UNIVERSITAT POLITECNICA
DE CATALUNYA
BARCELONATECH

Graph data warehousing

Amine Ghrab

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a I'acceptacié de les seguents
condicions d'Us: La difusi6 d’aquesta tesi per mitja del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (http://www.tdx.cat/) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’investigacio i docencia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicié des d'un lloc alié al servei UPCommons o TDX.
No s’autoritza la presentacié del seu contingut en una finestra o marc alie a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentacié de la tesi com als seus
continguts. En la utilitzacié o cita de parts de la tesi és obligat indicar el nom de la personaautora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusion de esta tesis por medio del repositorio institucional UPCommons
(http://Jupcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
Unicamente para usos privados enmarcados en actividades de investigacion y docencia. No
se autoriza su reproduccion con finalidades de lucro ni su difusion y puesta a disposicion desde
un sitio ajeno al servicio UPCommons No se autoriza la presentacion de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentacién de la tesis como a sus contenidos. En la utilizacion o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it's obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Graph Data Warehousing

Ph.D. Dissertation
Amine Ghrab

Dissertation submitted in September, 2020

A thesis submitted to the Faculty of Engineering at Université Libre De Brux-
elles (ULB) and the Barcelona School of Informatics at Universitat Politecnica
de Catalunya, BarcelonaTech (UPC), in partial fulfillment of the requirements
within the scope of the IT4BI-DC programme for the joint Ph.D. degree in
computer science. The thesis is not submitted to any other organization at
the same time.

Thesis submitted: August, 2020

UPC Ph.D. Supervisor: Prof. Oscar Romero
Universitat ~ Politecnica de Catalunya,
BarcelonaTech, Spain

ULB Ph.D. Supervisor: Prof. Esteban Zimanyi
Université Libre de Bruxelles, Brussels, Bel-
gium

EURA NOVA Supervisor: Sabri Skhiri
EURA NOVA, Mont-Saint-Guibert, Belgium

ISSN: xxxx-xxxx
ISBN: XXX~-XX-XXXX-XXX-X

© Copyright by Amine Ghrab. Author has obtained the right to include the
published and accepted articles in the thesis, with a condition that they are
cited, DOI pointers and/or copyright/credits are placed prominently in the
references.

Printed in Belgium, 2020

Curriculum Vitae

Amine Ghrab ’e 1

Amine Ghrab graduated in Computer Science Engineering in October 2011,
at the Faculté des Sciences de Tunis, Université Tunis EI Manar.

In 2013, Amine joined the Erasmus Mundus Joint Doctorate program of
Information Technologies for Business Intelligence, Doctoral College (IT4BI-DC).
His PhD studies were under the supervision of Prof. Esteban Zimanyi at
the Department of Computer and Decision Engineering, at Université Libre
de Bruxelles, in cohort with Universitat Politecnica de Catalunya (UPC) un-
der the supervision of Prof. Oscar Romero at the department of Service and
Information System Engineering (ESSI). His research interests mainly fall at
the intersection of business intelligence and graph fields, namely: Graph Data
management, Graph Mining, Data warehousing, Multidimensional Modeling, Dis-
tributed Graph Processing.

As part of his joint PhD studies, Amine performed two research stays
at Universitat Politécnica de Catalunya, his host university, working with pro-
fessor Oscar Romero (October - December 2012, and September - December
2013). He actively participated in five summer schools and contributed to the
organization of three workshops on stream processing.

While doing his PhD he has published 7 peer-reviewed publications, in-
cluding 1 journal paper, 3 research track full conference papers and 3 work-
shop papers. Besides that, he has also co-advised 9 master thesis and was
invited by multiple research groups to give seminars on the topic of graph
warehousing.

In parallel to his PhD, he was employed as R&D Engineer and consultant
at EURA NOVA SA. He participated as an R&D architect in the industrial
research projects BI on Graph, Jericho and ASGARD.

ii

iv

Curriculum Vitae

Abstract

Over the last decade, we have witnessed the emergence of networks in a
wide spectrum of application domains, ranging from social and information
networks to biological and transportation networks. Graphs provide a solid
theoretical foundation for modeling complex networks and revealing valu-
able insights from both the network structure and the data embedded within
its entities. As the business and social environments are getting increas-
ingly complex and interconnected, graphs became a widespread abstraction
at the core of the information infrastructure supporting those environments.
Modern information systems consist of a large number of sophisticated and
interacting business entities that naturally form graphs. In particular, inte-
grating graphs into data warehouse systems received a lot of interest from
both academia and industry. Indeed, data warehouses are the central en-
terprise’s information repository and are critical for proper decision support
and future planning. Graph warehousing is emerging as the field that ex-
tends current information systems with graph management and analytics ca-
pabilities. Many approaches were proposed to address the graph data ware-
housing challenge. These efforts laid the foundation for multidimensional
modeling and analysis of graphs. However, most of the proposed approaches
partially tackle the graph warehousing problem by being restricted to simple
abstractions such as homogeneous graphs or ignoring important topics such
as multidimensional integrity constraints and dimension hierarchies.

In this dissertation, we conduct a systematic study of the graph data ware-
housing topic and address the key challenges of database and multidimen-
sional modeling of graphs. We first propose GRAD, a new graph database
model tailored for graph warehousing and OLAP analytics. GRAD aims to
provide analysts with a set of simple, well-defined, and adaptable concep-
tual components to support rich semantics and perform complex analysis on
graphs. Then, we define the multidimensional concepts for heterogeneous
attributed graphs and highlight the new types of measures that could be
derived. We project this multidimensional model on property graphs and
explore how to extract the candidate multidimensional concepts and build
graph cubes. Then, we extend the multidimensional model by integrating

Abstract

GRAD and show how GRAD facilitates multidimensional graph modeling,
and enables supporting dimension hierarchies and building new types of
OLAP cubes on graphs. Afterward, we present TopoGraph, a graph data
warehousing framework that extends current graph warehousing models
with new types of cubes and queries combining graph-oriented and OLAP
querying. TopoGraph goes beyond traditional OLAP cubes, which process
value-based grouping of tables, by considering also the topological proper-
ties of the graph elements. And it goes beyond current graph warehousing
models by proposing new types of graph cubes. These cubes embed a rich
repertoire of measures that could be represented with numerical values, with
entire graphs, or as a combination of them. Finally, we propose an archi-
tecture of the graph data warehouse and describe its main building blocks
and the remaining gaps. The various components of the graph warehousing
framework can be effectively leveraged as a foundation for designing and
building industry-grade graph data warehouses.

We believe that our research in this thesis brings us a step closer towards a
better understanding of graph warehousing. Yet, the models and framework
we proposed are the tip of the iceberg. The marriage of graph and warehous-
ing technologies will bring many exciting research opportunities, which we
briefly discuss at the end of the thesis.

vi

Acknowledgments

First of all, I want to express my gratitude to my research director Sabri
Skhiri for giving me the opportunity to work on this thesis, for his contin-
uous support, for his availability and inspiration. He was a great source of
encouragement. His talent, self-discipline and hardworking inspired me to
keep pursuing this PhD. Special thanks goes to my directors Eric and Hervé,
this thesis would never have happened without their support.

I sincerely thank my advisor Oscar Romero. His guidance over the course
of this thesis greatly helped me. His patience helped me work my way
through tough times. For making the whole experience instructive and thor-
oughly enjoyable, thank you!

I would like to thank my advisor Esteban Ziméanyi for the numerous in-
teresting discussions and fruitful collaborations.

Thanks to all my colleagues in the Department of Computer & Deci-
sion Engineering (CoDE) at the Université Libre de Bruxelles for their help
and sympathy. Thanks to all who kindly welcomed me during my time in
Barcelona, particularly from the Department Dept. d’Enginyeria de Serveis i
Sistemes d’Informacié (ESSI) at the Universitat Politecnica de Catalunya.

During the long time I spent in Belgium and Spain, I met many people
who touched my life and made these places feel like home. In particular, I feel
fortunate to have met Salim, Maher, Mennan and Besim. I would like to thank
all my colleagues at the university and EURA NOVA for the stimulating
environment you created. Our collaboration over the years was enjoyable
and fruitful in several ways.

On a personal note, I want above all to thank my parents Mohamed and
Emna, for being there for me, unconditionally and endlessly. I would like to
thank my brothers, my sisters and all my family and friends, for their love,
support and encouragement over the years. The last word will be for my
daughter, my son and my wife. Thank you for being and for always being
there for me.

This thesis has been partially funded by EURANOVA SA and the Wallo-
nia Region in Belgium (Grant FIRST-ENTERPRISES N° 6850 and Convention
n°7441).

vii

Acknowledgments

viii

Contents

Curriculum Vitae iii
Abstract v
Acknowledgments vii
Thesis Details xiii
1 Introduction 1
1 Motivation L 1
2 Background L, 3
2.1 Bl and Data Warehousing 3
22 Graph Modeling and Management 11
2.3 Graph Analysis and Processing 16
24 Applications of Graphs 19
3 Objectives and Contributions 23
4 ThesisOverview 29
4.1 Graph Database Modeling for Analytics 30
42 Multidimensional Modeling of Graphs 34

43 End-to-End Computation and Analysis of Graph-specific
Cubes 40
44 Architecture of Graph Data Warehouse 45
5 Summary. 49
2 Related Work 51
1 Graph Database Management 51
2 Graph Warehousing, 56
3 GRAD: A Database Model for Advanced Graph Analytics 61
1 Introduction 62
2 PropertyGraphs. 63
3 GRADStructures 64

ix

Contents

4 Integrity Constraints, 75
4.1 Graph Entity Integrity 76

42 Semantic Constraints 77

5 GraphAlgebra. 81
5.1 Selection 82

52 Cartesian Product 84

53 Composition.0 ... 85

5.4 Set operators: Union and Difference 87

6 Conclusion 89
4 A Framework for Building OLAP Cubes on Graphs 91
1 Introduction 92
2 Running Example L. 93
3 Multidimensional Concepts on Graphs 93
4 Building OLAP Cubes on Property Graphs 95
5 Building OLAP Cubeson GRAD 98
51 OLAP Cubeson GRAD 99

52 Dimension Hierarchieson GRAD 101

6 Framework Architecture and Implementation 102
7 Conclusion oo 103

5 TopoGraph: An End-To-End Framework to Build and Analyze Graph

Cubes 105
1 Introduction 106
2 Graph Cubes on Property Graphs 109
2.1 Property Graphs 109

22 Property Graph Cubes 110

3 Topological Graph Cubes 114
3.1 Topological Cube Model 115

3.2 Topological Graph Cuboid Processing 118

3.3 Deriving OLAP Cubes from Graph Cubes 121

4 Graph-structured Cubes 123
4.1 Graphs-structured Cube Model 123

42 Graph-structured Cuboid Processing 126

5 OLAP Analysis of Graph Cubes 127
6 Implementation and Experiments 133
6.1 Framework Architecture and Implementation 133

6.2 Experiments 136

7 Conclusion and Open Challenges 139

Contents

6

7

Graph BI & Analytics: Current State and Future Challenges

1 Introduction L ..

2 Graph DataModeling
2.1 GraphModels
22 Graph Management

3 Graph Analytics o
3.1 OLAPonGraphs
32 GraphMining
3.3 Graph Processing

4 Future Research Directions

5 Conclusion o

Conclusion and Future Work

1 Conclusions e e e
2 Results of the Collaboration with EURANOVA
3 Future Research Directions

Bibliography

A

References o i i e

An Analytics-Aware Conceptual Model For Evolving Graphs

1 Introduction
2 Evolving GraphModel
3 Querying the Graph Model
4 Multidimensional Graph Analysis
4.1 Data Structures oo
42 Operations
Related Work
6 Conclusions and Future Work

a1

Xi

141
142
144
144
146
147
147
149
150
152
155

157
157
161
162

Contents

Xii

Thesis Details

Thesis Title: Graph Data Warehousing

Ph.D. Student: Amine Ghrab

Supervisors: Prof. Esteban Zimanyi, Université Libre de Bruxelles, Brus-
sels, Belgium (ULB Supervisor)
Prof. Oscar Romero, Universitat Politecnica de Catalunya,
BarcelonaTech (UPC Supervisor)

This PhD thesis is an industrial collaboration with EURANOVA, Mont-Saint-
Guibert, Belgium. Mr. Sabri Skhiri is the responsible and supervisor of this
thesis at EURANOVA.

The main body of this thesis consists of the following papers.

[1] Amine Ghrab, Sabri Skhiri, Salim Jouili, Esteban Zimdanyi: An Analytics-
Aware Conceptual Model for Evolving Graphs. DaWaK 2013: 1-12 [52].

[2] Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro A. Vaisman, Es-
teban Zimanyi: A Framework for Building OLAP Cubes on Graphs. ADBIS
2015: 92-105 [49].

[3] Amine Ghrab, Oscar Romero, Sabri Skhiri, Alejandro Vaisman, Esteban
Ziményi. GRAD: On Graph Database Modeling. CoRR abs/1602.00503
(2016) [50].

[4] Amine Ghrab, Oscar Romero, Salim Jouili, Sabri Skhiri: Graph Bl &
Analytics: Current State and Open Challenges. DaWaK 2018: 1-12, 2018
[48].

[5] Amine Ghrab, Oscar Romero, Sabri Skhiri, Esteban Zimanyi: TopoGraph:
An End-To-End Framework to Build and Analyze Graph Cubes. Information
Systems Frontiers (2020) [51].

In addition to the main body papers, the following peer-reviewed workshop
publications have also been published in collaboration with master students
supervised by the PhD candidate:

xiii

Thesis Details

[6] Benoit Denis, Amine Ghrab, Sabri Skhiri: A Distributed Approach for
Graph-oriented Multidimensional Analysis. BigData 2013: 9-16 [42].

[7] Florian Demesmaeker, Amine Ghrab, Siegfried Nijssen, Sabri Skhiri:
Discovering Interesting Patterns in Large Graph Cubes. BigData 2017: 3322-
3331 [41].

[8] Muaz Twaty, Amine Ghrab, Sabri Skhiri. GraphOpt: a Framework for
Automatic Parameters Tuning of Graph Processing Frameworks. BigData
2019 [126].

This thesis has been submitted for assessment in partial fulfillment of the PhD
degree. The thesis is based on the submitted or published scientific papers
which are listed above. Parts of the papers are used directly or indirectly
in the extended summary of the thesis. The thesis is not in its present form
acceptable for open publication but only in limited and closed circulation as
copyright may not be ensured.

Xiv

Chapter 1

Introduction

1 Motivation

Graphs are fundamental and widespread structures that provide an intuitive
abstraction for the modeling and analysis of complex, heterogeneous, and
highly interconnected data. Graph models are one of the few models that
consider relationships as a first-class citizen. Thus, putting an equal focus
on the entities of a given domain and the connections between those entities.
They have the benefit of revealing valuable insights from content-based and
topological properties of data. The great expressive power of graphs, along
with their solid mathematical background, encourages their use for model-
ing domains having complex structural relationships. Large complex graphs
have emerged in various business and scientific domains. Newman identi-
fies four categories of graphs, namely social networks, information networks,
technological networks, and biological networks [95]. For example, in social
networks, graphs could be used for modeling relationships between users
and mining uncovered structural information such as communities and in-
fluencers [77]. Citation networks [104] and the world wide web [23] are the
major examples of information networks. In technological networks, graphs
could be used by a telecommunication operator to detect the central nodes
of the network infrastructure which helps to optimize the routing and load
balancing across the infrastructure. In biology, graphs are used for modeling
metabolic pathways, genetic regulations, and protein interactions [97].

Due to the graph model characteristics and its wide range of applications,
graph analysis is being considered as “possibly the single most effective compet-
itive differentiator for organizations pursuing data-driven operations and decisions
after the design of data capture” by leading industrial groups such as Gartner,
Inc., a research and advisory firm [45]. It is clear that the topological proper-
ties of graphs are of a big potential to decision-making systems, and in partic-

Chapter 1. Introduction

ular to Business Intelligence (BI) systems. They supply these systems with a
new class of complex structural business facts and measures that could be ex-
plored for making more accurate decisions in data-driven organizations. Tra-
ditional BI systems, and particularly data warehouses, were designed to sup-
port relational data management and analysis, which assumes a pre-defined
fixed schema and relational structures. However, due to the fundamental dif-
ference between graph and relational model, the existing relational systems
are not suitable for efficient graph analysis. The structure-driven manage-
ment and analytics of graph data call for the development of novel data
models, query processing paradigms, and storage techniques. Graph BI is
therefore emerging as the Bl field that extends current BI systems with graph
management and analysis capabilities. It enables graph-based insights such
as detection of popular users or communities in social networks, or revealing
hidden interaction patterns in financial networks. Graph BI can help address
the above-mentioned big data applications since (1) data are interconnected
in complex ways, but graphs can help reduce this complexity with intuitive
data models and queries, (2) the data size is large, but data warehouses and
OLAP analysis are suitable for storage, organization, synthesis and analysis
of large volumes of data, and (3) graph mining extends traditional techniques
by including the discovery of the topological properties, thus characterizing
more precisely business applications.

Therefore, as motivated by multiple research lines [29, 43, 83], this the-
sis aims to extend current Bl and analytics systems to efficiently support
warehousing [38], processing [120], mining [119] and OLAP analysis [28]
of the graph structural and content-based information. Figure 1.1 provides
an overview of the different components of the envisioned graph BI sys-
tem. While adopting a similar template as the traditional BI systems (i.e.,
it preserves the familiar data analytics workflow), graph BI extends current
systems with graph-aware components that deliver graph-derived insights.

2. Background

11I. Graph BI

1I. Graph OLAP
Analysis

L. Graph Analysis

%P e = i e

@E >} Graph OLAP on Graphs Insights Visualization
Data Loaded From | Data Represented as Complex & Graph-derived
Sources & ! a (multidimensional) | Interactive Analysis insights
Represented as graph ‘ of Graph Cubes
Graphs f
A ? ,,,,,,, . { Graph'Cubes _/
| GraphMining |/ | Mining

Fig. 1.1: Graph Business Intelligence

2 Background

2.1 BI and Data Warehousing

Business Intelligence (BI) provides tools and techniques for the management
and analysis of an organization’s data. BI processes enable transforming
raw data into valuable information used by managers in strategic decision-
making. An organization’s data is often stored in a data warehouse, which
is the reference information repository. In the data warehouse, operational
data is integrated and organized to fit analysis purposes. A common analy-
sis technique in data warehouses is On-Line Analytical Processing (OLAP).
OLAP analysis enables complex and interactive querying of large data sets.
The data analysis follows a fact/dimension dichotomy to study a business
fact according to a set of factors. The analyzed fact is composed of a set of
measures placed in the so-called OLAP cubes, and then examined from mul-
tiple perspectives and at multiple aggregation levels using the dimensions
which are the axes of the cube.

This section reviews the fundamental Bl and warehousing concepts used in
the thesis.

Business Intelligence

Many definitions were proposed in the literature for Business Intelligence
(BI). The term Business Intelligence was defined in 1958 by Hans Peter Luhn
[88]. He defined "Business" as “a collection of activities carried on for whatever
purpose, be it science, technology, commerce, industry, law, government, defense,
et cetera” and "Intelligence" as “the ability to apprehend the interrelationships of

Chapter 1. Introduction

presented facts in such a way as to guide actions towards the desired goal”. Rizzi
defines BI as "a set of tools and techniques that enable a company to transform its
business data into timely and accurate information for the decisional process, to be
made available to the right persons in the most suitable form" [107]. Therefore,
the main goal of Bl is to supply decision-makers with the right amount of
information to help them get a better understanding of the key factors that
influence their business’s evolution. Thus enabling them to make more in-
formed decisions and increase their organization’s competitiveness. To this
end, Bl systems offer a set of processes for transforming raw data into useful
information and actionable knowledge. They provide the required tools for
efficient storage, interactive querying, and easy retrieval of information from
huge volumes of data.

Traditional BI systems assumed the data to be complete, consistent, and
carefully preprocessed and integrated. However, with the increasing market
pressure and recent technological advances, BI systems have to evolve from
the traditional assumptions to the Big Data environments. Within this emerg-
ing setting, the volume, velocity, and variety of data increase tremendously.
In addition to data change, new business requirements are emerging such as
interactive and discovery-driven analyses, predictive analytics, and integra-
tion of social media and web data. This evolution of the BI market provided
new opportunities but poses new challenges that call for novel theoretical
foundations and enabling technological capabilities. Multiple BI challenges
are being tackled from both academic and industrial perspectives. This line
of work, sometimes denoted as BI 2.0, tackles some emerging research fields
such as real-time BI, collaborative Bl, and pervasive BI, as outlined by Au-
faure et al. [11]. In this thesis we focus on graph Bl to extend current Bl
tools with graph analysis capabilities, therefore enabling Bl analysis of graph-
based insights such as the popularity of a user in a given network, or the
shortest distance between a pair of locations. This line of work requires de-
signing new data models, query languages, and building the corresponding
processing frameworks [11, 38, 98].

Data Warehouse

The data warehouse is considered as the core storage repository on top of
which BI operations are mainly executed. Bill Inmon defined the data ware-
house as " a subject-oriented, integrated, time-variant and non-volatile collection of
data used in strategic decision-making” [65]. Thus, a data warehouse provides a
central, historical, integrated, and consistent repository of the organization’s
data.

Data is gathered and integrated from multiple data sources such as spread-
sheets, customer relationship management (CRM), and enterprise resource
planning (ERP), but mostly from operational databases. The operational data

2. Background

is periodically fed to refresh the data warehouse. Two main approaches are
often used to build a data warehouse: (1) Extract-Transform-Load (ETL) and
(2) Extract-Load-Transform (ELT) [127]. In both approaches, data is first ex-
tracted from different data sources. In ETL, data is first loaded into a staging
database where a set of transformations is first applied to cleanse the data
before loading it into the data warehouse. This guarantees the trustworthi-
ness, access efficiency, reliability, and integration of the data. However, this
approach assumes that all transformations are being considered in advance
in the ETL process. Adding new data or transformations requires the re-
design and development of the process. ETL is a pull-based process ran
periodically to refresh the data warehouse with required information from
underlying sources. The ETL is a critical and heavy step, a set of approaches
was developed to speed it up and get closer to real-time data warehousing
[132]. The second approach, ELT, is an alternative approach that consists in
pushing the transformation phase to the data mart server engine rather than
on the ETL middle-ware. The data is then moved only once over the net-
work. This enables copying all available operational data into the data ware-
house, which includes data that might be useful in future analysis scenarios.
Another approach is the Capture-Transform-Flow (CTL), which flows data
in real-time into a continuously fed refreshed data warehouse, following a
publisher-subscriber model. Once the data is available in the data warehouse,
it is loaded within correspondent data marts. Data marts are the underlying
departmental stores of the data warehouse.

The historical and integrated view provided by the data warehouses makes
it the backbone for supporting reporting, that presents quantitative data in a
report-oriented format using charts, numbers and graphics, and data mining
algorithms, executed to identify hidden patterns based on statistical methods
such as association analysis, classification, clustering. Figure 1.2 illustrates
the phases of the traditional data warehousing process from data collection,
through ETL, then storage and management, to cube construction and anal-
ysis.

Multidimensional Modeling

From a data modeling perspective, data is organized according to the mul-
tidimensional model [2, 27, 66]. The main concepts of the multidimensional
model are described in this section.

Fact and Measures Facts are the objects that represent the subjects of the
desired analyses, i.e., the interesting entities, events, or processes, that are
to be analyzed to better understand their behavior. In the multidimensional
model, a measure is the basic unit of data that is placed for analysis in the
multidimensional space.

Chapter 1. Introduction

S
-r_- .
! @ Dashboards present KPI evolution to end-users

Dashboard
° :l E[5> OLAP Cubes are interactively explored by analysts
Querying Layer
: E{> Multi-dimensional views are built on top of the data
OLAP

((
((
((

B> Data are stored and managed

Data Warehouse

AETL @ Data are integrated and consolidated
E @ @ E{> Data are gathered from the entire organization

Organisation's data

Fig. 1.2: Traditional Warehousing Process

Definition 1.1. [Measure] A measure M is defined as a pair (name, $). The mea-
sure is computed by applying the aggregation function ¢ on a set of values.

A measure has two components: a numerical property of a fact, e.g., the sales
price or profit, and an aggregation function (such as sum and average) that
can be used to combine several measure values into one. In a multidimen-
sional database, measures generally represent the properties of the chosen
facts that the users want to study from different perspectives.

Dimension Dimensions enable the multi-perspectives analysis of the fac-
tual data, while dimension hierarchies enable the multi-level analysis. Di-
mensions are used for two purposes: the selection of data and the grouping
of data at a desired level of detail.

Definition 1.2. [Dimension] A dimension D is defined by the tuple (name, A, R),
where A = {Aq, ..., Ay} is the set of the dimension levels. Two specific levels are
present for each dimension hierarchy, (1) Ay the lowest level called the base level,
and (2) Ay, the highest level called All or Apex. R is a partial order on the elements
of A and describes a directed acyclic graph (DAG) defining the hierarchy and the
aggregation direction between the dimension’s levels A;.

Definition 1.3. [Multidimensional Schema] A multidimensional schema is de-
fined as S = (name, D, M). It organizes the data around the concept of fact, where

2. Background

each fact consists of a set of measures M = {Mj, ..., My, } and includes identifiers of
the multidimensional space generated by the dimensions D = {Dy, ..., D }.

Multiple schemas were proposed in the literature to represent multidimen-
sional data, such as star, snowflake, and constellation schemas. For the sake
of simplicity, we focus on multidimensional schemas with a single fact.

Data Cube The cube metaphor is widely accepted as the underlying log-
ical construct for conventional multidimensional models [56]. A data cube
refers to the multidimensional space created by selecting a level from each
dimension of the multidimensional schema and placing the measures in it.
A cube is composed of a set of cuboids, where each cuboid is obtained by
aggregating the original data at a given hierarchical level on each dimension.
A lattice is used to represent all the possible aggregations of the cube. There-
fore, each point of the lattice represents a data aggregation, that is, a cuboid
of the cube. Given n dimensional attributes in the fact table, the cube con-
tains 2" cuboids. Cuboid aggregations differ from arbitrary aggregations in
that they have to follow the dimension hierarchy schema when performed. A
cube instantiates a multidimensional schema, where each cell of a cuboid lies
at the intersection of all the dimensions forming the base. Cells are loaded
with uniquely identifiable measures and aggregated with their correspond-
ing compatible aggregation function. The measures are used as the basic data
unit manipulated by multidimensional queries.

Given a movie dataset, Figure 1.3 shows the star schema and the lattice of
a three-dimensional cube for the rating of movies. The measure is the average
score of a movie computed by the average function, and the dimensions are
the country of that movie, the year on which the movie received a given score
and the scoring website. Figure 1.4 depicts an instance of the data cube.

Given a data cube, a set of general rules should be respected to ensure the
consistency of the cube data through the different states and transformations.
We refer to these rules as the multidimensional integrity constraint. Specif-
ically, they are used to ensure the correct placement of the measures in the
multidimensional space and guarantee the summarizability of the examined
measures through the different aggregation levels. Summarizability is guar-
anteed if the three conditions of disjointness, completeness, and compatibility
are guaranteed [2, 80].

Online Analytical Processing (OLAP)

Operations running on the operational databases are called on-line trans-
actional processing (OLTP) and rely heavily on transactions to support an
update-intensive workload while remaining compliant to the ACID (atomic,

Star Schema

Chapter 1. Introduction

Scoring Cube Lattice

TIME

DatelD
Year

Website

WebsiteID
Title
URL

R B

Score

AvgScore

MOVIE

MovielD
Title
Location

(SW>, <¥> <*>)

(<W>, <L>,<*>)

<Website> <Location>
Website X X

(<>, <k> | <k>)

(<*>, <L>,<*>) (<*>, <*><T>)

(<*>, <L>,<T>) (<W>, <*>,<T>)

(KW>, <L>, <T>)

<Year>

Movie Time

Fig. 1.3: Schema and Lattice of Movie Scoring Cube (* represents the All level)

Average Score

S
4.5 1.6
33 2.4
24 3.6

Year

Country
Spain
USA
3.4
UK
4.6
&
Q
\@0 22
Website

Fig. 1.4: Three-dimensional Movie Rating Cuboid

2. Background

consistent, isolated, durable) properties. The goal is to avoid data redun-
dancy and to provide a normalized schema guaranteeing consistent, up-to-
date databases. Data warehouses are designed with the purpose to answer
large read-intensive queries. Since such workload might overlap with the
locks imposed by ongoing transactions, the data warehouse emphasizes the
separation of transactional processing from analytical processing referred to
as on-line analytical processing (OLAP) [36]. Techniques such as material-
ized views, special purpose indices, data redundancy tolerance, and denor-
malized schemas are applied to fit and optimize analytical workloads.

OLAP analysis follows a fact/dimension dichotomy to interactively study
a business fact from multiple perspectives, called dimensions, at different
aggregation levels, called dimension hierarchies. OLAP cubes embed ag-
gregated data denoted as measures. The measures are the metrics for the
analysis. Cubes are placed into the so-called multidimensional space, where
dimensions are the factors influencing the values of the measures. In a re-
lational setting, a cube for describing the sales of products would have the
selling price as the measure, while time, location, and product would be the
dimensions.

OLAP querying is based on a multidimensional algebra that guides nav-
igation, querying, and analysis of data. The OLAP algebra provides a ref-
erence set of operators to handle the multidimensional data [111]. The goal
is to support analysis-oriented design methodologies, better and accurate
indexing techniques, and to facilitate query optimization. The core OLAP
operations are (1) Selection (slice and dice), to choose a subset of a dimen-
sional range of interest from the multidimensional space, (2) Projection, to
selects a subset of measures of interest, (3) Roll-up, to summarizes data at
a higher level by grouping cells based on a dimension hierarchy, (4) Drill
across, to change the subject of analysis while keeping the same multidi-
mensional space, and (6) Set Operations, namely Union, Difference and In-
tersection of cubes defined on the same multidimensional space and having
the same set of measures. Figure 1.5 shows the transformation executed by
OLAP operations on the data cubes.

Chapter 1. Introduction

suonesadO dv10 'L S

Anuno)
Anuno)
90 0 o
&
Q>
> 70 €0 90 o
Ayrunuruo,
-] w,ﬂ/ o oRIM]L
Aypunwuwo) 90 0] ¥'0 ’
300q2e,] U0 NS
g R K urpayul
3 K oS
N N N j00qa0e] S .
9 9 v < <O ® }00qa08]
A O o
Kunwuo) o] q v uLiope|d
_ _ “ uriopelq =
2
6¢ 9 e T L = 2 =
L0 S0 €0 Z2]
=8 E
144 o £ T[T wpayury SS00Y [14 = g
70 90 0 vV Ia = W
<
28y Say ——> 9¢ €€ ST ~Tj00qa0e
€0 0 S0
» o) o q v Aunwuwo) o) q v
| | | | | | |
T t T T t T
queyaSeq
4 ommp . . . 4 ommL
wiopeld 6€ Elg [43 L0 (] €0
a4 4 €& T wpayury o 90 $0 T upayurg
98y SAy uo uondafoag \wm €€ ST T ooqadey €0 0 S0 T yoogooeg
98y Sa
Vorv uLiopelq Jueyaded uLopelg

10

2. Background

2.2 Graph Modeling and Management

For several decades, the relational model was considered as the default choice
for data modeling and management. However, the relational systems were
pushed to their limits as the one-size-fits-all data management solutions and
fell short of meeting the diverse requirements of emerging big data applica-
tions. Indeed, Big Data refers to data generated at unpredictable speed, in
large volumes, from heterogeneous sources, and in different formats [12]. Big
data applications came with challenging requirements such as high scalabil-
ity and low latency. The variety of big data and its applications led to the
development of new models and processing paradigms that meet those re-
quirements. Data variety is considered as one of the most critical challenges
in big data nowadays, and efficiently supporting a variety of data sources
and models is considered to be the main factor of success for data-driven
organizations [15]. The wide adoption of the emerging NoSQL solutions by
industry, while not yet as mature as the relational model, proved the need
to push databases into fields beyond the traditional business applications
[20, 24].

Of particular relevance to this thesis is the study of graph data manage-
ment and processing. Graphs provide an intuitive and simple knowledge
representation system that naturally fits highly interconnected domains and
applications. Graph analysis could be used to directly target and extract the
information hidden within the graph, and reveal valuable insights from both
the network structure and the data embedded within. Besides, graphs meet
the requirements to be the perfect canonical data model for data integration
systems [47] given the fact that (1) they can deal with heterogeneity, (2) they
are semantically richer or at least as rich as any other model, (3) they allow
creating multiple views from the same source, (4) they offer the capability to
associate data and metadata, (4) and are extremely flexible to compose new
graphs, that is, given two graphs, with one single edge a new graph could
be directly created without affecting the existing ones. Graphs are, therefore,
suitable to deal with the variety challenge better than any other data model.
To address the need for incorporating graph analytics into business appli-
cations, many frameworks were developed for the management, processing,
and analysis of graph data. In what follows, we look into these topics, and we
start with the two principal aspects of the graph management: (1) graph mod-
eling, which provides the theoretical abstraction for intuitively representing
and analyzing connected data, and (2) graph databases, which are recog-
nized as the central component for the native storage and efficient querying
of graph data.

Note that through the thesis we might refer to a graph as a network, to a
node as a vertex, and to an edge as a relationship, these words are often used
interchangeably in the literature.

11

Chapter 1. Introduction

Graph Database Modeling

A database system is built on the fundamental abstraction of a database
model, which provides the theoretical foundations for data management.
A database model, as defined by Codd in [34], consists of a set of (1) data
structures used to represent the data, (2) integrity constraints, to ensure the
database consistency at its different states, and (3) manipulation operators
to query and transform the data. In-line with Codd’s definition, a graph
database model is a model where the data structures are represented with
graphs, the required integrity constraints are defined over these graph struc-
tures, and graph operators are defined to manipulate the graph. A plethora
of graph models was developed to accommodate the various graph domains
and applications [9, 10]. For example, data could be modeled as a simple
graph or a hypergraph (i.e., a single edge connects an arbitrary number
of nodes). A graph could be undirected or directed (i.e., nodes are con-
nected with oriented edges). It could be homogeneous or heterogeneous (i.e.,
multiple types of nodes and edges with arbitrary properties exist within the
same graph). Nodes and edges could be labeled to describe their types and
weighted or attributed to denote their specific properties. A graph might be
dense, where the number of edges is close to the square number of vertices,
otherwise, it is called sparse. Concerning the schema, the graph could be
structured or unstructured (i.e., it does not conform to a rigid predefined
schema, and elements of the same class might have different attributes and
data types). The graph could be considered as a single large graph, where
the analysis is applied on domains such as social and bibliographic networks.
In this case, the querying is focused on pattern matching, reachability, and
shortest path. Otherwise, the data is considered as a collection of graphs
where the domain is usually related to bioinformatics and chemical networks,
with the querying revolving around subgraph and supergraph retrieval [117].
The topic of graph database modeling witnessed an increasing interest from
the database community. For a deeper dive into the topic, we refer the reader
to the foundational surveys of Angles and Gutierrez [6], and the recent sur-
vey by Besta et al. [20].

Currently, the two widely accepted graph models are property graphs and
RDF graphs:

Property Graphs Property graphs describe a directed, labeled, and attributed
multi-graph. They were first introduced by Rodriguez and Neubauer in [109],
then formalized by Angles in [7]. In a property graph, each real-world en-
tity is represented by a node and related to other entities with edges. Nodes
and edges are labeled and have a set of key-value attributes. A label denotes
the "type" of the node or edge (i.e., the class to which it belongs), while the
attributes represent its properties and identifiers. Property graphs were in-

12

2. Background

Country Director
name:Guatemala name:Lewis Gilbert
A

Directs

LgcatedIn

Movie
1D: 0079574
name: Moonraker
Rating: 4.9
Score: 73

Movie
ID: 076759
title: Star Wars
Rating: 6.8
Score: 78

FilmedIn

FilmedIn Location

ame: Tikal Par

rating:3

Rates
rating:4

Rates
rating:5

Movie
1D: 3884
title : Star Trek
Rating: 5.6
Score: 63

Genre
name: Sci-Fi

Fig. 1.6: Movie Graph

troduced in the database community to store schema-less data (due to their
flexibility to absorb any semantics and attach data with metadata). Multiple
query languages were proposed to enable the querying of property graphs
[9], such as Cypher [46], GCore [8], PGQL [129] and Gremlin [108]. Cypher is
an SQL-like declarative language, that uses isomorphism-based no-repeated-
edges bag semantics. It was introduced by Neo4j and is centered around pat-
tern matching enriched by built-in algorithmic libraries. Gremlin is a graph
traversal language, built using Groovy, introduced by Apache TinkerPop3,
that uses the homomorphism-based bag semantics. Given the diversity of
the property graph query languages, a recent initiative is led for defining
GQL [1], an ISO project to design a standard query language for property
graphs by combining the best of the main property graph query languages
(Cypher, G-CORE, and PGQL). Integrity constraints for property graphs is
a less explored topic [7, 100], and focus mainly on schema-instance consis-
tency, although other constraints such as attribute uniqueness or cardinality
constraints were discussed. Figure 1.6 shows an instance of a movie graph,
modeled using property graphs.

RDF Graphs RDF refers to the Resource Description Framework, a W3C
recommendation for representing web resources. The basic RDF block
is the triple, a binary relationship between a subject and an object; i.e.,
(subject, predicate, object). A set of RDF triples forms an RDF graph. In
an RDF graph, subjects and objects are represented with nodes, while the
predicates are represented with edges. The RDF resources could be one of
three types: subjects, objects, and predicates could be IRI (Uniform Resource

13

Chapter 1. Introduction

Identifiers), subjects and objects could be blank nodes (i.e., resources without
an IRI), and only objects could be literals (i.e., a constant value such a string
or an integer). RDF is the basic formalism behind knowledge graphs, used to
describe and link resources. RDF Schema (RDFS), a W3C recommendation,
was introduced to express basic constraints on RDF triples. In the same line,
the Ontology Web Language (OWL) allows expressing richer constraints and
semantics. As OWL is serialized on top of RDFS, it results in a graph too. Im-
portantly, it is also usual to refer to knowledge graphs (i.e., RDF(S) or OWL)
as ontologies. This is because they can be translated to a fragment of First-
Order Logic (FOL), typically, within the family of Description Logics (e.g.,
in the case of OWL), and benefit from generic reasoning algorithms in that
field. Finally, the W3C recommendation to query knowledge graphs is the
SPARQL Protocol and RDF Query Language (SPARQL). Relevantly, SPARQL
enables the activation of generic reasoning capabilities when querying knowl-
edge graphs to infer non-explicit knowledge, and SPARQL applies homomor-
phism when performing pattern matching. Knowledge graphs were born
within the semantic web stack and therefore initially thought for enabling
interoperability and reasoning on semantic data. They are tightly related
to the knowledge representation community and therefore thought to repre-
sent generic knowledge rather than data as for databases. For this reason,
knowledge graph databases are referred to as triple-stores rather than graph
databases. One key aspect of property graphs is that they provide means (i.e.,
URI) to universally identify graph vertices and edges from external sources.
This facilitates the linking and sharing of data and metadata. However, un-
like property graphs and traditional graph databases, which are optimized
for graph traversal, they are primarily optimized for handling knowledge.
Another difference is that in property graphs properties could be directly
added to edges as well as vertices. However, RDF* has been recently pro-
posed, to extend RDF with properties. This boundary is increasingly fuzzier.
In essence, knowledge graphs are also graphs and can benefit from the tradi-
tional graph algebras presented in the database field, and vice versa. Bit by
bit, both worlds are getting closer.

Graph Management

Two main approaches are widely used for graph data management at the log-
ical/physical level, regardless of the adopted model. The first approach lever-
ages alternative models, mainly the relational model, and represents graphs
as a set of tables, i.e.,, node tables and edge tables [61]. The latter advo-
cates the use of native graph data models and database engines [3]. These
approaches are discussed next:

14

2. Background

Relational-based Databases This approach benefits from the well-
established relational model features, and enables smooth integration with
a wide range of relational platforms, and in some cases superior query pro-
cessing performance [61]. The relational model was designed to handle struc-
tured data such as records and transactions. Tables are the fundamental con-
struct of the relational model. A table consists of rows and columns, where
each row represents a single data entity, and each column is an attribute. Re-
lationships between tables are implemented using primary keys, which are
particular columns that uniquely identify a single entity. A graph could be
modeled as a collection of tables of nodes and edges. Each node is uniquely
identified by its primary key, and edges are attached to their source and
destination nodes using their primary keys as foreign keys. However, the
table abstraction does not naturally support the modeling and exploration of
graph relations and patterns. The relational query languages and process-
ing engines are optimized to perform table scans instead of traversals. Graph
traversal, simulated using expensive join operations, incurs heavy workloads,
especially for highly interconnected data. Indeed, given the large cost of
multi-joins, the deeper the traversal is, the more the performance degrades.
Moreover, the SQL is not suited to express and handle the topology of the
graph with queries such as pattern matching, neighborhood, or path retrieval.
Mapping graph data to a relational representation raises the impedance mis-
match problem at the modeling and querying levels. Due to the fundamental
difference between the two models, transforming graph data to fit the rela-
tional model is a manual and complicated process, with a high risk of infor-
mation loss. Besides, in a relational system, the schema needs to be known
and fixed in-advance as changes to the schema or integration of different
schemas are often costly and manual operations. In summary, the relational
model and its implementations fall short of meeting the requirements for (1)
intuitive graph data modeling, (2) topology-aware graph querying (such as
path retrieval or graph matching), and (3) traversal-optimized performances.

Native Graph Databases In recent years, the trend in developing graph
data management systems has shifted to the development of native,
relationship-oriented graph databases [6, 10]. Graph databases introduce op-
timizations for the storage and querying of graph data by using specific graph
structures and supporting the querying with a set of special operators, algo-
rithms, and indexing techniques. Most native graph databases implement
the property graph model or a variation of it. The impedance mismatch is re-
solved since relationships are first-class citizens, and the data is represented
as it is perceived without the need to map it to intermediate representations.
The data model is more straightforward to design, and the queries are more
intuitive to formulate [61]. From a performance perspective, graph databases

15

Chapter 1. Introduction

are optimized for graph traversals. Indeed, since graphs are stored using
adjacency lists, the traversal between neighbors could be implemented as a
simple memory lookup using a pointer attached to each node. The cost of
traversing an edge is constant, and the overall cost of arbitrary navigation
through the graph is much lower than the equivalent joins in relational ta-
bles. Nevertheless, complex operations such as pattern matching still yield
prohibitive computational complexities if not bounded. Yet, its cost is not
worsened by the added need to consider joins. Subsequent implementation
aspects such as graph query processing, indexing, and storage which are
specifically developed and tuned for graph workloads lead to better perfor-
mances, especially for queries requiring multiple joins, or containing cycles
and other complex structural patterns. However, they perform worse than
the relational-based engines for analytical queries that perform scans over
the whole graph and apply group by and aggregation operations [32]. In the
software market, established BI vendors are aware of the potential of native
graph solutions and have already developed many graph databases such as
Neo4j, Oracle Spatial and Graph, Microsoft GraphEngine, IBM Graph, and
Amazon Neptune.

Multi-modal Databases This is a hybrid approach that supports a graph
abstraction and querying layer on top of non-graph stores such as
column-store (DataStax Enterprise Graph) and document store (OrientDB,
ArangoDB).

2.3 Graph Analysis and Processing

Graph analytics motivated many research initiatives for the exploration and
analysis and visualization of the graph structure and content [69]. A plethora
of graph analysis techniques was proposed in the literature to reveal interest-
ing properties about the graph topology and the connectivity between graph
elements [119]. A rich repertoire of algorithms was developed to efficiently
solve theoretical questions such as reachability between nodes, or address
NP-complete problems such as subgraph isomorphism or distributed graph
partitioning. These algorithms are later used to answer a multitude of emerg-
ing decision-making problems, that are represented using graph models and
solved using graph algorithms.

The core analysis operations of graphs are (1) graph traversal to assess reacha-
bility (e.g., find the shortest paths, and retrieve the neighborhood), (2) metrics
computation of local (e.g., centrality), and global properties (e.g., diameter),
and (3) graph pattern matching [9]. Most of these operations are supported
by graph database engines. More advanced graph analytics are enabled using
graph mining and distributed graph processing.

16

2. Background

Graph Querying This field has attracted a lot of research that focuses
mainly on exploring the structural properties of non or loosely attributed
graphs [9, 13, 22]. A set of graph measures were developed to quantify var-
ious properties [94]. A wide repertoire of algorithms was designed to ef-
ficiently answer queries such as the shortest path, or address NP-complete
problems such as subgraph isomorphism [44]. Common graph analysis tech-
niques include:

* Path traversal: To identify all the connections between a pair of entities,
used in revealing complex connections, and understanding risks and
exposure.

¢ Centrality computation: To identify the most central entities in a net-
work, used in detecting the influencers on a community or the critical
components of an infrastructure.

¢ Community detection: To identify clusters or communities, which is of
great importance to understanding behaviors and issues in sociology
and biology.

* Subgraph matching: To search for a pattern of relationships, useful for
validating hypotheses and searching for abnormal situations, such as
collaborative fraud.

Graph Mining Data mining refers to the process of discovering patterns
or models for data [30, 57]. In contrast to querying that retrieves known pat-
terns, mining enables the discovery of previously unknown, implicit informa-
tion and knowledge embedded within a dataset. Traditionally, data mining
techniques process data as a collection of independent instances (i.e. observa-
tions). However, the recent emergence of graph structure as a rich data model
involves a paradigm shift on how data mining algorithms can be applied.
Graph mining algorithms provide a new way of extracting and discovering
latent insight from graphs by leveraging the relationships between entities
[37, 114]. However, graph mining algorithms face three main challenges [3]:
(1) adapting the mining algorithms to make them graph-aware, (2) redesign-
ing the algorithms to be implemented by those new high-performance tech-
niques, and (3) storing and exploiting multiple but related graphs that serve
for the same business purpose as in the graph warehouse [120].
A plethora of graph mining techniques was proposed in the literature such as
graph clustering, frequent subgraph mining, proximity pattern mining, and
link prediction [67]. These techniques are relevant in the BI context as they
reveal interesting properties about the topology and the connectivity between
business entities.

The historical and integrated view provided by the data warehouse makes
it a suitable backbone for offering a variety of analysis scenarios. In the graph

17

Chapter 1. Introduction

warehouse context, graph mining could be combined with OLAP to offer
more capabilities both during the phase of the design and also the analysis
of the graph warehouse data, in a much similar way to the traditional online
analytical mining (OLAM) [57]. During the design phase, graph mining algo-
rithms could be used to enrich the OLAP cubes with new types of topological
dimensions and measures (e.g., PageRank, community). During the analysis,
graph mining could assist the analyst in complex tasks such as building sum-
marized business-oriented views of the graph, providing new perspectives to
analyze the graph, or discovering interesting or anomalous patterns within
the large graph cube space. In the context of outlier detection, graphs provide
an elegant framework to predict and describe outliers. For example, in the
context of graph cubes mining, [41] developed a measure of interestingness
of patterns in a graph cube, while [21] proposed an entropy-based filter to
detect interesting associations between attributed nodes in a graph cube.

Graph Processing To deal with large historical graphs, which is the case
in data warehouses, graph Bl systems need to integrate large-scale graph
processing frameworks. Graph processing frameworks natively support the
graph topology and offer graph programming models and abstractions to
easily implement a multitude of graph algorithms [71, 91]. These frame-
works have the capabilities to efficiently perform large scale, ad-hoc, and
distributed computations over large graph data that exceed a single machine
capacity. They offer features such as automatic graph partitioning, load bal-
ancing, network and disk transfer optimization, and fail-over of the process-
ing tasks.

However, distributed graph processing poses additional challenges to cen-
tralized or traditional parallel data processing in that: (1) the graph structure
is irregular, which poses challenges to the graph data partitioning and limits
parallelism, (2) computation is driven by the structure, which causes a poor
memory locality and data transfer issues, and (3) algorithms traverse the par-
titioned graph in an exploratory way, and are iterative by nature, which is
I/0 intensive [89, 116]. To tackle these challenges and enable efficient large-
scale graph analytics, different processing paradigms were introduced [14]:

* Hadoop Family frameworks: MapReduce denotes a programming
model for large-scale data processing. Hadoop is an open-source
framework that supports data-intensive distributed applications, and
clones Google’s MapReduce framework. It is designed to process large
amounts of unstructured and complex data and runs on shared-nothing
architectures. MapReduce frameworks are useful for content-based ag-
gregation of graphs (e.g., graph cube aggregation), but they are not
efficient for graph-specific computations [42].

* Synchronous frameworks: Pregel [90], and its open-source implemen-

18

2. Background

tation Apache Giraph, are distributed fault-tolerant graph processing
frameworks designed to execute vertex-centric graph algorithms fol-
lowing the Bulk Synchronous Parallel processing (BSP) paradigm. BSP
is a shared-nothing processing paradigm for parallel algorithms’ exe-
cution. The computation is done as a series of super-steps over a set of
processing units, each having its local memory. Each super-step consists
of three phases, first (1) each processing unit performs concurrently and
locally its computations, then (2) data is exchanged between the differ-
ent processes, finally (3) when a process finishes the computation and
communication, it reaches the synchronization barrier and it waits for
the rest of the processes to finish before proceeding to the next super-
step. The advantage of this paradigm is that it ensures a deadlock-free
computation. However, the downside is the execution time, where the
system has to wait for the slowest machines to finish before proceeding.

¢ Asynchronous frameworks: In contrast to the synchronous shared-
nothing processing frameworks, GraphLab [87] and PowerGraph [54]
are asynchronous and follows the Gather-Apply-Scatter computational
model, with shared memory abstraction. These frameworks might
provide better performances, but incur more complexity and higher
scheduling and consistency costs.

* Hybrid Systems: These frameworks enable a mixed workload of graph-
parallel and data-parallel processing. GraphX [55] is an Apache Spark
[141] library developed for graph processing. It is a fault-tolerant, dis-
tributed, in-memory graph processing framework that adopts the bulk-
synchronous model and is built on top of the Resilient Distributed
Dataset abstraction. GraphX provides a set of primitive operators to
load and interactively query the graph data. GRADOOP is a distributed
framework for graph management and querying [70]. It introduces
a new graph model that extends property graphs, supports Cypher
queries, and the queries are processed using Apache Flink [26].

2.4 Applications of Graphs

Large complex graphs have emerged in a multitude of business domains
[118]. This section reviews some of the main applications of graph analytics.

Financial Graphs The financial sector is one of the most promising sectors
to benefit from the features offered by graph analysis. Several types of fraud
could be detected and prevented in auction and transaction networks using
graph analytics [4], including:

19

Chapter 1. Introduction

* Transactions graph [130]: Frauds are carried out by networks of inter-
mediaries that mimic the legal behavior when carrying out illegal op-
erations. To counter this type of frauds, bank transaction data could be
used to build a transaction network. Each node represents a client, and
each edge represents a transaction. As fraudsters tend to collaborate to
orchestrate complex fraud at large scale, the probability that a customer
is involved in a fraud depends on his entourage, i.e., his neighborhood
in the transaction graph. Graph analytics could be used to define and
retrieve complex fraud patterns, or to score customers by fraud expo-
sure. Thereby, preventing frauds such as the opening of a bank account
with false identities, the use of lost or stolen or non-existent credit cards,
transfer money to illegal destinations, or exceeding legal constraints

e Invoice graph [72]: Companies are linked together by resources shared
(goods, addresses, telephones, personal, etc.). Some of these companies
do not contribute to the economy, do not pay their taxes, and declare
bankruptcy. By analyzing the resource and invoicing networks, one
can find the patterns suspicious that characterize this behavior and can
detect high-risk companies.

E-commerce Graphs A set of interesting graphs are identified in the rapidly
evolving e-commerce sector. Here we discuss two types of relevant graphs
along with their added value:

¢ Purchase graph [79, 139]: This is a bipartite graph, with two types of
nodes (representing products and customers). A link is established be-
tween a product and a customer if the latter has bought this product.
From this graph, two more graphs could be derived: (1) client similarity
graph (two clients are related if they bought similar products), and (2)
similarity graph of the products (two products are related if they were
bought one the same customer). These three graphs allow establishing
several analysis scenarios such as (1) customer profiling by detecting
customer groups, and the VIPs within each group, (2) product segmen-
tation by detecting products representative of each segment, and (3)
targeted marketing personalized to the customer’s profile and tailored
by current product trends.

* Delivery graph: These graphs record the delivery paths of products,
returns, and any movement of stock between different warehouses. The
analysis of this graph is focused on the analysis of delivery paths by
searching especially the shortest or least expensive paths. This graph
makes it possible, for example, to perform analysis scenarios such as
(1) the optimization of the routing path and faster delivery times, and
thus improving customer satisfaction and minimizing returns, (2) the

20

2. Background

improvement of stock locality taking into account trends to minimize
stock movements between transport platforms and warehouses, and (3)
fight against frauds, by identifying the geographical areas that register
the most of the package losses or unjustified return.

Telecommunication Graphs The telecommunications sector is particularly
suitable for graphs. For example, the following graphs could be built:

* Customer and Call Detail Record graphs [40]: the integration of these
two graphs provides a better understanding of the call routines and
interactions between customers. This information can then be used to
target marketing campaigns, prevent and manage the customer churn,
and detect fraudsters. In the case of the churn, the operator could
use graph-based techniques that aim to identify subscribers who are
likely to churn and encourage them to stay, and especially minimize
the losses caused by the departure of a major client, because it can
cause the departure of its connections by leaving.

* Network infrastructure graph [121]: this graph can be used to model
the different infrastructure components (e.g., routers, antennas, switch,
etc.). By detecting the central nodes and links, graph algorithms make
it possible to better identify the critical network points. This helps to
reduce network congestion and increases performance by optimizing
information exchange.

Source-code Graphs Software development projects can quickly grow in
volume and complexity (millions of lines of code). Graphs are relevant in
this field as they allow an intuitive representation of the source code and its
evolution through the different versions. Graph analytics could help under-
stand the logic encoded in programs (e.g., by analyzing the transitive closures
and hierarchies of call methods), and the removal of redundancies in the code
(e.g., by mining the source code to discover the frequent patterns). The main
source code representations using graphs are [138]:

* Abstract Syntax Tree (AST): This is a tree whose internal nodes are
marked by operators and whose leaves (or external nodes) represent
the operands of these operators.

¢ Control Flow Graph (CFG): A control flow graph is a representation
under the graph form of all the paths that can be followed by a program
during its execution.

* Program Dependence Graph (PDG): The dependency graph represents
the data and control dependencies of a program which allows the detec-

21

Chapter 1. Introduction

tion of potential conflicts and undesirable dependencies between soft-
ware libraries.

Graphs applications at the industrial partner

At EURA NOVA, graphs are considered as an important research topic and
a promising technology that often brings a competitive advantage. Many
graph-related research directions were explored such as graph-based im-
age retrieval, graph databases design and benchmarking, knowledge graphs,
etc. This Ph.D. was proposed to explore the promising integration of graphs
within decision-making systems, and particularly data warehouses. The chal-
lenges discussed above are encountered by EURANOVA's customers, and we
found graphs to be a natural fit to model and solve many of their challenges.
Here we briefly discuss three use-cases:

* Fraud Detection and Prevention: Graph OLAP techniques can also
be used to examine potentially fraudulent behavior across a variety of
domains such as Telco and financial services. For example, we used
graphs to represent the network of customers and quantify their expo-
sure to fraud through various dimensions such as proximity, location,
and age. This enabled OLAP queries such as (1) retrieving the cus-
tomers most and least exposed to fraud by year, city, and age, and (2)
calculating the average exposure to fraud for a customer segment from
a given location at a specific period, to assess the evolution of the expo-
sure to fraud after prevention measures have been taken.

* Customer 360: Companies thrive to understand their customers and
adjust their offerings to meet their expectations. This use-case often
requires the integration and display of heterogeneous entities and their
relationships. Graphs are often a natural fit when it comes to building
a 360 platform, thanks to their intuitiveness and flexibility.

¢ Commerce Organization: Optimizing the distribution of shops in Brus-
sels is a challenging task given the situation in the city center which is
regularly affected by various events (mobility plans, alert levels, vari-
ous events, etc.). EURA NOVA partnered with a governmental agency
to draw insights that would be useful for the revitalization of Brus-
sels businesses. In this project, we represented the data about shops as
a graph that described the different commercial activities of Brussels,
as well as the profiles of the customers frequenting these businesses.
Graphs offered a new multidimensional perspective on the data, which
allowed a joint analysis of the commerce distribution and activities, and
their interconnection with the commercial pedestrian flow in Brussels
over different periods.

22

3. Objectives and Contributions

As customers are accustomed to using BI as the cornerstone for their data
analytics and decision-making processes, preserving the familiar BI while
changing some components to support graphs seemed the best trade-off.
Therefore, we experimented with a wide range of solutions to address the in-
tegration of graph analytics within the decision-making tools. In most cases,
businesses need an interactive graph dashboard, equipped with some graph
derived metrics, and the capability to query the graph. These requirements
could not be satisfied with a simple graph layer built on top of a relational
system but needed an optimized graph storage and processing engine. In
our case, this translates to a dedicated graph warehousing solution capa-
ble of efficiently storing and processing large graphs cubes. However, when
trying to fulfill these requirements, we realized there were no frameworks
ready to combine BI and graphs. To the best of our knowledge, none of the
current data warehouse systems supports graphs. Seemingly, after checking
the academic state-of-the-art, we found several frameworks but with strong
assumptions (homogeneous graphs, no specific graph warehousing frame-
works, not considering graph topology when rethinking the multidimen-
sional constructs on graphs, etc.). Therefore, we formulated the following
objectives in the next section.

3 Objectives and Contributions

In this thesis, we argue for the design of a new database and multidimen-
sional graph models that reflect the rich topological information embedded
in graphs and integrate it within warehousing environments. This section
presents the main objectives and research questions explored in the thesis.

Objective 1: Graph Database Modeling for Analytics Graphs have been
an active field of studies for decades [94]. The importance of graphs as a fun-
damental structure underpinning many real-world applications is no longer
to be proved [3]. A plethora of frameworks were developed for the process-
ing, management, and analysis of graph data [10, 14]. In particular, graph
databases play a key role as the backbone for efficient storage, management,
and querying of graph data [20]. However, current graph database mod-
els and systems are mainly designed for OLTP workloads and do not pro-
vide the required foundations for graph warehousing. Indeed, graphs and
data warehousing are, in essence, contradictory from a modeling perspec-
tive. Graphs advocate for a flexible schema-less approach, while warehous-
ing requires strict modeling to automate ETL and OLAP cube computation.
Emerging models such as property graphs propose simple data structures
and are loosely constrained, which makes it difficult to deterministically de-
fine and map advanced multidimensional concepts to graph structures or to

23

Chapter 1. Introduction

later automate tasks such as the identification of potential multidimensional
concepts and extraction of graph cubes. Moreover, due to the rich properties
and literature on graphs, one faces multiple options when designing a graph
database model. For example, whether to work with graphs, hypergraph,
or triples, whether to support directed or undirected graphs, which graph
elements should be attributed or labeled, etc.

Therefore, with the rising importance of graphs in industry, we witness a
growing need for new graph database models optimized for advanced an-
alytics of large graphs, and particularly for warehousing and OLAP work-
loads.

To accommodate graph warehousing, a graph database model is expected
to provide (1) analytical graph structures that capture rich semantics such as
hierarchies, (2) a set of operators to manipulate the graph and extract graph
metrics, and (3) a set of rules to enforce and preserve the integrity of the
graph data through the different integration and transformation operations.
We identify this need for extending data warehousing with graph analytics,
and particularly the need for a graph database model capable of supporting
warehousing scenarios, as a first challenge to be addressed in this thesis.
We start from a thorough analysis of the current state-of-the-art to identify
potential drawbacks and formulate the first open question tackled in this
thesis as follows:

Research Question 1: "how to model a graph to make it ready for warehousing and
multidimensional analysis?” More specifically:

1. What are the graph data structures oriented for graph warehousing and
OLAP analytics?

2. What are the canonical algebraic operators required for the manipula-
tion and OLAP analysis of graphs?

3. What are the integrity constraints that need to be enforced to guarantee
the integrity of the graph data through the different transformations?

Contribution 1: We answer this first question by proposing GRAD (GRAph
Database model), a native graph database model tailored for graph ware-
housing, in compliance with Codd’s definition of a database model. GRAD
formalizes the graph data structures, integrity constraints, and algebraic op-
erators required from a graph modeling perspective to support graph ware-
housing. Therefore, GRAD defines advanced graph structures to capture and
project the common notions present in established conceptual data model-
ing languages on graphs. These structures are semantically rich and self-
descriptive (e.g., entity node, aggregation edges, etc.), and natively support
complex semantics such as encapsulation and composition (e.g., using hy-
pernodes) to simplify data integration and multidimensional modeling tasks.
Besides, to enforce the graph data consistency, GRAD defines a set of integrity

24

3. Objectives and Contributions

constraints tailored to its graph data structures. Two types of constraints are
defined: (1) Graph entity integrity, used to guarantee that each real-world
entity is uniquely represented and identified, and (2) Semantic constraints,
which are user-defined constraints that represent the assertions on the graph
elements enforced by graph pattern checking. At the operators level, GRAD
proposes a set of algebraic operators oriented for online graph querying of
GRAD structures while preserving the integrity constraints. The analysis is
mainly performed through traversal and matching operations, and GRAD
structures are the operands and the return type of all the operators. The
algebra is defined on the lines of relational algebra and inherits at least the
same expressive power.

The design choices made in GRAD were taken with graph warehousing as the
main use-case. For example, GRAD facilitates data integration by introduc-
ing attributes reification which simplifies data integration and historization.
As illustrated through the algebraic operations, GRAD graphs could be easily
composited without losing changes in node attributes. Hence, it could serve
at both the ETL and the multidimensional analysis phases. In a graph setting,
the ETL process should support tasks such as identification, transformation,
matching, and insertion of the incoming nodes and edges in the graph data
warehouse. As explained through Chapter 3, the algebra, and specifically
the composition and join operations are particularly well-suited for the im-
plementation of the transformation operations. Moreover, data quality could
be enforced using integrity constraints checking mechanisms. At the multi-
dimensional design phase, each class of hypernode in GRAD is a potential
dimension. Multiplicities are implicit for specific types of edges (e.g., com-
position and aggregation are to-one relationships). The information inferred
from relationship types or explicitly given as a constraint by the user could
help in designing the OLAP dimension hierarchies and support the graph
cube aggregation process.

GRAD is detailed in Chapter 3, and was published in the paper [50], which
was in part based on the earlier work of [52] presented in Appendix A. The
work published in [52] is subsumed by [50] and it is therefore listed in the
appendix for completeness, but it is not required to follow the thesis flow.

Objective 2: Multidimensional Modeling and OLAP Analysis of Graphs
The added-value brought by graph analytics to decision-making systems
motivates the need to extend current data warehouses with graph capabil-
ities. This calls for the design of a multidimensional graph model to organize
the data and re-think OLAP analysis to capture and expose graph topol-
ogy and content. The initial efforts on graph warehousing laid the founda-
tion for the multidimensional modeling and analysis of graphs [103]. The
first papers introduced the notions of graph OLAP and graph cubes, formal-

25

Chapter 1. Introduction

ized new graph OLAP operations, and designed custom materialization tech-
niques. However, most of the current approaches simply map relational-like
multidimensional concepts to graphs, without exploiting its topology. They
partially tackle the graph warehousing problem by making strong assump-
tions and being restricted to simple abstractions such as homogeneous or
non attributed graphs. Advanced topics such as dimension hierarchies and
graph-specific multidimensional concepts are not thoroughly studied. Be-
sides, multidimensional integrity constraints on graphs, needed to guarantee
the integrity of the multidimensional space, were completely overlooked by
current approaches. Finally, the proposed graph cubes expose only partially
the graph topology. These missing blocks in the proposed approaches leave
room for improvement when it comes to designing and building a graph
warehousing model aware of the topological aspects of the graphs and ready
for industrial deployment. This leads to the second questions we tackle in
this thesis:

Research Question 2: "how to design a multidimensional model aware of the topo-
logical characteristic of the graph, and how to leverage these properties in OLAP
analysis?” The challenges raised here could be articulated around the follow-
ing questions:

1. How to project the conceptual multi-dimensional structures on graphs
to design the so-called multidimensional graph, while leveraging its
topological properties. Specifically, what is a dimension, a measure, a
fact, and a cube in a graph?

2. What is the advantage of using our analytics oriented graph model
when designing the multidimensional graph model compared to using
a property graph or the relational model?

3. What kind of novel graph cubes could be extracted from a multidimen-
sional graph?

4. What are the algebraic operators and algorithms needed to compute
and query graph cubes?

Contribution 2: We answer this second question in two phases. First, we
define the multidimensional concepts for heterogeneous attributed graphs
and highlight the new types of measures that could be derived. We apply
this on property graphs and explore how to extract the candidate multidi-
mensional concepts and build graph cubes. Then, we extend the multidimen-
sional model by integrating GRAD. Indeed, GRAD explicitly supports rich
types of edges such as generalization and aggregation and enables a finer or-
ganization of the content of nodes using hypernodes. We use these character-
istics to support dimension hierarchies and build new types of OLAP cubes
on graphs. In particular, we illustrate how this extension enables supporting

26

3. Objectives and Contributions

advanced concepts such as dimension hierarchies within multidimensional
graphs. As a result, we show how graph modeling based on GRAD eases
and facilitates multidimensional modeling.

In the second phase, we propose TopoGraph, an end-to-end graph data ware-
housing framework that extends state-of-the-art models with new types of
cubes and queries combining graph-oriented and OLAP querying. Topo-
Graph goes beyond traditional OLAP cubes by considering the topological
properties of the graph elements. And it goes beyond current graph ware-
housing models by proposing new types of graph-structured cubes. These
cubes embed a rich repertoire of measures that could be represented with
numerical values, with entire graphs, or as a combination of them. The cor-
respondence between these graph cubes and traditional OLAP cubes is stud-
ied and the result motivates the need for native graph warehousing systems.
Besides, multidimensional integrity constraints on graphs, completely over-
looked by current approaches, are discussed, and we show how TopoGraph
cubes guarantee them. Multidimensional integrity constraints are required
to ensure the design of sound multidimensional spaces and the correct place-
ment and summarizability of graph measures throughout the different per-
spectives and aggregation levels. Given the graph cubes, we define a set of
operators aiming at providing answers to complex questions, that require the
analysis of both the content and the topology of the graph. The algebraic
OLAP operators for the proposed graph cubes were designed on the lines of
the multidimensional algebra. Thus, enabling complex graph querying and
OLAP analysis of the topology and content of graph cubes from different
perspectives and through different aggregation levels. TopoGraph was im-
plemented and experimentally validated with different types of real-world
datasets, and used at the core of a social network analysis framework.

We present this work in Chapters 4 and 5, published in papers [49] and [51]
respectively.

Objective 3: Architecture of a Graph Warehouse Data warehouses are con-
sidered as the reference central information repository for decision-making.
Current data warehousing systems are based on the relational model and
were developed to handle tabular structured data. However, relational sys-
tems are not well-equipped for the efficient analysis and aggregation of the
topological information characterizing graph data [120]. Graph warehous-
ing is therefore an emerging field that extends current information systems
with the capability of multidimensional management and analysis of graphs
[35, 82, 85]. The variety, complexity, and sheer volume of graphs in a data
warehousing context pose challenges to traditional techniques for storage
and analysis of graph data. Besides, graph cubes have a different structure
from their relational counterpart, and OLAP operations exhibit different ac-

27

Chapter 1. Introduction

cess and manipulation patterns. Given these specificities of graph warehous-
ing, there is a need for unified graph warehousing architecture, designed on
the lines of traditional warehousing, but optimized for graph storage and
processing, aware of the specific characteristics of graphs, and leveraging its
structural properties. The third question we tackle in this thesis is, therefore:
Research Question 3: "what are the main building blocks of a graph warehouse,
and how could they be unified in a comprehensive architecture?”

Contribution 3: We answer the third question by proposing an archi-
tecture of a graph warehousing framework augmented with machine learn-
ing capabilities. While adopting a similar template as the traditional BI and
warehousing systems (i.e., it preserves the familiar analytics workflow), we
extend current systems with graph-aware components that deliver graph-
derived insights. The architecture illustrates how the graph data flows from
the sources, through the ETL process, the graph warehouse, marts, and graph
cubes to the analysis layer. At the core of the proposed architecture, we po-
sition GRAD as the recommended database model, and TopoGraph as the
warehousing framework covering the graph cubes’ computation and analy-
sis. Besides, we enrich the architecture with a set of other complementary
components for optimization and assistance purposes. This includes ma-
chine learning-based features such as the automated discovery of potential
multidimensional schema and cubes and the extraction of interesting pat-
terns. The integration of graph warehousing and machine learning lays the
foundations for promising future research directions. Through this thesis, we
implemented multiple parts of this architecture. We proposed prototypical
implementations for both GRAD and TopoGraph and illustrated their usage
in warehousing scenarios. Besides, through the collaboration with the indus-
trial partner, we built a multitude of graph libraries and dashboards related to
the proposed architecture. For example, we implemented a distributed algo-
rithm for OLAP cubes computation and aggregation using the Map-Reduce
model on top of Spark. And we designed an algorithm for the discovery of
interesting patterns in large graph cubes. Together, these libraries provide
an implementation of the architecture and a first prototype of an end-to-end
graph data warehouse.

This architecture is introduced in Chapter 6 and in [48]. We explored some
of the suggested improvements in master thesis collaborations and published
the results in the papers [41, 42, 126].

Figure 1.7 presents a simplified version of the graph warehousing archi-
tecture, presented in more detail later in this Chapter. The components are
numbered, and they related to our work as follows:

* GRAD is designed to model the data at the graph warehouse level (com-
ponent 2).

* TopoGraph covers the design, computation, and querying of graph

28

4. Thesis Overview

Graph BI Dashboard @

OLAP Querying ©O) Cube Mining

Graph Cubes .I .I
Aggregation & Measures Computation h 'ﬁ h ‘m h

Graph Marts E E

MD Schema 1 MD Schema n

@ (O MD Schema Definition/MD Concept Discovery)

| |

Graph Analysis

QOUBUIAAO) SSAI01J Pue BIB(]
Surssooo1q ydern yuanigg

0@

@

& 7“&;)? Graph Warehouse
&8 il @ Multidi ional Graph
Raw Data Graph ETL ‘i

Fig. 1.7: Graph BI Framework Architecture

cubes (components 3, 4, 5, and 6).

* We built multiple graph analysis applications with custom dashboards
as part of our collaboration with the industrial partner (component 7).

¢ The efficient computation of graph cubes and the auto-tuning of graph
processing were tackled in a complementary work in papers [42, 48,
126] (component 9).

Component 1 refers to the ETL process, although we developed scripts
to transform raw data into GRAD and property graphs, a systematic study
of graph ETL remains out of the scope of this thesis. Component 8 refers
to data and process governance, which is a metadata layer systematically
tracking what happens in the warehousing system and falls as well out of
the scope of the intended work.

4 Thesis Overview
This section summarizes the chapters of this Ph.D. thesis. For details on the

formal definition, algorithmic framework, and experimental results we refer
readers to the corresponding chapters. This thesis is organized as a collection

29

Chapter 1. Introduction

of individual research papers. Each chapter is self-contained and can be read
in isolation. There can be some overlaps of concepts, examples, and texts in
the introduction and sections of different chapters as they are formulated in
relatively similar kinds of settings.

The papers included in this thesis are listed below:

1. The graph database model GRAD, presented in Chapter 3, is based on
the article: GRAD: On Graph Database Modeling [50].

2. The design of the multidimensional model, and the graph cubes extrac-
tion techniques, presented in Chapter 4, are based on the conference
paper: A Framework for Building OLAP Cubes on Graphs [49].

3. The advanced OLAP modeling and analysis techniques on graph cubes,
presented in Chapter 5, are based on the journal article: TopoGraph: An
End-To-End Framework to Build and Analyze Graph Cubes [51].

4. The graph Bl overview and architecture presented in Chapter 6 are
based on the conference paper: Graph Bl & Analytics: Current State and
Future Challenges [48].

5. The evolving graph model presented in Appendix A is based on the
conference paper: An Analytics-Aware Conceptual Model for Evolving
Graphs [52]. This paper is subsumed by [50] and it is therefore listed
in the appendix for completeness, but it is not required to follow the
thesis flow.

4.1 Graph Database Modeling for Analytics

This chapter addresses the need for a native and analytics-aware graph
database model by designing GRAD (GRAph Database model).

Data Structures Multiple conceptual models, such as UML and EER, exist
in the literature to support and standardize the representation of different do-
mains and applications. We map the common core entities from these mod-
els to GRAD, and formally define them using the graph data structures as
depicted in the meta-model of Figure 1.8. In GRAD, we consider attributed,
labeled, directed multi-graphs, and extend property graphs by assigning spe-
cific semantics to graph nodes and edges. The data structures assist the de-
signer in his task of representing and organizing the real-world entities using
graphs as first-class citizens. The key data structures in GRAD are:

¢ Entity node: a labeled attributed node that represents the core informa-
tion about a real-world graph element. The label denotes its class, and
the attributes are its unique identifier.

30

4. Thesis Overview

e Attribute node: a labeled node, where the label denotes an attribute of
the entity node that is not an identifier.

¢ Literal node: an attributed node that stores the value of its associated
attribute node in a specific given context.

* Entity edge: a labeled and attributed edge that links a pair of entity
nodes. It has a type that specifies the relationship which could be:
Association, Generalization, Aggregation, or Composition.

* Attribute edge: represents a composition relationship between an at-
tribute node and its parent entity node. Attribute edges do not embed
attributes or labels.

e Literal edge: an attributed edge that reflects a composition relationship
between a literal node (part) and its parent attribute node (composite).
Attributes describe the context of the value of the literal node.

* Hypernode: a subgraph that groups an entity node v;, the set of all
the attribute nodes attached to v;, and the set of all the literal nodes
attached to the attribute nodes of v;. In addition to all the edges linking
the attribute and literal nodes related to v;. The label of an entity node
defines the class of the hypernode.

In short, GRAD brings the power of meta-modeling and modeling from
traditional software engineering to graphs, as required for data warehousing.
The schema part of Figure 1.8 shows how the movie graph could be modeled
using GRAD, and the instance part illustrates an instance of the schema fo-
cusing on the rating subgraph related to the movie.

Integrity Constraints They are the general rules describing the consistent
database states, or change of states, or both [34]. The goal of these con-
straints is to guarantee the compliance of the graph data with respect to
given domain-specific rules. They play a fundamental role in data quality
enforcement within data management systems, and especially for decision
support systems. We identify two integrity constraints relevant to GRAD:

¢ Graph entity integrity: This constraint is used to guarantee that each
real-world entity is represented by a unique hypernode. It also provides
the mechanisms for nodes and edges identification through specific at-
tributes (i.e., ID) and/or structural properties such as neighborhoods.
This prevents data redundancy of data and helps to fulfill consistent
updates and deletions of graph entities.

* Semantic constraints: These are user-defined constraints. The first type
represents the assertions (i.e., topological and value-based constraints)

31

Attribute Node Va

<Attributes>

Literal Node V[
<Value>

Metamodel

Attribute Edg

Chapter 1. Introduction

Caption

Entity Node V
<Label, ID>
Entity Node
</> Attribute Node
@ Literal Node
Entity Edge E

<Label, Type, Attributes>

Label: COUNTRY

LocatedIN___,
Aggregation -ID

77777777 FilmedIN~-_

Label: DIRECTOR

N
\,

Association

Association «
Label: MOVIE |

‘\ DIRECTS__ |

-ID

StarWarslV Hyggl;npde __ \’A\ _

Type:audience
- ~Association
rank:5

."/ -ID
\\\\ Type ///
[oo Assoctation Label: ACTOR
-ID
LOCATION LocatedIN COUNTRY
ID:Tikal Aggregation ID:Guatemala
DIRECTOR

FilmedIN ~~ _

ID:George_Lucas

Association
1 N
MOVIE \
ID:3638 \ DIRECTS
/’ Association
{_ ACTS
/// Association
AeT§ rank:1
ACTOR
ID:Mark Hamill

ACTOR
ID: Alec_Guinness

Instance
Fig. 1.8: Modeling Movie Graph with GRAD structures

32

4. Thesis Overview

defined on the graph elements. The second type focuses on cardinality
checking between classes of nodes. We study two categories of such
constraints: assertions and multiplicities. Assertions are predicates ap-
plied to the graph data and must always be satisfied. In GRAD, they are
represented using graph patterns to specify the topological and content-
based constraints chosen by the user. Multiplicities are applied between
classes of entity nodes to define the number of relationships a node
from a given class can have with nodes from other classes through a
particular entity edge.

For example, an assertion could be defined as "all movies on the graph should
have an attribute node labeled Rating, with the rating value Audience between
0 and 10". Multiplicity could be that an actor can participate in many movies
but that a movie should have at least one actor, which is specified on the
ACTS edge.

Algebra We complete GRAD with a graph algebra, consisting of a set of
algebraic operators that supports its data structures while preserving the in-
tegrity constraints. The algebra extends GraphQL, a relationally complete
graph algebra defined in [60]. The algebraic operators of GRAD are:

Selection: a subgraph extraction operation based on graph pattern
matching. The selection returns the subgraph (or set of subgraphs)
of the data graph that satisfies the content and topological constraints
specified by a given graph pattern.

Cartesian Product: a binary operator applied to put together two collec-
tions of graphs. The input is two collections of graphs S1 and S2. The
result is a set of pairs of unconnected graphs. Each graph on the output
is composed of a graph from S1 and a graph from S2 respectively.

Composition: reuses the information extracted from the input graph
data to generate new graphs. This operator is used to create a new
graph based on data collected from the original graph, then formatted
according to a given graph template.

Set operators (Union and Difference): A union between two graphs sim-
ply generates a new graph putting together the two input graphs with-
out concatenation. The difference between graphs removes isomorphic
subgraphs that exist in the two input graphs.

Structural Graph Join: consists in the unification of nodes and edges
based on a common join predicate.

33

Chapter 1. Introduction

8>
Label = ACTOR ACTOR Type: Audience
ID: Chris_Pine @
Ranking:1
MOVIE
ID: Star Trek
MOVIE | ACTOR

ID: Mission_Imp3[~ ACTS |ID: Tom_Cruise]
Ranking : 1

Label = ACTS
Ranking=1

)

Selection

Output Network

Fig. 1.9: Top movies and actors network

Example 4.1 (Top Movies Selection and Integration)

Figure 1.9 shows a selection operation to return the network of the top-
rated movies by the audience (i.e., movies rated above 7), and the first
actor of each of those movies. The pattern applies constraints on the labels
of entity nodes ("ACTOR" and "MOVIE"), the label and attribute of their
linking entity edge (the label is "ACTS", and the attribute is "Ranking = 1"),
the labels of movies attribute nodes (the label is "Rating") and the rating
values (value in the literal node > 7).

Figure 1.10 illustrates a join operation used to integrate new incoming data
about movies with the existing graph. Therefore, existing entities have to
be merged with their corresponding incoming ones. In this example, the
correspondence between the existing nodes and potential incoming nodes
is performed based on the identifiers of the movie nodes. After the fusion,
we can notice that the two movie nodes (with ID= 3884) are merged and an
additional type of attribute nodes (Score) is attached to the existing movie
as shown on the first join on Figure 1.10. Once the entity nodes and their
attribute nodes are merged, another possible scenario could be the fusion
of attribute nodes of the movie node. This is shown in the second join in
Figure 1.10, thus adding the new captured rating values as literal nodes
attached to the Rating attribute node.

4.2 Multidimensional Modeling of Graphs

Many approaches were proposed in the literature to extend current decision
support systems with graphs [103]. They suggested the first foundations for

34

4. Thesis Overview

Type:Ahdience Type: [TopCritics Type:Audience Type: [TopCritics Type: [Expert

MOVIELID = MOVIE2.ID
&

FV(MOVIEL li) = F\(MOVIE2, li

MOVIE
1D:3884

MOVIE

ID: 3884 1D:3884

Type:Audience, Type: Expert Type: TopCritics

@D

Fig. 1.10: Join on attribute and value nodes

building OLAP cubes on graphs. However, they took strong assumptions
such as homogeneous graphs (i.e., graphs where all nodes are of the same
type, and all edges are the same), and focused mainly on the aggregated
graph as the measure of interest [135, 143]. However, real-world graphs are
complex and often heterogeneous, and more types of measures and dimen-
sions could be explored. In this chapter, we present our extension of graph
cubes to heterogeneous graphs, where not all attributes could be considered
as dimensions, and we examine a new class of measures to get additional in-
sights from the graph topology. We extend the analysis capabilities on graphs
by integrating GRAD, and support advanced concepts such as dimension hi-
erarchies and build additional OLAP cubes on graphs.

Multidimensional Concepts on Graphs We first present the multidimen-
sional concepts on property graphs, then we illustrate them with examples
applied to the movie graph.

* Dimension: provides the possible perspectives for the analysis of the
graph topology and content. In graphs, we distinguish two types of
dimensions: (1) Node-based dimensions, which are represented by the
attributes of the nodes, and (2) Edge-based dimensions, which are rep-
resented by the attribute of the edges.

* Measure: is the basic unit of data that is placed in the multidimen-
sional space and examined through the dimensions. It is computed
over a graph using a function such as the PageRank algorithm, then

35

Chapter 1. Introduction

an aggregation function (e.g., SUM, AVG, etc.) is used to compute an
aggregated value of the measure.

* Graph Cube: corresponds to a set of aggregate graphs obtained by re-
structuring the initial graph in all possible aggregations following the
dimension. An aggregate graph G’ of an initial graph G is a graph ob-
tained by condensing a subset of the nodes and edges of G that satisfy
the aggregation pattern.

To sum-up, a graph cube is the fundamental structure supporting the mul-
tidimensional modeling and analysis of the graph data. It consists of multiple
graph cuboids, each of which is a multidimensional aggregate graph built by
aggregating the original multidimensional property graph using the dimen-
sional attributes. The lattice is used to represent and organize all the possible
multidimensional aggregations of the graph. Graph cuboids relate between
them when a cuboid contains an attribute with a roll-up relationship, i.e.,
belong to the same dimension hierarchy and are directly related. Given n
dimensional attributes, the graph cube contains 2" graph cuboids that could
be aggregated following the lattice structure. We distinguish two particular
graph cuboids: (1) the base graph cuboid (where the multidimensional graph
is at the base level), and (2) the apex graph cuboid (where the multidimen-
sional graph is aggregated to the top-level).

In addition, we classify graph measures, based on the type and the com-
putation algorithm as follows:

* Content-Based Measures: are extracted from the attributes of graph
elements. These measures are similar to traditional measures and do
not capture the graph topology.

* Graph-Specific Measures: capture the topological properties of graphs
and are obtained by applying graph algorithms. They could be classi-
fied according to the type of their output as either (1) numerical, or (2)
topological, where the measure is represented using graph structures.

* The Graph as a Measure: the graph itself could be considered as a mea-
sure examined from different perspectives and at different aggregation
levels [28].

Given a property graph and a pair of nodes from two connected but dis-
tinct classes of nodes, we explore the candidate dimensions, measures, and
cubes that could be built by exploring the graph of these two classes. In par-
ticular, we identify inter-class dimensions as the dimensions that span across
two linked classes. In this case, the candidate node-based dimensions are the
attributes of the two nodes each from a class, and the candidate edge-based
dimensions are a subset of the attributes of the edge relating them. Simi-
larly, inter-class measures are computed by applying an aggregation function

36

4. Thesis Overview

ACTS
ACTS Website: MC
Website: RT rar}klr_!g:4 Tabel: ACTOR
D X Ruffal ranking:2 rating: 3.9 ID: Michael Cain
D: Mark_Ruffalo rating: 4.1 [Title: Now You See Me e e
Nat: USA Rdate: 05/2013 Do
BDate: 1967 y BDate: 1933

Gender: Male Gender: Male

Website: RT
ranking:4
rating:3.9
Label: MOVIE
1D:7317

ranking:1
rating:4.3

Title: Interstellar
Rdate: 11/2014

ACTS

Website: M .
L Title: Avengers: Endgame Country:USA
ranking:3 Rdate: 04/2019 ountry:
rating: 3.9 Country:USA Website: RT ACTS
ranking:3 Website: M

ACTS rating:3.9 ranking:4

Label: ACTOR

Website: MC rating:3.2 . y
Label: MOVIE ranking:2 Tabel: ACTOR IDAT.\']\:'IE;-I:thaWa
ID: 4354 rating: 4.2 /° ID: Chris_Hemsworth BDate: 1982
Title: The Avengers Nat AUS

Rdate: 05/2012 Gender: Female

ountry:USA BDate: 1983

Gender: Male

Fig. 1.11: Sample Movie Graph

on the attributes of the edges. The graph considered as a measure is obtained
following the graph lattice, and the graph-specific measures are obtained by
applying a graph algorithm on the multidimensional graph or one of its ag-
gregate graphs.

Example 4.2 (Analysis of Rating and Ranking of Actors)

We take as an example and instance of the movie property graph (Fig-
ure 1.11) and a multidimensional schema of actors rating (Figure 1.12),
and illustrate in Figure 1.13 how to derive graph cubes from a movie graph
represented using property graphs. For example, the attribute gender and
release date could be considered as a dimension, while the attributes rank-
ing and rating are used to derive measures. A graph cube could be de-
rived to study the ranking and rating of actors in the movie graph. Fig-
ure 1.13-(a) shows the aggregate graph (i.e., graph cuboid) where movies
are grouped by release date, and actors are grouped by birth date and gen-
der. A corresponding OLAP cube is shown in Figure 1.13-(b). The mea-
sures are AverageRanking and AverageRating of actors, which can be ex-
amined through the three dimensions left (i.e., ReleaseDate, DateOf Birth,
and Gender). Following the graph aggregation as depicted by Figure 1.13-
(e), the graph (Figure 1.13-(c)) and the cuboid (Figure 1.13-(d)) at the next
aggregation level are derived.

37

Chapter 1. Introduction

Website
WebsiteID
PageURL
Movie AN Actor
MovielD Performance ActorID
Title Nationality
ReleaseDate Ranking DateOfBirth
Country Rating Gender

Fig. 1.12: Star Schema of Actor Rating

Gender
v e |
e 4, Ranking
Weight: 156 F
1970 1980 1990

1

Graph Aggtegati .
Toph Aggtegation (Movie [*, *], ACTS[*], Actor [D, *, G]) DateOfBirth
(Group Movies k‘u ALL)

/ \ (C) (d)

Gender

Avg

M o | Rating

Avg

Acts AvgRating: 3.6 F 4 Rankin;
AveRaing: 3.5 . o 1970 1980 1990
AvaRanking: 26 2, |% >

Weight: 65 <
DateOfBirth

ReleaseDate

(Movie [R, *], ACTS [*], Actor [D, *, G])

(@) (b)

Fig. 1.13: OLAP aggregation of the movie graph and computation of the OLAP cubes

38

4. Thesis Overview

)

Label: SERIES /'\
L2: Series 1D: {1684; Mission: Impossible}

partOf partOf (Series, *, *) (*, *, Location) (*, Language, *)

Composition Composition /\>‘Q‘<

Label:MOVIE Label:MOVIE)))))
1D: {3623; Ghost Protocol} ‘ ID: {1186 ; Mission: Impossible 111} ‘ (Movie, *,*) (Series, *, Location) ~ (Series, Language, *) ~ (*, Language, Location)
T

L1: Movie

(Movies, *, Location) ~ (Movie, Language, *) (Series, Language, Location)
Location: SP
Period: 05/06
Language: SP

Location: JP
Period: 10112

Location: RU Location: ARG
Period: 10/12 Period: 05/06
Language: U Language: SP
(Movie, Language, Location)

@ (b)
Fig. 1.14: Aggregation of revenue by language

OLAP Cubes on GRAD GRAD supports the modeling and analysis of het-
erogeneous, attributed, and labeled graphs, where complex attributes are
supported on the nodes, and rich semantics is explicitly expressed on the
edges. In the previous paragraph, we used property graphs to study the
candidate multidimensional cubes between classes of nodes. Here, we ex-
plore the additional candidate dimensions, measures, and cubes that could
be extracted from a single class using GRAD. Given a hypernode, we iden-
tify intra-class dimensions as the union of the attributes of the entity node and
the attributes of the literal edge of a given attribute node. Intra-class measures
are then explored within each hypernode. The label of the attribute node is
the name of the measure and the actual values of these measures are em-
bedded in the attributes of the literal nodes. We distinguish here two types
of graph aggregations: (1) Intra-hypernode aggregation, where literal nodes
and edges of the same attribute node are merged, thus the dimensions is an
attribute of the literal edges (e.g., the revenue of a given movie by language),
(2) Inter-hypernode aggregation, where entity nodes could be merged (e.g.,
the revenue of all movies per city, period and language).

Example 4.3 (Analysis of the Revenue of a Movie)

Given the example of Figure 1.14, suppose an analyst needs to analyze
the revenue of movies. Revenue is therefore considered as the name of
the measure, for which the aggregation function is SUM. The values of the
measures are stored within the literal nodes linked to the Revenue attribute
node. The dimensions for the revenue measure are Movie, Location, Period,,
and Language. Given these dimensions, we can aggregate the graph to ex-
amine the value of revenue by navigating through the dimension hierarchy
of the Location dimension from City to Country as shown in Figure 1.14-
(a), or by rolling up to the level ALL of the language dimension as in Fig-
ure 1.14-(b). This is achieved by merging the corresponding literal nodes
storing the measure values.

Another interesting feature of GRAD is the support of hierarchies, which

39

Chapter 1. Introduction

)
L2: Serie Label: SERIES /’\
2: Series ID: {1684; Mission: Impossible}

partor PO (Series, *, *) (%, *, Location) (*, Language, *)

Composition Composition /\>©<]

Label:MOVIE Label:MOVIE) - . o .
ID: {3623; Ghost Protocol} | | ID: {1186 ; Mission: Impossible 11} (Movie, **) (Series, *, Location) (Series, Language, *) (*, Language, Location)

L1: Movie|

(Movies, *, Location) (Movie, Language, *) (Series, Language, Location)

(Movie, Language, Location)

Fig. 1.15: Dimension hierarchy between classes

applies to both inter-class and intra-class dimensions as follows:

* Dimension hierarchy for intra-class dimensions: Within each dimension
(e.g., attribute location of revenue), we might have an inner hierarchy
(e.g., City, Region, and Country). Therefore, we can extend the lattice
with these new possible aggregations as shown in Figure 1.14-(a).

* Dimension hierarchy for inter-class dimensions: Explored between dis-
tinct classes of nodes. Within GRAD, specific types of edges such as
composition and aggregation could be explicitly defined. Therefore,
classes of nodes related by these specific relationships belong to the
same dimension with the hierarchy following the child-parent direc-
tion of these relationships. Figure 1.15-(a) shows the hierarchy of the
movie dimension that is now composed of Movie and Series levels. The
updated lattice is shown in Figure 1.15-(b).

4.3 End-to-End Computation and Analysis of Graph-specific
Cubes

Graph warehousing is emerging as the field that extends current information
systems with large graph management and analytics capabilities. Many ap-
proaches were proposed to address the graph data warehousing challenge
[48, 103]. These efforts laid the foundation for multidimensional model-
ing and analysis of graphs. In this work, we extend the state-of-the-art on
graph warehousing by introducing new types of graph cubes that leverage
both the content and the topology of the graphs and expose topological and
graph-structured insights. We present TopoGraph, a graph data warehous-
ing framework that extends current graph warehousing models with new
types of cubes and queries combining graph-oriented and OLAP querying.
TopoGraph goes beyond traditional OLAP cubes, which process value-based
grouping of tables, by considering in addition the topological properties of
the graph elements. And it goes beyond current graph warehousing models

40

4. Thesis Overview

by proposing new types of graph cubes. These cubes embed a rich repertoire
of measures that could be represented with numerical values, with entire
graphs, or as a combination of them. Given the proposed cubes, TopoGraph
aims at providing answers to complex questions, asked in a business context,
that require the analysis of both the content and the topology of the graph.
Relevantly, TopoGraph is our proposal to overcome the current shortcomings
of graph warehousing approaches resulting from our experience in real-life
enterprise settings.

Multidimensional Structures on Graphs In TopoGraph, we distinguish
three types of graph cubes, depicted in Figure 1.16:

* Property Graph Cube: captures only the content-based properties of
graph elements. Dimensions and measures are a subset of the attributes
of graph elements. It represents our baseline and is similar to a rela-
tional cube in that the measures do not capture the graph topology.

¢ Topological Graph Cube: captures the topological properties of graphs
and represents them with numerical values. They are obtained by re-
structuring the topological multidimensional graph in all possible ag-
gregations through the topological dimensions and/or by embedding
and aggregating topological measures. Topological measures and di-
mensions are a subset of topological attributes such as community and
PageRank.

¢ Graph-structured Cube: captures and represents the dimensional con-
cepts using graphs. The graph-structured dimensions are dimensions
whose values are represented as graphs. They express complex di-
mension values that could not be represented by numerical values and
provide therefore a powerful selection means to examine non-trivial
grouping of nodes or edges. The graph-structured measures are mea-
sures where the values are represented as graphs, which enables cap-
turing and exposing insights and metrics structured as graphs.

Figure 1.17 depicts the coupled processes of (1) aggregation of graph
cubes, and (2) generation of corresponding OLAP cubes and the mapping
kept between them. This mapping is important, as the graph topology corre-
sponding to each OLAP cuboid needs to be preserved to compute the topo-
logical measures such as PageRank. The measures could afterward be loaded
into the OLAP cubes for further multidimensional analysis.

Example 4.4 (Deriving Popularity OLAP cube from the Graph cube)
Given the Twitter multidimensional graph, we design a lattice, as
shown in Figure 1.17. Each point in the lattice corresponds to a

41

Chapter 1. Introduction

Relational Cube Topological Cube
Country PageRank
Avg A
Ve Age (Topological Measure)
Cbuntry
Spain S > \:/ Spain N K i/
W o e & K K
France France
25 33 36
0.4 0.5 0.6
Belgi atfc : f
clgium 43 5 w“ Platform Belgium Platform
] 0.6 0.3 0.4
< Q
< 32 46 39
Q A 0.2 0.4 0.6
Country Commuffity
(Topological Dimension)
Graph-structured Cube Country Graph-structured Cube
" N ou
Country (GS Dimensions) Y (GS Measures)
Number of Most Frequent
Occurrences Pattern
Spain L 434 732 w4+ | D!
®]
France | 634 334 413 Spain — os
el -4 512 456 63
Belgium Representative M
i f } Pattern ©)
Belgium— |(2)
° Platform
| |
4

Twitter Facehook

Fig. 1.16: Types of Derived OLAP Cubes

graph cuboid. For simplicity, we consider the dimension attributes:
{Location, Community, Plat form}, while ignoring the hierarchies of the lo-
cation dimension. We highlight two particular aggregations: (1) node-only
aggregations (i.e., only dimensional attributes from user nodes are kept
not fully aggregated as in ((Location, Community,), (Location, *, x, x), and
(%, Community, x)), and (2) edge-only aggregation as in ({x, *, Platform)).
The fact analyzed is the popularity of users. The measure is PageRank,
computed by applying the PageRank algorithm in the social network fol-
lowing the edges labeled Connected.

The topological and graph-structured cubes enable structuring the mul-
tidimensional space in a novel way capturing graph elements that are con-
nected in a complex manner. Another main benefit of graph cubes is that they
minimize the information loss, as they keep the graph structure after being
computed or aggregated. A common assumption is that each graph cuboid
can be loaded into a relational OLAP cube. This is true for content-based
graph cubes. However, loading a graph cuboid into a relational cube causes
the loss of the graph structure. Therefore, current warehousing systems are
not designed to support this type of cubes, which further motivates the need
for developing native graph warehousing systems.

42

4. Thesis Overview

G—

03 06 04
Location

BE FR SP

<Community, Plattorm> <Pattorm, Location>

Community =

3 Pidtform: OLAP Cubes can :

Al 03 05 o ¢ generated from the graph

B{os o5 03 +— | cuboids :
|BE :=R ISP Location <Community> X <Platform> X <Location>

Fig. 1.17: OLAP Cube Generation form Graphs

43

Chapter 1. Introduction

Integrity constraints Multidimensional aggregation of a property graph is
the operation of consolidating a set of graph elements into a single one lo-
cated at a higher level of the lattice. Two constraints need to be enforced
when building graph cubes: (1) correct aggregation of the graph cuboids,
and (2) correct placement of the graph measures within the multidimensional
space. To ensure a correct aggregation of cube measures along dimension
hierarchies, the graph aggregation should satisfy three constraints (1) com-
pleteness, so that every graph element is associated to at least one dimension
level, (2) disjointness, so that each graph element is included at most once to
create an aggregate entity and could not belong to more than one dimension
level at once, and (3) compatibility between the aggregation algorithm and
the aggregate graph elements to prevent non-meaningful operations. These
constraints were defined on the lines of the summarizability constraints in-
troduced by Lenz and Shoshani in [80], but with the notable difference of
capturing the graph topology (such as aggregation using graph patterns) and
ensuring the compatibility with graph measures (such as preventing the sum
of PageRank of aggregated users). Multidimensional integrity constraints on
graphs were completely overlooked by current approaches. To the best of our
knowledge, our framework is the first to define and guarantee the multidi-
mensional integrity constraints on graphs.

OLAP Analysis of Graph Cubes OLAP analytics supports interactive and
complex queries over large volumes of data, from different perspectives and
through different hierarchical levels. Thus, enabling analysts to highlight the
data item of interest, and then drill down to the underlying data from which
it has been created. This could help in decision support scenarios such as the
measurement or comparison of the business performance across the different
dimensions. In this section, we describe a set of algebraic operators for OLAP
querying of multidimensional graphs. We consider the graph cubes defined
and computed in the previous sections as the fundamental construct of the
multidimensional model. The graph cubes are the operand and the return
type of all OLAP operations. We illustrate the application of each operation
on a graph cuboid and its corresponding OLAP cube. In addition to the
cuboid and crossboid operations that were defined in the literature [143], we
present the major OLAP operations applied on graph and OLAP cubes.

* Multidimensional selection: restricts the graph to a subgraph where all
nodes and edges match the selection pattern.

* Roll-up/Drill-down: aggregates the graph along its dimensions. This op-
eration modifies the granularity of the graph using a many-to-one rela-
tionship which relates instances of two levels in the same dimension hi-
erarchy, corresponding to a part-whole relationship. Roll-up performs

44

4. Thesis Overview

structural changes to the graph and generates a new graph placed at
the next level of the dimension hierarchy while respecting the summa-
rizability integrity constraints. Roll-up is implemented in three phases
(1) first a selection of graph elements matching the aggregation pattern
that describes the graph elements, then, (2) the graph aggregation to
shape the graph at the aggregation level, and finally (3) measures are
(re)computed and placed on the aggregate graph.

* Drill-across/Projection: This operation changes the subject of analysis of
the cube using a one-to-one relationship. The n-dimensional space re-
mains the same, only the cells placed on it change. With this operation,
different measures are placed on the same multidimensional space. Pro-
jection is the reverse operation of a drill-across. It selects a subset of
measures of interest to be studied within the multidimensional space.

Example 4.5 (Combining Topological and Graph Structured Measures)
Figure 1.18 shows an example of a drill-across between a topological and a
graph-structured cube. Both cubes are placed in a cube having as dimen-
sions ((Community), (Country)). The first is a graph-structured cube con-
taining representative communities, and the second is a topological cube
containing PageRank. Using drill-across, the measures from the two cubes
could be embedded in the same cells and analyzed within the same cube.
Inversely, a projection would for instance remove the measure representa-
tive community from the cube to focus only on studying the PageRank.

Implementation We implemented and experimentally validated Topo-
Graph'’s efficiency with different public real-world datasets such as Twitter,
DBLP, and LiveJournal, and in different sizes up to 34 million edges. We
compared the cuboid generation and aggregation time for each dataset at
different levels. An illustration of the use of TopoGraph for the analysis of a
social network is described as depicted in Figure 1.19.

4.4 Architecture of Graph Data Warehouse

The topological properties of graphs are of big potential to decision-making
systems. They supply these systems with a new class of complex structural
business facts and measures that could be explored for making more accu-
rate decisions in data-driven organizations. In current information systems,
Business Intelligence (BI) systems are critical for strategic decision-making.
Graph BI, in particular, is emerging as the BI field that extends current BI sys-
tems with graph analytics capabilities. It enables graph-based insights such

45

Chapter 1. Introduction

Country

Country

Spai O,
s+ e‘ Spain. == 07 0.2

Belgium _L 04 0.6
Jeium — | |
Belgium 4 I I Community
f f A B
Community
A
o
Page ost
huent Pattdrn
Country
- Representative Community
- PageRank
1 /
Spain _|_ e o 7
0.7 02)
Belgium™[~ e
0.4 ° 0.6
Il 1
I |
A B Community
Fig. 1.18: Drill-across and Projection
Data Source Graph Construction Graph Cube Construction Applications
Y
i N
Graph Extraction Graph
Cuboid

Stream Parsing

Graph
Aggregation
&

Text Analytics

(Entity detection, matching,

Visualization

=
£
g
3
=
]
2
7z
)
(<]

Q
5
=
Sentiment Analysis ...) Measure (:g
Computation N |8
2
Twitier Graph Loadinz Subgrapl a— = Graph
¥ Selectior] Y Graph = Browser
Streaming (MD Subgraph Cuboid
API Exiraction
v Topo & GS Measures ~—

Comyjutation

Y

witter h
Twitter Grap! Graph Mining

Graph Enrichment
(Similarity Computation ...

Fig. 1.19: Social Networks Warehousing

46

4. Thesis Overview

as detection of popular users or communities in social networks, or revealing
hidden interaction patterns in financial networks. The structure-driven man-
agement and analytics of graph data call for the development of novel data
models, query processing paradigms, and storage techniques. Therefore, as
motivated by multiple research lines [43, 83], current Bl and analytics systems
need to be extended to efficiently support warehousing [38], processing [120],
mining [119] and OLAP analysis [103] of the graph structural and content-
based information.
In this work, we surveyed the state-of-the-art on graph Bl and analytics and
proposed an architecture of a Graph Bl and Analytics platform augmented
with machine learning capabilities, which lays the foundations for promising
future research directions. We note that, while adopting a similar template as
the traditional BI systems (i.e., it preserves the familiar data analytics work-
flow), graph BI extends current systems with graph-aware components that
deliver graph-derived insights. Hence, we discussed the main topics related
to graph warehousing, surveyed the existing frameworks for graph analytics,
and identified future research directions, and positioned them within a uni-
fied architecture of a graph BI & analytics framework. Figure 1.20 provides
an overview of the different components of the envisioned graph warehous-
ing system. We highlight our contribution to the graph warehousing topic
by positioning part of the publications made on this thesis in this proposed
architecture.

We describe the main building blocks of a graph BI framework as follows:

¢ Graph Extraction (1): graph data is extracted from different data
sources that could be in various formats and flowing at dynamic rates
such as graph streams. The data is cleaned to capture entities that sat-
isfy the quality constraints.

¢ Graph Construction & Enrichment (2): The captured graph data is in-
tegrated and formatted according to a given graph model. Natural
Language Processing (NLP) algorithms could help in the automated
extraction and construction of multidimensional graphs from unstruc-
tured data such as text.

* Graph Data Warehouse (3): The cleansed and integrated data is natively
stored and managed as a multidimensional graph in the graph ware-
house. The graph warehouse provides a suitable backbone for natively
analyzing graphs with BI tools such as graph OLAP and graph mining.

¢ Cube Design and Computation (4): Given a multidimensional graph,
the graph cubes enable the computation and the aggregation of corre-
sponding graph cuboids. Once the required graph cuboids are com-
puted, the result is persisted in the corresponding data marts. To lever-
age graph properties, graph cubes embed graph-structured measures

47

Chapter 1. Introduction

Graph Cubes Analytics

Graph Cubes
Mining
(Community detection, link
prediction frequent patterns etc.)

Clister

Interactive OLAP
Querying

4]

4]

Visualization onCube

O

Multi-Levels
Graph
Analysis

Multi-Perspectives

Aﬁ Cuboj

Graph Analysis Graph
Selection] Age.
& T
Loading MD Schema n ; Interesting
MD Schema | @ Cuboids
G [Demesmacker et al. [41]]
r =
a
P, P Interesting Graph
- h Cuboid Detection
= 50
£ —
=
& =
E 2
& g R Cuboids
] Graph Cubes Computation .
@ Q A n Analysis
22 P & Materialization
& 2 MD
a 6 Concepts
> = Discovery D
2 G
£ & 1. Dimensions Definition @
€] MD . . 1. Cubes Definition o
Schema 2. Levels Definition .
. . 2. Facts Definition = b
E Generation 3. Attributes Definition e
acts /42|

3 to Graphs

A
Mappimg

Dimension Mapping to Graphs

5 A
T

MD Patterns Matching in Graphs

Data Loading
& Transformation to Graphs

| Ghrab etal. (49, 52]

raph
Extracti

Graph Data Sources

GRAD[30]

SS

Graph Marts

Graph Construction
& Enrichment E
ala

Transform Raw

on

\Graph Data Warehouse’

Fig. 1.20: Architec

ture of a Graph BI & analytics framework

48

5. Summary

and dimensions. There is a need for cube computation and aggregation
libraries capable of efficiently handling graphs.

¢ Discovery of multidimensional concepts and definition of potential
multidimensional schemas (5): Multiple multidimensional schemas
could be built from the same graph warehouse to satisfy the various
analysis needs. Interesting graph entities might be hidden in the large
data sources. Therefore, there is a need for novel graph-aware ap-
proaches that enable automatic detection and extraction of multidimen-
sional concepts from large complex graphs. This will help end-users
cope with the complexity and large volume of graphs, and expose po-
tential interesting discovery to decision-makers.

* Assistance with the analysis and synthesis of graphs (6): Given the
complexity and large size of the initial graph, there is a need for intelli-
gent modules capable of performing an automated preliminary analysis
of the graph to guide the analyst during the exploration of the graph
cubes. The goal is to enable self-service BI and facilitate complex tasks
such as the extraction of meaningful graph summaries or the discovery
of interesting phenomena in graph cuboids.

* Mining (7) and querying OLAP cubes (8): Complex and interactive
OLAP analysis and mining of graph cubes are performed at this phase.
There is a need to develop graph OLAP engines that support graph-
structured cubes. Besides, Online Analytical Mining of graph data is
a promising research direction to empower graph OLAP with mining
capabilities. Graphs are dynamic and enabling OLAP on evolving net-
works by analyzing changing facts and dimensions will help in under-
standing the structural and informational evolution of networks.

5 Summary

Table 1.1 summarizes the objectives and contributions of this thesis and refers
the reader to the related chapters and papers. The following chapters are self-
contained, but each builds on the previous, so we advise to read them in the
order.

49

Chapter 1. Introduction

Research Question

Contributions

Related Chap-
ters and Papers

How to model a graph
to make it ready for
warehousing and
OLAP analytics?

We propose GRAD, a native graph database model
designed primarily for graph data warehousing.
GRAD aims to provide analysts with a set of sim-
ple, well-defined, and adaptable conceptual com-
ponents to support the main warehousing tasks.
It brings the power of established modeling tech-
niques to graph data modeling to better accommo-
date graph warehousing. GRAD introduces a set
of data structures specifically annotated to facili-
tate the identification of multidimensional concepts
such as dimension hierarchies. Besides, a set of in-
tegrity constraints are proposed to ensure consis-
tency. Finally, the model is equipped with content
and topology-aware algebraic operators inspired by
a relationally complete graph algebra and designed
to support OLAP operations.

Chapter 3 [50,
52]

How to design a mul-
tidimensional model
aware of the topolog-
ical characteristic of
the graph, and how to
leverage these proper-
ties in OLAP analysis?

e We define the multidimensional concepts
for graph data, and propose novel tech-
niques for building graph cubes from prop-
erty graphs. We examine the additional graph
cubes brought by GRAD and illustrate their
support for advanced concepts such as di-
mension hierarchies.

e We formally define novel types of graph
cubes that capture both content and topologi-
cal properties of heterogeneous graphs.

e We discuss the big gap between graph cubes
and relational OLAP cubes and motivate the
need for dedicated graph warehousing sys-
tems.

¢ We define the algebraic OLAP operations for
the new graph cubes, and illustrate their ap-
plication for querying the topological infor-
mation embedded in the graphs.

* We propose a prototypical implementation of
TopoGraph and describe the architecture and
the API of a social network analysis frame-
work built with it.

Chapter 4 [49]
and Chapter 5
[51]

What are the main
building blocks of a
graph warehouse, and
how could they be
unified in a compre-
hensive architecture?

We design the architecture of graph warehousing
and analytics platform, similar in its template to
traditional systems, but aware of graph specificity
and augmented with machine learning capabilities.
We overview the main components of the proposed
graph warehousing system and highlight our con-
tributions within.

Chapter 6 [48]

Table 1.1: Summary of the Objectives and Contributions

50

Chapter 2

Related Work

In this chapter, we present the current literature in the field of graph man-
agement and warehousing. The goal is to identify the open challenges and
gaps in the design and optimization of graph data warehouses.

1 Graph Database Management

With the new Big Data requirements and NoSQL movement, interest in graph
management and analytics increased, and motivated researchers to address
graph-specific issues not efficiently solved by traditional database systems.
In particular, graph database management gained a lot of momentum in the
data management community in recent years [10, 20, 22]. Two approaches are
widely used for modeling and managing graph data. The first is leveraging
the current models, mainly the relational model. The second is to build native
graph data models and database engines. We discuss the state-of-the-art on
each of these directions.

Graphs on Relational Systems The advantage of this approach is that
once data is loaded in a relational system, it gains the benefits of the well-
established relational model, and smoothly integrates with the wide range
of relational platforms. The relational model was designed to handle struc-
tured data such as records and transactions. A graph could be modeled as
a collection of tables of nodes and edges. Each node is uniquely identified
by its primary key, and edges are attached to their source and destination
nodes using their primary keys as foreign keys. Many studies evaluated the
readiness of alternative models, and essentially relational systems for sup-
porting graph workloads [32, 61, 133]. For example, Vicknair et al. evaluated
the performance of Neo4j and MySQL for traversal and count queries [133].

51

Chapter 2. Related Work

Pobiedina et al. benchmarked pattern matching queries in Neo4j and Post-
greSQL among other databases [99]. The reported performance results are
often mixed, as relational engines might perform better for large scans and
aggregations, while graph engines are more optimized for traversal oriented
analytics. From the modeling perspective, graphs are flexible and do not
usually follow a fixed schema, if they were to be stored in a relational engine,
the schema will have to change a lot. Supporting changes, extensions, or
integration of different schemas are difficult, costly, and manual operations.
Due to the fundamental difference between the two models, the transforma-
tion of graph data to a relational model is a manual, complicated process. It
incurs a high risk of information loss during the transformation process. The
SQL query language and processing engines are optimized to perform table
scans instead of traversals. They are not suited to capture the topology of the
graph with queries such as finding the shortest path or neighborhood dis-
covery. Graph operations such as finding cycles, or matching complex graph
patterns introduce a heavy workload, especially for highly connected tables
[96].

We conclude that the relational model and its implementations fall short
of meeting the requirements for (1) intuitive data modeling, (2) topology-
aware graph querying (such as path retrieval and comparison, and graph
pattern matching), and (3) traversal-optimized performances. This motivates
the need for native graph data management systems.

Native Graph Databases In recent years, the trend in graph data manage-
ment has shifted to the development of native, relationship-oriented graph
databases. Native graph databases introduce custom optimizations for the
storage and querying of graph data by using specific graph structures and
supporting the querying with a set of special operators, algorithms, and in-
dexing techniques. A comparison of modern graph database models is pro-
vided on [6, 20].

Most native graph databases implement the property graph model or a vari-
ation of it. This model was first described by Rodriguez and Neubauer in
[109] to denote directed, labeled, and attributed multi-graph. It was later
formally defined by some works [33, 110], but most notably in [7]. Each real-
world entity is represented by a node that contains its label and properties.
The label denotes the type of the node (i.e., the class to which it belongs).
Relationships between entities are represented using edges. The flexibility of
property graph models allows the representation of rich structural proper-
ties, such as hierarchies and dependencies. Property graphs were introduced
in the database community to store schemaless data (due to their flexibility to
absorb any semantics and attach data with metadata), where relationships are
first-class citizens, and the data is represented as perceived, without the need

52

1. Graph Database Management

to map it to intermediate representations. As shown by multiple studies, this
makes the data model more straightforward to design, and the queries are
more intuitive to formulate [61, 62, 63].

From a performance perspective, graph databases are optimized for graph
traversals. The cost of traversing an edge is constant, and the overall cost
of arbitrary navigation through the graph is much lower than the equiva-
lent joins in relational tables [61, 115]. Subsequent implementation aspects
such as physical graph storage, indexing, and retrieval which are specifi-
cally tuned for graph workloads lead to better performances, especially for
queries requiring multiple joins, or containing complex patterns such as cy-
cles [59, 125, 144]. However, they perform worse than the relational-based
engines for analytical queries that perform scans over the whole graph.

In industry, a plethora of graph database tools are developed, with various
modeling and querying options. Most of the current databases are oriented
for OLTP processing of graph data. They support similar features to rela-
tional databases such as ACID properties, indexing, and query languages.
In the software market, established vendors are aware of the potential of na-
tive graph solutions and have already developed many graph databases such
as Oracle Spatial and Graph [64, 105], Microsoft GraphEngine, SAP HANA
[112], IBM Graph, and Amazon Neptune.

Graph Query Languages A key factor in the success of relational databases
is the relational algebra and its mapping to the SQL query language. Multiple
native graph query languages were developed to efficiently answer graph-
oriented queries [9, 22, 136]. However, no standard graph query language
is yet available. Tian et al. [124] proposed a technique K-SNAP for drilling
up and down across different aggregation levels on heterogeneous graphs.
Zhao et al. studied the issue of querying large heterogeneous information
graphs. Their goal is to define an SQL-like declarative language specific to
information networks. They designed two operators, P-Rank and SPath, for
approximate and exact subgraph matching respectively [142]. GraphQL[60]
proposed a relationally complete algebra, and as reported by Lee et al. [78],
was the only algorithm to complete the typical graph queries tested on their
comparison (subgraph, clique, and path queries), although at a slower per-
formance compared to some of the other tested algorithms. An interesting
characteristic of GraphQL is that it provides a mapping between the alge-
braic expressions and FLWR expressions from XQuery. The query language
is declarative, graph-oriented, and suited for semi-structured data. Multiple
query languages were proposed to enable the querying of property graphs
[9], such as Cypher [46], GCore [8], PGQL[129] and Gremlin [108]. Cypher is
an SQL-like declarative language, that uses isomorphism-based no-repeated-
edges bag semantics. It was introduced by Neo4j and is centered around pat-

53

Chapter 2. Related Work

tern matching enriched by built-in algorithmic libraries. Gremlin is a graph
traversal language, built using Groovy, introduced by Apache TinkerPop3,
that uses the homomorphism-based bag semantics. Given the diversity of
the property graph query languages, a recent initiative is led for defining
GQL [1], an ISO project to design a standard query language for property
graphs by combining the best of the main property graph query languages
(Cypher, G-CORE, and PGQL).

Integrity constraints for graphs, and particularly property graphs, is a less
explored topic [7, 100, 101], and focus mainly on schema-instance consis-
tency, although other constraints such as attribute uniqueness or cardinality
constraints were discussed.

Comparison Most of the graph database models presented in the literature
were designed to handle OLTP and not OLAP workloads. They introduced a
specific set of data structures, algebraic operators, and constraints. However,
they were designed for operational and not analytical purposes, and are not
well-equipped for multidimensional analysis of graph data. For example,
the commonly used property graphs are loosely constrained, which makes
it difficult to automate tasks such as the identification of potential multidi-
mensional concepts and extraction of graph cubes. In GRAD, we suggested
a natural representation of graph data, with a focus on structural properties’
analysis. GRAD provides a complete model that facilitates multidimensional
modeling by proposing (1) analytical graph structures that capture rich se-
mantic such as encapsulation and hierarchies, (2) a set of operators to ma-
nipulate the graph and compute or extract graph specific metrics, and (3) a
set of rules to enforce and preserve the integrity of the graph data through
the different integration and transformation operations. Thus, GRAD could
be seen as a specification of the core elements a graph database model needs
to support graph warehousing and OLAP workloads. Table 2.1 compares
GRAD to the current graph models from a database modeling perspective. It
presents an overall view of how GRAD contextualizes with regards to main
graph models such as property graphs, and new graph models such as RDF*.
Note that GRAD was designed in 2013 to identify the required foundations
a model needs to tackle multidimensional analysis in a full-fledged manner.
Notably, aspects such as integrity constraints are not directly covered in cur-
rent graph database models (even if novel solutions such as SHACL could
lay foundations to define the multidimensional constraints required). In con-
clusion, property graphs and RDF* combined with SHACL, are the current
best options to implement GRAD in real scenarios. Yet, there is still a need
for more flexible options to augment data warehousing with graphs and to
build mature systems like in the relational setting, which we discuss in the
next section.

54

1. Graph Database Management

SPPOIN g ydeio jo uostredwo)) :1°7 d[qelL

aqydern Sopieig ([FoaN aqydern sauog Swd)SAg
V/N 101G I 21015 AAY aq ydero aaneN ga ydern aaneN 4q Arejduaxg
sjurenjsuod Ajjeurpre)) -
samnqrmye anbru -
SJUTRISUOD DURIAG - OVHS 1OVHS s09pa /sonadord V/N sjurensuo))
AuBoyur fypug - reuondo pue K1oyepuepy - AuBayur
9DUR)SUT-BWIRYDG -
V/N +10¥VdS TO¥VIS ydL> TOYders | a8enSueq L1and
urof Temyonmng - oru s103e1ado 39g -
s103e12do 39G - *un - uonisodwo)) -
uone3aN - siojeradQ
uontsodwo) - eIqE3[Y L TOUVAS | e1de8[V TOUVIS urof -
Suryoyewr orerqady
yonpoid uersajre)) - jonpoid uersajre)) -
urepe TeuonediaeN -
UuoT[g - UoTO9[ag -
sanque 19010
sopouady 3lqo ‘ayeorpard sadpa ‘sapou sa3pa ‘sapou SaINPNIG ele
‘sa3pa ‘sapou ‘ayeorpard eoIp PoSop pos9p PIuS wed
; 109[qns
4oalgqns
SorjuRWIAS
[eUOISUSWIPY N sanquie 98pa g
ym yderd-nmuw pue sapou yrm sordm 1y tdess _MMEM v\wwsmnwwﬁ 5 mswﬁw MMWMM_EME [PPoN yder
pamnquye | sodim 4y popusIXg Pa[aqe] ‘paidaIq | Paaqe] § B9[[0D
‘Paeqe[‘pardaIiq
(€109 AV (L102-9102) -IQA ($002) AQY (0102) sydern Apadoig (8002) TOYde1D eLIAIID

55

Chapter 2. Related Work

2 Graph Warehousing

A lot of research has been devoted to extend data warehousing and OLAP
technology beyond the relational systems [38, 39]. Various efforts were led
to support other data formats such as text [84], multimedia [68], and graphs
[103]. Multiple architectures and systems were proposed in the literature
to integrate graph data into business intelligence systems. BIIIG [98] is a
framework for business intelligence on graphs that focuses on the use of the
graph’s flexibility in data integration. It enables integrating and referencing
heterogeneous data from different sources. Li et al. [82], proposed concep-
tual models for designing and querying graph data warehouse systems. In
[48, 120], authors suggested a novel architecture for graph Bl systems, that
leverages large graph mining and warehousing. Our work in this thesis goes
in-line with these research directions, and attempts to provide a foundation
for extending decision-making systems, and particularly OLAP, with graph
analytics capabilities, while paying particular attention to the few cases of
possible correspondence between graph and ROLAP cubes.

Graph OLAP Early research in graph warehousing started with the Graph
OLAP model, which set the first foundations for multidimensional modeling
and analysis of graphs. Graph OLAP supports the multidimensional mod-
eling and analysis of a collection of homogeneous graph snapshots [28].
Two types of modeling and analysis are performed: (1) informational and (2)
topological. In informational OLAP (I-OLAP), the dimensions are attributes
of the graph snapshot. The aggregation of the graph is performed by over-
laying and merging a set of graph snapshots that share the same dimension
values. The analysis consists in edge-centric snapshot overlaying. Thus, only
the edges are merged and changed, with no changes made to the nodes. In
topological OLAP (T-OLAP), the attributes of the nodes are called topolog-
ical dimensions. The aggregation consists of merging nodes and edges by
navigating through the nodes’ hierarchy. T-OLAP was discussed in a more
detailed framework for topological OLAP analysis of graphs [102]. Their pa-
per discussed the topological aggregation of the graph following the OLAP
paradigm. They presented techniques based on the properties of the graph
measures (T-Distributiveness and T-Monotonicity) for optimizing measures
computations through the different aggregation levels. Another multidimen-
sional model [19], similar to Graph OLAP, was proposed and considered
the dimensions as the labels of the edges, and presented a set of analytical
graph-based measures relevant for OLAP analysis of graph data. HMGraph
introduced a data warehousing model for heterogeneous graphs focusing on
edge-based dimensions [140]. It enriched the informational and topological
dimensions with the entity dimension and the rotate and stretch operations

56

2. Graph Warehousing

along with the notion of metapath to extract subgraphs based on edges traver-
sals.

Graph Cube The second family of frameworks focused on the efficient com-
putation and extending the querying of OLAP cubes derived from multidi-
mensional graphs. [143] introduced the first framework that coined the term
GraphCube. The authors defined a multidimensional graph from a single,
homogeneous attributed graph, by choosing a subset of the attributes of the
nodes to be the dimensions. The aggregate graph itself is the measure. The
graph cube is obtained by restructuring the initial graph in all possible aggre-
gation. The framework introduced two types of queries: (1) the cuboid query,
which generates 2" aggregate graphs, and (2) the crossboid query, which an-
alyzes the interrelationships between different graph cuboids. Many frame-
works were proposed afterward to (1) support more general graph models,
(2) new types of multidimensional structures, (3) novel OLAP queries, and
(4) custom materialization strategies. Pagrol introduced a parallel graph cube
framework that extended the original GraphCube model by defining the Hy-
per Graph Cube model that considers the attributes of the nodes and edges
as dimensions [135]. Both GraphCube and Pagrol designed various materi-
alization policies to speed up the computation and analysis of graph cubes.
However, both GraphCube and Pagrol were still limited to homogeneous
graphs. The graph model was later extended with a framework for build-
ing OLAP cubes supporting heterogeneous attributed graphs and dimension
hierarchies [49]. The TSMH framework introduced the concept of relation
path to guide the graph aggregation and building two new types of cubes:
Entity Hyper Cube and Dimension Cube [134]. P&D Graph Cube extended
the graph cube model by introducing the concept of path and dimension
aggregate networks, along with their materialization strategies [137]. A mul-
tidimensional model for directed multi-hypergraphs and its query language
were proposed in the literature, along with an implementation using Neo4j
[53]. Other research lines focused on applying graph warehousing for specific
domains such as the analysis of bibliographic data [86], or business process
data [17, 128]. For example, distributed OLAP analytics of process execution
data represented as graphs was tackled by designing a Hadoop-based frame-
work [17]. Thus enabling, multi-level and multi-perspective analysis of large
volumes of business process data represented as graphs.

Comparison Existing work for OLAP analysis on graphs provided a foun-
dation for OLAP cubes computation and querying on graphs. Table 2.2 sum-
marizes the related work from modeling and implementation perspectives.
As shown in the table, in most state-of-the-art frameworks, the only measure
that is examined is the aggregate graph itself, and the dimensions are a set of

57

Chapter 2. Related Work

attributes or paths. TopoGraph extended these frameworks by supporting the
general case of the property graph model and proposing new types of graph
cubes that embed novel types of measures and dimensions. For these new
graph cubes, the algebraic OLAP operators required for their analysis were
defined and illustrated. Further, to the best of our knowledge, TopoGraph
is the first framework to discuss the multidimensional integrity constraints
on graphs. These constraints are a key concept that guarantees the correct-
ness and soundness of graph cube construction aggregation. Moreover, for
each of the introduced cubes, the possible correspondence with ROLAP cubes
was discussed to bridge the gap between the two communities and favor the
integration of graphs within relational OLAP frameworks. However, as dis-
cussed, combining graphs and traditional cubes is, in the general case, dif-
ficult. For this reason, we highlighted the need to keep researching specific
graph warehousing tools that preserve the graph structure and benefit from
graph-specific modeling and processing. Finally, TopoGraph still requires
further physical optimizations, such as custom graph indexing and material-
ization, that capture the specific nature of topological and graph-structured
cubes [59, 144].

58

2. Graph Warehousing

sspromawrer] aqn)) ydeio) jo uostredwo)) :g-g d[qeL

ssode parmynis pamynis paanonns
- “UMOP-[HI(] -yderny ‘esdor | -ydern ‘1eo1801 | -ydern “Tea1801

pazirenua) | ‘dn-foy ‘uonddeg | X | -odoy, “uayuo) | -odog, “quayuo) | -odog, “JuL3uo)) ydern Lyradoig ydvinodog,

(treds) sonquy pamqLy
pamqrusi(q progn) | - aqn) ydern) ydern) 93e30183y | -1y 98py pue opoN | -1V ‘snosua3owor] [¥2]
(3predg [zeT]
‘doopepy) 2IM3oNKG et aqnd 195 yreJ uoneRy pamqupy | aqnDydern
pamquusiq | -3ojodoy, 98pg “Ammug | - | ydein and ydern) 9je3a133y | ‘anquyy 9poN ‘SN0aUR 301939 a=nd

DI(] 901G “‘UMOp
- “dn-rjoy ‘uoned syderSrodAy-nmmu [eg]
pazirenua)) | -2188y pue Suiquur) | - proydein ydern 5330133y | sydern) uorsuswiiq | pajodIl] PI[RqeT | e 39 Zowon)
uon agn)) uors

(predg) | -euwrrojsuel], NPy -uswI(‘aqn)d yreJ-eRN PaINqLIY d9PON
pamqusiq | ‘umop-iiq ‘dn-foy | - | pdAg ALnug ydero) 93e30183y | B nqupy 9poN ‘snosuadordel | [$1] HINSL

(doopeyy) aqn) sonqri panqLy
pamqusiq | umop-uiq @ dn-[oy | - | ydern rodAy ydern) 93e30183y | -1y 98py pue opoN | -1y ‘snosusowol] | [cgT] [018eg
[ev]
(treds) pamquRy 9poN | 2qnD ydern
pamqrusiq progsso)) 2 proqn) | - aqn) ydern ydern) ayega133y SANALIIIY dPON ‘snosuadowol] | paNqLIsIq
umop-fju(‘dn aqnd Anug ‘Teardor pamquiy [o¥1]
pazienua)) | -0y ‘UoIRNg ‘9eioy | - yderoNg ydern) 93e30133y | -odoj, “‘vonyeuriojuy “sn0aua30I1919 | ydernnNg
panqumy spoN [ev1]
pazifenua)) progsso)) 2 proqn) | - aqn) ydern) ydein) ayega133y SANQLIIIY dPON ‘snosuadowol] | aqnDydern

syoysdeug

ydern ydern paeqe
DIP-IDI[G /UMOpP 9jeda183y ‘Teor3of swi SNOAUSOWOL] [82] AVIO
pazienua) -ua/dn-foy | - aqnD yderny | -odoy, ‘feuontpery, | -odoy, 2 swiq-ojuy | jo [LJERE]} (V) ydern
Ayiqeresg Suifran ol 2900 S2IMSEIN SuorsuWHA PPOIN ydern SDUIRJNY

[PPOJAl [UOISURWIPHMA

59

60

Chapter 2. Related Work

Chapter 3

GRAD: A Database Model
for Advanced Graph
Analytics

The paper has been published as a preprint in ArXiv. The layout and content
of the paper have been revised.

Reprinted, with permission, from Amine Ghrab, Oscar Romero, Sabri Skhiri,
Alejandro Vaisman, and Esteban Zimanyi, GRAD: On Graph Database Mod-
eling, arXiv preprint:1602.00503 (2016).

Abstract

Graph databases play a key role in the emerging graph warehousing ecosystem. They
are a fundamental technology underpinning a multitude of domains and applications
where traditional databases are not well-equipped to handle complex graph data man-
agement and analysis. However, the current graph database models and systems are
mainly designed for OLTP workloads and do not provide the required foundations for
graph warehousing.

In this chapter, we introduce GRAD, a native graph database model tailored for
graph data warehousing. GRAD presents new data structures to support graph his-
torization and integration, a set of well-defined constraints to guarantee the graph
integrity, and graph algebra to facilitate OLAP analysis. Thus, the main contribu-
tion of GRAD is an exhaustive list of the required components a graph model must
fulfill to support graph data warehousing. Relevantly, GRAD was defined following
Codd’s data model definition.

61

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

1 Introduction

Graph warehousing refers to the process of collection, integration, histori-
cal storage, and multidimensional analysis of graph data. In this chapter,
we address the need for a native graph database model tailored for graph
warehousing. Indeed, databases play a central role in data warehousing to
ensure the efficient storage and retrieval of data. At their core, databases
rely on a database model that provides the necessary theoretical founda-
tions. A database model, as defined by Codd [34] consists of a set of (1) data
structures, (2) integrity constraints, and (3) manipulation operators. In this
work, we chose to design a new native graph database model that imple-
ments Codd’s definition and suits warehousing. Native graph models have
various advantages over non-native model such as (1) enabling natural do-
main modeling since the graph structures are similar to the way end-users
perceive the domain, (2) querying is user-friendly and less error-prone since
the operators target directly the network structure, and can examine specific
graph measures, (3) advanced concepts are easier to implement, for example,
assertions are not implemented on current relational databases and can be
defined and implemented in graph databases by using graph patterns.
Thereby, we introduce GRAD (GRAph Database model), a native graph
database model designed primarily for graph data warehousing. GRAD aims
to provide analysts with a set of simple, well-defined, and adaptable con-
ceptual components to support the main warehousing tasks. Indeed, GRAD
introduces a set of data structures specifically annotated to facilitate the iden-
tification of multidimensional concepts. For example, relationships could
be annotated as aggregations which helps to identify dimension hierarchies.
Moreover, design choices such as node attribute reification, and the unique
node identifier constraint are made to facilitate graph historization, a funda-
mental task in graph warehousing. Thus, the integration of different versions
of a GRAD graph translates to a graph union operation that does not require
changes in node attributes. Besides, a set of integrity constraints are pro-
posed to ensure consistency. Also, the model is equipped with content and
topology-aware algebraic operators inspired by a relationally complete graph
algebra and designed to support OLAP operations. Overall, GRAD aims to
bring the power of established modeling techniques to graph data modeling
to better accommodate graph warehousing.
In summary, our contributions in this chapter are:

* A native graph database model that introduces advanced data struc-
tures to capture the common notions present in established conceptual
data modeling languages. GRAD structures natively support complex
semantics such as encapsulation and composition to simplify data inte-
gration and multidimensional modeling tasks.

62

2. Property Graphs

* A set of rules to enforce and preserve the integrity and consistency of
the graph data, with a focus on graph entity integrity and semantic
constraints.

¢ A collection of algebraic operators to enable online graph querying and
analysis while preserving integrity constraints. The algebra is defined
along the lines of relational algebra and inherits at least the same ex-
pressive power.

The remainder of this chapter is organized as follows. In the next section,
we introduce the property graph model and the example used in the chapter.
Then, we present the advanced data structures of GRAD where we project
the common notions form conceptual modeling languages into graphs. We
then define the different integrity constraints ensuring the graph database
integrity. Following this, we present the GRAD algebra for querying and
manipulating the graph data.

2 Property Graphs

Graph data are usually represented as collections of nodes and edges. Nodes
represent entities and edges relate pairs of nodes, and are used to represent
different types of relationships. Nodes and edges might be labeled, and have
a set of properties represented as attributes. Many current graph databases
represent graphs using the property graph model. Property graphs were
first introduced by Rodriguez and Neubauer to describe a directed, labeled
and attributed multi-graph [109]. Recently, more formal definitions were
proposed in the literature [7, 22], which we adapt as follows:

Definition 3.1. [Property Graph] Given a finite set of labels L, a set of property
keys K and a set of values N, a property graph is represented as G = (V, €, p, F, H)
where:

* Vs a finite set of nodes;
o & is a finite set of edges, such that ENY = ©;

* 0:& =V xVis the function that maps each edge to its pair of nodes, with
o(e) = (u, v) denoting a directed edge from u to v;

o F:VUE — L is the function that assigns to each node (resp. edge) a label
from the set of labels L;

e H:(VUE)x K — N, is a partial function assigning to each node (resp.
edge) the value of its attribute, such that, for a node (resp. edge) v € V, the
function H(v, k;) returns the value x € N of its i — th attribute identified by
the key k; € K.

63

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

Country Director
name:Guatemala name:Lewis Gilbert

A ,
Directs

rank:5 LgcatedIn

Movie
1D: 0079574
title: Moonraker
Audience: 4.6
Critics: 6.2

Movie
ID: 076759
title: Star Wars IV
Audience: 7.6
Critics: 8.2

FilmedIn

FilmedIn

Location
name: Tikal

Actor
name: Malcolm Weaver,

Fig. 3.1: MovieLens represented with Property Graphs

ACTS
rank:1

Acts
rank:37

name: Marc Hamill

Many graph databases are built on top of property graphs (e.g., Neo4j and
SAP HANA). However, property graphs do not define a full database model
but rather describe basic graph structures oriented for OLTP instead of OLAP
workloads. A native and comprehensive graph database model optimized for
graph OLAP analysis and compliant to Codd’s definition [34] is yet to be de-
signed. We illustrate the notions introduced in this chapter using data from
the MovieLens + IMDb/Rotten Tomatoes dataset, which was first published in
the HetRec2011 workshop [25]. In the sequel, we refer to this dataset simply
as MovieLens. The dataset integrates information about movies from Movie-
Lens with their corresponding web pages at Internet Movie Database (IMDb)
and Rotten Tomatoes movie review systems. We represent this dataset using
property graphs as illustrated in Figure 3.1. The network contains informa-
tion about movies classified by genres and filmed across multiple locations.
Movies have different attributes, such as year of release, titles, ratings, and
scores from different communities, and are linked to directors and actors
(ranked by importance). Users provide ratings and tagging for the movies
they watched.

Figure 3.2 illustrates how GRAD could be used to integrate those different
movie graphs into one, similar to the integration phase of ETL. The notations
and data structures introduced by GRAD are presented in the next section.

3 GRAD Structures

Multiple conceptual data models exist in the literature to support and stan-
dardize the representation of different domains and applications. For each of

64

GRAD Structures

IMDB RottenTomateos

type: Director

type:AllScores
val: 93
ame:Lewis Gilbe

type: Movie
id: 0079574

type: Movie
id: star_wars

HasScore

type: Movie

Directs title : star wars IV

type:Country
name:Guatemala

Star Wars

type:topScores > Episode IV:
type:Location val: 93 Star Wars A New Hope
name: Tikal Episodio IV

Una nueva
esperanza

type:Actor

name: Alec Guinness

type:topScores
val: 100

type:AllScores
val: 63

type: Movie
id: 076759

type: Movie
title : Moonraker

type:Movie
id: 1014217-moonraker,

HetRec
IntegratedNetwork

Star Wars
Episodio IV
Una nueva
esperanza

Star Wars
Episode IV:

ranking: 1

RATES
rating: 3.6

FilnfedIn

COUNTRY
ID: Guatemala

A OcatedIn
Location
ID: Tikal
A
Lang: SP RATES
Filnedin rating: 4.2
MOVIE DIRECTS
:3638 [€ DIRECTOR
<WebiD> ID: lewis._gilbert

type: rtAll type: rtTop
O, A

(d)

Fig. 3.2: Integration of Property Graph with GRAD

65

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

Conceptual Modeling Actor Movi
oML o | LA

GRAD Modeling

ACTS Movie
Actor

Caption . (Association)= _ID

Entity Node - rank

Attribute Type:audience
ode

Literal
Node

z
1%
2
=]
<}
2.
=2
w

Scored
- Type: Audienc

Graph Models

(Property Graphs, RDF ...) Scored
- Type: Critics

Fig. 3.3: Graph Modeling with GRAD

these conceptual models, a language is defined. Currently, the most used
languages are the Unified Modeling Language (UML), and the Extended
Entity-Relationship Model (EER). A study by Keet et al. [75] shows that
these languages have some common core entities. For example, object type,
relationship, and attribute are concepts present in most current modeling lan-
guages, although naming conventions might differ.
Of particular interest for this thesis is the topic of graph data modeling. In-
deed, graphs provide a flexible and rich toolkit for knowledge representa-
tion. Graph-based data models are more generic than common representa-
tions such as relational tables. Indeed, many widely-used models are rep-
resented using graph structures. For example, the entity-relationship model
[31] is represented as a set of nodes describing entities related with edges
representing different relationships between them. Ontologies are also rep-
resented as graphs of inter-related primitive entities from the same domain.
XML files are structured as trees, which are also specific graphs focused on
the hierarchical model rather than the networked model.

In this chapter, we introduce GRAD, a new graph data model inspired

66

3. GRAD Structures

by common modeling languages and designed for graph warehousing. We
map the main concepts from modeling languages to GRAD, and formally
define them using the graph data structures. Figure 3.3 illustrates the posi-
tioning of GRAD as an abstraction that maps conceptual modeling languages
such as ER to a common graph model such as property graph. The mapping
is illustrated using the example of the movie-actor network adopted in this
chapter. It shows GRAD’s ability to capture traditional modeling concepts
and to project them on an existing model. GRAD extends property graphs
by providing an advanced abstraction for graph analytics while remaining
generic enough to model different domains. It introduces specific annota-
tions and new types of nodes and edges and dictates the use of attributes
and labels. Thereby, in contrast to property graphs, the design is more de-
terministic. From a designer’s perspective, the mapping simplifies the task
of representing familiar concepts from modeling languages using graphs as
first-class citizens, while reducing ambiguity.

Definition 3.2. [GRAD Graph] Given a finite set of labels L, a set of property keys
K and a set of values N, a graph in GRAD denoted as G = (V,&,p, F, H), is
formally defined as follows:

e V is a finite set of nodes, where V = V, UV, UV}, with V, being the set of
entity nodes, V, the set of attribute nodes, and V| the set of literal nodes;

& is a finite set of edges, where £ = E, U E; U E;, with V, being the set of entity
edges, E, the set of attribute edges, and E; the set of literal edges;

p: & =V x Vis the function that maps each edge to its pair of nodes, with
p(e) = (u, v) denoting a directed edge from u to v;

F V.UV, UE, — L is the function that assigns to each entity node,
attribute node, and entity edge a label;

H: (Ve UVJUE.UE)) x K — N, is a partial function assigning to a node
(resp. edge) the value of its attribute, such that, for a node (resp. edge) v € V,
the function H (v, k;) returns the value x € N of its i — th attribute identified
by the key k; € K.

Figure 3.4 depicts the graphical notation of the different types of nodes
and edges introduced by GRAD, and how they are related. In what follows,
we formally define each of the GRAD data structures.

The first key concept, present in modeling languages, that we adopt on
GRAD is the concept of class. In modeling languages, a class represents a set
of things of a specific kind that share a common structure and relationships.
A class is characterized by a predicate, such that all elements belonging to
the same class satisfy the class’s predicate. For the sake of simplicity, we limit

67

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

- Attribute Edge Entity Node Cantion
Attribute Node E, V. Laption
<L::)ael> <Label, ID> Entity Node
@ Attribute Node
Liteﬁfg Edge @ Literal Node
<Attriblutes> Entitﬁ Edge

; <Label, Type, Attributes>
Literal Node

Vi

<Value>

Fig. 3.4: Graphical Notation of GRAD Structures

the discussion to unary predicates, although more complex predicates could
be defined and applied as well. Formally, we define a class of graph elements
as follows:

Definition 3.3. [Class] A class 2. in GRAD describes a set of graph elements that
satisfy a unary predicate applied on the labels of entity nodes. Each class ¥; is
characterized by a label C;. Therefore, Vv € V, , where v belongs to the class %.;,
characterized by the label C;, iff C; = F(v) .

The set of k classes on a graph is disjoint (i.e., Vi,j, ;N E; = @), and is
denoted as Z = {X1, %, ..., 24} C ={Cq,Cy,...,Cy} is the set of all labels
characterizing classes on Z, with C C L.

Example 3.1

Classes in MovieLens could be C = {MOVIE, ACTOR, USER}. The pred-
icate of the class describing movies is expressed as: F(v) = "MOVIE”,
where v is a movie node.

The second key concept from modeling languages that we must repre-
sent using GRAD is the notion of object. Objects describe concrete concepts
(i.e., real-world entities) using unique identifiers, a set of attributes describ-
ing their state, and a set of relationships. Each object belongs to only one
class at a time, and objects satisfying the same predicate are grouped in the
same class. In GRAD, the core of an object is represented by the entity node
which contains the label and the identifier attributes of the real-world en-
tity. Attribute nodes are attached to entity nodes and denote non-identifier
attributes of the object, and might be multi-valued. Literal nodes record the

68

3. GRAD Structures

actual value of their corresponding attribute node each time a new value is
added. We formally define each of these concepts as follows:

Definition 3.4. [Entity Node] An entity node v € V, represents the core informa-
tion about a real-world entity. It contains the "type” of the entity (i.e., the class to
which it belongs) represented by the label F(v), and its set of identifiers ID; that
unequivocally identify the entity node among the nodes of the same class. Each ele-
ment of the set 1D; is immutable and might be simple or composite. Each entity node
represents the core part of the information about the real-world graph element. The
concept of node identifier maps to the concept of the primary key in databases and is
considered to be domain-related and not system-generated.

Example 3.2

An entity node of the class MOVIE could be represented with
a simple identifier (e.g, (MOVIE, {3638})) or a tuple (e.g.,
(MOVIE, {3638, StarWarsIV })) where the movie identifier is composed
of the identifiers on the source websites IMDB and Rotten Tomatoes.

Attributes of real-world entities might have different values according
to context change or new data integration procedures (e.g., updates, time-
stamping, etc.). We capture these changes using attribute and literal nodes,
defined next.

Definition 3.5. [Attribute Node] An attribute node v; € V, denotes an attribute
of its corresponding entity node that is not an identifier and might have multiple
values. An attribute node should be associated with exactly one entity node, and is
defined by its label I; = F(v;) that represents the attribute’s name. L, C L denotes
the set of labels of attribute nodes.

Example 3.3

In the MovieLens network, an attribute node associated with a movie en-
tity node may represent its rating, title translated in multiple languages,
or identifiers on each website. In that case, the entity nodes of the class
Movie will have a set of associated attribute nodes labeled Score, Title, and
WebID.

The actual value of an attribute is represented using literal nodes. GRAD
captures the concept of a multi-valued attribute (as defined on typical EER
models) using an attribute node with all its related literal nodes.

Definition 3.6. [Literal Node] A literal node v € V; represents the value of its
corresponding attribute node (u € V,) in a given context (defined by the literal

69

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

edge). This value could be simple or composite. The function H (v, F (u)) returns the
actual value of u stored in v.

Example 3.4

An attribute node labeled "title" is attached to movie nodes to represent
the movie title in different languages. The actual new title is added as a
literal node (e.g., the title of the movie translated from English to French).

Given the node types presented above, we study the types of relationships
that could link them. In conceptual modeling languages (e.g., UML) various
kinds of relationships between classifiers are supported, such as (1) Asso-
ciation, (2) Generalization, and (3) Dependency. Aggregation (representing
part-whole relationship) and Composition (representing ownership relation-
ships, with lifetime dependency) are treated as specific associations, while
Realization and Usage are sub-types of Dependency [113]. Similarly to YAM?
[2], GRAD is focused on data modeling, therefore we do not consider depen-
dency relationships since they are mainly designed for application modeling
purposes. Moreover, in this chapter we consider only binary relationships
between pairs of nodes, although hypergraphs could be used to model edges
connecting an arbitrary number of nodes [18]. Regarding the nodes they link,
we classify edges as entity, attribute, and literal edges, defined next.

Definition 3.7. [Entity Edge] An entity edge e € E, between a pair of en-
tity nodes vs,v. € V. is defined as: e = (vs,v,, type), where ple) =
(vs,ve), | = Fle) is the entity edge’s label, H(e, k;) returns the i — th at-
tribute of e, and type denotes the specific type of the relationship, with type &
{Association, Generalization, Aggregation, Composition}. L. C L denotes the
set of labels of entity edges.

To allow richer semantics to be expressed on the graph, we define four
types of entity edges as follows:

¢ Association edge: This is the most common type of relationship, where
two entity nodes are associated with each other. Association edges
have the same meaning as the association concept in UML. The set of
association edges is denoted Egs.

* Generalization edge: This relationship relates a subclass entity node to
its superclass entity node. It is usually referred to as an "Is A" rela-
tionship, and maps to generalization in UML. Each entity node can be
generalized to at most one superclass (i.e., have at most one outgoing
generalization edge from the subclass to the superclass). The set of
composition edges is denoted Ej.

70

3. GRAD Structures

* Aggregation edge: Describes a whole/part relationship between two
entity nodes. In UML this maps to the concept of (shared) aggregation
and reflects the weak dependency between the two entities. Each entity
node could be part of at most one whole element (i.e., have at most one
outgoing aggregation edge from the part to the whole). This type of
edges describes a hierarchical relationship between data entities, such
as the relationship between cities and countries. The set of aggregation
edges is denoted as Egq.

* Composition edge: This is a stronger form of aggregation that reflects
that the existence of the part depends on the existence of the composite
(whole) entity node. Therefore, if the node representing the whole is
deleted, the part is consequently deleted. We describe the entity node
representing the part as a weak entity node that can only exist if its
composite exists. Each entity node could be included as a part of at
most one composite (i.e., have at most one outgoing composition edge
from the part to the whole). This relationship maps to the composi-
tion (composite aggregation) in UML. The set of composition edges is
denoted as E..

An entity edge must be typed using one of the four types defined above:
Ee = Egs U Eg U Eqe U Ec. Moreover, each entity node might have many asso-
ciation edges, but at most one outgoing generalization (similarly aggregation
or composition) edge. We use the many-to-one property of these relation-
ships (i.e., generalization, aggregation, and composition) to introduce the
notion of the parent-child relationship from the part to the whole, and from
the subclass to the superclass.

Example 3.5

As an example of association edges, the relationship between movies and
actors is represented by an entity edge labeled "ACTS" and having the at-
tribute ranking to denote the actor’s ranking in the movie. For generaliza-
tion edges, if we imagine adding the class "crew of a movie" to the network,
then both actors and directors belong to the "Crew" class. Finally, the rela-
tionship between cities and countries is a composition, because whenever
a country is removed, all of its cities are removed as well.

In addition to entity edges, we introduce two other types of edges where
the end nodes could be an attribute or a literal node. Attribute edges keep
track of the changing attributes extracted as new nodes and are defined next.

Definition 3.8. [Attribute Edge] An attribute edge represents a composition rela-
tionship (i.e., a life-cycle dependency where the same properties that were introduced

71

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

earlier for composition relationships are valid for this edge also) between an attribute
node and its parent entity node. Attribute edges do not embed attributes or labels.
The set of attribute edges is denoted as E; C V, X V.

Definition 3.9. [Literal Edge] A literal edge reflects a composition relationship be-
tween a literal node (part) and its parent attribute node (composite). Each literal
edges has a set of attributes. Each attribute describes part of the context for the value
on the literal node. The set of literal edges is denoted as E; C V, x V).

Example 3.6
A literal edge might indicate the type of the score given to a movie, while
the score value is stored in the related literal node.

Following our definition of composition, we describe attribute (resp. lit-
eral) nodes as weak nodes (i.e., representing weak entities) dependent on the
entity (resp. attribute) node (representing the strong entity) to which they
are linked by their attribute (resp. literal) edge. We also preserve the general
notation to minimally denote an edge e directed from a node v, to a node v,
as: e = (vg, vp).

We use the concept of hypernode to fully represent a real-world object.
Hypernodes are useful for representing various concepts such as aggregation
or encapsulation of graph elements, providing a coarser view of the graph
as it enables a higher-level design and analysis of the network. We represent
hypernodes in GRAD using subgraphs. In graph theory, G’ is called a sub-
graph of G if G’ contains a subset of nodes V' and a subset of edges E’ of
G. If G’ preserves all the edges originally present in G between the subset of
nodes V', then the subgraph is called induced, otherwise it is called a partial
subgraph. Therefore, a hypernode in GRAD is an induced subgraph of the
data graph. It is represented as a two-level tree where the entity node is the
root and the literal nodes are the leaves. Each hypernode groups an entity
node, all its attribute, and literal nodes, and the edges between them. The
concept of hypernode is a key differentiator of GRAD from other models, yet
it could be mapped to named graphs in RDF. With the graph data structures
formally defined above, we define a GRAD hypernode as follows:

Definition 3.10. [GRAD Hypernode] A hypernode in GRAD (whose entity node is
v; € V) is defined formally as a subgraph Ty, = (V, E), where V = {v;} UV, UV,
and E = Eo UE;. Vo, C V, is the set of all the attribute nodes attached to v;,
and V), C V; is the set of all the literal nodes attached to the attribute nodes of V.
Similarly, E,; C E, (resp., E;, C E;) are the edges linking attribute nodes from V,,
to v; (resp., linking nodes form V), to their attribute nodes from Vy,). The label of an
entity node defines the class to which its encapsulating hypernode belongs.

72

3. GRAD Structures

Example 3.7
Each movie in MovieLens is represented by a hypernode that contains the
entity node representing the movie and its rating as an attribute node. The
rating keeps track of the different values of the movie score given by each
community.

Note that each node, attribute edge and literal edge, are part of only one
hypernode: Yu € V (resp. , e € E;UE;), 3Ty | u € Ty, (resp., e € Ty). All
data on the graph belonging to a given real-world entity are gathered and
integrated into one hypernode, which simplifies the data integration tasks to
be performed later. Moreover, the set of labels of a GRAD graph is the union
of the disjoint sets of entity nodes, entity edges and attribute nodes: £ =C U
L. U L,. Although GRAD puts a focus on the analysis of node contents using
the hypernode structure (and the node attribute reification mechanism), edge
content could receive a similar focus by simply transforming edges to nodes
then applying GRAD.

UML is a well-defined and accepted standard that gained wide adoption
in the modeling and database community. For a more standard representa-
tion, we introduce the UML class diagram of the data model in Figure 3.5.

Example 3.8 (MovieLens with GRAD notations)
The subgraph of the MovieLens network depicted in Figure 3.6 is repre-
sented using GRAD structures as follows:

e The classes are: C = {MOVIE,LOCATION,COUNTRY, ACOTR,
DIRECTOR}.

e The label of the attribute node is: £, = {Rating}.

* The nodes are: V, = {v1,v2,03,04,05,06},Va = {URating} and V| =
{vcritiCSI vaudience}'

e The label of nodes are: F(vq) = "MOVIE”, F(vy) = "LOCATION"
, F(vz) = "COUNTRY"” , F(vq) = "DIRECTOR”, F(vs) = F(vg) =
"ACTOR”, F(vRating) = "Rating”.

e The edges are: E; = {e1n,e14,€15, €16}, Ec = {exs}, Eo = {e1,}, and
E = {emr erc}-

* The labels of the entity edges are: Le =
{ACTS, DIRECTS, Filmed_IN, Located_IN}, with F(ep) =
"Filmed_IN", F(ep3) = "Located_IN”,F(e14) = "DIRECTS”, and
F(e1s) = Flerg) = "ACTS”.

73

Graph
Name
1
1.*
HyperNode . Category
- » Name
1
1 f
Entity Node

Attribute Node 1

Entity Edge

Attribute Edge

I

4—57*

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

Literal Node

Literal Edge

il

Generalization
Edge

Association

Identifier

Ed;
£ EntityHdge|
Label
Aggregation Composition AttfibuieNode
Edge Edge Label
Attribute

Attributes

Attribytes

1.*

| L* Val

hies

Map

Name

Name

Entity Node Label

Fig. 3.5: GRAD Modeling with UML

74

L

Value

Name

Name

4. Integrity Constraints

COUNTRY
ID:Guatemala

DIRECTOR
ID:George Lucas

ACTOR
ID:Mark Hamill

LOCATION LocateQIN
ID:Tikal Aggregation
StarWarsIV Hypernode ____ \¢ R
7 FilmedIN ™« _
Association AN
1 AN
/ MOVIE k
/ ID:3638 \ DIRECTS
‘i\ ’ /‘ Association
\\ Type:audience // ACTS
7
\\\ // Association
S R Aef§ rank:1
\\\\\,\ <<<<<<< ‘Azf’ﬁx/sociatian
rank:5
ACTOR
ID: Alec_Guinness

Fig. 3.6: MovieLens with GRAD Notations

{Star Wars
{Guatemala},

v},
H(U4, ID)

The attributes of entity nodes are: H(vy, ID) = {3638}, H (v, title)
H(vz, ID)

{Tikal},
{George_

H(Ug,, ID)
Lucas}, H(vs, ID)

{Marc_Hamill}, H(ve, ID) = { Alec_Guinness}.

H(vaudience/ "Rating”) =94

The attributes of literal

The values of literal nodes are:

H(ver

edges

"critics”, H(era, Type) = "audience”

4 Integrity Constraints

are:

itics, "Rating”) = 8.5,

The attributes of entity edges are: H(eys, rank) = 1, H(eyg, rank) =5

H(ere, Type)

Integrity constraints are the general rules describing the consistent database
states, or change of states, or both [34]. They play a fundamental role in
data quality enforcement within data management systems, and especially
for decision support systems. Integrity constraints were first introduced with
the relational model and later studied in object-oriented and semi-structured
data models, and lately in graph models such as in [101] or the SHACL spec-
ification for RDF. This topic is also present in the context of graph databases,
where the efforts were centered around applying integrity constraint con-
cepts from the relational model on graph data [6]. In this section, we provide

75

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

a formal definition for the integrity rules applied over the graph structures
presented in the previous section. As discussed in Angles et al. [10], several
integrity constraints were proposed for graph databases in the literature. We
identify the ones relevant to GRAD as follows:

* Graph entity integrity: This constraint is used to guarantee that each
real-world entity is represented by a unique hypernode. It also provides
the mechanisms for nodes and edges identification through specific at-
tributes (i.e., ID) and/or structural properties such as neighborhoods.

* Semantic constraints: These are user-defined constraints. The first type
represents the assertions (i.e., topological and value-based constraints)
users wish to define for the graph elements. The second type focuses
on cardinality checking between classes of nodes. We now study both
kinds of constraints in more detail.

4.1 Graph Entity Integrity

This first category of integrity constraints aims at guaranteeing that a real-
world entity is represented only once in the graph database. This prevents
data redundancy of data and helps to fulfill consistent update and deletion
of graph entities. Since we are managing labeled graphs, we need to ensure
a set of constraints on the labeling of graph elements. These constraints are
defined as follows:

* Each class should have exactly one unique label different from all the

labels of the other classes: VX;, %; € Z, if ¥; #%; then C; # C;.

* Entity edge labels between different classes are unique: let v;, v, vy €
Ve, F(vi,0j) = F(0i, vp) iff F(0)) = F(v).

* Two entity edges with the same label cannot link the same pair of entity
nodes: let v;,v; € Ve and 1, € L., if e, = (v, vj, typem) and e, =
(v, vj, typen) then Iy # I5.

Entities in the graph are identified by their unique identifier, their neigh-
borhood, or both, using the following identification mechanisms:

¢ Each entity node should have an identifier that is unique within the
class of that node. Therefore each entity node v; is uniquely identified
by the pair composed of its identifier ID; and its label C; represented
by (C;, ID;). The exception here is on the identification of weak en-
tity nodes (i.e., entity nodes related by a composition relationship to
another composite entity node). These weak entity nodes require also
the identifier of their parent entity node to be identified. Let ID; be

76

4. Integrity Constraints

the identifier of a weak entity node v;, whose parent is identified by
IDparent, then v; is identified by the triple (C]-, IDparent, ID]-).

e GRAD supports multigraphs. Thus to unequivocally identify an entity
edge, the identifiers of the nodes it links are not enough, we also need
the edge’s label. We previously stated that two entity edges with the
same label cannot link the same pair of entity nodes. Therefore, each
entity edge ¢; is uniquely identified by the triple comprised of its label
li € L, and the identifiers (ID;, IDy) of the entity nodes it links (v; and
vx) represented by (I;, ID;, IDy).

* An attribute node v; € V,, associated to an entity node u € V,, is
identified by the pair (l;, ID;) comprised of its label /; € L, and the
identifier ID; of u. An attribute edge is identified by the entity node
and attribute node it links.

4.2 Semantic Constraints

Based on the knowledge of a specific domain, end-users might need to make
some semantic restrictions over the graph data. The goal of these constraints
is to guarantee the compliance of the graph data with respect to domain-
specific rules. Since these constraints could not be automatically identified
and captured by the system, they need to be explicitly expressed by users. In
GRAD, we also choose them to be represented using graph patterns. Thus,
before defining the notion of semantic constraints, we first introduce the con-
cept of graph pattern in GRAD. A graph pattern P is a predicate on the
topology (specifying conditions on the structural properties of the graph)
and attributes (specifying conditions on the values of the attributes) of the
graph elements. The topic of graph pattern matching is well-studied in the
graph theory literature [44], we formally define a graph pattern in GRAD as
follows:

Definition 3.11. [Graph Pattern] A pattern graph is defined as P =
(Vp, Ep, o, B), where:

* Vp is a set of nodes and Ep is a set of edges;

* « is a function defined on Vp U Ep such that for each node u € Vp (resp., edge
e € Ep), a(u) (resp., a(e)) is the predicate applied on the label of u (resp., e).
This predicate compares the label I; = F(u) of u (resp., of e) with a string s;.
The comparison is of the form I; op s;, and is performed using one of the two
equality comparison operators =, #;

* B:isafunction defined on Vp U Ep such that for each node u € Vp (resp., edge
e € Ep), B(u) (resp., B(e)) is the predicate applied on the attributes of u (resp.,

77

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

e). This predicate is a conjunction of atomic formulas each of which compares a
constant c with the value x of an attribute of u (resp., e) using a given operator
op;. The comparison is performed using any of the following operators: <, <
,=,#,>,>. Hence, B(u) (resp., B(e)) is a conjunction of comparisons of the
form: c op; x .

We represent each atomic formula of the predicate functions (i.e., «, §) as
fi(opi,cj)(wll) — {true, false}. The predicate function is evaluated to true if
all its atomic formulas are true. In this chapter, we focus on the case of
the conjunction between predicates. However, the same approach could be
extended to support disjunctions or an arbitrary combination of conjunctions
and disjunction of predicates.

In what follows, we use subgraph isomorphism to identify all the sub-
graphs that match a given graph pattern. We say that a subgraph G’ of a
given graph G matches a query pattern P by isomorphism, and we denote
thisas G’ = P.

Definition 3.12. [Subgraph Matching] Consider a GRAD graph G and a subgraph
of G, denoted G' = (V', E', p, F, H), matches a pattern P using graph isomorphism,
if there is a bijective function ® : Vp — V' such that:

* Every node on V), has an image node on V' by the bijective function ®, and
every edge from Ej, has an image edge on E'. Formally, Yu,u’ € V,, e =
(u,u') € Ep, iff ®(u), ®(u') € V' and (P(u), (u')) € E';

* Yu € VUV, a(u)holds, i.e., u € VUV, iff 3l; € L such that F(u) | a(u);
* Ve € E,, a(e) holds, i.e., e € E, iff A; € L, such that F(e) [a(e);
e Yu € V], B(u) holds, i.e., u € V' iff 3k; € K such that H(u, k;) £ p(u);

e Yu € V], where its attribute node isv,, P(u) holds, ie., u € Vl’ iff
H(u, F(va)) F B(u);

e Ve € E,UE|, B(e) holds, i.e., e € E, UE] iff 3k;j € K such that H(e, k;) |
B(e).

It should be noted that the bijective function ® specifies the minimum set
of properties a graph element should have. For a pair of nodes v € V), vy €
V', vy = ®(v) means that (1) v, has at least all the attributes of v for which
the predicates of P hold, and (2) vy has at least all the relationships v has.
However, the matched nodes vy € V’ could have more relationships and
attributes than those specified on the pattern’s description.

The problem of graph matching using subgraph isomorphism is known
to be NP-complete. Indexing techniques were proposed in the literature to

78

4. Integrity Constraints

accelerate matching algorithms. For some domains and applications, weaker
forms of graph matching are sufficient. Hence, the strict constraint of isomor-
phism is relaxed, reducing the complexity of the matching operation. A set
of alternatives was introduced and discussed by Fan et al. [44], such as graph
pattern matching by simulation, dual simulation, and strong simulation.

We now address the semantic constraints. In particular, we study here
two categories of such constraints: assertions and multiplicities.

Assertions

These are predicates applied on the graph data and that must always be
satisfied. In GRAD, assertions are represented using graph patterns to specify
the topological and content-based constraints chosen by the user.

Definition 3.13. [Assertion] An assertion is represented by a graph pattern P. A
graph G is said to be compliant to the assertion if for every entity node (v € V,)
matched by a node on the assertion pattern (v; € V), there exist a subgraph G' € G
such that G' matches P.

Formally: Vv, € Vo, v; € P | ®(v;)) =v, = NG C G |v, € G and G' = P.

Example 4.1 (Assertion on Movies)

For example, a user can state that all movies on the graph should have
an attribute node labeled "Rating", with the rating value by "Audience"
being above 7. The movie has to be related to a set of actors and a direc-
tor. If these conditions are not met, the insertion transaction of the movie
in the graph should fail. The pattern predicate is represented graphically
in Figure 3.7 (i.e., as a graph whose structure represents the topological
constraints and the values on its attributes represent the conditions on the
output attributes). This example pattern is represented in GRAD as fol-
lows:

e Set of nodes: V, = {va,opm,vp}, Vo = {v} and V) = {v;}.

* Set of edges and their respective end-nodes: E, = {ep,e4}, with ep =
(vp,vm) and eq = (va,0m). Eqo = {e; = (vm,0y)} and E; = {e

(Ur/ 7)1)}.

¢ Predicates on the labels of entity nodes: a(v4) : F(va) = "ACTOR”,
a(op) : F(oy) = "MOVIE” and a(vp) : F(vp) = "DIRECTOR”.

¢ Predicate on the label of the attribute nodes: a(v;) : F(v,) = "Rating”.

e Predicates on the labels of entity edges: a(e4) : F(eq) = "ACTS” and
a(ep) : F(ep) = "DIRECTS".

79

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

Label= ACTS Label= DIRECTS

Label= ACTOR Label= MOVIE Label= DIRECTOR|

Attr|bute: Type = Audience

Fig. 3.7: Assertion Pattern on Movie Nodes

® Predicate on the attribute of literal edges: pB(e;) : H(e:, Type) =
" Audience”.

¢ Predicate on the value of literal nodes: B(v;) : H(v;, “Rating”) > 7.

Multiplicities

They are applied between classes of entity nodes to define the number of re-
lationships a node from a given class can have with nodes from other classes
through a particular entity edge. This is a user-defined constraint that is well-
known in conceptual modeling languages. In GRAD, multiplicities specify
the minimum and the maximum number of relationships an entity node is
allowed to have with entity nodes from other classes, through entity edges of
a given label. If not set by the user, the default multiplicity is unbounded.

Definition 3.14. [Multiplicity] Formally, this constraint is represented by a func-

tion y defined on ¥. x L, x . For a given pair of entity node classes (¥;,%; € Z),
and an edge’s label (I € L), u(Xi, I, X)) defines the multiplicity predicate. It spec-
ifies the maximum and minimum number of entity edges labeled I} that could exist
between a given node v; € ¥; and the set of nodes v; € X;, and vice versa. Note that
the multiplicity predicate is a conjunction of at most two atomic formulas (specifying
the lower and upper bounds) at each endpoint. Each predicate compares the num-
ber of edges with the given maximum and/or minimum using a given comparison
operator from the following list: <, <,=,>,>, %

Example 4.2 (Multiplicity of Movies)

A user may want to state that an actor can participate in many movies but
that a movie should have at least one actor. In the first case, the maxi-
mum range is unbounded, while the second range is greater than one. We
represent this constraint between actors and movies related by the ACTS
relationship using UML notations as [1..*,*]. Figure 3.8 illustrates this
example of constraints using a graph-based representation. Note that the
multiplicities should not violate the specific properties of entity edges (e.g.,
to-one relationships between nodes related by composition).

80

5. Graph Algebra

Label= ACTS Label= DIRECTS

Label= ACTOR Label= MOVIE 1 Label= DIRECTOR|
*

1..% *

Fig. 3.8: Multiplicity of Movie Nodes

While multiplicities focus solely on cardinality checking between classes
of nodes, assertions extend the constraints’ scope to target the topology and
the content allowed on the graph. Naturally, the two constraints could be
combined by adding for example the function y to the assertion’s pattern P.
In such a case, the assertions will define the constraints on the topology and
attributes of graph elements, and the multiplicity defines the allowed number
of relationships between the different entity nodes.

Many other integrity constraints were studied in the literature of graph
database models. For example, functional dependencies and referential in-
tegrity were considered by some graph database models. Functional depen-
dencies describe the fact that the values of an element’s attribute determine
the values of another one. Referential integrity, on the other hand, as de-
fined on the relational model, guarantees that only existing entities are ref-
erenced. These two constraints are designed to put constraints on implicit
relationships existing between data entities. However, these relationships are
explicitly expressed on the graph using edges. We can therefore use specific
graph edges (e.g., composition) to reflect the same semantic. Moreover, as
acknowledged in [10], these concepts are inherited from the relational model
and remain difficult to project directly on the graph database models.

5 Graph Algebra

In this section, we complete the GRAD database model with a graph algebra,
consisting of a set of algebraic operators specific for online graph querying
and analysis. The algebra supports the data structures of GRAD while pre-
serving the integrity constraints. This allows users to traverse and query the
network without violating the database integrity. The algebra we present in
this section extends GraphQL, a graph algebra defined along the lines of the
relational algebra [60]. An interesting characteristic of GraphQL is that it pro-
vides a mapping between the algebraic expressions and FLWR expressions
from XQuery. The query language is declarative, graph-oriented, and suited
for semi-structured data. Moreover, GraphQL is relationally complete and
implements common graph querying operations such as subgraph matching,
finding paths, and graph aggregations [133, 136]. A major difference between
the original GraphQL and GRAD Algebra is that GRAD is oriented for the
management and querying of a single large graph while GraphQL targets

81

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

collections of small graphs. Single large graph analysis is usually applied on
domains such as social and bibliographic networks with queries centered on
pattern matching, reachability, and shortest path. The analysis of collections
of graphs is usually applied on chemical and bioinformatic networks, with
analysis-oriented for subgraph and supergraph queries [117].

GRAD algebra operates directly on GRAD structures, which are the fun-
damental construct, the operands, and the return type of all algebraic oper-
ations. By building on GraphQL, our algebra inherits the same expressive
power; hence it is at least as expressive as the relational algebra. We study
the closure of each algebraic operator with respect to GRAD structures and
integrity constraints. When starting from a consistent database state (i.e.,
where the integrity constraints presented above are satisfied), the closure
ensures that the integrity constraints remain satisfied after the execution of
any given algebraic operation. This guarantees that each operator’s output
is formatted according to GRAD and thereof is a valid input for the other
operators. Finally, algebraic laws regarding commutativity and associativity
remain valid since the algebra is built on the lines of relational algebra. For
all the operators we introduce in this section, we assume the following: The
input is a GRAD graph. The general rule stating that if a node is removed,
then all its edges are removed, is valid for all types of nodes. If a compos-
ite (parent) entity node is removed, all its parts (children) weak entity nodes
are removed consequently. This means, for instance, that if an entity node
is removed then the whole hypernode is removed, and if an attribute node
is removed then all its literal nodes are removed as well. We now study the
operators one by one.

5.1 Selection

The first major operation is the selection which is a subgraph extraction op-
eration based on graph pattern matching. A selection consists in finding the
subgraph (or set of subgraphs) of the data graph G that satisfies the seman-
tic and topological constraints specified by a given graph pattern P. The
selection operates only on valid graph pattern in GRAD defined as follows:

Definition 3.15. [Valid Pattern] A given graph pattern P = (V},, Ep, B, &) is a valid
GRAD pattern if it satisfies the following conditions:

* All elements of P are represented using GRAD structures: Vy, C V.UV, UV,
and E, C E. U E, U E,. Figure 3.9-(a) shows an example of a subgraph that
violates this condition. The violation here is that two attribute nodes are linked
to the same literal node while in GRAD a literal node must be related to exactly
a single attribute node;

* The definition of predicates on the content (label and attributes) of the pattern
elements is optional (e.g., an entity node might not have a predicate on its label

82

5. Graph Algebra

Label = ACTOR Label = MOVIE Label = STATE
abel =Rating ID=UTAH
A

Label Rank
Label = Rating
Label = Ranking Attribute=[Type : Audience

Attribute= Web : IMDB

(a) (b) (©

Attribute= Type : Score Labgl = FilmedIn

Label: MOVIE

Fig. 3.9: Non-Valid GRAD Patterns

or identifier). In case no predicate is specified on an attribute or a label, all
elements match the pattern. Intuitively, for a given graph element, a predicate
can only be applied on the properties specified for its kind by GRAD (e.g., a
predicate cannot be applied on the labels of attribute edges because by definition
an attribute edge does not have a label). For example the pattern on Figure 3.9-
(a) states that the attribute edge linking an actor entity node to its ranking
attribute node should be labeled "Rank”, while GRAD does not support labels
on attribute edges;

* The pattern does not include weak nodes without their parent nodes. That
means, if the pattern includes a weak node (i.e., child nodes related by a com-
position relationship to their parent nodes), then the parent node should be
included in the pattern as well. This is required because a weak node does not
represent a complete entity and could not be identified by itself. For example, if
the pattern describes an attribute node and its literal node, then it should also
contain a description of their corresponding parent entity node. For example
Figure 3.9-(b) is not valid because the attribute node is not associated with an
entity node. Figure 3.9-(c) is not valid because entity nodes labeled "STATE"
are weak entity nodes linked by composition to their parent entity nodes labeled
"COUNTRY" which are not included in the pattern.

Regarding the MovieLens working example, Figure 3.10 provides exam-
ples of valid GRAD patterns. Particularly, Figure 3.10-(a) and Figure 3.10-(b)
provide a possible correction for the non-valid patterns shown in Figure 3.9-
(b) and Figure 3.9-(c) respectively.

Using the formal definitions of GRAD data structures and valid GRAD
pattern, we formally define the selection operator as follows:

e Input: A graph G and a valid selection pattern P.
e Mathematical notation: op(G).

e Output: A set of matched graphs Q) = {(Gy, Gy, ..., Gn) | G; = P}, such

83

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

Label = MOVIE Label: COUNTRY
A
Label § LocatedIn
Label =Rating
. _ . Label = STATE
Attribute= Type : Score ID = UTAH

(a) (b)

Fig. 3.10: Valid GRAD Patterns

that all G; are subgraphs of G that match the selection pattern P by
isomorphism.

¢ Closure condition: The closure is satisfied if the selection pattern is a
valid GRAD pattern.

Example 5.1 (Top-Rated Movies Selection)

Suppose the analyst would like to extract the network of the top-rated
movies by the audience (i.e., movies rated above 7 by the audience). The
user is also interested in getting the top actors of each top movie (i.e., ac-
tors with a ranking equal to 1 playing in the selected top-rated movies).
This query is answered by applying the following selection: op(GptovieLens)-
Here the pattern applies constraints on the labels of entity nodes ("ACTOR"
and "MOVIE"), the label and attribute of their linking entity edge (the la-
bel is "ACTS", and the attribute is "Ranking = 1"), the labels of movies’
attribute nodes (the label is "Rating") and the rating values (value in the lit-
eral node > 7). The input and output of this selection operation are shown
in Figure 3.11.

Note that even if the pattern is not GRAD compliant, the selection could
be performed to extract graph data. However, the result cannot be guaranteed
to be a valid input for other operations as it violates their preconditions.

5.2 Cartesian Product

Cartesian Product is a binary operator applied to put together two collections
of graphs. The algebra of this operator and is defined as follows:

* Input: Two collections of graphs S1 and S,.

e Mathematical notation: S; X S».

84

5. Graph Algebra

ACTOR Type: Audience

ID: Chris_Pine m

Label = ACTS
o ACT:
Ranking=1 Ranking:1
o MOVIE
Label = MOVIE ID: Star_Trek
Selection -
MOVIE - ACTOR
- ID: Mission_Imp3[— ACTS |ID: Tom_Cruise
abel = Rating> — Ranking : 1 —
Attribute= Type : Audience
Output Network

Fig. 3.11: Top Movies and Actors Network

* Output: Let S; = {Gy, Gy} and Sy = {G3, G4}. The result of the Carte-
sian product is a set of pairs of unconnected graphs. Each graph on
the output is composed by a graph from S; and a graph from S; re-
spectively: 51 X Sz = {Gu = (Gl, G3), Gb = (G],G4), GC = (GQ, G3), Gd =
(G2, Go)}-

¢ Closure condition: Cartesian product is a closed operation since it does
not alter the internal structure of the hypernode neither adds new
edges.

5.3 Composition

The idea of composition is to reuse the information extracted from the input
graph data to generate new graphs. The composition operator is used to
create a new graph based on data collected from the original graph, then for-
matted according to a given graph template. A graph template T describes
the structure of the output graph by specifying the content of graph entities
and their organization on the resulting graph. The template could be defined
using a subgraph G’. As shown in Figure 3.12, the template describes an
output network with one type of entity nodes (labeled "ACTOR" and with
the identifier "name"). Entity nodes are related by one type of relationship
(labeled "Co — Acts" and of type "Association").

Applying composition is to some extent analogous to having a function
with predefined instructions (i.e., a graph template), a set of formal param-
eters (i.e., a graph pattern), and a set of actual parameters values (i.e., the
matched graphs). First, the user needs to define the graph template that she

85

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

Label: Co-Acts
Type = Association

Label = ACTOR| Label: ACTOR
ID: Name

Label = Acts
Type = Association
Y Label: Co-Acts Label: CO-ACTS

A © ot
Type = Association :0 Type = Association
Label = MOVIE|
Composition
A P Label: CO-ACTS
ACTOR
ID: Ken Watanabe

Label = Acts s
= Associati Label: ACTOR Type = Association
Type = Association IEI
Pattern Template Output Network

ACTOR ACTOR
ID: Ving Rhames ID: Jeremy Renner

Label: CO-ACTS
Type = Association

ACTOR
ID: Tom_Cruise

Label = ACTOR|

Fig. 3.12: Co-actorship Network Generation

wants to generate using data from the input graph. Then a graph pattern
matching operation is applied to the input graph to retrieve a set of matched
subgraphs. Finally, the composition operator instantiates the graph template
using data from the matched subgraphs. The composition operator is for-
mally defined as follows:

¢ Input: The initial graph G, the graph template 7, and a pattern P.
* Mathematical notation: wx,(G).

e Output: Let Q) = {Gy, Gy, ..., G, } be the set of n graphs matched by the
pattern P such that () = op(G). Let T be the template of the output
graph, and 7p(G) be the function that instantiates the template 7. Each
G; € 1p(G) is then a graph that follows the template T and filled by data
matched by P from the initial graph G. The output of the composition
is denoted as w,(G) = {1p(G;) | G; € Q}. Hence, the result is a set
of graphs instantiating the template 7p (i.e., graph elements are created
according to the template and the actual values of their attributes are
assigned).

¢ Closure condition: The composition is closed if the pattern is valid and
the template is compliant to GRAD structures and constraints.

Example 5.2 (Co-actors Composition)

Assume the analyst wants to generate the graph of co-actors from the orig-
inal graph. The template is a network of actors connected by co-actorship
edges. The actual names of the actor are retrieved from the input graph.
The pattern matches the pairs of actor nodes that are directly connected to
the same movie. This operation is depicted in Figure 3.12.

86

5. Graph Algebra

MOVIE MOVIE ACTOR MOVIE MOVIE ACTOR
ID: Star_Trek ID: Star_Trek[“acts |ID: Eric_Bana ID: Star_Trek ID: Star_Trek[~ acts | ID: Eric_Bana
A Ranking: | A Ranking:1

ACTS . A(YTS >
Ranking:1 @ Ranking:1 @
Type: Audience] Type: Audience]
ACTOR D — ACTOR S
1D: Chris_Pine ID: Chris_Pine;
Input Subgraphs

Fig. 3.13: Union of Actors of the Same Movie

5.4 Set operators: Union and Difference

The two core set operations on graphs are union and difference. A union
between two graphs generates a new graph putting together the two input
graphs without concatenation. Union does not introduce changes to the in-
ternal structure of each input graph. Graph union is different from its rela-
tional counterpart in that no common structure is required for executing the
operation. The union operator is defined as follows:

¢ Input: Two initial graphs G and G’.
¢ Mathematical notation: G U G'.

e Output: G’ = GU G/, where all graph elements from G and G’ are on
G" (e, V' =VUV', and E” = EU E/).

* Closure condition: The union does not introduce any structural changes
to the graph elements. This operation is therefore closed.

Example 5.3 (Graph Union)

While adding new graph sources to the graph database, the union oper-
ation is used simply to put together the original graph with the graph
entities being added. The union is sufficient if the added entities do not
exist previously on the graph. Note that as in Figure 3.13 the two sub-
graphs are unified but not merged. Intuitively, if an entity (e.g., a movie) is
already present in the graph, an integration operation fusing the two cor-
responding entity node is required. We further investigate this case with
the join operation introduced next.

The difference between graphs removes isomorphic subgraphs that exist
in the two input graphs. The Difference operator is defined as follows:

* Input: Two graphs G and G'.

¢ Mathematical notation: G — G'.

87

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

e Output: G — G’ = G”, where all graph elements from G isomorphic to
graph elements in G’ are removed from G. While the composition is
used to generate new graphs, the difference is the only operation we
introduced so far to enable deletion of graph elements.

* Closure condition: The difference introduces structural changes to the
graph by removing the shared subgraphs. This operation is closed as
long as it respects the assumptions we introduced at the beginning of
this section.

Structural Graph Join

The union or Cartesian Product operations introduced above enable putting
together a collection of graphs. However, in scenarios where graph entities
need to be integrated, these operations are not enough to merge redundant
graph entities. We need therefore to introduce another operation, the struc-
tural graph join, or simply join, which consists in the unification of nodes
and edges based on a common join predicate. The join operator is defined as
follows:

¢ Input: Two collections of graphs S; and S, and a join predicate Pr that
applies on the attributes graphs of 51 and Ss.

¢ Mathematical notation: S1 >ip, S2.

* Output: A join is performed in multiple steps. First a Cartesian Prod-
uct: S1 x Sp is applied and the result is a set of pairs of subgraphs. For
this set of pairs, a selection is applied to retain only pairs of subgraphs
whose elements satisfy the join predicate Pr. For each retained pair of
subgraphs, their graph elements that satisfy the predicate are merged.
The generation of the new graph resulting from the join is performed
by the composition operation. However, this is a specific case of compo-
sition where there is no need for the pattern matching phase since the
graphs to join are the input instead of the matched subgraphs. For the
composition template, it consists in the union of the two joined graphs
after edges and nodes unification.

* Closure condition: The join operation is closed in case no unification is
required. In the case of unification of edges or nodes, the structure of
the graph might change and the closure is verified at the level of the
composition operation that performs the unification.

Example 5.4 (Structural Join)
Assume the analyst wants to integrate the incoming data about movies in
the graph already stored in the database. Often, some movies and actors

88

6. Conclusion

GO & a2
Type:Adience Type: [TopCritics :Aldi Type: [TopCritics Type: [Expert

@@Ncp <o> M G

MOVIEL.ID = MOVIE2.ID MOVIELID = MOVIE2.ID
&
Fv(MOVIEL, li) = Fv(MOVIE2, li)

MOVIE MOVIE
ID: 3884 ID: 3884 1D:3884
MOVIE
ID:3884

Type:Audience Jype: Expert Type: TopCritics

Fig. 3.14: Join on Attribute and Value Nodes

could have been already inserted in the database. These existing entities
have to be merged with their corresponding incoming ones. In this exam-
ple, the correspondence between the existing nodes and potential incom-
ing nodes is performed based on the identifiers of the movie nodes. The
join predicate used to match two movie hypernodes is their ID denoted as
MOVIE.ID. After the fusion, we can notice that the two movie nodes (with
ID= 3884) are merged and an additional type of attribute nodes (Score) is
attached to the existing movie as shown on the first join on Figure 3.14.
Once the entity nodes and their attribute nodes are merged, another possi-
ble scenario could be the fusion of attribute nodes of the movie node based
on their common label ;. This is shown in the second join in Figure 3.14,
this adding the new captured rating values as literal nodes attached to the
Rating attribute node.

6 Conclusion
In this chapter, we proposed a novel database model for intuitive model-

ing and effective querying of graph data. GRAD is a complete and native
graph database model where relationships are first-class citizens. It proposes

89

Chapter 3. GRAD: A Database Model for Advanced Graph Analytics

advanced graph structures to represent real-world entities. The algebra is
designed such that graphs are the operands and the output of all operators.
We defined the integrity constraints to guarantee data consistency.

GRAD is a generic database model that lays the foundations for building
graph management systems. It could further be extended to support specific
application requirements. Extensions could be applied at the data structures,
algebraic operators, or constraints to fit certain application requirements.
For example, GRAD could be used for graph data warehousing and Master
Data Management. It could be extended to support spatio-temporal graph
databases. A further step could be the support of evolving graph databases,
that takes into account both data and schema changes.

90

Chapter 4

A Framework for Building
OLAP Cubes on Graphs

The paper has been published in the

19th East-European Conference on Advances in Databases and Information Systems
(2015). The layout and content of the paper have been revised.

DOIL: https:/ /doi.org/10.1007 /978-3-319-23135-8_7

Springer copyright/ credit notice:

© 2016 Springer. Reprinted, with permission, from Amine Ghrab, Oscar
Romero, Sabri Skhiri, Alejandro Vaisman, and Esteban Ziméanyi, A Frame-
work for Building OLAP Cubes on Graphs, 19th East-European Conference
on Advances in Databases and Information Systems, September /2015

Abstract

Graphs are widespread structures providing a powerful abstraction for modeling net-
worked data. Large and complex graphs have emerged in various domains such as
social networks, bioinformatics, and chemical data. However, current warehousing
frameworks are not equipped to handle efficiently the multidimensional modeling
and analysis of complex graph data. In this chapter, we propose a novel frame-
work for building OLAP cubes from graph data and analyzing the graph topological
properties. The framework supports the extraction and design of the candidate mul-
tidimensional spaces in property graphs. Besides property graphs, a new database
model tailored for multidimensional modeling and enabling the exploration of addi-
tional candidate multidimensional spaces is introduced. We present novel techniques
for OLAP aggregation of the graph and discuss the case of dimension hierarchies in
graphs. Furthermore, the architecture and the implementation of our graph ware-
housing framework are presented and show the effectiveness of our approach.

91

Chapter 4. A Framework for Building OLAP Cubes on Graphs

1 Introduction

In this chapter we present our second framework bringing the value of graph
analytics to decision-support systems. A major step towards extending cur-
rent data warehouses with graph capabilities is to address the need for na-
tive multidimensional graph models and re-think OLAP analysis to capture
and expose graph topology and content. Many approaches were proposed
in the literature to extend current decision support systems with graphs
[28, 135, 143]. These works suggested the first foundations for building OLAP
cubes on graphs. In this literature, multidimensional concepts are embedded
within the attributes of graph elements. A subset of attributes could be con-
sidered as dimensions used for aggregating the graph and performing its
multi-perspective analysis. Another subset could be considered as the exam-
ined measures. However, most of the existing techniques focus on homoge-
neous graphs (i.e., graphs where all nodes are of the same type, and all edges
are the same), while real-world graphs are complex and often heterogeneous.
OLAP analysis focuses mainly on the graph topology as the measure of inter-
est, while attributes could also provide interesting measures. The model we
propose in this chapter extends the state-of-the-art to heterogeneous graphs
(i.e., graphs where nodes and edges could be of different types to represent
different real-world entities, and the different relationships between them).
Besides, we focus on both the attributes of nodes and edges to construct fur-
ther multidimensional spaces. We examine two types of spaces, inter-class
and intra-class respectively. In inter-class, we focus on multidimensional
structures between two types of nodes. While in intra-class, we dive into
a single type of node to explore the possible multidimensional spaces that
could be constructed within the same class. We extend the analysis capa-
bilities on graphs by integrating GRAD, an analysis-oriented graph database
model [50, 52]. By introducing new graph structures designed for analytics
(e.g., aggregation edges and hypernodes), GRAD facilitates the explicit rep-
resentation of concepts such as hierarchies and the analysis of the content of
nodes. Thus proving to be a better fit for designing intra-class cubes. We use
these characteristics to support dimension hierarchies and build additional
OLAP cubes on graphs. We propose our novel technique for building OLAP
cubes on graphs. Thereby equipping decision-makers with the capability
of performing effective multi-level/multi-perspective analysis of their graph
data and examining new business facts.

Our main contributions in this chapter are summarized as follows:

* We define the multidimensional concepts for graph data, and propose
novel techniques for extracting the candidate multidimensional con-
cepts and building graph cubes from property graphs.

* We present an extension of the property graph model, tailored for mul-

92

2. Running Example

tidimensional analysis, and examine the additional candidate graph
cubes brought by this extension. We further extend our work to support
dimension hierarchies within graphs.

* We suggest a graph data warehousing architecture and provide an
effective prototypical implementation of our techniques for building
OLAP cubes.

The remaining of this chapter is structured as follows: Section 2 presents
our running example. In Section 3, we formally define the multidimensional
structures on graphs. Section 4 presents our technique for extracting potential
multidimensional spaces and building graph cubes on property graphs. In
Section 5 we propose a technique for building OLAP cubes on a novel graph
database model, and extend our approach to support dimension hierarchies
in graphs. Section 6 presents the architecture and implementation of our
proof-of-concept graph warehousing framework. Finally, Section 7 sketches
future work and concludes the chapter.

2 Running Example

We illustrate the analysis opportunities brought by graphs using a movie
graph. The original dataset was published by the GroupLens research
group.! The resulting graph contains movies with attributes, such as the
year of release, titles, ratings, and scores from different communities, etc.
Each movie is linked to its actors with an edge that contains the rank of the
actor in the movie. We further enrich the dataset with information about ac-
tors’ birth date and nationality, and movies country from the Movie Database
website.? Figure 4.1-(a) shows a subgraph of the movie graph. We start with
a simple and flat multidimensional schema shown in Figure 4.1-(b). We in-
troduce in Section 5 a more complete schema supporting hierarchies and
enabling more advanced analysis.

3 Multidimensional Concepts on Graphs

In this section, we formally define the multidimensional structures in the
context of heterogeneous attributed graphs. We start with dimension levels.

Definition 4.1. [Dimension Level] A level A is defined by a pair (name, P), where
name is the name of the level, and ‘P is the aggregation pattern. P = (Vp,Ep, , B),
with Vp, Ep being the constraints on the level’s topology, and «, B the constraints on

Ihttp://grouplens.org/datasets/movielens
’https://www.themoviedb.org/

93

http://grouplens.org/datasets/movielens
https://www.themoviedb.org/

Chapter 4. A Framework for Building OLAP Cubes on Graphs

ACTS Website: MC
Website: RT ranking:1
ranking:1 rating: 3.9

Tabel: ACTOR Tabel: ACTOR

1D: Mark_Ruffalo . 1D: Michael_Caine
| 4 Label: MOVIE - i
Nat: USA ating: 4.1 oo Nat: UK Website
BDate: 1967 Title: Now You See Me e
ender: Male Rdate: 05/2013 i
Country:USA WebsitelD
ACTS PageURL
Website: RT
Label: ACTOR ranking:1
1D: Chris_Hemsworth rating:4.3 Movi l Act
; Nat: AUS ovie ctor
rating: 3.9 W;:z}f‘g’fc BDate: 1983
rating: 4.2 Gender: Male MovielD Performance ActorID
ACTS {abel: MOVIE Title Nationality
Website: RT 1D: 5684 i i
Label: MOVIE —< B—
1D: 4354 ranking:1 Title: Interstellar ReleaseDate Ranking DateOfBirth
ing:4.5 : i
Title: The Avengers Label: ACTOR vating: Rdate: 11/2014 Rating Gender
Rdate: 05/2012 1D: Anne_Hathaway Country:USA Country

Country:USA Nat: USA

BDate: 1982
Gender: Female

@ (b)

Fig. 4.1: A Sample Movie Graph and Performance MD Schema

its labels and attributes respectively. P is used to identify all graph elements that
belong to the dimension’s level and that should be merged after a roll-up.

Dimensions provide possible perspectives for the analysis of the graph
topology and content. In this chapter, we focus on two types of dimensions
that could be derived from graph attributes: (1) Node-based dimensions,
which are represented by the attributes of the nodes, and (2) Edge-based
dimensions, which are represented by the attribute of the edges. We define a
dimension as follows:

Definition 4.2. [Dimension] A dimension is defined as D = (name, A, R), where
AN = {Aq, ..., An} is the set of the dimension levels. R is a partial order on the
elements of A and describes a directed acyclic graph defining the hierarchy and the
aggregation direction between the dimension’s levels. The base level A1 and highest
level Ay, (often referred to as All) are located at the ends of the partial order.

In the multidimensional model, a measure is the basic unit of data that is
placed in the multidimensional space and examined through the dimensions.

Definition 4.3. [Measures] A measure m is identified by (name, ¢). The measure
is computed by applying the aggregation function ¢ over a property graph G or some
of its elements. In graphs, ¢ could be a traditional function such as the average of a
set of attribute values, or a graph-specific function such as the degree of a node.

Multiple classifications for graph measures were proposed in the liter-
ature, such as the classification by the aggregation type (i.e., distributive,
algebraic, and holistic) [28]. Here we propose a new classification of graph
measures, based on the type and the computation algorithm.

* Content-Based Measures: They are extracted from the attributes of
graph elements. These measures are similar to traditional measures

94

4. Building OLAP Cubes on Property Graphs

and do not capture the graph topology. For example, the average rating
of a movie and the average rank of an actor are content-based measures.

* Graph-Specific Measures: They capture the topological properties of
graphs and are obtained by applying graph algorithms. They could
be classified according to the type of the output as either (1) numer-
ical, where the output is a numerical value such as the value of the
PageRank, or (2) topological, where the measure is represented using
graph structures such as the path between a pair of nodes. The second
possible classification makes the distinction between (1) local measures,
which are computed separately for graph nodes or edges (e.g., the cen-
trality of an actor), and (2) global measures which are computed for the
whole graph (e.g., the diameter or number of cycles of the graph).

* The Graph as a Measure: As discussed by Chen et al. in [28], the
graph itself could be considered as a measure examined from different
perspectives and at different aggregation levels.

The cube metaphor is widely accepted as the underlying logical construct
for conventional multidimensional models. Here we define the concept of
the cube using the notion of aggregate graphs defined as follows.

Definition 4.4. [Aggregate Graph] An aggregate graph G' of an initial graph G is
a graph obtained by condensing a subset of the nodes and edges of G. Hence, each
node corresponds to a set of nodes in G, and each edge is the result of the fusion of
edges between pairs of aggregated nodes.

Definition 4.5. [Graph Cube] A graph cube corresponds to a set of aggregate
graphs obtained by restructuring the initial graph G in all possible aggregations.
Each cuboid is therefore represented as an agqregate graph of G. If an aggregation
is performed from A; to Ajq, all graph elements that satisfy the aggregation pattern
P; are aggregated in the same node. The edges are constructed afterward to link the
pairs of nodes. Measures are then recomputed and placed on the aggregate graph.

In the next sections, we show how these formal definitions map to the
specific graph structures of each model and illustrate them with examples
applied to the movie graph. We discuss how to select a valid subset of at-
tributes as the candidate dimensions or measures, and build the different
graph cubes.

4 Building OLAP Cubes on Property Graphs

Many current graph databases represent graphs using the property graphs
model [109]. We show in this section how we can use property graphs as the

95

Chapter 4. A Framework for Building OLAP Cubes on Graphs

first foundation for building OLAP cubes. However, since property graphs
describe basic graph structures (which are simple and oriented for storage
and operational workloads), their analysis capabilities are limited. For ad-
vanced multidimensional modeling and analysis, richer graph structures are
needed as we show later in Section 5.

Property graphs describe a directed, labeled and attributed multi-graph.
We use the same formal definition of property graphs presented in Defini-
tion 5.1 of Chapter 3.

Definition 4.6. [Property Graph] Given a finite set of labels L, a set of property
keys K and a set of values N, a property graph is represented as G = (V, &, p, F, H)
where:

* Vs a finite set of nodes;
o € isa finite set of edges, such that ENYV = Q;

* 0:& =V xVis the function that maps each edge to its pair of nodes, with
o(e) = (u, v) denoting a directed edge from u to v;

o F:VUE — L is the function that assigns to each node (resp. edge) a label
from the set of labels L;

e H:(VUE)x K — N, is a partial function assigning to each node (resp.
edge) the value of its attribute, such that, for a node (resp. edge) v € V), the
function H(v, k;) returns the value x € N of its i — th attribute identified by
the key k; € K .

In addition to the initial definition, this chapter we represent a node v; €
V as v; = (I;, Ay;), where I; € L is the label and Ay, = {(ki,m), ..., (kj, n))
| k € K, n € N} is the set of key-value pairs representing the attributes
of v;. Similarly, an edge e € € is represented as e = (vs, Ve, l]-,Ae].), where
p(e) = (vs,v.) such that vs and v, are the start and end nodes respectively,
li € L, is its label and A, is the set of key-value pairs representing the
attributes of e;. Each node (resp. edge) on the graph has exactly one label. A
class (denoted X;) describes a set of graph nodes that share the same label.

Given a property graph G and a pair of nodes from two connected but
distinct classes of nodes, we explore the candidate dimensions, measures,
and cubes that could be built by exploring the graph of these two classes. We
denote dimensions that span across two linked classes as inter-class dimen-
sions, defined as follows.

Definition 4.7. [Inter-class dimensions] Let G be a property graph, and let vs €
Y5 and v, € X, be a pair of nodes from two distinct classes. Let e; = (vs, Ve, l;, Ae,)

96

4. Building OLAP Cubes on Property Graphs

_) @ 1, 4. <]
Movie Aggregation. - -------------- -~ JE—— .
et S— ~===-Actor Aggregation

TRAFL D@ CL P A LWL (671D, #1) @71 B N #) LT G
/7 T ACTS Edge Aggregation ~===--____ AN
MR CLEL D) MRST WL D) e T AL NGD | ([M LI NG
(R.CL WL [***) (R, CL[*1[D**]) sus (R, *], W], [D, *, *]) e (R*.["LID.%) ==, 71. [DN, G]\)
(R, C]. [W], [D**]) ([R, C], [W], [*, N.*]) e (R, *1,[*]. [D,N,G]) ([**], [W], [D,N, G])
(R, C], W], [D,N*]) (IR, C], [W], [D, * G]) e (R.*].[W], [D,N,G]) ([C].[W].[D, N, G])

W

([R. C]. [W], [D.N.G])
Movie [Rdate: R, Country: C] X ACTS[Website: W] X Actor [DateOfBirth: D, Nationality: N, Gender:G]

Fig. 4.2: Graph Lattice of the Movie Graph

be an edge that relates vs and v,. The candidate node-based dimensions are a subset
of the attributes of the nodes vs and v, (Ay, and A,,). The candidate edge-based
dimensions are a subset of the attributes of the edge e; (Ae,).

Example 4.1 (Rating and Ranking of Actors per Website and Movie)
Using the running example of movies, we consider two classes which are
MOVIE and ACTOR. The movie dimensions are derived from the at-
tributes whose keys are {ReleaseDate, Country}, and the actor dimensions
are derived from the set { Nationality, DateO f Birth, Gender}. For example,
following the notation of Section 3, Dg,yger = (Gender, A, R), with the lev-
els being the base level Gender and ALL. Therefore, at the base level actor
nodes are grouped into two groups (i.e., nodes for male actors, and nodes
for female actors), then grouped in one node regardless of the gender (i.e.,
at the ALL level represented often by *). The edge-based dimension is
represented by the attribute Website of the edge ACTS relating actors and
movies.

The graph lattice enumerates all possible OLAP aggregations of the graph
and is obtained by aggregating over all the inter-class dimensions. Given the
graph of Figure 4.1, and considering the dimensions of the previous example,
Figure 4.2 shows the graph lattice of the performance cube. Each node of the
graph lattice represents an aggregate graph, that is, a cuboid of the graph
cube. We distinguish three special kinds of aggregation on this graph (high-
lighted in Figure 4.2), which are Movie-only aggregations (i.e., only movie
nodes are kept not fully aggregated to the All level), ACTS-only aggrega-
tion, and Actor-only aggregations.

Definition 4.8. [Inter-class measures] Given a property graph G and a set of
edges E C & relating nodes of the classes X; and ¥, a content-based measure mc is

97

Chapter 4. A Framework for Building OLAP Cubes on Graphs

computed by applying an aggregation function ¢ on an attribute of the edges e; € E

The graph-specific measures are obtained by applying graph algorithms
on G. Also, the aggregated graph itself could be considered as a measure.

To analyze the properties of the relationships between the graph entities,
inter-class modeling focus on the potential dimensions and measures exist-
ing within the entity edges. We cannot assume that all attributes of the edges
are dimensions. The distinction between attributes that are dimensions and
attributes that are measures is not straightforward, and thus requires a mod-
eling effort from the designer to distinguish them.

Example 4.2 (Multidimensional Aggregation of the Movie Graph)

As shown by the multidimensional schema of Figure 4.1-(b), the attribute
Website of the edge labeled ACTS could indeed be a dimension. However,
the attributes ranking and rating are rather considered as measures in the
current analysis scenario.

We apply these dimensions and measures on the property graph of Fig-
ure 4.1-(a), and follow the graph lattice of Figure 4.2 to study the graph
cube reflecting the ranking and rating of actors in the movie graph. Fig-
ure 4.3-(a) shows the aggregate graph (i.e., graph cuboid) where movies
are grouped by release date, and actors are grouped by birth date and
gender. A corresponding OLAP cube is shown in Figure 4.3-(b). The mea-
sures are AverageRanking and AverageRating of actors, which can be ex-
amined through the three dimensions left (i.e., ReleaseDate, DateOf Birth,
and Gender). We follow the graph aggregation as depicted by Figure 4.3-
(e) to get the graph (Figure 4.3-(c)) and the cuboid (Figure 4.3-(d)) at the
next aggregation level. On the lattice of Figure 4.2, this aggregation corre-
sponds to the two nodes underlined and put in a rectangle. Note here that
for graph-specific measures (e.g., closeness centrality of actors), the mea-
sures for the upper-level could not be computed directly from the cube at
a lower level, as the computation function needs to traverse the aggregated
graph itself to compute the new value of the graph-specific measure.

5 Building OLAP Cubes on GRAD

Many graph models were proposed in the literature to abstract different
types of graphs and fit their particular analysis workloads [10]. In [50], we
proposed GRAD, an analysis-oriented graph database model that extends
property graphs with advanced graph structures, integrity constraints, and a

98

5. Building OLAP Cubes on GRAD

Gender

[i J
Rating

S
Ranking
E

1970 1980 1990

\

Grgp’ﬁ Aggiegation

DateOfBirth
AGroup Movies lg ALL)
oW ©)
I ’@) ° Gender
B D)

Avg
Ratin
AVg

Rankin

1970 1980 1990

-

DateOfBirth

(Movie [R, *], ACTS [*], Actor [D, *, G])
@ (b)
Fig. 4.3: OLAP Aggregation of the Movie Graph and Computation of the OLAP Cubes

graph algebra. We use GRAD as the foundation for the OLAP cubes extrac-
tion techniques we present in this section.

As we discussed in the previous section, property graphs support OLAP
analysis of inter-classes facts. However, they fall short from supporting OLAP
analysis of the internal information stored within each node, or class of
nodes. Therefore, we focus in this section on the additional cubes and anal-
ysis capabilities brought by GRAD. Note however that since GRAD extends
property graphs, the candidate multidimensional spaces and cubes discussed
in the previous section could similarly be built using GRAD.

5.1 OLAP Cubes on GRAD

In GRAD, we consider heterogeneous, attributed, and labeled graphs. Com-
plex attributes are supported on the nodes and rich semantics is explicitly
expressed on the edges. The analysis process is centered around special ana-
lytical structures, namely hypernodes and classes. Hypernodes represent real-
world entities and are grouped within classes. Each analytics hypernode is an
induced subgraph grouping an entity node, all its attribute and literal nodes,
and all the edges between them. The core of a hypernode is the entity node
that contains the label and the identifier attributes of the real-world entity.
Attribute nodes are attached to the entity node and denote the non-identifier,
and potentially multi-valued attributes of each entity (e.g., budget, revenue).
Literal nodes record the effective value of its corresponding attribute node.
Rich semantics are embedded on the graph edges such as multiplicities, hi-
erarchical, and composition relationships. A complete definition of GRAD is

99

Chapter 4. A Framework for Building OLAP Cubes on Graphs

Language
LanguageCode
LanguageName
Location: NYC Movie /L
Period: 11/14 - Cit
Language: EN MovielD Revenue _ \Y
Label: MOVIE Title CityName
ID:{5684; Interstellar, 2014} ReleaseDate Amount | p— CityCode
Location: BXL Location: ANT Populatlon
Period: 12/14 Period: 12/14 T \r
Language: FR Language: FL - .
Series Period Country
SeriesID PeriodID CountryName
Title StartDate Capital
Revenue EndDate Population

@ (b)
Fig. 4.4: Movie GRAD Graph and Revenue MD Schema

provided in Chapter 3.

Formally, given a finite set of labels £, a set of property keys K and a set
of values NV, a graph in GRAD denoted as G = (V, &, p, F, H), and a class of
entity nodes is denoted as Z;. V =V, UV, UV}, with V, being the set of entity
nodes, V, the set of attribute nodes, and V; the set of literal nodes. The set of
edges is £ = E, U E; U E;, with V, being the set of entity edges, E, the set of
attribute edges, and E; the set of literal edges.

Figure 4.4-(a) illustrates a part of the movie graph modeled with GRAD.
In this example, Movie is an entity node, while Revenue is an attribute node
attached to Movie. The revenue has different values depending on a set of
factors (location, time, language, etc.), and each value is stored separately in
a literal node.

In the previous section, we used property graphs to study the candidate
multidimensional cubes between classes of nodes. As GRAD is an extension
of property graphs, the same modeling abd analysis of intra-class cubes could
be achieved using GRAD. Therefore, in this section we explore the additional
candidate dimensions, measures, and cubes that could be extracted from a
single class X; using the extension proposed by GRAD.

Definition 4.9. [Intra-Class Dimension] Given a GRAD graph G, a class of en-
tity nodes X, and an entity node u € X; with 1D, being the set of identifier attributes
of u. Then we can extract distinct sets of candidate dimensions. Each set of dimen-
sions is the union between the attributes of the entity node and the attributes of the
literal edge of a given attribute node. For a given attribute node v; € V, linked to the
entity node u, where A; is the attributes of the literal edge e € E; corresponding to
v;, the set of dimension us Dy, = {IDy} U A;.

Definition 4.10. [Intra-class measures] Given a GRAD graph G, an intra-class
measure is defined by (name, ¢) and is explored within each hypernode. The label

100

5. Building OLAP Cubes on GRAD

Location: US Location: US

Period: 11/14 Period: 12/14

L T EN Language: EN

ang“ag" o Label: MOVIE | 5 o Label: MOVIE
1D:5684; Interstellar 1D:5684; Interstellar
Location: BE Location: BE Location: BE
Period: 12/14 Period: 12/14 Period: 12/14
Language: FR Language: FL Language: ALL
(Movie, Language, Location = CN) (Movie, *, Location = CN)

@ (b)

Fig. 4.5: Aggregation of Revenue by Language

of the attribute node is the name of the measure (name € Lg,). The actual values of
these measures are embedded as the attributes of the literal nodes.

Example 5.1 (Analysis of the Revenue of a Movie)

Given the example of Figure 4.4, suppose an analyst needs to examine the
revenue of movies following the multidimensional schema of Figure 4.4-
(b). Revenue is therefore considered as the name of the measure, which
is the same as the label of the attribute node Revenue. The aggregation
function is SUM. The values of the measures are stored within the lit-
eral nodes linked to the Revenue attribute node and the function comput-
ing the measure is the same as the one used to retrieve the value from
the literal node. The dimensions for the revenue measure are named
Movie, Location, Period,, and Language. Given these dimensions, we can
aggregate the graph to examine the value of revenue by navigating through
the dimension hierarchy of the Location dimension from City to Country as
shown in Figure 4.5-(a), or by rolling up to the level ALL of the language
dimension as in Figure 4.5-(b). Concretely, at the graph level, this operation
will incur merging the corresponding literal storing the measure values.

We distinguish here two types of graph aggregations: (1) Intra-hypernode
aggregation, where literal nodes and edges of the same attribute node are
merged, thus the dimensions is an attribute of the literal edges (e.g., revenue
of a given movie by language), (2) Inter-hypernode aggregation, where entity
nodes could be merged (e.g., revenue of all movies per given a city, period
and language).

5.2 Dimension Hierarchies on GRAD

In this subsection, we consider extending the OLAP analysis to support hier-
archies within inter-class and intra-class dimensions.

101

Chapter 4. A Framework for Building OLAP Cubes on Graphs

(%%

o Label: SERIES
L2: Series 1D: {1684; Mission: Impossible} /’\

partof partof (Series, *, *) (*, *, Location) (*, Language, *)

Composition Composition /\>-©<

Label:MOVIE Label:MOVIE)))))
1D: {3623; Ghost Protocol} | | ID: {1186 ; Mission: Impossible 111} (Movie, *,*) (Series, *, Location) (Series, Language, *) (*, Language, Location)
T

L1: Movie:

(Movies, *, Location) ~ (Movie, Language, *) (Series, Language, Location)
Location: SP
Period: 05/06
Language: SP

Location: JP
Period: 10/12
Language: JP,

Location: RU Location: ARG
Period: 10/12 Period: 05/06
Language: RU ~ Language: SP
(Movie, Language, Location)

(a) (b)

Fig. 4.6: Dimension Hierarchy within Movie’s Class

* Dimension hierarchy for intra-class dimensions: Within each dimension
(i.e., attribute location of revenue), we might have an inner hierarchy
(e.g., City, Region, and Country). Therefore, we can extend the lattice
with these new possible aggregations as shown in Figure 4.5-(a).

* Dimension hierarchy for inter-class dimensions: Explored between dis-
tinct classes of nodes. Within GRAD, specific types of edges such as
composition and aggregation could be explicitly defined. Therefore,
classes of nodes related by these specific relationships belong to the
same dimension with the hierarchy following the child-parent direc-
tion of these relationships. Figure 4.6-(a) shows the hierarchy of the
movie dimension that is now composed of Movie and Series levels. The
updated lattice is shown in Figure 4.6-(b).

6 Framework Architecture and Implementation

In this section, we present our prototypical implementation of the OLAP
cubes extraction approach using Neo4j. The framework architecture is de-
picted in Figure 4.7. The major components of our implementation are de-
scribed as follows:

1. Graph ETL: The graph is extracted from external data sources that
might have various formats (e.g., XML as for DBLP, or text files for
MovieLens, etc.). For the running example, we have developed two
modules for extracting and matching data from CSV files of MovieLens
with data about actors from The Movie Database. The data is then for-
matted following GRAD and property graph structures before being
loaded as the base graph on Neo4j.

2. Graph storage and materialization: The graph data is stored using mul-
tiple Neo4j graph database instances. We use two particular databases,

102

7. Conclusion

Graph Visualization
(Web Interface)

GraphX
Graph { GraphCube (Pagerank, Centrality...) } Measures
Aggregation (Graph Cubes Builder) ’T‘ Computation
(Temporary Graph Storage)
I I
(O ﬁ Graph Lookup / Graph Update E)

' Graph Parsers @ @ @ Graph Storage
:> &
& # & ((MovieLensZGRAD) Materialization

MovieLens2PGraphs)

‘f"
‘.S e S N Data Node Data Node Data Node
~Eh
C
Raw Data o
(MovieLens) Graph ETL

Fig. 4.7: Distributed OLAP Cubes Computation

one to store the graph at the base level and the other to keep the lattice.
The other instances store the aggregate graphs. However, we needed a
database-per-aggregate graph because Neo4j does not support materi-
alized views on graphs, and could not separate between subgraphs of
the same database.

3. Graph lookup and update: This component acts as a middleware be-
tween the storage and processing layers. It loads the graph, at a given
aggregation level, from a Neo4j database into HDFS to prepare it for
distributed processing or aggregation. Once the processing is done,
this layer stores the graph back into a new Neo4j instance if the graph
was aggregated, or updates the original database if only some attributes
were updated.

4. Graph Aggregation and Measures Computation: Given a graph lat-
tice, the GraphCube module performs the graph aggregation to gener-
ate potential graph cuboids as discussed through this chapter. To effi-
ciently compute the graph-specific measures (e.g., PageRank or close-
ness centrality), we use the GraphX library. GraphX performs the iter-
ative graph algorithms in-memory and thus outperforms the other dis-
tributed graph libraries on large scale graphs. Once the required graph
measures are computed, the result is persisted in the corresponding
Neo4j instance using the previous layer.

7 Conclusion

In this chapter, we proposed our contribution to graph warehousing by de-
signing novel techniques for building OLAP cubes on graphs. We applied
our approach to both property graphs and a more advanced graph database

103

Chapter 4. A Framework for Building OLAP Cubes on Graphs

model tailored for multidimensional modeling. We discussed techniques for
OLAP aggregation of the graph and tackled the case of dimension hierar-
chies in graphs. Besides, we provided an overview of the architecture and
implementation of our graph warehousing framework.

Graph data warehousing is an emerging research field that brings var-
ious challenges similar to traditional data warehousing (e.g. high dimen-
sionality and cubes materialization). However, the structural properties and
unstructured nature of graphs call for the development of novel modeling
and processing paradigms. Our immediate future work is to enable multidi-
mensional concepts discovery on graphs within our framework. Yet, many
remaining research directions are worth investigating to build industry-grade
graph warehousing systems. Among these directions, we cite OLAP analysis
of dynamic graphs and the definition of a proper OLAP algebra and query
language for graphs.

104

Chapter 5

TopoGraph: An End-To-End
Framework to Build and
Analyze Graph Cubes

The paper has been published in the Information Systems Frontiers Journal. The
layout and content of the paper have been revised.

DOIL: https:/ /doi.org/10.1007 /s10796-020-10000-z

Springer copyright/ credit notice:

© 2020 Springer. Reprinted, with permission, from Amine Ghrab, Oscar
Romero, Sabri Skhiri, and Esteban Zimdanyi, TopoGraph: An End-To-End
Framework to Build and Analyze Graph Cubes, Information Systems Fron-
tiers.

Abstract

Graphs are a fundamental structure that provides an intuitive abstraction for mod-
eling and analyzing complex and highly interconnected data. Given the potential
complexity of such data, some approaches proposed extending decision-support sys-
tems with multidimensional analysis capabilities over graphs. In this chapter, we
introduce TopoGraph, an end-to-end framework for building and analyzing graph
cubes. TopoGraph extends the existing graph cube models by defining new types of
dimensions and measures and organizing them within a multidimensional space that
guarantees multidimensional integrity constraints. This results in defining three
new types of graph cubes: property graph cubes, topological graph cubes, and graph-
structured cubes. Afterward, we define the algebraic OLAP operations for such novel
cubes. We implement and experimentally validate TopoGraph with different types of

105

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

real-world datasets.

1 Introduction

Many approaches were proposed to address the graph data warehousing
challenge [48, 103]. These efforts laid the foundation for multidimensional
modeling and analysis of graphs both at the modeling and physical levels. In
this chapter, we extend the state of the art on graph warehousing by introduc-
ing new types of graph cubes that leverage both the content and the topology
of the graphs and expose topological and graph-structured insights. Most
state-of-the-art papers consider the aggregate graph as the only measure to
be examined. A notable difference of our work compared to these papers
is that we (1) capture new types of measures at a finer granularity level, (2)
represent them individually with numerical values or graphs, and (3) posi-
tion them within new types of graph cubes. Therefore, these cubes embed
new types of measures and dimensions not captured by previous work. We
discuss the required multidimensional integrity constraints on graphs, com-
pletely overlooked by current approaches, and show that our cubes guarantee
them. To the best of our knowledge, our framework is the first to define and
guarantee the multidimensional integrity constraints on graphs. We further
discuss the correspondence between graph cubes and relational OLAP cubes
and identify the few specific cases where a graph cube could be loaded into a
ROLAP cube. We show that the integration of graph cubes with the existing
ROLAP systems is not a trivial task and motivate the need for graph-specific
warehousing systems.

The research questions we address in this chapter are: given a graph, what
kind of new graph cubes could be extracted from it? When could a graph cube be
mapped and loaded to a ROLAP cube? And how could such novel graph cubes be an-
alyzed from a multidimensional perspective? As a result, we present TopoGraph,
a graph data warehousing framework that extends current graph warehous-
ing models with new types of cubes and queries combining graph-oriented
and OLAP querying. TopoGraph goes beyond traditional OLAP cubes, which
process value-based grouping of tables, by considering the topological prop-
erties of the graph elements. And it goes beyond current graph warehousing
models by proposing new types of graph cubes. These cubes embed a rich
repertoire of measures that could be represented with numerical values, with
entire graphs, or as a combination of them. Moreover, we discuss the corre-
spondence between the graph cubes proposed in this chapter and traditional
OLAP cubes and motivate the need for native graph warehousing systems.
Given the proposed cubes, TopoGraph aims at providing answers to complex
questions, asked in a business context, that require the analysis of both the
content and the topology of the graph. Relevantly, TopoGraph is our proposal

106

1. Introduction

to overcome the current shortcomings of graph warehousing approaches re-
sulting from our experience in real-life enterprise settings. We illustrate in the
following example three typical questions to which TopoGraph is designed
to answer.

Example 1.1 (Social Network)

Consider a social network such as Twitter where a set of users are following
each other, post and retweet a set of tweets as illustrated in Figure 5.1. We
distinguish three types of queries that could be used for analyzing graph
properties from a multidimensional perspective and illustrate them on a
social network through the following examples.

Content Query Content query target content-based measures and are
computed by applying aggregation functions such as count and average.
They are used to answering queries such as (1) counting the total number
of favorites a tweet received from a certain user location, (2) the average
number of followers a community of users has, or (3) the total number
of tweets on a given date by users in a certain language. Existing OLAP
frameworks are designed to handle this type of query.

Topological Query These queries focus on the topological properties of
graph elements and are computed by applying graph algorithms that out-
put numerical values, such as node degree, graph diameter, and PageRank.
These queries take as input a graph and return a numerical value. They
could be used to answer questions such as finding the most influential
(i.e., having the highest PageRank) users from a given community (i.e., af-
ter computing a community detection algorithm), who tweeted in a certain
language. This kind of query is specific for graph cubes, and they cannot
be naturally supported by traditional OLAP frameworks. Graph analytics
frameworks are the natural choice to tackle this type of queries, but cur-
rent graph warehousing methods do not provide foundations on how to
combine them with OLAP.

Graph-Structured Query Graph structured queries use graph patterns
to match and retrieve complex graph information. Both the input and
the output of these queries are graphs. These queries are computed by
applying graph algorithms that output graphs, such as frequent pattern
mining and minimum spanning tree to capture complex grouping of graph
elements. They could be used to answer questions such as (1) finding
the most frequent communication pattern in a network of users from a
given location, or (2) retrieving the shortest path between a pair of tweets

107

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

Twitter Schema : Twitter Instance

FOLLOW

User

ID: 1
Loc: BE
Fol: 150
Com: A

FOLLOW

Tweet

ID: 1
Date: 2018
Lang: FR
Fav: 10

Tweet

ID: 2
Date: 2019
Lang: FR
Fav: 2

Fig. 5.1: Schema and Instance of a Social Network Property Graph

during a certain period. Similar to the previous case, the current graph
warehousing approaches do not support these kinds of queries.

Our main contributions are summarized as follows:

* We propose TopoGraph, a novel graph warehousing model aware of the
topological properties of graphs, to support decision-making on graphs.
Thus, we formally define three novel categories of graph cubes: prop-
erty graph cubes, topological graph cubes, and graph-structured cubes.
These cubes capture both content and topological properties of hetero-
geneous graphs. They define new types of measures and dimensions
specific for graphs and place them within the multidimensional space
while preserving the multidimensional integrity constraints on graphs.

* We discuss the few cases where the information captured by the pro-
posed graph cubes could be loaded into corresponding OLAP cubes.
We show that there is a big gap between graph cubes and relational
OLAP cubes, and motivate the need for dedicated graph warehousing
systems.

* We define the algebraic OLAP operations for the new graph cubes, and
illustrate their application for querying the topological information em-
bedded in the graphs. These operators enable complex graph querying

108

2. Graph Cubes on Property Graphs

and OLAP analysis of the topology and content of graph cubes from
different perspectives and through different aggregation levels.

* We implement the novel graph cube computation and aggregation ap-
proach proposed by TopoGraph, and experimentally validate its effi-
ciency with different types of real-world datasets. We further describe
the architecture and the API of a social network analysis framework
built with TopoGraph.

We organize the rest of the chapter as follows. In Section 2 we formally
define the property graph cube and its related multidimensional concepts.
In Section 3, we define the concept of topological graph cubes and detail the
particular process of deriving OLAP Cubes containing topological measures.
Section 4 introduces graph structured cubes. We define OLAP operations
on graph cubes in Section 5. In Section 6, we describe the architecture of
a graph warehousing system using TopoGraph and evaluate its performance
on Neo4j using multiple datasets. Finally, Section 7 discusses open challenges
and concludes the chapter.

2 Graph Cubes on Property Graphs

In this section, we discuss the graph data model, and we introduce the mul-
tidimensional model for graphs, used for building and analyzing the graph
cubes.

2.1 Property Graphs

Property graphs are a widely accepted model for graph representation and
are implemented by established graph databases such as Neo4j. They de-
scribe a directed, labeled, and attributed multi-graph [109]. Each real-world
entity is represented by a node. Relationships between entities are repre-
sented using edges. We reuse again in this chapter the same formal definition
of property graphs presented in Definition 5.1 of Chapter 3.

Definition 5.1. [Property Graph] Given a finite set of labels L, a set of property
keys IC and a set of values N, a property graph is represented as G = (V, E,p, F, H)
where:

* Vs a finite set of nodes;
o & is a finite set of edges, such that ENY = &;

* p: & — V xVis the function that maps each edge to its pair of nodes, with
p(e) = (u, v) denoting a directed edge from u to v;

109

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

o F:VUE — L is the function that assigns to each node (resp. edge) a label
from the set of labels L;

e H:(VUE) x K — N, is a partial function assigning to each node (resp.
edge) the value of its attribute, such that, for a node (resp. edge) v € V, the
function H(v, k;) returns the value x € N of its i — th attribute identified by
the key k; € K.

As in Chapter 4, in addition to the initial definition, in this chapter we

represent a node v; € V as v; = (l;, Ay;), where [; € L is the label and
Ay, = {(kl,nl),...,(k]-,n]-) | k € K, n € N} is the set of key-value pairs rep-
resenting the attributes of v;. Similarly, an edge ¢; € £ is represented as
e = (vs, Ve, l]-, Ae].), where p(e) = (vs, v,) such that vs and v, are the start and
end nodes respectively, i € L, is its label and Ae]. is the set of key-value pairs
representing the attributes of ¢;. Each node (resp. edge) on the graph has ex-
actly one label. A = {Ay,.., Ap} is the set of attributes of the graph elements
so that for each node v € V (resp. edge e € &) the set of its j attributes is
A) = {A1(v), A2(0), ..., Aj(v) }, with j < p.
Figure 5.1 shows an example of a social network property graph. The graph
represents a set of Twitter user nodes and their tweets. In addition to its at-
tributes (e.g., Location or Language), each graph element has a label, which
is the distinctive attribute that defines the type of the graph element (e.g.,
User, Tweet, FOLLOW, etc.).

2.2 Property Graph Cubes

Using the property graphs model introduced in the previous section, we de-
fine the multidimensional concepts in the context of graph data. These def-
initions are based on and extend the graph cube definitions presented in
the previous works [143]. We formalize the concept of dimension, measure,
and graph cube. The multidimensional concepts introduced in the section
focus on capturing the content-based information of the graph and are there-
fore similar to the traditional multidimensional concepts used by relational
frameworks.

Definition 5.2. [Dimension] A dimension provides the possible perspectives for
the multidimensional analysis of the graph topology and content. It is defined as
D; € D, where D C A is a subset of the attributes of the graph elements. Dimension
attributes have to belong to a discrete domain. Given a graph element u € V UE,
the set of its n dimensions is D(u) = {D1(u), ..., Dy (1) }.

Definition 5.3. [Dimension Hierarchy] A set of dimensional attributes might be
linked by a hierarchy defined by the triple (name, Agip,, R). Ngim = {A1, -, An}

110

2. Graph Cubes on Property Graphs

Multidi ional Graph Sch : Star Schema
RETWEET
FOLLOW Traditional Measure
User Activity
l City | TotalTweets
Country
POST Tweet
Total Tweets e
Date
Language Tweet
Year
Dimensional Language
attributes

Fig. 5.2: Tweeting Activity Multidimensional Graph and Star Schema

represents the set of the hierarchical dimensional levels of a dimension dim € D.
R is a partial order on the elements of A, and describes a directed acyclic graph
defining the hierarchy between the dimension’s levels. The base level and highest level
Apex (denoted with x) are located at the end of the partial order.

Definition 5.4. [Measure] A measure is the basic unit of data that is placed in the
multidimensional space and is examined through the dimensions. It is defined as
M; € M, where M C A, and each M; is the result of applying an aggregation
function ¢ (e.g., SUM, AVG etc.) on a set of attributes of the graph. Given a graph
element u € V' UE, the set of its n measures is M(u) = {My(u), ..., M, (1) }.

Multiple classifications for measures were proposed in the literature [127],
such as the classification by the aggregation function. Depending on the
aggregation function a measure could be (1) distributive (i.e., the function
could be executed in a distributive way such as count or sum), (2) algebraic
(i.e., the function is a combination of distributive ones such as average), or
(3) holistic (the measure needs to be recomputed from scratch such as the
median).

Definition 5.5. [Multidimensional Graph] Given a property graph
G = V& p F, H), we represent a multidimensional graph as Gy =
W, €0, F,H,D,M). G is a property graph annotated with multidimen-
sional concepts. That is, dimensional semantics are added to the agqregated graph
elements by selecting the attributes that are considered as dimensions, and those
considered as measures such that DU M C A and the set of dimension and measure
attributes are disjoint DN M = Q.

An aggregate graph G’y of a multidimensional graph Gy, is obtained by
merging a subset of the nodes and/or the edges of Gy Only nodes (resp.
edges) with the same labels can be merged together. The measures of the

111

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

(<*>, <*’ *>)

_— T

(<Country>, <*, *>) (<*>, <Year, *>) (<*>, <*, Language>)

(<City>, <*, *>) (<Country>, <*, Language>) (<Country>, <Year, *>) (<*>, <Year, Language>)
(<City>, <*, Language>) (<City>, <Year, *>) (<Country>, <Year, Language>)

(<City>, <Year, Language>)

<City> X <Year, Language>
User Tweet

Fig. 5.3: Tweeting Activity Lattice

aggregate nodes (resp. edges) are computed using an aggregation function
applied on the corresponding attributes of the nodes (resp. edges) of the
initial graph. Formally, multidimensional graph aggregation is defined as
follows:

Definition 5.6. [Multidimensional Aggregate Graph] Given a multidimen-
sional graph Gy = WV, E,0,F,H,D, M), an aggregate graph g]’\/{ =
V', E 0, F, H, D', M) of Gy is obtained by aggregating Gur along a subset of
the dimensions D' C D. The aggregate multidimensional graph G' is defined as
follows:

o V' is the set of nodes, where each node v' € V' is an aggregate node associated
with a group of vertices Gy, C V. Gy = {v;, .., v} is obtained by selecting the
nodes that share the same dimension value that is being used for aggregation;

o & C V' x V' is the set of edges, where each edge ¢ = (u',v') € &' is an
aggregate edge associated with a group of edges G, C €. G, = {ej, .., ex}
is obtained by selecting the edges that share the same dimension value that is
being used for aggregation;

* The dimensions of the aggregate graph are D' C D. D} = D; if the attribute
D; was not aggregated (e.g. community remains the same after grouping users
by community), and D! = @, often represented with a * in the literature, if
the dimension D; is removed after the aggregation (e.g., user ages are removed
after grouping users by community);

e The measures of the aggregate graph are M’ = {My', My, ..., My,'}. The
value of the measure M. of an aggregate node (resp. edge) v’ is computed
by applying an aggregation function ¢ on the corresponding attribute values

112

2. Graph Cubes on Property Graphs

of all the nodes of G, (corresponding to v'), formally M}(v') = ¢;(Gy) (e.g.,
computing the total number of followers per community node after grouping
users by community).

Definition 5.7. [Property Graph Cube] A property graph cube is the fundamental
structure supporting the multidimensional modeling and analysis of the graph data.
It consists of multiple graph cuboids, each of which is a multidimensional aggregate
graph built by aggregating the original multidimensional property graph using the
dimensional attributes. The lattice is used to represent and organize all the possible
multidimensional aggregations of the graph. Graph cuboids relate between them
when a cuboid contains an attribute with a roll-up relationship, i.e., belong to the
same dimension hierarchy and are directly related. Given n dimensional attributes,
the graph cube contains 2" graph cuboids that could be aggregated following the
lattice structure. We distinguish two particular graph cuboids: (1) the base graph
cuboid (where the multidimensional graph is at the base level), and (2) the apex graph
cuboid (where the multidimensional graph is aggregated to the top-level).

Multidimensional aggregation of a property graph is the operation of con-
solidating a set of graph elements into a single one located at a higher level of
the lattice. Two constraints need to be enforced when building graph cubes:
(1) correct aggregation of the graph cuboids, and (2) correct placement of
the graph measures within the multidimensional space. To ensure a correct
aggregation of cube measures along dimension hierarchies, the graph aggre-
gation should satisfy three constraints [80]:

1. Completeness: Dimensional concepts are embedded within the graph.
Therefore, every graph element should be involved in at least one
dimension hierarchy. During a multidimensional aggregation, all
matched graph elements should be aggregatable to a higher dimen-
sion hierarchy level. This constraint is satisfied if every graph element
is associated with at least one dimension level;

2. Disjointness: Each graph element is included at most once to create an
aggregate entity. This condition is satisfied if every graph element could
not belong to more than one dimension level at once. Completeness
and disjointness are complementary properties that could be formally
defined for a multidimensional graph aggregation as follows: Vo € G,
there exists one and only one aggregate node v’ € V' corresponding to
the set of nodes G,, and Ve(u,v) € G,, there exists one and only one
¢’ € & corresponding to G;

3. Compatibility: Compatibility between the aggregation algorithm and
the aggregate graph elements to prevent non-meaningful operations
such as computing the sum of user ages. The compatibility depends

113

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

on the application. For example, when aggregating a group of users,
the designer can decide whether applying an aggregation function such
as the average of the PageRank is meaningful for the application. Typ-
ically, compatibility requires additional external knowledge to know
what metrics can be aggregated with what functions.

Completeness and disjointness are guaranteed by a one-to-one relation-
ship between aggregatable and aggregate elements between consecutive
cuboids. TopoGraph cubes guarantee this constraint as there exist one and
only one node v/ € V' (resp. edge) in an aggregate graph corresponding
to any given set of nodes G, in the original graph. Compatibility cannot
be automatically checked unless additional information is provided. On the
other hand, the placement constraint is guaranteed given that the set of di-
mensional values generating the multidimensional space is different for each
graph measure. Therefore, at most one graph element that contains a certain
combination of dimension values exist in a given graph cuboid. This con-
straint is enforced by the statement that any pair of graph elements that have
the same label and the same attributes A’ are merged when aggregating a
graph. In the same vein, the following types of graph cubes introduced in
this chapter satisfy the multidimensional integrity constraint, as they follow
a similar methodology for building and aggregating the graph.

Example 2.1 (Popularity Graph Cubes)

Given the Twitter property graph of Figure 5.1, we design a possible mul-
tidimensional graph schema reflecting the tweeting activity of users. Fig-
ure 5.2 depicts the multidimensional graph schema and the correspond-
ing star schema of the OLAP cube, while Figure 5.3 depicts its lattice.
The dimensions for User and Tweet nodes are D = {City, Country, Year,
Language}, with the hierarchical levels Ajoqui0n = {City, Country}. The
measure is computed on the POST edge M = {Total Tweets}.

3 Topological Graph Cubes

The analysis of content-based properties of graph data (e.g., compute the av-
erage number of favorites of tweets of a given user group) is similar to the
OLAP analysis of relational data in that it does not exploit the graph struc-
ture. We focus therefore in the following sections on the two graph-specific
cubes introduced in Section 1: topological and graph-structured cubes.

114

3. Topological Graph Cubes

Property Graph Schema Enriched Property Graph Schema

User

Conne| gConnec Country
Platfq * Platfo

Traversal
attribute

Platform

Fig. 5.4: Enriching Property Graph with Topological Attributes and Deriving Multidimensional
Schema

3.1 Topological Cube Model

A rich repertoire of algorithms was developed to efficiently compute topolog-
ical measures such as the centrality of nodes, or community of users. These
techniques can reveal interesting properties about the graph topology and
the connectivity between graph elements. Indeed, modeling data as a graph
is typically done when there is an interest in exploiting such techniques. We
define in this section the concept of topological graph cubes, and use them
to model and analyze topological graph properties from a multidimensional
perspective. As a consequence, this kind of cubes merges graph analytics
and OLAP. We define first the topological concepts and discuss how to de-
rive them from a given property graph.

Definition 5.8. [Topological Attribute] Given a graph Gy =
WV, E,0,F,H,D, M), a topological attributes is defined as A;' € A. The
value of the topological attribute A;! for a node v € V (resp. an edge e €) is given
by A;t(u) = T (v, 1) where:

e T: is the function computing the topological attribute value for v (resp. e).
This function relies on a graph algorithm (such as Louvain for community
detection) to compute the value of the topological attribute A;' for the node v;

* [€ L: most graph algorithms are designed to traverse a homogeneous graph
to compute the topological attributes. However, this chapter addresses the gen-
eral case of heterogeneous graphs. The label | is used to guide the algorithms
through a homogeneous subgraph of the input graph.

Given a property graph, an enriched graph could be obtained by applying
graph algorithms to add more topological properties to the nodes and edges
before performing OLAP. For example, Figure 5.4 shows the schema of the

115

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

initial property graph and an enriched version of it where two topological
attributes were computed and integrated into the graph. We distinguish three
different categories of attributes:

¢ Traditional attributes: reflect content-based properties of the graph ele-
ments such age Country of users.

* Topological attributes: reflect topological properties of the graph ele-
ments such as community and PageRank of users.

* Traversal attributes: contain the label of the edge traversed by the graph
algorithm to compute the topological attributes (e.g. Platform for user
nodes used for computing community and PageRank).

Definition 5.9. [Topological Dimensions] Given a graph Gy =
WV, E,0,F,H,D, M), the topological dimensions D! € D are a subset of the
topological attributes D' C A" used for analyzing the topological graph properties
from different perspectives and at different granularities.

Definition 5.10. [Topological ~Measures] Given a graph Gy =
W, & p,F,H,D, M), the topological measures Mt C M are a subset of the
topological attributes M' C A" analyzed in the graph cube.

The set of topological dimensions and measures form the set of topologi-
cal attributes: D' U M! = A'. The particularity of topological measures is that
they:

* require the graph structure to be computed,

e are holistic, thus, they need to be recomputed after each aggregation,
i.e., the graph algorithm to compute the topological attributes has to be
executed after each graph aggregation, instead of applying traditional
aggregation functions. The topological dimensions, however, need the
graph structure only at the initial phase to compute the base graph
cuboid, and

* may need to be computed using a homogeneous subgraph of the multi-
dimensional graph (most algorithms to compute topological properties
such as centrality only make sense on homogeneous subgraphs).

Given a multidimensional graph, topological graph cubes are derived to
capture the topological properties of graphs and represent them with nu-
merical values (in contrast to traditional content-based properties that do not
capture the topological characteristics).

Definition 5.11. [Topological Graph Cube] A topological graph cube is a graph
cube that captures the topological properties of graphs and represents them with nu-
merical values. It is obtained by restructuring the topological multidimensional

116

3. Topological Graph Cubes

Star Schema User Popularity Multidimensional Schema

Conngcted User Y
Platform — Traditional
User Country dimensional
oo attribute
Country e
: : ConneJted :
Community . Platfon FPlatform : Traversal attribute :
: Community e
Topological
: dimensional
. PageRank attribute
Popularity | | : | = N X T
 ditional Topologlcal
PageRank :: dimensional : © measure attribute
attribute : TTTTTTTTTTTTTIOnY
Platform

name

Fig. 5.5: Mapping Between OLAP Cube and a Multidimensional Topological Graph Schema

graph Gy = V,E,p, F, H, D, M) in all possible aggregations through the topo-
logical dimensions and/or by embedding and aggregating topological measures. That
is, 3D' C D || IM! C M.

The model we propose in this chapter could be mapped to a star schema
shown in Figure 5.5. If the cube has a topological measure, we note that in or-
der to guarantee a correct cube summarizability, roll up operations cannot be
applied directly to OLAP cuboids to produce cuboids at higher aggregation
levels, as typically done in OLAP. The reason is that following each roll-
up operation, the graph structure changes and so do the topological values.
The graph structure resulting cannot be expressed as a transitive function
in terms of the input graph structure, as typically done in traditional OLAP
cubes. Thus, topological graphs need to be computed once the cuboid they
belong to has been created.

Example 3.1 (Popularity Graph Cubes)

Given a property graph, we suggest a process to enrich the graph with
topological attributes, and derive a potential multidimensional schema and
later its corresponding OLAP cube. We consider the example of a property
graph representing a social network as in Figure 5.4. A single type of
nodes and a single type of edges are considered: £ = {User, Connected}.
This graph is enriched to capture the topological properties of users such as
their community and PageRank. We design a possible multidimensional
graph schema that embeds topological dimensions and measures. Three
dimensions are considered: D = {Country, Community, Platform}, and

117

Chapter 5. TopoGraph:

Connected
Platform: Facebook

User
- Country: Spain

An End-To-End Framework to Build and Analyze Graph

Connected

Platform: LinkedIn

~Platform: LinkedIn
- Community: B
* PageRank: 0.5

onnecte

Platform:
Connected
Platform{ Facebook
User Connect

~Country: France
~Platform: Facebook

-Community: A
* PageRank: 0.7

Platfor

Connected
Platform: Twitter

User

- Country: Belgium

-Platform: Twitter

d
:book

ted

[atform: Twitter

Connected

witter

Phatform: Twitter

Connected

Platform: edIn

cted
Twitter

User
-Country: France

-Platform: LinkedIn
-Community: A
* PageRank: 0.8

Conpected
Platforth: Twitter

User
-Country: Belgium
-Platform: LinkedIn
-Community: B
* PageRank: 0.7

Connected

Conne:

- Community: A
* PageRank: 0.5

Platform:

Platform: Facebook

Fig. 5.6: Base Graph Cuboid Instance

Connected
Platferr Linkedin

- Country: Belgium
~Platform: Facebook

- Community: C
* PageRank: 0.6

Cubes

User
-Country: Spain
-Platform: LinkedIn
-Community: D
* PageRank: 0.3

Connected
Platform: \(inkedIn

User
- Country: Belgium
-Platform: LinkedIn
- Community: A
* PageRank: 0.4

Connected
Platform: Twitter

Connected
Platform: Facebook

User

Connected
Linkedin

the analyzed measure is PageRank. The measure is computed using the
PageRank algorithm that traverses each time the edges that have the same
value on their platform attribute (the traversal attribute). Figure 5.5 shows
the mapping between the multidimensional popularity graph and its cor-
responding star schema. An instance of the popularity multidimensional
graph at the base level is shown in Figure 5.6. Figure 5.7 shows an example
of the popularity OLAP Cube corresponding to the graph cuboid of Fig-
ure 5.6, where community, platform, and country are the dimensions, and
the PageRank is the topological measure.

3.2 Topological Graph Cuboid Processing

In this section we describe the topological cuboid aggregation algorithm 1.
This algorithm is used to build topological graph cuboids. It takes as in-
put a topological multidimensional graph, performs its aggregation along
the given dimensions, and then applies the chosen aggregation function to
compute the new measure values. The main phases of the algorithm are the
following (note that this algorithm guarantees the multidimensional integrity

118

3. Topological Graph Cubes

Algorithm 1: Topological Cuboid Aggregation

Input :
* A topological multidimensional graph Gy = (V, €, p, F, H, D, M)

* Dimensions of the aggregate cuboid: D' C D

Output: An aggregate topological graph cuboid
g]/\/[= (V// S// P/ f/ Hl D// MI)

1 begin
2 | Initialize a hash structure ¢ : D' — V' UE’
3 foru € V do
4 if ¢(D'(u)) = NULL then
5 Create an aggregate node u’ € V'
6 F'y « F(u)
; D'(u') « D'(u)
s M ') <0
9 @(D'(u)) « '
10 for M/ € M’ do
11 if M is NOT topological then
12 L M) < compute(M/(u'), M;(u))
13 for e(u,v) € € do
14 u' + ¢(D'(u))
15 v' < ¢(D'(v))
16 if ¢(D’'(e)) = NULL then
17 Create an aggregate edge ¢'(u/,v') € &’
1 F() « Fe)
19 D'(e') + D'(e)
20 M)+ 0
21 ¢(D'(e)) + ¢
2 for M € M’ do
23 if M is NOT topological then
2 L Mi(e') < compute(M/(e'), M(e))
35 | for M/ € M’ do
26 if M. is topological then
27 foru’ € V' do
28 L Mi(u') < compute(u’, M., G},)
29 fore' € £ do
30 L M{(€) < compute(e’, M}, G},)

st | return Gu=W,&0F H,D M)

119

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

Country
PageRank
(Topological Measure)
Spain T NS o e o
Qq' Q'b Qb
France
| o4 0.5 0.6
Belgium Platform
0.6 0.3 0.4
Q>
v 0.2 0.4 0.6
Community

(Topological Dimension)

Fig. 5.7: Popularity Topological OLAP Cuboid

constraints discussed in Section 2.2):

1. Create a hash structure ¢ mapping each set of dimensional attributes
from D’ to an aggregate node/edge u € V' U &’ (Line 2).

2. Create the set of aggregate nodes V': traverse the nodes of the multidi-
mensional graph and create a node in V' corresponding to each subset
of nodes in V sharing the same dimensional attribute values D’ (Line
2-12). That is, for each node u € V create its corresponding aggregate
node 1/ € V' (that has the dimensional attributes D’(u)) if it was not
already created in V' (Line 3-5). u and u’ share the same label and di-
mensional attributes, and the measures are initialized (Line 6-8). The
newly created node u’ is stored as the value of the hash function cor-
responding to the dimensional attributes D’(u) (Line 9). Otherwise,
if an aggregate node corresponding to u was already created, the non
topological measure attributes M’(u’) are updated using a user-defined
function compute (Line 10-12).

3. Create the aggregate edges £’: for each edge e(u,v) € &, we retrieve
the aggregate nodes in #/,v' € V' corresponding to its adjacent nodes
u,v € V (Line 13-15). If ¢/(u’, ') was not yet created, then a new edge
e'(u',v') € £ is created (Line 16-17). ¢ and ¢’ share the same label and
dimensional attributes, and the measures are initialized (Line 18-20).
The newly created edge ¢’ is stored as the value of the hash function
corresponding to the dimensional attributes D’(e) (Line 21). Otherwise,
if an aggregate node corresponding to e was already created, the non
topological measure attributes M’ (¢’) are updated using a user-defined
function compute (Line 22-24).

120

3. Topological Graph Cubes

G—
03 06 04 T
~—t——1t—1t—> Location /
BE FR SP <:ll

X

03 04 01

Commuynity

@ >

c 02

Community =
A{03 05 02 Plztformg geneor;?dpfSOUnt;etil:Zaph ™ ‘
B{o6 05 03 // cuboids : .
IBE II:R ISP Location <Community> X <Platform> X <Location>

Fig. 5.8: OLAP Cube Generation form Graphs

4. If a measure M, is topological, then it needs the whole aggregate graph
G} to be built. The topological values for the nodes and edges are
computed using the aggregate graph G’y by applying a user-defined
function compute (Line 25-30). The computation of topological values in-
volves usually iterative graph algorithms that traverse the whole graph

Gl

3.3 Deriving OLAP Cubes from Graph Cubes

In this section, we detail our approach to derive OLAP cubes from multidi-
mensional graphs, and precisely from their corresponding graph cubes. Most
of the state-of-the-art techniques focus either on building traditional OLAP
cubes, or building graph cubes. Here we propose to establish the link be-
tween the two. Thus, designing OLAP cubes that leverage the content and
the topology of the graph, and expose both numerical and graph-structured
insights.

The main current assumption is that each graph cuboid can be loaded

121

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

into a relational OLAP cube. This is true for content-based graph cubes.
However, loading a graph cuboid into a relational cube causes the loss of the
graph structure. This loss of the graph structure has direct consequences for
graph cube computation and analysis as follows:

¢ Graph cube computation: particularly roll up cannot be applied to get
cuboids at higher lattice levels. The reason is that following each roll-
up operation, the graph structure changes. Therefore, the topological
measures on the aggregate graph need to be recomputed.

* Graph cube analysis: operations such as subgraph matching and traver-
sal could no longer be executed on the extracted OLAP Cube. There-
fore, as discussed in the previous section, the ability to deal with topo-
logical graph cubes is lost.

Example 3.2 (Deriving Popularity OLAP cube from the Graph cube)
Given the multidimensional graph model in Figure 5.4, we design a lat-
tice, as shown in Figure 5.8. Each point in the lattice corresponds to
a graph cuboid. For simplicity, we consider the dimension attributes:
{Location, Community, Plat form}, while ignoring the hierarchies of the lo-
cation dimension. We highlight two particular aggregations: (1) node-only
aggregations (i.e., only dimensional attributes from user nodes are kept
not fully aggregated as in ((Location, Community,), (Location, *, x,), and
(%, Community, %)), and (2) edge-only aggregation as in ((x, *, Platform)).
The fact analyzed is the popularity of users. The measure is PageRank,
computed by applying the PageRank algorithm in the social network fol-
lowing the edges labeled Connected.

The figure depicts the coupled processes of (1) aggregation of graph cubes,
and (2) generation of corresponding OLAP cubes and the mapping kept
between them. This mapping is important, as the graph topology corre-
sponding to each OLAP cuboid needs to be preserved in order to compute
the topological measures such as PageRank. The measures could afterward
be loaded into the OLAP cubes for further multidimensional analysis.

The mapping discussed in this section could help in the integration of
graph data and graph analytics within current data warehouses. However,
the link is pretty limited when graph analytics are combined with OLAP. This
has been the main assumption behind current graph OLAP tools, but this is
not realistic given the relevance of graph-specific algorithms when dealing
with graph data. Thus, given that most graph-derived cubes could not be
supported with current relational warehousing systems, this motivates the
need for building specialized graph OLAP warehousing systems.

122

4. Graph-structured Cubes

4 Graph-structured Cubes

4.1 Graphs-structured Cube Model

Graph-structured cubes extend the traditional OLAP cubes with the capa-
bility of having the dimension and measure values represented as graphs.
Current warehousing systems are not designed to support this type of cubes,
which further motivates the need for developing native graph warehousing
systems. In this section, we formally define the concepts of graph-structured
dimensions, measures, and cubes.

The graph-structured dimensions are dimensions whose values are rep-
resented as graphs. They express complex dimension values that could not
be represented by a simple value. This enables structuring the multidimen-
sional space in a novel way capturing graph elements that are connected in a
complex manner. Graph-structured dimensions provide therefore a powerful
selection means to examine the behavior of non-trivial grouping of nodes or
edges.

The definition of graph-structured dimensions relies on graph patterns
defined as follows:

Definition 5.12. [Graph Pattern] A graph pattern P, over a property graph G =
WV, &, 0, F, M), is defined as P = (Vy, Ey, «, B), where:

* Vp is a finite set of nodes.
* Ep is a finite set of edges.

* « is a function defined on Vp U Ep such that for each node u € Vp (resp., edge
e € Ep), a(u) (resp., a(e)) is the predicate applied on the label of u (resp., e).
This predicate compares the label I; = F(u) of u (resp., of e) with a string s;.
The comparison is of the form I; op s;, and is performed using one of the two
equality comparison operators =, #.

* B:isafunction defined on Vp U Ep such that for each node u € Vp (resp., edge
e € Ep), B(u) (resp., B(e)) is the predicate applied on the attributes of u (resp.,
e). This predicate is a conjunction of atomic formulas each of which compares a
constant ¢ with the value x of an attribute of u (resp., e) using a given operator
op;. The comparison is performed using any of the following operators: <, <
,=,#,>,>. Hence, B(u) (resp., B(e)) is a conjunction of comparisons of the
form: c op; x .

Definition 5.13. [Graph-structured dimension] A graph-structured dimension
D; is a dimension represented with a graph pattern P used for selecting a sub-
set of the graph elements. The set of graph-structured dimensions is D° =

123

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

User

- Country: Poland

User

User

- Country: Sweden

Connected.
- Country: Portugal

Connected
Connected

User
- Country: Spain

“Connected
Connected
Connected

/Connected
/ Connected Connected

User

- Country: Austria,

User

. Country: Belgium

User

Connected

- Country: Italy

Connected

Fig. 5.9: Graph-structured Cuboid

{D+%,D5%, ..., D,*} C D. Each graph-structured dimension D;° is represented by a
graph pattern P;.

The graph-structured measures are measures where the values are repre-
sented as graphs, which enables capturing and exposing insights and metrics
structured as graphs. Another main benefit of graph-structured measures
is that they minimize the information loss, as they keep the graph structure
after being computed or aggregated.

Definition 5.14. [Graph-structured Measure] A graph-structured measure M;®
is represented with a subgraph G°. It is computed using a graph function A that
takes a graph as input and returns a graph, such as the most frequent pattern, or
minimum spanning tree. An aggregation function ¢ is used to compute the graph-
structured measure at different aggregation levels such as intersection or union of
graphs. ¢ and A could be the same function (thereby recomputing the measure after
each aggregation). M* = {My°, Mp*, ..., M,°} C M

Definition 5.15. [Graph-structured Cube] A graph-structured cube is a graph
cube that captures and represents the dimensional concepts using graphs. There-
fore, it contains either graph-structured dimensions or graph-structured measures,
or both. A graph-structured cube is obtained by restructuring the multidimensional
graph in all possible aggregations through the graph-structured dimensions and/or
by embedding and agqregating graph-structured measures.

124

4. Graph-structured Cubes

Country
Number of
Occurrences
Spain — 434 732 241 4
France —4 634 334 413
: —+ 512 456 63
Belgium Representative
] I !

I f f Pattern
Q2
DY
©,
©

Fig. 5.10: Graph-structured Dimension

Country

Most Frequent

Pattern
1]
Spaln] &]/

Belgium —

4

Twitter Facebook

Platform

Fig. 5.11: Graph-structured Measure

125

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

In the following example, we illustrate two graph-structured cubes, high-
lighting respectively graph-structured dimensions and measures. For each
cube, we show how graph-structured multidimensional structures could be
combined with the numerical ones defined in the previous sections.

Example 4.1

(Graph-structured Cubes) Consider the graph cuboid of Figure 5.9. It rep-
resents a graph cuboid where users are grouped using the country dimen-
sion. Figure 5.10 shows a cube that highlights the case of graph-structured
dimensions. For this example, we assume that we can extract a set of
patterns that represent the graph elements, and we call these patterns the
representative patterns. The horizontal axis of the cube is then populated
by a set of graph patterns depicting the representative patterns. Using this
cube, the user can analyze for example how often users from a given coun-
try are involved in a representative pattern. Those are complex dimension
values that could not be represented by a numerical value and need there-
fore to be defined by patterns. To define the dimension values, the user
could either find the pattern using graph algorithms or use his domain
knowledge. The three patterns of the graph-structured dimension of the
cube of Figure 5.10 are represented on the graph cuboid Figure 5.9 using
different colors for each. Figure 5.11, on the other hand, puts the focus on
graph-structured measures. The measure studied here is the most frequent
pattern, which could be obtained by applying the graph algorithms. Each
measure (i.e., frequent pattern) is then placed within the graph-structured
cube using two traditional dimensions: country and platform. This cube
could be used to analyze the most frequent pattern observed by country
and platform.

4.2 Graph-structured Cuboid Processing

Graph-structured cuboid aggregation is similar to topological cuboids” ag-
gregation. It is performed along the lines of Algorithm 1, while adapting the
selection and aggregation to handle the graph patterns. It takes as input a
multidimensional graph and performs its aggregation using a given set of
dimensions, then applies a chosen graph aggregation function to compute
the new measure values. Considering a cube with a set of graph-structured
dimension and measures, the main steps of the algorithm are:

1. Create a hash structure ¢ : P’ — V' U &', mapping each pattern (corre-
sponding to a graph-structured dimension) to an aggregate node/edge.

126

5. OLAP Analysis of Graph Cubes

2. Create the set of aggregate nodes V': traverse the nodes of the mul-
tidimensional graph and create a node u! € V'’ corresponding to the
subset of nodes in G, = {uy,...,u,} C V. Gy is the set matching the
pattern P/ representing a dimensional value of D!. The aggregate node
ul € V' is only created if no nodes in V' corresponding to P/ were
already created. u and 1’ share the same label and non-structured di-
mensional attributes, and it gets assigned its graph-structured dimen-
sion D/. The newly created node u’ is stored as the value of the hash
function corresponding to the pattern P/. Otherwise, if an aggregate
node corresponding to u was already created, the non-topological mea-
sure attributes M’ (1) are updated.

3. Create the aggregate edges £’: this step is similar to the one in Algo-
rithm 1. That is, for each edge e(u,v) € &, if no corresponding edge
e'(u',v") € &£ was created, ¢ is created and inherits the same label
and dimensional attributes of e. The aggregate edge ¢’ is stored as the
value of the hash function corresponding to P/. Otherwise, the non-
topological measure attributes M’(¢’) are updated.

4. Topological and graph-structured measures are computed for the ag-
gregate graph.

The description of the algorithm focuses on the matching of a single di-
mensional value. Given all the dimensions that could be considered in a
given graph cube, for each cell the graph-structured measure is the subgraph
that matches the patterns of all the dimensions (i.e., the intersection of the
subgraphs that match each pattern).

5 OLAP Analysis of Graph Cubes

OLAP analytics supports interactive and complex queries over large volumes
of data, from different perspectives and through different hierarchical levels.
Thus, enabling analysts to highlight the data item of interest, and then drill
down to the underlying data from which it has been created. This could help
in decision support scenarios such as the measurement or comparison of the
business performance across the different dimensions. In this section, we de-
scribe a set of algebraic operators for OLAP querying of multidimensional
graphs. We consider the graph cubes defined and computed in the previous
sections as the fundamental construct of the multidimensional model. The
graph cubes are the operand and the return type of all OLAP operations.
We illustrate the application of each operation on a graph cuboid and its
corresponding OLAP cube. In addition to the cuboid and crossboid opera-
tions that were defined in the literature [143], we present the major OLAP
operations applied on graph and OLAP cubes.

127

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

User Connected User
- Country: Spain Platform: LinkedIn -Country: Spain
-Platform: LinkedIn -Platform: LinkedIn
- Community: B -Community: D

* PageRank: 0.5 * PageRank: 0.3
Connected
Platform: Lirfke
Connected
Platform: YinkedIn

User
-Country: France
-Platform: LinkedIn
-Community: A
* PageRank: 0.8

User
- Country: Belgium
-Platform: LinkedIn
- Community: A
* PageRank: 0.4

User
-Country: Belgium
-Platform: LinkedIn
-Community: B
* PageRank: 0.7

Fig. 5.12: Slice on the LinkedIn Platform Dimension

Multidimensional Selection Multidimensional selection (also called a
slice) (denoted as Op(Ga) restricts the graph G to a subgraph G, C Gum
where all nodes and edges match the selection pattern P. The selection pat-
tern could be a conjunction of (1) atomic predicates applied to one or more
dimension attributes in the case of property and topological cubes, or (2)
graph patterns in the case of graph-structured cubes, or (3) a combination
of both. The result G},) is a set of nodes and edges that are matched by
the selection pattern P. The algebra of the selection operator is defined as
follows:

* Input: A graph cuboid Gy and a selection pattern P.

 Output: A graph cuboid G}, C Gy, that matches the selection pattern
P.

* Example: The result of a selection applied on the graph cuboid of Fig-
ure 5.6 is shown on Figure 5.12, where only user nodes of the LinkedIn
platform are selected.

Roll-up and Drill-down Roll-up (denoted as Rp,(Gp)) aggregates the
graph Gy along the dimension D;. The graph is either aggregated to the
next dimension hierarchy level if D; is part of a dimension hierarchy follow-
ing the partial order R, or to ALL. This operation modifies the granularity

128

5. OLAP Analysis of Graph Cubes

Connected
Platform: Facebook

User
-Platform: LinkedIn
-Community: A
* PageRank: 0.8

User
-Platform: LinkedIn
-Ci ity: D
* PageRank: 0.3

Connected
Platform: Twittef

Connected
Platform: LinkedIn

Connected
Platform: Facebook

Platforpy! LinkedIn

Platfgrm: Twitfer

Connegted
Platform: F

Copnected
Platform: Linkedin

User

-Platform: Facebook
-Community: A
* PageRank: 0.7

-Platform: LinkedIn
-Community: B
* PageRank: 0.7

Connected
Platform: Twitter

Connected
Platform: Facebook

User
-Platform: Facebook
- Community: C
* PageRank: 0.6

Connected
Platform: Twitter

Conngcted

Platform: Linkedin

Connected

Platform: F; k
-Platform: Twitter atform: Faceboof

- Community: A
* PageRank: 0.5

Fig. 5.13: Popularity Graph Cuboid Rolled up to (, Community, Platform)

129

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph

Platform
0.5 0.4 0.3
Facebook _ |
0.4 0.6 0.2
Linkedin ——
0.3 0.5 0.7
Twitter
I E—
A B ¢ Community
z 8
E £
2
i=} =) 1=}
3 E
e &
= (=)
-4
Platform
Facebook) & o PageRank
o —
N N &
Linkedin
0.4 0.5 0.6
Twitter
Country
> |06 03 0.4 e
A
0.2 0.4 0.6
Community

Fig. 5.14: Roll-up and Drill-down on the Popularity OLAP Cube

130

Cubes

5. OLAP Analysis of Graph Cubes

of the graph using a many-to-one relationship which relates instances of two
levels in the same dimension hierarchy, corresponding to a part-whole rela-
tionship.

This operation performs structural changes to the graph and generates a
new graph placed at the next level of the dimension hierarchy while re-
specting the summarizability integrity constraints. Roll-up is implemented
in three phases (1) first a selection of graph elements matching the aggre-
gation pattern P,¢. that describes the graph elements at Level;, then, (2) the
graph aggregation to shape the graph at Level;, 1, and finally, (3) measures are
(re)computed and placed on the aggregate graph. The algebra of the roll-up
operator is defined as follows:

* Input: Initial graph cuboid: Gy;; The dimension to aggregate D;.

* Output: A graph cuboid G},. All elements of the initial graph cuboid
Gum that contain the dimensional attributes of D; are grouped in their
corresponding node (resp. edge). The measure values on the aggregate
nodes and edges are computed according to their aggregation function

¢.

e Example: The result of a roll-up Country — ALL applied on the graph
cuboid of Figure 5.6 is shown on Figure 5.13, where user nodes are
grouped by community and platform, and the new page rank value is
computed for each node. Figure 5.14 shows the equivalent roll-up and
drill down operations applied on the corresponding OLAP cubes.

Roll-up is similar to the cuboid operation defined in the GraphCube paper
[143]. Drill-down is the inverse of roll-up, and can only be applied if we
previously performed a roll-up and did not lose the correspondences between
the graphs.

Drill-across and Projection This operation changes the subject of analysis
of the cube using a one-to-one relationship. The n-dimensional space remains
the same, only the cells placed on it change. With this operation, different
measures are placed on the same multidimensional space. This operation
translates to a join between two graph cuboids put on the same multidimen-
sional space, at the same aggregation level. The join condition for nodes
could be their identifier attributes. Projection is the reverse operation of a
drill-across. It selects a subset of measures of interest to be studied within
the multidimensional space. The algebra of the drill-across operator is de-
fined as follows:

e Input: Initial graph cuboids: G!, G2, and the measures m;, m;.

* Output: A graph cuboid G3, union of G!, G2, where the concerned
graph elements embed both measures m; and m;.

131

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

Country

Country

.
Spain ‘e
T ©. Spain == .7 0.2

Belgium _| (4 0.6
Beli . | |
clgium 4 I I Community
|
B

Community

Country
- Representative Community
- PageRank
Spain _|_
Belgium ™[~
| I
[[
A B Community

Fig. 5.15: Drill-across and Projection

* Example: Figure 5.15 shows an example of a drill-across between a
topological and a graph-structured cube. Both cubes are placed in a
cube having as dimensions ((Community), (Country)). The first is a
graph-structured cube containing representative communities, and the
second is a topological cube containing PageRank. Using drill-across,
the measures from the two cubes could be embedded in the same cells
and analyzed within the same cube. Inversely, a projection would for
instance remove the measure representative community from the cube
to focus only on studying the PageRank.

In the same way, further OLAP operators could be applied to the graph
cubes for richer or more intuitive analysis. For example, the difference be-
tween graphs removes isomorphic subgraphs that exist in the two input

132

6. Implementation and Experiments

graphs. Drill-through enables direct access to the subgraph that was initially
used for the computation of the cube’s measures. It goes beyond drill-down
to explore the lowest aggregation level present in the physical graph, and
non-necessarily reached at the data mart level. In general, this chapter opens
the door to advanced operators combining graph-like and OLAP operators.

6 Implementation and Experiments

Current decision-support systems, and particularly data warehouses, were
designed to support relational data management and analysis. Due to the
fundamental difference between graph and relational data, the existing sys-
tems are not suitable for efficient graph analysis. The structure-driven man-
agement and analytics of graph data call for rethinking the architecture of
data warehouses to support graph analytics, and to the development of novel
data models, query processing paradigms, and storage techniques.

6.1 Framework Architecture and Implementation

The architecture of the graph warehousing and analysis framework is de-
picted in Figure 5.16. To exemplify it, we use the same running example and
take Twitter as source data. The modules are described as follows:

* Graph Extraction: Graph data is extracted from the source. In our run-
ning example, using the Twitter streaming API. A set of transforma-
tions is then applied to cleanse the data and fit it within the envisioned
schema. The stream is parsed to identify the data entities and merge
duplicates and compute new attributes such as length of tweets and
their sentiment. For this purpose, any generic tool would suffice.

* Graph Construction: The clean data is loaded in the graph store. In
this case, we used Neo4j to store the graph data and Cypher queries
to perform the loading. The cleansed and integrated Twitter data is
therefore natively stored and managed as a multidimensional graph.

¢ Graph Cube Construction: Multiple multidimensional schemas could
be built from the same graph warehouse to satisfy the various analy-
sis needs. The semantic relativism inherent in graphs allows creating
several views from the same data and making them co-exist in a much
simpler way than any other data model. Therefore, given a graph lat-
tice, the graph cube framework enables the computation and the ag-
gregation of the corresponding graph cuboids. Each graph cuboid is
computed and persisted in a graph store that resembles a graph mart.

133

R IO Ul WDN -

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph

Cubes

The graph cuboid stores natively different graph measures (e.g., cen-
trality, shortest paths, frequent patterns, etc.). An example of the graph
cuboid computation is shown below.

Graph Analysis: Complex and interactive analysis of graph cubes is
performed at this phase. In contrast to traditional OLAP analytics,
graph analytics enables Bl-oriented analysis of graph metrics stored
in the graph cuboids. For example, analysts could examine at different
levels of aggregation and from multiple perspectives graph measures
such as influence (e.g., computed using centrality), or identifying com-
munities and their connections (e.g., computed using graph clustering).
Importantly, note that traditional visualization tools do not suffice to
deal with interactive graph analysis, especially graph-structured cubes.

Therefore, an ad-hoc graph browser was implemented.

We implemented the architecture described above as a prototype graph
warehousing system. We used Neo4j for graph data management and Neo4j
graph algorithms and JUNG (Java Universal Network/Graph Framework) for
graph mining. The Java code below shows an example of cuboid computation

to perform an aggregation on the dimensional attribute: sentiment.

Here,

we specify the input dataset and output directory, the dimensions and their
dimensional attributes, the measures, and their computation and aggregation

functions. The following code illustrates our API:

// Graph Cuboid Builder

GraphAggregator graphAggregator = GraphAggregator.builder ()
//Input: Multidimensional Graph

.basePath (Paths.get("data/MDTwitter"))
//Output: Graph Cuboids

.workPath (Paths . get("data/TwitterCuboid"))
// Vertices

.vertex ("User")

// Vertex dimensions

.dimension ("Date", DimensionAgg.KEEP)
.dimension ("Language", DimensionAgg .KEEP)

// Traditional vertex measure

.measure (" followers", "TotalFollowers",
AggFunction .COUNT)

.vertex ("Tweet")

// Vertex dimensions

.dimension ("Language", DimensionAgg .KEEP)
.dimension ("Sentiment", DimensionAgg .IGNORE)
// Topological vertex measure
.structuralMeasure (StructuralMeasure .SM.LOUVAIN,
"RETWEETED")

// Edges

134

6. Implementation and Experiments

Iosmolg ydein

UOT)BZI[enSIA

suonedddy

Graph Access API

(- woneyndwo) AyLre[IuIIS)

Sururpy ydein
uonenfwo)

samsed] 4o 2 odo],

proqn)
ydein

uonendwo)
2INSBAIN
»
uone3a133y

ydein

progny
ydein

uondNNsuo)) Iqn) ydeao

S A
SICN
Bqng

Surpeo fjdein

(- sisATeue
Juawnuas uryojew ‘uondaep Anuy)
spAeuy 3xa,
»
uisae g wedns

uonINISU0))
2 uondenxy ydein

=
(3]
<
Q
&
9
Q
&
=
=

Idv
Sunueang

INIM]

?21n0g BlRq

Fig. 5.16: Twitter Network Warehousing Architecture

135

23
24
25
26
27
28

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

.edge ("POSTED")

.edge ("MENTIONED")

.edge ("REPLIED_TO")

.edge ("RETWEETED")

.build ();
graphAggregator.aggregate ();

6.2 Experiments

In this section, we present the experimental results of our graph OLAP frame-
work using multiple real-world datasets. We compare the cuboid generation
and aggregation time for each dataset at different aggregation levels.

Datasets We ran the experiments on two types of real-world datasets. The
first are three Twitter datasets, of size 500K, 1M, and 2M edges. The data
is collected using Twitter streaming API as depicted by the framework of
Figure 5.16 described above. The original stream contained two types of
nodes: User and Tweet, and four types of edges: POSTED, RETWEETED,
MENTIONED, and REPLIED_TO. We enriched the Tweet nodes by computing
the sentiment of the tweets. Table 5.1 provides a summary of the character-
istics of the multidimensional social network built using the Twitter datasets.
The code to build Twitter cuboids was shown in the previous subsection.

Dimensional Attributes Measures
User | Language, Subscription Date | Number of Followers, Number of persons
Tweet Language, Sentiment Number of tweets, Community
Edges none Number of edges

Table 5.1: Twitter Datasets

The second type of graphs uses four datasets from the SNAP collection
[81]. The original dataset contains only the graph structure between users.
We use this dataset to experiment with the computation and aggregation of
topological dimensions and measures of the multidimensional graph. For
the nodes, we computed three topological properties that we considered as
dimensions (PageRank, triangles, and clustering coefficient). For the mea-
sures, we computed the community by label propagation and considered it
as a measure for the nodes. We consider the count of nodes and edges as a
measure each time we aggregate the graph. The ability to derive new multi-
dimensional measures and dimensions using only the graph structure shows
an interesting aspect of graphs and the potential of multidimensional graph
analytics, even when we have no content-related information about the orig-
inal data. Table 5.2 shows the evolution of the graph order and size through
consecutive multidimensional aggregations of the graph. Since the graph is

136

O 0 IO\ Ul W=

10

6. Implementation and Experiments

homogeneous, we end up always with a single node and edge that summa-
rizes the graph at the apex level.

Dataset Original Base TR-PR PR Apex
#V #E #V #E #V #E #V #E #V | #E
DBLP 317,080 1,049,866 | 40,598 869,814 13,926 741,466 275 16,552 1 1
Youtube 1,134,890 | 2,987,624 | 41,704 | 1,835365 | 15,067 | 1,459,786 652 51,840 1 1
Skitter 1,696,415 | 11,095,298 | 164,462 | 7,865,009 | 55430 | 5,994,331 | 1,176 | 119,731 | 1 1
LiveJournal | 3,997,962 | 34,681,189 | 564,648 | 33,382,661 | 122,331 | 28,683,757 | 700 70,480 1 1

Table 5.2: Graph Cuboids Order and Size

To build the graph cuboid for the SNAP graphs, we use the following
code:

// Graph Cuboid Builder

graphAggregator = GraphAggregator.builder ()
.basePath (Paths. get (DB_PATH))

.workPath (Paths . get (DB_PATH + "_aggregatedbase"))
.vertex (node)

.dimension ("pagerank", DimensionAggregation .KEEP)
.dimension (" coefficient", DimensionAggregation.KEEP)
.dimension (" triangles", DimensionAggregation.KEEP)
.structuralMeasure (StructuralMeasure .SM.LABEL_PROP, edge)
.edge(edge)

.build ();

Framework Efficiency The graph extraction and construction algorithms
and the experimental setup were implemented in Java. For the first type of
datasets, the framework was tested on a single machine with 16 GB of RAM,
and an Intel(R) Core(TM) i5-7200U CPU@2.50GHz, running on Ubuntu 18.04.
For the second type, with larger datasets, we used a machine with 256 GB
of RAM, and an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, running on
Ubuntu 18.04. The proposed system uses the centralized graph database
Neo4j. The graphs were implemented using adjacency lists as it is a more
compact representation. For the processing, hashmaps are used as described
in the algorithm.

Given that the Twitter dataset is a heterogeneous graph, with multiple
types of nodes and edges, we compute the time to build the cuboid at the
base and apex level, and at the end two aggregate cuboids that aggregate
the tweets(Tweet-Agg) and users(User-Agg) respectively. For the base level,
Base-C refers to cuboid computation with content measures only, while Base-
T refers to cuboid that has both topological and content measures. Fig-
ure 5.17 shows the computation time with the JVM Xms and Xmx set to 8
GB. Figure 5.18 shows the aggregation of the SNAP networks. Given the
raw datasets, first, the multidimensional graph is computed, then aggregated

137

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

foN
)
o~ :
40 | o xR |
S el
(9]
Lo (q\]
8 2 %
[DN o8] |
30 O @N N
N — o Fr—
— < N R
— & % o
N2 = — N
o N]
g 20| .
.-
= e
ol
—
2 2
10 - e © gg%[\ B
©H Ldmﬂ
0 H

Base-C Base-T Tweet-Agg User-Agg Apex

Do500k 00 1M 02M \

Fig. 5.17: Computation Time for Building the Graph Cuboids

through different dimensional levels. We run the experiment on the ma-
chine with 256 GB, but we set the JVM Xms and Xmx to 32 GB, except for
the LiveJournal aggregations where we encounter an out of memory error.
The results in Figure 5.18 show the computation time for the different graph
cuboids. MD refers to the computation of the multidimensional graph, given
the raw input from SNAP. Base refers to the base graph cuboid, PR-TR is the
cuboid where the coefficient is aggregated, and PR is the cuboid where the
graph is aggregated on both coefficient and triangles dimensional attributes,
and Apex to the highest aggregation level.

Following these experiments, we notice that the processing time depends
on the size, order, and volume of the input and output graphs. The order of
the graph is the number of its nodes and size refers to the number of its edges.
As we consider both content and structural information present in the graph,
all these properties have a direct effect on the efficiency of the aggregation.
Given that at the first aggregation level we have many possible dimension
values for the dimensional attributes, we end up with a graph close in size
and order to the base graph, therefore exhibiting similar computation time.
This explains, for example, why User-agg that aggregates users is faster than
Twitter-agg. We also notice that most of the computation time is spent on the
two phases: the I/O phase, where the graph is loaded from and to the disk,
then the graph aggregation phase, where the nodes and edges are merged.

138

7. Conclusion and Open Challenges

9}
(]
N
N
1,500 [RS LCQ 1
e
I
—
il =
1,000 |- § B
=
0.)
£
[_4
500 |
o Q [e'e)
580F Bio
%) Eﬂ: o
0
MD Base PR-TR PR Apex

0o dblp I youtubell 0 skitter BB livejournal

Fig. 5.18: Cuboid Aggregation Time

The overhead of computing topological measures is very small as shown in
Figure 5.17. This is due in part to the fact that the graph algorithms are
executed within the database engine, without losing I/O to export the graph
to a processing library then import it again. Therefore, we got performance
orders of magnitude better than those when we used an external generic Java
graph library such as JUNG and jGraphT.

7 Conclusion and Open Challenges

In this chapter, we extended the state of the art on graph warehousing by de-
signing a multidimensional graph model that leverages the content and the
topology of the graph. We proposed for the first time a model that exposes
both numerical and graph-structured insights using graph cubes while pre-
serving multidimensional integrity constraints. Furthermore, we proposed
different analytical scenarios and formalized the OLAP querying of the graph
cubes. We also discussed the potential correspondence between graph cubes
and traditional ROLAP cubes. Concerning the implementation, we have de-
tailed the framework architecture and the system API and evaluated its effi-
ciency with multiple real-world datasets.

As a future research direction, our target is to improve the performance
of TopoGraph using a distributed graph engine and combine existing graph

139

Chapter 5. TopoGraph: An End-To-End Framework to Build and Analyze Graph
Cubes

cube materialization techniques with our novel cube definitions. We also plan
to extend our work on dynamic graphs to support continuous updates and
analysis of real-time graph data. Further work needs to be done on defin-
ing a multidimensional query language for graphs and designing efficient
optimization strategies. Machine learning algorithms could also be used to
enable advanced mining scenarios such as the discovery of interesting pat-
terns in the graph cube, and the prediction of the graph cube evolution.

140

Chapter 6

Graph BI & Analytics:
Current State and Future
Challenges

The paper has been published in the Proceedings of the 20th International Con-
ference on Big Data Analytics and Knowledge Discovery. (DaWaK 2018).

The layout and content of the paper have been revised.

DOI: https:/ /doi.org/10.1007 /978-3-319-98539-8_1

Springer copyright/ credit notice:

© 2018 Springer. Reprinted, with permission, from Amine Ghrab, Os-
car Romero, Salim Jouili, and Sabri Skhiri, Graph BI & Analytics: Current
State and Future Challenges, Big Data Analytics and Knowledge Discovery.
DaWakK 2018.

Abstract

In an increasingly competitive market, making well-informed decisions requires the
analysis of a wide range of heterogeneous, large, and complex data. This paper fo-
cuses on the emerging field of graph warehousing. Graphs are widespread structures
that yield great expressive power. They are used for modeling highly complex and
interconnected domains, and efficiently solving emerging big data application. This
paper presents the current status and open challenges of graph Bl and analytics and
motivates the need for new warehousing frameworks aware of the topological nature
of graphs. We survey the topics of graph modeling, management, processing, and
analysis in graph warehouses. Then we conclude by discussing future research direc-
tions and positioning them within a unified architecture of a graph Bl and analytics

141

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

framework.

1 Introduction

Graphs are fundamental and widespread structures that provide an intu-
itive abstraction for the modeling and analysis of complex, heterogeneous,
and highly interconnected data. They have the benefit of revealing valuable
insights from content-based and topological properties of data. The great ex-
pressive power of graphs, along with their solid mathematical background,
encourages their use for modeling domains having complex structural rela-
tionships. In the context of Big Data, the focus of organizations is often on
handling the rising volume of their data. However, the variety and complex-
ity of data through the different phases of data capturing, modeling, and
analysis are at least equally important. The variety challenge is the most crit-
ical in big data nowadays, and efficiently handling the variety of data sources
is considered to be the main driver of success for data-driven organizations
[15]. Graphs meet the requirements to be the perfect canonical data model for
data integration systems [47] given (1) their capability to deal with semantic
relativism and semantic heterogeneities, (2) they are semantically richer at
least as any other model (so they can represent any semantics), (3) they al-
low to create multiple views from the same source, (4) and most importantly,
graphs are extremely flexible to compose new graphs. That is given two
graphs, with one single edge a new graph could be directly created without
affecting the existing ones. Therefore, graphs are suitable to deal with big
data variety better than any other data model.

Furthermore, in industry, graph analysis is considered as “possibly the sin-
gle most effective competitive differentiator for organizations pursuing data-driven
operations and decisions after the design of data capture” according to Gartner,
Inc., a research and advisory firm [45]. Indeed, large complex graphs have
emerged in various fields and graph analytics are being increasingly used
to solve complex real-world problems. In the financial sector, for example,
several types of fraud could be detected and prevented in auction and trans-
action networks [4]. In [130], the authors used bank transactions to build a
financial transactions network, where each node represents a client, and each
edge represents a transaction. As fraudsters tend to collaborate to orchestrate
complex fraud at large scale, the probability that a customer is involved in a
fraud depends on his neighborhood in the transaction graph. Graph analyt-
ics could be used to define and retrieve complex fraud patterns, or to score
customers by fraud exposure. In [40], the authors built a Call Detail Record
graph to understand the call routines and interactions between customers.
This information can later be used to prepare marketing campaigns or to
prevent customer churn.

142

1. Introduction

The topological properties of graphs are of big potential to decision-

making systems. They supply these systems with a new class of complex
structural business facts and measures that could be explored for making a
more accurate decision in data-driven organizations. In current information
systems, Business Intelligence (BI) systems are critical for strategic decision
making. Graph BIL in particular, is emerging as the BI field that extends cur-
rent Bl systems with graph analytics capabilities. It enables graph-based in-
sights such as detection of popular users or communities in social networks,
or revealing hidden interaction patterns in financial networks. Graph BI can
help address the above-mentioned big data applications since (1) data are in-
terconnected in complex ways, but graphs can help reduce this complexity
with intuitive data models and queries, (2) the data size is large, but data
warehouses and Online Analytical Processing (OLAP) analysis are suitable
for storage, organization, synthesis and analysis of large volumes of data,
and (3) graph mining extends traditional techniques by including the discov-
ery of the topological properties, thus characterizing more precisely business
applications. Traditional BI systems, and particularly data warehouses, were
designed to support relational data management and analysis. Due to the
fundamental difference between graph and relational data, the existing sys-
tems are not suitable for efficient graph analysis.
The structure-driven management and analytics of graph data call for the
development of novel data models, query processing paradigms, and stor-
age techniques. Therefore, as motivated by multiple research lines [43, 83],
current Bl and analytics systems need to be extended to efficiently support
warehousing [38], processing [120], mining [119] and OLAP analysis [28, 58]
of the graph structural and content-based information.

Figure 6.1 provides an overview of the different components of the envi-
sioned graph BI system. While adopting a similar template as the traditional
BI systems (i.e., it preserves the familiar data analytics workflow), graph BI
extends current systems with graph-aware components that deliver graph-
derived insights.

Note that through this paper the terms "graph and network", "node and
vertex", and "edge and relationship” are often used interchangeably. The
remainder of this paper presents the current state and the open challenges of
graph Bl & analytics, with a focus on graph warehousing. Section 2 discusses
the topic of graph data modeling and management. Section 3 surveys the
existing frameworks for graph analytics. Section 4 identifies future research
directions and position them within a unified architecture of a graph Bl &
analytics framework.

143

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

11I. Graph BI

1I. Graph OLAP
Analysis

1. Graph Analysis

of s W a4 =

@% >} Graph OLAP on Graphs Insights Visualization
Data Loaded From Data Represented as Complex & Graph-derived
Sources & . a (multidimensional) | Interactive Analysis insights
Represented as i graph | of Grapgh Cubes
Graphs i T
R ? oo | [Graph'Cubes |/
i Graph Mining ;| © | Mining

Fig. 6.1: Integration of Graph and Traditional BI

2 Graph Data Modeling

The variety of data structures urges the need for equipping analysts with
modeling and querying tools that are aware of the specific nature of each
data model. The relational model and its implementations have been devel-
oped and matured for decades. However, they were pushed to their limits
as the one-size-fits-all data management solutions. The wide adoption of
the emerging NoSQL solutions by industry, while not yet as mature as the
relational model, proved the need to push databases into fields beyond the
traditional business applications. More specifically, organizations experience
an urgent need for models and techniques for efficient management of graph
data. Indeed, graph models can deal with semantic relativism and hetero-
geneities, offer the flexibility to combine graphs and support the capability
to associate data and metadata.

2.1 Graph Models

According to the literature, the two main families of graphs are property
graphs and knowledge graphs:

Property Graphs : Property graphs describe a directed, labeled, and at-
tributed multi-graph. Each real-world entity is represented by a node that
contains its label and properties. The label denotes the "type" of the node
(i.e., the class to which it belongs). Relationships between entities are rep-
resented using edges. The flexibility of property graph models allows the
representation of rich structural properties, such as hierarchies and asser-
tions. Property graphs were introduced in the database community to store

144

2. Graph Data Modeling

schemaless data (due to their flexibility to absorb any semantics and attach
data with metadata). In the literature, multiple query languages were de-
signed to enable graph-oriented querying of property graphs [9]. However,
there is no standard query language for property graphs. Therefore, graph
database vendors defined their graph traversal and query languages, such as
Cypher and Gremlin. Cypher is an SQL-like declarative language, that uses
isomorphism-based no-repeated-edges bag semantics. It was introduced by
Neo4j and is centered around pattern matching enriched by built-in algorith-
mic operators. Gremlin is a graph traversal language, built using Groovy,
introduced by Apache TinkerPop3, that uses the homomorphism-based bag
semantics.

Knowledge Graphs: The basic formalism behind knowledge graphs, used
to describe and link resources, is the Resource Description Framework
language (RDF), a W3C recommendation. The basic RDF block is the
triple, a binary relationship between a subject and an object; ie., <
subject, predicate, object >. The subject and the predicate must be resources
(i.e., identified by a URI), whereas the object can be either a resource or a
literal (i.e., a constant value such a string or an integer). A set of RDF triples
form an RDF graph. RDF Schema (RDFS), a W3C recommendation, was
introduced to express basic constraints on RDF triples. In the same line,
the Ontology Web Language (OWL) allows expressing richer constraints and
semantics. As OWL is serialized on top of RDFS, it results in a graph too. Im-
portantly, it is also usual to refer to knowledge graphs (i.e., RDF(S) or OWL)
as ontologies. This is because they can be translated to a fragment of First-
Order Logic (FOL), typically, within the family of Description Logics (e.g., in
the case of OWL and OWL fragments), and benefit from generic reasoning
algorithms in that field. Finally, the W3C recommendation to query knowl-
edge graphs is the SPARQL Protocol and RDF Query Language (SPARQL).
Relevantly, SPARQL enables the activation of generic reasoning capabilities
when querying knowledge graphs to infer non-explicit knowledge. Knowl-
edge graphs were born within the semantic web stack and therefore initially
thought for enabling interoperability and reasoning on semantic data. They
are tightly related to the knowledge representation community and therefore
thought to represent generic knowledge rather than data as for databases.
For this reason, knowledge graph databases are referred to as triplestores
rather than graph databases. One key aspect of property graphs is that they
provide means (i.e., URI) to universally identify graph vertices and edges
from external sources. This facilitates the linking and sharing of data and
metadata. However, unlike property graphs and traditional graph databases,
which are optimized for graph traversal, they are primarily optimized for
handling RDF triples. Another difference is that in property graphs proper-

145

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

ties could be directly added to edges as well as vertices. In essence, however,
knowledge graphs are also graphs and can benefit from the traditional graph
algebras presented in the database field.

2.2 Graph Management

Orthogonal to the previous classification there are two main approaches
widely used for graph data management (regardless of property or knowl-
edge graphs) at the logical/physical level. The first consists of the use of
native graph data models and database engines. The second leverages alter-
native models, mainly the relational model. For the latter, the graph data is
represented by a set of tables, i.e., node tables and edge tables. Traditionally,
relational-based graph database engines have been related to triplestores and
knowledge graphs, whereas native graph database engines were related to
property graphs. Nevertheless, this is nowadays changing and it is currently
possible to find native databases for knowledge graphs. These approaches
are discussed next:

Native Graph Data Models : In recent years, the trend in developing
graph data management systems has shifted to the development of native,
relationship-oriented graph databases. Most native graph databases im-
plement the property graph model or a variation of it. The problem of
impedance mismatch is resolved since relationships are first-class citizens,
and the data is represented as it is perceived without the need to project
it on an intermediate representation. The data model is more straightfor-
ward to design, and the queries are more intuitive to formulate [61]. From
a performance perspective, graph databases are optimized for graph traver-
sals. The cost of traversing an edge is constant, and the overall cost of arbi-
trary navigation through the graph is much lower than the equivalent joins
in relational tables. Subsequent implementation aspects such as graph query
processing, indexing, storage, matching, and retrieval which are specifically
developed and tuned for graph workloads lead to better performances, es-
pecially for queries requiring multiple joins, or containing cycles or other
complex patterns. However, they perform worse than the relational-based
engines for analytical queries that perform scans over the whole graph. In
the software market, established Bl vendors are aware of the potential of na-
tive graph solutions and have already developed many graph databases such
as Neo4j, DataStax Enterprise Graph, Oracle Spatial and Graph, Microsoft
GraphEngine, IBM Graph, and Amazon Neptune.

Relational-based Database Models : This approach benefits from the well-
established relational model features, and enables smooth integration with

146

3. Graph Analytics

a wide range of relational platforms. However, the relational model and its
implementations fall short of meeting the requirements for (1) intuitive data
modeling, (2) topology-aware graph querying (such as path retrieval and
comparison, and graph pattern matching), and (3) traversal-optimized perfor-
mances. Mapping graph data to relational representation raises the problem
of impedance mismatch at the modeling and querying levels. For example,
due to the fundamental difference between the two models, the transforma-
tion of graph data to the relational model is a manual, complicated process,
with a high risk of information loss during the transformation process. The
relational model was designed to handle sets of records and transactions in-
stead of entities and connections. The relational query languages and query
processing engines are optimized to perform table scans instead of traversals.
Graph traversal is often simulated using expensive join operations, which in-
curs a heavy workload, especially for highly interconnected tables. Moreover,
the SQL is not suited to target the topology of the graph with queries such as
pattern matching, neighborhood, or path retrieval.

3 Graph Analytics

A plethora of graph analysis techniques was proposed in the literature to
reveal interesting properties about the graph topology and the connectivity
between graph elements. The core analysis operations of graphs are (1) graph
traversal to assess reachability, find shortest paths, and retrieve the neighbor-
hood, (2) metrics computation of local (e.g., centrality), and global proper-
ties (e.g., diameter), and (3) graph matching, such as subgraph isomorphism
and pattern matching [9]. Most of these operations are supported by graph
database engines. This section describes more advanced graph analytics and
focuses on three pillars of graph analytics: graph OLAP, graph mining, and
graph processing.

3.1 OLAP on Graphs

The multidimensional model is widely used to represent data in the ware-
house. The business facts are stored following the multidimensional model
in cubes that embed aggregated data denoted as measures, which are the
metrics for the analysis. The measures are placed into the so-called multidi-
mensional space, where dimensions are the factors influencing the values of
the measures. OLAP techniques are widely used by BI analysts to conduct
interactive and complex querying over a large volume of data, from different
perspectives and through different hierarchical levels, highlighting the items
of interest, and then drilling down to the underlying data from which facts
were inferred. The main approaches for the multidimensional design and

147

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

OLAP analysis of cubes on graphs are:

Graph OLAP was among the first attempts to design a conceptual frame-
work for OLAP analysis over a collection of homogeneous graphs [28]. Each
graph of the collection is considered as a snapshot. Attributes are considered
as the dimensions and could be either attached to the whole graph snapshot
or attached to a subset of nodes. In the first case, the attributes of the snap-
shots are called informational dimensions. The aggregations of the graph are
performed by overlaying a collection of graph snapshots and merging those
with shared informational values. The analysis is referred to as informational
OLAP aggregations and consists of edge-centric snapshot overlaying. Thus
only edges are merged and changed, with no changes made to the nodes. In
the second case, the attributes of the nodes are called topological dimensions.
Topological OLAP aggregations consist of merging nodes and edges by nav-
igating through the nodes” hierarchy. Qu et al. introduced a more detailed
framework for topological OLAP analysis of graphs [102]. The authors dis-
cussed the structural aggregation of the graph following the OLAP paradigm.
They presented techniques based on the properties of the graph measures for
optimizing measure computations through the different aggregation levels.
Berlingerio et al. [19] defined a multidimensional model similar to Graph
OLAP, but where the dimensions are the labels of the edges and presented a
set of analytical graph-based measures.

Graph Cube is a framework for multidimensional analysis and cube com-
putation over the different levels of aggregations of a graph [143]. It targets
single, homogeneous, node-attributed graphs. A subset of the attributes of
the nodes is considered as the dimensions. Following these so-called dimen-
sions, the graph cube is obtained by restructuring the initial graph in all
possible aggregation. Given n dimensional attributes, the framework intro-
duces the cuboid query, which generates 2" aggregate graphs (called graph
cuboids). Crossboid is a second query introduced by Graph Cube to ana-
lyze the interrelationships between different graph cuboids. Pagrol is a Map-
Reduce framework for distributed OLAP analysis of homogeneous attributed
graphs [135]. Pagrol introduced the notion of Hyper Graph Cubes that ex-
tends the model of Graph Cube by considering the attributes of the edges as
dimensions and introduced various optimization techniques for cubes com-
putation and materialization. Ghrab et al. [49] extended those models with
a framework for building OLAP cubes on heterogeneous attributed graphs.
They presented an extension of property graphs tailored for multidimen-
sional analysis and supporting dimension hierarchies.

148

3. Graph Analytics

Graph OLAP on RDF There is an active research line to generate OLAP
cubes on top of RDF and RDEF(S) graphs. Nebot [93] and Kiampgen [73]
were two of the main attempts to bridge both areas. The former proposes
a semi-automatic method for on-demand extraction of semantic data into an
MD database. In this way, data could be analyzed using traditional OLAP
techniques. The latter studies the extraction of statistical data published us-
ing the QB vocabulary, a W3C standard, into an MD database. Both ap-
proaches moved the semantic data to a traditional data warehouse. Subse-
quent attempts avoided such approach and query graph data in an OLAP
manner without moving it. For example, Beheshti et al., introduced a dis-
tributed framework for OLAP on RDF data [16]. They proposed GOLAP, a
graph model for OLAP on graphs, and FSPARQL an extension to SPARQL
for OLAP querying of RDF data. GOLAP introduced a rule-based approach
for defining new dimensions on the graph. However, it was not until the def-
inition of the QB4OLAP vocabulary that cubes on RDF graphs could not be
guaranteed to be MD-compliant. In [131], Varga et al. discuss the drawbacks
of previous vocabularies, such as QB, to properly represent MD data and
how QB4OLAP overcomes them. This way, resulting cubes can be properly
analyzed with traditional OLAP algebras. Relevantly, Pratap Deb Nath et al.
present a framework to conduct ETL transformations on top of graph data to
produce QB4OLAP-based cubes [92].

3.2 Graph Mining

Data mining refers to the process of discovering patterns or models for data.
In contrast to querying that retrieves known patterns, mining enables the dis-
covery of previously unknown, implicit information and knowledge embed-
ded within a dataset. Traditionally, data mining techniques process data as
a collection of independent instances (i.e. observations). However, the recent
emergence of graph structure as a rich data model involves a paradigm shift
on how data mining algorithms can be applied. Graph mining algorithms
provide a new way of extracting and discovering latent insight from graphs
by leveraging the relationships between entities. However, graph mining al-
gorithms face three main challenges: (1) adapting the mining algorithms to
make them graph-aware, (2) redesigning the algorithms to be implemented
by those new high-performance techniques, and (3) storing and exploiting
multiple but related graphs that serve for the same business purpose as in
the graph warehouse.

A plethora of graph mining techniques were proposed in the literature such
as graph clustering, frequent subgraph mining, proximity pattern mining,
and link prediction. These techniques are relevant in the BI context as they
reveal interesting properties about the topology and the connectivity between
business entities. For example, consider the case of recommender systems in

149

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

e-commerce [79]. The domain could be represented as a bipartite purchase
graph, with two types of nodes representing products and customers. An
edge is added between a product and a customer if the latter has bought
the product. Using graph mining such as graph clustering, two other graphs
could be derived: (1) client similarity graph, and (2) product similarity graph.
Mining these three graphs enables advanced analysis scenarios such as (1)
customer profiling by detecting customer groups using community detec-
tion, and the leaders within each group using centrality, (2) product segmen-
tation by detecting products representative of each segment, and (3) using
link prediction, targeted marketing personalized to the customer’s profile
and tailored by current product trends.

The historical and integrated view provided by the data warehouse makes
it a suitable backbone for offering a variety of analysis scenarios. In the graph
warehouse context, graph mining could be combined with OLAP to offer
more capabilities both during the phase of the design and also the analysis
of the graph warehouse data. During the design phase, graph mining algo-
rithms could be used to enrich the OLAP cubes with new types of topological
dimensions and measures (e.g., PageRank, community). During the analysis,
graph mining could assist the analyst in complex tasks such as building sum-
marized business-oriented views of the graph, providing new perspectives to
analyze the graph, or discovering interesting or anomalous patterns within
the large graph cube space. In the context of outlier detection, graphs provide
an elegant framework to predict and describe outliers. For example, in the
context of graph cubes mining, [41] developed a measure of interestingness
of patterns in a graph cube, while [21] proposed an entropy-based filter to
detect interesting associations between attributed nodes in a graph cube.

3.3 Graph Processing

To deal with large and evolving graphs, which is the case in data warehouses,
graph Bl systems need to integrate large-scale graph processing frameworks.
Graph processing frameworks are designed to natively support the graph
topology, and they offer graph programming models and abstractions to eas-
ily implement a multitude of graph algorithms. These frameworks have the
capabilities to efficiently perform large scale, ad-hoc, and distributed com-
putations over large graph data that exceed a single machine capacity. They
offer features such as automatic graph partitioning, load balancing, network
and disk transfer optimization, and fail-over of the processing tasks.

However, distributed graph processing poses additional challenges to cen-
tralized or traditional parallel data processing in that [89]: (1) graph struc-
ture is irregular which poses challenges to the graph data partitioning and
limits parallelism, (2) computation is driven by the structure, which causes
a poor memory locality and poses data transfer issues, and (3) algorithms

150

3. Graph Analytics

traverse the partitioned graph in an exploratory way and are iterative by na-
ture, which is I/O intensive. To tackle these challenges and enable efficient
large-scale graph analytics, different processing paradigms were introduced
[14]:

* Hadoop Family frameworks: MapReduce denotes a programming
model for large-scale data processing. Hadoop is an open-source frame-
work that supports data-intensive distributed applications and clones
Google’s MapReduce framework. It is designed to process a large
amount of unstructured and complex data and runs on shared-nothing
architectures. MapReduce frameworks are useful for content-based ag-
gregation of graphs (e.g., graph cube aggregation), but they are not
efficient for graph-specific computations[42].

* Synchronous frameworks: Pregel [90], and its open-source implemen-
tation Apache Giraph, are distributed fault-tolerant graph processing
frameworks designed to execute vertex-centric graph algorithms fol-
lowing the Bulk Synchronous Parallel processing (BSP) paradigm. BSP
is a shared-nothing processing paradigm for parallel algorithms execu-
tion. The computation is done as a series of super-steps over a set of
processing units, each having its local memory. Each super-step consists
of three phases, first (1) each processing unit performs concurrently
and locally its computations, then (2) data is exchanged between the
different processes, finally (3) when a process finishes the computation
and communication, it reaches the synchronization barrier and it waits
for the rest of processes to finish before proceeding to the next super-
step. The advantage of this paradigm is that it ensures a deadlock-free
computation. However, the downside is the execution time, where the
system has to wait for the slowest machines to finish before proceeding.

¢ Asynchronous frameworks: In contrast to the synchronous shared-
nothing processing frameworks, GraphLab [87] and PowerGraph [54]
are asynchronous and follows the Gather-Apply-Scatter computational
model, with shared memory abstraction. These frameworks might
provide better performances, but incur more complexity and higher
scheduling and consistency costs.

* Hybrid Systems: These frameworks enable a mixed workload of graph-
parallel and data-parallel processing. GraphX [55] is a component of
Apache Spark [141] developed for graph processing . It is a fault-
tolerant, distributed, in-memory graph processing framework built on
top of the Resilient Distributed Dataset abstraction. GraphX provides
a set of primitive operators to load and interactively query the graph
data. GRADOQP is a distributed framework for graph management

151

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

and querying [70]. It introduces a new graph model that extends prop-
erty graphs, supports Cypher queries, and the queries are processed
using Apache Flink [26].

4 Future Research Directions

This paper calls for the development of novel intelligent, efficient, and
industry-grade graph warehousing systems. The potential directions include
(1) further research on solving complex graph problems (e.g., subgraph iso-
morphism and graph partitioning), (2) building native graph components
(e.g., native graph ETL operations, graph OLAP engines, and a multidimen-
sional query language for graphs), and (3) the integration of artificial intel-
ligence techniques to enable self-service BI for business users. To this end,
machine learning should be integrated within the BI systems to automate
the warehousing tasks from data preparation, to complex modeling and aug-
mented analytics of graphs (e.g., automated discovery of multidimensional
concepts, detection of interesting patterns, and forecasting of business KPIs
evolution).

The modules missing for developing an industry-grade graph BI and an-
alytics system are unified in the envisioned architecture presented in Fig-
ure 6.2, and they summarize the future research directions as follows:

¢ Graph Extraction (1): This module allows the extraction of graph data
from different data sources that could initially be in various formats
and flowing at various rates such as graph streams. The data is cleaned
to only capture entities that satisfy the quality constraints (e.g., con-
tains the required attributes with valid values), which guarantees the
reliability of data.

¢ Graph Construction & Enrichment (2): The captured graph data is inte-
grated and formatted according to a given graph model. A promising
research direction is the development of graph-aware ETL processes
with native graph manipulation operations augmented with machine
learning capabilities. ML techniques such as Information Retrieval and
Automatic Natural Language Processing could help in the automated
extraction and construction of multidimensional graphs from unstruc-
tured data such as text. For example, geo-location and sentiment anal-
ysis could be applied to enrich the attributes of the data entities and
therefore equip businesses with the capability to analyze data from new
perspectives. New graph entities could be discovered as well. For in-
stance, using community detection, new labels could be added to the
nodes, and using similarity, new edges could be added between the
similar nodes. Multiple variations of the traditional ETL approach exist

152

4. Future Research Directions

Graph BI Dashboard
(Interactive Ul and Reporting)
Graph Cubes Interactive OLAP
Mining Querying
(Community detection, link
prediction frequent patterns etc.)
(2]
= Cluster 3
5 o Visualization on
<
e Cube
<
1% =
D o8
g ,’? 5 Multi-Levels
&3 Graph
(6] = § Analysis
S v . : ©
g Cluster2 Multl-Perspectlyes
o Graph Analysis
3 =]
= <
g = = MD Scheman Intersting
o © -
MD Schema 1 529 Cuboids
S0
O]
Interesting Graph Cuboid
Potential Detection % :
c
.g Schemas
g £ ‘
5 =1
é g E Graoh Cubes G JI 4 Cuboids
raph Cubes Compu -
§] L.,), & Materialization (ATERS
& = MD
o) 8 Concepts
S < | Discovery
@ & 1. Dimensions Definition
o MD ' > 1. Cubes Definition
Schema 2. Levels Definition 2. Facts Definition
Generation 3. Attributes Definition ' [
Facts
AR | >—Mapping to Graphs
Dimension Mapping to Graphs
{F MD Patterns Matching in Graphs
¢] |
|
: SSS
o
5 § Graph Marts
£ k] Graph Construction
=] ~c}
g 8 2 T 1208
S O @ 20 =
o)) S 3
<3 2o
]
Data Sources Graph Data Warehouse

Fig. 6.2:

153

Architecture of a Graph BI & analytics framework

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

in the literature and might be worth exploring for Graph ETL such as
the Extract-Load-Transform, or the Capture-Transform-Flow.

Graph Data Warehouse (3): The graph data warehouse is the refer-
ence central information repository for graph-based decision making.
Data is extracted from different sources and integrated using a com-
mon graph model. The cleansed and integrated data is natively stored
and managed as a multidimensional graph in the graph warehouse.
Whereas that data would be transformed into tables in traditional data
warehouses. Nevertheless, the conceptual layer remains the same (i.e.,
represented as dimensions and facts). The changes are related to the
logical and physical levels. The graph warehouse provides a suitable
backbone for natively analyzing graphs with BI tools such as graph
OLAP and graph mining.

Cube Design and Computation (4): The semantic relativism inherent
in graphs allows us to create several views from the same data and
make them co-exist in a much simpler way than other data models.
Afterward, given a graph lattice, the graph cubes enable the compu-
tation and the aggregation of corresponding graph cuboids. Once the
required graph cuboids are computed, the result is persisted in the cor-
responding data marts. To leverage graph properties, graph cubes em-
bed graph-structured measures and dimensions. There is a need for
cube computation and aggregation libraries capable of efficiently han-
dling graphs. This line of research includes optimizations such as graph
cuboids materialization, indexing, and graph icebergs.

Discovery of multidimensional concepts and definition of potential
multidimensional schemas (5): Multiple multidimensional schemas
could be built from the same graph warehouse to satisfy the various
analysis needs. Real-world graphs, such as social networks, are com-
plex, dynamic, and flexible. Interesting graph entities might be hidden
in the large data sources. Therefore, there is a need for novel graph-
aware approaches that enables automatic detection and extraction of
multidimensional concepts from large complex graphs. This could be
done through the analysis of the topological aspects of graphs, and the
projection of the properties of the multidimensional models on them.
This will help end-users cope with the complexity and large volume of
graphs, and expose potential interesting discovery to decision-makers.

Assistance with the analysis and synthesis of graphs (6): Given the
complexity and large size of the initial graph, there is a need for intelli-
gent modules capable of performing an automated preliminary analysis
of the graph to guide the analyst during the exploration of the graph

154

5. Conclusion

cubes. The goal is to enable self-service Bl and facilitate complex tasks
such as the extraction of meaningful graph summaries, the discovery
of interesting phenomena in the graph cuboids such as frequent graph
patterns, and outlier relationships.

* Mining and querying OLAP cubes (7-8): Complex and interactive
OLAP analysis and mining of graph cubes are performed at this phase.
In contrast to traditional OLAP, graph cubes enable the multidimen-
sional analysis of graph metrics stored in the graph cuboids. For ex-
ample, analysts could examine the centrality of leaders from multiple
perspectives, or identify the communities and their connections at dif-
ferent levels of aggregations. To this end, there is a need to develop
graph OLAP engines that support graph-structured cubes. Besides,
the Online Analytical Mining of graph data is a promising research
direction to empower graph OLAP with mining capabilities. Graphs
are dynamic and enabling OLAP on evolving networks by analyzing
changing facts and dimensions will help in understanding the struc-
tural and informational evolution of networks. Many BI vendors have
already integrated graphs into their BI solutions. However, the support
for graphs is still limited and there is still a need to push further the
integration of graph-derived insights into the decision-making process.

5 Conclusion

Graphs are interesting structures that provide a solid foundation for intu-
itively representing various domains and solving complex problems while
enabling better performance. Graph analytics leverage structural and
content-based information to create added-value services, and extend current
solutions with new topology-enabled capabilities. In this paper, we surveyed
the state of the art on graph BI and analytics and proposed an architecture of
Graph BI and Analytics platform augmented with machine learning capabil-
ities, which lays the foundations for promising future research directions. In
all, graph analytics has a bright future, and this paper calls for more attention
from academia and industry to build next-generation graph-powered Bl and
analytics frameworks.

155

Chapter 6. Graph BI & Analytics: Current State and Future Challenges

156

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the main results of this Ph.D. thesis and pro-
pose promising research directions towards building industry-grade graph
data warehouses.

1 Conclusions

Graph warehousing is an emerging topic that extends current decision-
making systems with graph management and analysis capabilities. Graphs
are indeed a generic structure with a wealth of scientific literature, a strong
mathematical foundation, and various real-world applications. A multitude
of domains (e.g., transportation, telco, healthcare, etc.) are naturally repre-
sented as graphs, and many modern applications benefit from graph analyt-
ics (e.g., shortest paths, churn prediction, drug discovery, etc.). Therefore,
the topic of graph warehousing received a lot of interest from academia and
industry in recent years [103].
In this thesis, we presented our contribution as an end-to-end graph ware-
housing framework. This work was conducted in three major directions.
First, we designed GRAD, a graph database model for analytics and partic-
ularly for warehousing. Second, we studied the projection of the conceptual
multidimensional model on graphs, extracted novel cubes from graphs, and
discussed OLAP analysis of these cubes. Third, we proposed an architecture
of the graph data warehouse and described its main building blocks and the
remaining gaps. The various components of our graph warehousing frame-
work can be effectively leveraged as a foundation for designing and building
industry-grade graph data warehouses, and can ultimately help achieve a
deeper understanding and more efficient manipulation of large and complex
graphs common in real-world applications.

The main body of this thesis is composed of four papers, included in

157

Chapter 7. Conclusion and Future Work

Chapters 3 to 5. We review in the remainder of this section the main contri-
butions of each chapter:

e In Chapter 3, we studied the topic of graph database modeling. A
database model defines the data structures, integrity constraints, and
manipulation operators necessary for representing, querying, and guar-
anteeing the consistency of data. Thereby, it provides the theoretical
foundation for building graph databases, which in turn are the central
component for the storage and querying of graph data. Given its impor-
tance, this topic received a lot of attention from the database commu-
nity [10]. Many graph database models were proposed in the literature,
each adopting a custom design choice such as attributes and labels of
graph elements or directions of edges, etc. However, most of the pre-
vious work was designed to handle OLTP workloads, thereby not be-
ing tuned for analytical processing and particularly warehousing and
OLAP workloads. To address this issue, we started from a thorough
analysis of the current state-of-the-art to identify potential drawbacks
and formulated the first open question tackled in this thesis as " how
to model a graph to make it ready for warehousing and OLAP ana-
lytics?". That is, what are the graph data structures adapted for graph
warehousing, what are the algebraic operators required for the analysis
of these graph structures, and what are the integrity constraints that
need to be enforced to guarantee the integrity of the graph database?
We answered these questions by designing GRAD (GRAph Database
model), a complete graph database model tailored for warehousing
and OLAP analytics. Indeed, even though graphs are flexible and most
graph models do not enforce a strict schema, an analytical tool needs
to be aware of and ensure the mapping between the graph structures
to their analytical counterparts. GRAD provides means to express mul-
tidimensional concepts and constructs that facilitate the later analysis.
It provides (1) analytical graph structures that capture rich semantics,
such as encapsulation and hierarchies, (2) a set of operators to manip-
ulate the graph and extract its patterns, and (3) a set of rules to enforce
and preserve the integrity of the graph data through the different inte-
gration and transformation operations. Nodes and edges are first-class
citizens that are self-descriptive and semantically rich as they capture
traditional modeling concepts and project them on graphs. Besides, we
defined two families of integrity constraints. The first guarantees the
graph entity integrity, by forcing each real-world entity to be uniquely
represented and identified. The second is semantic constraints, which
are domain-specific and represent the user-defined assertions on the
graph elements enforced by graph pattern checking. The algebraic op-
erators enable the traversal and pattern matching of GRAD structures

158

1. Conclusions

and were specifically designed for querying the graph topology while
preserving the integrity constraints. GRAD structures are the operands
and the return type of all these algebraic operators. We have illustrated,
through a set of queries, how GRAD could be used effectively to sup-
port analytical scenarios on graphs.

¢ In Chapter 4, we presented our second framework towards bringing the
value of graph analytics to decision-support systems. Indeed, a major
step to extend current data warehouses with graph capabilities is to ad-
dress the need for native multidimensional graph models and re-think
OLAP analysis to capture and expose graph topology and content. This
objective led to the second research question we answered in this thesis:
"how to design a multidimensional model aware of the topological
characteristic of the graph, and how to extract OLAP cubes from it ?"
We answered this second question by designing a multidimensional
graph model, and showing how to derive OLAP cubes and extend
them using GRAD. We defined the multidimensional concepts for het-
erogeneous attributed graphs and presented the new dimensions and
measures that could be computed from graphs. We first projected these
concepts on property graphs to find the candidate multidimensional
concepts and to build new types of graph cubes such as topological
cubes. Then, we extended the proposed multidimensional model using
the implicit semantics embedded in GRAD. For example, we used the
hypernode structure to extract intra-class dimensions and the entity
edges to support dimension hierarchies. In particular, we illustrated
how this extension enables supporting advanced concepts such as di-
mension hierarchies within multidimensional graphs. As a result, we
have shown how a graph database model such as GRAD eases multidi-
mensional modeling and discovery of candidate cubes.

¢ In Chapter 5, we moved further towards building an end-to-end graph
warehousing framework. A major issue of the first papers on graph
OLAP is that they simply mapped relational-like multidimensional con-
cepts to graphs, which lead to limited exploitation of the graph topol-
ogy. The graph structure was not well exposed within graph cubes,
which limited their readiness for industrial deployment. This issue lead
us to the third question tackled in this thesis: "how to design a multidi-
mensional model aware of the topological characteristic of the graph,
and how to leverage these properties in OLAP analysis?"
The answer to this question completed the answer to the second ques-
tion of the thesis. We extended our previous work on graph ware-
housing by designing TopoGraph, a multidimensional graph model
that leverages the content and the topology of the graph and supports
new types of cubes and queries combining graph-oriented and OLAP

159

Chapter 7. Conclusion and Future Work

querying. TopoGraph goes beyond traditional OLAP cubes by consid-
ering the topological properties of the graph elements. And it goes
beyond current graph warehousing models by proposing new types of
graph-structured cubes. These cubes embed a rich repertoire of mea-
sures and dimensions that could be represented with numerical values,
with entire graphs, or as a combination of them. We studied the corre-
spondence between graph cubes and traditional OLAP cubes and con-
cluded that current warehousing systems are not designed to support
graph cubes, which motivates the need for native graph warehousing
systems. Indeed, the assumption that graph cuboids could be loaded
into relational OLAP cubes might hold for content-based graph cubes.
However, loading a graph cuboid into a relational cube causes the loss
of the graph structure, which makes relational systems inadequate for
topological and graph-structured cubes. Given the graph cubes, we pro-
posed a formal specification of the algebraic operators and discussed
the families of queries that they are designed to answer. To validate our
proposal, TopoGraph was implemented and experimentally validated
with different types of real-world datasets, and used at the core of a
social network analysis framework.

In Chapter 6, we tackled the topic of graph warehousing from an ar-
chitecture perspective. The variety, complexity, and sheer volume of
graphs in a data warehousing context pose challenges to traditional
graph storage and analysis tools. Besides, graph cubes have a differ-
ent structure from their relational counterpart, and OLAP operations
exhibit different access and manipulation patterns. Given these speci-
ficities of graph warehousing, we identified a need for a unified graph
warehousing architecture, designed in the lines of traditional warehous-
ing, but optimized for graph storage and processing, and leveraging
topological insights. Therefore, the fourth question we studied in this
thesis is "what are the main building blocks of a graph warehouse,
and how could they be unified in a comprehensive architecture?"

We answered this question by proposing an architecture of a graph
warehousing framework augmented with machine learning capabili-
ties. While adopting a similar template as the traditional BI and ware-
housing systems, it extends them with graph-aware components that
deliver graph-derived insights. The architecture illustrates how the
graph data flows from the sources, through the ETL process, the graph
warehouse, marts, and graph cubes to the analysis layer. At the core of
the proposed architecture, we positioned GRAD as the recommended
database model and TopoGraph as the warehousing framework cover-
ing graph cubes’ computation and analysis. Besides, we enriched the
architecture with a set of other complementary components for pro-

160

2. Results of the Collaboration with EURANOVA

cessing optimization and user-assistance purposes. They include the
automated discovery of potential multidimensional schema and cubes
and the extraction of interesting patterns. This integration of graph
warehousing and machine learning lays the foundations for promis-
ing future research directions. Moreover, this architecture captures the
complete life-cycle of graph data warehousing, and thereby, could be
considered as a roadmap, for both academia and industry, towards
building next-generation graph BI and analytics systems.

2 Results of the Collaboration with EURANOVA

During the course of this thesis, we had the opportunity to collaborate with
our industrial and academic partners to complete our research and explore
related topics, with a focus on the efficient processing of graphs and machine
learning integration in graph cube analytics. We applied the result of our re-
search to bring innovative solutions to many real-world industrial problems
such as fraud detection, product recommendation, and urban planning. We
built a multitude of graph libraries and dashboards related to the proposed
architecture and integrated the main results of this thesis as modules inside
multiple industrial applications.

As for the complementary scientific contributions, they were mostly made in
collaboration with master thesis students during their master thesis projects
at EURA NOVA, under the supervision of the Ph.D. candidate. In what
follows, we describe the published works. The distributed graph cube frame-
work [42], was designed in collaboration with the master student Benoit De-
nis. The time complexity of Graph Cube algorithms depends on the size of
the analyzed network. The centralized approach of the first Graph Cube pa-
pers presents major weaknesses for large inputs because (1) the input graph
is read sequentially, linearly increasing the execution time of algorithms with
its size, and (2) Graph Cube algorithms rely on a centralized in-memory
store. A distributed approach providing horizontal scalability was required
to handle the Graph OLAP analysis workload. This work provided the first
distributed algorithm for graph cubes computation and aggregation using
the Map-Reduce model. It was implemented on top of Spark to provide a
scalable, efficient, and fault-tolerant solution. Afterward, we designed and
implemented GraphOpt [126], with the help of Muaz Twaty. Distributed
processing frameworks abstract the distribution of the algorithms and hide
complex tasks such as graph partitioning and machine fail-over. However,
they each have a large set of specific parameters that require expert knowl-
edge to fine-tune them before efficiently performing large graph jobs. Some
frameworks have more than 180 parameters to set, such as in GraphX, which
makes the complete search, in the exponentially growing search space, in-

161

Chapter 7. Conclusion and Future Work

feasible. GraphOpt addresses this issue by proposing an efficient and scal-
able black-box optimization framework that automatically tunes distributed
graph processing frameworks. GraphOpt implemented state-of-the-art opti-
mization algorithms and introduced a new hill-climbing-based search algo-
rithm. These algorithms were used to optimize the performance of two major
graph processing frameworks: Giraph and GraphX. Besides, we worked with
Florian Demesmaeker to design an algorithm for the discovery of interesting
patterns in large graph cubes [41]. Given that a graph cube is composed
of a large set of cuboids, another challenge is to discover and extract inter-
esting patterns. The algorithms proposed in the state of the art allow the
discovery of interesting patterns in a single graph mainly by analyzing its
structure. However, in the case of graph cubes, we need to consider both the
structure of the graph and the internal information present in its nodes and
edges’ attributes to extract the most surprising patterns. Thus, instead of ex-
amining all the possible graph cuboid aggregations manually, the proposed
algorithm leads the analyst to the interesting associations or patterns in the
multidimensional network.

3 Future Research Directions

The development of industry-grade decision-support systems enriched with
graphs is still in its early stages. The support for graphs in BI solutions is
still limited and there is still a need to push further the integration of graph-
derived insights into the decision-making process. In this thesis, we pro-
posed our contribution to advance the state-of-the-art on graph warehousing
by proposing a new database and multidimensional model for graphs. Yet,
the thesis also opens several interesting research areas for the development of
intelligent and efficient graph warehousing systems. The potential research
directions include (1) further work on solving fundamental complex graph
problems (e.g., subgraph isomorphism and graph partitioning), (2) design-
ing and building missing graph warehousing components (e.g., graph ETL
operations, a multidimensional query language for graphs), and (3) the inte-
gration of artificial intelligence (AI) techniques to enable self-service graph Bl
for business users. Integration of Al within graph BI systems could automate
various warehousing tasks from data preparation, to complex modeling and
efficient querying, and augment the analytics of graphs with new capabilities
such as the automated discovery of multidimensional concepts, detection of
interesting patterns, and forecasting of business KPIs evolution.

In the remainder of this section, we identify the missing modules for de-
veloping an industry-grade graph Bl and analytics system and position them
in the envisioned architecture presented in Figure 7.1. These missing mod-
ules summarize the proposed future research directions.

162

3. Future Research Directions

Graph Cubes
Mining

(Community detection, link
prediction frequent patterns etc.)

4]

Interactive OLAP
Querying

Potentigl
™D
Schemas

@
9
E=} Cluster 3
= Visualization onCube
=
<
@
3
= Multi-Levels
5 Graph
= Analysis
=3 . .
g Multi-Perspectives
&) Graph Analysis
8 _
o £ &
6) —g MD Schema n Interesting
MD Schema 1 =3 g Cuboids
32
s xn
3 3

Interesting Graph Cuboid
Detection

&

Graph Cubes Computation

MD
Concepts
Discovery

&
MD
Schema
Generation

MD Space Design

(=]

1. Dimensions Definition
2. Levels Definition
3. Attributes Definition

Graph Cubes Computation
& Materialization

1. Cubes Definition
2. Facts Definition

{
i

AL :
vIappmn

Cuboids
Analysis

pets
5 to Graphs

Dimension Mapping to Graphs

MD Patterns Matching in Graphs

]
E

Data Loading
& Transformation to Graphs

U 32Inos

Graph Construction
& Enrichment E

Tre

Graph
traction

Graph Data Sources

Gi

SSS

Graph Marts

4]

raph Data Warehous.

Fig. 7.1: Architecture of a Graph Bl & analytics framework

163

Chapter 7. Conclusion and Future Work

* Graph Extraction & Construction (1-2): This module allows the extrac-
tion of graph data from different data sources that could initially be
in various formats and flowing at various rates such as graph streams.
The data is cleaned to only capture entities that satisfy the quality con-
straints (e.g., contains the required attributes with valid values), which
guarantees the reliability of data. The captured graph data is integrated
and formatted according to a given graph model. A promising research
direction is the development of graph-aware ETL processes with native
graph manipulation operations augmented with machine learning ca-
pabilities. Information Retrieval and Automatic Natural Language Pro-
cessing algorithms could help in the automated extraction and con-
struction of multidimensional graphs from unstructured data such as
text. For example, geo-location and sentiment analysis could be ap-
plied to enrich the attributes of the data entities and therefore equip
businesses with the capability to analyze data from new perspectives.
New graph entities could be discovered as well. For instance, using
community detection, new labels could be added to the nodes, and us-
ing similarity, new edges could be added between the similar nodes.
Multiple variations of the traditional ETL approach exist in the litera-
ture and might be worth exploring for Graph ETL such as the Extract-
Load-Transform, or the Capture-Transform-Flow.

* Graph Data Warehouse (3): The graph data warehouse is the refer-
ence central information repository for graph-based decision-making.
The cleansed and integrated data is natively stored and managed as
a multidimensional graph in the graph warehouse. In this thesis, we
proposed the foundation for the multidimensional modeling of graphs,
but many research questions remain open such as supporting graph data
and schema evolution.

* Graph Cube Design and Computation (4): The semantic relativism in-
herent in graphs allows creating several views from the same data and
make them co-exist in a much simpler way than other data models.
Graph cubes are computed from the multidimensional graph and the
result is persisted in the corresponding data marts. Given the specific
graph properties, such as graph-structured measures and dimensions,
there is still a need for efficient cube computation and aggregation libraries
capable of handling graphs. This line of research includes optimizations
such as graph cuboids materialization, indexing, and graph icebergs.

* Discovery of multidimensional concepts and definition of potential
multidimensional schemas (5): Multiple multidimensional schemas
could be built from the same graph warehouse to satisfy the various
analysis needs. Real-world graphs, such as social networks, are com-

164

3. Future Research Directions

plex, dynamic, and flexible. Interesting graph entities might be hidden
in the large data sources. Therefore, there is a need for novel graph-
aware approaches that enable automatic detection and extraction of mul-
tidimensional concepts from large complex graphs. This could be done
through the analysis of the topological aspects of graphs, and the pro-
jection of the properties of the multidimensional models on them. This
research direction will help end-users cope with the complexity and
large volume of graphs, and expose potential interesting discovery to
decision-makers.

* Assistance with the analysis and synthesis of graphs (6): Given the
complexity and large size of the initial graph, there is a need for intelli-
gent modules capable of performing an automated preliminary analysis
of the graph to guide the analyst during the exploration of the graph
cubes. The goal is to enable self-service graph Bl and facilitate complex
tasks such as the extraction of meaningful graph summaries, the dis-
covery of interesting phenomena in the graph cuboids such as frequent
graph patterns, and outlier relationships.

* Mining and OLAP querying of graph cubes (7-8): Complex and inter-
active OLAP analysis and mining of graph cubes are performed at this
phase. In contrast to traditional OLAP, graph cubes enable the mul-
tidimensional analysis of graph metrics stored in the graph cuboids.
To this end, there is a need to develop graph OLAP engines that sup-
port graph-structured cubes. Besides, Online Analytical Mining of graph
data is a promising research direction to empower graph OLAP with
mining capabilities. Graphs are dynamic and enabling OLAP on evolv-
ing networks by analyzing changing facts and dimensions will help in
understanding the structural and informational evolution of networks.

165

References

References

(1]
(2]

(3]

[4]

[5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

GQL Standard. https://www.gqlstandards.org/home.

A. Abellg, J. Samos, and F. Saltor. YAM2: a multidimensional concep-
tual model extending UML. Information Systems, 31(6):541-567, 2006.

C. C. Aggarwal and H. Wang. Graph Data Management and Mining: A
Survey of Algorithms and Applications. In Managing and Mining Graph
Data, pages 13-68. Springer, 2010.

L. Akoglu, H. Tong, and D. Koutra. Graph-based Anomaly Detec-
tion and Description: A Survey. Data Mining and Knowledge Discovery,
29(3):626—688, 2015.

E. Andonoff, G. Hubert, A. Parc, and G. Zurfluh. Modelling inheri-
tance, composition and relationship links between objects, object ver-
sions and class versions. In J. livari, K. Lyytinen, and M. Rossi, editors,
Advanced Information Systems Engineering, volume 932 of Lecture Notes
in Computer Science, pages 96-111. Springer Berlin Heidelberg, 1995.

R. Angles. A comparison of current graph database models. In Data
Engineering Workshops (ICDEW), 2012 IEEE 28th International Conference
on, pages 171-177. IEEE, 2012.

R. Angles. The property graph database model. In Proceedings of thel2th
Alberto Mendelzon International Workshop on Foundations of Data Manage-
ment, 2018.

R. Angles, M. Arenas, P. Barcel6, P. Boncz, G. Fletcher, C. Gutierrez,
T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, et al. G-core: A core
for future graph query languages. In Proceedings of the 2018 International
Conference on Management of Data, pages 1421-1432, 2018.

R. Angles, M. Arenas, P. Barcel6, A. Hogan, J. Reutter, and D. Vrgoc.
Foundations of modern query languages for graph databases. ACM
Computing Surveys (CSUR), 50(5):68, 2017.

R. Angles and C. Gutierrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1-1:39, 2008.

M.-A. Aufaure and E. Zimanyi. Business Intelligence: First European Sum-
mer School, EBISS 2011, Paris, France, July 3-8, 2011, Tutorial Lectures,
volume 96. Springer Science & Business Media, 2012.

F. Bajaber, R. Elshawi, O. Batarfi, A. Altalhi, A. Barnawi, and S. Sakr. Big
data 2.0 processing systems: Taxonomy and open challenges. Journal of
Grid Computing, 14(3):379-405, 2016.

166

https://www.gqlstandards.org/home

References

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

P. Barcel6 Baeza. Querying Graph Databases. In Proceedings of the 32Nd
Symposium on Principles of Database Systems, PODS ’13, pages 175-188,
New York, NY, USA, 2013. ACM.

O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, A. Barnawi, S. Sakr,
et al. Large scale graph processing systems: survey and an experimen-
tal evaluation. Cluster Computing, 18(3):1189-1213, 2015.

R. Bean. Variety, Not Volume, Is Driving Big Data
Initiatives. https://sloanreview.mit.edu/article/
variety-not-volume-is-driving-big-data-initiatives/, 2016.

Accessed: 2015-09-25.

S.-M.-R. Beheshti, B. Benatallah, and H. R. Motahari-Nezhad. Scalable
Graph-based OLAP Analytics over Process Execution Data. Distributed
and Parallel Databases, 34(3):379-423, Sep 2016.

B. Benatallah, H. R. Motahari-Nezhad, et al. Scalable graph-based olap
analytics over process execution data. Distributed and Parallel Databases,
pages 1-45, 2015.

C. Berge and E. Minieka. Graphs and hypergraphs, volume 7. North-
Holland publishing company Amsterdam, 1973.

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pe-
dreschi. Multidimensional Networks: Foundations of Structural Anal-
ysis. World Wide Web, 16(5-6):567-593, 2013.

M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski,
C. Barthels, G. Alonso, and T. Hoefler. Demystifying graph databases:
Analysis and taxonomy of data organization, system designs, and
graph queries. arXiv preprint arXiv:1910.09017, 2019.

D. Bleco and Y. Kotidis. Entropy-based selection of graph cuboids. In
Proceedings of the Fifth International Workshop on Graph Data-Management
Experiences and Systems, GRADES’17, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery.

A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets. Querying graphs.
Morgan & Claypool Publishers, 2018.

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer
networks, 33(1-6):309-320, 2000.

F. Bugiotti, L. Cabibbo, P. Atzeni, and R. Torlone. Database design
for NoSQL systems. In International Conference on Conceptual Modeling,
pages 223-231. Springer, 2014.

167

https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/
https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

References

[25] I. Cantador, P. Brusilovsky, and T. Kuflik. Second workshop on infor-
mation heterogeneity and fusion in recommender systems (hetrec2011).
In Proceedings of the Fifth ACM Conference on Recommender Systems, Rec-
Sys "11, page 387-388, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[26] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[27] S. Chaudhuri and U. Dayal. An overview of data warehousing and
olap technology. ACM Sigmod record, 26(1):65-74, 1997.

[28] C. Chen, X. Yan, E Zhu, J. Han, and P. S. Yu. Graph OLAP: a multi-
dimensional framework for graph data analysis. Knowl. Inf. Syst.,
21(1):41-63, 2009.

[29] H. Chen, R. H. Chiang, and V. C. Storey. Business intelligence and
analytics: From big data to big impact. MIS quarterly, 36(4), 2012.

[30] M.-S. Chen, J. Han, and P. S. Yu. Data mining: an overview from a
database perspective. IEEE Transactions on Knowledge and data Engineer-
ing, 8(6):866-883, 1996.

[31] P. P-S. Chen. The Entity-Relationship Model-Toward a Unified View of
Data. ACM Transactions on Database Systems (TODS), 1(1):9-36, 1976.

[32] Y. Cheng, P. Ding, T. Wang, W. Lu, and X. Du. Which Category Is Better:
Benchmarking Relational and Graph Database Management Systems.
Data Science and Engineering, 4(4):309-322, 2019.

[33] M. Ciglan, A. Averbuch, and L. Hluchy. Benchmarking traversal oper-
ations over graph databases. In 2012 IEEE 28th International Conference
on Data Engineering Workshops, pages 186-189. IEEE, 2012.

[34] E. E Codd. Data models in database management. In Workshop on Data
Abstraction, Databases and Conceptual Modelling, pages 112-114, 1980.

[35] D. Colazzo, E. Goasdoué, I. Manolescu, and A. Roatis. Warehousing rdf
graphs. In Bases de Données Avancées, 2013.

[36] G. Colliat. Olap, relational, and multidimensional database systems.
ACM Sigmod Record, 25(3):64-69, 1996.

[37] D.]. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent
Systems and Their Applications, 15(2):32—41, 2000.

168

References

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

A. Cuzzocrea, L. Bellatreche, and L.-Y. Song. Data Warehousing and
OLAP over Big Data: Current Challenges and Future Research Direc-
tions. In Proceedings of the Sixteenth International Workshop on Data Ware-
housing and OLAP, pages 67-70. ACM, 2013.

A. Cuzzocrea, D. Sacca, and J. D. Ullman. Big Data: a Research Agenda.
In Proceedings of the 17th International Database Engineering & Applications
Symposium, pages 198-203. ACM, 2013.

K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea,
A. A. Nanavati, and A. Joshi. Social ties and their relevance to churn
in mobile telecom networks. In Proceedings of the 11th international con-
ference on Extending database technology: Advances in database technology,
EDBT "08, pages 668-677, New York, NY, USA, 2008. ACM.

F. Demesmaeker, A. Ghrab, S. Nijssen, and S. Skhiri. Discovering inter-
esting patterns in large graph cubes. In 2017 IEEE International Confer-
ence on Big Data (Big Data), pages 3322-3331, 2017.

B. Denis, A. Ghrab, and S. Skhiri. A Distributed Approach for Graph-
oriented Multidimensional Analysis. In 2013 IEEE International Confer-
ence on Big Data Workshops, pages 9-16. IEEE, 2013.

L. Duan and L. Da Xu. Business intelligence for enterprise systems: A
survey. IEEE Transactions on Industrial Informatics, 8(3):679-687, 2012.

W. Fan. Graph Pattern Matching Revised for Social Network Analy-
sis. In Proceedings of the 15th International Conference on Database Theory,
pages 8-21. ACM, 2012.

D. Feinberg and N. Heudecker. IT Market Clock for Database
Management Systems. https://www.gartner.com/doc/2852717/
it-market-clock-database-management, 2014. Accessed: 2020-04-02.

N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker,
V. Marsault, S. Plantikow, M. Rydberg, P. Selmer, and A. Taylor. Cypher:
An evolving query language for property graphs. In Proceedings of the
2018 International Conference on Management of Data, pages 1433-1445,
2018.

M. Garcia-Solaco, F. Saltor, and M. Castellanos. Semantic Heterogeneity
in Multidatabase Systems, page 129-202. Prentice Hall International (UK)
Ltd., GBR, 1995.

A. Ghrab, O. Romero, S. Jouili, and S. Skhiri. Graph Bl & Analytics:
Current State and Future Challenges. In International Conference on Big
Data Analytics and Knowledge Discovery, pages 3-18. Springer, 2018.

169

https://www.gartner.com/doc/2852717/it-market-clock-database-management
https://www.gartner.com/doc/2852717/it-market-clock-database-management

References

[49] A. Ghrab, O. Romero, S. Skhiri, A. Vaisman, and E. Zimanyi. A Frame-
work for Building OLAP Cubes on Graphs. In East European Confer-
ence on Advances in Databases and Information Systems, pages 92-105.
Springer, 2015.

[50] A.Ghrab, O. Romero, S. Skhiri, A. A. Vaisman, and E. Zimanyi. GRAD:
on graph database modeling. CoRR, abs/1602.00503, 2016.

[51] A. Ghrab, O. Romero, S. Skhiri, and E. Zimanyi. TopoGraph: an End-
To-End Framework to Build and Analyze Graph Cubes. Information
Systems Frontiers, pages 1-24, 2020.

[52] A. Ghrab, S. Skhiri, S. Jouili, and E. Ziményi. An analytics-aware con-
ceptual model for evolving graphs. In Data Warehousing and Knowledge
Discovery, pages 1-12. Springer, 2013.

[63] L. Gémez, B. Kuijpers, and A. Vaisman. Performing olap over graph
data: Query language, implementation, and a case study. In Proceed-
ings of the International Workshop on Real-Time Business Intelligence and
Analytics, pages 1-8. ACM, 2017.

[54] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In Presented
as part of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12), pages 17-30, 2012.

[55] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow frame-
work. In OSDI, volume 14, pages 599-613, 2014.

[56] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data mining
and knowledge discovery, 1(1):29-53, 1997.

[57] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques, Third
Edition, volume 2. Morgan kaufmann, 2011.

[58] L. Hannachi, N. Benblidia, O. Boussaid, and F. Bentayeb. Community
cube: a semantic framework for analysing social network data. Interna-
tional Journal of Metadata, Semantics and Ontologies, 10(3):155-169, 2015.

[59] H. He and A. K. Singh. Closure-Tree: An Index Structure for Graph
Queries. In Proceedings of the 22Nd International Conference on Data Engi-
neering, ICDE 06, pages 38—, Washington, DC, USA, 2006. IEEE Com-
puter Society.

170

References

[60] H. He and A. K. Singh. Graphs-at-a-time: Query Language and Access
Methods for Graph Databases. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 405-418. ACM,
2008.

[61] J. Holsch, T. Schmidt, and M. Grossniklaus. On the performance of
analytical and pattern matching graph queries in neo4j and a relational
database. In Proceedings of the Workshops of the EDBT/ICDT 2017 Joint
Conference (EDBT/ICDT 2017), Venice, Italy, March 21-24, 2017., 2017.

[62] F. Holzschuher and R. Peinl. Performance of graph query languages:
comparison of cypher, gremlin and native access in neo4;j. In Proceedings
of the Joint EDBT/ICDT 2013 Workshops, pages 195-204, 2013.

[63] F. Holzschuher and R. Peinl. Querying a graph database-language se-
lection and performance considerations. Journal of Computer and System
Sciences, 82(1):45-68, 2016.

[64] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten, and
H. Chafi. Pgx.d: A fast distributed graph processing engine. In Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 15, pages 58:1-58:12, New York,
NY, USA, 2015. ACM.

[65] W. H. Inmon. Building the data warehouse. John wiley & sons, 2005.

[66] C. S. Jensen, T. B. Pedersen, and C. Thomsen. Multidimensional
databases and data warehousing. Synthesis Lectures on Data Manage-
ment, 2(1):1-111, 2010.

[67] C.Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining
algorithms. The Knowledge Engineering Review, 28(1):75-105, 2013.

[68] X. Jin,]J. Han, L. Cao, J. Luo, B. Ding, and C. X. Lin. Visual Cube and
On-Line Analytical Processing of Images. In Proceedings of the 19th ACM
International Conference on Information and knowledge management, pages
849-858. ACM, 2010.

[69] D. Jonker and R. Brath. Graph Analysis and Visualization: Discovering
Business Opportunity in Linked Data. Wiley, 2015.

[70] M. Junghanns, A. Petermann, K. Gémez, and E. Rahm. Gradoop: Scal-
able graph data management and analytics with hadoop. arXiv preprint
arXiv:1506.00548, 2015.

171

References

[71] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm. Manage-
ment and analysis of big graph data: Current systems and open chal-
lenges. In Handbook of Big Data Technologies, pages 457-505. Springer,
2017.

[72] E. Junqué de Fortuny, M. Stankova,]. Moeyersoms, B. Minnaert,
E. Provost, and D. Martens. Corporate residence fraud detection. In
Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1650-1659. ACM, 2014.

[73] B. Kdimpgen and A. Harth. Transforming statistical linked data for
use in olap systems. In Proceedings of the 7th international conference on
Semantic systems, pages 33—40. ACM, 2011.

[74] S. Kang, S. Lee, and J. Kim. Distributed Graph Cube Generation using
Spark Framework. The Journal of Supercomputing, pages 1-22, 2019.

[75] C. M. Keet and P. R. Fillottrani. Toward an ontology-driven unifying
metamodel for uml class diagrams, eer, and orm2. In Conceptual Mod-
eling, pages 313-326. Springer, 2013.

[76] U. Khurana and A. Deshpande. Efficient snapshot retrieval over his-
torical graph data. In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 997-1008. IEEE, 2013.

[77] C. Kiss and M. Bichler. Identification of influencers—measuring in-
fluence in customer networks. Decision Support Systems, 46(1):233-253,
2008.

[78] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth compari-
son of subgraph isomorphism algorithms in graph databases. PVLDB,
6(2):133-144, 2012.

[79] K. Lee and K. Lee. Escaping your comfort zone: A graph-based rec-
ommender system for finding novel recommendations among relevant
items. Expert Systems with Applications, 42(10):4851-4858, 2015.

[80] H.-]. Lenz and A. Shoshani. Summarizability in OLAP and Statistical
Data Bases. In Proceedings of the Ninth International Conference on Scien-
tific and Statistical Database Management, pages 132-143. IEEE Computer
Society, 1997.

[81] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, june 2014.

[82] C. Li, P. S. Yu, L. Zhao, Y. Xie, and W. Lin. InfoNetOLAPer: Integrat-
ing InfoNetWarehouse and InfoNetCube with InfoNetOLAP. PVLDB,
4(12):1422-1425, 2011.

172

http://snap.stanford.edu/data

References

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

E.-P. Lim, H. Chen, and G. Chen. Business intelligence and analyt-
ics: Research directions. ACM Transactions on Management Information
Systems (TMIS), 3(4):17, 2013.

C. X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text Cube: Computing
IR Measures for Multidimensional Text Database Analysis. In Data
Mining, 2008. ICDM’08. Eighth IEEE International Conference on, pages
905-910. IEEE, 2008.

Y. Liu and T. M. Vitolo. Graph data warehouse: Steps to integrat-
ing graph databases into the traditional conceptual structure of a data
warehouse. In Big Data (BigData Congress), 2013 IEEE International
Congress on, pages 433-434. IEEE, 2013.

S. Loudcher, W. Jakawat, E.-P. Soriano-Morales, and C. Favre. Combin-
ing OLAP and information networks for bibliographic data analysis: a
survey. Scientometrics, 103:471-487, 2015.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proc. VLDB Endow., 5(8):716-727, Apr.
2012.

H. Luhn. A business intelligence system. IBM Journal of Research and
Development, 2(4):314-319, 1958.

A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in
parallel graph processing. Parallel Processing Letters, 17(01):5-20, 2007.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph process-
ing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 135-146. ACM, 2010.

R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: a
survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Computing Surveys (CSUR), 48(2):25, 2015.

R. P. D. Nath, K. Hose, T. B. Pedersen, and O. Romero. Setl: A pro-
grammable semantic extract-transform-load framework for semantic
data warehouses. Information Systems, 2017.

V. Nebot and R. Berlanga. Building data warehouses with semantic
web data. Decision Support Systems, 52(4):853-868, 2012.

M. Newman. Networks: an introduction. Oxford University Press, 2010.

173

References

[95] M. E. Newman. The structure and function of complex networks. SIAM
review, 45(2):167-256, 2003.

[96] A. Pacaci, A. Zhou, J. Lin, and M. T. Ozsu. Do we need specialized
graph databases? benchmarking real-time social networking applica-
tions. In Proceedings of the Fifth International Workshop on Graph Data-
management Experiences & Systems, pages 1-7, 2017.

[97] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos,
S. Kossida, J. Aerts, R. Schneider, and P. G. Bagos. Using graph theory
to analyze biological networks. BioData mining, 4(1):10, 2011.

[98] A. Petermann, M. Junghanns, R. Miiller, and E. Rahm. Graph-based
Data Integration and Business Intelligence with BIIIG. Proc. VLDB En-
dow., 7(13):1577-1580, 2014.

[99] N. Pobiedina, S. Rtimmele, S. Skritek, and H. Werthner. Benchmarking
database systems for graph pattern matching. In International Conference
on Database and Expert Systems Applications, pages 226-241. Springer,
2014.

[100] J. Pokorny. Conceptual and database modelling of graph databases.
In Proceedings of the 20th International Database Engineering & Applica-
tions Symposium, IDEAS 16, page 370-377, New York, NY, USA, 2016.
Association for Computing Machinery.

[101] J. Pokorny, M. Valenta, and J. Kovaci¢. Integrity constraints in graph
databases. Procedia Computer Science, 109:975-981, 2017.

[102] Q. Qu, E Zhu, X. Yan, J. Han, S. Y. Philip, and H. Li. Efficient topolog-
ical OLAP on information networks. In Database Systems for Advanced
Applications, pages 389-403. Springer, 2011.

[103] P. O. Queiroz-Sousa and A. C. Salgado. A Review on OLAP Technolo-
gies Applied to Information Networks. ACM Trans. Knowl. Discov. Data,
14(1):8:1-8:25, Dec. 2019.

[104] E. Radicchi, S. Fortunato, and A. Vespignani. Citation networks. In
Models of science dynamics, pages 233-257. Springer, 2012.

[105] R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and]J. Banerjee.
Pgx.iso: Parallel and efficient in-memory engine for subgraph isomor-
phism. In Proceedings of Workshop on GRAph Data Management Expe-
riences and Systems, GRADES'14, pages 5:1-5:6, New York, NY, USA,
2014. ACM.

174

References

[106] C. Ren, E. Lo, B. Kao, X. Zhu, and R. Cheng. On querying histor-
ical evolving graph sequences. Proceedings of the VLDB Endowment,
4(11):726-737, 2011.

[107] S. Rizzi. Business intelligence. In L. Liu and M. T. Ozsu, editors, Ency-
clopedia of Database Systems, Second Edition. Springer, 2018.

[108] M. A. Rodriguez. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Program-
ming Languages, pages 1-10, 2015.

[109] M. A. Rodriguez and P. Neubauer. Constructions from dots and lines.
Bulletin of the American Society for Information Science and Technology,
36(6):35-41, 2010.

[110] M. A. Rodriguez and P. Neubauer. The graph traversal pattern. In Graph
data management: Techniques and applications, pages 29—46. IGI Global,
2012.

[111] O. Romero and A. Abell6. On the Need of a Reference Algebra for
OLAP. In Proceedings of the 9th International Conference on Data Ware-
housing and Knowledge Discovery, pages 99-110. Springer, 2007.

[112] M. Rudolf, M. Paradies, C. Bornhovd, and W. Lehner. The graph story
of the sap hana database. In BTW, pages 403-420, 2013.

[113] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language
Reference Manual, The. Pearson Higher Education, 2004.

[114] M. A. Russell. Mining the Social Web: Data Mining Facebook, Tuwitter,
LinkedIn, Google+, GitHub, and More. " O'Reilly Media, Inc.", 2013.

[115] P. J. Sadalage and M. Fowler. NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence. Addison-Wesley Professional,
2012.

[116] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Ozsu. The ubig-
uity of large graphs and surprising challenges of graph processing:
extended survey. The VLDB Journal, pages 1-24, 2019.

[117] S. Sakr, S. Elnikety, and Y. He. G-sparql: a hybrid engine for querying
large attributed graphs. In Proceedings of the 21st ACM international con-
ference on Information and knowledge management, pages 335-344. ACM,
2012.

[118] S. Sakr and E. Pardede. Graph Data Management: Techniques and Appli-
cations. IGI Global, 2012.

175

References

[119] C. Shi, Y. Li, J. Zhang, Y. Sun, and S. Y. Philip. A survey of hetero-
geneous information network analysis. IEEE Transactions on Knowledge
and Data Engineering, 29(1):17-37, 2017.

[120] S. Skhiri and S. Jouili. Large graph mining: Recent developments, chal-
lenges and potential solutions. In M.-A. Aufaure and E. Zimdnyi, edi-
tors, Business Intelligence, volume 138 of Lecture Notes in Business Infor-
mation Processing, pages 103—-124. Springer Berlin Heidelberg, 2013.

[121] N. Svendsen and S. Wolthusen. Multigraph dependency models for
heterogeneous infrastructures. In International Conference on Critical In-
frastructure Protection, pages 337-350. Springer, 2007.

[122] J. Tang, H. Liu, H. Gao, and A. Das Sarmas. eTrust: understanding trust
evolution in an online world. In Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 253—
261. ACM, 2012.

[123] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proceedings of the VLDB Endowment, 2(2):1626-1629,
2009.

[124] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph
summarization. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 567-580. ACM, 2008.

[125] Y. Tian, J. M. Patel, V. Nair, S. Martini, and M. Kretzler. Periscope/GQ:
a graph querying toolkit. PVLDB, 1(2):1404-1407, 2008.

[126] M. Twaty, A. Ghrab, and S. Skhiri. GraphOpt: a Framework for Au-
tomatic Parameters Tuning of Graph Processing Frameworks. In 2019
IEEE International Conference on Big Data (Big Data), pages 3744-3753.
IEEE, 2019.

[127] A. Vaisman and E. Zimanyi. Data Warehouse Systems: Design and Imple-
mentation. Springer, 2014.

[128] W. M. van der Aalst. Process cubes: Slicing, dicing, rolling up and
drilling down event data for process mining. In Asia-Pacific Conference
on Business Process Management, pages 1-22. Springer, 2013.

[129] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. Pgql: a property
graph query language. In Proceedings of the Fourth International Workshop
on Graph Data Management Experiences and Systems, page 7. ACM, 2016.

176

References

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu,
M. Snoeck, and B. Baesens. Apate: A novel approach for automated
credit card transaction fraud detection using network-based extensions.
Decision Support Systems, 75:38-48, 2015.

J. Varga, A. A. Vaisman, O. Romero, L. Etcheverry, T. B. Pedersen, and
C. Thomsen. Dimensional enrichment of statistical linked open data.
Web Semantics: Science, Services and Agents on the World Wide Web, 40:22—
51, 2016.

P. Vassiliadis and A. Simitsis. Near real time etl. In S. Kozielski and
R. Wrembel, editors, New Trends in Data Warehousing and Data Analysis,
volume 3 of Annals of Information Systems, pages 1-31. Springer US,
20009.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins.
A comparison of a graph database and a relational database: a data
provenance perspective. In Proceedings of the 48th annual Southeast re-
gional conference, page 42. ACM, 2010.

P. Wang, B. Wu, and B. Wang. TSMH Graph Cube: A Novel Framework
for Large Scale Multi-dimensional Network Analysis. In 2015 IEEE
International Conference on Data Science and Advanced Analytics (DSAA),
pages 1-10. IEEE, 2015.

Z. Wang, Q. Fan, H. Wang, K.-l. Tan, D. Agrawal, and A. El Abbadi.
Pagrol: Parallel graph OLAP over large-scale attributed graphs. In Data
Engineering (ICDE), 2014 IEEE 30th International Conference on, pages
496-507. 1IEEE, 2014.

P. T. Wood. Query Languages for Graph Databases. SIGMOD Rec.,
41(1):50-60, 2012.

X. Wu, B. Wy, and B. Wang. Pamp;D Graph Cube: Model and Paral-
lel Materialization for Multidimensional Heterogeneous Network. In
2017 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), pages 95-104. IEEE, 2017.

F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In Security and Privacy
(SP), 2014 IEEE Symposium on, pages 590-604. IEEE, 2014.

S.-R. Yan, X.-L. Zheng, Y. Wang, W. W. Song, and W.-Y. Zhang. A graph-
based comprehensive reputation model: Exploiting the social context
of opinions to enhance trust in social commerce. Information Sciences,
318:51-72, 2015.

177

[140]

[141]

[142]

[143]

[144]

References

M. Yin, B. Wu, and Z. Zeng. HMGraph OLAP: a novel framework
for multi-dimensional heterogeneous network analysis. In Proceedings
of the 15th international workshop on Data warehousing and OLAP, pages
137-144. ACM, 2012.

M. Zaharia, M. Chowdhury, M.]J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10-10, Berkeley, CA, USA, 2010. USENIX Association.

P. Zhao,]J. Han, and Y. Sun. P-rank: A comprehensive structural sim-
ilarity measure over information networks. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management, pages 553
562. ACM, 2009.

P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing
and OLAP multidimensional networks. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data, pages 853-864.
ACM, 2011.

P. Zhao, J. X. Yu, and P. S. Yu. Graph Indexing: Tree + Delta <= Graph.
In Proceedings of the 33rd International Conference on Very Large Data Bases,
pages 938-949. VLDB Endowment, 2007.

178

Appendix A

An Analytics-Aware
Conceptual Model For
Evolving Graphs

The paper has been published in the Proceedings of the 15th International Con-
ference on Data Warehousing and Knowledge Discovery. (DaWaK 2013).

The layout of the paper has been revised.

DOIL: https:/ /doi.org/10.1007 /978-3-642-40131-2_1

Springer copyright/ credit notice:

© 2013 Springer. Reprinted, with permission, from Amine Ghrab, Sabri
Skhiri, Salim Jouili, and Esteban Zimanyi, An Analytics-Aware Conceptual
Model for Evolving Graphs, Data Warehousing, and Knowledge Discovery.
DaWakK 2013.

Abstract

Graphs are ubiquitous data structures commonly used to represent highly connected
data. Many real-world applications, such as social and biological networks, are mod-
eled as graphs. To answer the surge for graph data management, many graph database
solutions were developed. These databases are commonly classified as NoSQL graph
databases, and they provide better support for graph data management than their
relational counterparts. However, each of these databases implements its own op-
erational graph data model, which differs among the products. Further, there is no
commonly agreed conceptual model for graph databases.

In this paper, we introduce a novel conceptual model for graph databases. Our
model aims to provide analysts with a set of simple, well-defined, and adaptable

179

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

conceptual components to perform rich analysis tasks. These components take into
account the evolving aspect of the graph. Our model is analytics-oriented, flexible,
and incremental, enabling analysis over evolving graph data. The proposed model
provides a typing mechanism for the underlying graph, and formally defines the
minimal set of data structures and operators needed to analyze the graph.

1 Introduction

The relational model was considered for several decades as the default choice
for data modeling and management applications. However, with the rise of
Big Data, relational databases fell short of complex application expectations.
Big Data refers to data generated at unpredictable speed, scale, and size from
heterogeneous sources, such as web logs and social networks. The distri-
bution and variety of data make ensuring ACID properties, required by the
relational model, a very challenging task. This situation has lead to the de-
velopment of new data models and tools, known as the NoSQL movement.
NoSQL models are based on trading consistency for performance according
to the CAP theorem, in contrast to relational ACID properties.

NoSQL databases can be divided into four families, namely key/value
stores, column stores, document databases, and graph databases. Of particu-
lar relevance to this paper is the analysis of graph databases. Graphs have the
benefit of revealing valuable insights from both the network structure and the
data embedded within the structure [10]. Complex real-world problems, such
as intelligent transportation as well as social and biological network analysis,
could be abstracted and solved using graphs structures and algorithms. In
this paper, we introduce a new graph modeling approach for the effective
analysis of evolving graphs. By evolving we mean the variation of the values
of an attribute across a discrete domain. Evolution could be over time, quan-
tity, region, etc. In the corresponding non-evolving graph, the information
would be discarded when the attributes or the topology changes.

The model introduces a typing system that entails explicit labeling of the
graph elements. This might introduce redundancy in the graph since part of
the facts could be discovered while traversing the data. However, we tolerate
this redundancy in favor of richer and smoother analysis. Trading redun-
dancy for the sake of better performance is a frequent choice when it comes
to designing analytics-oriented data stores such as data warehouses. Within
the proposed model, we define a set of operators to manipulate analytics-
oriented evolving graphs. The goal is to help analysts navigate and extract
relevant portions of the graph. Here, we provide a minimal set of operators.
Nevertheless, richer analysis scenarios could be achieved by combining these
operators.

We consider as a running example of this paper the Epinion product rat-

180

1. Introduction

Rating:5
Helpfulness:1
Timestamp:10-11-20

id:1332
ame:Regular Use

id: 158
Type: LED
Release: 09-02
St.

Rating:3
Helpfulness:
Timestamp:1-04-2012
Tr

Fig. A.1: Product rating network

Rating:3
Helpfulness:3
Timestamp:10-01-2013

Rating:5 Label: in
Helpfulness:1
Timestamp:10-11-201

Label:BELONGS

Label:Group
id:1332
ame:Regular Use)

Store:NS Store:EU
: Currency: €

Label: Rates

Label:User
id: 231
sex:male

Rating:3
Helpfulness:
Timestamp:01-04-2012

Label:Group
id:258
ame:Moderatg

Label:User
id: 22
sex:female

Label:in

Fig. A.2: Evolving product rating network

ing network [122], shown in Figure A.1. The network is composed of a set
of users grouped by group and products grouped by category. Each user has
a profile, a list of product ratings, and a linked by trust relationships with

other users.

This network is sufficient to answer queries about the average rating of a
product, or detection of communities of users. However, information about
the evolution of the price by region or the history of the rating of a given
product by a user is impossible to obtain. This data is discarded and not ver-
sioned for further reuse. Hence, we enrich the original model with a typing
system supporting network evolution. The evolving network keeps track of
information such as the evolution of the price by region and the history of
a product’s rating by a user. Figure A.2 depicts a part of the evolving net-
work example. The evolving network could be used to answer rich queries

181

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

like (1) correlations between sales decrease and product rating evolution, (2)
detection of popular and trendy products, and (3) discovery of active and
passive users. The previous queries could be then reused in richer scenarios
such as (4) recommendation of new products, and (5) targeted advertising for
influential people in the network.

The contributions of our work are summarized as follows:

* We define a conceptual model for evolving graphs. The model is de-
signed to handle analytics over large graphs using a novel typing mech-
anism.

* We propose a comprehensive set of querying operators to perform in-
teractive graph querying through subgraph extraction functionalities.

* We describe a detailed use case of the model by reusing it as the ground
for multidimensional analysis of evolving graphs.

The remainder of the paper is organized as follows. In Section 2, we de-
velop a conceptual model to represent analytics-oriented evolving graphs.
Section 3 defines the fundamental, general-purpose operators for querying
the model. Section 4 demonstrates the usefulness of the proposed model
for complex analytics by using it as the basis for multidimensional analysis.
Section 5 discusses related work and compares it to our proposed model.
Finally, Section 6 sketches future works and concludes the paper.

2 Evolving Graph Model

In this section, we present the evolving graph model serving as the basis for
the analysis framework. The input to our framework is a directed, attributed,
heterogeneous multi-graph. Attributes are a map of key/value pairs attached
to nodes and edges of the graph. Nodes (resp., edges) may have different
attributes, and multiple edges may link the same pair of nodes.

We first define the typing mechanism that characterizes nodes and edges.
We propose three types of nodes, defined next.

Definition A.1. An entity node is defined by a tuple (label, K,, O,) where
(1) label denotes the type of the entity node, such as user or product, (2) K,
is the map of key attributes that univocally identify the entity node, and (3)
O, is the map of optional attributes. The attributes of an entity node are
immutable. The set of entity nodes is denoted as V..

Definition A.2. An evolving node keeps track of the discrete evolution of
the attributes of entity nodes. Attributes of entity nodes that are subject
to change are typed as evolving nodes. An evolving node contains only

182

2. Evolving Graph Model

a label denoting its name and reflecting the original attribute it represents.
Changes are treated as punctual events and reflect the discrete evolution of
the attributes. The set of evolving nodes is denoted as V.

Definition A.3. A value node has a unique attribute representing the value
of its corresponding evolving node in a given context. The set of value nodes
is denoted as V.

We adopt the UML notation for relationships to represent the edges of the
graph. With regards to the nodes they link, we classify the edges as follows.
Edges linking entity nodes are of two types:

Definition A.4. An entity edge (denoted by) describes the associ-
ation between two entity nodes. The set of entity edges is denoted as E.;,
(Een € Ven X Ven).

Definition A.5. A hierarchical edge (denoted by) depicts an aggre-
gation (i.e., part-of) relationship between two entity nodes. The set of hierar-
chical edges is denoted as Ej, (Ej, C Vey X Vep).

Both of the above edge types have attributes and labels. If an edge between
two entity nodes evolves, it is replicated, and the new one is filled with
the new value. We denote an entity (resp. hierarchical) edge as a tuple
(label, Atts), where label is the type of the relationship, and Atts is the set of
its attributes.

Definition A.6. An evolving edge (denoted by) represents a com-
position relationship, i.e. a life-cycle dependency between nodes. It keeps
track of the changing attributes extracted as new nodes. The set of evolving
edges is denoted as E.y (Eep C Ven X Vep).

Definition A.7. A versioning edge (denoted by) denotes a directed
association between an evolving node and a value node. Evolving edges are
attributed, where each attribute is a key/value pair describing the context for
the value node. The set of versioning edges is denoted as E, (E; C Vep X V3).

We introduce now two new data entities oriented for analytics queries.

Definition A.8. An analytics hypernode is an induced subgraph!-? grouping
an entity node, all its evolving and value nodes, and all edges between them.
An analytics hypernode whose entity node is v is denoted as I';, = (V, E),
where V C (Vo U Vep UVy) and E C (Eep U Ey). Each node (resp., edge) is
part of only one hypernode: Yu € V (resp., e € E), 3T, | u € Ty (resp.,
e €Iy).

1Gy, = (V,Ey)isa subgraph of Gy = (V4,Eq) if V, €V and E; C E;
2G, is an induced subgraph of G if all edges between V, present in E; are in Ep

183

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

Definition A.9. A class is a label-based grouping. A class denotes a set of
analytics hypernodes whose underlying entity nodes share the same label.

With the input graph clearly defined, we introduce the graph model as fol-
lows.

Definition A.10. An analytics-oriented evolving graph is a single graph
G=W,E& u B, A \), where:

® V= {Vey, Voo, V»} is the set of nodes.

E ={Een, Ep, Eev, Ev} is the set of edges.

& : (Voy U V) — Ly is the function that returns the label for each
entity or evolving node, where Ly is the set of labels of entity and
evolving nodes.

® B:(Een UEy) — LE is the function that returns the label for each entity
or hierarchical edge. L is the set of labels of entity and hierarchical
edges.

® Akey i (Ven U V) — Dom(value) is the function that returns the value
of an attribute given its key. A is applied only to entity and value nodes.
Dom(value) denotes the domain of value.

® Mkey : (Een U Ey) — Dom(value) is the function that returns the value
of an attribute given its key. A is applied only to entity and hierarchical
edges. Dom(value) denotes the domain of value.

Concerning the Epinion network shown in Figure A.2, Product and User
are entity nodes, while Price is an evolving node attached to the products.
Users are linked to each other by entity edges labeled Trusts and by hier-
archical edges to their Group. The price keeps track of the evolution of the
product price by region. Multiple ratings of the same product by the same
user are recorded. The metamodel of an analytics-oriented evolving graph is
shown in Figure A.3.

3 Querying the Graph Model

Selection and projection are two fundamental operators in relational algebra,
used to extract a subset of data according to predefined conditions on the
data tuples. As their names imply, selection selects the set of tuples of a rela-
tion according to a condition on the values of their elements. Projection alters
the structure of the relation by removing a subset of the elements of the tu-
ples and could be used to add elements by combining existing elements and

184

3. Querying the Graph Model

en

Entity
(association)

<label,Atts>

Evolving
N iti Entity Node :
Evolving Node (composition) Yy Caption
Vv
ev en .
. 1 Entity Edge
<label> ev <label,Key Atts, Opt Atts> Yy 9

——< Hierarchical Edge
——@ Evolving Edge
——>» Versioning Edge

@ Entity Node

g Evolving Node

® Value Node

0..
Versipning

Hierarchical
(aggregation)

<label Atts>

Value Node
vV
y=Val(x,y)

Fig. A.3: Analytics-oriented evolving graph metamodel

constant values. In this paper, we redefine these two operators for evolving
graph analysis. Then, we go a step further by introducing the traversal op-
eration that is essential for graph analysis and provides finer control of data
extraction. However, we do not cover binary operations such as union and
intersection of subgraphs, which we consider out of the scope of the model
definition.

All the proposed operators perform subgraph extraction operations.
Given an input graph G = (V, £, a1, B1, A1, A1), we denote the produced sub-
graph as G’ = (V', &', a3, B2, Az, A2) where:

e V' CV,and £ C &

ao(u) = aq(u),Vu € V’

Ba(e) = B1(e), Ve € &'

Ao(u) = A(u), Yu € V), UV}
Aa(u) = Ay (u), Ve € El, UE]
« T, C g, iffveV,

These conditions are valid for the three following operators. For the remain-
der of the paper, asterisk (*) denotes an optional parameter that could be
supplied many times and |S| denotes the cardinality of a set S. We start by
examining the selection.

Definition A.11. A selection U (INLabel, AttVals]*; [ELabel, AttVals]*)(9) is a
partial® subgraph extraction operation. It is applied on analytics hypernodes

5Gyisa partial subgraph of G; if a subset of the edges between V, from E; is in E,

185

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

and the edges linking their entity nodes. It takes as input a list of the labels
(NLabel) of the entity nodes V,;, underlying the targeted analytics hyper-
nodes, (resp., a list of labels (ELabel) of their edges E., and Ej) and the
corresponding values of their targeted attributes AttVals. A selection returns
a partial subgraph G’ of G where :

* wp(u) € NLabel,Vu € V),

Ba(e) € ELabel, Ve € (E, UE})

u € V), iff a1(u) € NLabel and 3(k;, v;) € AttVals|A1km/(u) =V, Vkey =
ki ‘

* ¢ € E,, UE) iff B1(e) € ELabel and 3(k;,v;) € AttVals | Alkgy(e) = v,
Vkey = k;

weV,iff I, CG' | u €T,

In the example of Figure A.2, U, (User; Trusts)(Yepinion) detects the com-
munities of users trusting each other. This is accomplished by selecting all
analytics hypernodes whose entity nodes are labeled as User and linked by
the entity edges labeled Trusts. The operation presented above is useful for
models presenting intra-class relationships, i.e. relationships between analyt-
ics hypernodes with the same label. A further step is to perform inter-class
selections. In this case, selection applies on an heterogeneous set of entity
nodes and edges. U (Product; User; Rates)(Tepinion) is an inter-class selection.
It selects the network comprised of Rates relationships, Product and User
analytics hypernodes.

Definition A.12. A projection 7T(EyLabel, {ValSet}){9, NLabel} is an in-
duced subgraph extraction operation. It is applied on a single class of an-
alytics hypernodes, selected through NLabel. Other analytics hypernodes
remain untouched by this operation. Evolving nodes whose label is not in
EvLabel are removed from the targeted analytics hypernodes. It further nar-
rows the range of values in the resulting subgraph by specifying for each
versioning edge a key/value map of the requested values, {ValSet}. A pro-
jection returns an induced subgraph G’ where:

« & =EN xV)
e u € V], iff a1(v) € NLabel
e u € V), iff :xq(u) € EvLabel and AT, C G’ |u €Ty

e yucV)iff: I, C G' |u€Tlyand I e = (u,u,),e € E, | u, € I'y and
Ik, v;) € ValSetMlkey(e) =v;, Vkey = k;.

186

3. Querying the Graph Model

For the network of Figure A.2, 7T (Price, (Store {EU,ME}))(Gepinion, Product)
acts only on Product hypernodes. It extracts the subgraph containing as
evolving nodes only the Price. And for the Price Value nodes, only those
representing EU and ME stores are kept, i.e, the US store is dropped from
the resulting graph in all Product analytics hypernodes.

Definition A.13. A traversal T(Start,Pattern) is a subgraph extraction opera-
tion. A traversal starts from an entity node and the navigation on the graph
is guided according to given rules. Traversal only navigates between entity
nodes. However, the navigation rules could be applied at any node or edge
to decide whether to include the current entity node, i.e., rules are applied
to entity nodes attributes as well as any of their analytics hypernode internal
edges and nodes. We refer to these navigation rules as patterns, and hence
the subgraph extraction becomes a pattern matching operation. A pattern is
a finite sequence of conditions dictating the navigation steps. At each node
(u € Veu) and edge (e € E.; U Ej), the next step is defined by an expression
applied on the labels or the attributes of the current element. For a step i, a
pattern dictates the next elements to visit, and could be a combination of the
following statements:

u € Venla(u) = label;, dictates the next nodes based on the supplied
label

e € (Een U Ep)|B(e) = label;, dictates the next edges based on the label

u e Vgn|Ak€y(u) = val;, dictates the next nodes based on the supplied
attribute value

e € (E;n U Eh)|)\key(e) = val;, dictates the next edges based on the sup-
plied attribute value

T is applied as follows: T(Start, Pattern)(9) and returns a partial subgraph
of the input graph. Steps are separated by dashes (—).

A typical traversal scenario is the following query, applied on the exam-
ple shown in Figure A.2: for a user A, return all products she didn’t rate, and
whose trusted contacts have already rated above four. Such a query is useful in a
recommendation engine. This operation is expressed as follows:
T(USETA,Pattern)(gepinion)/ where Pattern = [e € E,y | Ble) = Trust] — [*] —
[e € Een | B(e) = Rates & ARating(e) > 4] —[u € Veu | (u, Usery) ¢ E].

In relational databases, the join operation introduces a heavy workload,
especially for highly connected tables [133]. In graphs, data is embedded
within nodes connected through edges. The cost of running traversals within
graphs is much lower than the equivalent joins in relational tables [115]. This

187

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

makes graphs more suitable for highly connected data compared to rela-
tional tables. Moreover, as explained in Section 5, many of the current graph
databases provide partial or full support of ACID properties.

The data structure and operations defined above yield the ground for
defining an algebra for evolving graph data. However, this should be further
investigated and enriched for the sake of completeness.

4 Multidimensional Graph Analysis

Data warehousing provides a particularly interesting use case for the imple-
mentation of our model. The subject-oriented and integrated view of data,
provided by the data warehouse, makes it a suitable backbone for common
analysis techniques such as reporting, complex querying, and data mining
algorithms. We assume that the input graph is designed according to the
metamodel defined above. The identification, versioning, and insertion of the
incoming nodes and edges in the studied graph are done through the ETL
phase. The evolving aspect of the graph brings new challenges to the design
of the ETL process. Such issues include, but are not limited to, the definition
of new entity nodes and labels, the detection of new evolving attributes, and
the attachment of new values to evolving attributes. Due to space limitations,
we have chosen to limit the application of our model to OLAP analysis. In
this section, we briefly describe multidimensional concepts using the graph
model proposed in Section 2.

We limit the study to the structures and a subset of the operators de-
fined in the reference algebra described in [111]. However, further research is
needed to device new operators uniquely useful in evolving graphs. OLAP
analysis enables us to discover hidden facts and relationships between users
and products, such as user satisfaction, the evolution of trendy categories,
and influential groups.

Figure A 4 illustrates the proposed multidimensional modeling stack. The
physical level switches the focus from elementary nodes and edges to class
and inter-class relationships. The logical level encapsulates classes into di-
mensions and aggregates their relationships. The logical level is similar to
ROLAP star schema in that it organizes the studied domain into dimensions
and prepares the cube construction. The conceptual level abstracts the graph
data using cubes and proposes user-friendly operations. The physical level
has been described in detail in Section 2, and serves as the ground for vari-
ous analysis techniques. We focus now on the logical and conceptual level,
relevant to the multidimensional analysis.

188

4. Multidimensional Graph Analysis

CONCEPTUAL

ITEM

Item
A
Item j
Item 2 -
/,A'\'I’g Rat-i;ié ------------ Item 1 -
- > Customer

'
t
Cust1

'
+ +
Cust2 Custi

ustomer

Dimension: Item I

LOGICAL [/

|/

PHYSICAL

° Category, *

BELQNGS

*, Product *

Rates
Helpfulness

Timestamp

Customer Rating Item

User Rating Product
Belonging to Category

Fig. A.4: Multidimensional analysis of an evolving network

189

¢ .

. [oo

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

4.1 Data Structures

Dimensions Within our model, a dimension is a tree of classes. A dimen-
sion D is defined by a tuple (name, Tree), where name denotes the name of
the dimension, and Tree is the tree of classes. The root of the tree is the high-
est class in the dimension hierarchy. A class could be involved in only one
dimension. Each level is identified by the class label.

In our product rating network example, the Item dimension Dy, is de-
noted as (Item, ILevels), where ILevels = [Product — Category] and — de-
notes the hierarchical relationship between classes. The shift from class to
dimension is depicted in Figure A.4, where the classes Product and Category
are grouped in the same dimension, Item.

Measures We distinguish two types of measures, (1) informational mea-
sures, calculated from the internal attributes of the edges and nodes such
as the average rating of a product, and (2) structural measures, the result
of algorithms performed on the structural properties of the graph, such as
centrality metrics. For structural measures, a measure could be a subgraph
such as the shortest path, or a numerical value such as the length of the path.
Using the evolving nature of the graph, we can retrieve further insights such
as the evolution of a product rating, or the evolution of the shortest path be-
tween users and products. Measures are the metrics used to study a subject.
A set of measures showing the data at the same granularity is called a fact.
Informational measures are similar to relational measures. Here we focus on
the structural measures, specific for graphs.

Cube A cube is a set of cells containing measures and placed in the mul-
tidimensional space with regard to a base. A base is the minimal set of
dimensions levels that univocally identify a cell within a multidimensional
space. A cube C is defined by a tuple (D, M), where D = {D;,D,...,Dy}
is the set of dimensions, and M = {Mj, My, ..., M, } is the set of measures.

Figure A.4 shows at the left a cube of informational measures (average
rating of items by customers) and at the right a cube of structural measures
(the shortest path between customers and items).

4.2 Operations

The following representative, but non-exhaustive, set of operations provides
a high-level abstraction and is applied at the conceptual level to study OLAP
cubes.

Slice Removes a dimension from a cube. Slice[D,Vulue](C) operates on the
cube C, and returns the subset of cells for which the value of dimension

190

5. Related Work

D is set to Value. In the cube of shortest path evolution of Figure A.4,
Sliceqitem,ia=10)(C) limits the set of studied items to one item whose id=10.
This cube is computed after extracting the subgraph of the specific item
from the graph of all items, through the selection operator of Section 3,

U([Product, (id,10)]; User; Rates)(gepinion)

Dice Selects a subset of measures from the cube using a set of conditions
on multiple dimensions. This operation is similar to slice but operates on a
range of values of a dimension, and on multiple dimensions at the same time.
Dice[usem‘d=10”30; Item,id=1..15](C), returns a subcube for which users and items
identifiers are limited to the specified ranges.

Roll-Up Aggregates classes sharing a common hierarchy using the hierar-
chical edges. This produces a summary graph with new nodes and edges
that are not necessarily present in the original graph. Aggregations could be
asynchronous. We could for example study relationships between Category
and User rather than Category and Group. The roll-up operators perform
structural changes to the graph. If the attributes of the elements involved in
the aggregation are additive, an overlay is performed and the values of the
attributes are simply incremented. Otherwise, graph summarization tech-
niques such as those discussed on [124, 143, 28] could be used to implement
the roll-up operation.

5 Related Work

Graph analytics is gaining a lot of momentum in the data management com-
munity in recent years. A survey of graph database models according to their
data model, data manipulation operators, and integrity constraints is given
in [10]. Current graph databases implement different general-purpose data
models, without a commonly agreed conceptual modeling approach. Neo4j*
is a centralized graph database implementing the property graph® model and
guaranteeing ACID constraints. Titan® is a distributed graph database im-
plementing property graphs and supporting ACID and partial consistency.
Graph querying is made either using traversal-oriented languages such as
Gremlin’, SQL-like languages such as Cypher, or through the database core
APL Our model could be implemented using any graph database that sup-
ports the input graph described in Section 2. RDF is a widespread data
model in the Web community and could be an implementation candidate for

“http://neo4j.org/
Shttps://github.com/tinkerpop/blueprints/wikiproperty-graph-model
®http://thinkaurelius.github.com/titan/
"https://github.com/tinkerpop/gremlin/wiki

191

http://neo4j.org/
https://github.com/tinkerpop/blueprints/wikiproperty-graph-model
http://thinkaurelius.github.com/titan/
https://github.com/tinkerpop/gremlin/wiki

Appendix A. An Analytics-Aware Conceptual Model For Evolving Graphs

our conceptual model. Pregel [90], and its open source implementation Gi-
raph®, are BSP graph processing frameworks designed to execute efficiently
graph algorithms. Ren et al. [106] proposed an approach to compute graph-
specific measures such as the shortest path and centrality within a graph
with gradually changing edge sets. In [76], the authors present a distributed
graph database system for storing and retrieving the state of the graph at
specific time points. Both of these two papers are based on the redundancy
offered by historical graphs trace. The analysis tasks are limited to graph-
specific measures and indices with no querying or multidimensional view
of data. Moreover, we consider the historical variation as a specific case of
graph evolution scenarios. Related research on versioning was done by the
database community. In [5], the authors suggested a conceptual model for
evolving object-oriented databases by studying the evolution of objects” val-
ues, schema, and relationships between the objects. Although some concepts
are similar, modeling the versioning depends on the data structures specific
for each data model. Multidimensional analysis of graphs data has been
first proposed in [28]. The authors introduce informational and topologi-
cal dimensions. Informational aggregations consist of edge-centric snapshot
overlaying and topological aggregations consist of merging nodes and edges
by navigating through the nodes” hierarchy. However, the analysis is limited
to homogeneous graphs. GraphCube [143] is applied in a single large cen-
tralized weighted graph and does not address different edges attributes. Yin
et al. [140] introduced a data warehousing model for heterogeneous graphs.
They enriched the informational and topological dimensions with the En-
tity dimension and the Rotate and Stretch operations along with the notion
of metapath to extract subgraphs based on edges traversals. However, HM-
Graph did not discuss the semantics of OLAP operations on the proposed
graph data model. Distributed processing frameworks such as Hive [123]
propose data warehousing on top of a large volume of data. However, they
are considering only the relational model.

6 Conclusions and Future Work

In this paper, we designed a conceptual model for evolving graphs. A
plethora of graph database tools are currently developed with multiple man-
agement features. However, they do not address the management of evolving
networks. Moreover, no common conceptual model for efficient analysis of
large evolving networks is agreed upon. We have proposed our contribution
to evolving graph analysis by introducing a well defined conceptual model.
We illustrated the model with an application on the multidimensional analy-
sis. However, large network analysis requires more work to build a complete

8http://giraph.apache.org/

192

http://giraph.apache.org/

6. Conclusions and Future Work

stack of analysis frameworks. As future work, we plan to proceed in ware-
housing the evolving graphs. Further fundamental operations such as graph
aggregations should be investigated for the evolving graphs. A framework
for graph data warehousing should integrate an ETL module, which takes
care of matching and merging tasks and provides a graph compliant to the
proposed model. An exhaustive study of new OLAP operators in evolving
graphs is needed. Current graph querying languages such as Cypher should
be extended to support multidimensional queries in an MDX-like fashion.
Moreover, distributed processing frameworks should be integrated into large
graphs processing.

Acknowledgment

This work has been partially funded by the Wallonia Region in Belgium
(Grant FIRST-ENTERPRISES N° 6850).

193

	Front page
	Curriculum Vitae
	Abstract
	Acknowledgments
	Contents
	Thesis Details
	1 Introduction
	1 Motivation
	2 Background
	2.1 BI and Data Warehousing
	2.2 Graph Modeling and Management
	2.3 Graph Analysis and Processing
	2.4 Applications of Graphs

	3 Objectives and Contributions
	4 Thesis Overview
	4.1 Graph Database Modeling for Analytics
	4.2 Multidimensional Modeling of Graphs
	4.3 End-to-End Computation and Analysis of Graph-specific Cubes
	4.4 Architecture of Graph Data Warehouse

	5 Summary

	2 Related Work
	1 Graph Database Management
	2 Graph Warehousing

	3 GRAD: A Database Model for Advanced Graph Analytics
	1 Introduction
	2 Property Graphs
	3 GRAD Structures
	4 Integrity Constraints
	4.1 Graph Entity Integrity
	4.2 Semantic Constraints

	5 Graph Algebra
	5.1 Selection
	5.2 Cartesian Product
	5.3 Composition
	5.4 Set operators: Union and Difference

	6 Conclusion

	4 A Framework for Building OLAP Cubes on Graphs
	1 Introduction
	2 Running Example
	3 Multidimensional Concepts on Graphs
	4 Building OLAP Cubes on Property Graphs
	5 Building OLAP Cubes on GRAD
	5.1 OLAP Cubes on GRAD
	5.2 Dimension Hierarchies on GRAD

	6 Framework Architecture and Implementation
	7 Conclusion

	5 TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes
	1 Introduction
	2 Graph Cubes on Property Graphs
	2.1 Property Graphs
	2.2 Property Graph Cubes

	3 Topological Graph Cubes
	3.1 Topological Cube Model
	3.2 Topological Graph Cuboid Processing
	3.3 Deriving OLAP Cubes from Graph Cubes

	4 Graph-structured Cubes
	4.1 Graphs-structured Cube Model
	4.2 Graph-structured Cuboid Processing

	5 OLAP Analysis of Graph Cubes
	6 Implementation and Experiments
	6.1 Framework Architecture and Implementation
	6.2 Experiments

	7 Conclusion and Open Challenges

	6 Graph BI & Analytics: Current State and Future Challenges
	1 Introduction
	2 Graph Data Modeling
	2.1 Graph Models
	2.2 Graph Management

	3 Graph Analytics
	3.1 OLAP on Graphs
	3.2 Graph Mining
	3.3 Graph Processing

	4 Future Research Directions
	5 Conclusion

	7 Conclusion and Future Work
	1 Conclusions
	2 Results of the Collaboration with EURANOVA
	3 Future Research Directions

	Bibliography
	References

	A An Analytics-Aware Conceptual Model For Evolving Graphs
	1 Introduction
	2 Evolving Graph Model
	3 Querying the Graph Model
	4 Multidimensional Graph Analysis
	4.1 Data Structures
	4.2 Operations

	5 Related Work
	6 Conclusions and Future Work

