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Abstract

Numerical Modeling of the Underwater Acoustic Impact of Offshore
Stations

Raúl Hospital-Bravo

The design of offshore power stations (for wind, wave or tidal energy generation)

requires assessing their environmental impact. In particular, it is of the major im-

portance to predict the impact of the generated subsea noise on the marine fauna,

especially sea mammals and fishes. Here, the noise propagation is modelled with

the Helmholtz equation and numerically solved using a Partition of Unity Method

(PUM). The aim is simulating the underwater sound propagation of multiple non-

impulsive sources. The output of the simulations consists of spatial distributions of

the sound pressure level.

The mathematical model at hand considers the most relevant aspects involved in

environmental underwater acoustics. Specifically, Helmholtz equation allows account-

ing for the most important wave phenomena: absorption, interference, reflection, re-

fraction and diffraction. For instance, the acoustic absorption produced by seawater

is represented by the imaginary part of the wavenumber. In addition, a non-uniform

wavenumber that depends on the salinity, temperature and depth is considered. The

model is completed with a set of boundary conditions providing a specific treatment

for the reflective properties of the sea bottom and surface. The input noise is also

introduced as a boundary condition. Finally, Perfectly Matched Layers (PMLs) are

placed at the lateral artificial boundaries of the domain to avoid spurious reflections.

The numerical strategy is based on a PUM enriched with plane waves. The

plane wave functions are combined with the classical polynomial shape functions

(hat functions, a partition of unity preserving the continuity of the approximation

space among elements). The choice of plane waves provides two main advantages.

On the one hand, since the enriching functions satisfy the governing equation and

include a priori knowledge of the solution, they mitigate the pollution error that is

intrinsic to the solutions obtained with standard polynomial approximations. On the

other hand, they allow using coarser meshes with a larger element size. This leads

to a drastic reduction in the number of degrees of freedom. Therefore, the method

is well suited for solving the Helmholtz equation in large domains (from hundreds of

meters to kilometers) compared to the characteristic wavelength (from centimeters

v



to meters).

However, since the plane waves are described by complex exponential functions,

the computation of the elemental matrices entails the integral of highly-oscillatory

functions. This increases the requirements involved in the integration step and makes

the standard Gauss-Legendre rules lose their competitiveness. In the 2D version of

the tool, we overcome this drawback by implementing an existing semi-analytical rule.

In the 3D version, we develop a novel efficient rule to integrate highly oscillatory func-

tions over tetrahedra. The integrand is expressed as the product of a non-oscillatory

part and a complex exponential function. The rule is designed to be exact, except

round-off errors, for integrals with a polynomial non-oscillatory part, which is the

case of the Helmholtz equation solved with the PUM enriched with plane waves.

To conclude, we present several examples that assess and illustrate the capabilities

of the tool, including sea water absorption, homogeneous or heterogeneous media,

seabeds with non-uniform transmission coefficient, and single or multiple sources.
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Chapter 1

Introduction

1.1 Motivation

In order to reduce greenhouse gas emissions and to achieve the goals of the Kyoto

Protocol Protocol (1997), there has been a global effort to invest in new and less pol-

luting sources of energy. This has been reflected in the implementation of legislation

to promote renewable energy, namely the Renewable Energy Directive 2009/28/EC

in Europe The European Commission (2009), and the Energy Policy Act of 2005

in the USA United States Congress (2005). A part of the investment motivated by

this new framework corresponds to research in offshore marine renewable energies

and its implementation, as they benefit from the constant resource availability and

low spatial constraints, when compared with inland harnessing. Since strong winds

regularly blow over the open ocean, new offshore designs for deeper waters have to

be considered.

These trends raise concern about the impact of engineering projects on the marine

environment. For instance, one factor of concern is related to the potential impact of

man-made noise on the aquatic biota. The acoustic pollution due to anthropogenic

activities in the oceans, such as seismic exploration, military sonar operation, com-

mercial shipping, construction, oil and gas extraction, and offshore energy generation,

has a direct impact on marine ecosystems. Until recent decades, there was a lack

of knowledge on the environmental impact of the underwater noise Williams et al.

(2015), and even nowadays special efforts are focused on monitoring the underwater

noise levels Nedwell et al. (2003); Ainslie et al. (2009), identifying and characterizing
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1. Introduction

the effects of noise on marine endangered species Thomsen et al. (2006); Thomsen

(2009), and establishing quantitative criteria to assess this impact The European

Commission (2010).

From a biological point of view, the presence of artificial subsea noise is par-

ticularly relevant for the marine animals that rely on sound detection to survive,

especially the marine mammals. For instance, a high level of exposure produces be-

havioral changes, masking of sounds of interest, hearing losses, and temporary or

permanent injuries over the marine fauna. Furthermore, low frequency sound can

travel large distances due to the acoustic propagation properties of water, thus esca-

lating the impact zone. As a consequence, a massive increase in the number of noise

sources at low frequency has the potential to significantly change the soundscape of

the ocean with negative consequences.

This growing concern is reflected in several national and international agreements

and regulations. Three remarkable examples are: the Marine Mammals Protection

Act of 1972 in the United States Marine Mammal Commission (2007), the OSPAR

Convention in the North-East Atlantic OSPAR Commission and others (2005), and

the Marine Strategy Framework Directive 2008/56/EC (MSFD) in the European

Union The European Commission (2008). These regulations clearly identify anthro-

pogenic noise as a specific type of pollution, and state that special attention must be

focused on limiting its environmental impact on marine life. In particular, Descriptor

11 from the European Union Commission Decision 2010/477/EU The European Com-

mission (2010) sets as a first priority the assessment and monitoring of underwater

noise with frequencies ranging from 10 Hz to 10 kHz.

At present, many offshore players and developers, from different backgrounds

and fields, are grappling with the current and upcoming legislation that requires an

acoustic assessment of their activities. No matter the specific field of application

(installation noises from piling at coastal constructions, the operation of offshore

energy stations, sea shipping, etc.) the impact of any temporary or permanent noise

source is becoming a major factor to determine its sustainability and environmental

impact. The impact is particularly relevant if the noise occurs within a long time

span (years in offshore energy deployments). In this case, the amount of potential

damage is larger and can affect the sea ecosystem permanently.

In this context, the European Institute of Innovation & Technology (EIT) drove

the creation of a Knowledge & Innovation Community, KIC InnoEnergy, an alliance
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1.2. Goals and outline

of players from education, research and industry involved in the sustainable energy

sector. KIC InnoEnergy promoted a portfolio of projects, among which the Offshore

Test Station (OTS). This project developed several products in the context of offshore

power plants. One of these products comprises two tools for monitoring, assessing

and predicting the acoustic impact of the stations.

On the one hand, the monitoring tool consists of a buoy carrying hydrophones and

other environmental sensors, and a system of wireless data communication between

the buoy and mainland, providing a near real-time data flow. The buoy design

focuses on maximizing the autonomy of the tool, improving the reliability of the data

stream and generating the information needed to optimize the frequency and success

of maintenance operations at the energy station, therefore reducing the overall cost.

The acoustic data can also be used to detect anomalies in the mechanical components

of the energy devices, for example wind turbines in a wind farm, by identifying

deviations in their acoustic signature.

On the other hand, the acoustic modeling tool consists of a numerical model for

underwater noise propagation. The model generates 3D sound intensity maps of the

region of interest, which provide crucial a priori knowledge for the elaboration of

acoustic impact assessments Dekeling et al. (2013). This knowledge is of the major

importance at the draft design phase of an offshore station, and contributes to the

acoustic section of the Environmental Impact Assessment (EIA).

The development of the modeling tool required a considerable amount of scientific

research, which motivated and fed the present thesis.

1.2 Goals and outline

The main goal of this work is to develop a 3D numerical tool for the simulation

of underwater noise propagation generated by multiple non-impulsive sources. In

particular, the tool has to perform in the context of the environmental impact of

offshore stations on the marine fauna. That is, the outputs of the tool will be used

to assess the potential disturbance to the marine fauna. Therefore, we pursue the

following range of applicability: large domains (from hundreds of meters to several

kilometers) and medium to high frequencies (from dozens of Hz to a few kHz).

Assuming time-harmonic behavior, methods based on the Helmholtz equation and

derived formulations have been extensively used to model non-impulsive underwater

3



1. Introduction

sound propagation Pierce (1965); Tappert (1977); Burdic (1983); Ihlenburg (1998).

This equation allows including the most relevant wave phenomena into the model:

absorption, interference, reflection, refraction and diffraction.

The Partition of the Unity Method (PUM) enriched with plane waves is espe-

cially suited to solve the Helmholtz equation. The introduction of plane waves in

the basis of the approximation space takes into account a priori knowledge about

the solution. This enables using coarser meshes and, therefore, reducing the compu-

tational cost. In addition, the pollution error is mitigated, increasing the accuracy

of the simulations Melenk (1995); Melenk and Babus̆ka (1996); Babus̆ka and Melenk

(1997); Mayer and Mandel (1997); Laghrouche and Bettess (2000); Ortiz and Sanchez

(2001); Laghrouche et al. (2002, 2003); Bettess et al. (2003); Sugimoto et al. (2003);

Perrey-Debain et al. (2004); Ortiz (2004); Laghrouche et al. (2005); Strouboulis and

Hidajat (2006); Wang et al. (2012); Yang et al. (2018).

To fully exploit the advantages of the PUM, the characteristic length of the domain

has to be significantly longer than the sound wavelength. Note that this is the case

of off-shore wind farms or power stations, that are usually installed over smooth

seabeds. It is important to point out that the range of applicability of the method

greatly exceeds the marine environmental framework. However, the tool developed

in this thesis focuses on this application.

In order to achieve the main target of this thesis, three partial goals have been

considered:

• Developing a 2D version of the tool for the simulation of undersea

acoustic propagation. Before addressing this goal, the most relevant aspects

involved in the environmental underwater acoustics are collected in Chapter 2,

including a description of the noise at the sea, a brief characterization of the

most typical anthropogenic noise inputs, the subsequent environmental impact

on marine fauna, and the agreements and regulations created by international

organizations and administrations in order to limit noise pollution. Afterwards,

Chapter 3 reviews several techniques currently available for simulating under-

water noise propagation. From this analysis, we conclude that the Partition of

Unity Method (PUM) is well suited for computing the acoustic impact on large

domains when medium and high frequencies are considered. Finally, Chapter

4 presents how to incorporate the most relevant physical aspects of the subsea

noise propagation into a 2D model, and details a numerical procedure to solve

4



1.2. Goals and outline

the problem by means of the PUM enriched with plane waves.

• Developing an efficient rule to integrate highly oscillatory functions

over tetrahedra. The PUM enriched with plane waves leads to the integra-

tion of highly oscillatory functions in order to obtain the coefficients of the finite

element system matrix. This makes the standard Gauss-Legendre quadratures

lose their competitiveness, especially in the 3D case. Thus, it is mandatory to

develop specific and efficient quadratures for integrating this type of functions

over 3D elements. Bettess et al. (2003) developed 2D semi-analytical integra-

tion rules for triangles and quadrilaterals. In Chapter 5, a similar approach is

extended to 3D problems leading to a novel semi-analytical rule. In addition,

we include implementation details and several numerical examples to assess

the accuracy and computational efficiency of the proposed integration method,

compared to high-order Gauss-Legendre quadratures.

• Developing a 3D version of the tool for the simulation of undersea

acoustic propagation. Based on the 2D model and using the 3D semi-

analytical rule, Chapter 6 presents the 3D underwater noise propagation model.

It also details the two basic ingredients of the 3D tool: the distribution of the

plane wave directions and the analytical expression of the coefficients of the

resulting linear system of equations. Finally, it presents several examples that

illustrate the capabilities and benefits of the developed tool.
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Chapter 2

Overview of environmental

underwater acoustics

This chapter outlines the main physical and environmental features that are rele-

vant for the development of an underwater noise propagation simulation tool. The

chapter is divided into four sections. Section 2.1 presents basic concepts on underwa-

ter acoustics. Section 2.2 characterizes the typology of anthropogenic noise sources,

while Section 2.3 details the vulnerability of the marine fauna associated to underwa-

ter noise. Finally, Section 2.4 collects specific references to noise pollution included in

current regulatory legislation, and international agreements regarding the protection

of marine environments.

2.1 Basic concepts on underwater acoustics

Underwater sound propagation presents some particularities compared to the prop-

agation through air. Sound speed is almost 5 times higher, making wavelengths be

considerably longer for equivalent frequency levels. As a consequence, seawater is

an efficient medium for sound propagation and, therefore, a noisy environment too,

especially when uncontrolled anthropogenic sources are present.

The reader is referred to references Urick (1983); Burdic (1983) and (Kinsler et al.,

1999, Chapter 15) for details of the underlying physics of the underwater acoustic

propagation.
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2. Overview of environmental underwater acoustics

2.1.1 Sound measure

Sound propagates through mechanical waves generated by the vibration of the molecules.

These waves produce oscillations in the static pressure field. Herein, pressure, p, refers

to the deviation of the total pressure, ptotal, from the hydrostatic pressure, ph,

ptotal = ph + p .

Sound pressure varies in several orders of magnitude and is frequently quantified

using the sound pressure level (SPL), which is a logarithmic scale referenced to a

standard value,

SPL = 10 · log10

(
p2

rms

p2
0

)
= 20 · log10

(
prms

p0

)
, (2.1)

where SPL is measured in decibels related to p0 (dB re p0), p0 is the standard reference

pressure (1 µPa in water, by convention), and prms is the time-averaged root mean

square pressure at a certain point and during a period of time Tt,

prms =
√
< p2 > =

√
1

Tt

∫ T

0

p2(t) dt ,

where the notation < p2 > is introduced to denote the time-average of p2.

In the case of harmonic waves, prms = pmax/
√

2, where pmax is the maximum value

of the sinusoidal pressure p.

To avoid confusion, it is important to point out that in air acoustics the reference

pressure value is p0 = 20 µPa. This difference produces a SPL 26.02 dB higher in

water than in air, for the same value of pressure.

When the SPL is used to characterize the noise produced by a single point source,

the distance from the point of interest to the source has to be referred.

The sound intensity I (typically in W/m2) is the acoustic power (average rate of

energy flow) per unit of area and is given by

I =
< p2 >

Z
=
< p2 >

ρ · c
,

where Z is the acoustic impedance, ρ is the density (ρ = 1025 kg/m3 in average for

seawater) and c is the sound speed.
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2.1. Basic concepts on underwater acoustics

Figure 2.1: Typical vertical profile of the sound speed against water depth.

2.1.2 Speed of sound in seawater

The sound speed c is the fundamental physical parameter for the sound propagation.

It determines the wavelength (λ = 2πf/c), where f is the wave frequency. The spatial

variations of c produce the refraction and reflection phenomena. In the particular

case of seawater, c depends on temperature, salinity and hydrostatic pressure. These

magnitudes are generally horizontally stratified, except in areas located near river

mouths or suffering intense ice melting, and they are well described by means of

vertical profiles, see Figure 2.1 as an example. If the vertical gradient is strong

enough, internal reflection and refraction effects can appear, see Section 2.1.3.

The sound speed reaches a local minimum at a depth of 800∼1000 meters. This

local minimum, called deep sound channel or SOFAR channel, acts as a waveguide,

as sound tends to bend towards it (ducting effect). The SOFAR channel is able to

propagate low frequency sounds up to thousands of kilometers and it is interesting

from the point of view of submarine warfare, more than from an environmental point

of view.
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2. Overview of environmental underwater acoustics

The model presented in this thesis dissertation considers non-uniform sound speed

distributions, although from a practical point of view, it is very common to consider

vertically stratified sound speed profiles. The sound speed is estimated thanks to

the UNESCO equation Wong and Zhu (1995), which is a standard based on the

work proposed by Chen and Millero (1977). The hydrostatic pressure is estimated by

following the corresponding equation in Leroy and Parthiot (1998), see Appendix A.

If the required salinity, temperature or depth data are not available, a standard

sound speed of 1512.8 m/s can be considered by default. This value corre-

sponds to the sound speed at the sea surface with seawater at 17◦C and containing

a salinity of 35 ppt (most common seawater conditions in practice). In the partic-

ular case of uniform sound speed, the model includes computational shortcuts and

optimizations in order to increase its performance.

2.1.3 Physical phenomena related to underwater acoustics

Sound propagates through mechanical pressure waves and, therefore, it is subjected to

wave theory and affected by the following wave phenomena: absorption, interference,

reflection, refraction and diffraction. All of them are considered by the simulation

tool.

2.1.3.1 Seawater absorption

Empirical evidence reveals that seawater is a damping medium, that is, waves propa-

gating through it suffer an intensity decay, apart from that caused by purely geomet-

rical spreading. This additional attenuation produced by physical-chemical reactions

grouped into two types of processes that convert acoustic energy into heat: effects

associated to shear and volume viscosities, and a series of ionic relaxation processes

involving, mainly, magnesium sulfate MgSO4 and boric acid B(OH)3. The energy

loss is modeled through the logarithmic seawater absorption coefficient α. The value

of α, expressed in dB/km, strongly depends on the frequency, but also on temper-

ature, salinity, hydrostatic pressure (depth) and acidity. Our model estimates this
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2.1. Basic concepts on underwater acoustics

coefficient according to the formula in Ainslie and McColm (1998):

α = 0.106 exp
(
(pH− 8)/0.56

) f1f
2

f 2
1 + f 2

+ 0.52

(
1 +

T

43

)(
S

35

)
exp(−d/6)

f2f
2

f 2
2 + f 2

+ 0.00049 exp
(
− (T/27 + d/17)

)
f 2, (2.2)

where

f1 = 0.78

(
S

35

)1/2

exp (T/26)

is the boron acid relaxation frequency in kHz,

f2 = 42 exp (T/17)

is the magnesium sulfate relaxation frequency in kHz, f is the sound frequency in

kHz, T is the seawater temperature in ◦C, S is the salinity in ppt, d is the depth in

km, and pH is the measure of the acidity.

If part of data is missing, Equation (2.2) can be replaced by

α = 0.159
f 2

2.25 + f 2
+ 30.5

f 2

1764 + f 2
+ 0.000261f 2, (2.3)

that considers the average conditions at the ocean surface: T = 17 ◦C, S = 35 ppt,

d=0 km and pH = 8. Figure 2.2 shows the dependence of the absorption coefficient

with the frequency according to Equation (2.3). Note that the absorption is specially

significant for frequencies above a few kHz, while it can be neglected for short and

mid-range propagations at low frequency.

2.1.3.2 Interference

Wave theory fulfills superposition principle. Therefore, the simulation tool should has

to reproduce the contribution of different waves traveling with different directions.

This contributions are also called interferences and they can be either constructive

or destructive.

In the case of assessing the environmental impact of the noise on sea wildlife,

interference becomes relevant if the wavelength is about meters. This occurs near the

low frequency limit (i.e. λ ≈ 1 m). That is, interference is crucial for simulations

with multiple noise sources or strong reflections inside the domain, whenever low

frequencies are considered.
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2. Overview of environmental underwater acoustics

Figure 2.2: Absorption coefficient α under the following conditions: S = 35 ppt, T
= 17◦C, d = 0 km, pH = 8.

2.1.3.3 Reflection

When a wave front bounces off a medium discontinuity, part of the energy is transmit-

ted to the outgoing medium and part of the energy is reflected back into the ingoing

medium, due to the acoustic impedance mismatch. This occurs at the boundaries

of the seawater domain, surface and sea bottom, and in regions where a strong spa-

tial gradient of sound speed is present, see Section 2.1.2. Section 4.2.3 details the

mathematical treatment considered in this work.

Even more, if the interface is not regularly defined, for example in the case of a

rough sea surface or sea bottom, reflection becomes diffuse, generating a phenomenon

called reverberation. This is especially relevant for signal transmission, while negli-

gible for environmental purposes.

2.1.3.4 Refraction

In addition to reflection, spatial gradients of sound speed have additional effects on

sound propagation. A sound speed gradient which is normal to the propagation

direction makes it bend towards the region with lower speed of sound. Refraction is

noticeable if a strong gradient is present or in the case of long range propagation.
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2.2. Anthropogenic noise sources

2.1.3.5 Diffraction

The Huygen-Fresnel principle states that every point of a wave front becomes a source

of a secondary spherical wave. According to this, and to some additional assumptions,

when a wave encounters an obstacle with a size similar to the wavelength, a effect

called diffraction introduces changes in the shape of the wave front.

Geometrical spreading can be understood as a consequence of the same principle.

Every point of the wave front plays the role of a new wave source. This is the main

physical mechanism producing sound intensity attenuation, together with seawater

absorption.

2.2 Anthropogenic noise sources

Underwater noise is classified into natural and anthropogenic, depending on the type

of source. On the one hand, waves, rain, earthquakes, thunders, ice-breaking, ocean

fauna are considered natural noises. On the other hand, multiple human activities

introduce undesirable levels of noise intensity into the ocean, such as seismic explo-

ration, military and civil sonar operation, commercial shipping, explosions, inshore

and offshore construction, oil and gas extraction or offshore energy generation Hilde-

brand (2004). Table 2.1 presents a non-exhaustive list of oceanic noise sources. The

environmental impact of the noise generated by each type of source depends on fre-

quency, intensity and time distribution. Figure 2.3 presents the Wenz curves, which

approximate the noise spectra for each type of source, see details in Wenz (1962).

The tool developed in this thesis has been devised to simulate the underwater

propagation of man-made acoustic pollution and, in particular, the operational noise

generated by offshore renewable energy stations. These stations convert wind or wave

energy into electricity. While wind energy technology has been developed during the

last decades, wave energy converters devices are still at initial stages of technological

refinement. Wave energy conversion is a relatively new technology with a wide variety

of prototypes, based on different technologies. Therefore, we highlight that there is

a severe lack of data related to the noise generated by wave energy devices.

Wind farms produce noise at a wide spectrum of frequencies. For instance, Figure

2.4 depicts the spectra measured near four turbines in the Baltic Sea. Although they

are particular cases, the observed curves can be considered qualitatively representative

of other offshore wind farms. Peaks can be clearly identified at 125 Hz, and non-
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2. Overview of environmental underwater acoustics

Figure 2.3: Wenz curves showing typical underwater noise spectra. From National
Research Council (2003).
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2.2. Anthropogenic noise sources

Table 2.1: Examples of natural and anthropogenic noise sources in the sea. From
National Research Council (2003).

negligible values of SPL at low (16 Hz) and high (16 kHz) frequencies. This is the

reason why some regulations focus on this frequency band, see Section 2.4.
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2. Overview of environmental underwater acoustics

Figure 2.4: Example of 1/3-octave band spectra of the received underwater sound at
about 100 m of operational wind turbines, recorded in four wind farms in the Baltic
Sea, after the report of Institut für Statik und Dynamik of the Leibniz Universität
Hannover (2007). The percentages in the legend refer to the produced electric power
relative to the nominal power. From Ainslie et al. (2009).

2.3 Environmental impact of underwater noise

Until the last decades, few efforts were focused on assessing the environmental impact

of underwater noise. As a consequence, there was a lack of knowledge on its impact

on sea fauna. To overcome this lack of knowledge, special efforts are focused on

monitoring the underwater noise levels Nedwell et al. (2003); Ainslie et al. (2009),

identifying and characterizing the effects of the noise on the marine endangered species

Dufault (2005); Thomsen et al. (2006); Thomsen (2009), and establishing criteria to

assess its impact Southall et al. (2007). For instance, nowadays it is well-known that

a high level of exposure produces behavioral changes, masking of sounds of interest,

hearing losses and temporary or permanent injuries over the marine fauna.
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2.3. Environmental impact of underwater noise

Figure 2.5: Audiograms of odontocete species. From Thomsen et al. (2006).

Marine species are equipped with a variety of hearing mechanisms and special-

izations. Furthermore, specific species have different hearing abilities at different

frequencies. Nedwell et al. (2004) describe the hearing mechanisms present in fishes

(which are poorly understood) and marine mammals, and collects a set of audiograms

and the methodology to obtain them. An audiogram shows which is the minimum

sound pressure level that allows the detection of any response in the animal, at each

frequency band. Several audiograms for fish and marine mammal species are included

in Figures 2.5 and 2.6. It is important to point out that the frequency domain ranges

from about 10 Hz to 105 Hz. It is highly remarkable that some marine mammals

species (mainly odontocetes) have hearing capabilities up to 100 kHz, even though

noises with a frequency higher than 20 kHz are ultrasounds for humans.
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2. Overview of environmental underwater acoustics

Figure 2.6: Audiograms of Atlantic salmon (Salmo salar) (Hawkins and Johnstone
1978), Atlantic cod (Chapman and Hawkins 1973) Atlantic herring (Enger 1967), and
dab (Chapman and Sand 1974). For comparative purpose, the audiogram of Pacific
herring (Mann et al. 2005) is included. From Thomsen et al. (2006).

According to Richardson et al. (1995); Commission (2008), the main effects of the

underwater noise on the marine fauna are the following (see Figure 2.7):

1. Detection: when the noise intensity exceeds the background noise intensity

and the hearing threshold, the animal detects the noise. Simple detection not

producing masking or a behavioral response must be identified by monitoring

of the electrical activity of the animal‘s hearing mechanism.

2. Masking: obscuring of sounds of interest by interfering sounds, generally at sim-

ilar frequencies Simpson et al. (2016). Marine mammals are highly dependent

on sound, and their ability to recognize sound signals over noise is important

in communication, predator and prey detection, and, in the case of toothed

whales, echolocation.

3. Behavioral response: behavioral reaction such as leaving the noisy area.
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2.3. Environmental impact of underwater noise

Figure 2.7: Levels of impact produced by underwater noise on marine fauna.

4. Temporary threshold shift (TTS): a temporary elevation of the hearing thresh-

old due to noise exposure.

5. Permanent threshold shift (PTS): a permanent elevation of the hearing thresh-

old due to noise exposure.

6. Injury: Further tissue damage due to noise exposure (lesions in lungs, ears or

other internal organs, external hemorrhages, etc.).

7. Death: powerful noises from some directional sonars, pilling or explosions can

cause death in some species, as it is documented in Cox et al. (2006).

Inspired in the methodologies that are applied to human hearing research, the

current trend in marine noise exposure criteria is to incorporate frequency-weighted

hearing curves to marine mammals sound-level measurement. Frequency-weighted

curves allow the conversion of sound pressure level spectrum into a scalar value, penal-

izing the frequencies that produce a more intense response or damage to the species.

For instance, marine mammals species are classified into 5 groups, depending on

similarities in their hearing: mysticetes, mid-frequency odontocetes, high-frequency
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2. Overview of environmental underwater acoustics

odontocetes, pinnipeds listening in air and pinnipeds listening in water. While in

humans the so-called A- or C-weighted curves are used, an M-weighting function is

assigned to each group in order to predict auditory damage, rather than detection or

behavioral response. See Southall et al. (2007) for more details on sound exposure

criteria.

2.4 Regulation on marine environmental

acoustics

The growing social concern on the environmental impact of underwater noise mate-

rialized in several national and international regulations and agreements. Legislation

has been evolving in an attempt to understand and control the noise levels that af-

fect marine ecosystems. There is a particular concern about marine mammals, due

to their social impact, although new research points out that more and more marine

species can detect sound and use it in several ways.

The first documents regulating marine environment stated the importance of the

preservation on marine ecosystems, emphasizing the prevention and reduction of pol-

lution. More recent regulations explicitly identifies man-made noise as a specific type

of pollution that causes an impact on these ecosystems Marine Mammal Commission

(2007); OSPAR Commission and others (2005), and plans to establish limits on the

generated noise intensity The European Commission (2008). In particular, Descrip-

tor 11 from the European Union Commission Decision 2010/477/EU requires future

monitoring programs to assess the underwater noise with frequencies ranging between

10 Hz and 10 kHz.

The Coastal Zone Management Act (CZMA) of 1972

The CZMA is a US federal law which is administered within the National Oceanic

and Atmospheric Administration (NOAA), in the USA, through the Office of Ocean

and Coastal Resource Management. The CZMA recognizes “the national interest in

the effective management, beneficial use, protection, and development of the coastal

zone” and combines federal/state partnership for managing coastal resources The

92nd United States Congress (1972).
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In the context of this federal Act, the Californian Coastal Commission has mon-

itored and controlled several activities likely to produce an acoustic impact, during

the past decades. In addition, it imposed operational and geographic restrictions

as well as mitigation measures. Although, the active tasks carried out in California

contrast with the lower degree of regulation in the rest of the states.

The Marine Mammals Protection Act of 1972 (MMPA)

The first regulation protecting the health of the marine fauna and promoting the col-

lection of data on the health of marine fauna was the US Marine Mammal Protection

Act of 1972 (MMPA) Marine Mammal Commission (2007).

The MMPA was enacted in response to increasing concerns among scientists and

citizens that significant declines in some species of marine mammals were caused

by human activities. The Act established a national policy, the Program in Marine

Mammal Health and Stranding Response, that “shall facilitate the collection and dis-

semination of reference data on the health of marine mammals and health trends of

marine mammal populations in the wild; and correlate the health of marine mammals

and marine mammal populations, in the wild, with available data on physical, chem-

ical, and biological environmental parameters”. The target was to prevent marine

mammal species and population stocks from declining beyond the point where they

ceased to be significant functioning elements of the ecosystems of which they are a

part.

It is important to point out that in the first marine environmental regulations, such

as the CZMA and the MMPA, no specific mention to noise pollution can be found,

even tough it can be implicitly considered as a harassment. The term harassment

is defined as “any act of pursuit, torment, or annoyance which has the potential to

injure a marine mammal or marine mammal stock in the wild, or has the potential to

disturb a marine mammal or marine mammal stock in the wild by causing disruption

of behavioral patterns, including, but not limited to, migration, breathing, nursing,

breeding, feeding, or sheltering”. However, since late 1990s noise pollution recursively

appears as a type of man-made pollution. In 1998, the MMPA included a set of

statutory provisions clearly stating that “noise and other anthropogenic changes in

the habitat of whales may affect whale populations adversely”.

21



2. Overview of environmental underwater acoustics

The OSPAR Convention

The OSPAR Convention takes its name from the cities that hosted two previous

conventions (Oslo in 1972, and Paris in 1974). The complete name of the conven-

tion is Convention for the Protection of the Marine Environment of the North-East

Atlantic, which was created in 1992. The Contracting Parties comprise the twelve

countries located at the western coasts of Europe, the European Union, Luxembourg

and Switzerland, due to their location within the catchments of the Rhine River, and

Finland, with some rivers flowing to the Barents sea and historically involved in the

efforts to control the dumping of hazardous waste in the Atlantic and the North Sea

OSPAR Commission and others (2005).

In the Preamble, the Convention recognizes that “the marine environment and

the fauna and flora which it supports are of vital importance to all nations, and the

inherent worth of the marine environment of the North-East Atlantic and the neces-

sity for providing coordinated protection for it”. It is also stated that the pollution

threatens the ecological equilibrium and the need of “measures with respect to the

prevention and elimination of pollution of the marine environment”. In Article 1, it

is established that “pollution means the introduction by man, directly or indirectly,

of substances or energy into the maritime area which results, or is likely to result, in

hazards to human health, harm to living resources and marine ecosystems, damage

to amenities or interference with other legitimate uses of the sea”. Article 5 rules

that “The Contracting Parties shall take, individually and jointly, all possible steps

to prevent and eliminate pollution from offshore sources in accordance with the provi-

sions of the Convention, in particular as provided for in Annex III”. Annex IV states

that the Contracting Parties shall cooperate in the use and development of scientific

assessment tools, such as modeling, remote sensing and progressive risk assessment

strategies, carry out research, and take into account the scientific progress.

The Marine Strategy Framework Directive 2008/56/EC (MSFD)

The European Union Marine Strategy Framework Directive The European Commis-

sion (2008) is the European Union’s wager for the conservation of “marine waters

under the sovereignty and jurisdiction of Member States of the European Union”,

approved in 2008. This Directive recognizes the evident pressure on natural marine

resources and describes the marine environment as a precious heritage that must be

protected. Article 1 literally says: “This Directive establishes a framework within
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which Member States shall take the necessary measures to achieve or maintain good

environmental status in the marine environment by the year 2020 at the latest”, and

forces the Member States to protect and preserve the marine environment, and to

prevent and reduce inputs in it.

Article 3 includes some basic definitions. For instance, “a good environmental

status (GES) means the environmental status of marine waters where these provide

ecologically diverse and dynamic oceans and seas which are clean, healthy and pro-

ductive within their intrinsic conditions, and the use of the marine environment is

at a level that is sustainable, thus safeguarding the potential for uses and activi-

ties by current and future generations”. The eighth definition explicitly points at

anthropogenic noise as a type of pollution: “pollution means the direct or indirect

introduction into the marine environment, as a result of human activity, of substances

or energy, including human-induced marine underwater noise, which results

or is likely to result in deleterious effects such as harm to living resources and marine

ecosystems, including loss of biodiversity, hazards to human health, the hindering of

marine activities, including fishing, tourism and recreation and other legitimate uses

of the sea, impairment of the quality for use of sea water and reduction of amenities

or, in general, impairment of the sustainable use of marine goods and services”.

Annex 1 of MSFD collects a set of qualitative descriptors to determine GES. In

particular, the eleventh descriptor explicitly refers to underwater noise as a type of

energy pollution. Moreover, Annex III also mentions underwater noise as a physical

disturbance, see Table 2.2.

The MSFD requires Member States to develop strategies that should lead to pro-

grams of measures that achieve or maintain GES, including monitoring programs

for assessment. In Commission Decision 2010/477/EU The European Commission

(2010), criteria and methodological standards on GES of marine waters were pub-

lished. Two indicators were described for Descriptor 11 (Noise/Energy): Indicator

11.1.1 on low and mid frequency impulsive sounds, and Indicator 11.2.1 on continuous

low frequency sound (ambient noise). Under the Working Group on Good Environ-

mental Status, a Technical Subgroup on underwater noise (TSG noise) was created

with the objective of “clarifying the purpose, use and limitation of the indicators and

described methodology that would be unambiguous, effective and practicable”. The

result is the Monitoring Guidance for Underwater Noise in European Seas, recently

published Dekeling et al. (2013), which allowed starting programs for underwater
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Table 2.2: Environmental pressures and impacts considered by Annex III of the
European Marine Strategy Framework Directive. Underwater noise is included as a
physical disturbance. From The European Commission (2008).
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noise monitoring. This document strongly suggests the use of modeling as an excel-

lent complement for the in situ noise measurement.

As mentioned above, MSFD identifies two types of anthropogenic noise sources,

namely impulsive sounds and low frequency continuous noise.

Impulsive noise The environmental impact introduced by impulsive noise events

is evaluated by measuring the displacements of sea fauna individuals due to the noise

disturbance. Indicator 11.1.1 defines considerable displacement as “the displacement

of a significant proportion of individuals over a relevant time period and spatial scale”.

This impact will have to be restricted when caused by anthropogenic noise.

The guide prescribes the measurement of the distribution in time and place of

impulsive sounds between 10 Hz and 10 kHz (indicator 11.1.1). In order to establish

the current level and trend of impulsive sounds, a register of occurrence should be

set up, by dividing the sea surface into a coarse mesh of 10 x 5 nautical miles, and

collecting the following main items:

• Pulse-generating activity

• Day

• Location

• Source level

Ambient noise The ambient noise is composed of natural and anthropogenic

sounds, although it is not clear if it will be possible to distinguish between them.

Indicator 11.2.1 requires the analysis of the trends in the annual average of the

continuous low frequency sound, in the third octave bands of 63 and 125 Hz (a one-

third octave band is defined as a frequency band whose upper band-edge frequency

is the lower band frequency times the cube root of two). The lack of historical

measurements motivated the Directive to impel the Member States within a sub

region to establish an ambient noise monitoring system. The guide recommends 1

year averaging and the use of arithmetic means to establish average ambient noise

levels.

The guide affirms that the combined use of measurements and models is the best

way to perform the monitoring. Directly related to numerical models, Section 3.3.1

of Part II of the guide states that the use of these models
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• contributes to the creation of noise maps,

• constitutes a reliable and cost-effective manner for trend estimation,

• identifies trends for different sources, separately,

• reduces the time to establish a trend, and optimizes the number of monitoring

stations,

• helps with the choice of monitoring locations and equipment,

• predicts the effect of future changes and re-constructs a history of the past

(hind-cast),

• permits the removal of selected sources if considered not causing a departure

from GES,

• provides a better overview of actual noise levels and their distribution.

Section 3.5 of the same part includes technical specifications for “appropriate noise

monitoring models”. The following points are particularly mentioned as conditions

that should be considered by a model: a good characterization of the source, the

global bathymetry, the sound velocity profile, the absorption of sound in seawater

and the sediment composition.

Although not directly related to this thesis, it is worth to mention that the guide

also includes recommendations for the placements of measurement devices, and spec-

ifications for the equipment.
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Chapter 3

Numerical methods for underwater

acoustic problems

This chapter summarizes the past and current techniques devised for simulating the

underwater sound propagation. The chapter is composed of 2 sections. Section

3.1 collects a brief historical review of the relevant progress made on the theory of

underwater sound propagation. Section 3.2 outlines the current state-of-the-art of

the different mathematical and numerical models.

3.1 Historical overview

In 1877, the physicist Lord Rayleigh published one of the first books covering a

rigorous analysis of the generation, propagation and reception of sound. Before him,

many researchers made important contributions in acoustics, such as Leonardo da

Vinci, Isaac Newton, Joseph Fourier or Daniel Colladon, who measured the speed of

sound in water, in 1827. The interest in quantifying underwater sound propagation

was strongly motivated by the appearance of the first sonar device in 1912, right

after the sinking of the Titanic. The sonar technique was conceived to establish

communications and to detect objects on or under the sea surface, such as other vessels

or icebergs. Other primitive electrical and electronic components and technology were

also developed during the beginning of the 20th century.

The outbreak of World War I promoted significant progress in underwater acous-
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tics. Rotating binaural listening devices and towed hydrophone devices were success-

fully employed to detect and locate enemy submarines. Since that moment and until

the end of the Cold War, the research on underwater acoustics remained inexorably

attached to the development of underwater military devices.

In 1919, the German scientist Lichte (1919) published the first scientific paper

on underwater sound, describing theoretically the bending of sound rays (refraction)

produced by slight temperature and salinity gradients in the sea. An improved under-

standing of the physical phenomena involved in sound propagation in the sea began

to emerge in the 1930s. The seemingly unpredictable behavior of the ocean as a sound

transmission medium began to be understood with the invention of the bathythermo-

graph by Athelsan Spilhaus in 1937, which allowed the measurement of the vertical

profile of the seawater temperature.

During the World War II, the interest in pro-submarine and anti-submarine equip-

ment continued to gain importance, and the National Defense Research Committee

and several other laboratories carried out an extensive program in underwater acous-

tics. The purpose of the work of these groups was to improve the design and use of

underwater acoustic systems, collecting large amounts of experimental measurements

and understanding the factors affecting sound speed in the ocean. During the Cold

War, the experimental and theoretical work was continued and expanded to cover the

entire sonic as well as ultrasonic region, which enabled more complex sonar system.

In parallel to the development of knowledge and devices related to underwater

acoustics, different techniques addressed to the modelization and estimation of the

propagation of underwater sound were explored, see next section. More recently, in

the course of the last four decades, there has been an increasing number of anthro-

pogenic interventions in the seas with an evident acoustic impact. For instance, a con-

tinuously growing commercial shipping, geophysical exploration, operation offshore

platforms, noise produced by advanced warfare, and other offshore human activities,

see Section 2.2. This trend sparked a significant surge in the number of research

projects on underwater acoustics with environmental purposes, leading to a better

comprehension and awareness of the risk of noise pollution.

At the same time, the social concern about the environmental impact of the under-

water noise pushed public administrations to create regulations limiting the acoustic

pollution and even requiring Environmental Impact Assessments (EIA) prior to the

acceptance of execution of some engineering projects. This scenario created the need
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of more reliable acoustic simulations 1 and motivated laboratories and environmental

consultancy companies to develop more complex noise propagation numerical mod-

els. As a direct consequence, several numerical methods with growing refinement

have been developed to predict the sound pressure level.

3.2 Mathematical and numerical methods for

underwater sound propagation

This section outlines the most relevant mathematical and numerical methods used

to obtain estimations of the underwater noise propagation. These methods present

a wide variety in applicability and complexity, from the simplest range-dependent

simplified equation to the more complex three-dimensional finite element methods.

Most of them are currently in use, the choice typically depends on the available

data, frequency range, domain size, desired accuracy and availability of computational

resources.

3.2.1 The sonar equations

The simplest method consist of a single equation that computes the transmission loss

in terms of the geometrical spreading, the seawater absorption and, eventually, the

ducting effect of the deep sound channel (Section 2). Thus, the source level, the range

and few parameters such as the seawater absorption are the only inputs to obtain a

first approximation value for the sound level at a point, without the requirement of

a detailed bathymetric survey of the area of the project nor the acoustic properties

of the sea bottom. Hazelwood and Connelly (2005) collect some of these simplified

equations. For instance, the spherical spreading (deep water) of the sound produced

by a point source can be modeled by

SPL(r) = SL− 20 · log r − αr ,

where SPL is the sound pressure level (dB) (Section 2.1.1), SL is the source level

(dB), r is the range (m) and α is the absorption rate (dB/m), see Section 2.1.3.1.
1Ainslie et al. (2009) state that: “...the next challenge is to predict correctly how the sound

propagates in the shallow water of the North Sea...” and “It should be investigated whether the
method used for the calculation of propagation losses and the generation of underwater sound maps
can (in the long term) be further developed to a generally applicable legal basis for underwater
sound, as exists for sound in air (industrial and traffic noise)”.
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Figure 3.1: Example of a 2D diagram of the ray-tracing method applied to room
acoustics. From Oliva-Elorza (2005).

There are versions of the sonar equation for shallow water, with cylindrical spread-

ing. These equations usually consider that the surface is fully reflective. The main

drawback of these methods is the limited accuracy of the output under a wide variety

of circumstances.

3.2.2 Ray tracing

Ray tracing is a method for estimating the path of waves through a medium, by

repeatedly advancing idealized narrow beams called rays by discrete amounts, see

Figure 3.1. The direction of these rays is normal to the wave fronts and may change

slightly at discrete points if it is affected by refraction, when a non-uniform propaga-

tion velocity distribution is present (Section 2.1.3.4). Surface reflections and medium

absorption are also easily considered. However, the wave theory is only partially con-

sidered. For example, the diffraction phenomenon is not intrinsically included and,

thus, ray theory is generally applied to high frequency problems with a wavelength

much shorter than the geometrical features of the domain. For low frequencies, the

wave length value is similar to the scale of the seabed features and, thus, the diffrac-

tion effects cannot be neglected. In addition, the interference between acoustic beams

is not included, producing a limited accuracy in some cases.
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Despite of these shortcomings, ray tracing models have several advantages. For

instance, they are fast from the computational point of view. Moreover, the paths

and travel times of the ray coordinates are independent of the frequency. Hence,

the same diagram is valid for different frequency bands, and they can be reused in

order to recalculate the sound intensity for each new frequency. This technique is

commonly used in fields such as computer graphics, optics and the propagation of

electromagnetic and mechanical waves, including acoustics. Ray tracing methods are

widely applied for numerically simulating the noise propagation in air (e.g. room

acoustics) Svensson and Krokstad (2008). Note that, in those problems, high fre-

quencies are present, the number of reflecting surfaces is significant and refraction is

negligible.

Ray tracing was one of the first numerical techniques that was developed for

underwater sound propagation Anderson and Pedersen (1956); Pekeris and Longman

(1958); Graber et al. (1961). It was applied to high frequency bands and incorporated

surface and seabed reflections, refraction and seawater absorption.

An improved version of the method, called the Gaussian beam tracing, was de-

veloped in the eighties, mitigating some of the artifacts inherent to the standard ray

tracing method, by associating to each ray a beam with a Gaussian intensity profile,

normal to the ray Červenỳ et al. (1982); Porter and Bucker (1987). Later, a hybrid

method that couples Gaussian ray tracing method with the finite element method,

called the finite element ray tracing method, was introduced in Porter and Liu (1994).

The Marine Operations Noise Model (MONM) BELLHOP code Rodriguez (2008);

Zykov et al. (2013) is a commercial code widely used that implements the finite el-

ement ray tracing method for medium and high frequencies. Figure 3.2 shows an

example of a noise map produced with MONM-BELLHOP code.

It is important to point out that MONM is not a real 3D model for the underwater

noise propagation problem. The following paragraph is extracted from (Zykov et al.,

2013, Section 2.2):

“MONM computes acoustic fields in three dimensions by modeling trans-

mission loss (via BELLHOP or RAM) within two-dimensional (2D) verti-

cal planes aligned along radials covering a 360◦ swath from the source, an

approach commonly referred to as Nx2D. These vertical radial planes are

separated by an angular step size of ∆θ, yielding N = 360◦/∆θ number

of planes. MONM treats frequency dependence by computing acoustic
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Figure 3.2: Example of a noise propagation map computed with MONM-BELLHOP
model, based on the finite element ray tracing method. Vertical cross-section of the
12 kHz frequency band for a multibeam sonar. From Zykov et al. (2013).

transmission loss at the center frequencies of 1/3-octave bands. Suffi-

ciently many 1/3-octave bands, starting at 10 Hz, are modeled to include

the majority of acoustic energy emitted by the source. At each center fre-

quency, the transmission loss is modeled via BELLHOP or RAM within

each vertical plane (Nx2D) as a function of depth and range from the

source. Third-octave band received SELs are computed by subtracting

the band transmission loss values from the directional SL in that fre-

quency band. Composite broadband received SELs are then computed by

summing the received 1/3-octave band levels.”

3.2.3 The wave equation

Underwater noise is a mechanical phenomenon caused by an unbalanced gradient

in the pressure field. For an oscillating noise source, the wave consists of regions

of compression and rarefaction that move, or propagate, away from the source at a

constant rate (the sound speed) determined by the properties of the medium, see

Figure 3.3. The fundamental mathematical equation governing this phenomenon is

the wave equation:
∂2p̂(x,t)

∂t2
= c2∆p̂(x,t) , (3.1)

where p̂ is the pressure (time and space dependent), x is the position vector, t is the

time, c is the sound speed, and ∆ is the Laplacian operator.
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Figure 3.3: Propagation of the sound waves generated by a point source in a homo-
geneous medium. From Burdic (1983).

Equation (3.1) takes into account all the physical aspects of the wave propaga-

tion, including time-dependency, and no additional assumptions are made on the

wave propagation behavior. This is typically useful when impulsive sounds, such as

explosions or pulses, are addressed. Several numeral techniques have been developed

to solve Equation (3.1), such as finite-difference based models Gerstoft (2002), fast-

field-program techniques Porter (1990), and non-linear pulse propagation McDonald

and Kuperman (1984).

However, full time-domain models based on Equation (3.1) are rather specialized

and the computational cost involved in their direct solution is usually non-affordable

for industrial applications. Therefore, additional assumptions are made in order to

simplify the mathematical model.

3.2.4 Methods based on the Helmholtz equation

When non-impulsive noise sources are addressed, the input noise spectrum is decom-

posed into a set of harmonic frequency bands, and a simulation is performed for each

band. To this end, the standard approach is to assume a time-harmonic solution for

the pressure–a harmonic sound is a single-frequency sinusoidal source motion—, and

apply separation of variables in the form

p̂(x,t) = p(x) exp(iωt) , (3.2)
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where p(x) is a complex space-dependent pressure field, i =
√
−1 is the imaginary

unit and ω is the angular velocity,

ω = 2πf ,

f being the frequency. Thus, the pressure has been factorized into a (in general

complex) space-dependent factor and a harmonic time-dependent factor.

Introducing Equation (3.2) into Equation (3.1), we obtain the harmonic version

of the wave equation, the Helmholtz equation:

∆p(x) + k2p(x) = 0 , (3.3)

where k is the wavenumber,

k =
ω

c
=

2πf

c
. (3.4)

The wavenumber is related to the wavelength, which is the ratio between the sound

speed c and the frequency f ,

λ =
c

f
=

2πc

ω
=

2π

k
, (3.5)

and corresponds to the distance between two adjacent wave crests.

The general strategy is to decompose the continuous input SPL spectrum, see

Equation (2.1), into third-octave frequency bands. Then, a simulation is performed

for each band, generating at point location an output band spectrum.

Note that the Helmholtz equation derives directly from the wave equation and

preserves the ability to incorporate all the wave phenomena into the model, except

for time-varying non-harmonic effects. Thus, models using the Helmholtz equation

(3.3) apply to harmonic inputs without further simplifications. For non-impulsive

and non-harmonic noise input, the Helmholtz equation can be also applied generating

output fields suitable for engineering purposes. In the case of strongly impulsive noise

sources, the results obtained with a model based on the Helmholtz equation should

be considered as a first approximation.

For oceanographic purposes, several models have been developed, based on dif-

ferent mathematical and physical simplifications. The most relevant are collected in

the following sections.
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3.2.4.1 Normal mode methods

Normal mode methods are based on the Helmoltz equation. They apply separation

of variables, either in Cartesian or cylindrical coordinates, but always keeping the

depth as an uncoupled variable. The range-dependent part of the pressure field is

represented by Hankel functions. The depth-dependent part is ruled by an equation

similar to the Schrödinger time-independent eigenvalue equation. It is decomposed

into a finite sum of normal mode functions (eigenfunctions linked to eigenvalues, also

called propagation numbers) plus a branch line integrals. These line integrals are

usually neglected at large ranges Pekeris (1948).

As a consequence of the separation of variables (uncoupling depth and range),

normal mode methods can be applied if the hypothesis of a nearly flat bottom and

a stratified ocean is considered. This means that the acoustic parameters depend

on depth and are independent of range. On the contrary, if the environment shows

some range-dependence, either through the sound speed profile or the boundary con-

ditions (for example not stratified ocean or non-mild bottom), normal mode theory

does not apply. However, when the normal mode theory is applicable, the resulting

models are versatile, robust and efficient. Further contributions enhanced the indus-

trial applicability of these methods. Pierce (1965) extended normal mode theory to

almost-stratified medium and slowly sloping bottom, by using ray theory to compute

the waveguide paths followed by the different normal modes. Additionally, the at-

tenuation produced by seawater absorption, see Section 2.1.3.1, was introduced as a

perturbation inside the equations Levinson et al. (1995).

Several commercial codes are based on normal mode theory in the field of underwa-

ter acoustic propagation, such as KNORMA Boyles (1984), PROTEUS Gragg (1985),

KRAKEN Porter (1992), MODELAB Levinson et al. (1995) and ORCA Westwood

et al. (1996). The latter accounts for acousto-elastic ocean environments. KRAKEN

is probably the most widely used normal mode model in the underwater acoustics

community and is known for its accuracy and robustness. There is a complex eigen-

value version of the model, KRAKENC, that handles elastic media.

3.2.4.2 Methods based on parabolic equations

Parabolic methods were designed to analyze the long-range propagation of the sound

along the deep sound channel (see Section 2.1.2 and Figure 2.1).
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Figure 3.4: Example of a simulation computed with the original NRL-RAM
in a simple ocean environment. From http://www.nrl.navy.mil/research/nrl-
review/2003/simulation-computing-modeling/zingarelli/ .

Similarly to the normal mode methods, they are also based on the Helmholtz

equation. They rely on four main assumptions:

• Outgoing energy dominates backscattered energy. Therefore, only forward

propagation from the source point is considered.

• Energy propagates nearly horizontally. The resulting parabolic equation ne-

glects strong vertical variations of the acoustic energy. Then, the solution will

not capture non-smooth vertical variations in the sound pressure level.

• The variation with range of the physical properties of the seawater is smooth.

In particular, this applies to the sound speed.

• The solution is only valid in the far field. Thus, these methods are not intended

to be applied for assessing the environmental impact around off-shore stations.

These techniques were developed at the U.S. Naval Research Laboratory (NRL),

by Michael D. Collins and other researchers, extending the work by Tappert (1977),

and were called the Range-dependent Acoustic Model (RAM). Figure 3.4 shows an

example of a simulation performed using RAM. Note that the range is about 30 km

while the depth is just 1 km.
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A consultancy company with experience in underwater acoustics assessments,

JASCO Applied Sciences Ltd., incorporated the RAM model into its Marine Op-

erations Noise Model (MONM), for low frequency underwater noise propagations

(below 2 kHz).

It is important to highlight that the MONM-RAM is not a fully 3D model. In fact

it uses a Nx2D strategy similar to the MONM-Bellhop, see Section 3.2.2 for details.

3.2.4.3 Standard Finite Element Methods

The finite element method is one of the most commonly used method to solve engi-

neering problems modeled by partial differential equations, such as equations (3.1)

and (3.3), having a strong theoretical background. The method discretizes the geome-

try using a mesh composed of a finite number of elements and nodes and approximates

the solution by a linear combination of piecewise polynomials, usually called shape

functions. The FEM with polynomials acting as shape functions is herein referred to

as standard FEM.

However, the application of the standard FEM to solve the Helmholtz Equation

has two main drawbacks:

• In order to obtain highly accurate solutions, the mesh has to be fine enough

to include a minimum number of elements per wavelength, see Equation (3.5).

High frequencies lead to small values of the wavelengths and, thus, to very

fine meshes, with a large number of nodes and unknown coefficients. This

phenomena is further amplified when large domains are considered. Under

these conditions, the computational cost involved in the solution of the system

of equations becomes unacceptable, and the method is in practice restricted to

low frequencies.

• For high frequency problems, the wave number, see Equation (3.4), of the nu-

merical solution obtained using the finite element method with piecewise poly-

nomials differs from the wave number of the analytical solution. This is called

pollution error Babus̆ka and Sauter (1997); Ihlenburg (1998); Deraemaeker et al.

(1999). In addition, this discrepancy grows with the frequency, and the only

way to mitigate it is by using extremely fine meshes. This leads to unaffordable

computational costs for high-frequency problems in large domains.
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In conclusion, the Finite Element Method is an excellent method for solving the

Helmholtz equation for low frequencies and domains with moderate sizes, while it

has serious difficulties when dealing with high frequency problems or large domains.

See Ihlenburg (1998) for more details on the finite element method applied to acoustic

problems.

3.2.4.4 Enriched Finite Element Methods

More recently, novel FEM approaches have been developed by enriching or even sub-

stituting the classical piecewise polynomial Galerkin approximation by sets of plane

waves, locally pasted at the nodes of the mesh. The inclusion of plane waves intro-

duces a priori physical and mathematical information of the problem into the space

of solutions, since they reliably reproduce the wavenumber, and they are solution of

the governing equations. As a consequence, the pollution error is drastically reduced.

Despite the oscillatory behavior of the functions, the integration of the system matrix

components can be overcome in an affordable manner by developing specific semi-

analytical rules. These enriched methods relieve the requirement of having several

mesh elements per wavelength, allowing the use of coarser meshes and reducing, thus,

the number of degrees of freedom and the size of the system of equations.

Several enriched formulations have been developed during the last decades for

solving the Helmholtz equation. In most of them, the continuity between elements is

weakly imposed. For instance, in the Ultra-Weak Variational Formulation (UWVF)

Cessenat and Després (1998) the Helmholtz equation is decomposed into coupled

subproblems for each element. In the Discontinuous Enrichment Method (DEM)

Farhat et al. (2001, 2003, 2004); Tezaur and Farhat (2006); Massimi et al. (2008);

Tezaur et al. (2014), the problem is globally solved and the plane waves are directly

added to the classical polynomial shape functions. Continuity is weakly enforced by

Lagrange multipliers.

On the contrary, the PUM is based on the Partition of Unity theory Melenk

(1995); Babus̆ka et al. (1995); Melenk and Babus̆ka (1996); Babus̆ka and Melenk

(1997). The enriching plane waves are multiplied by the classical polynomial shape

functions (hat functions) forming a partition of unity, rather than directly added to

the base of solution, preserving the continuity of the basis Mayer and Mandel (1997);

Laghrouche and Bettess (2000); Ortiz and Sanchez (2001); Laghrouche et al. (2002,

2003); Ortiz (2004); Perrey-Debain et al. (2004); Laghrouche et al. (2005); De Bel
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et al. (2005); Strouboulis et al. (2006, 2008); Strouboulis and Hidajat (2006). This

thesis explores the feasibility of solving the underwater acoustic propa-

gation problem by using the PUM enriched with plane waves. Although

the implementation of the PUM is very similar to the standard implementation of

the FEM, and it can be easily adapted to any FEM mesh, its application to high

frequency and large domains arises two challenges. The first one involves the nu-

merical integration of highly oscillatory functions. In this thesis, this shortcoming

is mitigated by using semi-analytical integration rules. The second one concerns the

resulting ill-conditioned global system matrix. In this work, we alleviate this draw-

back by using a low-rank approximation of the matrices based on the singular value

decomposition technique.
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Chapter 4

2D model for underwater acoustics

This chapter presents a new 2D numerical model to predict the underwater acoustic

propagation using the Partition of Unity Method (PUM) enriched with plane waves.

The aim of this model is to obtain sound pressure level distributions when multi-

ple operational noise sources are present, in order to assess the acoustic impact on

the marine fauna. It takes advantage of the suitability of the PUM for solving the

Helmholtz equation, especially in the practical case of large domains and medium

frequencies. The seawater acoustic absorption and the acoustic reflectance of the sea

surface and the sea bottom are explicitly considered, and Perfectly Matched Layers

(PML) are placed at the lateral artificial boundaries to avoid spurious reflections. The

model includes semi-analytical integration rules which are adapted to highly oscilla-

tory integrands in order to reduce the computational cost of the integration step. In

addition, we develop a novel strategy to mitigate the ill-conditioning of the elemental

and global system matrices. Specifically, we compute a low-rank approximation of the

local space of solutions, which in turn reduces the number of degrees of freedom, the

CPU time and the memory footprint. Numerical examples are presented to illustrate

the capabilities of the model and to assess its accuracy.
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4.1 Introduction

The acoustic pollution due to anthropogenic activities in the oceans, such as seismic

exploration, military sonar operation, commercial shipping, construction, oil and gas

extraction or offshore energy generation, has a direct impact on marine ecosystems.

Until recent years, there was a lack of knowledge on the environmental impact of the

underwater noise, and even nowadays special efforts are focused on monitoring the

underwater noise levels Nedwell et al. (2003); Ainslie et al. (2009), identifying and

characterizing the effects of the noise on the marine endangered species Thomsen

et al. (2006); Thomsen (2009), and establishing criteria to assess this impact The Eu-

ropean Commission (2010). For instance, a high level of exposure produces behavioral

changes, masking of sounds of interest, hearing losses and temporary or permanent

injuries over the marine fauna. Therefore, a growing social concern on this issue mate-

rialized in several national and international agreements and regulations that identify

the anthropogenic noise as a specific type of pollution Marine Mammal Commission

(2007); OSPAR Commission and others (2005), and that plan to establish limits on

the generated noise intensity The European Commission (2008). In particular, De-

scriptor 11 from the European Union Commission Decision 2010/477/EU requires

future monitoring programs to assess the underwater noise with frequencies ranging

between 10 Hz and 10 kHz.

In this context, underwater acoustic propagation models gain importance as they

provide a priori spatial distributions of the sound levels in the region of interest, which

are crucial in the elaboration of acoustic impact assessments Dekeling et al. (2013).

This chapter focuses on the simulation of the propagation of the noise produced by

multiple non-impulsive operational sources through 2D large domains (from hundreds

of meters to several kilometers) at medium frequencies (from hundreds of Hz to a few

kHz).

Several numerical methods have been developed to predict the sound pressure level

under these conditions. For instance, range-dependent simplified methods Hazelwood

and Connelly (2005) provide a first approximation by estimating the transmission loss

due to the spreading and the seawater absorption. Methods based on a parabolic sim-

plification of the Helmholtz equation produce better results even though they assume

that energy propagates nearly horizontally, the speed of sound varies weakly and out-

going energy dominates backscattered energy Tappert (1977); Collins (1993). How-

ever, full wave models give more realistic results since the wave physics is considered
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and no additional assumptions are made on the wave propagation behavior. When

non-impulsive noise sources are addressed, full wave models consider the Helmholtz

equation, which is the harmonic version of the wave equation. To this end, each input

noise spectrum is decomposed into a set of harmonic frequency bands, and a single

simulation is performed for each of them.

The Helmholtz equation leads to oscillatory solutions, which are poorly repre-

sented by the classical polynomial shape functions associated with the standard finite

element method (FEM), unless the mesh is extremely fine and then computationally

unaffordable. Moreover, for high wavenumber applications, the numerical dispersion

makes the discrete wavenumber differ from that of the exact solution. This effect is

also called pollution error, and separates the solution of the standard FEM from the

best approximation Babus̆ka and Sauter (1997) (Ihlenburg, 1998, Section 4.6) Der-

aemaeker et al. (1999). Alternative finite element formulations have been developed

to overcome this shortcoming by including enriching functions into the approxima-

tion space. These enriching functions include a priori knowledge of the solution and

provide better local approximation properties. This also improves the accuracy of

the global approximation. In the case of the Helmholtz equation, it is advantageous

to include sets of plane waves propagating in different directions Melenk (1995); Me-

lenk and Babus̆ka (1996); Babus̆ka and Melenk (1997), which form c-complete sets

of functions for this equation Herrera and Sabina (1978). Plane waves are free-space

natural solutions if a uniform wavenumber is considered, and practically eliminate the

pollution error Babus̆ka and Melenk (1997). In addition, this alleviates the constraint

of having a minimum number of elements per wavelength (typically 10 or 12 as a rule

of thumb), allowing the use of coarser meshes with several wavelengths per element,

and providing a considerable reduction in the total number of unknowns (more than

90% in some cases Perrey-Debain et al. (2004)).

Enriched formulations have been recently incorporated to several approaches for

the solving of the Helmholtz equation Wang et al. (2012). The Ultra-Weak Varia-

tional Formulation (UWVF) and the Discontinuous Enrichment Method (DEM) are

examples of discontinuous enriched methods in which continuity between elements is

weakly imposed. In the UWVF the Helmholtz equation is decomposed into coupled

subproblems for each element Cessenat and Després (1998); Huttunen et al. (2002),

while in the DEM continuity is weakly enforced by means of Lagrange multipliers

Farhat et al. (2001, 2003). Here, we follow the partition of unity method (PUM)
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with plane waves, which is based on the partition of the unity theory Melenk (1995);

Babus̆ka et al. (1995); Melenk and Babus̆ka (1996); Babus̆ka and Melenk (1997).

It combines the good local approximation properties of the plane waves with the

standard polynomial shape functions, that ensure continuity between elements.

The PUM has been extensively applied to diffraction and scattering problems

Mayer and Mandel (1997); Laghrouche and Bettess (2000); Ortiz and Sanchez (2001);

Laghrouche et al. (2002, 2003); Ortiz (2004); Perrey-Debain et al. (2004); Laghrouche

et al. (2005); De Bel et al. (2005); Strouboulis and Hidajat (2006). However, in this

work we explore a novel application of the method by developing a numerical model

to simulate the underwater noise propagation. The seawater absorption phenomenon

is included through the imaginary part of the wavenumber. Our model considers

non-uniform acoustic properties for the seawater and the sea bottom. We model the

behavior of the sea bottom and surface by means of the Robin boundary equation,

with a complex transmission coefficient. Additionally, we place perfectly matched

layers (PMLs) at the artificial boundaries, in order to avoid numerical reflections.

The introduction of plane waves in the basis of the approximation space increases

the accuracy and reduces the number of degrees of freedom of the problem, thanks to

the oscillatory behavior of the functions. Nevertheless, this provokes an undesirable

rise in the CPU time required for the integration step, if a standard Gauss-Legendre

rule is selected, as in the first implementations of the method Laghrouche and Bett-

ess (2000); Laghrouche et al. (2002, 2003); Perrey-Debain et al. (2004); Laghrouche

et al. (2005). The reason is that a large number of integration points is required to

capture the highly oscillatory integrands. In Ortiz and Sanchez (2001); Ortiz (2004)

a local coordinate rotation was introduced in order to develop a problem-adapted

semi-analytical integration rule. Later, Strouboulis and Hidajat (2006) applied the

Filon’s rule to evaluate the integrals over rectangular elements. In this work, we fol-

low the semi-analytical approach developed in Bettess et al. (2003); Sugimoto et al.

(2003), which is valid for first order triangular and quadrilateral elements.

Several authors have reported ill-conditioning of the resulting matrices when sets

of plane waves are considered as part of the approximation functions Melenk (1995);

Melenk and Babus̆ka (1996); Babus̆ka and Melenk (1997); Mayer and Mandel (1997);

Ortiz and Sanchez (2001); Laghrouche et al. (2002); Perrey-Debain et al. (2004); Wang

et al. (2012). In order to reduce the condition number of the elemental matrices, we

perform a low-rank approximation of the local basis functions. To this end, we first
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compute the volume integrals of the weak form over a standard domain patch. Then,

we compute the singular values of the corresponding matrix, and truncate the smallest

ones. This contribution improves the conditioning of the system matrix and reduces

the number of degrees of freedom and, hence, the required computational resources.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce

our physical model, setting up the problem and detailing how the physical phenomena

are considered. In Section 4.3 we focus on the numerical formulation. Specifically, we

detail the semi-analytical integration procedure used to compute the elemental con-

tributions, and a technique providing a low-rank approximation based on the singular

value decomposition (SVD). Several numerical example are presented in Section 4.4,

to illustrate the applicability and accuracy of the proposed method. Finally, Section

4.5 includes some concluding remarks and developments to be addressed in a next

step of the research.

4.2 Modelization of the underwater noise

propagation

In order to develop a model for the propagation of the underwater noise we assume

that the speed of ocean waves and water masses are both small (around several meters

per second) compared to the sound speed in water (approximately 1500 m/s). Hence,

our model neglects water motion and assumes a completely still medium Kuperman

and Lynch (2004) and a still and plane sea surface, see Section 4.2.3. Accordingly,

acoustics and fluid dynamics are uncoupled.

For the European offshore wind farms the characteristic water depth varies be-

tween 20 m and 200 m, depending on the structural type of the turbine, while their

characteristic length scale is a few kilometers Arapogianni et al. (2013). Thus, the

overall shape of the domain is nearly rectangular, with the horizontal dimension much

larger than the vertical one. In our two-dimensional model, the domain consists of an

area enclosed by the sea surface (assumed planar), two artificial lateral boundaries,

and the sea bottom, which at the working scale is usually smooth with slight slopes.

We assume stationary harmonic noise sources. In practice, input noise spectra are

decomposed into a set of frequency bands, each of them characterized by a reference

frequency (and a corresponding wavenumber). Then, the Helmholtz equation can be

considered to compute a numerical solution for each of the single frequency bands,
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4. 2D model for underwater acoustics

independently. Finally, a sound pressure level spectra distribution is generated after

collecting the results for each band.

4.2.1 Problem statement

The unknown complex pressure, p, takes values in Ω and is the solution of the bound-

ary value problem

∆p+ k2p=0 in Ω,
∂p

∂n
− τkp=g in Γ = ∂Ω, (4.1)

where ∆ is the Laplace operator, k is the wavenumber (see Section 2.1.3.1), n is the

outward unit normal, τ is the complex transmission coefficient (see Section 4.2.3),

and g is the independent term that we will use to introduce the input noise sources

(see Section 4.2.4).

The corresponding weak form of the problem is stated as: find p ∈ H1(Ω) such

that

B(p, v) = L(v) ∀v ∈ H1(Ω), (4.2)

where

B(p, v) =

∫
Ω

(k2pv̄ −∇p · ∇v̄) dΩ +

∫
Γ

τkpv̄ dΓ (4.3)

L(v) = −
∫

Γ

gv̄ dΓ, (4.4)

being H1(Ω) the space of functions with square-integrable derivatives in Ω, and ·̄ the

conjugate of a complex variable.

4.2.2 Seawater absorption and complex wavenumber

The geometrical spreading, that is the attenuation of the intensity when the wave

propagates away from the acoustic source, is implicitly accounted for in the elliptic

nature of the Helmholtz equation. However, empirical evidence reveals that seawater

is a damping medium. The additional attenuation associated with physical-chemical

reactions is caused by two groups of phenomena that convert acoustic energy into

heat: the shear and volume viscosities effects, and a series of ionic relaxation processes

involving, mainly, magnesium sulfate MgSO4 and boric acid B(OH)3. The energy loss

46



4.2. Modelization of the underwater noise propagation

is modeled with the logarithmic absorption coefficient α, which is estimated using the

formula proposed in Ainslie and McColm (1998) (Section 2.1.3.1).

The absorption is accounted for in our model by considering a complex wavenum-

ber k = k1 + ik2, i =
√
−1. The real part of the wavenumber is standard in wave

theory: k1 = 2πf/c, f being the wave frequency and c the sound speed (Section

2.1.2). The imaginary part, k2, introduces an omni-directional attenuation of the

solution that is proportional to the absorption coefficient α. In order to deduce the

relation between them, a plane wave with an arbitrary amplitude A is considered,

propagating in a free space following an arbitrary direction vector e. It suffers an

exponential decay determined by k2,

W (x) = A exp(ik e · x) = A exp(−k2 e · x) exp(ik1 e · x). (4.5)

Thus, the absorption coefficient and according to equations (2.1) and (4.5), the tran-

sition loss between two points separated a distance r (in km) produced exclusively

by the physical absorption is

αr = SPL0 − SPLr = 20 log10

prms,0

p0

− 20 log10

prms,r

p0

= 20 log10[exp(k2 · 1000 r)] .

Hence,

k2 =
ln 10

20 · 1000
α,

where k2 is measured in rad/s and α in dB/km.

4.2.3 Boundary conditions

The boundary condition, Equation (4.1), models the behavior of the solution at differ-

ent parts of the boundary (sea surface, sea bottom, and lateral artificial boundaries).

The dimensionless transmission coefficient τ is related to the rate of transfer of en-

ergy at the corresponding boundary Isaacson and Qu (1990), and it allows prescribing

fully reflecting (τ = 0), non-reflecting (|τ | = 1) or partially reflecting (0 < |τ | < 1)

boundary conditions Berkhoff (1976).

Depending on the availability of empirical measurements, the value of the trans-

mission coefficient can be obtained either from the transmission loss at the interface

TLi, measured in dB, or from the acoustic impedance of the boundary Zb = ρbcb,

being ρb the density of the boundary material, see Appendix B for more details. In

the first case, we have

τ = i
1− 10−TLi/20

1 + 10−TLi/20
. (4.6)
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4. 2D model for underwater acoustics

In the second case, we have

τ = i
Zsw
Zb

, (4.7)

where Zsw ≈ 1.54× 106 kg/(m2s) is the acoustic impedance of the seawater.

Note that we can reproduce full reflection (Neumann boundary conditions) by

setting τ = 0 (TLi = 0 or Zb >> Zsw), and null reflection (0-order absorbing boundary

conditions) by setting τ = i (TLi →∞ or Zsw = Zb).

The sea surface behaves as a reflector when it is smooth, due to the large acoustic

impedance contrast, and as a scatterer when it is rough. The sea surface is treated

as plane and fully reflective (τ = 0), being a conservative assumption with respect to

all possible sea states.

On the contrary, the impedance mismatch between the seawater and sea bottom

materials is less severe and, hence, the sea bottom is considered as a partially reflecting

and scattering boundary. Its acoustic properties depend, for instance, on the multi-

layered composition of the materials, the frequency and the angle of incidence, see

details in (Urick, 1983, Section 5.8) and (Burdic, 1983, Section 5.3).

The lateral boundaries are artificial entities that truncate the unbounded do-

main and, hence, they should behave as non-reflecting boundaries. Several absorbing

boundary conditions (ABC) perform well for some propagation directions, but in-

troduce spurious reflections for others. Higher order ABCs are more accurate but

also more complex and demanding in terms of storage and calculation time Rappa-

port (1995). Here, Perfectly Matched Layers (PMLs) are adopted in order to achieve

full absorbing conditions and avoid spurious reflections Berenger (1994). PMLs are

analytic continuations of the Helmholtz equation into complex spatial coordinates,

see Johnson (2007). The PML technique assumes homogeneous medium properties

along the normal to the boundary. In order to simplify the formulation, the lateral

boundaries are taken parallel to the axes. Modesto et al. (2015) successfully applied

PML layers to harbor agitation problems.

4.2.4 Noise generation

Note that the size of the sound sources (wave energy generators, wind turbines, or

other elements) is small compared to the size of the domain. Moreover, the region of

interest is usually placed at distances equal to several times their characteristic size.

Hence, we assume that noise sources are punctual and located on the surface.
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4.3. Numerical model

The input noise is introduced via the analytical solution of the pressure field gener-

ated by a point source with the hypothesis of a uniform wavenumber k0. This pressure

field is introduced into the Robin boundary equation (4.1) and, then, the resulting

independent term g is integrated along the boundary edges of the adjacent elements.

Specifically, the pressure field pa produced by a point source in a homogeneous 2D

medium can be approximated by (see (Kinsler et al., 1999, Chapt. 5))

pa(x) = px0

(
r(x0)

r(x)

)1/2

exp
(
ik0

(
r(x)− r(x0)

))
, (4.8)

where x is the spatial coordinates vector, px0 is the pressure produced by the source at

a reference point x0, and r(·) is the distance to the point source xs. Hence, according

to Equation (4.1),

g(x) =
∂pa(x)

∂n
− k(x)τ(x)pa(x) (4.9)

=

(
ik0r(x)− 1/2

r2(x)
(x− xs) · n− k(x)τ(x)

)
pa(x) .

Note that the source point must be separated from the surface since there is a singu-

larity point at r(xs) = 0. Numerical experiments demonstrate that a distance of λ/3

from the sea surface is sufficient, where λ = 2π/k is the wavelength.

Multiple noise sources are easily introduced invoking the linearity of the problem

and the superposition principle.

4.3 Numerical model

4.3.1 Partition of Unity Method

The boundary value problem defined by Equation (4.2) is solved using the Partition

of Unity Method (PUM). Domain Ω is discretized using a quadrilateral mesh with

characteristic size h, see Section 4.3.2, and a total number of nodes nnod. Nm, for

m = 1, . . . , nnod, denotes the classical piecewise bilinear shape function associated to

the m-th node of the mesh. The support of Nm, νm, is a patch composed by the

elements sharing node m.

The partition of unity space Wh,q reads

Wh,q =

{
v
∣∣∣ v =

nnod∑
m=1

Nm

(
q∑
r=1

am,rWm,r

)}
, (4.10)
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4. 2D model for underwater acoustics

Figure 4.1: Examples showing possible directions of the 2D plane waves enriching
functions employed at each node.

where q is the number of plane waves (enrichment functions) pasted at the m-th node

(patch), am,r is the complex coefficient (amplitude) of the r-th plane wave associated

to the m-th node, namely

Wm,r(x) = exp
(
ikm er · (x− xm)

)
, (4.11)

being km the wavenumber at the m-th node, er =
(

cos(θr), sin(θr)
)

the r-th propa-

gation direction, θr = (2πr)/q the counterclockwise angle with respect to the x axis,

and xm the coordinates of the m-th node. Figure 4.1 depicts two examples of sets

with equidistributed directions for the plane waves.

Remark 4.1. Functions Nm, for m = 1, . . . , nnod, are a partition of the unity

nnod∑
m=1

Nm ≡ 1 on Ω.

In addition, Nm and their derivatives are bounded. Under these conditions, the local

approximation properties of the enrichment functions are inherited by the global space

of solutions, see details in Melenk (1995); Babus̆ka et al. (1995); Melenk and Babus̆ka

(1996).

Remark 4.2. In several applications with plane wave enrichment functions, the stan-

dard finite element polynomial approximation space is kept in the definition of the

solution space Strouboulis et al. (2006, 2008). That is, Equation (4.10) is replaced by

Wh,q =

{
v
∣∣∣ v =

nnod∑
m=1

bmNm +

nnod∑
m=1

Nm

(
q∑
r=1

am,rWm,r

)}
. (4.12)
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Here, we adopt the approach presented in Melenk and Babus̆ka (1996); Mayer and

Mandel (1997); Laghrouche and Bettess (2000); Ortiz and Sanchez (2001); Laghrouche

et al. (2002); Ortiz (2004); Laghrouche et al. (2005); Strouboulis and Hidajat (2006)

that only considers the part of the approximation space including the planar waves

(we assume bm = 0 in Equation (4.12)). This is supported by two reasons. First,

the enhanced rate of convergence is given by the contribution of the plane wave basis,

rather than the polynomials Ortiz (2004). Second, we deal with pressure fields that a

priori have null average.

Remark 4.3. Although it is possible to use high-order finite element shape functions,

we consider bilinear polynomials, following the rationale of Remark 4.2. Moreover,

this also simplifies the semi-analytical integration rules to compute the elemental con-

tributions.

Remark 4.4. The definition of the enrichment functions (4.11) is local. Thus, it

is possible to paste different sets of plane waves at each node patch. We take ad-

vantage of this property to incorporate non-uniform distributions for the sound speed

(wavenumber). The wavenumber evaluated at the m-th node is assigned to the plane

waves pasted at the m-th patch. Note that the km value applies to the whole patch,

thus, it is assumed that the spatial gradient of the sound speed is smooth.

The PUM solution of the weak problem, Equation (4.2), is defined as follows.

Find ph,q ∈ Wh,q such that

B(ph,q, v) = L(v) ∀v ∈ Wh,q.

According to Equation (4.10), the PUM approximation has the form

ph,q(x) =

nnod∑
m=1

q∑
r=1

am,rφm,r(x), (4.13)

where φm,r is the approximation function associated to the m-th node and the r-th

direction,

φm,r(x) = Nm(x)Wm,r(x)

= Nm(x) exp
(
ikm er · (x− xm)

)
. (4.14)

The procedure is similar to the standard finite element method scheme. Here, the

terms to be integrated include harmonic functions and, therefore, the corresponding
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PML PML

Artificial vertical boundaryArtificial vertical boundary

Sea surface

Sea bottom

Figure 4.2: Example of a two-dimensional mesh of quadrilaterals, with PMLs at the
artificial vertical boundaries.

elementary matrices and vectors are integrated using specific semi-analytical integra-

tion rules (see Section 4.3.3), and assembled in the global matrix and right-hand side

vector. Then, the algebraic complex linear system is solved numerically. Finally, a

specific post-processing has to be efficiently applied on the resulting solution vector

to recover the pressure field, Equation (4.13).

4.3.2 Domain discretization

The computational domain is the sea area enclosed by 3 straight segments (the pla-

nar sea surface and 2 lateral artificial boundaries defined by the PML layers) and

a smooth sea bottom curve. Therefore, the domain is quasi-rectangular and can be

easily discretized using quadrilateral elements. First, a preliminary structured grid

of rectangles is generated. Second, the lower rows of elements are adapted to fit the

bottom. Thus, the resulting meshes are composed of 3 types of elements (see Figure

4.2): rectangular geometrically identical non-PML elements (white elements), quadri-

lateral non-PML elements (gray elements), and rectangular PML elements (dark gray

elements). We will take advantage of theses structured meshes during the computa-

tion of the integrals involved in the element contributions of the weak form (4.2), see

Section 4.3.3.

Two factors determine the target element size h: the number of waves per el-

ement and the characteristic bathymetric length, that is, the length associated to

the roughness of the sea bottom definition. For low-frequency simulations (below
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4.3. Numerical model

approximately 100 Hz), the wavelength is longer than the characteristic bathymetric

lengths and the mesh coarseness is limited by the bathymetry. On the contrary, for

higher frequencies, the element size is limited by the desired number of wavelengths

per element size.

4.3.3 Numerical integration

The approximation functions proposed by the PUM enriched with plane waves are

adapted to the nature of the solution. Thus, the enriched approximation space allows

a drastic reduction of the pollution error, see Babus̆ka and Sauter (1997) and (Ihlen-

burg, 1998, Section 4.8) for a detailed analysis. The number of degrees of freedom

is also reduced because the same accuracy is reached with coarser meshes. However,

due to the highly oscillatory behavior of the resulting integrands, a high number

of integration points (up to 120 × 120 points according to Laghrouche and Bettess

(2000); Laghrouche et al. (2005)) is needed to compute the elemental contributions,

if a standard Gauss-Legendre rule is applied. Therefore, the integration cost becomes

prohibitive if high frequencies or large domains are considered unless a more efficient

quadrature, particularly devised for this case, is used.

In our model, three kinds of highly oscillatory integrals are evaluated in order to

compute the element contributions. We classify them into two groups. In the first

group, we have the integrals involved in the computation of the form B(p, v), see

Equation (4.3). These two integrals are finite Fourier transform type, with a smooth

non-oscillatory part and a highly oscillatory complex exponential part. In the second

group, we have the integral involved in the computation of the linear operator L(v),

see Equation (4.4), where the integrand is the product of two highly oscillatory terms.

In the first group of integrals, we have to evaluate the volume integral matrix (the

first term in Equation (4.3)). The contribution of the e-th element is

K(e)
mr,ns =

∫
Ω(e)

[k2φn,sv̄m,r −∇φn,s · ∇v̄m,r] dΩ

= exp
[
i(k̄mer · xm − knes · xn)

] ∫
Ω(e)

Fmr,ns ψmr,ns dΩ

where φn,s, and vm,r are defined according to Equation (4.14), m,n = 1, . . . , nnod, and

r, s = 1, . . . , q,

Fmr,ns = k2NmNn − (∇Nm − ik̄mNmer) · (∇Nn + iknNnes)

53



4. 2D model for underwater acoustics

is a non-oscillatory term, and

ψmr,ns = exp
(
i(−k̄mer + knes) · x

)
(4.15)

is a highly oscillatory term.

Similarly, the contribution of the e-th element to the boundary integral matrix

(the second term in equation (4.3)) is

B(e)
mr,ns =

∫
Γ(e)

τkφn,sv̄m,r dΓ = exp
[
i(k̄mer · xm − knes · xn)

] ∫
Ω(e)

Fmr,ns ψmr,ns dΓ,

(4.16)

where

Fmn,rs = τkNmNn

is the non-oscillatory term and ψmr,ns is given by Equation (4.15).

To compute the integrals in Equations (4.15) and (4.16) we have to evaluate

expressions of the type

I =

∫
X

Fmr,ns(x)ψmr,ns(x) dX

where X is a 1D or a 2D domain. To this end, we use the semi-analytical quadra-

tures developed in Bettess et al. (2003); Sugimoto et al. (2003). In these rules, the

non-oscillatory term of the integrands is approximated by a set of nlp Lagrangian

polynomials,

Fmr,ns(x) ≈
nlp∑
p=1

Fmr,ns(xp)Lp(x), (4.17)

where xp, Lp(x) are the p-th interpolation point and its associated Lagrange polyno-

mial, respectively. Therefore, we have

I =

nlp∑
p=1

Fmr,ns(xp)

∫
X

Lp(x)ψmr,ns(x) dX

=

nlp∑
p=1

Fmr,ns(xp)wmr,ns;p

where

wmr,ns;p =

∫
X

Lp(x)ψmr,ns(x) dX. (4.18)

are the integration weights. The key point in the rules proposed in Bettess et al.

(2003); Sugimoto et al. (2003) is to perform an analytical integration for these inte-

gration weights.

54



4.3. Numerical model

Hence, the quality of the integrals (4.15) and (4.16) is determined by the quality

of the approximation (4.17). Note that the non-oscillatory functions are evaluated

at the interpolating points, whose spacing is determined by the behavior of this

functions rather than by the highly oscillatory full integrand, resulting in a moderate

amount of points and function evaluations, compared to the scheme with the Gauss-

Legendre rules. The location of the integration points could be optimally selected but

it would change from one element to the other, thus, a equally spaced distribution

of integration points is used. In our implementation we use 4 equally distributed

integration points per axis, giving 16 points per quadrilateral element. The proposed

quadrature is exact for Fmr,ns(x) being any polynomial of degree less or equal to 3.

In the second group of integrals, we have to compute the element contribution of

the independent term g of the Robin equation (noise generation) along the boundary

edges surrounding the noise sources, see Equation (4.10),

f (e)
mr =

∫
Γe
gv̄m,r dΓ = exp(ik̄mer · xm)

∫
Γe

g(x)Nm(x)︸ ︷︷ ︸
highly oscillatory

exp
(
− ik̄mer · x

)︸ ︷︷ ︸
highly oscillatory

dΓ. (4.19)

Since function g is highly oscillatory the semi-analytical methods previously proposed

are less competitive (the computational cost involved in the evaluation of a large

number of integration weights (4.18) is high). Consequently, we use a standard high

order Gauss-Legendre rule to compute Equation (4.19) using 10 integration points

per wavelength.

Remark 4.5. The integration step in the PUM has a larger impact on the CPU

time, with respect to the standard FEM. The computational cost of the integration

of the volume integrals K
(e)
mr,ns can be reduced if the geometrical properties of the

domain discretization are considered. Since each layer of the upper region of the

mesh is composed of elements that are geometrically identical, and if the physical

parameters of the elements are the same (sound speed and absorption coefficient), the

elemental matrices can be reused for several elements, reducing drastically the CPU

time involved in the simulation.

4.3.4 Basis reduction technique in order to improve

conditioning

Several authors have reported ill-conditioning of the resulting matrices when sets of

plane waves are considered as part of the approximation functions Melenk (1995);
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Melenk and Babus̆ka (1996); Babus̆ka and Melenk (1997); Mayer and Mandel (1997);

Ortiz and Sanchez (2001); Laghrouche et al. (2002); Perrey-Debain et al. (2004); Wang

et al. (2012). In order to reduce the condition number of the elemental matrices, we

perform a low-rank approximation of the local basis functions. To this end, we first

compute the volume integrals of the weak form over a standard domain patch. Then,

we compute the singular values of the corresponding matrix, and truncate the smallest

ones. This contribution improves the conditioning of the system matrix and reduces

the number of degrees of freedom and, hence, the required computational resources.

It is well known that the element matrices, equations (4.15) and (4.16) and,

therefore, the corresponding global matrix obtained by the PUM method are ill-

conditioned, when the solution space is enriched by a set of plane waves Mayer and

Mandel (1997); Ortiz and Sanchez (2001); Laghrouche et al. (2002). To mitigate

this drawback, we devise a low-rank approximation of the local functional discreti-

sation space discarding the redundant elements of the basis and keeping the relevant

terms, associated with the highest singular values provided by the Singular Value

Decomposition (SVD). This is a natural approach, already mentioned as a promising

possibility in Perrey-Debain et al. (2004), worthy to be explored. Specifically, we

propose a novel low-rank approximation of the local enrichment basis, in the context

of the PUM enriched with plane waves. The approximation is obtained by applying

the SVD to identify and truncate the smallest singular values of the matrix corre-

sponding to a standard patch. This introduces a linear transformation of the local

solution and local test spaces, leading to a new number q̃ of approximation functions

per node, and reduces the size of the system of equations. As a consequence, a large

saving in the computational cost (both in terms of CPU time and memory footprint)

is produced.

The low-rank approximation is computed with the following procedure. First, a

standard patch (set of elements sharing a node) is defined using the physical properties

of a rectangular element of the upper rows of the discretization (white elements in

Figure 4.2), and a uniform sound speed is set as an average of the vertical sound

speed profile. Then, the approximation functions associated with the patch (to the

inner node of the patch) are integrated according to (4.15). The SVD is then applied

to the resulting q × q matrix:

Kpatch = U∆V∗,

where the q × q diagonal matrix ∆ contains non-negative real numbers, the singular
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values of Kpatch, U, V are q× q unitary matrices, and ∗ denotes conjugate transpose.

Remark 4.6. If seawater absorption is not considered, the wavenumber k is real.

Thus, matrix Kpatch is hermitian, see Equation (4.3). In this case U = V. However,

for the general case, the wavenumber k is complex, and Kpatch is no longer hermitian.

Let δmax = max {δi} for i = 1, . . . , q be the maximum singular value. We select

those singular values that verify

δi
δmax

≥ ε ≈ 1

κ(Kpatch)
, (4.20)

being ε a given tolerance and κ(·) the condition number. We define the square reduced

diagonal matrix ∆̃q̃×q̃, including the largest q̃ singular values of ∆, and the rectan-

gular reduced matrices Ũ(q×q̃) and Ṽ(q×q̃), composed by the corresponding q̃ columns

of the matrices U and V, respectively. Therefore, matrix Kpatch is approximated by

Kpatch
(q×q) ≈ Ũ(q×q̃)∆̃(q̃×q̃)Ṽ

∗
(q̃×q),

where Ũ and Ṽ are the linear transformation matrices from the original spaces of

test functions and approximation functions to the reduced ones, respectively.

We highlight that the CPU time involved in this procedure is moderate since the

SVD and the transformation matrices are computed once for a generic patch, and the

impact on the CPU time of the remaining operations is negligible.

From a practical point of view, the elemental matrices and independent term

vectors are integrated for the original approximation and test functions in order to

take profit of the semi-analytical rules presented in Section 4.3.3. After that, the

following transformations are applied over the nodal blocks K
(e)
(m,n) and f

(e)
(m), before

the assembly:

K̃
(e)
(m,n) = Ũ∗K

(e)
(m,n)Ṽ,

f̃ (e)
m = Ũ∗f (e)

m ,

for m,n = 1, . . . , 4, and e = 1, . . . , nelem, being nelem the number of elements.

Once the reduced system is solved, the transformation of the space of solutions is

reverted in order to apply the original post-processing routines,

a(m) = Ṽã(m),

where a(m) and ã(m) are the vectors containing the complex coefficients associated

to the m-th node in the original (q components) and reduced (q̃ components) local

approximation spaces, respectively.
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4.4 Numerical experiments

In this section we present four examples that illustrate the capabilities and the be-

havior of the proposed method. First, we test our model by computing the free

propagation (without the interaction of obstacles or boundaries) of the sound gener-

ated by a point source in a lossy medium. The second example analyzes the effect of

having different sea bottom transmission coefficients on the computed pressure field.

In the third example we compute the pressure field when the sound speed profile is

non-uniform, and two noise sources are considered. Finally, we perform a sensitive

analysis of the low-rank approximation of the local basis on the accuracy and the

required computational resources.

In all the examples, the sea surface is assumed horizontal and fully reflective (τ =

0). The noise sources generate a harmonic sound with an amplitude of 10 Pa (SPL =

137 dB, see Equation (2.1)) at a distance of 1 m. The attenuation parameter for the

PMLs is equal to zero at the non-PML regions and grows 10 rad/s per wavelength at

the PMLs. The local spaces of solutions contain an initial number of q = 200 plane

waves per node before the basis reduction is performed. The sound speed is c = 1, 500

m/s, except in the third example where a non-uniform sound speed is considered. No

absorption is taken into account, except in the first example. It is worth to notice

that the unknowns associated to the PML region are not included when reporting the

total number of unknowns of each simulation. The spatial coordinates and lengths are

expressed in meters. For this work, we have used the built-in direct solving algorithm

mldivide, included in MATLAB R2013b.

4.4.1 Free propagation through a lossy medium

The objective of this example is to illustrate the accuracy of the proposed model when

the seawater absorption is taken into account. We consider the free propagation field

generated by a single point source through a half-plane. The domain is truncated

creating a rectangular geometry Ω = [−500,+500]× [−100, 0], and discretized using

a rectangular mesh with 10 wavelengths per element, resulting in an element size of

(∆x,∆y) = (29.4, 25), and giving 26,775 DOFs (q̃ = 153). The source is located at

the center of the surface, x = (0, 0), and generates a noise with a frequency of f =

500 Hz. A layer of PML elements is added around the lateral artificial boundaries

and below the sea bottom boundary, see Figure 4.3.
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Figure 4.3: 2D mesh used in Example 1, including non-PML elements (in blue) and
PML elements (in red).

Two cases are analyzed. First, we consider the case with null seawater absorption

(α = 0 dB/km). Second, to highlight the effects of the attenuation, we set α = 50

dB/km, that in fact corresponds to the absorption produced at a higher frequency

value of 100 kHz (see Figure 2.2 in Section 2.1.3.1).

Figures 4.4(a) and 4.5(a) show the real part of the pressure field and the sound

pressure level, when null absorption is considered. Note that the decay in the sound

pressure level caused by geometrical spreading is clearly recognizable in Figure 4.5(a).

Figures 4.4(b) and 4.5(b) depict the same fields when the seawater absorption is

considered. As expected, the solution includes an additional attenuation with respect

to the solution without absorption. The additional attenuation associated with the

seawater absorption is illustrated in Figures 4.4(c) and 4.5(c) plotting the evolution

along the y-axis (for y ∈ [−100, 0] at x = 0) of the real part of the pressure field and

the sound pressure level, respectively.

Since the analytical solution pa of this problem is given by Equation (4.8), we

measure the accuracy of the numerical solution in two ways. First, we compute the

point-wise relative error as the discrepancy with the analytical solution of the point

source pressure field:

εpw(x) =
|ph,q(x)− pa(x)|

|pa(x)|
, (4.21)

where ph,q(x) is the numerical solution.

The maximum value of this relative error remains below 25%. Figure 4.6 shows

this value in both cases. From this figure we realize that the highest values of the

point-wise relative error are located in two regions. On the one hand, they are located

near the sea surface and far of the input noise sources. This may be caused by the

method used to introduce the input noise, since we integrate the independent term
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4. 2D model for underwater acoustics

(a)

(b)

(c)

Figure 4.4: Detail of the real part of the pressure at the central region of the domain
(x ∈ [−125,+125]) in Example 1: (a) case without absorption; and (b) case with
absorption. (c) Real part of the pressure field along the y axis for both absorption
values.
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(a)

(b)

(c)

Figure 4.5: Detail of the SPL (dB) at the central region of the domain (x ∈
[−125,+125]) in Example 1: (a) case without absorption; and (b) case with ab-
sorption. (c) SPL distribution along the y-axis for both absorption values.
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(a)

(b)

Figure 4.6: Detail of the point-wise relative error in the pressure at the central region
of the domain (x ∈ [−125,+125]) in Example 1: (a) case without absorption; and
(b) case with absorption.

of the Robin equation along the boundary edges of few elements around the noise

source, see Section 4.2.4. On the other hand, large errors are also located along the

edges of the quadrilateral elements.

Second, we also measure the accuracy of the PUM solution by computing the
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4.4. Numerical experiments

relative error in L2 norm as

εL2 =
‖ph,q(x)− pa(x)‖L2

‖pa(x)‖L2

, (4.22)

where

‖ · ‖L2 =

√∫
Ω

| · |2 dΩ,

being | · | the complex modulus.

We obtain εL2 = 0.1120 and εL2 = 0.0541, for the lossless and lossy cases, respec-

tively. In order to assess the relevance of these error values and if they are acceptable

for engineering applications, it is important relating them to the standard relative

errors of a quantity in environmental underwater acoustics such as the SPL. To this

end, let ESPL be the absolute error in the SPL generated by an absolute error, Ep, in

the pressure field. Thus, from Equation (2.1) and according to the Taylor expansion,

we have

SPL + ESPL = 20 log10

(
p+ Ep
p0

)
= 20 log10

(
p

p0

)
+

1

ln(10)

Ep
p

+O(E2
p).

Thus, the same expression for the relative errors reads

εSPL SPLref ≈
1

ln(10)
εp,

where εSPL = ESPL/SPLref being SPLref a reference SPL value, and εp = Ep/p.

The SPL in standard audiograms of marine mammals and other fish species ranges

from 30 dB to 150 dB, see Thomsen et al. (2006), and is usually given with two

significant digits i.e. εSPL ≤ 1
2
10−2. Therefore, the worst case scenario corresponds

to SPLref = 30 dB leading to

εp = ln(10) SPLref εSPL = 0.34.

Therefore, the obtained values for point-wise relative error (4.21), and for the global

relative error (4.22) remain inside typical engineering acceptable limits.

4.4.2 Sea bottom with different transmission coefficients

This example includes a bottom composed of two different sloped segments. The left-

hand side (LHS) segment has a slope of +0.04 and a transmission coefficient τ = 0.9i
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4. 2D model for underwater acoustics

Figure 4.7: 2D mesh used in Example 2, including non-PML elements (in blue) and
PML elements (in red).

(’soft’ material, low impedance mismatch), while the right-hand side (RHS) segment

has a slope of -0.04 and a transmission coefficient of τ = 0.1i (’hard’ material, high

impedance mismatch). The domain depth varies between 100 m at both lateral ends

(x− = -500 m and x+ = 500 m), and 80 m at the center of the domain, under the

noise source. We consider the propagation of the sound generated by a single point

source located at the center of the sea surface, x = (0, 0), with a frequency of f = 750

Hz.

A layer of PML elements is placed around the lateral artificial boundaries, see

Figure 4.7. The domain is discretized using a structured quadrilateral mesh with 10

wavelengths per element, with element size (∆x,∆y) = (20, 16.7). The number of

approximation functions after the low-rank reduction is 159, giving 56,763 DOFs.

Figures 4.8 and 4.9 show the different noise patterns produced by an absorbing and

a reflecting sea bottom. In the LHS domain region, most part of the acoustic energy

penetrates the bottom and the fields are similar to the ones of the free propagation

case. In the RHS region, most energy reflects and the pattern becomes more complex,

as a result of the interaction of the incident and reflected wave fronts (the acoustic

energy is partially trapped between the surface and the bottom).

4.4.3 Two sources over a non-horizontal sea bottom with

non-uniform sound speed

In this example we consider non-horizontal sea bottom and a non-uniform vertical

profile for the sound speed. We set a uniform slope of 0.04, with a depth varying

between 100 m at x− = -500 m, and 60 m at x+ = 500 m. Two identical sources
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Figure 4.8: Detail of the real part of the pressure (Pa) at the central region of the
domain (x ∈ [−125,+125]) in Example 2.

Figure 4.9: Detail of the SPL (dB) at the central region of the domain (x ∈
[−125,+125]) in Example 2.

are placed on the surface at locations (-80,0) and (+80,0). The frequency is f = 750

Hz and the transmission coefficient at the bottom is τ = 0.9i. The vertical profile of

the sound speed is non-uniform: the speed takes a value of 1,500 m/s at the surface

and decreases linearly with depth, at a rate of -0.5 (m/s)/m (1450 m/s at the sea

bottom).
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4. 2D model for underwater acoustics

Figure 4.10: 2D mesh used in Example 3, including non-PML elements (in blue) and
PML elements (in red).

Figure 4.11: Detail of the real part of the pressure (Pa) at the central region of the
domain (x ∈ (−125,+125)) in Example 3.

The domain is laterally truncated by PMLs, and it is discretized using a structured

quadrilateral mesh that includes 10 wavelengths per element, see Figure 4.10, with

an element size of (∆x,∆y) = (20, 16.7). The number of approximation functions

per node after the basis reduction is q̃ = 159, giving 56,763 DOFs.

Figure 4.11 shows the constructive and destructive interactions between the two

pressure fields, while Figure 4.12 depicts the resulting sound pressure level map.

4.4.4 Sensitivity analysis of the SVD

This example analyzes the influence of the low-rank approximation of the local enrich-

ment basis on the behavior of the method, paying special attention on the memory
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Figure 4.12: Detail of the SPL (dB) at the central region of the domain (x ∈
(−125,+125)) in Example 3.

footprint, CPU time and accuracy of the proposed method. The key parameter is

the tolerance applied to the singular values of the patch matrix, see Equation (4.20),

and the resulting number of local approximation functions per node, q̃.

We consider the free propagation field generated by a single point source through

a half-plane. The domain is truncated creating a rectangular geometrical domain

Ω = [−500,+500] × [−100, 0]. The source is located at center of the sea surface,

x = (0, 0), and generates a noise with a frequency of f = 250 Hz.

The example is solved using 2 meshes with different resolutions. First, we use a

mesh with 5 wavelengths per element, giving an element size of (∆x,∆y) = (29.4, 25).

Second, we set 10 wavelengths per element, producing an element size of (∆x,∆y) =

(55.56, 50). A layer of PML elements is added around the lateral artificial boundaries

and below the sea bottom boundary in both cases.

The initial solution space is determined by q = 200 plane waves per node and,

after integrating the standard patch matrix, a SVD is computed, see Section 4.3.4.

Then, we select the number of singular values that verify Equation (4.20) for ε =

10−16, 10−14, . . . , 10−2. For each tolerance value, we obtain a reduced approximation

space with the corresponding number of approximation functions per node, q̃. Since

the analytical solution of this problem is provided by Equation (4.8), we will assess

the accuracy of the solution by computing the relative error in L2 norm given by

Equation (4.22).
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4. 2D model for underwater acoustics

(a)

Tol q̃ DOF K storage (MB) t solving (s) E κ(Kpatch) κ(Kred)/κ(K)

0 200 25,000 1597.0 2342.85 13.8834 1.07E+16 1.00E+00
1E-16 200 25,000 1597.0 2347.51 13.8834 1.07E+16 1.00E+00
1E-14 128 16,000 654.2 386.21 0.1018 9.99E+13 9.62E-01
1E-12 99 12,375 391.4 172.23 0.1028 2.43E+11 3.58E-02
1E-10 95 11,875 360.4 163.98 0.1029 5.72E+09 2.59E-02
1E-08 89 11,125 316.3 130.77 0.1018 3.22E+07 1.38E-02
1E-06 83 10,375 275.1 105.61 0.1017 3.39E+05 7.34E-03
1E-04 77 9,625 236.8 80.55 0.1067 7.37E+03 3.52E-03
1E-02 67 8,375 179.3 9.09 0.1027 9.85E+01 1.37E-04

(b)

Tol q̃ DOF K storage (MB) t solving (s) E κ(Kpatch) κ(Kred)/κ(K)

0 200 11,400 558.6 183.95 0.0759 7.78E+14 1.00E+00
1E-16 200 11,400 558.6 183.33 0.0759 7.78E+14 1.00E+00
1E-14 193 11,001 520.2 165.17 0.0831 9.42E+13 1.11E-03
1E-12 171 9,747 408.4 120.68 0.0716 2.82E+11 9.78E-05
1E-10 165 9,405 380.2 108.47 0.0754 2.91E+09 7.62E-05
1E-08 159 9,063 353.1 97.66 0.0698 4.31E+07 1.65E-04
1E-06 152 8,664 322.7 87.06 0.0768 9.75E+05 1.29E-04
1E-04 143 8,151 285.6 70.67 0.0794 6.43E+03 4.34E-04
1E-02 127 7,239 225.3 50.99 0.1075 8.44E+01 3.13E-04

Table 4.1: Required computational resources and achieved accuracy in Example 4,
when (a) 5 or (b) 10 wavelengths per element are considered. For each tolerance value
we detail: the reduced number of shape functions q̃ (the initial number is q = 200),
the global number of degrees of freedom, the memory space for the global system
matrix, the CPU time for the solving step, the relative L2-norm error, the condition
number of the patch matrix, and the ratio between the condition numbers of the
reduced and original system matrices.

Table 4.1 summarizes, for each tolerance value ε, the most relevant computational

parameters and the obtained accuracy, when 5 and 10 wavelengths per element are

considered. We highlight that for both meshes, increasing the tolerance ε (first col-

umn) reduces the number of singular values (second column), that is the number of

approximation functions per node, leading to a linear reduction in the number of

DOFs (third column). This implies an important decrease in the size of the global

system matrix or memory footprint (fourth column) and in the CPU time needed to

solve the linear system (fifth column), while the relative L2-norm error is also reduced
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(sixth column). It is important to point out that the CPU time involved in the low-

rank approximation calculation step is small (below 4 seconds in all cases), compared

to the total time of the simulation. In addition, the CPU time for the integration

step is almost constant once the number of wavelengths per element is fixed since,

in practice, the original approximation functions are always integrated whatever the

tolerance value.

As expected, if the original number of shape functions is considered (q = 200),

the condition number of the generic patch matrix is extremely large, but it decreases

as the number of singular values is reduced (seventh column). Moreover, the latter

implies a decreasing in the condition number of the global matrix up to 5 orders of

magnitude (eighth column).

One of the drawbacks of using enriched solution spaces is that the number of

components of the elemental matrices increases with the square of the number of

approximation function per node, q, leading to large element matrices, and reducing

the sparsity of the global matrix. For instance, the ratio of the number of non-

zero entries over the total number of entries in this example is 3.6% when the mesh

contains 5 wavelengths per element, and 8.7% when it contains 10 wavelengths per

element. However, in this example we show that a given accuracy can be achieved

using a reduced number of combinations of these basis functions. Thus, we can use

coarse meshes (large number of wave lengths per element) while keeping the sparsity

of the matrix moderate.

Although, for a given accuracy, the use of coarser meshes, with a larger num-

ber of wavelengths per elements, requires an increase of the number of enrichment

functions per node, numerical experiments show that the increment in the number

of approximation functions is compensated by the reduction in the number of mesh

nodes, leading to a smaller global number of degrees of freedom, and consequently,

to a lower computational cost, see Table 4.1.

4.5 Concluding remarks

In this chapter we have presented a new 2D numerical model to simulate the un-

dersea acoustic propagation generated by multiple non-impulsive (operational) noise

sources. The model includes the most relevant physical phenomena such as sea water

absorption, via a complex wavenumber, and the reflectance of the sea bottom and
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4. 2D model for underwater acoustics

surface. Artificial fully absorbing boundary conditions are also included in the lateral

boundaries by means of Perfectly Matched Layers.

We have successfully used the Partition of the Unity Method to solve the cor-

responding weak form of the Helmholtz equation, since harmonic noise sources are

heeded. Specifically, we enrich the solution space by pasting several plane waves with

the physical wavenumber at each patch of the discretization. Two basic ingredients

are proposed to properly solve the weak form. On the one hand we have implemented

a semi-analytical scheme in order to integrate highly oscillatory functions over quadri-

lateral elements. This allows reducing the computational cost of the integration step

while maintaining its accuracy. On the other hand, we have developed a new proce-

dure to reduce the condition number of the elemental and global matrices. It is based

on a low-rank approximation of the local enrichment basis associated to the central

node of a reference patch. This way, we have reduced the size of the global matrix

while preserving the accuracy of the approximation.

We have applied the model to several scenarios including absorbing medium, sea

bottom composed of different materials, and non-planar sea bottom. In addition, we

have computed the free propagation of the sound generated by a single point source

through a lossless and through a lossy media, and compared it with the analytical

solution. In both cases we obtained accurate results. Finally, we have analyzed the

influence of the low-rank approximation on the behavior of the proposed method.

Numerical experiments show that by reducing the number of local approximation

functions, we can also reduce the required computational resources and the accuracy

of the results.
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Chapter 5

A semi-analytical scheme for

highly oscillatory integrals over

tetrahedra

This chapter details a semi-analytical procedure to efficiently integrate the product

of a smooth function and a complex exponential over tetrahedral elements Hospital-

Bravo et al. (2017). These highly oscillatory integrals appear at the core of different

numerical techniques. Here, the partition of unity method enriched with plane waves

is used as motivation. The high computational cost or the lack of accuracy in com-

puting these integrals is a bottleneck for their application to engineering problems of

industrial interest. In this integration rule, the non-oscillatory function is expanded

into a set of Lagrange polynomials. In addition, Lagrange polynomials are expressed

as a linear combination of the appropriate set of monomials, whose product with

the complex exponentials is analytically integrated, leading to 16 specific cases that

are developed in detail. Finally, we present several numerical examples to assess the

accuracy and the computational efficiency of the proposed method, compared with

standard Gauss-Legendre quadratures.
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5.1 Introduction

During the last two decades, special attention has been focused on the computation of

highly oscillatory integrals in applied sciences and engineering. The problem arises in

several fields such as quantum mechanics, image analysis, electrodynamics, and wave

propagation problems. This type of integrals cannot be efficiently computed with

standard quadratures (such as the Gauss-Legendre quadrature) because the highly

oscillatory integrand is not properly represented by polynomial interpolation. Thus, a

very large number of integration points is needed and the computational cost becomes

prohibitive, particularly in the case of medium or high frequencies, three-dimensional

(3D) problems or large domains.

Wave problems lead to oscillatory solutions, which are poorly captured by the clas-

sical polynomial shape functions, associated with the standard finite element method.

Moreover, for high wavenumber applications, the numerical dispersion makes the dis-

crete wavenumber differ drastically from the exact solution. This is called the pollu-

tion effect, and it separates the solution of the standard finite element method from

the best approximation Babus̆ka and Sauter (1997) (Ihlenburg, 1998, Section 4.6)

Deraemaeker et al. (1999).

Although high-order methods and discontinuous formulations provide lower dissi-

pation and dispersion, alternative finite element formulations have been developed to

overcome this limitation by including special shape functions into the approximation

space, see Melenk (1995); Melenk and Babus̆ka (1996) for continuous formulations or

Farhat et al. (2001, 2003, 2004); Hiptmair et al. (2011) for discontinuous formulations.

These enriching functions include a priori knowledge of the solution and improve the

quality of the local and global approximation properties. In the case of the Helmholtz

equation, it is advantageous to include sets of plane waves propagating in different di-

rections, because they are free-space natural solutions when a uniform wavenumber is

considered and they form a so-called c-complete set of functions that allows spanning

the whole space of solutions, see Herrera and Sabina (1978); Laghrouche and Bettess

(2000) for details. Thus, the enriched approximation space allows a drastic reduction

of the pollution error, see Babus̆ka and Sauter (1997) and (Ihlenburg, 1998, Section

4.8) for a detailed analysis. This alleviates the constraint of having a minimum num-

ber of elements per wavelength (typically 10 or 12 as a rule of thumb), allowing the

use of coarser meshes with several wavelengths per element. These meshes provide

a considerable reduction in the total number of unknowns (more than 90% in some
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cases).

However, the enriching functions and their derivatives have to be integrated over

each element. In some of these plane-waves based methods the integrals are easier

to compute, such as the Ultra Weak Variational Formulation Cessenat and Després

(1998) or the Discontinuous Enrichment Method Farhat et al. (2001, 2003, 2004).

In the case of the Partition of the Unity Method (PUM), the selection of standard

Gauss-Legendre quadratures becomes inadequate due to the highly oscillatory be-

havior of the resulting integrands, and alternative efficient integration techniques are

needed. Many classical and modern methods for solving one-dimensional (1D) finite

regular Fourier integrals can be found in Evans and Webster (1999) and in Iserles and

Nørsett (2005); Huybrechs and Vandewalle (2006). In the context of the Partition of

the Unity Method (PUM), Ortiz and Sanchez (2001) introduced a local coordinate

rotation over triangular elements to obtain 1D oscillatory integrands and compute

these integrals semi-analytically. A semi-analytical rules for two-dimensional (2D)

problems that consider the special nature of the integrand and profit from it to per-

form the integration were presented in Bettess et al. (2003); Sugimoto et al. (2003)

developed . In these rules, the non-oscillatory part of the integrands is approximated

by a set of interpolating Lagrange polynomials. Then, the products of these polyno-

mials and the complex exponentials are integrated analytically. The result is a set

of integration weights, which are specific for each combination of element geometry

and parameter of the complex exponential. The key point of these rules is that the

distribution of the integration points captures the behavior of the smooth part of the

integrand, rather than the whole oscillatory behavior, which is analytically captured

by the integration weights. Therefore, the spacing of the integration points is larger,

dramatically reducing their number and, hence, the number of function evaluations,

compared with the Gauss-Legendre quadrature. This approach has been recently

applied in the context of underwater acoustics in Hospital-Bravo et al. (2016). An

alternative approach to compute the integral of the product of a polynomial and a

complex exponential over arbitrary polygons is presented in Gabard (2009), polyhe-

dral volumes and 3D surfaces, by rewriting volume integrals in terms of 1D integrals

along the element edges thanks to the Gauss and the Stokes theorems.

The novelty of our contribution is a fast and robust semi-analytical rule to compute

the volumetric integrals of highly oscillatory functions (expressed as the product of a

smooth function and a complex exponential) on tetrahedral elements. In this sense,
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it is a generalization to a 3D setting of the integration rule developed by Bettess et al.

(2003); Sugimoto et al. (2003). The method proposed here follows the usual practice

of standard quadratures and considers the evaluation of the non-oscillatory function

at the integration points. This is in contrast to Gabard (2009) that considers as

input data the coefficients of the polynomial (non-oscillatory part of the integrand),

and after applying the Gauss and the Stokes theorems, performs 1D integrals along

the element edges. The proposed quadrature is better fitted to be implemented in

a Finite Element like methodology. This is because the information describing the

(non-oscillatory part of the) function to be integrated is required as values at a set of

integration points, which is the standard practice in Finite Elements. On the contrary,

the quadrature introduced in Gabard (2009) requires as input data the coefficients of

the polynomial in some basis. Thus, for the specific application in a Finite Element

framework, using Gabard (2009) requires an additional step that consists in finding

the analytical expression of the polynomial from point values with some interpolation

technique. Note that this new operation introduces an additional interpolation error.

The rest of this chapter is organized as follows: Section 5.2 describes the semi-

analytical scheme, detailing the Lagrange expansion in terms of a linear combination

of a basis of monomials, and the expression of the integration weights of the semi-

analytical rule. Section 5.3 provides several preliminary results required to develop

Section 5.4, which presents the new scheme to compute the target integral. Specifi-

cally, we detail how this scheme leads to 16 different cases. Section 5.5 summarizes

how the PUM enriched with plane waves benefits from this semi-analytical scheme.

Section 5.6 presents several numerical examples to underline the main properties of

the proposed rule. Finally, the conclusions extracted from this work are collected in

Section 5.7.

5.2 Highly oscillatory integral over a tetrahedron

The objective of this work is obtaining an efficient semi-analytical integration rule to

compute the following family of highly oscillatory integrals over a tetrahedron ΩTET:

K =

∫
ΩTET

f(x) exp (iv · x) dx, (5.1)

where x is the vector of coordinates, f is a smooth (non-oscillatory) function, i =
√
−1 is the imaginary unit, and v is an arbitrary and complex vector. The complex
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Figure 5.1: Geometrical mapping between the reference and physical tetrahedral
element.

exponential is considered as highly oscillatory if it oscillates several times inside the

element, that is, if

‖v‖h
2π

� 1,

where h is a characteristic length. Because the methodology is conceived for an

application in the context of generalized finite elements, in the following h denotes

the element size. This kind of integral is also known as regular finite Fourier integral.

5.2.1 Lagrange polynomials expansion and semi-analytical

scheme

We rewrite the integral in Equation (5.1) at the reference tetrahedron Ωref (Figure

5.1) as

K =

∫
Ωref

f(x(ξ)) exp (iv · x(ξ)) |J(ξ)| dξ =

∫
Ωref

F (ξ) exp (iv · x(ξ)) dξ, (5.2)

where ξ = (ξ, η, ζ) is the vector of reference coordinates and F (ξ) = f(x(ξ))|J(ξ)|, and

|J(ξ)| stands for the Jacobian of mapping φ between the reference and the physical

tetrahedron. Although the Jacobian |J(ξ)| is constant (independent of ξ) for linear

tetrahedral elements, the dependence on ξ is however kept inside J to highlight that

this framework is also valid for mappings with a nonuniform Jacobian.
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The non-oscillatory function F (ξ) is now approximated by means of a set of La-

grange interpolating polynomials:

F (ξ) ≈
np∑
d=1

F (ξd)Ld(ξ), (5.3)

where Ld is the Lagrange polynomial of degree p associated with the d-th integration

point ξd, d = 1, . . . , np, and np is the number of integration points. Therefore, the

integral in Equation (5.1) is computed using the following integration rule:

K ≈
∫

Ωref

(
np∑
d=1

F (ξd)Ld(ξ)

)
exp (iv · x(ξ)) dξ =

np∑
d=1

F (ξd)wd,

where

wd =

∫
Ωref

Ld(ξ) exp (iv · x(ξ)) dξ for d = 1, . . . , np, (5.4)

is the complex integration weight corresponding to the d-th integration point. Note

that the accuracy of integral (5.1) strongly depends on the quality of the approxima-

tion in Equation (5.3).

The difficulty lies now in the evaluation of the integration weights wd, for d =

1, . . . , np . Their values depend on vector v and the element geometry. Therefore,

it is not possible to a priori compute a set of weights for a given set of integration

points that are valid for any element geometry. To develop an efficient procedure, it

is convenient to decompose the Lagrange polynomials into the appropriate set of 3D

monomials:

Ld(ξ) =
∑
|a|≤p

λd,aMa(ξ), (5.5)

where

Ma(ξ) = ξaηbζc, (5.6)

and λd,a is the coefficient associated with the d-th polynomial and the a-th monomial.

The multi-index notation considers a = (a, b, c), where a, b, c are non-negative integers

and |a| := a+ b+ c ≤ p. Appendix C details a procedure to compute the coefficients

λd,a of the monomial decomposition in a straightforward manner.

Substituting Equation (5.5) into Equation (5.4), we obtain a new expression for

the integration weights:

wd =
∑
|a|≤p

λd,a

∫
Ωref

Ma(ξ) exp (iv · x(ξ)) dξ. (5.7)
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Remark 5.1. Other interpolation functions could be used to approximate F (ξ) in

Equation (5.3). Nevertheless, Lagrange polynomials are easily decomposed into a set

of monomials (Appendix C) leading to the integration of products of monomials and

complex exponential that can be performed semi-analytically. The examples presented

in Section 5.6 show that this procedure is also advantageous from the computational

point of view.

Remark 5.2. The number of integration points, np, can be determined by imposing

that the quadrature integrates Equation (5.2) exactly (up to round-off errors) when

F (ξ) is a polynomial of degree ≤ p. This number must coincide with the dimension

of the polynomial space, which can be obtained from the Pascal’s pyramid as

np =
1

2

(
(p+ 1)3

3
+ (p+ 1)2 +

4(p+ 1)

6

)
.

If F (ξ) is not a polynomial function, an appropriate value for p fitting the behavior

of the function has to be selected.

Remark 5.3. Following the work proposed in Bettess et al. (2003); Sugimoto et al.

(2003), we consider an equidistributed set of integration points. Selecting optimal

locations for the integration points as in the case of the Gauss-Legendre quadratures

is not possible in this context. This is because the oscillating term, exp (iv · x(ξ)),

acting as kernel of a bilinear form that should be a scalar product, is a complex

function. Consequently, it cannot be used to define a scalar product (a complex kernel

function is associated with non-positive definite bilinear form). Even if the kernel

was real valued, it would be dependent on the geometry of the element and on the

argument of the complex exponential, vector v.

5.2.2 Tetrahedral finite elements

We consider the 3D linear mapping φ from the reference coordinates ξ to the global

coordinates x:

x = φ(ξ) = αξ + βη + γζ + δ, (5.8)

where

α = x2 − x1, β = x3 − x1, γ = x4 − x1, δ = x1,

defined on the reference domain 0 ≤ ξ ≤ 1−ζ−η, 0 ≤ η ≤ 1−ζ, and 0 ≤ ζ ≤ 1 (Figure

5.1). Introducing equations (5.6) and (5.8) into the expression for the integration
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weights, Equation (5.7), we obtain

wd = exp (iD)
∑
|a|≤p

λd,aIa, (5.9)

where

Ia =

∫ 1

0

∫ 1−ζ

0

∫ 1−ζ−η

0

ξaηbζc exp (iAξ) exp (iBη) exp (iCζ) dξ dη dζ, (5.10)

A = v · α, B = v · β, C = v · γ, D = v · δ,

and a, b, c being non-negative integers. Note that the weights depend on vector v and

the element geometry through the complex parameters A, B, C, and D.

The rest of the paper focuses on the analytical solution of the integral in Equation

(5.10).

5.3 Preliminary results: integrating 1D products

of a monomials and a complex exponential

function

This section provides two basic results that will be used in Section 5.4 to obtain the

analytical solution of integral (5.10). Our semi-analytical procedure seeks successive

1D term collections that head toward the analytical integration of the following 1D

product of a monomial and a highly oscillatory term:

I1D =

∫
sν exp (iµs) ds, (5.11)

where ν is a non-negative integer, and the value of the complex coefficient µ depends

on the values of coefficients A, B and C.

We consider this type of 1D integral at two stages of the development of our

numerical procedure. On the one hand, the analytical manipulation of Equation

(5.10) leads to 1D highly oscillatory integrals such that the upper limit of the integral

depends on the reference spatial coordinates, see details in Section 5.4. On the

other hand, these intermediate integrals are further developed leading to 1D highly

oscillatory integrals with fixed integration limits (between 0 and 1). This section

focuses on the first situation while Appendix D deals with the second one.
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exponential function

We consider two cases in the first situation, depending on the value of parameter

µ, as suggested in Sugimoto et al. (2003). First, if the modulus of µ is not small,

µ9 0, and given that exponent ν is a non-negative integer, after recursively applying

the integration by parts theorem we have∫
sν exp (iµs) ds = ν!

ν∑
r=0

ir−1sν−r exp (iµs)

(ν − r)!µr+1
. (5.12)

Second, for certain combinations of the values of coefficients A, B and C in Equation

(5.10), the analytical manipulations involve integrals of type (5.11) with a very small

values of coefficient µ, µ→ 0, and Equation (5.12) provides inaccurate results. Thus,

it is preferable to apply a truncated Taylor’s expansion to the exponential function

before proceeding with the analytical integration. Specifically, we set

exp (iµs) ≈
rmax∑
r=0

(iµs)r

r!

where rmax is the number of terms retained in the approximation. This number is

adjusted so that the truncation error in the series is of the order of the machine

accuracy ε. Because in this paper both ν and r are non-negative integer parameters,

we have ∫
sν exp (iµs) ds ≈

rmax∑
r=0

(iµ)r

r!

∫
sν+r ds =

rmax∑
r=0

(iµ)r

r!

sν+r+1

ν + r + 1
. (5.13)

It remains to determine the threshold value, µth, to switch between equations (5.12)

and (5.13). In our implementation we consider that µ is small enough if |µ|ν+1 < tol.

Thus, the threshold value for µ is

µth = tol
1
ν+1 .

We set tol = 10−4, based on our experience.

Finally, the following type of integral also appears in Section 5.4:∫
sν(t− s)κ exp (iµs) ds.

This integral can be expressed as a sum of integrals from Equation (5.11) thanks to

the binomial theorem,

(t− s)κ = κ!
κ∑
r=0

(−1)r

(κ− r)!r!
t(κ−r)sr,
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Table 5.1: Possible combinations of the values of coefficients A, B, and C to obtain
the integral Ia from Equation (5.10), leading to 16 cases of analytical expressions.

Case A B C C −B C − A B − A

1 9 0 9 0 9 0 9 0 9 0 9 0
2 9 0 9 0 → 0 — — 9 0
3 9 0 9 0 9 0 9 0 → 0 9 0
4 9 0 9 0 9 0 → 0 9 0 9 0
5 9 0 9 0 9 0 → 0 → 0 9 0
6 9 0 → 0 9 0 — 9 0 —
7 9 0 → 0 9 0 — → 0 —
8 9 0 → 0 → 0 — — —
9 9 0 9 0 9 0 — 9 0 → 0
10 9 0 9 0 9 0 — → 0 → 0
11 9 0 9 0 → 0 — — → 0
12 → 0 9 0 9 0 9 0 — —
13 → 0 9 0 9 0 → 0 — —
14 → 0 9 0 → 0 — — —
15 → 0 → 0 9 0 — — —
16 → 0 → 0 → 0 — — —

leading to∫
sν(t− s)κ exp (iµs) ds = κ!

κ∑
r=0

(−1)rtκ−r

(κ− r)!r!

∫
sν+r exp (iµs) ds, (5.14)

that can be solved using equations (5.12) or (5.13), depending on the value of coeffi-

cient µ.

5.4 Analytical development to obtain the

expressions for the weights

To obtain the integration weights (5.9) of the semi-analytical rule, in this Section

we develop a procedure to evaluate the highly oscillatory integral in Equation (5.10).

Specifically, we first apply the analytical expressions presented in the previous section,

Equations (5.12) and (5.13), to perform the inner integrals involving ξ and η. This

procedure leads to 16 cases depending on the values of coefficients A, B and C, and

their respective differences (Table 5.1). In all of them, we finally have to compute
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a 1D highly oscillatory integral in terms of ζ between 0 and 1. This last integral is

performed using the procedure detailed in Appendix D.

From Equation (5.10) we first collect terms depending on ξ:

Ia =

∫ 1

0

∫ 1−ζ

0

ηbζc exp (iBη) exp (iCζ)

(∫ 1−ζ−η

0

ξa exp (iAξ) dξ

)
dη dζ. (5.15)

The inner integral in Equation (5.15) corresponds to the type of integrals in Equation

(5.11), presented in Section 5.3. Thus, its evaluation depends on the value of A. Cases

1-11 in Table 5.1 consider A9 0 while cases 12–16 consider A→ 0.

5.4.1 Cases from 1 to 11 (A9 0)

If A9 0, we perform the 1D integral with respect to ξ by means of Equation (5.12),

Ia =

∫ 1

0

∫ 1−ζ

0

ηbζc exp (iBη) exp (iCζ)

[
a! exp (iAξ)

a∑
r=0

ir−1ξa−r

(a− r)!Ar+1

]1−ζ−η

0

dη dζ

= a!

∫ 1

0

∫ 1−ζ

0

ηbζc exp (iBη) exp (iCζ)(
exp (iA(1− ζ − η))

a∑
r=0

(
ir−1(1− ζ − η)a−r

(a− r)!Ar+1

)

− lim
ξ→0

(
exp (iAξ)

a∑
r=0

ir−1ξa−r

(a− r)!Ar+1

))
dη dζ

= a!

(
exp (iA)

a∑
r=0

(
ir−1

(a− r)!Ar+1
I1,r

)
− ia−1

Aa+1
ITRI

)
, (5.16)

where

I1,r =

∫ 1

0

∫ 1−ζ

0

ηbζc(1− ζ − η)a−r exp (i(B − A)η) exp (i(C − A)ζ) dη dζ (5.17)

and

ITRI =

∫ 1

0

∫ 1−ζ

0

ηbζc exp (iBη) exp (iCζ) dη dζ. (5.18)

Equation (5.18) is the 2D version over triangular elements of the integral in Equa-

tion (5.10). The semi-analytical rule for this integral was proposed in Bettess et al.

(2003), and it is detailed in Appendix E for completeness.
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Taking into account Equation (5.14), and collecting the terms of η, Equation

(5.17) becomes

I1,r = (a− r)!
a−r∑
s=0

(
(−1)s

(a− r − s)!s!

∫ 1

0

ζc(1− ζ)a−r−s exp (i(C − A)ζ)

(∫ 1−ζ

0

ηb+s exp (i(B − A)η) dη

)
dζ

)
. (5.19)

At this point, another split in the procedure is produced depending on the value of

B − A.

5.4.1.1 Cases from 1 to 8 (A9 0, B − A9 0).

Because B − A9 0 we rewrite the inner integral in Equation (5.19) using Equation

(5.12). Thus,

I1,r = (a− r)!
a−r∑
s=0

(
1

(a− r − s)!s!
(b+ s)!

(
exp (i(B − A))

b+s∑
t=0

(
i2s+t−1

(b+ s− t)!(B − A)t+1

∫ 1

0

ζc(1− ζ)a+b−r−t exp (i(C −B)ζ) dζ

)

− ib+s−1

(B − A)b+s+1

∫ 1

0

ζc(1− ζ)a−r−s exp (i(C − A)ζ) dζ

))
. (5.20)

Eight different cases arise depending on the possible combinations of B, C, C − A
and C −B. The expressions for these integrals are obtained by developing equations

(5.18) and (5.20), using the results presented in Appendixes E and D, respectively.

5.4.1.2 Cases from 9 to 11 (A9 0, B − A→ 0) .

Because B−A→ 0, we develop the inner integral in Equation (5.19) using Equation

(5.13). Thus,

I1,r = (a− r)!
a−r∑
s=0

(
1

(a− r − s)!s!

tmax∑
t=0

(
i2s+t(B − A)t

t!(b+ s+ t+ 1)∫ 1

0

ζc(1− ζ)a+b−r+t+1 exp (i(C − A)ζ) dζ

))
. (5.21)

Three different cases arise depending on the possible combinations of C and C −
A. Again, integral (5.18) is computed using the procedure detailed in Appendix E.
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The expressions for Equation (5.21) can be obtained by using the binomial theorem,

Equation (5.14), and Appendix D.

5.4.2 Cases from 12 to 16 (A→ 0)

Starting again from Equation (5.15), and considering that A → 0, we perform the

1D integral with respect to ξ using Equation (5.13). Hence,

Ia =
rmax∑
r=0

(iA)r

r!(a+ r + 1)

∫ 1

0

∫ 1−ζ

0

ηbζc(1− ζ − η)a+r+1 exp (iBη) exp (iCζ) dη dζ.

Applying the binomial theorem, Equation (5.14), and collecting terms depending on

η, we obtain

Ia =
rmax∑
r=0

(
Ar(a+ r)!

r!

a+r+1∑
s=0

ir+2s

(a+ r − s+ 1)!s!
I2,rs

)
,

where

I2,rs =

∫ 1

0

ζc(1− ζ)a+r+1−s exp (iCζ)

(∫ 1−ζ

0

ηb+s exp (iBη) dη

)
dζ. (5.22)

The procedure to evaluate Equation (5.22) depends on the values of B. Hence,

another branching is considered.

5.4.2.1 Cases from 12 to 14 (A→ 0, B 9 0).

If B 9 0, we develop the integral over η applying Equation (5.12). Thus,

I2,rs = (b+ s)!

(
exp (iB)

b+s∑
t=0

it−1

(b+ s− t)!Bt+1∫ 1

0

ζc(1− ζ)a+b+r−t+1 exp (i(C −Bζ) dζ

− ib+s−1

Bb+s+1

∫ 1

0

ζc(1− ζ)a+r−s+1 exp (iCζ) dζ

)
. (5.23)

Three cases have to be considered depending on the values of C and C − B. All of

them are solved by first using the binomial theorem, Equation (5.14), second applying

Equation (5.12) and/or Equation (5.13), and finally using Appendix D.
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5.4.2.2 Cases 15 and 16 (A→ 0, B → 0).

If B → 0, the integral over η in Equation (5.22) is carried out using Equation (5.13).

Thus,

I2,rs =
tmax∑
t=0

(iB)t

t!(b+ s+ t+ 1)

∫ 1

0

ζc(1− ζ)a+b+r+t+2 exp (iCζ) dζ. (5.24)

After applying the binomial theorem, Equation (5.14), both cases 15 and 16 are solved

by using the corresponding method in Appendix D.

5.5 Example of a practical application: the PUM

enriched with plane waves

An important application of the semi-analytical rule presented in this work is the

computation of the highly oscillatory integrals that appear when the Helmholtz equa-

tion is solved using the Partition of Unity Method enriched with plane waves. The

Helmholtz equation is the time-harmonic version of the wave equation, namely:

∆u+ k2u = 0 in Ω, (5.25)

where k is the wavenumber, ∆ is the Laplace operator, Ω is the problem domain,

and the unknown u is, for instance, the acoustic pressure, the wave height, or the

electro-magnetic potential. Equation (5.25) is complemented by a Robin boundary

condition
∂u

∂n
− τku = g in Γ = ∂Ω, (5.26)

where n is the outward normal to the boundary, τ is the complex transmission coeffi-

cient and g is the Robin independent term. We assume that domain Ω is discretized

into a tetrahedral mesh composed of nn nodes. The weak form of the problem is

stated as: find uh,q ∈ Wh,q such that∫
Ω

(k2uh,qv̄ −∇uh,q · ∇v̄) dΩ +

∫
Γ

τkuh,qv̄ dΓ = −
∫

Γ

gv̄ dΓ, ∀v ∈ Wh,q, (5.27)

where ·̄ denotes complex conjugate,

Wh,q =

{
v
∣∣∣ v =

nn∑
m=1

Nm

(
q∑
r=1

am,rWm,r

)}
(5.28)
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is the solution space corresponding to a mesh characterized by an element size h and

q plane waves (enrichment functions) pasted at each node (patch), Nm is the standard

first-order polynomial shape function (hat function) associated with the m-th node,

and am,r is the unknown complex coefficient associated with the r-th plane wave at

the m-th node, namely

Wm,r(x) = exp
(
ikm er · (x− xm)

)
, (5.29)

km and xm being the wavenumber and coordinates vector of the m-th node, and er

the unit vector corresponding to the r-th plane wave direction.

According to equations (5.28) and (5.29), the PUM approximation has the form

uh,q(x) =
nn∑
m=1

q∑
r=1

am,rφm,r(x),

where φm,r is the approximation function associated with the m-th node and the r-th

direction,

φm,r(x) = Nm(x)Wm,r(x) = Nm(x) exp
(
ikm er · (x− xm)

)
. (5.30)

The surface integrals appearing in Equation (5.27) can be computed using the 2D

methods proposed in Bettess et al. (2003); Sugimoto et al. (2003). Here we focus on

the efficient and accurate evaluation of the volume integral. Specifically, the volu-

metric elemental contribution to the system matrix is obtained by introducing this

set of approximation functions into the weak form of the problem. Thus, integrating

over the element Ω(e) we obtain

K(e)
mr,ns =

∫
Ω(e)

[k2φn,sψ̄m,r −∇φn,s · ∇ψ̄m,r] dx

= exp
(
i(k̄mer · xm − knes · xn)

) ∫
Ω(e)

fmr,ns(x) exp
(
i(−k̄mer + knes) · x

)
dx,

(5.31)

where m,n = 1, . . . , nn, r, s = 1, . . . , q,

fmr,ns(x) =k2(x)Nm(x)Nn(x)− (∇Nm(x)

− ik̄mNm(x)er) · (∇Nn(x) + iknNn(x)es) (5.32)

is a non-oscillatory function, and ψm,r is the test function associated with the m-th

node and the r-th direction, which has the same form as the approximation function

φm,r in Equation (5.30). Note that the integral in Equation (5.31) is a particular case

of Equation (5.1) with v = −k̄mer + knes.
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5.6 Numerical experiments

In this section we present three examples that involve the integration of highly oscil-

latory functions over tetrahedra, in order to test the semi-analytical integration rule

proposed in this work. Specifically, we compare its performance with the one of the

standard Gauss-Legendre quadrature.

In the first example, several non-oscillatory functions are considered and the prod-

uct of each of them and a complex exponential is integrated over a single tetrahedral

element. They were run on a personal computer with a processor i7-3770 8x3.40 GHz

with 16 GB of RAM memory.

Examples 2 and 3 deal with practical acoustic problems solved with the PUM

enriched with plane waves. They have been computed in a machine Dell Power Edge

R630 Xeon E5-2667 v3 (2x8x3.2 GHz/20MB cache, 2133Mhz FSB) with 62 GB of

available memory.

In the legends of the figures, acronym SA denotes the solutions obtained with the

Semi-Analytical integration rule, and similarly GL denotes the solutions obtained

with a Gauss-Legendre quadrature. All the developments are coded in MATLAB

R2013b.

5.6.1 Integration of the product of polynomials and a

complex exponentials over a tetrahedron

The objective of this example is to test the performance of the semi-analytical rule by

comparing its accuracy and CPU time consumption with those of the standard Gauss-

Legendre quadrature. To this end, the product of smooth functions and a complex

exponential is integrated over a single tetrahedron (Equation (5.1)). The tetrahe-

dron is defined by nodes x1 = [1, 1, 1], x2 = [2, 0, 0], x3 = [2, 2, 2] and x4 = [1, 0, 3].

Vector v is written as v = v × [1, 1, 1], with v = {2, 4, 10, 20, 40}, corresponding

to 1.09, 2.19, 5.47, 10.94 and 21.88 wavelengths per element, respectively. We con-

sider three non-oscillatory functions: f1(x) = 1, f2(x) = r2(x) and f3(x) = r4(x),

where r(x) is the distance from x to the reference point x0 = [0, 0, 0]. We have

computed those integrals using the semi-analytical rule with nSA = 1, 2, . . . , 10 in-

tegration points per dimension, and the Gauss-Legendre quadrature with nGL =

3, 5, 7, 10, 15, 20, 30, 40, 50 and 100 integration points per dimension.
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We measure the accuracy of the integration rules by computing the relative error

rI =
|I − Iref |
|Iref |

, (5.33)

where I is the value computed using the corresponding method and Iref is a reference

value. Because Gauss-Legendre quadratures converge to the exact value of the inte-

gral when the number of integration points is increased, see Davis and Rabinowitz

(1984), we set Iref equals to the value of the integral computed using nGL = 300

Gauss points per direction.

We have computed the relative error (5.33) of the integrals when the integrand

is f1(x) = 1 using the semi-analytical rule for all the detailed values of the wave-

lengths per element and number of integration points per dimension, nGL. For this

integrand, the error is exclusively produced by the integration of the weights, and the

interpolation error of the integrand is null (apart from round-off errors) regardless

the number of integration points. The rule produces excellent results and the relative

error remains very low (rI < 10−12) for all cases. Nevertheless, the error is still lower

for small values of v, for instance rI < 10−14 for v = 2 and v = 4.

Figure 5.2 plots the relative error (5.33) of both integration methods against the

integration CPU time for f2(x) = r2(x) and f3(x) = r4(x). We observe that, as

we increase the number of Gauss points, the integrals calculated with the Gauss-

Legendre quadrature tend to the reference value. The behavior of this quadrature

is the same for both functions, requiring an increasing number of integration points

to reach an acceptable accuracy when v grows, especially if the integrand oscillates

more than 10 times in an element (v > 20). The relative error of the semi-analytical

rule drastically decreases when we use nSA = p+ 1 integration points per dimension,

p being the degree of f(x). That is, nSA = 3 and nSA = 5 integration points

for f(x) = r2(x) and f(x) = r4(x), respectively. Note that, according to Equation

(5.3), this number coincides with the minimum number of Lagrange points required to

exactly approximate the integrand except for round-off errors. It is important to point

out that for both functions, the semi-analytical rule outperforms the Gauss-Legendre

quadratures when the integrands have more than 10 wavelengths per element (v >

20).

Remark 5.4. The main cost of the semi-analytical rule comes from the computation

of the integration weights. In this sense, the scenario in the first example is unfa-

vorable for the semi-analytical rule because only a single integral is computed with
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Figure 5.2: Relative error against integration CPU time for two non-oscillatory
functions in Example 1: (a) f2(x) = r2(x); (b) f3(x) = r4(x). Number
of integration points per dimension and element: nSA = 1, 2, . . . , 10; nGL =
3, 5, 7, 10, 15, 20, 30, 40, 50 and 100.
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Figure 5.3: CPU time against number of integrals computed over the same element,
with v = 30, nGL = 20 and nSA = 3.

the same set of weights. This is not the case of several practical applications such

as the PUM enriched with plane waves. In this case, the products of several poly-

nomial functions and the same complex exponential function have to be integrated

over the same reference element when computing the elemental contributions (5.31).

Therefore, the weights can be computed once for each element, drastically reducing

the computational cost of the semi-analytical rule. This reduction is obtained for any

value of the number of oscillations in the integration interval. In the context of highly-

oscillatory integrands, this approach is competitive compared with the Gauss-Legendre

quadrature because it requires a much lower number of integration points.

Figure 5.3 illustrates the behavior indicated in the previous remark, by plotting

the evolution of the CPU time against the number of times the same integral is com-

puted over a given element for the same level of accuracy. The time consumed by the

Gauss-Legendre quadrature linearly increases with a rate of 1.6 s for every 1000 inte-

grals. On the contrary, the CPU time for the semi-analytical rule presents a moderate

initial jump corresponding to the computation of the weights, and then it grows with
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a small rate, that is practically flat with respect to the Gauss-Legendre slope. The

overhead cost for each integral computation is associated with 1. the number of inte-

gration points and 2. the cost of functional evaluation at the integration points (recall

that for Gauss-Legendre it involves computing costly complex exponential functions).

Likewise, if the computational cost of evaluating the non-oscillatory function f(x) is

high, the Gauss-Legendre quadrature is further penalized because the integrand has to

be evaluated a larger number of times.

5.6.2 Simulation of a single traveling wave using PUM

In this example we assess the accuracy and the performance of the semi-analytical

rule in a practical application by comparing it with the standard Gauss-Legendre

quadrature, when the propagation of a single time-harmonic traveling wave through

a cubic domain is computed using the PUM enriched with plane waves.

First, we use the Frobenius norm to compare the global matrices obtained from

the volumetric contributions of the weak form (5.27). Second, we solve the global

linear systems, including the boundary conditions, and we compute the relative error

in L2-norm of the PUM solution with respect to the analytical solution. Specifically,

we consider a single traveling plane wave with the following form:

u(x) = Apw exp(ik epw · x), (5.34)

where Apw = 1 Pa is the amplitude, k = 0.52 m−1 is the wavenumber and epw =

[0, 0, 1] is the direction vector of the wave (towards positive z-axis). The plane wave

directions are obtained thanks to the algorithm developed in Leopardi (2006). This

algorithm has been recently used in Hospital-Bravo et al. (2016). In this example,

the direction of propagation of the solution matches one of the directions of the set of

plane waves basis and, thus, the traveling wave (5.34) belongs to the solution space

(5.28). This cancels the error due to the quality of the approximation space, while

focusing on the error produced during the integration step.

The size of the domain is 72 × 72 × 72 m, and it is discretized using two dif-

ferent coarse meshes composed of 6 and 48 tetrahedra (6 and 3 wavelengths per

element, respectively), pasting q = 150 plane waves at each node of the meshes. We

solve Equation (5.25) for both geometry discretizations, prescribing the appropriate

boundary condition (5.26). Equation (5.34) is introduced into the Robin conditions

(5.26) with τ = i, and the resulting independent term g is integrated over the whole
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Figure 5.4: Relative error of the volume contribution to the system matrix in terms
of the Frobenius norm against the integration CPU time in Example 2. Number of
integration points per dimension and element: nSA = 1, . . . , 5; nGL = 5, 10, 15,. . . , 50.

boundary. We use the procedure proposed in Bettess et al. (2003), summarized in

Appendix E, to compute the 2D integrals. The volume contributions to the global

system matrix (5.31) are computed using the semi-analytical rule with nSA = 1, . . . , 5

integration points per dimension and element, and the Gauss-Legendre quadratures

with nGL = 5, 10, 15,. . . , 50 integration points per dimension and element.

First, the system matrices obtained with both methods are compared by comput-

ing the relative error

rm =
‖KI −Kref‖F
‖Kref‖F

, (5.35)

where KI is the system matrix computed using a numerical integration rule, Kref

is the system matrix computed using a reference quadrature, and ‖ · ‖F denotes the
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Frobenius norm defined as

‖A(m×n)‖F =

√√√√ m∑
i=1

n∑
j=1

|aij|2,

| · | being the complex modulus. We set as a reference value the matrix obtained using

the Gauss-Legendre quadrature with nGL = 80 integration points per dimension and

element.

Figure 5.4 shows the relative error in terms of the Frobenius norm (5.35) against

the required CPU time for the integration step. We observe that the semi-analytical

rule with 3 or 4 integration points per dimension achieves an excellent accuracy

(rm < 10−11) using less than one order of magnitude of the CPU time required by the

Gauss-Legendre quadrature. As expected, we realize that using meshes with 6 waves

per element (coarse meshes) is cheaper than using meshes with 3 waves per element

(fine meshes). Note that this is also true for Gauss-Legendre quadratures. However,

they require a larger number of integration points to achieve a similar accuracy.

After solving the systems, we measure the accuracy of the numerical solutions by

computing the relative error in L2-norm with respect to the analytical solution (5.34)

as

rL2 =
‖uh,q(x)− ua(x)‖L2

‖ua(x)‖L2

, (5.36)

where uh,q(x) is the numerical solution, ua(x) is the analytical solution (5.34), and

‖ · ‖L2 =

√∫
Ω

| · |2 dΩ.

Figure 5.5 plots the relative error (5.36) of the numerical solutions against the CPU

time required by the integration step. We realize that the semi-analytical rule requires

less than two orders of magnitude in CPU time to obtain a solution with the same

accuracy than the obtained with the Gauss-Legendre quadrature. In addition, we

also observe that using the semi-analytical procedure, the minimum error is achieved

using 2 integration points per dimension and element.

5.6.3 Free-space propagation of a single noise source using

PUM

This example compares the proposed semi-analytical rule and the standard Gauss-

Legendre quadrature in terms of accuracy and required CPU time, when the free
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Figure 5.5: Relative error in L2-norm against integration CPU time in Example 2.
Number of integration points per dimension and element: nSA = 1, . . . , 5; nGL =
5, 10, 15,. . . , 50.

propagation of underwater noise is computed using the PUM enriched with plane

waves. To perform this example, we follow the methodology that will be presented

in Chapter 6 for the 3D numerical tool. We consider three cubic domains (Table 5.2)

each of them is discretized using a tetrahedral mesh with 3 wavelengths per element,

with q = 330 plane waves per node. The sound speed of the seawater is 1500 ms−1.

The example considers time-harmonic waves with a frequency of 250 Hz (k = 1.05

m−1) generated by a single noise source located over the sea surface at xs = [0, 0, λ/3],

where λ is the wavelength (note that the noise source is placed slightly outside of the

domain to avoid the singularity (Hospital-Bravo et al., 2016, Section 2.5)). The

intensity of the source is selected such that it produces a pressure modulus of pr0 =

10 Pa at a reference distance from the source of r0 = 1 m. The combination of the

values for the frequency, the sound speed and the number of wavelengths per element

produces an element size of h = 18 m. The sea surface is treated as fully reflective, τ
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Domain size (m) # of elements (with PML) Integration rule tint (s) rL2

36 × 36 × 18 32
GL 4705.1 1.87E-002
SA 579.9 1.88E-002

72 × 72 × 18 72
GL 19168.2 1.98E-002
SA 2367.0 1.94E-002

108 × 108 × 36 192
GL 87185.0 6.01E-002
SA 10752.6 6.01E-002

Table 5.2: CPU time and relative error in L2-norm in Example 3, for each of the
three domains and both integration rules.

= 0, and the input noise is introduced through the independent term g of the Robin

condition (Equation (5.26)). Fully absorbing boundary conditions are prescribed at

the lateral boundaries and sea bottom, using the PML technique Berenger (1994).

The PMLs include a linear distribution for the attenuation parameter, characterized

by a maximum value σPML,max = 30 s−1.

The analytical solution of the pressure field, pa(x), for this problem (homogeneous

medium and uniform wavenumber) can be approximated by (Kinsler et al., 1999,

Chapt. 5):

pa(x) = pr0
r0

r(x)
exp

(
ik
(
r(x)− r0

))
,

where r(·) is the distance to the point source xs. We have performed the integration

step of this problem by means of the semi-analytic rule with nSA = p + 1 = 4

integration points per element and dimension, because the non-oscillatory part of the

integrands has a degree of p = 3 (taking into account the variation in the weak form

produced by the PMLs), and the Gauss-Legendre quadrature with 25 integration

points per element and dimension. Figure 5.6 shows the real part of the pressure field

for the second domain obtained with the semi-analytical rule.

The accuracy of the numerical solutions is measured by computing the relative

error in L2-norm, according to (5.36). Table 5.2 details the accuracy and the required

CPU time using both integration methods. We notice that for each domain, and for

the same level of accuracy, the CPU time required by the semi-analytical rule is

almost one order of magnitude smaller than the time required by the Gauss-Legendre

quadrature.
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Figure 5.6: Real part of the pressure field obtained using the semi-analytical integra-
tion rule for the second domain in Example 3.

5.7 Concluding remarks

In this chapter we detail a novel semi-analytical rule to compute the integral of

highly oscillatory functions over a tetrahedron. The integrand is expressed as the

product of a non-oscillatory part and a complex exponential function that models

the oscillatory part. The rule is designed to be exact, except round-off errors, for

integrals with a polynomial non-oscillatory part. This is of interest for a wide range

of applications such us the numerical solution of the Helmholtz equation by the PUM

enriched with plane waves. In these cases, p + 1 integration points per dimension

should be considered, p being the degree of the polynomial.

The key point of the proposed rule is to approximate the non-oscillatory part using

Lagrange interpolation, that is an exact representation (up to round-off errors) for

polynomials. Then, the Lagrange polynomials are linearly decomposed in terms of the

appropriate set of monomials. In order to integrate the products of these monomials

with a complex exponential over a tetrahedral element, our procedure identifies 16
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possible cases that lead to a collection of 1D highly oscillatory integrals. For these kind

of integrals we propose a scheme that selects an appropriate 1D analytical integration

procedure that provides the required accuracy with a reduced computational cost.

The examples clearly show that the proposed rule efficiently integrates, both in

terms of accuracy and CPU time, the product of a polynomial and a complex expo-

nential function over tetrahedra. Specifically, it provides relevant CPU time savings

for the same level of accuracy, compared with the standard Gauss-Legendre rules,

in either of these situations: 1. when the integrands have more than 10 oscillations

in the integration interval; 2. when the semi-analytical rule is applied to compute

multiple integrals with the same oscillatory part (same arguments for the complex

exponential). In this case, the integration weights can be pre-computed producing

substantial CPU time reductions. It is important to highlight that this is the case of

the integrals arising in the plane waves enriched PUM.

It is worth to notice that if the evaluation of the integrand is computationally

expensive, then the semi-analytical rule is even more competitive because it involves

a smaller number of integration points than the Gauss-Legendre quadratures.
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Chapter 6

3D model for underwater acoustics

In this chapter, we extend the 2D model presented in Chapter 4 to 3D domains. The

Helmholtz equation and its boundary conditions are rewritten in a straightforward

manner. The mathematical modeling of the different physical phenomena, i.e. sea-

water absorption, interference, reflection, refraction and diffraction, is also extended

and intrinsically considered into the governing equation. The analytical expression of

the independent term in the Robin boundary condition, which is related to the noise

generation of point sources, see Section 4.2.4, is properly updated.

As in the 2D case, the PUM is also well-suited to solve the Helmholtz equation,

since the enrichment is composed of plane waves, which are analytical solutions of

the Helmholtz equation in 3D. To determine the 3D directions of the plane waves, we

use the algorithm presented in Leopardi (2006). Perfectly Matched Layers (PMLs)

are also placed at the lateral artificial boundaries of the domain in order to avoid

spurious reflections.

The discretization of the domain is performed using tetrahedral elements to better

capture realistic geometries. Thus, the semi-analytical integration rules for highly

oscillatory functions developed in Chapter 5 are extensively used to compute the

elemental contributions.

Finally, several numerical examples illustrating the main applications of the pro-

posed technique are presented.
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6.1 Introduction

The 3D numerical modeling of highly oscillatory wave problems has attracted the in-

terest of several research groups during the last two decades. For instance, Laghrouche

et al. (2003) is one of the pioneer works that extended an existing 2D model for scat-

tering problems to the 3D case. The scattered field produced by the incidence of a

plane wave over a sphere was accurately computed using the Partition of the Unity

Method with plane waves. The plane wave directions were obtained as the inter-

section of evenly spaced parallels and meridians on the unit sphere. The numerical

integration is performed by a high-order Gauss-Legendre quadrature. Perrey-Debain

et al. (2004) extend the previous work to boundary elements and non-trivial scatter-

ing geometries. The direction of the plane waves are also evenly distributed on the

unit sphere and a high-order Gauss-Legendre quadrature is still used. In Huttunen

et al. (2004), the discontinuous Ultra-Weak Variational Formulation, see 3.2.4.4, is

applied to 3D problems. The work compares the behavior of Perfectly Matched Lay-

ers with conventional low-order absorbing boundary conditions. As in the case of

the mentioned PUM-based models, plane waves are used and the integration is per-

formed by a high-order quadrature. Similarly, Tezaur and Farhat (2006) also consider

a Discontinuous Galerkin Method (DGM) where the continuity between elements is

weakly imposed using Lagrange multipliers. The method is based on a Discontinuous

Enriched Method (DEM), see 3.2.4.4, but without the subspace generated by the

polynomial functions. The authors compared their formulation with the standard

high-order Galerkin method. The discretization of the domain is performed using

hexahedral elements. The volume integrals are transformed into surface integrals

applying the divergence theorem. The resulting surface integrals are analytically

evaluated provided that the element faces are planar. Massimi et al. (2008) extend

the previous formulation to the analysis of layered media, considering evanescent

modes. Recently, Yang et al. (2015, 2018) improved the pioneer formulation Perrey-

Debain et al. (2004) by implementing an exact integration algorithm based on the

successive use of the Green’s theorem. The examples considered a uniform spatial

distribution of the wavenumber and tetrahedral elements. In Mahmood et al. (2017),

the PUM is successfully applied to the elastic wave propagation, by enriching both P

and S waves. The paper explores the performance of several approaches for selecting

the plane wave directions. In this work, conventional high-order Gauss-Legendre are

used to compute the elemental integrals.
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In this chapter, we extend the PUM formulation presented in Chapter 4 to 3D

problems. Similar to Laghrouche et al. (2003); Perrey-Debain et al. (2004); Yang

et al. (2015); Mahmood et al. (2017); Yang et al. (2018), we paste at each node a

set of plane waves. However, we use the set of wave directions proposed in Leopardi

(2006). This algorithm is easy to implement and divides the unit sphere into regions of

equal area. In this way, plane waves with similar direction of propagation are avoided.

Moreover, our model considers complex and non-uniform wavenumber. As detailed in

Section 4.2.2, the imaginary part of the wavenumber allows considering the seawater

absorption phenomenon without the need of including further numerical artifacts.

In addition, the use of non-uniform wavenumber allows simulating more realistic

scenarios such as vertically stratified oceans. Finally, to reduce the computational

cost of high-order Gauss-Legendre quadratures, we use the semi-analytical integration

rule presented in Chapter 5.

The rest of the chapter is structured as follows. In Section 6.2 we review the

mathematical model developed in Section 4.2 and extend it to the 3D case. In Section

6.3 we describe the main features of the numerical model, including an efficient 3D

distribution for the plane wave directions. In Section 6.4, we present several examples

that illustrate the capabilities of the proposed method. Finally, in Section 6.5 we

summarize the achievements.

6.2 3D modeling of the underwater noise

propagation

As in the 2D version of the model, the 3D model considers the harmonic version of the

wave equation. That is, the complex pressure field is the solution of the Helmholtz

equation in a bounded domain, see Section 3.2.4.

6.2.1 Problem statement

For the sake of self-completeness, the equations from Section 4.2.1 describing the

strong form of the problem are recovered:

∆p+ k2p=0 in Ω,
∂p

∂n
− τkp=g in Γ = ∂Ω. (6.1)
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The weak form of this problem reads: find p ∈ H1(Ω) such that

B(p, v) = L(v) ∀v ∈ H1(Ω), (6.2)

where

B(p, v) =

∫
Ω

(k2pv̄ −∇p · ∇v̄) dΩ +

∫
Γ

τkpv̄ dΓ

L(v) = −
∫

Γ

gv̄ dΓ.

Now Ω is a 3D volume and Γ is its boundary surface.

6.2.2 Modelization of the physical properties

Section 4.2 details how we incorporate the physical phenomena and parameters as-

sociated to underwater noise propagation into the model. All equations apply except

for (4.8) and (4.10). In a 3D geometry, Equation (4.8) associated to the pressure

field generated by a 2D point sources in a homogeneous and lossless medium must be

updated by

p(x) = pr0
r0

r(x)
exp[ik(r(x)− r0)] .

As a direct consequence, the independent term at the Robin equation that introduces

the noise input into the problem takes the form

g(x) =
∂pa(x)

∂n
− k(x)τ(x)pa(x) (6.3)

=

(
ik0r(x)− 1

r2(x)
(x− xs) · n− k(x)τ(x)

)
pa(x) ,

and is considered instead of Equation (4.10).

6.3 Numerical model

This section summarizes the basic equations derived in Section 4.3 and adds specific

issues considered for the 3D case.

6.3.1 Partition of unity method. 3D case

Domain Ω is discretized using a tetrahedral mesh with characteristic size h, see

Section 6.3.2, and a total number of nodes nnod. The classical piecewise trilinear
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shape functions associated to the m-th node of the mesh are denoted by Nm, for

m = 1, . . . , nnod. The support of Nm is a patch composed by the elements sharing

node m.

The partition of unity space Wh,q reads

Wh,q =

{
v
∣∣∣ v =

nnod∑
m=1

Nm

(
q∑
r=1

am,rWm,r

)}
, (6.4)

where q is the number of plane waves (enrichment functions) pasted at the m-th node

(patch), am,r is the complex coefficient (amplitude) of the r-th plane wave associated

to the m-th node, namely

Wm,r(x) = exp
(
ikm er · (x− xm)

)
,

being km the wavenumber at the m-th node, er the r-th propagation direction, and

xm the coordinates of the m-th node.

According to Equation (6.4), the PUM approximation has the form

ph,q(x) =

nnod∑
m=1

q∑
r=1

am,rφm,r(x),

where φm,r is the approximation function associated to the m-th node and the r-th

direction,

φm,r(x) = Nm(x)Wm,r(x)

= Nm(x) exp
(
ikm er · (x− xm)

)
. (6.5)

The selection of direction vectors er for the plane waves is straightforward in the

2D case, but not trivial in the 3D case. The first implementations of the PUM applied

to acoustic problems used a distribution of directions obtained from the intersections

of evenly spaced parallels and meridians on the unit sphere Laghrouche et al. (2003).

This approach leads to a concentration of directions near the poles. Later, other

enriched methods used distributions of directions based on evenly spaced points on

the unit cube Tezaur and Farhat (2006); Massimi et al. (2008). The concentration of

directions is less significant but is still present around the vertices of the unit cube,

and the number of directions cannot be an arbitrary number. Different approaches

to select the direction vectors are based on electrostatic analogies. For instance, the

Coulomb Force Method in Peake et al. (2014) generates a distribution of points with

equal electrostatic charge over the sphere that are in equilibrium.
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Figure 6.1: Example of a distribution of 50 plane wave directions obtained using the
algorithm proposed by Leopardi (2006).

In this work, we use the recursive zonal equal-area partition proposed by Leopardi

(2006). This method is easy to implement and provides a procedure to recursively

divide the unit sphere into rings and sectors until a set of q patches with equal area

is achieved (recursive zonal equal-area partition). The number of patches can be

selected as any integer number. The q direction vectors are placed at the center of

each patch, according to spherical coordinates, taking the form

er = [sin(θr) cos(ϕr), sin(θr) sin(ϕr), cos(θr)],

where θr and ϕr are the angle with the z axis and the longitude coordinate of the n-th

plane wave, respectively, both in radians. Figure 6.1 shows the plane wave directions

distribution for q = 50, as an example.
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Figure 6.2: Conceptual example of a 3D domain.

6.3.2 Domain discretization

In the 3D case, the region of interest is a volume of marine waters enclosed by the sea

surface, the sea bottom and four artificial lateral surfaces that truncate the unbounded

domain of propagation, see Figure 6.2.

The selection of the discretization scheme is constrained by the computational

cost of the PUM method. In particular, we highlight that the integration of shape

functions with complex exponentials is not trivial and requires a special treatment,

see Section 4.3.3 for 2D integrals and Chapter 5 for the 3D case. In fact, the computa-

tional cost involved in the integration of the interior elements represents an important

part of the total cost. We have developed efficient integration techniques for rectan-

gular hexahedra, and tetrahedra. However, it is not possible to approximate properly

the bathymetry by using only rectangular hexahedra. In addition, it is not possible

to combine these two types of elements in a conforming manner without using a third

type of element such as pyramids. For these two reasons, in this applications we use

tetrahedral meshes.

In general, three-dimensional marine domains have a smooth bottom boundary.

Hence, the overall shape of the domain is almost a rectangular hexahedron. The

meshing strategy is the following. First, a structured non-rectangular hexahedral

mesh is generated to fit the sea bottom, in such a way that the upper layers of
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PML layers
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Figure 6.3: Preliminary discretizations of different domains into hexahedral elements:
(a) including lateral PML layers; and (b) without PML layers.

elements are rectangular hexahedra (cuboids) of the same shape and size, and only

the bottom layers are composed of non-rectangular hexahedra, similarly to the 2D

case, see Figure 6.3(b). After that, the lateral PML layers are generated, see Figure

6.3(a). Finally, we use the technique presented in Dompierre et al. (1999) to transform

each hexahedron into a set of 6 tetrahedra, allowing a matching between the faces

and edges of the adjacent elements, see Figure 6.4.
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Figure 6.4: Decomposition of an hexahedron into six tetrahedra used in this work.

Note that if the wavenumber k of the upper layers of elements is uniform along

x and y axes (only varies along the z axis), and thanks to the local definition of the

shape functions, see Equation 6.5, it is possible to compute the element matrix only

once for each of the six types of tetrahedron, in order to save integration CPU time.

Remark 6.1. The same idea collected in Remark 4.5 can now be applied again in

the 3D case. Equation (5.31) can be rewritten as

K(e)
mr,ns =

∫
Ω(e)

[k2φn,sv̄m,r −∇φn,s · ∇v̄m,r] dx

=

∫
Ω(e)

fmr,ns(x) exp
(
i(−k̄mer · (x− xm) + knes · (x− xn)

)
dx, (6.6)

where fmr,ns is a function of the classical shape functions, their derivatives, and the

wavenumber, see Equation (5.32). Therefore, it is straightforward to check that tetra-

hedral elements having the same geometry (shape and size), and the same distribution

of the wavenumber k, have the same elemental matrix, thanks to the local definition

of the plane waves. This way, to speed up the integration process, for each layer,

and for each of the six tetrahedra that compose a hexahedral element, we compute

their elemental matrix. Then, we reuse these elemental matrices for the equivalent

tetrahedral elements in that layer.
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The lateral surfaces of the domain belong to vertical planes that should ideally

behave as non-reflecting boundaries. Different kinds of artificial boundary conditions

can be used on these lateral boundaries. On the one hand, low order absorbing

boundary conditions (ABC) perform well for some propagation directions but intro-

duce spurious reflections at some other wave propagation angles. For example, the

Robin condition in Equation (6.1) with transmission coefficient τ = i and indepen-

dent term g = 0 produces spurious numerical reflections for the wave rays reaching

the boundary with an angle different to the normal direction. On the other hand,

available higher order ABCs become more complex to implement and require more

storage and computational resources Rappaport (1995).

Perfectly Matched Layers (PML) provide a strong absorption of the outgoing

waves for any incident angle, without reflection at the interface. PMLs can be viewed

as an analytic continuation of the Helmholtz equation into complex spatial coordi-

nates, see Johnson (2007). The main restrictions of the method are the following: 1.

the medium must be homogeneous in the normal direction to the boundary, 2. the

boundary must be normal to a reference axis. Further details on this technique can

be found in Berenger (1994). Figure 6.3(a) shows an example of a mesh of hexahedra

with PML layers placed around the lateral boundaries.

6.3.3 Numerical integration

The discretization of the weak form of the problem, Equation (6.2), leads to the

following three types of elemental integrals:

• Integrals over tetrahedral elements, coming from the contribution of the volu-

metric term:

K(e)
mr,ns =

∫
Ω(e)

[k2φn,sv̄m,r −∇φn,s · ∇v̄m,r] dΩ

= exp
(
i(k̄mer · xm − knes · xn)

) ∫
Ω(e)

Fmr,nsψmr,ns dΩ, (6.7)

where

Fmr,ns = k2NmNn − (∇Nm − ik̄mNmer) · (∇Nn + iknNnes)

is a non-oscillatory term, and

ψmr,ns = exp
(
i(−k̄mer + knes) · x

)
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is a highly oscillatory term.

• Integrals over the triangular faces of the tetrahedral elements that are located

on the domain boundary, coming from the Robin equation (6.1),

B(e)
mr,ns =

∫
Γ(e)

τkφn,sv̄m,r dΓ

= exp
[
i(k̄mer · xm − knes · xn)

] ∫
Ω(e)

Fmr,ns ψmr,ns dΓ (6.8)

where now the non-oscillatory term is

Fmn,rs = τkNmNn,

and the highly oscillatory term is the same that appears in the volumetric

integral, Equation (6.7).

• Integrals over the triangular faces of the tetrahedral elements that are located

on the domain boundary, coming from the independent term g that appears in

the Robin equation (6.1).

f (e)
mr =

∫
Γe
gv̄m,r dΓ

= exp
(
ik̄mer · xm

) ∫
Γe

g(x)Nm(x)︸ ︷︷ ︸
highly oscillatory

exp
((
− ik̄mer · x

))︸ ︷︷ ︸
highly oscillatory

dΓ. (6.9)

The first two types of integrals are assembled into the global system matrix, while

the third type is assembled into the right-hand side vector.

Equations (6.7), (6.8) and (6.9) can be written in the following general form:

I =

∫
X

F (x)ψ(x) dX,

where X is either a 2D or a 3D domain. To compute the integral in Equation (6.7),

we use the 3D numerical integration scheme developed in Chapter 5. For Equation

(6.8), we use the semi-analytical quadratures presented in 4.3.3. Finally, for (6.9),

the integrand cannot be decomposed into a non-oscillatory term and a complex ex-

ponential one. That is, both F and ψ are highly oscillatory. Therefore, in this case,

a standard high order Gauss-Legendre quadrature is applied.
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6.4 Numerical experiments

In this section we present three examples that illustrate the accuracy and the capa-

bilities of the three-dimensional implementation of the model. First, we detail one

example that emphasizes two basic properties of the proposed method: its accuracy,

and its ability to include multiple wavelengths inside an element. Second, we present

two examples that illustrate the applicability of the model to underwater acoustics,

both with single and multiple point sources. Specifically, we consider uniform and

non-uniform spatial distributions for the sound speed (stratified ocean), different sea-

water absorption coefficients and different transmission coefficients at the sea bottom.

For all the examples, the spatial coordinates and lengths are expressed in meters. For

this work, we have used the built-in direct solving algorithm mldivide, included in

MATLAB R2018b.

6.4.1 Single traveling wave

In this example we analyze the accuracy of the three-dimensional version of the

developed method. To this end, we consider a single traveling plane wave, similarly

to Section 5.6.2. However, in this example the propagation direction of the single

wave does not belong to the set of directions determined by the plane wave basis.

Two cases are considered. We first compute the solution for null seawater absorption

α = 0 dB/km, and then we compare it with the case of α = 100 dB/km, see 2.1.3.1.

We consider a cubic domain Ω = [−9, 9]× [−9, 9]× [−9, 9] m of seawater (c = 1500

m/s). A single traveling plane wave is simulated, with an amplitude of Apw = 1 Pa at

a frequency of 1 kHz (k = 4.19 rad/m), with unit direction vector forming an angle

of π/5 with respect to the positive z-axis and the same angle with respect to the

positive x-axis, counterclockwise, epw = (0.475, 0.345, 0.809). Thus, the analytical

solution of the problem is

ua(x) = Apw exp(ik epw · x). (6.10)

The mesh is composed of 5 × 5 × 5 nodes (384 tetrahedra), with 3 wavelengths

(λ = 1.5m) per element size (kh = 6π).

To perform a q-convergence analysis, the simulation is computed for several num-

bers of plane waves pasted at each node, q. Then, we measure the accuracy of the
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Figure 6.5: Relative error against the number of pasted plane waves per node q, for
α = 0 dB/km and α = 100 dB/km.

numerical solutions by computing the relative error in L2-norm as

rL2 =
‖uh,q(x)− ua(x)‖L2

‖ua(x)‖L2

, (6.11)

where uh,q(x) is the numerical solution, ua(x) is the analytical solution (6.10), and

‖ · ‖L2 =

√∫
Ω

| · |2 dΩ.

Figure 6.5 shows the relative error in L2-norm in Equation (6.11) against q, for

α = 0 dB/km and α = 100 dB/km. In this example, the error exhibits a non-

monotonic decrease as q increases. For small values of q, the error is monotonically

reduced. However, for values above q = 400, the error stagnates. As reported by

several authors, this behavior can be explained by the increasing ill-conditioning of

the system matrix when a large number of plane waves is used to enrich the solution.

For this example, the error is acceptable from an engineering point of view above

q = 250.
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Figure 6.6: Real part of the pressure field in Example 1, without seawater absorption,
q=300.

(a) (b)

Figure 6.7: SPL (dB) in Example 1, for q=300. Case a) null seawater absorption,
case b) seawater absorption α = 100 dB/km.
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Figure 6.6 plots the real part of the solution for q = 300 and null absorption. The

oscillatory behavior of the real part of the pressure field is clearly recognizable and no

reduction in the amplitude appears. Figures 6.7(a) and 6.7(b) depict the SPL field

for the cases of α = 0 dB/km and α = 100 db/km, respectively. It is important to

point that with no absorption the SPL is uniform, as expected for a single traveling

plane wave. On the contrary, for the case with positive absorption, the SPL decreases

in the direction of the wave propagation.

6.4.2 Point source with PML’s and non-uniform sound

speed

In this example, we apply the simulating tool to analyze the 3D propagation of the

noise generated by a single point source. The sea bottom is divided into two regions

with different transmission coefficients. Two cases are simulated. First, we consider a

uniform sound speed distribution c = 1500 m/s. Second, we consider a non-uniform

vertical profile for the sound speed, with a gradient of -1 (m/s)/m (c decreases with

depth), taking a value of 1500 m/s on the sea surface (z = 0). A null seawater

absorption is considered, α = 0 dB/km.

The domain of interest is a rectangular cuboid Ω = [−36, 36]× [−36, 36]× [−54, 0]

m of seawater. The sea surface is considered as fully reflective (τ = 0). The sea

bottom is composed of two materials: a highly reflective seabed (τ = 0.1) for y ≤ 0

(’hard’ material, high mismatch in the impedance), and lowly reflective seabed (τ =

0.9) for y > 0 (’soft’ material, low mismatch in the impedance). A PML is placed

on the four lateral artificial boundaries of the domain, in order to simulate perfectly

absorbing boundary conditions. These layers are characterized by a PML parameter

σPML,max = 25 rad/s.

The example considers a single noise source generating spherical time-harmonic

waves with a frequency of 250 Hz (k = 1.05 m−1), and a modulus of pr0 = 1 Pa

(SPL = 117 dB) at a reference distance from the source of r0 = 1 m. The source is

located over the center of the sea surface at xs = [0, 0, λ/3], where λ = 6 m is the

wavelength. Note that the noise source is placed slightly outside of the domain to

avoid a singularity at the source point, see details in Section 4.2.4.

According to Section 6.3.2, we first generate a hexahedral mesh composed of

4× 4× 3 elements, the blue elements in Figure 6.8. The element size is set as h = 18

m in order to include three wavelengths per element size (kh = 6π). Then, a shell
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Figure 6.8: Mesh used in Example 2. Blue elements belong to the domain of interest,
red elements belong to PML’s.

of PML elements is added, the red elements in Figure 6.8. Finally, each hexahedron

is split into a set of six tetrahedra. Thus, the computational mesh is composed of

7 × 7 × 4 nodes (196 nodes, 648 tetrahedral elements). We paste q = 300 plane

waves at each node, leading to 58,800 DOF. It is important to point out that using

a standard FEM formulation with 6 elements per wavelength would result in a mesh

of linear tetrahedra with approximately 630,000 DOF.

Figures 6.9(a) and 6.9(b) show the computed SPL field clipped at the plane x = 0

for uniform and non-uniform vertical profiles of the sound speed, respectively. Con-

structive and destructive patterns can be identified in the region y ≤ 0 (the portion

of domain above the sea bottom with τ = 0.1), since the intensity of the reflected

wave fronts is significant. On the contrary, the interference patterns are weaker in

the region y > 0, above sea bottom with τ = 0.9.
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(a)

(b)

Figure 6.9: SPL field in Example 2, for q = 300. Case a) uniform sound speed
c = 1500 m/s, case b) non-uniform sound speed, c decreases at a rate of -1 (m/s)/m.
The plots are clipped at plane x=0.
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(a)

(b)

Figure 6.10: Real part of the pressure field in Example 2, for q = 300. Case a)
uniform sound speed c = 1500 m/s, case b) non-uniform sound speed, c decreases at
a rate of -1 (m/s)/m. The plots are clipped at plane x=0.
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Figures 6.10(a) and 6.10(b) show the computed real part of the pressure field

clipped at the plane x = 0 for uniform and non-uniform vertical profiles of the sound

speed, respectively. In both figures, two regions with different wave patterns can be

identified. First, for y ≤ 0 (the portion of domain above the highly reflective sea

bottom, τ = 0.1) we can observe constructive and destructive interaction between

the incident and reflected wave fronts (the seabed transmission coefficient is almost

zero). On the contrary, for y > 0 (the portion of domain above the lowly reflective sea

bottom, τ = 0.9) we can observe the typical spherical wave spreading pattern since

the reflected energy at the sea bottom is small (the seabed transmission coefficient is

almost one).

6.4.3 Sound field generated by 2 point sources considering

seawater absorption

This example shows the capabilities of the developed tool to simulate the 3D sound

field generated by two sources. Similarly to the second example, the sea bottom is

divided into two regions with different transmission coefficients. Similarly to the first

example, two cases are considered. We first compute the solution for null seawater

absorption α = 0 dB/km, and then we compare it with the case of α = 100 dB/km.

In both cases, the sound speed is considered uniform, c = 1500 m/s. A PML is placed

on the four lateral artificial boundaries of the domain, in order to simulate perfectly

absorbing boundary conditions. These layers are characterized by a PML parameter

σPML,max = 25 rad/s.

The domain of interest is the same as in the previous example: a rectangular

cuboid Ω = [−36, 36]× [−36, 36]× [−54, 0] of seawater. The sea surface is considered

as fully reflective (τ = 0) again. The sea bottom is composed of two materials: a

highly reflective seabed (τ = 0.2) for y ≤ 0 (’hard’ material, high mismatch in the

impedance), and lowly reflective seabed (τ = 0.8) for y > 0 (’soft’ material, low

mismatch in the impedance). We use the same mesh as in the previous example.

However, we set q = 400, leading to 78,400 DOF.

The example considers time-harmonic waves with a frequency of 250 Hz (k = 1.05

m−1) generated by two identical noise sources located at xs,1 = [0,−18, λ/3] m and

xs,2 = [0,−18, λ/3] m, where λ = 6 m is the wavelength. Similarly to the previous

example, the noise source is placed slightly outside of the domain to avoid a singularity

at the source point, see details in Section 4.2.4. The sources generate spherical waves
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with pressure amplitude pr0 = 1 Pa (117 dB) at a reference distance from the source

of r0 = 1 m.

Figures 6.11(a) and 6.11(b) show the computed SPL field clipped at the plane

x = 0 for the case with null seawater absorption, α = 0 dB/km, and the case

with α = 100 dB/km, respectively. Several aspects of the obtained results have

to be highlighted. First, in both cases the constructive and destructive interaction

patterns can be clearly identified, due to the presence of the overlapping radiating

waves. Second, in both cases two patterns of the SPL field can be also identified.

On the one hand, for y ≤ 0 (the portion of domain above the highly reflective sea

bottom, τ = 0.2) we can observe an additional pattern of constructive and destructive

interaction, between the incident and reflected wave fronts at the sea bottom. On the

other hand, for y > 0 (the portion of domain above the lowly reflective sea bottom,

τ = 0.8) the interaction between incident and reflected waves is significantly smaller

because the incident waves are mostly absorbed by the sea bottom. Finally, the

positive seawater absorption produces a decrease in the SPL values as the distance

from the sources increases. Therefore, the values of the SPL in Figure 6.11(b) are

smaller than in Figure 6.11(a).

6.5 Concluding remarks

In this chapter we have successfully developed a new numerical tool to simulate the

underwater noise propagation in three dimensions. Similarly to the 2D version of the

tool, the hypothesis of time-harmonic solution is assumed and the Helmholtz equation

governs the problem. Therefore, it inherits the ability of the 2D model to include

most relevant physical phenomena, such as seawater absorption, and reflective surface

and sea bottom.

The tool is based on the Partition of Unity Method enriched with plane waves.

This allows using of much coarser meshes compared to the ones used when classical

linear finite elements are used, reducing the number of degrees of freedom at the

associated linear systems, and mitigating the pollution effect. To determine the 3D

directions of the plane waves we select the algorithm proposed by Leopardi (2006).

It divides the unit sphere into regions of equal area, and plane waves with similar

directions of propagation are avoided. This improves the condition number of the

system matrices and increases the accuracy of the simulation.

116



6.5. Concluding remarks

(a)

(b)

Figure 6.11: SPL field in Example 3, for q = 400. Case a) null absorption α = 0
dB/km, case b) α = 100 dB/km. The plots are clipped at plane x=0.
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To increase the efficiency of the 3D tool, the elemental contributions to the system

matrix have been computed according to the semi-analytical integration procedure

for tetrahedra, presented in Chapter 5. Moreover, to further speed up the integration

process, a two-step meshing strategy has been implemented. First, the domain is

divided into a set of layers composed of hexahedral elements. The elements in the

upper layers have to have the same shape and size. Second, each hexahedron is

subdivided into six tetrahedra, leading to subsets of equal elements. This way, and

if the sound speed is uniform along horizontal planes (the sound speed only varies

along the vertical profile), the elemental matrices of each tetrahedron can be reused

among all the tetrahedra of the same layer with the same shape and size.

Similar to the approach developed for the 2D tool, we have paid special attention

to the boundary conditions prescribed over the lateral domain boundaries. In or-

der to avoid spurious numerical reflections, artificial boundary conditions have been

considered by means of Perfectly Matched Layers.

Finally, several examples have been presented to illustrate and assess the capabil-

ities of the 3D simulation tool. The first example analyzes the q-convergence of the

method in the case of a single traveling wave that propagates through media with and

without seawater absorption. The accuracy of the solution improves with increasing

the number of plain waves until it stagnates above q=400. This behavior is observed

in both media. In the second example we have illustrated that the 3D tool is able to

compute the SPL field generated by a single source in media both with uniform and

non-uniform vertical sound speed profiles. In addition, the tool is able to consider

the effect of seabeds with different transmission coefficients. In the last example, we

showed that the numerical tool can simultaneously deal with several sound sources.

Again, we have considered media with and without seawater absorption and seabed

with different transmission coefficients. The results show that the simulation tool

is able to capture the interference patterns between each of the generated pressure

fields.
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Chapter 7

Summary and future work

7.1 Summary

This thesis presents three main contributions. They are devised as steps towards a

3D numerical tool assessing the environmental impact of underwater noise, produced

by multiple non-impulsive sources at medium and high frequencies (from hundreds

of Hz to a few kHz). These contributions are summarized below:

1. Development of a 2D version of the simulation tool. After reviewing the

most relevant aspects involved in the environmental underwater acoustics, see

Chapter 2, and the currently available underwater noise propagation simulation

techniques, see Chapter 3, a novel 2D model for simulating the sound propa-

gation in an undersea domain has been successfully developed, see Chapter 4.

The model includes the most relevant physical phenomena. The selection of the

Helmholtz equation as governing equation automatically incorporates wave in-

terference, reflection, refraction and diffraction. Seawater absorption has been

modeled via the imaginary part of a complex wavenumber. To avoid numerical

reflections at the lateral artificial boundaries, fully absorbing boundary condi-

tions have been implemented using Perfectly Matched Layers.

Helmholtz equation is solved using the Partition of the Unity Method enriched

with plane waves. The fact that the plane waves contain a priori knowledge of

the solution is crucial in order to mitigate the pollution effect and allows em-

ploying of coarser meshes with element size equal to several wavelengths. This
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redounds to an increase in the accuracy of the solution and a significant saving

in the computational costs. To improve the robustness of the numerical model,

and thanks to the high uniformity degree of the meshes, we have developed

a new procedure to reduce the condition number of the elemental and global

matrices. It is based on the Singular Value Decomposition (SVD) technique in

order to obtain a low-rank approximation of the local enrichment basis associ-

ated to the central node of a reference patch. This way, we have reduced the size

of the global matrix while preserving the accuracy of the approximation. In the

integration step, the enriching plane waves lead to highly oscillatory integrands.

We have overcome this drawback by using a state-of-the-art semi-analytical rule

for quadrilateral elements.

Several examples have been presented to illustrate and assess the capabilities of

the 2D tool. They show it properly handles absorbing medium, sea bottom com-

posed of different materials, non-planar sea bottom and multiple sources. This

contribution is published in the ISI indexed journal Computational Mechanics

Hospital-Bravo et al. (2016).

2. Development of an efficient rule to integrate highly oscillatory func-

tions over tetrahedra. In Chapter 5, a novel semi-analytical rule for in-

tegrating high-oscillatory functions over tetrahedra elements is presented, by

extending an existing approach for 2D integrals. The rule is devised to in-

tegrate functions that can be split into a non-oscillatory part and a complex

exponential.

The non-oscillatory part is approximated by Lagrange polynomials. The key

point is to rewrite the three-dimensional integral as the summation of highly-

oscillatory one-dimensional integrals, by properly splitting the resulting La-

grange monomials along the different spatial directions. The integration proce-

dure states how to accurate and efficiently compute those 1D integrals.

The scheme involves the calculation of computationally expensive integration

weights but provides a large reduction in the number of integration points. As

a result, significant reduction in the computational cost is obtained compared

to conventional high-order Gauss-Legendre quadratures if at least one of the

following conditions is met: 1. the integrand oscillates more than 10 times in the

integration domain; 2. the evaluation of the integrand is particularly expensive;
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3. integrals with the same oscillatory part must be evaluated multiple times.

The latter is the exact case of the PUM enriched with plane waves and, thus,

the rule becomes a pillar for the 3D version of the simulation tool, the third

contribution.

We present several examples assessing the accuracy of the developed integration

rule and its computational efficiency, compared to standard high-order Gauss-

Legendre quadratures. In particular, we show that the new semi-analytical

integration rule is successfully applied to compute the integrals involved in 3D

sound propagation problems solved by using the PUM enriched with plane

waves.

This contribution is published in the ISI indexed journal International Journal

for Numerical Methods in Engineering Hospital-Bravo et al. (2017).

3. Development of a 3D tool to simulate the undersea acoustic propa-

gation. A new version of the tool is produced that prevails over the specific

challenges associated to the 3D simulation of underwater sound propagation.

The tool is based on the same physical basis and a similar numerical approach

as its 2D counterpart. Chapter 6 presents in detail its main ingredients. To

determine the 3D plane wave directions of the enriched Partition of the Unity

Method, we have followed the method proposed by Leopardi (2006) which im-

proves the uniformity of the set of directions given by other approaches, and

has no limitation in the number of plane waves per node.

The tool discretizes the seawater domain using tetrahedral elements. In order

to efficiently perform the integration of the highly-oscillatory functions that ap-

pear in the elemental matrices, we employ the semi-analytical rule presented

in Chapter 5. To further increase the computational efficiency, a specific mesh-

ing approach has been developed, that allows reusing the elemental matrix of

a given tetrahedron on other tetrahedra with the same shape and size, and

with the same sound speed profile. Perfectly Matched Layers have been placed

in the artificial lateral boundaries of the domain to avoid spurious numerical

reflections.

Finally, we have illustrated the capabilities of the 3D simulation tool by success-

fully applying it to several examples, including: absorbing and non-absorbing
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seawater, uniform and non-uniform vertical profiles for the sound velocity, sea

bottom composed of different materials, and multiple source points.

7.2 Research dissemination

We have published the three contributions summarized in the previous section in two

indexed journals:

• R. Hospital-Bravo, J. Sarrate and P. Dı́ez, Numerical modeling of undersea

acoustics using a partition of unity method with plane waves enrichment, Com-

putational Mechanics, May 2016, Volume 57, Issue 5, pp 717-732.

• R. Hospital-Bravo, J. Sarrate and P. Dı́ez, A semi-analytical scheme for highly

oscillatory integrals over tetrahedra, International Journal for Numerical Meth-

ods in Engineering, August 2017, Volume 111, Issue 8, pp 703-723.

The most relevant results obtained during this thesis have been presented in the

following national and international conferences:

• R. Hospital-Bravo, J. Sarrate and P. Dı́ez, Underwater sound propagation us-

ing the Generalized Finite Element Method (GFEM) applied to the Helmholtz

equation. Numerical Methods in Applied Sciences and Engineering. Laboratori

de Càlcul Numèric (UPC). Castelldefels, Spain. January 21-24, 2013.

• P. Dı́ez, J. Sarrate and R. Hospital-Bravo, Assessing the subsea acoustic impact

of offshore power stations using GFEM. Advances in Computational Mechanics.

San Diego, California (USA). February 24-27, 2013.

• A. Moura, D. Lopes, E. Cruz, R. Hospital-Bravo, J. Sarrate and P. Dı́ez, In-

tegrated tool for the acoustic assessment and monitoring of marine activities

and operations, 2nd International Conference and Exhibition on Underwater

Acoustics. Rhodes, Greece. June 22-27, 2014.

• R. Hospital-Bravo, J. Sarrate and P. Dı́ez, Assessing the subsea acoustic impact

of offshore power stations using GFEM, 11th World Congress on Computational

Mechanics. Barcelona, Spain. July 20-25, 2014.
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• P. Dı́ez, R. Hospital-Bravo and J. Sarrate, Modeling subsea acoustic impact

of offshore power stations: assessment of the environmental impact, 3rd Inter-

national Workshops on Advances in Computational Mechanics, IWACOM III.

Tokyo, Japan. October 12-14, 2015.

• J. Sarrate, R. Hospital-Bravo and P. Dı́ez, A numerical model to assess the sub-

sea acoustic impact of offshore power stations, Congress on Numerical Methods

in Engineering, CMN2017. Valencia, Spain. July, 2017.

In addition, this research has also been presented in the following seminar:

• R. Hospital-Bravo, J. Sarrate and P. Dı́ez, Numerical modeling of undersea

acoustics using a partition of unity method with plane waves enrichment, Com-

putational Mechanics seminar. Laboratori de Càlcul Numèric (UPC). October

2, 2015.

7.3 Future work

During the development of this thesis new questions have been posed leading to

several extensions and new ideas that can be further investigated. Next, we discuss

some of them and suggest some alternatives that could be explored in the near future.

1. Input noise generation. In our model, we introduce the input noise by

integrating the independent term of the Robin condition over the boundary

entities that belong to the set of elements near the noise source. This strategy

increases the error in the regions near the surface, below the boundary entities

where the Robin independent term is not integrated. We suggest to explore

alternative ways of introducing the input noise, for instance, via the independent

term of the Helmholtz equation, using a Dirac delta function.

2. Plane wave directions. In our implementation, we have set the plane wave

directions at each node according to the algorithm proposed by Leopardi (2006).

However, other spatial distributions can be used. We propose to analyze the in-

fluence of these distributions on the ill-conditioning of the elemental and global

matrices, and the impact on the accuracy of the final result. For example, we
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suggest the Coulumb Force Method in Peake et al. (2014), where the direc-

tions are obtained as the electrostatic equilibrium of a set charges over the unit

sphere.

3. PMLs with non-horizontal bottom. The current implementation of the

3D tool requires that the elements located on the seabed and next to the PML

boundaries have a planar bottom. To overcome this constraint, a geometrical

artifact meeting the basic PML requirements (the physical properties of the

medium must be uniform in the direction of the PML attenuation) should be

developed.

4. Integration strategies. We have used a set of evenly spaced points in our im-

plementation of the semi-analytical rule to interpolate the non-oscillatory part

of the integrals. However, other distribution of points providing better inter-

polation properties could be analyzed. In addition, it could also be fruitful to

compare the performance of the proposed rule against the promising integration

methods presented in Gabard (2009) and Yang et al. (2018).

5. Low-rank approximation of the reduced basis. First, the low rank ap-

proximation developed for the 2D tool should be extended to the 3D case.

Instead of 2D patches with quadrilateral shape, the approximation functions

will be integrated over a convex polyhedron. Second, instead of a basis reduc-

tion posed at a nodal level, a procedure focused on an elemental level could be

explored. The current approach is based on the integration of the approxima-

tion functions associated to a given node over the patch around it. We claim

that the reduction in the condition number of the global system matrix can be

improved by developing a criterion based on a low-rank approximation space

at the element level, that considers the interaction between the approximation

functions associated to the remaining nodes of the element. Thus, a better

conditioning will be obtained with a lower computational cost (both in terms

of CPU time and memory footprint) for the same accuracy.

6. Iterative solvers. Iterative solvers could be considered in order to increase

the computational efficiency of the simulation tool. Even though the PUM

reduces the global number of unknowns, the fact that each node is linked to

multiple degrees of freedom leads to the assembly of large elemental matrices
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that dramatically reduce the sparsity of the system matrix, compared to the

sparsity associated to standard Finite Element approaches. Thus, the fill-in

generated by direct solvers leads to large memory requirements, and the CPU

time involved in the solver step may be prohibitive (specially if the full set

of initial plane wave directions is considered). Therefore, the development of

an iterative solver, adapted to the particular a priori structure of the system

matrix, will improve the efficiency of the numerical method and reduce the CPU

time demand.

7. Error assessment and q-adaptivity. The efficiency and the accuracy of

the method could be improved by using an adaptive strategy. To this end,

an a posteriori error estimation framework should be developed. From this

error estimates, an adaptive process could be deduced to determine the optimal

number q of planes waves to be pasted at each node (q-adaptivity).

8. Benchmarking. Other enriched methods have been recently developed, see

3.2.4.4. Although some of them are developed for other specific applications, it

could be of interest to compare them with the method proposed in this thesis,

in terms of performance and accuracy.
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Appendix A

Estimation of the sound speed in

seawater

The UNESCO equation provides an estimation of the value of the speed of sound c

(m/s) through seawater, from the values of salinity S (in ppt), temperature T (in ◦C)

and hydrostatic pressure ph (in bars):

c(S, T, ph) = Cw(T, ph) + A(T, ph)S +B(T, ph)S
3/2 +D(T, ph)S

2, (A.1)

where

Cw(T, ph) = (C00 + C01T + C02T
2 + C03T

3 + C04T
4 + C05T

5) +

(C10 + C11T + C12T
2 + C13T

3 + C14T
4)ph +

(C20 + C21T + C22T
2 + C23T

3 + C24T
4)p2

h +

(C30 + C31T + C32T
2)p3

h,

A(T, ph) = (A00 + A01T + A02T
2 + A03T

3 + A04T
4) +

(A10 + A11T + A12T
2 + A13T

3 + A14T
4)ph +

(A20 + A21T + A22T
2 + A23T

3)p2
h +

(A30 + A31T + A32T
2)p3

h,

B(T, ph) = B00 +B01T + (B10 +B11T )ph,

D(T, ph) = D00 +D10ph,

and the rest of the coefficients are given in Table A.1.
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A. Estimation of the sound speed in seawater

Table A.1: Coefficients of the UNESCO equation for estimating the sound speed in
seawater.

In our model, the hydrostatic pressure ph, in MPa, is obtained from the depth

d, in meters, and the latitude φ, using the formula proposed in Leroy and Parthiot

(1998):

ph(d, φ) = ph(d, 45)κ(d, φ) + δph0(d), (A.2)
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where

ph(d, 45) = 1.00818× 10−2d+ 2.465× 10−8d2 − 1.25× 10−13d3 + 2.8× 10−19d4,

κ(d, φ) =
g(φ)− 2× 10−5d

9.80612− 2× 10−5d
,

δph0(d) =
1.0× 10−2d

d+ 100
+ 6.2× 10−6d,

being

g(φ) = 9.7803(1 + 5.3× 10−3 sin2 φ).

Note that the value of the pressure obtained by evaluating Equation (A.2) must be

converted from MPa to bars before entering into Equation (A.1).
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Appendix B

Estimation of the boundary

transmission coefficient

In this appendix we relate the transmission coefficient τ appearing in the Robin

boundary condition (4.1) with several material properties of the surrounding media

(air and sea bottom). According to Berkhoff (1976), the transmission coefficient can

be written as:

τ = τ1 + iτ2,

where i =
√
−1 is the imaginary unit,

τ1 =
2Kr sin β cos γ

1 +K2
r + 2Kr cos β

and

τ2 =
(1−K2

r ) cos γ

1 +K2
r + 2Kr cos β

,

being Kr the reflection coefficient, which is the ratio between the reflected and the

incident wave amplitudes Kr = |pr|/|pi|, β the reflection phase angle, and γ the

incident wave direction relative to the normal at the boundary.

The reflection phase angle β is set to zero, considering that the position of the

numerical boundary agrees with its actual position. Thus, the complex transmission

coefficient is purely imaginary. In addition, the incident wave direction γ cannot

be unambiguously specified since the full-wave approach implies multiple reflections

with different wave incident directions angles. In our model we conservatively assume
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B. Estimation of the boundary transmission coefficient

normal incidence (γ = 0). This is conservative in the sense that the produced noise

level is going to be larger than the actual one. Thus,

τ = i
1−Kr

1 +Kr

. (B.1)

The value of the transmission coefficient Kr can be obtained either from the value

of the transmission loss at the interface TLi, measured in dB, or from the acoustic

impedance Zb = ρbcb of the boundary, being ρb the density of the boundary material,

depending on the availability of empirical measurements. In the first case, we have

Kr = 10−TLi/20. (B.2)

In the second case, assuming normal incidence, we have

Kr =
Zb/Zsw − 1

Zb/Zsw + 1
, (B.3)

where Zsw ≈ 1.54 × 106 kg/(m2s) is the acoustic impedance of the seawater. Sub-

stituting Equation (B.2) and Equation (B.3) in Equation (B.1) we obtain expression

(4.6) and (4.7), respectively.
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Appendix C

Expansion of Lagrange polynomials

into sets of monomials

This appendix details a procedure to compute the coefficients of the Lagrange poly-

nomials decomposition into monomials. Our goal is to find the set of coefficients λd,a

such that

Ld(ξ) =
∑
|a|≤p

λd,a ξ
aηbζc, for d = 1, . . . , np, (C.1)

where a = (a, b, c), a, b, c being nonnegative integers and |a| := a+ b+ c ≤ p. Let

m(ξ) =



1

ξ

η
...

ζp


that corresponds to



a = (0, 0, 0)

a = (1, 0, 0)

a = (0, 1, 0)
...

a = (0, 0, p)

,

be the column vector containing the values of the np monomials at point ξ, and let

l(ξ) =


L1(ξ)

L2(ξ)
...

Lnp(ξ)


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C. Expansion of Lagrange polynomials into sets of monomials

be the column vector containing the values of the np Lagrange polynomials at point

ξ. Therefore, the np equations in (C.1) can be written using a matrix notation as

l(ξ) = Λm(ξ), (C.2)

where Λ is a square matrix collecting the np×np unknown coefficients Λ(p,m(a)) = λp,a,

m(a) ∈ {1, . . . , np} being a scalar that assigns a given order to each monomial with

multi-index a satisfying |a| ≤ p.

Enforcing Equation (C.2) at the np interpolation points we have

L = ΛM,

where

L =


...

...

l(ξ1) . . . l(ξnp)
...

...

 , and M =


...

...

m(ξ1) . . . m(ξnp)
...

...


Taking into account that

Ln(ξd) =

{
0 if n 6= d

1 if n = d
for n, d = 1, . . . , np,

we obtain

Idnp = ΛM,

where Idnp is the identity matrix of order np. Hence, matrix Λ can be obtained as

Λ = M−1.

Note that matrix Λ only depends on the set of interpolation points that are defined

on the reference element. Thus, it is evaluated once for a given set of integration

points.

Finally, it is important to point out that Equation (C.2) allows writing the inte-

gration weights from Equation (5.9) in a compact vectorial notation:

w = Λ

∫
Ωref

m(ξ) exp (iv · x(ξ)) dξ

= Λ exp (iD)

∫
Ωref

m(ξ) exp (iAξ) exp (iBη) exp (iCζ) dξ.
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Appendix D

Integration of definite 1D highly

oscillatory functions

The computation of highly oscillatory integrals over a tetrahedron using the proposed

semi-analytical method involves the computation of a considerable number of 1D

highly oscillatory integrals with the following form (Section 5.4):

I(0,1) =

∫ 1

0

sν exp (iµs) ds, (D.1)

where ν is a nonnegative integer and and µ a complex coefficient.

There are several methods to compute these integrals, either analytical or nu-

merical. The accuracy and computational efficiency of some of them depend on the

combination of both parameters µ and ν. In this appendix we present a heuristic

procedure to select a method for each combination of these parameters. Our objec-

tive is to reduce the CPU cost while keeping the relative error of these 1D integrals

below 10−12. This will allow us computing the integral over the tetrahedron with an

acceptable accuracy.

Bakhvalov and Vasil’eva (1968) proposed an accurate and robust method to com-

pute integral (D.1). It gives an analytical expression when the non-oscillatory part

of the integral is a polynomial function, as in Equation (D.1), provided that at least

ν + 1 points are used. However, in 3D real simulations involving medium or high

frequencies the computational cost of the method becomes too expensive due to the

high number of evaluations of Bessel functions.
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D. Integration of definite 1D highly oscillatory functions

To overcome this shortcoming, we propose to use equations (5.12) and (5.13)

for combinations of µ and ν that allows achieving the desired accuracy. Note that

the most expensive function involved in these expressions is the factorial function of

natural numbers, that in fact, are precomputed.

From our experience, for values of µ whose modulus are not close to 0, |µ| 9 0,

the most efficient method in terms of CPU time is obtained by applying Equation

(5.12): ∫ 1

0

sν exp (iµs) ds = ν!
ν∑
r=0

ir−1(exp (iµ)− lims→0 s
ν−r)

(ν − r)!µr+1
. (D.2)

Unfortunately, expression (D.2) loses accuracy when the modulus of µ is small, |µ| →
0, as stated by Bettess et al. (2003); Sugimoto et al. (2003). In addition, we highlight

that when using PUM in 3D applications the value of ν is much more higher than in

2D applications. Therefore, the modulus of each one of the addends in Equation (D.2)

may differ by several orders of magnitude. This lead to inaccurate results because

it implies the subtraction of similar terms whose modulus are much higher than the

result of this operation. Therefore, the criterion for using Equation (D.2) depends

on the combination of both values µ and ν. For this reason, we use Equation (D.2)

when the following relations are satisfied:

|µ| > tol1
ν!

|µ|ν
> tol2

|µ|ν

ν!
> tol3

[(1− a)ν]!

|µ|(1−a)ν
> tol4

[(1− a)ν]!|µ|aν

ν!
> tol5,

where a ∈ [0, 1]. Based in our numerical experiments, we set a = 0.6 and toli = 10−1

for i = 1, . . . , 5 in order to obtain the desired accuracy while reducing the CPU time.

When any of the earlier conditions is not satisfied, and at the same time the

modulus of µ is moderate, |µ| < µth, we apply Equation (5.13). Thus:∫ 1

0

sν exp (iµs) ds =
rmax∑
r=0

(iµ)r

r!

(1− lims→0 s
ν+r+1)

ν + r + 1
. (D.3)

As stated in Section 5.3, the value of rmax is adjusted so that the truncation error

in the series is of the order of the machine accuracy ε. Our numerical experiments
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show that the number of addends in the truncated series, rmax, depends on the value

of µth. Therefore, in order to limit it, and to reduce the computational cost of the

integration step, we set µth = 4.

When the values of µ and ν do not satisfy the conditions to use Equation (D.2)

nor Equation (D.3), our implementation resorts to the method by Bakhvalov and

Vasil’eva (1968) due to its accuracy and robustness. This method is more expensive

from the computational point of view than the previous analytical methods, equations

(D.2) and (D.3), but it provides more accurate results. Next we summarize the BV

method for completeness, and we also detail an alternative expression to preserve the

accuracy while reducing the CPU cost when the modulus of µ is small.

The BV method is based on an extension of the Gauss-Legendre rule to the highly

oscillatory case. It is designed to compute efficiently the following type of definite

integral:

IBV(f,Ω) =

∫ +1

−1

f(x) exp (iΩx) dx,

where f(x) is a non-oscillatory (smooth) function. This function is approximated by

a set of nL + 1 Legendre polynomials:

f(x) ≈
nL∑
d=0

cdPd(x), (D.4)

where Pd(x) is the Legendre polynomial of degree d in [-1,+1]. The coefficient cd is

obtained as

cd =

(
2d+ 1

2

) ν∑
m=0

wmPd(xm)f(xm),

where xm and wm are the m-th point and weight of the Gauss-Legendre quadrature

of (nL + 1) points, respectively. Taking into account that∫ +1

−1

Pd(x) exp (iΩx) dx = id
(

2π

Ω

)
Jd+1/2(Ω),

where Jd(Ω) is the Bessel function of the first kind and order d, we have∫ +1

−1

f(x) exp (iΩx) dx ≈
nL∑
d=0

id(2d+ 1)
( π

2Ω

)1/2

Jd+1/2(Ω)

(
nL∑
m=0

wmPd(xm)f(xm)

)
.

(D.5)

The main drawback of Equation (D.5) is that its accuracy is reduced when the value

of Ω is small, |Ω| → 0. To mitigate this issue, we consider the Taylor expansion of
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D. Integration of definite 1D highly oscillatory functions

the Bessel function for small values of Ω. In this case we have

Jd+1/2(Ω)

Ω1/2
≈ 1

Γ(d+ 3/2)

Ωd

2d+1/2
, (D.6)

where Γ(·) is the Gamma function. Note that in Equation (D.6) the Gamma function

depends on a natural number. Therefore, their values can be precomputed, reducing

the computational cost of Equation (D.5) when |Ω| → 0. Based on our experience

we consider the threshold value Ωth = 10−7.

In order to apply the BV method to compute Equation (D.1) we consider the

transformation s(x) = (x+ 1)/2, giving

I(0,1) =
1

2
exp (iµ/2) IBV(sν(x), µ/2).

Finally, note that when f(x) is a polynomial of degree nL, the expansion in (D.4) is

exact. Thus, the BV method with nL + 1 points is analytical and provides the exact

value of the integral up to round-off errors.
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Appendix E

Semi-analytical rule for triangular

elements

In Section 5.4.1, the analytical development of cases 1–11, A9 0, leads to Equation

(5.16), which includes the following 2D integral

ITRI =

∫ 1

0

∫ 1−ζ

0

ηbζc exp (iBη) exp (iCζ) dη dζ. (E.1)

Bettess et al. (2003) developed a semi-analytical rule to compute this type of integrals.

For the sake of consistency, we summarize it here detailing our implementation and

preserving the notation used in our work. They identify 5 cases (Table E.1) depending

on the values of B, C and C −B.

Table E.1: Possible combinations of the values of coefficients B and C in the semi-
analytical rule for triangles, generating 5 special cases.

Case B C C −B

1 9 0 9 0 9 0
2 9 0 9 0 → 0
3 9 0 → 0 —
4 → 0 9 0 —
5 → 0 → 0 —
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E. Semi-analytical rule for triangular elements

E.1 Cases from 1 to 3 (B 9 0)

If B 9 0, Equation (5.12) is introduced into Equation (E.1) leading to

ITRI = b!

(
exp (iB)

b∑
u=0

(
iu−1

(b− u)!Bu+1

∫ 1

0

ζc(1− ζ)b−u exp (i(C −B)ζ) dζ

)

− ib−1

Bb+1

∫ 1

0

ζc exp (iCζ) dζ

)
.

The binomial theorem, Equation (5.14), is used to develop the first integral. Then, we

apply the procedure presented in Appendix D to the resulting expression, depending

on the values of the resulting monomial exponents and C−B. Similarly, for the second

integral we use the procedure detailed in Appendix D depending on the values of c

and C.

E.2 Cases 4 and 5 (B → 0)

If B → 0, Equation (5.13) is introduced into Equation (E.1), leading to

ITRI ≈
umax∑
u=0

(iB)u

u!(b+ u+ 1)

∫ 1

0

ζc(1− ζ)b+u+1 exp (iCζ) dζ.

The binomial theorem, Equation (5.14), is used again to develop this integral. Then,

the procedure presented in Appendix D is applied depending on the values of the

monomial exponents and C.
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Červenỳ, V., M. M. Popov, and I. Pšenč́ık (1982). Computation of wave fields in
inhomogeneous media—gaussian beam approach. Geophysical Journal Interna-
tional 70 (1), 109–128.

Cessenat, O. and B. Després (1998). Application of an ultra weak variational formu-
lation of elliptic pdes to the two-dimensional helmholtz problem. SIAM Journal
on Numerical Analysis 35 (1), 255–299.

Chen, C. T. and F. J. Millero (1977). Speed of sound in seawater at high pressures.
The Journal of the Acoustical Society of America 62 (5), 1129–1135.
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