80 1.00 1.20

SIGMAXY/E

0.50

-0.10-

-0.20.

-0.30-

-0.40.

-0.501

Fig. 4.22a

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.22b

Section 4.5 Numerical examples 121

SIGMAYY/E

1.20

1.00.

0.80-

0.60.

0.40.

0.20.

0.00

-0,

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 4.22 Extension and rotation test, elastic analysis. Stress vs. time curves computed
with the two algorithms (1, 5 and 50 ^me-steps) and small-strain analysis (1
time-step), a) <rxx. b) axy. c) ayy

122 Two stress update algorithms for large strain solid mechanics Chapter 4

ERROR IN SIGMAXX/E

10E1

10EO .

10E-1

10E-2

10E-3

First (Slope: 1.07)

A Second ¡Slope: 2.30)

INCREMENTS

1 2

10EO

4 6 1

10E1

4 6 1

10E2

Fig. 4.23a

ERROR IN SIGMAXY/E

10EO

10E-1

10E-2

10E-3

10E-4

Second (Slope: 2 .57)

INCREMENTS

-J L_

1

10EO

4 6 1

10E1

4 6 1

10E2

Fig. 4.23b

Section 4.5 Numerical examples 123

ERROR IN SIGMAYY/E

10E-1

10E-2

10E-3

10E-4

10E-5

10E-6

10E-7

10E-8
1

10EO

Second (Slope: 4.72)1

4 6 1

10E1

Fig. 4.23c

INCREMENTS

1

10E2

Figure 4.23 Extension and rotation test, elastic analysis. Error in the final value of stress
(t = 1) vs. number of time-steps (3, 5, 10, 20, 50). a) <rxx. b) axy, c) tryy

124 Two stress update algorithms for large strain solid mechanics Chapter 4

SIGMAXX/E

1.50

1.00.

0.50.

0.00

-0.50

-1.00.

-1.50.

-2.00

First

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.24a

SIGMAXY/E

0.30

0.20.

0.10.

0.00

-0.10.

-0.20^

-0.30

First

First

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Fig. 4.24b

Section 4.5 Numerical examples 125

SIGMAYY/E

1.00

0.50.

0.0'

-0.50-

-1.00.

-1.50-

-2.00!

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Figure 4.24 Extension and rotation test, elastoplastic analysis. Stress vs. time curves com-
puted with the two algorithms (1,10 and 50 time-steps) and small-strain analysis
(50 time-steps), a) axx. b) ffxy. c) <ryy

	TARF_0001.pdf
	TARF_0002.pdf
	TARF_0003.pdf
	TARF_0004.pdf
	TARF_0005.pdf
	TARF_0006.pdf
	TARF_0007.pdf
	TARF_0008.pdf
	TARF_0009.pdf
	TARF_0010.pdf
	TARF_0011.pdf
	TARF_0012.pdf
	TARF_0013.pdf
	TARF_0014.pdf
	TARF_0015.pdf
	TARF_0016.pdf
	TARF_0017.pdf
	TARF_0018.pdf
	TARF_0019.pdf
	TARF_0020.pdf
	TARF_0021.pdf
	TARF_0022.pdf
	TARF_0023.pdf
	TARF_0024.pdf
	TARF_0025.pdf
	TARF_0026.pdf
	TARF_0027.pdf
	TARF_0028.pdf
	TARF_0029.pdf
	TARF_0030.pdf
	TARF_0031.pdf
	TARF_0032.pdf
	TARF_0033.pdf
	TARF_0034.pdf
	TARF_0035.pdf
	TARF_0036.pdf
	TARF_0037.pdf
	TARF_0038.pdf
	TARF_0039.pdf
	TARF_0040.pdf
	TARF_0041.pdf
	TARF_0042.pdf
	TARF_0043.pdf
	TARF_0044.pdf
	TARF_0045.pdf
	TARF_0046.pdf
	TARF_0047.pdf
	TARF_0048.pdf
	TARF_0049.pdf
	TARF_0050.pdf
	TARF_0051.pdf
	TARF_0052.pdf
	TARF_0053.pdf
	TARF_0054.pdf
	TARF_0055.pdf
	TARF_0056.pdf
	TARF_0057.pdf
	TARF_0058.pdf
	TARF_0059.pdf
	TARF_0060.pdf
	TARF_0061.pdf
	TARF_0062.pdf
	TARF_0063.pdf
	TARF_0064.pdf
	TARF_0065.pdf
	TARF_0066.pdf
	TARF_0067.pdf
	TARF_0068.pdf
	TARF_0069.pdf
	TARF_0070.pdf
	TARF_0071.pdf
	TARF_0072.pdf
	TARF_0073.pdf
	TARF_0074.pdf
	TARF_0075.pdf
	TARF_0076.pdf
	TARF_0077.pdf
	TARF_0078.pdf
	TARF_0079.pdf
	TARF_0080.pdf
	TARF_0081.pdf
	TARF_0082.pdf
	TARF_0083.pdf
	TARF_0084.pdf
	TARF_0085.pdf
	TARF_0086.pdf
	TARF_0087.pdf
	TARF_0088.pdf
	TARF_0089.pdf
	TARF_0090.pdf
	TARF_0091.pdf
	TARF_0092.pdf
	TARF_0093.pdf
	TARF_0094.pdf
	TARF_0095.pdf
	TARF_0096.pdf
	TARF_0097.pdf
	TARF_0098.pdf
	TARF_0099.pdf
	TARF_0100.pdf
	TARF_0101.pdf
	TARF_0102.pdf
	TARF_0103.pdf
	TARF_0104.pdf
	TARF_0105.pdf
	TARF_0106.pdf
	TARF_0107.pdf
	TARF_0108.pdf
	TARF_0109.pdf
	TARF_0110.pdf
	TARF_0111.pdf
	TARF_0112.pdf
	TARF_0113.pdf
	TARF_0114.pdf
	TARF_0115.pdf
	TARF_0116.pdf
	TARF_0117.pdf
	TARF_0118.pdf
	TARF_0119.pdf
	TARF_0120.pdf
	TARF_0121.pdf
	TARF_0122.pdf
	TARF_0123.pdf
	TARF_0124.pdf
	TARF_0125.pdf
	TARF_0126.pdf
	TARF_0127.pdf
	TARF_0128.pdf
	TARF_0129.pdf
	TARF_0130.pdf
	TARF_0131.pdf
	TARF_0132.pdf
	TARF_0133.pdf
	TARF_0134.pdf

