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Catarina, Diogo, Vanessa, Pedro... to the team behind and heart of PLUX, much needed Manuel,

Joana, alongside João, who could effortlessly design a smile on anyone. To Maysa, Liliana, José...
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Abstract

With the emergence of high quality low-cost personal sensors in recent years,
biosignal research and the integration promises of monitoring technologies are
gaining momentum. Within health and well-being domains, leveraging unpreced-
ented machine learning processing opportunities for such technologies, wearable
sensors are called upon to shake how people personally engage with health,
reconnect with the body and gain self-awareness. This transformation is a change
that involves the efforts of a research that is highly interdisciplinary in nature,
gathering the attention of both public and private sectors. Driven by the inspiration
that personal sensing entails, Human-Computer interaction and experience design
teams create tools that challenge foundations, uncover the potential and limitations
that pave the way to a novel, personal, form of rapport with technologies. Opening
the design space, with interaction designers and engineers working hand-in-hand,
enables people to look afresh at technologies that have come to stay.

This thesis is an invitation to rethink how simplistic approaches to biosignal
processing enrich the potential of personal sensing in line with the fast develop-
ment of what have come to be undeniably ubiquitous technologies. Moreover, the
aim of taking signal processing, biomedical engineering techniques and machine
learning, “Making biosensing available” to design with, is at the core of the thesis.
Entering interaction design, pushing for mid tools that expose the affordances
of the technologies used, embracing first-person and body-centred design and
addressing how biosignal data touches sense-making, ownership and interpreta-
tion, a disruption that makes society reflect on how sociodigital materials affect
our lives is sought. As a result, this thesis weaves advances in the development
of biosignal processing and visualisation interfaces suitable to digital health with
novel ways to interact with biosignals, addressing affective technologies, body self-
awareness, and alternative biofeedback modalities that render biosignals available



for the design of engaging interactions. On the one hand, the outcomes of this
research encompass the study of a simplistic recurrent neural network paradigm
suitable for biosignal and health data processing, and a closely intertwined study
of biosignal data visualisation tools with the use of real-time, elaborate features
for the recognition or characterisation of complex physiological phenomena. On
the other hand, and more notably, the outcomes of this thesis draw on a general
overview of biosignals and first-person, body-centred design techniques that lay
the foundations for a major design exploration of physiology. This interdisciplinary
design exploration yields insight in unpacking the relationship between people
and personal affective technologies targeting self-awareness, a design stance
that leverages individual experiences to unpack challenges and boundaries in the
design of body-centred interactions, and the creation of bodily sensing-actuation
couplings that challenge biosignal data, the input-output effect coordination needs,
their interpretation, and their tangible or physical properties, by making biosignals
available for interaction design.
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Resumo

Com a aparição da sensorização pessoal, de baixo custo e alta qualidade, a
investigação em biosinais e as promessas de integração das tecnologias de
monitorização ganharam impulso. Dentro do campo da saúde e do bem-estar,
aproveitando as oportunidades sem precedente quanto ao processamento de
sinais e aprendizagem automática, os sensores “wearable” são chamados a re-
volucionar como se participa na sua própria saúde, como reconecta com o seu
corpo e se ganha maior auto-consciência. Esta transformação é uma mudança
que implica os esforços de investigação que é altamente interdisciplinar, cham-
ando a atenção do setor público, assim como o privado. Levados pela inspiração
que envolvem os sensores pessoais, investigadores da área de interação homem
máquina e o design de experiências criam ferramentas que desafiam os funda-
mentos, expõem o potencial e as limitações que prepararam o caminho para uma
direção inovadora e personalizável na maneira de se relacionar com a tecnologia.
Abrir o espaço do design, com designers de interações e engenheiros trabalhando
conjuntamente, pode facilitar um novo olhar para umas tecnologias que chegaram
para ficar.

Esta tese é um convite a repensar como certas abordagens simplificadas em
processamento de biossinais enriquecem o potencial dos sensores pessoais, em
linha com o desenvolvimento do que tem vindo a ser tecnologias inegavelmente
ubı́quas. Para além disto, o objetivo de usar o processamento de sinal, as técnicas
da engenharia biomédica e a aprendizagem automática, “Tornando os biosensores
disponı́veis”, para implementar soluções de design com os biossinais, encontra-se
no centro desta tese. Entrando no design das interações, apostando por ferra-
mentas intermédias que expõem as potencialidades das tecnologias utilizadas,
abraçando o design na primeira-pessoa e centrado no corpo, e abordando como
biossinais tocam a construção de significado, a sua possessão e interpretação,



procura-se uma disrupção que faça à sociedade refletir sobre como os materi-
ais socio-digitais afetam as nossas vidas. Como resultado, esta tese apresenta
avanços nas áreas de processamento de sinais e interfaces de visualização ad-
equadas para a saúde digital com novas formas de interactuar com biossinais,
abordando as tecnologias afetivas, a autoconsciência do corpo, e as modalidades
alternativas de “biofeedback ” que tornam os biossinais disponı́veis para o design
de interações atrativas. Por um lado, os resultados desta investigação englobam
o estudo de um paradigma simplista de redes neuronais recursivas adequadas
para o processamento de biossinais e dados da saúde, e o estudo estreita-
mente ligado das ferramentas de visualização de biossinais com caracterı́sticas
avançadas para o reconhecimento ou caracterização de fenômenos fisiológicos
complexos. Por outro lado, e duma maneira mais notável, os resultados desta tese
beneficiam de uma abordagem geral aos biossinais e as técnicas de design na
primeira-pessoa, centradas no corpo, que estabelecem os fundamentos para uma
importante exploração de design sobre a fisiologia. Esta exploração de design
interdisciplinar, leva a uma visão importante no decifrar a relação entre pessoas
e tecnologias afetivas pessoais que procuram a autoconsciência, uma postura
de design que aproveita as experiências individuais para elucidar os desafios e
limitações presentes no design de interações centradas no corpo, e a criação de
acoplamentos de sensorização-atuação que desafiam os biossinais, as necessid-
ades de coordenação de efeitos entrada-saı́da, a sua interpretação, e as suas
propriedades tangı́veis ou fı́sicas, fazendo os biossinais disponı́veis para o design
de interações.
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Resum

L’aparició dels sensors personals de baix cost i d’alta qualitat, han suposat un
gran impuls per a la recerca en biosenyals i la integració de tecnologies de
monitorització. Dins del camp de la salut i el benestar, aprofitant oportunitats
sense precedents quant al processament de senyals en aprenentatge automàtic
per a tals tecnologies, els sensors “wearable” estan cridats a revolucionar com la
gent gestiona personalment la seva pròpia salut, com reconnecta amb el seu cos i
guanya autoconsciència. Aquesta transformació suposa un canvi que implica els
esforços d’una recerca que és altament interdisciplinària, reunint l’atenció tant del
sector públic com el privat. Portats per la inspiració que comporten els sensors
personals, els equips de d’interacció Persona-Ordinador i disseny d’experiències
creen eines que desafien els fonaments, exposen el potencial i les limitacions
que preparen el terreny cap a una innovadora i personal manera de relacionar-se
amb la tecnologia. Obrir l’espai de disseny, amb dissenyadors d’interaccions i
enginyers treballant conjuntament, facilita que la gent tingui una nova mirada cap
a unes tecnologies que han arribat per quedar-se.

Aquesta tesi és una invitació a repensar com certs abordatges simplistes en
processament de biosenyals enriqueixen el potencial dels sensors personals, en
lı́nia amb el ràpid desenvolupament del que han acabat esdevenint tecnologies
innegablement ubiqües. Més enllà d’això, l’objectiu de combinar el processament
de senyal, les tècniques d’enginyeria biomèdica i l’aprenentatge automàtic, “Fent
els biosensors disponibles”, per a dissenyar amb ells, constitueix el nucli central
d’aquesta tesi. Abordant el disseny d’interaccions, apostant per eines intermèdies
que exposin les potencialitats de les tecnologies utilitzades, abraçant el disseny en
primera-persona i centrat en el cos, i analitzant com les dades de biosenyals tenen
un impacte en la construcció de significat, la seva possessió i interpretació, es
busca una disrupció que faci a la nostra societat reflexionar sobre com els materials



sociodigitals afecten les nostres vides. Com a resultat, aquesta tesi entreteixeix
avenços en processament de senyals i interfı́cies de visualització adequades per
a la salut digital amb noves formes d’interactuar amb biosenyals, abordant les
tecnologies afectives, l’autoconsciència del cos, i les modalitats alternatives de
“biofeedback ” que tornen els biosenyals disponibles per al disseny d’interaccions
atractives. Per una banda, els resultats d’aquesta recerca engloben l’estudi d’un
paradigma simplista de xarxes neuronals recursives adients per al processament
de biosenyals i dades de salut, i l’estudi –estretament relacionat amb això– d’eines
de visualització de dades de biosenyals amb l’ús de caracterı́stiques avançades
per al reconeixement o caracterització de fenòmens fisiològics complexos. Per
altra banda, i de manera destacable, els resultats d’aquesta tesi es beneficien
d’un abordatge general dels biosenyals i les tècniques de disseny en primera-
persona i centrades en el cos, que estableixen els fonaments per a una important
exploració fonamental del disseny amb fisiologia. Aquesta exploració de disseny
interdisciplinària, aporta nova llum per desxifrar la relació entre les persones i les
tecnologies afectives personals que busquen l’autoconsciència; una perspectiva
de disseny que aprofita les experiències individuals per identificar els desafiaments
i limitacions presents en el disseny d’interaccions centrades en el cos, aixı́ com
també la creació d’acoblaments de sensorització-actuació que desafien les dades
de biosenyals, les necessitats de coordinació d’efectes input-output, la seva
interpretació, i les seves propietats tangibles o fı́siques, fent que els biosenyals
estiguin disponibles per al disseny d’interaccions.
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Resumen

La aparición de los sensores personales de bajo coste y alta calidad, ha supuesto
un gran impulso para la investigación en bioseñales y la integración de tecnologı́as
de monitorización. Dentro del campo de la salud y el bienestar, aprovechando
oportunidades sin precedentes por lo que al procesamiento de señal en aprend-
izaje automático respecta, para tales tecnologı́as, los sensores “wearable” están
llamados a revolucionar cómo la gente gestiona personalmente su propia sa-
lud, cómo reconecta con su cuerpo y gana autoconciencia. Esta transformación
supone un cambio que implica los esfuerzos de una investigación que es alta-
mente interdisciplinar, reuniendo la atención tanto del sector público como el
privado. Llevados por la inspiración que conllevan los sensores personales, los
equipos de interacción Persona-Ordenador y el diseño de experiencias crean her-
ramientas que desafı́an los fundamentos, exponen el potencial y las limitaciones
que preparan el terreno hacia una innovadora y personal manera de relacionarse
con la tecnologı́a. Abrir el espacio de diseño, con diseñadores de interacciones e
ingenieros trabajando conjuntamente, facilita que la gente tenga una nueva mirada
hacia unas tecnologı́as que han llegado para quedarse.

Esta tesis es una invitación a repensar cómo ciertos abordajes simplistas en
procesamiento de bioseñales enriquecen el potencial de los sensores personales,
en lı́nea con el rápido desarrollo de lo que han acabado por ser tecnologı́as inneg-
ablemente ubicuas. Más allá de ello, el objetivo de combinar el procesamiento de
señales, las técnicas de la ingenierı́a biomédica y aprendizaje automático, “para
hacer que los biosensores estén disponibles” para diseñar con ellos, constituye el
núcleo central de esta tesis. Abordando el diseño de interacciones, apostando por
herramientas intermedias que expongan las potencialidades de las tecnologı́as
utilizadas, abrazando el diseño en primera-persona y centrado en el cuerpo, y
analizando cómo los datos de bioseñales tienen un impacto en la construcción



de significado, su posesión e interpretación, se busca una disrupción que haga
a nuestra sociedad reflexionar sobre cómo los materiales sociodigitales afectan
a nuestras vidas. Como resultado, esta tesis entreteje avances en procesami-
ento de señales e interfaces de visualización adecuados para la salud digital con
nuevas formas de interactuar con bioseñales, abordando las tecnologı́as afectivas,
la autoconciencia del cuerpo, y las modalidades alternativas de “biofeedback”
que hacen que las bioseñales estén disponibles para el diseño de interacciones
atractivas. Por un lado, los resultados de esta investigación engloban el estudio
de un paradigma simplista de redes neuronales recursivas adecuadas para el
procesamiento de bioseñales y datos de salud, y el estudio – estrechamente
relacionado con esto – de herramientas de visualización de datos de bioseñales
con el uso de caracterı́sticas avanzadas para el reconocimiento o caracterización
de fenómenos fisiológicos complejos. Por otro lado, y de manera destacable, los
resultados de esta tesis se benefician de un abordaje general de las bioseñales,
las técnicas de diseño en primera-persona y centrado en el cuerpo, que estable-
cen los fundamentos para una importante exploración fundamental del diseño
con fisiologı́a. Esta exploración de diseño interdisciplinar aporta nueva luz para
descifrar la relación entre las personas y las tecnologı́as afectivas personales
que buscan la autoconciencia; una perspectiva de diseño que aprovecha las
experiencias individuales para identificar los desafı́os y limitaciones presentes
en el diseño de interacciones centradas en el cuerpo, ası́ como la creación de
acoplamientos de sensorización-actuación que desafı́an los datos de bioseñales,
las necesidades de coordinación de efectos input-output, su interpretación, y sus
propiedades tangibles o fı́sicas, haciendo que las bioseñales estén disponibles
para el diseño de interacciones.
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Chapter 1

Making biosignals available: A
multidisciplinary perspective

1.1 Project and PhD Overview

With the turn of the century, the Western society witnessed a new wave of
sensing technologies that have garnered the interest of clinical psychology. With
the aims of reducing the cost of accessing treatment, adding objective meas-
urements, strengthening the client-therapist rapport or the compliance with the
therapy, research has started to look at these technologies. Aligned with the rise
of personal sensing, sports and physical health have capitalised the adoption of
these technologies at home. With regard to mental wellbeing, though, treatments
that had flourished in the online space, remote counselling, and computer-based
therapy, are nowadays showing interesting paradigms using physiological sens-
ing. Affective technologies have been unexplored, to some extent. Throughout
the 2000s, research in Human-Computer Interaction (HCI), much inspired by the
advent of the computation that relates or influences emotions – a novel Affective
Computing field [Picard, 1997] – recognised the value of biosensing to capture
affect in several experiences, or even the use of the nowadays ubiquitous smart
phones to address emotion tracking through behavioural notes and metrics. This
is the case of Matthews et al. [Matthews et al., 2008], one of the first instances
in which phones take paper-based mood charting concepts to screens that are
available 24/7, suggesting the potential of embracing technology in mental health.
In the work of Lindström, Ståhl, Höök et al. on the Affective Diary [Lindström
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et al., 2006, Ståhl and Höök, 2008], biosensing is leveraged together with mobile
technologies for affect self-reflection. Projects such as ICT4D yielded outcomes
arguing in favour of biosensing and tracking device ecosystems aimed at the
treatment of depression [van de Ven et al., 2012].

The study of interaction design surrounding affective technology usage, as seen
in mental wellbeing contexts, inspires novel biosignal research that pushes the
boundaries of the processing that these data undergo and how information is
interpreted and handled. In this PhD project, biosignals are taken as the main
object of study. In order to work closely with the application of biosignals in real-life
scenarios, i.e. not only the processing of information but also how it is used
alongside technology, what it entails and in what contexts, a focus on two research
perspectives is adopted.

1.1.1 Biosignals: Taking two research perspectives

As of today, designing affective interactions that support emotion awareness
and self-reflection is still open for research questions. Acknowledging the growth
of interest towards affective technologies, new research projects set out to face
a list of challenges. In all of them, biosensing and psychophysiology potentially
have a major role. Biosignals need to be made available. But what does making
biosignals available mean? There is room for improvement in the ways that biosig-
nal data is being delivered and used today. The research presented in this thesis
stems from two different perspectives, in other words, making biosignals available
for developers and making biosignals available for interaction designers. On the
one hand, from an engineering perspective, one could ask what fronts are there
to extend a broader adoption of physiological monitoring. The case of wearable
health is paradigmatic, as current software interfaces presenting, customising and
enabling different processing mechanisms to handle biosignal features, condition
the way data makes it into use cases. Richer information, fine-grained visualisation
of data and uncovered features (or combinations of features) facilitate the work of
developers. Biosignal acquisition platforms progress alongside learning materi-
als and processing code snippets whose ease of code affects how technologies
are adopted and refined. Furthermore, wearable health devices are crucial to
probe to what extent simplistic algorithms are able to run fast, provide reliable
data processing and execute without necessarily relying on a high performance
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computer. On the other hand, a range of different questions emerge if we take
an interaction design perspective. How can designers leverage an information
that is seldom tangible? If we consider biodata as a material, one can argue that
biodata is not a malleable material to design with. Biosignals, although specific,
temporally accurate or precise, face the same design challenge. This, of course,
differs substantially from designing artefacts or experiences with tangible materials
found in crafting practices, such as using wood, fabrics or metals. Regarding the
body, designers, interaction researchers and artists have tried to capture move-
ment, laughter, drug intake, hormonal and circadian rhythms, among other sorts
of biodata in order to gain an understanding of our bodies and propose novel
interpretations. A biosignal, i.e. biodata acquired by electrophysiology sensors, is
a computational material, often based on fluctuations of body properties that are
digitised. Research on the ways in which biosignals can be stretched, adapted,
modified and interpreted is needed. How do users embrace such information and
make it their own? Would that suffice to integrate psychophysiology in psycho-
therapy contexts? Moreover, aligned with alternative ways to relate to affective
computing, the body is no longer a mere object to be measured. Paradigms that
address affect as interaction rather than states to be algorithmically identified bring
an interaction design alternative to the table. How can one design with biodata,
i.e. data making users intimately relate to bodily properties? These properties are
often addressed intangibly. However, biosignals used for – body and emotional
– self-awareness, offer a fertile ground for discussion on subjective connections
to biodata, feeling alive and the interpretation of data. One of the pillars of this
thesis revolves around new avenues of using biosignals, inspired and approached
by an interaction design research perspective. Of particular interest is the use of
Somaesthetical Design [Höök, 2018], an approach that highlights the need to take
the body into consideration when creating interaction experiences (introspective
or not), following Richard Shusterman’s Somaesthetics [Shusterman, 2012], not
taking the body as a disconnected entity in the traditional brain-body dichotomy
but holistically, acknowledging the role it plays in experiencing the world and in
shaping our subjective interpretations.

On another front not directly covered in this thesis, there is the case of clinical
psychology research. When in clinical contexts, e.g. using cognitive behavioural
therapy, the construct of emotion regulation comes to relevance, inevitably making
it possible to find links between physiology and self-awareness, its interpretation,
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cognitive re-appraisal, modulation of the responses triggered by an emotionally
charged event, etc. Clinical psychology researchers have even fostered the

Figure 1.1: Patient trying a VR application for chronic pain [Jones et al., 2016]

use of technologies that go from virtual/augmented reality for exposure therapy
addressing phobias and anxiety [Tortella-Feliu et al., 2010] – with other use cases
researched in chronic pain [Jones et al., 2016] (see fig. 1.1) and post traumatic
stress disorder –, the psychophysiology validation of therapy through biosensing,
and for example the mechanisms for the self-assessment of moods [Garcia-
Palacios et al., 2013] (known as ecological momentary assessment, EMA) when
out of the lab and adapting traditional paper-based questionnaires into simplified
versions on portable screens (mobile phones or wearables).

1.1.2 AffecTech: Personal technologies for affective health

The interest in the interplay of mental wellbeing, self-awareness and sensing
technology has crystallised through several public-funded international and inter-
disciplinary projects that the European Commission has put forth. The AffecTech
H2020 project, bringing together private and public stakeholders, is unique in
achieving the direct involvement of original equipment manufacturers. But the
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public health challenges of mental wellbeing are vast. This thesis has benefited
from the H2020 support and falls under the overarching AffecTech goals.

Figure 1.2: World Health Organization estimates of depression prevalence (cases)
worldwide [World Health Organization, 2017]

According to the World Health Organization [World Health Organization, 2017],
depression, for instance, is estimated to have a prevalence of 322 million cases
worldwide as of 2017 (see fig. 1.2). Other problems like suicide, or affective dis-
orders, such as Anxiety and Bipolar / Manic Depressive disorder are not of lesser
concern. AffecTech efforts are timely, as European Union’s efforts on creating inter-
national research networks addressing mental wellbeing acknowledges the utmost
priority that Europe puts in a global problem causing staggering economic and
health consequences. This can be seen throughout different research networks
around the field but focusing in a wide range of particular aspects such as policy
development, technology transfer, psychoeducation and awareness. Examples of
such networks are [Ubicom Mental Health, 2015, TEAM ITN, 2016, eMEN, 2019].
AffecTech, in particular, highlights the personal aspect of the affective technolo-
gies, i.e., how biosensing, interactions and, potentially, clinical interventions, can
better adapt to the user, be customised or respond to the different challenges that
different health conditions and individual subject needs pose.

The AffecTech Innovative European Training Network is an ambitious consor-
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tium which is conformed by 11 institutions (8 Universities) throughout Europe,
creating an unprecedented interdisciplinary framework to target Mental Health and
technology goals:

• Lancaster University - ULANC; Lancaster, UK

• Trinity College Dublin - TCD; Dublin, Ireland

• University of Oxford - UOXF; Oxford, UK

• Università di Pisa - UP; Pisa, Italy

• Universitat Jaume I - UJI; Castelló, Spain

• Università Cattolica del Sacro Cuore - UNICATT; Milano, Italy

• Boğaziçi University - BU; Istanbul, Turkey

• Philips Electronics B.V. - PHILIPS; Eindhoven, The Netherlands

• Leeds teaching Hospitals National Health Service Trust - NHS; Leeds, UK

• PLUX Wireless Biosignals S.A. - PLUX; Lisboa, Portugal

AffecTech gathers outstanding yet fragmented expertise in developing personal
systems for mental health. AffecTech expertise areas are Electrical Engineering /
Biosensing, Clinical Psychology and Human-Computer Interaction:

The contribution of clinical psychologists to the creation of affective technologies
is of relevance. No other professionals are better equipped to assess which inter-
actions make sense to a potential psychotherapy intervention. With background
on adapting traditional therapy to the digital domain (e.g. eHealth, remote therapy,
virtual reality, supported by personal sensing, etc.) the health professionals are
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Figure 1.3: AffecTech expertise and research areas

in charge of the task of delineating use case needs, identify the most researched
commercial platforms and capture the latest advances adopted clinically. Electrical
Engineering / Biosensing must facilitate access to low-cost, high performance
and multimodular biosensors that can be integrated in wearables and/or affective
health interactions. By multimodularity, we refer to the possibility of integrating
different acquisition sources in the same platform or interaction, as requested
by the specific needs of the designed experience, in other words allowing the
inclusion of heart data, muscle data, skin conductance, or breathing among others.
These technologies must ideally operate through several programming interfaces,
making it simpler for designers to explore different features, representations and
processing algorithms that are the object of study of engineers. Human-Computer
interaction must leverage the expertise on the creation of experiences related to af-
fective health, provide the tools to review the state-of-the-art and adopt novel ways
to address technology-mediated interactions that touch upon mental wellbeing,
emotions and self-reflection.

The idea behind an interdisciplinary research project like this, is that researchers
from the different areas are able to pave the way to explore intersections of
the fields, understand the needs and limitations of all the areas involved and
receive training that facilitates approaching the technology to the clinical practice,
the therapist goals to the engineers and the expertise in designing interactions
deploying the technology smoothly to increase acceptance, provide meaning,
actively engage the subjects involved and ensure integrity, privacy and respect for
the user. To pursue the necessary dialogue across research areas, a complete year
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of the project is devoted to a series of 6 training events that focus on one of the key
disciplines for a week, involving academics of reference and unpacking use cases
from the commercial sector. These complement research internships scheduled
to take place during the project, so that the researchers are exposed to first-hand
knowledge and development from areas other than their own background.

With the framework of the mental wellbeing domain, the UJI-PLUX industrial
PhD project addresses the integration of Human-Computer interaction and bio-
sensing expertise drawing on contributions by all the network participants. The
PhD project is organised in order to understand the technical and practical know-
ledge of the state-of-the-art and research methodologies of AffecTech with the
aim of developing joint experiences integrating wearable systems and interactive
applications for capturing, understanding and reflecting upon affective health. This
approach should leverage the use of wearable sensors, capturing meaningful
events through physiological components of emotions, and put a strong emphasis
on the creation of interactions that feel meaningful for the user that embraces
affective technology to better understand and reflect on her/his mental wellbeing.

1.2 Thesis objectives

The work presented in this thesis is eminently interdisciplinary, between en-
gineering or developer roles and that of an interaction designer, seeking to use
technology to spur reflection on the body. Thanks to the AffecTech [AffecTech,
2017] and industrial scope of the PhD, this thesis is faced with the Making bi-
osignals available challenges (see the framing of the problem in section 3.1 and
4.1) that would have a direct impact in researcher peers. In other words, the
biosignal stakeholders are not end users of an interaction only, but the developers
behind biosignal acquisition and visualisation platforms and the interaction design
researchers that seek the inclusion of materials that unpack body/physiological
information otherwise not achievable. A suitable approach to map this research
space, would be that of investigating what of biosignal users. However, this thesis
opts for an alternative. Two disjoint perspectives (engineer/developer and interac-
tion designer) are taken. Following these, a list of unresolved topics is devised. To
begin with, being immersed in a biosignal platform development environment, the
limitations or lack of material in accompanying the novice biosignal user is experi-
enced first-hand. Contributing to the development of such platforms is a means to
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expose novelty fronts. A development team is faced with the question on how to
best support the use of biosignal visualisation software. Moreover, in most of the
use case scenarios that reach to the development team from psychophysiology
studies, real-time assessment – not only acquisition – appears consistently. This,
of course, goes in line with other wearable developments that have seen the light
in recent years, i.e., health risk alarms and recognition of patterns, all of them with
the capability of being delivered in real time. But, real-time processing requires
elaborate algorithms that leverage computations that are fast and accurate. As a
consequence, Making biosignals available is translated in the following objectives:

• Development: Explore the ways to extend the handling of biosignals,
such as tools for those working at the forefront of the development of
processing stages, dealing with wearable health, algorithms and real-
time interfaces that expose characteristics of the physiology.

O1. Characterise the main elements present in the acquisition of biosignal data
and their processing, i.e. characterise the most frequently used biosignals in
physiology and affective computing alongside the acquisition hardware and
data visualisation interfaces.

O2. Commit to the development of support material that accompanies the discov-
ery and usage of biosignals, exposing specific features, enabling end user
actions and transferring the control of the platform to them.

O3. Study computationally undemanding machine learning (ML) tools. In-
vestigate classification paradigms that are potentially suited to wearable
biosignal devices with limited computing capabilities, but able to be custom-
ised by the user and integrated with biosignal data acquisition software.

O4. Study the possibility to customise and integrate several features to cap-
ture complex characteristics from physiology data .

O5. Study the transition of algorithms for biosignal processing into real-time
physiology platforms.

Furthermore, assuming a fast processing and recognition of (real-time) specific
biosignal features is feasible, this thesis is faced with the open question on what to
do with such features. Biosignal devices are capable of capturing body properties
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to be exposed, used and reflected upon. This research is committed to create
an introductory description of biosignals and the accessible low-cost physiology
acquisition platforms to be used. Once this is set, it is possible to step into the
study of how biosignals and their features are handled. The aim consists facilitating
the work of both (a) the developer who wants to delve into using biosignals to study,
create experiences, or utilise the physiology of the body, and (b) the interaction
designer, invited to eagerly embrace a body technology that can be adapted,
understood, defied and used at anyone’s convenience. With the core topic of
affective technologies and bodily self-awareness backing up the thesis, a list of
objectives with respect to Interaction design research is prepared:

• Design: Study ways to alter, interpret and process biosignals, with an
interactive design perspective focusing at body/emotion self-awareness.

O6. Establish a design stance, novel or literature-based, that helps the researcher
address the interaction of emotion, body physiology and interaction boundar-
ies.

O7. Through material explorations and crafting practices that combine tech-
nology and physical materials, approach the interpretation of biosig-
nals that connect to either body or emotional aspects of the self, its repres-
entations and meanings from a personal view.

O8. In line with HCI trends on explicitly exposing materials so that they can
be worked, adapted and changed, approach alternative ways to make bi-
osignals available as a design material. The goal is that biosignals are
ultimately presented in the form of tangible representations or artefacts that
connect to the body, so that one can engage vividly with them.

O9. Through HCI-Biosensing exchanges, address how design platforms sup-
port the creation of new ways to interpret biosignals, own them, ap-
proach them easily, and adapt them in a way that relates to our bodies.
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1.3 Thesis structure

This thesis is organised in the following structure: The PhD scope and project
framework is presented in chapter 1, where the goals and two perspectives followed
are introduced. A description of the main materials and methods utilised follows.
The thesis research is divided in Part I and Part II (see fig. 1.4), in accordance to
the perspectives presented in section 1.1.1. Both parts contain the description of
specific materials and methods that accompany the research questions and the
resulting insights from the studies conducted.

Figure 1.4: Thesis structure
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As opposed to common practice, this thesis does not present a state-of-the-art
section at the beginning. Instead, the state of the art of the different perspectives
addressed, is unpacked and distributed throughout the multiple studies presen-
ted in their respective sections. Part I contains the Making biosignals available
research from the engineering or developer perspective (chapter 3), delving into
wearable health use cases, addressing current progress and issues, and present-
ing results that argue in favour of progress done in biosignal interfaces, advances
in simplistic yet efficient approaches for signal processing, and the interest in
real-time processing and novel feature combinations. Part II (chapter 4) contains
the Making biosignals available research from the interaction design perspective,
focusing on design explorations conducted in interdisciplinary teams, addressing
state-of-the-art approaches and issues, presenting studies with users/designers
and going deeper into HCI and outcome reflections about biodata as a design
material of relevance to affective and self-awareness technology. The thesis ends
with a chapter (chapter 5) providing a general reflection on how to make biosignal-
enhanced interactions real. A discussion on future developments of interest with
respect to making biosignals available is given, together with an example of in-
teraction design leveraging both HCI and engineering takeaways and a look into
research avenues that can continue to foster the use of biosignals in interaction
design research, affective technologies and HCI, giving way to conclusions and
final remarks on aspects in which this thesis falls short or where there still room
for further research.
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Chapter 2

Main materials and methods

2.1 Main materials and methods

The study of biosignals and how they can be made available for developers
and interaction designers required an understanding of such representations and
access to highly reliable and easy-to-use low-cost platforms that acquire them. In
this section we present materials that have been at the core of all the studies that
make up this thesis:

• Biosignals

• Biosignal acquisition platforms

Biosignals are time representations of changes in energy produced in the
body. These changes correspond to energy variations of different nature, such
as electrical, chemical, mechanical, and thermal (as presented in table 2.1).
Examples of the measurement of mechanical changes are those of position,
strain or rotations found for instance at muscle level or heart. Electrical changes
can be measured as voltage signals – also measured by means of charge or
conductance –, at the base of electrophysiology. Examples of these signals are
electromyography (EMG), electrocardiography (ECG), electroencephalography
(EEG), electrodermal activity (EDA) and electrooculography (EOG), covering the
measurement of muscle, heart, brain, sympathetic nervous system activation and
eye movement activity, respectively (see also section 2.1.2). Thermal changes
focus on fluctuations of temperature, such as those measured on the body surface.
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Chemical changes take the form of concentrations or exchanged energy estimates,
as found in the measurement of pH characteristics, metabolites present in body
fluids or other substance or hormonal concentrations.

With the turn of the 21st century and the advent of the digital era, the advances
in the field of electronic components that spurred the development of computing,
instrumentation, and algorithms left their impact on medical and biosignal devices.
Biosensing and electrophysiology technologies were greatly improved, ready for
the study of body functions and health monitoring in the context of clinical research.
As technologies grew, the miniaturisation and reduction of costs contributed to the
growth of biosensing monitoring technologies beyond clinical settings as well.

Table 2.1: Parameters and type of energy measured through body sensing. Adap-
ted from [Semmlow and Griffel, 2014].

Energy Changing parameter Measurement examples

Mechanical Position, force, torque, pressure
Muscle contractions, cardiac pressure,
muscle movement

Electrical Voltage, charge, current EMG, ECG, EEG, EDA, EOG
Thermal Temperature Surface body temperature
Chemical Concentrations, exchanged energy pH, oxygen, hormonal concentrations

A direct consequence of such rapid expansion is the creation of the sports &
health monitoring markets that fill up the mobile app stores and provide remarkable
revenues in the ubiquitous computing paradigm that we live in. The democratisation
of the study of biosignals, however, comes with interesting possibilities such as a
better understanding of the self and a richer, unprecedented way to interact with
technologies that accompany us. This yields an opportunity to define alternative
ways to live an affectively healthy life.

2.1.1 Multimodal biosignal acquisition platforms

As the maturity of open access physiology databases [Goldberger et al., 2000]
backs up the improvement of processing algorithms, low-cost hardware platforms
help populate the open source space [da Silva, 2018] where users embrace
biosensing, share ideas and drive the future of biosignals applied in different areas.
Furthermore, the biosignals that were once limited to hospitals and clinics, or in
specialised research labs, addressed in classical texts of physiology, are nowadays
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accessible in virtually any context by means of wearable technologies. In the review
of Heikenfeld et al.[Heikenfeld et al., 2018], an interesting account of the transition
from lab tracking to wearables during the 20th century is offered along an in-depth
overview of body sensing mechanisms not only restricted to electrophysiology.
The field of affective computing has consistently found in biosignals a relevant
source of information [Giannakakis et al., 2019]. Besides, the fact that biosensing
platforms have jumped off the clinic has contributed to embracing them alongside
other technologies like movement tracking, traditionally linked to behavioural and
psychophysiology labs.

The research presented in this thesis is concerned with studies utilising BITalino
and biosignalsplux [PLUX S.A., 2017]. Exceptionally, a particular case of using
the Grove GSR Arduino accessory [Grove - Seeed Studio, 2014] for galvanic skin
response sensing is found in section 4.4. With objectives that range from out-of-
the-lab psychophysiology tracking [Can et al., 2019, Can et al., 2020a, Can et al.,
2020b] to new perspectives in interaction design [Umair et al., 2018, Umair et al.,
2019b, Alfaras et al., 2020b] recent affective technology studies of interest have
often addressed biosignals through other available biosignal research platforms
such as Empatica E4 [EMPATICA, 2020], or even commercial wearables such as
the Samsung Gear S2 [Samsung, 2015], among others.

BITalino revolution board

BITalino [BITalino, 2013] is a biosignal acquisition board implementing an all-
in-one hardware design, with a variety of pre-connected biosensing blocks. The
board presents up to 6 input channels, 2 output channels for buzzer actuation or
LED light, a pulse wave modulator port, a Bluetooth (or Bluetooth Low energy)
communication module, a microcontroller unit and a power module that connects
to the Li-Po battery supplying 3.7V for operation and charging. In its revamped
revolution version, ready-to-use sensors to track muscle, heart, electrodermal,
motion and brain activity coexist in a single board. The board can be found in
three different kit modalities: the Board kit, the Plugged kit, where sensors are
interchangeably connected by cables and the Freestyle kit, where all compon-
ents, from communication, computing core, power supply to sensing modules
are disconnected for prototyping purposes. In the Board kit, electrophysiology
sensors are presented in the form of preattached modules. However, its modular
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board design allows to break up specific sensing modules to free channels and
solder multiple sensors that better suit the research purposes of the developers.
Capable of acquiring biosignals at 1000Hz sampling rates, BITalino can stream
data continuously for more than 12 hours.

Figure 2.1: BITalino revolution biosignal acquisition platform [BITalino, 2013]

By means of specific requests from a wide range of application programming
interface (API) options, data from all the channels is streamed wirelessly to a device
which pairs and issues the data requests, be it a computer or a smartphone. Its
sensing variety makes BITalino perfect for biosignal exploration and lab activities.
The kit includes all the basic accessories needed to get started in physiology
computing, with a relevant tradeoff between low cost and reliable measurements.
The analogue signals are digitised at a 10bit resolution. Along with a cross-platform
and freely available software, BITalino enables instant biosignal data visualisation
and recording out-of-the-box. Moreover, extra sensors such as breathing activity,
blood volume pulse and others can complement the kit.

biosignalsplux acquisition platform

biosignalsplux [PLUX S.A., 2017] is a high resolution acquisition platform presen-
ted in the form of a 4-channel or 8-channel hub that enables the measurement
of multimodal biosignals concurrently. With a closed and simple form factor, the
platform is aimed at advanced research studies employing physiology signals.
Thanks to its vast sensor choice, from common heart, electrodermal, brain, motion
and muscle activity to specialised sensors such as blood oximetry, angle tracking,
blood volume pulse and temperature, among others, biosignalsplux offers many
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possibilities for personal sensing research uses. The hub is capable of handling
several channel acquisitions at very high sampling rates (3000Hz) for human
physiology. Data is captured at a 16bit high resolution and streamed wirelessly
through Bluetooth, for a total duration that can reach 10 hours. Besides, the hub
incorporates a digital port for communication and synchronisation purposes, and
allows internal memory storage.

Figure 2.2: biosignalsplux acquisition platform [PLUX S.A., 2017]

Its multi-channel approach has led to a broad platform adoption in the context of
physiotherapy, due to the interest of tracking several muscles simultaneously. How-
ever, the many sensing modalities has paved the way for physiology research in
other domains, such as high performance sports, cognitive fatigue and ergonomics.

2.1.2 Biosignals

The research focus of this thesis is set on a subset of biosignals present in the
BITalino revolution do-it-yourself (DIY) low-cost biosensing platform [BITalino, 2013,
da Silva et al., 2014, Batista et al., 2019] that backed and inspired the research
in affective technologies. These, although not an exhaustive list, are to some
extent physiological signals that have become standard for physiology monitoring
research – slowly crossing disciplines and making their way into affective health
tracking, interaction design, and other domains of interest.

This section presents a selection of biosignals that can be incorporated into the
creation of new technologies for affective health.
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Figure 2.3: Different monitored biosignals: a) Electromyography (EMG), b) Electro-
cardiography (ECG), c) Electrodermal activity (EDA), d) Electroencephalography
(EEG), e) Inertial measurement unit (IMU) signals and f) Respiration



CHAPTER 2 19

This is a collection of relevant biosignals for psychophysiology research. For
each of them, this section offers a brief, systematic description on 1) How it works,
summarising the basic physiological principles that provide the biosignals energy
observables; 2) What can be extracted from the collected biosignal; 3) Where
the biosignal can typically be collected in the human body; 4) When, or how
often, the signal should be sampled describing the concerns on the timing of the
acquisition and in particular the typical sampling frequency of each biosignal; and
5) Limitations of the biosignal acquisition and processing with the challenges of
noise or signal artefact. All of them are examples of signals that we have addressed
in our research. This non-exhaustive selection offers a good starting point for
researchers interested to integrate biosignals in their design of technologies for
wellbeing and mental health.

2.1.3 Surface electromyography (sEMG)

How it works: The recording of the electrical activity produced by skeletal muscles
receives the name of electromyography (EMG). Human muscles are made up of
groups of muscle units that, when stimulated electrically by a neural signal, produce
a contraction. The recording of the electrical activity of the muscles (voltage
along time), traditionally relying on intrusive needle electrodes (intramuscular),
is easily accessible nowadays by means of surface electrodes that capture the
potentials of the fibres they lay upon. The result of this measurement is a complex
surface electromyography signal (sEMG) that reveals data about movement and
biomechanics of the contracted muscles (see figure 2.3a).

What: Electromyography signals inform about the contraction of specific muscles
and parts of the body. The EMG signal consists in the time representation of rapid
voltage oscillations. Its amplitude range is approximately 5mV. In terms of signal
analysis, the EMG allows the assessment of several aspects such as muscle
contraction duration, the specific timing at which movements or contractions are
activated, the presence of muscular tension or fatigue, and the extent to which
different fibres (area) are contracted. The analysis is conducted through noise
filtering, together with feature extraction that yields contraction onset detection, the
estimation of signal envelopes, and the computation of average frequencies. This
lets subjects deepen their understanding of movement strategies, very relevant
for embodied art and sports performance, improve muscle coordination, or even
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reveal existing movement patterns that they are unaware of.

Features: Onset instants; Max amplitude; Instant of maximum amplitude; Activa-
tion energy; Envelope;

Where: Having become the standard in EMG monitoring, bipolar surface elec-
trodes consist of three electrodes. Two of them (+/-) must be placed close to
each other, on the skin that lies on top of the muscle under study, along the
fibres’ direction, while the third one is placed in a bony area where no muscular
activity is present. This allows the measurement of electrical potential differences
with respect to a common reference, yielding a unique signal that represents the
muscular activity of the area.

When/Frequency: Given the fast muscle-neural activation nature of EMG sig-
nals and the presence of different active muscles contributing to the same signal,
muscle activity must be acquired at sampling rates no lower than 200Hz frequen-
cies. Working at 500Hz is desirable, while a sampling rate of 1000Hz guarantees
the tracking of all the relevant events at a muscular level.

Limitations: Surface EMGs are intrinsically limited to the access to superficial
muscles. This is compromised by the depth of the subcutaneous tissue at the
site of the recording which depends on the body composition of the subject, and
cannot unequivocally discriminate between the discharges of adjacent muscles.
Proper grounding (reference electrode attached to a bony inactive muscular region)
is paramount to obtain reliable measurements. Motion artefacts and muscular
crosstalk compromise the assessment of the muscle activity under study. In this
context, interference from cardiovascular activity is not uncommon, particularly in
areas such as chest and abdomen. The presence of power supplies and mains
(power line) in the vicinity poses the risk of 50Hz-60Hz interference.

2.1.4 Electrocardiography (ECG)

How it works: Electrocardiography (ECG) is the measurement of the electrical
activity of the heart. The ECG consists of the tracking of the cardiac muscle
contraction that results from the electric depolarisation-repolarisation cardiac
cycle. In every cycle, the heart undergoes changes in the distribution of electrical
charges along with the muscular tissue, which appear in ECGs as a particular
wave variation in electrical potentials along time (see figure 2.3b).

What: Electrocardiography signals inform about the activity of the heart, cycle
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after cycle. The electrical signal, which presents a particular shape of well-studied
peaks and troughs, reveals a pattern that informs about the heart functionality. In
terms of signal analysis, ECGs and the annotation of the so-called fiducial points,
allow the segmentation of the signal that leads to the extraction of features like
amplitudes, peak to peak time intervals, and associated heart rate. Moreover, the
analysis of the shape of the specific waves represented in the signal is linked to
the correct functioning of the particular parts of the heart, which is crucial in order
to spot the origin of problems. ECG analysis in time, basically built upon the peak
to peak assessment and heart rate, allows the understanding of phenomena like
arrhythmia, the response to physical exertion (sports), or even the presence of
stressors such as cognitive demanding tasks or emotional stimuli , addressed
often by means of heart rate variability (HRV).

Features: Beat instant (R wave); Heart rate; Inter-beat interval standard deviation;
Heart Rate Variability; Detected waves (PQRST); Signal to noise ratio;

Where: ECG measurements are based on what is known as a lead, i.e. the as-
sessment of electrical potential differences between two locations with a common
reference point. A different lead corresponds to the measurement of heart activity
from a different angle, i.e. presenting complementary signal shapes that contribute
to a deeper analysis of the generated signals. Leads have been standardised
through the practice of cardiology since ECG was developed. With ECG being
part of all medical routine checkups, the standard 12 multi-lead (electric potential
measured from different angles) setting continues to be common in clinical set-
tings. The mechanism underlying the acquisition of an ECG signal lead consists
of the placement of two electrodes (+/-) in a specific location. These track the
electric activity with respect to a common reference point on the body. Both signals
are subsequently subtracted, providing the desired signal representation. Limb,
augmented limb, precordial, and chest leads, with clear symmetrical electrode
placement guidelines on arms, legs or chest continue to be highly used in ECG
studies. However, research in single lead settings and exploration of alternative
electrode placement such as hands and neck have been gaining attention in
recent years thanks to the pursuit of simplified assessment techniques in line with
ubiquitous computing possibilities out of the lab.

When/Frequency: Heart activity during a cycle comprises the electrical activation
of different regions of the heart. For this reason, the use of relatively high sampling
rate frequencies is strongly recommended. While technologies working at frequen-
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cies below 100Hz can extract peak to peak interval features in the time domain,
insufficiently high sampling rates might miss capturing fast dynamics relevant for
the assessment of the heart function important in specific contexts and cardiovas-
cular conditions. Hence, a desirable working regime of 250Hz is recommended to
capture a reliable ECG shape, with clinical guidelines even pointing at 500Hz or
more.

Limitations: Electrocardiography, which is based on the measurement of heart
electrical potential through direct contact on the skin, suffer from the presence
of motion artefacts and EMG-related interference. While ECG has experienced
great advances in the development of comfortable electrodes, challenges re-
main in terms of making the measurement less intrusive given the needed skin
contact. Whereas the effects that physical and emotional activity have in ECG
constitute an opportunity to focus on the subject’s health at different levels, an
ECG study must ensure access to mechanisms or guidelines that help having the
sources of ECG variations under control – this could be the case of the task forces
or governmental-sponsored committees created to provide lists of ECG-related
physiological parameters that help rule out misleading information, as well as the
use of multi-modular biosignal tracking, other sensors, cameras or behavioural
monitors helping to tell apart ECG phenomena from movement and other artefacts.

Photoplethysmography (PPG)

A wearable ECG alternative to heart activity monitoring that has gained relev-
ance in recent years is that of blood volume pulse (BVP) monitoring, also known
as photoplethysmography (PPG). The obtained signal has different dynamics
from those of ECG signals, does not provide accurate systolic-diastolic cycle
information, but enables low-cost electrode-free heart rate activity tracking.

How it works: Variations in the amount of blood or air inside organs can change
the volume within those organs. Measuring these volume changes is a mech-
anism called plethysmography. A plethysmogram obtained optically is called
photoplethysmogram. Photoplethysmograms are used to detect changes in blood
volume inside the microvascular surface area of a tissue [Shelley et al., 2001].
Photoplethysmography is a straightforward, non-invasive, portable, and inexpens-
ive technique that uses light-emitting and light sensor diodes to detect volumetric
changes of the blood by measuring variations in the absorption of a light shined on
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(or through) the skin. PPG uses include assessing the autonomic nervous system
(ANS) function, and the signal is trackable under a wide variety of off-the-shelf
personal and medical-grade measurement devices. Furthermore, wearable and
unobtrusive PPG-based monitoring systems provide early symptom detection and
diagnosis of physical and psychological health conditions in a consistent and real-
time manner [Castaneda et al., 2018]. This mechanism has gained momentum as
it has been a key tracking feature of widely commercialised smartwatch wearables.
One of the drawbacks of the sensor when offered in these form factors, though,
is the operation at low sampling rates that are usually not user-settable, hence
presenting a significant trade-off between the quality or simplicity of the information
to be extracted and the autonomy of a comfortable wearable.

2.1.5 Electrodermal Activity (EDA)

How it works: Electrodermal activity (EDA), also known as galvanic skin response
(GSR), measures the electrical conductivity of the skin, linked to the activation
of the autonomic nervous system (or more precisely the sympathetic nervous
system). By applying a weak current upon two electrodes attached to the skin,
it is possible to measure the variations of voltage that are present between the
measuring points (see figure 2.3c). When placed at specific locations on the skin,
the measured electrical signals are affected by the sweat secreted by the glands
that are found in the dermis.

What: Electrodermal activity signals inform about the activity of the sympathetic
nervous system. Given its electrolyte composition, the sweat secreted by sweat
glands has an impact on the electrical properties of the skin. This phenomenon,
visibly monitored in voltage signals by means of electrical conductance (or im-
pedance/resistance, conversely), facilitates the assessment of arousal effects.
Arousal is the physiological response that stimuli such as emotional or cognitive
stressors trigger. The measurement of electrodermal activity is usually decom-
posed in two major behaviours present and superposed in any skin response
signal, i.e. the skin conductance (tonic) level, with slowly varying dynamics, and
the skin conductance (phasic) responses, that exhibit relatively faster dynamics.
In terms of signal analysis, this decomposition is accompanied by the assessment
of characteristics such as the rate of detected EDA events, detection of onsets,
and the characteristic rise and recovery times.
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Features: Onset instant; Skin Conductance Response (SCR) rise time; SCR 50%
recovery time; Event rate; Skin Conductance Level (SCL).

Where: EDA measurements use two electrodes to monitor changes in electric
potential between two locations on the skin. Electrodes must be placed a few
centimetres apart for differences to be relevant. The nature of the measurement
technique and the phenomenon itself, makes hands and foot soles the most
suitable electrode locations. On the hand, either palm or finger phalanges, most
subject to skin sweating, are optimal for the monitoring of electrodermal activity.
Foot (sole) placement, also affected by sweating glands, is not uncommon either
in EDA measurements given that particular use cases or settings require access
to hands for carrying out certain activities. For the alternative placements of the
EDA sensors, such as forehead or wrist, the presence (or lack) of sweating glands
remains a decisive factor in obtaining reliable measurements.

When/Frequency: Electrodermal activity is a slow physiological signal. Thus,
sampling rate frequencies as low as 10Hz allow a full representation of the skin
conductance variations. Electrodermal activity peaks usually occur after few
seconds from the exposure to a given stimulus (1-5 seconds).

Limitations: Electrodermal activity measurements use changes in electrical prop-
erties of the skin produced by sweating. Since sweating is not only triggered by
arousal but also the human thermoregulation system, ambient heat and phys-
ical activity monitoring are aspects that limit the capabilities of EDA studies. In
common practice, electrodermal sensors are usually prepared to obtain salient
data from the most comprehensive userbase, providing relevant (measurable)
changes regardless of the wide variety of sweating responses from subject to
subject. However, it is not uncommon to find examples of subjects with either too
high or too low skin conductance responses that complicate the measurements.
Moreover, settings that involve an intense physical activity pose concerns on the
electrode attachment and motion interference. The presence of power supplies
and mains (power line) in the vicinity of the acquisition systems pose the risk of
50Hz-60Hz interference. With regard to feasibility, since traditional electrodermal
activity studies rely on hands or feet electrode placement that compromises certain
actions, attention needs to be given to the use case and activities that take place
while monitoring, on a case by case basis.
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2.1.6 Electroencephalography (EEG)

How it works: Electroencephalography (EEG) measures the electrical activity of
the brain, usually in a non-invasive way, from its outer layer. The acquired voltages
correspond to ionic currents present in the activation of neurons (see figure 2.3d).
This measurement, often done via scalp electrodes, provides electrical signals
that allow the analysis of what is known as event-related potentials that link brain
activity to specific stimuli or actions, together with the study of the predominance
of certain frequencies in neural oscillations.

What: Electroencephalography signals inform about brain activity. The measured
signals, usually acquired from different standard positions on the scalp, offer
a complex overview of the brain (neural) activity oscillations. EEG combines
the electrical monitoring of several areas of the brain, distributing electrodes
(channels) along the head, giving rise to a wide range of signals representing
neural activity at the different zones assessed. Although EEG is mostly approached
from a multichannel perspective, few- and single-electrode EEG platform examples
with simpler but limited access to EEG signals have gained attention in recent
years. In terms of analysis, EEGs are traditionally studied from an event-related
potential perspective, i.e. focusing on the changes in neural activity observed
at the presence of certain stimuli or actions and from a spectral perspective,
i.e. analyzing the frequency bands and corresponding oscillations that make
up a given electroencephalography signal by means of frequency filters. EEG
gives access to studying the power of the different frequency bands (alpha, beta,
gamma, delta, theta, mu), linked to different brain functionalities as well as the
onset detection of certain events that trigger neural activity (e.g. eye blinking,
counting). Moreover, signal characteristics such as phase dynamics (e.g. phase
locking between signals, phase coherence) are at the scope of EEG studies.

Features: Alpha band power; Beta band power; Delta band power; Theta band
power; detection of events (e.g. cognitive efforts, eye blinking event, awakening);

Where: EEG measurements are acquired via several electrodes placed directly on
standardised locations on the scalp surface. This is achieved by using either EEG
caps, EEG headsets, meshes or, alternatively, single EEG electrodes. Importantly
enough, electrodes must be in close contact with the skin, often requiring making
contact between the subject’s hair, the use of caps or headbands that press and
ensure the contact, or supplementary gel that facilitates electrical contact in the
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areas of interest. One of the electrodes, used as a reference, allows to derive
the electrical activity present at every zone under study. In the case of single-
channel configurations, consisting of two electrodes and a reference one, a bony
or electrically inactive area is chosen as a reference.

When/Frequency: Electroencephalography signals are relatively fast. Given the
fact that the frequency bands of interest differ remarkably, the targeted frequency
band should guide the choice of an adequate sampling rate frequency. Considering
the highest frequencies (gamma band) in event-related potentials, and trying to
make a choice that prevents frequency aliasing, sampling rate frequencies of
200Hz-250Hz should cover any EEG relevant event.

Limitations: Electroencephalography provides complex biosignals, often involving
the assessment and integration of several channels (several electrical signals)
concurrently. This complexity requires the application of effective noise removal
techniques. The fact that EEG platforms are portable and relatively non-invasive
has contributed to the widespread use of the technology over other brain monitoring
techniques or interfaces [Nicolas-Alonso and Gomez-Gil, 2012], regardless of the
EEG limited spatial resolution. As the technologies progress, the quality of signals
acquired nowadays is improved, yet subject to noise. Power supplies (mains,
powerline) can potentially interfere with the signals. In terms of electrical artefacts,
EEG is prone to movement or muscle interference mainly related to eye or head
movements, making proper grounding a key aspect. Although the biosensing
market has made great advances in creating low channel EEG platforms that
present less obtrusive form factors, wearability comes at the cost of lowered
spatial resolution and precision due to the reduced number of source channels as
compared to lab-based EEG headsets. Moreover, some commercial applications
choose designs that do not make the raw data or the processing steps evident or
fully available.

2.1.7 Inertial Measurement Unit (IMU) signals

How it works: An inertial measurement unit (IMU) combines accelerometers, gyro-
scope, and magnetometer sensors to measure acceleration, rotation, and magnetic
field in the three orthogonal directions of space. Used as a body sensor, it informs
about its movement. Built upon microelectromechanical systems (MEMS), acceler-
ometers use the displacement of a tiny mass surrounded by capacitors to measure
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proper acceleration. Gyroscopes, use the Coriolis displacement of two opposite
oscillating masses to measure the rate of rotation (or rotation speed). Magnetomet-
ers are capable of measuring the magnetic field by means of magnetoresistance
changes, informing about the orientation. Hence, IMU signals depict voltage vari-
ations corresponding to acceleration changes measured by accelerometry (ACC),
rotational speed changes measured through gyroscopes (GYR) and magnetic field
fluctuations measured by magnetometers (MAG), throughout a given dimension in
space (see figure 2.3e).

What: IMU signals inform about the properties of the movement of the body
which they are attached to, such as orientation and changes in speed. The
measurement of accelerations and rotations, together with orientation, helps the
researchers assess the existing movement patterns. Characteristics such as tilt
(orientation), changes of direction, or number of repetitions in a given movement
pattern (e.g. steps) are usually addressed. This makes possible the understanding
of gait, posture, the dynamics of specific gestures or movements, as well as
the detection of undesired movement patterns. Moreover, the measurement of
movement properties is crucial in areas like ergonomics research and in estimating
the metabolic equivalent of tasks addressed in physical effort studies. In terms of
features and processing, information of interest can be fundamental frequencies
or rates, maximum angles (movement range), and maximum accelerations are of
interest.

Features: Metabolic equivalent of task (MET); Angular position (with respect to
the ground plane); Footstep instants; Maximum acceleration; Maximum angular
velocity. More advanced processing of multiple sources integrated can delve into
gesture recognition, gait assessment, and other movement pattern analysis.

Where: The use of IMUs is extensive in monitoring navigation systems, present
in many vehicles, and the devices are nowadays part of the set of sensors that
mobile phones are equipped with. IMUs used as the body movement tracking
systems work through the different sensors placed on the body part that is subject
to study. This is typically the case of limbs and joints, shoulders, hips, or head,
among others. Just like in the case of mobile phones, the wide use of IMUs has
fostered the appearance of gadgets and wearables equipped with this monitoring
technology (e.g. helmets, head-mounted displays, handles, controllers, footwear)
that can monitor movement properties without necessarily having to attach sensors
on the body.
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When/Frequency: Depending on the target action or movement to monitor, the
needed sampling rate frequencies for signal acquisition may vary. While activity
tracking and classification studies have succeeded in implementing the use of
IMUs in a very low sampling rate frequency (less than 50Hz) there is the risk
that, depending on the use case, fast vibrations or changes in rotation are not
fully described. Higher values, e.g. 100Hz, may be a better tradeoff between
sensing capabilities, data processing, reliable signal representation, and data
storage needs.

Limitations: Despite the fact that inertial measurements are becoming less and
less intrusive through the different forms in which monitoring devices are presen-
ted, IMUs present some limitations. Given the fact that inertial measurements
combine different sensors, working on the 3 spatial dimensions, IMU signals are
relatively complex to integrate. However, signal processing and activity recognition
algorithms that build upon this integration is a developed area of research in itself.
Magnetometer measurements, in particular, are prone to disturbances caused by
the environment. With regard to accelerometers, measurements often accumulate
drifts that compromise the estimation of trajectories.

2.1.8 Breathing activity

How it works: Respiration (or breathing) sensors monitor the inhalation-exhalation
cycles of breathing, i.e. the process to facilitate the gas exchange that takes place
in the lungs. In every breathing cycle, the air is moved into and out of the lungs. A
breathing sensor uses either piezoelectric effects on bendable wearable bands
or accessories (one of the most predominantly used technologies), respiratory
inductance plethysmography on wired respiration bands around the thorax, mi-
crophonics on the nose/mouth airflow, plethysmographs (measuring air inflow) or
radiofrequency, image and ultrasonic approaches. A review on breathing monitor-
ing mechanisms is found at [Massaroni et al., 2019]. For piezoelectric breathing
sensors, thoracic or abdominal displacements (strain) produced in breathing cycles
bend a contact surface that converts resistive changes to continuous electrical
signals (see figure 2.3f).

What: A breathing signal informs about the respiration dynamics, i.e. the dynamics
of the process mediating gas exchange in the lungs, as well as supporting sound
and speech production. The monitoring of the fundamental function of breathing
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brings in the assessment of breathing cycles and rates which in turn allows the
study of apnoea-related problems (involving breathing interruptions), oxygen intake,
metabolism of physical activity, and the effect of cognitive or emotional stressors in
breathing. In terms of analysis, breathing cycles are studied using breathing rates,
the maximum relative amplitude of the cycle, inhale-exhale volume estimation,
inhale-exhale duration, and inspiration depth, that allow the characterisation of
several breathing patterns.

Features: Respiration rate; Inspiration duration; expiration duration; Inspiration-
expiration ratio; Inspiration depth;

Where: A piezoelectric breathing sensor is usually located on the thoracic cavity
or the belly, using a wearable elastic band. With adjustable strap and fastening
mechanisms, the sensor can be placed slightly on one side where bending is
most relevant, optimizing the use of the sensor range. These kinds of sensors,
allow both the study of thoracic and abdominal breathing. With the development of
conductive fabric, breathing sensors are making its way into the smart garment
market in the form of T-shirts and underwear bands.

When/Frequency: Breathing is a relatively slow biosignal, with breathing rates
often below 20 inhale/exhales per minute. A sampling rate frequency as low as
50Hz is sufficient to capture the dynamics of respiration.

Limitations: While piezoelectric breathing sensors are prominent given the low
cost and form factor advantages of wearable sensor platforms, deviations in place-
ment have an effect in the relative range of the response signal. Movement
artefacts, most relevant when physical activity is present, are a common source of
noise. Respiration sensing techniques like the respiratory inductance plethysmo-
graphy, compensate the highly localised piezoelectric approach with a sensor
capturing the general displacement of the whole thoracic cavity, yielding a signal
less prone to movement artefacts. The monitoring of breathing cycles is usually
accurate, although the exploration of effects to be used as voluntary inputs in
interactions, such as holding the breath, are not easily captured.
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Chapter 3

Wearable health: Simplistic
processing and other advances

The recent development of wearable fitness and health tracking systems, i.e.
personal sensing that monitors physical activity, behaviour and physiology, has
been met with enthusiasm. The promise of personal tracking systems ranges
from:

(a) Extending the research possibilities beyond the labs, with huge impact
on augmented behavioural metrics or efforts entering physical and mental
wellbeing domains

(b) Offering the opportunity for people to know themselves better, a movement
called the Quantified Self

(c) Providing healthcare access to broader populations at a lower (more afford-
able) cost for societies

(d) Exploiting personalisation in a way that potentially unveils a new rapport
between people and their own health, improving adherence to treatment, to
say the least

The advent of affordable, high quality, personal sensing, is found in a context
where the parallel development of high performance computing and artificial in-
telligence faces a data-driven society that offers unprecedented technological
opportunities. From the iPhone, to the FitBit, new ecosystems of interconnected
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tracking devices, within the Internet of Things (IoT), are laying the foundations
for business and research that will capitalise on machine learning (ML) progress.
Tracking systems, however, with such a giant market behind, face the challenges
of not only showing capabilities but proving their effectiveness, addressing what
makes them valuable and trustworthy in relation to our expectations [Merrill et al.,
2019] and unveiling how users interact with them, for instance capturing accept-
ance vs abandonment trends [Clawson et al., 2015]. Met with scepticism, it is the
role of the research community to ensure that such profit translates into a societal
change that brings broader access to health, a more inclusive and environment-
ally respectful progress, a deeper understanding of the human condition and a
strengthened active role of the subject.

3.1 Making biosignals available:
Biosignal monitoring interfaces

Biodata encompass a broad range of sources of body information, from cyrca-
dian, sleep and hormonal cycles, to metabolic activity (food or substance intake,
digestion and excretion), mainly physiological, but also social contact and physical
activity, among others. A particular form of biodata where records are concat-
enated tightly through time is that of biosignals (as introduced in 2.1.2). In the
context of physiological monitoring platforms, it is interesting to count on tools
that help track biosignal characteristics dynamically, i.e. delivering insight through
changes measured over time. As personal sensing platforms build more and more
on biosignal acquisition systems that already provide information continuously,
the relevance of knowing how features change or even detecting events not long
after they occur becomes more evident. Elaborate, processed information takes a
main role. Raw biodata alone is no longer the main commodity, when working with
these biosensing technologies.

3.1.1 The problem

The problem that is addressed in this research, which has been dubbed “Making
biosignals available”, consists in the following: In order for biosignals to be useful
for design, wearable biosensors’ data interfaces, tutorials, features and processing
mechanisms that go beyond raw data storage are needed. As a way to challenge
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what is possible, or in other words how biosignals and its processing are used
to infer relevant information, attention is firstly drawn on wearable health. The
application of biosensing technologies to the domain of health has accompanied
the rise of biosignal acquisition devices and motivated their improvement. By taking
a perspective more aligned with biomedical engineering, machine learning and
signal processing, the recognition of directions for future development is sought.

Before posing the question on how to make biosignals available for interaction
design and human-computer interaction research, the possibilities of making
biosignals available to developers are addressed, translated in biosignal processing
interfaces, novel or simple processing algorithms and richer biosignal features.

How can biosignals be made available for development,
through data processing interfaces, novel algorithms and features?

Focusing on wearable health, interesting intersections can be unpacked, as it will
be shown. Real-time monitoring and features are not only relevant within hospital
settings, but also in out-of-the-lab health platforms, since accessing immediate
information means working towards making the most informed decisions in the
many settings where tracking technologies are present nowadays. A personal
tracking system that delivers information in a fast manner, is not necessarily
opposed to the longitudinal analysis of data – either by aggregation of data
points or via lower sampling or data processing rates– but complementary. This
fact, we will see, has implications in health monitoring, as it is the case in the
anomalous heartbeat classifiers able to raise a flag when a physiological condition
of risk is detected (section 3.3.1), in the case of timely predicting a fatal health
breakdown such as sepsis (section 3.4), in the case of continuous fatigue tracking
as presented in section 3.5.2, but also in making biosignals available for the
design of interactions. At PLUX, a multimodal biosignal acquisition platform
manufacturer, there is the commitment to make biosignals more available. The
work on the democratisation of physiological monitoring achieved by the hardware
efforts devoted to low-cost and reliable monitoring platforms like BITalino [BITalino,
2013, Batista et al., 2019] and the development of higher-end, wireless, physiology
tracking platforms with form factors that pave the way for biosignal research beyond
traditional hospital settings such as biosignalsplux [PLUX S.A., 2017] are core
development lines within this active field. Besides, software is an important asset
of the biosignal monitoring ecosystem that is being created. A whole team of
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biosignal engineering developers is focused on maintaining different application
programming interfaces (API) and software that serve the purpose of managing
the biosignal acquisitions and revealing biosignal features by means of processing
algorithms that encourage the user to appropriate and further utilise the information
contained in the measured biodata. The initial filters and processing mechanisms
made available are a stepping stone for those who want to further understand
electrophysiology or develop customised processing algorithms that better suit
specific purposes.

Figure 3.1: PLUX OpenSignals software implementation of histogram (statistics)
and battery monitoring assets

In the course of the doctoral research presented here, there have been opportun-
ities to collaborate in the development of software tools that render biosignal inform-
ation more available while ensuring users are given the control options necessary
for the planning of acquisitions of use within biosignal research. Some examples
of these, that counted on this thesis contribution, are biosignal histograms which
translate signals into statistical measurements that expose characteristics such as
ranges, averages, maximum and minimum values, among others. Furthermore,
biosignal platform interface assets such as the monitoring of the battery lifetime
are of relevance for the planning of acquisition sessions for research studies (see
fig. 3.1).

The biosignal acquisition interface, crucial for the definition of acquisition para-
meters, the thorough analysis of signals during and after acquisition, and the
assessment of undesirable effects has been used throughout the PhD research
path. One example is the characterisation of movement artefacts present in blood
volume pulse (BVP) signals obtained by customised wrist biosensing platforms
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Figure 3.2: Study of blood volume pulse (BVP) noise in a custom-made wrist PPG
sensor

using photoplethysmography (PPG).

From the open source perspective, other projects undertaken at PLUX are
worth mentioning. In the context of BITalino, a platform much more aligned with
community-supported development – as it is the case with the open source tools
such as ServerBIT [BITalino, 2017] –, the organisation and hosting of introductory
workshops on Do it yourself (DIY) biosensing led to the preparation of a collec-
tion of Hands-on code snippets (fig. 3.3) that guide the user into understanding,
visualising and controlling the biosignal acquisition sessions [BITalino, 2018].

Figure 3.3: Example of open source BITalino Hands-on coding tutorials for biosig-
nal acquisition and processing sessions (Python Jupyter Notebooks)

This collaboration of ours, together with Prof. Hugo Gamboa, took place during
this thesis context and built upon the vast work undertaken by Prof. Hugo Silva
and the BITalino team, who complement learning material with video tutorials
that have become a staple of making biosignals available. It is worth noting that,
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recently, researchers at PLUX have taken those initial steps towards a learning
environment for physiological tracking and extended it throughout the different
acquisition platforms they manufacture, in an honest and open access effort to be
a companion in the process of learning from – sharing and working with – our own
physiology (see the biosignalsnotebooks [PLUX S.A., 2020, Varandas et al., 2020]
project).

3.1.2 Health and Machine Learning:
The case for simplistic machine learning

In this section, health research applications or goals are taken in order to
provide a context in which machine learning uses have found a broad adoption.
The discussions presented build on previous research conducted in the field of
computationally undemanding neural networks for (health) time series processing
[Ortı́n et al., 2019, Alfaras et al., 2019a] and unpacks current studies of this thesis,
focusing on extending the application of simplistic neural network paradigms
[Alfaras et al., 2019c], the use of real-time biosignal data processing and visual-
isation [Ramos et al., 2018], and the novel combination of features to enable the
recognition of more elaborate physiology patterns [Ramos et al., 2020].

It is incontestable that deep neural networks (DNNs) and their recent success in
many fields have revolutionised – and helped rebrand – artificial intelligence. From
self-driving cars, to speech recognition or the prediction of plant disease in favour
of an increased agriculture efficiency. The increasing amount of labelled data
that researchers count on nowadays and the dramatically improved computing
capabilities that exploit parallelism to circumvent the long announced end of
Moore’s law are to blame. These are the fertile grounds that make deep learning
flourish, allowing a process of brain-inspired learning by example that lets scientists
dream of the era in which technologies outperforming human capabilities will
augment the human in tackling some of the great challenges of our times. Artificial
neural networks (ANNs), though, comprise a wide spectrum of developments,
wider than deep learning. Neuroscience, the science that is called to be the science
of the century is still at early stages in understanding consciousness, thought and
memory. In the development of artificial neural networks, while the inspiration on
biology had been a major driving motor (von Neumann, Hopfield), science at some
point benefited from disregarding neural limitations, such as dropping the rejection
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of backpropagation on the grounds of not being neurally plausible. A vast range of
possibilities stood in front of ANN researchers. The unbounded development of
ANNs took many forms, competing in pattern recognition or classification problems
against now traditional machine learning approaches (random forests, support
vector machines, etc.). Machine learning comes in many flavours. All of them
offer different trade-offs and come with intrinsic strengths and limitations. Could
personal sensing platforms harness the potential of the more simplistic machine
learning paradigms?

In this chapter, the thesis focuses on 3 case studies that strengthen wearable
health research and inform research directions for biosignal interfaces:

1. Echo state networks and arrhythmia. When alternative, simplistic recurrent
neural topologies compete with the state-of-the-art algorithms (section 3.3)

2. Health records, Echo State Network morphology processing capabilities and
heterogeneous data. Can a network supplant a doctor? (section 3.4)

3. Beyond classification. The move to real-time processing and the definition of
new metrics (section 3.5)

3.2 Materials and methods for the biosignal
developer

Biosignals and reliable acquisition platforms have been essential throughout the
whole research presented in this thesis. The software and data handling platforms
introduced in section 3.1 have also played an important role in seeing, under-
standing and interpreting biodata. In this section, however, an understudied tool
that offers low-demanding computational requirements and promising physiology
processing capabilities is presented. This is the case of Echo state networks,
a particular recurrent neural network that does not usually fall within machine
learning paradigms traditionally adopted and covered in reference texts.

3.2.1 Echo state networks (ESN)

Recurrent neural networks (RNNs) [Lipton et al., 2015] are artificial neural net-
works that incorporate recurrencies between computing neuron nodes, i.e. where
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links or connections allow information to cross more than once a given node or set
of nodes throughout time. In other words, RNNs model temporal dependencies
or sequentiality in an explicit manner. As opposed to standard neural networks,
recurrent network states are not discarded once used, and part of the information
is kept within the system, influencing further states. Within RNNs, the apparently
unbounded number of steps at which information can spread or be retained is
said to be behind the success of computationally expensive architectures such as
the Long Short-Term Memory, a relevant ingredient of successful Deep Learning
examples tackling handwriting, language/voice recognition and simultaneous trans-
lation among other machine learning problems concerned with data of sequential
nature.

Alternatively, efforts towards simplistic recurrent neural network paradigms have
seen in recent years the emergence of examples such as Echo State Networks
(ESN) [Jaeger, 2001, Jaeger, 2007], garnering a relative success in machine
learning tasks. ESNs emerged in the context of dynamical systems in the early
2000s, developed independently and simultaneously as the Liquid State Machines
(LSM) from computational neuroscience, and are nowadays subsumed under
the name of Reservoir Computing (RC). We use the RC and ESN terminology
interchangeably. ESNs are RNNs that follow particular setups which, to some
extent, avoid the computationally expensive update iterations and the growing
number of optimisation parameters. One of the advantages that ESNs present,
is in fact the simplification of the training process (in this case only done for the
readout weights), given that optimisation is reduced to a few parameters. An echo
state network, must satisfy the following properties:

• Consistency or approximation: 2 instances of similar information provided to
the reservoir system must also present similarities in the nonlinear response
space.

• Memory (fading, echo state): As a recurrent neural network, an ESN must
ensure that couplings between nodes take place, so that temporal feedback
is maintained within the nonlinear system of responses. This is, in other
words, equivalent to stating that information is leaked between nodes or
consecutive responses. In turn, this feedback or memory property needs to
fade away for very long iterations, as information states distant in time and
completely unrelated should avoid interference.
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• Separability: 2 instances of similar information provided to the reservoir must
sufficiently differ so that responses can be interpreted as different and used
as computational resources. A properly tuned separability should leverage
the dynamic range of responses intrinsic to the reservoir.

In terms of elements, the setup of ESNs [Lukoševičius and Jaeger, 2009]
involves:

(a) A network that is randomly created and whose internal connections remain
unchanged;

(b) Input signals that excite the network, which maintains in it a nonlinear trans-
formation of the input history;

(c) A linear combination of the input excited reservoir generates the output
signal, based on the weight obtained via simple output regression using the
target outcomes.

The fact that the network’s internal connections are kept constant simplifies
significantly the process of training. This has motivated the emergence of a
wide range of reservoir computing implementations and applications drawing
upon physical or analogue computation paradigms such as oscillatory-mechanical,
fluidic, electrical, or photonic ones. Among target tasks for reservoir computing
there are classification or recognition goals, signal-information recovery, or time-
series prediction. Examples of applications include, but are not limited to, e.g.
a memristor-based reservoir computer for digit recognition [Du et al., 2017], a
photonic reservoir counting on a delay-coupled semiconductor laser for spoken
digit recognition [Brunner et al., 2013], etc. The idea behind the application of
ESNs is to leverage the temporal information present in the data, e.g. making the
network learn the characteristic response dynamics of the sound “n” in the word
“one” as different from that of the word “ten” when feeding spoken digits to the
system.

The structure of an echo state network as seen in fig. 3.4 is that of a recurrent
neural network, where internal connections are randomly set and fixed. First,
a nonlinear mapping takes place in the input layer. Network nodes implement
fixed links (with recursivity) within the reservoir R, establishing the feedback of
information. Finally, the echo state is read and mapped onto outputs (Y ) thanks to
the output layer weights (W ).
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Figure 3.4: ESN structure, with the input layer, fixed reservoir and weighted output
layer

Training the echo state network

The training procedure of a reservoir computer starts by providing a set of
input data to the network. Data inputs are scaled and nonlinearly mapped to the
resorvoir. Sigmoidal functions – in particular hyperbolic tangents – are usually
chosen as nonlinear neural activation functions. The reservoir, implements its
internal node connections, with memory being leaked among connected nodes as
iterations unfold. A readout of the states is performed. The output weights that
minimise the mean square error, i.e. the difference, between the target outcomes
and the measured outputs at readout would be the optimal weights.

In terms of formulation, the reservoir system can be represented as follows:

ri = F (γWinXi + ηWri−1), (3.1)

The reservoir state ri at iteration step i is the nonlinear activation pattern F that
results from adding up two terms: the combination of input Xi nonlinearly mapped
by the input weights Win and scaled by a γ factor, together with the feedback
reservoir response ri−1 mediated by internal connections W and feedback or
memory strength factor η. Usually, having a sparse connectivity between nodes is
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thought to be responsible for the resulting rich dynamics of the network [Jaeger,
2007]. The reasoning is that sparsely connected nodes lead to a loosely coupled
system that exhibits a large variation of states. This rationale, though, has been
challenged by research reporting that fully connected reservoirs work as well as
sparse counterparts. However, a practical benefit of sparse connectivity is seen in
terms of computational cost, as constant rates of connections per neuron yield a
linear scaling on computational complexity.

In attempting to explore alternative simplistic approaches – in terms of modelling
and computational cost – to solving tasks of biosignal processing or classification
nature, Echo State Networks stand out, not only provided the fixed internal reser-
voir structure, but also given the existence of simple topologies for which recent
research has reported significant performance on different time series prediction
tasks [Rodan and Tiňo, 2011]. Inspired by this work, promising capabilities are
seen in simple cycle reservoirs, referred here as a ring topology echo state net-
work. Experimental works on hardware implementations of reservoir computing
that leverage single computational elements (nodes or neurons) multiplexed in
time, lie close to these paradigms, as it is the case of [Appeltant et al., 2011, Sori-
ano et al., 2015]. The approach of the simple cycle reservoir, consisting on having
internal connections of fixed and equal intensity, is adopted. Input-to-reservoir
connectivity is full. In this paradigm, neurons form a ring “non-random” fixed topo-
logy. The internal weight square matrix W exhibits nonzero single fixed absolute
weights on the lower subdiagonal and the upper-right corner, which for a network
of N neurons takes the form of

Wn+1,n = W1,N = c (3.2)

Keeping the notation of eq. (3.1), the value of c = 1 is chosen, as the feedback
strength is controlled and optimised via the feedback parameter η. A difference
taken with respect to the simple cycle reservoir proposed in the literature is that
of limiting the symmetrical range from which input weights are drawn but not
setting them as fixed and equal throughout the network. The chosen network,
hence, does not optimise a shared input weight. This step, although maintaining
input scaling factor optimisation, is taken as a way to address the possibility of
combining ensembles of reservoirs or ESNs as a more general recipe or alternative
to obtain relevant performances rather than optimising a shared constant input
weight that does not necessarily exploit the dynamical richness that randomly
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assigned weights give to the network.

Solving an ESN system

If one looks at the reservoir formulation and the desired use of the classific-
ation system to be developed, the following equations help us understand the
classification and training mechanisms:

ŷ = Woutr, (3.3)

Here, an echo state network that works as a classifier works in the following way:
When inputs are fed into a high-dimensional nonliear dynamic system, i.e. the
reservoir, network responses r are recorded. If properly trained, a simple product
by output weights Wout should be able to provide an output class label ŷ. If we
think of the system in terms of matrices encoding several inputs Y and a collection
of reservoir network responses R, we can manipulate the equations to present
them as a linear system to be solved:

y = R×Wout → R∗ × y = Wout (3.4)

In order to find out the output weights Wout, one can make use of the pseudoin-
verse matrix of the echo state network responses R∗ and the known labels used for
training, y. A trick to transform the system into a less computationally demanding
one consists in using the normal equations [Lukoševičius and Jaeger, 2009], which
by means of transpose matrices reduces the dimensions of the main matrix to
solve or invert in the system of equations:

RtR×Wout = Rt × y (3.5)

The resulting linear system can be solved for the output weights Wout, via
decomposition approaches or applying pseudoinverse matrices:

Wout = [RtR]∗ ×Rt × y (3.6)

3.3 Echo state networks and arrhythmia
When alternative, simplistic recurrent neural topologies
compete against state-of-the-art algorithms

The fact that high performance computing has allowed the transformation of
data centres, now cementing cloud computing services offered worldwide, with
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an agenda that targets the deployment of the infrastructure that will render a
much more interconnected society (e.g., via the Internet of Things IoT and the
advent of 5G) is accompanied with the enthusiasm of those who have witnessed
the advances in computational power. With higher computational power, though,
come higher transmission demands. In a world increasingly filled with devices,
and in particular in wearable health, we have the opportunity to impact, from
the way that data processing algorithms are implemented, and rethink the role
that these devices will play in communications. In this context, the inspiration
to seek simplistic, yet powerful, algorithms that devices could exploit on their
own – or edge computing – emerges, far from more complex (deeper) artificial
intelligence paradigms. Such is the case of echo state networks (ESNs), presented
in section 3.2.1.

3.3.1 Holter ECGs and heartbeats of different origin

As a first step to enter wearable health, or more precisely, the improvement of
machine learning applications on biosignal processing aligned with wearable and
out-of-the-lab developments, the problem of cardiac arrhythmia is addressed.

Electrocardiography (ECG) (see section 2.1.4) has been a technology staple
within the medical practice since its firsts uses in the late 19th century and early
20th century introduced by Nobel prize winner Willem Einthoven. Traditionally, an
ECG signal is characterised by what is known as the P-wave, the QRS complex and
T-wave, corresponding to a cycle of atrial depolarisation, ventricular depolarisation
and ventricular repolarisation, respectively – i.e. a heartbeat. Voltage differences
are drawn from electrode pairs located at specific regions of the body, capturing
what is called an ECG lead. Standard electrocardiography carried out at medical
facilities incorporates the assessment of several leads – typically 12 – by means
of setups with multiple electrodes that yield a richer picture of the electrical nature
of the heart – for an introduction to normal ECG leads and axis, i.e. the direction
of the electrical flow within the body frontal plane, see the work of [Goldich, 2014].
Abnormalities in time (rhythm), amplitude or waveform across leads is what the
trained eye of the cardiologist tries to spot when assessing ECG activity and looking
for arrhythmia. The problem of detecting arrhythmia in ECG signals falls under the
category of pattern recognition. With the development and popularisation of the
ambulatory Holter ECG monitoring device in the second half of the 20th century,
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portable ECG approaches started to gain prominence in health and research.
Evolving hand in hand with the psychophysiology sensor industry, incentivised
by the miniaturisation and ubiquity of digital tracking systems, multiple medical-
oriented and research-oriented portable ECG platforms captain and populate the
today’s market of health wearables. While moving ECG monitoring and opening
cardiac research out of the clinic has great benefits – e.g. broader technology
acceptance, low-cost, longitudinal, larger-scale studies – working with portable
ECG tracking comes with challenges. One of such challenges is that of the
trade-off between cutting on information richness, i.e. using fewer electrodes and
leads, while optimising pattern recognition outcomes. Inspecting an ECG signal
is, in essence, a task of looking for patterns or features that let one tell apart
specific signals from their “physiologically normal” counterparts, or even examine
the singularities that make an ECG stand out from a collection of samples within
a given subject. In turn, this task, which uses temporal sequences as source
material posits itself as a great candidate for machine learning approaches that
leverage sequentiality, such as Echo State Networks.

Large databases such as those found at open access repository Physionet
[Goldberger et al., 2000] (MIT-BIH AR, INCART) or the privately owned American
Heart Association arrhythmia database [AHA / ECRI, 2003] are of immeasurable
value for the development of artificial intelligence applications. Databases like
these offer unprecedented biosignal processing development or improvement
opportunities. The interest in ECG from Machine Learning communities is not
new. In reviewing literature on the identification of arrhythmic heartbeats – i.e.
heartbeats of abnormal origin – it is found that several approaches are used, e.g.
ranging from Deep Learning, Support vector machines, Decision Trees or linear
discriminant analysis (for a list of references and details, refer to [Ortı́n et al.,
2019]).

3.3.2 ML and intuition for wearable physiology

Can a portable ECG monitoring device incorporate mechanisms to tell the
difference from a healthy heartbeat and an abnormal one? Moreover, how can
(mainly) morphologically-based classifiers compensate the minimal information
that comes in a single/double lead ECG device?

Humans have wonderful pattern recognition capabilities that stem from the
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evolution of primary senses like sight and hearing. When a cardiologist pays close
attention to ECG records, being printed from several source leads (standardised
electrode placements) at once, spotting anomalies accounts to identifying differ-
ences in morphology along the signals, i.e. changes in time intervals, peak ranges,
etc. Not only do doctors look for physiological anomalies, they look for signs that
render a particular heartbeat unique within the context of a patient. When it comes
to wearable ECG devices, most platforms provide a low number of leads, often
relying on only one or two of them, with little or no guarantee that acquisitions
correspond to standardised leads. In making the ECG signals more available for
wearable health systems, the contribution of this work is twofold:

1. A simplistic machine learning approach, i.e. a ring topology echo state
network, aimed at computationally-efficient classification temporal sequences
suitable for portable monitoring systems is explored and assessed in terms
of performance at classifying ECG signals

2. Alongside the chosen algorithm, the research aims to study different features
leveraging the morphology of the signals, with the automatic processing of
few ECG leads that aim at generalising well. Single lead approaches and
patient variability are addressed.

Different types of arrhythmia, depending on the originating mechanism and
place, as well as pace at which they unfold, are categorised in the clinical prac-
tice. In order to undertake a machine learning classification task, heartbeats
are aggregated under the heartbeat types recommended by the Association for
the Advancement of Medical Instrumentation (AAMI) [AAMI / ANSI, 2012] and
assessed from a binary class of supraventricular vs. ventricular abnormal origin
perspective. It is important to note that the choice of these aggregated classes
constitute a good starting point to account for a simple binary class with respect to
the zone where heartbeats are originated, i.e. normal and supraventricular ectopic
as opposed to ventricular, but such representation is just part of a bigger picture
of multiple heart dysfunctions requiring further analysis. In the paper [Ortı́n et al.,
2019], the idea of template matching for the detection of hearbeats of ventricular
origin is implemented.

Template matching, used previously in [Krasteva et al., 2015] consists in the
creation of a class template, i.e., prototypical heartbeat of the class to serve as the
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Figure 3.5: Example of a template sinus (normal) reference ECG heartbeat and
their Supraventricular (SB’) and Ventricular (VB’) beat counterparts
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basis to be compared to. With a template reference per subject has the potential
to reduced inter-subject ECG variability errors. Working with references renders
the classification lead-independent or even suitable for the non-standard leads
that may appear in wearable developments, as a class template can be developed
in any of the leads. Under these premises, several correlations between heartbeat
morphologies and those of the corresponding class templates are computed.
Moreover, simple time-domain features such as updated interbeat period averages,
neighbouring intervals or statistical measurements associated to them complement
the template correlations to increase the performance of the classification.

The creation of a reference beat, requiring a 5-8 min. warm-up period, is done
by relying on an intuitive morphology property. As data from different patients
in handled, in order to capture the normal dynamics of a a subject, the refer-
ence needs to avoid being biased toward abnormal beats. For this reason, the
process of building a reference consists of taking a buffer of heartbeats, comput-
ing their average absolute amplitude value, the average absolute value of their
first derivative approximation and discarding the 50% of buffered heartbeats with
the slowest dynamics, i.e. those which present a largest ratio between the two
aforementioned properties. The reference beat is then updated throughout time,
every 15 heartbeats, dynamically accounting for changes in activity. The system
is trained with the strategy presented in equations 3.1-3.5. As an interesting
result, the competitive results of the proposed ring-topology echo state network
seemed to leverage the possibilities that information contained in single leads offer.
Addressing inter-subject variability with a reference template seemed to capture
morphology information in a relevant manner. Its success, that of an elaborated
yet understandable feature, is likely attributed to the metric in the template building
recipe, somewhat translating a visual intuition into a similarity measurement that is
added to ECG features regularly used. But could ECG morphology be used by
ESNs more explicitly or straightforwardly?

In the paper [Alfaras et al., 2019a], in another push on approaches with low
computational costs suitable for wearables a simpler idea is explored. Can a
classification primarily based on single lead morphology provide a ventricular
heartbeat that competes with state-of-the-art results? The idea behind this work,
is to probe whether simple ECG machine learning approaches can make use of
raw signals rather than elaborated feature extraction methods. Drawing upon the
previous success of ring-topology echo state networks for heartbeat classification,
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the same structure is proposed and fed with ECG wave datapoints as features. In
order to train the reservoir, the set of chosen features will be fed to the system
together with the expected output labels, so that a linear regression at the output
layer can identify the best combination of output weights. The interesting part lies
in the features. After standard filtering, peak detection and a simple scaling, a
subset window of raw ECG datapoints around the QRS complex is provided to a
reservoir classifier. An example of the minmax scaling can be seen in fig. 3.6.

Figure 3.6: Average healthy heartbeat minmax scaling

These “features”, perhaps deemed oversimplistic, together with basic peak to
peak measurements are then mapped to the high-dimensional nonlinear space
of an echo state network. Surprisingly, the ECG lead, the scaling, and duration –
about 240ms centred on the QRS – successfully work at training a classifier in a
standardised way. With this approach, the network responses are basically the
result of exposure to ECG morphologies of different kinds. In the reported results,
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a fascinating aspect is worth highlighting: not only state-of-the-art performance on
automatic single lead ventricular ECG classification is achieved, but approaches
that train on a lead and test on another achieve relevant performances even for
interchangeable databases. This result, although modest, paves the way for future
research that aims to push the frontiers of generalisation. Of particular interest is
the fact that physiology tracking out of the lab, by means of Holters or monitoring
devices alike, often runs into single lead based paradigms – even nonstandard
leads. Having a computer trained on a gold standard being applicable to in-the-wild
use cases closer to real life is, to say the least, an encouraging scenario for future
uses of wearable health monitoring systems. The study presented in [Alfaras
et al., 2019a], also offers a look into using the parallelisation of computational
steps involved in the training of the echo state network. Given the simplicity
of the formalism of the reservoir equations (see eq. (3.1)), operations such as
matrix multiplication and nonlinear mapping involved in the system preparation
and the linear equation resolution are perfect candidates to exploit the computing
capabilities of graphic processing units (GPU). Exploring a communication protocol
deploying real-time data transfer from device to central unit to deliver classification
of heartbeats on the fly does not fall under the scope of this research. However, it
is easy to envision that use-case scenario. The training of algorithms with large
databases is where GPU power may be exploited best. As exemplified in the paper,
training a reservoir computer configuration with more than 10h worth of filtered
ECG is a matter of 2 seconds of GPU, meaning that different parameters explored
during optimisation such as scaling factor, feedback strength, or reservoir size
can be explored more easily. As a side note, it is important to note that moving
away from the cycle [Rodan and Tiňo, 2011] recipe on fixed input weights, ours is
an approach that leverages ensembles of classifiers with nonidentical randomly
generated input weights, in a shortcut to reduce the parameter space while making
the most of different nonlinear response patterns combined via several classifiers
(increasing performance up to 30 ring networks in our example).
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3.4 Health records, Echo State Network morphology
processing capabilities and heterogeneous data

Having been inspired by the success of echo state networks applied to ventricu-
lar heartbeat classification, a use case possibly contributing to the research on
wearable health, this thesis embarked on a challenge launched by the Physionet
on data from intensive care units (ICU). Part of the success of the properly trained
networks at spotting heartbeats of ventricular origin could be attributed to the
nature of the problem. ECG data is highly temporal, presenting rhythms and
sequences that repeat over time. In this context, one can expect that algorithms
suited for sequential information processing can leverage information and shed
light on subtle differences between consecutive heartbeat sequences. When
thinking of the simplest features of all, i.e. amplitude values capturing the biosignal
morphology, the dependence between contiguous features is undeniable, as in
principle two close samples would not exhibit great differences in value. A continu-
ous signal such as ECG would not present leaps that are difficult to explain. These
are behaviours likely captured by the nonlinear responses of the ESN network.
What if the remarkable processing capabilities exhibited by simplistic topology
ESNs on classifying physiological signals could contribute to artificial intelligence
health problems based on ICU medical records? Would the rich morphology pro-
cessing capabilities of a simple ESN still apply to highly heterogeneous data? The
Physionet 2019 challenge [Reyna et al., 2020] presented a problem that differed
significantly from ECG analysis. The topic revolved around sepsis, a prevalent
issue in ICUs all over the world.

The challenge objectives are reproduced here: “Sepsis is a major public health
concern with significant morbidity, mortality, and healthcare expenses. Early de-
tection and antibiotic treatment of sepsis improve outcomes. However, although
professional critical care societies have proposed new clinical criteria that aid
sepsis recognition, the fundamental need for early detection and treatment re-
mains unmet. In response, researchers have proposed algorithms for early sepsis
detection, but directly comparing such methods has not been possible because
of different patient cohorts, clinical variables and sepsis criteria, prediction tasks,
evaluation metrics, and other differences. To address these issues, the PhysioNet/-
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Computing in Cardiology Challenge 2019 facilitated the development of automated,
open-source algorithms for the early detection of sepsis from clinical data.”

Sepsis is defined as “life-threatening organ dysfunction caused by a dysreg-
ulated host response to infection” [Singer et al., 2016]. This condition can be
detected using physiological measures, such as, heart rate, temperature and
laboratory measures of body fluids analysis. For patients in the ICU, sepsis predic-
tion is compromised due to the effects of the prescribed treatment. For instance,
drugs that help to attenuate the patient symptoms have an impact on physiological
measurements (temperature, heart rate, etc.). In turn, mechanical ventilators
do not allow to take the respiration rate into account in order to detect sepsis.
Inspired by the successful application of ring topology echo state networks for
the classification of biosignals of relevant temporal structures, in particular that of
ventricular heartbeat classification carried out on ECG data, this thesis explored
whether a similar network could tackle the prediction of septic shocks. This work
was conducted in a collaboration with the Instrumentation lab (LIBPhys-UNL) at
Universidade Nova de Lisboa. While the application of ESNs to ECG classification
faced temporal signals where morphology was to be exploited, ICU health records
pose several differences. The data provided by the challenge organisation con-
sisted originally in physiological, laboratory and demographic measurements of
more than 40000 patients from the ICU of two different hospitals. In the interest of
fairness, and besides counting on a third unshared hospital dataset, the organisers
sequestered data from the two hospitals where data was sourced from, so that no
training could be performed based on samples that are to be used for testing and
scoring only. Values were registered hourly, with missing data points marked with
NaN (not a number). At any isntant in time, a Sepsis Label indicating the presence
of sepsis is provided. Features accounted for 40 indexes tracked over more than
1.5M hours. However, 70% of those data points are NaN. Among samples, sepsis
appeared only on 1.80% of the total. Since the scope of the challenge was sepsis
prediction, the organisation created an ad hoc utility function that would penalise
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classifications too anticipated or delayed in time, prioritising timely classifications.

U(s, t) =


UTP (s, t) septic patient s has a positive prediction at t

UFP (s, t) healthy s has a false positive at t

UFN(s, t) septic patient s has a negative at t

UTN(s, t) healthy s has a negative prediction at t

(3.7)

The utility function U(s, t) for subject s at time t, takes the form of the different
values that, according to time, reward true positive as compared to negative out-
comes (TP, TN) and penalises false negatives (FN) significantly or false nefatives
slightly (FN). 6h from onset is the time at which correct predictions are rated best
and false negative oucomes start to reduce utility.

(a) Utility function for septic subjects (b) Utility function for healthy subjects

Figure 3.7: Clinical utility rating function for septic prediction

Classification at the time when patients are labelled as septic by doctors would
be of limited use or improvement for a condition that, too often, leads to complica-
tions and death when detected. Septic class labels had suffered a 6h time shift in
accordance to the objective of forcing algorithms to learn associating physiology
data to a septic state before becoming apparent.

The first of the issues encountered was that of missing data (see fig. 3.8). In
order to circumvent this problem and allow classifiers to process the data rather
than discarding entire features or subjects, different substitution strategies were
laid down:

1a Constant value replacement (using zero)

1b Constant value replacement (using a stored an average value)
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2 Random normal distribution value replacement around the average value of
the feature

3 Interpolation between closest significant neighbouring values, with simple
replication when no later values exist

Figure 3.8: Sepsis dataset ratios of missing data (% of not a number values, NaN)
per feature.

After the unofficial phase of the challenge, with initial data processing ap-
proaches being tested, it was made clear that non-causality should be avoided
at all costs. That meant that classifiers and processing steps that needed the full
story of a patient, looking into the future in order to perform scalings, computing
statistical moments or placing missing value replacements would present serious
applicability in real-case scenarios. As opposed to the ECG classification problem,
dealing with features that maintained a high temporal- and morphological- relation,
the sepsis challenge consisted in mapping 40-feature vectors onto a nonlinear
response space, where links among features are not evident a priori.

3.4.1 Training an ESN sepsis classifier

Following a ring topology approach (see section 3.2.1), the 40-dimensional
inputs are fed via an input mapping with uniformly distributed random weights and
offsets (or biases) and a sigmoid nonlinearity activation, eq. (3.9), that transforms
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the scaled inputs and combines the current and previous state into a new response:

Esnn,t = f(γInputt + η(WEsn × Esnn−1,t−1)) (3.8)

f(x) = (1 + e−x)−1 − 0.5 (3.9)

In the system equation (3.8), with the structure of eq. (3.1) Esnn,t is the state of
neuron n at time t, f is the activation function, γ is the input scaling factor applied
to the masked data Inputt and η is the memory or leakage parameter controlling
the strength between the fixed internal neuron connections WEsn. The equation
captures the temporal and neighbouring neuron dependencies. In the case of the
ring topology, WEsn is connection matrix that consists of a square matrix with ones
in the subdiagonal.

The intention to explore combination of traditional algorithms employed at ma-
chine learning challenges, and with time not being a main concern as algorithms
were allowed to run for 24h, influenced the choice to work on Python. The Python
programming language counts on numerous ready-made libraries that facilitate
the application of machine learning algorithms, as it is the case of scikit-learn
[Pedregosa et al., 2011]. Moreover, the language was favoured by the organisation,
as tools for facilitating code submission and scoring were made available in that
language. Within the Python ecosystem, a choice was made on implementing the
ESN ad hoc, as existing libraries showed interesting (weight strength) spectral
radius control features but did not offer the ability to easily fine tune topology to
simpler structures as those we were interested in. A version of the ESN tools
developed can be seen on [Alfaras et al., 2019b].

With all the ingredients in place, data was divided into 10-folds for cross-
validation, i.e. leaving around 10% of the test data out of the training procedure
iteratively, making sure that stratification guaranteed that no undesirable class
biases existed between folds. A subset of 5000 patients out of 40000 was used
in order to probe the dependence on the number of neurons (N). In order to
determine an optimal value of N, a basic grid search was conducted over the input
scaling and feedback strength space. The early results showed that for N > 100

classification performance decreased considerably. Once neurons were settled
at N = 100, the cross-validation training procedure to optimise input scaling and
memory began for the whole training dataset. While mean square error minim-
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isation was the criterion for optimal weights in the solution of the linear system,
parameter optimisation was guided by the area under the curve of the receiver
operating characteristic (AUC). A 10-fold stratified cross-validation procedure was
used, i.e. testing on folds with 10% of the training data with a similar septic-healthy
proportion. Moreover, a check-up was implemented to ensure no patients used in
the same iteration ever belonged to training and testing sets. Finally, with resulting
binary classifications that overlapped significantly, a threshold maximising F1-
score is set for every parameter combination. The F1-score denotes classification
performance and prioritises both precision and sensibility. The training results
yielded a sepsis classifier that best performs (AUC = 0.744) under the following
regime: N = 100, γ ≤ 0.001, η ∈ [0.1; 2.5] (see fig. 3.9).

Figure 3.9: ESN AUC-based input (γ) and feedback (η) strength parameter grid
search for the classification of septic entries in ICU medical record data.

In an attempt to compensate for the unexplored randomly chosen constant
input weights at the nonlinear mapping [Rodan and Tiňo, 2011], and working with
an approach closer to that of [Ortı́n et al., 2019, Alfaras et al., 2019a], a slight
improvement of 2-3% on AUC was verified for ESN ensembles consisting of 10
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networks or less. As compared with ECG classification approaches with echo state
networks, the results of the combination fell short on classification improvements.
One of the side goals of using the ESN for the sepsis challenge, was to probe and
compare performances among traditionally used machine learning algorithms, the
ring ESN and a combination of both. After some tests were carried out with the
same data, results indicated that gradient boosting could slightly improve the ESN
classification if the classifier took the network output as input. However, it was
verified that gradient boosting alone or even random forests achieved better AUC
values for the task at hand.

3.4.2 Discussion: Predicting sepsis

All in all, the implemented ESN classifier seemed to miss the health record
dynamics that could shed light on the sepsis prediction problem. Apparently, the
network dynamics alone were not able to separate classes significantly. Among
all the entries that competed officially, no entry was free from overfitting problems.
The organisation, carefully planning the challenge, sequestered data from a hos-
pital, which remained unseen [Reyna et al., 2020]. Although high AUC or Utility
scores correlated well between the two training hospital datasets, this was not
the case for the unseen hospital. Moreover, clinical utility and AUC scores did
not necessarily present high values simultaneously either, showing how far still
algorithm performance in ML competitions is from clinical impact. In fact, instances
of the competition opted to optimise for the utility function only, sometimes even
coding loss functions that rated the most utility-beneficial feature sets. One of
the major challenges that the ESN implementation did not solve was the great
effect that the underrepresented septic class had on the training. In the compet-
ition, gradient boosting based approaches performed well, mainly those which
often included features that somehow encoded the information missingness more
explicitly [Singh et al., 2019, Chang et al., 2019, Du et al., 2019]. This raises
concerns. If one looks at artificial intelligence as a technology that is called to
support doctor expertise, the data used for the given challenge, and in particular
the data missingness has to be revisited with care. In the clinical history of the
subjects whose data are made available, some patterns emerge for given variables.
If a subject who is being hospitalised in an intensive care unit exhibits signs of
further health complications it is likely that doctors in charge ask for lab tests. In
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lab variables lies an interesting insight. As opposed to routinely collected variables
such as temperature, heart rate, etc., indicators such as pH or lactic acid, among
others, cannot be disentangled from their analytical nature. Values are present
when doctors suspect problems are bound to appear. An algorithm may certainly
pick on information missingness. However, by no means a classifier trained as
such would bear the doctor’s intelligence or intuition, likely failing to generalise well.
Although not trying to argue against or in favour of automatised approaches that
leave out “human-in-the-loop” use cases, it is needless to say that the question
of exploiting information missingness triggered by health professional’s decisions
raises questions of fairness. On a separate issue, data imbalance and imputation
strategies gathered some attention during the competition. Although imputation
strategies did not seem to have a relevant impact, preprocessing steps considering
time widow environments of the order of 6h where differences of sequential values
were explicitly taken as inputs made a difference. These windows, sometimes
used at the time of imputation, likely contributed to enhance the impact that the
low number of septic cases had on the algorithm training, either explicitly – as an
oversampling strategy – or implicitly. Interestingly enough, there is a fact prob-
ably contributing to the idea that machine learning competitions are very much
enriched when attracting cross-disciplinary teams that do not merely apply signal
processing recipes that have become off-the-shelf thanks to widespread program-
ming libraries. The challenge winners presented a mathematical implementation
of multidimensional integral paths that to some extent encode different relative
covariances [Morrill et al., 2019]. The resulting integrals are said to be a signature
encoding patients’ history, even said to exhibit bijective properties.

3.5 Beyond classification: The path to real-time pro-
cessing and new metrics

We have so far seen how simplistic machine learning algorithms processing
health records and biodata help making biosignals available, e.g. for the classific-
ation in health problems targeting certain conditions or characteristics. Another
way to make biosignals available is to work on new features or descriptors that
better characterise or unveil a condition. In this section attention is paid to other
ways of making biosignals available beyond the development of simplistic ML
processing algorithms, by implementing real-time processing trying to capture
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specific events or developing new descriptors combining features. The first is an
example of real-time processing implementations, of relevance in health domains
and for wearables. Additionally, progress can be made via exploiting biosignals
in the context of human performance. In such study, electromyography and heart
rate variability data are combined in order to capture the emergence of fatigue.

3.5.1 Monitoring physiology in real-time: HRV

In the current section, the real-time monitoring of heart rate variability (HRV) is
addressed. This work led to the development of a plugin module for a biosignal
acquisition and processing software platform (see fig. 3.11), OpenSignals [PLUX
S.A., 2018], the official and freeware biosignal acquisition platform of BITalino
and biosignalsplux. Heart rate variability (HRV) is the variation, over time, of the
period between consecutive heartbeats [Acharya et al., 2006]. This phenomenon,
predominantly dependent on the extrinsic regulation of the heart rate, is thought to
reflect the heart’s ability to adapt to changing circumstances by quickly detecting
and responding to unpredictable stimuli. Its study is often carried out via the
observation of RR peak interval time series or, conversely, changes in instant-
aneous heart rate. By means of HRV analysis, researchers get access to the
assessment of cardiac health and the performance of the regulatory autonomic
nervous system (ANS). In the work of [ChuDuc et al., 2013], a list of medical
conditions affected by HRV is provided. “Heart rate variation techniques and in-
dexes have proved crucial in treating not just cardiovascular system diseases, but
unrelated conditions such as stroke, Alzheimer, renal failure, leukemia, epilepsy,
chronic migraines, and obstructive sleep apnoea. Most doctors tend to agree that
all biological systems, even the healthy ones tend to show haphazard dynamics
while biological systems suffering from disease show reduced levels of dynamics.
[...] autonomic dysfunction is a key characteristic of heart and diseases such as
sepsis, brain trauma, multiple organ failure, and myocardial infarction”. Moreover,
when it comes to affective health, ANS dysfunction has proved to be a marker of
depression. In [Beauchaine and Thayer, 2015], it is highlighted that abnormally
low values and relevant decreases in the high-frequency components of HRV in
resting conditions when, e.g. evoking emotions, are linked to a significant range of
psychopathological syndromes (phobias, anxiety, attention problems, depression,
etc.). In fact, approaches (e.g. [Can et al., 2019]) implemented for the detection
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of stress indicators often rely on the use of HRV – perhaps in line with common
processing of physiology carried out in affective computing. An early work by
[Zucker et al., 2009] showed how the effects of a biofeedback intervention based
on the phenomenon of respiratory sinus arrhythmia, i.e. the changes in heart
rate due to the thoracic cavity changes that synchronously accompany breathing,
could be analysed by means of HRV and the resulting changes in post traumatic
stress disorder symptoms that were targeted. Moreover, the meta-analysis [Kemp
et al., 2010], for instance, concludes that correlations exist between low HRV and
depression as well as acknowledging the negative correlation between HRV and
depression severity.

Analysing heart rate variability

The study of heart rate variability begins with the electrocardiogram. Any ECG
signal is characterised by particular patterns (heartbeats) that repeat over time. A
heartbeat appears in an ECG as a specific shape or wave pattern that presents
well-known peaks.

Figure 3.10: Example of an electrocardiography ECG signal and its waves and
peaks [Rehua (derivative) et al., 2014]

These peaks, corresponding to the different electric depolarisation-repolarisation
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cycles that the heart muscle undergoes, mainly consist of the P-wave, the QRS
complex, the T-wave and the segments in between these relevant points. The QRS
complex, i.e. the most pronounced dynamics within the heartbeat, is often used to
locate the different beats in an ECG signal. The significant ventricular contraction
that the QRS complex encompasses, renders its most relevant feature: the high
amplitude change in the R peak. ECG processing algorithms have traditionally
relied on differential approaches to properly locate the R peaks (and heartbeats,
consequently). Our idea is that of implementing the different HRV measurements
using a sliding window strategy which provides time series of features that update
as ECG information is being acquired. Once R peaks are identified, it is possible
to represent the series of R-R intervals. This series is known as the tachogram,
an it is at the core of HRV analysis. HRV features can be categorised in different
groups: Temporal features (or statistics of the tachogram), Nonlinear features,
Frequency features (spectral or Fourier-like) and Geometrical.

List of implemented HRV features

* Temporal features:

• minRR (s): Minimum RR interval duration.

• maxRR (s): Maximum RR interval duration.

• avgRR or 〈RR〉 (s): Average RR interval duration.

• SDNN or SDRR (s): Standard Deviation of RR (normal to normal NN) inter-
vals.

• rmsSD (s): Root mean square of the successive tachDiff differences – an
approximation to the dispersion on the tachogram’s derivative, formulated as:

rmsSD =

√√√√ K∑
tachDiff 2

i

K
(3.10)

where K is the number of samples.

• NN20: Number of RR intervals between non-ectopic (normal) beats with
duration greater than 20ms
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• pNN20: Ratio between NN20 and the total number of RR intervals on the
processing window.

• NN50: Number of RR intervals between non-ectopic (normal) beats with
duration greater than 50ms

• avgIHR or 〈IHR〉 (bpm): Average of the instantaneous heart rate, computed
by means of RR interval inversion.

• STD IHR or SD IHR (bpm): Standard deviation of the instantaneous heart
rate.

Nonlinear features:

• SD1 (s): Major subaxis on the nonlinear Poincaré plot ellipse RRi+1 =

RRi+1(RRi)

SD1 =

√
SDSD2

2
(3.11)

• SD2 (s): Minor subaxis on the nonlinear Poincaré plot ellipse RRi+1 =

RRi+1(RRi)

SD2 =
√

2SDNN2 − SD12 (3.12)

• SD1/SD2: Ellipse subaxis rate on the nonlinear Poincaré plot RRi+1 =

RRi+1(RRi)

Frequency features:

• HF: spectral power of the high frequency band (f ∈ [0.15, 0.40] Hz)

• LF: spectral power of the low frequency band (f ∈ [0.04, 0.15] Hz)

• VLF: spectral power of the very low frequency band (f ∈ [0.003, 0.04] Hz)

• ULF: spectral power of the ultra low frequency band (f < 0.03 Hz)

Geometrical features:

• tIndex: Triangular index.

tIndex =
RR intervals

RR intervals in the dominant histogram bin ts

(3.13)
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In the reported work addressing real-time heart rate variability analysis, at the
time a work in progress [Ramos et al., 2018], there was the aim to test which typical
offline measurements were translatable to an online processing mode working with
iterative windows of segmented data. Although the first implementations of online
HRV assessment counted on simplified adaptive thresholds for QRS detection, the
differences in generated tachogram RR series made us eventually opt for the well-
known Pan-Tompkins algorithm [Pan and Tompkins, 1985], applied sequentially
in the case of online processing. The Pan-Tompkins algorithm, consists in the
following steps:

1. Acquire an ECG signal

2. Filter by means of a Low-pass + High-pass filter (Band-pass)

3. Derivative computation

4. Squaring step

5. Window Integrate

The application of a band-pass filter, a second-order Butterworth with frequency
band-width fBW ∈ [5, 15Hz], reduces noise related to sources such as muscle
activity and powerline interference. For the derivative step, sample difference
approximations are used. The idea behind it is that information is obtained on the
slope or trend of the changes. Finally, the resulting signal is squared to further
augment the QRS complex contributions as compared to the lower peaks in ECG
patterns and then slightly smoothed out via an average window. The resulting
values are the integrated signal, providing the peak candidates to be compared
with a threshold. Our implementation never worked on delays shorter than 8%
sample delays, as that is a condition met in the original work of Pan-Tompkins
(the most demanding processing step applying a delay of 16 samples at a 200Hz
sampling rate). Maxima are searched for in the integrated signal. We proceed with
the definition of a adaptive thresholds (eq. (3.14)) that iteratively take into account
the information of the previous QRS complexes detected, the current peak being
evaluated and the changing levels of signal and noise.

threshold = noise+ 0.25(signal − noise)
signal = 0.125P + 0.875signal

noise = 0.125P + 0.875noise

(3.14)
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When a QRS peak is detected in the integrated signal, the same check is carried
out in the filtered signal, with independent threshold and signal/noise levels as
criteria to be met and iteratively updated following the same rules (eq. (3.14)).
Moreover, a rule is incorporated to discard the possibility of having two peaks
separated by intervals below 200ms, a physiological limitation. Details on the user
interface can be seen in the following image (fig. 3.11), showing a configuration
pane, active features, and generated graphs:

Figure 3.11: PLUX OpenSignals software HRV real-time add-on panes, with
filtering settings, selected features and generated graphs (left to right)

Discussion and limitations

Although the resulting platform presented at [Ramos et al., 2018] is relevant
for the use of developers and psychophysiology researchers aiming to explore
different filter ranges and ectopic heartbeat exclusion criteria, the implementation
of real-time HRV processing poses several concerns related to real-time limitations.
According to guidelines [Task Force of the European Society of Cardiology, 1996],
warm-up periods are essential to provide relevant feature values. For frequency-
based features, for instance, power spectrum values are not considered reliable
unless using at least time sequences of 2 minute duration or greater. This is



66 CHAPTER 3

derived from the fact that when using the frequency transform methods (in our
case using Lomb-Scargle implementations [VanderPlas, 2018]), shifting from
the temporal domain to the frequency domain presents a temporal-frequency
resolution tradeoff. It is worth mentioning some of these concerns, as seen in
[Task Force of the European Society of Cardiology, 1996]. The assessment of
power spectrum information of the ULF frequency band (f < 0.03 Hz), for instance,
is not conceived for short term variation analysis. The spectral contribution of the
VLF band (f ∈ [0.003, 0.04] Hz) should be discarded if not obtained with time series
longer than 5 minutes. Furthermore, the geometrical analysis (triangular index)
is only suggested for periods above 20 min. With the goal of making biosignals
available (ECG and HRV data in this case) the outcome of this collaboration led to
a useful software tool that further motivates the study of HRV in real-time, with the
possibility of setting up customised heartbeat excluding criteria, addressing the
contribution of different power spectral ranges, the effect of different window size
and overlap for the time series of features, among others. Solutions like these,
combining the configuration of processing steps while allowing the representation
and deeper study of acquired biosignals through functions like data exports, zoom
in/out, smoothing filters, etc. are paving the way for future biomedical engineering
research, biosignal processing leveraging machine learning and the like. However,
the processing platform presented leaves certain aspects understudied. That
is the case of further nonlinear feature analysis as originally presented in e.g.
[Acharya et al., 2006], discarding instead the breadth of this research area and
limiting our scope on very few features derived from the Poincaré plots whose
dependence on window lengths is not covered in our study. The established
use of statistically-based assessments that draw upon temporal features has
achieved a standard status for several reasons. As a rationale we can argue that
any heart monitoring device targets, at the very least, the tracking of heartbeat
occurrences. Even with the low-fi specifications found in commercial platforms
without strong scientific validity, or the usage of different sensing mechanisms such
as wrist photoplethysmography (PPG) powered to track the blood volume pulse
(BVP), dedicated algorithms make it possible to compensate for the technology
drawbacks and achieve a reliable detection of heartbeats. The consequence is that
computing intervals, heart rate and tachograms are approaches that standardise
the assessment of HRV and allow comparisons across a wide range of platforms.
That is the success of HRV. A downside presented by this situation is that nonlinear
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features, counting in fact with entropy-based, detrended fluctuations and many
other measurements beyond Poincaré-based magnitudes [Melillo et al., 2011],
receive less attention. However, the significant information intrinsic to the ECG
morphology – perhaps entailing a more nuanced or controlled acquisition design
depending on leads, electrode placement, etc. – is discarded completely in HRV.
ECG morphology, as it can be seen in section 3.3.2 and the work presented in
[Ortı́n et al., 2019, Alfaras et al., 2019a], is able to unveil relevant processing
capabilities in the domain of health. While HRV makes a great case for the
creation of tools that facilitate customisation of the analysis steps, platforms called
to promote biosignal understanding should embrace approaches beyond time-
based processing.

3.5.2 Combining biosignal features into new descriptors: The
case of fatigue monitoring

Fatigue is a complex psychophysiological phenomenon with relevant impact in
sports performance and in the correct functioning of our motor system. Physical
fatigue is an objective phenomenon that decreases the mechanical exertion cap-
abilities. On the contrary, mental fatigue, subjective and related to cognitive stress,
has an impact on psychological factors such as concentration and alertness. In
the context of sports, fatigue can have a negative impact on performance or, even
worse, lead to injury or health complications if prolonged in time. Past research
has shown that muscle injuries are more frequently associated with prolonged
forms of muscle fatigue [Rozzi et al., 1999]. To this regard, the development of a
monitoring system that identifies the onset of fatigue and monitors it, incorporating
mental and physical fatigue features in a non-invasive manner for the sport under
study would be of relevance. In order to do so, we suggest the creation of new
fatigue indicators that combine electromyography (EMG) and heart rate variability
(HRV) features derived from electrocardiography (ECG). Our study [Ramos et al.,
2020] builds upon physiological data acquired during cycloergometry exercises.

Assessing fatigue: Tests and features

Our research of fatigue onsets and indices draws on conducted cycloergometry
tests and physiological monitoring. With university institutional review board ap-
proval and having provided signed informed consent, the study participants were
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recruited from a local university community through invitation and flyers. The group
of participants consisted of fourteen healthy subjects (men, aged 24.5 ± 3.6, body
mass index = 23.7±1.7 kg/m2), free from known cardiovascular/metabolic dis-
ease and medication intake, nonsmokers and normotensive i.e. with consistently
bounded blood pressure values (80 and 120mmHg reference upper values for
sistolic and diastolic). Before testing, participants were requested to avoid heavy
physical activity for 24h, caffeine drinks, and food intake from midnight to the
morning testing session. The monitoring sessions were scheduled twice in a 7-day
period for each subject. The two sessions were held at similar times (between
7a.m. and 10 a.m.) with no more than 48h between them. On day 1, subjects’
weight and height were measured, alongside a “Graded Exercise Test” providing
a treadmill-based estimation of their peak oxygen uptake (V O2peak) and second
ventilatory threshold (V T2). On day 2, subjects underwent a “Constant Work Test”
on the cycloergometer working at the established constant work rate (WRV T 2+15%

),
with constant cycling cadence and synchronising their right leg with a metronome
speaker. EMG signals from 2 of the muscles captured during exercise (rectus
femoris and vastus medialis) and heart rate variability data were used for our
analysis. The HRV records of 3 participants were excluded, as they suffered from
data loss issues.

EMG HRV
Time Frequency Time-frequency Time Frequency
rms Median freq. Median freq. Max RR ULF power

Total power Major freq. Min RR VLF power
Major time Average 〈RR〉 LF power
Mean power SDNN HF power
Area rmsSD Median freq.
Volume Triangular I
Time dispersion SD1
Freq. dispersion SD2

SD1/SD2

Table 3.1: EMG and HRV parameters for the study of fatigue

Data was recorded during cycloergometry exercise (acquisition+ phase) and
as during post-exercise recovery (acquisition- phase). Of particular interest are
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the rectus femoris acquisition+ signals, i.e. a muscle that is heavily affected
by the buildup of fatigue and the vastus medialis acquisition- signals, a muscle
relatively less or not affected by fatigue during the test. Applying the Teager-Kaiser
Energy Operator on the EMG signals, muscle activation events were monitored.
As per HRV data, R peaks were computed following the Pan and Tompkins
procedure, yielding the RR intervals for the tachogram time series representation.
Using an overlapping sliding window approach, with different sizes, several time
series of EMG and HRV features were created to represent their evolution (see
table 3.1). The time-frequency analysis of the EMG, circumventing the non-
stationarity problems of EMG Fourier transforms, is derived from the use of the
wavelet transform with the Ψ Morlet prototype wavelet:

ΨMorlet(t) =
1√
bπ

e−
t2

b2 ej2πfct (3.15)

In the wavelet function of time (t), j is the imaginary unit in the sinusoidal term
ej2πfct, fc represents the central frequency, and b is the bandwidth parameter
playing the role of a Gaussian window width related to the energy spread in the
frequency domain. The time-frequency domain analysis is carried out by iteratively
scaling the wavelet and obtaining the scalogram S(t,f) based on a given set of
pseudofrequencies, yielding the features (Major time, Major frequency, etc.). The
resolutions used were ∆t = 0.001s and ∆f = 2Hz. For each subject Subjecti,
parameters Pk are extracted using a wide range of window sizes WSEMG and
WSHRV , in turn evaluated for different time steps TS:

Subjecti


For each parameter PEMG

k and PHRV
k , respectively

Compute series with WSEMG = [5, 10, 15, 20, 25] muscle activations

Compute series with WSHRV = [30, 40, 50, 60, 70, 80, 90, 100, 110, 120] s

Repeat for different time steps TS = [0, 10, 25, 50, 75, 90]% of WS

For EMG parameters, the application of the different window sizes means that
features are computed per activation and then averaged to obtain a single meas-
urement. The time series were obtained for all the parameter, window size and time
step combination, for the 14 EMG and 11 HRV samples, respectively. A trend was
derived from every time series by means of fitting a linear regression model to the
values. This yielded slopes (m) and standard deviations (σ) for every parameter,
which was initially used to characterise the trend as a growing or descreasing



70 CHAPTER 3

one. More research should be done in order to justify the procedure, as despite
the usefulness in helping reduce the complexity of the problem, concerns emerge
regarding the vague linearity assumption on several of the parameters. Looking
at the whole population of subjects, it was possible to combine parameter trends
and obtain a general average trend for each parameter at a given window size and
time step:

mcomb =

N∑
miwi
N∑
wi

σ2
comb =

1
N∑
σ−2
mi

=
1

N∑
wi

(3.16)

For every pair ofWS and TS, a coefficient of variation CV is computed (eq. 3.17)
in order to characterise which combinations render the most relevant variation
(high mcomb) with the least uncertainty (low σcomb), i.e. presenting a low CV :

CV (WS, TS) =
σcomb
mcomb

(3.17)

In order to rule out single-subject effects and focus on fatigue-induced states,
the trend analysis is restricted to the WS − TS combination that minimises CV .
Moreover, two conditions had to be met. A trend for parameter Pk is not considered
as such, when its acquisition+ value ± 95% confidence interval crosses 0 – i.e.
implying a change of sign or trend reversal. Any acquisition+ trend must also
verify that its acquisition- counterpart presents a trend reversal or certain degree
of uncertainty that would allow it. When both criteria hold, a parameter Pk is said
to be an individual fatigue descriptor (IFD). The resulting features (4 EMG and
10 HRV) that are left are Fourier median frequency, Wavelet median frequency,
Wavelet major frequency and Wavelet major time for EMG, and Max RR, Min RR,
〈RR〉, rmsSD, SDNN, Triangular index, LF power, HF power and Fourier median
frequency of the tachogram for HRV data.

Combining fatigue descriptors into a global index

In order to further characterise fatigue, our study gathered all the individual
fatigue descriptors (IFD) identified and combined them into what we called a global
fatigue descriptor (GFD). Using the inverse of CV as a weight – hence, prioritising
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the contribution of IFDs with low CV – a weighted average is computed as follows:

GFD[i] =
1

CVk

K∑
IFDk[i]

K∑
CV −1

k

(3.18)

The IFDs used, are previously normalised, using the parameters’ maximum val-
ues obtained in the cycloergometer test. The resulting GFD, with values comprised
between 0 and 1, can be analysed along time for each participant, capturing a
fatigue profile for each one of them. An example is shown below. Using statistical
quartiles segments are established in the GFD values in order to characterise
what we propose as dangerous fatigue. Red zones, delimited by the first quart-
ile, highlight dangerous levels of fatigue. Green zones (above median) denote
non-dangerous levels of fatigue. The area in between is a transitional regime:

Figure 3.12: Example of a Global Fatigue Descriptor (GFD) and its dynamics for a
given subject. Red (below first quartile) and green (above median) ranges denote
dangerous and non-dangerous fatigue levels, respectively.

Empirically, it is observed in the collected data that, in general terms, GFDs
present an abrupt declined followed by a prolonged stability period. The observed
behaviour, can be interpreted based on the physiological mechanisms taking
place during fatigue buildup. When exercise starts, energy production is led by
efficient and slower aerobic breathing. When the maximum rate of aerobic energy
production is reached, a faster anaerobic respiration gradually takes over to fulfil
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the energy needs. The aerobic-anaerobic transition, starting which what is known
as the first lactate threshold could be linked to the emergence of the “stability”
GFD period [Faude et al., 2009]. In order to classify the fatigue regime, we choose
to train a support vector machine (SVM), an algorithm that learns what hyperplane
best separates data classes while maximising margins (distance to the datapoints
of the different classes). EMG and HRV time series of the 11 subjects are split
in two segments of the same duration. Two features are computed, encoding the
average value and the variation rate of the normalised IFD parameter series:

feat1 =

L∑
Pk[i]/maxPk

L
feat2 =

[P end
k /P start

k ]− 1

tend − tstart
(3.19)

Pk[i] is the parameter value at every given sample i, L is the number of samples
in the time series segment, P start

k and P end
k represent parameter value at the

start and finish time instants tstart, tend, and maxPk
is the calibration maximum for

parameter Pk.

Hence, any pair of EMG and HRV series was encoded in 2(NEMG +NHRV ) =

28 values. Using a leave-one-out cross-validation strategy, a recursive feature
elimination taking care of redundant information yielded feat1 for the Wavelet
median freq., Wavelet major freq. (EMG), 〈RR〉, SDNN, Triangular Index, SD2,
Fourier median freq., LF power and HF power (HRV). In total, 9 features are left.

Since we are interested in assessing fatigue classification in real time, the SVM
testing phase disregards averages and feeds instantaneous values to the classifier.
The classifier performance was rated by means of a stratified 11-Fold cross-
validation procedure, obtaining an accuracy of ACCSVM = 0.82± 0.24. Example
classification outputs can be seen in fig. 3.13.

Discussion and limitations

Our approach shows how by means of a broad analysis of EMG and HRV
parameters and their trends, combined with normalisation values obtained on
cycloergometry exercises, it is possible to find candidate features (IFDs) that
describe the buildup of fatigue in general. The idea behind this characterisation is
very appealing, as it could made biosignals available for the real-time monitoring
of fatigue that could prevent injury or reduced muscle performance long before
any damage takes place. However, our study poses several limitations besides
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Figure 3.13: Support Vector Machine (SVM) fatigue classifier output for 5 sub-
jects. Green datapoints represent non-fatigued class outputs and red datapoints
represent fatigued class outputs.



74 CHAPTER 3

the small population it is based on. By means of a weighted average that favours
relevant change in values and low uncertainty IFDs are then combined into a
global fatigue descriptor. Although the idea of a GFD index that characterises
the fatigue state is very powerful, as well as their graphic representation, the
optimisation of window sizes and time steps renders IFDs that are computed
with under different conditions – a process that does not likely generalise well.
Fatigue regimes in the GFD and their boundaries are merely defined based on
statistical quartiles. Without established window sizes and time steps that work
in general, the approach proposed is still costly in terms of computational power.
Experimentally, how dependent fatigue characterisation is on the chosen muscles
has not been studied. Without this validation, there is no guarantee that fatigue
buildup generalises to other muscles. Calibration, or the obtention of normalisation
values limits the broader applicability of the characterisation we describe. Moreover,
although it is empirically observed that the GFD generally follow a decrease trend,
values for different subjects do not necessarily conform to fatigue regimes (ranges)
determined during calibration and exceptions to the decreasing dynamics exist.
While the SVM classification in line with real-time results work relatively well
at depicting the transition from non-fatigued to fatigued regime, a few subjects’
representation of output classes over time pose concerns. These emerge either
because fatigue is never established or because non-negligible regions of non-
fatigue states appear after fatigue has settled in – an unexplained behaviour
present in about half of the sample subjects. Finally, the application of a simple
Principle Component Analysis (PCA), a dimensionality reduction method that
removes redundancies, shows that the 9 features used in the classification could
be reduced to 2 principal components.
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Chapter 4

Biosensing, body self-awareness
and first-person design

4.1 Making biosignals available:
The body, interaction design and
affective technologies

In recent years, as personal sensing devices have gained popularity throughout
mobile phones, applications that go beyond behavioural health and sport self-
tracking wearables – such as FitBit, AppleWatch or SamsungGear implementing
heart-rate monitors –, interaction design research has started to call for altern-
atives to challenge, rewrite and appropriate meaning-making around biosensors
and the signals from our body. Biosignals are powerful. They stem from the
medical practice and capture body and physiological insights to expose them. In
combination with the growth of biomedical wearables, biosignals have spurred
research directions on the anytime/anywhere monitoring of the body that could
have not been anticipated (see the review [Dunn et al., 2018]). Being able to
take biosignals out of the lab, far from clinical settings, opens many possibilities.
Especially when telling us about our emotions, our health or even performance,
biosignals create a close tech-user rapport where authority and meaning are
not easy to challenge. Outputs from sensing platforms backed up by science,
with measuring mechanisms counting on different degrees of transparency, are
subject to technology preconceptions. Sensing outputs do not only unveil rich
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body features the user might not be aware of but inevitably deliver information
with certain authority, preattached meanings and health connotations that are not
easy to circumvent. By authority, we refer to scientific/medical rigour and certainty
that biosignals inherit from the clinical practice. When interacting with biosignals,
in the form of personal sensors or trackers, the information delivered by these
platforms carry such meanings. Fear and respect are common elements of that
interaction. Biosignals carry meaning on aliveness, sometimes on performance or
correspondence to standards [Howell et al., 2019, Merrill et al., 2019]. In part it is
the interaction designer or engineer’s responsibility to add the context to expose
or allow that interpretation flexibility if desired, playing with ambiguity if needed
[Sanches et al., 2019a].

4.1.1 The problem

In this research stage, the problem that is addressed, i.e. “Making biosignals
available: The body, interaction design and affective technologies”, consists in
the following: In order for biosignals to be available for the design of affective
technology and body/emotion self-awareness experiences, biodata must be un-
derstood and exposed differently. We need to approach the designer’s practice,
using the engineering perspective’s takeaways but going beyond. As a way to
challenge what is possible, a collection of interaction design principles are taken
from human-computer interaction and design research.

Biosignals, as traditionally used in clinical contexts, have meanings attached,
certain scientific authority, and predominant ways to be understood and presented.
Biodata, in itself, has been used only to some extent, and the most predominant ex-
amples in technology-based interactions fall into a performance, self-improvement,
goal-oriented paradigm (notably in physical activity). In the case of emotional
sensing or tracking, that is no exception. Either through biosensing or behavioural
reporting, emotion tracking examples mostly present this improvement or efficiency
view of ourselves. When it comes to the presentation of biodata, i.e. the way
the user is provided with (bio)feedback information, screen-based visual charts
inherited from the clinical/electrophysiology practice are the norm. Alternative
ways to present biodata, features or cues are sought. Hence, the key problem is
posed:
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How can biosignals be made available for the design of affective
technology and body/emotion self-awareness experiences?

That poses the question of how to engage bodily with biodata related to the
body and emotions. How can biodata present material affordances? Or, in other
words, how can one transform biosignals into something a designer can give
form to, adapt, repurpose, stretch or modify as he/she pleases? If we consider
biodata as a material, one can argue that biodata is not a malleable material
to design with. This, of course, differs substantially from designing artefacts or
experiences with tangible materials found in crafting practices, such as using
wood, fabrics or metals. By affordances, what is meant is the properties of the
materials that show or indicate users what can be made with them, tacitly. As
introduced in section 1.1.1, the biosignals acquired by electrophysiology sensors
are a computational material, often based on fluctuations of body properties that
are digitised. Research on the ways in which biodata can be stretched, adapted,
modified and interpreted is needed. But this is a major challenge, as biodata is not
tangible, rather immaterial, and difficult to become attuned to. That is why relying
on the inspiration given by interaction design research that advocates the material
properties and challenges or redefines the immateriality of interaction elements
resonates with our goals. On another front, the field of Affective Computing,
i.e. computing that relates to, arises from, or deliberately influences emotions,
needs consideration. Its development, for more than two decades, and many
of its advances, draw on the recognition, detection and classification of traits or
emotions. This paradigm has understandably evolved hand in hand with machine
learning, feeding back in algorithm refinement and establishing vast databases
to continue improving. However, that is not the full spectrum of the Affective
Computing field. If a more important role for the body in the interactions is what
is sought, design methods that argue in favour of doing so come in handy and
provide rigour and solid foundations. This is, understanding the interaction body
not only as something to be measured but as the core to feel, perceive, reflect and
interpret.

In this part of the thesis, the core part of this PhD research, I present how inter-
action design is used to help researchers probe assumptions on the construction of
meaning around the body and biodata. In particular, biodata generated by sensing
technologies (see section 2.1.1 and 2.1.2) is of interest here. In challenging the
role that personal sensing plays in technology-mediated interactions, we turn to
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the body and the design of interactions that touch upon movement, affect –as
interaction–, emotion and sharing that lets us see beyond. This part of the thesis
is structured under the following sections:

• Materials and methods utilised within the explorative research presented, and
which proved to be inspirational for the studies carried out, are introduced:

1. HCI waves and the third-wave context (section 4.2.1)

2. First-person perspective design (section 4.2.2)

3. Soma design (section 4.2.3)

4. An exploration of Haptics and the body (section 4.2.4)

• Affective technology. Interacting with the body (section 4.3) provides re-
search context and describes the way affective technology is addressed
through the conducted studies. The described affective technology context
and the first-person/soma design perspectives introduced set the ground for
the first set of HCI research studies:

1. The ThermoPixels kit (section 4.4)

2. Designing (with discomfort) from a first-person perspective (section 4.5)

3. Dare to design: Sensory misalignment (section 4.6)

• Inspired by the first-person and soma design perspectives, a First-person
Physiology approach takes form (section 4.7). Research is conducted to
investigate how biosignals can be explored somaesthetically, integrated in
biosignal acquisition and processing efforts that revert to the following study
and subsequent topics that precede the final research outlook:

– From Biodata to Somadata (section 4.8)

Making biosignals available for interaction design offers interesting possibilities.
With regard to affect, as it will be shown, making biosignals available is of relev-
ance. In the particular context of affective technology design, interaction design
research on arousal is used to probe the creation of representations of biodata that
accompany users in the understanding and redefinition of meanings, scenarios
and ownership surrounding biosignal-based emotion technology (see section 4.4,
[Umair et al., 2020]). Guided by a first-person design approach (section 4.2.2),
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with tools that let the design researcher highlight the aesthetics of her/his own
experience, we try to assign novel meanings to biodata, or even uncover them,
almost like turning biosensing into a malleable material that one can change,
shape and interpret. Somaesthetic design [Höök, 2018] (section 4.2.3), promotes
a shift towards experiential qualities of interaction and putting the focus on the
subjective sentient body as the core for cognition, emotion, perception and action
as opposed to the traditional Western dichotomy of body vs. mind. Inspired by
soma design researchers and their body-centred practices, first-person exper-
iences guide a process to embrace discomfort, explore sensory misalignment,
and more importantly, create novel interactions that make the body central in an
experience that not only measures body properties as mere inputs but connects
the user to them via actuation feedback that spurs self-reflection, reinterpretation
and sharing. Biosignals become a malleable element to design with (section 4.8).

4.2 Materials and methods for the interaction
designer

In order to address how biosignals can be made available for interaction design-
ers working with (affective) technologies, the research carried out in this thesis
draws on several HCI avenues. The field of Human-Computer Interaction has
undergone many perspective shifts (called waves) that yielded particular methods
or ways of working. The work presented here, is inspired by, e.g. research fields
such as Affective Computing, intersecting with cognitive sciences and motivating
artificial intelligence advances. However the thesis research is best contextualised
with what is known as the third wave of HCI, which could be dubbed “embodied
interactions”. With these tools, an approach is taken on transcending dualism
and sharing subjective perspectives through exploratory group design sessions
and leveraging meaning/making processes via “learning or thinking by physically
doing”, most notably with a first-person perspective and Soma Design concepts.
In this section, a short context is provided on the Third wave of HCI (section 4.2.1),
first-person design (section 4.2.2) and somaesthetic design approaches followed
(section 4.2.3) – with a note on an inspiring haptic-body exploration exercise
(section 4.2.4) that set the ground for some of the studies undertaken in this
research.
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4.2.1 The third wave of Human-Computer Interaction

In the 1980s, computing technology started to make it into people’s lives thanks
to personal computers, providing accounting aids, entertainment and organisa-
tional tools to be used at home by the layperson. This fact put the focus on
how computers can be useful and understandable in the absence of advanced
training, creating a whole new discipline. Human-Computer Interaction, or HCI,
is an academic and design discipline concerned with the study of how people
interact with computing technologies – or, more broadly, digital technologies. The
idea behind the design aspect is that it is crucial to understand how to best create
computing technologies that are usable, effective, and adopted by the users, in
a way, engineering the human factors of technology design. The research area
has its foundations on computing, together with social disciplines such as cognit-
ive science, psychology and/or sociology, providing the grounds to address how
people make use of the technology in different contexts, how interactions lead to
knowledge or how technology meanings are conveyed. On the design side, and
spurred by the graphical user interfaces that motivated the vast adoption of com-
puting, there is interest in designing effective visualisation mechanisms. Another
design concern is the emergence of cooperative work supported by computers,
and how technology can motivate this kind of interactions. However, and especially
notable after the 2000s, as computers have made it into all sorts of technologies,
ubiquitous technologies are no longer necessarily dependent on screens and are
virtually found in every possible object one can imagine – more so in the internet
of things paradigm where any object could potentially be connected and exchange
information through a network. The impact of aspects touching usability, accept-
ance, enjoyment or even ergonomics comes to light. Technology design cannot
be separated from user experience design. Computers, or digital technologies,
have use cases, contexts and goals embedded in them. Among HCI scholars,
it is recognised that the development of the discipline has gone through three
distinct waves. These historical paths can be approached by reading the works of
Harrison, Bødker, Sengers and Tatar, among others [Bødker, 2015, Harrison et al.,
2007, Dourish, 2001, Blevis et al., 2014]. A summary of the HCI waves is briefly
presented here:

1. First wave: very much related to its computing and engineering origins, the
first wave of HCI is technical, and revolves around the concept of metrics
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and guidelines. Through these tools, the use of technology is analysed
– isolated to some extent. The human is an object of study. Stemming
from the concept of Human factors and ergonomics, i.e. the application of
psychological and physiological principles to the engineering of products,
HCI inherits from industrial design the productivity and safety scope. Humans
interact with artefacts (or computers). HCI seeks to compute metrics, run
structured tests and focuses on skill to obtain an optimised, productive,
“man-machine coupling”. In words of Duarte et al. [Duarte and Baranauskas,
2016], “interaction is perceived as a form of man-machine coupling, which
can be improved by solving ergonomic issues and interaction disruptions”.

2. Second wave: The second wave of HCI is characterised by a turn to cog-
nitive science. The human is seen as a processing entity, to be compared
with, combined and studied alongside the machine. Theories are sought
or strengthened to understand what the mind thinks, being studied while
unaltered by the researcher. Moreover, interaction is not merely seen as
something that takes place between a machine and a person, but in specific
settings. These spurred contexts of work and communities of users, high-
lighting cooperation, understanding, learning and participation. Through the
cognitive inspiration, a set of aspects are addressed, such as the fact that
information needs to be communicated efficiently, be processed in and out
of the system, drawing attention to user interfaces to communicate with the
machines.

3. Third wave: The third wave of HCI, revolves around usage of technology that
is not circumscribed to the workplace. Instead, (computing) artefacts are
found and used at home, in our everyday lives. This puts a focus on culture,
and how users actually utilise technology. From an embodied interaction
perspective, thinking is no longer exclusively abstract but realised through
doing things in the world, expressing through gestures and learning through
manipulation [Harrison et al., 2007]. Meaning making is central to HCI,
built collaboratively and on the fly. Technology impacts society globally.
Values are entailed in the design of technology and interactions. While not in
search of universal laws Third-wave HCI is much more inclined to study the
many aspects that were not addressed in previous waves, such as tangible
interfaces and pervasive/ubiquitous computing. To some extent, in this wave
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the recognition of multiple perspectives and scenarios gains prominence,
and in turn the plurality motivates the study of situated, local, user practices.

Some HCI researchers are proponents of a current fourth wave encompassing a
transdisciplinary paradigm [Blevis et al., 2014], apparently leveraging an orientation
toward values such as ethics, equity or social responsibility among others. While
these are aspects that resonate with the work presented in this research (some-
what observed via the third wave societal impacts too), the studies undertaken
throughout the exploratory HCI journey presented here are eminently third-wave,
i.e. addressing meaning making, ubiquitous technologies, embodiment strategies
and recognising material affordances.

4.2.2 First-person perspective design

First-person perspective design is an approach at designing interactions and
technology that places the user’s lived experience at the core of the design process
[Höök et al., 2018]. Emerged in Human-Computer interaction research contexts,
the first-person perspective tries to prioritise designing for a lived experience. In
doing so, the role of the designer is in turn that of the user, as interactions and
technologies are tried on, experimented and tested. Goals may entail gaining a
deep and experiential understanding of the effect of technology on people, society,
and everyday life [Lucero et al., 2019]. In practical terms, first-person research
is research that involves data collection and experiences from the researchers
themselves, as opposed to external users. Höök and co-authors argue that,
nowadays, most designed systems are continuously modified whenever used by
users, i.e. whenever realised in the world. The end user’s behaviours have an
impact on systems, ultimately altering how the meaning of a given technology
or interaction is built, hence leading to a never entirely finished system. The
first-person researcher draws on that statement and takes a step to actively adopt
a hands-on evaluative or exploratory stance. Potentially, this perspective can open
ways for engaging differently with technology. The designer steps into the user’s
shoes. When related to design concerning the body, the distinction between a
first-person and a third-person body perspective can be traced back to the French
phenomenologist Merleau-Ponty [Merleau-Ponty, 2002], who sees the lived body
(first-person) as different from the body as an object (third-person). Studies on
user-centred design, i.e. design research that focuses on the users’ needs and
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deploys validation mechanisms to approach them, often rely on a third-person
perspective involving the observation of users, tracking of their behaviours, or even
establish contact with them in the form of questionnaires and interviews. While
the growing interest in this approach highlights the opportunities to harness new
ways to create interactions and engage early on with effects, design options, and
meanings that interactions spur, the first-person design perspective also poses
concerns. Although handled carefully with group design sessions involving several
first-person accounts, design researchers, for instance, call for attention on the
fact that this way of designing subjectively may risk the fact of not accounting for
users’ versatile preferences, differences in perception, body, and lived experiences
even if exposed to the same interactions.

Autobiographical design

Methods employed in anthropology, such as autoethnography, are very much
in line with – and to be partly responsible for – the recent adoption of first-person
approaches in HCI and will probably continue to feed on design practices around
technology and interactions. HCI researchers have in fact “attempted to reconcile
autoethnography with a more traditional view on methods” [Lucero et al., 2019], by
using a scientific prose that distances itself from evocative narratives or by drawing
autoethnographic design guidelines.

4.2.3 Soma design

Soma design, short for somaesthetic design, is a design approach that builds on
the work of Somaesthetics [Shusterman, 2012] combining the body with aesthetics.
The soma design framework offers a coherent theoretical basis starting from the
constitution and morphology of our human body and perception. In soma design
a focus is put on the felt body [Höök, 2018]. In a design process, the body is
important because it is through the body that people feel, perceive and interpret
the world. Somaesthetics promote cultivating our (bodily) aesthetic appreciation.
When engaging in an experience, the body can be used to elucidate what the
aesthetics of the experience are. Somatic experiences seek letting designers
examine and improve on connections between sensation, feeling, emotion, sub-
jective understanding and values. In order to apprehend one’s sensations and
exert control over them, training is needed. HCI research works on the soma to
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unpack several practices that have been used to get attuned to the body and how
interactions are perceived. Among others, examples of body-centred practices
used in soma design research are Feldenkrais – i.e. body awareness through
movement –, which consists in guided movement exercises highlighting body
symmetries, positions and sensations while taking a non-judgemental perspective,
yoga, contact improvisation dance (see section 4.5.1) or body scans that guide
one’s attention towards body parts through instructions similar to those used in
meditation. The works of Tsaknaki et al. and Windlin et al. provide useful de-
scriptions for the novice [Windlin et al., 2019, Tsaknaki et al., 2019]. Moreover, in
order to reach a heightened body awareness, soma design employs techniques
such as estrangement [Wilde et al., 2017] or engaging with the non-habitual,
i.e. performing actions, movements and gestures in ways we are not used to. A
good companion of body awareness exercises is that of body sheets or maps
[Khut, 2006]. These are body sketching figures that are used to reflect on body
sensations at different stages of the exercises, body practices or interaction design
activities conducted by design participants or users. These are presented with
body sketches that need to be personally coloured, extended, and drawn according
to body sensations so that group discussion is motivated and change is stressed
for the participant, as body maps show the differences in sensations “captured”
at different instants. As argued by Höök and colleagues, Somaesthetics is an
ethical and aesthetic project that makes us aim at “living a better life”. Soma
design (together with a first-person perspective) approaches ethics quite uniquely
[Höök, 2020, Höök et al., 2019], and even goes beyond in questioning body politics
or pre-agreed norms within a cultural context. “Technologies encourage certain
movements,certain aesthetic experiences, certain practices, and responses, while
discouraging others, therefore shaping our ways of being. As with any design
process, when one shapes an interactive artefact, future users’ bodies and move-
ments are shaped too. And it is in that interplay of movements and adaptations of
behaviors that the political is enacted and enforced” – where the political is to be
understood as the cultural norms and freedoms that our bodies live in. A soma
design process engages personally with the digital and physical materials, but also
takes the end-users’ somas into consideration. As phrased by Loke and Schiphorst
[Loke and Schiphorst, 2018], through the somatic perspective, self-awareness or
self-care goes beyond narcissism to empathy.
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4.2.4 Haptics and the body

This thesis draws on a remarkable experience that stood out for a long period.
This is the exploration of haptics via what is called an Aesthetic Laboration (A-
lab) or Sensitising lab [Akner-Koler and Ranjbar, 2016]. Akner-Koler, who had
developed this method to bodily engage with the affordances of haptics – i.e. the
properties that touch and touchable elements suggest tacitly in terms of gestures,
directions, and ways to manipulate –, joined the first-person training event to
facilitate a design session where somaesthetic actuation technology was to be
combined and explored. An A-lab is a structured method for interacting with
physical and digital materials that aims at increasing one’s aesthetic sensitivity.
As we will see, this method will impact research directions followed in section 4.7
and section 4.8, together with the Soma Bits toolkit project [Windlin et al., 2019].
With the soma design approach, A-labs foster the ability to feel and articulate
different bodily sensations and properties of materials (lightness, softness, warmth,
among others). Akner-Koler’s approach offers structure to soma design explorative
sessions. Sorted in groups with clearly delimited roles, participants share first-
person accounts of experiencing the material affordances. In the context of
an A-lab first-person design workshop organised as part of a doctoral training
week, for instance, groups were made of three participants. The roles were
the sentient subject, the research conductor applying the requested effects or
materials and the person in charge of documenting the experience and evoked
body sensations. In order to obtain a heightened haptic perception, the sentient
participant is blindfolded. Actions are continuously verbalised. This highlights that
no undesired action takes place. Moreover, participants count on previously agreed
rules on body parts where haptic probes are to be placed so that explorations
do not become too invasive or overly intimate. The result of these sessions lead
to a heightened sensitivity towards haptic cues and material affordances. With
the soma design approach, the body is inquired throughout the session, as the
mechanism to construct meaning but also as the means to evocatively engage with
a material or piece of technology. The design space is broadened by body-material
insight. It is worth depicting what is meant by the body-material insight. In previous
inspiring work developed by soma designers, prototypes like the Breathing Light
[Ståhl et al., 2016] demonstrated the ability to switch the users’ attention to a body
characteristic (breathing) and focus on the experience of inhale/exhale cycles. The
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device counts on a lamp that can dim its light according to a proximity sensor
tracking the thorax and the associated breathing cycle. Throughout the design
of the interaction artefact – and its usage –, the body is attended and treated
with care. That can be accomplished via several techniques or exercises that
soma designers elaborate on. With the A-lab, the designing team and users have
another route available to get attuned to the body, as it could be the case for the
somaesthetic prototypes shown in [Tsaknaki et al., 2019], using it as an extra
resource.

4.3 Affective technology. Interacting with the body

With the emergence of everyday personal sensing systems, such as those em-
bedded in our permanently reachable phones, smart watches and fitness bracelets,
HCI and ubiquitous computing scholars have highlighted the value of these tech-
nologies for innovative research. Technologies that we have seen permeate the
everyday space with quantification, exercise tracking, and physical wellbeing, have
also –perhaps in line with a more traditional Affective Computing view– made
researchers dream of extended healthcare, diagnosis and monitoring applied as
well to mental wellbeing. Just to name a few studies, research can be found on the
promising field of affective computing technologies for autistic spectrum disorders
(see the review [Cabibihan et al., 2016]), on the move towards mobile-based psy-
chotherapy platforms and tracking routines for the youth [Matthews and Doherty,
2011] or the implementation of affective computing techniques in the design of
mobile health tools for bipolar patients [Abdullah et al., 2016, Matthews et al.,
2015]. As exemplified by Bardram and Matic [Bardram and Matic, 2020], mental
health research is catching up. In recent years, research on mobile and wearable
technologies that track behavioural, psychological, and contextual signals has
gained momentum in the field, albeit not without pending design challenges [Sas
et al., 2020]. Pursuing a research path toward ubiquitous technologies deployed
in mental wellbeing domains may help to bring to the surface such aspects as
personalisation, perhaps achieving forms of rapport or engagement not seen in
traditional healthcare. The promise of affective computing, i.e. computing that
relates to, arises from, or deliberately influences emotions [Picard, 1997], is vast.
In our view, we argue that just as self-awareness plays a major role in the motiva-
tion of change in rehabilitation therapy, e.g. in cardiac rehabilitation [Maitland and
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Chalmers, 2010], psychotherapy could benefit from self-monitoring technologies.
Awareness, for instance, may contribute both to (re)assessment and behavioural
change that are solid grounds of cognitive behavioural psychotherapy. Address-
ing how technologies expose body characteristics and support (body and affect)
self-reflection lies within the core of our goals. Thus, when research in affective
technology design is presented, we significantly place importance on emotional
awareness. Emotion plays an integral role in design work, and design researchers
are not exempt from its ups and downs either [Balaam et al., 2019, Sas and Zhang,
2010a, Sas and Zhang, 2010b]. As affective computing reaches maturity, other
ways of approaching affect keep the pace. Links between emotion and physical
activity exist, for instance, via dance, exercise, movement, or paying attention to
our body senses while immersed in nature. Engaging with the body might therefore
be a fruitful path to explore when designing technologies and interactions with a
self-reflection scope. There is room for an affective computing that does not look
at the body as “an instrument or object for the mind, passively receiving sign and
signals, but not actively being part of producing them” – as phrased by Höök when
referring to dominant paradigms in commercial sports applications [Höök, 2012]. In
an effort to attend to emotions, rather than primarily recognising them, researchers
investigating what is known as the affect through interaction prioritise making
emotion available for reflection. In such line of thought, seeking emotion aside
from context would not make sense. In this affect through interaction exercise,
the role that emotion has had for a long time in artistic and design endeavours
is acknowledged. This is exemplified by the analysis of Boehner et al. [Boehner
et al., 2007], later picked up by Howell et al. [Howell et al., 2018a] to defy the role
of personal sensing in the affect through interaction view, in particular the role of
biosensing. That is, by no means, to say that the push that personal sensing has
witnessed under the advent of affective computing should be diminished. Rather,
the dialogue with artificial intelligence research and attention to more cognitivist
oriented outcomes can strengthen the affect interaction paradigm. When designing
technology-mediated experiences, we view the affect as a sociocultural, embodied,
and interpretative construct.
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4.3.1 When design redefines technology

Recent examples of Human-Computer Interaction research demonstrate how
technologies that so far were relegated to engineering domains, are making their
way to design contexts where they are harnessed, twisted, put to the test, re-
spectfully stripping away their meaning to yield new uses. The transformation that
design exploration brings to digital materials, for instance Bluetooth communic-
ation [Solsona Belenguer et al., 2012, Sundström et al., 2011], paves the way
to new explorations on sensing platforms and biodata. These works highlight
the relevance of taking an interaction research approach: “it is not enough to
experience digital materials at any given moment to grasp their properties and
design potentials; instead such dynamic qualities only reveal themselves when
put to use. More often than not they have to be assembled as part of running
systems for properties to take on form and substance, and especially so for ma-
terials as immaterial as radio.” The seminal work of Howell et al., capturing the
reality of the ubiquitous performance-oriented sensing trend permeating work,
home and leisure, points to alternative tangible representations of biodata [Howell
et al., 2018a]. Biodata graphs are able to become physical. Biosensing garments
present paradigms where biodata is not disassociated from emotional experience,
sensing mechanism or display. These are entangled phenomena. Howell builds
such case around electrophysiology, where researchers deal with the redefinition
of electrodermal activity. Interaction designers, through artefacts, open the design
space to gain access to uses that would otherwise be out of sight. Electrodermal
activity representations are taken to the extent of exposing properties, creating
appealing visuals, or playing with nonhabitual dynamics that do not necessarily
require screens. Data is no longer something to check upon, in a disembodied
manner, but something that one carries, wears, or enhances in order to better
understand the self, engage with, gain knowledge or even give rise to sharing
instances. In the work of M. Umair and colleagues [Umair et al., 2018, Umair
et al., 2019b], the concept of arousal, also under the electrodermal activity sensing
paradigm away from conventional screens, is addressed from the lens of visuals
and haptics. In his studies, we observe how tensions like privacy, interpretability
and ownership emerge vividly to bear the weight of alternative interactions with
personal sensing. In an attempt to go further, building on thermochromic-based
displays, skin conductance and its connection to affect still pose questions on how
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users can appropriate the interpretation of arousal biodata and their uses. What
if users could drive the design of arousal display platforms? Little by little, the
different questions lay the groundwork for the ThermoPixels toolkit [Umair et al.,
2020].

4.4 The ThermoPixels:
User-engaging affective biodata

Affective health and wellbeing has recently caught the attention of Human-
Computer Interaction research [Sanches et al., 2019b]. Interfaces that combine
physiology with feedback try to promote self-reflection in order to help users be
more aware of their own emotions, potentially contributing to their wellbeing. With
examples that go from heart rate relaxation artworks [Khut, 2016], to electrodermal
activity expressive wearables [Howell et al., 2018b, Umair et al., 2019b] or brain
activity feedback interfaces [Hao et al., 2014], biosignals have significantly taken
over a particular discourse of emotional awareness. Designed by means of
different feedback modalities, new affective technology paradigms coincide in trying
to leverage engagement and direct participation of the user in interactions aimed
at self-reflection. The idea behind it, is that emotional awareness and regulation
constitute basic skills for emotional wellbeing. By emotion regulation [Gross, 1998],
we refer to the processes that subjects deploy in order to influence which emotions
are experienced, when and how – relating to physiology responses, intensity and
behaviours. Commercial devices or research prototypes intertwining users with
emotion self-reflection are usually provided to users as closed systems, opaque in
terms of working mechanisms, leaving no room for customisation or appropriation.
In this research, it is argued that building upon end-user development despite the
development difficulties, user involvement entails benefits with respect to agency,
attachment and transparency in understanding the technology mechanisms. In
other words, end-user development is proposed in order to let the user take
actions on his or her own behalf, exposing that the behaviour of the technology is
in part fruit of the design decisions taken. At the same time, participating directly
in the creation of artefacts or representations exposing inner qualities (in this
case, arousal or EDA levels) must enable a closer appreciation for the technology
and its uses, with a rapport building on feelings of ownership or authorship that
consumer goods do not face. Inspired by the work presented in [Howell et al.,
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2018b] and [Umair et al., 2019b], facilitating the reliable measurement of arousal
via galvanic skin responses that leads to emotion regulation uses, the question
on whether users are able to personalise arousal representations is posed. Can
users add their perspective and customise an arousal representation that speaks
to them amidst these technology-driven interactions? Beyond the work that HCI
has inspired on combining smart materials and alternative biofeedback modalities
which often get tangible or more intimately connected to the user, novel design
opportunities for affective technology design are found. In order to find out how
the users deal with arousal biodata, in particular EDA, and create representations
a toolkit allowing to do so is sought. This is how the concept of the ThermoPixels
kit is born. The research described here is a result of a personal collaboration
uniting University of Lancaster and PLUX/UJI for a specific HCI project. The
ThermoPixels kit, and the idea of running workshops to assess how users would
interact with smart materials to address arousal representations (and arousal
itself) were both conceptualised by Lancaster researchers M. Umair and C. Sas.
Having collaborated in other occasions thanks to the AffecTech [AffecTech, 2017]
partnership, the possibility to actively participate in organising the workshops and
analysing the outcomes generated by participants was very promising for this
thesis. As it will be seen, this project highlights a different way to bring the user
into the centre of the technology interaction. Intersecting emotional awareness
as no other study developed within this thesis, the ThermoPixels (based on EDA
but not unpacking it explicitly) underscores how different users make interaction
(biosensing-based) devices their own, not only addressing arousal concepts on
the fly but also questioning their possible day to day uses. Those who build
the resulting arousal representations feel connected to them because they own
the communication codes and anticipate what to do with them. Appropriation,
in a way, should be seen beyond a mere IKEA (self-made) effect [Norton et al.,
2012], i.e. the attachment that is created when effort is put in a given product
that needs to be finalised. ThermoPixels had an impact in the personal research
line that followed, trying to open up the possibilities with respect to biosignals and
what they add (not so much concerned final concepts or prototypes for emotional
awareness). In this thesis, it contributed to move closer to the study of interaction
that uses the perspective of the researchers themselves (see section 4.5, 4.6 and
4.8). With a focus that is put on interesting visuals brought by thermochromic
smart materials – i.e. materials that change colour when subject to temperature



CHAPTER 4 93

changes – , ThermoPixels unites physical and digital materials that provide visual
qualities enabling the creation of alternative arousal representations. Importantly
enough, finding out how the toolkit’s material affordances are explored and used to
create personalised arousal representation regardless of the users’ technical skills
needs to be investigated. Moreover, not only the wide range of visual concepts or
prototypes that emerge from the ThermoPixels needs to be addressed, but also
the contexts, hypothesised use case scenarios and their emotional connections,
of much relevance to affective technology design.

4.4.1 Background: Affect, material approach and users’ input

Arousal has been consistently present in discussions surrounding studies of
affective computing. Since the early days of the circumplex model of affect [Russell,
1980], affect can be characterised by two dimensions: valence, or the degree
at which one rates an experience positively or negatively, and arousal, i.e. the
intensity of the emotional experience, ranging from low, neutral to high (see, for
instance a simplified version, fig. 4.1). The 2D representation is a tool that has
gained prominence in psychology and affect research through the years.

Figure 4.1: 2D representation of arousal-valence affect, where affect words can
be placed attending to their intensity and pleasure
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Strictly speaking, Russell and his research on mapping affect concepts in a
2-dimensional circular space referred to pleasure-displeasure as the horizontal
dimension and arousal-sleep as the vertical dimension. The representation would
be used to judge how well specific concepts such as excitement, depression, dis-
tress or contentment would be placed within this framework, along with other
words like happy, astonished, angry, sad, bored or serene among others, always
attending to their valence-arousal. There is interaction design research in the
intersection of wearables, biofeedback and emotion regulation investigating af-
fective interfaces to support emotional wellbeing. A notable example is found in
[Miri et al., 2018a, Miri et al., 2018b], where the concept of emotion regulation
is addressed via personalised technology, paving the way for the creation of in-
teractive connections – tangibly, with haptics – with the user’s body in a way that
regulation strategies or interventions are deployed anywhere. In general, the goals
of these interaction design studies usually encompass the facilitation of emotional
self-awareness and regulation. Emotion regulation technology does not necessar-
ily stay in the awareness scenario only, but should motivate empowering reflection
and change, if needed. Other works on tangible platforms, leverage haptics and
evocativeness of touch to support clinical mental health interventions [Vaucelle
et al., 2009]. MoodWings [MacLean et al., 2013], for instance, targets stress
interventions with the use of a wearable butterfly that makes the users reflect on
their current stress states. Early works such as Affective Diary [Lindström et al.,
2006], explored the combination of sensing and emotional memories in a broader
sense that spanned over time, allowing its users to actively own the narrative
surrounding experienced emotions and mixing body inputs with personal accounts
to reflect and re-assess past recorded experiences. This fertile space, though,
gives rise to projects where the combination of emotionally relevant biosignals
(such as EDA) with event logging spurs stress event classification and recognition
[Ayzenberg et al., 2012] where the active self-reflection role of the user unfolds in
a later stage. The work of Affective Health [Sanches et al., 2019a], with a different
focus, highlights the interest in long-term data trends, the relevance of open-ended
designs where various use cases emerge and exemplifies different uses of colours
and shapes to represent arousal. Representations are not necessarily free from
ambiguity, which in fact is seen as an affordance of the technology that eventually
yields interpretations. These observations, much more in line with the research of
M. Umair’s material arousal interface research [Umair et al., 2018, Umair et al.,
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2019b], allow addressing questions on the users’ personal take. This work is
notable for building upon smart materials’ qualities that provide alternatives to
experiment the data. Wiberg calls for a material exploration that works back and
forth with the materials in order to understand their properties. This allows one to
put materials together in new ways. In particular, “attention to details through a
process which switches back and forth between details and wholeness” is sought
[Wiberg, 2013], i.e. linking aesthetics to the material details and meaning to the
whole artefacts. However, Wiberg draws upon an artefact-oriented perspective
[Jung and Stolterman, 2012], therefore assessing what the physical technology
brings and not necessarily bound to user-centred efforts that focus on the user’s
needs. The focus on materiality should not be underestimated, as progress in HCI
research has benefited from it uncovering the experiential and aesthetic qualities
of the relationship between user and technology. Although only partially achieved
with regard to thermal effects and visual triggers, ThermoPixels tries to build on
the envisioned programming of smart materials [Vallgårda et al., 2017], i.e. being
able to program changes in the material properties that must unfold during the
interaction with a piece of technology. The work of Giaccardi and Karana [Giac-
cardi and Karana, 2015], enriched the debate addressing how materials (or their
affordances) shape interactions, influencing what users do and how users do it.
The ThermoPixels, created for EDA arousal representation, aims to address the
affordances of the chosen smart materials and let the users unpack them while
prototyping with the toolkit.

4.4.2 A toolkit to design with

Design toolkits (prototyping kits) containing electronics have emerged in recent
years within HCI research, offering new avenues for tech development and echoing
the rise of the do it yourself (DIY) culture [Kuznetsov and Paulos, 2010, Mellis,
2014]. Toolkits usually rely on instructions that guide users in the assembly pro-
cesses. Some examples of (electronic) DIY kits are found in the context of assistive
technologies [Moraiti et al., 2015, Hurst and Tobias, 2011], for instance addressing
how this paradigm empowers users with the means to create technologies better
adapted for their own uses, at a low cost and potentially increasing acceptance.
Other uses involve e.g. end-user programming kits that present different data
modalities (light-based and physical-based: visual, vibrational, rotational) aimed
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at environmental data engagements [Houben et al., 2016], and domestic energy
consumption tracking [Sas and Neustaedter, 2017]. Targeting the benefits of hand-
crafting enjoyment and enhanced learning present in the DIY practices, low-cost,
thermochromic, smart materials are put into a design DIY toolkit. With the aim
of exploring the creation of alternative physiological arousal representations, the
novel combination of making and affective technology is studied.

For the sake of understanding better what the DIY designing experience entailed
it is worth describing some of the components we included in the kit. Thermo-
chromic materials, carrying notions of range, inertia, duration and responsiveness
[Umair et al., 2019b], are the main components of the ThermoPixels toolkit. The
material choice consists of black liquid-crystal sheets exhibiting colourful patterns
when heated, color-changing thermochromic inks and revealing sheets turning
translucid when warmed up (a.k.a. rub-and-reveal). Sheets are bendable, cuttable
and provide a sticky side to facilitate manipulation. Inks are provided together
with application syringes. The temperature range of operation conditioned the
material choice (ranges between 25 °C to 40 °C), in order to obtain relevant re-
sponses without compromising safety. Heating materials using electric current
to deliver temperature to the color-changing components are also part of the
toolkit. Nichrome wires, heating pads, thermoelectric coolers (Peltier modules)
and conductive fabric are used. Besides, the Arduino-compatible Grove GSR
sensor [Grove - Seeed Studio, 2014] for electrodermal activity tracking is the pillar
to capture the arousal changes. The sensor, tracking changes in skin conductance
due to the sweating that the autonomic nervous system drive in the presence of
affect stimuli, is used alongside an Arduino board and basic electronic connectors
(cables, alligator clips, etc.). The electronic system is enclosed in a plastic box and
ready to be connected to the prototyped displays. Other materials accompanying
the kit components are mainly for isolation (plastic sheets, cardboard, etc.), sketch-
ing and crafting facilitation purposes (colour markers and sheets to create the main
visuals, scissors, cutter, glue, Velcro, adhesive tapes, etc.). A relevant part of the
design leverages colour contrasts, the interplay between opacity and transparency,
and the layered structure that the heating and visual components will impose.
Each of the heating elements presents different affordances, i.e. weight, rigidity,
current-temperature dependence, temperature dissipation properties, etc. In order
to not overwhelm participants with choices, it was decided that every participant
would exclusively work with a single (randomly-assigned) heating element without
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having a choice. At the same time, evenly distributing the heating elements would
ensure that no bias with regard to heating choice would arise, e.g. ending up
with too many fabric-based outcome prototypes due to the resemblance of its
characteristics with those of wearables.

Once the kit was set, we set out to run the experimental phase of the study. In
order to study the usage of the ThermoPixels toolkit, hybrid crafting workshops of
3h duration were organised by our team. Every workshop hosted 2 participants
who worked independently. 20 participants (average age 27; 9 women), com-
pensated by a £30 worth voucher on online purchase credits and recruited through
a university campus, ended up being part of the study cohort, yielding to 20
different outcome artefacts (5 prototypes per heating element). A researcher is
available all the time in order to provide technical support if needed, i.e. ensur-
ing electrical terminals are safely connected and operating power supply. At a
workshop, a participant follows 3 stages to embark on the design of her/his own
arousal representation:

1. Being introduced to arousal and the DIY toolkit. Sketches and low-fi prototype
concept.

2. Crafting. Design work and prototyping. From drawings of arousal represent-
ation to prototyping thermochromic visuals.

3. Testing the prototypes. Reaction to stimuli and arousal triggering.

Emphasis is put at introducing the concept of arousal as emotion intensity.
After sketching several representations of emotions at different levels of intensity,
participants are asked to think of a unique image that conveys the increase of
arousal (not necessarily bound to a discrete emotion) and imagine how it could be
translated to a low-fi prototype with the given materials.
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Figure 4.2: Crafting arousal representation prototypes with ThermoPixels. Badge:
(a) sketching, (b) layers, (c) thermal/touch exploration of liquid crystal layer, (d)
connecting the nichrome wire, (e) arousal EDA sensing test, (f) wearable badge

The sketching stage is of particular relevance, as participants start to inadvert-
ently experiment with the connections they establish between different emotions
and the various colours and shapes, to end up transitioning to the concept of
intensity per se that will be translated into a prototype that needs to convey arousal
change. This activity potentially saves trial and error time and orients the toolkit’s
material exploration that follows. The prototyping stage takes inspiration from pre-
vious research on the layered structure of crafted thermochromic-based platforms
[Umair et al., 2018, Wang et al., 2017]. Participants create the objects that will
hold their arousal representation and host the heating mechanism activating the
visual effects (see examples in fig. 4.2 and 4.3, where e.g. the nichrome wire is
used in combination with liquid crystal and revealing sheets to create, respectively,
a badge and a desk air purifier/paperweight). The activity involves substantial trial
and error for both implementing the sketched concept or pattern and experiment-
ing with the material affordances of the different components. Finally, the activity
concludes with the opportunity to test the mechanism and visuals created in the
form of an arousal prototype by means of a set of IAPS [Bradley and Lang, 2017]
arousal-triggering pictures shown on a laptop screen.
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Figure 4.3: Crafting arousal representation prototypes with ThermoPixels. Flowers:
(a) sketching, (b) arousal transitions, (c) layer structure/revealing sheets, (d)
arousal EDA sensing test, (e) nichrome wire heating

4.4.3 Prototypes. Affective technology design lessons

A key factor of the ThermoPixels is that the users who created prototypes with
it explored the materials from an embodied perspective, spontaneously. The
thermochromic materials prompted touching, breathing on, squeezing, folding
and stretching the components. This exploration informs the participant about
the material responsiveness, colour aliveness and time dynamics. Although not
directly addressed, these body-led affordances could reinforce the attachment to
the created representations emerging already from the DIY craft journey. Ther-
mochromics posit themselves as relevant candidates to drive further affective
research. The experience of participants, addressed via the created artefacts and
a qualitative interview, indicate that complex affective technologies as the ones
deployed in ThermoPixels achieve a certain level of accessibility regardless of
participants’ background or field of studies. The toolkit significantly enables to
input user creativity into otherwise distant technologies. The outcome prototypes
are vast, exploiting concepts such as a projector, a mobile phone case, a ring, a
pair of sneakers, an air purifier, an alarm-like clock, a dynamic badge, a wristband,
or a lamp, among others. Notably, wearables constitute a relevant amount of
the outcomes, but circumscribing affective technologies (or interfaces for arousal
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reflection) to wearables would be an error. Fortunately, the ThermoPixels was
not addressed in such a manner. The internet of things ecosystems that are
found in today’s societies allow the emergence of other paradigms, as it could
be the case with the smart agent present in the ThermoPixels’ outcomes, the
air purifier, the projector or the clock. All of them present interesting features
like portability, or are subject to attributes like smart, connected or responsive
technology. As a learnt lesson, finding the media that best speaks to the user
should not prevent these fruitful explorations that place affect reflection concepts
beyond wearables seen in otherwise meritable research [Umair et al., 2018, Howell
et al., 2018b, Devendorf et al., 2016]. ThermoPixels’ prototypes, due to the way
they are built, open the way for inputting creative personal expression, something
that contrasts with other DIY studies. The chosen smart materials are a vehicle
to open-ended exploration via hybrid crafting [Golsteijn et al., 2013] – combining
the physical and the digital–, as opposed to assembling instructions. The body,
with not much attention paid as it is often the case in interaction design, is not
directly addressed from the toolkit design. However, the use of the body emerges
vividly in the crafting practice, revealing how participants leverage their bodies as
actuating tools triggering temperature effects. This adds to the aforementioned
embodied or haptic take on material exploration. In doing so, the users establish
connections with the materials that go beyond colour and shape choices, poten-
tially replayed when the arousal visuals are triggered in future use case scenarios.
This aspect should reinforce the idea that the role of the body needs a place
in affective design work, with so much potential insight to be studied, i.e. with
biofeedback and emotion mappings to be explored in whatever novel affective
interaction is created. Moreover, workshop participants navigate repeatedly from
body-as-input (through the sensor, through the triggering actions to explore the
materials) to body-as-output (via effects experienced on artefacts attached to the
body). Affective technology design should consider the benefits of addressing
this body-material interplay before any development is deployed at a large scale.
Creating space for open critique touches, at the very least, foundations on the
ethics of technologies that touch upon users’ emotion. This body role, we argue,
could be paired with research studies like [Lazar et al., 2018], where Lazar et al.
suggest that there is room to explore materials as language potentially overcoming
expression difficulties.

Looking at the results of conducting the ThermoPixels workshops, an aspect
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regarding the use of the prototypes is worth noting. Participants either conceptual-
ise the prototypes as artefacts for emotion expression or technology for emotion
regulation. Both uses are crucial for the effective functioning of everyday life and
emotional wellbeing. Emotion regulation is continuously at play, for everyone.
Its importance can be illustrated with examples. The accounts presented in the
context of project WEHAB [Miri et al., 2018a], for instance, speak about the impact
that emotion regulation has for emotionally charged occupations such as flight
attendants, police officers, customer facing services, military personnel, and emer-
gency response personnel. For them, it is very important to detect when negative
emotions rise and select a coping strategy accordingly. The example text goes on
to hypothesise how technology could privately cue users with appropriate emotion
regulation strategies, warn about overreacting instances or motivate changes of
coping strategies. The chosen occupations make it easier to empathise with the
effects that emotion regulation may have when dealing with customers, suspects,
opponents or patients under stressful situations. However, emotion regulation
affects everyone. ThermoPixels outcomes, notably, allow users to hypothesise
with emotion expression and regulation mechanisms, two aspects that are not
necessarily addressed together in affective technology research. In terms of
arousal depiction, despite the limited number of prototypes, outcomes show an
important variety of choices of colour, softness and size of geometrical shapes,
but also going beyond and moving from 2D to rich 3D forms. Moreover, this
study could motivate further research on the associations that emerge between
emotion intensity depictions and colour, roundness or shape choices, feeding into
previous research reflections, e.g. [Khut, 2016]. Beyond the effect of the affective
technology assembled, there is potential to use the toolkit as a psychoeducation
tool. Not only the toolkit attunes the subjects encountering these sensors and
effects for the first time but can also help affective technology designers being
introduced to novel platforms or materials of interest for their practice. Participants
note that the use of the ThermoPixels sensitise them to the challenges and skills of
emotion regulation, setting the ground a mindful consideration of emotional needs
and use scenarios discussion. Through the use of the different materials, although
not infallibly, participants better approached the concept of arousal as emotion
intensity, opposed to negative-positive valence and not necessarily coupled with
discrete emotions. Material limitations and the frustration when desired visual
effects were not achieved dominated the experience. The challenges posed by an
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EDA sensor measuring galvanic skin responses were foregrounded too.

4.4.4 Limitations

The ThermoPixels toolkit, at a small scale, has worked to unveil design pos-
sibilities, body-material affordances, and opportunities for psychoeducation and
affect-tech design support. However, conclusions are drawn from a very small
population, with mostly higher studies backgrounds. The design insights obtained
surpass those of previous developments and pave the way for future research.
Furthermore, no long-term use has been addressed. In a particular single case,
doubts remained on the working of the sensor even after prototype testing, confus-
ing temperature events as sensor triggers instead of skin conductance fluctuations.
The processing of the data, mainly based on an average threshold calibrated dur-
ing the prototype trials, still has room for exploration in terms of event recognition,
trigger times and recovery dynamics. Moreover, with regard to toolkit contents,
while the ThermoPixels kit is clearly delimited by an EDA sensor, the thermo-
chromic materials and the heating elements, the supporting materials open the
door for an ever-growing list of insulation components and crafting support tools
that render difficult the analysis of the hybrid crafting toolkit as a standalone set
without the aid of any researcher. All in all, this study paves the way for future
research in affective technology design, either deploying DIY kits, leveraging the
user’s customisation, addressing psychoeducation goals or taking the chance to
focus on the body as a vehicle for experience and meaning-making from the early
stages of the design.

4.5 Designing from a first-person perspective

4.5.1 Embracing discomfort

Research such as [Sanches et al., 2019b], has called attention to the rise
of affective technology development within HCI. Although the field has experi-
enced great advances in the recent years, unclear or nonexistent information
on the ethical foundations behind affective developments and applications pose
serious concerns – on current research falling short, difficulties for designers to
properly attune to vulnerable users, and broader risks if technology approaches
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technology-driven businesses without solid evidence-based grounds. First of all,
the nonexistence of an ethical framing or disclaimer in a given affective health
study within HCI shows a certain distance with respect to the users. When consid-
ering cases in which targeted users present vulnerable conditions – such as those
belonging to a user base with a given affective disorder diagnosis –, an ethical
framing of the designer should be of utmost importance. Such vulnerabilities could
easily touch on aspects like exposure, failure to provide support or data privacy.
Some would argue that non-maleficence – the goal of committing to harm-free
studies – is a basic, shared value within HCI research, inherent to the discipline,
the challenges posed by the study of tracking technologies and the ubiquitous
data ecosystems present nowadays set the bar significantly higher. Under these
terms, non-maleficence may translate into assessing data privacy provisions, into
a guarantee that users are accompanied by professional or medical resources
throughout the study and a need to understand what a regular use of technology
feedbacks and reminders of a given condition implies. Non-maleficence may,
therefore, not be sufficient, having to rely on other ethical principles such as bene-
ficence or fairness. Accordingly, a designer must go through an ethically sensitive
evaluation during the process of creating an artefact or interaction. Moreover,
technologies can be appropriated in harmful ways. The weak ethical ground high-
lighted by the body of literature analysed by Sanches et al. is even aggravated if
one considers the commercialisation of mobile applications, a business that could
easily frame HCI research and technology in affective health domain, too often
lacking evidence-based foundations, without transparency on methods, therapies
and principles followed.

Having had these considerations, we turn to design approaches that may provide
the means to engage with the technologies’ often overlooked ethics when em-
barking on such designs, without necessarily engaging vulnerable populations
at an early stage. First-person design [Höök et al., 2018, Lucero et al., 2019],
offers a relevant alternative to engage directly with the experience of the designed
artefacts and interactions in order to learn, first-hand, the impact that the designed
experiences have (section 4.2.2). In this section, work developed in the context
of the present thesis, discussed in [Umair et al., 2019a], is presented, motivated
by a UbiComp design workshop trying to get opportunities from reassessing un-
comfortable design [schraefel et al., 2019]. When using first-person perspective,
what is sought by us is the effect of leveraging the body role in perceiving the
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experiences, their aesthetics, and not only its use as input where data is to called
to reveal body-emotional characteristics but also as a body that is a sentient output
receiving the effects programmed in the technology. In particular, the interest in
the research presented here lies in the use of wearable physiological sensors
capturing electrodermal activity and conveying meanings on arousal. These affect-
tech sensors are not free from usage challenges. With first-person design, the
opportunity to step into the users’ shoes offers the possibility to probe the ethical
challenges that affective technology and interaction design pose. Moreover, in line
with studies that exemplify biodata engagements not necessarily linked to quantific-
ation goals [Howell et al., 2016], first-person design offers alternative narratives in
a space that too often gets caught in the biosensing pursuit of performance-based
self-improvement interactions impacting how we feel, move or behave in order to
achieve a (supposedly) healthier life.

Two design experiences with the body are the focus of this study. The idea
behind our approach is that in order to more actively engage the body into the
design of affective technologies, inspiration can be spurred by borrowing ideas from
body-centred practices already informing the design practitioner. This is the case
of Contact improvisation dance and Yoga. Can such practices inspire reflection
on the lived experiences and inform the design of technology interactions? The
engagement with the mentioned activities, takes place in groups, hand in hand
with professional conductors of the two body practices:

1. Contact Improvisation: Contact improvisation dance [Smith and Koteen,
2019] is a form of dance that stresses the properties of touch and weight
sharing. With the help of a partner, contact touch points are explored to spur
movement improvisation that is centred in the present, flowing nonjudge-
mentally. Engaging personally in these exchanges, regardless of level of
expertise, age or gender, non-verbal body negotiations are explored. What
are one’s limitations? What is it possible to do? How far can one push?
These are boundaries and intentions that are explored by the mere subtle
touch pressure of bare contact –sometimes aided by gaze too. When in front
of dance partners, one gets to see the own body as if looking at a mirror.
Being in contact reveals sweaty body parts, clumsy and shaky movements.
Speed changes, directions and backward or forward advances are commu-
nicated through touch. The subtle meanings involved are not easy to convey.
An uncomfortable insecurity sets in.
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2. Yoga: Yoga, is an ancient Indian tradition aiming to bring physical aware-
ness to the body. For an interaction designer, yoga offers valuable tools
to address proprioception and the felt body. When practised among other
researchers, all with different skill levels, we felt that trying to cope with the
conductor instructions highlighted the notion of comfort. Our bodies were
not capable of comfortably follow the routine. Suddenly, we lose grip of the
required nonjudgemental state and fall, sweat or get embarrassed. Discom-
fort evolved from the exercise frustration to the physical domain with aches
and heightened body awareness. Yoga probes our responses, our limits and
makes one confront preconceptions we have about our bodies.

4.5.2 Electrodermal haptics

As exemplified by the Grove [Grove - Seeed Studio, 2014] electrodermal activity
sensor used in the ThermoPixels (see section section 4.4.1) [Umair et al., 2020]
via finger electrodes affect is often measured in terms of arousal by using the
emotional intensity. Inspired by the material trend in HCI, the use of actuators
responding to captured biosignals in everyday settings is of interest. These are
technologies that touch the body, sometimes literally attached to it. The use of
off-the-shelf components such as little vibration motors allow the implementation
of a simple but evocative vibrotactile EDA biofeedback system, using a galvanic
skin response sensor. In order to probe the implications of using the system,
a simple sensing-actuation prototype is placed on a wrist and addressed for a
period of 2 days of use. How do changes in EDA feel in terms of vibration? Is
the sensor comfortable? On the first day of use, a few minutes of wearing the
finger electrodes are sufficient to reveal certain incommodity. The sensor is tight
and needs to be loosened. More difficulties emerge when for instance trying to
do everyday activities requiring both hands, as it is the case with typing on a
keyboard regardless of the dominant hand. Doing so, triggered the vibration –
something completely unintended related to erroneous readings. A similar effect
was encountered when opening a metal door. As it turns out, different actions
lead to relevant skin conductance fluctuations. On the following day, an awkward
experience took place during a visit to the supermarket, where people began
staring at the low-fi looks of the prototype and questioning what it was for.
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Discomfort as a design element

Discomfort emerged as an element of the real-life interactions. The uncom-
fortable becomes an ingredient of our design research. Recurrently, discomfort
appears when adopting a first-person perspective. Our lesson for the design of
affective technologies is that, if discomfort appears amidst the experience of exper-
ienced researchers it is not hard to imagine that end users wearing the technology
would struggle with similar issues. Rather than pushing discomfort back, we see it
as an opportunity that first-person research puts forth for the researcher to probe
preconceptions, programmed effects and reactions that only take place under daily
use cases. Its use unpacks ethical dilemmas without putting much at risk. To
what extent is someone prepared to face the information that tracking technologies
make visible? How do technology users react to feedback that is continuously
available, about our internal states? How does this translate to the experience
of vulnerable populations, such as those suffering from affective disorders? How
would they cope with faulty technology or outputs? These ubiquitous technologies
expose us. Parallels can be drawn between these reflections and the ThermoPixels
study (section 4.4) or the HCI designer responsibility referred to in the work of
Sanches et al. [Sanches et al., 2019b]. Moreover, a first-person approach allows
the designer to use discomfort as a way to accompany the learning process of the
user, opening the design possibilities or construct new meanings around affective
wearables.

4.6 Dare to design: Sensory misalignment

Continuing with the inspiration that first-person design approaches bring to
interaction design, a view that motivates experimenting first-hand the techno-
logies and interactions designed, the question of whether novelty can emerge
from the intersection with other design stances pushing the boundaries of the
body is posed. At the opportunity of conducting a joint exploration with the Uni-
versity of Nottingham’s Mixed Reality Lab, skilled in Sensory misalignment, the
challenge was accepted without hesitancy. The KTH Interaction design team I
was collaborating with, embarked on a novel exploration. This research is the
result of an encounter of Soma Design ([Höök, 2018], section 4.2.3) and Sensory
misalignment [Marshall et al., 2019]. Sensory misalignment research has risen



CHAPTER 4 107

in recent years due to the renewed HCI interest in VR platforms. In sensory
misalignment, engaging experiences are created by means of the manipulation of
perceived information gathered through the senses. This information can relate
to the senses of kinaesthetics, i.e. body motion, orientation, equilibrioception
(balance), proprioception, audition, temperature, touch (haptics), smell and taste.
Sensory alignment should be understood in interactive systems as the consistency
of the main sensory input highlighted by an interaction and the rest of sensory
inputs gathered during the experience. Its opposition is what receives the name
of misalignment. Often, parallels can be drawn between sensory misalignment
and the rubber hand illusion [Ehrsson, 2005], an experiment that has motivated
research in VR experience creation and neuropsychology studies. In sensory
misalignment, the interest of working with senses that are purposely not aligned
varies from the obtention of novel, thrilling or different entertainment experiences
to the possibility of administering interactions that reorient how actions are con-
ducted by a user (e.g. redirected walking [Razzaque et al., 2001] or Byrne et
al.’s AR fighter game leveraging disorientation [Byrne et al., 2018]). The sensory
misalignment design team counted on a background assessing digital stimulation
for sensory alignment that integrates insight from practices beyond HCI [Marshall
et al., 2019]. Soma design, which thrives with its “disrupting the habitual” attitude –
see defamiliarisation [Bell et al., 2005] –, could indeed be extended by sensory
misalignment expertise. The encounter of the two approaches may help address
how and why misalignment experiences are designed.

Especially in the context of VR, sensory misalignment is often seen as a negative
property of systems, where links between VR motion sickness and mismatched
physical motion are found. However as argued by Marshall and colleagues, in
certain circumstances misalignment might serve the creation of novel and positive
experiences, getting rid of limitations that hinder the exploration of a wider range
of experiences. Two of the misalignment application domains are the application
of techniques that bypass technological limitations (as for instance using subtle
cues that achieve an experience of a long VR walk when the technology is limited
by its use in a small indoor space) and the deployment of misalignment for Vertigo
play in entertainment (creating sense conflicts that enhance certain aspects of
the virtual game and makes it more thrilling). A workshop (2 days) on sensory
misalignment with soma design was prepared. Prior to the design sessions, the
topic of balance was chosen in order to provide some context. Balance is a
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multi-sensory experience, involving touch, vision, proprioception and vestibular
sense mechanisms [Byrne et al., 2018, Day et al., 2002]. For the participating
researchers, emphasis was put in the body affordances that balance evokes
through the examples of the VR flying harness and Balance Beam that the hosting
institution had set up to explore. The VR flying harness can be seen in fig. 4.4.
The workshop counted on other proto-experiences such as Dancing prosthetics
or Balance guitars that fall beyond the focus of the research presented here. The
soma design team, equipped with body-centred practices (contact improvisation,
Feldenkrais, body scans, etc.) and tools to reflect upon the body, prepared
activities to address balance aside from technology. An early remark consisted
in re-purposing balance as state to be at, i.e. being in balance as opposed to
holding balance. This was complemented by the Soma Bits design toolkit, offering
evocative shapes and haptic actuation platforms (Arduino-based heat and vibration
modalities) that help connect effects to the body [Windlin et al., 2019]. Participants
had also access to PLUX’s BITalino physiology monitoring platform [BITalino,
2013, da Silva et al., 2014].

Figure 4.4: VR harness depiction, with (a) rotation axes, (b) real example flying
downwards, (c) VR scaffold position

4.6.1 First-person account insights

When embarking on this design exploration, one wonders what the complement-
ary design approaches would bring to one another. The free exploration format
of the soma design sessions allowed participants to easily go from visual-based
disturbances of balance to richer misalignment inputs such as shapes touching the
body, with different softness degrees or even offering digital-enabled temperature
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and vibration qualities. Whereas visual based misalignment is present in VR re-
search, used to achieve movement effects in VR entertainment, there was no need
to stick to this dominant paradigm. Blindfolding participants to draw attention to
the somaesthetics offered by other senses, or addressing misalignment by limiting
participants’ movement – e.g. on a balance beam or suspending them in a VR
harness that changes how weight and movement are perceived – are strategies
that, as it turns out, can complement each other. Adding noise and cutting the
interaction flow may be seen as a bad idea. However, doing so, forces the parti-
cipant to reconsider the body action that she or he is carrying out. First-person
experiences in a group do not necessarily coincide, as it can be seen in aspects
of the interactions approaching discomfort:

• Familiarity and skill: One of the aspects that emerged remarkably when
attending to the different first-person accounts derived from the workshop is
that skill level plays an important role in how users experience the balance
activity. The extent to which someone is acquainted with a practice influ-
ences which senses are foregrounded when misalignment sets in. Moreover,
different degrees of coping with the misalignment were observed with respect
to expertise. Misalignments often had a greater impact on participants who
were acquainted with the balance practice at hand, making it more difficult
for them – the experts – to beat or overcome successfully.

• Inside / outside: Certain activities, such as placing sensors and actuators on
the body of people who is in experiencing the misalignment of their senses –
in a way, exposing a degree of vulnerability – exposed body boundaries on
what one is ready to do, i.e. placing devices on clothes, in close contact to
our skin, perhaps within our bodies, while being observed, touched or guided
by someone.

A long-time concern of soma and first-person design is how to share experiences if
everyone is unique in the way interactions are experienced. Even when engaging
deeply with the way our bodies perceive interaction, how can insights be shared?
The group design workshop presented here unavoidably confronts the pluralism of
experiences. By means of this workshop, the value of the materials used to spur
body-centred reflection and account for the other peers was strengthened. And
these would be materials that would stick to this thesis’ HCI efforts. Sheets where
body sensations are sketched, labelled and reflected upon, group discussion



110 CHAPTER 4

sessions, the open-ended design scope and bearable pace that soma design
imposes ends up foregrounding the different subjectivities. Bodies are inherently
different. Size, weight, skin colour, age, strength and physical capabilities differ.
Inevitably, how participants experience emotions, understanding, empathy for the
others and meaning making around an interaction, become part of the group
discussions.

The somaesthetic and misalignment research used topics to let first-person
experiences emerge. And balance proved to be a good nonindulgent topic choice
that certainly unveiled differences. Everyone was touched or puzzled by it. Rather
than interpreting it as a cause for setting red lines, or contributing to see design col-
laboration as a harsh effort, the soma exploration of balance encouraged sharing
and empathising with the experiences of our peers. Diverging subjectivities should
teach us the need to care for every potential user and her/his needs and motiva-
tions, somehow resonating with the ethical aspects underscored in section 4.5.1.
The elements that supported our misalignment research encounter became tools
to pave the way for further interaction design research where the body is purpose-
fully addressed, as it is the case with alternative affective technology designs this
thesis advocate.

Balancing on a beam

The virtual reality balance beam proto-experience, consists in a challenge to
cross a balancing beam (or pole) while wearing a VR headset that presents a
virtual scenario. The VR adds orientation misalignment possibilities to probe how
the concept of balance is disturbed. Different material balance beams enable
the exploration of different levels of difficulty (softer, lighter, more slippery, more
rounded) for the experience. Moreover, extra tools such as the aforementioned
biosensing platforms (providing e.g. EMG - muscle electromyography tracking)
and actuation technology let designers enrich the experience and explore different
sources of misalignment beyond visuals (vibration, temperature). Balancing ex-
pertise emerges as a crucial aspect of the interaction, impacting how participants
react to the different misalignments, usually having a milder effect in those less
acquainted with the balance practice. On the contrary, VR visuals that hide the
feet provide a stronger effect in the case of the novice user. As put by a skilled
participant: “I’ve been able to walk tightropes and balance beams for years, but
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when someone put the vibration on my foot, suddenly I was like a beginner again.
It made me realise quite how important foot feel is to my balancing, in the same
way hand feel is vital for hand-balancing.”

Furthermore, the design exploration, always counting with this drive for the non-
habitual, led on occasions to remarkable interaction additions: “While I balanced
on the tightrope with the EMG sensor attached to my calf, the rest of the team
watched the screen showing the realtime plot of the EMG signal. We cycled
through different calf muscles until we found the one most distinct. [...] In a
second session, we redirected the sensory data to music software that mapped
the intensity level of the EMG onto the pitch of a sine wave. While balancing on
the beam, everybody could hear the changes of my contracting calf muscle. This
changed the perception of my balancing act.”

This shows ways to enrich somatic engagements with data, or even open per-
spectives to make biosignals more available or linked to the body, a topic that is
later addressed in depth (see chapter 4).

Suspended on a VR harness

The flying harness proto-experience consists in a flying harness that holds
the weight of the researcher, suspended by the hips, so that VR superhero-like
flying experiences can be prototyped. Wearing the harness and a VR headset
transports the user into a city scenario where two modalities of flight are simulated:
one based on hand-propulsion (hands pointing down) and one based on upward-
fist gestures pointing at the direction aimed. The use of the harness conveyed
the qualities of being suspended, allowing to address the somaesthetics of the
different movement framework. At some point, VR was deemed unnecessary to
drive a design exploration, given that simple blindfolding paired with the harness
offered countless opportunities to leverage body self-awareness. As in the case
of the balance beam, there was the chance to use biosensing platforms and
components from the Soma Bits toolkit (shapes and actuators). In the harness,
however, no narrative was ever used. Hence the VR harness might even exemplify
more vividly the usefulness of open-ended group explorations that try to leverage
our somaesthetical appreciation. The exploration of suspension together with
interesting haptics provided relevant design insight. As it can be seen in personal
accounts of the flying harness experience, while everyone found mechanisms
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to connect to augmented body suspension interactions, the design exploration
unveils thought-provoking effects but subjective differences too. These differences
were sometimes relevant for participants to connect together, to empathise. An
example is found when applying vibration while being suspended. Oftentimes,
discussion emerged on how the different subjective sensations need to be taken
into account. As put personally: “[...] when my colleagues applied vibration on my
neck, I lost a hold on where I was. When approaching my back with a soft firm
surface, unexisting arms seem to grab me softly.” Another participant is quoted by
saying: “The most interesting, and at the same time confusing experience, was
the illusion that the vibration applied on my back created. I felt spinning around
myself and slightly dizzy. My sense of balance was totally distorted and confused
and I tried to stay completely still to limit this sensation. For a while I did not know
whether I was actually moving slightly back and forth, trying to divert my attention
from feeling like I was spinning; or whether I was standing completely still.” These
accounts underline the potential of somatosensory exploration in groups, and how
experiences like these enrich the design of interactions, making designer/users
connect bodily with technology-driven effects and challenge emotional, physical
and social boundaries.

Regardless of the preparations prior to the workshop (with the preparation of
dedicated body-centred practices addressing balance), it is not until one exper-
iences sensory misalignment that the somaesthetics of the experience let one
understand what works and what does not in order to create the opportunity to
evocatively disrupt the habitual experience and re-engage with a balancing action.
Sensory misalignment, resonating with the idea of estrangement, does indeed
contribute to soma design methods, encouraging designers to go beyond pre-
valent soft, comforting, and soothing effects to embrace discomfort, disturbance
and confusion that yield a wide spectrum of interaction possibilities. Despite the
agreeable pace at which soma design usually unfolds – “we design slowly”, as put
in the Soma Design Manifesto – and the fact that soma design enables, notably,
body and somaesthetic self-reflection, nothing prevents a somaesthetic exploration
from engaging with other disruptive qualities. Sensory misalignment teaches so.
Staying with the design topic and proto-practices for the 2 workshop days and
the subsequent analysis, enabled a deeper reflection on the overall aesthetics of
the design experiences. The narrative around the EMG experience, for instance,
helped hold the pieces together, i.e. the interest in pushing the balancer off the
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comfort zone, the use of haptic components making participants focus on their
bodies while misleading the senses of the expert balancer and the use of a sensor
unpacking an internal body insight shareable with the design team. How does
the interaction travel back and forth from aligned dynamics to sensory misalign-
ments? The research presented here unveils the need to orchestrate interaction
trajectories within levels of familiarity, comfort/discomfort, or even exposure, using
technology crossing the boundaries of what is inside or outside the body. In-
teraction trajectories need to be orchestrated not only through narrative, but via
digital effects, emphasis and emotionally charged passages engaging the users’
attention by different mechanisms such as fear, reward, excitement, disorientation
and pleasure.

4.6.2 Limitations

As it turns out, interests of the two design labs involved in this study counted on
several intersections. In the end, soma design has enriched sensory misalignment
and sensory misalignment has enriched soma design methods. Remarkably
enough, spending time with other cutting-edge interaction designers lets one
understand their motivations far better than through the reading of published works
only. While this research example, built upon the similar design groups’ interests on
body design and engaging with the non-habitual, is a call for thoughtful explorations
encompassing different design teams, what has worked for us under this format
does not guarantee success for other groups. The coexistence of different design
approaches is rich, but leads circumstantially to design tensions that are not
necessarily easy to foresee or deal with. Coming from a soma design stance,
where I often embrace provocation as a tool to either rework on the grounding of
my design approach or elucidate ways to progress, is helpful. However, designing
with the body is faced with culture, physical, and mental boundaries that everyone
carries. If interested in affective technology design, the examples found in these
somaesthetic encounters should hint that the benefits of addressing these kinds of
subjective appreciations are relevant enough to consider first-person explorations
before any technology is deployed for end user manipulation.
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4.7 First-person Physiology: The Sensing Self

In recent years, physiological monitoring research has been gaining prominence.
Drawing upon the do it yourself DIY culture inspired by successful platforms such
as the Arduino and the RaspberryPi, specific low-cost platforms that foster an
ever-growing ecosystem of multiple devices, multiple programming interfaces and
the paradigm of ubiquitous technologies have emerged in the domain of personal
biosensing. At the same time, interaction design has witnessed the emergence of
first-person perspectives leveraging the designer’s experience. In order to facilitate
a first-person exploration of biosensing, a set of recommendations is laid out
before design sessions. Used as tutorial materials or, rather, suggesting prompts,
the group experience guidelines and visual representations presented are aimed
at designers, researchers and students wanting to get attuned –with their own
physiology– to an otherwise disembodied material. Below, EMG, ECG and EDA
examples are shown.

Figure 4.5: Body shapes to reflect on our own limitations, sketch sensor place-
ments and decide involved body parts
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The idea is that the biomedical engineer or the interaction designer can build
on such examples, appropriate them, and adapt the biosensing tips to forms that
better suit their design frameworks or goals. Along the lines of research presenting
first-person exploration experiences touching the body, roles and agreements
can be arranged prior to the exploration session so that trust is built between
e.g. session conductor and (sentient) participant. The exploration has to spur
novel ideas, use cases, sensor placements and non-habitual ways to relate to
sensing. However, those involved in the session must ensure that participants
have the means to stop if the experience gets too invasive or uncomfortable. For
that purpose, a conversation is held before the session to respect the decisions
on either what sensor is to be explored, what body parts will be used, or what
actions can or cannot be asked to be performed. Bodies are different, and users
hold different views on what is considered emotions, behaviours, intimacy and
exposure. As in the case of Akner-Koler’s aesthetic laborations [Akner-Koler and
Ranjbar, 2016], sketching ideas over a body shape is helpful.

Capturing body information. EMG, ECG and EDA

Electrophysiology acquisition platforms aim to characterise body changes via
fluctuations in electrical properties. One of the first obstacles that physiology
systems encounter is that of noise.

Noise
Signals that need sticking electrodes on the body, are very much dependent on the
+/- electrode placement, as well as the ground reference electrode in an electrically
neutral area when needed (e.g. on the skin surface close to any bone). Exploring
the effects of noise is highly recommended for the different sensors that need
electrodes attached to the body.

Before properly exploring any signal that uses electrodes, feel free to start the
acquisition and give a look at the information that is present. Proceed to connect
the + and - electrodes. Observe how the signals change when the ground electrode
is put in place. Can you misplace the electrodes ? Is the space between electrodes
changing how the signal is represented ? Test different locations and see how
signals are modified.
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Exploring Electromyography (EMG)
Describe the setup: EMG Electrodes are placed on the surface of the muscle
that we want to monitor. +/- electrodes must be close to each other, preferably
along a muscular fibre. The ground electrode used as a reference must be placed
on the body, in an electrically neutral area (e.g. a bone where no muscular activity
is present).

Preparation: Close your eyes. Take a deep breath. Leave your arms hanging
freely, and extend your arms in front of yourself. Open your hands and hold them
facing up, keeping the extended arms position. Can you feel the muscles that are
involved in holding this position? Try turning your hands now, moving them to face
the floor. Can you feel how other muscles are important for this position?

STEP BY STEP EXAMPLE

Let the participants leave their hands hanging. For instance, rest the wrist on
a fixed surface (or on the own knees) so that the arm is completely relaxed.
Place the electrodes to the arm (forearm, biceps, triceps) and the ground to
the bone. The raw EMG should be of low energy, exhibiting small amplitudes
on the graphs.

Figure 4.6: BITalino EMG setup

There should be a constant rhythm of peaks along the timeline. You will need
a heavy object that can be caught fairly easily, such as a bottle of water of



CHAPTER 4 117

0.5l - 1.0l. Have someone else hold the object above the participants hand.
Start with a small distance and increase it gradually. Drop the object onto
the open hand, allowing the participant to catch it. Mark the time before and
after the drop, and the point of the catch. The EMG should rise just before
catching, and then spike rapidly once the object comes into contact. If the
users close their eyes, how does this affect the signal? Is the attention to the
visual feedback altering how one clenches a fist or activates certain muscles?

Exploration: EMG signals highlight how we are/are not in control of muscular
activity. Being relaxed, try to discover how to activate a particular muscle. We do
not actually know how to activate or relax several muscles. Follow this exploration
and notice how rotation and flexion change the fibres involved in the muscular
contraction. We are looking for noisy signals that show high amplitudes which
contrast with flat resting signals.

Try to tell muscles apart. Test some complementary muscles. Which are the
muscles responsible for the different fingers (several EMG sensors)? Fibre direc-
tion is crucial, in order to understand how signal propagates. Place electrodes
perpendicular to fibres and notice that it does not make sense. Generate a situ-
ation to make the muscles shake (abdominals and plank exercises are very subject
to this). Accelerometry (ACC) sensors are great complements to add to this exper-
ience. Keep a physically demanding position (e.g. planking position on the floor)
for some time while measuring key muscles in the abdomen or arms. An interest-
ing insight can be provided by comparing symmetrical EMG measurements and
assessing the presence of different tensions (e.g. due to handwriting, dominant
hand holding weights more often, etc.). Testing different gestures like pointing,
grabbing, raising a hand could be relevant to highlight the role of the different
muscles. Consider using light weights to test how muscles react to “catching”
and/or “holding” in different conditions. What happens with weight and pressure?
Hold some weights (and keep adding) for a while to experience some changes.
Feel the shaking. Provide a physiological explanation of the phenomenon
measured: Describe what EMG is. When you perform a movement, or when you
hold a position, muscular fibres receive electrical information in order to tense.
Muscular activity is revealed by paying attention to such signals measured along
the fibres.
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Exploring Electrocardiography (ECG)
Describe the setup: Choose an electrode placement that is suitable for your
Soma Sensing experience. There are several electrode placement options that
you may want to explore (e.g. ECG electrodes placed on the chest or on the
hands).

Preparation: Close your eyes. Can you feel your pulse? Is the blood being
pumped to your limbs noticeable in any way. Where is it most remarkably present?

Exploration: Is ECG a signal that we can control as we please? How can we
disturb the signal? Try to change your breathing so that your pulse is modified.
Does the rhythm change when changing position? Can you try a physically
demanding gesture/position and assess how this affects your heartbeat?

Are you able to observe how the respiration outer envelope encloses the ECG
peaks? Try to slow it down by slowing your respiration. Sustain respiration and
see the changes in heart rate. Try the Valsalva maneuver, which can be used
to explore effects in ECG. The Valsalva maneuver consists in strongly breathing
through the mouth while the nose is held tightly closed, creating a pressure that
impacts the heart rhythm. Is there a way to introduce noise in the acquisition? Try
moving, walking, pulling cables and electrodes.

Provide a physiological explanation of the phenomenon measured: Describe
what ECG is. ECG measures the electrical activity of the heartbeats. Electrical
impulses responsible for the polarisation of the heart are generated with every
beat. By placing electrodes in specific locations, voltage drops can be tracked,
showing the heartbeat electrical signals and highlighting the different standardised
ECG waves.

STEP BY STEP EXAMPLE

Place the electrodes onto the participants’ chest and monitor the signal as
they are standing/sitting still and breathing normally.
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Figure 4.7: BITalino ECG setup

There should be a constant rhythm of peaks along the timeline.

Figure 4.8: ECG signal representation

Follow the user through a mindfulness exercise and record a baseline signal.
Address how the participant reacts:

1. Record the signal as the participants rapidly jump around until they can
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feel a change in the intensity of their heartbeat.

2. Ask the user to spread her/his arms in and out from their chest, staying
conscious of their own breath. Record the signal as the participant
moves slowly between these states.

How do the above exercises affect the signal? Do you still recognise the
peaks? If so, take note of their periodicity and amplitude.

Exploring Electrodermal Activity (EDA)
Describe the setup: Electrodes are placed onto palms or fingers. Sole (foot) is
also a possibility. EDA is a slowly varying signal, much better observed when
working with longer time-scales (slow variations, that take time to appear).

Preparation: Close your eyes. Take a deep breath. Leave your arms hanging
freely. Pay attention to your hands. You can move the fingers slightly if you want.
Are you able to feel the room temperature with them? Is there any perceptible
airflow? Bring the participant closer to her/his body sensory awareness.

STEP BY STEP EXAMPLE

Keep the ECG sensors attached if you have used them previously. Place a
set of EDA electrodes onto the fingers or palm, separated by a small distance.

Figure 4.9: BITalino EDA setup
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Allow the participant to follow a mindfulness exercise. Guide them towards a
relaxed state. They should be comfortably seated and able to breathe fully.
Zoom into the signal, is there much change? Stimulate the user(e.g. show
scary video). Record both signals as they are watching the video. How does
the EDA signal change when the user is aroused? How does this signal
compare to the ECG signal in regard to time.

Figure 4.10: EDA signal representation

These are examples intended to help the interaction designer that wants to
integrate biosensing into the design of experiences grounded on the body.

Figure 4.11: Creating extra examples of first-person sensing (EEG and breathing)
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The user should be able to create their own and go beyond, e.g. with electroen-
cephalography or breathing sensing.

With them, and with the support of biosignal acquisition tutorial materials found
around low-cost platforms (see section 2.1.1, section 3.1) we aimed at setting the
ground for a growing body of research into first-person sensing, leveraging the role
of the body not only as an input mechanism but as a main player to make sense of
the experienced data and sensations that one can attach to it.

4.8 From Biodata to Somadata

Biosignals are time representations of changes in energy produced in the body
[Semmlow and Griffel, 2014].These changes correspond to energy variations of
different nature such as in electrical, chemical, mechanical and thermal processes
(see section 2.1). While affordable costs motivated the proliferation of biodata-
based applications in everyday life [BITalino, 2013, Grove - Seeed Studio, 2014]
the design of biosignal-based interactions beyond biomedical paradigms still
remains much unexplored. When designing with biosignals, several aspects
come into play. Biodata comes in many forms. This research mainly draws
upon psychophysiology-based and movement biosignals. However, data of other
nature, for instance behavioural, routine-based, on reproductive health or related
to the excretory system, could also be considered for the design of novel biodata-
based interactions. As such, there is room in interaction design to explore the
engagement with data describing drug intake, sleep cycles and circadian rhythms,
nutrition / food consumption, menstrual/reproductive cycles, physical activity, etc.
The input modalities have an enormous impact on the biodata interactions that one
can create. When it comes to affective technologies, for instance picking arousal
as an example (see Sanches et al.’s [Sanches et al., 2010] biofeedback stress
study), it is possible to address heart rate variability fluctuations, capture blood
pressure or measure changes in electrodermal activity instead. Every source of
data presents characteristic affordances. Moreover, even if a source of biodata is
chosen, several sensing mechanisms with their advantages, their different fidelity,
form factors and drawbacks exist. Different sensing modalities enable different
design directions, with their own consequences and constraints. For this reason,
not only choosing the input source is important, but exploring several sensing
mechanisms benefits interaction design efforts aiming to approach biodata as a
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design material. Some researchers that are found at the intersection of the arts and
the design of technology-enhanced interactions, such as Fdili Alaoui [Fdili Alaoui,
2019] call for embracing technology resistance and turning it into artistic creativity.
Sensors often accept many placements. Hence, design research should consider
different body locations and how every choice conditions the quality of the data
and the resulting interaction. Biodata is in many cases immaterial. As such, design
insight is not easily provided by the technical specifications of the sensor. When
raw data is recorded, processing mechanisms to distil the information meaningful
for the designed artefact or interaction need to be in place. For instance, an
affective tracking system monitoring face expression to infer emotion aspects, may
work via facial electromyography, hence needing the processing capabilities to
precisely detect muscle contractions at the relevant face spots and assign affect
meaning to it. Alternatively, systems based on cameras, hormonal tracking, heart
rate or electrodermal activity with the proper processing mechanisms may either
corroborate or contradict the inferences. Every sensing system needs processing
mechanisms to manipulate data. Sensing multimodality, becoming more and
more common, adds robustness at the cost of increasing the complexity of the
monitoring experience (more sensors, more cables, more electrodes, and different
processing paradigms working concurrently).

4.8.1 Biosignals as a design material

Echoing the work of Solsona [Solsona Belenguer et al., 2012] and colleagues
on immaterial materials, interaction design should strive to find different ways
to explore the affordances of biodata as a design material. As already stated,
biodata is in many cases immaterial. Could alternative ways to design interactions,
grounded on material exploration and the experience of the sentient body, help
embrace biodata and its meaning-making process? If one thinks of technology
that has already made it into everyday life, systems for physical activity tracking,
cardiac health or sleep quality stand out. These systems usually capture and
provide data in a concrete way, i.e. via a screen display, through charts, tables
and text, with a given choice on colours, shapes, and dynamics. Recent HCI
research [Howell et al., 2018a, Merrill et al., 2019] has found that when dealing
with biodata – in general data of medical nature –, the layperson ascribes precision
and authority to the data, or even to the platform. Sanches et al. [Sanches et al.,
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2019a] explain how user groups come up with completely different interpretations
around an EDA-based monitoring system. The interpretations of biodata are
inevitably tainted by the user background, to the extent that, sometimes, the
expectations of what is to be seen in the data rule out any possibility of accepting
meanings that go against them. Not even when the data supports such meanings.
Data interpretation and meaning making are crucial for the design of affective
technologies and interactions enabled by biodata, as for instance mentioned
in section 4.4 and the work of Hollis et al. [Hollis et al., 2017]. But users do
not necessarily possess the data analysis skills of a trained data scientist, nor
technology should expect it from them. When designing biodata interactions, one
can take different approaches, i.e. focusing on health diagnosis, aiming at the
detection of patterns or specific events or, in the case of exploratory designs
adopting an open-ended attitude that moves away from engineer-oriented uses.
The approach of the interaction designer is not necessarily a solutionist one, i.e.
an effort looking for the best solution to a given problem. Rather, interaction
designers are used to address ill-defined problems [Cross, 1992] and leverage
material exploration to elucidate different ways to address such problems. As
explained in section 4.4.1 and Umair et al.’s works [Umair et al., 2018, Umair et al.,
2019b], not long ago, Human-Computer Interaction research experienced a turn
towards the material [Fernaeus and Sundström, 2012, Wiberg, 2013]. The idea
is that through materiality, design ingredients that are difficult to grasp – as it is
the case of biodata – can be transformed into something can be touched, tangibly
understood, modified, tuned or programmed [Vallgårda et al., 2017]. Biodata could
be seen as a material to design with, with its affordances and aesthetics [Elblaus
et al., 2015]. As exemplified with the ThermoPixels’ thermochromic material
exploration, touching, feeling and establishing a conversation with the materials
leads to an analysis of possibilities, and potentially novel ideas. Explorations of
biosensing data as material are still a small part of HCI biodata studies. Our
research, borrowing ideas from the affective technology design field we aim to
contribute to, and armed with the help of a first-person soma design approach, is
set to work in bridging that gap.
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4.8.2 Collaborative design of biodata interactions

The insights presented here are the result of a design journey that was born with
the great inspiration that a training on first-person design methods brought (see
section 4.2.2 and 4.7). Highly motivated by the somaesthetics of actuation haptic
explorations that followed Akner-Koler’s [Akner-Koler and Ranjbar, 2016] sensit-
ising lab concepts (section 4.2.4) and with ideas on how to translate biosensing
into a sensing self experience (see section 4.7) we set out to explore ways to turn
biosensing into a design material. This design journey took the form of 4 collab-
orations in the context of project AffecTech [AffecTech, 2017] meetings, training
events and organised workshops that took place at different universities across
Europe. From the beginning to the end, soma design (section 4.2.3) was kept as
the background design approach, with a strong focus on the sentient body, disrupt-
ing the habitual and designing slowly. By disrupting the habitual, in a body-centric
interaction design exercise, we are referring to alternative ways to move or interact
with our own bodies and surroundings, using strategies that allow breaking body
actions into steps so that one can rethink what is involved in them. The purpose is
to either analyse or gain awareness of body aspects – suggesting an arm folding
gesture in the opposite way as usually performed is an example we often use to
convey such disruption ideas. The AffecTech collaborations – or design stages
– that built our study benefited from numerous participants from the EU project,
but also from designers and users that engaged in biosensing explorations across
institutions. By organising soma design workshops, our research progressed,
took learnt lessons from design stage to design stage, eventually culminating on
the successful technology couplings and interactions reported here. However,
these are fruit of an open-ended exploration, where insightful interactions were
far from anticipated. After reflection on the A-lab possibilities (see section 4.2.4)
for sensing and having written about the sensing self ideas (section 4.7) we put
them in practice by means of 2 group design sessions conducted at KTH Stock-
holm. For the design sessions, the BITalino [BITalino, 2013] biosignal acquisition
platform was facilitated, offering the tracking of different physiology signals. Our
exploration highlighted the interest in engaging with biodata bodily, rather than
mere visual representations that are abstract or disembodied. As in the case of the
A-lab, a heightened sensibility for biodata and sensing was sought. An important
design experience improvement came when, asked by other interaction research
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colleagues, we were asked to prepare soma design sessions that touch upon the
topic of balance. These were to take place in Nottingham’s Mixed Reality lab, in
order to explore a collaboration combining soma design and sensory misalign-
ment (see section 4.6). The relevant step forward consisted in addressing the
design of an interaction as a challenge to touch upon the balance topic – working
in an open-ended way but striving to put technology together to either achieve
evocative effects or novel ways to disrupt (or misalign) experiences. One such
way of putting technology together was a coupling of biosensing with generated
biofeedback audio cues deployed during a balance activity in which participants
had to cross over a beam. The novel interaction insight that couplings brought
was amazing. With the same enthusiasm, another topic, synchrony, was picked for
a similar group soma design workshop that took place in the Cattolica di Milano
University. In that occasion we set out to continue exploring the somaesthetics of
biosensing-actuation couplings.

4.8.3 Biosensing-Actuation couplings

The main takeaway from the soma design sessions is the concept of somaes-
thetic biosensing-actuation couplings. Throughout our design research process
many possibilities were investigated, but only some successfully provided design
insight. These are the ones described in this section.

Figure 4.12: Somadata coupling examples: Balance EMG-to-sound experience,
Scarfy thermal-based EDA feedback, ACC-based sounds of synchronous move-
ments (left to right)

What we call a successful coupling, is a coupling that is grounded in what
the biosensing and biodata afford. Moreover, the interaction must respect the
design topic through which it was conceptualised. Couplings need to connect with
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our body, with our somaesthetics, and let us extend from it either through first-
person experience reflections or sharing instances. A description of the design
discoveries brought by the couplings, which converted them in candidates for
somadata exemplars, is provided here.

• EMG Balance premonition: Electromyography (EMG) is the measuring of
muscle activity. The estimation of muscle contractions via the inspection
of EMG graphs is not always an easy task, dealing with rapidly changing
fluctuations and often subtle amplitude differences. By leveraging the use of
sound biofeedback, i.e. by connecting EMG amplitudes to sound properties
such as frequency, a user is able to receive muscular balance information
while balancing on a beam. Moreover, the heightened awareness of the
muscle activity is instantly shared with peers who, when looking at real-time
EMG graphs of the monitoring platform, can anticipate the loss of balance.
A sound feedback like the one presented here, and as opposed to screen-
based graphs, does not disconnect the perception of the user’s own leg from
the balance activity and its first-person experience.

• Scarfy, an EDA Breeze Around Your Neck: Electrodermal activity (EDA)
is a signal that is linked to physiological arousal. The challenge to design
for synchrony and the renewed interest in crafting couplings that connect
biodata to the body brought the focus to ways in which the elusive EDA
data could be leveraged. HCI research has been contributing to the idea
that arousal information monitored via EDA can be experimented on the
body through alternative visual and haptic feedback mechanisms [Howell
et al., 2018a, Umair et al., 2018, Umair et al., 2019b, Umair et al., 2020].
Would it not be an interesting design aspect that such an awareness could
be synchronised between two people? That would mean that arousal states
count with measurements synchronously triggering feedback mechanisms
that the subject herself/himself can experience on the body. If the feedback
is deployed in the form of a wearable, arousal effects become shareable.
That is how the concept of the Scarfy, i.e. the temperature haptic EDA scarf
was born. Interestingly enough, the Peltier elements used for creating the
coupling exhibit a peculiar quality. While heat builds up on a side when
subject to electric current coming from the EDA control mechanism, the other
side of the thermoelectric cooler decreases temperature. During the soma
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design sessions, where the body was used as the main source of experi-
ence, material, embodied explorations emerged naturally. When participants
realised the dual properties of Peltier elements, they felt prompted to try and
turn elements upside down. Eventually, what this created was the notion that
beyond cool-warm effects achievable by the Scarfy, EDA data is malleable,
shapeable and re-interpretable.

• Sounds of Synchronous Movements: When designing for synchrony, the
idea of capturing movement emerged naturally, as synchrony is per se a
monitoring challenge when tracking several sources of movement simultan-
eously. At some point, the exploration of accelerometers (ACC), used in
this case to sense changes of speed in the form of stops, turns, shaking
and abrupt bumps, led to the implementation of an experience involving two
different hand-held ACC sensors. Quite remarkably, following the inspira-
tion that the audio EMG balance coupling had brought, a simple algorithm
fine-tuning the pitch of a chord with respect to differences in acceleration
measured in two different spots was implemented. When tried out without
instructions, participants hearing the output audio felt encouraged to bodily
explore how the device worked. As it often happens in contact improvisation,
a non-verbal communication set in, yielding a playful attitude that led to
choreographies, gestures and actions that were aimed at understanding
the technology. More importantly, participants went beyond and realised
the limitations of the sensing, only operating in one axis (either horizontally,
vertically or back-and-forth), hence challenging the interpretation of data,
turning one sensor upside down and appropriating the accelerometry data
and its meaning-making process.

4.8.4 Somadata and design insights

Quite remarkably, at the end of this design journey, we had arrived, by means
of couplings, at the definition of a new concept: Somadata. Somadata is the
experience of biodata from a firs-person somaesthetic perspective. Somadata
experiences are collaborative, supporting collective meaning-making and the
sharing of design insight. Somadata should not constrain the exploration of the
body dynamics in the chosen design context or topic. The couplings’ design
insights that made us recognise them as somadata are three. Firstly, through our
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soma design couplings biodata becomes a design material. This rings true for
the EMG, EDA and ACC biosignals related here. Although not highlighted more
emphatically, this success is the fruit of the thoughtful preparations of the materials
before each workshop took place. Data from biosensors, rather than being “raw”,
becomes in fact a carefully crafted sociodigital material, readily to be experienced
and molded by workshop participants. Here, sociodigital material [Höök, 2018]
refers to the combination of the digital materials and our social and living bodies
that we design with and for –also subject to change via the interactions we perform.
Secondly, the concept of couplings is stretched further to play a relevant role
in the creation of interactive experiences – not only “cool” feedback effects. As
such, interactive experiences need to be orchestrated. Coupling mechanisms
count on components that need to be turned on at the right time. Control of
dynamics over actuation-deactuation cycles must be sought. Furthermore, as
soma design continuously reminds us – and of relevance for affective technologies
– every subjective felt experience is different. Hence, orchestration mechanisms
must also be put in place so that re-programming, re-purposing and customising
the technology couplings is a reality. These are insights that pave the way for
future interaction research where similar bodily sensing-actuation paradigms are
of interest. Finally, the third aspect of somadata is their shareability, highlighted in
the 3 examples that were developed throughout this study. EMG signal novelty lies,
partially, in the fact that not only a balance anticipation is achieved through sound,
but it is also made available to colleague participants that can be part of a collective
meaning-making experience. Scarfy is born with the desire to share arousal
effects. The approach is appropriated by participants, and EDA data mappings are
challenged and enriched. In the case of synchronous movements, audio-based
ACC data is shared through movement coordination and several gestures. All of
these are examples that could guide HCI research already addressing the sharing
of biosignals [Howell et al., 2019, Liu et al., 2019], now with a strong focus on the
lived body.

4.8.5 Limitations

Through a range of soma design-inspired workshops we explored how to bring
forth interesting qualities in biodata to motivate designerly imaginations. Success-
ful explorations are what emerged from engaging with what we call somadata –
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that is turning the biodata into a “tangible” form by coupling it to sensuous actu-
ation, enabling first-person, felt and shareable encounters that are aligned with
a design context. However, even if we provide the ingredients that were part of
our design path, i.e. the strong soma design focus, the sensitising methods, the
multimodal sensing platform, etc. there is no way to present this design approach
as an infallible one-size-fits-all technique. In fact, questions would arise even
if presented as a technique in itself, as work between workshops was strongly
conditioned by a choice of topics that does not generalise well – a choice that
was motivated by researchers’ backgrounds and evocative properties we place
on design context. Besides, we believe that the balance workshop worked very
well because of the HCI expertise of the participants, the long and quietly paced
timeline adopted, among others. However, we currently have no absolute certainty
in that regard, perhaps calling for further meta-design research on the standard-
isation of workshop structure, materials and activities. Although these couplings
are examples that we found successful, many others did not make it into a final
prototype that resonated with our somaesthetic appreciation, e.g. a movement
tracking to liquid thermal/weight exchange actuation, a breathing sensing to vi-
bration feedback, etc. While these have become challenging projects that are
still deemed work-in-progress we have no mechanism to guarantee that they will
evolve towards somadata artefacts at some point. Hence, somadata should be
looked as a collection of exemplars developed with a strong theoretical soma
design backdrop behind and depicting how biodata can possibly be turned into
design material, potentially inspiring research in similar directions.

The chosen couplings led to interesting design discoveries that, from the
users’/designers’ point of view, talked to their own somatic experiences. This
took place via shared interpretations within design groups, shedding light on how
to craft interactive experiences with biodata in a way that is available, and that
stems from a holistic soma view.
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Chapter 5

Making it real. Discussion on
biosignal-enhanced body
interactions

5.1 A research outlook on biosignal-enhanced in-
teractions

Throughout this PhD research journey, the contact with researchers in bio-
medical engineering and the programming of biosignal processing algorithms
has contributed to grasp directions in which biosignals can be further processed
to offer elaborate real-time features beyond raw data (chapter 3). In turn, the
contact with researchers in the fields of human-computer interaction and design
has undoubtedly contributed to building an understanding of what the creation of
biosignal-based experiences entails (chapter 4). The strategy of attending to the
users’ needs – or the users/designers themselves – through first-person soma
design sessions, and DIY crafting practices in the case of arousal representation
kits, has proved to be a rich procedure. The research started from a science or
engineering perspective that studied how biosignals can be made available for the
developers who want to benefit from them in terms of improved information pro-
cessing (health and sports). It is through the shared design insight that emerged
from design sessions that an understanding of how to make biosignals available
for a more general user was gained. But the main achievement is the approach
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to understand novel ways to leverage biosignals in interactions. Only through
interdisciplinary dialogue (even if oftentimes non-verbal) has this understanding
been formed. In an attempt to look at the overall research, aspects borrowed from
the two perspectives are brought forth. Teaching resources and interfaces (see
[Tsaknaki et al., 2019], section 3.1) help support the interdisciplinary dialogue,
of course. But only when the opinions of the engineer clash with those of the
interaction designer is one forced to seek novel alternatives to understand biosig-
nals as a material. This perhaps echoes a too much compartmentalised science
doctrine, be it on the engineering perspective or the interaction design one – or
both. The artefacts resulting from this research, or the novel interactive instances
in which biosignals are made into tangible and shapeable material (section 4.8),
speak in favour of a fruitful way to address biodata differently. In this chapter,
joining the biosignal developer and the interaction designer perspectives, a view
on open orchestration research avenues is presented. The following are the best
candidates to capitalise on both strands of work to make biosignals more available:

• The study of ways to extend the orchestration of biosignal-enhanced interac-
tions by means of refined biosignal processing techniques and interactive
machine learning tools

• The extension of the repertoire of somaesthetic biosignal-actuation couplings,
adding “bits” to the SomaBits collection [Windlin et al., 2019]

In the following sections, both aspects are described and addressed with ex-
amples.

Beyond such research lines, there is also potential for the field to progress in two
other directions that have not been sufficiently explored in the context of this thesis.
On the one hand, research can further pursue what could be dubbed as “Dare to
design” . The successful encounter of two design studios presented in section 4.6
highlights the benefits of committing to long, slow-paced body interaction design
exercises which brought relevant insight. With biosignals that were an added
ingredient to leverage body inputs, the experience grew from a meeting that ended
up in prototype concepts that succeeded in defamiliarising a design experience
[Bell et al., 2005]. However, there is room to further unpack the dimensions that
are navigated when designing together (e.g. levels of comfort, body boundaries
and familiarity or skill). This could be done, over time, with in-depth analysis of the
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gathered materials used within the organised workshop [Tennent et al., 2020], but
also conducting new sessions involving other design teams or background topics.
The described experiences exploited the significant expertise in entertainment
and misalignment strategies that our study collaborators counted on, but the same
design strategy could be in principle applicable to other interests and design labs.
Just as a first-person approach pushed researchers to dare to try themselves
[Umair et al., 2019a] and go through discomfort, limits are still to be set in how far
one would go in trying technology within the body, where aspects such as body
contact and awkwardness are at play. On the other hand, if one pays attention
to the outcomes achieved in [Alfaras et al., 2020b] or even the structured study
shown in [Umair et al., 2020], it is worth to acknowledge that no test was done on
the long-term usage of somadata prototypes exposing body aspects nor affective
arousal gadgets exposing emotionally-charged and personalised representations.

5.2 Orchestration, design platforms and interfaces

At the end of the bodily-inspired sensing-actuation research journey (section 4.8),
one of the main, unveiled aspects of relevance for body interactions is that of or-
chestration. Orchestration refers to the ways, timings and effects of an interaction
that must unfold according to the measured biosignals and features. Orchestration
links body measurements to graspable outputs or feedbacks that act on our body
in a way or another. The effects that take place must be programmed, sequenced
and organised, even allowing a configuration by the user/designer so that actions
are customised to her/his needs or preferences. These either take the form of
programmed (software) actions such as sound generation or effects that take
place, e.g. when a muscle is activated, or wired (hardware) sequences such as
thermal based actuation connected to electrodermal activity increases. Moreover,
the orchestration should not be seen as a mere immutable strategy that has been
decided upon by a designer. Ideally, researchers and designers should count on
interfaces that, if desired, can expose the subjacent mechanisms of the technology
to be understood, improved and confronted. During the soma design workshops or
sessions in which participants experiment in groups, the orchestration mechanisms
prepared should be facilitators of the technology exploration. Using the felt body
with an evaluative stance, the exploration of biosignals and actuation mechanisms
relevant to self-awareness (body and emotional) has to be enabled. The designer
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needs to break down interaction steps and either adopt or craft new meanings
and interpretations. The designed systems, either seeking body or affective self-
awareness objectives, need ways in which body input-output and meanings are
put in place, coupled, coordinated, customised, sequenced and exposed so that
the underlying mechanisms can be better understood, challenged or extended.
Experiences that are tangible, i.e. that “touch” the user, somaesthetically, must be
sketched, thought and programmed, from the hardware and software point of view.
An orchestration is needed, serving several (general) purposes:

• Technology components must be able to communicate information reliably

• Interaction modules must be able to process information, without comprom-
ising time

• Information must be represented, triggering coupled effects in line with the
designed experience, exposing elaborate information beyond mere raw data

It is crucial that inputs (biosensors) and outputs (actuators) are nicely coordin-
ated. Orchestration mechanisms as described here aim to facilitate the exploration
of biosensor data and meaningful representations through actuation that addresses
modalities beyond visual feedback (see section 4.5, [Devendorf et al., 2016] on
wearing screens, and [Umair et al., 2019a, Umair et al., 2018, Alfaras et al., 2020a]
on alternatives). For this to happen, several aspects are identified:

• Coupling modalities: (New) Couplings need to be in place, i.e. biosensors
and novel body output effects (actuation/feedback) need to be connected.
These require data acquisition and processing capabilities, as well as the
ability to provide responses. Ideally, couplings should be able to be made,
modified and turned on or off

• Sequencing/coordination: Input/output modalities need to be sequenced.
Effects must follow an order, or count on event-based rules that govern which
effect goes first

• Design platform: A design platform, or an ecosystem of devices, must be able
to guide users in understanding the captured biodata through their felt ex-
periences. This design platform must provide the design exploration ground,
showing capabilities, limitations and roles of the involved technologies that
participate in the interactions
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The work of Windlin et al. [Windlin et al., 2019] on the SomaBits is a precursor
of these aspects, which has been – and will continue to be – inspirational for the
research on coupling biosensors to body actuation. Strategies and effects will
grow as body input (sensing) and output modalities (e.g. actuation mechanisms)
increase [Alfaras et al., 2020a]. Through physical artefacts that make up a design
toolkit, design session participants or users are invited to explore, try on and
test effects on themselves. The spontaneous material exploration observed in
experiences such as the ThermoPixels section 4.4, where participants use their
own bodies to understand how thermal effects and thermochromic changes work,
is somewhat outlined. In the case of First-person Physiology (section 4.7) despite
working as an exploratory framework, the session’s structure criticism received
mainly from HCI scholars participating in design workshops, is somewhat diluted
when working with more elaborate exemplars, such as those encountered in
[Alfaras et al., 2020b]. This has to do with the appropriation of the meaning-making
process and biodata involved – a process observed with arousal data too in the
ThermoPixels study due to the crafting focus–, arguably resulting from the first-
person perspective and particularly strengthened in the case of participants who
attended design sessions repeatedly.

5.2.1 A repertoire of biosignal effects

In the creation of a Soma Design toolkit, we aim at achieving a wide range of
customisable modalities for the user to explore possibilities that relate to her/his
body. In this thesis, and in particular in the study addressed in section 4.8, the
takeaways should revolve on a path that proved successful to connect or engage
with biodata differently, in a material and body way. This is exemplified by coupling
exemplars. However, by no means these are presented as the sole and ultimate
couplings, generalisable to anyone. What is unpacked in [Alfaras et al., 2020b] is
a way to address biodata, to be explored having our bodies into account, leading
to an appropriation of meaning and technology that one can change and design
with. Ultimately, one can create the effects what communicates best for her/his
soma. The exemplars are exemplars because of their condition of generating
design insight or somadata aspects, i.e. being able to be felt personally, able to be
shared and understood differently and collectively and in line (not against) a design
context or activity. Through the proposed approach, which is to be understood as a
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suggested strategy rather than an infallible recipe, biodata has been appropriated
by interaction design. Echoing principles relevant for soma design, such as that
of disrupting the habitual or estrangement [Wilde et al., 2017], it could be argued
that biodata has been deconstructed. Somaesthetic first-person design is not the
only way to deconstruct biodata. Examples exist in exposing biosignal related data
in the public space, to be shared and experienced while capture or re-experienced
in future [Howell et al., 2019]. Sound designers have addressed the design of
instruments with patterns that represent chemotherapy sessions, in a mixture of
body and emotional data that is tangible and can be replayed [Rocchesso et al.,
2019]. Artistic projects such as Lozano-Hemmer’s Pulse Park [Rafael Lozano-
Hemmer, 2018] for instance explore the shareability of pulse signals from the heart
and how they can be interconnected with architectural elements.

Soma Design provided a path for an interdisciplinary design team to embrace
this material and open the design space while keeping the researchers grounded
on the body – an aspect we consider fundamental for the affective interaction
/ technology approach. This is what made couplings successful, i.e. giving us
design insight such as the playful non-verbal movement arrangements obtained
through synchronous accelerometry or the shared audio-muscle activity in the
context of balance. The same applies when considering the reinterpretations of
electrodermal activity data via heat dissipation felt thanks to a scarf, all of them
irrespective of whether an artefact is to be properly evaluated by means of user
testing or further developed –which was never the goal of this material exploration
to make biosignals available. It is worth stating clearly that the prototyping efforts
presented fall short on making a very wide range of possibilities available to the
users to experience biodata with their bodies. In line with this, for instance, some of
the usual affective computing biosignals have not been successfully approached for
the design of interactions covered in this thesis. That is the case of, among others,
heart activity (information that counts on established processing mechanisms
), body temperature (an often ignored signal, or simply complementary, that is
easy to monitor) and breathing activity, to some extent. In terms of biofeedback
modalities, shape-changing actuation, taking physical changes to the tangible,
haptic and beyond-the-screen visual domains, has been inspirational throughout
the soma + affective design research undertaken but still remains work in progress
as per the results achieved by our own biosensing-actuation integration efforts.
Technology-wise, HCI research has already shown some of the design potential
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behind linear actuators and inflatable shape-changing mechanisms that inspire
and guide future research perspectives. Examples of these effects are Project
Materiable [Tangible Media. MIT Media Lab, 2016, Nakagaki et al., 2016] and
Project Lift-Bit [Carlo Ratti Associati, 2016]. These remarks should not be read
as if soma design is not suited to explore certain biosignal (input) modalities or
biofeedback effects. Beyond the expertise of the designers that this research has
counted on, the interplay of body aspects recorded, how they are processed to
expose characteristics beyond raw data, the technology limitations or affordances,
the body-centred practices surrounding the design sessions and the context in
which they unfold have an impact on whether the resulting coupling relates to our
bodies. Hence, there is room for improvement if properties or effects that already
stir our interests are further studied or, as shown in the misalignment research
(section 4.6) one does so by letting discomfort, fast dynamics, thrill, the unpleasant
and the unknown enter into the design exploration to enrich the soma perspective.

5.2.2 Machine learning for biosignal interactions

As seen in the first chapters of this thesis (chapter 3), a relevant part of the
research presented here has focused on the extension of biosignal feature ex-
traction, processing, and real-time analysis (e.g. to potentially enrich real-time
feedback possibilities within the lab and in more ecological settings). The dis-
cussed couplings (e.g., as presented in section 4.8) make use of basic signal
processing. Further possibilities, however, lie in improving the current algorithms
and processing approaches. Any sort of biosignal acquisition, in particular in
psychophysiology, can be seen as the process of dealing with sequential and time-
series data. Prior to the deployment of feature extraction and selection techniques,
data must be preprocessed properly. ECG, EMG, EDA, IMU, respiration, and all
the data collected from available sensors are in general sampled at different rates
and present different properties that entail signal noise and instances of data that
do not conform to (standard) expected representations. These can be seen as
artefacts or “meaningless” data. Since the data obtained in real-world ambulatory
settings is always prone to noise, presenting inconsistencies or missing values,
preprocessing and cleaning is required. Depending on the signal, researchers
count on specific signal characteristics (section 2.1.2), time domain and statistical
features that are suited to real-time processing (see section 3.5). An example is
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seen in the case of heart activity, where mean value of the heart rate, the mean
value of the inter-beat intervals, the standard deviation of the interbeat interval and
the root mean square of successive interval differences are accessible in real-time,
in the wild (see section 3.5.1 [Ramos et al., 2018]). Of particular interest are
the less apparent frequency-based features which given the demanding spectral
analysis computational requirements have just begun to appear in the nowadays
more capable out-of-the lab devices. More often than not, it may be interesting
to address several biosignal input modalities if unveiling particular regimes or
phenomena is what the researcher is after. This is the case of fatigue and the
elaborate combination of EMG and ECG features (see section 3.5.2 [Ramos et al.,
2020]), but could be applicable to contexts closer to psychophysiology and mental
health therapy that would benefit from a multimodular biosignal acquisition offering
a broader picture of e.g. stress, emotion regulation strategies, etc. At the same
time, multimodularity improves accuracy, allowing to rule out instances of false
detection of events more easily. Input output links need to rely on processing
capabilities, event detection, and high-level feature extraction to overcome the
limitations of too basic couplings that only put in place simple (signal) amplitude-
to-intensity mappings. An understudied aspect in this research, is the possibility
to address machine learning interactively. This research receives the name of
Interactive Machine Learning. The interest in working toward the deployment
and refinement of real-time machine learning processing of information is stressed
throughout the thesis. However, the interactive aspect is of relevance, not only
when exploring preprogrammed effects in multi-user experiences, but also when
deliberately working to alter effects and come up with novel biodata-actuation
mappings. This echoes early research achievements such as Wekinator [Fiebrink,
2011] and puts forth recent progress such as that exhibited by the Teachable Ma-
chine [Carney et al., 2020]. Interactive machine learning [Fails and Olsen, 2003],
originally conceptualised as a way to correct machine learning classifications on
the fly has evolved significantly. By means of tools like Wekinator or Teachable
Machine-like paradigms, it is possible to define actions, classes of images, move-
ments or gestures and link them to a classification output effect. While these are
mainly visual- and movement-based, one can hypothesise on richer inputs, i.e.
designers teaching specific biosignal-actuation mappings to algorithms.
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5.2.3 Supporting the design process

Building on the relevance of orchestration, the coupling concept is paving the
way for future research exploring sensing-actuation connections. An orchestration
platform supporting biosignal-based interaction design and the available toolkits
(e.g. the SomaBits [Windlin et al., 2019]) could be equipped with mechanisms that
count on interactive machine learning that would allow to teach physical mappings
or couplings on the fly, by doing, rather than deliberately programming.

Figure 5.1: Design interface for the creation of am EMG-audio feedback coupling
(using PureData).

Hence, the explorative process would move even closer to the body. On the
programming side, though, visual programming tools have emerged to connect
input and output elements more intuitively, by drag and drop interfaces that enable
setting ranges, filtering, value thresholding and concurrent actions. The designer
using a modular structure platform where sensors, processing approaches and
effects should work Plug and play, needs to access tools to enable both planning
(sequencing) and play (exploration, feeling). While this is so far an aspect not
centrally studied in this thesis, undoubtedly motivating future research avenues,
early experiments exemplify rich possibilities. That is the case of the collaborative
work with Windlin himself on muscle activity-sound couplings, feeding into the
broader goal pursued at the KTH IxD team on developing affective technology



140 CHAPTER 5

design toolkits.

In the depicted example (fig. 5.1), a visual programming user interface where
elements are added via drag and drop, PureData (Pd) [Puckette, 1996, PureData,
2020], is used to easily create, link, sequence and fine-tune biosignal to actuation
coupling effects, in this case electromyography to sound. It may also be the
case that the interfaces support not only the creation of mappings behind the
scenes, but its quick modification while exploration takes place. These tools
should not be seen as a shortcut to work with biosignals without understanding
their affordances. In fact, the act of engaging with them, their features, difficulties,
with the presence of noise and nature of their temporal dynamics should be inspired
when following a first-person exploration (section 4.7). As Fdili Alaoui mentions
with regard to sensing on the skin, technology resistance can be embraced
creatively [Fdili Alaoui, 2019]. Here, technology resistance is to be understood
as the hurdles and challenges faced when artists approach technologies to be
included in a piece (in this case a range of personal tracking sensors used while
dancing and the demanding issues of noise, lost/misclassified detections, electrode
attachment or operation under intense physical activity regimes). Biosignal-based
interaction design platforms bring together the benefits of exposing elaborate
biodata (see the teaching materials examples as described in fig. 3.3), elusive
features or characteristics as seen in [Ramos et al., 2018, Ramos et al., 2020]
(section 3.5) that can, therefore, use effects in order to be made more explicit,
graspable, felt or able to be modified by designers. In this process, unique
physiology recording and processing technology (section 2.1.1) is leveraged.
Ideally, an arranged set of components and preprogrammed effects or coupling
modules makes biosignals more available. While multimodular input platforms for
biosignals have been identified, e.g. providing a selection of biosignals of interest
in affective computing, a mere look at the many coupled effect possibilities (with
e.g. changes in tactile, thermal, vibrational, audio, visual, form/shape feedback)
indicates that creating an integrative platform for the exploration of actuation
is complex. Rather than pursuing an all-purpose body feedback device, it is
worth to work on having platforms establishing communication protocols and real-
time processing capabilities (or the connection to technology capable of doing
it). Besides, it is interesting to count on a modular structure where particular
input/output can be inserted at the designer convenience and a defined set of
module snippets which make up an effect mapping lexicon that generalises to
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several modalities. For instance, one can think of snippets for the detection and
limitation of amplitude ranges, the recognition of specific patterns or trends, the
set up of value thresholds, the measurement of between-event intervals (suitable
for many electrophysiology inputs) and its connection to output ranges of intensity,
duration or periodic repetition cycles. These outputs may require more ad hoc
elements, e.g. driving currents for any of the associated motors, transducer
degrees of freedom if applicable, as feedback mechanisms differ significantly.

A design interface candidate

Node-RED is a browser-based visual programming platform for IoT develop-
ment that emerges as a candidate interface to support the design of body and
emotional self-awareness interactions linking body inputs and outputs. Through
drag-and-drop boxes that users can connect within a main screen, the creation of
computer programs (flows) is possible. As such, running (deploying) a flow takes
an input, processes it, and provides an output, being able to perform computational
operations such as loops and control flow conditionals. The open source internet
of things project was born in 2013 at IBM to provide a tool for quickly and intuitively
run boilerplate code. Its potential was already foreseen in its early versions by HCI
researcher J. Solsona, who was able to create flows to operate artefacts exposing
the immaterial properties of e.g. radio waves [Solsona Belenguer, 2015]. With
an ever-growing online community of developers, the platform counts on a wide
range of available libraries or extension plugins. Computational functions, called
nodes in this case, are editable in JavaScript programming language if needed,
but off-the-shelf nodes provide regular input/output functionality and communica-
tion with running algorithms, e.g., processing biodata. HTML nodes add a visual
user interface screen where clickable elements like buttons, sliders and switches
are easily stacked to trigger and modify interaction effects. Just as Soma Bits’
actuation knobs and controls enable a rich exploration of haptic effects through the
different shapes created [Windlin et al., 2019], Node-RED interfaces enable the
fine tuning of input/output mappings on the fly but apparently move away from the
interesting tangible approach that Soma Bits offer. The ease of use vs explicitly
physical interface tradeoff applies in this comparison. In certain instances, the
Soma Bits achieves a remarkable level of simplicity, e.g. by linking an Arduino-
based “bit” with thermal feedback that is controlled with our hands. However,
when aiming to generalise and couple other inputs or actions, decisions need
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to be made on whether explicitly programming additional components is a good
idea. Node-RED features tools to import code from native JavaScript or other
programming languages. Working via messages passed from other platforms is
feasible. Hence, developing specific nodes to directly launch sensing/actuation
commands is a question of trade-offs, since it is also possible to rely on an under-
lying communication and control hub (orchestrating a group of sensors/actuators
via messages) usually leveraging general-purpose programming languages.

The initial steps with Node-RED seem promising. However, the design interface
faces several challenges. The interest in using a visual programming interface lies
behind the idea of simplifying how effects are connected. A tool like this is capable
of connecting different platforms, managing the connection of several devices and
give a higher-level control to the user. Every device (sensing or actuation) counts
on its programming interface and communication protocol. As pointed out, tangible
control options like those of the Soma Bits project, or even seen in other interaction
instances such as music tabletop interfaces [Jordà et al., 2007], present interaction
paradigms that are not mainly centred on clickable screens in a computer but
wheels, physical buttons and interaction in 3d space. Knobs, sliders, controllers
and elements that need to be physically moved, rotated or connected together lead
tangible interactions. Node-RED, though, works nicely when prototyping effects,
managing information processed by more intricate algorithms, and discerning how
devices must communicate to each other or what the working ranges are for the
parameters involved in their operation.

5.3 Shape-changing breathing: supporting the
design of a somaesthetic biosignal coupling

In an effort to further extend the repertoire of body and self-awareness interac-
tion modalities, a new design challenge of creating breathing-based effects has
been undertaken recently by a joint team of interaction designers and biosignal
researchers. In section 4.8, the work on creating couplings – i.e. artefacts, effects
or mappings– that connect to the body in a relevant, intimate and evocative way is
addressed by means of three examples. These are examples that counted on a
group of designers / users / students, leading to rich biosignal interpretations that
combined a collection of first-person experiences. Moreover, besides extending
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somaesthetic exercises and practices [Tsaknaki et al., 2019, Windlin et al., 2019]
with a look into first-person physiology (section 4.7), couplings exploited the expert-
ise of designers and design topics that surrounded the workshops conducted, i.e.
synchrony and balance. In this section, ongoing work is introduced on the process
of designing (via soma design) with breathing. This collaboration was initiated and
led by researchers A. Jung, P. Karpashevich and K. Höök, counting on W. Primett
contribution as well. For the first time, orchestration aspects such as interface/-
platform and the exploration of feature processing possibilities are brought to the
discussion from the very start. The first-person soma approach remains a staple
of this design work, in this case conducting several Feldenkrais exercises within
the design sessions supported by body sheets (see, for instance, [Tsaknaki et al.,
2019]). The study builds on recent progress that KTH has made, extending the
previously developed interaction design toolkit. New “pixels” (modules) have been
added to the Soma Bits [Windlin et al., 2019], consisting of little air pillows or pads
that can be shaped conveniently, and which include pressure control.

Figure 5.2: Shape-changing breathing communication workflow: Processing hub
on top, managing OSC communication with (shown from left to right): sensors
(R-IoT), its data processing and configuration interface (jupyter and Node-RED)
and the actuation effects (Arduino)

These enable the exploration of Arduino-based shape changing effects in the
form of inflatables that are controlled through pressure valves, managed by Pro-
cessing [Reas and Fry, 2003] instructions, and able to be felt by touch if attached
to the body. In terms of input, a BITalino R-IoT [PLUX S.A. and IRCAM, 2017]
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with a respiratory inductive plethysmography sensor is used, leveraging the R-IoT
Wi-Fi communication capabilities and a sensing mechanism that is more robust
than piezoelectric-based approaches to breathing activity monitoring. Real-time
processing algorithms, the soma design structure of the sessions that let us –
designers – get attuned to the body and reflect on biodata, and the extended body
actuation modules count now on orchestration interfaces.

Figure 5.3: Node-RED UI configuration flow and browser configuration interface
(bottom right) to be used during design sessions

In this experience, breathing is explored as an input modality, and pressure-
based shape changes that can be felt are investigated, both with their rationale or
inspiration behind, as explained below (section 5.3.1, section 5.3.2). In terms of
tools supporting the design orchestration and exploration of mappings, the simple
SomaBits structure takes a big leap now and incorporates extra steps to process
data and communicate effects between input and output devices. Wi-Fi is chosen
as the wireless approach to work with. Communication is managed by Processing
scripts that act as a hub (see fig. 5.2). This hub sends and receives Open Sound
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Control (OSC) [Schmeder et al., 2010] messages to and from the sensing platform
and the actuation platform. Actuation is managed and programmed via an Arduino
that inherited the control mechanisms of the Soma Bits and extended functionalities
with pressure monitoring that drive the inflation valves. The biosensing relies on
the R-IoT and is mainly accessed via Python instructions that run under Jupyter
notebooks, communicating via OSC to the Processing hub when requested through
a browser based Node-RED interface. In the Python code, the extracted signal
processing features, such as current inhale/exhale state or breathing rate, are
taken to build actuation instructions, e.g. applying inflation sequences that replicate
or scale the measured cycles.

Table 5.1: Node-RED nodes used for the UI

Node-RED node Name Function

Input Sends a numerical or text value input

Input click
Interface: Trigger/input button to send numerical or
text value when clicked

Slider
controller

Interface: Creates a slider with values to be
selected and sent to the BrF (breathing factor
configuration)

Dropdown
selector

Interface: Puts a dropdown with different modes to
be selected and sent

OSC message
encoder

Encodes messages in Open Sound Control format
before sending to a config script

Message
payload

Enables printing messages for debugging purposes

UDP
server/client

Sends messages via a udp protocol

Gauge
Interface: Monitor and display the current value of a
variable

Within the design sessions, a Node-RED (section 5.2.3) interface is used to change
effects (type of output effect or intensity) at ease, showing that Node-RED not
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only allows to sequence or create biosignal-actuation mappings but rather, in
this case, supports the change of settings during design sessions (see fig. 5.3,
table 5.1). As a UI, Node-RED contributions add gauge nodes to count or plot
current values on the browser, value inputs on click/trigger, dropdown menus
and sliders, used alongside OSC encoding functionalities from other extension
packages that facilitate communication to other platforms like the actuator that
control the interaction or the sensor data processing software.

The Node-RED interfaces are part of a more ambitious, unconcluded, PLUX
project Biofeatures Node-RED on integrating biosensing devices and the visual
IoT programming interface to enable interfacing directly with PLUX devices via the
OpenSignals software and TCP communication, through BITalino R-IoT’s auto-
matically generated OSC messages, through BITalino APIs and Python servers
running on the background (for example thanks to tools such as project pynored
https://github.com/ghislainp/pynodered), or potentially exploring the possibility of
creating native JavaScript Node-RED nodes working as if they were an extra
application programming interface to the devices, with nodes for the data filter-
ing or thresholding, as well as basic start/stop acquisition functionalities. The
browser interfaces, much simpler, enable the launch of data capturing but, most
importantly, the change of pre-coded actuation sequences or input breathing factor
(BrF) values to apply to the chosen 2-inflatable sequence (1. None/stop, 2.Breath-
ing biofeedback scaling the measured breathing rate to a factor that dilates it,
3.Pulsate alternatively 4.Inflate/Deflate).

Currently, the breathing exploration is making it into the process of designing
a garment that would integrate the pressure inflatables and the breathing (input
sensing and interaction/self-awareness focus) [Jung et al., 2021]. An example of
sharing instances that took place soma design sessions where breathing data was
shared in the form of pressure inflatables can be seen (fig. 5.4).

5.3.1 Deep Touch Pressure

As with other biosignal-enhanced interaction design explorations, a design
context was sought. Deep touch pressure (DTP) is a method used in sensory
integration therapy which uses tools such as weighted garments and blankets,
swaddling, or firm hugs to provide a firm pressure sensation to the body. Its
calming effect seems to be due to stimulation of the parasympathetic nervous

https://github.com/malfarasplux/biofeatures/tree/master/node-red
https://github.com/ghislainp/pynodered
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Figure 5.4: Instances of sharing a breathing biofeedback actuation via pressure
inflatables on different body locations (neck, shoulder and hands)

system, which plays a significant role in anxiety management [Chen et al., 2013].
In therapy practice, DTP has been applied to increase attention [Fertel-Daly et al.,
2001] and reduce anxiety symptoms [Krauss, 1987], particularly for children and
students with autism spectrum disorders (ASD) [Lang et al., 2012].

Since DTP is considered a rather unconventional approach [Losinski et al.,
2016], it has received limited attention in HCI. Vaucelle et al [Vaucelle et al.,
2009] developed a variety of prototypes for different forms of sensory stimulation,
including a pressure vest containing pneumatic chambers. Such vests are the
most common form of designs for deep touch pressure, and have also been
applied to simulate hugs in long-distance interactions [Teh et al., 2008]. Another
form of compression garments for DTP uses shape memory alloys which contract
when heated, exerting pressure on the wearer’s body [Duvall et al., 2019]. There
have also been several commercial prototypes of inflatable vests [Tware, 2015,
Squeasewear, 2014] which aim to help people with ASD and ADHD to manage
anxiety, attention and sleep issues.

In gathering inspiration from what is known in therapy as deep touch pressure
garments [Vaucelle et al., 2009, Tware, 2015], i.e. tangible grounding technology
that leverages the use of pressure applied to the body, the issue of whether
biosensing and somaesthetics could be utilised to revisit pressure-based actuation
was posed. The resulting design exploration, uses a focus on the body to expose
design limitations, feeding into the research of body self-awareness wearables
and deep touch pressure interaction design.
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5.3.2 Breathing as input

Breathing activity can be captured as a physiological signal. As such, though,
it entails a specific interaction constraint. Studies of physiology usability for HCI
design [da Silva, 2017] try to shed some light on different affordances of the
biosignals when deployed in real-world use case scenarios. As opposed to
signals or physiological data with a longer tradition in the intersection of medical
and HCI research such as heart rate, via electrocardiography (ECG) or blood-
volume pulse (BVP) sensing –which depict rhythms that are challenging to control–,
respiration offers an interesting compromise of need and agency. Imagine, say,
one represents physiological signals in a scale that rates their controllability, where
highly involuntary sources such as brain synapses or digestion are considered to
have the lowest rating. One needs to breathe to live. Breathing rhythms, however,
can be altered at ease. On the other side of this interaction level, we would find
movement tracking or muscle activity. Overly used in music performances or as
voluntary input mechanisms to many interfaces, movement and electromyography
(EMG) are physiology examples of signals that one can easily fine-tune, disrupt,
control or even stop.

The controllability nature of breathing mixed with the relevance in calming
techniques positioned it as an interesting interaction design focus candidate.
Biosignals are not mere representations going up and down (see section 2.1.2),
but a collection of shapes, durations and patterns to be assessed via elaborate
features. In the exploration of breathing features, a breathing sequence was
programmed early on, scaling inhale / exhale sequences to be felt through an
inflatable. This turned out to be a mapping to stick to and refine.

In a paper by Tennent et. al [Tennent et al., 2011], sensory misalignment re-
searchers explore the potential of breathing interfaces to control game inputs.
Although biofeedback use in games is not new, they propose interfaces far from
fitness-oriented use cases. Their approaches are based on breath flow measure-
ment that draws upon modified gas masks. “Breathing is both autonomic and in
part explicitly and quickly controllable.” Although this cannot be detached from its
physiological need and constraints. Part of their insight highlights that even when
breathing appears as a highly controllable, high accuracy process, challenges
such as sustained control for certain amounts of time emerge. The Tunnel Run
interface enters into the design of an experience where a player tries to match
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the breathing data curve to that of an opponent. In an earlier work, Marshall et
al. [Marshall et al., 2011] already identified the rich interplay between game-like
elements, voluntary and involuntary control of breathing and skill build up against
a machine in a breathing-based bucking bronco ride. As a side effect, subjects
who engage in the game become more aware of their breathing.

Projects such as Un air de flûte [Lesobre, Vanessa, 2019] and its instrument
interface aim to revolutionise respiratory failure rehabilitation, opening its design
towards gamification and remote eHealth domains. In Just Breathe, a haptic
interface is the basis of an stress intervention deployed in a driving scenario where
participants are asked to regulate their states through breathing [Paredes et al.,
2018].

Processing breathing data

Observing the raw data going up and down is informative, just as the conductor
does in First-person Physiology experiences (section 4.7). This process invites
the user to test the sensor limits and find out what it is that cannot be captured. In
preparation of design sessions, an overview of features was sought, together with
processing algorithms that could be created or tweaked as needed:

• Cycle duration (inhale/exhale)

• Breathing rate

• Instantaneous inhale/exhale state

• Rate of change (indicating how fast air is taken or released)

• Amplitude range (indicating how deep a breath is)

• Area (combining duration and depth of breath)

Having a breathing rate implementation turned out to be instrumental. The
breathing interaction coupling explored presented here counted on the BioSPPY
[Carreiras et al., 2015], enabling access to filtering and breathing rate estimation
in an easy way. As soon as processed data became interaction ingredients to
be fed to the actual inflatable, visual intuition was ready to be strengthened to
proceed to try effects tangibly. This, however, called for a long trial and error
process regarding the use of time. The resulting main actuation sequence is a
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biofeedback that computes the (averaged) duration of last inhale and exhales and
requests it, scaled, on the inflatable side.
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Chapter 6

Conclusion and final remarks

In the final chapter of this thesis, it is worth to recap and revisit the initial challenge
overview presented at the beginning of such research journey. The text found in
the following section reflects back on the different strands of work merged within
this investigation, adding insight in both the biosignal engineering perspective and
the human-computer interaction design one. Pondering on the future research
outlook (see section 5.1) and the open research paths only recently started to
successfully address (such as orchestration, e.g. section 5.2) remarks on the
thesis outcomes are given. To conclude, the contributions and research outcomes
of this thesis are highlighted.

6.1 General overview

Research on mobile and wearable technologies that track behavioural, psy-
chological, and contextual signals has recently gained momentum in the field
of mental health. At the same time, the rise of personal sensing has garnered
the interest of HCI research. In this thesis, the interest in affective technologies,
body and emotional self-awareness experiences motivates the exploration of bi-
osignals. At the beginning, the research focus revolved around finding ways in
which physiology processing could be done efficiently and with the performance
that competes with state-of-the-art techniques, considering its deployment within
wireless devices or wearable health use cases. Echo state networks emerged
as suitable candidates to be applied to physiology and wearable health, given
their performance for specific tasks and the relatively undemanding computational
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needs that are attractive for devices that in principle do not count on high com-
putational capabilities. While the ESN remarks apparently hold in the case of
electrocardiography data analysis, it is yet to be seen which contexts or more
traditional machine learning challenges are suitable for a method that is apparently
good at exploiting the temporal dependencies of a cyclic signal (which is not the
case of signals that are not as predictable or that are voluntarily controlled). ESNs
face significant challenges that come to light when deployed on eHealth problems.
As also exposed when addressing the processing of health records that either
lack values or present variables not as densely sampled through time as an ECG,
the limitations on temporal dependencies add up to the lack of clear guidelines
on how to integrate data of different nature (metabolites, vitals, rates computed
every hour), or required data fusion strategies. The case of sepsis classification
exemplifies it (see section 3.4.1).These are limitations that other machine learning
paradigms face too when trying to generalise to multivariate data. With respect to
biosignal research advances that could impact the practice of HCI or interaction
design more directly, the work towards real-time processing platforms and the
study of complex features encompassing more than a single sensing modality
seem more promising (as shown in the recent breathing interaction exploration
experience, section 5.3).

With the goal of making biosignals available, two perspectives (developer and
designer) are combined in this thesis to investigate ways in which biosignals can be
exploited. Promoting interaction design with biosignals, research possibilities are
sought, towards a body self-awareness focus and appropriating meaning-making
processes moving beyond traditional ways to think of physiology. To achieve this,
understanding current (and emerging) physiology processing platforms has been
crucial. More importantly, with the adoption first-person soma design to integ-
rate biosignals that are commonly used in ubiquitous low-cost personal sensing
together with actuation mechanisms studied in HCI, biodata has arguably been
transformed into a material to design with. The biosignal-based design exploration,
giving special attention to the sentient body and acknowledging alternative ways
to address affect within interaction, culminated with a set of coupling examples, in
which we demonstrate data mapping strategies between various devices in the
context of bodily and emotion awareness. Through biosignal-actuation couplings,
the role of orchestration defines the ways in which body input-output systems and
meanings are put in place, the range of mappings and how they unfold. The two
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strands of work meet with interesting synergies in the study of biosignal-enhanced
body interactions [Alfaras et al., 2020b]. The current efforts shown in section 5.3
are even more clear in highlighting how biosignals are available by means of
biosignal processing, first-person soma design, biodata-based effects to be felt on
the body and self-awareness goals more aligned with the psychotherapy practice.
The design platforms achieved, in particular following the line started by the Soma
Bits, shed light into directions that seem promising for the future of interaction
design exploiting biodata. However, current prototypes still fall short in providing
a smooth exploration of body-based effects. While the development of design
toolkits is a work-in-progress, the many technologies involved imply a too large set
of protocols and programming languages to render a simple design ecosystem.
Research-wise, design paths accompanied by a soma design approach have
proven to be very successful to approach a technology that is seldom seen as
material. The future of affective technology interactions will be shaped by the devel-
opment of design toolkits and platforms. Besides, throughout this thesis, the soma
view has been complemented with that of sensory misalignment (section 4.6),
inviting to the disruption of soma design itself with e.g. the inclusion of thrill and
discomfort (section 4.5), and the consideration of how the body-centred design
processes unfold back and forth between ends of bodily-inspired interaction design
dimensions, i.e. moving along different levels of comfort/discomfort, intrusiveness
(within/outside the body) or familiarity/strangeness that will spur further reflections
on how to navigate this space.

On another front, the promising capabilities of design toolkits for self-reflection
have also been studied by an example addressing affect representation as a
core objective (section 4.4), using electrodermal activity sensing and body/ma-
terial explorations but highlighting affect instead of overemphasising the chosen
technology modalities to achieve its meaning. The combination of materials and
technologies opens up arousal from a unique and personal perspective. While fur-
ther research is taking the form of a coupling/orchestration augmentation (mainly
motivated by the observations on the benefits of design support interfaces and
interactive machine learning, section 5.2), the exploration of how affect information
is appropriated through crafting practices is worth investigating further [Umair et al.,
2020]. In this case, rather than extending a kit with more materials or refining it,
and despite the possibilities of changing inputs and outputs to focus on different
emotional information, there is room for addressing the very same personalised
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affect representations by studying prototyping behaviours and engagement in
longer-term studies with other population samples. While project AffecTech [Af-
fecTech, 2017] stresses the relevance of emotion regulation, with strong ties to
cognitive behavioural psychotherapy, the soma design studies presented here
pursued a more basic goal of turning biodata (not complex behaviours) malleable.
However, as ThermoPixels expose with the emergence of emotion regulation
in the users’ hypothesised uses, and as the breathing exploration experience
suggests (section 5.3), some contexts lie closer to the psychotherapy practice.
Therefore, either the study of e.g. emotion regulation (backed up with multimodular
psychophysiology monitoring to detect, characterise and expose its presence) or
a less subtly addressed emotion regulation focus in a design process rather than
affect representation offer possibilities worth studying further, with the potential to
call for a more direct participation of therapy stakeholders as well.

In relation to ethics, AffecTech has also highlighted how HCI studies may benefit
from a direct consideration of ethics during the design or research process [Sanc-
hes et al., 2019b]. This is somewhat echoed from the perspective of mental health
applications available in mobile markets [Bowie et al., 2018, Bowie-DaBreo et al.,
2020]. A broader discussion on the topic is presented in [Alfaras et al., 2020a].
This thesis, however, is no exception to a limited attention to ethics, handled with
care when engaging participants, but only intermittently addressed as a main topic.
Soma design is, to some extent, an approach to ethics, i.e. engaging with core val-
ues throughout the design process, also favoured via the first-person perspective
that puts designers’ – not solely final users’ – feelings to the test during design,
not after, and uses them, sharing and enriching an outcome that is broader or
that represents the unalike multiple subjectivities brought forth in design session
groups. The feelings of designers are not to be seen as less relevant but, quite
the contrary, of importance if engaged in emotion work [Balaam et al., 2019] and
when trying to instigate values in the designs or interactions created. These set
the ground for future research endeavours including ethics, end-to-end.

6.2 Thesis contributions

The following text summarises the contributions and research outcomes of
this thesis, divided into biosignal processing/engineering advances and human-
computer/interaction design ones, ultimately carrying a joint view exemplified with
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the final biosignal-actuation interaction artefacts or couplings.

6.2.1 Engineering and biosignal development contributions

In seeking ways to drive biosignal tracking research fronts, this thesis started by
an eminently engineering focus that explored how biosignals are captured, pro-
cessed, and represented, challenging how biosignals and its intrinsic physiological
information are made available from a developer point of view. Contributions
(and related objectives in brackets, see section 1.2) in this domain are the following:

1. Computationally undemanding Echo state networks (ESNs) for the pro-
cessing of biosignals and wearable health data [O3].

This thesis drew on a background of studies carried out in the context of
ESN architectures [Ortı́n et al., 2019, Alfaras et al., 2019a], i.e. simplistic
recurrent neural networks, for the processing of biosignal data. This thesis
further unpacked the use of ring-topology ESNs [Rodan and Tiňo, 2011] and
created an ESNtools Python implementation [Alfaras et al., 2019b] which was
applied to a worldwide data-driven sepsis [Reyna et al., 2020] classification
challenge in which it competed with state of the art ML techniques. The
proposed model in the context of the intensive care unit data, although
beaten by ML paradigms that exploited mathematically robust path integrals
[Morrill et al., 2019] or improved traditional ML techniques, is usable, easy
to tweak and retrain. In turn, it is probably more aligned with (explainable)
AI models that can be transparently assessed step by step, and helped
underscore the insufficiently met goals of data fusion, data imputation for
missing/faulty values and generalisation.

• Ring-topology Echo State Networks for ICU Sepsis Classification.

[Alfaras et al., 2019c]

2. Real-time monitoring, processing and visualisation of biosignal data
[O5, O4, O2].

Being based at a company that is devoted to the creation (and democratisa-
tion) of biosignal platforms, had a strong influence in the scope of this thesis,
making it possible to link research knowledge with development efforts that
tackle user’s needs. This is to be seen, not only as an electronic device
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and sensing focus, but as a genuine interest of a company and research
team in understanding how investigators, developers or even users who
are not acquainted with biosignals can use them. In a collaboration led by
LIBPhys at Universidade NOVA de Lisboa, it was demonstrated that heart
rate variability processing (features, filtering) can be implemented in real-time
biosignal visualisation platforms. The resulting proof-of-concept software
add-on, delved into the temporal requirements that features of different nature
posed for processing (e.g. temporal features and frequency features), and
was successfully integrated in a beta plugin of the official PLUX OpenSignals
software [PLUX S.A., 2018].

• Real-Time Approach to HRV Analysis. [Ramos et al., 2018]

3. New metrics and descriptors for biosignal processing and pattern re-
cognition [O4, O5, O2].

Continuing with the focus on enhancing biosignal processing capabilities,
and in line with the goal of making biosignals available (to developers and
researchers seeking to understand particular physiology aspects), the possib-
ility of collaborating with a study centred on physical performance emerged
as an interesting path to challenge the ways in which biosignals are utilised.
A team led by LIBPhys - Universidade NOVA de Lisboa and collaborators
from the Faculdade de Motricidade Humana of Universidade de Lisboa ad-
dressed the challenge of combining ECG and EMG data to capture the onset
of fatigue in cycloergometry exercises. The resulting study successfully
reviewed and characterised biosignal features and elaborated on those to
propose individual fatigue descriptors. Moreover, a global fatigue descriptor
was established, to characterise the level of fatigue with an associated prob-
ability, therefore setting a new metric for a complex phenomenon (fatigue).
Completely aligned with the need to spur ways to make biosignals more
available (in this case via elaborated new metrics capturing data patterns
otherwise missed), this thesis specifically contributed to the assessment of
the ML algorithm training procedures followed in the study.

• Fatigue evaluation through machine learning and a global fatigue

descriptor. [Ramos et al., 2020]



CHAPTER 6 157

Beyond the scientific outcomes resulting from this strand of work, it is worth high-
lighting that the enrolment at a biosignal device manufacturer that was internally
seeking ways to better engage biosignal users was a timely opportunity. This is re-
flected in the thesis’ (and hosting company’s) shift to researching tutorial materials
that would accompany the biosignal acquisition users in their learning processes,
to facilitate access to elaborate visualisations of the acquired biosignal data (see
section 3.1 and [BITalino, 2018]), device status and inspire their own changes,
tweaking ideas and data ownership. Such a transformative change, crystallised
beyond this thesis as the company’s commitment to strengthen the user learning
process when dealing with biosignal acquisition (see the biosignalsnotebooks
[PLUX S.A., 2020, Varandas et al., 2020] project). In this thesis, however, this
approach is to be thanked for inspiring the Sensing Self ideas (see section 4.7)
that permeated an HCI and self-awareness interaction design focus.

6.2.2 HCI and Interaction design research contributions

In seeking ways to drive biosignal research further, this thesis benefited from
project AffecTech’s [AffecTech, 2017, Repetto et al., 2017] focus on affective
technologies and self-awareness, to investigate how making biosignals available
for interaction designers could bring novelty in the ways people use biosignal
acquisition devices or even spurring the development of biosignal interaction or
feedback effects unthought of. The specific challenge of how biosignals can be
made available to designers became a central point at the start of the thesis,
inspiring design approaches and collaborations addressed in this text, often pro-
posing developments that leveraged Do-it-yourself practices and design centred
in the user’s/researcher’s own perspective. Since this interdisciplinary challenge
entailed crossing fields and entering HCI, the research of this thesis attempted
to characterise relevant framings useful to support such a demanding journey.
This is the case of the introduction to HCI waves (section 4.2.1), first-person
and soma perspectives (section 4.2.2 and section 4.2.3) for interaction design,
and a unique approach to affective technology and body/emotion self-awareness
(section 4.3). Moreover, the first-person perspective is genuinely appropriated to
inspire biosignal exploration (see First-person physiology, section 4.7). The thesis
contributions (and related objectives in brackets, see section 1.2) in this domain
are the following:
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1. The ThermoPixels and the research on self-understanding and repres-
entation of emotionally-charged information [O7, O8].

Thanks to a unique AffecTech [AffecTech, 2017] collaboration led by Lan-
caster University HCI researchers, a Do-it-yourself toolkit for the creation of
EDA-based arousal representations was developed. Although the research
teams who conceptualised the kit are exploring distribution and exploitation
leads suitable for the toolkit, ThermoPixels was instrumental in this thesis
for other reasons. In particular, the study around the kit contributed to real-
ising that hybrid crafting combining assemble kits with unique user input
are vehicles to unpack and strengthen affective self-awareness, and even
a means to envision ways in which electrodermal activity information can
be leveraged in daily emotional regulation contexts. ThermoPixels, building
on very simple processing, and on appealing visuals exhibited by thermo-
chromic materials, successfully paves future research in empowering the
users with biosignal-arousal interpretation tools. Moreover, it is worth not-
ing how ThermoPixels’ workshops highlighted personalisation options and
agency in deciding what to expose or not, without disregarding the difficulty
entailed by the ambiguity of arousal (only referring to high/low emotional load
and not its positive/negative valence).

• ThermoPixels:Toolkit for personalizing arousal-based interfaces through
hybrid crafting. [Umair et al., 2020]

2. Dare to design. Extending interaction design from a self-centred per-
spective [O6, O9].

Following on the fruitful interaction design line opened up by AffecTech and
inspired by a theoretical background that was starting to be consolidated
[Höök et al., 2018, Höök, 2018], collaborations with Lancaster HCI and
KTH Stockholm Soma Design team helped focus the thesis on the task of
leveraging first-person accounts surrounding technology and a holistic body-
centred perspective. As a result, significant discussion and insight is offered.
This thesis contributed to assess, personally, existing issues surrounding
discomfort in the use of personal tracking technologies exploiting a given
biosignal (in this case electrodermal activity), such as concerns on being
framed, being misunderstood or frustrated due to technology operation
– either by frustration, malfunctioning or uses that are not in agreement
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with expectations while not being able to cope with the interaction/practice
demands. This first (naive) approach, set the grounds for a more disruptive
collaboration with Nottingham Mixed Reality Lab, not only taking the first-
person soma perspective to design with and challenging slow, gentle, soft
qualities attached to it, but exploiting sensory misalignment (disturbing the
habitual ways of addressing the user, taking confusing or even overwhelming
tactics) to enhance a heightened sense of self that dares to open up design
possibilities otherwise out of reach.

• Experiencing discomfort: Designing for affect from first-person perspect-
ive. [Umair et al., 2019a]

• Soma design and sensory misalignment. [Tennent et al., 2020]

3. From Biodata to Somadata [O8, O9, O6, O1].

This strand of work culminates the interdisciplinary research journey com-
bining engineering and design investigation perspectives. Central to the
thesis, the contributions in this line consist of a first-person account and
approach at turning biosignal data available for interaction design teams,
with a body-centred focus, using actuation effects and interaction ideas to
understand and utilise biosignals and convey meanings in novel unpreced-
ented ways. These took the form of evocative biosignal-actuation couplings
that transformed EMG, EDA, ACC or Breathing signals into something malle-
able, overtly interpretable, tangible and able to be modified. Moreover, the
thesis research surrounding these topics, helped underscore fundamental
elements that must be present for a successful integration of biosignal in-
puts and evocative body-centred effects or outputs. In other words, with
the discussion offered, it was possible to identify orchestration mechanisms
and biosignal processing lines that could pave the way for future research
avenues extending self-awareness technologies.

• From Biodata to Somadata [Alfaras et al., 2020b]

• Biosensing and actuation — Platforms coupling body input-output mod-
alities for Affective Technologies. [Alfaras et al., 2020a]

• Exploring Awareness of Breathing through Deep Touch Pressure.

[Jung et al., 2021]
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Appendix: Research output list

This PhD project has led to a collection of research outputs in the form of peer
reviewed conference papers, journals and posters or other scientific dissemination
actions wihtin the AffecTech project. The following list highlights the peer reviewed
papers that make up the contents of this thesis:

(i) Ramos, G., Alfaras, M., and Gamboa, H. (2018). Real-Time Approach to
HRV Analysis. In Proceedings of the 11th International Joint Conference on
Biomedical Engineering Systems and Technologies BIOSTEC 2018. SCITE-
PRESS -Science and Technology Publications. http://doi.org/10.5220/
0006641402080215

(ii) Ramos, G., Vaz, J. R., Mendonça, G. V., Pezarat-Correia,P., Rodrigues, J.,
Alfaras, M., and Gamboa, H.(2020). Fatigue evaluation through machine
learning and a global fatigue descriptor. Journal of Healthcare Engineering,
Hindawi 2020:1–18. https://doi.org/10.1155/2020/6484129

(iii) Alfaras, M., Varandas, R., and Gamboa, H. (2019). Ring-topology Echo State
Networks for ICU Sepsis Classification. In 2019 Computing in Cardiology
Conference (CinC). Computing in Cardiology. https://doi.org/10.22489/
CinC.2019.327

(iv) Umair, M., Alfaras, M., Gamboa, H., and Sas, C. (2019).Experiencing dis-
comfort: Designing for affect from first-person perspective.In Adjunct Pro-
ceedings of the 2019 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers, UbiComp/ISWC ’19 Adjunct,page
1093–1096, New York, NY, USA. Association for Computing Machinery.
https://doi.org/10.1145/3341162.3354061

http://doi.org/10.5220/0006641402080215
http://doi.org/10.5220/0006641402080215
https://doi.org/10.1155/2020/6484129
https://doi.org/10.22489/CinC.2019.327
https://doi.org/10.22489/CinC.2019.327
https://doi.org/10.1145/3341162.3354061
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(v) Tennent, P., Marshall, J., Tsaknaki, V., Windlin, C., Höök, K., and Alfaras,
M. (2020). Soma design and sensory misalignment. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems, CHI
’20, New York, NY, USA. Association for Computing Machinery. https:

//doi.org/10.1145/3313831.3376812

(vi) Alfaras, M., Tsaknaki, V., Sanches, P., Windlin, C., Umair, M.,Sas, C., and
Höök, K. (2020). From Biodata to Somadata. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, CHI ’20, New
York, NY, USA. Association for Computing Machinery. http://dx.doi.org/
10.1145/3313831.3376684

(vii) Umair, M., Sas, C., and Alfaras, M. (2020). ThermoPixels:Toolkit for per-
sonalizing arousal-based interfaces through hybrid crafting. In Proceedings
of the 2020 ACM Designing Interactive Systems Conference, DIS’20, page
1017–1032, New York, NY, USA. Association for Computing Machinery.
https://doi.org/10.1145/3357236.3395512

(viii) Alfaras, M., Primett, W., Umair, M., Windlin, C., Karpashevich, P., Chalabian-
loo, N., Bowie, D., Sas, C., Sanches, P., Höök, K., Ersoy, C.,and Gamboa,
H. (2020). Biosensing and actuation — Platforms coupling body input-
output modalities for Affective Technologies.Sensors, 20(21):5968. MDPI.
https://doi.org/10.3390/s20215968

(ix) Jung, A., Alfaras, M., Karpashevich, P., Primett, W., Höök, K. (2021). Ex-
ploring Awareness of Breathing through Deep Touch Pressure. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI ’21, New York, NY, USA. Association for Computing Machinery.
https://doi.org/10.1145/3411764.3445533

Follow-up works

The work on soma design and sensory misalignment evolved throughout the
course of this thesis, leading to more elaborate contributions not covered in this
text.

• Tennent, P., Höök, K., Benford, S., Tsaknaki, V., Ståhl, A., Dauden Roquet,
C., Windlin, C., Sanches, P., Marshall, J., Li, C., Martinez Avila, J., Alfaras,

https://doi.org/10.1145/3313831.3376812
https://doi.org/10.1145/3313831.3376812
http://dx.doi.org/10.1145/3313831.3376684
http://dx.doi.org/10.1145/3313831.3376684
https://doi.org/10.1145/3357236.3395512
https://doi.org/10.3390/s20215968
https://doi.org/10.1145/3411764.3445533
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M., Umair, M. and Zhou, F. (2021). Articulating Soma Experiences Using Tra-
jectories. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, New York, NY, USA. Association for Computing
Machinery. https://doi.org/10.1145/3411764.3445482,

• Höök, K., Benford, S., Tennent, P., Tsaknaki, V., Alfaras, M., Martinez Avila,
J., Li, C., Marshall, J., Daudén Roquet, C., Sanches, P., Ståhl, A., Umair, M.,
Windlin, C. and Zhou, F. (2021). Unpacking non-dualistic design: the soma
design case. (accepted) ACM Transactions on Computer-Human Interaction
- TOCHI.

Concurrent works

Additionally, the following works, appeared during the PhD project, motivated
part of the research questions addressed around Machine Learning and com-
putationally undemanding paradigms suitable for health wearables to process
physiology.

• Ortı́n, S., Soriano, M. C., Alfaras, M., and Mirasso, C. R. (2019). Automated
real-time method for ventricular heartbeat classification. Computer Methods
and Programs in Biomedicine, 169:1–8 https://doi.org/10.1016/j.cmpb.

2018.11.005

• Alfaras, M., Soriano, M. C., and Ortı́n, S. (2019). A fast machine learning
model for ECG-based heartbeat classification and arrhythmia detection.
Frontiers in Physics, 7. https://doi.org/10.3389/fphy.2019.00103

Additional publications

Throughout the AffecTech project, other works and research efforts intersecting
with Biosignals, Psychophysiology/Psychotherapy, Robotics and emotions were
inspired, although not directly addressed in this thesis.

• Cartosio, L., Robers, M., Alfaras, M., Pobil, A. What Are Emotions? And Do
Robots Need Them? An Interdisciplinary Review (CyPsy’25 poster / paper
in preparation)

https://doi.org/10.1145/3411764.3445482
https://doi.org/10.1016/j.cmpb.2018.11.005
https://doi.org/10.1016/j.cmpb.2018.11.005
https://doi.org/10.3389/fphy.2019.00103
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• Alfaras, M. Emotion technology: Falling Short
Presented at the 2020 ACM Designing Interactive Systems Conference,
DIS’20 in the workshop “Mental Wellbeing: Future Agenda Drawing from
Design, HCI and Big Data” https://doi.org/10.1145/3393914.3395920

https://doi.org/10.1145/3393914.3395920
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A., Höök, K., and Fitzpatrick, G. (2019). Emotion work in experience-centered
design. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, CHI ’19, page 1–12, New York, NY, USA. Association for
Computing Machinery.

[Bardram and Matic, 2020] Bardram, J. E. and Matic, A. (2020). A decade of
ubiquitous computing research in mental health. IEEE Pervasive Computing,
19(1):62–72.

[Batista et al., 2019] Batista, D., da Silva, H. P., Fred, A., Moreira, C., Reis, M., and
Ferreira, H. A. (2019). Benchmarking of the BITalino biomedical toolkit against
an established gold standard. Healthcare Technology Letters, 6(2):32–36.

https://github.com/malfarasplux/pnet2019/tree/master/ESNtools
https://github.com/malfarasplux/pnet2019/tree/master/ESNtools


BIBLIOGRAPHY 167

[Beauchaine and Thayer, 2015] Beauchaine, T. P. and Thayer, J. F. (2015). Heart
rate variability as a transdiagnostic biomarker of psychopathology. International
Journal of Psychophysiology, 98(2):338–350.

[Bell et al., 2005] Bell, G., Blythe, M., and Sengers, P. (2005). Making by making
strange: Defamiliarization and the design of domestic technologies. ACM Trans.
Comput.-Hum. Interact., 12(2):149–173.

[BITalino, 2013] BITalino (2013). Bitalino. http://www.bitalino.com.

[BITalino, 2017] BITalino (2017). ServerBIT (r)evolution. https://github.com/

BITalinoWorld/revolution-python-serverbit.

[BITalino, 2018] BITalino (2018). BITalino Hands-on. https://github.com/

BITalinoWorld/python-lab-guides/tree/master/BITalino%20Hands-on.

[Blevis et al., 2014] Blevis, E., Chow, K., Koskinen, I., Poggenpohl, S., and Tsin,
C. (2014). Billions of interaction designers. Interactions, 21(6):34–41.

[Bødker, 2015] Bødker, S. (2015). Third-wave HCI, 10 years later—participation
and sharing. Interactions, 22(5):24–31.

[Boehner et al., 2007] Boehner, K., DePaula, R., Dourish, P., and Sengers, P.
(2007). How emotion is made and measured. International Journal of Human-
Computer Studies, 65(4):275–291.

[Bowie et al., 2018] Bowie, D., Sunram-Lea, S.-I., and Iles-Smith, H. (2018). A
systemic ethical framework for mobile mental health: From design to implement-
ation. nihr mindtech mic national symposium 2018: Improving lives with digital
mental healthcare. https://eprints.lancs.ac.uk/id/eprint/131847/1/A_

systemic_ethical_framework_for_mobile_mental_health_From_design_to_

implementation.pdf.

[Bowie-DaBreo et al., 2020] Bowie-DaBreo, D., Sünram-Lea, S. I., Sas, C., and
Iles-Smith, H. (2020). Evaluation of treatment descriptions and alignment with
clinical guidance of apps for depression on app stores: Systematic search and
content analysis. JMIR Formative Research (submitted).

http://www.bitalino.com
https://github.com/BITalinoWorld/revolution-python-serverbit
https://github.com/BITalinoWorld/revolution-python-serverbit
https://github.com/BITalinoWorld/python-lab-guides/tree/master/BITalino%20Hands-on
https://github.com/BITalinoWorld/python-lab-guides/tree/master/BITalino%20Hands-on
https://eprints.lancs.ac.uk/id/eprint/131847/1/A_systemic_ethical_framework_for_mobile_mental_health_From_design_to_implementation.pdf
https://eprints.lancs.ac.uk/id/eprint/131847/1/A_systemic_ethical_framework_for_mobile_mental_health_From_design_to_implementation.pdf
https://eprints.lancs.ac.uk/id/eprint/131847/1/A_systemic_ethical_framework_for_mobile_mental_health_From_design_to_implementation.pdf


BIBLIOGRAPHY 168

[Bradley and Lang, 2017] Bradley, M. M. and Lang, P. J. (2017). International af-
fective picture system. In Encyclopedia of Personality and Individual Differences,
pages 1–4. Springer International Publishing.

[Brunner et al., 2013] Brunner, D., Soriano, M. C., Mirasso, C. R., and Fischer, I.
(2013). Parallel photonic information processing at gigabyte per second data
rates using transient states. Nature Communications, 4(1).

[Byrne et al., 2018] Byrne, R., Marshall, J., and Mueller, F. F. (2018). Ar fighter:
Using hmds to create vertigo play experiences. In Proceedings of the 2018
Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’18,
page 45–57, New York, NY, USA. Association for Computing Machinery.

[Cabibihan et al., 2016] Cabibihan, J.-J., Javed, H., Aldosari, M., Frazier, T., and
Elbashir, H. (2016). Sensing technologies for autism spectrum disorder screen-
ing and intervention. Sensors, 17(12):46.

[Can et al., 2019] Can, Y. S., Chalabianloo, N., Ekiz, D., and Ersoy, C. (2019).
Continuous stress detection using wearable sensors in real life: Algorithmic
programming contest case study. Sensors, 19(8):1849.

[Can et al., 2020a] Can, Y. S., Chalabianloo, N., Ekiz, D., Fernandez-Alvarez, J.,
Repetto, C., Riva, G., Iles-Smith, H., and Ersoy, C. (2020a). Real-life stress
level monitoring using smart bands in the light of contextual information. IEEE
Sensors Journal, pages 1–1.

[Can et al., 2020b] Can, Y. S., Chalabianloo, N., Ekiz, D., Fernandez-Alvarez, J.,
Riva, G., and Ersoy, C. (2020b). Personal stress-level clustering and decision-
level smoothing to enhance the performance of ambulatory stress detection with
smartwatches. IEEE Access, 8:38146–38163.

[Carlo Ratti Associati, 2016] Carlo Ratti Associati (2016). Project lift-bit. https:

//carloratti.com/project/lift-bit/.

[Carney et al., 2020] Carney, M., Webster, B., Alvarado, I., Phillips, K., Howell, N.,
Griffith, J., Jongejan, J., Pitaru, A., and Chen, A. (2020). Teachable machine:
Approachable web-based tool for exploring machine learning classification. In

https://carloratti.com/project/lift-bit/
https://carloratti.com/project/lift-bit/


BIBLIOGRAPHY 169

Extended Abstracts of the 2020 CHI Conference on Human Factors in Com-
puting Systems, CHI EA ’20, page 1–8, New York, NY, USA. Association for
Computing Machinery.

[Carreiras et al., 2015] Carreiras, C., Alves, A. P., Lourenço, A., Canento, F., Silva,
H., Fred, A., et al. (2015). BioSPPy: Biosignal processing in Python. [Online;
accessed ¡today¿].

[Castaneda et al., 2018] Castaneda, D., Esparza, A., Ghamari, M., Soltanpur, C.,
and Nazeran, H. (2018). A review on wearable photoplethysmography sensors
and their potential future applications in health care. International journal of
biosensors & bioelectronics, 4(4):195.

[Chang et al., 2019] Chang, Y., Rubin, J., Boverman, G., Vij, S., Rahman, A.,
Natarajan, A., and Parvaneh, S. (2019). A multi-task imputation and classifica-
tion neural architecture for early prediction of sepsis from multivariate clinical
time series. In 2019 Computing in Cardiology Conference (CinC). Computing in
Cardiology.

[Chen et al., 2013] Chen, H.-Y., Yang, H., Chi, H.-J., and Chen, H.-M. (2013).
Physiological effects of deep touch pressure on anxiety alleviation: The weighted
blanket approach. Journal of Medical and Biological Engineering, 33:463–470.

[ChuDuc et al., 2013] ChuDuc, H., NguyenPhan, K., and NguyenViet, D. (2013). A
review of heart rate variability and its applications. APCBEE Procedia, 7:80–85.

[Clawson et al., 2015] Clawson, J., Pater, J. A., Miller, A. D., Mynatt, E. D., and
Mamykina, L. (2015). No longer wearing: Investigating the abandonment of
personal health-tracking technologies on craigslist. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, page 647–658, New York, NY, USA. Association for Computing
Machinery.

[Cross, 1992] Cross, N. (1992). Design ability. NA - Nordic Journal of Architectural
Research, 5(4).

[da Silva, 2017] da Silva, H. P. (2017). The biosignal C.A.O.S.: Reflections on the
usability of physiological sensing for human-computer interaction practitioners
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K. (2021). Exploring awareness of breathing through deep touch pressure. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI ’21, New York, NY, USA. Association for Computing Machinery.

[Jung and Stolterman, 2012] Jung, H. and Stolterman, E. (2012). Digital form and
materiality: Propositions for a new approach to interaction design research. In
Proceedings of the 7th Nordic Conference on Human-Computer Interaction:
Making Sense Through Design, NordiCHI ’12, page 645–654, New York, NY,
USA. Association for Computing Machinery.

[Kemp et al., 2010] Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L.,
Brown, K., and Gatt, J. M. (2010). Impact of depression and antidepressant
treatment on heart rate variability: A review and meta-analysis. Biological
Psychiatry, 67(11):1067–1074.



BIBLIOGRAPHY 176

[Khut, 2016] Khut, G. (2016). Designing biofeedback artworks for relaxation.
In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’16, page 3859–3862, New York, NY,
USA. Association for Computing Machinery.

[Khut, 2006] Khut, G. P. (2006). Development and Evaluation of Participant-
Centred Biofeedback Artworks. PhD thesis, School of Communication Arts,
University of Western Sydney.

[Krasteva et al., 2015] Krasteva, V., Jekova, I., Leber, R., Schmid, R., and
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ulule.com/un-air-de-flute/. Online; accessed 29 March 2020.

https://fr.ulule.com/un-air-de-flute/
https://fr.ulule.com/un-air-de-flute/


BIBLIOGRAPHY 177

[Lindström et al., 2006] Lindström, M., Ståhl, A., Höök, K., Sundström, P., Laak-
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and Alfaras, M. (2020). Soma design and sensory misalignment. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20,
page 1–12, New York, NY, USA. Association for Computing Machinery.

[Tennent et al., 2011] Tennent, P., Rowland, D., Marshall, J., Egglestone, S. R.,
Harrison, A., Jaime, Z., Walker, B., and Benford, S. (2011). Breathalising games:
Understanding the potential of breath control in game interfaces. In Proceedings

http://tangible.media.mit.edu/project/materiable
https://www.team-itn.eu


BIBLIOGRAPHY 186

of the 8th International Conference on Advances in Computer Entertainment
Technology, ACE ’11, New York, NY, USA. Association for Computing Machinery.

[Tortella-Feliu et al., 2010] Tortella-Feliu, M., Botella, C., Llabrés, J., Bretón-
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