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Abstract 

The environmental issues associated with the use of conventional fuels 

necessitates the utilisation of renewable energy sources, as well as the 

implementation of energy efficient designs, in order to decrease electricity 

consumption. Photovoltaic (PV) technology can be employed for both 

approaches by converting not only natural but, also, artificial light into electricity. 

Among the different emerging PVs, perovskites achieve the highest power 

conversion efficiency, providing a widely tuneable bandgap with minimum open 

circuit losses. Moreover, their fabrication uses readily available materials, and 

does not necessarily require either the use of high temperature processes or 

vacuum deposition techniques. In this thesis, we enhance light harvesting in 

perovskite solar cells, and approach the energy efficiency concept through their 

optimised fabrication and integration in light selective structures. This is 

accomplished by the implementation of optical and material strategies applied to 

specific perovskite solar cell designs. The results prove that such strategies 

provide enhanced light absorption and optimal PV performance in low 

temperature devices, and enable the recycling of light into electricity for 

alternative photonic applications. The approaches presented could be utilised in 

future procedures to decrease the amount of Pb employed in perovskite solar 

cells, and to reduce the energy consumption during fabrication and the operation 

of other optoelectronic devices. 

The thesis is organised into four chapters. Chapter 1 serves as an 

introduction, where the current energy situation and PV technology are analysed, 

together with an insight into light harvesting and energy efficiency in perovskite 



 

 

 

solar cells. In Chapter 2, we demonstrate the employment of a periodic structure 

to propagate ergodic light in order to increase light absorption in perovskite solar 

cells, as would happen by employing randomly textured surfaces. This structure 

serves as a tool to decrease the Pb content used in perovskite solar cells, since 

30% less material can be used to obtain a solar cell with equal performance. Then, 

in Chapter 3, the same periodic configuration with a thin film structure deposited 

on its surface is applied as a waveguide, which is also able to transmit polarised 

light. Moreover, two perovskite solar cells integrated on the sides recycle the 

non-transmitted light into electricity, increasing the energy efficiency of the 

optical process, with further application in liquid crystal displays (LCDs). 

Finally, in Chapter 4, we demonstrate the suitable application of a nanoparticle 

bilayer made of one layer of SnO2 and another of TiO2 as n-type materials in 

perovskite solar cells. These types of devices, based on low temperature 

processes, are proven to perform better than those containing one type of 

nanoparticles, especially in semi-transparent devices. In such devices we 

achieved an enhancement in performance of up to 30% for solar cells based on 

extremely thin active layers. 
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Resumen 

Los problemas medioambientales asociados al uso de combustibles 

convencionales requieren del uso de fuentes de energía renovables, así como de 

la implementación de diseños eficientemente energéticos para reducir el consumo 

de energía. La tecnología fotovoltaica puede emplearse para cubrir ambas 

estrategias convirtiendo no sólo la luz natural, sino también la artificial, en 

electricidad. De entre las diferentes tecnologías fotovoltaicas emergentes, las 

perovskitas alcanzan la más alta eficiencia en conversión de potencia, al mismo 

tiempo que proporcionan una banda de energía prohibida ampliamente ajustable 

con pérdidas mínimas de tensión de circuito abierto. Además, su fabricación usa 

materiales abundantemente disponibles, y no requiere necesariamente de 

procesos a alta temperatura ni de técnicas de deposición en vacío. En esta tesis, 

mejoramos la colección de luz en celdas de perovskitas, a la vez que abordamos 

el concepto de eficiencia energética a través de una fabricación optimizada y su 

integración en estructuras selectivas de luz. Esto es conseguido gracias a la 

implementación de estrategias ópticas y materiales aplicadas a diseños 

específicos de celdas solares de perovskita. Los resultados demuestran que tales 

estrategias proporcionan una colección de luz y un rendimiento fotovoltaico 

mayor aplicable a dispositivos fabricados a baja temperatura, y permiten el 

reciclaje de luz en electricidad para aplicaciones fotónicas alternativas. Las 

técnicas presentadas podrían ser utilizadas en procedimientos futuros para 

disminuir la cantidad de Pb empleado en celdas solares de perovskita, y para 

reducir el consumo de energía durante su fabricación y el funcionamiento de 

otros dispositivos optoelectrónicos. 



 

 

 

La tesis está organizada en cuatro capítulos. El Capítulo 1 sirve como una 

introducción, donde la actual situación energética y la tecnología fotovoltaica son 

analizadas junto a una descripción de la recolección de luz y la eficiencia 

energética en celdas solares de perovskita. En el Capítulo 2, demostramos el uso 

de una estructura periódica para propagar luz ergódicamente y así aumentar la 

absorción de luz en las celdas solares de perovskita, de manera equivalente a lo 

que se obtendría usando superficies aleatoriamente texturizadas. Esta estructura 

sirve como herramienta para reducir el contenido de Pb empleado en celdas 

solares de perovskita, ya que se puede utilizar 30% menos de material para 

obtener una celda solar con un rendimiento equivalente. En el Capítulo 3, la 

misma configuración periódica con una estructura de capa fina depositada en su 

superficie es empleada como guía de luz, la cual es, además, capaz de transmitir 

luz polarizada. Además, dos celdas de perovskita integradas en sus laterales 

reciclan la luz no transmitida en electricidad, incrementando la eficiencia 

energética del proceso óptico, lo cual podría tener futura aplicación en pantallas 

de cristal líquido. Finalmente, en el Capítulo 4, demostramos la aplicación de una 

bicapa de nanopartículas hecha de una capa de SnO2 y otra de TiO2 como 

materiales de tipo n en celdas solares perovskita. Este tipo de dispositivos, 

basados en procesos a baja temperatura, funcionan mejor que los que integran un 

único tipo de nanopartículas, especialmente en dispositivos semitransparentes. 

En tales dispositivos conseguimos un funcionamiento hasta 30% mejor para 

celdas solares basadas en capas activas extremadamente finas.
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HTL Hole transport layer 

ITO Indium tin oxide 

Jsc Short circuit current density 

J-V Current density-voltage 

l Thickness of the material 



 

 

 

λB Wavelength in the blue spectrum 

λG Wavelength in the green spectrum 

λR Wavelength in the red spectrum 

LCD Liquid crystal display 

MABr Methylammonium bromide 

n Refractive index 

NIR Near infrared 

PCE Power conversion efficiency 

PDMS Polydimethylsiloxane 

PTAA  poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] 

PV Photovoltaic 

RGB Red, green and blue 

SEM Scanning electron microscopy 

Spiro-OMeTAD 2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-

spirobifluorene 

Tp p-polarised light transmittance 

Tp/Ts polarisation ratio 

Ts s-polarised light transmittance 

UV Ultra-violet 

Voc Open circuit voltage 

XRD X-Ray diffraction 
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Introduction 

1.1 Situation, concerns and improvements related to the 

current energy demand 

1.1.1 Current situation and issues 

The current global demand for energy is growing at a pace that requires 

appropriate approaches and policies in order to reduce its impact on the 

environment and our lives. Primary energy consumption has increased 45% in 

the last 20 years and there is no indication that this trend is going to decrease 

significantly over the coming decades.1,2 The principal issue regarding such high 

levels of consumption is related to the effect on the environment and global 

climate change, mainly due to the greenhouse gasses emitted. Most of these 

emissions are linked to the energy source and its transformation into usable 

energy. For this reason, energy supplies must be efficient, secure and 

technologically viable, while at the same time contributing to the reduction of 

emissions and minimising the impact on the environment. In this thesis, the core 

of the research is based on an emerging PV technology known as perovskite PVs, 

in which much effort is being invested to fulfil all these requirements, as we will 

see later in this chapter. 
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Nevertheless, the solution to the environmental problem cannot only be 

approached by choosing renewable sources over conventional fuels. Current 

energy consumption trends have led to an unsustainable world model, whose 

effects may entail a threat to the planet and lead to future damage for which it 

may never be possible to compensate. Even if the level of energy consumption is 

somehow linked to the human development index,3 this argument must not be 

used as evidence of being on the correct path regarding our consumption 

practices. The correlation of both concepts is controversial and, even if real, must 

not be adopted as a cause and effect relationship in simple terms.4–6 Therefore, 

as technology advances and the world relies on it more and more,  which implies 

an increased use of energy, we must guide such technological development 

towards reducing the negative side effects of larger energy consumption. 

1.1.2 Energy efficiency in engineering and technology 

In order to reduce the impact of energy consumption, it is important to rely 

on environmentally friendly sources but, at the same time, to make use of the 

energy we consume in a responsible manner. In order to do this, we must think 

of energy as a limited and valuable resource and make an effort to reduce the 

quantity we consume in our daily lives. Certainly, we are responsible for the 

amount of energy we use and inappropriately waste, but it is also important to 

have access to optimised designs in which the energy is correctly managed. For 

instance, energy efficient buildings have been established as a milestone for 

living in sustainable developed cities.7 The energy efficiency of a building is 

rated depending on its ability to save the most energy required by its residents 

going about their daily lives within the building. 

In this thesis, we differentiate between energy efficiency (understood to be 

the ability of a system to efficiently exploit the energy invested in such a system) 
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and the efficiency strictly related to the energy transformation or conversion 

processes. For instance, in order to create indoor illumination in an energy-

efficient manner, one could consider complementing the artificial light source 

with natural light provided from daylight. The efficiency of the light source itself 

(luminous power output versus electrical power input) would be seen as a 

particular parameter, considered to be independent of the whole energy efficiency 

concept. Both concepts are important in order to reduce the side effects of energy 

consumption and, throughout this work, we will demonstrate some approaches 

for using perovskite PVs as a technology for optimised PV energy production 

and innovative energy efficient designs. In particular, we will cover energy 

efficiency related to the fabrication process of perovskite solar devices and to 

their employment of light management in polarisation selective designs with a 

potential application in display technology. 

The concept of energy efficiency not only covers the operation of a system 

or a technology, but also refers to all the processes involved in making its 

application and its manufacture possible. Although in many cases fabrication 

processes might not be considered with regard to energy efficiency, it is, 

nevertheless, a key aspect. In order to be as energy efficient as possible, 

fabrication processes cannot be energy intensive. Many industrial manufacturing 

processes rely on intense energy procedures, which considerably increase the 

energy cost of production, an example being concrete used in construction. The 

fabrication of the concrete alone, which requires high processing temperatures, 

implies a consumption of between 12% and 15% of energy from all industrial 

activities, and, therefore, much effort is being directed towards processing it in a 

less energy intensive way.8,9 In fact, fabrication processes involving high 

temperature requirements are often linked to manufacturing with the highest 

energy cost. Unfortunately, in material engineering, high temperatures are often 
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necessary in order to create materials with the desired characteristics to work 

effectively within their application, including PV materials. Temperature affects 

the properties of such materials in many ways, such as morphology, and optical 

and electronic properties among others, and further research is required to find 

alternatives so as to avoid the need for critical temperatures. 

Energy efficiency related to illumination is a very relevant concept since we 

find luminous sources everywhere, from artificial indoor and outdoor lighting to 

all kinds of screens or displays. Specifically, display technology is found in 

almost all electronic devices and is often responsible for a considerable amount 

of the energy required by the device. For instance, in smartphones, display 

illumination can consume up to 75% of the battery usage.10 The most common 

display technology is LCD since it is considered to be well-developed and to 

offer reliability and high resolution in a cost-effective way.11–14 However, LCD 

might not always be energy efficient due to certain losses related to light 

manipulation processes, such as polarisation and spectrum selectivity.15 In 

particular, for polarisation selectivity, when absorbing polarisers are employed, 

the non-transmitted light is absorbed and, therefore, lost in the device, accounting 

for at least a 50% loss in energy. Over the years, reflective polarisers (which 

reflect the non-transmitted light instead of absorbing it)16–20 in combination with 

different optical management techniques have been applied to reduce such 

energy losses leading to greater energy efficiency. However, in practice, finding 

an innovative design able to transmit broadband polarised dispersed light from 

an unpolarised emitting source, avoiding overall light losses, still remains a 

challenge. 
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1.2 Photovoltaic energy 

1.2.1 The sun as a source of energy 

With the aim of meeting environmental policy demands, it is unarguable that 

the implementation of renewable energies must be a main contributor in 

electricity production. There are various different renewable energy sources, 

mainly derived from different events that occur naturally on our planet. Of these, 

the sun is by far the most important source, as shown in Figure 1.1. Using the 

amount of primary energy supplied in 2017 as an example (162,494 TWh),21 if 

we were able to capture all of the sun’s energy that reaches the Earth in just one 

year, we would be able to cover global energy demands for 1,240 years. The key 

aspect when considering solar energy is how to collect the greatest amount of 

energy and efficiently transform it into electrical energy for distribution, storage 

or use. 

 
Figure 1.1 Energy sources in terms of availability. For the renewable sources, the 

number represents the potential energy they are able to offer over the course of one 

year.22 
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There are two main ways to convert solar energy into usable energy. The 

first utilises the thermal energy directly to provide heat or electrical energy 

through a thermal cycle. The second, known as PV energy, generates electricity 

due to the photovoltaic effect that occurs in semiconducting materials, and 

consists of the direct conversion of photons into electrical carriers. For electricity 

generation, the advantage of PV over thermal energy is that the former directly 

provides electricity, and the energy conversion process is more efficient. To 

apply this type of energy technology, solar cells have been in use for many years 

being silicon generally used as active material. 

Silicon manufacturing technology has been improving over the years, 

providing reliable solar cells with relatively high efficiency and at accessible 

prices, that can be adapted to different consumer profiles. Nowadays, it is very 

common to find these devices not only in solar fields for bulk electricity 

production, but also for self-powering private residences and mobile homes. 

Nevertheless, although it is a successful technology, it has some associated 

drawbacks that may be overcome by finding alternative materials. Silicon is 

found in the Earth’s crust, but rarely as a pure element, and it requires several 

extraction, purification and doping processes before it is used as a PV material. 

Also, the manufacturing process needed to fabricate monocrystalline solar cells 

is based on its growth, and requires temperatures of over 1,400 °C, implying very 

high fabrication energy costs. Moreover, this type of solar cell requires bulk 

materials with thicknesses of hundreds of microns, meaning that a considerable 

amount of Si is needed for a single device.  

Over the past few decades, research in the field of PVs has considered new 

materials and production methods to make solar cell technology more efficient, 

more versatile and less expensive. Thin film solar cells are of particular interest 

due to the reduced amount of material that is needed. Unfortunately, when thin 
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film technology is applied to silicon, efficiency is limited by the absorption 

coefficient of this material. Alternative inorganic materials such as CdTe and 

CuInGaSe2 (CIGS), however, have been proved to work better in devices with 

films that are only a few microns thick, although the availability of the materials 

involved is much more limited and their fabrication normally involves high 

temperature annealing. Recently, other organic or organic-inorganic materials, 

such as perovskites, have been studied. Active layers of only hundreds of 

nanometres are required, and the research has led to efficient PV devices at low-

cost and via simpler and less energy intensive processes. 

1.2.2 State-of-the-art perovskite solar cells  

Organo-halide perovskites were first discovered as a potential PV material 

in 2009, when this material was applied as a dye sensitizer in liquid dye sensitized 

solar cells.23 Later, it was discovered that photogeneration and free charge 

transport could occur in these types of crystalline perovskites, meaning that the 

main photoactive phenomena were taking place in the perovskite itself and not 

necessarily in the TiO2 mesoporous layer.24–27 This led to a rapid increase in 

research on this type of material, resulting in the latest high efficiency emerging 

solar cells. Organo-halide perovskite solar cells, combining high absorption and 

charge generation, large charge diffusion and an easily tuneable bandgap, have 

been widely studied in order to understand them and make improvements.28–30 

The power conversion efficiency (PCE) of a solar cell is determined by Equation 

1.1: 

𝑃𝐶𝐸 =  
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝑉𝑚𝑝𝑝 𝐼𝑚𝑝𝑝

𝑃𝑖𝑛
=

𝑉𝑜𝑐 𝐽𝑠𝑐 𝐹𝐹

𝑃𝑖𝑛
    (1.1) 

 where Pout refers to the electrical power provided by the solar cell, Pin to the 

incident light power equivalent to 100 mW/cm2 when a standardised AMG1.5-
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sun illumination is considered, Voc to the open circuit voltage, Jsc to the short 

circuit current density and FF to the fill factor. Perovskite solar cells are 

especially efficient due to the limited Voc drop provided by the low recombination 

losses despite being an organic-inorganic material and the high Jsc given by the 

high external quantum efficiency (EQE), whose relationship is determined by 

Equation 1.2, as follows: 

𝐽𝑠𝑐 = 𝑞 ∫
𝐸𝑄𝐸(𝜆) 𝜙(𝜆)𝜆 𝑑𝜆

ℎ𝑐
     (1.2)  

where q corresponds to the electron charge, Φ(λ) to the standard AMG1.5 

spectral sun irradiance, λ to the light wavelength, c to the velocity of light, and h 

to Plank’s constant. 

In solar cell devices, the perovskite active layer is typically sandwiched 

between two buffer layers, an electron transport layer and a hole transport layer 

(ETL and HTL, respectively). One of the most general perovskite solar cell 

classifications is related to whether the device is fabricated by depositing the ETL 

or the HTL first (n-i-p and p-i-n configuration, respectively). This aspect limits 

the materials that can be employed since, depending on the process and the 

solvents (if any) during the deposition of further layers, the first materials may or 

may not be suitable to be deposited below the other layers. Many different types 

of perovskite solar cell structures have been developed with the aim of achieving 

the most efficient and stable devices. Outstanding performances have been 

observed for both types of configurations,31–34 but the n-i-p structure has achieved 

the highest published efficiencies with high stability.35 Figure 1.2 shows the 

maximum reported efficiencies for both n-i-p and p-i-n structures from 2009 to 

2019.  

The strategies for improving the performance of perovskite solar cells range 

from modifying the perovskite composition and crystallisation,31,36–38 to the 
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passivation of the interfaces39–43 and finding the buffer layers that perform best 

in the device.44–50 After little more than a decade since the first perovskite 

application in the field of PVs, an efficiency of over 25% has been achieved, as 

published by the NREL, an institution which records the efficiencies of different 

PV technologies.51  

 
Figure 1.2 Maximum efficiencies for perovskite solar cells for n-i-p and p-i-n structures. 

However, efficiency is not the only key parameter for the implementation of 

this technology. A good solar cell is also determined by its stability, its potential 

scalability to fabricate working devices in realistic dimensions, and the 

compatibility of its fabrication processes with today’s industrial techniques and 

environmental standards at a low energy cost.  

1.2.3 Challenges with perovskite solar cells 

In order to make it worthwhile to produce and commercialise a solar cell, 

such a cell must be able to give a reliable performance for a sufficient amount of 

time. When perovskite solar cells were first developed, stability was one of the 

main issues as their lifetime could be as short as a few seconds.23 Such stability 

issues were linked either to the perovskite material ionic bonding in its AXB3 
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crystalline structure or to other aspects related to the performance of the device, 

such as ionic migration to the interfaces, or different phenomena due to 

environmental interaction (e.g. temperature, oxygen, moisture or irradiation).52,53 

Nowadays, the stability of perovskite solar cells has been improved to such a 

degree that very low loss of performance occurs under normal working 

conditions54,55 and in outdoor environments,56,57 even after thousands of hours.  

In order to achieve rapid progress in the development of this technology and 

to understand the different physical mechanisms occurring in emerging solar 

cells, some aspects regarding their fabrication out of a laboratory environment 

have thus far been ignored. It is important that fabrication processes are always 

considered in terms of their feasibility for large scale production. Typically, 

solution-processed perovskite solar cells are fabricated by spin-coating the 

perovskite precursor, a technique which allows the deposition of the perovskite 

layer on rather small substrates through easy and rapid techniques. However, to 

increase the deposited area and, therefore, the size of the solar cell, alternative 

techniques are currently being studied.58 Recently, different roll-to-roll 

processing methods that can be adapted to an industrial chain for large area 

production have been tested and have achieved very decent efficiencies.59–64 Non 

solution-processed techniques may also be used to cover large areas, but these 

can greatly limit the roll-to-roll mechanism as they normally require some degree 

of vacuum for their deposition. Thermal evaporation is a technique that has been 

applied since the early stages of development of perovskite solar cells,27,65 but 

the need for a high vacuum and a high deposition temperature considerably limits 

the ability of the cells to be fabricated in a cost-effective way. In fact, as explained 

previously, low temperature processes must be employed to make the fabrication 

of perovskite solar cells more energy efficient. 
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Energy efficiency is not the only consideration regarding the environmental 

impact of the fabrication of solar cells. In addition, the solvents and materials 

employed for their manufacture are of great importance. Although the toxicity of 

solvents used in fabrication is a relevant issue, more important is the content of 

Pb in high-efficiency perovskite solar cells, which has led to a central debate 

since it would be exposed to the open environment. Even if the true risk of Pb 

within properly fabricated solar cell modules remains unclear, just its leakage 

into the soil and water would mean a source of contamination that might become 

a threat to animal and human safety and health.66,67 At the current time, 

eliminating Pb as the central atom (X position) in the crystal structure does not 

seem feasible for comparably efficient and stable perovskite solar cells. So far, 

alternatives that replace Pb with Sn, Ge and Bi, among others, do not perform as 

well, and also compromise the cell’s stability due to issues related to the material 

bandgap and crystal lattice distortion, respectively, when these ions are 

introduced.68,69 Given the current situation, an intermediate solution is to at least 

reduce the amount of Pb content in the device. The most straight forward 

approach to achieving this is to use low Pb formulations in the perovskite layer 

and/or to reduce the amount of material needed by increasing light absorption 

through proper optical and photonic management. 

1.3 Light propagation applied to thin film solar cells 

1.3.1 Light absorption in thin film materials 

The absorption coefficient of a material (∝) determines the amount of light 

that is absorbed as it passes through the material at a given wavelength. In general 

terms, the relation between the relative absorption, A, and ∝ is given by Equation 
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1.3 below, where I0 and I1 are the intensities entering and transmitted out of the 

material, respectively, and l is the thickness of the material. 

𝐴 = 1 −
𝐼1

𝐼0
= 1 − 𝑒−∝𝑙     (1.3) 

Given this relation, the simplest way of increasing absorption would be to 

increase the thickness of the material. However, this is not always possible, 

especially in thin film applications, since it might be limited by other thickness-

dependent parameters, such as the efficient charge extraction in the case of 

semiconductors. When the goal is to obtain maximum absorption but there is a 

particular limitation on the film thickness, enhanced absorption is possible with 

proper photon management, without the need to alter the absorber thickness. 

Light trapping techniques are designed to avoid loss of light from a structure by 

trapping the entering light and eluding its dissipation, but it is important to keep 

in mind the maximum possibilities in this respect. For this analysis, some 

fundamental studies regarding the absorption limit for different light trapping 

approaches have been carried out. In a 1982 seminal work, Yablonovitch 

established a theoretical absorption limit based on a statistical approach to the ray 

optics of geometric light trapping structures. The analysis defines the boost of 

light intensity inside a light trapping structure with ergodic light propagation 

when it is immersed in a blackbody radiation environment. The study concludes 

that the absorption enhancement achievable with ray optics trapping structures is 

4n2, with n being the local refractive index.70 Further limits have been established 

for other light trapping mechanisms or more specific schemes, such as grating 

structures,71 and plasmonic72 or planar thin film73 waveguides. For other 

conditions that are outside the parameters considered in Yablonovitch’s analysis, 

where wave-optics must be considered, the limit has been overcome, although it 

provides only a narrowband absorption enhancement.74,75 
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Among the different techniques for trapping light, ergodic light propagation 

provides a broadband absorption enhancement that is of special interest for such 

a wide range spectrum of light as sunlight. The geometric effect provided by a 

randomly textured surface traps light once it is inserted inside the light trapping 

structure, by considerably reducing the likelihood of the light escaping.76,77 The 

chaotic propagation of light in such schemes implies the homogeneous dispersion 

of the light within the light trapping boundaries. This effect, as well as being 

especially suitable for increasing light absorption in an absorbing material, can 

also act as a dispersion mechanism for homogeneous transmittance when it 

occurs in non-absorbing materials. Examples of both applications will be 

demonstrated in Chapter 2 and Chapter 3, respectively, by the employment of a 

geometric periodic structure as an ergodic light propagator. 

1.3.2 Light trapping in thin film solar cells 

Thin film solar cells are a good example of absorbing devices in which the 

absorption of the active layer is limited by the film thickness.78,79 As defined 

previously in Equations 1.2 and 1.3, the EQE of a solar cell is directly connected 

to its PCE. The EQE is, basically, the number of electrons generated per number 

of photons that reach the solar cell. Therefore, the amount of light absorbed is 

relative to the generation of charge carriers, which directly affects the efficiency 

of the solar cell. After electron-hole photogeneration, charges need to separate 

and travel to their corresponding electrode without being recombined. For an 

efficient charge extraction, the thickness of the active material in a solar cell 

should not exceed the mean free path of these charges so as to avoid 

recombination. Given this requirement, in order to enhance light absorption a 

light trapping technique can be applied as an alternative to thickening the active 

material layer. Different techniques have been designed to trap light in solar cells, 
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and, depending on the optical effect that governs the different light trapping 

techniques, these can be classified into two different groups. Firstly, there are 

techniques that are ruled by geometric optical effects, such as reflection or 

refraction, in which the amount of light reflected and the direction of the 

transmitted light depend on the angle of incidence and the local refractive index 

of the travelling medium. On the other hand, there are methods based on wave 

optics, such as interference or plasmonics, in which mainly resonant modes are 

used to trap the light and enhance its absorption. 

As discussed previously, geometric schemes could lead to an ergodic light 

trapping solution which is of special interest in solar cells due to the broadband 

light absorption enhancement. Although a theoretical limit in the absorption 

enhancement of 4n2 was established for this type of light trapping, it is only valid 

in the case of low absorption (for ∝l<<1).70 However, in 4th generation solar cells, 

such as organic and perovskite devices, this parameter is higher, with values of 

approximately ∝l180,81 and ∝l∈[1,5]82, respectively. Therefore, the absorption 

enhancement is more limited83 and, in the case of perovskites, is expected to be 

in the near infrared (NIR) region.  

Interest in enhancing light absorption in solar cells extends beyond finding 

maximum thickness limitations for optimal performance. In many cases, the 

approach may also be useful to help minimise the amount of material employed 

for an equally efficient solar cell. In the case of perovskites, the fact that most 

efficient solar cells include Pb in their composition is another reason to seek ways 

to reduce the quantity of active material. The lower the levels of Pb in the solar 

devices, the lower the potential risk given unexpected Pb leakage from the 

device, which could help to fulfil possible environmental standards for future 

perovskite solar cell applications. 
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1.4 Increasing light harvesting and improving energy 

efficiency through the application and fabrication of 

perovskite solar cells 

1.4.1 Geometrical optics for light trapping in perovskite solar 

cells  

Among the different techniques for trapping light within a solar cell, textures 

and geometrical structures that block the escape of light from the cell have been 

widely studied for the different types of PV materials.84–90 Since the effectiveness 

of this approach is based on the geometry and the refractive index contrast at the 

interface, the technique is of special interest for perovskite since it can be easily 

applied to function at broadband wavelength ranges. However, the structure must 

be integrated in such a way as to avoid any consequent undesired side effect that 

might negatively affect the performance of the device. For instance, texturing or 

fabricating microstructures within the layers of the device could create certain 

defects or modify the inherent properties of the material. In order to avoid this, 

the application of the texture on the back surface of the transparent substrate is a 

common technique for trapping light while still maintaining the cell’s electrical 

performance.91–93 

Regarding the type of structure, the technique can be divided into random or 

periodic structures. Following Yablonovitch’s work, a random surface is able to 

create ergodic light propagation and, therefore, act as an effective light trapping 

technique to enhance the power provided by the solar cell. Different studies 

consisting of texturing or incorporating random structures have been proposed to 

enhance perovskite solar cells absorption.92,94,95 Periodic structures have also 

proved to be good candidates for effective light trapping techniques, achieving a 
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similar enhancement to that obtained by randomness.93,96–98 When the two 

approaches from different experimental studies are compared, however, it is 

difficult to analyse the light trapping effect independently since the type of 

perovskite device that is normally applied varies significantly between the two. 

 The main aim of a light trapping structure is to achieve maximum light 

absorption, but the analysis towards achieving such a goal can often be 

complicated since the maximum absorption limit in an experimental environment 

is ambiguous. Theoretically, the amount of light lost in the different parts of the 

cell can be analysed and, basically, divided into losses from the reflection of light 

at the substrate interface, losses due to light escaping from the cell and parasitic 

losses at different layers from the active material. Some studies have been 

reported that simulate the application of different approaches to avoiding these 

losses, claiming an absorption gain close to the maximum.97,99 However, those 

relying on experimental work alone are unable to make such claims, as the 

fabrication of a device with the necessary requirements could lead to 

complications and other negative side effects.100  

1.4.2 Recycling light into electricity with perovskite solar cells 

to increase energy efficiency 

As well as developing solar cells that are able to efficiently convert solar 

energy into electricity, it is important to also consider further applications for the 

technology. For instance, applying PV technology in electronic devices or indoor 

applications to better manage light consumption could be a good solution for 

collecting the energy that would otherwise be wasted and converting it back into 

electricity. Perovskite solar cells, for example, have already been shown to 

perform efficiently under indoor light irradiance, making them appropriate 

candidates to feed self-powered indoor devices such as those used within the 
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Internet of Things or rechargeable portable devices.101–103 Also, the direct 

application of perovskite based solar cells in low voltage resistive or storage 

devices has been proved to work effectively. In the 2020 study developed by Sun 

et al.,104 a digital thermometer and sodium battery were powered for 24 hours 

from the conversion of emitted light into electricity in the perovskite solar cells.  

As discussed previously, a few ensembles designed to polarise, homogenise 

and recycle the non-transmitted light have recently been developed, but the 

research has been restricted to light polarisation management. However, adapted 

optical designs along with PV devices appear to be good candidates for achieving 

such demands. Currently, the use of PV devices for the purpose of producing 

polarised light emission is mainly limited to polymeric materials, which absorb 

polarised light and transform part of it into electricity, but, unfortunately, the 

output is not sufficient to efficiently recycle light.105,106 Another study suggests 

the application of polarising absorbing dyes, which transversally transmit one 

type of polarisation and re-emit the rest into a different wavelength. The emission 

is performed parallel to the film, which seems appropriate for its further  

collection by a solar cell, as the authors suggest.107 Unfortunately, there is a lack 

of current literature that studies the design of a complete opto-photovoltaic 

ensemble, reporting both the optical and electrical performance for an application 

and fulfilling the described requirements. 

In terms of energy efficiency, it is equally important to produce electricity 

using high efficiency power conversion techniques and to operate opto-electronic 

devices through optimised energy management processes. In Chapter 2, the 

application of a periodic geometry is applied to a perovskite solar cell as a light 

trapping structure in order to enhance its light harvesting properties and delivery 

of the electrical current. Chapter 3 describes the design and operation of a similar 

optical structure able to transmit polarised light homogeneously and recycle the 
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non-transmitted light into electricity through the integration of perovskite solar 

cells. 

1.4.3 Low temperature perovskite solar cells 

To limit energy fabrication costs, the manufacture of perovskite solar cells 

seeks to find a complete low-temperature process. In the most common n-i-p 

configuration, a mesoporous and a compact TiO2 layer that require annealing 

above 450 °C are frequently employed to exploit the performance of the standard 

ETL structure.32,34,36,108–111 P-i-n structured perovskite solar cells do not require 

such high temperatures, but, unfortunately, their performance in terms of 

maximum efficiency has typically been lower than the n-i-p structures, as shown 

in Figure 1.2. Other n-i-p options involve changing  the TiO2 nature,112–114 

applying different deposition methods115–118 or, basically, changing the material 

employed.45,119–122 

High temperatures applied to the mesoporous layer are often applied to sinter 

the material and remove the organic binder of the original paste, creating the 

porosity. In order to simplify fabrication of the solar cell, mesoporous structures 

could be avoided without decreasing the performance of the solar cell if an 

efficient compact ETL were employed.47,115,123,124 When small nanoparticles are 

used in a dispersed solution, they act as compact layers since the density of the 

stacked nanoparticles avoids percolation of the perovskite material within them 

during its deposition. The advantage of this type of ETL is that, in most cases, it 

can be annealed at low temperature to achieve the desired electronic properties 

and to remove the low evaporation point solvent within which such nanoparticles 

are dispersed. Different n-type nanoparticles have been applied to perovskite 

solar cells,125–128 with the SnO2 nanoparticles employed in the study of Jiang et 

al.129 being of special relevance. These created a very efficient ETL and have 
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been used in numerous other publications related to high efficiency and stable 

perovskite solar cells.38,39,48,130 

While the mesoporous structure might not be critical for the high 

performance of perovskite solar cells, the compact layer seems to be much more 

relevant in high performance structures. As well as for the transfer of electrons, 

the role of the ETL is to act as a hole blocking layer in order to effectively 

separate charges so that they can reach their corresponding electrode. Moreover, 

isolating the contact electrode from a possible shunting path from the HTL is also 

important since such a contact considerably affects the operation of a solar cell. 

This event is especially likely when the active layer is thin, as is usually the case 

when semi-transparent solar cells with some degree of transparency are used to 

produce electricity. In Chapter 4, the application of two layers of different 

nanoparticles is shown to create an improved electron transport material (ETM) 

in low temperature perovskite solar cells, the results being particularly suitable 

in the fabrication of semi-transparent perovskite solar cells. 

1.5 Thesis Outline 

In this thesis we approach light harvesting through ergodic light trapping in 

perovskite solar cells, as well as the concept of energy efficiency in the 

fabrication and application of these cells. The former is described in Chapter 2, 

where a periodic structure made of interconnected half-cylinders is demonstrated 

to propagate light ergodically. The periodic array applied on a perovskite solar 

cell causes a light trapping effect that is comparable to the one obtained with a 

randomly textured surface. The light harvesting is enhanced in the solar cell, 

providing a larger electrical current. Such an increase allows the fabrication of a 
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perovskite solar cell with an equal performance using 30% less material, thereby 

considerably decreasing the amount of Pb required. 

In Chapter 3, the energy efficiency in the diffused emission of polarised light 

is approached through the recycling of light that might otherwise be wasted in 

such a process. We propose an innovative design to emit broadband polarised 

light, and in which two perovskite solar cells recycle the non-transmitted light 

back into electricity. The design is optimised to efficiently polarise light while 

keeping light losses to a minimum. Furthermore, an ensemble is fabricated based 

on this design in order to characterise its optical and PV performance, proving 

the polarisation and light recycling effects. The proposed strategy increases the 

energy efficiency during polarised light selectivity and can be employed as an 

energy saving tool in optoelectronic devices such as LCD. 

Finally, energy efficiency during the manufacture of perovskite solar cells is 

approached in Chapter 4. A novel low temperature fabrication procedure is 

studied, with the application of two different layers of nanoparticles, SnO2 and 

TiO2. In this study, the performance of the solar cells when combining both layers 

is enhanced compared to when just one of the materials is employed. Such an 

enhancement is particularly notable in semi-transparent devices, where a 30% 

enhancement in performance can be reached in devices with ultra-thin perovskite 

layers.
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Application of a half-Cylinder Photonic 

Plate for Enhancing Light Absorption on 

Perovskite Solar Cells 

As discussed in the previous chapter, an ergodic light propagation inside a 

solar cell leads to an effective light trapping, resulting in a broadband light 

absorption. Unfortunately, except for a handful of cases where the surface 

random texturing is inherent to the cell structure,131–133 introducing such disorder 

may have a negative effect on the electrical performance of the solar cell device. 

However, such a random textured surface is not strictly necessary to achieve 

ergodicity. Indeed, a periodically corrugated optical medium composed of 

intercalated optical fibres forming a plate, called a photonic fibre plate, leads to 

a chaotic light ray propagation. This type of propagation was used to enhance 

light absorption from an evaporated organic solar cell fabricated on one side of 

such a photonic fibre plate.134 Although the regularity of the periodic surface 

certainly simplified the thin film solar device fabrication, it also limited layer 

deposition to processes fully based on high vacuum evaporation or sputtering. 

Therefore, a simpler geometry compatible with solution processed solar cells 

would be more versatile and suitable as an ergodic light trapping technique. 

In this chapter, we study a periodic structure made of interconnected half-

cylinders, called a half-cylinder photonic plate (h-CPP), which is able to 
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propagate light ergodically when light is reflected on its opposite surface. This 

structure, which is easily manufacturable on ultra-violet (UV) light or 

temperature curable materials, can be placed onto the glass side of the solar cell, 

thereby transferring such ergodicity to a solar device. By employing a numerical 

model that combines geometrical and wave optics, we analyse the light 

dispersion inside an h-CPP and its effect when it is applied on a perovskite solar 

cell. Firstly, we are able to confirm ergodic light propagation after light enters 

through the periodic structure. Secondly, we calculate the spectral absorption 

variation and Jsc enhancement when the h-CPP is integrated on the perovskite 

solar cell. Finally, the fabricated ensemble is experimentally characterised and, 

in section 2.2.1, the results obtained are compared to those from the numerical 

simulation. 

2.1 Theoretical model for light propagation and optimal 

current generation 

To analyse the light propagation inside an h-CPP, we created a theoretical 

model that combines both ray tracing and wave optics. In this model, the h-CPP 

is situated on top of a glass substrate with an ideal reflector deposited on the 

opposite side. As the geometrical dimensions of the h-CPP are large compared to 

the wavelengths of interest, a ray picture is suitable to describe the light trapping. 

An examination of Figure 2.1 indicates that ray trajectories depend significantly 

on the initial conditions, which is where the ray is incident on the h-CPP. Between 

two refraction/reflection events, the photons follow a ballistic trajectory. 

Therefore, the ray paths are entirely encoded in the set incidence angle βj made 

by the jth segment of ray with the interface at which it refracts or reflects. To 
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confirm the ergodic character of the h-CPP geometry from a geometrical optics 

perspective, one must determine the fraction of incoming rays that will follow an 

unpredictable trajectory upon entering the h-CPP. Indeed, any ray travelling to a 

different cylinder from its original one will subsequently undergo 

reflection/refraction at an almost unpredictable angle. Such a fraction is given by: 

𝑓 = 1 −
2𝑥

𝑝
         (2.1) 

where, as shown in Figure 2.1, x corresponds to the smallest horizontal distance 

between the top of a given cylinder and a ray that, upon a reflection at the bottom 

interface, enters a neighbouring cylinder of the array, while p is the period of the 

h-CPP. Provided that x is small compared to p, it is straightforward to 

demonstrate that the fraction of incident rays that upon incidence will follow a 

quasi-unpredictable trajectory is: 

𝑓 ≈ 1 −
𝑛𝑑

4ℎ
        (2.2) 

where h is the separation between the corrugated and planar interfaces of the h-

CPP, n its index of refraction and d the diameter of the cylinder, as indicated in 

Figure 2.1. When n = 1.45, d = 104 µm, and h=1.15 mm, one obtains a value of 

97%.  

 

Figure 2.1 Ray trajectory simulation of two different rays upon an h-CPP on glass. The 

image is not at scale. 
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In order to characterise the ray dynamics from a statistical point of view, it 

seems more useful to monitor not βj but Δβj= βj-βj-1. Indeed, rays bouncing on a 

circular boundary, and thus temporarily following a regular trajectory, satisfy 

Δβj=0. In Figure 2.2, we plot the cumulative distribution function (CDF) of Δβ, 

which is the integral of the probability distribution of Δβ. The CDF is computed 

as described in Ref. 134, by a ray tracing algorithm that generates a large sample 

of ray segments in the h-CPP, consecutive to a single ray impinging on the device. 

We keep track of the ray trajectories until the ray intensities have a very small 

value (0.0001 times the original value) in order to generate a sufficiently large 

statistical sample. We observe that we converge to the same CDF independently 

of the initial conditions, i.e., where the initial ray falls on the device and its 

incidence angle. In all our simulations we consider polarisations both parallel and 

perpendicular to the cylinder axes and take the average, and only a small 

difference is observed between the two polarisations, which we mainly attribute 

to the Fresnel coefficients at the air/h-CPP interface. We note that the CDF 

undergoes a finite jump at Δβ=0, indicating that a sizeable, finite probability is 

associated to that value. Hence, even though the ray trajectory is chaotic, a 

fraction of it is regular. This demonstrates that the ray chaos achieved by the h-

CPP is of the intermittent type. Hence, independently of the initial conditions, 

any region of the phase space of the ray trajectories can be visited. This 

constitutes a numerical proof of ray ergodicity. Note that ergodicity is understood 

here in relation to the geometrical redistribution of the rays’ segments inside the 

h-CPP and independently of their intensity, as in Ref. 70. The absorption of the 

intensity caused by a particular incoming ray does, of course, depend on its initial 

conditions, as described in Ref. 134. 
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Figure 2.2 CDF related to the Δβ computed over a series of ray segments.  

2.2 Ergodic light propagation and maximum electrical 

current generation. 

2.2.1 h-CPP refractive index optimisation in order to maximise 

EQE and reduce Pb content 

Given that ergodic light propagation occurs between an h-CPP and a 

reflective structure, it is expected that when a solar cell is placed after the h-CPP, 

its light absorption and, therefore, its current generation will increase. However, 

the boost in absorption will also depend on the optical parameters of the different 

elements and, therefore, a further analysis in this regard should be performed.  

In order to take full advantage of the ergodic ray propagation, the refractive 

indexes of all layers, from the h-CPP to the cell active layer, should, in principle, 

be matched. However, increasing the refractive index of the h-CPP/substrate 

towards the higher index of the active layer would lead to an increased reflectivity 

at the air/h-CPP interface. Considering a 550 nm thick perovskite layer, the n and 

k of the perovskite solar cell layers included in Appendix A.1 and then, using a 
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numerical approach that combines ray optics propagation in the h-CPP/substrate 

structure with wave propagation in the multilayer cell structure, one can 

numerically compute the EQEs and corresponding integrated Jsc for different 

index values of the h-CPP/substrate (nh-cpp). When a perovskite cell is considered, 

both magnitudes are shown as a function of the light incident wavelength in 

Figure 2.3 and Figure 2.4a, respectively. In Figure 2.3b, it can be seen that when 

nh-cpp ≤1.4, the EQE related to the visible range of the spectrum decreases as the 

nh-cpp is reduced, whereas the rest of the EQE increases slightly. Since the major 

contribution of the solar spectrum belongs in this range of wavelengths, the Jsc 

drops considerably, as shown in Figure 2.4. The reasons for this decrease are the 

lower absorption due to a higher mismatch between the refractive index of the 

cell and the structure, and the loss of the light trapping effect as the refractive 

index of the periodic array gets closer to nair (nair=1). On the other hand, analysing 

the effect of increasing the refractive index for nh-cpp ≥1.45, as shown in Figure 

2.3c, one notices that as the n increases the curves flatten. This is translated into 

a slightly higher EQE for wavelengths between 450 nm and 600 nm, but lower 

for other wavelengths. Moreover, for nh-cpp ≥1.65 the whole EQE starts to 

decrease since the reflection of the incoming light is now considerable due to the 

refractive index contrast between the air and the h-CPP. The compensation of 

these effects determines the different light absorption and fixes the optimal index 

of refraction of the h-CPP/substrate structure between 1.4 and 1.65, as can be 

observed in Figure 2.4b. In summary, a maximum absorption is obtained when 

the correct balance between minimising reflectivity at the air/h-CPP interface and 

matching the indexes of the substrate and cell structure is reached.  
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Figure 2.3 (a) Simulated EQE for devices with h-CPP considering different h-CPP 

refractive indexes. (b) Zoom in for the EQE curves for n ≤ 1.45. (c) Zoom in for the EQE 

curves for n ≥ 1.45. 

 

Figure 2.4 (a) Simulated accumulated current density obtained by integrating the EQE 

results for a device with an h-CPP, considering different h-CPP refractive indexes. The 

inset represents an amplification of the final wavelength area. (b) Short circuit current 

(solid dots) as a function of the index of refraction for the h-CPP/substrate structure. In 

this numerical computation we assumed that the index of refraction of the h-CPP and 

substrate are the same. The dotted line is a guide for the eye. 
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Provided the h-CPP structure exhibits a 97% randomisation capacity, we 

may conclude that any other kind of regular or periodic135–137 interface structuring 

would yield, at best, a similar enhancement achieved by the h-CPP. Rather than 

a different kind of interface structuring, a further enhancement of the light 

absorption percentage would require either a better back mirror to reduce parasite 

absorption or a thinner active layer, as shown in Figure 2.5. It is worth noting that 

for the h-CPP configuration and a 450 nm thick active layer, the short circuit 

current (Jsc=22.21 mA/cm2) approaches that obtained with a 650 nm thick active 

layer in the standard planar configuration (Jsc=22.29 mA/cm2). This means that 

the fabrication of the cell can provide the same current while using less material. 

In particular, the type of perovskite solar cell used in this study achieves the best 

performance with a perovskite thickness of between 600 and 700 nm.36,129 

Therefore, 30% less material could be employed by using this approach. By just 

adding a simple h-CPP at the light entering interface, this reduction in material 

translates to the same decrease in Pb for the fabrication of a perovskite solar cell 

that can achieve the same performance.  

 

Figure 2.5 Simulated Jsc enhancement when an h-CPP structure is added for different 

perovskite solar cell thicknesses. 
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2.2.2 Experimental results and analysis of the optimal device 

configuration 

Given the simulated results, polydimethylsiloxane (PDMS), whose 

refractive index is within the optimal range (n=1.45), seems to be a relevant 

choice as a material for the fabrication of an h-CPP. Moreover, it provides 

complete transparency, it is flexible and it can be cured and moulded easily. 

Therefore, the light trapping and harvesting configuration considered consists of 

an h-CPP deposited on one side of a 1 mm thick fused quartz glass substrate and 

a perovskite solar cell deposited on the opposite side of that same substrate. The 

overall structure and fabrication method that we implemented allow the 

integration of a light trapping element with a solar cell without having to impose 

any restrictions or limitations on the fabrication of the solar device. Such a light 

trapping structure can be implemented for perovskite solar cells provided that 

light absorption is never complete for the standard perovskite cell 

configuration,138,139 especially in the NIR region of the sun spectrum, which is, 

in principle, the most interesting because it exhibits the largest photon flux.   

The solar cell structure employed for this study, whose cross section 

scanning electron microscopy (SEM) image is shown in Figure 2.6a, was ITO 

(100nm)/SnO2 (20 nm)/(FAI)x(MABr)1-xPbI2 (550 nm)/Spiro-OMeTAD (200 

nm)/Au (60 nm). This cell was fabricated following a low temperature process 

as described in Appendix B. As shown in Scheme 2.1, a freestanding h-CPP of 

PDMS was fabricated separately and subsequently deposited on the unused side 

of the glass substrate. First, a PDMS layer was deposited by spin coating on top 

of a 1″ × 1″ aluminium–nickel mould patterned with the negative h-CPP structure 

(Film Optics Ltd.). Then the PDMS was cured at 90 °C for 1 hour and removed 

from the mould, creating a flexible freestanding h-CPP, as shown in Figure 2.6b. 
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The pattern geometry consists of 110 intersected semicylinders per cm, with 

diameters of 104 μm, 91 μm apart, centre to centre. The freestanding 1″ × 1″ h-

CPP was deposited by simple physical contact on the bare glass substrate on the 

opposite side to where the perovskite cells had been previously grown. 

 

Figure 2.6 (a) Cross section SEM image of a perovskite solar cell. The layers have been 

tinted for clear identification. (b) Cross section SEM image of a freestanding h-CPP. The 

inset represents a closer view of the h-CPP; the scale bar in the inset corresponds to 100 

μm. 

 

Scheme 2.1 H-CPP fabrication process: (i) Deposition of the PDMS on the mould. (ii) 

After spin-coating and annealing of the film, the PDMS is cured. (iii) Then the PDMS is 

detached from the mould, creating the h-CPP. (iv) The h-CPP is integrated into the solar 

cell by attaching it to the glass side. 
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To determine the effect of the h-CPP on the performance of the perovskite 

solar cells, we measured the current density-voltage (J-V) curve and determined 

the corresponding PV parameters. Since the h-CPP can be easily deposited and 

removed from the glass substrate without affecting the PV device operation, in 

order to analyse the h-CPP’s contribution on the cell performance in a reliable 

manner, the PV parameters of the exact same solar cell were measured with and 

without the h-CPP. In Figure 2.7a one can observe how the Jsc of the perovskite 

solar cell is enhanced from 22 mA/cm2 to 22.6 mA/cm2 when the h-CPP is 

applied. As expected, the rest of the PV parameters, i.e., Voc and FF, are 

essentially not affected when the h-CPP is applied to the solar cell. In other 

words, the increase in the photocurrent is the main factor that causes an increase 

in PCE from 18.1 % to 18.8% for the cell whose J-V curve is shown in Figure 

2.7a. In total, 24 devices were analysed and their box plot diagrams for the 

corresponding PV parameters are shown in Figures 2.7b-e. Therefore, it is 

confirmed that, essentially, the only parameters modified by the application of 

the h-CPP were the Jsc and, consequently, the PCE, whilst the Voc and the FF 

remained almost unaltered. From Table 2.1, one may note that the average gain 

in Jsc caused by the h-CPP is 0.58 mA/cm2, corresponding to a 2.7% photocurrent 

enhancement, leading to a maximum PCE of 19.8% for the cells incorporating 

the h-CPP. 
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Figure 2.7 (a) J-V curves of a representative device with and without h-CPP. (b) Jsc, (c) 

Voc, (d) FF and (e) PCE statistical analysis of 24 different perovskite solar cells with and 

without the h-CPP. 

Table 2.1 Average PV parameters and gains obtained for 24 devices with and without 

an h-CPP. 

 Jsc 
(mA/cm2) 

Voc  
(V) 

FF 
(%) 

PCE 
 (%) 

Best PCE 
(%) 

Without h-CPP 21.81 ± 0.53 1.088 ± 0.03 75.07 ± 1.5 17.82 ± 0.72 19.44 

With h-CPP 22.39 ± 0.54 1.089 ± 0.03 75.28 ± 1.8 18.36 ± 0.74 19.81 

Gain 0.58 ± 0.12 0.001 ± 0.006 0.21 ± 0.67 0.54 ± 0.19  
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The PV parameter study above confirms that the use of an h-CPP in 

perovskite solar cells leads to an overall enhancement in light absorption and cell 

performance. To gain further insight into such an enhancement, we computed the 

EQE for perovskite solar cells with and without the h-CPP and then compared 

them to the experimentally measured results. From the numerically computed 

EQEs shown in Figure 2.8a, one can clearly distinguish two very distinct features. 

On the one hand, the h-CPP structure contributes to an enhanced absorption in 

spectral regions where the absorption coefficient of the perovskite is weaker. An 

example of this is in the NIR, where a clear enhancement, peaking at the 

perovskite absorption edge, can be seen in Figure 2.8a. On the other hand, the h-

CPP structure has a tendency to flatten the EQE, pushing it close to the 

corresponding internal quantum efficiency, by compensating for the destructive 

interference between the forward and backward propagating light waves. Valleys 

in the EQE of the cell without an h-CPP, which are distinguishable at around 500 

nm and 725 nm, are likely to be the result of such destructive interference, 

provided that they do not equate to any decrease in the perovskite extinction 

coefficient, as shown in Figure 2.9. The destructive interference is a consequence 

of the multilayer dielectric structure inherent to any PV thin film device.140,141 In 

the cases of both weak absorption and destructive interference, the ergodic light 

propagation caused by the h-CPP structure has the effect of effectively increasing 

the length of the light path in the perovskite layer. The main features observed in 

the numerically computed EQE enhancement curve are, to a large extent, 

reproduced in the experimentally determined curve, as shown in Figure 2.8b. 

Indeed, the peak of the enhancement curve at the absorption edge and the 

tendency to broadly flatten the EQE are also confirmed experimentally. 

Nonetheless, one should not expect a perfect matching between theory and 

experiment if large variations are observed in the complex refractive indexes of 
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different perovskite layers, caused by uncontrollable alterations in the growth 

procedure of such layers. 

 

Figure 2.8 (a) Simulated and (b) experimental EQE for solar cells with (red curve) and 

without (black curve) an h-CPP. Blue curves represent the EQE gain depending on the 

wavelength. 

 
Figure 2.9 Comparison between the simulated EQE curve for a planar device and its 

perovskite extinction coefficient (k). 

2.3 Conclusions 

It has been demonstrated that a one-sided simple ordered cylindrical 

structure is able to propagate light chaotically and randomise it. This structure 
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can be easily fabricated and integrated on any surface for use in a diverse range 

of photonic applications. For instance, if a thin film absorber is placed between 

the h-CPP and a reflective surface, the ergodic light propagation causes an 

absorption enhancement comparable to the absorption achievable by a randomly 

textured surface. 

When an h-CPP is placed on the glass side of a perovskite solar cell, the 

numerical simulation carried out to study its light diffusion is able to predict the 

increase in the current generation of the solar device induced by the ergodic light 

trapping mechanism. Once the h-CPP material has been optimised and applied to 

a perovskite solar cell, the photogenerated current is enhanced close to the 

maximum achievable for any kind of regular or periodic structuring at the light 

entering interface. Such an enhancement can equal the current generated by a 

device with an active layer of an optimised thickness but containing 30% less 

material, considerably decreasing the amount of Pb necessary in the fabrication. 

The same conditions as the theoretic analysis were replicated experimentally 

and the PV parameters of a set of solar cells were analysed with and without the 

h-CPP. The experimental results showed good agreement with those obtained in 

the theoretical simulations along the broad solar cell absorption range. All these 

results confirm that the proper design of a periodic structure at a light entering 

surface is able to create ergodic light propagation in the same way as on a random 

surface. In addition, we have demonstrated the application of such a simple 

structure as light trapping mechanism to enhance light harvesting in perovskite 

solar cells, in agreement with one of the approaches laid out for this thesis. This 

type of ordered structure can easily be superficially tuned if necessary, as will be 

presented in the next chapter, while the opposite face can be kept flat to allow for 

its integration on any type of surface. 
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Light Recycling Using Perovskite Solar 

Cells Incorporated in an h-CPP for 

Polarised Light Emission 

In Chapter 2, we demonstrated how a simple and periodic geometry such as 

the one found in an h-CPP is able to ergodically propagate light and enhance light 

harvesting in perovskite solar cells when it is placed on its light entering surface. 

Such randomisation of light could also be useful in other environments in which 

a precisely homogeneous emission of diffused light is required.142–144  

In this chapter, we propose the novel design of an efficient light recycling 

structure with the ability to emit polarised light from its top surface while guiding 

the rest of the light to the edges to be recycled into electricity by two perovskite 

solar cells. We are able to separate the polarised light by depositing a reduced 

number of nanometric layers on the h-CPP top surface using widely applied 

fabrication methods. The structure is optically characterised and compared to the 

expected results obtained by the simulated performance. Finally, an ensemble 

equivalent to the proposed design is constructed to demonstrate the ability of 

perovskite solar cells to recycle the non-transmitted light into electricity in such 

a design. 
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3.1 Light propagation inside an h-CPP and its 

polarisation capability 

3.1.1 Ray optics for light inside an h-CPP 

In Chapter 2, we described a theoretical model to account for light 

propagation in an h-CPP structure. The amount of light transmitted or reflected 

when a ray hits one of the half-cylinders in such a structure will depend on two 

parameters: the refractive index contrast of the materials at the interface and the 

angle of incidence of the ray. For rays travelling inside the h-CPP, the effect of 

the total reflectance for angles of incidence higher than the critical angle can only 

be modified by changing the n of either the two media at the interface. If an ideal 

reflector is considered on the bottom of the h-CPP, light reflected on the periodic 

array will either end up being transmitted from the top in subsequent incidences 

or guided to one of the plate edges. Figure 3.1 shows a ray tracing diagram, 

representing one ray travelling inside the h-CPP with nh-CPP=1.52 and nair=1, the 

critical angle in this case being 41.1°. 

 

Figure 3.1 Ray tracing inside the h-CPP with nh-CPP=1.52. The image is not to scale. 

For incidence angles lower than the critical angle, the fraction of light that is 

transmitted or reflected can be managed by optically modifying the structure 

surface. This can be achieved by depositing a set of alternating nanometric layers 
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of two different materials with a certain refractive index contrast. Indeed, the 

interference will be polarisation-dependent in such a way that if it is applied 

properly, polarisation selectivity of light can be achieved. If this effect is 

combined with proper light diffusion, it is possible to transmit polarised light 

homogeneously from the h-CPP. 

3.1.2 Light dispersion 

In order to emit light homogeneously across the guide, the light inside the h-

CPP should be evenly dispersed, which means that approximately the same 

quantity of light needs to move towards the right and the left sides. Therefore, 

light should start to be randomly dispersed at the middle of the h-CPP. To achieve 

this, light is inserted from one of the sides and pointed through the reflector so 

that it hits roughly the centre of the periodic array. In general terms, given a 

certain h-CPP length and a specific distance between the reflector and the 

periodic array, there is an appropriate angle range that ensures a generally 

homogeneous emission. 

Assuming that light enters from the centre with respect to the vertical 

position of the guide (t/2 in Figure 3.2), the angle that provides a reflection 

towards the middle of the top h-CPP can be obtained from: 

𝑥 =
1.5𝑡

tan (∝𝑜)
       ( 3.1 ) 

where x is the horizontal position, t the distance between the reflector and the top 

of the h-CPP and ∝o the angle of the light source with respect to the horizontal 

axis of the h-CPP (or to the reflector surface) pointing towards it. In order to 

study how the angle affects the emission and dispersion, for this and further 

analyses we will assume the h-CPP length to be 31 mm and t=2.2 mm. Following 

Equation 3.1, in order to reflect the light onto the top middle part of the h-CPP 
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(x=15.5 mm), the light source should be pointing towards the bottom reflector at 

an angle ∝o=12°.  

 
Figure 3.2 Diagram of light coupling into the structure. The red arrow represents the 

light beam considered. The image is not to scale and only a portion of the guide is 

considered. 

3.1.3 Surface modification for light emission management 

After the light hits the top of the h-CPP, it will be randomly dispersed along 

the guide in further bounces due to the effects of ergodic light propagation. Due 

to the same ergodic effects, the angles of incidence could also be considered 

random. At this point, the amount of transmitted light can be managed by 

optically modifying the surface of the h-CPP. To create photonic surface effects, 

dielectric multilayers have been widely employed in a lot of optical applications, 

such as mirrors, wavelength selecting filters, polarisers and many others.145–150 

When the effect pursued is monochromatic, an 1D photonic crystal can be 

employed by alternating high and low refractive index nanolayers in a periodic 

configuration. However, if the optical effect has to be reached for several 

different wavelengths of a broadband spectrum, this periodicity is usually 

unsuitable, so a more complex analysis or design needs to be carried out to find 

the optimal configuration. 
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Taking into consideration the geometry of the structure, an inverse design 

approach has been followed in order to apply this technology to light polarisation. 

This has been achieved by using a reflectivity-based selection for specific 

wavelengths and to give sufficient transmittance. We have calculated the optimal 

thickness for each layer, composing a multilayer that works for three different 

wavelengths in the red (λR), green (λG) and blue (λB) parts of the visible spectrum. 

We have considered these three particular wavelengths because, by tuning the 

relative intensities of their light sources, one may obtain any colour from the 

visible spectrum. The simulation has been carried out using WO3 and LiF as the 

materials of high and low refractive index, respectively, and their parameters are 

described in Appendix A.2. These two materials are non-absorbing (k=0) in the 

visible spectrum and, therefore, all non-transmitted light hitting the multilayer 

interface will be reflected. To account for certain losses that might be generated 

on the flat reflective surface opposite to the half-cylinders, which would affect 

the results considerably, a non-ideal structure was considered. In this case, a 

multilayer made of TiO2 and SiO2, with a total of eight alternating layers, was 

incorporated on top of a silver layer to ensure ultra-high reflectivity with minimal 

absorption losses. The configuration of the reflective structure is described in 

Appendix A.3. 

Figure 3.3a shows that, for a given source angle with respect to the reflector 

∝o=12°, the transmittance of s-polarised light (Ts) decreases, while the p-

polarised light transmittance (Tp) remains more or less constant as the number of 

layers composing the stack rises. This means that the value of the polarisation 

ratio (Tp/Ts) seems to stop rising after a certain number of layers. The Tp/Ts ratio 

shown in the image is an average of the results found for the red, green and blue 

(RGB) wavelengths for which the multilayer stack was designed. 
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Figure 3.3 Ts, Tp and polarisation ratio as a function of (a) the number of layers in the 

stack, with a source angle of ∝o=12°, and (b) the source angle ∝o using 29 layers in the 

stack 

Another important factor to consider and analyse is the effect of the angle of 

the light source with respect to the reflector on the amount and type of transmitted 

light. To this end, the same simulation was performed with the number of layers 

fixed at 29 and changing ∝o within a range in which the first light impingement 

is centred relatively close to the top of the plate (15.5 mm ± 5 mm). The 

configuration of the 29 multilayer stack is described in Appendix A.3. This 

analysis is shown in Figure 3.3b, where no significant difference can be seen.  

Since the overall light transmitted through the top decreases as the number 

of layers in the stack increases, it is expected that more light will reach the edges. 

Figure 3.4 shows that it does, indeed, occur evenly on both sides of the photonic 

plate for all the stacks considered, in the exact way that it was designed to operate. 

Figure 3.5 represents the share of light that reaches each of the edges as a function 

of ∝o. When ∝o is increased or decreased from the angle that induces the light 

source to hit the middle of the h-CPP top surface, light reaching the left or the 

right edge, respectively, increases. This effect is more prominent when the angle 

is lowered instead of increased, as can be seen in Equation 3.1, since the position 

where the ray first hits the h-CPP surface is inversely proportional to tan(∝o). 
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Figure 3.4 s- and p-polarised light guided to (a) the left and (b) the right side, 

assuming an angle of incidence ∝o=12°. 

 
Figure 3.5 Relative amount of light guided to each side as a function of the light 

source angle of incidence ∝o, when 29 layers are considered. 

3.2 Description of a light recycling guiding plate to 

efficiently emit polarised light  

The type of light propagation that occurs inside an h-CPP might be suitable 

in opto-photonic devices in which light needs to be selectively transmitted, while 

the rest is rejected. However, discarding the rejected light lowers the energy 

efficiency of the opto-photonic device and, therefore, an appropriate light 

management mechanism should be employed. Scheme 3.1 shows the design of 

an ensemble able to transmit polarised light, while the rejected light is recycled 
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by a pair of PV devices placed on its sides, where the non-transmitted light is 

converted into electricity. In this device, the light coupled from a light source 

enters the h-CPP at a particular angle, ∝o (1) and first hits the bottom reflector 

(2) where it is reflected towards the top part of the h-CPP. On the top part, there 

is a multilayer polarising stack comprising alternating layers of two different 

materials with contrasting refractive indexes (3). Here, the light is polarised and 

a certain amount of the total p-polarised light is transmitted while the rest of the 

light is reflected down. The remaining light inside the h-CPP will follow this 

same propagation process until it reaches one of the perovskite solar cells (4 and 

5) on both sides of the device, where the light is then recycled by converting it 

back into electricity. In this design, almost all of the light will be either 

transmitted from the top or absorbed into the perovskite solar cells. As we will 

see below, this is the optimal type of PV device for the presented application. 

As a proof of concept, the different elements described in Scheme 3.1 have 

been fabricated in order to analyse them independently and, also, all together, 

with a similar arrangement to the one described previously. The main goal is to 

prove the viability of the design by demonstrating the reflective polarisation at 

the same time as showing that the non-transmitted polarised light is being 

converted back into electricity with a higher s-polarised light contribution. 

Further work would need to be carried out in order to achieve the best 

performance of such a device based on the previous concepts.  

Firstly, we will look at the different elements, discussing their potential 

performance and suitability for the proposed application. 
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Scheme 3.1 Polarised light emitting ensemble with light recycling. (1) h-CPP, (2) 

reflector, (3) multilayer polariser stack, (4) and (5) perovskite solar cells. 

3.2.1 An h-CPP as a light-guiding element 

Light propagation inside an h-CPP has been already widely discussed 

throughout Chapter 2. Homogeneous light emission with respect to the horizontal 

position depends mainly on the point along the plate where light randomisation 

starts. Moreover, the top geometry will not only act as an element to force a 

chaotic light propagation, but will also contribute to the outcoupling of light 

since, for many light incidence events, the angle of incidence with respect to the 

surface is likely to be lower than the critical angle. Choosing the correct material 

to achieve a balance between outcoupling and a fair polarisation selectivity needs 

to be considered. Other important considerations are the availability of materials 

and the processing methods that will be compatible with the deposition of the 

polarising structure on the h-CPP corrugated surface. Several polymeric 

materials are available for patterning, using a mould with the geometry of the h-

CPP. For this application, we chose OrmoComp®, a UV curable hybrid polymer 
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that offers high stability under thermal stress. This material is completely 

transparent in the visible spectrum and presents a refractive index of n=1.52, 

which is similar to the borosilicate standard glass used as its substrate. The 

fabrication process is simple. Firstly, the polymer is spin-coated on the mould 

and a glass substrate is placed on top of the coated master. Then a couple of clips 

are placed to sandwich both elements and ensure contact before the sample is 

placed under UV light for 10 minutes. Next, the glass substrate with the patterned 

polymer is separated from the mould and is placed under UV light for a further 

10 minutes. Finally, the patterned sample is placed in an oven for 3 hours at 150 

°C to increase its thermal and environmental stability.  

3.2.2 Reflective element 

The bottom reflector is an important element that needs to be designed 

carefully. An ideal reflector reflects all of the light with no losses, but actual 

reflective materials may have certain absorption or transmission that can 

compromise the quality of the reflection. Although an improved reflector can be 

fabricated by combining a Bragg reflector with a metal layer below, as proposed 

in Section 3.1.3, for the sake of simplicity during fabrication in our experimental 

ensemble, we will use a high-quality metallic layer as a simple mirror. Standard 

metals such as aluminium and silver are often employed to act as reflective 

surfaces. Given that reflectance should be as high as possible for the RGB 

spectra, silver seemed to be the most appropriate material since it is a common 

material and its reflective capability will produce low losses in this wavelength 

range. 

A 150 nm silver layer was deposited by thermal evaporation and 

characterised by ellipsometry, and its refractive index is described in Appendix 

A.2. Figure 3.6 shows the different spectra of the silver reflectance based on 
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simulations and experimental measurements. Two type of simulations were 

performed, one using the refractive index obtained by fitting the ellipsometry 

characterisation, and the other using the refractive index described by Palik,151 

whose calculations are taken to be the standard optical parameters for silver. The 

simulated reflectance obtained using the refractive index from the silver 

deposited in our lab showed higher reflectivity than the simulated one obtained 

from Palik’s refractive index. This means that the silver we were able to deposit 

had a higher reflective potential than the more common version, minimising 

losses. The experimental measurements of the layer reflectance are also included, 

and show a good matching with the simulated measurements, with only minor 

discrepancies. 

 
Figure 3.6 Reflectance of a 150 nm Ag layer, experimentally measured and simulated, 

based on the refractive index obtained by ellipsometry and described in literature. 

In order to evaluate the difference in reflection between a simple silver layer 

and a more complex reflective structure made using a Bragg reflector, the effects 

of both were analysed by comparing the simulated losses when each was placed 

on the bottom of a polarising h-CPP. As shown in Table 3.1, when just a simple 

layer of evaporated silver is included, the loss caused by the reflective element 

after the complete light propagation is, on average, 8.73%, whereas if a Bragg 

reflector is added, there is only a 2.15% loss.  
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Table 3.1 Calculated light absorption in the reflective structure of the device when an 

evaporated silver layer and a Bragg reflector together with a silver layer are considered. 

Reflective 
element 

Wavelength 
(nm) 

Absorbed s-
polarised light 

(%) 

Absorbed p-
polarised light 

(%) 

Total absorbed 
light (%) 

Ag layer 

466 15.7 11.3 13.50 

560 8.4 5.9 7.15 

630 6.8 4.3 5.55 

Bragg 
reflector + 
Ag layer 

466 1.6 4.9 3.15 

560 1.5 2.2 1.85 

630 1.4 1.5 1.45 

 

3.2.3 Perovskite solar cells as light-to-electricity converters 

A light recycling element should be a PV device that efficiently converts 

light into electricity, otherwise part of the light absorbed will be lost, affecting 

the overall device performance. Solar cell electrical losses, mainly governed by 

charge recombination, can be estimated by the difference between the bandgap 

energy (Eg) of the active material in eV and the characteristic Voc of the solar cell 

under illumination. From the different alternatives available in PV devices, 

perovskite solar cells seem to be the best option for our application since they 

offer high efficiencies and a tuneable bandgap with high absorption in the visible 

spectrum. Moreover, during the past few years, perovskite solar cells have been 

improved, and are now better able to minimise recombination and achieve 

differences between the Eg and Voc in the range 0.32-0.41 eV, depending on the 

bandgap of the perovskite.152 

 Another important aspect when considering the proposed application is the 

need to employ solar devices with wide bandgaps that are as close as possible to 

the longest wavelength of the light they are designed to absorb. In the case of the 
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RGB wavelengths, this corresponds to λR, which is 635 nm (1.95 eV). Bandgap 

modification is already a topic of interest in perovskite solar cells, especially in 

tandem applications with other PV materials.41,153,154 Nevertheless, trying to 

achieve a higher energetic bandgap together with a high efficiency is not a 

straight forward process, since changing the composition of perovskite also 

affects its crystallinity and the number of possible defects in the material. For this 

reason, there needs to be a compromise between a bandgap as close as possible 

to the edge absorption and an efficient solar cell with low Voc losses.  

In our experiments, an efficient perovskite solar cell with low losses was 

used to convert the non-transmitted light into electricity. The bandgap of the 

employed solar cell was 1.53 eV, even though this is not the most suitable 

bandgap, given its difference with respect to the λR energy. In order to prove the 

ability of our device to efficiently recycle light into electricity, our experiments 

were based around employing a standard perovskite solar cell. However, in 

reality, a wide bandgap perovskite would be more appropriate to study the scope 

of our application. Further work is being developed in order to obtain improved 

light-to-electricity conversion in this respect. 

3.2.4 Polarising multilayer stack 

As previously described, in our device the transmission of polarised light is 

carried out by a multilayer stack, while the rest of the light stays trapped inside 

the guiding structure.  The phenomenon behind this effect is ruled by the 

Brewster's angle at each of the interfaces in the multilayer. For any given 

refractive index contrast between two materials, Brewster's angle is the angle of 

incidence for which the reflectance of p-polarised light at that interface is zero. 

For other angles, the difference in the reflectance between both polarisations 

decreases. When this phenomenon is combined with the high reflectance of s-
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polarised light for a wide range of angles and the wavelengths of interest, the 

polarisation ratio obtained for the transmitted light can be large, being an 

effective and non-absorbing polarisation selectivity mechanism. 

The objective is to create a multilayer stack that is simultaneously able to 

reflect all or almost all of the s-polarised light without absorption, while also 

transmitting a large fraction of the p-polarised light. It is widely known that such 

an effect can be produced for a narrow wavelength range using a periodic 

multilayer stack that fulfils Bragg’s condition. In this case, adding layers to the 

periodic structure will better increase the reflectivity on that wavelength range. 

However, when pursuing this same effect for several wavelengths relatively far 

from each other, the design of the multilayer is less straightforward. For this 

reason, prior to fabrication, an optimised multilayer structure should be 

calculated by applying, for instance, an inverse design approach. Beforehand, 

however, the materials to be deposited need to be defined, taking into 

consideration the suitability of a given deposition method with the h-CPP 

material and surface properties. 

3.3 Fabrication and characterisation of a multilayer 

polariser stack on an h-CPP 

3.3.1 Deposition techniques for the fabrication of a multilayer 

polarisation stack 

When analysing the fabrication of our multilayer polariser stack, two 

deposition methods, thermal evaporation and magnetron sputtering, were studied 

in order to compare their suitability and performance. Both techniques present 
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different characteristics that make them suitable for depositing the multilayer on 

the h-CPP surface, with both methods offering good performance and 

controllable material characteristics in an acceptable time frame. 

Table 3.2 Summary of the characteristics of the relevant deposition techniques for the 

fabrication of a multilayer polarising stack. 

  Thermal 
Evaporation 

Magnetron 
Sputtering 

Materials 

High n (Avg. n) WO3 (2) TiO2 (2.37) 

Low n (Avg. n) LiF (1.35) SiO2 (1.45) 

Average deposition rate 
(nm/min) 

3-4 1 

Position of the material 
source 

Parallel to the sample Tilted 

Kinetic atom energy Lower Higher 

Heat transfer Higher Lower 

 

Table 3.2 summarises the different characteristics of both deposition 

techniques tested, along with the materials required for each technique. Each 

method offers certain positive characteristics that make it a good choice. On the 

one hand, thermal evaporation is often faster than magnetron sputtering. Even if 

one employs reactive sputtering deposition, this technique remains between 3 and 

4 times slower than the thermal evaporation deposition rate. Also, the thermal 

evaporation material source points towards the sample perpendicularly to its 

surface, which, considering that the deposition surface has a periodic corrugation, 

seems to be more appropriate for a homogeneous deposition, in order to avoid 

shadowing by the structure itself. On the other hand, sputtering materials show a 
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higher refractive index contrast, which means that better polarisation 

performance may be achievable with fewer layers. Moreover, the stack fabricated 

by magnetron sputtering could be more robust, since the adhesion of the layers is 

normally better due to the higher kinetic energy of the species during deposition, 

while the temperature of the substrate is kept lower than in thermal evaporation 

processes.155 

3.3.2 Results and discussion for the multilayer deposition: 

thermal evaporation vs magnetron sputtering 

To test the suitability of each deposition technique, different stacks were 

deposited on h-CPP samples and their optical performance and morphology were 

analysed. First, the optical performance was analysed on a stack of five layers 

deposited using the two different techniques. For this study, a flat glass substrate 

was included during each of the deposition stages, together with the h-CPP 

substrates. Once the layers were deposited, the flat samples were measured by 

ellipsometry and their spectra were fitted to obtain the corresponding thickness 

for each of the layers in both multilayers. At the same time, with an optical setup 

schematically shown in Figure 3.7, the h-CPP samples were characterised by 

measuring their total transmittance when either s- or p-polarised light was 

introduced at normal incidence through the glass side of the substrate. Then a 

simulation replicating the measurements was performed on the h-CPP surface 

with stacks of the thicknesses obtained by the ellipsometry fitting spectra. Figure 

3.8 shows the comparison between the measured and simulated total 

transmittance of a polarising h-CPP for the different deposition techniques. 
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Figure 3.7 Optical set-up for total transmittance measurements. 

 
Figure 3.8 Measured (solid) and simulated (dashed) total transmittance when light is 

introduced in the h-CPP at normal incidence through the glass side for samples fabricated 

by (a) thermal evaporation and (b) magnetron sputtering. 

As previously explained, the multilayer needs to be highly reflective in order 

that polarisation occurs efficiently while the non-transmitted light is guided to 

the sides to be recycled into electricity. Therefore, the structure must be able to 

reproduce its minimum transmittance (maximum reflectance) point as precisely 

as possible. When comparing both techniques, magnetron sputtering shows a 

higher fidelity to the simulations than thermal evaporation in this respect, with 

the difference in transmittance between the measurements and simulations at the 

minimum point being 2.1% and 6.2% for magnetron sputtering and thermal 
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evaporation, respectively. Another important consideration is the difference 

between the simulated and measured results with respect to the wavelength at the 

minimum transmittance point. Here, the evaporated sample better matches the 

simulation than the sputtered one does. However, this result should be analysed 

in a complete multilayer stack since such a shift might be wavelength dependent. 

.  
Figure 3.9 SEM images of a multilayer deposited by (a) thermal evaporation and (b) 

magnetron sputtering. The inset shows a higher magnification where no small cracks can 

be seen. 

The morphology of the deposited layers was analysed through optical and 

scanning electron microscopy. After SEM inspection, it could be seen that the 

thermal evaporated samples had cracked at the h-CPP surface, as shown in Figure 

3.9. Moreover, an evaporated sample, despite having no cracks when observed 

under the optical microscope directly after fabrication, then showed cracks with 

the optical microscope after being observed under the SEM. This can be seen in 

Figure 3.10. The cause of the surface cracking seems to be the pressure gradient 

over the samples during the vacuum process of the chamber during SEM 

examination. As previously highlighted, evaporated layers may suffer from a 

certain lack of adhesion that could promote cracking under certain stress, such as 

rapid pressure changes. This experiment demonstrates a considerable brittleness 
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in the evaporated samples, and suggests that, if samples were to be fabricated 

through thermal evaporation, they should be deposited continuously, without 

venting the chamber until they are finished. However, this could complicate the 

fabrication process when material sources need to be refilled, and also when some 

characterisation is required prior to processing the final structure 

 
Figure 3.10 Optical microscope images of the h-CPP surface with a thermally 

evaporated stack deposited on top (a) before and (b) after being exposed to a vacuum 

process (SEM chamber). Small cracks can be seen in the area within the red oval. 

Since the layers need to be deposited following the h-CPP pattern, it is 

important that the deposition and thickness are homogeneous. For this reason, a 

cross view SEM inspection was performed on a more complex multilayer stack. 

Figure 3.11 depicts a complete multilayer structure sputtered on an h-CPP, 

showing the different layers deposited following the pattern geometry, with their 

thicknesses remaining constant at different points on the half-cylinder. 

Having considered the results of both types of characterisation, we decided 

to fabricate the final structure using magnetron sputtering deposition. Although 

this technique requires more deposition time due to its slower deposition rate, it 

seems to be more reliable with regard to the stiffness of the structure during and 

after deposition of the materials. As previously discussed, given the materials that 

will be employed, an inverse design approach was applied in order to find the 
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best solution for a multilayer structure, i.e., one that offers the best polarising 

performance for the RGB range. Different multilayer polarising stacks can be 

obtained depending on the number of layers of the structure, and this is directly 

related to the degree of light polarisation. However, as demonstrated in Figure 

3.2, there is a maximum number of layers after which there is no significant 

increase in the polarisation ratio by adding more layers.  

 
Figure 3.11 SEM image of the cross section of a complete multilayer structure on top 

of an h-CPP. 

3.3.3 Polarised transmittance and recycling of light into 

electricity with the integration of perovskite solar cells 

15 layers were deposited through magnetron sputtering, while attempting to 

match the thicknesses provided by the inverse design solution. As with the 5-

layer structure discussed in Section 3.3.2, during the deposition process of the 

polarising multilayer, a flat substrate was included together with the h-CPP in 

order to characterise the thickness of each of the layers by ellipsometry. The 
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thickness of each layer within the stack are included in Appendix A.3. Figure 

3.12 shows the different transmittance values measured on the flat glass substrate 

for the two polarisation modes at different angles of incidence. These 

measurements are compared with a simulation, replicating the same structure 

with the layer thicknesses obtained by ellipsometry, and the match in the range 

of interest is particularly good, confirming that the thicknesses obtained for the 

flat sample were correctly characterised.  

 
Figure 3.12 Simulated and measured (a) Ts and (b) Tp of the multilayer polarising 

structure deposited on flat substrates for different angles of incidence (30°, 40° and 50°). 

The coloured bars indicate the wavelengths for which the structure was designed to 

operate. 

Next, in order to optically study the polarising multilayer on the h-CPP, we 

measured the total transmittance of this sample when illuminated from its glass 

face at normal incidence and compared this to the equivalent simulated structure. 

Figure 3.13 shows the spectra of the measurement in the integrating sphere, 

together with its corresponding simulation. The simulated spectrum of the s-

polarised transmittance shows minima close to 0% at the RGB wavelengths while 

the p-polarisation mode shows certain transmittance. In the experimental 

measurements, the general trend for the spectrum follows that obtained in the 

simulation. The Ts at the λB and λG is close to the minimum (8%), which 
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represents a good sample for polarising and reflecting light. However, the Ts at 

the λR is higher than we expected. The results of this characterisation represent 

an average of the transmittances for the different angles of incidence that occur 

when the light is perpendicularly incident to the sample. Therefore, the mismatch 

of the spectra may be related to a small inhomogeneity deposition over the 

different points of the half-cylinders, which may occur due to the effect of the 

deposition on the corrugated surface from two different tilted sources. This small 

inhomogeneity can become relevant when several layers are deposited, affecting 

the averaged transmittance. The Tp and Ts values of both simulated and 

experimental polarising structures are presented in Table 3.3. 

 
Figure 3.13 Simulated and measured total transmittance of a multilayer polarising 

structure deposited on an h-CPP. The coloured bars indicate the wavelengths for which 

the structure was designed to operate. 

Table 3.3 Simulated and experimental s- and p-polarised total transmittance for a 15-

layer multilayer polarising structure on an h-CPP at normal light incidence. 

 Wavelength (nm) Ts (%) Tp (%) Tp/Ts ratio 

Simulation 

450 2.1 18.6 8.7 

532 1.3 14.5 11.2 

635 2.2 22.2 10.1 

Experimental 

450 8.9 23.4 2.6 

532 7.4 22 3 

635 24 37 1.5 
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To prove the ability of such a design to recycle light, two types of 

characterisation were performed. First, a perovskite device was illuminated by 

three different low power light sources corresponding to the RGB wavelengths, 

as described in Appendix B. The light emitted by the sources was focused to 

achieve a similar light intensity to the illumination from one sun (100 mW/cm2). 

Figure 3.14a shows the J-V curves and PV parameters of a perovskite solar cell 

under each of the chromatic sources. As shown in Figure 3.14b, a solar cell under 

this type of illumination demonstrates a high PCE due to the high EQE of the 

device at the sources’ wavelengths. This is why the PCE of the solar cell under 

the illumination of chromatic sources is higher than that obtained under simulated 

sunlight. Some small differences related to the Voc and the FF were found 

between the performances under both types of illumination, which may be due to 

the smaller area of illumination relative to the size of the solar cell (0.24 cm2), 

creating “shadow” effects, as has been previously reported.156 

 
Figure 3.14 (a) J-V curves together with the PV parameters of a perovskite solar cell 

under RGB direct illumination. (b) EQE and PV parameters of the solar cell under 

sunlight illumination. The coloured dots represent the point in the EQE for the RGB 

wavelengths. 

The next step was to confirm the polarisation effect of the structure by 

observing the relative amount of light recycled into electricity depending on the 

light polarisation. To do so, the different elements (polarising h-CPP, silver 
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reflector and perovskite solar cell) were mounted together and the light was 

directed into the ensemble through a small light window on the reflector, as 

shown in Figure 3.15. Polarised light (far enough from the edge to ensure ergodic 

light propagated conditions) entered the ensemble, and the electrical current 

generated by the different light sources and polarisation modes in the solar cell 

was measured. Given the low power of the light sources tested, we decided to 

consider the current ratio (Is/Ip), which is included in Table 3.4, to analyse the 

light recycling capability regarding the polarisation dependence of the ensemble. 

The intensity ratio provided by the three different chromatic illumination sources 

confirms that our design is able to guide the non-transmitted light, which is 

predominantly composed of s-polarisation light, to the edges where solar cells 

are placed.  

 

Figure 3.15 Diagram of the light recycling ensemble and the set-up for its PV 

characterisation. 

Table 3.4 Intensity ratio of the current provided by the perovskite solar cell when 

polarised light enters the ensemble 

 450 nm 532 nm 635 nm 

Is/Ip 1.93 2.92 1.99 
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Due to the high performance of a perovskite solar cell when it is illuminated 

by chromatic light, the recycling of light into electricity is expected to be very 

efficient once the light is collected by the PV devices. To confirm this, we 

measured the PV parameters through the J-V curves using a high-power green 

source when the s- and p-polarised light had been inserted (Figure 3.16). Here, 

we again introduced sufficient light to study the perovskite solar cells under the 

equivalent of approximately 1 sun of irradiance. This is in the order of the 

minimum light intensity that would reach the solar cells when taking into 

consideration the hypothetical illumination area once they were applied to 

common LCDs for mobile phone applications.14,143 As demonstrated in Figure 

3.16, the ratio for the Jsc between the s- and p-polarisation (2.85) is very similar 

to that obtained for the low intensity light source presented in Table 3.4, which 

confirms that such a parameter is independent of the light intensity reaching the 

cell. Also, the solar cell performance in a light recycling design is very similar to 

that obtained under normal incidence monochromatic illumination. Slightly 

lower Voc and FF were observed, which could be explained by the inhomogeneity 

in the illumination intensity on the solar cell illuminated area caused by the 

projection of the beam from the laser on the cell surface. However, the Voc in real 

applications may be increased due to the higher illumination intensity on the 

perovskite solar cell. 

These results prove that our design has the ability to effectively guide the 

non-transmitted light to the sides of the light guiding ensemble, where the 

perovskite solar cells would efficiently collect and recycle it into electricity. 



3.4 Conclusions 

 

 

 
Figure 3.16 J-V curves and parameters of the perovskite solar cell after integration on 

the ensemble for s- and p-polarised green light. 

3.4 Conclusions 

In order to create energy efficient devices, the correct management of light 

in opto-electronic designs must always be considered so as to avoid unnecessary 

losses and energy wastage during usage. To this end, perovskite solar cells can 

act as light recycling elements and, in combination with an appropriate optical 

design, collect the light that enters the device but does not contribute to its 

operation, and would otherwise be wasted.  

In this chapter, we have presented the design and application of a modified 

h-CPP, in which RGB unpolarised light, when properly directed into the device, 

is evenly dispersed in the photonic plate and selectively emitted, in order that 

polarised light is transmitted through its top surface. The device allows the non-

transmitted light to be collected by lateral perovskite solar cells, which then 

recycle it into electricity thanks to the reflective broadband type of polarising 

mechanism and the negligible absorption of the reflector. Given the amount of 

light that is often wasted in LCDs, such a design seems to be perfectly suited to 
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such applications, to reduce their energy consumption and make them more 

energy efficient. 

The fabrication of a similar structure was carried out to experimentally 

demonstrate the polarisation and recycling of light. In order to match the 

simulated results with higher fidelity, further work is required to optimise the 

deposition of the polarising structure. Nevertheless, the fabricated device 

demonstrated a positive polarisation effect and the ability to generate electricity 

with a light polarisation dependency, as expected. In fact, the perovskite PV 

devices performed extremely well under monochromatic illumination, which 

confirms their suitability for the proposed application. Furthermore, the efficient 

recycling of light into electricity could potentially be improved by adjusting the 

bandgap of the perovskite material towards the lowest energy level of the 

chromatic light that it would absorb during operation, i.e., in the red spectrum.  

The proposed design could be used to enhance the performance of LCDs by 

decreasing the losses that currently occur in standard device designs. In addition, 

this type of light management system may attract industrial interest when 

applying PV devices to opto-electronic applications, by helping to avoid light 

dissipation and increasing energy efficiency during operation. 
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Fabrication of Low Temperature 

Perovskite Solar Cells Using a Bi-

Layered Nanoparticle Electron Transport 

Structure 

As indicated in Chapter 1, energy efficiency during operation must also be 

complemented by energy efficient fabrication processes. To increase the energy 

efficiency during the fabrication of perovskite solar cells of any kind, it is 

essential to avoid high temperature processes. However, the ability to do this is 

typically limited by the application of high-temperature compact and mesoporous 

TiO2. In order to find compatible materials involving low temperature processes 

that perform similarly to high temperature TiO2 structures, the employment of 

dispersed nanoparticles has been studied. Unfortunately, this type of ETL may 

sometimes not perform as well as expected and needs to be functionalised or 

passivated.157–159 When band alignment is correctly applied, the combination of 

an ETL with an extra n-type material has proven to be a good strategy to enhance 

the performance of a single ETM. 160–163 However, many of these combinations 

still require high temperature annealing or other processing techniques, such as 

acidic post-treatment procedures, which limit their application for cost-effective 

and large-scale manufacture, particularly when considering energy efficient 

fabrication. 



4.1 Conclusions 

 

 

In this chapter, we present an improved strategy for the fabrication of low 

temperature perovskite devices, thereby increasing their energy efficiency. We 

study SnO2 and TiO2 nanoparticles as the ETMs for this type of solar cells, and 

together with the characterisation of the layers and their effect on the perovskite 

film, we analyse the performance of the devices when a TiO2 layer, an SnO2 layer 

and an SnO2/TiO2 bilayer are applied. Combining these two materials is shown 

to be key in enhancing the performance of low temperature devices with extra 

thin active films, as in energy efficient semi-transparent perovskite solar cells. 

4.1 SnO2/TiO2 nanoparticulated bi-layer as an efficient 

ETM 

4.1.1 ETL and perovskite morphological study 

We start by analysing the morphology corresponding to the different ETL 

configurations studied, namely SnO2 and TiO2 monolayers and SnO2/TiO2 

bilayers (all made of nanoparticles), and their possible impact on the subsequent 

active layer growth. Atomic force microscopy (AFM) images corresponding to 

the different thin nanoparticulated layers, as well as top view SEM images of 

perovskite films deposited on top, are presented in Figure 4.1. From the AFM 

images (Figures 4.1a-c) it seems clear that, although SnO2 and TiO2 suspensions 

of about the same particle sizes were used, the former yielded a more uniform 

and compact film when compared to the more porous sponge-like texture of the 

latter. Interestingly, the structural characteristics of the perovskite layers (Figures 

4.1d-f) were also quite dissimilar in both cases. Whereas the formation of a 

polycrystalline material with clear individual grains could be inferred in the case 

of SnO2, when differentiating the grain boundaries of the perovskite material with 
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a TiO2 underneath layer, the results were less evident. Nonetheless, when we 

considered the SnO2/TiO2 bilayer, the perovskite morphology showed 

remarkably similar features to those exhibited by the single TiO2 coating. These 

results suggest that the interface underlying the perovskite material may have a 

significant influence on its morphological characteristics. It is important to 

mention that exactly the same procedure was carried out for the perovskite 

deposition in order to avoid any undesired variation due to experimental 

conditions. Also, to ensure a good coverage of the perovskite layer, a mixed 

halide perovskite solution with a high concentration (35 wt%) was prepared 

following the recipe reported by M. Lee et al.164  

 
 
Figure 4.1 (a-c) AFM images corresponding to SnO2, TiO2 and SnO2/TiO2 nanoparticle 

layers, respectively. The sizes of the SnO2 and TiO2 nanoparticles are 10 nm and 4-8 nm, 

respectively. (d-f) Top view SEM images displaying the different morphologies of 

perovskite layers when deposited on top of SnO2, TiO2 and SnO2/TiO2 nanoparticle 

layers, respectively. 
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4.1.2 Photovoltaic performance of perovskite solar cells  

Planar perovskite solar cells containing the different ETL combinations, 

either in monolayer or bilayer form, were then fabricated following the schematic 

diagram depicted in Figure 4.2a. Note that we only considered an SnO2/TiO2 

bilayer due to the favourable energy band alignment between the corresponding 

conduction band of the inorganic oxides and the perovskite. In all cases, 

poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) polymer was chosen 

as the p-type material. The thicknesses measured for the fully spin-coated n-i-p 

stack displaying the best PV characteristics were 25 nm, 40 nm, 280 nm and 70 

nm for the SnO2, TiO2, perovskite and PTAA layers, respectively. When the 

single ETL alternatives were considered, the optimal thicknesses after 

experimental analysis were found to correspond to the values indicated above, 

i.e., 25 nm for SnO2 and 40 nm for TiO2.  

Figure 4.2b shows the typical J-V curves measured for perovskite solar cells, 

integrating the different ETL combinations and displaying their PV parameters 

among the attained average values. As it can be seen, the double ETL exhibited 

slightly higher Jsc and FF values when compared to the single TiO2 layer, thus 

giving rise to the best PV behaviour. Conversely, the SnO2 ETL-based cells 

showed the worst performance, mainly due to their lower FF values. The PV 

parameters extracted from the different J-V curves, which are also summarised 

in Table 4.1 for comparison purposes, yielded overall efficiencies of 14.9%, 

14.2% and 8.6% for the SnO2/TiO2, TiO2 and SnO2 nanoparticle ETLs, 

respectively. The experimental details employed for the measurements can be 

found in Appendix B. The results obtained for the double ETL architecture might 

be explained as a consequence of the more effective charge transport and 

extraction processes caused by the more suitable energy band matching and the 
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higher electron mobility of SnO2, as suggested elsewhere.160,165,166 Besides, 

charge recombination taking place at the SnO2/perovskite interface or at the grain 

boundaries of the absorbing material might be responsible for the lower 

performance of solar cells with only SnO2 as ETL, which is in good agreement 

with previous works.167 Studying charge transport dynamics of the proposed 

device configuration in order to clarify the origin of the obtained results remains 

as one of the major challenges for future work. 

 
Figure 4.2 (a) Scheme of energy levels for the different layers constituting the fabricated 

device. (b) J-V curves corresponding to perovskite solar cells, displaying their PV 

parameters among the attained average values for the different ETL combinations: SnO2, 

TiO2, and SnO2/TiO2. (c) XRD patterns for a 280 nm thick perovskite layer deposited on 

a bare glass substrate, TiO2 and SnO2 nanoparticles. 

Table 4.1 PV parameters of the perovskite solar cells selected as representative of the 

average values integrating the single and double nanoparticle ETLs. 

ETL Configuration Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

TiO2 20.9 0.95 71 14.2 

SnO2 20.1 0.93 46 8.6 

SnO2/TiO2 21.7 0.97 71 14.9 

 
The X ray diffraction (XRD) patterns of perovskite layers grown on different 

types of substrates, mainly bare glass and SnO2 or TiO2 coated glass, are depicted 
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in Figure 4.2c. Although almost the same diffraction pattern is observed for the 

whole set, the different peak intensity may evidence a preferred orientation in the 

case of the underlying nanoparticle TiO2 layer when compared to that of the 

nanoparticle SnO2. From the inset graph in Figure 4.2c, a slight shift in the 

diffraction peak is also detected for the perovskite grown on SnO2 nanoparticles, 

with a concomitant broadening of the peak that may be attributed, in principle, to 

the presence of smaller crystal sizes. These results support the conclusion that 

both the nature and the morphological features of the ETL play a crucial role in 

determining the characteristics of the perovskite material and, hence, the cell 

performance. 

 
Figure 4.3 (a) Jsc, (b) Voc, (c) FF and (d) efficiency statistical analysis of perovskite 

solar cells fabricated using different ETL combinations, namely SnO2 and TiO2 

monolayers and SnO2/TiO2 bilayer. 

In order to statistically analyse the results obtained for the set of fabricated 

devices, box plot diagrams of the PV parameter distribution are presented in 

Figures 4.3a-d. In general, narrower dispersions in the parameters were obtained 
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for the devices that included TiO2 and SnO2/TiO2 as the ETLs. In the latter case, 

we also identified both a slightly higher Jsc and a significantly larger Voc relative 

to the single ETL designs. In fact, the maximum values of Jsc and Voc reached for 

the double ETL architecture were about 0.3-0.7 mA/cm2 and 40-50 mV higher 

than those obtained for the single ETLs. Moreover, the maximum efficiency was 

boosted to 15.2% for the SnO2/TiO2 ETL, as opposed to only around 14.9% and 

9.6% for the single TiO2 and SnO2 layers, respectively. Beyond these findings, 

these results suggest that completely nanoparticulated systems processed at low 

temperatures may offer an easy and low-cost and energy efficient route for ETL 

engineering in perovskite solar cells. 

4.2 SnO2/TiO2 bilayer suitability for thin film and semi-

transparent perovskite solar cells 

4.2.1 Thickness dependence on perovskite film continuity  

To evaluate the influence of the extent of ITO coverage provided by the TiO2 

and the SnO2/TiO2 ETLs due to the different levels of compactness of the 

nanoparticle coatings, we also prepared a set of semi-transparent perovskite solar 

cells with the device configuration shown in Figure 4.4a. Non-continuous active 

layer morphology with a large absorber-free area is usually attained as the 

perovskite thickness is reduced. This aspect is fundamental to modifying the 

transparency of the cell at will, but can also lead to shunting paths that will reduce 

its performance.168–171 Sometimes, in order to increase transparency, incomplete 

coverage of the buffer layer by the perovskite material is employed, while still 

ensuring fair performance and reliability.172–174 Studies based on the application 

of low-temperature processes compatible with semi-transparent architectures 
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have been reported, most of them employing p-i-n structures with PEDOT:PSS 

and PCBM used as the HTL and ETL, respectively.175–177 Some other studies 

were based on similar structures, but including an extra layer65,178 or replacing 

one of the buffer layers179,180 to enhance performance. Surprisingly, however, it 

is rarely found in the bibliography studies that employ the n-i-p device structure 

for the fabrication of visible range semi-transparent perovskite solar cells and, in 

those reported, their overall performance seems to be somehow limited.181 

In our case, as well as varying the thickness of the perovskite absorber, an 

ultrathin Au contact covered with a protective MoO3 layer was deposited by 

thermal evaporation as the top electrode. Although alternative semi-transparent 

top contact layers have been reported, ranging from silver nanowires182–184 and 

dielectric-metal-dielectric architectures185,186 to metallic grids169 and sputtered 

conductive oxides,187–189 this combination ensures a reasonably good 

semitransparency over the visible without compromising the processing, 

performance and stability of the resulting devices.190,191 The thickness of the 

active layer was then changed from 390 nm to 70 nm by modifying the 

concentration of the mixed halide perovskite solution while keeping the same 

deposition parameters. Even though special care was taken during the 

crystallisation process, the removal of excess material during the thermal 

annealing led to void spaces to the order of a few hundred nanometres for active 

layer thicknesses below 280 nm. Top view SEM images displayed in Figures 

4.4c-f show the morphology of such perovskite layers, with thicknesses of 390 

nm, 280 nm, 160 nm and 90 nm, respectively. Further analysis using an image 

processing program (ImageJ) allowed us to quantify both the extent of coverage 

of the perovskite films and the average size of the open voids, as presented in 

Figure 4.4b. 
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Figure 4.4 (a) Scheme of the proposed semi-transparent perovskite solar cell 

configuration. (b) Extent of coverage (black) and average pore size (red) estimated for 

the deposited perovskite layers with different thicknesses. (c-f) Top view SEM images 

corresponding to perovskite layers with thicknesses of 390 nm, 280 nm, 160 nm and 90 

nm, respectively. 

4.2.2 Photovoltaic and optical performance of semi-transparent 

perovskite solar cells  

Figures 4.5a-b display the J-V and the EQE curves measured for the best 

performing semi-transparent devices based on the double layer architecture. For 

comparison, in Figure 4.5a we also plotted the data corresponding to solar cells 

based on a single TiO2 ETL (dashed lines). We observed that, in both cases, the 

Jsc systematically increased with the active layer thickness, as expected. 

However, those values were higher for the double ETL architecture and, this 

time, the increase in the Voc when compared to the single TiO2 layer was superior 

as the perovskite thickness was reduced. This is good evidence of the positive 

properties of SnO2 nanoparticle coatings to effectively prevent shunting paths at 
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the frontal ITO/perovskite interface, thus significantly suppressing charge 

recombination paths. Such a conclusion is also supported by the difficulty in 

fabricating devices with only the TiO2 ETL and active layer thicknesses below 

90 nm. In addition, the remarkable FF values preserved for the thin absorber 

layers allowed us to obtain efficiencies of up to 7% for a perovskite layer of 90 

nm in thickness. On the other hand, cells fabricated using the highest 

concentration precursor led to lower FF and Voc values, which may be explained 

by a poorer control on the homogeneity of the films when a certain thickness is 

exceeded for this particular perovskite composition. To verify the fact that the 

thickness of the nanoparticle TiO2 layer was not limiting the cell performance, 

we also prepared devices with a TiO2 thickness comparable to that of the double 

ETL. The overall efficiency measured in devices with a perovskite layer of 90 

nm (whose representative J-V curves are also plotted in Figure 4.5c) show that a 

thicker TiO2 single layer performs even worse than the standard (40 nm) TiO2 

alternative. These results support the fact that the superior performance of the 

double layer devices is not caused by an increase in the thickness of the ETL.  

From the EQE graph shown in Figure 4.5b, we can see that maximum values 

close to 90% were reached for the solar cells employing perovskite layers with 

thicknesses of between 390 nm and 160nm. However, both the reduced 

perovskite thicknesses and the presence of large void spaces predominantly 

affected the cell responses over the longer wavelength range (500-800 nm), as 

easily be observed for the 160 nm thick active layer. When even thinner films 

with a larger distribution of non-covered surface were employed, the maximum 

EQE stood at around 60%, with an average at longer wavelengths of just 30%. 

Figure 4.6a displays the transmittance spectra measured over the visible and the 

NIR ranges for the multi-layered ITO/SnO2/TiO2/perovskite/PTAA 

configurations with different active layer thicknesses, together with a photo of a 
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complete semi-transparent cell made of a 70 nm thick perovskite layer. In order 

to check there was no significant optical difference in the device when the SnO2 

layer was incorporated, two different devices with the different ETL systems 

were analysed, as shown in Figure 4.6b. 

 
Figure 4.5 (a) J-V and (b) EQE curves corresponding to the best performing semi-

transparent solar cells using different perovskite layer thicknesses. Data displayed as 

dashed and solid lines correspond to TiO2 and SnO2/TiO2 based ETLs, respectively. (c) 

J-V curves corresponding to average efficiency solar cells for semi-transparent devices 

fabricated with a perovskite layer of 90 nm and different ETL configurations. 
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Figure 4.6. (a) Transmittance spectra acquired for the ITO/SnO2/TiO2/perovskite/PTAA 

stacks with active layers of different thicknesses. The inset shows a photo of a complete 

semi-transparent perovskite cell made of a 70 nm thick active layer. (b) Comparison 

between the transmittance of a complete device (including the electrode) using TiO2 

nanoparticles and SnO2/TiO2 nanoparticles as ETLs. 

Table 4.2 summarises the PV parameters extracted from the J-V curves 

corresponding to the best performing devices, both opaque and semi-transparent. 

In the latter case, the resulting average transmittance (AVT) values for the visible 

and NIR spectrum have also been included. This is particularly relevant for 

applications in building integrated PV systems or silicon/perovskite tandem cells. 

Since, as previously demonstrated, the effect of using the double layer 

architecture revealed no significant influence on the optical properties when 

compared to the single TiO2 ETL, the same AVT value was obtained for both 

configurations. As the solar cells prepared with active layer thicknesses below 90 

nm and containing only the TiO2 ETL did not work properly, the corresponding 

parameters are not included in Table 4.2. More detailed information related to 

the statistical distribution of the PV parameters obtained for the semi-transparent 

solar cells integrating the double ETL can be found in Figure 4.7. 
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Figure 4.7 (a) Jsc, (b) Voc, (c) FF and (d) efficiency statistical analysis of semi-

transparent perovskite solar cells fabricated using different perovskite layer thicknesses. 

All of these incorporate the SnO2/TiO2 bilayer configuration. 

The semi-transparent solar cells were also measured when illuminated from 

the thin metal contact side. When compared to the results obtained when 

illuminated from the ITO, the decrease in the Jsc is less than 24% for devices of 

280 nm thick perovskite layers. This decrease is similar to or even lower than 

that of other bifacial perovskite solar cells whose semi-transparent contact 

electrode is made of gold186,192 or a different material.193,194 Such a performance 

shows that devices fabricated with the configuration proposed in this chapter 

have a potential application as bifacial solar cells, although more work may be 

needed to further optimise the optoelectronic properties of the metal-dielectric 

contact. These results can be found in Figure 4.8 and Table 4.3. 
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Table 4.2 PV parameters extracted from the analysis of the J-V curves for the 

complete set of best fabricated devices. 

ETL 
configuration 

Active 
layer 

thickness 
(nm) 

Jsc 
(mA/cm2) 

Voc 
(V) 

FF 
(%) 

Efficiency 
(%) 

AVT-vis 
(%)* 

AVT-NIR 
(%)* 

TiO2 280 21.4 0.96 72.7 14.9 

OPAQUE OPAQUE SnO2 280 20.58 0.97 48.1 9.6 

SnO2/TiO2 280 21.7 0.98 71.3 15.2 

TiO2 390 19.4 0.86 59.2 9.8 
6 (5.2) 52.4 (35) 

SnO2/TiO2 390 19.6 0.90 61.2 10.7 

TiO2 280 18.1 0.94 65.8 11.2 
12.6 (8.2) 62 (40.5) 

SnO2/TiO2 280 18.8 0.99 69.5 12.9 

TiO2 160 15 0.91 65.3 8.9 
22.6 (12.3) 65 (40) 

SnO2/TiO2 160 15.6 0.98 67.7 10.3 

TiO2 90 9.7 0.85 65.5 5.4 
40 (20) 64.5 (36) 

SnO2/TiO2 90 10.2 1.03 66 6.9 

SnO2/TiO2 70 9 0.97 64.4 5.6 42.1 (27) 64 (39.3) 

*Values in brackets correspond to the AVT data obtained for complete devices. 

 

Figure 4.8 J-V curves corresponding to the best performing devices illuminated from 

the thin metal contact electrode. 
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Table 4.3 PV parameters of different active layer devices illuminated from the metal-

dielectric and from the transparent (ITO) electrode. 

Active Layer 
Thickness (nm) 

Illumination side Jsc  (mA/cm2) Voc (V) 
FF 
(%) 

Efficiency 
(%) 

280 Metal-dielectric 14.4 0.98 65 9.1 

ITO 18.8 0.99 69.5 12.9 

160 Metal-dielectric 11.5 0.96 66 7.3 

ITO 15.6 0.98 67.7 10.3 

90 Metal-dielectric 6.1 0.98 71 4.3 

ITO 10.2 1.03 66 6.9 

70 Metal-dielectric 5.3 0.96 65 3.3 

ITO 9 0.97 64.4 5.6 

 

4.3  Conclusions 

With the aim of approaching energy efficiency during the fabrication of 

perovskite solar cells, in this chapter we have demonstrated the application of 

two different nanoparticle layers processed at 150 °C, both of which act as an 

efficient ETM for perovskite solar cells, especially in devices with extra thin 

active films. The nanoparticles bilayer is made of a first layer of SnO2 

nanoparticles and a second of TiO2 nanoparticles, which function as an improved 

electron transport structure for low temperature perovskite solar cells. Thanks to 

this strategy, a fabrication route for better-performing perovskite solar cells using 

low energy intensive manufacture process has been demonstrated. The 

application of this strategy in semi-transparent perovskite solar cells, where the 
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active layer is thinner than in standard opaque solar cells, was established to be 

more reliable than in the fabrication of devices containing only TiO2 

nanoparticles, achieving an increase of up to a 30% in the PCE for the bilayer 

configuration. By avoiding the creation of shunting paths and improving charge 

extraction, the application of the SnO2/TiO2 nanoparticles bilayer is a proven 

effective approach in the fabrication of energy efficient n-i-p semi-transparent 

perovskite solar cells that also present good bifacial performance.
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Conclusions 

In this thesis, we have studied paths to achieve an optimal light harvesting 

in perovskite solar cells, as well as to approach energy efficiency during 

fabrication and through their application. Experimental work and optical 

simulations have been combined to support these types of solar cells as cutting-

edge PVs suitable for natural and artificial light applications. The results prove 

that perovskites combined with specific optical and material strategies provide 

effective light to electricity conversion while improving energy efficiency. 

In Chapter 2, we introduced a simple periodic structure able to disperse light 

similarly to a randomly textured surface, obtaining ergodic light propagation 

within its boundaries. This pattern was effectively used experimentally as a light 

trapping structure, and when applied to the light entering surface of a perovskite 

solar cell, it enhanced the light harvesting ability of the cell to values close to the 

relative maximum achievable when employing a corrugated surface on a solar 

cell. This strategy could act as a mechanism to considerably reduce the Pb 

necessary in perovskite solar cells, since 30% less material can be employed to 

fabricate a solar cell with equal electrical performance. 

The same periodic configuration was used in Chapter 3 to act as a light 

guiding structure in an innovative design able to emit polarised light, while 

avoiding the wasteful dissipation of the non-transmitted light. The design is able 

to achieve an optimal energy efficiency for polarised light at three different 

wavelengths corresponding to the blue, green and red spectra. The incorporation 

of a reflective polarising structure on the top corrugated surface, together with 

two perovskite solar cells on the sides of the periodic array, allow for the 



 

 

 

recycling of non-transmitted light into electricity. After providing the optimal 

design for the polarising structure, a similar design was fabricated, 

experimentally proving the polarising effect, and the ability to recycle light into 

electricity. This novel design to polarise light is particularly interesting with 

regard to increasing the energy efficiency in optoelectronic devices such as 

LCDs.  

Finally, in Chapter 4, the concept of energy efficiency was approached with 

regard to the fabrication of the perovskite solar cells. Using SnO2 and TiO2 

nanoparticles as electron transport materials, it was possible to employ low 

temperatures for the fabrication of the electron transport layer, and, therefore, for 

the entire device. The deposition of a TiO2 nanoparticle layer on top of one made 

of SnO2 nanoparticles acted as an efficient electron transport structure, especially 

in thin perovskite solar cells such as those used in semi-transparent devices. The 

efficiency of such solar cells was enhanced by up to 30% compared to those using 

only TiO2 nanoparticles. These results confirm that such a strategy could be 

employed for the low temperature fabrication process of these cells, thereby 

increasing energy efficiency during the fabrication of enhanced perovskite 

devices. 
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Appendix A Refractive index and multilayers 

configuration 

A.1 Refractive index for perovskite solar cell layers 

 
 
 

 
Figure A.1 n and k coefficients of ITO. 



A.1 Refractive index for perovskite solar cell layers 

 

 

 
Figure A.2 n and k coefficients of SnO2 nanoparticles. 

 
 
 
 
 
 
 

 
Figure A.3 n and k coefficients of perovskite (FAI)x(MABr)1-xPbI2. 
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Figure A.4 n and k coefficients of Spiro-OMeTAD. 

 
 
 
 
 
 
 

 
Figure A.5 n and k coefficients of evaporated Au. 



A.2 Refractive index for the polarising and reflective structures 

 

 

A.2 Refractive index for the polarising and reflective 

structures 

 

 
Figure A.6 n and k coefficients of evaporated WO3. 

 
 
 

 
Figure A.7 n and k coefficients of evaporated LiF 
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Figure A.8 n and k coefficients of sputtered TiO2. 

 
 
 
 
 
 
 

 
Figure A.9 n and k coefficients of sputtered SiO2. 



A.2 Refractive index for the polarising and reflective structures 

 

 

.  

Figure A.10 n and k coefficients of evaporated Ag 

 
 
 
 
 
 

 
Figure A.11 n and k coefficients of TiO2 last layer on the multilayer stack 
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A.3 Configuration of the multilayer structures. 

Table A.1 Configuration of the low loss reflecting structure (Bragg reflector + Ag 

layer). 

Layer # Material Thickness (nm) 

Substrate   

1 TiO2 64 

2 SiO2 231 

3 TiO2 166 

4 SiO2 70 

5 TiO2 116 

6 SiO2 108 

7 TiO2 57 

8 SiO2 71 

9 Ag 150 

 
Table A.2 Configuration of the polarising structure made of 29 alternating layers of 

WO3 and LiF. 

Layer # Material Thickness (nm) 

Substrate   

1 WO3 59 

2 LiF 125 

3 WO3 216 

4 LiF 105 

5 WO3 73 



A.3 Configuration of the multilayer structures. 

 

 

6 LiF 95 

7 WO3 200 

8 LiF 74 

9 WO3 232 

10 LiF 90 

11 WO3 69 

12 LiF 105 

13 WO3 53 

14 LiF 126 

15 WO3 250 

16 LiF 114 

17 WO3 66 

18 LiF 113 

19 WO3 149 

20 LiF 97 

21 WO3 73 

22 LiF 88 

23 WO3 88 

24 LiF 85 

25 WO3 137 

26 LiF 87 

27 WO3 73 

28 LiF 143 

29 WO3 250 

Air   
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Table A.3 Configuration of the fabricated polarising structure made of 15 alternating 

layers of TiO2 and SiO2. 

Layer # Material Thickness (nm) 

Substrate   

1 TiO2 60 

2 SiO2 91 

3 TiO2 63 

4 SiO2 71 

5 TiO2 144 

6 SiO2 50 

7 TiO2 127 

8 SiO2 77 

9 TiO2 56 

10 SiO2 91 

11 TiO2 59 

12 SiO2 99 

13 TiO2 78 

14 SiO2 117 

15 TiO2* 56 

Air   

*In order to compensate the optical effect caused by the deposition of many dielectric layers on top of each 

other, the refractive index used for this layer is the one corresponding to TiO2 last layer as described in 

Figure A.11.
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Appendix B Experimental procedures and 

characterization 

B.1 (FAI)x(MABr)1-xPbI2 perovskite solar cells 

All commercially available chemicals were employed without any further 

purification. To get the SnO2 nanoparticle precursor, 134 µL of SnO2 

nanoparticle suspension (Alfa Aesar (tin(IV) oxide, 15% in H2O colloidal 

dispersion) were mixed with 866 µL of methanol (Scharlau, 99.5%). Perovskite 

precursors were prepared inside a N2 glovebox by dissolving 1.2 M PbI2 (Sigma 

Aldrich, 99%) solution in dimethylformamide (Sigma-Aldrich, 99.8%) and 

dimethylsulfoxide (VWR, 99.5%) with a 4:1 volume ratio and adding 2.5 wt% 

of PbBr2 (Sigma Aldrich, 99.999%). The solution was kept at 80 ºC and under 

stirring overnight. The second precursor was prepared by mixing 60 mg of 

formamidinium iodide (Sigma Aldrich, 98%), 6 mg of methylammonium 

bromide (Sigma Aldrich, 98%) and 6 mg of methylammonium chlorine (Sigma 

Aldrich) in 1 ml of 2-propanol (Scharlau, 99.5%). A 72.3 mg/ml 2,2',7,7'-

Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-

OMeTAD, Merck) solution was prepared in chlorobenzene (Sigma-Aldrich, 

99.8%). For the doping of the hole transporting material, 17 µL of a 520 mg/mL 

bis(trifluoromethylsulfonyl)amine lithium salt (Li-TFSI, Sigma-Aldrich, 

99.95%) solution in acetonitrile (Sigma-Aldrich, 99.8%) and 29 µL of 4-tert-

butylpyridine (TBP, Sigma-Aldrich 96%) were added to the solution. The 

polydimethylsiloxane (PDMS, Sylgrad 184, Dow Corning) was prepared in an 

8:1 weight ratio of base and curing agents. 



B.2 High Voc perovskite solar cells 

 

 

For the deposition of the different layers, full-covered ITO substrates (100 

nm, 15 Ωsq-1, Stuttgart) were employed as substrate for the perovskite solar cell, 

previously cleaned in 10 minutes cycles of soap solution, water, acetone, water 

and ethanol. After an ultraviolet-ozone (UVO) treatment of 15 minutes, the SnO2 

nanoparticle solution was spin-coated onto the cleaned ITO substrates at 3500 

rpm, followed by a thermal annealing at 150 ºC during 30 minutes in air. The 

samples were then transferred into a glovebox for next fabrication steps. The lead 

solution was spin-coated at 60 ºC on top of the electron transporting layer at 2000 

rpm. Then, the organic solution was deposited at 2000 rpm for 30 seconds. After 

some minutes of drying inside the glovebox, the samples were transferred to a 

fumehood to perform an annealing at 150 ºC during 20 minutes in ambient air. 

After that, the Spiro-OMeTAD solution was deposited at 2000 rpm on top of the 

perovskite layer. The following day, a 60 nm thick gold top contact layer was 

evaporated in a high vacuum chamber (Lesker). The deposition rate was adjusted 

to 0.55 Å/s and a metal mask was place to define an active area of 0.096 cm2. 

B.2 High Voc perovskite solar cells 

The planar perovskite solar cells used as light recycling elements were 

fabricated with the following architecture: glass/ITO/(2-(9H-carbazol-9-

yl)ethyl)phosphonic acid (2PACz) /Cs0.18FA0.82PbI3 /C60 /bathocuproine (BCP) 

/Ag. For the preparation of the HTL precursor, 2PACz was dissolved in 

anhydrous ethanol obtaining a solution of 1 mmol/l. The double cation perovskite 

precursor solution was prepared by mixing PbI2 (507 mg: 10% excess of PbI2), 

CsCl (30 mg) and FAI (172 mg) in 1 mL solvent mixture of DMF:DMSO 4:1 

volume ratio. To prepare the passivating solution, phenyl ethylammonium 

chloride (PEACl) dissolved in IPA with a concentration of 1.5 mg/ml. 
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ITO substrates (sheet resistance 15 Ω/sq, Luminescence Technology) were 

cut in 0.30 cm × 0.30 cm and cleaned with acetone and isopropanol in ultrasonic 

bath for 10 minutes each. Then, the substrates were further treated with oxygen 

plasma for 3 min before the deposition of the 2PACz. After putting the 2PACz 

solution 15 min in an ultrasonic bath for 15 mins, a thin layer of this material was 

deposited on the ITO substrate by spin‐coating at 3000 rpm for 30 s and 

subsequently annealed at 100 °C for 10 min. The perovskite film was deposited 

on the substrate at 1000 rpm for 10 s and 5000 rpm for 30 s. 20 s after the start 

of the second step spin-coating, 150 µL chlorobenzene was quickly dropped on 

the spinning substrate. The samples were then annealed at 150 °C for 30 min in 

an inert atmosphere. The perovskite layer was passivated by dynamically spin 

coating the PEACl solution on top of the reference perovskite film at 5000 rpm 

for 30 s, followed by annealing at 100 °C for 5 min. The C60/BCP respective 

layers were thermally evaporated and, finally, an Ag layer was deposited by 

thermal evaporation, being the masked area of 0.145 mm2. 

B.3 MAPbI3 perovskite solar cells 

To get the TiO2 nanoparticle precursor, 75 µL of TiO2 nanoparticle 

suspension (Plasmachem, 20 wt% suspension in water, 4-8 nm) were mixed with 

905 µL of methanol (Scharlau, 99.5%) and 20 µL of titanium 

diisopropoxidebis(acetylacetonate) (Ti(acac)2OiPr2, Sigma-Aldrich, 75 wt%). 

Based on previous reports,159,195 the Ti(acac)2OiPr2 acts as a bridge between the 

surrounding nanoparticles, which thanks to a possible chelation of the 

acetylacetonate to the TiO2 creates a coordinate ligand between them. A similar 

procedure was followed to obtain the SnO2 nanoparticle precursor but, this time, 

486.6 µL of SnO2 nanoparticle suspension (Avantama AG, 2.5 wt% suspension 

in ethanol, 10 nm) were mixed with 500 µL of ethanol (Scharlau, 99.5%) and 



B.3 MAPbI3 perovskite solar cells 

 

 

13.4 µL of the organic titanate solution. Both suspensions were kept under 

stirring overnight before being used. Perovskite precursors were prepared inside 

a N2 glovebox by dissolving methylammonium iodide (CH3NH3I, 1-Material, 

99.5%) and lead (II) chloride (PbCl2, Sigma-Aldrich, 98%) with a 3:1 molar ratio 

in dimethylformamide (Sigma-Aldrich, 99.8%) and using different weight 

concentrations depending on the desired film thickness (Supplementary 

Information, Figure S1). A 15 mg/ml poly[bis(4-phenyl)(2,4,6-

trimethylphenyl)amine] (PTAA, Ossila) solution was prepared in toluene 

(Sigma-Aldrich, 99.8%) by keeping the mixture under stirring overnight at 60 

°C. For the doping of the hole transporting material, 10 µL of a 170 mg/mL 

bis(trifluoromethylsulfonyl)amine lithium salt (Li-TFSI, Sigma-Aldrich, 

99.95%) solution in acetonitrile (Sigma-Aldrich, 99.8%) and 5 µL of  4-tert-

butylpyridine (TBP, Sigma-Aldrich, 96%) were added to the solution. 

For the deposition of the solar cell precursors, two different types of ITO 

coated glass substrates were used depending on the final device configuration. 

For semi-transparent solar cells, two-stripe patterned ITO substrates (140 nm, 15 

Ωsq-1, Lumtec) were used, whereas for opaque ones full-covered ITO substrates 

(100 nm, 15 Ωsq-1, Stuttgart) were employed. The electron transporting material, 

either as a single or as a double layer, was obtained by subsequently spin-coating 

the corresponding nanoparticle suspensions onto the cleaned ITO substrates at 

6000 rpm, followed by a thermal annealing at 150 ºC during 30 minutes in air. 

The samples were then transferred into a glovebox for next fabrication steps. The 

perovskite solution was spin-coated on top of the electron transporting layer at 

2500 rpm and the resulting films were annealed for 2 hours at 90 °C plus 20 

minutes at 125 °C. After that, the PTAA solution was deposited at 2500 rpm on 

top of the perovskite layer. An 80 nm thick gold top contact layer was then 

evaporated in a high vacuum chamber (Lesker) for opaque cells. The deposition 
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rate was adjusted to 0.6 Å/s and a metal mask was place to define an active area 

of 0.096 cm2. For the semi-transparent devices, 12 nm of gold were deposited at 

a rate of 0.75 Å/s, followed by 40 nm of MoO3 using an evaporation rate of 0.6 

Å/s. This time a metal mask that conferred an active area of 0.06 cm2 was used. 

B.4 Characterization of materials and devices 

The surface morphology of the h-CPP and perovskite films, as well as the 

cross section of the devices, were evaluated by field emission scanning electron 

microscopy (FEG-SEM, FEI Inspect F-EBL). The X-ray diffraction (XRD) 

patterns were recorded with a Bruker D8 Advance diffractometer (Bruker, Cu-

Kα source). Film thicknesses of the different layers included on PV devices 

values were determined employing a surface profilometer (Alpha-Step IQ 

Surface Profiler, KLA-Tencor) and contrasted by the image obtained of the 

complete cell cross section with the FEG-SEM. The wavelength-dependent 

refractive index n and extinction coefficient k of the materials were determined 

by spectroscopic ellipsometry. For the perovskite, ellipsometric measurements 

were done with a UV-Vis-NIR Woollam VASE ellipsometer, where n and k were 

modelled as a sum of Kramers-Kronig consistent oscillators. For the other 

materials, ellipsometric measurements were done with a UV-Vis-NIR SOPRA 

GESP5 ellipsometer at angles of incidence between 50º and 70º, and n and k were 

modelled using a Cauchy law plus Kramers-Kronig consistent oscillators when 

needed. The optical transmission of the different samples was measured over the 

wavelength range of interest using a UV-vis-NIR spectrometer (Lambda 950, 

PerkinElmer). 

The PV performance of the fabricated solar cells under sunlight was 

determined using an AM 1.5G solar simulator (Sun 3000, Abet Technologies). 



B.4 Characterization of materials and devices 

 

 

The illumination intensity corresponding to 100 mWcm-2 was adjusted with a 

monocrystalline silicon reference cell (Hamamatsu) calibrated at the Fraunhofer 

Institute for Solar Energy Systems. For RGB chromatic illumination, low 

intensity light sources from Thorlabs (CPS635R, CPS532 and CPS450) were 

employed using an optical lens to focus the beam when necessary. The high 

intensity illumination was performed by a continuous wave Nd:YAG Coherent 

Compass power tuneable laser (wavelength: 532 nm). In this case, a quarter wave 

and a polariser were used to analyse the effect of each type of light polarisation 

on the electrical current generation by the solar cell. When polarised light was 

introduced in the ensemble, the same light intensity was used for both 

characterisations in order to compare the effect. The current voltage (J-V) curves 

were then recorded by scanning from positive to negative voltages (1.2 V to -0.2 

V) using a Keithley 2400 SourceMeter and a scan speed of 350 mV/s. External 

quantum efficiency (EQE) analysis was performed using a quantum efficiency 

measurement system (QEX10, PV Measurements). In this case, the devices were 

illuminated using a monochromatic light coming from a xenon lamp. The spectral 

response of the calibrated silicon cell was used as a reference. All set of devices 

were tested under ambient conditions.
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