

ADVANCED TECHNIQUES IN TRAJECTORY DATA
ANALYSIS FOR ANOMALY DETECTION AND MAP

CONSTRUCTION

Yuejun Guo

Per citar o enllaçar aquest document:
Para citar o enlazar este documento:
Use this url to cite or link to this publication:

 http://hdl.handle.net/10803/673055

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

http://hdl.handle.net/10803/673055

DOCTORAL THESIS

Advanced Techniques in Trajectory
Data Analysis for Anomaly

Detection and Map Construction

Author:
YUEJUN GUO

2020

DOCTORAL THESIS

Advanced Techniques in Trajectory
Data Analysis for Anomaly

Detection and Map Construction

Author:
YUEJUN GUO

2020

Doctoral Programme in Technology

Advisors:
Dr. ANTON BARDERA REIG

Dra. MARTA FORT MASDEVALL

Tutor:
Dra. IMMACULADA BOADA OLIVERAS

A thesis submitted to Universitat de Girona in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

谨以此书纪念逝去的外公外婆，献给亲爱的父母。

纵然伤心，也不要愁眉不展，因为你不知道谁会爱
上你的笑容。

Never frown, even when you are sad because you never
know who may be falling in love with your smile.

Nunca frunzas el ceño, incluso cuando estés triste, por-
que nunca sabes quién puede enamorarse de tu sonrisa.

No arruguis mai el front, ni tan sols quan estiguis trist,
perquè no se sap mai qui es pot estar enamorant del teu
somriure.

Agraïments

En primer lloc, vull agrair als meus supervisors Anton Bardera i Marta Fort la seva
orientació pel meu treball de recerca. Agraeixo a Rodrigo I. Silveira, de la Universitat
Politècnica de Catalunya, que ha fet suggeriments útils i interessants sobre la investi-
gació de la construcció de mapes a partir de dades GPS. També vull agrair a tots els
professors (Mateu Sbert, Imma Boada, Miquel Feixas, Francesc Castro, Josep Soler, . . .)
i als companys (Mario, Pau, Adrià, Marc, Xaquín) del Laboratori de Gràfics i Imatge
(GILab) la seva ajuda, tant en la vida diària com en el treball. Vull donar les gràcies a
tot el personal del departament d’Informàtica, Matemàtica Aplicada i Estadística per la
seva amabilitat.

Agraeixo a la meva família (pares, germanes, germà, cosins, ties, oncles, . . .) el seu
amor i suport incondicional i agraeixo als meus amics (Wen, Robert, Xin, Feng, Silvia,
Xiaojuan, Chunchun, Chuan, Liangjian, Dandan, . . .) la seva ajuda i companyia en el
temps lliure. Especialment vull agrair a Wen, Robert i Xin que passessin temps amb mi
i m’animessin quan passava per moments difícils.

Finalment, agraeixo el suport a tots els companys de pis (Angel, Maria, Julia, Sergi,
Gerard, Montse, Marika, Quim) amb els quals he viscut, als companys de classe (Silvia,
Olga, Hanfei, Sergi, Sergio, Verda, . . .), i als professors (Paco i Dankmute) del curs
d’Espanyol i Alemany.

Acknowledgements

The work in this thesis has been supported by grants from the Spanish Government
(Nr. TIN2016-75866-C3-3-R) and the Catalan Government (Nr. 2017-SGR-1101). I ac-
knowledge the support from Secretaria d’Universitats i Recerca del Departament d’Empresa
i Coneixement de la Generalitat de Catalunya and the European Social Fund.

The datasets in this thesis are public. In the section of trajectory anomaly detection,
I would like to acknowledge the authors Piciarelli et al. for putting the collection of
synthetic datasets and trajectory generator, Morris and Trivedi for giving the CROSS
and LABOMNI, Lazarević et al. for presenting the recorded video trajectory dataset and
Chen et al. for putting the UCR time series public online, respectively. In the section of
map construction from GPS data, I would like to thank Ahmed et al. for releasing the
four urban datasets: Athens small, Athens large, Chicago and Berlin available online.
I would also like to thank Duran et al. for providing the four hiking datasets: Delta,
Aiguamolls, Garraf and Montseny. The implementation of the Slide tool is available
online, and I would like to acknowledge the author Paul Mach for sharing the code. I
would also like to thank Ahmed et al. for sharing the implementation of different map
construction algorithms and evaluation measures, and thank Wang et al. for making the
code of their map construction method public in GitHub.

Finally, I am also grateful to Dropbox. When I made a mistake of deleting everything
at the time to finish, its powerful recovery function saved me and avoided a disaster.

List of Publications

Publications that support this thesis are:

• Yuejun Guo, Anton Bardera, Marta Fort and Rodrigo I. Silveira. Global schematic
complete map construction from urban and hiking trajectory data. To submit to
International Journal of Geographical Information Science, 2020.

• Yuejun Guo and Anton Bardera. SHNN-CAD+: An Improvement on SHNN-CAD for
Adaptive Online Trajectory Anomaly Detection. Sensors, vol. 19, no. 1, 2019.

• Anton Bardera, Marta Fort and Yuejun Guo. Route Graph Construction from GPS
Trajectory Data. Accepted by XVIII Spanish Meeting on Computational Geometry,
Girona, July 1-3, 2019.

Previous publications related with this thesis that have been achieved during phd
study are:

• Yuejun Guo, Qing Xu, Peng Li, Mateu Sbert and Yu Yang. Trajectory Shape Analysis
and Anomaly Detection Utilizing Information Theory Tools. Entropy, vol. 19, no. 7,
page 323, 2017.

• Yuejun Guo, Qing Xu and Mateu Sbert. IBVis: Interactive Visual Analytics for Infor-
mation Bottleneck Based Trajectory Clustering. Entropy, vol. 20, no. 3, page 159,
2018.

• Yuejun Guo, Qing Xu, Xiaoxiao Luo, Hao Wei, Hongjuan Bu and Mateu Sbert. A
Group-Based Signal Filtering Approach for Trajectory Abstraction and Restoration.
Neural Computing and Applications, vol. 29, no. 9, pages 371-387, May 2018.

List of abbreviations

p-values probability values.

CAD conformal anomaly detector.

CaD context- aware distance.

DBSCAN density-based spatial clustering of applications with noise.

DH-kNN NCM directed Hausdorff k-nearest neighbour non-conformity measure.

DHD directed Hausdorff distance.

DHD(ω) directed Hausdorff distance with constraint window.

DTW dynamic time warping.

FN false negatives.

FP false positives.

GPS global positioning system.

HMM hidden Markow model.

iBAT isolation-based anomalous trajectory.

KDE kernel density estimation.

kNN k-nearest neighbors.

LCSS longest common subsequence.

MD merge distance.

NCM non-conformity measure.

ROC receiver operating characteristic.

SHNN-CAD sequential Hausdorff nearest-neighbor conformal anomaly detector.

SHNN-CAD+ enhanced version of SHNN-CAD.

SNN-CAD similarity based nearest neighbour conformal anomaly detector.

ST-DBSCAN spatial-temporal DBSCAN.

TC1 trace clustering algorithm.

TN true negatives.

TP true positives.

TRAOD trajectory outlier detection algorithm.

List of Figures

2.1 Example of recording a trajectory where the points are in the format of
(a) longitude and latitude, (b) x ,y-coordinates. 9

2.2 Plots of four urban GPS trajectory datasets. (a) Trajectory data. (b) Map
A. (c) Map B. (d) Groundtruth. 26

3.1 Plots of the trajectory change in dataset. 34
3.2 Plots of the distance between two trajectories A and B by DHD(ω) and

DHD. 36
3.3 Plots of trajectory datasets used for the evaluation of distance measures.

Trajectories in the same cluster have the same color. 39
3.4 Plots of trajectory datasets used for the evaluation of anomaly detection

measures. The trajectories in red are abnormal. 41

4.1 Flowchart of Slide. 51
4.2 The effect of the surface component on a point. 52
4.3 Illustration of thinning algorithm. 54
4.4 Mapping a trajectory into the grid. 55
4.5 Geometric definition of the distance component of Slide. 57
4.6 The effect of (a) the original and (b) the improved Slide on a set of

trajectories (in black). The adjusted trajectories are in red. 57
4.7 Illustration of determining the position of the endpoint. 58
4.8 Density surface obtained (a) before and (b) after using Slide. The pixel

with higher density is more bright. 58
4.9 Plots of urban GPS datasets. 61
4.10 Plot of Athens large dataset using the data available online. 61
4.11 Plots of hiking GPS datasets. 62
4.12 Plots of generated maps (black) on the groundtruth (gray) of Chicago

datasets (blue) by different methods. 64
4.13 Plots of artifact [C1] (merged narrow curves) in generated maps. 64
4.14 Plots of artifact [C2] (shortcuts at intersections) in generated maps. . . . 65
4.15 Plots of artifact [C3] (artificial bridges) in generated maps. 65
4.16 Plots of artifact [C4] (merged parallel paths) in generated maps. 65
4.17 Plots of artifact [C5] (duplicated paths) in generated maps. 66
4.18 Plots of artifact [C6] (duplicated back-and-forth paths) in generated maps. 66
4.19 Plots of artifact [C7] (excessive number of connections in area) in gen-

erated maps. 66
4.20 Plots of artifact [C8] (excessive number of connections along single path)

in generated maps. 67
4.21 Plots of artifact [C9] (fragmented paths) in generated maps. 67
4.22 Plots of artifact [C10] (nonexistent paths created) in generated maps. . 67

x List of Figures

4.23 Plots of artifact [S1] (missed set of trajectories) in generated maps. . . . 68
4.24 Plots of artifact [S2] (reduced curvature) in generated maps. 68
4.25 Plots of artifact [S3] (hair in off-track trajectories) in generated maps. . 68
4.26 Plots of artifact [S4] (aliased generated map) in generated maps. 69
4.27 Plots of artifact [S5] (too many aligned vertices) in generated maps. . . 69
4.28 Plots of artifact [S6] (winding path simplified) in generated maps. 69
4.29 Plots of artifact [S7] in generated maps (missing trajectories end). 70
4.30 Distances between two trajectories with different number of points. The

blue trajectory has (a) 2 and (b) 3 points. 74

5.1 Example of local noise in trajectory influences the mapping result. 77
5.2 Illustration of splitting an geographical area into two regions. 79
5.3 The graph (in red) in the binary image of the overlapping zone. The

midline is in blue. 80
5.4 Plots of mapping a trajectory (in blue) to the route graph. 81
5.5 Plots of generated maps of the Athens large and Garraf datasets. 82
5.6 Plots of filtered maps of the (a) Chicago and (b) Montseny datasets. . . 84
5.7 Plots of artifacts in filtered maps. 85

B.1 Plots of generated maps (red) on the groundtruth (black) of urban GPS
data by our three-step framework. 109

B.2 Plots of generated maps (red) with trajectories (black) of urban data by
our three-step framework. 110

B.3 Plots of generated maps (red) with trajectories (black) of hiking data by
our three-step framework. 110

B.4 Plots of generated maps (red) on the groundtruth (black) of urban GPS
data by Wang et al. 111

B.5 Plots of generated maps (red) with trajectories (black) of urban data by
Wang et al. 111

B.6 Plots of generated maps (red) with trajectories (black) of hiking data by
Wang et al. 112

C.1 Plots of urban GPS datasets with splitting boundaries and midline. A
zoom in view of the overlapping zone is shown in the right side. 113

C.2 Plots of four hiking GPS datasets with splitting boundaries and midline.
A zoom in view of the overlapping zone is shown in the right side. 114

C.3 Plots of generated maps utilizing the split-and-merge strategy. 115
D.1 Plots of filtered maps visualized with colormap. 116

List of Tables

3.1 Classification error ratio (%) on different trajectory datasets and the cor-
responding p-value. 40

3.2 Accuracy (%) of anomaly detection on different trajectory datasets. . . . 41
3.3 Five performance measures (%) of online anomaly detection. The best

performance of each collection of dataset is in bold. 43
3.4 Five performance measures (%) of proposed improvement strategies on

different trajectory datasets. 44

4.1 Overview of parameters . 59
4.2 Overview of parameters of our framework and Wang et al. 60
4.3 Statistics of urban GPS datasets. 62
4.4 Statistics of hiking GPS trajectory datasets. 62
4.5 Map complexity of urban data. 71
4.6 Map complexity of hiking data. 71
4.7 Comparison of path-based distance measure of urban data 72
4.8 Comparison of directed Hausdorff distance measure of urban data. . . . 73
4.9 Runtime (second) of urban datasets. 73
4.10 Runtime (second) of hiking datasets. 73

5.1 Overview of map construction algorithms that include description of data
and runtime. 78

5.2 Comparison of map complexity and runtime. 83
5.3 Comparison of directed Hausdorff distance measure of urban GPS datasets. 83
5.4 Map complexity of filtered maps. 85
5.5 Directed Hausdorff distance measure of the filtered maps of urban GPS

datasets. 85

A.1 Classification Error Ratio (%) on Time Series Datasets 107

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis Outline . 4

2 Background 7

2.1 Introduction . 7

2.2 Basic Concepts . 7

2.2.1 Trajectory Data . 8

2.2.2 Distance Measure . 8

2.2.3 Clustering Algorithm . 12

2.3 Anomaly Detection . 14

2.3.1 Clustering-Based Approaches . 14

2.3.2 Non-Clustering-Based Approaches 16

2.3.3 Evaluation Measures . 19

2.4 Map Construction . 20

2.4.1 Incremental Track Insertion . 20

2.4.2 Intersection Linking . 21

2.4.3 Point Clustering . 23

2.4.4 Other Map Construction Approaches 25

2.4.5 Map Validation . 25

3 Adaptive Online Trajectory Anomaly Detection 29

3.1 Introduction . 29

3.2 Previous work . 31

3.2.1 Conformal Anomaly Detection . 31

3.2.2 SNN-CAD Based Anomaly Detection 32

3.2.3 SHNN-CAD Based Anomaly Detection 33

3.3 SHNN-CAD+: An Improvement of SHNN-CAD 33

3.3.1 Discussion of SHNN-CAD . 33

3.3.2 SHNN-CAD+ . 35

3.4 Results and Discussion . 37

3.4.1 Comparison of Distance Measure . 37

3.4.2 Comparison of Anomaly Detection Methods 40

3.4.3 Comparison of Online Anomaly Detection 41

3.5 Conclusions . 44

xiv Contents

4 Map Construction From GPS Trajectory Data by a Three-Step Framework 47
4.1 Introduction . 47
4.2 Preliminaries . 49

4.2.1 Algorithms for Comparison . 49
4.2.2 Slide . 51
4.2.3 Thinning Algorithm . 53

4.3 The Proposed Method . 54
4.3.1 Data Pre-processing . 55
4.3.2 Density Surface Computing . 55
4.3.3 Density Surface Compaction via Slide 56
4.3.4 Route Map Construction . 58
4.3.5 Discussion about Parameters . 59

4.4 Results and Discussion . 59
4.4.1 GPS Datasets . 60
4.4.2 Map Comparison by Visual Inspection 62
4.4.3 Map Comparison by Quantitative Evaluation 70
4.4.4 Runtime of Our Framework . 73
4.4.5 Summary . 73

4.5 Conclusions . 74

5 Improvements on the Three-Step Map Construction Framework 75
5.1 Introduction . 75
5.2 Related Work . 77
5.3 The Split-and-Merge Strategy . 77

5.3.1 Geographical Area Splitting . 77
5.3.2 Boundaries Fixing and Maps Merging 79

5.4 Edge Weight . 80
5.5 Results and Discussion . 81

5.5.1 Performance of the Split-and-Merge Strategy 81
5.5.2 Applications of Edge Weight . 83
5.5.3 Summary . 84

5.6 Conclusions . 86

6 Conclusions 87
6.1 Contributions . 87
6.2 Future work . 88
6.3 Publications . 89

Bibliography 91

Appendices 107
A 10-Fold Cross Validation Results on 65 Time Series Datasets 107
B Generated Maps by the Three-Step Framework and by Wang et al. 109
C Map Construction With the Split-and-Merge Strategy 113

C.1 GPS Datasets With Splitting Boundaries 113

Contents xv

C.2 Generated Maps by the Split-and-Merge strategy 115
D Map Visualization With Edge Weight . 116

Abstract

With a large amount of trajectory data generated every day, there is a high demand
for developing advanced techniques to discover the underlying information instead of
dull and heavy manual work. This thesis focuses on the anomaly detection and map
construction from GPS data. Anomaly detection aims to identify trajectories that do not
follow common behaviors, and map construction deals with a set of trajectory data to
generate a route graph that represents the main movement paths hidden in data.

First, to perform online anomaly detection, we study the well-known Sequential
Hausdorff Nearest-Neighbor Conformal Anomaly Detector (SHNN-CAD) approach, and
propose an enhanced version called SHNN-CAD+. We compute the anomaly threshold
adaptively instead of using a predefinition with no prior knowledge. Also, we propose
a modified Hausdorff distance that works more accurately and faster. Besides, a re-
do strategy makes the detection more flexible and accurate. Extensive experiments on
both real and synthetic trajectory data show that SHNN-CAD+ outperforms SHNN-CAD
concerning accuracy and runtime.

Second, two common limitations exist in most map construction algorithms: time-
consuming and low coverage of GPS data. We present a new, fast and robust three-step
framework this is a smart combination of known methods. First, we build an initial
density surface by mapping the trajectory data into a regular grid that covers the geo-
graphical area. Second, trajectories are adjusted by Slide to align to recompute a more
compact density surface. Besides, we propose two solutions to solve the respective de-
fects of Slide. Third, we construct a map by a thinning algorithm and the Douglas-
Peucker simplification method. Experimental results on real datasets demonstrate that
our framework outperforms the other algorithms concerning the data coverage, arti-
facts, and quantitative measures.

Third, considering the storage limitation and computational cost dealing with large-
scale data, we propose a split-and-merge strategy. We split the geographical area into
small regions, then perform the three-step framework in each region. Finally, we merge
the generated maps. Furthermore, we propose to use an overlapping zone between
adjacent regions to keep the connectivity and consistency of the map. Besides, we utilize
the edge weight to visualize the map and remove the wrong edges induced by noise in
data. To compute the weight of an edge, we consider both the length and frequency. The
experiments on real GPS data demonstrate that the split-and-merge strategy speeds the
process and keeps the map quality. The utilization of edge weight achieves promising
results in visualizing the map with information on popular routes and in improving the
map quality.

Resum

La gran quantitat de dades de trajectòries generades cada dia fa que hi hagi una gran
necessitat de desenvolupar tècniques avançades per descobrir la informació subjacent
de les dades evitant un treball manual avorrit i pesat. Aquesta tesi es centra en la detec-
ció d’anomalies i la construcció de mapes a partir de dades GPS. La detecció d’anomalies
pretén identificar trajectòries que no segueixen comportaments habituals; i la construc-
ció de mapes rep un conjunt de trajectòries i genera un graf de camins que representa
els principals moviments amagats en els dades d’entrada.

En primer lloc, per realitzar la detecció d’anomalies en temps real, estudiem el cone-
gut detector formal d’anomalies del veí més proper de Hausdorff (SHNN-CAD) i propo-
sem una versió millorada anomenada SHNN-CAD+. Determinem el llindar d’anomalia
de manera adaptativa en lloc de prefixar-lo sense usar coneixement previ. També pro-
posem usar una distància de Hausdorff modificada ja que els resultats són més acurats
i ràpids. A més, l’estratègia de refer fa la detecció més flexible i precisa. Extensos expe-
riments usant dades de trajectòries reals i sintètiques mostren que SHNN-CAD+ supera
el SHNN-CAD pel que fa a la precisió i el temps d’execució.

En segon lloc, en la majoria dels algorismes de construcció de mapes existeixen
dues limitacions comunes: el temps d’execució i la baixa cobertura de les dades de
GPS. Presentem una estratègia amb tres passos nova, ràpida i robusta que combina,
de forma intel·ligent, mètodes coneguts per extreure un graf que representi tots els
camins seguits per les trajectòries. En primer lloc, construïm una superfície de densitat
inicial remostrejant cada trajectòria i mapejant-la a una quadrícula regular que cobreix
l’àrea d’estudi. En segon lloc, les trajectòries s’ajusten usant Slide per alinear-les perquè
defineixin una superfície de densitat més compacta. A més, proposem dues solucions
per resoldre alguns dels problemes de l’Slide. En tercer lloc, es recalcula la superfície de
densitat a partir de les noves trajectòries ja ajustades; aquesta nova superfície s’utilitza
per obtenir el graf dels camins mitjançant un algorisme d’aprimament i el mètode de
simplificació Douglas-Peucker. Els resultats experimentals en conjunts de dades reals
demostren que el nostre algorisme deixa els altres obsolets pel que fa a la cobertura de
les dades inicials, els artefactes i les mesures quantitatives existents.

En tercer lloc, tenint en compte la limitació d’emmagatzematge i el cost computa-
cional relacionat amb dades de GPS a gran escala, proposem una estratègia de divisió i
fusió. Dividim l’àrea geogràfica en petites regions i s’aplica l’estratègia amb tres etapes
a cada regió. Finalment, fusionem els mapes generats. A més, proposem usar una zona
de solapament entre regions adjacents per mantenir la connectivitat i la consistència
dels mapes generats. També usem el pes de les arestes per visualitzar el mapa i elimi-
nar les arestes errònies induïdes pel soroll de les dades. Per calcular el pes d’una aresta,
considerem la seva longitud i freqüència. Els experiments obtinguts amb dades reals de
GPS demostren que l’estratègia de divisió i fusió accelera el procés i manté la qualitat
del mapa. L’ús del pes de les arestes obté resultats prometedors en la visualització del
mapa amb informació de la popularitat de les rutes i en la millora de la seva qualitat.

Resumen

La gran cantidad de datos de trayectorias generados cada día hace que exista una gran
necesidad de desarrollar técnicas avanzadas para descubrir la información subyacente
de los datos evitando un trabajo manual aburrido y pesado. Esta tesis se centra en la
detección de anomalías y la construcción de mapas a partir de datos GPS. La detección
de anomalías identifica trayectorias que no siguen comportamientos habituales; y la
construcción de mapas recibe un conjunto de trayectorias y genera un grafo de caminos
que representa los principales movimientos escondidos en los datos de entrada.

En primer lugar, para realizar la detección de anomalías en línea, estudiamos el
conocido detector formal de anomalías del vecino más cercano de Hausdorff secuen-
cial (SHNN-CAD) y proponemos una versión mejorada llamada SHNN-CAD+. Deter-
minamos el umbral de anomalía de forma adaptativa en lugar de prefijarlo sin usar
conocimiento previo. También proponemos una distancia de Hausdorff modificada ya
que los resultados son más exactos y rápidos. Además, la estrategia de rehacer usada
hace que la detección sea más flexible y precisa. Extensos experimentos muestran que
SHNN-CAD+ supera a SHNN-CAD en cuanto a precisión y tiempo de ejecución.

En segundo lugar, en la mayoría de los algoritmos de construcción de mapas existen
dos limitaciones comunes: el tiempo de ejecución y la poca cobertura de los datos GPS.
Presentamos una estrategia con tres pasos nueva, rápida y robusta que combina, de
forma inteligente, métodos conocidos para extraer un grafo que represente todos los
caminos seguidos por las trayectorias. Primero, construimos una superficie de densidad
inicial remuestreando cada trayectoria y mapeándola en una cuadrícula regular que cu-
bre el área de estudio. Segundo, las trayectorias se ajustan usando Slide para alinearlas
con el objetivo de que definan una superficie de densidad más compacta. Tercero, se
recalcula la superficie de densidad en base a las nuevas trayectorias ya ajustadas, esta
nueva superficie se utiliza para obtener el grafo de caminos con un algoritmo de adelga-
zamiento y el método de simplificación Douglas-Peucker. Los resultados experimentales
en datos reales demuestran que nuestro algoritmo deja los demás obsoletos en relación
a la cobertura de los datos iniciales, los artefactos y las medidas cuantitativas existentes.

En tercer lugar, considerando la limitación de almacenamiento y el coste compu-
tacional relacionado con datos a gran escala, proponemos una estrategia de división y
fusión. Dividimos el área geográfica en pequeñas regiones y les aplicamos la estrate-
gia de tres pasos. Finalmente, fusionamos los mapas generados. Además, proponemos
usar una zona superpuesta entre regiones adyacentes para mantener la conectividad y
la consistencia de los mapas generados. También utilizamos el peso de las aristas para
visualizar el mapa y eliminar las aristas incorrectas inducidas por el ruido en los da-
tos. Para calcular el peso de una arista, se tienen en cuenta su longitud y el número de
trayectorias que la definen. Los experimentos obtenidos con datos reales de GPS demu-
estran que la estrategia de división y fusión acelera el proceso y mantiene la calidad del
mapa. El uso del peso de la arista logra resultados prometedores en la visualización del
mapa con información de popularidad de rutas y en la mejora de la calidad del mapa.

CHAPTER 1

Introduction

Contents
1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis Outline . 4

1.1 Motivation

Thanks to the advanced location-aware sensors and global positioning system (GPS)
devices, a large number of trajectory data from continuously moving objects, like peo-
ple, vehicles, hurricanes, and aircraft, are generated every day. Generally, a trajectory
is stored as a finite sequence of sample points, and each sample point is represented
by its attributes, such as location, timestamp, and speed. Discovering knowledge from
trajectory data contributes to many application domains [Kong 2018], including video
surveillance [Haritaoglu 2000, Majecka 2009], airspace monitoring [Gariel 2011], land-
fall forecasts [Powell 2001], animals’ migratory analysis [Lee 2008], network intrusion
detection [Görnitz 2013], road network generation [Karagiorgou 2012] and so on. As
a result, many research works related to trajectory analysis have been conducted on
different topics, such as trajectory clustering, classification, anomaly detection, trajec-
tory indexing and retrieval, and map construction [Zheng 2015a]. In this thesis, we
focus on the anomaly detection and map construction from trajectory data. Note that
anomaly detection can be taken as a pre-processing for map construction to eliminate
the outliers.

Abnormal trajectory also refers to anomaly, outlier, anomalous trajectory, suspicious
trajectory, and outlying trajectory. The existence of an abnormal trajectory may de-
grade the analysis performance, which calls for the anomaly detection. Besides, the
detected outliers can help to identify abnormal events for many applications, such as
video surveillance, intelligent transportation, and animal migration [Yu 2018]. Typi-
cally, an outlier is defined as “an observation (or a set of observations) which appears
to be inconsistent with the remainder of that set of data” [Barnett 1974], namely it
is significantly different (concerning some similarity metric) from the trajectory pat-
terns that frequently occur. The anomaly detection of trajectory data can be included in
the clustering procedure by clustering-based algorithms or in a single process by non-
clustering-based algorithms. In the first case, the abnormal trajectory is identified along

2 Chapter 1. Introduction

with or after performing the clustering algorithms. In the second case, given the trajec-
tory data, the outlier is recognized by a complete detection approach. For both cases,
the challenge is to estimate a fine anomaly threshold or the specific parameters related
to this threshold to achieve a highly accurate detection [Keogh 2004]. Moreover, the
clustering-based category usually needs a large amount of historical data to train and
then to obtain the patterns.

A road map provides the basic geographic information especially the network of
streets of the study area, which forms the basis of route planning [Davies 2006]. The
traditional way of making route maps is based on expensive ground surveys, remotely
sensed images and labor-intensive post-processing, all of which still face technologi-
cal challenges [Li 2016, Zheng 2018, Deng 2018, Huang 2018]. As an alternative, ex-
tracting road map from massive GPS data is becoming an increasingly hot and impor-
tant topic named map construction in the field of trajectory data analysis. In literature,
the concept of map construction is also known as trace graph construction [Edelkamp
2003], map generation [Davies 2006, Guo 2007], graph generation [Cao 2009], street
network construction [Ahmed 2012], road network generation or construction [Kara-
giorgou 2012, Karagiorgou 2013] and map inference [Biagioni 2012b, Liu 2012a]. With
any name, the goal is to extract a geometric graph from GPS trajectories (or traces) to
represent main movement routes that are followed by these data. Acquiring a road
map from massive GPS trajectory data helps to understand the mobility of users and
provides a foundation to geography navigation and recommendation system. The gen-
erated maps can also be used to detect and update the changes in existing road maps,
and to customize maps for travelers [Biagioni 2012b].

A range of studies have been reported and discussed [Biagioni 2012a, Ahmed 2015d]
which can be divided into three categories: incremental track insertion, intersection
linking, and point clustering. Each category has its characteristics and limitations. The
incremental track insertion based algorithms use the greedy strategy to iteratively add
a trajectory to update the initial empty map, which is computation-light but the pro-
cess is irreversible and may converge to the local optimum. The intersection linking
category aims to find the intersection points each of which connects more than two
edges. The common method is to perform a clustering algorithm on all the track points
to obtain the cluster centers as the intersections, which is time-consuming due to the
need for computing the distance between a large number of pairwise points. Besides,
determining the number of clusters (number of intersections) is not straightforward
with no prior knowledge of data. The point clustering category either applies clustering
on points to produce vertices of the route graph or estimates the density distribution
to obtain the route structure. The kernel density estimation (KDE) is mostly utilized on
all the points to do the density computation. However, since KDE estimates the density
at one specified point by visiting all the points, it is quite heavy work. Furthermore,
most algorithms ignore roads followed by low frequency of trajectories for being unim-
portant [Cao 2009, Wang 2015]. Here, low frequency means to a small number. This
kind of road possibly does not appear in the standard map but is also valuable. For ex-
ample, the tracks from outdoor activities like hiking may include unknown roads that
users are interested in. What’s more, lacking of up-to-date information can make the

1.2. Objectives 3

standard map improper for performance evaluation. In turn, the inferred maps can be
helpful to update the standard maps and to detect errors [Biagioni 2012b]. In this the-
sis, we aim at developing a fast algorithm to extract a road map that records all the
paths appearing in GPS data.

Almost all the map construction approaches require determining different parame-
ters to generate a high-quality map from GPS data. In general, for the data-dependent
parameters, extensive experiments have to be carried out. This task gets more difficult
when there are several unrelated parameters of an algorithm or the data volume is big.
Also, storage memory will be a problem when dealing with a large amount of data. For
instance, in density-based algorithms, the density distribution is an important input.
However, if the geographical area is very big and the grid of the area is fine, the record-
ing would be unreachable since the storage of computers is limited. Besides, storing the
distance from a quite large number of pairwise points is necessary for the approaches
utilizing the clustering algorithms. Thus, considering the limitations of computational
cost and storage of the computer performance, we propose to perform the map con-
struction more efficiently with a split-and-merge strategy.

The generated maps are usually visualized to show the road structure without more
information like the road popularity. Assigning weight to roads for vivid visualization
is useful. For this reason, we propose to utilize the edge weight to facilitate the map
display. Furthermore, due to the noise in data, the generated map is always not the
same as the groundtruth. The edge weight can be helpful to remove wrong connections
and improve the map quality.

1.2 Objectives

The goal of this thesis is to analyze trajectory data via developing advanced techniques
to detect anomalies and to generate road maps. To fulfill this aim, the following objec-
tives are considered:

1. Detect trajectory outliers online

Anomaly detection is an important part of trajectory analysis. Clustering-based
approaches usually produce the outliers as incidental findings, which pays more
attention to learn patterns from trajectory data. Generally, to obtain a compre-
hensive set of patterns needs a large amount of training data, resulting in high
computational cost. Besides, with the increase of testing data, the patterns should
be updated, otherwise, the detection is less confident. However, when and how
to update is still not clear [Laxhammar 2014b], and there is a time delay. Online
anomaly detection requires a fast and accurate manner, thus the non-clustering
based algorithm would be a better option. To be suitable for different types of tra-
jectory data, the algorithm should be parameter-light. Furthermore, the anomaly
threshold or related parameters need to be data-adaptive, avoiding the influence
of user experience.

2. Generate a route map with a high coverage of GPS data rapidly

4 Chapter 1. Introduction

Extracting a road map from GPS data is widely studied in the literature, while
there are two common limitations: time-consuming and ignorance of infrequent
trajectories. To solve these issues, we focus on developing a fast and robust al-
gorithm to perform the route map generation rapidly and to output a precise
summary graph that presents almost all the paths followed by GPS data.

3. Deal with large-scale data and improve the visualization in map construction

First, in the case of generating a route map from a large-scale GPS data related to
a large geographical area and long-time collection, not so much attention is paid
in literature but is valuable in practical applications. Taking into account both
the storage limitation and computational cost problems, we aim to deal with this
objective through a split-and-merge strategy. Then the key problem will be how
to keep the consistency and connectivity at the splitting boundaries. Second, in
general, the generated map is presented with single-color lines to show the roads.
We propose to visualize the map utilizing the information of how many trajecto-
ries cross through the roads to give insights into the popular zones. Besides, this
information can be used to remove the wrong edges.

1.3 Thesis Outline

The dissertation is organized into six chapters. Following the introduction, the back-
ground is presented. Then we describe techniques related to the three objectives, re-
spectively, along with the experimental results and discussion in each chapter. Finally,
the conclusion and future work are presented.

• Chapter 2: Background

In this chapter, some common basic concepts about trajectory analysis are firstly
presented to give a preliminary insight on trajectory data, the distance mea-
sure, and the clustering technique. Next, an overview of previous work related
to anomaly detection and map construction is given. As the performance evalua-
tion is a key work in algorithm design, we also include the validation methods.

• Chapter 3: Adaptive Online Trajectory Anomaly Detection

Based on a recent anomaly detection algorithm called Sequential Hausdorff Near-
est-Neighbor Conformal Anomaly Detector (SHNN-CAD), we propose to enhance
the performance in this chapter. SHNN-CAD is a parameter-light algorithm which
is also able to do the online detection by dealing with the raw trajectory data di-
rectly. According to several observed limitations, different improvement strategies
are introduced and discussed with extensive experiments.

• Chapter 4: Map Construction From GPS Trajectory Data by a Three-Step Frame-
work

This chapter deals with the problem of map construction from GPS trajectory
data. To solve the common issues, data coverage, and computational cost, we

1.3. Thesis Outline 5

present a three-step framework that is a smart combination of well-known algo-
rithms. We use the slide tool to make the trajectory data distribute more densely,
and a thinning algorithm to obtain the skeleton.

• Chapter 5: Improvements on the Three-Step Map Construction Framework

Based on the three-step framework, this chapter presents two ways to improve the
performance. First, given a large volume of GPS data, the storage limitation and
computational cost would be the main problems to construct a route map effec-
tively. To solve this, this chapter shows a split-and-merge strategy that splits the
geographical area into small regions, then computes the route maps separately,
and finally merges the small maps to obtain a complete map for the whole area.
Second, computing the edge weight and utilizing it to visualize the route graph
gives insights into popular and rare roads. Besides, the edge weight can help to
filter wrong edges caused by noise in data. In this chapter, the edge weight is
computed with two factors: edge frequency and edge length.

• Chapter 6: Conclusions

This chapter provides the concluding remarks and the future work of the thesis
with the related publications.

CHAPTER 2

Background

Contents
2.1 Introduction . 7

2.2 Basic Concepts . 7

2.2.1 Trajectory Data . 8

2.2.2 Distance Measure . 8

2.2.3 Clustering Algorithm . 12

2.3 Anomaly Detection . 14

2.3.1 Clustering-Based Approaches . 14

2.3.2 Non-Clustering-Based Approaches . 16

2.3.3 Evaluation Measures . 19

2.4 Map Construction . 20

2.4.1 Incremental Track Insertion . 20

2.4.2 Intersection Linking . 21

2.4.3 Point Clustering . 23

2.4.4 Other Map Construction Approaches 25

2.4.5 Map Validation . 25

2.1 Introduction

In this chapter, we present an overview of previous work related to this thesis. First,
Section 2.2 introduces the basic concepts of trajectory analysis that are commonly used
in anomaly detection and map construction. Second, Section 2.3 provides an overview
of the anomaly detection algorithms. The last Section 2.4 is devoted to introduce the
research work on map construction.

2.2 Basic Concepts

In this section, some basic concepts related to the topics of anomaly detection and
map construction are reviewed. As both topics are dealing with trajectory data, Sec-
tion 2.2.1 briefly introduces the concept of trajectory data. Section 2.2.2 presents some
widely used distance measures for quantifying the similarity between points or trajec-
tories. Some anomaly detection methods first cluster trajectories to obtain patterns for

8 Chapter 2. Background

further identifying outliers, and map construction algorithms use clustering of points
to generate nodes in the route graph. Thus, Section 2.2.3 outlines the typical clustering
algorithms for mining patterns in trajectory data.

2.2.1 Trajectory Data

In a recent survey, Kong et al. [Kong 2018] classified the trajectory data into two cate-
gories, explicit trajectory data and implicit trajectory data, and clearly explained each
category and the application of trajectory data. In brief, the explicit trajectory data have
clear time and location information stored in the point, while the implicit trajectory
data, such as sensor-based data and network-based data, has quite weak spatiotempo-
ral continuity. In practice, with basic data processing operations, the implicit trajectory
data can be converted to explicit trajectory data, for example, extracting trajectories
from surveillance videos [Majecka 2009]. Thus, the commonly used trajectory data
refers to explicit trajectory data.

The widely accepted definition of “trajectory” is that a trajectory is a trace (a track,
a path) generated by a moving object in geographical space, usually recorded as a se-
quence of multi-dimensional points [Zheng 2015b, Mazimpaka 2016]. In literature, tra-
jectory data is also known as tracking data [Karagiorgou 2012, Ahmed 2015c] and tra-
jectories are called traces [Davies 2006, Cao 2009, Biagioni 2012b]. Each point usually
includes the location information and some additional information, such as timestamp,
time duration, height, speed and so on. The location of GPS data is in the format of
longitude and latitude in a geographic coordinate system, and the data extracted from
implicit trajectory data are in the format of x and y in a Cartesian coordinate system.
Via a simple transformation operation, the values in geographic coordinate system can
be mapped to the Cartesian coordinate system for simplification and using the general
methods, for instance, the Euclidean distance measure. Figure 2.1 shows an example
of recording a trajectory in different formats.

2.2.2 Distance Measure

First of all, we define some notations for this section. A trajectory P is a sequence
of points {p1, p2, . . . , pm}. Each point is denoted by x , y-coordinates, such as pi =
�

pi,x , pi,y

�

. Let Q = {q1, q2, . . . , qn} be a trajectory with n points. The Euclidean dis-
tance between two points, pi and q j , respectively from P and Q is

dist
�

pi , q j

�

=
r

�

pi,x − q j,x

�2
+
�

pi,y − q j,y

�2
(2.1)

where 1¶ i ¶ m and 1¶ j ¶ n. In literature, the length of a trajectory usually has two
meanings: number of points and sum length of pairwise points. In this section, we use

the second meaning. Namely, the length of trajectory P is l (P) =
m
∑

i=1
dist (pi , pi+1).

Quantifying the similarity (or the distance) between points or trajectories is a funda-
mental task in many trajectory analysis approaches, such as clustering, anomaly detec-

2.2. Basic Concepts 9

(a) Longitude and latitude (b) x ,y-coordinates

Figure 2.1: Example of recording a trajectory where the points are in the format of (a)
longitude and latitude, (b) x ,y-coordinates.

tion and map construction. Extensive distance measures for this purpose have been pro-
posed and studied [Ding 2008, Yuan 2017a]. The representative distance measures are
Euclidean distance, Hausdorff distance, Frèchet distance, dynamic time warping (DTW)
and longest common subsequence (LCSS) [Zhang 2006, Ding 2008, Morris 2009a]. Eu-
clidean distance is the simplest and fast measure to quantify the distance between two
trajectories [Faloutsos 1994, Hu 2007, Guo 2015, Luo 2015, Guo 2018c], and is widely
applied as a prior measure by the other distance measures, such as Hausdorff distance,
to obtain the distance. Given two trajectories P and Q. If m= n, the Euclidean distance
between P and Q is the sum of the distances between corresponding points:

De (P,Q) =
m
∑

i=1

dist (pi , qi) (2.2)

The strict condition that the Euclidean distance requires the two trajectories to have the
same number of sample points makes it inapplicable for most practical data, and also
because of this this distance measure is very sensitive to noise [Ding 2008]. Hausdorff
distance overcomes this problem by only taking the largest distance of all the points
from a trajectory to their corresponding closest points from another trajectory [Alt 1992,
Laxhammar 2011, Laxhammar 2014b], which is clear in the definition:

Dh (P,Q) =max

�

max
pi∈P

�

min
q j∈Q

dist
�

pi , q j

�

�

,max
q j∈Q

�

min
pi∈P

dist
�

pi , q j

�

�

�

(2.3)

10 Chapter 2. Background

where
−→
dh (P,Q) =max

pi∈P

�

min
q j∈Q

dist
�

pi , q j

�

�

(2.4)

is known as the directed Hausdorff distance from P to Q. The shortcoming of Hausdorff
distance is that it ignores the order of sample points, as a result it fails to account for
the direction information implied by trajectory data of moving objects. In addition, it
compares the distance between every pair of points respectively of two trajectories,
leading to a high computational cost.

To solve the above weaknesses of Hausdorff distance, Atev et al. [Atev 2006] mod-
ified it by adding neighborhood windows to search the best matching points:

hα (P,Q) =
α

ord
pi∈P

�

min
q j∈N(C(pi))

dist
�

pi , q j

�

�

(2.5)

N (C (pi)) represents the points from Q that are regarded as the neighborhood of a point

pi in trajectory P, which enables a limited search space.
α

ord
pi∈P

f (.) denotes the value of

f (.) that is bigger than α percent of all the other f (.) values over P.

Similar with Hausdorff distance, the Frèchet distance is shape-based which was
designed to measure the similarity between curves [Eiter 1994]. Let L be a coupling
between P and Q which is a sequence of distinct point pairs from two trajectories. L is
denoted by

�

pa1
, qb1

�

,
�

pa2
, qb2

�

, . . . ,
�

pas
, qbs

�

where a1 = 1, b1 = 1, as = m and bs = n.
A big difference with Hausdorff distance is that the Frèchet distance does not backtrack
from one point to the others which means that it takes into account the temporal order
of points, so a strict rule is that for any i, ai+1 = ai or ai+1 = ai + 1 and bi+1 = bi or
bi+1 = bi + 1. The length of L is the largest distance between pairwise points and is
computed by

||L||= max
i=1,2,...,s

dist
�

pai
, qbi

�

(2.6)

The discrete Frèchet distance between two trajectories P and Q is defined as:

δdF (P,Q) =min (||L||) . (2.7)

The Frèchet distance can deal with trajectories that have different number of points.
Both Hausdorff and discrete Frèchet distance measures are sensitive to noise consider-
ing that only one distance between pairwise points is taken.

DTW calculates the distance between two trajectories by using non-linear temporal
alignment [Berndt 1994, Izakian 2016]. The distance between P and Q is defined as
[Berndt 1994]:

Dd tw (P,Q) =

0 m= n= 0

∞ m= 0 or n= 0
dist (p1, q1) +min {Dd tw (Rest (P) , Rest (Q)) ,

Dd tw (Rest (P) ,Q) , Dd tw (P, Rest (Q))}
otherwise

(2.8)

2.2. Basic Concepts 11

where Rest (P) and Rest (Q) indicate the rest pats of P and Q by removing p1 and q1,
respectively. DTW provides better alignment but it may produce pathological result. For
instance, a sample point from one trajectory can be mapped to a large subset of points
from another trajectory. Enforcing a temporal constraint on the wrapping window size
can improve the accuracy, but it may also avoid the correct wrapping, too.

LCSS finds the longest common subsequence from two trajectories [Gariel 2011,
Choong 2017], thus does not require the trajectory data to have equal number of points.

Dlcss (P,Q) =

0 m= 0 or n= 0

Dlcss (Rest(P), Rest(Q)) + 1
|p1,x − q1,x | ≤ ε and

|p1,y − q1,y | ≤ ε
max {Dlcss (Rest (P) ,Q) , Dlcss (P, Rest (Q))} otherwise

(2.9)

where ε is the matching threshold.
Hu et al. [Hu 2007] proposed to measure the distance between trajectories by av-

eraging the Euclidean distance between every two sample points from corresponding
trajectories (called HU distance in [Morris 2009a]):

Dhu =
1
m

m
∑

i=1

dist (pi , qi) (2.10)

However, this distance measure has a limitation that the trajectory data should have
equal number of points. Afterwards, the similarity between these two trajectories is
given by

Simhu = exp
�−Dhu

2σ2

�

(2.11)

where σ controls the decrease of similarity as the distance increases.
Piciarelli et al. [Piciarelli 2006] put forward a distance measure (called PF distance

in [Morris 2009a]) between a trajectory and a cluster to deal with online clustering.
This distance takes into account the time shift which influences many typical distance
measures. Given a trajectory P and a cluster C = {c1, c2, . . . , cs}, the distance is defined
as

Dp f (P, C) =
1
m

m
∑

i=1

s
min
j=1

dist
�

pi , c j

�

Ç

σ2
j

 (2.12)

where σ is the local variance of the cluster at a certain time, j is limited to several
values within a window related to i to handle the time shift. In addition, the cluster
is represented as a list of vector which combines the information of all the trajecto-
ries contained to avoid memorizing a large number of data and to improve the online
performance.

Lee et al. [Lee 2008] adapted the angle, parallel and perpendicular distances that
are widely used in the field of pattern recognition to fit for trajectory data. The pro-
posed distance measure is a weighted average of these three distances for flexible us-
age in different applications. Benefiting from this distance measure, Hu et al. [Hu 2018]

12 Chapter 2. Background

computed the distance between sub-trajectories to extract different spatial features.
Ismail and Vigneron [Ismail 2015] presented the Merge Distance (MD) to measure

the similarity between trajectories, especially between GPS data. Given two trajectories
P and Q, MD aims to find the shortest supertrajectory, s (P,Q), which has the shortest
length to connect all the sample points of P and Q [Li 2018]. The distance is given by

M D (P,Q) =
2` (s (P,Q))
` (P) + ` (Q)

− 1 (2.13)

This expression ensures that M D (P,Q) = 0 when P is equal to Q, and M D (P,Q) is large
when P and Q is very different, and vice versa.

San Román et al. [Román 2018] proposed a context-aware distance (CaD) to mea-
sure the distance between trajectories. The distance is designed to imply a weighted
average of the differences in angle, the Euclidean distance and the number of sample
points in each trajectory. In an extreme condition that two trajectories are parallel, if
the Euclidean distance has the maximum importance, then the obtained CaD equals
to the Euclidean distance; if the angle has the maximum importance, then CaD is zero
as there is no difference concerning direction. However, in another extreme condition
where two trajectories are vertical, the Euclidean distance is ignored by CaD regardless
of weights. CaD does not consider this case.

There are also some specific distance measures for computing differences between
two probability distributions, such as Bhattacharyya distance [Bhattacharyya 1946, Mc-
fadyen 2016, Guo 2017], Kullback-Leibler divergence, and Jensen-Shannon divergence
[Lin 1991, Guo 2017]. Calderara et al. [Calderara 2011] derived a closed-form of Bhat-
tacharyya distance for single von Mises probability density functions. This kind of mea-
sure requires to estimate the probability density function of each trajectory firstly. The
limitation is that if a trajectory has only a few points, the estimation is not accurate.

In summary, although many approaches have been proposed, selecting a good dis-
tance measure is still a challenge concerning various types of data, attribute under
consideration and computational cost. The simplest Euclidean distance is fast but does
work for trajectories with different number of points. However, even if the trajectory
data have an equal number of points, Euclidean distance may not work well if many at-
tributes are considered. Hausdorff distance, Frèchet distance, DTW and LCSS solve the
problem of the unequal number of points by performing matching on points. Hausdorff
distance is the fastest one but ignores the order of points. Based on these measures,
some variants have been proposed to fit specific scenes. The measures to computing
the distance between probability distributions are less sensitive to noise but are not
accurate when the trajectories have a few points to estimate precise distributions. For
most

2.2.3 Clustering Algorithm

The clustering algorithms aim at partitioning data into non-overlapping clusters where
each cluster includes the points or trajectories (hereafter in this section, we use “object”
to indicate point or trajectory for clustering) sharing similar attributes and indicates a

2.2. Basic Concepts 13

pattern of behavior. Typically, the clustering algorithms can be divided into five cate-
gories: partition, hierarchy, density, grid and model-based [Han 2011, Yuan 2017a].

The partition-based clustering algorithms focus on separating a dataset into k clus-
ters where k is a preset parameter. The dataset is initially divided into k groups, via sev-
eral iterations in which each object is updated to change the group under a preset simi-
larity criterion, the iterative procedure terminates with some conditions (e.g. optimizing
a chosen objective function or reaching a given iteration number). The typical partition-
based algorithms are k-means [MacQueen 1967, Gariel 2011] and k-medoids [Kauf-
man 1987, Prati 2008]. k-medoids is less sensitive to outliers than k-means because k-
medoids uses the most central object in the cluster to represent the cluster rather than
using the mean of all the objects in the cluster by k-means. Despite the wide popularity
of the partition-based algorithms, some drawbacks call for improved variants. First, the
initial centers influence the convergence speed. If the initial centers are distributed in
corresponding different clusters, the clustering procedure terminates faster than that
the initial centers are from the same cluster. Second, without any prior knowledge of
the patterns in data, the number k is unknown and heavily depends on the user experi-
ence or extensive experiments to be defined. Third, selecting an appropriate similarity
criterion is still a big challenge, especially, when dealing with trajectory data that have
an unequal number of points or multi-dimensional features.

The hierarchy-based clustering methods are either agglomerative or divisive [Fu
2005, Morris 2009a, Jiang 2009, Wang 2011]. To start with, the agglomerative hierar-
chical algorithm takes each object as a unique cluster, then within each iteration, two
clusters that have the minimum distance are merged. The process stops when the mini-
mum distance at one iteration is bigger than a predefined distance threshold, or a given
number of clusters are achieved, or there is only one cluster left. In contrast, the divisive
hierarchical algorithm initially considers that all the objects belong to a single cluster,
and in each iteration, a cluster is split into two. Similarly, many hierarchy-based clus-
tering methods face the problem of selecting an appropriate distance measure between
objects. Furthermore, considering the previous merged or split clusters are not changed
in the following iterations, this type of algorithms may encounter a local optimum. The
clustering performance heavily relies on the distance calculation. To measure the dis-
tance between two clusters where one cluster has more than one object, there are three
strategies: single linkage, complete linkage, and average linkage [Yim 2015]. The single
linkage selects the minimum value of all the distances between pairwise objects, while
the complete linkage takes the maximum value. Both linkage measures do not take the
structure of the cluster into account, which may degrade the performance especially if
outliers exist. The average linkage uses the average of all the pairwise distances, which
solves the problem of ignoring the structure of cluster although it requires more calcula-
tion than the other two linkage measures. The information bottleneck has been recently
applied to perform clustering on trajectory data [Guo 2014, Guo 2015, Guo 2016, Guo
2017]. The agglomerative information bottleneck uses the loss of mutual information
instead of a distance measure to quantify the similarity between trajectories or clusters.
By comparing the difference of mutual information between two clusters before and
after merging them together, the clusters are determined to be merged or not. In this

14 Chapter 2. Background

way, the common issue of clustering algorithms of choosing a proper distance measure
for different kinds of data is solved. Besides, the change of the loss of mutual informa-
tion from merging clusters gives the clue to stop the process, which is more practical
than pre-defining a distance threshold without any prior knowledge of the data.

The density-based clustering algorithms identify the contiguous areas of high den-
sity in a dataset as different clusters where they are separated by empty or sparse areas,
and the objects in the sparse area are considered as outliers [Sander 2010]. A well-
known algorithm is the density-based spatial clustering of applications with noise (DB-
SCAN) algorithm. DBSCAN groups the objects that are close to each other into a cluster
where the number of objects is also above a predefined value. As a result, DBSCAN re-
quires two parameters, epsilon and minimum points, to control the similarity between
trajectories and the density of a cluster. There are two issues in setting the two parame-
ters. First, when dealing with different types of data, the distance between trajectories
changes a lot, therefore it is difficult to set a proper epsilon. Second, even within the
same dataset, the densities of clusters can be very different, so setting a global number
of minimum points does not fit the task. Hereafter, some variants have been proposed
for different improvements, which are compared in a recent survey [Singh 2017].

The grid-based clustering algorithms generally map the spatial area into a grid with
rectangular cells, then perform clustering of data based on each cell. One advantage is
that the clustering is fast since the clustering only needs to visit the objects within the
same cell rather than compare the similarity among all the objects. The model-based
clustering methods assume that each cluster specifies a model, thus the goal is to find
modes in data to obtain different clusters. Undoubtedly, finding a proper model for
various types of data is still an open challenge. Considering that these two categories
are more widely applied for point clustering instead of trajectory clustering, we only
present a few review work, but more information can be found in the surveys [Han
2011, Yuan 2017a].

2.3 Anomaly Detection

In the last few years, a branch of research has made an effort to find efficient ways
to detect outliers in trajectory data [Gupta 2014, Parmar 2017, Meng 2018]. Since
in reality, the available trajectories are usually raw data without any prior knowledge,
this section focuses on the unsupervised approaches of anomaly detection which can be
grouped into two categories: clustering-based and non-clustering based [Meng 2018].

2.3.1 Clustering-Based Approaches

The clustering-based approaches obtain patterns by clustering all the trajectories. Some
algorithms, like DBSCAN and its variants, detect the outliers at the same time. The oth-
ers identify the outliers by comparing the difference with the learned patterns. DBSCAN
is of particular interest for both clustering and outlier detection, considering that it is
capable of discovering arbitrary shapes of clusters along with reporting outliers [Ester
1996, Gariel 2011, Ying 2009]. However, as mentioned in Section 2.2.3, DBSCAN faces

2.3. Anomaly Detection 15

to the problem with parameter estimation. Birant and Kut [Birant 2007] proposed the
Spatial-temporal DBSCAN (ST-DBSCAN) to improves DBSCAN by additionally dealing
with the time attribute, but it increases the computational cost to calculate the sim-
ilarity on both spatial and temporal dimensions. It is well known that density-based
algorithms face with the problem of varied densities in data, Zhu et al. [Zhu 2018] pro-
posed to solve this issue by developing a multi-dimensional scaling (DScale) method to
readjust the computed distance.

Kumar et al. [Kumar 2017] proposed iVAT+ and clusiVAT+ for trajectory analysis
along with detecting outliers. These approaches group the trajectories into different
clusters by partitioning the Minimum Spanning Tree (MST). To build MST, DTW dis-
tance between trajectories is regarded as the weight of the corresponding edge. The
clusters which have very few trajectories are taken as irregular patterns, as a result, the
included trajectories are outliers. This requires the user expectation for determining
how “few” should be.

Jiang and An [Jiang 2008] presented a clustering-based outlier detection (CBOD)
approach to pick out the outliers. Firstly, one-pass clustering algorithm [Jiang 2004]
is applied to produce clusters from all data. Then the outlier factor is calculated for
all the clusters, and later the sorted clusters contribute to get the anomaly threshold.
Accordingly, the objects in the outlier cluster are treated as outliers.

Given the clusters (training set), the testing trajectory is marked anomalous if the
difference between it and the closest cluster center (centroid or medoid) is over an
anomaly threshold. The typical k-nearest neighbors (kNN) is widely applied due to
its simplicity and low computational cost [Ramaswamy 2000]. A testing trajectory is
determined as belonging to the same cluster as the most frequent trajectory in the k
neighbors, or as abnormal if the distance with its k-th neighbor overs a threshold. Here,
two important aspects that may influence the performance: the considered number of
neighbors k and the distance computation. Fu el al. [Fu 2005] introduced an online
anomaly detection method that detects the suspicious parts of a trajectory instead of the
whole. Both the spatial and speed abnormal behaviors are taken into account through
a two-step scheme. Given learned clusters, the testing trajectory is firstly labeled by the
most similar cluster. In the first step, a sample point is regarded as an outlier if the part
of trajectory up to this point closes to a cluster which is different from the one where
the whole trajectory is assigned to, and the distance is calculated following Bayesian
decision theory. In the second step, the speed value at each point is modeled using all the
points in a cluster by Gaussian distribution. If the speed exceeds an anomaly threshold
(sum of the mean and standard deviation of the model), then the corresponding point
is determined as abnormal.

It is typical to use a distance measure to quantify the difference between a testing
trajectory and learned patterns. The representative distance measures that have been
developed and applied in different applications are Euclidean distance, Hausdorff dis-
tance, DTW, LCSS, etc. [Ding 2008]. As the threshold is indirect to determine for varied
practical situations, some approaches based on the probabilistic models have been pro-
posed, and the distance is usually taken as the trajectory likelihood. In [Annoni 2012],
KDE is used to detect the incoming sample point of the aircraft trajectory in progress.

16 Chapter 2. Background

The sampling point is determined as abnormal or belonging to a certain cluster de-
pending on the probability is small or not. Guo et al. [Guo 2017] proposed to apply the
Shannon entropy to adaptively identify if the testing trajectory is normal or not. The
normalized distances between the testing trajectory and the cluster centers obtained
by the Information Bottleneck method build the probability distribution to compute
the Shannon entropy, which measures the information used to detect the abnormality.
Similarly, Das and Mishra [Das 2018] obtained outliers via the Shannon entropy after
performing mean shift clustering algorithm to train patterns.

In [Prati 2008], only the angle attribute of trajectory data is considered to analyze
the shape pattern. Each trajectory is represented by a statistical model using a mixture
of von Mises (MoVM) distribution, and the similarity between distributions is measured
by Bhattacharyya distance. After producing clusters based on iterative k-medoids, the
testing trajectory can be determined as normal or not according to the distance with
medoids is large or not. Similarly, Jiang et al. [Jiang 2009] introduced a 2-depth search
strategy to the dynamic hierarchical clustering algorithm to obtain relatively reliable
clusters where the trajectories are characterized by a hidden Markow model (HMM).
In the presence of learned clusters, the abnormal trajectories can be determined if the
probability of being generated by learned clusters is lower than a data-adaptive thresh-
old. However, properly setting parameters that fit different datasets is difficult. Simi-
larly, Qiao et al. [Qiao 2002] proposed to utilize the HMM to detect outliers. The HMM
algorithm has the advantage of requiring a very small part of normal data to train a
model, which leads to faster detection. However, as interpreted by authors, the number
of states is sensitive but difficult to determine.

Piciarelli et al. [Piciarelli 2008c] proposed to fulfill the task of event detection in
video surveillance via trajectory analysis. The trajectories are clustered using support
vector machines (SVM) which is a powerful algorithm for both clustering and classifi-
cation problems [Cortes 1995]. In terms of the abnormal trajectories, the authors pro-
posed an automatic approach based on geometric considerations in the SVM feature
space.

2.3.2 Non-Clustering-Based Approaches

For the clustering-based approaches, it is important to obtain reliable training set or
pattern models, which has a high requirement for the accuracy of the algorithms. Some
approaches have attempted to detect outliers directly without the clustering procedure
as in some applications the users are only interested in abnormal behavior, for instance,
event analysis in video sequences [Piciarelli 2011].

In 2005, Keogh et al. [Keogh 2005] introduced the definition of time series discord
and proposed the heuristically ordered time series using symbolic aggregate approxi-
mation (SAX) algorithm to find the subsequence (defined as discord) in a time series
that is most different to all the rest subsequences. The authors proposed to search the
discord by comparing the distance of each possible subsequence to the nearest non-self
match using the brute force algorithm. Although the brute force algorithm is intuitive
and simple, the time complexity is very high, which drives them to improve the process

2.3. Anomaly Detection 17

in a heuristic way. This definition was then improved and applied in trajectory data by
Yankov et al. [Yankov 2008] by treating each trajectory as a candidate subsequence.

In the specific application of picking anomalous driving patterns from taxi trajec-
tories, Zhang et al. [Zhang 2011] proposed an Isolation-Based Anomalous Trajectory
(iBAT) detection approach. Firstly, the city map is split into grid-cells with equal size.
It assumes that the trajectories taking the same route are the same ignoring the speed
feature, thus each trajectory can be augmented with pseudo-points between discontin-
uous cells. Secondly, the isolation Forest (iForest) method is introduced and adapted
to trajectory data. iForest finds outliers by building the iTrees which separate data to
different nodes according to the cell that trajectories pass through, and the trajectories
that have short path in iTree are possible to be outliers. Furthermore, iBAT equips with
lazy learning to deal with the case that anomaly trajectory detour in the cells that are
contained by normal trajectories.

Based on the theory of conformal prediction, Laxhammar et al. successively pro-
posed the Similarity based Nearest Neighbour Conformal Anomaly Detector (SNN-
CAD) [Laxhammar 2011] and the Sequential Hausdorff Nearest-Neighbor Conformal
Anomaly Detector (SHNN-CAD) [Laxhammar 2014b] for online learning and automatic
anomaly detection. The work in [Laxhammar 2014b] improves [Laxhammar 2011]with
a more comprehensive discussion of previous works and explanations of the algorithm.
These two algorithms take advantage of the direct Hausdorff distance to calculate the
similarity between each trajectory with its k nearest neighbors. Here, the direct Haus-
dorff distance can deal with trajectories with different numbers of sampling points.
However, the problems of Hausdorff distance are the high computational cost as it vis-
its every pairwise sample points in two trajectories, and that it cannot distinguish the
direction while computing. Despite this, these two algorithms obtain quite promising
results.

Zhu et al. [Zhu 2015] obtained the outliers through a so-called time-dependent pop-
ular routes based trajectory outlier detection (TPRO) algorithm. TPRO first separates
trajectories with the same source and destination to the same group, and to avoid each
group that has too few trajectories, the road network is split into grid-cells with equal
size to assume the vertices of source or destination in the same cell have no difference.
Then the top-k most popular routes of each group are picked by calculating the route
popularity. At last, the testing trajectory is classified as abnormal if the time-dependent
edit distance based trajectory route distance with popular routes is too big.

Considering that taking each trajectory as a whole to detect outliers may cause miss-
detection due to different homogenization in the local part of trajectory data, some ap-
proaches identify outliers through the local change of trajectory data, which requires to
first partition the trajectories into line segments. The theoretical basis of partition-based
approaches is that if most segments of a trajectory are abnormal, then this trajectory
is identified as an outlier, but the big issue is their expensive computational cost be-
cause of the segmentation process and the distance calculation between segments. Via
a partition and detection framework, Lee et al. [Lee 2008] presented an efficient trajec-
tory outlier detection algorithm (TRAOD) which has been a widely cited and compared
approach in the field of sub-trajectory-based anomaly detection. In concrete, each tra-

18 Chapter 2. Background

jectory is partitioned to a set of un-overlapping line segments based on the minimum
description length (MDL) principle. Then the outlying line segments of a trajectory are
picked based on the distance from neighboring trajectories, that is, if there are few tra-
jectories in the dataset that are close to the considered segment, this line segment is
identified as outlying. Finally, a trajectory is defined as outlier once a big portion of line
segments are recognized as outliers. Due to the line distance measure applied, TRAOD
can detect both the positional and angular outliers. The novelty is that this algorithm
can detect the outlying line segments other than the whole trajectory. However, the de-
termination of required parameters is not straightforward and relies on experience or
repeated experiments, which brings difficulty to work in different applications.

Bao et al. [Bao 2017] adopted TRAOD to outlier detection work and proposed a
trajectory outlier detection based on local outlier fraction algorithm (TODLOF). After
the partition procedure, a local outlier fraction of each line segment is calculated to rep-
resent the average relative density difference between segments. Observing that in the
partition part of TRAOD, only the spatial information is taken into consideration, which
may miss useful knowledge from the temporal side, Hu et al. [Hu 2018] proposed an
isolation-based trajectory outlier detection algorithm (IBTOD) to handle this problem.
Firstly, after the same spatial partitioning, a finer partition of the sub-trajectory set is
obtained based on the temporal information. Second, the same distance measure is ap-
plied to extract spatial features, namely, perpendicular, parallel and angular distances
between sub-trajectories. Besides, the minimum, average and maximum velocities of
sub-trajectories are extracted as temporal features. Finally, an isolation mechanism is
implemented to identify outlying sub-trajectories.

Banerjee et al. [Banerjee 2016] designed Maximal ANomalous sub-TRAjectories
(MANTRA) to solve the problem of mining maximal temporally anomalous sub-trajectory
in the field of road network management. The type of trajectory data studied is specific
and is called network-constrained trajectory which is a connected path in the road net-
work, namely MANTRA is closely combined with practical applications. Thus, it is not
easy to be accessed by the other anomaly detection approaches.

Yuan et al. [Yuan 2017b] tackled specific abnormal events for reminding drivers of
danger. Both the location and direction of the moving object are taken into account
and contribute to the sparse reconstruction framework and the motion descriptor by
a Bayesian model, respectively. Instead of dealing with raw trajectory data, this work
is based on the video data where the object motion (trajectory) is represented by the
pixel change between frames.

Many existing partition-based outlier detection methods face the challenge of de-
tecting outliers with continuous outlying line segments. To address this issue, Yu et
al. [Yu 2018] developed a trajectory outlier detection algorithm based on common slices
subsequence (TODCSS). Each trajectory is encoded with direction value at each sample
point, which is used to find inflection points to further divide the trajectory into several
slices. Then, the common slices (with identical direction-code) of two trajectories are
used to measure the distance between trajectories. Finally, the slice outlier and trajec-
tory outlier are respectively detected if they have a few number of neighbors less than
a designated threshold which is generally not straightforward to define for different

2.3. Anomaly Detection 19

kinds of trajectory data.

2.3.3 Evaluation Measures

Given the groundtruth, there are many approaches to evaluate the performance of
anomaly detection. The groundtruth means that each trajectory has a certain label of
being an outlier or not. Let TP, FP, TN and FN be the true positives (number of objects
being correctly detected as outliers), false positives (number of objects being wrongly
identified as outliers), true negatives (number of objects being correctly detected as
normal) and false negatives (number of objects being wrongly detected as normal),
respectively. The calculations of some popular performance measures are described be-
low [Nandeshwar 2011].

Precision specifies how many outliers are found in the objects identified as anoma-
lies by the algorithm. Recall (named as detection rate in [Zhang 2011], sensitivity
in [Laxhammar 2011]) measures the ability of the anomaly detection algorithm to find
all the outliers in the dataset. F1-score is the harmonic mean of precision and recall and
obtains an overall evaluation [Piciarelli 2008c, Guo 2017, Laxhammar 2014b]:

precision=
T P

T P + F P
(2.14)

recall=
T P

T P + FN
(2.15)

F1=
2 · precision · recall
precision+ recall

(2.16)

Accuracy (called as partition accuracy (PA) of anomaly vs non-anomaly in [Kumar
2017], normal/abnormal accuracy in [Prati 2008]) computes the proportion of objects
that are correctly identified objects (normal or abnormal) [Laxhammar 2011]:

accuracy=
T P + F P

T P + F P + T N + FN
(2.17)

Two types of error rate are also widely used [Jiang 2009]: the false alarm rate
measures the rate of objects that are normal in groundtruth but are wrongly identified
as outliers by the anomaly detection algorithm [Kumar 2017, Zhang 2011, Laxhammar
2011], and the false rejection rate computes the rate of objects that are outliers in
groundtruth but are rejected by the algorithm:

false alarm rate=
F P

F P + T N
(2.18)

false rejection rate=
FN

T P + FN
(2.19)

In [Zhang 2011, Yuan 2017b], the authors used AUC, the Area Under ROC (Receiver
Operating Characteristic) Curve [Bradley 1997], as an evaluation criteria. Considering
that a high detection rate (recall) with a low false alarm rate indicates a good anomaly

20 Chapter 2. Background

detection performance, the ROC curve is obtained by mapping the detection rate to
the y-axis and the false alarm rate to the x-axis. The AUC value is defined as the area
under the ROC curve. As interpreted in [Zhang 2011, Yuan 2017b], a high AUC value
indicates good performance.

2.4 Map Construction

In an earlier survey by Biagioni et al. [Biagioni 2012a], different map construction algo-
rithms are divided into three categories: the k-means algorithm, trace merging and KDE-
based. The k-means-based approaches perform k-means clustering on cluster points and
use the small set of central points of clusters as vertices of the route graph. Then the
vertices are linked together to obtain edges to complete the graph. The trace merg-
ing approaches produce the edges incrementally by adding new trajectories to update
an existing map. The KDE-based methods firstly apply KDE on trajectory data to esti-
mate a density distribution, then use some image processing techniques to make a route
graph. Later, Ahmed et al. [Ahmed 2015d]made a new and more comprehensive survey
of existing map construction algorithms. In their book, they proposed a new classifica-
tion with the more recent map construction algorithms: incremental track insertion,
intersection linking, and point clustering. By comparison, the point clustering category
contains both the k-means-based and the KDE-based approaches, the incremental track
insertion category includes the trace merging methods, and intersection linking is a new
category. In this section, we follow the latter classification to analyze the characteris-
tics and limitations of each category, and we also review some approaches that are not
included in any category. Also, quantifying the quality of the generated map besides vi-
sual comparison is very important for evaluating the performance of map construction
algorithms, thus, we also summarize some map validation approaches.

2.4.1 Incremental Track Insertion

The main idea of the algorithms in this category is to choose a trajectory as the initial
map, then to gradually integrate a new trajectory to update the existing map.

Bruntrup [Bruntrup 2005] proposed to insert the new trajectories via three main
modules to produce a directed graph where the nodes include the travel time infor-
mation and each edge has the same length. In each iteration, several nodes from the
existing map are selected if they are in the searching area of the new track and have a
similar direction. If no nodes are selected, then the track is directly added to the map.
In the second module, the depth-first search algorithm is used to obtain directional seg-
ments which include ordered nodes. In the final module, these segments with edges
between nodes are merged to the map. Cao and Krumm [Cao 2009] also proposed an
approach to generate a directed graph, but they paid more attention to firstly remove
noise from trajectories. For each point, two types of attraction forces are simulated from
its corresponding trajectory and the others in the dataset to pull the similar points to
be closer. For the directed graph construction, the opposite directions are also differen-
tiated.

2.4. Map Construction 21

The key idea of the approach proposed in [Niehöfer 2009] is to decompose a map
into reasonable segments. In each iteration, the perpendicular distance between the
segments from a new trajectory and constructed map from the last iteration is calcu-
lated to find the matching parts to merge and unmatching parts to create new nodes
and edges. Tang et al. [Tang 2017] also used the trajectory segments to match with
the existing map, and the map is refined iteratively with the segments by constrained
Delaunay triangulation and a modified skeleton of the triangular network.

Ahmed and Wenk [Ahmed 2012] presented a two phases framework. For each iter-
ation, given the constructed map from the last iteration (or an empty map for the first
iteration), the first phase focuses on computing a reconstructed graph. The new tra-
jectory is compared with the constructed map based on the curve-graph partial match-
ing [Buchin 2009] to separate the trajectory into matched and unmatched portions. The
unmatched portions are added to create or split edges and introduce new vertices. In the
second phase, the minimum-link algorithm is applied to the matched portions with their
matching edges to obtain minimum-link representative edges, which contributes to re-
ducing the graph complexity. Zheng and Zhu proposed a very similar approach which
also uses the partial curve matching method based on the Fréchet distance [Zheng
2018] to match a new track with the existing map. Then, in the second step, the map
is updated with creating or splitting edges.

Unlike most related algorithms, at the beginning, Zhang et al. [Zhang 2010] utilized
the reference road map from OpenStreetMap instead of starting from an empty map.
The map is sampled at certain distances to obtain edges as the centerlines for further
computing. The perpendicular lines of these centerlines are built to find the trajectories
as candidates that have intersections. Finally, the candidate trajectories are used to
refine the centerlines.

Although merging segments of a new trajectory to the existing map is the most pop-
ular way for many algorithms, processing each point of the trajectory one by one can be
a better choice for data with very low sampling frequency where the distance between
adjacent points is quite large. Li et al. [Li 2012] classified the point to be matched or
unmatched by the spatial and semantic relationships with the possible matching edges,
then the point is used to update the matched edge or to create a new edge. Hence, the
computational cost could be very high if the volume of points is big.

In summary, the algorithms in this category have the advantage that the computa-
tion between the constructed map and a new trajectory in each iteration is light and
the dataset can grow with time. However, the process is irreversible where the previous
insertions are immutable for future trajectories, which may cause the local optimum
issue and generate wrong roads. Besides, when the data size is very big, updating the
existing map will be computational heavy.

2.4.2 Intersection Linking

The algorithms in this category require to find the intersections firstly and then to link
them together. Here, an intersection means a node that connects more than two edges
in a route graph, and a link between two adjacent intersections is regarded as an edge.

22 Chapter 2. Background

Fathi and Krumm [Fathi 2010] took the intersection as one of the most important
components for map construction and proposed to find the intersections in three steps
with also producing the edges. In the first step, a local shape descriptor is introduced to
make the intersection detector for finding several points from trajectories as intersec-
tions. The next step deals with connecting these intersections according to the trajecto-
ries pass through and further pruning the number of intersections. In the final step, the
iterative closest point algorithm is applied to refine the intersections associated with
close trajectories to locate at more accurate and reasonable positions.

Karagiorgou and Pfoser [Karagiorgou 2012] also proposed a three-step framework
(called TRACEBUNDLE algorithm in [Karagiorgou 2013]) for automatic map construc-
tion specifically for vehicle trajectory data. The intersections are found in the first step
through performing two times hierarchical clustering respectively on turns and the cor-
responding clusters. Turns are the points where the speed reduces and the direction
changes largely. In the second step, links between intersections are connected via using
a sweep-line algorithm on all the trajectories. In the final step, the number of links is
reduced by using the sweep-line algorithm again, which includes the position change
of intersections. Based on this algorithm, the authors proposed to create the maps for
different types of movement (distinguished by speed) and then the maps are combined
into a single network. In a similar approach with TRACEBUNDLE proposed by Wu et
al. [Wu 2013], the intersections are found by performing the x-means clustering on
turns and converging points. Wang et al. [Wang 2017] used the same concept of turn to
detect intersections by analyzing the density of turns and clustering with the mean-shift
algorithm.

Padu and Pasi [Mariescu-Istodor 2018] developed a two-step method called CellNet
to automatically generate the route map. The data is mapped into a grid and in each cell,
the information of cell’s location, indexes of passing trajectories are recorded. Firstly,
the intersections are found through two processes. The mean-shift algorithm performs
on the cells to detect splits and a split is a point at which the routes move to more than
two principal directions. The concept of split is similar to turn. Then the splits that have
a larger number of trajectories pass through than their neighbors are determined as
intersections. Second, the intersections are connected to produce a route map. CellNet
also includes a filtering process to remove possible wrong edges. All the trajectories
are checked to make the connections between intersections, which is a time-consuming
work that is demonstrated by their experiments on two real GPS datasets.

Additionally, more studies have attempted to detect intersections. Based on that the
trajectories at road intersections have bigger turning angles (direction change) than at
non-intersections, Deng et al. [Deng 2018] proposed to differentiate the intersection
and non-intersection points as the hot spot and cold spot areas, respectively, via a local
G∗ statistic [Ord 1995]. Then the intersection points are clustered to obtain the cen-
ters (final intersections) by the adaptive spatial clustering algorithm based on Delaunay
triangulation (ASCDT) [Deng 2011]. In order to generate intersections with detailed
structures, Tang et al. [Tang 2019] further improved the method by Deng et al. [Deng
2018]. Once the clusters are computed via ASCDT, the circle boundaries of the clus-
ters are estimated. Finally, the entrances and exits on the boundaries are detected to

2.4. Map Construction 23

produce the intersections with detailed geometric structures. Xie et al. [Xie 2017] also
made the same assumption that the intersections have high density. The longest com-
mon subsequence algorithm is applied on trajectories to segment them and to take the
starting end ending points from the common sub-tracks as connecting points. The local
maximums on the density distribution obtained estimated by kernel density estimation
are regarded as intersections. Li et al. [Li 2017] developed the dominant orientation to
extract road intersections.

As we can see, finding the intersections from numerous points in a trajectory dataset
always needs the distance measurement between points, which is a major work. Be-
sides, it is time-consuming to connect intersections using the information of all the
trajectories. In general, algorithms in this category suffer from a heavy computation.
The clustering technique is widely applied on track points to produce cluster centers
as the rough intersections. As mentioned in Section 2.2.3, selecting a proper distance
measure and determining the number of clusters are still open issues.

2.4.3 Point Clustering

Indeed, the point-clustering-based map construction algorithms can also be classified
into two types: clustering-based and KDE-based [Ahmed 2015d]. Considering that KDE
is not the only method to estimate the density of data, we prefer to use density-based
instead of KDE-based. The concept of “density-based” is also used in [Tang 2017]. The
clustering-based approaches start with a fixed number of cluster seeds (centers) selected
from the points of trajectory data [Biagioni 2012a, Worrall 2007]. Then the seeds are
updated via the clustering technique for further linking to produce edges (road center-
lines) of the route graph. The density-based ones interpret the set points as a density
image of the road networks while some density estimator is used to obtain the den-
sity distribution for further obtaining the road structure. The clustering-based category
is related to the intersection linking (Section 2.4.2) that both find several numbers
of nodes and then link them together to make the map. A basic difference is that the
clustering-based approaches search the nodes that connect one or more edges, while the
intersection-linking-based algorithms find the specific intersection nodes that connect
more than two edges.

Utilizing the k-means clustering to locate the cluster seeds with randomly choos-
ing the initial seeds from trace points is the most popular way in literature [Edelkamp
2003, Schroedl 2004, Stanojevic 2018]. Besides, Agamennoni et al. [Agamennoni 2011]
obtained the locations of cluster centers via the dominant set clustering. As the motiva-
tion is to make a small digital map for energy saving, the links are further compressed
by non-linear least squares fitting to generate final map with connected lines and arcs.
Li et al. [Li 2016] proposed a novel spatial-linear clustering algorithm to cluster the
track points which pays more attention to the moving direction of points in the same
cluster. In each cluster, the edges are produced by incorporating the trajectory infor-
mation. An obvious issue is that the edges of the generated route graph are not always
connected, leading to the low map connectivity.

Liu et al. [Liu 2012b] proposed a trace clustering algorithm (named TC1) which

24 Chapter 2. Background

mainly uses the line segments of trajectories as the unit of clustering. Direction and
speed are taken into account for detecting and then pruning useless proportions of
trajectories, as a result, the trajectory data turn to be a set of line segments. Through the
agglomerative hierarchy clustering, the line segments are grouped to different clusters
for further computing the centerline of the road.

With an existing base map which can be a commercial map such as OpenStreetMap
or can be obtained from a spatial clustering algorithm [Agamennoni 2011], some ap-
proaches focus on producing an enhanced and refined map with high accuracy. Guo et
al. [Guo 2007] modeled the point of each trajectory with Gaussian distribution. All the
trajectories are matched to the road segments of the existing map to obtain the feature
points by least squares approximation methods. Then, the spline curve fitting on the
points is applied to produce curves used for the extraction of central lines to update the
map.

The density-based algorithms focus on estimating the density distribution of track
points by splitting the geographical area occupied by the trajectories into a grid of cells,
then extract route graph from the distribution. A common way is converting the density
distribution to a binary or grayscale image through thresholding. From the image, the
edges and nodes are computed for the route graph by morphological operations. Ahmed
et al. [Ahmed 2015a] proposed to set the threshold using persistent homology combined
with statistical analysis. Davies et al. [Davies 2006] estimated the density distribution
by counting the number of trajectories passing through each grid cell and computed the
contour of the resulting bitmap. Then, the Voronoi diagram is used to determine the
centerline which is cleaned-up to obtain a directed graph representing the street map.
This method has the problem of ignoring paths with low frequency.

Shi et al. [Shi 2009] started cleaning data to construct the bitmap and then ob-
tained the skeleton. Next, they elaborated on the road network using dilatation to fill
gaps among road pixels with a mask, and morphological opening to smooth the road
contours and eliminate noise. Finally, the graph is extracted by combustion using the
information of the eight neighbors of a cell. Similar methods are presented in [Chen
2008, Chen 2010].

Biagioni and Eriksson [Biagioni 2012b] inferred a map taking into account GPS data
with noise and disparity. KDE is utilized to estimate the density image and a gray-scale
thinning algorithm with various thresholds is applied to compute several versions of
a skeleton map. The last one is represented as an undirected graph whose edges are
finally replaced with directed edges. It is a time-consuming algorithm that, in practice,
records occasionally transited paths but loses the infrequent ones.

Wang et al. [Wang 2015] also used KDE to build the density distribution, then the
discrete Morse theory is applied to extract the route map. Based on this work, Dey et
al. [Dey 2017] made improvements to enhance the performance.

It is clear that the common drawbacks of the algorithms in this category are that
infrequent paths are usually ignored, and the extensive clustering and KDE make the
computation time-consuming.

2.4. Map Construction 25

2.4.4 Other Map Construction Approaches

There are still some approaches that cannot be classified into any known categories.
Different from the point-clustering-based map construction algorithms, the approach
proposed by Buchin et al. [Buchin 2017] performs the clustering on sub-trajectories
rather than points, and the advantage can deal with data of varying sampling rates.
In the first step, the sub-trajectories are clustered into bundles, and the most relevant
bundles are selected. In the second step, the route map is constructed from the bundles
by incrementally growing an initial map with the representative sub-trajectories. The
paths with only one or two sub-trajectories are removed, which decreases the data
coverage.

Unlike most density-based algorithms that perform density estimation and morpho-
logical operation to obtain the skeleton, Huang et al. [Huang 2018] proposed to gen-
erate a road map through principal graph structure learning on points and tree linking
strategy. The best-fitting graph structure of points can be regarded as a skeleton.

2.4.5 Map Validation

In general, there are two types of methods to evaluate the map quality. One is to
do the visual inspection to check the difference between the generated map and the
groundtruth in a standard road map, such as OpenStreetMap [Schroedl 2004, Zhang
2010, Biagioni 2012a, Ahmed 2014, Ahmed 2015b]. The other one is to quantitatively
measure the difference. For simplicity, the generated map and groundtruth are denoted
by G and Gt ru, respectively, in this section.

Visual inspection is the most common and intuitive method in literature [Shi 2009,
Zhang 2010, Fathi 2010, Agamennoni 2011, Li 2017, Zheng 2018]. Cao and Krumm
[Cao 2009] visually checked that if G covers most of the information from data com-
pared with the road network in Microsoft Bing Maps. Similarly, in [Chen 2008, Niehöfer
2009], the map from Google Earth is adopted to do the visual comparison.

There are different approaches proposed to give a quantitative result. In [Liu 2012a],
Liu et al. made a comparison of algorithms respectively from [Liu 2012b] and [Davies
2006], showing that the TC1 algorithm (see [Liu 2012b] for more details) produces
the best overall performance. The precision (called coverage in [Liu 2012b]), recall
and F1-score are applied to do the quantitative evaluation based on the common road
length concerning G and Gt ru from the OpenStreetMap. These three metrics are also
adopted in [Biagioni 2012b, Li 2016, Li 2017]. In Liu’s previous work [Liu 2012b], the
false positive rate and accuracy are also used for performance evaluation. In the work
by Chen et al. [Chen 2010], the coverage is used as a performance measure. Instead
of comparing the distance between the edges of maps, Fathi and Krumm [Fathi 2010]
measured the distance between locations of the nodes and also computed the accuracy
of finding the right nodes from Gt ru.

In [Karagiorgou 2012], Karagiorgou and Pfoser proposed the shortest path-based
measure. Considering that G always includes fewer edges than Gt ru since the low cov-
erage of trajectory data, this measure starts with randomly selecting a certain number

26 Chapter 2. Background

of pairs of source-destination nodes from G, then finds their corresponding nodes on
Gt ru. Using the Dijkstra’s algorithm, the shortest path between the source-destination
nodes can be easily obtained. Finally, the similarity of the shortest paths from the G
and Gt ru are measured by both the discrete Frèchet distance and the average vertical
distance. This measure ignores the missing routes in G. For instance, as shown in Figure
2.2, an algorithm produces a map (A) which is a sub-map of the map (B) resulted from
another algorithm from a set of trajectories. Assuming that the nodes and edges on map
A are the same with the routes in Gt ru but map B includes some nodes and edges that
have distance with their corresponding locations in Gt ru. Map B has better coverage of
data, however, under this measure, it is evaluated to be worse.

(a) Trajectory data (b) Map A (c) Map B (d) Groundtruth

Figure 2.2: Plots of four urban GPS trajectory datasets. (a) Trajectory data. (b) Map A.
(c) Map B. (d) Groundtruth.

In [Karagiorgou 2012], Karagiorgou and Pfoser also applied the directed Hausdorff
distance to measure the similarity between G and Gt ru. Each map is regarded as a set of
paths and a path is an edge with two vertices. The similarity is obtained by computing
the directed Hausdorff distance between these two sets. However, this measure is not
good enough. Imagine that Gt ru only has one path which is represented as two paths
in G. These two maps are the same regardless of the number of vertices and edges, but
this distance measure does not output zero.

In the survey work [Biagioni 2012a], to compare the performance of different map
construction algorithms, Biagioni and Eriksson proposed a method taking into account
both the geometric and topological similarity. This method is called holes and marbles
in [Stanojevic 2018] and graph-sampling based distance measure in [Ahmed 2015c],
respectively. The main idea is to randomly select a start location in Gt ru, then the area
within a radius from the start location is considered. This area is divided into a grid with
holes (or cells). Via mapping Gt ru and G, spurious marbles, matched marbles and empty
holes are defined under different rules. The matched marbles are the holes appearing
in both maps. The spurious marbles are the holes existing in G, not Gt ru. The empty
holes are only included in Gt ru not G. Then the quantitative indices are computed as
below:

spurious=
spurious_marbles

spurious_marbles+matched_marbles
(2.20)

missing=
empty_holes

empty_holes+matched_holes
(2.21)

2.4. Map Construction 27

F1= 2 ·
(1− spurious) (1−missing)
(1− spurious) + (1−missing)

(2.22)

The unmatched marbles indicate the parts which do not appear in Gt ru. An obvious
problem is that, if the trajectory data pass through many unknown routes from Gt ru,
then even if G is very complete, the measure would give low score since there will be
many unmatched marbles and the spurious index would be quite high.

Ahmed et al. [Ahmed 2015b] proposed a path-based distance measure to make
the comparison. G and Gt ru are represented as sets of paths, and the Frèchet distance
is applied to compute the similarity between paths. Then the distance between these
two maps is obtained by the directed Hausdorff distance which is the maximum of all
the minimum Frèchet distances between a path in G and paths in Gt ru as indicated in
Equation 2.4. The smaller the distance is, the better the performance is.

In summary, the visual inspection is straightforward to check the correspondence
between generated maps and trajectory data or groundtruth, but does not give any nu-
meral result to compare different algorithms. A common issue of the quantitative meth-
ods is that the trajectory data may include roads that do not appear in Gt ru due to the
information delay of new roads or user development of unknown paths, then the result
will not reflect the real performance. We utilize the visual inspection and path-based
distance which has a public implementation [Ahmed 2015d] to do the evaluation.

CHAPTER 3

Adaptive Online Trajectory
Anomaly Detection

Contents
3.1 Introduction . 29

3.2 Previous work . 31

3.2.1 Conformal Anomaly Detection . 31

3.2.2 SNN-CAD Based Anomaly Detection 32

3.2.3 SHNN-CAD Based Anomaly Detection 33

3.3 SHNN-CAD+: An Improvement of SHNN-CAD 33

3.3.1 Discussion of SHNN-CAD . 33

3.3.2 SHNN-CAD+ . 35

3.4 Results and Discussion . 37

3.4.1 Comparison of Distance Measure . 37

3.4.2 Comparison of Anomaly Detection Methods 40

3.4.3 Comparison of Online Anomaly Detection 41

3.5 Conclusions . 44

3.1 Introduction

The main objective of anomaly detection is to pick out anomalous data which are signif-
icantly different from the patterns that frequently occur in data. A variety of approaches
have been proposed for the task of trajectory anomaly detection [Meng 2018], however,
most of them have limitations of computational cost or parameter selection [Keogh
2004], leading to the difficulty in reproducing experimental results. Usually, the trajec-
tory of a moving object is collected and stored as a sequence of sample points which
record the location and timestamp information, but the complementary information
of data is lacking. Here, the complementary information refers to information about
the number of patterns included, the trajectories labeled with certain patterns, the ab-
normal pattern, and so on, which can help the analysis of data. To automatically find
this information, unsupervised approaches are commonly applied. In this case, it is not
straightforward or easy to finely tune the parameters for these approaches to cope with

30 Chapter 3. Adaptive Online Trajectory Anomaly Detection

different kinds of data. Although some approaches make effort to estimate the param-
eters simply by experience and a lot of experiments, or complicatedly, by introducing
more assisted parameters and rules, the parameter setting is not trivial with respect
to different distributions. Especially, for online handling of massive datasets, the low
computational complexity is of great importance. Thus, it is better to avoid complex
and time-consuming pre-processing on data.

SHNN-CAD is an algorithm based on the theory of conformal prediction [Vovk
2005]. It has the following main advantages. First, it deals with raw data, which pre-
vents the problems of information loss from dimension reduction, and over-fitting from
modeling. Second, it makes use of the direct Hausdorff distance to calculate the simi-
larity between trajectories. As it is well known, selecting a proper distance measure is
still a challenge when the trajectories in a set have an unequal number of points due
to sampling rate, sampling duration, and moving speed. To address this issue, the di-
rect Hausdorff distance is a good choice as it is parameter-free, and it can handle the
case of the unequal number of points. Third, unlike most related approaches requiring
several not intuitive parameters, SHNN-CAD is parameter-light and does not assume
data structure, which enables the easy reproduction of experiments. The authors pro-
vided a method to adjust the anomaly threshold based on the desired alarm rate or the
expected frequency of anomalies. Fourth, SHNN-CAD can perform online anomaly de-
tection, which enables the increase of data size. However, it also has some limitations.
In this chapter, we propose SHNN-CAD+ to enhance the performance of SHNN-CAD
from different aspects. Compared with the previous approach, SHNN-CAD+ has the
following improvements:

1. The problems of applying Hausdorff distance directly to trajectory data are the
high computational cost as it visits every pairwise sample points in two trajec-
tories, and that it cannot distinguish the direction while computing because the
trajectories are considered as a set of points. In [Laxhammar 2014b], the Voronoi
diagram is used to accelerate the calculation of the Hausdorff distance, but it
is complicated to implement. On the other hand, the direction attribute can be
added when computing distance, but this extension will increase the computa-
tional cost. To solve this, a modified distance measure based on the directed
Hausdorff distance is proposed to calculate the difference between trajectories.
Besides, the modified measure has the advantage of a faster computation, which
meets the requirement of performing online learning in a fast manner.

2. According to the description in [Laxhammar 2014b], when the data size is quite
small, the new coming trajectory can be regarded to be abnormal, however, when
more trajectories are considered, this trajectory may have enough similar neigh-
bors to be identified as normal. Our solution is introducing a re-do step into the
detection procedure to identify anomalous data more accurately.

3. The anomaly threshold is a critical parameter since it controls the sensitivity to
true anomalies and the error rate. In [Laxhammar 2014b], Laxhammar et al.
manually select this threshold. Instead of pre-defining the anomaly threshold,

3.2. Previous work 31

an adaptive and data-based method is proposed to make the algorithm more
parameter-light, which is more easily applicable for practical use.

Besides, compared with the work in [Laxhammar 2014b], we expand the experi-
ments in two aspects:

1. To evaluate the performance of anomaly detection, F1-score is used in [Laxham-
mar 2014b] to compare SHNN-CAD with different approaches. We propose to
apply more performance measures, such as precision, recall, accuracy, and false
alarm rate, to analyze the behavior of anomaly detection algorithms comprehen-
sively.

2. One important advantage of the Hausdorff distance is that it can deal with trajec-
tory data with different numbers of sample points. However, in the experiments
of evaluating SHNN-CAD [Laxhammar 2014b], all the testing data have the same
number of sample points. Also, the experiments are enriched by introducing more
datasets with an unequal number of points.

The rest of this chapter is organized as follows. Following this introduction, Section
3.2 reviews the basic theory of conformal prediction and its application to trajectory
anomaly detection which refers to the conformal anomaly detector (CAD), the prelimi-
nary SNN-CAD and also the SHNN-CAD. Section 3.3 interprets where SHNN-CAD can be
improved for practical use from our observations, and then explains the SHNN-CAD+

that improves some limitations of SHNN-CAD. Section 3.4 presents extensive experi-
ments on both real and synthetic datasets and discusses the performance of the pro-
posed improvement strategies. Finally, concluding remarks and future work are given
in Section 3.5.

3.2 Previous work

The related work about trajectory anomaly detection has been reviewed in Section 2.3.
In this chapter, we briefly describe the development of SHNN-CAD, which includes the
basic conformal prediction theory and its application in trajectory anomaly detection,
CAD, SNN-CAD and also SHNN-CAD. A more comprehensive interpretation is given
in [Laxhammar 2014a].

3.2.1 Conformal Anomaly Detection

Firstly, Laxhammar et al. proposed CAD which is a novel application of the theory of
conformal prediction [Vovk 2005] to trajectory anomaly detection. In brief, given a
specified nonconformity measure (NCM) and a training set T = {x1, x2, . . . , x l} with
objects in different certain labels, the conformal prediction framework provides the p-
values (probability values) of possible labels for a new test x l+1 with respect to the
training set with a significance level (error probability) ε.

The NCM is the core of conformal prediction and calculates how different a new
test is from the training set. Given the training set T = {x1, x2, . . . , x l} and a new test

32 Chapter 3. Adaptive Online Trajectory Anomaly Detection

x l+1, for each available label, NCM returns the nonconformity score αl+1 of x l+1. Con-
sidering that the conformal prediction assumes that the objects are independent and
identically distributed, the p-value can be determined as the ratio of the number of
observed objects that have greater or equal nonconformity scores to x l+1 to the total
number of objects.

pl+1 =
|{αi|αi ≥ αl+1, 1≤ i ≤ l + 1}|

l + 1
, (3.1)

where |{.}| gives the size of the resulting set. If pl+1 is bigger than the significance level
ε, then the corresponding label is included in the prediction set.

Based on the theory of conformal prediction to anomaly detection, CAD works to
determine a new test is abnormal or not by taking the significance level ε as an anomaly
threshold [Laxhammar 2010]. If pl+1 < ε, then x l+1 is identified as conformal anomaly,
otherwise, x l+1 is grouped to the normal set. kNN equipped with Euclidean distance is
applied as the NCM and the nonconformity score of x i is computed by

αi =
∑

x j∈NNeighbor

e
�

x i , x j

�

, (3.2)

where e
�

x i , x j

�

measures the Euclidean distance between x i and its jth nearest neigh-
bor x j . As discussed in Section 2.2.2, this NCM has a strict requirement is that all the
trajectories should be represented with the same number of points due to the charac-
teristic of Euclidean distance. As a result, it may face the problem that trajectories are
represented with unequal number of points.

3.2.2 SNN-CAD Based Anomaly Detection

To solve the problem of CAD aforementioned, Laxhammar et al. [Laxhammar 2011]
proposed a novel NCM by using a more general similarity measure (for example, the
directed Hausdorff distance) instead of the Euclidean distance, and this novel NCM is
called as Directed Hausdorff k-Nearest Neighbour Non-Conformity Measure (DH-kNN
NCM). To be able to do sequential anomaly detection where the testing trajectory is
incomplete, the directed Hausdorff distance between an incomplete trajectory and the
trajectories in the training set is computed recursively. Let (s1, s2, . . . , sm) and x be an
incomplete trajectory with m points and a complete trajectory from the training set,
respectively, the distance is defined by

−→
dh ((s1, s2, . . . , sm) , x) =max

�−→
dh ((sm−1, sm) , x) ,

−→
dh ((s1, s2, . . . , sm−1) , x)

�

(3.3)

Unlike most sequential anomaly detection algorithms that determine each point
in a testing trajectory is abnormal or not, the directed Hausdorff distance enables the
identification of an incomplete trajectory.

3.3. SHNN-CAD+: An Improvement of SHNN-CAD 33

3.2.3 SHNN-CAD Based Anomaly Detection

As indicated in [Laxhammar 2011], Laxhammar et al. expanded SNN-CAD by present-
ing more discussion of anomaly detection, formalizing CAD, DH-kNN NCM and more
experiments, SNN-CAD is reintroduced as SHNN-CAD with detailed description.

Usually, unsupervised algorithms do not use any training set, and the outliers are
defined to be observations that are far more infrequent than normal patterns [Chandola
2009]. In this chapter, we also adopt the “training set” concept as used in [Laxhammar
2014b], assuming that the training set has only normal instances. In practical applica-
tions, due to the advantage of SHNN-CAD that only a small volume of data is needed
as training set, these data can be chosen by users to make the algorithm work more
effectively.

3.3 SHNN-CAD+: An Improvement of SHNN-CAD

First, we discuss several factors that influence the performance of SHNN-CAD [Lax-
hammar 2014b]. Afterward, we introduce the improvement strategies to improve the
performance.

3.3.1 Discussion of SHNN-CAD

SHNN-CAD is not capable enough to adaptively detect outliers efficiently. The reason is
threefold which is interpreted below.

First, using directed Hausdorff distance (DHD) to quantify the distance between
trajectories cannot distinguish the difference in direction. DHD has the advantage of
dealing with trajectory data with different numbers of sample points, showing the abil-
ity of computing distance for a single sample point or a line segment, which is important
for the sequential anomaly detection of SHNN-CAD. Nonetheless, DHD was originally
designed for point sets with no order between points as shown from the definition.
Given two trajectories, A and B, with m and n points, respectively, the DHD from A to B
is defined by (see Equation 2.4). Computing the DHD matrix of data is the most time-
consuming part of SHNN-CAD, while the time complexity of DHD, O (mn) (without
loss of granularity, assuming that m ≥ n henceforth), is high in the traditional compu-
tation way that visits every two sample points from corresponding trajectories, which
is almost impractical for large size datasets in real world. Alternatively, in [Laxhammar
2014b], the authors adopted the algorithm proposed by Alt [Alt 2009] which benefits
from Voronoi diagram to reduce the time complexity to O ((m+ n) log (m+ n)), but this
algorithm requires to pre-process each trajectory by representing the included sample
point based on its former neighbor. Moreover, although the trajectory is recorded as a
collection of sample points, the order between points must be considered since it refers
to the moving direction. For example, a car running in the lane with inverse direction
should be detected as abnormal. DHD is not sensitive to the direction attribute. As sug-
gested in some literatures, the direction attribute at each sample point can be extracted

34 Chapter 3. Adaptive Online Trajectory Anomaly Detection

and added to the feature matrix to obtain the distance, but the extra feature will in-
crease the computational cost of the distance measure. On the other hand, the direction
attribute is generally computed as the intersection angle between the line segment and
the horizontal axis, which may introduce noise to the feature matrix.

Second, SHNN-CAD is designed for online learning and anomaly detection which is
highly desirable in practical applications, such as video surveillance. When a new obser-
vation is added into the database, SHNN-CAD decides it to be abnormal or not based on
its p-value. As it can be seen in Equation (3.1), the p-value of an observation counts the
number of trajectories from the training set that have greater or equal nonconformity
score to it. The greater the p-value, the closer the observation to its k nearest neighbors,
thus, it has a higher probability of being normal. According to the mechanism of SHNN-
CAD, once the trajectory comes to the dataset, it is identified as normal or not, and then
the training set is updated for the next testing trajectory. As shown in Figure 3.1(a), the
red trajectory has no similar items, thus it is detected as abnormal assuming that the
p-value is bigger than the predefined anomaly threshold. However, unlike the case of
a fixed dataset, the neighbors of an observation in the online analysis are dynamic. In
Figure 3.1(b), the red trajectory has several similar items (in blue color), which means
that its p-value may change to be greater than the anomaly threshold, and should be
considered as normal. In conclusion, ignoring the influence of time evolution may bring
errors in online anomaly detection.

-1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

(a) Dataset with 15 trajectories

-1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

(b) Dataset with 28 trajectories

Figure 3.1: Plots of the trajectory change in dataset.

Third, SHNN-CAD has two settings of the anomaly threshold. The first one, 1
l+1 , is

to deal with the problem of zero sensitivity when the dataset size l is small. The second
one is a predefined ε (ε > 1

l+1). In the first case, zero sensitivity means that, as long as
l < ε, a normal observation that has the smallest p-value, 1

l+1 , is identified as abnormal
if there is only one threshold ε. Essentially, the first threshold defines the new coming
observation as abnormal in default if it has the smallest p-value, 1

l+1 . However, this
strategy causes another problem of zero precision of anomaly detection. For example,
an actual abnormal observation that has the smallest p-value, is classified as normal. In
the second case, in theory, when the anomaly threshold is equal to the prior unknown
probability of abnormal class λ, SHNN-CAD achieves perfect performance. However,

3.3. SHNN-CAD+: An Improvement of SHNN-CAD 35

for unsupervised CAD, no background information can help to tune ε.

3.3.2 SHNN-CAD+

According to the previous discussion, three improvement strategies to enhance the per-
formance of anomaly detection are proposed and explained clearly and thoroughly. Fi-
nally, the pseudocode of the SHNN-CAD+ method to detect if a new coming trajectory
is abnormal is given and described.

First, as aforementioned, directly utilizing DHD for trajectory distance measure hap-
pens the problems of direction neglect and high computational complexity. The first
problem is due to that DHD considers the two trajectories as point sets, which ignores
the order between sample points, leading to the decline of accuracy. The second one
is because that all the pairwise distances between the points of both sets have to be
computed. To address the above issues, we propose to modify DHD by introducing a
constraint window. The definition of DHD with constraint window, DHD(ω), from tra-
jectory A to trajectory B is

~dhw (A, B) =

max
�

maxn+ω
i=1

�

min| j−i|≤w dp

�

ai , b j

��	

, m− n≤ w

max
�

maxn+ω
i=1

�

min| j−i|≤w dp

�

ai , b j

��

, maxm
i=n+ω+1 dp (ai , bn)

	

, m− n> w
(3.4)

where ω denotes the size of constraint window. Considering that trajectories with dif-
ferent number of points have a large difference in speed, ω is set as dm

n e to limit that
similar trajectories are homogeneous in speed. Each sample point in trajectory A vis-
its at most 2ω+ 1 sample points in trajectory B, resulting in a linear time complexity
O ((m+ n)ω), where ω� m, n. On the other hand, the search space is limited to the
sample points that follow temporal order, which not only enables the consideration of
direction, but also improves the accuracy for measuring the distance as an extended
visit may introduce wrong matching between two trajectories. Note that the direction
of a sample point is an important attribute to give higher performance of detecting
abnormal events for trajectory data in practical applications, such as vehicle reverse
driving.

Figure 3.2 gives an example to illustrate the distance computation. Trajectories A
and B have 5 and 8 sample points, respectively, and they have opposite directions which
are indicated by the arrows at the endpoints. The dashed lines visualized in red, green,
and blue colors represent the distances between sample points that are required to com-
pute the distance two trajectories. The shortest distance between one sample point and
its corresponding points from another trajectory is shown in blue or red. The red line
indicates the maximum from all the shortest distances, namely the distance between A
and B. Suppose that the window size is 2, the distances from A to B and from B to A by
DHD(ω) are computed as illustrated in Figure 3.2(a) and Figure 3.2(b), respectively.
Figure 3.2(c) shows the distance computation by DHD. The distances from A to B and
from B to A are the same (all the blue lines are equal). In contrast, DHD(ω) saves the
computational cost. Additionally, due to that, the order of sample points is taken into

36 Chapter 3. Adaptive Online Trajectory Anomaly Detection

account, DHD(ω) captures the difference between trajectories more accurately than
DHD concerning different features in trajectory data.

A

B

(a) ~dhw (A, B)

A

B

(b) ~dhw (B, A)

A

B

(c) ~d (A, B), ~d (B, A)

Figure 3.2: Plots of the distance between two trajectories A and B by DHD(ω) and DHD.

Second, considering that in online learning, the outlier may turn into normal once
it has enough similar trajectories, we propose to apply a re-do step. To save time, not
all outliers are rechecked with every new coming. According to the theory of conformal
anomaly detector, the anomaly threshold ε indicates how much probability of outliers
occur in the dataset. Thus, if the size of outliers arrives larger than expected, several
previously detected outliers may be detected as normal. For example, when the size of
training data is l, if the new coming x l+1 is identified as an outlier but the number of
outliers is greater than expected (l + 1) · ε, the previous outliers will be rechecked if
they can be moved to the normal class or not. In particular, this strategy helps to solve
the problem of zero precision by SHNN-CAD when the data size is small. Regarding the
use of a predefined anomaly threshold, it is more reasonable to treat the new coming
as abnormal when its p-value is too small, which means it has few similar items from
the training set. Via the re-do strategy, the outliers can be picked out gradually with
new comings. We don’t recheck the normal ones, because their similar trajectories may
increase or remain the same. In fact, for large volume data, the normal trajectories are
usually pruned to discard redundant information or are trained into mixtures of models
to avoid the high computational cost, which will be considered in the future work.

Third, automated identification of outliers requires a data-adaptive anomaly thresh-
old instead of explicitly adjusting for different kind of trajectory datasets. Unlike SHNN-
CAD, we define the threshold for the new coming when the size of the training set, l,
is the minimum probability of a normal trajectory from training set Nl .

εl =min
i∈Nl

pi (3.5)

where pi is the p-value of ith trajectory. This setting is intuitive and straightforward

3.4. Results and Discussion 37

since the p-values of the other trajectories in the training set are greater or equal to the
defined anomaly threshold, which enables them to be normal. The determination of ε
depends on the condition of the considering training set, which makes the approach
more applicable for different datasets.

Algorithm 1 shows how SHNN-CAD+ works for a new coming. Compared with
SHNN-CAD, the previously detected outliers are also inputted to perform the re-do
strategy. Given the input, two zero distance arrays are built for the new coming x l+m+1

(Lines 1 and 2). Lines 3–10 compute the nonconformity scores of all trajectories by
summing the distances with the k nearest neighbors. The element Di, j denotes the dis-
tance from ith trajectory to its jth neighbor, which is obtained through the modified
Hausdorff distance. Then the p-values are calculated in Lines 11–12 according to Equa-
tion (3.1). Differing from SHNN-CAD, the anomaly threshold ε is dynamically updated
depending on the training set (Line 13). From Line 14 to 25, the new coming is identi-
fied as an outlier or not with the defined ε, and the outlier and training sets are updated
correspondingly. If the size of the outlier set is over the expected value, the re-do strat-
egy is performed on each previous outlier to check if it can be turned to the normal set
(Lines 17–22).

3.4 Results and Discussion

In this section, we present the conducted experiments. The MATLAB implementation is
available in [Guo 2018a]. Firstly, a comparison of the proposed DHD(ω) to the typical
DHD is given. Secondly, the performance of applying DHD(ω) to the anomaly detection
measure is analyzed. Finally, the improvement over SHNN-CAD is evaluated. All the
experimental results are obtained by MATLAB 2018a software running on a Windows
machine with Intel Core i7 2.40 GHZ CPU and 8 GB RAM.

3.4.1 Comparison of Distance Measure

To evaluate the performance of measuring distance of DHD(ω), we adopt the 10 cross-
validation test using 1-Nearest Neighbor (1NN) classifier which has been demonstrated
to work well to achieve this goal [Tan 2007, Ding 2008]. 1NN is parameter-free and
the classification error ratio of 1NN only depends on the performance of the distance
measure. Initially, the dataset is randomly divided into 10 groups. Then each group is
successively taken as a testing set, and the rest work as the training set for the 1NN
classifier. Finally, each testing trajectory is classified into the same cluster with its near-
est neighbor in the training set. The 10 cross-validation test runs 100 times to obtain
average error ratio. The classification error ratio of each run is calculated as follows:

classification error ratio=
1

10

10
∑

i=1

number of trajectories wrongly classified
number of trajectories in the ith testing set

(3.6)

1000 synthetic, 1 simulated, and 1 real trajectory datasets are utilized in this ex-
periment. The Synthetic Trajectories I dataset (numbered “I” to distinguish from the

38 Chapter 3. Adaptive Online Trajectory Anomaly Detection

Algorithm 1: Adaptive online trajectory anomaly detection with SHNN-CAD+

Input: Training set T= (x1, x2, . . . , x l), detected outliers
O= (x l+1, x l+2, . . . , x l+m), new coming x l+m+1, number of nearest
neighbors k, distance matrix D

Output: Updated training set T′; updated outlier set O′, abnormal index of
new coming Anoml+m+1, updated distance matrix D′

1 Initialize Zero distance array from x l+m+1 to T
⋃

O, (d1, d2, . . . , dl+m);
2 Zero distance array from T

⋃

O to x l+m+1,
�

d ′1, d ′2, . . . , d ′l+m

�

;
3 for i← 1 to l +m do
4 vi ← sum

�

Di,1, Di,2, . . . , Di,k−1

	

;
5 di ←max

�

~dhw (x l+m+1, x i) , hi

	

;
6 d ′i ← ~dhw (x i , x l+m+1);
7 D′← Replace Di,k with d ′i if d ′i < Di,k; //Update the distance matrix
8 αi ← vi + Di,k; //Compute the nonconformity score

9 D′← Add k smallest distances from
�

d ′1, d ′2, . . . , d ′l+m

�

to D;

10 αl+m+1← sum
¦

D′l+m+1,1, D′l+m+1,2, . . . , D′l+m+1,k

©

;

11 for i← 1 to l +m+ 1 do

12 pi ←
|{αi |αi≥αl+1,1≤i≤l+1}|

l+1 ; //Compute the p-value

13 εl ←min {p1, p2, . . . , pl}; //Obtain the dynamic threshold according to
Equation (3.5)

14 if pl+m+1 < εl then
15 Anoml+m+1← t rue;
16 O′←O

⋃

x l+m+1; //Update the outlier set
17 if |O′|> ε · (tSize+ 1) then
18 //Perform the re-do strategy
19 for i← l + 1 to l +m do
20 if pi ≥ εl then
21 Anomi ← f alse;
22 T′← T

⋃

x i; //Update the training set

23 else
24 Anoml+m+1← f alse;
25 T′← T

⋃

x l+m+1; //Update the training set

3.4. Results and Discussion 39

datasets in Section 3.4.3) is generated by Piciarelli et al. [Piciarelli 2008a], which in-
cludes 1000 datasets. In each dataset, 250 trajectories are equally divided into 5 clusters
and the remaining 10 trajectories are abnormal (abnormal trajectories are not consid-
ered in this experiment). See an example in Figure 3.3(a). Each trajectory is recorded
by the locations of 16 sample points. The simulated dataset CROSS and real dataset
LABOMNI are contributed by Morris and Trivedi [Morris 2009b, Morris 2009a]. The
trajectories in CROSS are designed to be in a four-way traffic intersection as shown in
Figure 3.3(b). CROSS includes 1999 trajectories which evenly belong to 19 clusters,
and the number of sample points varies from 5 to 23. The trajectories in LABOMNI
are obtained from humans walking through a laboratory as shown in Figure 3.3(c).
LABOMNI has 209 trajectories from 15 clusters and the number of sample points varies
from 30 to 624.

(a) Synthetic Dataset “TS1” (b) CROSS Dataset

(c) LABMONI Dataset

Figure 3.3: Plots of trajectory datasets used for the evaluation of distance measures.
Trajectories in the same cluster have the same color.

Table 3.1 gives the comparison results of the two different distance measures in
terms of the average and standard deviation of the classification error ratio. Only the
average result of the 1000 datasets in Synthetic Trajectories I is given. From the results
on all datasets, we can see that DHD(ω) works better than DHD to measure the differ-
ence between trajectories with only having the location information. In particular, in
the case of real dataset LABOMNI, the classification performance improves a lot with
the use of DHD(ω). Compared with the datasets of Synthetic Trajectories I and CROSS,
the trajectories in LABOMNI are more complex in twofold: first, the number of sample
points varies more dramatically; second, the trajectories with opposite directions are
closer in location, while the trajectories following the same traffic rules in CROSS are

40 Chapter 3. Adaptive Online Trajectory Anomaly Detection

distributed in different lanes. In the final column of Table 3.1, the p-value for the null
hypothesis that the results from the two distance measures are similar by Kruskal-Wallis
test [Kruskal 1952] is presented. The results of Synthetic Trajectories I and LABOMNI
are largely different at a 1% significance level, while the difference in CROSS is not so
great. Note that Synthetic Trajectories I includes 1000 datasets, thus in conclusion, the
results between DHD(ω) and DHD are significantly different. The reason is that using
a constraint window to limit the search space helps to reduce the wrong matching and
take into account the order of point. Besides, if the data has a small difference in direc-
tion, for example, Synthetic Trajectories I and CROSS, DHD(ω) and DHD give a similar
distance between trajectories.

Table 3.1: Classification error ratio (%) on different trajectory datasets and the corre-
sponding p-value.

Datasets
Distance Measures DHD DHD(ω)

p-Value
Average Std Average Std

Synthetic Trajectories I (average) 0.1634 0.0032 0.1566 0.0031 � 0.001
CROSS 0.6100 0.0792 0.5937 0.0694 0.2182

LABOMNI 31.23 1.37 10.20 0.87 � 0.001

Besides, we compare the distance measures on time series data. In Table A.1, Ap-
pendix A, the result also demonstrates that DHD(ω) performs better than DHD.

3.4.2 Comparison of Anomaly Detection Methods

The DH-kNN NCM measure is the core part of SHNN-CAD which computes the noncon-
formity score and further contributes to calculating the p-value of testing trajectory for
classification. In this section, we evaluate the performance of DH-kNN NCM with the
utilization of DHD(ω). The same datasets and criteria used in [Laxhammar 2014b] are
adopted for comparative analysis, besides, a real dataset from [Guo 2017] is tested.

The 1000 synthetic trajectory datasets mentioned in Section 3.4.1 are the first group
of testing data. Note that the outliers in each dataset are also included in the experiment,
see Figure 3.4(a). The second dataset consisting of 238 recorded video trajectories is
provided by Lazarević et al. [Lazarević 2007]. Each trajectory includes 5 sample points
and is labeled as normal or not. In this dataset, only 2 trajectories are abnormal, as
shown in Figure 3.4(b). The Aircraft Dataset used by Guo et al. [Guo 2017] includes
325 aircraft trajectories with the number of sample points varying between 102 and
1023, and 5 trajectories are labeled as abnormal, as shown in Figure 3.4(c). For each
dataset, the nonconformity scores of all the trajectories are calculated and sorted. The
accuracy of anomaly detection is calculated as the proportion of outliers in the top n
nonconformity scores. Here, n is the number of outliers in the dataset according to the
groundtruth.

Table 3.2 shows the accuracy performances of DH-kNN NCM and the version with
DHD(ω) on 1002 datasets. Only the average result of the 1000 datasets in Synthetic
Trajectories I is given. For Synthetic Trajectories I, using DHD(ω) improves the detec-
tion quality of DH-kNN NCM regardless of the number of nearest neighbors k. Addi-

3.4. Results and Discussion 41

(a) Synthetic Dataset “TS1” (b) Recorded Video Dataset

(c) Aircraft Dataset

Figure 3.4: Plots of trajectory datasets used for the evaluation of anomaly detection
measures. The trajectories in red are abnormal.

tionally, with DHD and DHD(ω), the anomaly detection measure works the best when
k = 2. For Recorded Video Trajectories and Aircraft Trajectories, the replacement of
DHD(ω) achieves the same detection result. In the Synthetic Trajectories I, it is clear
that the accuracy increases to a maximum then decreases with k increases. This helps
to determine the optimal k.

Table 3.2: Accuracy (%) of anomaly detection on different trajectory datasets.
Datasets Nonconformity Measures

of Most Similar Neighbors Considered
k = 1 k = 2 k = 3 k = 4 k = 5

Synthetic Trajectories I (average)
DH-kNN NCM 96.42 97.09 97.05 96.95 96.77
using DHD(ω) 96.45 97.85 97.81 97.74 97.65

Recorded Video Trajectories
DH-kNN NCM 100.00 100.00 100.00 100.00 100.00
using DHD(ω) 100.00 100.00 100.00 100.00 100.00

Aircraft Trajectories
DH-kNN NCM 80.00 80.00 80.00 80.00 80.00
using DHD(ω) 80.00 80.00 80.00 80.00 80.00

3.4.3 Comparison of Online Anomaly Detection

To demonstrate the efficiency and reliability of the proposed improvement, we com-
pare the performance of SHNN-CAD+ with SHNN-CAD on the same datasets applied
in [Laxhammar 2014b] and further introduce more datasets.

The synthetic trajectories [Laxhammar 2013] presented in [Laxhammar 2014b] for

42 Chapter 3. Adaptive Online Trajectory Anomaly Detection

online anomaly detection are created by Laxhammar using the trajectory generator soft-
ware written by Piciarelli et al. [Piciarelli 2008b]. Synthetic Trajectories II includes 100
datasets, and each dataset has 2000 trajectories. Each trajectory has 16 sample points
recorded with location attribute and has the probability of 1% of being abnormal. To
expand the dataset for our experiments, we reuse Synthetic Trajectories I and rename it
by Synthetic Trajectories III [Guo 2018b]. The trajectories in each dataset of Synthetic
Trajectories I are randomly reordered since they are organized regularly by cluster,
which is not common in practical applications. Besides, considering that the Hausdorff
distance has the advantage of dealing with trajectory data with different number of
sample points, however, in the experiments of [Laxhammar 2014b], all the testing data
have same number of points for online learning and anomaly detection, we produce a
collection of datasets where the trajectories have various number of points, called Syn-
thetic Trajectories IV [Guo 2018b]. The trajectory generator software [Piciarelli 2008b]
is enhanced to produce trajectories with the number of sample points ranging from 20
to 100. For each dataset, firstly, 2000 normal trajectories from 10 equal-size clusters are
generated with the randomness parameter 0.7 and are reordered to simulate the real
scene. Then 1000 abnormal trajectories are generated. Finally, each normal trajectory
is independently replaced with the probability of λ by an abnormal one. The collection
has 3 groups of datasets with λ equal to 0.005, 0.01, and 0.02, respectively, and each
group contains 100 trajectory datasets.

In [Laxhammar 2014b], F1-score is utilized to compare the overall performance of
online learning and anomaly detection. F1-score (see Equation 2.16) is the harmonic
mean of precision and recall (also called detection rate in the field of anomaly detec-
tion). In addition to this, we also analyze the false alarm rate and accuracy values for
comprehensive evaluation from different aspects [Nandeshwar 2011]. The related cal-
culations have been reviewed in Section 2.3.3.

Firstly, the performance of SHNN-CAD and SHNN-CAD+ is compared using the
aforementioned 1400 trajectory datasets. k is set to 2 as suggested in [Laxhammar
2014b]. The average results for each collection of trajectory data are given in Table
3.3 where the best score of each performance measure is highlighted. Note that it is
necessary to preset the anomaly threshold ε for SHNN-CAD, thus, we define ε based
on the real probability of anomaly λ. For Synthetic Trajectories III, the λ is computed
as 10/260 as each dataset has 10 outliers and 250 normal trajectories. Additionally,
note that we found a mistake in Table 3 of [Laxhammar 2014b] where the given re-
sult of SHNN-CAD is different from the description of Algorithm 2 in [Laxhammar
2014b]. The F1 result, 53.52, 74.61, and 61.68, of SHNN-CAD with ε = 0.005,0.01,
and 0.02, respectively, is given under the condition that if p-value ≤ ε not p-value < ε,
the testing trajectory is classified as abnormal. In the table below, we follow the rule in
Algorithm 2 [Laxhammar 2014b] for SHNN-CAD.

It is clear from the table that SHNN-CAD works the best in most datasets concern-
ing the F1 score when ε is close to λ, which is consistent with expected and with the
description in [Laxhammar 2014b]. When using λ as the anomaly threshold, the ac-
curacy of SHNN-CAD is not always better than the other values of ε. By comparison,
SHNN-CAD+ obtains better result with adaptive and dynamic threshold than using λ.

3.4. Results and Discussion 43

It is important to point out that for unsupervised anomaly detection, λ is not available
and no information can be used to help to determine ε. For example, in a different col-
lection of datasets, ε is set with a different value. Besides, SHNN-CAD+ achieves better
results in all the datasets with the accuracy index. Thus, SHNN-CAD is less applicable in
real-world applications than SHNN-CAD+, which utilizes the adaptive anomaly thresh-
old. Furthermore, the average runtime of dealing with 2000 trajectories in Synthetic
Trajectories II is 39.85 s by SHNN-CAD+. For comparison, the typical implementation
of DHD with computing distance between every pairwise sample points is equipped to
the anomaly detection procedure of SHNN-CAD to get the runtime, which is 128.08 s in
this case. For 2000 trajectories in Synthetic Trajectories IV, the runtime becomes longer
as 109.34 s by SHNN-CAD+ and 556.28 s by SHNN-CAD with typical DHD implementa-
tion. Note that optimal implementations (as the one suggested in [Laxhammar 2014b],
which is based on the Voronoi diagram) will improve the result.

Table 3.3: Five performance measures (%) of online anomaly detection. The best per-
formance of each collection of dataset is in bold.

Trajectory Datasets Approaches Precision Recall F1 Accuracy False Alarm Rate

Synthetic Trajectories II
(λ= 0.01)

SHNN-CAD
ε = 0.005 98.70 40.39 54.75 99.39 0.01
ε = 0.01 87.15 77.48 79.80 99.63 0.13
ε = 0.02 50.24 94.59 64.35 98.98 0.98

SHNN-CAD+ 88.41 89.64 86.38 99.77 0.13

Synthetic Trajectories III
(λ= 0.038)

SHNN-CAD
ε = 0.03 97.34 55.51 67.92 98.19 0.10
ε = 0.04 91.52 73.95 79.36 98.63 0.38
ε = 0.05 80.01 83.40 79.83 98.39 1.01

SHNN-CAD+ 84.75 82.70 79.39 98.68 0.70

Synthetic Trajectories IV
(λ= 0.005)

SHNN-CAD
ε = 0.004 90.97 54.53 63.78 99.73 0.03
ε = 0.005 83.82 65.04 69.40 99.75 0.07
ε = 0.01 52.63 88.21 64.01 99.53 0.41

SHNN-CAD+ 78.43 91.76 81.47 99.82 0.15

Synthetic Trajectories IV
(λ= 0.01)

SHNN-CAD
ε = 0.005 99.17 37.31 52.39 99.33 0.00
ε = 0.01 89.31 74.31 79.31 99.61 0.11
ε = 0.02 52.27 92.09 65.60 99.01 0.92

SHNN-CAD+ 88.64 89.52 85.66 99.75 0.14

Synthetic Trajectories IV
(λ= 0.02)

SHNN-CAD
ε = 0.01 98.99 45.79 61.64 98.91 0.01
ε = 0.02 87.47 83.88 84.62 99.42 0.26
ε = 0.03 63.18 93.02 74.53 98.78 1.10

SHNN-CAD+ 95.36 78.75 81.45 99.48 0.10

Next, to test the relative performance of each proposed improvement strategy, we
conduct experiments based on three objectives. First (Objective 1), to verify that DHD(ω)
helps to improve the performance of SHNN-CAD, SHNN-CAD is implemented with
DHD(ω) computing the distance between trajectories. Second (Objective 2), to demon-
strate the rationality of the re-do step, SHNN-CAD is equipped with a re-do step in the
procedure of anomaly detection. Third (Objective 3), to prove the effectiveness of the
adaptive anomaly threshold, the pre-definition of ε is replaced in SHNN-CAD. The re-
sults are listed in Table 3.4. For the task of objective 1 and objective 2, the results are
compared with those by SHNN-CAD in Table 3.3. In the case of objective 1, the uti-
lization of DHD(ω) improves the behavior of anomaly detection regardless of most
performance measures for all the datasets. In the case of objective 2, only the recall
index for some datasets is not as well as SHNN-CAD, which means the missing recogni-
tion of outliers. However, the comprehensive F1 score indicates that the performance is

44 Chapter 3. Adaptive Online Trajectory Anomaly Detection

promising. In the case of objective 3, the results are compared with SHNN-CAD in Table
3.3 when ε is closest to the corresponding λ. Clearly, for most datasets, the adaptive
anomaly threshold can make up the shortcoming of pre-definition and strengthen the
capability of anomaly detection. Compared with the SHNN-CAD+ in Table 3.3, all the
improvement strategies work together to accomplish the enhancement of SHNN-CAD.

Table 3.4: Five performance measures (%) of proposed improvement strategies on dif-
ferent trajectory datasets.

Trajectory Datasets Approaches Precision Recall F1 Accuracy False Alarm Rate

Synthetic Trajectories II
(λ= 0.01)

Objective 1
ε = 0.005 98.86 40.23 54.89 99.38 0.01
ε = 0.01 87.93 77.91 80.38 99.64 0.12
ε = 0.02 50.77 95.16 64.89 98.99 0.97

Objective 2
ε = 0.005 98.70 40.39 54.75 99.39 0.01
ε = 0.01 87.15 77.48 79.80 99.63 0.13
ε = 0.02 50.24 94.59 64.35 98.98 0.98

Objective 3 87.08 87.21 84.97 99.75 0.13

Synthetic Trajectories III
(λ= 0.038)

Objective 1
ε = 0.03 97.01 55.78 67.99 98.21 0.10
ε = 0.04 91.86 74.31 79.81 98.66 0.37
ε = 0.05 80.41 83.94 80.30 98.43 1.00

Objective 2
ε = 0.03 97.34 55.51 67.92 98.19 0.10
ε = 0.04 91.52 73.95 79.36 98.63 0.38
ε = 0.05 80.01 83.40 79.83 98.39 1.01

Objective 3 85.10 82.25 79.02 98.64 0.72

Synthetic Trajectories IV
(λ= 0.005)

Objective 1
ε = 0.004 93.88 58.22 67.45 99.75 0.02
ε = 0.005 87.23 69.39 73.28 99.78 0.06
ε = 0.01 52.75 91.08 65.01 99.54 0.41

Objective 2
ε = 0.004 90.97 54.53 63.78 99.73 0.03
ε = 0.005 83.82 65.04 69.40 99.75 0.07
ε = 0.01 52.63 88.21 64.01 99.53 0.41

Objective 3 77.90 86.10 78.30 99.79 0.14

Synthetic Trajectories IV
(λ= 0.01)

Objective 1
ε = 0.005 99.53 37.74 53.20 99.34 0.00
ε = 0.01 92.35 77.94 82.84 99.68 0.08
ε = 0.02 53.80 94.76 67.59 99.07 0.89

Objective 2
ε = 0.005 99.17 37.31 52.39 99.33 0.00
ε = 0.01 89.31 74.31 79.31 99.61 0.11
ε = 0.02 52.27 92.09 65.60 99.01 0.92

Objective 3 87.55 84.08 82.63 99.69 0.14

Synthetic Trajectories IV
(λ= 0.02)

Objective 1
ε = 0.01 99.60 45.80 61.70 98.92 0.01
ε = 0.02 90.18 86.59 87.38 99.52 0.20
ε = 0.03 65.68 95.28 77.02 98.91 1.02

Objective 2
ε = 0.01 98.99 45.79 61.64 98.91 0.01
ε = 0.02 87.47 83.88 84.62 99.42 0.26
ε = 0.03 63.18 93.02 74.53 98.78 1.10

Objective 3 95.05 72.66 77.94 99.37 0.10

3.5 Conclusions

Based on SHNN-CAD, which focuses on online detecting outliers from trajectory data,
we have presented an enhanced version, called SHNN-CAD+, to improve the anomaly
detection performance. The proposal includes three improvement strategies: first, mod-
ifying typical point-based Hausdorff distance to be suitable for trajectory data and to
be faster in distance calculation; second, adding a re-do step to avoid false positives in
the initial stages of the algorithm; third, defining data-adaptive and dynamic anomaly
threshold rather than a preset and fixed one. Experimental results on both real-world

3.5. Conclusions 45

and synthetic data have shown that the performance of the presented approach has
been improved over SHNN-CAD concerning accuracy and runtime. Especially, with the
adaptive and dynamic anomaly threshold, the accuracy of SHNN-CAD+ is higher than
that of SHNN-CAD by using the optimal but fixed one. Besides, on average, the runtime
is around 4 times faster. Considering that the training set will increase a lot with time,
further research will focus on incremental learning which prunes the historical data for
future process.

CHAPTER 4

Map Construction From GPS
Trajectory Data by a Three-Step

Framework

Contents
4.1 Introduction . 47

4.2 Preliminaries . 49

4.2.1 Algorithms for Comparison . 49

4.2.2 Slide . 51

4.2.3 Thinning Algorithm . 53

4.3 The Proposed Method . 54

4.3.1 Data Pre-processing . 55

4.3.2 Density Surface Computing . 55

4.3.3 Density Surface Compaction via Slide 56

4.3.4 Route Map Construction . 58

4.3.5 Discussion about Parameters . 59

4.4 Results and Discussion . 59

4.4.1 GPS Datasets . 60

4.4.2 Map Comparison by Visual Inspection 62

4.4.3 Map Comparison by Quantitative Evaluation 70

4.4.4 Runtime of Our Framework . 73

4.4.5 Summary . 73

4.5 Conclusions . 74

4.1 Introduction

Nowadays, more and more devices (smartphones, smartwatches, bracelets, etc.) are
equipped with GPS to track moving objects. The increasing popularity of GPS tracking
devices leads to a massive amount of trajectory data generated every day. Analyzing
these data helps to understand the mobility of users and provides the basis of naviga-
tion and recommendation systems. From different communities, many research works

48
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

are devoted to mining the information from trajectory data on various topics, such as
anomaly detection, trajectory clustering, and automatic map construction. In this chap-
ter, we focus on the map construction problem.

The traditional way to produce a road map requires a large number of images from
satellite, photos from providers and platforms, massive field surveys, and intensive
post-processing. This work is labor-expensive and time-consuming, also faces techni-
cal challenges [Chen 2008, Li 2016, Deng 2018, Huang 2018]. Developing algorithms
to generate road networks from massive GPS data is an alternative. In addition, the gen-
erated map can act as a complement of the existing maps considering different cases.
First, due to lacking up-to-date information on the buildings, streets and open areas,
the existing maps may include incorrect and incomplete road networks [Zheng 2018].
Second, because of inevitable human and technical errors, the existing maps may be
inaccurate [Guo 2007]. Third, the roads formed by people can also be interesting and
useful. For example, for outdoor activities, the unknown route made by hikers may
provide insights into a more efficient and attractive path.

Various approaches have been proposed to generate the road networks. As reviewed
in Section 2.4, each category of map construction algorithm has its characteristics.
The process of incremental-track-insertion-based algorithms is irreversible, so the order
of adding a new trajectory to an existed map influences the result. The intersection-
linking-based approaches require heavy work in linking intersections via visiting each
trajectory. By comparison, the density-based approaches in the category of point clus-
tering are simpler. In general, there are two common limitations: first, the mechanism is
time-consuming due to largely using the clustering technique or kernel density estima-
tion on numerous trajectory points; second, the low-frequency areas are ignored since
the trajectories are regarded as unimportant [Cao 2009, Wang 2015]. In this chapter,
we aim at developing a three-step framework that is fast, simple and skeleton-based
to extract a route graph from the input data that records almost all the paths appear-
ing in the original GPS trajectories. The three steps are: First, GPS data are driven into
a grid that covers the geographical area to build a density surface. Second, trajecto-
ries are adjusted by the Slide tool according to the density surface, and a new, more
compact density surface is computed with the adjusted data. Third, the route graph is
extracted from the density surface using a thinning algorithm followed by a polygonal
line simplification method. The main novelty of our three-step framework is a smart
combination of several well-known techniques to extract a schematic route graph that
records almost all the paths in the original GPS data. In addition, all the steps of our
framework are easily parallelizable due to the processing objects (either trajectories or
links) are independent and the process does not require cross computation, so they are
run in parallel to achieve high efficiency.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
algorithms for comparison, the Slide tool and the thinning algorithm which are utilized
in our algorithm. Section 4.3 presents the three-step framework in detail. Section 4.4
describes the experiments and comparison analysis on different GPS datasets. Finally,
Section 4.5 gives the conclusion and future work.

4.2. Preliminaries 49

4.2 Preliminaries

In this section, we first introduce seven algorithms for comparison in the experiments,
then we describe two important techniques for our framework, the Slide tool and the
thinning algorithm.

4.2.1 Algorithms for Comparison

In the case of urban data, following the survey [Ahmed 2015c], we compare our frame-
work with the algorithms by Ahmed and Wenk [Ahmed 2012], Biagioni and Eriksson
[Biagioni 2012b], Cao and Krumm [Cao 2009], Davies et al. [Davies 2006], Edelkamp
and Schrödl [Edelkamp 2003] and Karagiorgou and Pfoser [Karagiorgou 2012]. In the
case of hiking data, following the survey [Duran 2020], we compare with algorithms
by Ahmed and Wenk [Ahmed 2012], Cao and Krumm [Cao 2009], Davies et al. [Davies
2006], Edelkamp and Schrödl [Edelkamp 2003] and Karagiorgou and Pfoser [Kara-
giorgou 2012]. In both cases, a density-based algorithm by Wang et al. [Wang 2015]
is compared. In this section, we briefly introduce these algorithms which are also men-
tioned in the Section 2.4.

4.2.1.1 Algorithm by Ahmed and Wenk [Ahmed 2012]

This algorithm is a two-phase incremental framework. For each iteration, given the
constructed map from the last iteration (or an empty map in the first iteration), the
first phase focuses on computing a reconstructed graph. The new trajectory is compared
with the constructed map based on the curve-graph partial matching [Buchin 2009] to
separate the trajectory into matched and unmatched portions. The unmatched portions
are added to create or split edges and introduce new vertices. In the second phase, the
minimum-link algorithm is applied to the matched portions with their matching edges
to obtain minimum-link representative edges, which contributes to reducing the graph
complexity.

4.2.1.2 Algorithm by Biagioni and Eriksson [Biagioni 2012b]

Biagioni and Eriksson [Biagioni 2012b] inferred a map taking into account GPS data
with noise and disparity. KDE is utilized to estimate the density image and a gray-scale
thinning algorithm with various thresholds is applied to compute several versions of
a skeleton map. The last one is represented as an undirected graph whose edges are
finally replaced with directed edges. Considering that KDE estimates the density at each
point by using all the points in the dataset, this method is a time-consuming algorithm.
In addition, due to the fact that the trajectories distribute non-uniformly, the infrequent
paths may be eliminated with the thresholding process.

50
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

4.2.1.3 Algorithm by Cao and Krumm [Cao 2009]

This method also belongs to the category of incremental track insertion. It aims to
generate a directed graph but pays more attention to firstly remove noise from trajecto-
ries. For each point, two types of attraction forces are simulated from its corresponding
trajectory and the others in the dataset to pull the similar points to be closer. For the di-
rected graph construction, the opposite directions are also differentiated. Then a simple
graph generation algorithm is performed. To insert a new trajectory, each of its points is
checked to be merged or used for creating a new graph node. After the map generation,
the edges with weight less than a threshold are removed since they are considered as
unreliable. Apparently, the infrequent paths are not included, leading to low coverage
of the map.

4.2.1.4 Algorithm by Davies et al. [Davies 2006]

Davies et al. [Davies 2006] estimated the density distribution by counting the number
of trajectories passing through each grid cell and computed the contour of the resulting
bitmap. Then the Voronoi diagram is used to determine the centerline which is cleaned-
up to obtain a directed graph representing the street map. This method has the problem
of ignoring paths with low frequency.

4.2.1.5 Algorithm by Edelkamp and Schrödl [Edelkamp 2003]

This algorithm is point clustering-based. Firstly, the trajectories are decomposed into a
sequence of line fragments, then k-means clustering is utilized on these fragments. Next,
a number of equal-distance points following each trace are taken by a greedy strategy
as the cluster seeds. These seeds are regarded as the vertices in the route graph and the
rest of trajectories are considered is to link them together.

4.2.1.6 Algorithm by Karagiorgou and Pfoser [Karagiorgou 2012]

Karagiorgou and Pfoser [Karagiorgou 2012] also proposed a three-step framework (called
TRACEBUNDLE algorithm in [Karagiorgou 2013]) for automatic map construction specif-
ically for vehicle trajectory data. The intersections are found in the first step through
performing two times hierarchical clustering respectively on turns and the correspond-
ing clusters. Turns are the points where the speed reduces and the direction changes
largely. In the second step, links between intersections are connected via using a sweep-
line algorithm on all the trajectories. In the final step, the number of links is reduced
by using the sweep-line algorithm again, which includes the position change of inter-
sections. Based on this algorithm, the authors proposed to create the maps for different
types of movement (distinguished by speed) and then the maps are combined into a
single network. With the clustering technique, the points in low-density areas where
only a few trajectories cross through are removed as outliers. As a result, the roads
with infrequent trajectories are ignored. Furthermore, this method is time-consuming
since there is a large computation cost for clustering and linking.

4.2. Preliminaries 51

4.2.1.7 Algorithm by Wang et al. [Wang 2015]

Wang et al. [Wang 2015] proposed a density-based map construction algorithm. In the
first step, KDE is applied to obtain the density distribution. Then, the route graph is
extracted as the mountain ridges of the terrain (density distribution) through discrete
Morse theory. The second step is quite fast while the KDE computation in the first step
is really heavy if the size of each cell is small but the data size is big. In addition, it
removes the unimportant roads with a persistence threshold, which would eliminate
infrequent paths.

4.2.2 Slide

In general, moving objects do not strictly follow the centerline of roads, leading to the
difference in trajectory data. To build a compact density surface, the trajectories that
follow similar but non-identical paths should be brought together. In this chapter, we
use the Slide tool to achieve this goal.

Slide is a heuristic method proposed by Paul Mach from the Strava labs [Mach
2014b, Mach 2014a]. Slide was first developed as a tool to slide OpenStreetMap map
geometry to the Strava global heatmap dataset. GPS data are continuously collected to
create the heatmap which essentially represents the density distribution of data. The
key idea of Slide is to match and merge the input polyline to the heatmap data, which
is based on the principles of mathematical optimization. Figure 4.1 gives the flowchart
of Slide (taken from [Mach 2014a]).

Figure 4.1: Flowchart of Slide.

In the flowchart, the surface data is the Strava global heatmap which is used to
build density surface where high density regions are lower (resulting in valleys). Slide
makes the input polyline (we use “trajectory” to specify this polyline) fall (or slide) into
the surface valleys by making force on each point. The input trajectory is resampled to

52
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

have equal distance between adjacent points, which would be further used in the cost
function of Slide. More precisely, given a trajectory T = (p1, p2, . . . , pn) with n points,
each interior point pi (1< i < n) of T is iteratively perturbed by adding a correction
vector to its current position, cr(pi), which is defined as a weighted sum of the surface
(sV), distance (dV), angle (aV) and momentum (mV) vector components with different
weights:

cr (pi) =ω1sV (pi) +ω2dV (pi) +ω3aV (pi) +ω4mV (pi) . (4.1)

where ω1, ω2, ω3 and ω4 are the weights of corresponding components. Given three
consecutive points, pi−1, pi and pi+1, of a trajectory, let u= pi+1− pi−1, v= pi− pi−1 be
the difference between neighbor points. According to the public implementation of Slide
[Mach 2014a], we summarize the movements in each iteration by these components
for pi by the following formulas.

• The surface component calculates the movement of pi with respect to the depth
of the density surface. Intuitively, in order to make similar trajectories more com-
pact, the point should move to the dense part. In Slide, the definition is sV(pi) =
gradientAt (pi) which means the surface gradient at pi . This correction drags
pi to its closest valley. As the surface is represented in a two-dimensional grid,
the bilinear interpolation [Smith 1981] is applied to approximately estimate the
gradient of a certain point. Figure 4.2 illustrates the effect of this component. pi

will be pushed to p′i matching the ridges of the surface.

pi

pí

Figure 4.2: The effect of the surface component on a point.

• The distance component tries to ensure that pi does not change too much from
its previous position by maintaining the distance to its neighbors, considering
that initially the trajectory is resampled to have equal distance between adjacent
points. To achieve this, the vector is computed by

dV(pi) =

¨

0, pi−1 = pi+1

m1 +m2, otherwise
(4.2)

where m1 = pi−1−center, m2 = pi+1−center, center= pi−1+u
� u·v

u·u
�

. Here, the
operation · denotes the scalar product.

4.2. Preliminaries 53

• The angle component maximizes the vertex angle and minimizes curvature. The
calculation is

aV(pi) =

¨

0, |u− v|= 0 or δ = 0

δ u−v
|u−v| min {|v|, |u|} , otherwise

(4.3)

where δ = 1− 3pu · v and | | is Euclidean norm.

• The momentum component, which is the correction vector used in the previous
iteration, is additionally added to speed the convergence of the process.

In each iteration, every interior point of a trajectory is moved according to its cor-
rection vector. It prompts the interior part of the trajectory to a denser part of the sur-
face, meanwhile, it maintains the endpoints in their original position. Slide terminates
when the solution converges, i.e. the improvement between two consecutive iterations
is smaller than a prefixed threshold (usually 5 · 10−4). The improvement is measured
as the difference in the score of the trajectories. The score of a trajectory is defined as
the sum of the density value of all the points at the density surface.

The fact that Slide does not move the endpoints of a trajectory is, in many cases, a
problem. We need the endpoints to move to a denser part of the surface in a similar way
the interior points do. On the other hand, according to our experimentation and inter-
pretation of the distance component has too much influence on the correction vector.
These two important issues of the standard implementation of Slide and their impact in
the results are explained in Section 4.3.3. There we also present our modified version
of Slide.

4.2.3 Thinning Algorithm

In the field of image processing, the thinning algorithm is a popular morphologic opera-
tion to extract a one-pixel-wide skeleton from the binary image by iteratively removing
several foreground pixels. A comprehensive survey of thinning methodologies can be
found in [Lam 1992]. In this chapter, we briefly describe the thinning algorithm from
Guo and Hall [Guo 1989] which is the one used in this thesis.

In each iteration, the algorithm visits all the pixels of the image and each pixel is
determined to be deleted or not based on a two-subiteration process. Let s be the pixel
under consideration and {x1, x2, . . . , x8} be the values of the 8-connected neighbors of
s (as shown in Figure 4.3(a)), following in counter-clockwise direction. There are four
conditions in the thinning algorithm to determine if a pixel with value 1 and have eight
neighbors should be removed or not. The condition 1 is:

XH (s) = 1 (4.4)

where

XH (s) =
4
∑

i=1

bi (4.5)

54
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

(a) Nine pixels

0

0

0

1 1

1

0

1

0

(b) First subitera-
tion.

1

1

1

1 1

1

0

0

0

(c) Second subitera-
tion.

Figure 4.3: Illustration of thinning algorithm.

and

bi =

¨

1, x2i−1 = 0 & (x2i = 1 ‖ x2i+1 = 1)

0, otherwise.
(4.6)

Here XH(s) is the number of transitions from 0 to 1 in the sequences (x1, x2, x3) ,
�

x3, x4, x5

�

,
�

x5, x6, x7

�

,
�

x7, x8, x1

�

. The condition 2 is:

2≤min {n1 (s) , n2 (s)} ≤ 3 (4.7)

where

n1 (s) =
4
∑

k=1

x2k−1 ∨ x2k (4.8)

and

n2 (s) =
4
∑

k=1

x2k ∨ x2k+1 (4.9)

This condition ensures that at least one pixel in the 4-neighbors of s has value 0, and
so do the diagonal neighbors. If all the pixels of the 4-neighbors or diagonal neighbors
have value 1, then removing s breaks the connectivity of skeleton. The condition 3 is:

(x2 ∨ x3 ∨ x8)∧ x1 = 0. (4.10)

The condition 4 is:
�

x6 ∨ x7 ∨ x4

�

∧ x5 = 0. (4.11)

In the first subiteration, pixel s is removed if and only if it satisfies all of the conditions
(1, 2 and 3) (see Figure 4.3(b) as an example). In the second subiteration, pixel s is
deleted if and only if it meets all of the conditions (1, 2, and 4) (see Figure 4.3(c) as
an example).

4.3 The Proposed Method

This section starts with a pre-processing step where obvious noise in the input data
is removed, then describes our proposed three-step approach. The three steps of this

4.3. The Proposed Method 55

algorithm are i) building density surface: GPS data are driven into a grid to build a den-
sity surface. ii) compacting density surface via Slide: trajectories are adjusted according
to the density surface and the Slide tool, then a new and compact density surface is
computed with the adjusted trajectories. iii) constructing route map: The route graph is
extracted from the density surface using a thinning algorithm followed by a polygonal
line simplification method. Besides, in Section 4.3.5, we discuss the parameters related
to our method.

4.3.1 Data Pre-processing

In practice, GPS data always includes noise. In this paper, the noise is caused by signal
missing due to severe environment or rapid change of position, GPS errors, or signal
distortion. For example, vehicle trajectories are noisier than hiking data, because the
high speed may induce missing or wrong positions in the record. To reduce the impact of
noise, for each trajectory, we check the distance between adjacent points. If the distance
is too large, this is regarded as an error of signal absence, then the trajectory is divided
into two parts by removing the corresponding line segment.

Next, trajectories are resampled by using linear interpolation so that they become
defined by equidistant points, which is required in the Slide algorithm for the compu-
tation of the correction vector. Moreover, we use the term fragment of a trajectory t, to
refer to the trajectory t ′ defined by a sub-sequence of the points defining t. Hence a
fragment will be defined by two (or more) trajectory points.

4.3.2 Density Surface Computing

To compute the density surface, first, the area occupied by the given trajectories is
covered by a regular grid. Then we map each trajectory into the grid. As shown in
Figure 4.4, a trajectory with 9 points from p1 to p9 is mapped into several consecutive
cells. Green cells correspond to the points defining the trajectory and the gray ones
to the line joining the points. We include both the green and gray cells to keep the
complete shape of the trajectory. This is important when the distance interval is larger
than the size of the cell.

p
1

p
2

p
3

p
4 p

5

p
6

p
7 p

8

p
9

Figure 4.4: Mapping a trajectory into the grid.

With all the trajectories mapped into the grid, we build the density surface by count-
ting the frequency of each cell being crossed by GPS data. Furthermore, to eliminate
noise and artifacts, we apply the Gaussian blur [Gonzalez 2006] method on this initial
density surface. Then a smoother density surface is obtained. Since the treatment of

56
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

each trajectory is independent of the others, we map each trajectory into the grid in
parallel to speed up the process.

4.3.3 Density Surface Compaction via Slide

To be able to aggregate similar parts of different trajectories into a single edge of a
graph, we apply an improved version of the basic Slide method, the one described in
Section 4.2.2, to each trajectory in the dataset. After that with the adjusted trajectories,
the density surface is recomputed to be more compact.

As we mentioned before, according to our experimentation we found two limita-
tions on Slide. In this section, we explain the defects and our solutions to overcome
these shortcomings.

On the one hand, the distance component of Slide aims to maintain the equal dis-
tance between adjacent points, which helps to prevent the point from significantly devi-
ating from its original position. Consistent with the symbols in Section 4.2.2, let pi−1, pi

and pi+1 be three consecutive points of a trajectory, and u= pi+1−pi−1, v= pi−pi−1 be
the difference between neighbor points. Considering the case that pi−1 6= pi+1, the cor-
rection vector by this component in Equation 4.2 can be interpreted with the geometric
definition by

dV(pi) = u− 2u
� u·v

u·u
�

= 2u(1
2 −

|u0|
|u|)

(4.12)

where u · v= |u||v| cosθ as illustrated in Figure 4.5.
It can be geometrically seen that u(1

2−
|u0|
|u|) is vector d of Figure 4.5. To maintain the

distance between points while adjusting them, pi should be moved by d. But according
to Equation 4.12 of Slide, pi is moved twice this amount. To preserve consistency be-
tween the intention and the used formula, we propose to define the correction vector
of the distance component that pi is moved only by d. Hence, we divide by a factor of 2
of the original formula. We have been experimentally tested this change, and this new
version gives better results. The same final effect could also be obtained by using half
of the standard weight, i.e. ω2/2. However, for the mentioned consistency we propose
to consider dV(pi) to be defined as:

dV(pi) =

¨

0, pi−1 = pi+1
1
2 (m1 +m2) , otherwise

(4.13)

The second modification of the Slide tool involves endpoints. The original version
of Slide, presented in Section 4.2.2, does not move the endpoints of the trajectories be-
cause the correction vector only acts on the interior points. Since the position of a point
has a large influence on the distance and angle components of their neighbor points,
the neighbors of the trajectory endpoints will not move properly and the movement of
an important part of the trajectory will also be effected gradually. In practice, the parts

4.3. The Proposed Method 57

pi

pi+1u

v

u0

d
0.5u

pi-1

Figure 4.5: Geometric definition of the distance component of Slide.

of the trajectories near the endpoints present undesirable sharp changes. This aspect
was already presented as a problem by the author of Slide [Mach 2014b]. Figure 4.6(a)
shows an example using a synthetic dataset provided by [Piciarelli 2008a] showing
these undesired shapes of the adjusted trajectories nearby their endpoints. The input
dataset includes 50 trajectories that are rather similar to each other, consequently, Slide
should adjust them until they are merged in a single trajectory. However, most parts of
the adjusted trajectories move to the dense area, but the initial and final parts of the
trajectories do not because they are anchored to the original endpoints.

0 10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

200

(a) Result by the original Slide.

0 10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

180

200

(b) Result by the improved Slide.

Figure 4.6: The effect of (a) the original and (b) the improved Slide on a set of trajec-
tories (in black). The adjusted trajectories are in red.

To solve this problem, we propose to move the endpoints, in each iteration, accord-
ing to the movement of their neighbors. Let us consider p1, p2 and p3, the first three
points of a trajectory. The correction vector proposed by Slide is applied to the inte-
rior points of the trajectory, p2 and p3. Let p′2 and p′3 be the resulting points. Then, the
endpoint p1 is projected onto the line defined by p′2p′3 (see Figure 4.7), this orthogonal
projection defines p′1. Similarly, the other endpoint pn is projected onto the line segment
defined by p′n−2 and p′n−1. Proceeding in this way the trajectories correctly meet at the
denser part of the density surface (see Figure 4.6(b)). By experiments, we first tried to
guarantee the points to be equidistant by placing p′1 on the line defined by p′2 and p′3 so
that p′2 was the midpoint of p′1 and p′3. However, the obtained results trajectories were
not as good as expected.

58
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

p2

p 1́original position
adjusted position

p3

p 3́

p 2́

p1

Figure 4.7: Illustration of determining the position of the endpoint.

Finally, after applying Slide to each trajectory, the density surface is recomputed
with the adjusted trajectories proceeding as did in the previous step. As shown in Fig-
ure 4.8, the density distribution of the synthetic data [Piciarelli 2008a] becomes more
compact, tending to get similar trajectories closer to each other. This recomputed den-
sity function is the one that will be used in the remaining phases.

(a) Original density surface. (b) Re-computed density surface.

Figure 4.8: Density surface obtained (a) before and (b) after using Slide. The pixel with
higher density is more bright.

We remark that since Slide works independently on each trajectory, our method
adjusts all the trajectories in parallel to reduce computation time.

4.3.4 Route Map Construction

The route map is modeled as an undirected graph comprising the vertices and edges
set. Each vertex has a geographical coordinate. Each edge represents a line segment of
a route in the map and connects two vertices.

The density surface obtained based on Slide is first transformed into a binary image
through global thresholding [Gonzalez 2006]. Next, a thinning algorithm is applied to
extract a one-pixel-wide skeleton of the binary image. Similar to [Biagioni 2012b, Shi
2009], we obtain the initial graph from the skeleton and then apply the line simplifi-
cation algorithm by [Douglas 1973] to remove redundant vertices from each edge and

4.4. Results and Discussion 59

obtain the final simplified route graph. To speed up the computation, the simplification
algorithm is also run in parallel on each edge.

4.3.5 Discussion about Parameters

In the presented framework, several parameters have to be set. Table 4.1 gives an
overview of these parameters and separates them into fixed setting and variable setting
groups. Fixed setting means the parameters are the same in all the datasets. Variable
setting indicates the parameters are set by experiments, and along this section we give
hints on how they can be set.

Table 4.1: Overview of parameters
parameter symbol setting

Fixed setting

weights in Slide ω1,ω2,ω3,ω4 0.5,0.2,0.1,0.7
threshold of path score in Slide u 5 ∗ 10−4

standard deviation of Gaussian blur
for initial density distribution σ1 5

distance for Douglas-Peucker d 2 meters

Variable setting

resample distance κ

set via experiments
cell size τ

standard deviation of Gaussian blur
for re-computed density distribution σ2

threshold to convert binary image ε

All the parameters of Slide are from the original implementation. Concerning the
distance threshold in Douglas-Peucker, it is the same meter resolution in all the cases
because we use the hiker and vehicle data, and we are interested in obtaining a route
map with the same precision.

Concerning the other parameters, if the input data is similar to one of the datasets
used in this paper in noise and size, the same settings can be adopted. If not, since
our framework is fast, the parameters are quite easy to tune experimentally taking into
account the following considerations. Parameter κ specifies the distance between two
consecutive points. As expected, a larger κ value results in a faster computation, but
faces the problem of over-smoothing, losing a lot of information. We set κ to be similar
to the average distance between consecutive data points. Parameter τ determines the
resolution of the map, and the smaller it is, the more details the map will record. For
noisy data like urban data, it has to be bigger and for the less-noisy data like hiking
data smaller. τ is limited to be 1, 2 or 3 meters. Regarding σ2, it specifies how much
the density surface should be smoothed. It is set between 2 to 5. To obtain good results,
the noisier the data, the bigger σ. Finally, ε is the threshold used to convert the density
surface to a binary image. Paths with density higher than ε are preserved, the others
are ignored. High values of ε may cause breaks in several paths of the map.

4.4 Results and Discussion

This section shows extensive experiments on different GPS datasets. We begin by in-
troducing the two types of data applied in the experiments in Section 4.4.1, then do

60
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

visual inspection on the generated maps in Section 4.4.2. Next, we compare the per-
formance of different algorithms by a quantitative evaluation in Section 4.4.3. Since
our framework is easy to parallelizable, Section 4.4.4 lists the runtime of performing
our framework in parallel and with a single core. Finally, we give a summary of the
performance in Section 4.4.5.

All the experiments are conducted by MATLAB 2018a software running on a Debian
GNU/Linux machine with AMD Ryzen Threadripper 1950X 16-Core Processor and 32
GB RAM.

4.4.1 GPS Datasets

In this chapter, we use 8 real GPS datasets of two types, 4 urban datasets and 4 hiking
datasets, to carry out the experiments. These datasets have been widely used in the
literature, for example in [Ahmed 2015c] and [Duran 2020]. [Ahmed 2015c] gives a
detailed comparison of several algorithms based on different distance measures using
the urban datasets. Meanwhile, in [Duran 2020], Duran et al. give a local analysis of
artifacts in maps generated when using both urban and hiking data. We borrow their
results of Ahmed, Biagioni, Cao, Davies, Edelkmap and Karagiorgou methods. Besides,
we compare our framework with [Wang 2015], a recent density-based method. In this
case, we have used their public implementation [Wang 2016] to run their algorithm.
In this case, we have tuned the parameters to obtain the best results. The setting of
parameters are summarized in Table 4.2.

Table 4.2: Overview of parameters of our framework and Wang et al.
Datasets

Our Framework Wang et al.
κ τ σ2 ε r t δ

Athens small 10 3 3 0.05 5 400 0.006
Athens large 10 3 3 0.05 5 400 0.006

Chicago 10 3 3 0.05 10 400 0.0007
Berlin 100 3 5 5 10 400 0.002
Delta 10 1 2 0.05 3 25 0.02

Aiguamolls 5 2 3 0.05 5 400 0.005
Garraf 5 2 2 0.05 10 400 0.0006

Montseny 5 2 3 0.05 5 225 0.0015

4.4.1.1 Urban Data

The Athens small, Athens large, Chicago and Berlin are four widely used datasets for
map construction [Ahmed 2015c]. The Athens small and Athens large datasets are col-
lected by school buses from areas of Athens, Greece. The Chicago dataset covers an area
in downtown Chicago, US, and includes trajectories from university buses. The Berlin,
Germany, dataset are taxi trajectories. The statistics of the datasets are summarized
in Table 4.3. Figure 4.9 visualizes each dataset. Note that, the dataset of Athens large
given in [Pfoser 2016] has 120 trajectories as shown in Figure 4.10, which is not the
one used in the literature. We use a bounding box (red frame) to cut the dataset and
get the commonly used one that is shown in Figure 4.9(b).

4.4. Results and Discussion 61

(a) Athens small (b) Athens large

(c) Chicago (d) Berlin

Figure 4.9: Plots of urban GPS datasets.

Figure 4.10: Plot of Athens large dataset using the data available online.

62
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

Table 4.3: Statistics of urban GPS datasets.
Dataset Area Trajectory Amount Point Amount

Athens small 2.6km× 6km 129 2839
Athens large 12km× 14km 482 32745

Chicago 3.8km× 2.4km 889 118360
Berlin 6km× 6km 27189 192223

4.4.1.2 Hiking Data

Four hiking datasets are denoted by Duran et al. [Duran 2020] and named as Delta,
Aiguamolls, Garraf and Montseny, respectively. The statistics of the datasets are sum-
marized in Table 4.4. Figure 4.11 visualizes each dataset.

Table 4.4: Statistics of hiking GPS trajectory datasets.
Dataset Area Trajectory Amount Point Amount

Delta 2.9km× 2.8km 161 38029
Aiguamolls 9.6km× 5.9km 101 46116

Garraf 6.7km× 4.6km 630 288472
Montseny 7km× 4.7km 101 128181

(a) Delta (b) Aiguamolls

(c) Garraf (d) Montseny

Figure 4.11: Plots of hiking GPS datasets.

4.4.2 Map Comparison by Visual Inspection

In this section, we visually compare the generated maps by different algorithms. We
discuss two important factors, data coverage and artifacts existence. The data cover-

4.4. Results and Discussion 63

age checks if the generated map covers all the paths followed by the input dataset.
We visually compare the data coverage of maps generated by different algorithms. The
data coverage analyzes if the generated map covers all the paths followed by the in-
put dataset. [Duran 2020] presents a detailed analysis of the artifacts in the generated
maps. It shows that all of the algorithms for comparison produce artifacts in some spe-
cific areas. These artifacts especially appear when dealing with hiking data. This is be-
cause this kind of data is much more arbitrary and zigzagging than urban data. Hence,
we check the artifacts in the generated maps.

4.4.2.1 Data Coverage

Figure 4.12 shows the maps generated from the Chicago dataset by different algorithms.
We present the generated maps of the other datasets in Appendix B. Figure 4.12(d) and
Figure 4.12(f) include obviously redundant edges around the same path, which results
to large number of edges as listed in Table 4.5. Figure 4.12(b) has broken edges in the
very right side. Compared with the other maps, Figures 4.12(c) - 4.12(e) have very
low data coverage where only a few edges are produced. Figure 4.12(g) misses the
left bottom and left up paths, which is also common in some other maps. Wang et al.
(Figure 4.12(h)) generate a quite similar result to ours, but the map still does not cover
all the paths, besides, the map complexity is very high. Our framework (Figure 4.12(i))
has the advantage of good coverage of all the paths and low map complexity.

4.4.2.2 Artifacts Existence

According to [Duran 2020], we analyze the 10 types of common artifacts (numbered
by [C1] - [C10]) and 7 algorithmic-specific artifacts (numbered by [S1] - [S7]). In both
cases, we present the maps generated by our framework and by Wang et al.. Besides, for
each common artifact, we only take the best map in [Duran 2020]. For the algorithmic-
specific artifacts, we show the examples in [Duran 2020]. Figure 4.13 to Figure 4.29
show artifacts on maps. In each figure, the first, second and third results are from [Duran
2020], by Wang et al., and by our three-step framework, respectively.

In Figure 4.13, artifact [C1] compares if the algorithm produces a y-shape map at
narrow curves. Both Figure 4.13(b) and Figure 4.13(c) have this problem, while the
map in Figure 4.13(c) is better concerning the similarity with the groundtruth.

In Figure 4.14, artifact [C2] considers the shortcuts at intersections. Although our
result (Figure 4.14(c)) does not approximate the bifurcation shape as well as Figure
4.14(a), the map has the bifurcation and is simpler and more schematic. Moreover, our
map is better than that in Figure 4.14(b).

Artifact [C3], shown in Figure 4.15, checks the artificial bridges appearing between
parallel close paths. Although the map in Figure 4.15(a) does not include any bridge,
the algorithm wrongly merges the parallel paths. Contrarily, the map in Figure 4.15(b)
shows two irregular paths joined with a nonexistent bridge. By comparison, our frame-
work (Figure 4.15(c)) generates the two parallel paths accurately, while also includes
two bridges.

64
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

(a) Chicago data (b) By Ahmed and Wenk (c) By Biagioni and Eriksson

(d) By Cao and Krumm (e) By Davies et al. (f) By Edelkamp and Schrödl

(g) By Karagiorgou and Pfoser (h) By Wang et al. (i) By us

Figure 4.12: Plots of generated maps (black) on the groundtruth (gray) of Chicago
datasets (blue) by different methods.

(a) By Ahmed and Wenk (b) By Wang et al. (c) By us

Figure 4.13: Plots of artifact [C1] (merged narrow curves) in generated maps.

4.4. Results and Discussion 65

(a) By Cao and Krumm (b) By wang et al. (c) By us

Figure 4.14: Plots of artifact [C2] (shortcuts at intersections) in generated maps.

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.15: Plots of artifact [C3] (artificial bridges) in generated maps.

In Figure 4.16, artifact [C4] concerns the merging of parallel paths. By compari-
son, we generate the best map (Figure 4.16(c)). Figure 4.16(b) shows two zigzagging
paths with several artificial bridges. Figure 4.16(a) identifies the two parallel paths but
includes redundant edges in the upper path, and the map has a wrong triangle shape.

(a) By Cao and Krumm (b) By Wang et al. (c) By us

Figure 4.16: Plots of artifact [C4] (merged parallel paths) in generated maps.

Artifact [C5] evaluates if the algorithm generates duplications for one path. In Fig-
ure 4.17(c), all the algorithms do not have this problem. However, our framework is
the only method that reports the perpendicular downwards path. This path has a low
frequency as only one trajectory follows it.

In the area of Figure 4.18(c), the trajectories go back and forth on a single path. Arti-
fact [C6] detects if the algorithm produces duplicated paths. None of the three methods
has this problem. However, our framework generates the simplest map (Figure 4.18(c)),
although the path is a little bit straightened. By contrast, the other two algorithms create
redundant edges to represent the path.

In an area where multiple paths crossing each other, artifact [C7] (Figure 4.19)

66
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.17: Plots of artifact [C5] (duplicated paths) in generated maps.

(a) By Davies et al. (b) By Wang et al. (c) By us

Figure 4.18: Plots of artifact [C6] (duplicated back-and-forth paths) in generated maps.

considers the excessive number of vertices and edges. By comparison, the map in Figure
4.19(a) has too many short paths that do not exist. Besides, it includes paths that are
separated from the other paths and misses some infrequency paths that are followed by
a few number of trajectories. Thus, this map is the worst. Compared with the ground
truth, Wang et al. generates the best map. The map by our framework (Figure 4.19(c))
maintains the paths but includes some short nonexistent paths.

(a) By Davies et al. (b) By Wang et al. (c) By us

Figure 4.19: Plots of artifact [C7] (excessive number of connections in area) in gener-
ated maps.

In the case of artifact [C8], Figure 4.20 shows a simple path. Concerning generating
a single path, all these three algorithms perform well. However, the map in Figure
4.20(a) has some zigzagging shape on the right side, and this issue happens along the
whole path (Figure 4.20(b)) produced by Wang et al.. By comparison, our framework
obtains the most schematic and accurate map 4.20(c).

In Figure 4.21, artifact [C9] focuses on the missing parts of the single path. All the
maps cover the input data. However, the one in Figure 4.21(b) has artificial zigzagging

4.4. Results and Discussion 67

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.20: Plots of artifact [C8] (excessive number of connections along single path)
in generated maps.

shapes, which greatly increases the map complexity.

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.21: Plots of artifact [C9] (fragmented paths) in generated maps.

In Figure 4.22, artifact [C10] detects the generated nonexistent paths. Due to the
complicated trajectory data, none of the three algorithms works perfectly. The map in
Figure 4.22(a) captures the main paths but includes too many wrong paths. Wang et
al. merge the narrow curves and miss the path on the top left (Figure 4.22(b)). Figure
4.22(c) also merges the narrow curves but is slightly better. However, our map reports
the main road and also some existing shortcuts present in the input data. Unfortunately,
the central shortcut seems to be unreal.

(a) By Cao and Krumm (b) By Wang et al. (c) By us

Figure 4.22: Plots of artifact [C10] (nonexistent paths created) in generated maps.

Artifact [S1] (Figure 4.23) concerns if the algorithm misses a path. By comparison,
our framework performs the best. Figure 4.23(a) ignores the vertical path in the cen-
ter and a part of the top horizontal path. Figure 4.23(b) does include the whole top
horizontal path and has zigzagging shapes along the paths.

68
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

(a) By Ahmed and Wenk (b) By Wang et al. (c) By us

Figure 4.23: Plots of artifact [S1] (missed set of trajectories) in generated maps.

Artifact [S2] (Figure 4.24) considers a specific turning area. The map (Figure 4.24(a))
by Cao and Krum has redundant vertices and edges at the curvature, and the positions
are inaccurate. In Figure 4.24(b), the position of the generated curvature is far from the
groundtruth, and the map has the zigzagging shapes. By comparison, our framework
gives the best result of a simple map and a well-kept curvature.

(a) By Cao and Krumm (b) By Wang et al. (c) By us

Figure 4.24: Plots of artifact [S2] (reduced curvature) in generated maps.

In artifact [S3] (Figure 4.25), a trajectory under the road is far from the other tra-
jectories. In this case, Figure 4.25(a) includes a hair along the path. The algorithms by
Wang et al. and our framework avoid this issue, however, the map in Figure 4.25(b)
also has the zigzagging shapes.

(a) By Cao and Krumm (b) By Wang et al. (c) By us

Figure 4.25: Plots of artifact [S3] (hair in off-track trajectories) in generated maps.

Artifact [S4] (Figure 4.26) checks the alias in generated maps. The alias also refers
to a zigzagging shape. This is common in density-based algorithms because of the ir-
regular density distribution. Both Figure 4.26(a) and Figure 4.26(b) have this problem.
Our framework generates the most accurate and smooth map (Figure 4.26(c)).

4.4. Results and Discussion 69

(a) By Davies et al. (b) By Wang et al. (c) By us

Figure 4.26: Plots of artifact [S4] (aliased generated map) in generated maps.

In artifact [S5] (Figure 4.27), the map by Cao and Krumm includes too many aligned
vertices (Figure 4.27(a)). By comparison, Figure 4.27(b) and Figure 4.27(c) show better
results, and our framework generates the best map concerning the similarity with the
groundtruth.

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.27: Plots of artifact [S5] (too many aligned vertices) in generated maps.

In artifact [S6] (Figure 4.28), due to the noise in data and complicated zigzagging
paths, all the algorithms have the issue of over-simplifying. However, the maps in Figure
4.28(a) and Figure 4.28(b) are even worse considering either the redundant vertices
and edges or the nonexistent paths.

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.28: Plots of artifact [S6] (winding path simplified) in generated maps.

Artifact [S7] (Figure 4.29) checks if the algorithm ignores some paths. By contrast,
Figure 4.29(a) shows the worst result as the map only maintains a small part. Wang et
al. give a better map but still miss the paths on the right side. Our framework produces
the best map that includes all the paths followed by trajectories.

The comparison of artifacts gives a good general idea of the behavior of our frame-

70
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

(a) By Karagiorgou and Pfoser (b) By Wang et al. (c) By us

Figure 4.29: Plots of artifact [S7] in generated maps (missing trajectories end).

work. Overall, we can say that our algorithm behaves really well in the simple and most
of the complicated scenarios.

4.4.3 Map Comparison by Quantitative Evaluation

In this section, we first present the map complexity according to [Ahmed 2015c], then
give the comparison by two distance measures.

4.4.3.1 Map Complexity

The map complexity refers to the number of vertices and edges in map, and the total
length of edges. The length of an edge is the Euclidean distance between the two vertices
defining the edge. Table 4.5 and Table 4.6 show the map complexities by different
algorithms of urban and hiking datasets, respectively.

Concerning the number of vertices and edges, our framework generates less com-
plex graphs than most algorithms, while Wang et al. and Davies produce the most com-
plex maps for urban and hiking data, respectively. In comparison to map length, the
result varies a lot by different algorithms, especially with hiking datasets. The reason
of the differences is based on how the algorithms proceed.

In the intersection-linking-based [Karagiorgou 2012] and point-clustering-based
[Edelkamp 2003] algorithms, the first step identifies intersections or vertices from all
the points, then the second step connects them by associating with each trajectory.
These methods always determine redundant vertices [Duran 2020]. The incremental
methods [Ahmed 2012, Cao 2009] merge a trajectory to an original empty map incre-
mentally. If a part of a trajectory is different from the existed map, the algorithms add
this part as a new edge. Due to the noise in data, the trajectories following the same road
are not the same, so the algorithms create many similar edges. The noise in data also af-
fects the density-based algorithms [Davies 2006, Wang 2015], the algorithms produce
zigzagging shapes that increase the map length. As described in Section 4.4.2.2, the
examples of artifacts also show the problem of redundant vertices and edges.

4.4.3.2 Two Distance Measures

Two distance measures presented in [Ahmed 2015c], the path-based and directed Haus-
dorff, are used to compare maps. These measures are used the compute the distance

4.4. Results and Discussion 71

Table 4.5: Map complexity of urban data.
Methods

Vertex
Amount

Edge
Amount

Length
(km)

Athens small
Ahmed 344 378 35
Biagioni 391 398 22

Cao 20 14 3
Davies 209 227 2

Edelkamp 526 1037 197
Karagiorgou 660 637 35

Wang 7104 8260 44
Our 451 509 40

Athens large
Ahmed 7067 7960 1358

Karagiorgou 6584 5280 252
Wang 56456 80377 430
Our 4571 5333 430

Chicago
Ahmed 1195 1286 34
Biagioni 303 322 24

Cao 2092 2948 78
Davies 1277 1310 14

Edelkamp 828 1247 83
Karagiorgou 596 558 26

Wang 3234 3549 36
Our 293 338 35

Berlin
Ahmed 1322 1567 164

Karagiorgou 2542 2262 161
Wang 20747 25711 277
Our 1650 1867 160

Table 4.6: Map complexity of hiking data.
Methods

Vertex
Amount

Edge
Amount

Length
(km)

Delta
Ahmed 2362 2459 395

Cao 2667 2436 1810
Davies 10229 10197 45

Edelkamp 1028 1756 11029
Karagiorgou 6787 4817 446

Wang 4994 5467 19
Our 457 508 20

Aiguamolls
Ahmed 13454 13516 2179

Cao 10621 5308 2208
Davies 39786 39206 121

Edelkamp 4147 4918 40849
Karagiorgou 21690 21810 1990

Wang 22228 24258 131
Our 1589 1719 115

Garraf
Ahmed 7827 7898 2005

Cao 13565 8172 4345
Davies 88009 87162 363

Edelkamp 5295 9320 30763
Karagiorgou 36487 36574 2229

Wang 7922 8720 95
Our 1415 1496 69

Montseny
Ahmed 8893 8940 1721

Cao 19323 11625 2809
Davies 83025 81783 214

Edelkamp 4610 7774 9661
Karagiorgou 24329 24492 4478

Wang 17519 19143 103
Our 1754 1877 86

from the groundtruth and the generated map. Since the groundthruth is only available
of urban data, we only consider the urban datasets in this comparison. The distance
measures for our map are computed by using the available implementation of [Pfoser
2016]. Table 4.7 and Table 4.8 list the results. A small distance value indicates that the
generated map is similar with the groundtruth, and hence good performance. The maps
of Athens large, Chicago and Berlin generated by Wang et al. have too many edges, and
the path-based distance cannot give a result after one week. According to the statement
in [Ahmed 2015c], the algorithms by Karagiorgou and Pfoser [Karagiorgou 2012] and
by Biagioni and Eriksson [Biagioni 2012b] perform better than the others. By compari-
son of the results in Table 4.7, the result of our framework does not seem to be as good
as these two algorithms but is better than the other methods. On the other hand, ac-
cording to Table 4.8 our algorithm behaves better with the directed Hausdorff distance
measure.

For both the path-based and the discrete Hausdorff distance, the reason why our
framework obtains these not very good evaluations is twofold. First, the number of
vertices used to define the map influences these two distance measures (the Fréchet
distance is used to compare paths in the path-based distance). As shown in Figure 4.30,

72
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

Table 4.7: Comparison of path-based distance measure of urban data
Methods

Path-based Distance(m)
min max median average 2% 5% 10% 15%

Athens small
Ahmed 9 224 45 52 101 101 81 72
Biagioni 5 73 35 36 67 66 61 57

Cao The map is too small to perform this measure.
Davies 4 38 11 11 38 18 14 14

Edelkamp 2 229 36 39 89 72 68 61
Karagiorgou 7 229 32 38 113 68 59 57

Wang 8 304 117 127 247 229 222 208
Our 5 229 36 42 95 75 73 65

Athens large
Ahmed 7 849 70 85 250 164 132 114

Karagiorgou 2 175 25 32 109 80 63 53
Wang The map is too large to perform this measure.
Our 2 465 35 40 100 82 69 61

Chicago
Ahmed 7 201 35 42 127 100 85 76
Biagioni 3 71 15 18 71 38 27 26

Cao 1 126 24 27 79 61 49 42
Davies 2 92 12 14 57 24 22 21

Edelkamp 1 205 29 37 99 84 72 66
Karagiorgou 3 89 15 23 72 72 65 51

Wang The map is too large to perform this measure.
Our 4 109 24 32 100 81 70 64

Berlin
Ahmed 9 540 66 74 207 147 120 107

Karagiorgou 4 306 28 37 120 85 65 52
Wang The map is too large to perform this measure.
Our 5 395 32 39 104 81 67 60

it contains two simple trajectories, the black trajectory P and the blue trajectory Q. Q
draws a straight line that is defined by 2 points in Figure 4.30(a) and 3 points in Figure
4.30(b). The Fréchet and Hausdorff distances between Q and P are given by the length
of the dotted-green line segments. Hence, using three points to represent the straight
line drawn by Q benefits these distance measures. Indeed, having a more schematic rep-
resentation (Figure 4.30(a)) is better in complexity. However, using redundant points
(Figure 4.30(b)) is better for any of these distance measures (it wouldn’t happen if
these distances were computed in their continuous version). Our method tries to obtain
the simplest map representing the original data as schematically as possible, so we re-
move the expendable points. However, this is penalized by the distance measures. If we
compute the path-based and Hausdorff distances before the Douglas-Peucker simplifi-
cation, our map is better evaluated. Second, these two measures evaluate the similarity
between the generated map and the groundtruth without taking into account whether
they cover the same area or not. Smaller maps containing fewer paths will easily be
better evaluated. Indeed identifying paths that exist in the input data but do not appear
in the groundtruth would completely degrade the result. Since our algorithm tries to
keep all the paths followed by trajectory data including the low-frequency trajectories,
some of these paths are kept, but the other algorithms regard it as unimportant and
eliminate it.

4.4. Results and Discussion 73

Table 4.8: Comparison of directed Hausdorff distance measure of urban data.
Methods

Directed Hausdorff Distance(m)
min max median average 2% 5% 10% 15%

Athens small
Ahmed 1 82 25 26 82 54 46 40
Biagioni 3 74 19 20 47 43 31 31

Cao 5 25 13 13 25 25 25 22
Davies 2 13 7 6 13 13 13 11

Edelkamp 1 86 18 21 63 50 42 37
Karagiorgou 2 84 14 17 54 40 33 30

Wang 1 106 9 12 56 38 26 21
Our 1 79 14 18 54 44 33 29

Athens large
Ahmed 1 269 30 33 84 67 56 50

Karagiorgou 1 200 10 13 46 35 26 22
Wang 1 1143 7 12 47 28 20 17
Our 1 130 15 18 51 41 33 29

Chicago
Ahmed 1 81 14 19 72 59 43 35
Biagioni 2 53 9 11 29 25 23 17

Cao 1 78 9 12 44 35 28 25
Davies 2 20 8 7 20 14 13 12

Edelkamp 1 93 8 13 57 48 35 25
Karagiorgou 1 48 7 8 41 23 15 13

Wang 1 111 6 10 63 38 17 13
Our 1 73 9 13 50 38 25 20

Berlin
Ahmed 1 219 30 33 95 70 60 53

Karagiorgou 1 232 14 18 59 42 34 30
Wang 1 334 14 25 141 111 61 32
Our 1 162 14 18 51 42 34 29

4.4.4 Runtime of Our Framework

In this section, to see how much the parallelization speeds up computation, we run our
framework both in parallel and with one core. Table 4.9 and Table 4.10 present the
runtime of urban and hiking datasets, respectively. In the case of urban data, running
in parallel improves the speed by 7 times on average, and 5 times in hiking data.

Table 4.9: Runtime (second) of urban
datasets.

Datasets
Runtime

(with one core)
Runtime

(in parallel)
Athens small 26.81 4.22
Athens large 595.28 115.70

Chicago 119.13 10.32
Berlin 1253.13 110.01

Average 498.59 60.06

Table 4.10: Runtime (second) of hiking
datasets.

Datasets
Runtime

(with one core)
Runtime

(in parallel)
Delta 19.67 6.29

Aiguamolls 38.34 18.17
Garraf 259.67 30.43

Montseny 168.69 29.52
Average 121.59 21.10

4.4.5 Summary

To sum up, concerning the data coverage and artifacts, our framework performs the
best. According to the examples in artifacts, there are two weak points of our frame-
work. First, in the case of narrow curves, if the trajectories are noisy, the algorithm tends

74
Chapter 4. Map Construction From GPS Trajectory Data by a Three-Step

Framework

p1

p2

p3

q1 q2

(a) The blue trajectory has 2 points.

p1

p2

p3

q1 q3q2

(b) The blue trajectory has 3 points.

Figure 4.30: Distances between two trajectories with different number of points. The
blue trajectory has (a) 2 and (b) 3 points.

to merge the paths and produces y-shape. The examples are in Figure 4.13(c), Figure
4.14(c), Figure 4.19(c), Figure 4.22(c), Figure 4.23(c) and Figure 4.28(c). Second, our
framework generates some artificial bridges. The examples are in Figure 4.15(c), Fig-
ure 4.17(c) Figure 4.18(c) and Figure 4.19(c). The reason for both issues is that the
noise degrades the accuracy of the density surface. In terms of the map complexity,
our framework generates the simplest maps for most datasets. The other algorithms
produce redundant vertices and edges either by wrong identification of vertices or by
zigzagging shapes. Considering the evaluation based on two distance measures, our re-
sult is competitive. Besides, as explained in Section 4.4.3.2, keeping infrequent paths
followed by a few trajectories in the map degrades the evaluation but is meaningful.
Also, as shown in the last section, as a parallelizable framework, the performing of map
construction is really fast.

4.5 Conclusions

In this work, we have presented a three-step framework that is fast, robust and par-
allelizable to extract a route graph from GPS trajectories. The framework combines a
density map smoothed by a Gaussian filter to reduce noise; the Slide tool to adjust tra-
jectories to the higher density zones making the density surface more compact; and a
thinning algorithm followed by a Douglas-Peucker simplification algorithm to construct
the route graph that records the transited zones. Besides, we have proposed two solu-
tions to solve some defects of Slide, it has been demonstrated to be effective. Overall,
we obtain a good schematic representation of the initial data with almost no redundant
edges, reporting both frequent and infrequent paths.

For the large-scale GPS data, the framework would face the limitation of computer
performance and computing speed. Using the weight of edges to visualize the generated
map and to remove possible wrong routes are also helpful to improve the quality of the
generated maps. In the next chapter, new proposals will face these issues.

CHAPTER 5

Improvements on the Three-Step
Map Construction Framework

Contents
5.1 Introduction . 75

5.2 Related Work . 77

5.3 The Split-and-Merge Strategy . 77

5.3.1 Geographical Area Splitting . 77

5.3.2 Boundaries Fixing and Maps Merging 79

5.4 Edge Weight . 80

5.5 Results and Discussion . 81

5.5.1 Performance of the Split-and-Merge Strategy 81

5.5.2 Applications of Edge Weight . 83

5.5.3 Summary . 84

5.6 Conclusions . 86

5.1 Introduction

Based on our three-step framework for generating maps from GPS data (see Chapter 4
for more details), we propose to improve its practicality and performance in two as-
pects. The first is utilizing a split-and-merge strategy to deal with the challenges when
processing a large amount of data. The second is taking advantage of the knowledge
of how many trajectories are represented by an edge to visualize the map and improve
the map quality.

Many map construction approaches have been proposed in the literature. Undoubt-
edly, most algorithms need extensive experiments to produce high-quality maps, while
is time-consuming. For example, as claimed by Biagioni and Eriksson in a survey [Bia-
gioni 2012a], for a small dataset with 899 traces, the Cao algorithm [Cao 2009] takes
2.5 days. In another survey [Ahmed 2015c] by Ahmed et al., for a large Berlin dataset
which occupies 6km × 6km but has very dense trajectories, the runtimes of different
algorithms range from 2 hours to 4 days. With the widespread GPS devices, a large
amount of trajectory data from a big area are daily collected. This brings two chal-
lenges to perform a map construction algorithm. The first challenge is to handle a large

76 Chapter 5. Improvements on the Three-Step Map Construction Framework

number of trajectories with an acceptable computational cost. Second, performing an
algorithm needs to set memories for different variables. For example, for the density-
based algorithm, the density distribution is an important element to be computed and
stored. If the geographical area is very large and not sparse which requires a big matrix
to save the information, the memory capacity of computes will be a key factor to run
the algorithm. To overcome the limitations of storage and computational cost, we pro-
pose a split-and-merge strategy to improve the map construction algorithm. Firstly, the
geographical area is divided into small regions with less amount of trajectories, then
the map construction algorithm is performed on each region individually, Finally, the
graphs from different regions are merged to generate a whole map.

The map generated from a set of trajectories helps to understand the behavior of
moving objects and update the existing maps, while it is always not the same with
the groundtruth since the quantity of data is limited and the trajectories have noise.
Besides, the generated map usually has the wrong edges because of the mechanism of
algorithms or noise in data. Some algorithms simply remove the edges if the density dis-
tribution of data is low [Wang 2015]. In this chapter, we propose to compute the edge
weight to visualize the generated map, which gives insights to the popular and rare
routes, and to remove possible wrong edges. Generally, the generated wrong edges are
usually short and have few numbers of trajectories passing through, for instance, the
artificial bridges presented in Section 4.4.2.2. Thus, we take into account two factors,
length and frequency. The length of an edge is the Euclidean distance between the two
vertices of this edge. The frequency of an edge is the number of trajectories crossing
through this edge. Intuitively, to obtain the frequencies of edges, each trajectory is re-
quired to be mapped into the road graph. Directly finding the closest edge for each line
segment of a trajectory based on a distance measure is not efficient because of two rea-
sons. First, computing the distance accurately between line segment and edge asks for
a good distance measure, which is still an open challenge for similarity measurement
as explained in Section 2.2.2. However, measuring the distance between two points is
easier. Second, the trajectory data may be noisy due to local shape change from inaccu-
rate GPS receiver or signal errors, which would cause errors in finding corresponding
edges. For example, Figure 5.1 shows a simple graph with 2 parallel roads including 9
vertices from v1 to v9 (v1, v2, . . . , v9 ∈ V) and 7 edges from e1 to e7 (e1, e2, . . . , e7 ∈ E),
and a trajectory visualized in blue. Clearly, the trajectory has the second part in gray
area close to e2, and the final mapping would be

�

e4, e2, e6, e7

�

with respect to the spa-
tial similarity. According to the internal homogeneity, this trajectory should follow the
road below, thus adding weight to e2 instead of e3 is not reasonable. Benefiting from
the Slide tool, we make use of the adjusted trajectories to find the mapping between
trajectories and edges.

The outline of this chapter is organized as follows. Section 5.2 reviews the map con-
struction algorithms and summarizes the discussion on runtime. Section 5.3 describes
the proposed split-and-merge strategy in detail. Section 5.4 explains the proposal of
computing the edge weight. Section 5.5 presents experiments and comparisons. Sec-
tion 5.6 discusses the conclusions and future work.

5.2. Related Work 77

v1 v2 v3 v4

v5 v6 v7 v8 v9

e1 e2 e3

e4 e5 e6 e7

Figure 5.1: Example of local noise in trajectory influences the mapping result.

5.2 Related Work

Map construction focuses on generating a route map from a set of GPS data. Many
approaches have been proposed and discussed [Biagioni 2012a, Ahmed 2015c], and
several of them have been presented in Chapter 4. The algorithms are mainly classified
into three categories: incremental track insertion, intersection linking, and point clus-
tering. However, most of them do not consider the size of data which influences the
computing time or visualize the generated map by giving insights into road popularity.
Table 5.1 gives an overview of several approaches and their description of data, run-
time, and the visualization. It is clear that only a few algorithms include the runtime
discussion and all of them plot the generated map only to show the roads (we call it
plain visualization).

5.3 The Split-and-Merge Strategy

In this section, we describe the proposed split-and-merge strategy in detail. At the be-
ginning, proceeding similarly to Section 4.3.1 in Chapter 4, the GPS data go through a
pre-processing to remove the obvious noise. First, the geographical area is divided into
different regions with small overlapping zones (Section 5.3.1). Then, the three-step
framework is applied to each region to generate the respective route graphs. Finally,
the generated maps are merged to produce a map for the whole area (Section 5.3.2).
The edges and vertices of the overlapping areas are fixed so that they summarize the
information obtained in the overlapped area of the different generated maps.

5.3.1 Geographical Area Splitting

The first step is to evenly split the geographical area into small regions. To keep the
consistency of the graph at the splitting boundaries, we enlarge the adjacent regions by
an overlapping zone. Figure 5.2 shows a simple example where the geographical area
is split into two regions (region 1 and region 2) by a vertical splitting line, the midline
(black dotted). To have an overlapping zone, the splitting boundary (blue dotted line)
of the region 1 is placed at a certain distance to the right of the splitting line, and the
splitting boundary (red dotted line) of region 2 is located at the same distance to the
left of the splitting line. The overlapping zone (gray shadow) is the area between two

78 Chapter 5. Improvements on the Three-Step Map Construction Framework

Table 5.1: Overview of map construction algorithms that include description of data
and runtime.

Reference
Dataset Give

Runtime
Result
DisplayName Area Size Track Amount

[Edelkamp 2003] Palo Alto 66 roads unknown no plain
[Schroedl 2004] Palo Alto 66 roads unknown no plain
[Bruntrup 2005] no 3075km of roads 107 no plain
[Cao 2009] no unknown unknown no plain

[Niehöfer 2009] no unknown 4 no plain
[Chen 2010] Moscow unknown 5000 no plain

[Fathi 2010]
Microsoft Shuttles

King County
Paratransit Vehicles

unknown unknown no plain

[Agamennoni 2011] Western Australia 3.5km× 10.5km 400 yes plain
[Karagiorgou 2012] Athens large 12km× 14km 511 no plain

[Li 2012] no
39◦12′14”− 42◦8′52”N

112◦38′55”− 117◦3′30”E 893493 no plain

[Ahmed 2012] Berlin Taxi unknown 3237 no plain
[Biagioni 2012a] Chicago 3.4km× 2.6km 889 yes plain
[Biagioni 2012b] Chicago 3.4km× 2.6km 889 no plain

[Karagiorgou 2013]
Berlin
Vienna
Athens

unknown unknown no plain

[Wu 2013] Shenyang unknown 2827 no plain
[Liu 2012b] Shanghai Taxi 14.5km× 14km unknown no plain

[Ahmed 2015d]

Athens large
Athens small

Berlin
Chicago

12km× 14km
2.6km× 6km
6km× 6km

3.8km× 2.4km

511
129

26831
889

little plain

[Li 2016]
Chicago

Porto Taxi

3.8km× 2.4km
8.612244-8.588826 longitude,
41.13711-41.158098 latitude

889
1000 no plain

[Tang 2017]
Qingshan Taxi
Zhuankou Taxi unknown

9089
3765 no plain

[Li 2017]
Chicago

Chengdu Taxi
3.8km× 2.4km
3.4km× 2.6km

889
2371 no plain

[Stanojevic 2018]
Doha
UIC

6km× 8km
2km× 3km unknown yes plain

[Zheng 2018] Wuhan Taxi unknown 252677 no plain

[Huang 2018]

Chicago
Athens small

Berlin
Wuhan Taxi

3.8km× 2.4km
2.6km× 6km
6km× 6km
3km× 3km

889
129

26831
4885

no plain

splitting boundaries. The width of the overlapping zone depends on τ, the cell size of
the grid used to compute the density surface. According to our experimentation, this
zone should occupy 30 grid cells, i.e. 30 pixels. Consequently, the splitting boundaries
are obtained by translating the splitting line 15τmeters in the respective direction. The
example splits the original region by a single splitting line. If more than one line is used,
we should proceed similarly to each of them.

The GPS trajectories are then split according to the splitting boundaries. Each trajec-
tory crossing the splitting boundary is cut into sub-trajectories. The intersection points
of the trajectory and the splitting boundary, together with the trajectory endpoints, are
the sub-trajectories endpoints. These sub-trajectories maintain the shape of the original
trajectory, and each of them is entirely contained in a region of the split original area.

5.3. The Split-and-Merge Strategy 79

Region 1

Region 2

Splitting boundary of Region 1

Overlapping

Midline

Splitting boundary of Region 2

zone

Figure 5.2: Illustration of splitting an geographical area into two regions.

Next, for each region, we apply the three-step framework of map construction de-
fined in Chapter 4 to obtain a map. The defined sub-trajectories are considered as inde-
pendent trajectories. After obtaining the map of each region, producing the whole final
map requires merging the individual maps as is explained in the next section.

5.3.2 Boundaries Fixing and Maps Merging

In the merging step, we cut off the obtained maps along the splitting line (midline in
Figure 5.2, red dashed line in Figure 5.3) and add new vertices on this splitting line to
join the edges of the original map that intersect the splitting line.

Note that in the way we split the original data, we have doubly processed all the
sub-trajectories contained in the overlapping zone. However, these sub-trajectories are
not adjusted in the same way when dealing with each region. This is because when
cutting the original trajectories, we have added endpoints and as explained in Section
4.3.3, Slide works differently on interior points and endpoints. As a result, trajectories
are not adjusted equally, then the re-computed density distribution changes slightly.
This directly influences the skeleton image. Thus, simply cutting the graphs along the
splitting line, adding vertices at the end of the edges and combining the graphs ac-
cording to the new vertices is insufficient. This does not ensure the connectivity and
consistency of the global map in the splitting line. Next, we explain how to fix the map
in this splitting line, and we call this fix boundaries for simplicity.

To fix the boundaries, we use the maps in the overlapping zones. Take Figure 5.2 as
an example, we take the map of region 1 in the left 15τ-meter-width area and the map
of region 2 in the right 15τ-meter-width area of the overlapping zone, then combine
them as the initial map of the overlapping zone. Figure 5.3 gives an example of fix-
ing boundaries using the Athens small dataset (please refer to [Ahmed 2015c] for more
details). The map in Figure 5.3(a) is generated by our framework without the split-and-
merge strategy. By comparison, the edges from different regions in Figure 5.3(b) are
not correctly connected but are very close. Thus, we compute the intersections between
the splitting line and the maps, then merge close-enough intersections to define new
vertices. If the intersections are at an Euclidean distance smaller than a threshold, λdis,

80 Chapter 5. Improvements on the Three-Step Map Construction Framework

we use a new vertex located at the average position to represent these points. Finally,
the edges are updated accordingly by replacing the intersection points with the corre-
sponding new vertices. The fixed map in Figure 5.3(c) is almost the same with that in
Figure 5.3(a).

(a) No splitting (b) Before fixing (c) After fixing

Figure 5.3: The graph (in red) in the binary image of the overlapping zone. The midline
is in blue.

Since we use the overlapping zone, the change of the density surface in the over-
lapping zone is very slight (see Figure 5.3). According to this, we set λdis to be related
to σ. By extensive experiments, we found that λdis = 3τσ achieves good results.

5.4 Edge Weight

The edge weight can be used in the visualization of a route graph, which gives insights
into the popular and rare zones. Besides, utilizing the edge weight helps to remove
possible wrong edges that are usually short and have few numbers of trajectories pass-
ing through. We define the weight of an edge as a pair of values based on two factors:
frequency and length. The frequency of an edge is the number of trajectories passing
through it. We compute it by counting the number of trajectories mapped to this edge.
The length of an edge is the Euclidean distance between its two vertices. In the follow-
ing, we explain how to do the mapping first.

The adjusted trajectories by Slide are mapped to edges for further computing the
edge frequency. When recomputing the density surface, the adjusted trajectories are
mapped to the grid where each cell corresponds to a pixel in the skeleton image. We take
advantage of this information to find the closest pixels from the skeleton image for each
trajectory point. Such a pixel corresponds to a map edge that is initially associated with
the trajectory. Around the map vertices with degree bigger than two, wrong mappings
usually happen. Figure 5.4 shows an example of mapping a trajectory (in blue) from
the Athens small dataset. In Figure 5.4(b), the trajectory is initially mapped to the red
edges. Note that this mapping is not correct, the top-right red edge should not appear.
It happens because some points of the trajectory near the intersection are closer to this
edge. To solve this problem, we remove the edges in which the trajectory occupies less

5.5. Results and Discussion 81

than half of the pixels defining the edge. It is done by extracting information from the
skeleton image. Hence, after removing these underused edges, the whole trajectory is
mapped to a sequence of edges. Figure 5.4(c) shows that the final result of the mapping
is accurate. The distance between pixels is measured by Euclidean distance. To speed the
computation, the Euclidean distance transform [Maurer 2003] is applied to the skeleton
image. For each pixel, the distance transform assigns the nearest nonzero pixel.

(a) Example trajectory (b) First mapping of edges (c) Final result with pruning

Figure 5.4: Plots of mapping a trajectory (in blue) to the route graph.

The advantage of this method is three-fold. First, the inputs (BW , codeT and links)
used for mapping have been produced along with the map construction, which saves
time from data preparation. Second, the adjusted trajectory by Slide is used instead of
the original one, which degrades the influence of noise and makes the mapping more
accurate. Third, the similarity between the trajectory and the graph is computed by the
distance between pixels which is more simple than measuring between line segments,
and avoids the difficulty of selecting a distance measure.

5.5 Results and Discussion

This section presents the experimental results. We apply the same datasets used in Chap-
ter 4 to carry out the experiments. First, we check the performance of the split-and-
merge strategy. Then, we utilize the edge weight to visualize and filter the map. Finally,
we give a summary of the experiments.

All the experiments are conducted by MATLAB 2018a software running on a Debian
GNU/Linux machine with AMD Ryzen Threadripper 1950X 16-Core Processor and 32
GB RAM.

5.5.1 Performance of the Split-and-Merge Strategy

In this section, we compare the similarity between the map generated by the three-step
framework and by adding the split-and-merge strategy. First, we do a visual inspection
on the generated maps. Second, we give the quantitative evaluation, including map
complexity, runtime, and the directed Hausdorff distance.

5.5.1.1 Visual Inspection on the Generated Maps

To perform the split-and-merge framework, we split all the datasets split into two re-
gions like Figure 5.2 (see Appendix C.1 for more details). Although splitting an area into
more regions would save time for the map construction of each region, it would increase

82 Chapter 5. Improvements on the Three-Step Map Construction Framework

the cost of the merging step and induce errors in the overlapping zone. Hereafter, we use
“single” to indicate performing the three-step framework on the whole dataset directly,
and “split-and-merge” to mean performing the map construction with split-and-merge
strategy by splitting the dataset into two small regions. Figure 5.5 shows the generated
maps of the Athens large and Garraf datasets (see Appendix C.2 for the other datasets).
The maps by single and split-and-merge are red and blue, respectively. Besides, a zoom
in view of the overlapping zone with the midline in red is shown on the right side.

By visual inspection, the generated maps by splitting and no splitting are very similar
as they cover each other in most parts. Comparing the maps in the overlapping zone,
we can see that the edges have difference in the Garraf dataset (Figure 5.5(b)). The
reason is that in the overlapping zone, the trajectories are complicated, resulting in a
complex map. In this case, when generating the maps for each region, the slight change
of the density surface makes a greater difference on the edges.

(a) Athens large (b) Montseny

Figure 5.5: Plots of generated maps of the Athens large and Garraf datasets.

5.5.1.2 Quantitative Evaluation

In this section, we evaluate the similarity of the maps generated by single and split-and-
merge based on quantitative measures.

Table 5.2 gives the comparison on map complexity and runtime. Due to the split-
ting, the number of vertices and edges increases but the map length does not change
a lot. In general, the split-and-merge strategy saves time. Note that the running times
of Athens small, Chicago and Berlin dataset slightly increases. There are two reasons
for this raise in time. First, for simple datasets like Athens small, generating the maps
without splitting is fast enough, and splitting and merging will take additional time and
make changes in the map. Second, fixing the boundaries takes more time if the graph
in the overlapping zone is more complicated. Since the trajectories in Berlin dataset are
densely distributed especially in the overlapping zone, both the splitting and fixing take
a long time. This inspires us to split the area in a more clever way so that the number
of trajectories intersecting the line is not that large.

Based on the directed Hausdorff distance, Table 5.3 compares the maps by single
and by split-and-merge with the groundtruth on four urban datasets. Concerning that

5.5. Results and Discussion 83

Table 5.2: Comparison of map complexity and runtime.
Methods Vertex Amount Edge Amount Length (km) Runtime(second)

Athens small
single 451 509 40 4.22

split-and-merge 460 519 40 4.38
Athens large

single 4571 5333 430 115.70
split-and-merge 4779 5551 434 86.52

Chicago
single 293 338 35 10.32

split-and-merge 314 360 35 10.95
Berlin

single 1650 1867 160 110.01
split-and-merge 1763 1947 164 143.84

Delta
single 457 508 20 6.29

split-and-merge 477 523 20 5.05
Aiguamolls

single 1589 1719 115 18.17
split-and-merge 1620 1736 115 11.67

Garraf
single 1415 1496 69 30.43

split-and-merge 1455 1518 73 28.43
Montseny

single 1754 1877 86 29.52
split-and-merge 1786 1908 86 24.61

most values are the same, we can say the maps are almost the same.

Table 5.3: Comparison of directed Hausdorff distance measure of urban GPS datasets.
Methods

Directed Hausdorff Distance(m)
min max median average 2% 5% 10% 15%

Athens small
single 1 79 14 18 54 44 33 29

split-and-merge 1 79 14 18 54 44 34 29
Athens large

single 1 130 15 18 51 41 33 29
split-and-merge 1 139 15 18 51 42 33 29

Chicago
single 1 73 9 13 50 38 25 20

split-and-merge 1 73 9 13 51 40 31 20
Berlin

single 1 162 14 18 51 42 34 29
split-and-merge 1 162 14 18 51 42 34 28

5.5.2 Applications of Edge Weight

In this section, we validate the performance of utilizing the edge weight. First, we vi-
sualize the maps with a colormap and analyze the advantage of removing the wrong
edges. Second, we show the improvement of map quality based on the directed Haus-
dorff distance.

84 Chapter 5. Improvements on the Three-Step Map Construction Framework

5.5.2.1 Generated Maps

We use the edge weight to filter out the wrong edges, and we call the maps as filtered
maps. The threshold of edge weight includes the edge frequency f and edge length
l, f is set as the smallest edge frequency and l as the median length of edges with
frequency f . With higher values of f and l, the map will be simpler. We use the fre-
quency of edges to assign colors to do the visualization. Figure D.1 shows the filtered
maps of the Chicago and Montseny datasets (see Appendix D for the other datasets).
The frequencies of edges are normalized to assign the colors from blue to black with
the increasing frequency. Via the visualization with colors, the data distribution is more
clear than the plain plot (see the definition in Section 5.2).

(a) Chicago (b) Montseny

Figure 5.6: Plots of filtered maps of the (a) Chicago and (b) Montseny datasets.

Next, we check the performance with the artifacts (see details in Section 4.4.2.2).
Figure Fig. 5.7 shows the maps in artifacts that are different from that by performing
the three-step framework. Utilizing the edge weight helps to filter out some edges, and
we use a green dotted line to point out the removed edges. As we can see, all the wrong
edges are removed. For example, in Figure 5.7(a), two artificial bridges are correctly
filtered out.

5.5.2.2 Map Filtering by the Edge Weight

In this section, we evaluate quality of the filtered maps based on the map complexity
(Table 5.4) and the directed Hausdorff distance (Table 5.5). Compared with the results
of the “single” rows in Table 5.2 and Table 5.3, the map complexity is reduced due to the
removal of vertices and edges. The generated maps are more similar to the groundtruth
as some wrong edges are filtered out.

5.5.3 Summary

According to the visual inspection and quantitative evaluation, the maps generated by
utilizing the split-and-merge strategy are almost the same with that by the three-step

5.5. Results and Discussion 85

(a) Artifact [C3] (b) Artifact [C5]

(c) Artifact [C6] (d) Artifact [C7] (e) Artifact [S6]

Figure 5.7: Plots of artifacts in filtered maps.

Table 5.4: Map complexity of filtered maps.
Dataset Vertex Amount Edge Amount Length(km)

Athens small 433 473 39
Athens large 4364 4837 413

Chicago 272 307 33
Berlin 1650 1867 160
Delta 443 466 20

Aiguamolls 1537 1608 112
Garraf 1290 1338 66

Montseny 1678 1754 82

framework. The slight difference mainly happens in the overlapping zone. The strat-
egy of using the overlapping zone is effective to reduce the influence of the change of
the density surface because of splitting. Concerning the computational cost, the split-
and-merge framework accelerates the generation especially when the trajectories in the
overlapping zone are simple. However, if the data is dense around the splitting bound-
aries, the runtime increases by fixing the edges and vertices, which is demonstrated
by the Berlin dataset. Taking advantage of the edge weight to visualize the map gives
insight into the route popularity from the given data. Besides, filtering the map with
edge weight helps to clear errors, such as the artificial bridges which are induced by

Table 5.5: Directed Hausdorff distance measure of the filtered maps of urban GPS
datasets.

Datasets
Directed Hausdorff Distance(m)

min max median average 2% 5% 10% 15%
Athens small 1 79 14 18 54 43 32 28
Athens large 1 130 14 17 49 40 32 28

Chicago 1 60 9 11 40 29 20 17
Berlin 1 162 14 18 51 42 34 29

86 Chapter 5. Improvements on the Three-Step Map Construction Framework

noise. According to the quantitative evaluation, using the edge weight improves the
map quality and accuracy.

5.6 Conclusions

In this chapter, we have presented two proposals to improve the three-step framework
of map construction. First, considering the limitations of storage and computational
cost, we have designed a split-and-merge strategy that allows handling large-scale data.
The geographical area is split into small regions. As a novelty, we keep an overlapping
zone between adjacent regions for the further map combination. For each region, the
three-step framework is applied to generate a route graph. Finally, we merge the indi-
vidual graphs into a global single graph taking advantage of the overlapping zone to fix
the adjacent maps. Experiments on real datasets demonstrate that the split-and-merge
strategy succeeds in producing an accurate global map and accelerating the process.
Second, to remove the wrong edges (like the artificial bridges), we propose to compute
the edge weight that combines length and frequency. Also, utilizing the edge eight to
visualize the map gives insight into the importance or popularity of each route. The
experiments show that utilizing the edge weight gives a better view of the map and
improves the map quality, including map complexity and accuracy.

There is still room for improvement. First, a more clever way to split the geograph-
ical area, based on the density distribution instead of rigid segmentation, can be de-
veloped. This would reduce work and errors in fixing boundaries in the merging step.
Second, the Slide tool always smooths the sharp turns considering the route is straight,
which causes excessive simplification in turns and the wrong merging in narrow curves.
A possible solution would be segmenting the trajectories into small sub-trajectories
based on the direction change.

CHAPTER 6

Conclusions

Contents
6.1 Contributions . 87

6.2 Future work . 88

6.3 Publications . 89

6.1 Contributions

The main goal of this thesis is to develop advanced techniques to promote the task of
trajectory analysis in two hot topics: anomaly detection and map construction. Based
on this, we have introduced several algorithms, and the main contributions are sum-
marized as follows:

1. We have presented an adaptive algorithm SHNN-CAD+ for online trajectory anom-
aly detection based on a recent approach called SHNN-CAD. SHNN-CAD has the
advantage of being parameter-light and dealing with online detection, while also
has the defects that it requires a pre-defined anomaly threshold and does not
take into account the direction attribute of trajectory data. Based on the obser-
vations, three improvements have been proposed. First, a data-adaptive anomaly
threshold has been defined instead of determining it without any prior knowl-
edge, which makes the algorithm more usable in practical applications. Second,
a modified Hausdorff distance measure has been introduced to additionally dis-
tinguish the direction and to also reduce the computational complexity. Third, a
re-do step has been added to make the detection process more flexible and accu-
rate. Besides, more datasets have been designed and used. Extensive experiments
on both real and synthetic datasets have shown that SHNN-CAD+ enhances the
performance of SHNN-CAD concerning accuracy and runtime.

2. We have developed a three-step framework that is fast, robust and simple skele-
ton-based to generate a route graph from GPS data. This framework is a smart
combination of three well-known algorithms that are applied in three main steps,
respectively. First, we estimate the density surface by mapping the trajectories into
a grid, then smooth the density surface with Gaussian blur. Second, we recompute
the density surface by adjusting the trajectory data by the Slide tool. This helps

88 Chapter 6. Conclusions

to reduce the noise in data and make the density distribution more compact. Be-
sides, we have proposed two strategies to solve the limitations of Slide. The first
is to modify the distance component. The second is to find a solution to move the
endpoints properly instead of staying fixed. Third, we use a thinning algorithm
to obtain the skeleton, then convert it to a route map. Here, the Douglas-Peucker
algorithm is used to simplify the vertices. The experiments have been carried on
with both urban and hiking trajectory data. Via comparing with several map con-
struction algorithms through the visual inspection and quantitative measures, the
proposed framework has been demonstrated to obtain promising results concern-
ing the data coverage, artificial, and similarity with the groundtruth.

3. We have made two proposals to improve the three-step framework. First, a split-
and-merge strategy has been proposed to generate a route graph from large-scale
GPS data. We split the geographical area into small regions where the map con-
struction algorithm is performed. Then, we combine the graphs from different
regions as the final output. Due to the changes in density surface, the graph in
a region has slight offsets, especially around the splitting boundary. To solve this
issue, an overlapping zone between two adjacent regions is kept for fixing the
boundaries. Second, we compute the edge to help the result visualization and
filter possible errors in the graph. We consider two factors, length and frequency,
to give the weight of an edge. The experiments on real urban and hiking GPS
data have shown that the split-and-merge strategy generates almost the same
maps with running the three-step framework without splitting the geographical
area, and has an advantage of less computational cost. Besides, applications of
edge weights have shown satisfying results. Utilizing the edge weight to filter the
generated maps is good to avoid the artifacts and improve the map quality.

6.2 Future work

In this thesis, we have addressed the problem of anomaly detection and map construc-
tion, while there are still some things left to try and improve. The future work will focus
on the following directions:

1. In trajectory anomaly detection

- In the field of trajectory analysis, measuring the similarity between trajectories
is still an open challenge due to the specific properties of trajectory data. With the
same two trajectories, different distance measures give different results especially
when the trajectories have unequal number of points, thus there is no standard
rule to determine whether two trajectories are similar or not. Both SHNN-CAD
and SHNN-CAD+ require distance computing as the basis to identify a test is far
more different from the training set or not. In order to avoid the influence of
inappropriate distance measure, an alternative would be utilizing some statistical
models and information divergences, which avoids the direct use of a distance
measure.

6.3. Publications 89

- In the current algorithm, all the trajectories in the training set are kept. However,
as time goes on, the size of the training set will be very large and redundant
trajectories will emerge. Thus, for the purpose of reducing the computational cost
and storage, further research will consider incremental learning which prunes the
historical data along with the update of the training set.

2. In map construction from GPS data

- Defining parameters is always a big issue in different algorithms since the data
are various. Via extensive experiments, the correlation might be found, which
helps a lot to reduce the heavy work of determining several parameters when
changing the dataset.

- The Slide tool has the advantage of push similar trajectories to be closer with
each other through the correction of three components: surface, distance, and an-
gle. Due to that the angle component tries to maximize the vertex angle, which
means to straight the adjacent edges, there is the risk of over-smoothing the turns
and merging narrow curves. The possible solution could be segmenting the tra-
jectories based on the direction change.

- The proposed framework converts a skeleton to a route graph where the thinning
algorithm is applied to obtain the skeleton from the density surface estimated
from trajectories. Because the thinning algorithm generates the one-pixel-wide
skeleton by iteratively removing the foreground pixels, while the density of each
pixel is not taken into account, the final links in the skeleton always have some
offsets compared with the groundtruth. Thus, it may be interesting to add the
density at each pixel to perform the thinning algorithm.

- Quantitatively comparing the map quality is an important but difficult work for
developing good map construction algorithms. In literature, most evaluation mea-
sures focus on the similarity between generated map and groundtruth, ignoring
the coverage of trajectory data. Due to the missing information of updated routes,
the groundtruth is not suitable for comparison. In addition, there are many un-
known routes discovered by outdoor activities, which are interesting and useful
for route design and customization. Thus, a measure that compares the similarity
between the generated map and the GPS data would be quite useful to indicate
the coverage of data.

3. In split-and-merge strategy

- The splitting way influences the computational cost and accuracy of map con-
struction. Thus, the current rigid even segmentation could be improved by some
data-adaptive strategies where the splitting boundary crosses through the low-
density area.

6.3 Publications

Publications that support this thesis are:

90 Chapter 6. Conclusions

• Yuejun Guo, Anton Bardera, Marta Fort and Rodrigo I. Silveira. Global schematic
complete map construction from urban and hiking trajectory data. To submit to
International Journal of Geographical Information Science, 2020.

• Yuejun Guo and Anton Bardera. SHNN-CAD+: An Improvement on SHNN-CAD for
Adaptive Online Trajectory Anomaly Detection. Sensors, vol. 19, no. 1, 2019.

• Anton Bardera, Marta Fort and Yuejun Guo. Route Graph Construction from GPS
Trajectory Data. Accepted by XVIII Spanish Meeting on Computational Geometry,
Girona, July 1-3, 2019.

Previous publications related with this thesis that have been achieved during phd
study are:

• Yuejun Guo, Qing Xu, Peng Li, Mateu Sbert and Yu Yang. Trajectory Shape Analysis
and Anomaly Detection Utilizing Information Theory Tools. Entropy, vol. 19, no. 7,
page 323, 2017.

• Yuejun Guo, Qing Xu and Mateu Sbert. IBVis: Interactive Visual Analytics for Infor-
mation Bottleneck Based Trajectory Clustering. Entropy, vol. 20, no. 3, page 159,
2018.

• Yuejun Guo, Qing Xu, Xiaoxiao Luo, Hao Wei, Hongjuan Bu and Mateu Sbert. A
Group-Based Signal Filtering Approach for Trajectory Abstraction and Restoration.
Neural Computing and Applications, vol. 29, no. 9, pages 371-387, May 2018.

Bibliography

[Agamennoni 2011] Gabriel Agamennoni, Juan I. Nieto and Eduardo M. Nebot. Ro-
bust inference of principal road paths for intelligent transportation systems. IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 1, pages 298–
308, March 2011. (Cited on pages 23, 24, 25 and 78.)

[Ahmed 2012] Mahmuda Ahmed and Carola Wenk. Constructing street networks from
gps trajectories. In Leah Epstein and Paolo Ferragina, editeurs, Algorithms –
ESA 2012, pages 60–71, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
(Cited on pages 2, 21, 49, 70 and 78.)

[Ahmed 2014] Mahmuda Ahmed, Brittany Terese Fasy and Carola Wenk. Local persis-
tent homology based distance between maps. In ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’14,
pages 43–52, New York, NY, USA, 2014. ACM. (Cited on page 25.)

[Ahmed 2015a] Mahmuda Ahmed, Brittany Terese Fasy, Matt Gibson and Carola Wenk.
Choosing thresholds for density-based map construction algorithms. In Interna-
tional Conference on Advances in Geographic Information Systems, SIGSPATIAL
’15, pages 24:1–24:10, New York, NY, USA, 2015. ACM. (Cited on page 24.)

[Ahmed 2015b] Mahmuda Ahmed, Brittany Terese Fasy, Kyle S. Hickmann and Carola
Wenk. A path-based distance for street map comparison. ACM Transactions on
Spatial Algorithms and Systems, vol. 1, no. 1, pages 3:1–3:28, July 2015. (Cited
on pages 25 and 27.)

[Ahmed 2015c] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser and Carola
Wenk. A comparison and evaluation of map construction algorithms using ve-
hicle tracking Data. GeoInformatica, vol. 19, no. 3, pages 601–632, July 2015.
(Cited on pages 8, 26, 49, 60, 70, 71, 75, 77 and 79.)

[Ahmed 2015d] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser and Carola
Wenk. Map construction algorithms. Springer International Publishing, Cham,
2015. (Cited on pages 2, 20, 23, 27 and 78.)

[Alt 1992] Helmut Alt and Michael Godau. Measuring the resemblance of polygonal
curves. In Annual Symposium on Computational Geometry, pages 102–109.
ACM, 1992. (Cited on page 9.)

[Alt 2009] Helmut Alt. The computational geometry of comparing shapes. In Susanne
Albers, Helmut Alt and Stefan Näher, editeurs, Efficient Algorithms: Essays Ded-
icated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pages 235–248,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. (Cited on page 33.)

92 Bibliography

[Annoni 2012] Ronald Annoni and Carlos Henrique Quartucci Forster. Analysis of air-
craft trajectories using Fourier descriptors and kernel density estimation. In Inter-
national IEEE Conference on Intelligent Transportation Systems, pages 1441–
1446. IEEE, September 2012. (Cited on page 15.)

[Antunes 2001] Cláudia M. Antunes and Arlindo L. Oliveira. Temporal data mining: an
overview. In KDD Workshop on Temporal Data Mining, volume 1, pages 1–13,
2001. (Cited on page 107.)

[Atev 2006] Stefan Atev, Osama Masoud and Nikos Papanikolopoulos. Learning traf-
fic patterns at intersections by spectral clustering of motion trajectories. In In-
ternational Conference on Intelligent Robots and Systems, pages 4851–4856,
October 2006. (Cited on page 10.)

[Banerjee 2016] Prithu Banerjee, Pranali Yawalkar and Sayan Ranu. MANTRA: a scal-
able approach to mining temporally anomalous sub-trajectories. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16,
pages 1415–1424, New York, NY, USA, 2016. ACM. (Cited on page 18.)

[Bao 2017] Liang Bao, Shanshan Wu, Weizhao Chen, Zisheng Zhu and Fan Yi. Tra-
jectory outlier detection based on partition-and-detection framework. In Inter-
national Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery, pages 1978–1983, July 2017. (Cited on page 18.)

[Barnett 1974] Vic Barnett and Toby Lewis. Outliers in statistical data. Wiley, 1974.
(Cited on page 1.)

[Berndt 1994] Donald J. Berndt and James Clifford. Using dynamic time warping to find
patterns in time series. In KDD workshop, pages 359–370. Seattle, WA, 1994.
(Cited on page 10.)

[Bhattacharyya 1946] Anil Bhattacharyya. On a measure of divergence between two
multinomial populations. Sankhyā: The Indian Journal of Statistics (1933-
1960), vol. 7, no. 4, pages 401–406, July 1946. (Cited on page 12.)

[Biagioni 2012a] James Biagioni and Jakob Eriksson. Inferring road maps from global
positioning system traces: survey and comparative evaluation. Transportation Re-
search Record, vol. 2291, no. 1, pages 61–71, 2012. (Cited on pages 2, 20, 23,
25, 26, 75, 77 and 78.)

[Biagioni 2012b] James Biagioni and Jakob Eriksson. Map inference in the face of noise
and disparity. In International Conference on Advances in Geographic Informa-
tion Systems, SIGSPATIAL ’12, pages 79–88, New York, NY, USA, 2012. ACM.
(Cited on pages 2, 3, 8, 24, 25, 49, 58, 71 and 78.)

[Birant 2007] Derya Birant and Alp Kut. ST-DBSCAN: an algorithm for clustering spatial-
temporal data. Data & Knowledge Engineering, vol. 60, no. 1, pages 208–221,
2007. (Cited on page 15.)

Bibliography 93

[Bradley 1997] Andrew P. Bradley. The use of the area under the roc curve in the evalu-
ation of machine learning algorithms. Pattern Recognition, vol. 30, no. 7, pages
1145–1159, 1997. (Cited on page 19.)

[Bruntrup 2005] René Bruntrup, Stefan Edelkamp, Shahid Jabbar and Björn Scholz.
Incremental map generation with gps traces. In IEEE Intelligent Transportation
Systems, pages 574–579, September 2005. (Cited on pages 20 and 78.)

[Buchin 2009] Kevin Buchin, Maike Buchin and Yusu Wang. Exact algorithms for partial
curve matching via the Fréchet distance. In Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 645–654, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics. (Cited on pages 21 and 49.)

[Buchin 2017] Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel
Jacobs, Vera Sacristan, Rodrigo I. Silveira, Frank Staals and Carola Wenk. Clus-
tering trajectories for map construction. In ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL ’17, pages
14:1–14:10, New York, NY, USA, 2017. ACM. (Cited on page 25.)

[Calderara 2011] Simone Calderara, Andrea Prati and Rita Cucchiara. Mixtures of von
Mises distributions for people trajectory shape analysis. IEEE Transactions on
Circuits and Systems for Video Technology, vol. 21, no. 4, pages 457–471, April
2011. (Cited on page 12.)

[Cao 2009] Lili Cao and John Krumm. From gps traces to a routable road map. In
ACM SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems, GIS ’09, pages 3–12, New York, NY, USA, 2009. ACM. (Cited
on pages 2, 8, 20, 25, 48, 49, 50, 70, 75 and 78.)

[Chandola 2009] Varun Chandola, Arindam Banerjee and Vipin Kumar. Anomaly de-
tection: a survey. ACM Comput. Surv., vol. 41, no. 3, pages 15:1–15:58, July
2009. (Cited on page 33.)

[Chen 2008] Chen Chen and Yinhang Cheng. Roads digital map generation with multi-
track gps data. In International Workshop on Education Technology and Train-
ing & International Workshop on Geoscience and Remote Sensing, pages 508–
511, December 2008. (Cited on pages 24, 25 and 48.)

[Chen 2010] Daniel Chen, Leonidas J. Guibas, John Hershberger and Jian Sun. Road
network reconstruction for organizing paths. In Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1309–1320, 2010. (Cited on
pages 24, 25 and 78.)

[Chen 2015] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bag-
nall, Abdullah Mueen and Gustavo Batista. UCR time series classification archive.
www.cs.ucr.edu/~eamonn/time_series_data/, July 2015. Online; accessed on
09 December 2019. (Cited on page 107.)

www.cs.ucr.edu/~eamonn/time_series_data/

94 Bibliography

[Choong 2017] Mei Yeen Choong, Lorita Angeline, Renee Ka Yin Chin, Kiam Beng Yeo
and Kenneth Tze Kin Teo. Modeling of vehicle trajectory clustering based on lcss
for traffic pattern extraction. In International Conference on Automatic Control
and Intelligent Systems, pages 74–79, October 2017. (Cited on page 11.)

[Cortes 1995] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
Learning, vol. 20, no. 3, pages 273–297, September 1995. (Cited on page 16.)

[Das 2018] Deepan Das and Deepak Mishra. Unsupervised anomalous trajectory detec-
tion for crowded scenes. In International Conference on Industrial and Informa-
tion Systems (ICIIS), pages 27–31, December 2018. (Cited on page 16.)

[Davies 2006] Jonathan J. Davies, Alastair R. Beresford and Andy Hopper. Scalable,
distributed, real-time map generation. IEEE Pervasive Computing, vol. 5, no. 4,
pages 47–54, October 2006. (Cited on pages 2, 8, 24, 25, 49, 50 and 70.)

[Deng 2011] Min Deng, Qiliang Liu, Tao Cheng and Yan Shi. An adaptive spatial clus-
tering algorithm based on delaunay triangulation. Computers, Environment and
Urban Systems, vol. 35, no. 4, pages 320–332, 2011. (Cited on page 22.)

[Deng 2018] Min Deng, Jincai Huang, Yunfei Zhang, Huimin Liu, Luliang Tang, Jianbo
Tang and Xuexi Yang. Generating urban road intersection models from low-
frequency gps trajectory data. International Journal of Geographical Information
Science, vol. 32, no. 12, pages 2337–2361, 2018. (Cited on pages 2, 22 and 48.)

[Dey 2017] Tamal K. Dey, Jiayuan Wang and Yusu Wang. Improved road network recon-
struction using discrete morse theory. In ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, SIGSPATIAL ’17, pages
58:1–58:4, New York, NY, USA, 2017. ACM. (Cited on page 24.)

[Ding 2008] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang and Ea-
monn Keogh. Querying and mining of time series data: experimental comparison
of representations and distance measures. VLDB Endowment, vol. 1, no. 2, pages
1542–1552, August 2008. (Cited on pages 9, 15 and 37.)

[Douglas 1973] David H. Douglas and Thomas K. Peucker. Algorithms for the reduc-
tion of the number of points required to represent a digitized line or its caricature.
Cartographica: the international journal for geographic information and geovi-
sualization, vol. 10, no. 2, pages 112–122, 1973. (Cited on page 58.)

[Duran 2020] David Duran, Vera Sacristán and Rodrigo I. Silveira. Map construction
algorithms: a local evaluation through hiking data. GeoInformatica, to appear,
2020. (Cited on pages 49, 60, 62, 63 and 70.)

[Edelkamp 2003] Stefan Edelkamp and Stefan Schrödl. Route planning and map in-
ference with global positioning traces. In Rolf Klein, Hans-Werner Six and Lutz
Wegner, editeurs, Computer Science in Perspective: Essays Dedicated to Thomas

Bibliography 95

Ottmann, pages 128–151, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.
(Cited on pages 2, 23, 49, 50, 70 and 78.)

[Eiter 1994] Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance.
Technical report CD-TR 94/64, Christian Doppler Laboratories, University of
Vienna, April 1994. (Cited on page 10.)

[Ester 1996] Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise. In
International Conference on Knowledge Discovery and Data Mining, KDD’96,
pages 226–231. AAAI Press, August 1996. (Cited on page 14.)

[Faloutsos 1994] Christos Faloutsos, Mudumbai Ranganathan and Yannis Manolopou-
los. Fast subsequence matching in time-series databases. SIGMOD Rec., vol. 23,
no. 2, pages 419–429, May 1994. (Cited on page 9.)

[Fathi 2010] Alireza Fathi and John Krumm. Detecting road intersections from gps
traces. In Sara Irina Fabrikant, Tumasch Reichenbacher, Marc van Kreveld and
Christoph Schlieder, editeurs, Geographic Information Science, pages 56–69,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. (Cited on pages 22, 25
and 78.)

[Fu 2005] Zhouyu Fu, Weiming Hu and Tieniu Tan. Similarity based vehicle trajectory
clustering and anomaly detection. In IEEE International Conference on Image
Processing, volume 2, pages II–602–5, September 2005. (Cited on pages 13
and 15.)

[Gariel 2011] Maxime Gariel, Ashok N. Srivastava and Eric Feron. Trajectory cluster-
ing and an application to airspace monitoring. IEEE Transactions on Intelli-
gent Transportation Systems, vol. 12, no. 4, pages 1511–1524, December 2011.
(Cited on pages 1, 11, 13 and 14.)

[Gonzalez 2006] Rafael C. Gonzalez and Richard E. Woods. Digital image processing
(3rd edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006. (Cited
on pages 55 and 58.)

[Görnitz 2013] Nico Görnitz, Marius Kloft, Konrad Rieck and Ulf Brefeld. Toward su-
pervised anomaly detection. Journal of Artificial Intelligence Research, vol. 46,
pages 235–262, February 2013. (Cited on page 1.)

[Guo 1989] Zicheng Guo and Richard W. Hall. Parallel thinning with two-subiteration
algorithms. Communications of the ACM, vol. 32, no. 3, pages 359–373, March
1989. (Cited on page 53.)

[Guo 2007] Tao Guo, Kazuaki Iwamura and Masashi Koga. Towards high accuracy road
maps generation from massive GPS Traces data. In IEEE International Geoscience
and Remote Sensing Symposium, pages 667–670, July 2007. (Cited on pages 2,
24 and 48.)

96 Bibliography

[Guo 2014] Yuejun Guo, Qing Xu, Yu Yang, Sheng Liang, Yu Liu and Mateu Sbert.
Anomaly detection based on trajectory analysis using kernel density estimation and
information bottleneck techniques. Technical report 108, University of Girona,
2014. (Cited on page 13.)

[Guo 2015] Yuejun Guo, Qing Xu, Sheng Liang, Yang Fan and Mateu Sbert. XaIBO:
an extension of aib for trajectory clustering with outlier. In Sabri Arik, Tingwen
Huang, Weng Kin Lai and Qingshan Liu, editeurs, Neural Information Process-
ing, pages 423–431, Cham, 2015. Springer International Publishing. (Cited on
pages 9 and 13.)

[Guo 2016] Yuejun Guo, Qing Xu, Yang Fan, Sheng Liang and Mateu Sbert. Fast Ag-
glomerative Information Bottleneck Based Trajectory Clustering. In Akira Hirose,
Seiichi Ozawa, Kenji Doya, Kazushi Ikeda, Minho Lee and Derong Liu, editeurs,
Neural Information Processing, pages 425–433, Cham, 2016. Springer Interna-
tional Publishing. (Cited on page 13.)

[Guo 2017] Yuejun Guo, Qing Xu, Peng Li, Mateu Sbert and Yu Yang. Trajectory
shape analysis and anomaly detection utilizing information theory tools. Entropy,
vol. 19, no. 7, page 323, 2017. (Cited on pages 12, 13, 16, 19 and 40.)

[Guo 2018a] Yuejun Guo. Matlab implementation. http://gilabparc.udg.edu/
trajectory/experiments/Experiments.zip, 2018. Online; accessed on 09 Decem-
ber 2019. (Cited on page 37.)

[Guo 2018b] Yuejun Guo. Synthetic trajectories by Guo. http://gilabparc.udg.edu/
trajectory/data/SyntheticTrajectories.zip, 2018. Online; accessed on 09 Decem-
ber 2019. (Cited on page 42.)

[Guo 2018c] Yuejun Guo, Qing Xu, Xiaoxiao Luo, Hao Wei, Hongjuan Bu and Ma-
teu Sbert. A group-based signal filtering approach for trajectory abstraction and
restoration. Neural Computing and Applications, vol. 29, no. 9, pages 371–387,
May 2018. (Cited on page 9.)

[Gupta 2014] Manish Gupta, Jing Gao, Charu C. Aggarwal and Jiawei Han. Outlier
detection for temporal data: a survey. IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 9, pages 2250–2267, September 2014. (Cited
on page 14.)

[Han 2011] Jiawei Han, Jian Pei and Micheline Kamber. Data mining: concepts and
techniques. Elsevier, 2011. (Cited on pages 13 and 14.)

[Haritaoglu 2000] Ismail Haritaoglu, David Harwood and Larry S. Davis. W4: real-time
surveillance of people and their activities. IEEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 22, no. 8, pages 809–830, August 2000. (Cited on
page 1.)

http://gilabparc.udg.edu/trajectory/experiments/Experiments.zip
http://gilabparc.udg.edu/trajectory/experiments/Experiments.zip
http://gilabparc.udg.edu/trajectory/data/SyntheticTrajectories.zip
http://gilabparc.udg.edu/trajectory/data/SyntheticTrajectories.zip

Bibliography 97

[Hu 2007] Weiming Hu, Dan Xie, Zhouyu Fu, Wenrong Zeng and Steve Maybank.
Semantic-based surveillance video retrieval. IEEE Transactions on Image Process-
ing, vol. 16, no. 4, pages 1168–1181, April 2007. (Cited on pages 9 and 11.)

[Hu 2018] Kaixi Hu, Pan Duan, Bei Hu and Qichang Duan. IBTOD: an isolation-based
method to detect outlying sub-trajectories on multi-factors. In IEEE Advanced
Information Management, Communicates, Electronic and Automation Control
Conference, pages 1912–1918, May 2018. (Cited on pages 11 and 18.)

[Huang 2018] Jincai Huang, Min Deng, Jianbo Tang, Shuling Hu, Huimin Liu, Sembeto
Wariyo and Jinqiang He. Automatic generation of road maps from low quality gps
trajectory data via structure learning. IEEE Access, vol. 6, pages 71965–71975,
2018. (Cited on pages 2, 25, 48 and 78.)

[Ismail 2015] Anas Ismail and Antoine Vigneron. A new trajectory similarity measure
for gps data. In ACM SIGSPATIAL International Workshop on GeoStreaming,
IWGS ’15, pages 19–22, New York, NY, USA, 2015. ACM. (Cited on page 12.)

[Izakian 2016] Zahedeh Izakian, Mohammad Saadi Mesgari and Ajith Abraham. Au-
tomated clustering of trajectory data using a particle swarm optimization. Com-
puters, Environment and Urban Systems, vol. 55, pages 55–65, 2016. (Cited on
page 10.)

[Jiang 2004] Sheng-Yi Jiang and Yu-Ming Xu. An efficient clustering algorithm. In In-
ternational Conference on Machine Learning and Cybernetics, volume 3, pages
1513–1518, August 2004. (Cited on page 15.)

[Jiang 2008] Sheng-Yi Jiang and Qing-Bo An. Clustering-based outlier detection method.
In International Conference on Fuzzy Systems and Knowledge Discovery, vol-
ume 2, pages 429–433, October 2008. (Cited on page 15.)

[Jiang 2009] Fan Jiang, Ying Wu and Aggelos K. Katsaggelos. A dynamic hierarchical
clustering method for trajectory-based unusual video event detection. IEEE Trans-
actions on Image Processing, vol. 18, no. 4, pages 907–913, April 2009. (Cited
on pages 13, 16 and 19.)

[Karagiorgou 2012] Sophia Karagiorgou and Dieter Pfoser. On vehicle tracking data-
based road network generation. In International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’12, pages 89–98, New York, NY,
USA, 2012. ACM. (Cited on pages 1, 2, 8, 22, 25, 26, 49, 50, 70, 71 and 78.)

[Karagiorgou 2013] Sophia Karagiorgou, Dieter Pfoser and Dimitrios Skoutas.
Segmentation-based road network construction. In ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, SIGSPA-
TIAL’13, pages 460–463, New York, NY, USA, 2013. ACM. (Cited on pages 2,
22, 50 and 78.)

98 Bibliography

[Kaufman 1987] Leonard Kaufman and Peter J. Rousseeuw. Clustering by means of
medoids. In Statistical Data Analysis Based on the L1–Norm and Related Meth-
ods, pages 405–416. North Holland / Elsevier, 1987. (Cited on page 13.)

[Keogh 2004] Eamonn Keogh, Stefano Lonardi and Chotirat Ann Ratanamahatana. To-
wards parameter-free data mining. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04, pages 206–215, New York, NY,
USA, 2004. ACM. (Cited on pages 2 and 29.)

[Keogh 2005] Eamonn Keogh, Jessica Lin and Ada Fu. HOT SAX: efficiently finding the
most unusual time series subsequence. In IEEE International Conference on Data
Mining, pages 226–233, November 2005. (Cited on page 16.)

[Kong 2018] Xiangjie Kong, Menglin Li, Kai Ma, Kaiqi Tian, Mengyuan Wang, Zhaolong
Ning and Feng Xia. Big trajectory data: a survey of applications and services. IEEE
Access, vol. 6, pages 58295–58306, 2018. (Cited on pages 1 and 8.)

[Kruskal 1952] William H. Kruskal and W. Allen Wallis. Use of ranks in one-criterion
variance analysis. American Statistical Association, vol. 47, no. 260, pages 583–
621, 1952. (Cited on page 40.)

[Kumar 2017] Dheeraj Kumar, James C. Bezdek, Sutharshan Rajasegarar, Christopher
Leckie and Marimuthu Palaniswami. A visual-numeric approach to clustering and
anomaly detection for trajectory data. The Visual Computer, vol. 33, no. 3, pages
265–281, 2017. (Cited on pages 15 and 19.)

[Lam 1992] Louisa Lam, Seong-Whan Lee and Ching Y. Suen. Thinning methodologies-a
comprehensive survey. IEEE Transactions on Pattern Analysis and Machince In-
telligence, vol. 14, no. 9, pages 869–885, September 1992. (Cited on page 53.)

[Laxhammar 2010] Rikard Laxhammar and Göran Falkman. Conformal prediction for
distribution-independent anomaly detection in streaming vessel data. In Interna-
tional Workshop on Novel Data Stream Pattern Mining Techniques, StreamKDD
’10, pages 47–55, New York, NY, USA, 2010. ACM. (Cited on page 32.)

[Laxhammar 2011] Rikard Laxhammar and Göran Falkman. Sequential conformal
anomaly detection in trajectories based on Hausdorff distance. In International
Conference on Information Fusion, pages 1–8. IEEE, July 2011. (Cited on
pages 9, 17, 19, 32 and 33.)

[Laxhammar 2013] Rikard Laxhammar. Synthetic trajectories by Laxhammar. https:
//www.researchgate.net/publication/236838887_Synthetic_trajectories,
2013. Online; accessed on 09 December 2019. (Cited on page 41.)

[Laxhammar 2014a] Rikard Laxhammar. Conformal anomaly detection: detecting ab-
normal trajectories in surveillance applications. PhD thesis, University of Skövde,
School of Informatics, 2014. (Cited on page 31.)

https://www.researchgate.net/publication/236838887_Synthetic_trajectories
https://www.researchgate.net/publication/236838887_Synthetic_trajectories

Bibliography 99

[Laxhammar 2014b] Rikard Laxhammar and Göran Falkman. Online learning and se-
quential anomaly detection in trajectories. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 6, pages 1158–1173, June 2014. (Cited
on pages 3, 9, 17, 19, 30, 31, 33, 40, 41, 42 and 43.)

[Lazarević 2007] Aleksandar Lazarević. First set of recorded video trajectories. https:
//www-users.cs.umn.edu/~lazar027/inclof/, 2007. Online; accessed on 09
December 2019. (Cited on page 40.)

[Lee 2008] Jae-Gil Lee, Jiawei Han and Xiaolei Li. Trajectory outlier detection: a
partition-and-detect framework. In International Conference on Data Engineer-
ing, pages 140–149. IEEE, April 2008. (Cited on pages 1, 11 and 17.)

[Li 2012] Jun Li, Qiming Qin, Chao Xie and Yue Zhao. Integrated use of spatial and
semantic relationships for extracting road networks from floating car data. In-
ternational Journal of Applied Earth Observation and Geoinformation, vol. 19,
pages 238–247, 2012. (Cited on pages 21 and 78.)

[Li 2016] Hengfeng Li, Lars Kulik and Kotagiri Ramamohanarao. Automatic generation
and validation of road maps from gps trajectory data sets. In ACM International
on Conference on Information and Knowledge Management, CIKM ’16, pages
1523–1532, New York, NY, USA, 2016. ACM. (Cited on pages 2, 23, 25, 48
and 78.)

[Li 2017] Lin Li, Daigang Li, Xiaoyu Xing, Fan Yang, Wei Rong and Haihong Zhu. Ex-
traction of road intersections from gps traces based on the dominant orientations
of roads. ISPRS International Journal of Geo-Information, vol. 6, no. 12, 2017.
(Cited on pages 23, 25 and 78.)

[Li 2018] Huanhuan Li, Jingxian Liu, Kefeng Wu, Zaili Yang, Ryan Wen Liu and Naixue
Xiong. Spatio-temporal vessel trajectory clustering based on data mapping and
density. IEEE Access, vol. 6, pages 58939–58954, 2018. (Cited on page 12.)

[Lin 1991] Jianhua Lin. Divergence measures based on the Shannon entropy. IEEE Trans-
actions on Information Theory, vol. 37, no. 1, pages 145–151, January 1991.
(Cited on page 12.)

[Liu 2012a] Xuemei Liu, James Biagioni, Jakob Eriksson, Yin Wang, George Forman
and Yanmin Zhu. Mining large-scale, sparse gps traces for map inference: com-
parison of approaches. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, pages 669–677, New York, NY, USA, 2012.
ACM. (Cited on pages 2 and 25.)

[Liu 2012b] Xuemei Liu, Yanmin Zhu, Yin Wang, George Forman, Lionel M. Ni, Fang Yu
and Minglu Li. Road recognition using coarse-grained vehicular traces. Technical
report HPL-2012-26, HP Labs, 2012. (Cited on pages 23, 25 and 78.)

https://www-users.cs.umn.edu/~lazar027/inclof/
https://www-users.cs.umn.edu/~lazar027/inclof/

100 Bibliography

[Luo 2015] Xiaoxiao Luo, Qing Xu, Yuejun Guo, Hao Wei and Yimin Lv. Trajectory
abstracting with group-based signal denoising. In Sabri Arik, Tingwen Huang,
Weng Kin Lai and Qingshan Liu, editeurs, Neural Information Processing. Lec-
ture Notes in Computer Science, volume 9491, pages 452–461, Cham, 2015.
Springer International Publishing. (Cited on page 9.)

[Mach 2014a] Paul Mach. Implementation of slide. https://github.com/paulmach/
slide, 2014. Online; accessed on 09 December 2019. (Cited on pages 51
and 52.)

[Mach 2014b] Paul Mach. Strava slide tool. https://labs.strava.com/slide/, 2014. On-
line; accessed on 09 December 2019. (Cited on pages 51 and 57.)

[MacQueen 1967] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Statistics, pages 281–297, Calif. Berkeley, 1967. Univer-
sity of California Press. (Cited on page 13.)

[Majecka 2009] Barbara Majecka. Statistical models of pedestrian behaviour in the fo-
rum. PhD thesis, MSc Dissertation, School of Informatics, University of Edin-
burgh, 2009. (Cited on pages 1 and 8.)

[Mariescu-Istodor 2018] Radu Mariescu-Istodor and Pasi Fränti. CellNet: inferring road
networks from gps trajectories. ACM Transactions Spatial Algorithms Systems,
vol. 4, no. 3, pages 8:1–8:22, September 2018. (Cited on page 22.)

[Maurer 2003] Calvin R. Maurer, Rensheng Qi and Vijay Raghavan. A linear time al-
gorithm for computing exact Euclidean distance transforms of binary images in
arbitrary dimensions. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 25, no. 2, pages 265–270, February 2003. (Cited on page 81.)

[Mazimpaka 2016] Jean Damascène Mazimpaka and Sabine Timpf. Trajectory data
mining: a review of methods and applications. Journal of Spatial Information
Science, vol. 2016, no. 13, pages 61–99, 2016. (Cited on page 8.)

[Mcfadyen 2016] Aaron Mcfadyen, Mark O’Flynn, Terrance Martin and Duncan Camp-
bell. Aircraft trajectory clustering techniques using circular statistics. In IEEE
Aerospace Conference, pages 1–10, March 2016. (Cited on page 12.)

[Meng 2018] Fanrong Meng, Guan Yuan, Shaoqian Lv, Zhixiao Wang and Shixiong Xia.
An overview on trajectory outlier detection. Artificial Intelligence Review, Febru-
ary 2018. (Cited on pages 14 and 29.)

[Morris 2009a] Brendan Morris and Mohan Trivedi. Learning trajectory patterns by
clustering: experimental studies and comparative evaluation. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 312–319, June 2009. (Cited
on pages 9, 11, 13 and 39.)

https://github.com/paulmach/slide
https://github.com/paulmach/slide
https://labs.strava.com/slide/

Bibliography 101

[Morris 2009b] Brendan Morris and Mohan Trivedi. Trajectory clustering datasets.
http://cvrr.ucsd.edu/bmorris/datasets/dataset_trajectory_clustering.html,
2009. Online; accessed on 09 December 2019. (Cited on page 39.)

[Nandeshwar 2011] Ashutosh Nandeshwar, Tim Menzies and Adam Nelson. Learn-
ing patterns of university student retention. Expert Systems with Applications,
vol. 38, no. 12, pages 14984–14996, 2011. (Cited on pages 19 and 42.)

[Niehöfer 2009] Brian Niehöfer, Ralf Burda, Christian Wietfeld, Franziskus Bauer and
Oliver Lueert. GPS community map generation for enhanced routing methods
based on trace-collection by mobile phones. In International Conference on Ad-
vances in Satellite and Space Communications, pages 156–161, July 2009.
(Cited on pages 21, 25 and 78.)

[Ord 1995] J. K. Ord and Arthur Getis. Local spatial autocorrelation statistics: distri-
butional issues and an application. Geographical Analysis, vol. 27, no. 4, pages
286–306, 1995. (Cited on page 22.)

[Parmar 2017] Jagruti D. Parmar and Jalpa T. Patel. Anomaly detection in data mining:
a review. International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 7, no. 4, pages 32–40, 2017. (Cited on page 14.)

[Pfoser 2016] Dieter Pfoser and Carola Wenk. Map construction algorithms. http://
mapconstruction.org/, 2016. Online; accessed on 09 December 2019. (Cited
on pages 60 and 71.)

[Piciarelli 2006] Claudio Piciarelli and Gian Luca Foresti. On-line trajectory clustering
for anomalous events detection. Pattern Recognition Letters, vol. 27, no. 15,
pages 1835–1842, 2006. Vision for Crime Detection and Prevention. (Cited on
page 11.)

[Piciarelli 2008a] Claudio Piciarelli, Christian Micheloni and Gian Luca Foresti. Syn-
thetic trajectory dataset. https://avires.dimi.uniud.it/papers/trclust/, 2008.
Online; accessed on 09 December 2019. (Cited on pages 39, 57 and 58.)

[Piciarelli 2008b] Claudio Piciarelli, Christian Micheloni and Gian Luca Foresti. Syn-
thetic trajectory generator. https://avires.dimi.uniud.it/papers/trclust/create_
ts2.m, 2008. Online; accessed on 09 December 2019. (Cited on page 42.)

[Piciarelli 2008c] Claudio Piciarelli, Christian Micheloni and Gian Luca Foresti.
Trajectory-based anomalous event detection. IEEE Transactions on Circuits and
Systems for Video Technology, vol. 18, no. 11, pages 1544–1554, November
2008. (Cited on pages 16 and 19.)

[Piciarelli 2011] Claudio Piciarelli and Gian Luca Foresti. Surveillance-oriented event
detection in video streams. IEEE Intelligent Systems, vol. 26, no. 3, pages 32–41,
May 2011. (Cited on page 16.)

http://cvrr.ucsd.edu/bmorris/datasets/dataset_trajectory_clustering.html
http://mapconstruction.org/
http://mapconstruction.org/
https://avires.dimi.uniud.it/papers/trclust/
https://avires.dimi.uniud.it/papers/trclust/create_ts2.m
https://avires.dimi.uniud.it/papers/trclust/create_ts2.m

102 Bibliography

[Powell 2001] Mark D. Powell and Sim D. Aberson. Accuracy of United States tropical
cyclone landfall forecasts in the Atlantic basin (1976–2000). Bulletin of the Amer-
ican Meteorological Society, vol. 82, no. 12, pages 2749–2768, 2001. (Cited on
page 1.)

[Prati 2008] Andrea Prati, Simone Calderara and Rita Cucchiara. Using circular statis-
tics for trajectory shape analysis. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, June 2008. (Cited on pages 13, 16 and 19.)

[Qiao 2002] Yan Qiao, XW Xin, Yang Bin and S. Ge. Anomaly intrusion detection method
based on HMM. Electronics letters, vol. 38, no. 13, pages 663–664, 2002. (Cited
on page 16.)

[Ramaswamy 2000] Sridhar Ramaswamy, Rajeev Rastogi and Kyuseok Shim. Efficient
algorithms for mining outliers from large data sets. SIGMOD Record, vol. 29,
no. 2, pages 427–438, May 2000. (Cited on page 15.)

[Román 2018] Ignacio San Román, Isaac Martín de Diego, Cristina Conde and Enrique
Cabello. Outlier trajectory detection through a context-aware distance. Pattern
Analysis and Applications, pages 1–9, August 2018. (Cited on page 12.)

[Sander 2010] Joerg Sander. Density-based clustering. In Claude Sammut and Ge-
offrey I. Webb, editeurs, Encyclopedia of Machine Learning, pages 270–273,
Boston, MA, 2010. Springer US. (Cited on page 14.)

[Schroedl 2004] Stefan Schroedl, Kiri Wagstaff, Seth Rogers, Pat Langley and Christo-
pher Wilson. Mining gps traces for map refinement. Data Mining and Knowledge
Discovery, vol. 9, no. 1, pages 59–87, July 2004. (Cited on pages 23, 25 and 78.)

[Shi 2009] Wenhuan Shi, Shuhan Shen and Yuncai Liu. Automatic generation of road
network map from massive gps, vehicle trajectories. In International IEEE Con-
ference on Intelligent Transportation Systems, pages 1–6, October 2009. (Cited
on pages 24, 25 and 58.)

[Singh 2017] Pradeep Singh and Prateek A. Meshram. Survey of density based clustering
algorithms and its variants. In International Conference on Inventive Computing
and Informatics, pages 920–926, November 2017. (Cited on page 14.)

[Smith 1981] P.R. Smith. Bilinear interpolation of digital images. Ultramicroscopy,
vol. 6, no. 2, pages 201–204, 1981. (Cited on page 52.)

[Stanojevic 2018] Rade Stanojevic, Sofiane Abbar, Saravanan Thirumuruganathan,
Sanjay Chawla, Fethi Filali and Ahid Aleimat. Robust road map inference through
network alignment of trajectories. In SIAM International Conference on Data
Mining, pages 135–143, 2018. (Cited on pages 23, 26 and 78.)

[Tan 2007] Pang-Ning Tan, Michael Steinbach and Vipin Kumar. Introduction to data
mining. Pearson Education India, 2007. (Cited on page 37.)

Bibliography 103

[Tang 2017] Luliang Tang, Chang Ren, Zhang Liu and Qingquan Li. A road map refine-
ment method using delaunay triangulation for big trace data. ISPRS International
Journal of Geo-Information, vol. 6, no. 2, 2017. (Cited on pages 21, 23 and 78.)

[Tang 2019] Jianbo Tang, Min Deng, Jincai Huang and Huimin Liu. A novel method for
road intersection construction from vehicle trajectory data. IEEE Access, vol. 7,
pages 95065–95074, July 2019. (Cited on page 22.)

[Vovk 2005] Vladimir Vovk, Alex Gammerman and Glenn Shafer. Algorithmic learning
in a random world. Springer Science & Business Media, January 2005. (Cited
on pages 30 and 31.)

[Wang 2011] Shuliang Wang, Wenyan Gan, Deyi Li and Deren Li. Data field for hierar-
chical clustering. International Journal of Data Warehousing and Mining, vol. 7,
no. 4, pages 43–63, 2011. (Cited on page 13.)

[Wang 2015] Suyi Wang, Yusu Wang and Yanjie Li. Efficient map reconstruction and
augmentation via topological methods. In 23rd SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, SIGSPATIAL ’15, pages
25:1–25:10, New York, NY, USA, 2015. ACM. (Cited on pages 2, 24, 48, 49, 51,
60, 70 and 76.)

[Wang 2016] Jiayuan Wang. Graph reconstruction. https://github.com/
wangjiayuan007/graph_recon_DM, 2016. Online; accessed on 09 December
2019. (Cited on page 60.)

[Wang 2017] Jing Wang, Chaoliang Wang, Xianfeng Song and Venkatesh Raghavan.
Automatic intersection and traffic rule detection by mining motor-vehicle gps tra-
jectories. Computers, Environment and Urban Systems, vol. 64, pages 19–29,
2017. (Cited on page 22.)

[Worrall 2007] Stewart Worrall and Eduardo Nebot. Automated process for generating
digitised maps through gps data compression. In Australasian Conference on
Robotics and Automation. Brisbane: ACRA, 2007. (Cited on page 23.)

[Wu 2013] Junwei Wu, long Zhu Yun, Tao Ku and Liang Wang. Detecting road inter-
sections from coarse-gained gps traces based on clustering. Journal of Computers,
vol. 8, no. 11, pages 2959–2965, November 2013. (Cited on pages 22 and 78.)

[Xie 2017] Xingzhe Xie, Wenzhi Liao, Hamid Aghajan, Peter Veelaert and Wilfried
Philips. Detecting road intersections from gps traces using longest common subse-
quence algorithm. ISPRS International Journal of Geo-Information, vol. 6, no. 1,
2017. (Cited on page 23.)

[Yankov 2008] Dragomir Yankov, Eamonn Keogh and Umaa Rebbapragada. Disk aware
discord discovery: finding unusual time series in terabyte sized datasets. Knowl-
edge and Information Systems, vol. 17, no. 2, pages 241–262, November 2008.
(Cited on page 17.)

https://github.com/wangjiayuan007/graph_recon_DM
https://github.com/wangjiayuan007/graph_recon_DM

104 Bibliography

[Yim 2015] Odilia Yim and Kylee T. Ramdeen. Hierarchical cluster analysis: comparison
of three linkage measures and application to psychological data. The Quantitative
Methods for Psychology, vol. 11, no. 1, pages 8–21, 2015. (Cited on page 13.)

[Ying 2009] Xia Ying, Zhang Xu and Wang Guo Yin. Cluster-based congestion outlier de-
tection method on trajectory data. In International Conference on Fuzzy Systems
and Knowledge Discovery, volume 5, pages 243–247, August 2009. (Cited on
page 14.)

[Yu 2018] Qingying Yu, Yonglong Luo, Chuanming Chen and Xiaohan Wang. Trajectory
outlier detection approach based on common slices sub-sequence. Applied Intel-
ligence, vol. 48, no. 9, pages 2661–2680, September 2018. (Cited on pages 1
and 18.)

[Yuan 2017a] Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li and Canwei Wang. A review
of moving object trajectory clustering algorithms. Artificial Intelligence Review,
vol. 47, no. 1, pages 123–144, January 2017. (Cited on pages 9, 13 and 14.)

[Yuan 2017b] Yuan Yuan, Dong Wang and Qi Wang. Anomaly detection in traffic scenes
via spatial-aware motion reconstruction. IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 5, pages 1198–1209, May 2017. (Cited on
pages 18, 19 and 20.)

[Zhang 2006] Zhang Zhang, Kaiqi Huang and Tieniu Tan. Comparison of similarity
measures for trajectory clustering in outdoor surveillance scenes. In International
Conference on Pattern Recognition, pages 1135–1138, August 2006. (Cited on
page 9.)

[Zhang 2010] Lijuan Zhang, Frank Thiemann and Monika Sester. Integration of gps
traces with road map. In International Workshop on Computational Transporta-
tion Science, IWCTS ’10, pages 17–22, New York, NY, USA, 2010. ACM. (Cited
on pages 21 and 25.)

[Zhang 2011] Daqing Zhang, Nan Li, Zhi-Hua Zhou, Chao Chen, Lin Sun and Shijian
Li. iBAT: detecting anomalous taxi trajectories from gps traces. In International
Conference on Ubiquitous Computing, UbiComp ’11, pages 99–108, New York,
NY, USA, 2011. ACM. (Cited on pages 17, 19 and 20.)

[Zheng 2015a] Yu Zheng. Trajectory data mining: an overview. ACM Transactions on
Intelligent Systems Technology, vol. 6, no. 3, pages 1–41, May 2015. (Cited on
page 1.)

[Zheng 2015b] Yu Zheng. Trajectory data mining: an overview. ACM Transactions on
Intelligent Systems and Technology, vol. 6, no. 3, pages 29:1–29:41, May 2015.
(Cited on page 8.)

Appendices 105

[Zheng 2018] Ke Zheng and Dunyao Zhu. A novel clustering algorithm of extracting
road network from low-frequency floating car data. Cluster Computing, pages
1–10, January 2018. (Cited on pages 2, 21, 25, 48 and 78.)

[Zhu 2015] Jie Zhu, Wei Jiang, An Liu, Guanfeng Liu and Lei Zhao. Time-dependent
popular routes based trajectory outlier detection. In Jianyong Wang, Wojciech Cel-
lary, Dingding Wang, Hua Wang, Shu-Ching Chen, Tao Li and Yanchun Zhang,
editeurs, Web Information Systems Engineering, pages 16–30, Cham, 2015.
Springer International Publishing. (Cited on page 17.)

[Zhu 2018] Ye Zhu, Kai Ting Ming and Maia Angelova. A distance scaling method to
improve density-based clustering. In Dinh Phung, Vincent S. Tseng, Geoffrey I.
Webb, Bao Ho, Mohadeseh Ganji and Lida Rashidi, editeurs, Advances in Knowl-
edge Discovery and Data Mining, pages 389–400, Cham, 2018. Springer Inter-
national Publishing. (Cited on page 15.)

A. 10-Fold Cross Validation Results on 65 Time Series Datasets 107

A 10-Fold Cross Validation Results on 65 Time Series Datasets

As interpreted in [Antunes 2001], “A sequence composed by a series of nominal symbols
from a particular alphabet is usually called a temporal sequence and a sequence of con-
tinuous, real-valued elements, is known as a time series”. According to this definition,
trajectory is a specific kind of time series. We test the performance of DHD(ω) based
on 65 public time series datasets which are collected by Chen et al. [Chen 2015]. The
average and standard deviation of classification error ratio on the datasets are given
in Table A.1, where the best performance of each dataset is shown in bold. The results
show that DHD(ω) outperforms than DHD.

Table A.1: Classification Error Ratio (%) on Time Series Datasets

No. Dataset Data Size Clusters Size
DHD DHD(ω)

Average Std Average Std
1 50words 905 50 86.52 0.0300 40.77 0.0391
2 Adiac 781 37 71.33 0.0603 36.48 0.0452
3 ArrowHead 210 3 50.00 0.0985 10.00 0.0613
4 Beef 60 5 55.00 0.2364 50.00 0.2606
5 BeetleFly 40 2 40.00 0.1748 22.50 0.2486
6 BirdChicken 40 2 22.50 0.3217 20.00 0.1581
7 Car 120 4 58.33 0.1521 29.17 0.0982
8 CBF 930 3 60.54 0.0608 3.44 0.0167
9 Coffee 56 2 25.33 0.1501 1.67 0.0527
10 Computers 500 2 26.40 0.0610 37.80 0.0614
11 Cricket_X 780 12 78.08 0.0293 48.33 0.0897
12 Cricket_Y 780 12 80.51 0.0550 50.51 0.0510
13 Cricket_Z 780 12 78.33 0.0333 48.08 0.0397
14 DiatomSizeReduction 322 4 8.39 0.0392 0.00 0.0000
15 DistalPhalanxOutlineAgeGroup 539 3 33.19 0.0637 23.38 0.0583
16 DistalPhalanxOutlineCorrect 876 2 34.60 0.0509 23.29 0.0425
17 DistalPhalanxTW 539 6 43.21 0.0563 29.68 0.0488
18 Earthquakes 461 2 32.34 0.0735 36.04 0.0797
19 ECG200 200 2 31.50 0.1180 11.50 0.0914
20 ECG5000 5000 5 13.70 0.0173 6.68 0.0114
21 ECGFiveDays 884 2 3.51 0.0125 0.00 0.0000
22 FaceAll 2247 14 64.49 0.0278 6.54 0.0149
23 FaceFour 112 4 50.91 0.1621 17.05 0.0911
24 FacesUCR 2247 14 64.53 0.0337 6.19 0.0135
25 FISH 350 7 69.43 0.0687 17.43 0.0888
26 Gun_Point 200 2 39.50 0.1012 2.00 0.0258
27 Ham 214 2 45.28 0.0894 27.62 0.0831
28 Haptics 463 5 69.77 0.0424 64.37 0.0510
29 Herring 128 2 45.45 0.1015 46.79 0.1380
30 InsectWingbeatSound 2200 11 87.91 0.0221 41.50 0.0263
31 ItalyPowerDemand 1096 2 32.39 0.0485 5.75 0.0206
32 LargeKitchenAppliances 750 3 51.33 0.0594 60.53 0.0623
33 Lighting2 121 2 36.28 0.1149 35.64 0.1137
34 Lighting7 143 7 52.43 0.0966 54.48 0.1559
35 Meat 120 3 10.83 0.0883 7.50 0.0730
36 MedicalImages 1140 10 47.72 0.0310 25.88 0.0262
37 MiddlePhalanxOutlineAgeGroup 554 3 44.42 0.0928 31.41 0.0662
38 MiddlePhalanxOutlineCorrect 891 2 39.73 0.0648 27.84 0.0480
39 MiddlePhalanxTW 553 6 49.19 0.0419 45.94 0.0434
40 MoteStrain 1272 2 27.51 0.0384 12.57 0.0285
41 OliveOil 60 4 26.67 0.1610 16.67 0.1361
42 OSULeaf 442 6 65.16 0.0443 38.71 0.0926
43 PhalangesOutlinesCorrect 2658 2 37.77 0.0409 24.08 0.0261
44 Plane 210 7 21.90 0.0784 2.86 0.0246
45 ProximalPhalanxOutlineAgeGroup 605 3 29.40 0.0554 23.64 0.0620
46 ProximalPhalanxOutlineCorrect 891 2 30.18 0.0493 18.30 0.0541
47 ProximalPhalanxTW 605 6 33.88 0.0560 26.42 0.0824
48 RefrigerationDevices 750 3 35.73 0.0439 63.60 0.0507
49 ScreenType 750 3 51.20 0.0467 65.60 0.0474
50 ShapeletSim 200 2 38.50 0.1435 47.00 0.0919

continued on next page

108 Appendices

continued from previous page
No. Dataset Data Size Clusters Size

DHD DHD(ω)
Average Std Average Std

51 ShapesAll 1198 60 83.48 0.0225 21.37 0.0302
52 SmallKitchenAppliances 750 3 49.87 0.0706 59.33 0.0587
53 SonyAIBORobotSurface 621 2 18.69 0.0346 1.45 0.0119
54 Strawberry 983 2 7.63 0.0183 4.17 0.0170
55 SwedishLeaf 1122 15 67.21 0.0525 17.02 0.0359
56 Symbols 1000 6 77.90 0.0370 4.40 0.0222
57 synthetic_control 600 6 73.50 0.0552 3.33 0.0192
58 ToeSegmentation1 252 2 30.51 0.0697 26.09 0.0912
59 ToeSegmentation2 166 2 19.85 0.0784 21.25 0.1409
60 Trace 200 4 25.00 0.0943 6.50 0.0626
61 TwoLeadECG 1162 2 8.86 0.0269 0.95 0.011
62 Wine 111 2 5.45 0.0878 4.55 0.0643
63 WordsSynonyms 905 25 82.75 0.0458 38.12 0.0489
64 Worms 225 5 59.57 0.0839 69.94 0.1074
65 WormsTwoClass 225 2 40.45 0.1212 50.61 0.0490

Average of all datasets 44.36 0.0744 26.50 0.0640

B. Generated Maps by the Three-Step Framework and by Wang et al. 109

B Generated Maps by the Three-Step Framework and by Wang
et al.

In this section, we show the generated maps by the three-step framework and by Wang
et al.. Figure B.1 and Figure B.4 plots the generated maps of four urban datasets along
with the groundtruth. Besides, for the visual inspection of data coverage, Figure B.2,
Figure B.5, Figure B.3and Figure B.6 show the generated maps with trajectory data. In
each figure, the maps by Wang et al. and by our three-step framework are listed in the
first and second columns, respectively.

(a) Athens small (b) Athens large

(c) Chicago (d) Berlin

Figure B.1: Plots of generated maps (red) on the groundtruth (black) of urban GPS data
by our three-step framework.

110 Appendices

(a) Athens small (b) Athens large

(c) Chicago (d) Berlin

Figure B.2: Plots of generated maps (red) with trajectories (black) of urban data by our
three-step framework.

(a) Delta (b) Aiguamolls

(c) Garraf (d) Montseny

Figure B.3: Plots of generated maps (red) with trajectories (black) of hiking data by our
three-step framework.

B. Generated Maps by the Three-Step Framework and by Wang et al. 111

(a) Athens small (b) Athens large

(c) Chicago (d) Berlin

Figure B.4: Plots of generated maps (red) on the groundtruth (black) of urban GPS data
by Wang et al.

(a) Athens small (b) Athens large

(c) Chicago (d) Berlin

Figure B.5: Plots of generated maps (red) with trajectories (black) of urban data by
Wang et al.

112 Appendices

(a) Delta (b) Aiguamolls

(c) Garraf (d) Montseny

Figure B.6: Plots of generated maps (red) with trajectories (black) of hiking data by
Wang et al.

C. Map Construction With the Split-and-Merge Strategy 113

C Map Construction With the Split-and-Merge Strategy

In this section, we show the datasets and generated maps.

C.1 GPS Datasets With Splitting Boundaries

To perform the split-and-merge strategy, we split the datasets into two regions. Figure
C.1 and Figure C.2 show the datasets with the spatial splitting. The overlapping zone
is highlighted with a blue frame, and the red dotted line indicates the midline.

(a) Athens small (b) Athens large

(c) Chicago (d) Berlin

Figure C.1: Plots of urban GPS datasets with splitting boundaries and midline. A zoom
in view of the overlapping zone is shown in the right side.

114 Appendices

(a) Delta (b) Aiguamolls

(c) Garraf (d) Montseny

Figure C.2: Plots of four hiking GPS datasets with splitting boundaries and midline. A
zoom in view of the overlapping zone is shown in the right side.

C. Map Construction With the Split-and-Merge Strategy 115

C.2 Generated Maps by the Split-and-Merge strategy

In Figure C.3, we show the generated maps by the three-step-framework with (in blue)
and without (in red) using the split-and-merge strategy. A zoom in view of the overlap-
ping zone with the midline in red is shown on the right side.

(a) Athens small (b) Chicago

(c) Berlin (d) Delta

(e) Aiguamolls (f) Garraf

Figure C.3: Plots of generated maps utilizing the split-and-merge strategy.

116 Appendices

D Map Visualization With Edge Weight

In Figure D.1, we show the filtered maps by edge weight. The frequencies of edges are
normalized to assign the colors from blue to black with the increasing frequency.

(a) Athens small (b) Athens large

(c) Berlin (d) Delta

(e) Aiguamolls (f) Garraf

Figure D.1: Plots of filtered maps visualized with colormap.

	Introduction
	Motivation
	Objectives
	Thesis Outline

	Background
	Introduction
	Basic Concepts
	Trajectory Data
	Distance Measure
	Clustering Algorithm

	Anomaly Detection
	Clustering-Based Approaches
	Non-Clustering-Based Approaches
	Evaluation Measures

	Map Construction
	Incremental Track Insertion
	Intersection Linking
	Point Clustering
	Other Map Construction Approaches
	Map Validation

	Adaptive Online Trajectory Anomaly Detection
	Introduction
	Previous work
	Conformal Anomaly Detection
	SNN-CAD Based Anomaly Detection
	SHNN-CAD Based Anomaly Detection

	SHNN-CAD+: An Improvement of SHNN-CAD
	Discussion of SHNN-CAD
	SHNN-CADplus

	Results and Discussion
	Comparison of Distance Measure
	Comparison of Anomaly Detection Methods
	Comparison of Online Anomaly Detection

	Conclusions

	Map Construction From GPS Trajectory Data by a Three-Step Framework
	Introduction
	Preliminaries
	Algorithms for Comparison
	Slide
	Thinning Algorithm

	The Proposed Method
	Data Pre-processing
	Density Surface Computing
	Density Surface Compaction via Slide
	Route Map Construction
	Discussion about Parameters

	Results and Discussion
	GPS Datasets
	Map Comparison by Visual Inspection
	Map Comparison by Quantitative Evaluation
	Runtime of Our Framework
	Summary

	Conclusions

	Improvements on the Three-Step Map Construction Framework
	Introduction
	Related Work
	The Split-and-Merge Strategy
	Geographical Area Splitting
	Boundaries Fixing and Maps Merging

	Edge Weight
	Results and Discussion
	Performance of the Split-and-Merge Strategy
	Applications of Edge Weight
	Summary

	Conclusions

	Conclusions
	Contributions
	Future work
	Publications

	Bibliography
	Appendices
	10-Fold Cross Validation Results on 65 Time Series Datasets
	Generated Maps by the Three-Step Framework and by Wang et al.
	Map Construction With the Split-and-Merge Strategy
	GPS Datasets With Splitting Boundaries
	Generated Maps by the Split-and-Merge strategy

	Map Visualization With Edge Weight

