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Abstract

The automatic recognition of sound events has gained attention in the past few
years, motivated by emerging applications in fields such as healthcare, smart
homes, or urban planning. When the work for this thesis started, research
on sound event classification was mainly focused on supervised learning using
small datasets, often carefully annotated with vocabularies limited to specific
domains (e.g., urban or domestic). However, such small datasets do not sup-
port training classifiers able to recognize hundreds of sound events occurring in
our everyday environment, such as kettle whistles, bird tweets, cars passing by,
or different types of alarms. At the same time, large amounts of environmental
sound data are hosted in websites such as Freesound or YouTube, which can
be convenient for training large-vocabulary classifiers, particularly using data-
hungry deep learning approaches. To advance the state-of-the-art in sound
event classification, this thesis investigates several strands of dataset creation
as well as supervised and unsupervised learning to train large-vocabulary sound
event classifiers, using different types of supervision in novel and alternative
ways. Specifically, we focus on supervised learning using clean and noisy labels,
as well as self-supervised representation learning from unlabeled data.
The first part of this thesis focuses on the creation of FSD50K, a large-
vocabulary dataset with over 100h of audio manually labeled using 200 classes
of sound events. We provide a detailed description of the creation process
and a comprehensive characterization of the dataset. In addition, we explore
architectural modifications to increase shift invariance in CNNs, improving ro-
bustness to time/frequency shifts in input spectrograms. In the second part,
we focus on training sound event classifiers using noisy labels. First, we pro-
pose a dataset that supports the investigation of real label noise. Then, we
explore network-agnostic approaches to mitigate the effect of label noise dur-
ing training, including regularization techniques, noise-robust loss functions,
and strategies to reject noisy labeled examples. Further, we develop a teacher-
student framework to address the problem of missing labels in sound event
datasets. In the third part, we propose algorithms to learn audio representa-
tions from unlabeled data. In particular, we develop self-supervised contrastive
learning frameworks, where representations are learned by comparing pairs of
examples constructed via data augmentation and automatic sound separation
methods. Finally, we report on the organization of two DCASE Challenge
Tasks on automatic audio tagging with noisy labels. By providing data re-
sources as well as state-of-the-art approaches and audio representations, this
thesis contributes to the advancement of open sound event research, and to
the transition from traditional supervised learning using clean labels to other
learning strategies less dependent on costly annotation efforts.
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Resumen

El interés en el reconocimiento automático de eventos sonoros se ha incremen-
tado en los últimos años, motivado por nuevas aplicaciones en campos como
la asistencia médica, smart homes, o urbanismo. Al comienzo de esta tesis,
la investigación en clasificación de eventos sonoros se centraba principalmen-
te en aprendizaje supervisado usando datasets pequeños, a menudo anotados
cuidadosamente con vocabularios limitados a dominios específicos (como el
urbano o el doméstico). Sin embargo, tales datasets no permiten entrenar cla-
sificadores capaces de reconocer los cientos de eventos sonoros que ocurren en
nuestro entorno, como silbidos de kettle, sonidos de pájaros, coches pasando, o
diferentes alarmas. Al mismo tiempo, websites como Freesound o YouTube al-
bergan grandes cantidades de datos de sonido ambiental, que pueden ser útiles
para entrenar clasificadores con un vocabulario más extenso, particularmente
utilizando métodos de deep learning que requieren gran cantidad de datos.
Para avanzar el estado del arte en la clasificación de eventos sonoros, esta
tesis investiga varios aspectos de la creación de datasets, así como de apren-
dizaje supervisado y no supervisado para entrenar clasificadores de eventos
sonoros con un vocabulario extenso, utilizando diferentes tipos de supervisión
de manera novedosa y alternativa. En concreto, nos centramos en aprendizaje
supervisado usando etiquetas sin ruido y con ruido, así como en aprendizaje
de representaciones auto-supervisado a partir de datos no etiquetados.
La primera parte de esta tesis se centra en la creación de FSD50K, un dataset
con más de 100h de audio etiquetado manualmente usando 200 clases de even-
tos sonoros. Presentamos una descripción detallada del proceso de creación y
una caracterización exhaustiva del dataset. Además, exploramos modificacio-
nes arquitectónicas para aumentar la invariancia frente a desplazamientos en
CNNs, mejorando la robustez frente a desplazamientos de tiempo/frecuencia
en los espectrogramas de entrada. En la segunda parte, nos centramos en en-
trenar clasificadores de eventos sonoros usando etiquetas con ruido. Primero,
proponemos un dataset que permite la investigación del ruido de etiquetas real.
Después, exploramos métodos agnósticos a la arquitectura de red para mitigar
el efecto del ruido en las etiquetas durante el entrenamiento, incluyendo técni-
cas de regularización, funciones de coste robustas al ruido, y estrategias para
rechazar ejemplos etiquetados con ruido. Además, desarrollamos un método
teacher-student para abordar el problema de las etiquetas ausentes en datasets
de eventos sonoros. En la tercera parte, proponemos algoritmos para apren-
der representaciones de audio a partir de datos sin etiquetar. En particular,
desarrollamos métodos de aprendizaje contrastivos auto-supervisados, donde
las representaciones se aprenden comparando pares de ejemplos calculados a
través de métodos de aumento de datos y separación automática de sonido.
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xii Resumen

Finalmente, reportamos sobre la organización de dos DCASE Challenge Tasks
para el tageado automático de audio a partir de etiquetas ruidosas. Mediante la
propuesta de datasets, así como de métodos de vanguardia y representaciones
de audio, esta tesis contribuye al avance de la investigación abierta sobre even-
tos sonoros y a la transición del aprendizaje supervisado tradicional utilizando
etiquetas sin ruido a otras estrategias de aprendizaje menos dependientes de
costosos esfuerzos de anotación.



Contents

Abstract IX

Resumen XI

Contents XIII

List of Figures XIX

List of Tables XXV

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Commonly-used Paradigm . . . . . . . . . . . . . . . . . . 4

1.2.1 Building a New Dataset . . . . . . . . . . . . . . . . . . 4
1.2.2 Improving Generalization . . . . . . . . . . . . . . . . . 5

1.3 A New Perspective on Sound Event Recognition . . . . . . . . 7
1.3.1 Learning with Noisy Labels . . . . . . . . . . . . . . . . 7
1.3.2 Self-supervised Learning . . . . . . . . . . . . . . . . . . 9

1.4 Scope and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 What is Sound Event Recognition? . . . . . . . . . . . . . . . . 16

2.2.1 Relation of Environmental Sounds to Other Audio Signals 18
2.2.2 Relation of Sound Event Recognition to Other Fields . . 20
2.2.3 Technical Challenges in Sound Event Recognition . . . . 21
2.2.4 Organization of Sound Events . . . . . . . . . . . . . . . 22

2.3 Sound Event Classification as a Supervised Learning Problem . 25
2.3.1 Overview of the Supervised Learning Pipeline . . . . . . 26
2.3.2 Data and Labels . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Input Representations . . . . . . . . . . . . . . . . . . . 30
2.3.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . 31
2.3.5 Sound Classifiers . . . . . . . . . . . . . . . . . . . . . . 34
2.3.6 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.7 Evaluation of Sound Event Classification Systems . . . . 35

2.4 Datasets for Sound Event Recognition . . . . . . . . . . . . . . 38
2.4.1 Datasets for Sound Event Tagging or Classification . . . 38

xiii



xiv Contents

2.4.2 Datasets for Sound Event Detection . . . . . . . . . . . 42
2.4.3 Gathering Reference Labels . . . . . . . . . . . . . . . . 42
2.4.4 Freesound . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Convolutional Neural Networks for Sound Event Classification . 46
2.5.1 CNNs vs CRNNs for Sound Event Classification . . . . 48
2.5.2 Shift Invariance in CNNs . . . . . . . . . . . . . . . . . 48

2.6 Learning with Noisy Labels . . . . . . . . . . . . . . . . . . . . 50
2.6.1 Learning with Noisy Labels in Computer Vision . . . . 50
2.6.2 Learning with Noisy Labels in Sound Event Classification 52
2.6.3 AudioSet from the Perspective of Label Noise . . . . . . 53
2.6.4 Learning with Noisy Labels in This Thesis . . . . . . . . 54

2.7 Self-supervised Learning . . . . . . . . . . . . . . . . . . . . . . 54
2.7.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . 54
2.7.2 Problem Formulation . . . . . . . . . . . . . . . . . . . 55
2.7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 56

3 The Freesound Dataset 50k (FSD50K) 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 The Creation of FSD50K . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Overall Procedure . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . 63
3.2.4 Candidate Labels Nomination . . . . . . . . . . . . . . . 65
3.2.5 Validation Task . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.6 Data Split . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.7 Refinement Task . . . . . . . . . . . . . . . . . . . . . . 74
3.2.8 Post-processing . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 FSD50K Description . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3.5 FSD50K and AudioSet . . . . . . . . . . . . . . . . . . . 92

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 Baseline Systems . . . . . . . . . . . . . . . . . . . . . . 94
3.4.2 Impact of Train/Validation Separation . . . . . . . . . . 98

3.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . 100

4 Improving Sound Event Classification by Increasing Shift
Invariance in Convolutional Neural Networks 105
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2.1 Low-pass Filtering Before Subsampling . . . . . . . . . 107



Contents xv

4.2.2 Adaptive Polyphase Sampling . . . . . . . . . . . . . . . 110
4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.1 Evaluation and Training Details . . . . . . . . . . . . . 112
4.3.2 Baseline Model . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 mixup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.1 Evaluation using a Small Model . . . . . . . . . . . . . . 114
4.4.2 Ablation Study of mixup Strategies . . . . . . . . . . . . 116
4.4.3 Evaluation using Regularization and a Larger Model . . 118
4.4.4 Characterizing the Increase of Shift Invariance . . . . . 120
4.4.5 Per-class Analysis . . . . . . . . . . . . . . . . . . . . . 122
4.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.4.7 Comparison with Previous Work . . . . . . . . . . . . . 127

4.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . 127

5 Training Sound Event Classifiers With Noisy Labels 129
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 FSDnoisy18k: a Sound Event Dataset for the Study of Label

Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.1 Dataset Creation . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2 Label Noise Characteristics . . . . . . . . . . . . . . . . 132
5.2.3 Dataset Description . . . . . . . . . . . . . . . . . . . . 134
5.2.4 Baseline System . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Regularization Techniques to Handling Noisy Labels . . . . . . 138
5.3.1 Label Smoothing Regularization . . . . . . . . . . . . . 139
5.3.2 mixup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Using Loss Functions to Mitigate the Effect of Label Noise . . . 142
5.4.1 Noise-Robust Loss Functions . . . . . . . . . . . . . . . 143
5.4.2 Loss-based Instance Selection . . . . . . . . . . . . . . . 144
5.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6 Addressing Missing Labels in Multi-label Sound Event Classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.6.1 Missing Labels in AudioSet . . . . . . . . . . . . . . . . 151
5.6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . 161

6 Self-Supervised Learning of Sound Event Representations 165
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Data Augmentation to Create Different Example Views . . . . 166
6.3 Similarity Maximization for Sound Event Representation Learning168



xvi Contents

6.3.1 Learning Framework . . . . . . . . . . . . . . . . . . . . 169
6.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 173
6.3.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . 176
6.3.4 Evaluation of Learned Representations . . . . . . . . . . 181

6.4 Self-Supervised Representation Learning from Automatically Sep-
arated Sound Scenes . . . . . . . . . . . . . . . . . . . . . . . . 182
6.4.1 Sound Separation as Data Augmentation . . . . . . . . 184
6.4.2 Proxy Learning Tasks . . . . . . . . . . . . . . . . . . . 186
6.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . 190
6.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 193

6.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . 200
6.5.1 Similarity Maximization for Sound Event Representation

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
6.5.2 Self-Supervised Representation Learning from Automat-

ically Separated Sound Scenes . . . . . . . . . . . . . . . 202
6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7 Summary and Future Perspectives 205
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . 206

7.2.1 Technical Contributions . . . . . . . . . . . . . . . . . . 206
7.2.2 Other Academic Contributions . . . . . . . . . . . . . . 208
7.2.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.3 Summary of Conclusions . . . . . . . . . . . . . . . . . . . . . . 209
7.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.4 Impact of this Work . . . . . . . . . . . . . . . . . . . . . . . . 213
7.4.1 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . 213

7.5 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.5.1 Future Methodologies . . . . . . . . . . . . . . . . . . . 215
7.5.2 Future Challenges . . . . . . . . . . . . . . . . . . . . . 216

A DCASE Challenge Tasks on Learning with Noisy Labels 219
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.2 DCASE 2018 Task 2: General-purpose Audio Tagging of Free-

sound Content with AudioSet Labels . . . . . . . . . . . . . . . 220
A.2.1 Task Setup . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.2.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
A.2.3 Challenge Outcomes . . . . . . . . . . . . . . . . . . . . 227

A.3 DCASE 2019 Task 2: Audio Tagging with Noisy Labels and
Minimal Supervision . . . . . . . . . . . . . . . . . . . . . . . . 227
A.3.1 Task Setup . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.3.3 Challenge Outcomes . . . . . . . . . . . . . . . . . . . . 233



Contents xvii

B Publications by the Author 235
B.1 Peer-reviewed Journal Articles . . . . . . . . . . . . . . . . . . 235
B.2 Peer-reviewed Conference Articles . . . . . . . . . . . . . . . . 236
B.3 Peer-reviewed Conference Articles through Collaborations . . . 237
B.4 Technical Reports . . . . . . . . . . . . . . . . . . . . . . . . . 238

C Other Academic Contributions and Merits by the Author 239
C.1 Academic Contributions . . . . . . . . . . . . . . . . . . . . . . 239
C.2 Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

D Resources 241
D.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
D.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

E Additional Figures and Tables 243

F Glossary 245
F.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Bibliography 247





List of Figures

1.1 Research context of this thesis and conceptual organisation of Chapters
3 to 6 of this dissertation, according to the weakness of the supervi-
sion used. Note that the weakness of the supervision given by noisy
labels depends on the amount of label noise—the Figure illustrates
typical cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Overview of a basic supervised training pipeline for sound event
classification. A multi-class classification case is illustrated, where
only one label is active at a time. . . . . . . . . . . . . . . . . . . . 28

3.1 Overall process of the creation of FSD50K. The process starts from
Freesound and the AudioSet Ontology. Stages in green involve
automatic data mining, stages in orange correspond to manual an-
notation tasks, and stages in blue involve data processing to shape
the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Screenshot of the “Training phase” page used for the validation task. 67
3.3 Screenshot of the “Validation phase” used for the validation task. . 67
3.4 Table for exploring the ontology in the refinement task. . . . . . . 75
3.5 Label distributions in dev (left) and eval (right) sets. Clips in eval

tend to have more labels (by dataset curation). Xaxis scale is log-
arithmic. Number of labels is reported in the unpropagated form.
Note that visualization span differs among plots. . . . . . . . . . . 85

3.6 Audio clip length distributions in dev (left) and eval (right) sets.
Clips in eval tend to last slightly longer (by dataset design). Bins
correspond to 1/3 second. Note that visualization span differ among
plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.7 Per-class average precision for all classes in FSD50K, using the best-
performing VGG-like model (dark blue) and the CRNNmodel (light
blue). Top 3 rows show the 144 leaf nodes and bottom row com-
prises the 56 intermediate nodes. . . . . . . . . . . . . . . . . . . . 102

xix



xx List of Figures

3.8 Learning curves (PR-AUC for train, validation, and evaluation) for
the CRNN model using the three train/validation splits specified in
Table 3.8 (val_random (left), val_is (middle), and the proposed val
(right)). Validation performance is substantially better than eval-
uation performance when using val_random and val_is, in which
the classifier is trained and validated on clips from the same up-
loader and the same class (WC contamination). When this type of
contamination is minimized (val), validation performance is a good
proxy of evaluation performance. . . . . . . . . . . . . . . . . . . . 103

4.1 Max-pooling layer and proposed methods to improve shift invari-
ance. Top: A max-pooling layer can be decomposed into a densely-
evaluated max-pooling operation with size k, followed by a sub-
sampling operation with stride s. Middle: Inclusion of a low-pass
filter before subsampling. Bottom: Adaptive Polyphase Sampling
(APS) can be used instead of naive subsampling. . . . . . . . . . . 107

4.2 Introducing low-pass filtering before subsampling within a max-
pooling operation. Top: A typical max-pooling operation of size
2x2. Middle: The max-pooling operation in the top can be decom-
posed into a unit-stride max-pooling operation of size 2x2, followed
by a subsampling operation with stride s = 2. Bottom: A low-pass
filter LPFm,n with m = n = 5 is applied before subsampling using a
convolution operation. As a result, the energy of bins in the output
feature map changes, as depicted by the different colour scheme. . 108

4.3 Underlying principle of adaptive polyphase sampling with stride
s = 2. The Figure illustrates a feature map (left side) and a ver-
sion of itself shifted downwards by one bin (right side). Different
levels of blue represent the energy in every bin. Red dots repres-
ent the sampling locations in a given grid. Top: When the same
fixed sampling grid is always used (naive subsampling), a small shift
in the input can cause a change in the output feature map (top
right case). Bottom: When the grid is selected adaptively based on
input’s energy (adaptive polyphase sampling), the output feature
map remains the same (i.e., the subsampling process becomes more
robust to input shifts). . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4 Example of low-pass filters extracted from the VGG41 baseline after
insertion of BlurPool 5x5 (left) or TLPF 5x5 (right). In BlurPool all
low-pass filters in the network are fixed by construction. In TLPF
multiple different filters are learned. . . . . . . . . . . . . . . . . . 119



List of Figures xxi

4.5 Predicted score for the correct class of water dripping (top) and
computer keyboard typing (bottom) examples, as a function of shif-
ted time frames (top) and mel bands (bottom). Inserting the pool-
ing mechanisms (TLPF 5x5 + APS l1) makes the predictions more
stable against spectrogram shifts. . . . . . . . . . . . . . . . . . . . 122

4.6 Per-class AP for the baseline using VGG42 and mixup vs. the same
model after inserting TLPF 5x5 and APS l1 (see Table 4.4). Only
the 144 leaf nodes in FSD50K are displayed, grouped by main sound
family in the AudioSet Ontology. . . . . . . . . . . . . . . . . . . . 123

4.7 Per-class AP comparing the top configuration of each proposed
method alone inserted into VGG42 with mixup: APS l1 vs. TLPF
5x5 & IBP (see Table 4.4). Only the 144 leaf nodes in FSD50K are
displayed, grouped by main sound family in the AudioSet Ontology. 126

5.1 Taxonomy of label noise based on the analysis of the noisy data
in FSDnoisy18k. The taxonomy considers two facets. Top levels
(blue) of the taxonomy describe the observed label in terms of cor-
rectness and completeness. Bottom level (green) of the taxonomy
categorizes the nature of the true or missing label, for an observed
label that is incorrect or incomplete, respectively. . . . . . . . . . . 132

5.2 Data split in FSDnoisy18k, including number of clips / duration in
hours. Blue = noisy data. Yellow = clean data. . . . . . . . . . . . 134

5.3 Per-class distribution of training clips in FSDnoisy18k. Blue =
noisy data. Yellow = clean data. . . . . . . . . . . . . . . . . . . . 135

5.4 Baseline system for FSDnoisy18k. . . . . . . . . . . . . . . . . . . 136
5.5 Sketch of the model-agnostic approaches against label noise con-

sidered in Sections 5.3 and 5.4, indicating the component(s) of the
learning pipeline where they operate. . . . . . . . . . . . . . . . . . 139

5.6 Generalized cross-entropy loss for different values of q (red, green,
blue), and categorical cross-entropy loss (black), as a function of
the predicted score. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.7 Approaches for loss-based instance selection. Left: discard in-
stances from each mini-batch. Right: prune train set. . . . . . . . 145

5.8 DenSE model based on DenseNet (Huang et al., 2017). . . . . . . . 148
5.9 Proposed teacher-student framework. Top: Identification of poten-

tial missing labels per class using teacher’s predictions and creation
of enhanced label set. Bottom: Training a student model while
ignoring missing labels through loss masking. . . . . . . . . . . . . 152

5.10 Classification performance as a function of the proportion of top-
scored negative labels that are discarded. Each point in the lines
corresponds to one operating point. The leftmost point in each
curve, marked with a square, corresponds to using all negative labels.156



xxii List of Figures

5.11 Per-class lwlrap for baseline (no label rejection) vs. best operating
point (3% discard) for ResNet-50 on tr_small. . . . . . . . . . . . 161

6.1 Framework for contrastive learning of audio representations based
on similarity maximization. The framework is composed of an aug-
mentation front-end, a common encoder fθ , and a common projec-
tion head gφ . Dashed lines between networks denote shared weights.
The augmentation front-end is composed of temporal proximity
sampling (TPS), mix-back and other data augmentations. Primes
in the data augmentation (DA) blocks illustrate that each block is
a different instance of the same augmentation policy. The Figure
illustrates the creation of pairs of positive examples—the pairs of
negatives are constructed from different clips. . . . . . . . . . . . . 170

6.2 Sound-separation informed framework for contrastive learning of
audio representations. It is composed of an unsupervised sound
separation and augmentation front-end, a common encoder fθ , and
two task-specific heads, gφ and gγ , for the similarity maximiza-
tion and coincidence prediction tasks respectively. Dashed lines
between networks denote shared weights. Each separated channel
feeding each proxy task (xsim

c for similarity maximization or xcoin
c for

coincidence prediction) is selected randomly between the two out-
put channels from the MixIT separation model. The concat block
stacks the latent representations for each view to define the input
to the coincidence prediction head. Primes in the data augmenta-
tion (DA) blocks illustrate that each block is a different instance of
the same augmentation policy, combining Temporal Proximity and
SpecAugment. Note that the front-end illustrates the creation of
pairs of positive examples—the pairs of negatives are constructed
from different clips. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3 Spectrograms of the two separated channels obtained with four
checkpoints (S2, S1, F, N) of the same separation model, given
one input mixture (top left). The input mixture contains a guitar
melody (up to ≈8s) followed by applause. For illustration pur-
poses, this is a simple case where the separation is purely temporal
(i.e., sources do not overlap). The general case features overlapping
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.1 Overview of a single-tag tagging system. . . . . . . . . . . . . . . . 222
A.2 Overview of a multi-label tagging system. . . . . . . . . . . . . . . 228
A.3 Data split in FSDKaggle2019, including number of clips / duration

in hours, and data origin. Colors depict quality of labels: orange,
yellow and green correspond to noisy labels, correct but potentially
incomplete labels, and exhaustive labels, respectively. . . . . . . . 230



List of Figures xxiii

E.1 Per-class increment/decrement of AP for all classes in FSD50K
when inserting TLPF 5x5 and APS l1 on VGG42 with mixup (see
right column of Table 4.4). Top 3 rows show the 144 leaf nodes and
bottom row comprise the 56 intermediate nodes. . . . . . . . . . . 244





List of Tables

2.1 Comparison of some characteristics of speech, music and environ-
mental sounds, based on Gygi (2001); Yamakawa et al. (2010); Heit-
tola (2021). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A selection of most relevant datasets for SET. m-c and m-l corres-
pond to multi-class and multi-label. . . . . . . . . . . . . . . . . . 39

3.1 Response types for the validation task. . . . . . . . . . . . . . . . . 69
3.2 Annotation strategies in the validation task. . . . . . . . . . . . . . 70
3.3 Main statistics for candidate validation set. . . . . . . . . . . . . . 82
3.4 Main statistics for FSD50K. . . . . . . . . . . . . . . . . . . . . . . 84
3.5 Comparison of some properties of FSD50K and AudioSet. . . . . . 92
3.6 Evaluation performance for the architectures considered. . . . . . . 96
3.7 Learning rates used (after tuning on val set) and number of weights

for the architectures considered. . . . . . . . . . . . . . . . . . . . . 96
3.8 Main statistics for the considered validation sets. . . . . . . . . . . 98

4.1 mAP obtained by inserting different pooling mechanisms into the
VGG41 baseline. TLPF = Trainable Low-pass Filter, APS = Ad-
aptive Polyphase Sampling, IBP = Intra-block Pooling. . . . . . . 115

4.2 mAP obtained by exploring different low-pass filter shapes in TLPF
over the baseline of Table 4.1. Filters can be 2D squared (m x n),
or 1D in frequency (1 x n) or time (m x 1). IBP is always applied. 116

4.3 mAP obtained by exploring different mixup variants over the baseline
of Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 mAP obtained by using top performing pooling mechanisms in pres-
ence of mixup and with the larger capacity VGG42. Values in par-
enthesis are absolute improvements over the corresponding baseline.
TLPF = Trainable Low-pass Filter, APS = Adaptive Polyphase
Sampling, IBP = Intra-block Pooling. . . . . . . . . . . . . . . . . 118

4.5 Classification consistency (in %, higher is better) and mean absolute
change (MAC) (lower is better) when applying time and frequency
shift protocols over input patches. Models evaluated are the baseline
of Table 4.1 and the same model after inserting TLPF 5x5 and APS
l1 (proposed). The proposed model exhibits higher robustness to
shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xxv



xxvi List of Tables

4.6 List of the 10 most benefited classes and 10 most harmed classes
by inserting TLPF 5x5 and APS l1 on VGG42 with mixup (see
right column of Table 4.4). ∆AP is the increment (left)/decrement
(right) of AP observed. . . . . . . . . . . . . . . . . . . . . . . . . 124

4.7 List of the 10 most benefited classes and 10 most harmed classes
by inserting TLPF 5x5 and IBP on VGG42 with mixup (see right
column of Table 4.4). ∆AP is the increment (left)/decrement (right)
of AP observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.8 State-of-the-art on FSD50K. . . . . . . . . . . . . . . . . . . . . . 127

5.1 Distribution of label noise types in a random 15% of the noisy data
of FSDnoisy18k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Average classification accuracy (%) and 95% confidence interval
(across 7 runs) obtained by the baseline system using different sub-
sets of FSDnoisy18k for training (see Figure 5.2); all = entire train
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Average classification accuracy (%) and 95% confidence interval
(across 7 runs) obtained by LSR and mixup approaches incorpor-
ated into the baseline system of Section 5.2.4. . . . . . . . . . . . . 141

5.4 Average classification accuracy (%) and 95% confidence interval
(across 7 runs) obtained by noise-robust loss functions using dif-
ferent subsets of FSDnoisy18k for training (see Figure 5.2); all =
entire train set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Average classification accuracy (%) and 95% confidence interval
(across 7 runs) obtained by approaches for loss-based instance se-
lection. Approaches in the top section follow a constant behaviour
during the learning process. Approaches in the bottom section have
two stages, as described in Section 5.4.2, where n1 indicates num-
ber of epochs prior to the stage of instance selection, for (Baseline
Model | DenSE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6 Train sets and architectures used in our experiments. . . . . . . . . 154
5.7 Classification performance for baselines and best operating points

for architectures and train sets considered. . . . . . . . . . . . . . . 157
5.8 Label counts for two example classes at one operating point of Fig-

ure 5.10 (tr_small and discarding 0.1% of top-scored negatives) . . 160
5.9 Number of classes with improvement and average improvement for

the three groups of classes in Figure 5.11. . . . . . . . . . . . . . . 160

6.1 kNN validation accuracy for several mechanisms of temporal prox-
imity sampling. d is the distance between patches, in number of
time frames. Each frame corresponds to a time shift of 10ms, given
by the hop size adopted when framing audio. . . . . . . . . . . . . 177



List of Tables xxvii

6.2 kNN validation accuracy for several mix-back settings. α ∈ [0,1] is
the mixing hyperparameter. . . . . . . . . . . . . . . . . . . . . . . 178

6.3 kNN validation accuracy for several data augmentation (DA) set-
tings. RRC = random resized cropping. . . . . . . . . . . . . . . . 179

6.4 Test accuracy for linear evaluation protocol (second column), and
for two downstream sound event classification tasks: a larger noisy
set and a small clean set for training. *This column also corres-
ponds to the supervised baselines to be compared with the linear
evaluation. p-t = pre-trained. . . . . . . . . . . . . . . . . . . . . . 181

6.5 mAP without sound separation in the front-end (i.e., using only the
input mixture). SA = SpecAugment, TP = Temporal Proximity,
CP = Coincidence Prediction. . . . . . . . . . . . . . . . . . . . . . 193

6.6 mAP using sound separation (SSep) in the front-end and the Sim-
CLR back-end. Temporal proximity sampling is always applied;
SpecAugment (SA) is applied as specified. . . . . . . . . . . . . . . 194

6.7 mAP using sound separation in the front-end and the coincidence
prediction back-end. Temporal proximity sampling and SpecAug-
ment are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.8 mAP using different checkpoints of the separation model as learn-
ing progresses (top), as well as some combinations (bottom). As
back-end, the SimCLR task is used (left), as well as the two proxy
tasks trained jointly (right). Temporal proximity sampling and Spe-
cAugment are applied. Comparison is always mix vs chan. CP =
Coincidence Prediction. . . . . . . . . . . . . . . . . . . . . . . . . 198

6.9 Comparison with previous work using the downstream supervised
classification with shallow model on AudioSet. mAP reported is
classification mAP.
MM = Multimodal approach. . . . . . . . . . . . . . . . . . . . . . 199

A.1 Main stats of the sets in FSDKaggle2019. ∗A few classes have
slightly less than 75 clips. . . . . . . . . . . . . . . . . . . . . . . . 232





CHAPTER 1
Introduction

1.1 Motivation

Sounds within our everyday environment carry a huge amount of information
about the physical events happening around us (Krause, 2012). We, humans,
perceive sounds constantly every day, either at home or in the street, at work
or out in the nature. We have the ability to recognize and understand most of
these sounds, and that plays a crucial role in our everyday life. For instance,
it allows us to communicate with others and to enjoy listening to music. But
beyond speech and music, recognizing all kinds of sound events like a kettle
whistle, a cat purring or a fire alarm, allows us to interact with objects and
animals, and, for instance, avoid hazardous situations. The latter in particular
can be specially useful for survival purposes, which highlights the importance
of the human auditory system. Perhaps because of that, the human audit-
ory system has been fine-tuned over millions of years of training and we have
become amazingly good at distinguishing hundreds of everyday sounds (Mas-
terton et al., 1969).
However, the identification of everyday sounds by machines still lags far behind
the capabilities of the human auditory system. Automatic processing and
recognition of sounds by computers in order to understand the environment is
a challenging endeavour. This is due to a number of reasons, for example, the
large diversity of sound sources that we ideally would like to recognize, and
the large variability of acoustic patterns that sound sources of the same type
can produce. Furthermore, the acoustic characteristics of these sounds are
highly varying, including all sorts of acoustic noise or sounds that overlap with
each other. The benefits of machines successfully performing this perceptual
task and listening like a person listens would be manifold. For example, these
algorithms could have a great impact on healthcare through context-aware
applications (Schilit et al., 1994) and intelligent wearable interfaces (Xu et al.,
2008) that could improve the life quality of the hearing impaired or the elderly,
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or as part of smart domestic assistants to aid everyday life (e.g., Google Home
or Amazon Alexa). In addition, nowadays we have access to huge amounts of
acoustic material to enjoy and learn from, sitting in websites like Freesound or
YouTube. For instance, the soundtracks of YouTube videos have millions of
hours of sound (Lyon, 2017). Sound understanding algorithms could be useful
for automatic description of such multimedia content, which enables automatic
subtitling and captioning, or could lead to better content-based organization
and retrieval for these large multimedia repositories. Yet, further research
is needed to develop robust systems capable of recognizing a wide range of
sound events in different types of audio streams, and performing those tasks
similarly as humans do. The computational analysis of environmental sounds
has received growing interest from the research community in recent times.
Research efforts targeting such goals are typically categorized under the field
of machine listening.
Broadly speaking, the machine listening field is aimed at studying computa-
tional methods for the automatic analysis and understanding of sound, thus
enabling machines to be aware of their environment (Wang, 2010). Within this
field, Sound Event Recognition (SER) is the task of automatically identifying
the sounds occurring in our daily lives, assigning a label within a target set
of sound classes. SER has gained increasing attention in the past few years,
becoming a useful component in applications related to healthcare (Drugman
et al., 2012; Hüwel et al., 2020; Messner et al., 2020), identification of urban
noise sources for urban sound planning (Bello et al., 2019), bioacoustics monit-
oring (Xu et al., 2017; Lostanlen et al., 2019; Cramer et al., 2020), multimedia
event detection (Wang et al., 2016), large-scale event discovery (Jansen et al.,
2017), acoustics surveillance for security issues (Crocco et al., 2016; Sánchez-
Hevia et al., 2017), or noise monitoring for industrial applications (Morrison &
Pardo, 2019). These applications have a high impact on human welfare, mak-
ing this field have a great potential of social impact in multiple areas. Further,
the SER research community has grown substantially over the last decade.
This is evidenced by the increasing traction of the Detection and Classification
of Acoustic Scenes and Events (DCASE) Challenge and Workshop (Mesaros
et al., 2017a), which, among other things, promote research and evaluation on
common publicly available datasets. This traction can be noticed not only in
terms of participants and authors, but also in terms of companies sponsoring
and participating in such events and therefore very interested in the field.
Within the broad context of machine listening, this thesis particularly focuses
on dataset creation methods and computational methods for SER using dif-
ferent types of supervision, as we explain next. The SER research context
at the time when the work of this thesis started (late 2016) can be broadly
described in terms of the methods and the datasets used. In terms of meth-
ods, the SER problem was approached using mainly supervised learning, with
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the research community gradually shifting from feature engineering methods
(Mesaros et al., 2010; Cotton & Ellis, 2011; Foggia et al., 2015) to deep learning
(Cakir et al., 2015; Piczak, 2015a; Parascandolo et al., 2016), which was be-
ginning to be adopted after its success in fields like computer vision or speech
recognition. In terms of datasets, most publicly available datasets were of re-
latively limited size (less than 9h of audio in Salamon et al. (2014); Piczak
(2015b); Foster et al. (2015)) and/or using a vocabulary limited to specific
domains (e.g., urban or domestic sounds with up to 10 classes (Salamon et al.,
2014; Foster et al., 2015)). These two characteristics allowed for a careful
annotation of the audio material in the mentioned datasets. However, such
datasets present some limitations. First, deep learning approaches are data-
hungry techniques that require large amounts of training data in order to show
its potential—it has been shown that the more data the better (Sun et al.,
2017). Yet the data resources available when this thesis started were not large.
Second, SER research used to be limited to the few domain-specific datasets
which were available at the time. Whether it is about domestic sounds, urban
sounds, or other domains, each of those datasets alone encompasses just a small
bit of the variety of sounds in our everyday environment. At the same time,
the type of sounds that can be recognized by sound event recognizers is limited
by the diversity of the data used to train them. Consequently, the limited size
and coverage of the publicly available datasets was limiting the recognition
performance and the applicability of sound event recognizers to different scen-
arios. Therefore, there was a need for more audio data with higher diversity,
in order to allow training general-purpose classifiers able to recognize tens, or
ideally hundreds, of sound classes.
Despite these needs, there existed large amounts of environmental sound data
with a high diversity of everyday sounds in web repositories such as Freesound,1
YouTube2 or Flickr.3 These repositories have two main aspects in common.
First, they host very large amounts of audio, taken from video recordings (in
the case of YouTube and Flickr), or audio recordings (in the case of Freesound).
Second, the audio data generally lacks reliable homogeneous labels describing
the audio content; instead, these repositories typically contain metadata such
as textual descriptions or tags manually introduced by the contributors of such
repositories. These user-provided metadata can be sparse and not necessarily
informative of the audio content but potentially video-centered (in the case of
YouTube and Flickr), or generally audio-centered but potentially incomplete
or inaccurate (in the case of Freesound) (Font, 2015). In this context, the
main question that we formulated at the beginning of this thesis was: What
actions can we take to overcome the limitations of the SER field, and allow the

1https://freesound.org/
2https://www.youtube.com/
3https://www.flickr.com/

https://freesound.org/
https://www.youtube.com/
https://www.flickr.com/
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improvement of coverage and performance in sound event recognizers? In this
thesis, we identify four possible research avenues to pursue this goal, which
are introduced in the next Sections (1.2.1, 1.2.2, 1.3.1 and 1.3.2), highlighting
their main challenges and opportunities.

1.2 The Commonly-used Paradigm

The commonly-used paradigm as defined in this thesis consists of adopting the
classical supervised learning approach. In this paradigm, classifiers are trained
using labels that are assumed to be reliable, which are typically produced
manually. In this context, the most obvious way to improve an existing method
is to build a labelled dataset containing more data and higher diversity than
those previously existing. However, assuming the amount of data that can
be gathered in this way is somewhat limited due to the costly annotation
process, an alternative is to adopt approaches to improve the generalization of
sound event recognizers. Sections 1.2.1 and 1.2.2 introduce these two research
avenues, respectively.

1.2.1 Building a New Dataset

The most evident option to achieve the established goal is to build better
datasets. For data-driven methodologies such as deep learning, it becomes
clear that new, larger, and more comprehensive datasets for development and
evaluation of SER models are important. This urgency resembles the evol-
ution witnessed in the computer vision field, where the release of ImageNet
allowed significant breakthroughs for image recognition and other visual tasks
(Russakovsky et al., 2015).
In the SER field, the aforementioned web repositories can be utilized as sources
of data for sound event dataset creation. The most prominent example of this is
Google’s AudioSet, released in 2017, shortly after the beginning of this thesis.
AudioSet consists of ≈2.1M audio clips manually labeled using 527 classes
(Gemmeke et al., 2017). Its unprecedented size, coverage and diversity rep-
resented a milestone that has transformed SER research, mitigating the afore-
mentioned need for large-vocabulary sound event data resources. However, in
our view, AudioSet has the major shortcoming of not being an open dataset.
Specifically, AudioSet is composed of audio tracks taken from YouTube videos,
which are not freely distributable due to YouTube Terms of Service. This is
the reason why AudioSet is released as a dataset of audio features (instead of
audio waveforms),4 which limits the adoption of a number of SER methods.

4https://research.google.com/audioset/download.html

https://research.google.com/audioset/download.html
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For this reason, some researchers opt to download the audio tracks from the
original YouTube videos, despite the ambiguities related to user rights, and
the fact that the constituent videos are gradually disappearing (see Section
2.4.1.2 for details).
After AudioSet, several efforts in dataset creation for SER have been made
(e.g. Cartwright et al. (2019c); Turpault et al. (2019); Adavanne et al. (2019);
Gharib et al. (2019); Dekkers et al. (2017); Fonseca et al. (2019b,c); Cartwright
et al. (2020)). However, these recent datasets are task/domain-specific, or of
a much more limited coverage (e.g., usually featuring few tens of classes),
and some of them are composed of synthetic audio material. This contrasts
with the computer vision field, where major efforts have been made to collect
large datasets as alternatives to ImageNet (e.g. Lin et al. (2014); Li et al.
(2017b); Kuznetsova et al. (2020)), allowing benchmarking on complementary
recognition problems. Thus, the SER field lags far behind in terms of dataset
availability.
At the beginning of this thesis, we understood that open dataset creation initi-
atives were needed to foster SER research. Building a fully-open, distributable
and stable, large-vocabulary sound event dataset with reliable labels is use-
ful for the research community. Not only it allows the training and stable
benchmarking of general-purpose sound event classifiers, but also may have a
broader impact in different strands of machine listening research. However, if
the reference labels are to be accurate and reliable (for which careful manual
annotation is likely to be needed) this can be a very laborious process. Build-
ing a dataset with these characteristics, which we call Freesound Dataset 50k
(FSD50K), has been an important focus throughout the development of this
thesis, for which we provide details in Chapter 3.

1.2.2 Improving Generalization

Due to the costly process of manual annotation, it is likely that the amount of
training data gathered as explained in the previous Section is less than ideal,
especially for some rare or ambiguous classes. Therefore, techniques to com-
pensate for this issue and increase the generalization of sound event recognizers
are paramount. Generalization is the ability of a machine learning algorithm
to perform well on previously unseen examples (Goodfellow et al., 2016). The
most obvious (and probably effective) path to improve generalization to new
examples is to gather and use more training examples, which leads us back to
Section 1.2.1. However, when this is not feasible, alternative ways to improve
generalization include improving the network architecture and using data aug-
mentation.
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The most common network architectures for sound recognition in recent years
are Convolutional Neural Networks (CNNs) (Hershey et al., 2017; Kong et al.,
2020a; Fonseca et al., 2020b; Gong et al., 2021b). Among the reasons why
they have been widely accepted is the property of translation or shift invari-
ance. According to this property, if the input to the network is translated
(i.e., shifted) by a small amount, the output predictions should not change,
or should change only minimally. However, recent studies in computer vision
have put into question this commonly-assumed property, showing that small
shifts in the input can affect the output predictions of CNNs substantially.
Fluctuations in the output probabilities can yield changes in the top-predicted
classes, leading to unstable behaviours sometimes triggered by perturbations
imperceptible to humans. For example, Azulay & Weiss (2018) quantify that
by shifting or resizing a random input image by one single pixel, the top class
predicted can change with a probability of up to 15% and 30%, respectively.
This and other related works empirically show the brittleness of CNNs against
minor input perturbations, and their only-partial invariance to shifts (Eng-
strom et al., 2018; Zhang, 2019). As a result, increasing the robustness of
CNNs against this kind of shifts is an issue of particular concern, especially
when the training data (hence the generalization capability) is not abundant.
Another way to improve generalization is via data augmentation techniques,
by generating additional training examples that can cover situations that may
be encountered in real life, when the model is doing inference on unseen data.
Several data augmentation techniques have been developed for environmental
sound processing tasks, including pitch shifting, time stretching, or dynamic
range compression, to name a few (Salamon & Bello, 2017). Others are based
on the simple concept of mixing sounds—an audio-informed process that per-
haps seems more suitable for general-purpose audio applications. This mixing
strategy has been recently adopted and found particularly effective for various
tasks in sound event research (Tokozume et al., 2018; Jansen et al., 2018; Kong
et al., 2020a; Wang & van den Oord, 2020).
Implementing measures to improve generalization overall and, in particular,
robustness to small time/frequency shifts is, therefore, a worthwhile research
avenue. Tackling this problem via architectural modifications and data aug-
mentation methods can be a way to increase recognition performance without
gathering more training examples. This is one of the objectives of this thesis,
covered in Chapter 4.
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1.3 A New Perspective on Sound Event
Recognition

The commonly-used paradigm introduced in Section 1.2 is fundamentally con-
strained by the reliance on careful audio annotations. Carefully annotating
sound events is a costly and time-consuming process which often leads to lim-
ited training data, this being one of the main weaknesses in deep learning meth-
odologies. However, as mentioned in Section 1.1, there exist large amounts of
varied everyday sound data in web repositories such as Freesound or YouTube,
sometimes accompanied by user-provided metadata, e.g., in the form of tags.
A new perspective on SER consists of accepting that the external supervision
of training data may not be optimal, or may be even non-existent, and find-
ing ways to train sound event classifiers in these more adverse scenarios. For
example, one alternative to gather more training data is to use less precise an-
notations over larger amounts of data, finding a trade-off between annotation
quality and data size. Another alternative is to leverage the aforementioned
imperfect sources of data as is, utilizing the user-provided tags as noisy labels
without turning to costly annotation processes. These two alternatives are
representative use cases of training classifiers with labels that are potentially
noisy and imprecise. This research avenue typically allow training at a larger
scale, overcoming the limitations imposed by annotation budgets. However,
techniques to mitigate the negative effect of label noise are usually required in
order to increase performance, which can be limited by the poorer supervision.
This research avenue is further motivated in Section 1.3.1. Another line of
work that has recently gained attention in the deep learning community con-
sists of disregarding any external supervision whatsoever, and turning to the
learning paradigm of unsupervised learning. Here, self-supervision can be ob-
tained solely by looking at patterns in the audio data. This type of supervision
can be used to learn rich audio representations without external labels, which
allows using potentially unlimited data. We introduce this research direction
in Section 1.3.2.

1.3.1 Learning with Noisy Labels

The commonly-used paradigm introduced in Section 1.2 is based on the as-
sumption that the labels accompanying the training data are correct. However,
this ideal state may not always be realistic, and sometimes a weaker supervi-
sion given by noisy labels is the only feasible choice. In these cases, we can
reject the assumption that the supervision is fully reliable, and adopt measures
to improve the recognition performance in presence of noisy labels.
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As discussed earlier, in sound event classification there is increasing demand
for large and varied data resources to exploit the capacity of deep architectures.
Creating datasets for supervised learning typically consists of two stages: i)
data acquisition (e.g., retrieving data from sites like Freesound or Youtube,
or doing recordings) and ii) data curation (organizing, cleaning and, most im-
portantly, labeling the data). Manual labeling is costly and is typically the
limiting factor on audio datasets. Thus, creators are often forced to comprom-
ise between dataset size and label quality, especially when annotating large
amounts of audio data with a diverse set of categories. Although some sound
event datasets are exhaustively labeled, e.g., Salamon et al. (2014); Piczak
(2015b); Foster et al. (2015) their size is limited (less than 9h of audio). In
contrast, the AudioSet dataset released at the beginning of this thesis consists
of over 5000h of audio labeled with 527 classes, but the labeling is not as pre-
cise (Gemmeke et al., 2017). In particular, label error in AudioSet is estimated
at above 50% for ≈18% of the classes.5 Thus, we are witnessing a transition
away from small and exhaustively labeled datasets, in favour of larger datasets
that inevitably include some amount of label noise.
On the other hand, online repositories such as Freesound or Youtube host
significant volumes of audio content with associated metadata. In this new
perspective, these repositories can be utilized as sources of data for training
sound event classifiers directly, without subsequent explicit human curation.
Labels can be inferred automatically from user-provided metadata, e.g., tags,
or by using pre-trained classifiers on the audio content. This method of gather-
ing data supports rapid collection of large amounts of labeled data, at a much
faster pace than the conventional manual dataset creation. However, this is
at the likely cost of a substantial level of label noise arising from errors in
the user-provided metadata, their transformation into labels, or sub-optimal
pre-trained classifiers.
In this context, label noise emerges as a pressing issue for the future of large-
scale sound event classification that can affect many practitioners. The effects
of label noise can include performance decrease, increased complexity of learned
models, or changes in learning requirements (Frénay & Verleysen, 2014), and
have been reported to hinder the proper learning of deep networks (Arpit et al.,
2017; Zhang et al., 2017). In sum, increasing robustness against label noise
is a promising research direction that allows to be less dependent on careful
manual annotations, and may lead to performance boosts when audio labels
are unreliable. There is a large body of work focused on learning with noisy
labels in computer vision, e.g., Reed et al. (2015); Goldberger & Ben-Reuven
(2017); Han et al. (2018). However, when the work for this thesis started, there
was little prior work on how to improve sound event classification in presence

5See https://research.google.com/audioset/dataset/index.html for details on how the
quality is estimated, accessed 25th June 2020.

https://research.google.com/audioset/dataset/index.html
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of noisy labels, e.g., Kumar & Raj (2017), and there was a lack of open data
benchmarks for the study of label noise.
Consequently, learning with noisy labels has been a relevant topic in this thesis.
Chapter 5 describes our contributions to establish learning with noisy labels as
a research direction in SER. Specifically, we first report on the creation of an
openly-available dataset that supports the investigation of label noise in sound
event classification. Then, we explore a number of techniques to mitigate the
effect of label noise, and apply them to web audio with noisy labels and to
AudioSet (Gemmeke et al., 2017).

1.3.2 Self-supervised Learning

So far, in previous Sections, we have assumed that textual labels accompanying
the audio data are always available. As we have seen, these textual labels can
be provided by humans with better or worse quality, or, for example, they can
be automatically derived from audio metadata, which usually generates a sub-
stantial amount of label noise. Either way, the introduced supervised learning
paradigm depends on this external supervision. This dependence on external
supervision carries important limitations, as discussed in previous Sections.
On the one hand, the construction of human-labeled audio datasets for SER
is notoriously time-consuming and subjective, imposing practical limitations
on dataset size and quality. On the other hand, when generating labels from
metadata, one might encounter situations where the metadata is too sparse
for a meaningful mapping to a sound event label set, or where the metadata
is a severe underrepresentation of the actual acoustic content. In some cases,
labels can be too noisy for successful training of classifiers.
The alternative to the supervised learning paradigm consists of leveraging
learning algorithms that do not depend on any external supervision, but that
have the ability to extract supervision from the audio data. These self-supervised
learning methods aim at learning representations without the need for external
supervision. Absent explicit labels, the success of these methods relies on the
design of proxy learning tasks in which pseudo-labels are generated from pat-
terns in the data. Specifically, these methods solve proxy tasks on unlabeled
data to learn mappings from input examples to useful low-dimensional rep-
resentations. These representations can then be used for downstream tasks
such as classification, for example where only few data, or poorly labeled data,
are available. An example of the usefulness of self-supervised audio repres-
entation learning is that of low-resource languages (Kawakami et al., 2020).
After learning unsupervised speech representations using abundant unlabeled
speech audio, speech recognition models are trained using the learned repres-
entation on much smaller labeled datasets of low-resource languages, improving
recognition accuracy. A major advantage of this self-supervision paradigm is



10 Introduction

that much larger amounts of data without prior manual labelling or metadata
can in principle be exploited—potentially unlimited data. In particular, large
amounts of rich everyday sound data from Freesound, Youtube or Flickr could
be leveraged, without caring about the existence of labels or the quality of
user-provided metadata. Another advantage of unsupervised representation
learning is that representations learned this way can be less specialized to-
wards the often-biased human labels. Hence, they may be better suited for
generalization to other tasks (Kawakami et al., 2020; Shor et al., 2020).
Self-supervision has seen major progress in computer vision (Chen et al., 2020b,c;
Grill et al., 2020) and in speech recognition (Oord et al., 2018; Baevski et al.,
2019, 2020). By the time this thesis started, the topic of self-supervised learn-
ing of general-purpose audio representations beyond speech had not been very
explored. One of the few prior works is Lee et al. (2009), where convolutional
deep belief networks are used to learn representations for speech and music,
but not for general-purpose audio. One of the main challenges of this learn-
ing paradigm is how to effectively extract supervision from the audio data.
This self-supervision is not limited to a specific mapping from examples to a
series of pre-defined labels, but each training example could provide arguably
more diverse information. However, in practice, extracting this information is
not a trivial task, and the supervision derived this way tends to be relatively
weak. Consequently, at the moment, self-supervised methods in sound recog-
nition underperform their supervised counterparts, although the gap is being
progressively reduced.
Self-supervision is a research direction that is beginning to have a major im-
pact in machine listening, mainly due to the availability of very large amounts
of unlabeled data. In this thesis, we have significantly contributed to consol-
idating this research direction in SER, exploring multiple strategies to learn
general-purpose audio representations from unlabeled data (Chapter 6). By
leveraging two proxy learning tasks and shedding light on new methodologies
for self-supervised audio representation learning, we contribute to reducing the
gap between unsupervised and supervised learning algorithms for sound event
classification.

1.4 Scope and Objectives

In the previous Sections, we have described the context of this thesis and intro-
duced the motivations for the research topics that are covered, using different
learning paradigms and leveraging sources of data in different ways. A visual
summary is depicted in Figure 1.1. The left side represents the scientific con-
text of sound event classification before this thesis, where research was mostly
based on supervised classification using small exhaustively-labeled datasets.
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Figure 1.1: Research context of this thesis and conceptual organisation of Chapters
3 to 6 of this dissertation, according to the weakness of the supervision used. Note
that the weakness of the supervision given by noisy labels depends on the amount of
label noise—the Figure illustrates typical cases.

The right side represents the main research topics covered in this thesis, and
how they are structured in Chapters within this dissertation. Figure 1.1 also il-
lustrates the amount of training data typically used in each learning paradigm.
In this thesis, we transition from small to large-vocabulary datasets, which
already involves certain reduction in label quality. In this context, the first
part of this dissertation deals with supervised classification assuming clean la-
bels (Chapters 3 and 4). Then, we cover the topic of supervised classification
from noisy labels (Chapter 5). Finally, we focus on self-supervised repres-
entation learning from unlabeled data (Chapter 6). In this way, this thesis
contributes to a transition in the methodologies and approaches utilized to
train models for sound event classification. A more detailed outline of this
dissertation is included in Section 1.5.
In light of the above introduction, the work presented in this thesis focuses on
advancing the field of SER by creating and using new data resources in novel
and alternative ways. Specifically, we research on several strands of dataset
creation as well as supervised and unsupervised learning in order to train high-
quality large-vocabulary sound event classifiers. The main objectives of this
thesis are to:
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O1: build an open annotated dataset of sound events of larger coverage
and size than existing publicly available datasets.

O2: devise a learning method for sound event classification able to im-
prove generalization to new unseen examples.

O3: develop techniques to mitigate the negative effect of label noise when
training sound event classifiers on noisy labels.

O4: develop methodologies for learning sound event representations in
unsupervised fashion.

O5: release data and source code as open resources thus fostering open
and reproducible SER research.

1.5 Thesis Outline

There are seven Chapters in this dissertation. The main contributions related
to the thesis objectives are described from Chapter 3 to Chapter 6, whose con-
ceptual organisation is illustrated in Figure 1.1 according to the weakness of
the supervision used for learning. A significant amount of the content in these
Chapters is derived from our publications (Fonseca et al., 2018b, 2019b,a,c,
2020b,a, 2021c,b,a), which are listed in Appendix B, along with other public-
ations by the author based on the work of this thesis.
Next, we include a brief description of the structure of this dissertation, along
with the main contents and achievements that are reported in each Chapter.
In Chapter 2, we provide the relevant background to support the topics covered
in this dissertation, as well as a review of the related literature. We start by
describing the context of sound event recognition as a research field, introdu-
cing terminology, discussing its main characteristics, contextualizing it with
other research fields, identifying its main technical challenges, and describing
how sound events can be organized. Then, we present the main components
of a sound event classification pipeline based on supervised learning, making
emphasis on some aspects that are basis for the work described in subsequent
Chapters, including data and labels, input representations, data augmenta-
tion, classifiers, loss functions, and evaluation metrics. Finally, we provide a
comprehensive literature review centered around the Chapters of this thesis,
namely, datasets for sound event recognition, convolutional neural networks
for sound event classification, learning with noisy labels, and self-supervised
learning. In this Chapter, we also provide a critical perspective in order to
further define the scope of the thesis, and motivate some of the choices made
along the way.
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In Chapter 3, we introduce FSD50K (Freesound Dataset 50k): a dataset
containing 51,197 Freesound audio clips totalling over 100h of audio manu-
ally labeled using 200 classes drawn from the AudioSet Ontology. FSD50K
is a dataset primarily designed for the development and evaluation of multi-
label sound event classification systems, but that also allows a variety of sound
event research tasks. We provide a detailed description of the FSD50K creation
process tailored to the particularities of Freesound data, including challenges
encountered and solutions adopted. We include a comprehensive character-
ization of the dataset along with discussion of limitations and key factors to
allow its audio-informed usage. We also describe a set of sound event classific-
ation experiments to provide baseline systems as well as critical insight on the
main factors to consider when splitting Freesound audio data for sound event
recognition tasks. This Chapter is useful to researchers using FSD50K (and,
in general, Freesound data for machine learning) as it allows making data-
informed decisions for design choices of machine listening systems. It may also
be useful for researchers working on the creation of large-vocabulary datasets.
To our knowledge, this is the largest fully-open dataset of human-labeled sound
events, and the second largest after AudioSet.
In Chapter 4, we propose a novel deep neural network for sound event clas-
sification. This architecture features several mechanisms aimed at increasing
shift invariance in the subsampling operations, such as low-pass filters and
adaptive sampling. The proposed architectural changes are evaluated on the
large-vocabulary sound event classification task of the FSD50K dataset via
ablation experiments. To this end, we use models of small and large capacity,
and in presence of a strong regularization. Our evaluation suggests that lack
of shift invariance is a problem in sound event classification, and there are be-
nefits in addressing it. Results shows that the proposed architectural changes
consistently improve sound event classification in all cases considered. We also
demonstrate empirically that the proposed methods reinforce shift invariance
in the network, making it more robust against time/frequency shifts in input
spectrograms. The outcome is a new state-of-the-art mAP on the FSD50K
classification benchmark when not using external training data.
Chapter 5 is dedicated to the study of techniques to improve performance in
presence of noisy labels in sound event classification. Our first contribution
is FSDnoisy18k, an openly-available audio dataset that supports the investig-
ation of real label noise, including an empirical characterization of the noise.
To our knowledge, no previous audio dataset has specifically provided for the
study of label noise in sound event classification. Then, we explore and develop
simple, efficient and network-agnostic approaches to mitigate the effect of label
noise. The approaches include external regularization techniques, noise-robust
loss functions, and sample rejection strategies to identify and discard potential
noisy labeled examples during the learning process. Further, we address the
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problem of missing labels, which is one of the big weaknesses of large sound
event datasets. Specifically, we propose a teacher-student framework with loss
masking to identify the most critical missing label candidates, and ignore their
contribution during training. These approaches can be easily incorporated into
existing deep learning pipelines, requiring minimal intervention and computa-
tional overhead. Evaluation of the proposed methods using FSDnoisy18k and
AudioSet reveals that they show promise in increasing robustness against noisy
labels, especially considering their simplicity and efficiency.
In Chapter 6, we propose multiple strategies to learn general-purpose audio
representations from unlabeled data. We focus on self-supervised contrastive
audio representation learning, where representations are learned by comparing
pairs of examples selected by some semantically-correlated notion of similarity.
In order to generate pairs of positive examples, we create different views of the
original input examples. These views are created via compositions of data aug-
mentation methods, which are one of the key elements in our learning pipelines.
To our knowledge, this is the first time that some augmentation methods are
used for sound event representation learning, such as automatic sound sep-
aration. After analyzing the main components of the proposed pipelines via
ablation experiments, we evaluate the learned representations using multiple
evaluation approaches, including linear evaluation protocol, downstream sound
event classification tasks, and query-by-example retrieval. Our best outcome
is an unsupervised audio representation that rivals state-of-the-art alternatives
on the established shallow AudioSet classification benchmark.
At the end of each Chapter, a summary and discussion of the key results
and takeaways is included. In addition, we conclude this dissertation with
Chapter 7, where we present an overall summary of the thesis and our main
conclusions, list our main contributions, and discuss possible future perspect-
ives of sound event classification with different types of supervision.
In addition, this dissertation contains six Appendix sections. In Appendix A,
we describe another significant contribution of this thesis, which is the co-
organization of two DCASE Challenge Tasks. Appendix B lists the publica-
tions by the author during this thesis. Appendix C lists other academic con-
tributions and merits based on the work of this thesis. In Appendix D, we list
and provide links to the most relevant open data and code resources outcome
of this thesis. Appendix E contains additional Figures for a better interpret-
ation of our evaluation results. Finally, Appendix F contains the glossary of
the abbreviations used in this thesis.



CHAPTER 2
Background

2.1 Introduction

This Chapter provides a description of the Sound Event Recognition field and
the relevant background for the topics covered in this thesis, as well as a re-
view of the related literature. Specifically, in Section 2.2, we introduce the
concept of sound event and the field of Sound Event Recognition, discussing
its main characteristics, contextualizing it with other research fields, identi-
fying its main technical challenges, and describing how sound events can be
organized, with special emphasis in the AudioSet Ontology (Gemmeke et al.,
2017). We also introduce a number of relevant concepts and terminology used
in this dissertation. Section 2.3 gives a brief overview of the main compon-
ents of a Sound Event Classification pipeline based on supervised learning,
making emphasis on some aspects that are basis for the work described in
subsequent Chapters, including data and labels, input representations, data
augmentation, classifiers, loss functions, and evaluation metrics. Finally, we
provide a comprehensive literature review centred around the work presented
in this thesis, namely, datasets for sound event recognition (Section 2.4), con-
volutional neural networks for sound event classification (Section 2.5), learn-
ing with noisy labels (Section 2.6), and self-supervised learning (Section 2.7).
These literature reviews provide the related work for Chapters 3, 4, 5 and 6,
respectively. Throughout the various Sections of this Chapter, we also provide
a critical perspective in order to further define the scope of this thesis, and
motivate some of the choices made along the way.

15
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2.2 What is Sound Event Recognition?

Let us first define what we mean by Sound Event Recognition in the context
of this thesis, starting by the concept of sound event. There seems not to be
a commonly-agreed, concrete definition of sound event in the literature. From
an acoustical perspective, broadly speaking, the term sound event denotes a
physical phenomenon by which a sound source or a sound production mech-
anism produces vibrations into a medium (typically, the air) generating sound
waves during a given period of time. This definition is intentionally broad in
order to encompass a wide range of acoustic signals, and can be better assim-
ilated with some examples. Sound events can be produced by humans (e.g,
cough, laughter, or footsteps), animals (e.g., bird chirping, cat purring), ma-
chines (e.g., the sound of a jackhammer or a drill), domestic appliances (e.g,
the sound of a kettle whistling or a vacuum cleaner), transportation modes
(e.g., the sound generated by a train or a bicycle) and a very large etcetera.
Note that, according to the definition above, human speech could potentially
be considered a sound event; and also the sounds produced by musical instru-
ments, such as guitars, drums or flutes. The physical objects and beings just
mentioned in the examples can be denoted as sound sources. In addition, other
sound events are produced by what we refer to as sound production mechan-
isms. This is common, for example, among sounds that occur in the nature.
For instance, a thunder is the sound of lightning, which is an electrostatic dis-
charge. Arguably, this is more the outcome of a sound production mechanism
than of a physical sound source, as is the sound produced by the wind flowing
through a constrained cavity. Other sound production mechanisms include, for
instance, the sound of dragging a hand across a table. To finish the analysis of
the definition of sound event, the time duration can vary largely among differ-
ent sound events. Many sound events have a well-defined and brief duration,
lasting only very few seconds. However, some sound events are even shorter
and with transient behaviour, e.g., the sound of clapping hands or breaking a
glass, lasting only few hundred miliseconds. In contrast, other sound events
can be very long, such as the sound of rain or wind, potentially lasting minutes
or more.
Beyond the above examples, we want to stress that the definition of sound
source or production mechanism can be ambiguous, and the delimitation between
them can be blurry. For example, one could argue that a bicycle is a sound
source, but the sound being generated could be coming from the bicycle’s bell,
or from the gears of its chain, or from the sound of the brakes’ material grazing
the tire (which could also be considered as a sound production mechanism).
Finding these limits and establishing thorough definitions is not a trivial task.
Regardless of the mechanism that produces them, sound events are typically
associated with textual labels, so that humans can more easily categorize and
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understand them. Following the bicycle example, we could have labels such as
Bicycle bell, Gears, or Tire squeal.6

While speech and music could be understood as just other types of sound
events, the notion of sound events is typically associated to the terms of en-
vironmental sounds or everyday sounds. Everyday sounds is typically used to
denote the non-speech and non-music sounds that occur naturally in the en-
vironment surrounding us (Gygi, 2001). These terms are often used broadly to
describe the sounds that humans encounter in everyday life (excluding speech
and music), and also other sounds that are perhaps less frequent, but still fa-
miliar to an average listener. For example, some people do not listen to the
sounds of sea waves or a frog croaking on a regular basis, but these sounds are
still familiar to many, e.g., due to cultural reasons. In this thesis, we will use
both terms (environmental sounds and everyday sounds) interchangeably.
Once defined sound event, in this thesis we shall use the expression sound event
recognition (SER) broadly to encompass two high-level tasks: sound event
classification and sound event detection. Sound event classification or tagging
(SET) is a task requiring to identify what sound event classes are present in an
audio clip, regardless of start time and end time. Some works in the literature
refer to classification when the task goal is to recognize one single sound event
class at a time, whereas tagging is reserved for the task where multiple classes
can be recognized simultaneously. However, in this thesis, we shall use both
terms interchangeably, without restrictions as to how many classes can be
recognized simultaneously. Sound event detection (SED) is a task requiring to
localize and identify sound events in an audio clip with start and end times
(sometimes called onset and offset). We advocate for this relationship of SER
= SET + SED following the analogous treatment done in computer vision,
where object recognition encompasses image classification and object detection
(Russakovsky et al., 2015). Sound Event Recognition can be framed within
the field of machine listening (sometimes also called machine hearing (Lyon,
2017)), aimed at studying computational methods for the automatic analysis
and understanding of sound (Wang, 2010).
In this thesis, we focus on Sound Event Classification for three reasons. First,
we opt to annotate the datasets created in this thesis using weak labels. Weak
labels refer to labels which are provided at the clip-level, expressing the pres-
ence of a sound event somewhere in the clip, but without specifying temporal
location. The motivation to use weak labels is that gathering them is simpler,
less time consuming, and less ambiguous than determining events’ onset/offset
using timestamps. Weak labels are suitable for classification but not for detec-
tion, where labels featuring onset and offset for the sound events are required

6These labels are selected from the AudioSet Ontology. See https://research.google.com/
audioset/ontology/index.html.

https://research.google.com/audioset/ontology/index.html
https://research.google.com/audioset/ontology/index.html
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(at least for evaluation purposes). The labels that provide temporal activity
of sound events, which are essential for evaluation of detection systems, are
usually regarded as strong labels. Second, as mentioned in Chapter 1, one
of the focus of this thesis is large-vocabulary audio data and classifiers. The
largest resource of large-vocabulary audio data is AudioSet, which also features
weak labels.7 Third, the core principle of methods for the tasks of classific-
ation and detection is very similar, with the main differences including how
the data is fed to the classifier/detector, and how the output predictions are
post-processed. A sound event classifier or tagger can be used as a sound event
detector by processing incoming audio in consecutive time slices, sufficiently
overlapped to produce events’ activity with a desired temporal resolution.

2.2.1 Relation of Environmental Sounds to Other Audio
Signals

One way to better assimilate the properties of environmental sounds is by
contextualizing them with the other two main audio signals that we listen to
in our daily lives: speech and music. A broad comparison of the main aspects
of speech, music and environmental sounds is illustrated in Table 2.1, which
has been elaborated based on Gygi (2001); Yamakawa et al. (2010); Heittola
(2021). Table 2.1 shows the difficulty and uncertainty in the characterization
of environmental sounds when compared to speech and music. In general,
it can be seen that speech and music signals have better defined properties
and structure than environmental sounds. Speech signal is constrained to the
sounds that can be generated by the vocal tract and tongue, which provide
speech with a well-defined structure that can be exploited for its identification.
Similarly, although perhaps to a lesser extent, many musical genres of western
music present certain hierarchy (e.g., notes, chords) and temporal structure.
In contrast, environmental sounds are much more diverse. Their properties
are more uncertain as they highly depend on the sound sources or production
mechanisms, which are more heterogeneous. This fact hampers the usage of
assumptions about their structure for their automatic recognition.

7Hershey et al. (2021) released labels with a finer temporal resolution for a small subset
of AudioSet shortly before the end of this thesis. See https://research.google.com/audioset/
download_strong.html.

https://research.google.com/audioset/download_strong.html
https://research.google.com/audioset/download_strong.html
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2.2.2 Relation of Sound Event Recognition to Other Fields

SER has only recently gained attention from the research community. However,
the analysis of speech and music have been subject of study for a longer period
of time. One could argue that SER presents parallels with other tasks from
the fields of speech and music analysis (Virtanen et al., 2018). In particular,
SER could be related to the task of speaker recognition, where the goal is to
recognize the identity of the people talking in an audio stream. Likewise, SER
could also be related to some tasks in the field of Music Information Retrieval
(MIR), such as musical genre recognition (sometimes called auto-tagging as in
Won et al. (2020b)), where the goal is to identify the genre(s) in a musical
track; or to the task of instrument recognition, where the goal is to recognize
the various instruments present in a recording (Lostanlen et al., 2018).
Due to the maturity of speech and music analysis, and the similarities of some
tasks with SER, some techniques have been borrowed from these fields. For
example, the popular Mel-frequency Cepstral Coefficients (MFCCs), originally
proposed for speech processing (Davis & Mermelstein, 1980), and subsequently
used in MIR (Tzanetakis & Cook, 2002), have been also used for SER (Lee &
Ellis, 2009). In a similar fashion, the Convolutional Recurrent Neural Network
(CRNN) type of architecture was initially applied in the context of speech
recognition (Sainath et al., 2015), then ported to music genre classification
(Choi et al., 2017) and SER (Cakır et al., 2017).
Another field from which SER is borrowing methods and techniques is the
field of computer vision. It has been proven that some methods from computer
vision work well for SER. For example, the current state-of-the-art for AudioSet
classification is achieved by the Audio Spectrogram Transformer (Gong et al.,
2021a). This architecture is largely based on the Vision Transformer (ViT)
(Dosovitskiy et al., 2021), which is a Transformer architecture for vision tasks.
In particular, their differences are mostly related to the different input formats
of images and spectrograms, as well as the final classification layer as the
classification tasks are different. Besides the architecture, Gong et al. (2021a)
also rely on transfer learning from ImageNet (Deng et al., 2009) to improve
recognition performance on AudioSet. Using ImageNet-pretrained weights to
initialize the training of audio classification models has been previously done
(Palanisamy et al., 2020; Guzhov et al., 2021), obtaining performance boosts
also in other datasets such as ESC-50 or UrbanSound8K. The above works tend
to use default architectures from vision to take advantage of some pre-trained
models that are already available from PyTorch or Tensorflow repositories (e.g.,
Inception (Szegedy et al., 2015), ResNet (He et al., 2016a), DenseNet (Huang
et al., 2017), etc.).
Another prominent work in large-scale SER is Kong et al. (2020a), which held
the state-of-the-art on AudioSet before the work of Gong et al. (2021b) and
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Gong et al. (2021a). This work proposes Wavegram-Logmel-CNN, a novel
architecture featuring two convolution branches to enhance the exploitation
of the audio signal—one to process spectrograms and another to process raw
waveforms. This model achieves a mean average precision (mAP) of 0.439,
slightly outperforming a default ResNet-34 (He et al., 2016a) that obtains
0.434 mAP. It can be seen that the reported difference is not large, also con-
sidering that Wavegram-Logmel-CNN employs over 7M additional parameters
(Kong et al., 2020a). It is also interesting to analyze this difference from an
industry perspective. For production systems, sometimes it is preferred to use
default and long-tested architectures, even at the expense of some recognition
performance. This would probably favour the adoption of architectures such
as ResNet in this case.
In light of this discussion, there is evidence that some successful SER methods
are largely inspired from computer vision, or adapt techniques from computer
vision to the audio domain. In this thesis, sometimes we also follow this trend,
borrowing methodologies and techniques from computer vision that we adapt
to the SER problem, or that we tailor to problems existing in the audio data.

2.2.3 Technical Challenges in Sound Event Recognition

In light of the discussion done so far about the different aspects of sound events,
the following technical challenges can be identified in SER. Sound events have
characteristic spectro-temporal patterns resulting from their physical produc-
tion that, in principle, can be used to identify them. As a result of the large
variety of potential sound sources there is a wide heterogeneity of the patterns
to be recognized. This problem is aggravated as we increase the set of tar-
get sound categories from tens to several hundreds, causing high inter-class
variation. Also, as discussed in Section 2.2.1, the spectral/temporal struc-
ture of these sounds is less clear than in speech or music, which hampers the
usage of assumptions for their automatic recognition. At the same time, it
can happen that the patterns in some of the classes to be recognized are very
similar to those of other related classes, especially as the level of specificity
in the classes increases, e.g., if we are trying to distinguish two types of wind
instruments or two types of bells. Another particular aspect of sound events is
what is sometimes called a high intra-class variation, which means that sound
events belonging to the same class can be rather different already. A typical
example is the vocalizations produced by different dog breeds, which may be
substantially different, e.g., comparing a Chihuahua with a Pyrenean Mastiff.
Further, sound events often present highly varying acoustic characteristics due
to factors such as different acoustic conditions in the environment, or the
equipment used to capture the sound. For example, some sounds exist in
quiet environments almost in isolation, whereas in other frequent cases mul-
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tiple sounds co-exist, sometimes overlapping with each other. The degree of
polyphony complicates the identification of the co-occurring sounds. In addi-
tion, different types and intensities of acoustic background noise or non-target
audio material can be present in the audio recording. These non-target con-
tent can mask the target sounds to some extent, especially in situations where
microphones are further away from the target source, which is more frequent
when recording environmental sounds than in other domains such as speech
applications. Besides, there can also be other types of noise and/or distortions
caused during the process of capturing sound. The recording equipment and
recording techniques can vary to a high extent from one case to another, which
can affect audio quality. This variation can be especially notorious when the
audio data is collaboratively contributed by thousands (or millions) of users in
platforms such as Freesound or YouTube. Again, all this implies a high degree
of variation in the sound patterns that can be encountered in real life.
In summary, all these issues make the SER problem particularly challenging
and can affect the performance of sound event recognizers. In particular, the
large diversity of sound events becomes a challenge for models’ generalization.
It can be expected that sound event recognizers operating in real life will en-
counter sound event examples whose patterns differ to some degree from those
seen during training, or that have different acoustic characteristics. Hence,
learning representations able to generalize well in these cases is a key factor
in SER. Possible solutions to this challenge include increasing the amount and
variety of training data, as well as coming up with architectures and methodo-
logies to improve generalization. These are relevant topics in this thesis, which
we cover in Chapters 3 and 4 respectively.
Finally, other challenges that apply to SER relate to the fact it is heavily based
on machine learning methodologies. Therefore, issues of amount, quality and
diversity of training data are important. In this thesis, we put the emphasis
on the supervision of data. As mentioned in Chapter 1, manually annotating
sound events is a costly and difficult task, especially when using a vocabulary
of hundreds of categories. This limits the size of datasets and can create issues
of label noise. To overcome these limitations, in Chapter 5 and 6 we address
the problems of learning with noisy labels, and finding alternative ways to fetch
supervision via self-supervised learning.

2.2.4 Organization of Sound Events

To conclude this Section, we briefly discuss how sound events can be organ-
ized, with special emphasis in the AudioSet Ontology (Gemmeke et al., 2017),
which is used to organize the proposed FSD50K in Chapter 3. Categorization
of everyday sounds into meaningful sound categories is a natural instinct of
humans to make sense of the diversity of sounds surrounding us. A compre-
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hensive review of everyday sound categorization can be found in Guastavino
(2018). In this thesis, we will use the term sound category and sound class
interchangeably. Often, everyday sounds are organized using taxonomies or
ontologies, with the aim of bringing a (hierarchical) structure to the wide vari-
ety of sounds, based on a given criteria and/or establishing relations among the
sound categories and concepts. There are several criteria for the organization
of everyday sounds. For example, Schaeffer (1966) suggested three viewpoints
to describe sound: i) causal listening, related to the identification of physical
sound sources and production mechanisms; ii) semantic listening, focused on
describing the message that is conveyed in the sound, e.g., hearing a fire alarm
carries a meaning; and iii) reduced listening, related to the inherent character-
istics of a sound signal regardless of its cause and meaning, sometimes using
morphological sound criteria (Peeters & Deruty, 2010).
Several sound taxonomies have been proposed in the literature that can be
more or less associated with the previous viewpoints. In this thesis, we are in-
terested in taxonomies related with causal listening, examples of which include
Gaver (1993); Salamon et al. (2014); Gemmeke et al. (2017). Gaver (1993)
proposes a taxonomy following principles of ecological acoustics and taking
into account factors of the physical production of environmental sounds, in-
cluding interacting materials (solids, gasses and liquids), sound production
mechanisms (e.g., wind, rain) and interactions (e.g., scraping, rolling). Sala-
mon et al. (2014) propose a taxonomy for the domain of urban sound research,
also focused on sound sources (e.g., engine accelerating, dog bark) and sound
production mechanisms (e.g., explosion, wind). Google’s AudioSet Ontology,
which we describe in detail in the next Section, aims to be of general-purpose
and thus it covers a wide range of sound classes (Gemmeke et al., 2017).
Designing taxonomies to organize everyday sounds can be useful when con-
structing audio datasets, such as UrbanSound8K (Salamon et al., 2014) and
AudioSet (Gemmeke et al., 2017). In contrast, in other cases researchers do
not make use of an established taxonomy. Instead, they create datasets with
a vocabulary of classes based on a more pragmatic approach, e.g., availability
of data or relevance for a given research problem or end application (Piczak,
2015b; Turpault et al., 2019).

2.2.4.1 AudioSet Ontology

The AudioSet Ontology8 consists of 632 sound event classes arranged in a hier-
archy with a maximum depth of six levels (Gemmeke et al., 2017). The set
of classes covers a very diverse range of everyday sounds, ranging from hu-

8It can be explored at https://research.google.com/audioset/ontology/index.html. Some-
times we shall refer to the AudioSet Ontology simply as the ontology.

https://research.google.com/audioset/ontology/index.html
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man and animal sounds, to natural, musical or miscellaneous sounds. Within
these main sound families, the content covered by the ontology includes sev-
eral facets. The predominant classes correspond to sound events produced by
physical sound sources, but there are also some generated by sound production
mechanisms (e.g., deformation or impact of materials). Then, there is a mis-
cellaneous of classes that, strictly, do not correspond to sound events, such as
acoustic scenes, categories describing (perceptual) attributes of sound, math-
ematical signals or abstract classes. The ontology is provided as a list of 632
objects,9 each of them including fields such as a Knowledge Graph Machine
ID or a textual description, among others. Note that the AudioSet vocabulary
is a subset of 527 classes drawn from the ontology, with the remaining classes
being blacklisted or excluded as they are considered abstract.
We clarify next some basic (albeit relevant) ontology-related terms used in this
thesis. We shall refer to the 632 classes in the ontology as nodes (either leaf
nodes when they are located at the very bottom of the hierarchy, or interme-
diate nodes otherwise). We shall also use the ontological terms children and
parents, as widely used in ontology-related genome research (Jantzen et al.,
2011). Note that, by definition, leaf nodes do not have children nodes, while
the intermediate nodes do. Similarly, given a node, we refer to all the parent
nodes connecting it to the root of the ontology as ancestors. As an example,
let us consider the hierarchical path: Root → Natural sounds → Thunder-
storm → Thunder. In this path, Thunder is a leaf node; Natural sounds and
Thunderstorm are both intermediate nodes; Thunderstorm is child of Natural
sounds and parent of Thunder; and Thunderstorm and Natural sounds are all
the ancestors of Thunder. As in the examples above, we use italic format when
we refer to the textual label of a sound class. For example, the sound of a car
passing by in the AudioSet Ontology is labeled as Car passing by.
In this thesis, we use the term general-purpose to denote a sound vocabulary,
or a dataset (and the recognizers that can be trained on it) whose coverage is
diverse enough such that it is not tied to a specific audio domain. A general-
purpose dataset encompasses a considerable and diverse amount of everyday
sounds, typically including several audio domains, as well as several tens or
hundreds of sound classes. The main example of a general-purpose vocabulary
is the AudioSet Ontology (Gemmeke et al., 2017), counting with 632 sound
classes. The main examples of general-purpose datasets are AudioSet (Gem-
meke et al., 2017) and FSD50K (Fonseca et al., 2020a), with 527 and 200
classes, respectively, covering human, natural, domestic and urban sounds to
name a few of the constituent domains.

9https://github.com/audioset/ontology

https://github.com/audioset/ontology
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2.3 Sound Event Classification as a Supervised
Learning Problem

In this Section, we give a brief overview of the main components of a Sound
Event Classification pipeline based on supervised learning, which is the most
commonly-adopted approach. We focus mainly on the aspects of some compon-
ents that are basis for the work described in subsequent Chapters. The inter-
ested reader can find a more comprehensive overview of the machine learning
approach for sound event analysis in Heittola et al. (2018) and McFee (2018).
For a more general perspective not tied to SER of the methods and concepts
discussed, the reader is referred to Goodfellow et al. (2016). Section 2.3.1 is
based on the aforementioned references.
Broadly speaking, in a sound classification pipeline, the goal of the training
stage is to learn the parameters of a classifier, such that it is able to classify
input examples into one or more sound classes within a predefined vocabulary.
At the beginning of this thesis, in SER we were witnessing a paradigm shift
from feature engineering approaches to techniques based on learning represent-
ations from data, similarly to the transition experienced in areas like computer
vision or speech recognition.
In the feature engineering approach, pre-designed low-level features are extrac-
ted from the audio signal and input to a classifier. Examples of typical hand-
crafted features in audio-related tasks include cepstral features, e.g., MFCCs
(Lee & Ellis, 2009), as well as other low-level features computed from the time
or frequency domain (e.g., zero-crossing rate or spectral centroid) (Eronen
et al., 2006). Typical examples of classifiers include Gaussian Mixture Models
(Mesaros et al., 2010) and Support Vector Machines (Foggia et al., 2015). The
feature engineering approach relies heavily on the capacity of the pre-designed
features to capture relevant information from the signal, which in turn may
need significant expertise and effort. The main limitations of this approach are
the lack of efficiency and sustainability given the high diversity of particular
cases encountered in real world.
Having enabled significant research breakthroughs in other recognition tasks,
the data-driven approaches based on learning representations—especially deep
learning—were rapidly spread across the SER community. In this case, the
system is able to learn internal powerful representations from a simpler low-
level representation at the input (e.g., mel spectrogram), and the two stages
of the feature engineering approach (feature extraction and classification) are
optimized jointly. In this thesis, we adopt this trend. All the classifiers used
are neural networks of various depths and widths, which will be sometimes
referred to simply as networks or models.
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The sound event classification task can be formulated as two different problems.
In a multi-class classification problem, the goal is to predict only one class label
at a time. In this case, examples are labeled with only one class label from the
many in the vocabulary, as done in some widely-used datasets such as ESC-50
(Piczak, 2015b) and UrbanSound8K (Salamon et al., 2014). A typical example
of a related problem of the same type is acoustic scene classification, where
each recording is made at one location, that is, classes are mutually exclusive.
In a multi-label classification problem, however, the goal is to be able to predict
multiple class labels simultaneously. In this case, examples are labeled with
one or more class labels from the vocabulary, as done in AudioSet (Gemmeke
et al., 2017) or in the main dataset introduced in this thesis, FSD50K (Chapter
3). The multi-label setting is the most representative for SER as sound events
can overlap naturally. It must be noted that variations of these terms can also
be found in the literature. For example, Heittola et al. (2018) refer to the just
defined multi-class problem as single-label problem.

2.3.1 Overview of the Supervised Learning Pipeline

Hereafter we shall focus on sound event classification (also typically named
tagging), and not on detection. To refer to the task of classification, we shall
use the acronym Sound Event Tagging (SET) as it is probably more popular
than Sound Event Classification (SEC) in the community. Occasionally, we
shall still use the acronym SER whenever we explicitly want to refer to both
classification and detection simultaneously.
In supervised learning, let us consider a dataset D where the training examples
are given by input-output pairs (xxx,yyy) where xxx is an input example, and yyy is
the corresponding output target vector representing the labels associated to xxx.
Deep networks are usually fed with low-level representations (e.g., some variant
of spectrograms or directly raw waveforms), rather than with the acoustic
features most commonly used in the feature engineering paradigm. Therefore,
we will also refer to the input examples xxx as input representation. In particular,
in the publications done during this thesis, all the input representations are
2D time-frequency representations of audio, given by xxx ∈ RT×F with T time
frames and F frequency bands. The output target vector yyy representing the
reference labels is usually expressed in binary format yyy∈ {0,1}C for a task using
a vocabulary V = {ci}Ci=1 of C classes. In yyy, 1 represents that the class ci is
present in the example xxx, and 0 represents otherwise. In multi-class problems,
labels are encoded as one-hot vectors, where only one element equals 1. In
multi-label problems, labels are encoded as multi-hot vectors, where more than
one element can be 1.
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Our goal is to train a deep network fθ with parameters θ that defines a mapping
f : RT×F → RC from the input representation xxx to the vectors yyy representing
the target labels. While training, the goodness of this mapping is estimated
through a loss function L(ppp,yyy), which expresses the divergence between the
network predictions ppp ∈ RC and the reference labels yyy. The learning problem
can be generally seen as minimizing L over the choice of the network paramet-
ers θ . The loss function L is minimized through an optimization algorithm
(e.g., some variant of gradient descent). The optimization algorithm is an it-
erative process in which: first, gradients of the loss are computed with respect
to the network parameters θ , and then the network parameters are updated
using the computed gradients and a learning rate. By repeating this process
iteratively, as learning progresses the sought mapping from xxx to yyy is gradually
improved and the loss function minimized.
In practice, one learning iteration (or learning step) follows the next procedure.
First, a small batch with N training examples is constructed with the form Z =
{(xxxi,yyyi)}

N
i=1. Second, the network fθ is fed with the input examples within the

batch, and a forward pass is carried out, obtaining the corresponding output
prediction probabilities for all examples in the batch {pppi}

N
i=1. Then, the loss L is

computed by comparing predictions {pppi}
N
i=1 and target labels {yyyi}

N
i=1, according

to some differentiable mathematical expression. The choice of loss function
depends on the task being performed as well as potentially other factors such
as the quality of the labels, as we will see in Chapter 5. Finally, gradients of the
loss at each individual parameter of the network are computed via the back-
propagation algorithm, and the network parameters θ are updated accordingly
in the negative direction of the gradient. This procedure is repeated iteratively
until some criteria is met. Typical stopping criteria include maximizing an
evaluation metric on a held-out validation set or reaching a minimum loss
over a period of time. The training time is usually measured in epoch, which
represent full passes over the entire dataset D such that every training example
is seen once by the network. Nevertheless, when datasets are very large (e.g.,
AudioSet) it is also common to measure training time in number of iterations,
that is, the total number of batches processed by the network. At the end of
the training, the network has learned a mapping from input examples to labels
that allows to discriminate examples from different classes with a certain level
of proficiency. The trained model can then be used in the testing or recognition
phase to predict sound event classes on unseen examples.
In addition to outlining how a deep sound event classifier can be trained in
supervised fashion, we have identified the main components and concepts in-
volved in a typical SET pipeline, which are illustrated in Figure 2.1. The input
example xxx is transformed into a time-frequency input representation via a fea-
ture extraction block. Note that we have added a data augmentation block
as several data augmentation techniques are used in this thesis. The network
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Figure 2.1: Overview of a basic supervised training pipeline for sound event classi-
fication. A multi-class classification case is illustrated, where only one label is active
at a time.

output predictions ppp are compared with the target vector yyy representing the
label(s) using a loss function L. Next, we briefly discuss some relevant as-
pects of these components and concepts that will be helpful for the subsequent
Chapters.

2.3.2 Data and Labels

In the current data-driven paradigm for sound classification, audio data and
labels are one of the most important factors for successful supervised learning.
Arguably, a sound classifier will be as proficient as the audio data and the
supervision it is trained on. In Section 2.4 we provide a literature review of
the most relevant datasets for SET and Sound Event Detection (SED). In this
Section, we discuss some aspects of weak labels for SET.
To allow supervised training and for and systems’ evaluation, audio data must
be accompanied by corresponding labels describing the sound sources contained
in the audio clips. Ideally, in the context of SET, these labels should represent
a correct and complete transcription of the audio material. Let us define
what we understand as correct and complete labels for SET in the context
of this thesis. Given a dataset of sound events annotated with a predefined
vocabulary, a label accompanying an audio clip is correct when it accurately
and unambiguously identifies or describes a corresponding sound source present
in the clip. To some degree, this definition is subject to the choice of vocabulary
as, occasionally, the class labels in the vocabulary can fail to describe certain
nuances of the audio material.
The notion of complete labels relates to a set of labels that completely identify
the entirety of some acoustic material according to a given criteria. We can
establish two definitions of complete labels for a given audio clip: a strict
definition and a vocabulary-based definition. In the strict definition, we define
complete labels as the ideal set of labels that identify all the acoustic material
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in the audio clip, regardless of the vocabulary used in the dataset. When
not all the acoustic material is identified, the label set is incomplete, and the
unlabeled material can correspond to classes that exist in the vocabulary (“in-
vocabulary” or IV), or to classes that are not covered in the vocabulary (“out-
of-vocabulary” or OOV). In the vocabulary-based definition, we define complete
labels as the set of labels that identify all the target sound sources in the
audio clip, that is, all the sources that are considered in the vocabulary. In
this case, the label set is regarded as incomplete only when there is unlabeled
acoustic material that corresponds to classes existing in the vocabulary. Either
one definition or another can be more convenient depending on the analysis
to be conducted or the classification task. For example, from the widely-
adopted perspective of annotating a dataset with a predefined vocabulary, the
vocabulary-based definition makes more sense. The goal in this case is to obtain
a correct and complete transcription using the class labels of the vocabulary,
such that the only audio material that remains unlabeled, if any, is out of
vocabulary (which is often downplayed).
However, the reality can differ significantly from a correct and complete tran-
scription due to many reasons. If the annotations are done manually, causes
of errors include the difficulty of annotating many classes of different nature,
sometimes with ambiguous sounds or suboptimal vocabularies, as well as other
flaws in the annotation process. If the annotations are done using automatic
methods (e.g., using a pre-trained classifier) the quality of the labels will de-
pend on how competent the model is, which can vary substantially depending
on the class. As a result, incorrect labels and incomplete label sets are com-
monplace.
In particular, incomplete label sets are relatively frequent in recordings of
everyday sounds as it is very tedious to exhaustively annotate every sound
event present in the recording using a vocabulary of tens or hundreds of classes.
Further, as we will discuss in Chapters 3 and 5, to ease the process of large-
vocabulary annotation, sometimes automatic methods are utilized to propose
candidate labels. Unfortunately, automatic methods often fail to nominate
some sound events. For these reasons, a relatively frequent case is that of
correct but incomplete label sets, where some of the sound sources are correctly
labeled, while other sources that are identifiable in the vocabulary remain
unlabeled. For example, let us assume that a clip to be labeled with the
AudioSet Ontology (Gemmeke et al., 2017) contains sounds of a dog barking, a
bird tweeting and human speech. If only the former two are specified by labels,
but human speech remains unlabeled, the label set is correct but incomplete as
human speech also belongs to the vocabulary. This is a real example occurring,
for instance, in the development set of FSD50K, as we will see in in Chapter 3.
The labels accompanying the input examples in a dataset are sometimes called
ground truth labels (Cartwright et al., 2019c) or reference annotations (Mesaros
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et al., 2018b). The term ground truth has been traditionally used in the lit-
erature and it is popular among some DCASE Challenge Tasks. However, it
can be somewhat misleading because labels in SET can be inherently noisy,
as mentioned. In this thesis, for simplicity we will use ground truth labels, ref-
erence annotations, or often simply labels interchangeably, knowing that our
ground truth can be noisy and hence it is not to be fully trusted.

2.3.3 Input Representations

Deep neural networks for audio are usually fed with a low- or mid-level in-
put representation. For SER, these input representations are usually a 2D
time-frequency representation in RT×F with T time frames and F frequency
bands, or directly the raw audio waveform in RT with T samples in time.
The most widespread choice is to use time-frequency representations, espe-
cially some kind of mel spectrogram, after their extensive usage for speech and
music. Mel spectrograms are computed by applying a filter bank with triangu-
lar frequency-domain filters distributed along the mel-scale to the short-time
Fourier transform (Davis & Mermelstein, 1980). Besides mel spectrograms,
there exist other representations that, in principle, could be used to feed deep
sound classifiers such cochleagrams (Wang & Brown, 2006), gammatone-like
spectrograms (Ellis, 2009), or scattering transform (Andén & Mallat, 2014).
However, their usage is limited in comparison to that of mel spectrograms.
While most of the works found in the literature opt for 2D time-frequency input
representations, the advent of deep learning has recently favored systems that
learn representations directly from the audio waveform (sometimes denoted
as end-to-end learning). When raw waveform is utilized in conjunction with
CNNs, the network typically employs 1D convolutions, unlike in the previous
case where the choice of 2D input representations determines the usage of 2D
convolutions. One of the main advantages of the 1D processing is to avoid the
need for handcrafting input representations such as mel spectrograms, which
could be considered a manual shrinkage of a solution space. However, these
approaches tend to perform worse than other 2D counterparts in datasets such
as UrbanSounds8K (Tokozume et al., 2018; Abdoli et al., 2019), or AudioSet,
as shown in Kong et al. (2020a). Further, processing raw waveforms can slow
down training due to the higher dimensionality of waveforms compared to the
more compact 2D representations.
Finally, a third approach sitting between the two aforementioned trends has
recently arisen. In this hybrid approach, networks are fed with raw waveforms,
and then a trainable front-end within the network learns a 2D representation
in a data-driven fashion, optimized jointly with the rest of the network. This
learned 2D representation is subsequently processed by a 2D network back-
end. In other words, trainable front-ends aim at producing a substitute for
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handcrafted 2D representations such as mel spectrograms. Examples of this
approach include Park & Yoo (2020) and Won et al. (2020a), both reporting
improvements with respect to mel spectrograms, but using datasets of a lim-
ited coverage where the diversity of sounds may not be large (10 and 17 classes,
respectively). A more recent work adopting this approach for large-vocabulary
SET is Zeghidour et al. (2021). The proposed audio frontend, named LEAF,
learns several operations of audio feature extraction including filtering, pooling,
compression and normalization. However, evaluated on the AudioSet classific-
ation task, only small improvements are reported with respect to using conven-
tional mel spectrograms. In this thesis, preliminary experiments were carried
out using Gammatone-like spectrograms (Ellis, 2009), LEAF (Zeghidour et al.,
2021) and the approach of Won et al. (2020a). Evaluating these approaches
on FSD50K, gains over mel spectrograms were not observed.

2.3.4 Data Augmentation

Data augmentation is a technique (or set of techniques) aimed at artificially
increasing the size and variety of training data by generating modified versions
of existing data (Shorten & Khoshgoftaar, 2019). This is carried out by ap-
plying transformations to training examples in order to obtain new examples.
In supervised learning, the goal is usually to adopt semantics-preserving trans-
formations such that new examples belong to the same class as the original
example (Goodfellow et al., 2016). The benefits of data augmentation include
improved generalization by seeing during training a series of more diverse ex-
amples that may be encountered in the testing phase. By training on these
modified examples the model becomes more invariant to the adopted trans-
formations. In addition, data augmentation adds regularization, which helps
to reduce overfitting and, in turn, improve generalization.
A variety of data augmentation techniques have been proposed in the sound
recognition literature, each of which applies different transformations. Some
of them are based on classic audio processing transformations such as back-
ground noise addition or dynamic compression, as well as audio effects such as
time stretching or pitch shifting (Salamon & Bello, 2017). Other techniques
are inspired from data augmentation methods in computer vision, such as
SpecAugment (Park et al., 2019), which is partly based on the popular Cutout
(DeVries & Taylor, 2017). Unlike the mentioned transformations, which consist
of modifying only one input example at a time, the idea of mixing different
sound examples into a new example has been increasingly popular (Zhang
et al., 2018; Tokozume et al., 2018). Next, we introduce the two main data
augmentation methods used in this thesis, based on mixing sounds and Spe-
cAugment.
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2.3.4.1 Mixing Sounds

While the idea of mixing sounds is simple and allows room for a number of
variants and implementations, there are two main methods published in the
literature, both published at the 2018 “International Conference on Learning
Representations”. These methods are mixup and Between-Class learning.

Mixup. Mixup is typically understood as a data augmentation technique
that acts as a regularizer by favoring linear behavior in-between training ex-
amples, encouraging networks to predict less confidently on linear interpol-
ations of examples (Zhang et al., 2018). Specifically, mixup augments the
training distribution by creating virtual examples under the assumption that
linear interpolations in the feature space correspond to linear interpolations in
the label space. This is expressed by

x̃ = λxi +(1−λ )x j

ỹ = λyi +(1−λ )y j,
(2.1)

where xi and x j are two spectrograms from the training data, and yi and
y j are their corresponding binary encoded vectors. As proposed in Zhang
et al. (2018), we sample λ from a beta distribution λ ∼ Beta(α,α), for α ∈
(0,∞). Since λ ∈ [0,1], we have convex combinations of the input spectrograms,
with the hyperparameter α controlling the strength of the interpolation. In
principle, mixup seems a reasonable regularization/augmentation strategy for
sound events (more than for image classification) as it roughly simulates the
general setting of two sound sources (xi,x j) present in an acoustic scene. The
sound produced by each source will have a certain saliency, i.e., a sound pres-
sure level (controlled by λ in Equation 2.1), due to the attenuation produced
by their different source-microphone distances.

Between-Class learning. The strategy proposed by Tokozume et al. (2018)
for Between-Class learning (BC learning) is similar to that of mixup, but fol-
lows a somewhat more thorough process. The main differences of BC learning
with respect to mixup are: i) the mixing ratio for the training examples, r,
is drawn from a uniform distribution r ∼ U (0,1) instead of from a beta dis-
tribution; ii) the actual mixing ratio applied to the instances is not directly
r, but p = f (r,G1,G2), where G1 and G2 are the sound pressure levels of the
audio examples to be mixed, computed using A-weighting to account for hu-
man auditory perception; iii) the Kullback–Leibler divergence between labels
and predictions is used as loss function, instead of the typical cross-entropy
loss. Among the above, perhaps the most important distinction with respect
to mixup is the consideration of the difference in sound pressure level, which
authors claim to be important for BC learning. In addition to implying an
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added complexity, results backing this claim are obtained using ESC-50—a
multi-class dataset featuring less than 3 hours of audio—which may not be
fully representative of large-scale multi-label settings. Further, several state-
of-the-art works using AudioSet have turned to mixup augmentation instead
of BC learning (Kong et al., 2020a; Gong et al., 2021b). For simplicity, in this
thesis we use the mixup-based strategy.
It must be noted that mixup and BC-learning can be interpreted from two
viewpoints. On the one hand, they can be seen as data augmentation tech-
niques in the sense that new training examples are being generated, thus in-
creasing the variability of the train set. On the other hand, they can be
interpreted as learning methods because the network is tasked to predict new
labels that are mixtures of the labels from the original examples. This is dif-
ferent from most data augmentation techniques which only modify the input
examples xxx (but not the labels yyy) in a dataset D of input-output pairs (xxx,yyy).
In this thesis, we leverage the concept of mixing sounds when training classifiers
in a supervised fashion, using both clean labels (Chapter 4) and noisy labels
(Chapter 5). We also use it in the context of self-supervised learning in order
to create different versions of the same example (Chapter 6).

2.3.4.2 SpecAugment

SpecAugment is a data augmentation mechanism originally proposed for speech
recognition, which consists of three transformations (Park et al., 2019). The
first transformation is time warping, which consists of a deformation along the
temporal dimension. The other two transformations are time and frequency
masking, based on the popular augmentation named Cutout in computer vision
(DeVries & Taylor, 2017). In particular, Park et al. (2019) propose to apply
one or more rectangular-shaped masks over blocks of consecutive time frames
or frequency bands. The width of the time masks and frequency masks as well
as the amount of warping are drawn from uniform distributions bounded by
pre-defined maximum values. For example, the width of every frequency mask
is drawn from a uniform distribution, U (0,Fm), where Fm is a hyperparameter
representing the maximum number of consecutive bands masked. The reader
is refer to the original paper for further details. We use SpecAugment in
the context of self-supervised audio representation learning in order to create
different versions of the same example (Chapter 6).
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2.3.5 Sound Classifiers

As mentioned earlier, at the beginning of this thesis we were witnessing a
paradigm shift from feature engineering methods to techniques based on learn-
ing representations from data. Early feature engineering works in SER relied
on approaches using machine learning classifiers such as support vector ma-
chines (Foggia et al., 2015), Gaussian mixture models (Mesaros et al., 2010) or
matrix factorization techniques (Cotton & Ellis, 2011). This initial trend was
followed by the rapid adoption of deep learning approaches using fully connec-
ted neural networks (Cakir et al., 2015), convolutional neural networks (Piczak,
2015a), recurrent neural networks (Parascandolo et al., 2016), or combinations
thereof (Cakır et al., 2017). In the last year, some works have proposed the
usage of Transformer architectures for SER, showing promising results with re-
spect to the most widely-used CNNs. In particular, this type of architectures
has achieved top results in sound event detection in the DCASE Challenge
(Miyazaki et al., 2020), as well as competitive (Jaegle et al., 2021) or state-of-
the-art (Gong et al., 2021a) results in AudioSet classification. In this thesis,
following the most common trend in the sound recognition community, we
mostly use CNNs. Section 2.5 provides a brief overview of their underlying
principle and some relevant aspects.

2.3.6 Loss Functions

As explained in Section 2.3.1, the training of a deep network is based on updat-
ing the network weights in order to minimize a loss function that expresses the
divergence between the network predictions and the target labels. For multi-
class classification, the most commonly-used loss function is the Categorical
Cross-Entropy (CCE) loss. The CCE loss is given by

Lcce =−
C

∑
c=1

yc log(pc), (2.2)

where yc is the c’th element of the target label (a one-hot encoded vector), pc is
the c’th element of the network predictions (the predicted class probabilities),
and C is the number of classes in the vocabulary. Since yyy is a one-hot encoded
vector, only one term of the summation in Equation 2.2 is different from zero.
That is, only the prediction for the true class contributes to the loss, and the
rest of the predictions are ignored.
In multi-label classification, such as the problem posed by AudioSet or FSD50K,
the output layer of the network is usually composed by C independent binary
classifiers. In this setting, binary classification loss functions are typically ad-
opted, composed by two terms, one accounting for the positive examples, and
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the other for the negative ones. The default option is the Binary Cross-Entropy
(BCE) loss, expressed by

Lbce =−
C

∑
c=1

yc log(pc)+(1− yc) log(1− pc), (2.3)

where, again, pc represents the network output prediction and yc the target
label for class c. Unlike in the multi-class case, here the terms for all the classes
contribute to the loss, either through the positive term (i.e., the left term in
Equation 2.3) or through the negative term (i.e., the right term of Equation
2.3). In Chapter 5 we will modify the negative term of Equation 2.3 in order
to discard the loss contributions of missing labels.

2.3.7 Evaluation of Sound Event Classification Systems

In this thesis, sound event classifiers are trained for both multi-class and multi-
label tasks. Each of these tasks is evaluated using different evaluation metrics,
as explained next.

2.3.7.1 Evaluation Metric for Multi-Class Sound Event
Classification

For multi-class classification tasks, systems are evaluated in terms of classi-
fication accuracy. Classification accuracy measures the number of correctly
classified examples divided by the total amount of examples in a validation or
evaluation set (Mesaros et al., 2018b). This simple metric has been widely used
in sound event classification (Salamon & Bello, 2017) and also in other related
multi-class tasks such as acoustic scene classification (Barchiesi et al., 2015).
In order to avoid the influence of potential class imbalance, we report balanced
accuracy (also sometimes denoted as macro-average accuracy): per-class ac-
curacy values are computed first, then averaged with equal weight across all
classes yielding the reported overall balanced classification accuracy.

2.3.7.2 Evaluation Metrics for Multi-Label Sound Event
Classification

In the previous multi-class setting, only one class is to be predicted at a time,
hence the class with highest prediction probability is selected. In multi-label
settings, however, multiple class labels can be active at the same time. There-
fore, when classifiers are deployed, a binarization technique must be applied
to the output predictions in order to decide which classes are fired as active.
Typically, this binarization is based on some kind of thresholding, which can



36 Background

be optmized in different ways (e.g., Kong et al. (2020b)). However, the defin-
ition of optimal thresholding can be application-dependent, whereas we are
interested in evaluating the performance of system in general terms, not tied
to a specific application.
Likewise, some popular evaluation metrics for multi-label SET (e.g., F-score
or overall error ratio) depend on an operating point, i.e., a decision threshold
applied on the per-class output scores. These metrics encompass evaluation
of the model’s performance and of the decision threshold tuning. However,
decoupling these two factors is desirable as, strictly, they are two different issues
and, as mentioned, the optimality of the latter can be application-dependent.
Thus, for the multi-label setting, we propose metrics able to evaluate a model’s
performance globally, integrating all possible operating points such that setting
a decision threshold is not needed. This trend has been adopted in other fields
such as speaker recognition (Van Leeuwen & Brümmer, 2007) and also recently
in SED (Bilen et al., 2020).
On the one hand, we use common within-class metrics, i.e., metrics that rank
all test samples according to the classifier score for one given class. These
metrics deal with only one classifier output at a time, such that calibration
across different classifier outputs is irrelevant. Following Gemmeke et al. (2017)
and Hershey et al. (2017), we use Mean Average Precision (mAP) and d′.
mAP is the mean across classes of the Average Precision (AP), which summar-
ises the precision-recall (PR) curve as the classifier decision threshold is varied.
AP is calculated as the Precision (i.e., the proportion of positive samples in a
ranked list) averaged across all the lists just long enough to recall a new positive
sample (Scikit-learn documentation 0.23.2, 2020b; Hershey et al., 2017). AP
is very similar to the area under precision-recall curve (PR-AUC), both being
the most common ways of summarising a PR curve—the difference between
them lies in implementation details (Scikit-learn documentation 0.23.2, 2020a;
VLFeat.org, 2020).
d′ (d-prime) is a metric for the performance of binary classifiers that can be
computed as a monotonic transform of ROC-AUC (Green et al., 1966; Hershey
et al., 2017):

d′ =
√

2F−1(ROCAUC), (2.4)

where F−1 is the inverse of the cumulative distribution function for a unit
Gaussian. d′ measures the separation between the means of two unit-variance
normal distributions (corresponding to the scores for positive and negative
examples) that would achieve the same ROC-AUC. More details about d′ can
be found in Green et al. (1966).
To complement the within-class metrics, we propose to use a between-class
metric, i.e., a metric that evaluates the overall ranking across all classifier out-
puts for every evaluation sample. Specifically, we use Label-Weighted Label-
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Ranking Average Precision (lwlrap) (pronounced “lol wrap”), which was de-
vised by Daniel P.W. Ellis of Google Research for DCASE Challenge 2019
Task 2. Intuitively, lwlrap measures, for every ground truth label c in the
evaluation set, what fraction of the predicted top-ranked labels down to c are
among the ground truth. More formally, let Lab(s,r) be the class label at rank
r (starting from 1) in test sample s, and Rank(s,c) be the rank of class label c
in that list, i.e. Lab(s,Rank(s,c)) = c. Then, if the set of ground-truth classes
for sample s is C(s), the label-ranking precision for the list of labels up to class
c (assumed to be in C(s)) is:

Prec(s,c) =
1

Rank(s,c)

Rank(s,c)

∑
r=1

1[Lab(s,r) ∈C(s)] (2.5)

where 1[·] evaluates to 1 if the argument is true, else zero. Therefore, Prec(s,c)
is equal to 1 if all the top-ranked labels down to c are part of C(s), and at
worst case equals 1/Rank(s,c) if none of the higher-ranked labels are correct.
In contrast to plain lrap, which averages precisions within a sample then across
samples, thereby downweighting labels that occur on samples with many labels,
lwlrap calculates the precision for each label in the evaluation set, and gives
them all equal contribution to the final metric:

lωlrap =
1

∑s |C(s)|∑s
∑

c∈C(s)
Prec(s,c) (2.6)

where |C(s)| is the number of true class labels for sample s. A Python imple-
mentation of lwlrap is provided in 10.
All metrics follow the behaviour of larger being better. mAP ∈ [0,1], non-
pathological d′ ∈ [0,∞), and lwlrap ∈ [0,1]. As mentioned, all metrics integrate
performance over all operating points, that is, none of the metrics requires
setting a discrimination threshold. All metrics are computed on a per-class
basis, and then averaged across all classes to yield on overall metric for the
model. When averaging, equal weight is assigned to each class regardless of its
prior, which is commonly referred to as macro averaging or balanced averaging,
following Hershey et al. (2017); Gemmeke et al. (2017).

10https://colab.research.google.com/drive/1AgPdhSp7ttY18O3fEoHOQKlt_3HJDLi8

https://colab.research.google.com/drive/1AgPdhSp7ttY18O3fEoHOQKlt_3HJDLi8
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2.4 Datasets for Sound Event Recognition

This Section discusses the most important datasets for SET and SED. The
datasets listed here are selected based on number of Google Scholar citations,
as well as popularity and/or size for the most recent ones. The basic common
aspect in SET datasets is that labels are provided at the clip-level (without
timestamps), usually regarded as weak labels. This contrasts with SED data-
sets, where sound events are labeled using also start and end times (usually
regarded as strong labels).

2.4.1 Datasets for Sound Event Tagging or Classification

Table 2.2 summarizes some aspects of a few most relevant SET datasets. For
comparison, the proposed FSD50K is listed at the bottom (see Chapter 3 for
details). m-c and m-l in the task column of Table 2.2 correspond to multi-class
and multi-label, as previously defined in Section 2.3.

2.4.1.1 Datasets Released Before AudioSet

Before the release of AudioSet, the most widely used datasets for SET have
been UrbanSound8K (Salamon et al., 2014), ESC-50 (Piczak, 2015b), and
to a lesser extent CHiME-home (Foster et al., 2015). All of them feature
short audio chunks and a total duration of less than 9h. Curiously, the two
former are one of the few multi-class balanced datasets in SER—most datasets
are unbalanced and/or multi-label—and also the most widely used (besides
AudioSet). UrbanSound8K and CHiME-home count with a significant amount
of clips per class; nonetheless, part of this abundance comes from the fact that
many clips are actually time slices coming from the same original recording. For
example, the 8732 instances in UrbanSound8K are in fact short slices sourced
from 1302 Freesound clips (Salamon et al., 2014). ESC-50 features a large
vocabulary (50 classes) when compared to other datasets from 2014/2015, but
it suffers from data scarcity (only 40 clips/class). Common to all mentioned
datasets is that they provide a k-fold cross validation setup—a practice that
tended to disappear with the release of larger datasets such as AudioSet.
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2.4.1.2 AudioSet

Google’s AudioSet is the largest dataset of sound events released to date, con-
sisting of ≈2.1M audio clips manually labeled using 527 classes of the AudioSet
Ontology (Gemmeke et al., 2017). AudioSet is the first dataset to put emphasis
on general-purpose SER, enabling sound event recognizers to describe a huge
variety of sound classes, thus aiming at the transcription of most everyday
sounds. AudioSet is split into a train and an evaluation set, and it is highly
imbalanced, with some classes being particularly common (e.g. Music and
Speech) while others are much more scarce (e.g. Toothbrush). The public re-
lease provides a balanced train partition of 22,176 clips in addition to the full
unbalanced train set. While the dataset is manually labeled in full (which en-
tails a tremendous endeavour), its unprecedented size and coverage inevitably
comes at the expense of a less precise labeling. In particular, the amount of
labeling error in AudioSet is estimated at above 50% for ≈18% of the classes.14

Recently, strong labels for a small portion of AudioSet (≈81k clips) were re-
leased (Hershey et al., 2021). The AudioSet Ontology is described in Section
2.2.4.1. We use a subset of this ontology to organize FSD50K.
In our view, AudioSet has the major shortcoming of not being an open dataset,
as we explain next. AudioSet is composed of audio tracks taken from YouTube
videos, which are not freely distributable due to YouTube Terms of Service.
This is the reason why AudioSet is released as a dataset of audio features (in-
stead of audio waveforms),15 which are extracted at a time resolution of 960ms
using a pre-trained model. This limits the adoption and flexibility of a num-
ber of SER methods. For this reason, some researchers opt to download and
use the audio tracks from the original YouTube videos, despite the intrinsic
issues entailed in this process. These issues include the burden of downloading
a very large amount of data from a non-official release, and the fact that the
constituent videos are gradually disappearing. More specifically, videos can
become unavailable due to a variety of reasons such as deletions of videos or
user accounts, privacy issues, copyright claims, or country-dependant avail-
ability. In an attempt to download the AudioSet audio tracks in May 2020,
we could download 18,205 from 20,371 evaluation segments, and 19,862 from
22,160 balanced train segments—a loss of 10.6% and 10.4% respectively.16 In
May 2021, Google researchers reported that only 16,996 evaluation segments

11http://spandh.dcs.shef.ac.uk//projects/chime/
12https://multimediacommons.wordpress.com/yfcc100m-core-dataset/
13https://wp.nyu.edu/sonyc/
14See https://research.google.com/audioset/dataset/index.html for details on how the

quality is estimated, accessed 25th June 2020.
15https://research.google.com/audioset/download.html
16Data from May 11th, 2020.

http://spandh.dcs.shef.ac.uk//projects/chime/
https://multimediacommons.wordpress.com/yfcc100m-core-dataset/
https://wp.nyu.edu/sonyc/
https://research.google.com/audioset/dataset/index.html
https://research.google.com/audioset/download.html
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were available from the original release.17 Two observations can be made from
these numbers. First, 1209 evaluation segments have become unavailable dur-
ing the period of approximately one year, which amounts to roughly 5.9% of
the original number of segments. Second, by May 2021, 16.6% of the original
evaluation set has become unavailable since its release. It must be noted that
these numbers are likely to vary depending on the geographic location from
where the download is carried out. The fact that the amount of evaluation and
train clips available decreases over time with non-negligible differences limits
AudioSet suitability for systems’ benchmarking.

2.4.1.3 Datasets Released After AudioSet

After AudioSet, some of the released datasets for SET are task-dependent,
designed to enable the study of particular SER problems. Examples include
FSDnoisy18k (Fonseca et al., 2019b) or FSDKaggle2019 (Fonseca et al., 2019c),
focused on learning in conditions of noisy labels and/or acoustic mismatch.
Other datasets are domain-specific, with a vocabulary focused on a specific
scope, such as SONYC-UST-V2 for urban sounds (Cartwright et al., 2020).
Compared to pre-AudioSet datasets, these are slightly larger, especially in
terms of duration as they feature longer clips (sometimes of variable length),
but also in terms of vocabulary. In addition, they are unbalanced, and the de-
fault data split transitioned to a development/evaluation (or train/test) separ-
ation. Beyond those listed in Table 2.2, another large dataset is BirdVox-14SD
for bird sounds (Cramer et al., 2020). Lastly, a recent large-vocabulary dataset
with a substantial amount of data is VGGSound (Chen et al., 2020a), an audio-
visual dataset consisting of ≈200k video clips from YouTube encompassing 300
classes. However, VGGSound presents several shortcomings for SER. The fo-
cus is put on audio-visual correspondence since the dataset is created mostly
through automatic computer vision techniques—hence some classes have a
clear visual connotation, e.g., people eating noodle. Also, while the dataset
is singly-labeled (one machine-generated label per clip), the authors recognize
that clips can contain a mixture of sounds. Upon inspection of the VGGSound
vocabulary, it seems likely that sound events from different classes co-occur in
the same clip (of 10s length), thus creating missing labels—for example, cat
growling and cat meowing, or a combination of sea waves, sailing, wind noise,
or ocean burbling. Missing labels are a form of label noise found to impact
sound recognizers, as we will see in Chapter 5. While measures can be taken
to mitigate their effect on training, in evaluation they can lead to misleading
results—an issue that we specifically address in FSD50K (Section 3.2.7). In
addition, VGGSound suffers from the intrinsic problems of being based on
YouTube as seen in the previous Section.

17https://research.google.com/audioset/download_strong.html

https://research.google.com/audioset/download_strong.html
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2.4.2 Datasets for Sound Event Detection

Early stage datasets for SED were rather small as they were curated through
manual annotation of sound events using start and end times (strong labels)—
this process is especially laborious and sometimes ambiguous. Examples in-
clude TUT Sound events 2016 (Mesaros et al., 2016) and TUT Sound events
2017 (Mesaros et al., 2017b), each totalling ≈2h of annotated audio. To over-
come this limitation, synthetic datasets became popular for SED, where sound-
scapes are generated by mixing a set of target sound events taken from other
datasets with additional acoustic material. The main advantage of this ap-
proach is the larger control of many dataset aspects—in particular, sound event
start/end times are reliable as they are determined by dataset construction.
Further, provided the generation scripts are available, this paradigm allows for
increasing dataset size arbitrarily. The main downside of this approach is that
the synthesized soundscapes may not always be representative of real-world
recordings, as pointed out by Salamon et al. (2017). This depends on factors
such as the user-defined specifications for the generation, or the fact the gen-
erated soundscapes are based on combinations of a limited amount of sound
event instances.
An early example of this approach is TUT Rare Sound Events 2017 (Mesaros
et al., 2017b). URBAN-SED (Salamon et al., 2017) is a dataset synthesized by
mixing sound events from the 10 classes of UrbanSound8K with Brownian noise
using the Scaper library. An increasingly popular dataset is DESED (Turpault
et al., 2019), covering 10 classes of domestic sounds. This dataset is composed
of a set of recorded soundscapes from AudioSet (including unlabeled, weakly
labeled, and strongly labeled portions), and a synthetic set constructed by
mixing sound events from Freesound with additional material. Other instances
of this approach include TAU Spatial Sound Events 2019 (Adavanne et al.,
2019), for sound event detection and localization, and VOICe (Gharib et al.,
2019) for the study of domain adaptation in SED. All SED datasets mentioned
are unbalanced, pose a multi-label problem, and feature less than a dozen
classes (except TUT Sound events 2016, with 18).

2.4.3 Gathering Reference Labels

Reference labels for sound events or music can be produced manually or with
semi-automatic methods. Next, we discuss both approaches.

2.4.3.1 Gathering Labels Through Manual Annotation

Manual annotation of sound events for SET consists of listening to audio re-
cordings in order to manually identify the sound events present in them, and
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providing responses according to a given annotation task. This typically re-
quires listening to every audio recording multiple times which makes this task a
time-consuming process. Often, a predefined vocabulary is used for the annota-
tion task, although annotation settings with a free vocabulary also exist in the
literature (Van Grootel et al., 2009). Manual annotation is the conventional
approach to dataset labelling, as done for example in AudioSet (Gemmeke
et al., 2017) or ImageNet in computer vision (Deng et al., 2009). While this
option is very laborious, when done properly we believe it leads to more reli-
able results than involving automatic methods in the annotation loop. To our
knowledge, all datasets in Table 2.2 are labelled manually (except a portion of
FSDnoisy18k and FSDKaggle2019 purposely included for the study of noisy
labels).
There are different ways of gathering manual annotations for audio. Next, we
cover some of them from the SER and MIR literature. If the amount of data
to annotate is small, dataset creators can sometimes afford to annotate the
data either by themselves or using a small pool of annotators. For example, in
ESC-50 (Piczak, 2015b) and UrbanSounds8K (Salamon et al., 2014) the audio
material is verified by the authors although no explicit details are provided
about that process. To gather reference labels that can be considered ground
truth, a common practice is to aggregate multi-annotator labels via majority
voting. This is the case of CHiME-home (Foster et al., 2015), where three
annotators are used per clip, and majority voting of their responses is used as
reference.
For annotating larger amounts of data, the approach of crowdsourcing labels
has gained attention in recent years. Crowdsourcing can be defined as a parti-
cipative online activity where an organizer proposes the voluntary undertaking
of a task (in our case, an annotation task) to an open group of individuals
(Estellés-Arolas & González-Ladrón-de Guevara, 2012). The main advantage
of this process is that it supports rapid collection of annotations as many in-
dividuals can contribute to the task. The main drawback of crowdsourcing
annotations is a potential lack of control on the annotation task, often con-
ducted by non-expert annotators under potentially heteregenous and unknown
conditions, which can lead to inconsistent or incorrect annotations.
Different kinds of crowdsourcing approaches have been explored. A way to
categorize them is based on how crowdworkers are rewarded by their contri-
butions, including volunteering-based approaches, games with a purpose, and
paid-for crowdsourcing (Sabou et al., 2014). In the sound and music comput-
ing field, a number of initiatives have explored the use of volunteering-based
crowdsourcing approaches (Tsipas et al., 2013; McFee et al., 2016). The audio
community has also explored the gamification approach, where the annotation
task is presented as an engaging and entertaining experience, e.g., TagATune
(Law et al., 2007) and MajorMiner (Mandel & Ellis, 2008) for collecting music
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labels. Finally, a few paid-for crowdsourcing experiences exist, e.g., the So-
cialFX dataset (Zheng et al., 2016) using Amazon Mechanical Turk to collect
annotations for sound effects. In the context of sound events, crowdsourcing
has also received attention in the past few years. Cartwright et al. (2019b) com-
pare the efficiencies of several audio annotation tasks in a setting with 22 sound
classes of urban sounds. The annotation tasks include multiple-pass binary
annotation—where the annotator must decide whether a single sound source
is present or not in a recording—and single-pass multi-label annotation—where
the annotator is tasked to select all the classes present in a recording. The au-
thors conclude that multi-label annotation with inter-annotator agreement is
the recommended choice for that setting and vocabulary size. As we will see in
Chapter 3, in the creation of FSD50K we use the two aforementioned types of
annotation tasks: a binary annotation task to validate previously nominated
candidate labels (Section 3.2.5), as well as a multi-label annotation task rely-
ing on experts in order to identify all present sources in a recording (Section
3.2.7). Another recent work studies how to estimate strong labels using crowd-
sourced weak labels (Martín-Morató et al., 2021). To this end, annotators are
presented with highly overlapped audio segments, and asked to provide weak
labels following a single-pass multi-label annotation task with 6 sound classes.
Then, events’ temporal activity is reconstructed based on the (non-)present
labels of the individual overlapped segments.
Finally, other works make use of expert annotators (Tsipas et al., 2013). The
main advantage of this approach is higher reliability of the annotators perform-
ing the task, possibly leading to a higher annotation quality. This reliability
could be required for certain complex annotation tasks in order to minim-
ize label noise. However, this approach typically means relying on a reduced
number of individuals (as opposed to crowdsourcing), which can slow down the
annotation process. Further, leveraging experts can imply an economic cost.
As we will see in Chapter 3, for the creation of FSD50K we use the two main
annotation strategies identified: crowdsourcing with non-expert annotators for
the classes that are considered not difficult, as well as expert annotators that
received training to perform the task.

2.4.3.2 Gathering Labels Through Semi-Automatic Methods

Instead of relying solely on manual annotation, other approaches for gathering
labels consider the utilization of semi-automatic methods. One example of this
methodology is the so-called active learning. Active learning aims at maximiz-
ing performance with limited labelling budget by selecting the most informative
data for the model to learn. Usually active learning is based on an iterative pro-
cess involving humans in the loop where automatic methods are used to select
the samples to annotate (Riccardi & Hakkani-Tur, 2005). Annotated samples
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are commonly used to train models that in turn help to select a new batch
of samples to annotate. Often, portions of the non-selected unlabeled samples
are automatically labelled via propagation of human-provided labels to similar
examples, or with semi-supervised learning approaches. Recent works study-
ing active learning methods for SER (Han et al., 2016; Shuyang et al., 2018;
Wang et al., 2019b; Shuyang et al., 2020) report reduced annotation effort with
good model performance which, in principle, makes active learning appealing
for dataset creation. However, these works focus on recognition tasks with less
than a dozen classes, and most of them deal with single-label classification and
use pre-labeled datasets, where the human annotation step is simulated by a
simple assignment of the existing ground truth. In addition, it seems the suc-
cess of these methods is somewhat problem-specific, depending on factors such
as the complexity of the classification task or the annotated data available to
train automatic methods, as noted in Han et al. (2016); Shuyang et al. (2020).
This casts doubts on the applicability of active learning to our more complex
scenario, requiring multi-label annotation of samples with a vocabulary of hun-
dreds of classes (some of them rather ambiguous). Relatedly, previous work
in image recognition evaluates an active learning method on two datasets of
10 classes and on CIFAR-100 (of 100 classes) (Sener & Savarese, 2018). The
proposed method is found less effective in CIFAR-100 due to the larger num-
ber of classes. To our knowledge, there is not any released large-vocabulary
sound event dataset that has used active learning in its creation under similar
circumstances to ours, and active learning in large-vocabulary settings has not
been studied in SER. Thus, this is considered a research problem out of the
scope of this thesis (albeit an interesting topic for future research).
Another approach to annotate audio is to rely solely on pre-trained models to
produce machine-generated labels. In this way, audio content can be automat-
ically annotated without usage of manual annotation. The main shortcoming of
this approach is that the reliability of the annotations depends on the model’s
proficiency. An example of a dataset built following this trend is VGGSound
(Chen et al., 2020a). As mentioned in Section 2.4.1.3, this dataset presents
several shortcomings for SER, such as the presence of missing “Present” labels
both for training and evaluation.

2.4.4 Freesound

Despite the fact that Freesound is not a dataset strictly speaking, we include
its description here as it is the source of data for the datasets created in this
thesis. Freesound18 is an online collaborative audio clip sharing site (Font
et al., 2013), with more than 10 million registered users, over 500,000 audio

18https://freesound.org/

https://freesound.org/
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clips, and an average of 3400 new clips added every month.19 Audio clips
shared in Freesound cover a wide variety of audio content, from music samples
to environmental sounds, human sounds or audio effects, to name a few. In
addition, the users who upload the clips also provide metadata, e.g., a title,
several tags (at least three per clip), and textual descriptions. We use the
user-provided tags in the creation of FSD50K (Section 3.2.4). Since Freesound
is collaboratively contributed, it is also very heterogeneous in terms of data
origin, recording equipment, and acoustic conditions. One of the most popu-
lar use cases of Freesound is the exchange of well-recorded audio samples for
creative purposes. All of the content is Creative Commons licensed,20 which
conveniently allows distribution and reuse. As we have seen above, several
datasets containing Freesound audio have been widely used by the research
community, showing its usefulness for dataset creation (Stowell & Plumbley,
2014; Salamon et al., 2014; Piczak, 2015b).

2.5 Convolutional Neural Networks for Sound
Event Classification

CNNs are neural networks that use convolution operations instead of general
matrix multiplication in at least one layer (Goodfellow et al., 2016). Convo-
lutional layers implement a cross-correlation function by sliding filters (also
sometimes called kernels) over an input representation, outputting a response
often referred to as feature map (Goodfellow et al., 2016). CNNs overcome some
of the limitations of their preceding Multi-Layer Perceptrons (MLPs). For ex-
ample, CNNs have sparse interactions by using kernels that are smaller than
the input, instead of using matrix multiplications that describe interactions
between all output and input units. CNNs are shared-weight architectures,
where each weight of a kernel is used at every position of the input repres-
entation, which is more efficient than dense matrix multiplication. Due to the
sharing of weights, convolutional layers are equivariant to translation—if the
location of a specific pattern is shifted in the input representation, its location
in the feature map will be shifted accordingly.
CNNs are constructed by stacking convolutional layers in such a way that hier-
archical representations can be learned. Typically, high-level representations
are learned at the end of the network, based on lower-level patterns extrac-
ted at the preceding layers. Convolutional layers are usually interleaved with
pooling layers, and also with normalization layers (e.g., Batch Normalization
(Ioffe & Szegedy, 2015)) and non-linearities (e.g., Rectified Linear Units (Nair
& Hinton, 2010)). Pooling layers are used to downsample feature maps, redu-

19Data from August 1st, 2021.
20https://creativecommons.org/

https://creativecommons.org/
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cing the dimensionality processed by the network and allowing the integration
of larger areas of information by the deeper layers. In addition, they provide
the network with some invariance to shifts. For SET, after the convolutional
stack, the resulting feature map is typically aggregated through some kind of
global summarization pooling. Finally, this summarized representation feeds
a fully-connected classifier layer with an appropriate activation in order to
produce per-class probability predictions. For a more detailed description of
CNNs the reader is referred to Goodfellow et al. (2016) and McFee (2018), on
which this Section is based.
Regardless of the specific Convolutional Neural Network (CNN) architecture,
the activations of the final classifier layer must be chosen according to the
classification task. For multi-class tasks, the softmax activation is commonly
adopted, which squashes all per-class output predictions so that their sum
equals unity. For multi-label classification tasks, the classification layer typic-
ally uses a sigmoid activation per output channel, thus forming a C-way clas-
sifier where each channel outputs class probabilities independently. Likewise,
these activations are typically associated with the loss functions introduced in
Section 2.3.6—softmax activation with CCE loss for multi-class problems and
sigmoid activation with BCE loss for multi-label problems. Nonetheless, there
exist exceptions to these widely-assumed conventions, such as Mahajan et al.
(2018), where softmax activation is used with multi-label data.
In practice, the properties and structure of CNNs provide them with advant-
ages. For instance, CNNs can accommodate inputs of variable size provided
appropriate pooling strategies are in place. In addition, compared to MLPs,
they are also less sensitive to the relative position of sound events within the
context of the input representation (McFee, 2018). However, we will see that
this shift invariance property is only partial, and increasing it is beneficial for
SET.
CNNs have been one of the cornerstones of SET in recent years (Salamon &
Bello, 2017; Fonseca et al., 2019a; Kong et al., 2020a; Fonseca et al., 2020b;
Gong et al., 2021b). They have also proved to be effective for several audio
related tasks, e.g., speech recognition (Lee et al., 2009), automatic music tag-
ging (Dieleman & Schrauwen, 2014) or acoustic scene classification (Valenti
et al., 2017). In the context of environmental sound recognition, works can be
categorized into two different trends. Some works adopt off-the-shelf CNN ar-
chitectures taken from the computer vision field (sometimes with minor modi-
fications) (Kong et al., 2020a; Fonseca et al., 2020b; Gong et al., 2021b). Other
works attempt to design ad hoc CNN architectures motivated by addressing
specific aspects of the audio data, e.g., Fonseca et al. (2018a); Phaye et al.
(2019); Cramer et al. (2020).
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2.5.1 CNNs vs CRNNs for Sound Event Classification

Convolutional Recurrent Neural Networks (CRNNs) are deep architectures
consisting of the combination of convolutional layers and recurrent layers
(Cakır et al., 2017). In particular, the network begins with a number of con-
volutional layers whose purpose is to extract local features from the input
representation. After stacking the feature maps resulting from the last convo-
lutional layer, this representation is fed to one or more recurrent layers. The
purpose of the recurrent layers is to aggregate the extracted features over time,
thus modeling discriminative temporal structures.
Cakır et al. (2017) showed that CRNNs provide boosts over CNNs and Recur-
rent Neural Networks (RNNs) alone, using three datasets for SED and one for
SET. CRNNs became a popular choice in SED works (e.g., Lim et al. (2017);
Adavanne et al. (2017)) and also among various DCASE Challenge Tasks. In
contrast, other works highlight the similar performance of CRNNs and CNNs.
For example, Kong et al. (2020b) report that CRNNs perform on par with
CNNs on the SED problem of DCASE Challenge 2017 Task4 (Mesaros et al.,
2017b). Salamon et al. (2017) also found that both architectures achieve sim-
ilar overall performance on URBAN-SED, while each architecture specializes
better on certain sound classes. The state-of-the-art on the SET task of Au-
dioSet in the last couple of years has been mostly CNN-based (Kong et al.,
2020a; Gong et al., 2021b).
In this thesis, we conducted preliminary experiments comparing typical archi-
tectures of CRNNs and CNNs for SET, also finding that they show similar res-
ults overall. However, we have observed that CRNNs require longer runtimes
due to the extra computation required by recurrent layers, which slows down
experimentation. Therefore, we decided to adopt CNNs as the default type
of architecture for the majority of our experiments, although we also have
published experimental results with CRNNs in Pérez-López et al. (2019) and
Fonseca et al. (2020a).

2.5.2 Shift Invariance in CNNs

One of the commonly-assumed properties of CNNs is shift or translation in-
variance, by which output predictions are not affected by small shifts (or even
small deformations) in the input signal. In theory, this is ensured by the con-
volution and pooling operations forming the CNNs. However, recent works
in computer vision uncover that this is not always the case. Azulay & Weiss
(2018) find that small shifts and transformations in the input can change the
network’s predictions substantially. In particular, they quantify that by shift-
ing or resizing a random input image by one single pixel, the top class predicted
can change with a probability of up to 15% and 30%, respectively. This and



2.5 Convolutional Neural Networks for Sound Event
Classification 49

other related works (Engstrom et al., 2018; Zhang, 2019) empirically show the
brittleness of CNNs against minor input perturbations, and their only-partial
invariance to shifts.
These works argue that one of the causes of the lack of shift invariance is
a wrongly executed subsampling operation that ignores the classic sampling
theorem. This theorem establishes that, for the subsampling to be done cor-
rectly, the sampling rate must be at least twice the highest frequency in the
incoming signal (Oppenheim et al., 2001). Otherwise, aliasing problems can
occur, generating lack of shift invariance in the system and potentially causing
a certain distortion in the output—some of the highest frequency components
can overlay other low frequency ones. To address this issue, the classical signal
processing measure is to introduce an anti-aliasing low-pass filter before down-
sampling in order to limit the signal’s band (Oppenheim et al., 2001). In CNNs,
subsampling operations are prevalent through strided layers, e.g., convolution
or pooling layers with a stride larger than one. As anti-aliasing actions are not
usually taken, feature maps containing high frequency components may lead
to shift invariance and/or distortion problems.
The findings above have led to a growing area of research aimed at increasing
shift invariance in CNNs, either through architectural improvements (Zhang,
2019; Chaman & Dokmanic, 2021; Vasconcelos et al., 2020) or via data aug-
mentation (Engstrom et al., 2018). In this work, we are interested in the
former, which usually revolves around the idea of improving the subsampling
operations. The predominant trend consists of adding anti-aliasing measures
to the CNN architectures. Similarly to the signal processing fix, some works
adopt different low-pass filter based solutions, mainly for image recognition
(Zhang, 2019; Vasconcelos et al., 2020) and more recently also for speech re-
cognition (Bruguier et al., 2020). Zhang (2019) demonstrates that adding blur-
ring to deep convolutional networks before the strided operations (convolution
and pooling) provides increased accuracy on ImageNet (Deng et al., 2009) and
improved robustness to image perturbations. Vasconcelos et al. (2020) con-
duct a study to isolate the impact of aliasing within the different modules
of a ResNet-50 architecture. Bruguier et al. (2020) insert 1D low-pass filters
along the temporal dimension of feature maps in a Recurrent Neural Network
(RNN)-based speech recognizer.
In contrast to the anti-aliasing line of work, another alternative is to design
architectural changes to explicitly enforce invariance in the network. For ex-
ample, several previous works focus on increasing the invariance of CNNs to
rotations in input images, by applying constraints to the convolutional filters
(Worrall et al., 2017) or proposing ad hoc operations to enforce this prop-
erty (Dieleman et al., 2016). Recently, to address the lack of shift invariance
caused by subsampling operations, Chaman & Dokmanic (2021) propose a
downsampling mechanism called adaptive polyphase sampling. The key idea
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is to avoid using the same fixed sampling grid for subsampling a feature map
(as typically done in CNNs), but instead select it adaptively based on some
criterion (e.g., choosing the grid that produces a downsampled output with
highest energy). To our knowledge, this kind of techniques aimed at fostering
shift invariance in CNNs have not been evaluated for sound event classification.
This is the subject of Chapter 4.

2.6 Learning with Noisy Labels

As introduced in Section 1.3.1, label noise is a pressing issue for the future
of large-scale machine perception in the era of data-driven methods. The
effects of label noise can include performance decrease, increased complexity
of learned models, or changes in learning requirements (Frénay & Verleysen,
2014). Further, label noise has been reported to specifically hinder the proper
learning of deep neural networks (Arpit et al., 2017; Zhang et al., 2017). Next,
we provide a brief literature review of the topic of learning with noisy labels.
First, we focus on the computer vision field, then we move to the SET field,
and we conclude by motivating the work done on this topic in the context of
this thesis.

2.6.1 Learning with Noisy Labels in Computer Vision

Learning with noisy labels has been an intense area of research in computer
vision during the last decade. Recent works have proposed different ways
to categorize the many approaches proposed in the literature (Song et al.,
2020; Algan & Ulusoy, 2021). Nonetheless, due to the diversity in the existing
approaches, the authors acknowledge that there are no sharp boundaries among
the proposed group of methods. Some of the most relevant research directions
are identified next.

Regularization methods. Regularization aims to prevent overfitting and
improve generalization, which can also be beneficial against label noise. If
we understand the performance decrease caused by the noisy supervision as
a problem of overfitting noisy labels, regularization methods can be used to
prevent deep networks from this type of overfitting. Typical examples include
dropout (Srivastava et al., 2014), mixup (Zhang et al., 2018), or label smooth-
ing (Szegedy et al., 2016; Pereyra et al., 2017). A recent work has shown that
pre-training can also have a regularization effect, improving model robustness
to label corruption (Hendrycks et al., 2019a).
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Noise-robust loss functions. These loss functions are designed to allow
training and convergence of models while ignoring the effect of noisy labels.
The goal of these algorithms is to minimize the performance degradation de-
rived from the noisy labels during the process of loss optimization. Some
examples are the bootstrapping loss (Reed et al., 2015), the generalized cross-
entropy loss (Zhang & Sabuncu, 2018), a loss based on the mean absolute
error expression (Ghosh et al., 2017) or its recent improved version (Wang
et al., 2019a). One of the great advantages of this approach, along with the
regularization methods, is that they require minimal intervention in learning
pipelines.

Rejection of noisy samples/labels. The previous approaches are based on
accepting the noisy labels and mitigating their effect during training. A diferent
perspective consists of actively rejecting the contribution of noisy samples (or
noisy labels) during training. This rejection-based approach has been widely-
adopted (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Han et al., 2018;
Nguyen et al., 2019), sometimes achieving state-of-the-art performance. The
assumption here is that removing the noisy items leads to performance im-
provement. Methods in this category rely on some noise detection mechanism
to identify noisy samples (or labels) that are subsequently discarded. A popular
mechanism consists of using multiple networks or model checkpoints to conduct
the detection, based on agreement of labels with network predictions (Nguyen
et al., 2019), or based on cross-network disagreements using the loss values
associated with training instances (Han et al., 2018). Other works opt for a
teacher-student framework where the teacher estimates per-example weights
that are subsequently used by the student (Jiang et al., 2018). The inherent
risk of this research direction is the possibility of removing legit samples in ad-
dition to the corrupted ones due to suboptimality of the detection mechanisms,
which may lead to performance degradation. These rejection-based methods
are also referred to as instance selection or dataset pruning methods (Algan &
Ulusoy, 2021).

Noisy label Correction. This category represents a step further with re-
spect to the previous group, where methods correct the noisy labels after identi-
fying them. These methods typically rely either on a pre-trained network or
simply the model being trained in order to predict on train data and use the
predictions for label correction. In Yuan et al. (2018) a committee of networks
is trained on different subsets of data, and label agreements that differ from
actual labels are used as new target labels. Tanaka et al. (2018) propose a
joint optimization framework where network parameters are learned and true
labels are estimated during training by alternating updates of parameters and
labels. Other approaches leverage an additional set of curated clean data, for
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example to train a label cleaning network in order to reduce the noise of a
dataset (Veit et al., 2017). The noisy label correction approach is appealing
as, theoretically, no loss (or minimal loss) of data is suffered. However, this
ideal scenario is restricted to the case where true labels for data instances
are within the vocabulary of the oracle model, so that the model can indeed
predict them.

2.6.2 Learning with Noisy Labels in Sound Event
Classification

Unlike in computer vision, learning with noisy labels has received little at-
tention in the field of sound event classification, presumably due to the tra-
ditional paradigm of learning from relatively small and exhaustively labeled
(hence clean) datasets. When the work for this thesis started, there was little
prior work on how to improve sound event classification in presence of noisy
labels. To our knowledge, one of the first works on this topic is Kumar &
Raj (2017), where an approach is proposed to train classifiers with weakly
labeled web data, and a small amount of strongly labeled data is used to boost
performance. However, the data used in this work is not publicly available.
Other works focus on self-training to learn from combinations of labeled and
unlabeled data (Zhang & Schuller, 2012; Han et al., 2016; Elizalde et al., 2017),
but the issue of label noise is not addressed per se. In Shah et al. (2018), the
effect of label noise on weakly supervised learning is analyzed by introducing
noise to AudioSet. However, no measures to mitigate the effect of label noise
are proposed.
During the course of this thesis, the topic of learning with noisy labels in sound
classification received some more attention. Some of the published works are
based on the work carried out in this thesis, including the publications sum-
marized in Chapter 5, as well as the co-organization of two DCASE Challenge
Tasks in 201821 and 201922, where the topic of label noise was included for the
first time as a research problem (see Appendix A). We next briefly summarize
some of the published works based on our publications and resources. Some
works attempt to distinguish between noisy and correct labels with the goal of
selecting the latter, for instance, with self-training methods where clean labels
are iteratively selected and added to the train set for re-training (Dorfer &
Widmer, 2018; Nguyen et al., 2018). Singh et al. (2019) propose to model the
label noise distribution in data by inserting a linear layer into a network. Iqbal
et al. (2020) presents an approach where first noisy instances are detected us-
ing an auxiliary classifier trained on clean data, and then some of them are

21http://dcase.community/challenge2018/task-general-purpose-audio-tagging
22http://dcase.community/challenge2019/task-audio-tagging
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http://dcase.community/challenge2019/task-audio-tagging
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relabelled. Zhu et al. (2020) leverage the interaction of two networks to incre-
mentally select the possibly correctly labeled data from a noisy set of data. In
particular, this work utilizes the two datasets created for the aforementioned
DCASE Challenge Tasks, FSDKaggle2018 and FSDKaggle2019, which are in-
troduced in Appendix A. Another recent trend is to adopt Graph Convolutional
Networks from the image recognition literature (Chen et al., 2019) for the task
of multi-label SET under noisy labels. For example, Shrivastava et al. (2020)
propose a multitask learning module to learn from clean and noisy data from
the FSDKaggle2019 dataset, and a Graph Convolution module that utilizes
the label co-occurring relationships to regularize the network.
Other works published during the course of this thesis include Kumar et al.
(2019), where two networks operating on different views of the data co-teach
each other to learn from noisy labels. In Kumar & Ithapu (2020), a cascade of
learners is proposed where the training label set at every stage is a combina-
tion of the original label set and the combined supervision from the previous
classifiers.

2.6.3 AudioSet from the Perspective of Label Noise

AudioSet is composed of over 2M of manually annotated audio clips (Gemmeke
et al., 2017). Due to its unprecedented size, the labels are not as precise as in
other smaller and exhaustively labeled datasets, as discussed in Section 1.3.1.
Thus, AudioSet presents a number of label noise problems. Some of them are
due to shortcomings in the annotation process, e.g., missing or incorrect labels.
Others are related to the hierarchical structure of the AudioSet Ontology, e.g.,
a segment may be annotated with a leaf class label but not with its parent one,
or annotated with a label that is not the most specific within its hierarchical
path. Still other problems arise from the temporally-weak labels (i.e., clip-level
labels), where the class label may be active only during a small (and unknown)
portion of the audio segment. Finally, some semantic inconsistencies may exist
as the ontology allows for several sound attributes to be associated to one type
of sound event (while not all of them may have been annotated).
Despite these label noise problems, they have been directly addressed in only
a few of the previous works using AudioSet (e.g., Kumar et al. (2019); Kumar
& Ithapu (2020)), while the majority of efforts focus on deriving more sophist-
icated network architectures that ignore or downplay the idiosyncrasies of the
labeled audio data (e.g., Ford et al. (2019); Kong et al. (2020a)).
In Section 5.6, we propose a system to address one of the most frequent label
noise problems in AudioSet: its missing labels. The study of missing labels in
SER has received very little attention. To our knowledge, this specific topic has
been covered only by Meire et al. (2019), where robustness to missing labels is
studied by simulating them in a synthetic dataset of 20 classes.
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2.6.4 Learning with Noisy Labels in This Thesis

At the beginning of this thesis, the lack of publicly available data was hamper-
ing label noise research on common public evaluation benchmarks. One of our
contributions is FSDnoisy18k, an openly-available audio dataset that supports
the investigation of real label noise, including an empirical characterization of
the noise and a CNN baseline system (Section 5.2).
Furthermore, as seen before, many of the computer vision approaches against
label noise are relatively complex. Quite a few of them employ dedicated
pipelines, i.e., learning pipelines designed ad hoc for the purpose of label noise
mitigation, often leveraging two or more networks for sample rejection or label
correction, as well as auxiliary classifiers. Others rely on extra data resources,
such as an additional set of curated clean data. Given the early stage of this
field in SET at the beginning of this thesis, we opted to explore simple and
efficient approaches, agnostic to network architectures or learning settings.
Specifically, we seek approaches that can be easily incorporated into existing
learning pipelines composed by a noisy dataset and a deep network, requir-
ing only minimal intervention of the learning pipeline, and no extra resources.
By choosing methods that can be easily inserted into existing pipelines, our
goal was to facilitate their adoption. In this way, SET practitioners do not
have to renounce their own learning pipelines to adopt label noise mitigation
mechanisms. In particular, we focus on regularization techniques, noise-robust
loss functions, and approaches based on instance selection that reject poten-
tially noisy samples (Sections 5.3 and 5.4). These approaches address generic
inaccuracies of the labels. Finally, we also propose a label-rejection based sys-
tem to address one of the most frequent label noise issues in everyday sound
labeling, and in AudioSet specifically: missing labels (Section 5.6).

2.7 Self-supervised Learning

2.7.1 Terminology

Before diving into the details of self-supervised learning, we first clarify the
terminology used in this thesis. The terms unsupervised learning and self-
supervised learning can be found in the literature, sometimes interchangeably.
However, their usage has evolved over the years. Traditionally, the term unsu-
pervised learning is broadly used to denote any machine learning method that
operates over data without human labels, that is, using unlabeled data. Ex-
amples include Lee et al. (2009) and Jansen et al. (2018), in which unsupervised
audio representations are learned.
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However, the term self-supervised learning has become popular recently. Self-
supervised learning (or self-supervision) denotes machine learning methods
that are also applied over unlabeled data but, in this case, the term specifically
conveys the idea that some supervision does exist for the learning task. This
supervision is derived from the data itself—in our case, the audio signal—using
specific patterns in the data as we will see with some examples below. One
could argue that denoting these methods as unsupervised can be misleading
as, strictly, there exists indeed a supervisory signal for the learning task—not
an external supervision from labels, but some sort of self -supervision. Hence,
sometimes, the term unsupervised learning seems to have been set aside to
encompass methods related to clustering or dimensionality reduction, where
self-supervision is not used.
With that being said, we will use the structure unsupervised (audio) represent-
ation to denote a representation or embedding that is learned from unlabeled
data, following Jansen et al. (2020). In a similar fashion, we will use the struc-
ture unsupervised contrastive learning or unsupervised contrastive training to
refer to a process of training with unlabeled data, following Chen et al. (2020b)
(even though, strictly, the training is self -supervised).

2.7.2 Problem Formulation

Self-supervised learning methods aim at learning representations without the
need for external supervision. Absent explicit labels generated by humans,
the success of these methods relies on the design of proxy learning tasks23 in
which pseudo-labels are generated from patterns in the data (i.e., the self -
supervision). By training networks to solve these proxy tasks on unlabeled
data, mappings from inputs to useful low-dimensional representations are
learned. The learned representations can then be used for downstream tasks
such as classification. Once the self-supervised training has converged, some
common real-world use cases include: i) The trained embedding network can
be used as a feature extractor in order to compute semantically-relevant audio
features on few data with available labels. Then, these labeled features can
be used to train shallow classifiers. ii) Alternatively, it is also possible to use
the embedding network’s weights as initialization for fine-tuning on (typically
scarce) labeled data. A concrete example of the usefulness of self-supervised
audio representation learning is that of low-resource languages (Kawakami
et al., 2020). First, speech representations are learned using available sources of
abundant unlabeled speech audio. Then, speech recognition models are trained
using the learned representation on much smaller datasets of low-resource lan-
guages. This learning paradigm has led to recognition boosts for languages
where labeled data is scarce, e.g., Swahili (Kawakami et al., 2020).

23Proxy tasks are also sometimes referred to as auxiliary or pretext tasks.
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More formally, the problem formulation in self-supervised audio representation
learning is to train a deep audio embedding network fθ with parameters θ
that maps input examples to a low-dimensional representation. In the context
of this thesis, this network defines a mapping f : RT×F → Rd from log-mel
spectrograms of T time frames and F frequency bands to a d-dimensional
representation. We aim at learning audio representations that support sound
event classification tasks, for example where only few data, or poorly labeled
data, are available.

2.7.3 Related Work

The self-supervised learning paradigm has seen major progress in natural lan-
guage processing (Devlin et al., 2019), computer vision (Chen et al., 2020b,c;
Grill et al., 2020) and in speech recognition (Oord et al., 2018; Baevski et al.,
2019, 2020). For example, one of the most iconic self-supervised methods is the
BERT model in natural language processing (Devlin et al., 2019). There, the
proxy task essentially consists of predicting a series of masked words within
a sequence of words. In this setting, the masked words act as a supervisory
signal, i.e., as reference labels. With this reconstruction task, powerful text
representations can be learned. A similar proxy task applied in the context of
learning audio representations is Audio2Vec, where the goal is to reconstruct
a spectrogram patch from past and future patches (Tagliasacchi et al., 2020).
In this work, the authors also propose the proxy task of TemporalGap, which
consists of estimating the time distance between pairs of audio segments in an
audio stream. A variety of proxy tasks has been devised for self-supervised
representation learning in various modalities.
Recently, the approach of contrastive learning has received particular interest
within the self-supervision literature (Le-Khac et al., 2020). The mechan-
ism of contrastive representation learning consists of learning representations
by comparing pairs of examples selected by some semantically-correlated no-
tion of similarity (Le-Khac et al., 2020). Specifically, comparisons are made
between positive pairs of “similar” and negative pairs of “dissimilar” examples,
with the goal of learning a representation that pulls together positive pairs and
thus reflects semantic structure. While contrastive learning has gained special
interest only recently, its origins date back to the 1990s. One of the first works
adopting the paradigm of learning by comparing between examples without
any external supervisory signal is Becker & Hinton (1992). In this work, rep-
resentations are learned by maximizing the agreement between separate but
related parts of input images.
Prior to this thesis, the topic of self-supervised learning of general-purpose
audio representations had not been very explored. The scarcity of studies on
learning environmental sound representations may be partly due to the lack
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of abundant readily-available sources of audio data. For example, Lee et al.
(2009) used convolutional deep belief networks to learn representations for
speech and music, but not for general-purpose audio. During the course of
this thesis, a few works gradually arose, the majority of them based on con-
trastive learning using AudioSet. One of the first works in contrastive audio
representation learning is Jansen et al. (2018). This work relies on a triplet
loss approach, where anchor-positive pairs are created by sampling neighbor-
ing audio frames as well as applying other simple audio transformations (e.g.,
adding noise or mixing examples). In a subsequent work from the same au-
thors, the proxy task of audio-visual coincidence prediction is used to learn
audio representations to support predicting whether a pair of examples occurs
within a certain temporal proximity (Jansen et al., 2020). The coincidence pre-
diction task is a generalization of the correspondence prediction task proposed
for audio-visual multimodal learning, where the task is to predict time corres-
pondence between audio and video frames (Arandjelovic & Zisserman, 2017).
Another approach uses the so-called contrastive predictive coding together with
additive adversarial perturbations applied to the waveform to obtain a harder
proxy task (Wang et al., 2020).
A promising trend within contrastive learning that gained attention recently
is to learn representations via the proxy task of similarity maximization, at-
taining promising results in visual representation learning with approaches
such as the SimCLR framework (Chen et al., 2020b). This method consists
of maximizing the similarity between differently-augmented versions or views
of the same data example. Critical to its success is the simultaneous use of
a diversity of semantics-preserving, domain-specific augmentation methods to
create the different example views. After achieving state-of-the-art in several
image recognition tasks (Chen et al., 2020b,c), this approach has been success-
fully applied for speech recognition tasks (Nandan & Vepa, 2020; Kharitonov
et al., 2021). For learning sound event representations, the practice of using
augmentations to create different views of audio examples has been adopted
by Jansen et al. (2018). However, in that work augmentations are applied
individually and not in composition, as recent visual representation learning
works suggest (Chen et al., 2020b,c).
In this thesis, we focus on learning sound event representations by contrast-
ing differently-augmented views of sound events. To this end, a number of
semantics-preserving augmentations are explored in order to create different
example views, some of which have never been applied in this context, to
our knowledge. After composing some of these multiple augmentations into a
single augmentation front-end, our audio representations are learned by solving
the aforementioned proxy tasks of similarity maximization and/or coincidence
prediction.





CHAPTER 3
The Freesound Dataset 50k

(FSD50K)

3.1 Introduction

As discussed in Section 1.2, most existing datasets for SER are relatively small
and/or domain-specific, with the exception of AudioSet. Unfortunately, Au-
dioSet suffers from openness and stability issues. Thus, the SER field lags far
behind in terms of dataset availability when compared to fields like computer
vision where, in addition to ImageNet, major efforts have been made to collect
alternative large datasets, e.g., Lin et al. (2014); Li et al. (2017b); Kuznetsova
et al. (2020). Dataset creation initiatives are needed to allow exploitation of
deep learning approaches for SER and foster machine listening research.
In addition, we think it is important to document at length the main aspects
of data collection and curation when releasing a dataset—a common practice
in computer vision (Russakovsky et al., 2015; Kuznetsova et al., 2020) that has
also recently been proposed in audio research (McFee et al., 2018a). Making
this information available allows researchers to incorporate data-informed de-
cisions in the design of learning pipelines and in the analysis of results, and
can also serve as inspiration for potential dataset creators.
To address these issues and foster SER resesarch, in this Chapter we introduce
FSD50K (Freesound Dataset 50k): a dataset containing 51,197 audio clips
totalling over 100h of audio manually labeled using 200 classes drawn from the
AudioSet Ontology. FSD50K is a dataset primarily designed for the devel-
opment and evaluation of multi-label sound event classification systems, but
that also allows a variety of sound event research tasks. The audio clips are
gathered from Freesound and are licensed under Creative Commons (CC) li-
censes, which allow easy and stable sharing, thereby making the dataset freely
distributable (including audio waveforms). To our knowledge, this is the largest
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fully-open dataset of human-labeled sound events, and the second largest after
AudioSet. In Section 3.2, we provide a detailed description of the FSD50K
creation process tailored to the particularities of Freesound data, including
challenges encountered and solutions adopted. Section 3.3 provides a compre-
hensive characterization of the dataset along with discussion of limitations and
key factors to allow its audio-informed usage. In Section 3.4, we include a set
of sound event classification experiments to provide baseline systems as well
as insight on the main factors to consider when splitting Freesound audio data
for SER tasks. Section 3.5 concludes the Chapter with a summary of the key
results and directions for future work.
This Chapter is useful to researchers using FSD50K (and in general using Free-
sound data for machine learning) as it allows making data-informed decisions
for design choices of machine listening systems. It may also be useful for re-
searchers working on the creation of large-vocabulary datasets. In addition
to the audio waveforms and ground truth, FSD50K includes metadata used
during the creation process as well as Freesound metadata for the clips form-
ing the dataset (Section. 3.3.1). All these resources can be downloaded from
Zenodo.24 Likewise, code25 for baseline experiments and a companion site26

for FSD50K is also available. The companion site allows exploring the audio
content of FSD50K as well as reporting labelling errors.

3.2 The Creation of FSD50K

3.2.1 Design Criteria

As design criteria, we set three basic goals and another three specific goals.
The basic goals are: i) the dataset must be open and fully distributable, ii)
it must contain a large vocabulary of everyday sounds, and iii) it must be
expandable in terms of data and vocabulary. To fulfil these basic goals, we turn
to Freesound as a source of data, and to the AudioSet Ontology as a vocabulary
to organize the data. Not only do these resources feature a large amount of
data and classes, respectively, but Freesound is constantly growing through
user uploads, and the ontology is large and was designed to be expandable,
allowing dataset expansions. They are described in Sections 2.4.4 and 2.2.4.1,
respectively.
In addition, we set three specific goals related to the labeling of the dataset
and to the emphasis put on the evaluation set.

24https://doi.org/10.5281/zenodo.4060432
25https://github.com/edufonseca/FSD50K_baseline
26https://annotator.freesound.org/fsd/release/FSD50K/

https://doi.org/10.5281/zenodo.4060432
https://github.com/edufonseca/FSD50K_baseline
https://annotator.freesound.org/fsd/release/FSD50K/
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1) Weak Labels. We opt to label the dataset with weak labels. The main
motivation is that gathering weak labels (i.e., at clip-level) is simpler, less
time consuming and less ambiguous than determining events’ onset/offset (i.e.,
strong labels). Weakly supervised learning has demonstrated effectiveness to
learn sound event recognizers, both for classification and detection (McFee
et al., 2018b). Nonetheless, using weak labels imply certain limitations on
training and evaluation, which we highlight in Section 3.3.2.

2) Label Quality and Dataset Size. As mentioned earlier, the SER field
has witnessed a transition away from small and exhaustively labeled datasets
(e.g., Salamon et al. (2014); Piczak (2015b); Foster et al. (2015)), in favour of
larger datasets that inevitably include less precise labelling, such as AudioSet
(Gemmeke et al., 2017). This occurs mainly because it is not feasible to ex-
haustively annotate large amounts of sound event data. In our case, we want
to seek a trade-off by prioritizing label quality while ensuring a certain amount
of data. Yet, label noise problems also appear in FSD50K, as in any sound
event dataset of a certain size (Section 3.3.3).

3) Emphasis on Evaluation Set. This is perhaps the design criteria that
mostly determines the creation of FSD50K. Essentially, an evaluation set
defines the target behavior in a recognition task, which makes it possibly the
most critical part of a dataset. Consequently, having a comprehensive, diverse,
reliably annotated, and real-world representative evaluation set is important
for meaningful systems’ benchmarking. The importance of reliable evaluation
sets is highlighted by recent research in computer vision which focuses on
improving the evaluation and/or validation sets of widely-used datasets. Ex-
amples include Barz & Denzler (2020) for CIFAR-10/-100 (Krizhevsky & Hin-
ton, 2009), and Recht et al. (2019) and Beyer et al. (2020) for ImageNet (Deng
et al., 2009). In addition, alternative learning paradigms to the traditional
supervised learning (using reliably-labelled datasets) start to be promising
nowadays. In particular, significant progress is being made in the develop-
ment of sound event recognizers with noisy supervision (Fonseca et al., 2020b)
or self-supervision (Jansen et al., 2018; Fonseca et al., 2021b). While these
alternatives can minimize the problems of labelling inaccuracies in the devel-
opment set, or the need for a labeled development set at all, a carefully curated
evaluation set is still critical for benchmarking. Relatedly, abundant data re-
sources for training are already available, either from AudioSet, or directly
from web audio repositories such as Freesound or Flickr (provided appropriate
learning strategies are used). By contrast, to our knowledge, large-vocabulary,
carefully-curated evaluation benchmarks are rare—the most prominent being
AudioSet’s evaluation set, which suffers from issues of label noise, stability
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and/or openness (as discussed in Section 2.4.1.2). By prioritizing the curation
of the evaluation set, we contribute to fill this gap.

3.2.1.1 Gathering Reference Labels

To tackle the task of annotating the dataset, two approaches are considered: i)
manual annotation and ii) semi-automatic methods based on active learning.
Manual annotation is the conventional approach to dataset labelling, as done in
AudioSet (Gemmeke et al., 2017) or ImageNet (Deng et al., 2009) in computer
vision. While this option is very laborious and time consuming, when done
properly we believe it leads to more reliable results than involving automatic
methods in the annotation loop. Active learning is a promising alternative
to reduce annotation effort. However, while progress has been made in the
field of active learning for SER, most works focus on recognition tasks that
are simpler than ours, as mentioned in Section 2.4.3.2. Specifically, previous
works deal with less than a dozen classes, and most of them focus on single-
label classification and use pre-labeled datasets, where the human annotation
step is simulated by assigning pre-existing ground truth. Extending previous
methods to a large-vocabulary, multi-label setting like ours is not trivial and
hence it is considered out of the scope of this work.
Thus, in order to obtain a high-quality labelling, and being aware of the amount
of data to annotate and the budget available, we decide to annotate the dataset
manually, similarly as done with AudioSet. While this means a higher human
effort, it presents two advantages. First, manually annotating FSD50K gives
us a deeper insight into the data that would not have been gained otherwise.
Second, it allows us to have a greater control of the labels gathered, as well as
to specify not only the labels but also an estimate of sound predominance (as
we will see in Section 3.2.5). Furthermore, obtaining a set of labels as reliable
as possible for this first release is a more favorable starting point for potential
future expansions, which could rely on (semi-) automatic methods to scale up
more efficiently at the expense of label noise.
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3.2.2 Overall Procedure

The overall process of the creation of FSD50K is illustrated in Figure 3.1,
starting from Freesound and the AudioSet Ontology, and ending with FSD50K.
In every intermediate stage, we progressively filter out a quantity of audio clips
and classes in the vocabulary. Each stage is described in the next subsections.

validation 
task data split refinement 

task
post- 

processing
data 

acquisition
candidate 

labels 
nomination

FSD50K

keywords

Figure 3.1: Overall process of the creation of FSD50K. The process starts from
Freesound and the AudioSet Ontology. Stages in green involve automatic data mining,
stages in orange correspond to manual annotation tasks, and stages in blue involve
data processing to shape the dataset.

3.2.3 Data Acquisition

The starting point for the creation of FSD50K is an abundant source of audio
clips, a vocabulary to annotate them, and an infrastructure where they can be
loaded and annotation tasks can be carried out. These items correspond to
Freesound, AudioSet Ontology and Freesound Annotator respectively. Free-
sound is described in Section 2.4.4, and the AudioSet Ontology is detailed in
Section 2.2.4.1 Next, we briefly argue why the choice of the AudioSet Ontology
for FSD50K, and briefly introduce Freesound Annotator.

3.2.3.1 AudioSet Ontology as Vocabulary for FSD50K

For the creation of FSD50K, we are interested mainly in common physical
sound sources, related to the casual listening as defined by Schaeffer (1966),
which tend to be more clearly defined and familiar to the average listener.
We are less interested in perceptual sound attributes (e.g., bright or deep) or
other sound classes that can be more subjective or cultural-dependent, which
can lead to ambiguity (e.g., onomatopoeia, musical concepts, or very specific
sound production mechanisms). Our motivation lies in several reasons. First,
recordings of these more typical and better defined classes tend to be more
available in Freesound. In addition, the tags used to describe these recordings
may be less heterogeneous, which is convenient as we use them in the data-
set creation process. Second, our goal is to allow training of general-purpose
classifiers able to recognize the sound events of the most representative and
typical classes of different domains (e.g, human, domestic, urban, or nature



64 The Freesound Dataset 50k (FSD50K)

sounds). Third, typical and familiar sounds are easier to annotate manually
as humans can more easily form a mental picture of the sound (Ballas, 1993).
Consequently, choosing this type of sound classes may presumably require less
annotation effort and may lead to less label noise than dealing with more
ambiguous classes.
Developing an ad hoc taxonomy is a tedious task that requires multidisciplinary
knowledge and substantial effort, hence it is considered beyond the scope of
this thesis. Consequently, for the creation of FSD50K we decided to adopt
a subset of the AudioSet Ontology as it is the most comprehensive set of
everyday sounds available, which makes it convenient to cover Freesound’s
heterogeneity. In addition, the rapid acceptance of AudioSet as a resource
for SER research has made the AudioSet Ontology a de facto standard for
everyday sound organization in the academia. Yet, upon careful inspection of
the ontology, we realize that improvements could be made in order to make
it more consistent as a resource for everyday sound vocabulary, and to make
it more suitable for organization of Freesound audio. However, this task was
found to be far from trivial and considered beyond the scope of this work.
In particular, for FSD50K we focus on a subset of the ontology oriented to
the most common physical sound sources and a few production mechanisms,
and less oriented to ambiguous or less represented classes in common everyday
situations.

3.2.3.2 Freesound Annotator

Freesound Annotator27 is a website that allows the collaborative creation and
curation of open audio datasets based on Freesound content. It serves mainly
two goals: the management and exploration of datasets, and the creation and
verification of annotations. Originally released on 2017 as the Freesound Data-
sets platform, Freesound Annotator has been the object of continuous devel-
opment (Fonseca et al., 2017b). The name of the platform was changed to
avoid potential confusions with other datasets. Freesound Annotator started
by providing basic prototypes for exploring a taxonomy of audio classes and
validating automatically generated annotations. Additional features were in-
corporated progressively, including annotation tools and quality control mech-
anisms (see Sections 3.2.5 and Section 3.2.7). Monitoring tools allow inspection
of a dataset progress as well as debugging capabilities. Freesound Annotator is
an open-source project28 developed and maintained mainly by Xavier Favory
and Frederic Font, with significant contributions from the author of this thesis.

27https://annotator.freesound.org/
28https://github.com/MTG/freesound-datasets/
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3.2.4 Candidate Labels Nomination

We started building FSD50K by automatically populating the classes of the
ontology with a number of candidate audio clips from Freesound. Candidate
clips were selected by matching user-provided tags in Freesound to a set of
keywords associated with every class. The goal was to automatically compile a
list of candidate labels per clip, indicating potential presence of sound events.
The process consisted of two steps.
First, we compiled a list of keywords for almost every class. These are terms
related to the class label that are likely to be provided by Freesound users
as tags when describing audio clips. Suitable keywords were determined by
considering class names and descriptions provided in the ontology, and ob-
taining the most frequent Freesound tags that co-occur with each target class
label. After compiling a first version of the per-class keywords, we manually
identified a few classes with very low precision due to pathological inclusion
of false positives. For example, in the Turkey class many clips were recordings
made in the Eurasian country, instead of containing sounds of the large bird.
To minimize this issue, a refinement process was performed by blocking some
tags (e.g., “turkish” or “Istanbul” for the Turkey class). As an example, the
keywords for the Meow class are: “meow”, “meowing”, “mew”, “miaow”, and
“miaou”.
Second, each class was automatically populated with the corresponding Free-
sound clips. We use the compiled lists of keywords as a mapping between
clips in Freesound and class labels in the ontology. Thus, for each clip, all
user-provided tags are examined and, when a tag matches a keyword, the clip
becomes a candidate clip for the dataset, and the corresponding class label
is nominated as a candidate label for the clip. This process was done by us-
ing the Freesound API.29 We employ the Porter Stemming algorithm for term
normalisation to make our matching process more robust (Porter et al., 1980).
In this way we were able to map more than 300,000 Freesound clips to the
AudioSet classes. We decided to filter out clips longer than 90s to avoid very
large audio clips (this length limit will be further reduced later on, see Section
3.2.5). No other filters were applied at this stage. This left us with a total of
268,261 clips with an average of 2.62 candidate labels. This label nomination
system induces potential errors as it depends on factors such as class ambiguity
and, especially, the choices of Freesound users when providing tags. However,
it has the advantage of allowing easy and rapid retrieval for a large variety of
classes without training any classifiers.
The outcome of this stage is a list of automatically-generated candidate labels
per clip, indicating the potential presence of sound events.

29https://freesound.org/docs/api/

https://freesound.org/docs/api/
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3.2.5 Validation Task

The goal of this stage is to manually validate the candidate labels nominated
in the previous stage.

3.2.5.1 Initial Prototype of the Annotation Tool

To this end, we designed and implemented an annotation tool that was de-
ployed in Freesound Annotator. Essentially, human raters are presented with
a number of audio clips and, for each clip, they must assess the presence of
a given sound class. For each class, the annotation process consists of two
phases:

1. a training phase where raters get familiar with the class by looking
at its location in the AudioSet Ontology hierarchy, the provided textual
description, and representative sound examples.

2. a validation phase, in which raters are presented with a series of audio
clips from that class (up to 72 clips in 6 pages of 12 clips) and prompted
the question: Is <class> present in the following sounds?. (Figure 3.3
shows 3 clips within a page of the final prototype). In this initial proto-
type, raters must select among “Present”, “Not Present”, and “Unsure”,
similarly as done in Gemmeke et al. (2017).

Along with an audio player and its waveform, links to each clip’s Freesound
page were made available, where the original tags and descriptions could be
inspected to aid the process.

3.2.5.2 Internal Quality Assessment

We used the initial prototype to run an Internal Quality Assessment (IQA)
with the goal of i) assessing the quality of the candidates produced by the
nomination system, and ii) collecting feedback about the prototype and an-
notation task for improvements. The IQA consisted of validating 12 candidates
(1 page of clips) for every class, covering all classes available. It was carried
out by 11 subjects that volunteered to participate, who could leave per-class
comments through a text box. The feedback collected in the IQA revealed
that the annotation task is complex due to factors such as ambiguity in some
class descriptions or the difficulty of annotating sound events with very high
inter- and intra-class variation.
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3.2.5.3 Final Prototype of the Annotation Tool

Based on the insight from the IQA, we designed the final annotation tool (Fig-
ures 3.2 and 3.3) which incorporates the following improvements with respect
to the previous version:

Figure 3.2: Screenshot of the “Training phase” page used for the validation task.

Figure 3.3: Screenshot of the “Validation phase” used for the validation task.

Some AudioSet class descriptions were found to be ambiguous, allowing
multiple interpretations and generating doubts as to the class scope. We
decided to include a list of Frequently Asked Questions (FAQs) in
each class description to help homogenize raters’ judgment and gather
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more consistent annotations (see Figure 3.2). The full FAQs list is
provided with the dataset.

In some audio clips, several sound events co-existed with different pre-
dominance or salience levels, making the “Present” response rather am-
biguous for raters. To address this issue, we decided to split the
“Present” response into “Present and predominant” (PP) and “Present
but not predominant” (PNP), as specified in Table 3.1.30 A similar ap-
proach was used by Salamon et al. (2014). The main motivation is to ease
the annotation task by mitigating a systematic doubt. As an additional
benefit, this distinction allows to separate a subset of clips containing
mostly isolated and clean sound events (PP ratings) vs. others featur-
ing events from several classes and/or in more adverse acoustic condi-
tions (PNP ratings). This could allow defining robustness tasks such as
training or evaluating with a subset of data of more adverse conditions,
similarly as done in Serizel et al. (2020) for SED or with ImageNet-A
for image recognition (Hendrycks et al., 2019b). Further, the PP/PNP
distinction can be useful for source separation studies (Wisdom et al.,
2021). We note, however, that this distinction is subjective and these
ratings should be used as a rough indication.

To automatically assess the reliability of the submitted responses, we
added quality control mechanisms such as the periodic inclusion of
verification clips. Whenever the response for one of these clips is wrong,
the responses submitted in a given time span are discarded—a common
practice in crowdsourcing platforms.

To further ensure high quality annotations, we decided to require inter-
annotator agreement. More specifically, each candidate label is presen-
ted to several raters until two different raters agree on a response type.
Once an inter-annotator agreement is reached, the label is considered
as ground-truth and it is no longer presented to other raters. A similar
practice is done in Foster et al. (2015); Cartwright et al. (2019c).

To facilitate the localisation and recognition of sound events within the
audio clips, we added spectrogram visualizations, thereby easing the
annotation task (Cartwright et al., 2017) (the initial prototype featured
less-informative waveforms).

Some audio clips can present highly variable loudness, which can be
burdensome for the rater and may affect annotation quality. To mitigate
this problem, we normalize the loudness of the sound files following
EBU Recommendation R 128 (2014).

30Hereafter, we shall use “Present” to refer to the union of PP and PNP.
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Table 3.1: Response types for the validation task.

Response Type Meaning

Present and The type of sound described is clearly present and
predominant predominant. This means there are no other types of
(PP) sound, with the exception of low/mild background noise.
Present but not The type of sound described is present, but the
predominant audio clip also contains other salient types of
(PNP) sound and/or strong background noise.
Not Present The type of sound described is
(NP) not present in the audio clip.
Unsure I am not sure whether the type of sound
(U) described is present or not.

To select which audio clips to present to each rater, we adopt a priorit-
ization scheme that ranks clips according to two criteria: i) previously
rated label-clip pairs that have not yet reached inter-annotator agreement
are prioritized to obtain ground truth labels; ii) short clips are prioritized
over long ones as shorter clips have a higher label density—considered
more informative for learning.

Beyond these improvements, we took two additional measures to improve an-
notation efficiency. First, the selection of candidates in a number of classes had
a very low precision possibly due to sub-optimality of the nomination system.
Thus, we decided to discard classes with a rate of “Not Present” responses
above 75%, as well as classes with very few candidates and others deemed
highly ambiguous for annotation. This left a total of 395 sound classes (a re-
duction of ≈35%). Second, participants reported that the initial duration limit
of 90s was too long for human validation, and a potential cause for fatigue. In
addition, the supervision given by weak labels applied to such large lengths is
rather vague. Therefore, we decided to discard clips longer than 30s.

3.2.5.4 Annotation Campaign

With the final annotation tool, we launched an annotation campaign to val-
idate the candidate labels at scale. Given that some classes were found to be
much more difficult to annotate than others, we decided to gather annotations
using both crowdsourcing and hired raters. We divided the classes according to
an estimated level of difficulty, based on feedback from the IQA. Table 3.2 lists
the annotation strategies adopted for each subset of classes. Crowdsourcing
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Table 3.2: Annotation strategies in the validation task.

Class Difficulty Example Classes Annotation Strategy

easy Bark 77 crowdsourcing & hired annotators
medium Piano 100 crowdsourcing & hired annotators
difficult Tearing 218 hired annotators

consists of gathering validations contributed by any voluntary participant. We
made the classes of easy and medium difficulty publicly accessible from Free-
sound Annotator,31 which was promoted in Freesound forums and social media.
The most difficult classes, where certain annotation experience was deemed im-
portant to provide reliable responses, were kept private. They were validated
by a pool of hired raters who also complemented the crowdsourcing validations
in the rest of the classes.
In total, over 350 raters contributed, including voluntary participants, six hired
raters, and three PhD students from our research group including the author of
this thesis (specifically, Xavier Favory, Jordi Pons, and Eduardo Fonseca). The
hired raters were subjects with background in audiovisual engineering, includ-
ing mostly MSc students from our group, with self-reported healthy hearing.
We opted for a small pool of raters in order to have more control over the an-
notation process and to obtain annotations that are as consistent as possible.
We recognize this may induce a certain bias, but we rather have consistent
annotations with agreed bias than a certain lack of consistency likely resulting
from crowdsourcing annotations for the difficult classes (i.e., label noise). To
this end, the hired raters were trained and closely monitored by the authors,
discussing doubts and agreeing on the best course of action. The list of FAQs
were gradually extended as more insight was obtained. For consistency, raters
were asked to validate groups of related classes (e.g., sibling categories), so they
could get familiar with specific sections of the ontology (Sabou et al., 2014).
They were instructed to perform the task using high-quality headphones in a
quiet environment, and taking periodic breaks to mitigate fatigue. During the
campaign, the hired raters acquired solid expertise on the annotation task and
a deep knowledge of the ontology. Therefore, we consider them experts for
this task.
The outcome of the annotation campaign was 51,684 clips considered valid for
the dataset, that is, with at least one “Present” label. All the “Present” labels
amount to 59,981, all of them being the result of inter-annotator agreement,
except 3390 which include labels with: i) only one PP rating and one PNP
rating (and nothing else). This can be considered inter-annotator agreement

31https://annotator.freesound.org/fsd/annotate/

https://annotator.freesound.org/fsd/annotate/
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at the “Present” level; ii) only one PP rating (and nothing else); iii) only one
PNP rating (and nothing else). The two latter do not meet our definition
of ground truth and could be more prone to errors, but were still considered
to slightly increase the amount of data. It must be noted that the set of
labels at this point comes from the validation of candidate labels proposed
by a simple nomination system, which ultimately relies on the user-provided
Freesound tags. Hence, it is to be expected that some sound events are not
covered by the user-generated tags, or they are not proposed by the nomination
system, leading to missing “Present” labels, a common phenomenon in large
sound event datasets (Meire et al., 2019; Fonseca et al., 2020b). That is, the
resulting pool of audio clips have labels that are mostly correct (estimated at
94.3% in Section 3.3.3), albeit potentially incomplete which is problematic in
evaluation. To address this issue, after splitting the data into development and
evaluation sets (Section 3.2.6), the latter is refined using another annotation
tool (Section 3.2.7).

3.2.6 Data Split

The input to this stage is a pool of 51,684 audio clips with mostly correct labels
(albeit potentially incomplete). The goal is to split the data into two subsets:
development and evaluation. The development set will be used for training
and validation. The evaluation set will be used for system benchmarking after
exhaustive annotation. As stated in Section 3.2.1, the evaluation set is our
priority. A high quality evaluation set must be comprehensive, varied, and
representative (Mesaros et al., 2018b), while being free from contamination
from the development set in order to allow testing models’ generalization cap-
abilities.

3.2.6.1 Split Criteria

We set four criteria for the split.

Non-divisibility of Uploaders. The issue of contamination must be con-
sidered when splitting audio data, especially if portions of the data share a
common pattern that brings acoustic similarity among its constituents. In
Freesound, audio content is uploaded by users (in the following, uploaders).
The uploaders can be very diverse: some are small—they upload a small num-
ber of audio clips (e.g., up to only few tens)—while other uploaders contribute
with hundreds of clips. In the latter case, it can happen that some of the
uploaded clips share the same sound source and/or physical location and/or
recording gear (e.g., several notes of the same music instrument or vocalizations
of the same pet). If some of these recordings are used for training and others
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for evaluation, their similarity may lead to overly optimistic performance, re-
flecting the classifier’s ability to overfit development examples. As a result, this
classifier may suffer from performance drop when tested on unseen data. This
issue can be called weak contamination between development and evaluation,
although, for simplicity, we will refer to it as contamination hereafter.32 This
phenomenon has been detected in computer vision benchmarks like CIFAR-10
and CIFAR-100 (Barz & Denzler, 2020). Another example of this in the field
of music recognition is the denominated “album effect” (Whitman et al., 2001;
Mandel & Ellis, 2005) or “artist effect” (Flexer & Schnitzer, 2009). Another
case of contamination happens when a group of clips captured with the same
sensor is split in training and evaluation (Cartwright et al., 2019c). To avoid
this issue, we make sure that all the content of each uploader is allocated
either in the development or evaluation set. By doing this we assume that the
evaluation performance reflects the model’s ability to generalize to new audio
material and recording conditions.

Small Uploaders for Evaluation. To obtain a varied evaluation set, it
seems reasonable to allocate the content from small uploaders as it guaran-
tees a higher diversity of sound sources, acoustic environments and recording
equipment. In addition, a closer look at the Freesound data distribution re-
vealed that recordings uploaded by small uploaders tend to be slightly longer.
It can therefore be expected that, in general, these longer recordings tend to
contain more sound events when compared to shorter clips—a considerable
portion of Freesound consists of short clips of few seconds featuring a single
event. Under this assumption, longer recordings would be more real-world
representative (see Section 3.3.2). Also, this is a more interesting content to
further annotate exhaustively, and also with timestamps to allow future SED
evaluations. Finally, another benefit of using small users for evaluation occurs
in the hypothetical worst case scenario of one uploader contributing very sim-
ilar clips. In this case, it is likely that a competitive model predicting one of
them correctly would predict correctly many of them, thus generating a fake
performance resolution in the given class(es). By selecting small uploaders we
mitigate this problem.

A Coarse Class Distribution is Enough. A fine-level split carefully match-
ing a target class distribution is not needed at this point, as during the ex-
haustive labelling of the evaluation set we expect some classes to grow (Section
3.2.7). This will create an imbalance that will need to be compensated.

32This should not be confused with data leakage, which happens when the same (not
similar) examples are used for both training and evaluation.
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Focus on Leaf Nodes. Among the classes available at this point, we focus
on the subset of 113 leaf nodes with more than 100 clips as they are considered
the most important classes.

3.2.6.2 Split Method

Given the many constraints, off-the-shelf methods such as random sampling,
iterative stratification (Sechidis et al., 2011) or combinatorial optimization al-
gorithms like knapsack problems (Toth & Martello, 1990; Cramer et al., 2020)
are not well suited. Therefore, we implement an ad hoc approach consisting
of iteratively allocating uploaders’ content to the evaluation set after sorting
them appropriately. First, we compute a score per uploader u as:

scoreu = n_labelsu
max +

1
Ku

Ku

∑
k=1

n_labelsu
ck
, (3.1)

where n_labelsu
max is the maximum number of labels provided by the uploader u

in any class, n_labelsu
ck
is the number of labels provided by u in the class ck, and

Ku is the number of classes touched by u (i.e., those to which u contributes).
Uploaders are sorted in ascending score order and the content of low-score
uploaders is transferred first. With the first term we prevent uploaders with
abundant content concentrated in one specific class, and with the second term
preference is given to users with low average number of labels per class for
diversity. We found out that, by splitting the target 113 leaf nodes, some
content corresponding to the remaining classes is automatically allocated due
to the uploaders contributing also to them. This content is deemed sufficient as
a fine-level class distribution is not the target at this point. We then proceed to
allocate data to the evaluation set following the process shown in Algorithm 1.
We traverse the C = 113 classes starting from the least-represented ones since
they have less flexibility for data allocation. For each class ci, we progressively
allocate content from the ranked uploaders uuu until a target amount of data
tci is reached. tci is proportional to the total class label count, and rectified
to lie in the range from 50 to 100 labels per class. By default, the maximum
uploader size per class ci (i.e., the maximum number of clips that one uploader
u is allowed to contribute to ci) is set to 0.1tci . Thanks to the proposed sorting,
uploaders in the evaluation set do not reach such a maximum in the majority
of classes (they often provide one single clip)—if they do, excess clips are
discarded in most cases. However, due to the high uploader diversity, the
maximum uploader size had to be increased in a few exceptions. Using the
proposed scheme, we processed all the 7229 uploaders and we allocated 2794
of them to the evaluation set, totalling 11,466 clips.
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Algorithm 1: Data allocation to evaluation set
Data: Empty evaluation set per-class E = {eci = 0}Ci=1, uploaders

ranking uuu
1 for class ci ∈C do
2 get current evaluation target tci

3 while eci < tci do
4 get next uploader u in ranking uuu with data in ci

5 eci ← eci + data from u in ci

6 for class ck ∈ Ku do
7 eck ← eck + data from u in ck
8 end
9 end

10 end
Result: A candidate evaluation set

The result of this stage is two pools of clips that are disjoint in terms of
uploaders: a candidate development set and a candidate evaluation set. The
latter is exhaustively labeled in the refinement task.

3.2.7 Refinement Task

As mentioned in Section 3.2.5, in some clips, the current label sets could be
an underrepresentation of the audio content, biased by the idiosyncrasies of
the labeling pipeline. This is problematic in evaluation, as classifiers would
be penalized when predicting a correct label that happens to be missing from
the ground truth. This critical issue would limit the utility of the dataset
for system’s benchmarking. To address this issue, we refine the labels in the
evaluation set. The goal is to obtain an exhaustive labelling, that is, a labelling
as close as possible to the correct and complete transcription of the audio
content (for the considered vocabulary of 395 classes).

3.2.7.1 Annotation Tool

We designed an annotation tool that allows two subtasks: i) to review the
existing labels, and ii) to add missing “Present” labels. The subtask of adding
missing “Present” labels has a considerable complexity since audio clips can
sometimes contain unrelated sound events. Therefore, the success of this task
relies on two key factors: i) raters with a deep understanding of the ontology,
the agreed FAQs, and the particularities of the audio material; ii) an interface
that facilitates exploration of the large vocabulary of the ontology. In regard
to the first factor we turn to the pool of hired raters (4 of the initial 6 as
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Figure 3.4: Table for exploring the ontology in the refinement task.

the others became unavailable), who acquired a solid expertise by extensive
participation in the validation task (Section 3.2.5). As for the second factor,
the refinement task we implemented in Freesound Annotator includes a tool
to interactively explore different depth levels of the ontology (Figure 3.4).
This tool is based on a previous version described in Favory et al. (2018). A
search input box allows to quickly navigate to classes in the table, where their
hierarchical context is shown. For each class, textual descriptions and repres-
entative sound examples are displayed. The interface facilitates the comparison
of different classes by simultaneously displaying their information, which was
found useful among the raters.
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3.2.7.2 Annotation Process

Clips were presented grouped by sound class to facilitate the task. For every
class:

1. raters were instructed to go through a training phase (same as in the
validation task—see Figure 3.2).

2. For every clip, they would first review existing labels and modify them
if needed. Then, they would add any missing labels by exploring the
ontology (Figure 3.4).

Raters were instructed to provide the most specific labels possible (typically
leaf labels) as they are the most informative type of supervision. The quality
assurance practices described for the validation task were also applied in the
refinement task. Following this procedure, each evaluation label was verified
or reviewed by between two and five different annotators (considering both
validation and refinement tasks), including at least one expert. As a result,
labels are expected to be correct and complete in the vast majority of cases
(see Section 3.3.3 for a discussion on label noise). The exhaustive labelling
carried out has two implications. First, absence of labels means absence of
sound events (except human error)—a desired feature. Second, some classes
are now much more represented than before as they are prevalent but were
underrepresented, thus creating a class imbalance.
The outcome of this stage is a pool of exhaustively labeled clips (for the con-
sidered vocabulary), the majority of which will form the evaluation set.

3.2.8 Post-processing

This stage starts from two sets of data: a candidate development set with cor-
rect but potentially incomplete labels, and an exhaustively-labeled candidate
evaluation set. The vocabulary used so far comprises 395 classes, yet many of
them have few data (few tens of clips). While they may not be adequate for
deep learning approaches, they can be useful for other practices requiring less
data (e.g., few shot learning (Cheng et al., 2019)). Likewise, this information
can provide insight as to the specific content of the dataset. Therefore, we
provide two different formats for the annotations in FSD50K:

1. The raw outcome of the annotation process, featuring all generated class
labels without any restriction. These include classes with few data. We
call this the sound collection format.
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2. The outcome of curating the raw annotations into a machine learning
dataset with emphasis in sound event recognition tasks. This process in-
volves, mainly, merging low prior classes into their parents thus ensuring
a minimum amount of per-class data. This is what we define as ground
truth for FSD50K, with a vocabulary of 200 classes.

Next, we explain the post-processing carried out to obtain what’s finally re-
leased as FSD50K (consisting of a set of audio clips and the corresponding
ground truth). Further technical details about the sound collection format can
be found in FSD50K’s Zenodo page.24

3.2.8.1 Determine FSD50K Vocabulary

We define valid leaf nodes as those meeting two requirements: a minimum of
100 clips and without extreme development/evaluation imbalance. This is a
trade-off between abundant per-class data and preserving a lot of leaf nodes.33

We take the following measures.

Merge Non-valid Leaf Nodes with Their Parents. There are two vari-
ants of this process, depending on the type of branch in the hierarchy. First,
non-valid siblings of valid leaf nodes are merged with their parents. In these
branches, the level of specificity is fixed by the valid sibling. For instance, Yip,
a class with few data which is sibling of Bark and child of Dog, is merged with
Dog and the most specific label in this branch is the valid leaf Bark. Then, in
branches without any valid leaf nodes, all leaf nodes are merged with their par-
ents, which in turn become new leaf nodes (since they no longer have children).
This process is repeated recursively, pruning the branch by moving upwards
in the hierarchy, until a new leaf node becomes valid. While we ideally want
to prune the branches as little as possible to preserve the most specific nodes,
some low-level nodes are inevitably merged with non-specific parents, e.g., Do-
mestic sounds, home sounds. The minimum data requirement is enforced at
the leaf node of every branch, but not at its ancestors, which are intrinsically
valid because the leaf node provides enough data. This means that, occasion-
ally, the data explicitly associated with one ancestor may be scarce. This is
due to the nomination system and annotation processes, which favour more
specific labels. For example, Rail transport is a valid intermediate node despite
the fact that it holds very few data, because their children (Train and Subway,
metro, underground) are valid and hold most of the data in this branch.

33Given the particularities of some classes, the requirements to consider a leaf node valid
are relaxed in a few exceptions.
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Remove Some Valid Leaf Nodes to Obtain a More Semantically Con-
sistent Vocabulary. As a result of the pruning, some parents with various
children in the ontology end up having very few children in the candidate data-
set. In most cases, this is not a problem as children are rather independent
semantically—e.g., the class Domestic sounds, home sounds encompasses 27
children that occur usually in domestic contexts but with weak semantic links
otherwise. However, in other cases, children constitute a pre-established sub-
set of closely related classes that makes more sense when all of them co-exist,
e.g., the classes Light engine (high frequency), Medium engine (mid frequency),
and Heavy engine (low frequency), where only the former is valid. Considering
the real operation of trained models, the fact that only one of these children
is valid could potentially lead to unnatural predictions biased by the choice of
the vocabulary, i.e., recurrently spiking Light engine (high frequency), absent
their complementary siblings. To prevent this issue, we merge some “isolated”
valid leaf nodes with their parents, thus obtaining a more semantically con-
sistent vocabulary. Hence, despite having a substantial number of light engine
sounds, they are not part of the vocabulary—only Engine is. Note however
that these more specific annotations are indeed available in the sound collec-
tion format. Apart from the mentioned engine types, this also occurs with
wind instruments and bowed string instruments.

Discard Some Intermediate Nodes. This includes classes of abstract
nature or with ambiguous children and few data, e.g., Digestive or Arrow,
respectively. The outcome is a vocabulary of 200 classes (144 leaf nodes and
56 intermediate nodes).

3.2.8.2 Balancing Development/Evaluation Sets

As a result of exhaustively labelling the evaluation set, the proportion of some
frequently occurring sound events increased substantially, sometimes exceed-
ing the number of labels in the development set. To obtain a better balance
between development and evaluation sets, we first identified a set of 40 leaf
nodes which benefit from transferring data from evaluation to development.
Then, we selected a set of evaluation clips such that: i) their content encom-
passes mainly the 40 target classes with a minimal impact on the remaining
ones—note the clips are multilabel; ii) they are disjoint from the remaining set
of clips in terms of uploaders. Specifically, we transferred 1182 clips, resulting
in an evaluation set of 10,231 clips, and a per-class development/evaluation
proportion ranging from 50/50% to 75/25% in the vast majority of leaf nodes.
The per-class split proportion depends on data availability, ubiquity of the
sound events, degree of multilabelness of the audio clips, and non-divisibility
of content from the same uploader. Exceptions include Chatter, Chirp, tweet
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and Male speech, man speaking, for which there are more evaluation than de-
velopment labels due to the exhaustive labelling of these ubiquitous events.
With this transfer, we also make available some exhaustively labeled content
for validation.

3.2.8.3 Validation Set

Some recent large audio datasets do not provide predefined validation sets
(Gemmeke et al., 2017; Mesaros et al., 2018d) allowing dataset users to create
their own. Nonetheless, for easier dataset consumption and reproducibility we
propose a candidate split of the development set into train and validation. We
consider that a validation set should ideally meet the following criteria:

Proportion. The validation set typically amounts to a given proportion
of the development set, often between 10 and 20%. Note that due to the
multilabel and variable-length nature of Freesound audio, the proportion
can be different in terms of audio clips, labels, and duration.

Stratification. It is usually desirable that the class label distribution is
similar in both train and validation sets.

Contamination. As explained in Section 3.2.6, contamination across
splits should be minimized.

Typical ways to make train/validation splits include random sampling or it-
erative stratification (Sechidis et al., 2011). Both can produce desired data
proportions and class distributions, the latter being popular for multilabel
data.34 However, they fail to keep non-divisibility of uploaders’ content, thus
generating contamination. The distribution of number of clips per uploader is
very varied in the development set. However, since we already allocated a large
amount of small uploaders into the evaluation set (Section 3.2.6), preserving
uploader non-divisibility at this point means deviating from the target class
distribution. In other words, it is difficult to strictly meet the three above
criteria simultaneously, hence we need to relax their application.
We focus on the contamination criteria and distinguish two types of contamina-
tion: i) within-class contamination (WC, when content from the same uploader
and belonging to the same class is placed at both train and validation sets);
ii) between-class contamination (BC, when content from the same uploader
but not from the same class is placed at both train and validation sets). We
hypothesize WC is more harmful as it could imply having the same sound

34Random sampling does not account for stratification per se, but a workaround is to
compute many train/validation splits and choose the one that minimizes a distance between
the respective class distributions.
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source, physical location and/or recording gear in both sets. By contrast, BC
would have less impact as, in most cases, the audio material would be differ-
ent, and also possibly the acoustic environment. Under this hypothesis, we
focus on minimizing WC contamination while being flexible with BC. To do
this, we employ a method similar to that of Section 3.2.6. We first define the
content from one uploader labeled with the same class label as the minimum
non-divisible unit. Then, we adopt an iterative process in which, after sorting
the uploaders per-class appropriately, we progressively allocate their content
to the validation set.
As preprocessing, we initialize the validation set with most of the data trans-
ferred from evaluation to development—this content is well suited for eval-
uation purposes as it is exhaustively labeled. We then compute a score per
uploader and per class. The score for uploader u in class ci is given by:

scoreu
ci
= αn_labelsu

ci
+β

1
Ku

Ku

∑
k=1

n_labelsu
ck
, (3.2)

where n_labelsu
ci
represents the number of labels provided by uploader u in

class ci, Ku is the number of classes touched by u, and α and β are tunable
weights to set the relevance of each term, both ∈ [0,1]. The first term is the
amount of data in ci by u, whereas the second term is the average number of
labels per class, accounting for the scattering of u across classes. Uploaders
are sorted in ascending score order and the content of low-score uploaders is
transferred first. By tuning α and β we aim to promote the uploaders providing
a small amount of data in the class under question, ci, with minimal or no
scattering. This facilitates the adjustment to a target class distribution while
minimizing contamination (both WC and BC). This first group of uploaders
is followed by others with smooth scattering across classes, avoiding uploaders
with large contributions concentrated in specific classes. This again facilitates
adjusting to a target distribution while minimizing the need to split content
from the same uploader in one class (i.e., WC contamination), but allowing
BC contamination.
Once the validation set is initialized and the uploaders are sorted per-class, we
allocate data to the validation set as shown in Algorithm 2.
We traverse the classes in several passes, and, for each class ci, we progressively
allocate content from the ranked uploaders until a target data amount tci is
reached. Note that when separating the class ci, the algorithm does not care
about a given uploader u contributing to another class c j (BC contamination),
unless there is at least one clip bearing labels for both ci and c j. WC contam-
ination can be produced in lines 6 and 8. We designed the step in line 6 so
that, if adding the content from u implies exceeding the validation target tci

by more than 15%, two things can happen. If the current validation amount
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Algorithm 2: Data allocation to validation set
Data: Initialized validation data per-class V = {vci}

C
i=1, uploaders

ranking in development set per-class U = {uuuci}
C
i=1

1 for pass n = 1,2, . . .N do
2 for class ci ∈C do
3 get current validation target tci

4 while vci < tci do
5 get next uploader u in ranking uuuci

6 vci ← vci + data from u in ci

7 if data is multilabel to class c j then
8 vc j ← vc j + data from u in c j

9 end
10 end
11 end
12 end

Result: A candidate validation set

is vci > 0.75tci , the content is not transferred, vci is deemed sufficient and the
procedure halted for ci. This flexibility allows the minimization of WC con-
tamination at the expense of deteriorating stratification. Else, if vci <= 0.75tci ,
the content from u in ci is split and the amount needed to reach tci is alloc-
ated, causing WC contamination. Similar heuristics are adopted for the step
in line 8.
Using the proposed scheme, we process clips from the 4936 uploaders in the
development set. Due to the high variability of users, the process needs initial
debugging with a subset of classes in order to tune the weights α and β . We
finally use α = 0.4 and β = 0 when an uploader contributes only to one class,
and α = 0.3 and β = 0.7 otherwise. We use N = 2 passes starting from classes
in need of more validation data, which allows us to reach a reasonable strat-
ification. The target validation proportion is 15% of the development labels
per-class, except for the largest 17 classes where we reduced this percentage
progressively. The first-pass target is to fill 60% of the 15%-target, which is
the goal in the second-pass. We only consider the leaf nodes for this process
(C = 144). This is done for simplicity and because the leaf nodes are the most
specific data that will receive labels from the rest of the ontology levels upon
propagation to their ancestors. In this way, validation data at all levels of the
ontology is guaranteed.
The outcome is a validation set which represents a tradeoff between stratific-
ation and contamination. Composed of 4170 audio clips, it amounts to 13.3%
of the content associated with leaf nodes and 10.2% of the entire development
set. Its main statistics are listed in Table 3.3.
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Table 3.3: Main statistics for candidate validation set.

Clips Duration Uploaders

4170 9.9h 2224

Out of the 2224 uploaders with content in the validation set, 641 also have
content in the train set—mostly corresponding to BC contamination. Section
3.4.2 describes sound event tagging experiments comparing the proposed split
to others obtained with off-the-shelf split approaches. This candidate split is
the result of a number of design choices. However, other choices might be
desirable (e.g., proportion, contamination, usage of intermediate nodes, etc.)
depending on researchers’ needs. Alternative validation sets can be created
using the clip metadata provided in FSD50K, which includes uploader inform-
ation.

3.2.8.4 Ground Truth Hierarchical Propagation

At this point, the labels in train, validation and evaluation sets are usually
from classes corresponding to lower levels of the ontology, especially for the
evaluation set (see Section 3.2.7). To obtain an exhaustive labelling hierarchy-
wise, we need to propagate the current labels in the upwards direction to the
root of the ontology, determining the ancestors in the hierarchical path and
automatically assigning them to the corresponding audio clips. This label
propagation process is referred to as label smearing in Gao et al. (2017) and
Hershey et al. (2021). We describe this process next.
In most cases, this is straightforward as there is one single unequivocal path
from a given low-level node to the root. However, in other cases, nodes and
root are connected by more than one path. Among these multiple-path cases,
some have all the paths valid by default according to the semantics of the
node. This allows straightforward propagation as in the single-path case, e.g.,
Doorbell can be directly propagated to Door and Alarm. However, in the ma-
jority of cases, only a subset of the paths is valid (often only one path), or
even none of the paths is valid by default due to the parents-node relationship.
For instance, Buzz cannot be directly propagated to its parents Fly, housefly
or Bee, wasp, etc. unless we have explicit information about the source of the
buzz sound. In these cases, we need knowledge of the correct immediate par-
ent(s) to unambiguously infer ancestors for a complete hierarchical labelling.
Parents disambiguation can be carried out in different ways depending on the
annotation task. In the clips annotated only with the validation task, the
disambiguating parents will exist if and only if the nomination system pro-
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posed them. For the clips annotated also with the refinement task, raters were
instructed to specify the disambiguating parents when needed; however, we
detected that they were not always specified.
As a result, in these cases, ancestors cannot be inferred from the leaf node,
leading to hierarchical paths featuring missing parts. For example, Growling is
connected directly to Animal in several cases where information of the source
animal is not available. The policy followed in case of ambiguous ancestors
was to not include these labels (hence potentially creating missing “Present”
labels in the mid- or high-levels of the ontology) instead of possibly generating
incorrect labels. In the development set, these cases are provided as is since it
is less critical. By contrast, because the cases in the evaluation set are more
critical, they were partially reviewed and corrected. The potential impact of
missing intermediate nodes is restricted to some instances of class labels with
multiple-paths where the disambiguating parents could not be determined, and
thus we expect this to have a minimal impact.
To finalize the label smearing process we filter out the out-of-vocabulary labels
(labels beyond the 200 selected). In the majority of cases, these correspond
to abstract or blacklisted classes. This is another reason why some clips have
labels up to the ontology root while others only have a portion of the ancestors
or even one single label. For example, Whoosh, swoosh, swish has no hierarchy
as all class labels in its path were either removed previously due to specified
constraints (Arrow) or removed in this last step (as classes above Arrow are
abstract). This can be easily spotted in the provided ground truth CSV files.24

The number of labels before/after the propagation process can be seen in
Table 3.4 (unpropagated and smeared, respectively). The outcome is a set of
smeared labels consistently encompassing all relevant levels of the ontology.
Note the considerable increase of labels, despite that we are ignoring parts of
the ontology. This is the final ground truth provided for FSD50K.

3.3 FSD50K Description

FSD50K is an open dataset of human-labeled sound events containing 51,197
clips unequally distributed in 200 classes drawn from the AudioSet Ontology.
This Section discusses its main characteristics, limitations and applications.
The dataset is freely available from Zenodo.24 Hereafter, we refer to develop-
ment (composed of training and validation) and evaluation sets described in
the previous Sections as dev, train, val, and eval.
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3.3.1 Characteristics

FSD50K is composed mainly of sound events produced by physical sound
sources and production mechanisms. Hence, the main focus is on the cas-
ual listening perspective of sound, as defined by Schaeffer (Schaeffer, 2016). It
also includes some classes that can inherently encompass several more specific
sources (e.g., Train), some classes that do not relate to a specific source but
to the perception of sound (e.g., Clatter), and few abstract classes (e.g., Hu-
man group actions). The dataset has 200 sound classes (144 leaf nodes and
56 intermediate nodes) hierarchically organized with a subset of the AudioSet
Ontology (Gemmeke et al., 2017). The vocabulary can be inspected in Figure
3.7. Note, however, that in some cases one leaf node in FSD50K (e.g., Camera)
may be an intermediate node in AudioSet due to the fusion of low-occupancy
classes (e.g., Single-lens reflex camera) with their parents. Following AudioSet
Ontology’s main families, the FSD50K vocabulary encompasses mainly Hu-
man sounds, Sounds of things, Animal, Natural sounds and Music. The vast
majority of the content corresponds to sounds recorded from a sound field,
while a small portion corresponds to sounds captured directly from electronic
devices, typically in the context of musical instruments, e.g., some bass drums
are generated with drum machines. The main characteristics of FSD50K in
terms of number of clips, labels, duration and uploaders are listed in Table 3.4.

Table 3.4: Main statistics for FSD50K.

Total dev eval

clips 51,197 40,966 (80%) 10,231 (20%)
labels (unpropagated) 62,657 45,607 (72.8%) 17,050 (27.2%)
avg labels/clip 1.22 1.11 1.67
labels (smeared) 152,867 114,271 38,596
clips w/ leaf label(s) 40,461 31,310 9151
duration 108.3h 80.4h (74.2%) 27.9h (25.8%)
avg duration/clip 7.6s 7.1s 9.8s
uploaders 7225 4936 2289

The audio clips are grouped into a dev split and an eval split such that they
do not have clips from the same uploader. Eval is exhaustively labeled, that
is, annotations are correct and complete for the considered vocabulary (except
human error). In dev, a small amount of content is exhaustively labeled, but
the vast majority is composed of labels that are correct but could be potentially
incomplete (see Section 3.3.3 for label noise estimations). The number of labels
is expressed in unpropagated and smeared forms. The number of unpropagated
labels includes only the most specific labels per clip. It must be noted that
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Figure 3.5: Label distributions in dev (left) and eval (right) sets. Clips in eval
tend to have more labels (by dataset curation). Xaxis scale is logarithmic. Number
of labels is reported in the unpropagated form. Note that visualization span differs
among plots.

this way of counting labels ignores a few labels in cases where a sound event
co-occurs with: i) events from low prior siblings that were merged with their
parent; ii) events that do not fit semantically in any other sibling provided by
the ontology, hence they are annotated with their parent. While these cases
are not frequent, the true number of human-provided labels describing sound
events would be slightly larger than the one reported here. Smeared labels
refer to the labels after hierarchical propagation (Section 3.2.8.4). We use the
unpropagated version to compute the average number of labels per clip. Note
the increased number of labels per clip in eval due to the exhaustive labelling
process, as can also be seen by comparing the label distributions in Figure 3.5.
In eval, all classes are present in both the singly-labeled data and the multi-
labeled data forming it, except five classes that only appear in the multi-
labeled data. In dev, all classes are present in both the singly-labeled data and
the multi-labeled data forming it, except four classes that only appear in the
singly-labeled data. A total of 31,310 clips are labeled with, at least, one leaf
label in dev—the remaining 9656 clips are labeled only with intermediate node
labels. This proportion changes significantly in eval, where the majority of clips
have leaf labels (9151 out of 10,231)—this is because in the refinement task
raters were instructed to provide the most specific labels possible. All provided
ground truth labels are smeared, i.e., consistently propagated to their ancestors
in the hierarchy. PP/PNP ratings are provided for the labels validated in
the validation task. Out of the 108.3 hours of human-labeled audio, 31.5 are
exhaustively labelled, most of them used for evaluation purposes (eval and
val). The audio clips are of variable length ranging from 0.3 to 30s. Note the
increased average duration of eval clips due to the allocation process (Section
3.2.6), which can also be noticed by comparing the clip length distributions in
Figure 3.6. The ground truth labels are provided at the clip-level (i.e., weak
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Figure 3.6: Audio clip length distributions in dev (left) and eval (right) sets. Clips
in eval tend to last slightly longer (by dataset design). Bins correspond to 1/3 second.
Note that visualization span differ among plots.

labels). The dataset is sourced from 7225 Freesound users and the content was
uploaded from Freesound’s launch in 2005 until early 2019.
The number of clips per leaf class varies, roughly, from 40 to 200 in eval,
and from 50 to 500 in dev, with a few exceptions. The number of clips in
the intermediate nodes grows much more depending on the hierarchy. There-
fore, class imbalance comes from two sources: non-uniform class distribution
and variable-length of clips. The dataset is licensed under CC-BY license—
nonetheless, each clip has its own specific license (CC0, CC-BY, CC-BY-NC
or CC Sampling+, where CC0 and CC-BY amount to 84.7% of the dataset).
When original audio clips have more than one channel, they are downmixed
to mono. All clips are provided as uncompressed PCM 16 bit 44.1 kHz mono
audio files. Further details about data licenses, ground truth format, and ad-
ditional provided metadata can be found in the FSD50K Zenodo page.24 For
comparison with existing datasets, Table 2.2 summarizes some aspects of a few
most relevant SET datasets, including FSD50K.
The FSD50K dataset is a superset of the human-labeled portions of other
datasets released during this thesis, except for a few audio clips that have
been discarded during FSD50K’s curation process. Specifically, these other
datasets are FSDnoisy18k for learning with noisy labels (Section 5.2), as well
as FSDKaggle2018 and FSDKaggle2019 developed for two DCASE Challenge
Tasks in 2018 and 2019 (Appendix A).
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3.3.2 Discussion

3.3.2.1 Variable Clip Length and Weak Labels

Labels in FSD50K are provided at the clip-level (i.e., weak labels). How-
ever, unlike other sound event datasets featuring audio clips of same or similar
lengths (e.g., Salamon et al. (2014); Gemmeke et al. (2017); Salamon et al.
(2017)), FSD50K is composed of variable-length clips in the range [0.3, 30]
seconds (see Figure 3.6). This provides FSD50K with a particular feature. On
the one hand, some clips contain sound events where the acoustic signal fills
almost the entirety of the file, which can be understood as strong labels. To
give a sense of this, 12,357 clips in the dev set are shorter than 4s and bear
one single label validated only with PP ratings. Thus, we estimate that the
dev set is composed mainly of weakly labeled data and a portion of strongly
labeled data, in a rough proportion of 70%/30%. On the other hand, another
small portion of the data presents a much weaker supervision—e.g., 9494 dev
clips are longer than 10s (see Figure 3.6). The longer the clips, the lesser the
certainty of where the labeled event is actually happening. This is referred
to as label density noise in Shah et al. (2018), defined as a measure of the
weakness of labels for a given weakly labeled clip. The impact and limitations
of weak labels in SET are discussed in Turpault et al. (2020a). In the context
of deep networks, clips’ variable length implies that audio processing must be
done either using fixed-length patches or utilizing variable-length inputs. Us-
ing fixed-length patches implies two issues: i) in training, the weak labels must
be inherited by every patch (a practice called false strong labeling in Morfi &
Stowell), which can generate false positives if the label is not active in a given
patch; ii) in evaluation, patch-level scores must be aggregated into clip-level
predictions to be compared against the weak labels. Utilizing variable-length
inputs is free from the issues of the previous approach, but entails certain archi-
tectural constraints, such as using fully convolutional networks or appropriate
pooling strategies.

3.3.2.2 Audio Quality

Given the heterogeneity of Freesound audio it is difficult to make strong ob-
jective claims about audio quality in FSD50K. Nonetheless, upon inspection of
the clips’ metadata, it can be seen that many Freesound users utilize (semi-)
professional recording equipment (e.g., microphones or preamplifiers of brands
such as Neumann, Rode or Tascam). Our experience after annotating the data-
set is that the audio generally has a relatively high Signal-to-Noise Ratio (SNR)
and dynamic range. To put this into context, we note that the notion of audio
quality in sound recognition datasets has changed over time. In early DCASE
Challenges, datasets recorded with professional equipment dominated, some of
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them being recorded with one single microphone model (Mesaros et al., 2016,
2017a; Lafay et al., 2017; Mesaros et al., 2017b). Then, AudioSet became pop-
ular, in which a huge variety of devices are used for recording YouTube videos
(where audio quality is not necessarily a priority), and often including lower
SNR conditions. We extracted the global SNR for FSD50K and AudioSet (its
eval set and balanced train set) using the ITU-T P.563 (Malfait et al., 2006).
It must be noted that P.563 is designed for evaluating human speech, while the
content of both datasets is much more diverse. Therefore, strong claims cannot
be made based on this measurement. We use it as a common-referenced, rough
indication of SNR given that it is not trivial to accurately compute SNR for
the different types of audio under consideration. SNR values reported in Table
3.5 are mean and median or per-clip SNR values. The mean SNR for FSD50K
is greater than that of AudioSet. For AudioSet, it can also be seen that the
mean SNR is greater than the median, suggesting that the SNR distribution
is positively skewed, i.e, lower SNR values are more frequent.

3.3.2.3 Real-world Audio

Many clips in Freesound are real-world recordings of sound events happening
in the wild, e.g., a car passing by. However, it is not uncommon that some
sound events are recorded under careful conditions in order to obtain clean
and isolated high-quality sounds, as in a foley sound setting (e.g., the sound of
tearing paper carefully located in front of a microphone). Further, a few clips in
Freesound consist of sound events purposely generated with the sole objective
of being recorded, e.g. a faked laughter. While these recordings are valuable
for sound design, in some cases they could feature a lack of naturalness or
acoustic mismatch with respect to sound events in the wild. This may question
the suitability of a portion of the data for learning sound recognizers to be
deployed in the wild, where more adverse generation and recording conditions
can be encountered. To what extent this affects models’ generalization to
adverse scenarios is an open question. Mitigating this potential issue could
be a research problem involving, for example, data augmentation (Salamon &
Bello, 2017) or domain adaptation (Li et al., 2017a) techniques.

3.3.3 Limitations

3.3.3.1 Label Noise

Throughout this paper we have discussed the correctness/completeness of la-
bels in the dataset. While we aimed at full label correctness and complete-
ness, this is somewhat unrealistic as it would mean perfect accuracy of the
nomination system that proposes candidate labels (Section 3.2.4), and of the
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human-provided labels. In fact, as supervised learning research moves towards
larger datasets, issues of label noise become inevitable. For instance, labeling
error in AudioSet is estimated at above 50% for ≈18% of the classes.14 Sim-
ilarly, ImageNet data are often presumed to have correct labels, but it has
been recently estimated that at least 100k images could be labeled incorrectly
(Northcutt et al., 2021). In SER, label sets in not-small datasets are inher-
ently noisy due to reasons like sub-optimality of automatic methods used in
the creation, or the difficulty of annotating audio—especially without visual
cues, with large vocabularies, and because the annotation process is, some-
times, inherently subjective and ambiguous. Consequently, recent works have
shown the efficacy of label noise treatment in large datasets such as AudioSet
(Kumar & Ithapu, 2019; Fonseca et al., 2020b) and mid-size datasets (Fonseca
et al., 2019b,a; Iqbal et al., 2020).
Despite our efforts to mitigate label noise in FSD50K, there are still a few label
noise problems. The main problem is the existence of missing “Present” labels
(false negatives). These are labels that would be included in an ideal exhaust-
ive annotation but which are missing from the current set. Our recent work
identifies this as a pathology in AudioSet as well, and proposes a method to
tackle it (Fonseca et al., 2020b). This problem affects the dev set more due to
the annotation process based on validation of previously nominated labels—if
sound events are not nominated by the system, they lack labels (Section 3.2.5).
This may happen with sound events that tend to be less represented by the
Freesound user-provided tags, such as human or bird sounds when they are
not the most relevant events in a clip. Because the eval set received exhaustive
annotation, this problem is minimized there. To a much lesser extent, two ad-
ditional sources of missing labels exist. First, the impossibility of propagating
labels in the hierarchy when multiple ambiguous paths are encountered—again,
this affects more the dev set, as explained in Section 3.2.8.4. Second, missing
labels can occur as a result of annotating with a finite vocabulary—there may
be additional acoustic content out-of-vocabulary. Apart from missing labels,
the other label noise problem is incorrect “Present” labels (a false positive,
and potentially a false negative if the true class is in-vocabulary). This would
be the result of human annotation errors. Because we adopted mechanisms
to bootstrap human annotation quality (Sections 3.2.5 and 3.2.7), we expect
incorrect labels to be rare (see below). Both missing and incorrect labels
would be class-conditional as some classes are clearly more ambiguous than
others. When labelling errors occur, the non-existent true labels can be either
in-vocabulary or out-of-vocabulary. Further details about label noise charac-
terization can be found in Chapter 5.
We can use the refinement task processing to quantify the label noise at the
output of the validation task. A total of 11,847 audio clips were processed
with the refinement task, the majority of which ended up in the eval set. The
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processing undergone by these clips in this task in order to approach a complete
sound event transcript is summarized next. A total of 6030 (50.9%) received at
least one additional label, indicating that there was some unlabeled material.
For these 6030 clips, a total of 10,473 labels were generated. One must be
careful when extrapolating these numbers to the dev set. As explained earlier,
clips selected for dev tend to have, on average, less number of sources per
clip. The incoming 11,847 audio clips featured a total of 13,681 labels, out
of which 773 (5.7%) were rejected by the annotators. This means that 94.3%
of the incoming labels were verified as correct. This gives a sense of the level
of label correctness obtained with the validation task (and therefore, the dev
set). For the eval set, we have not quantified the amount of correctness and
completeness due to lack of resources. However, the amount of correctness is
expected to be not very different from the 94.3% estimated at the output of
the validation task. We expect this because the hired raters are more qualified
at the refinement task than during the previous validation task, as they have
gained more annotation experience and a deeper knowledge of the ontology.
Labelling errors in FSD50K can be reported via its companion site.26 In this
way, future dataset releases can include fixes reported in a collaborative way.

3.3.3.2 Data Imbalance

While some classes are abundant, others are much less represented due to the
data scarcity in Freesound and/or low performance of the nomination system.
Another source of imbalance is the variable length of clips—some classes tend to
contain shorter/longer clips depending on the sound events and the preferences
of Freesound users when recording them. Finally, the hierarchy of the ontology
favours data imbalance between classes at different levels.

3.3.3.3 Data Bias in Development Set

Because we prioritized the allocation of small uploaders in the eval set to
increase its diversity (Section 3.2.6), the development portion of a few classes
is dominated by a few large uploaders. Under the assumption that this signifies
similar training examples in certain cases, this could create a data bias, which
could be learned by models (Lei et al., 2011). This happens mainly in a few
musical instruments, e.g., Trumpet, due to the fact that Freesound users tend
to upload many clips for these classes. Further analysis would be needed to
determine if and how much this potential bias causes lack of generalization for
these classes.
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3.3.3.4 Lack of Specificity in the Vocabulary

Some leaf nodes in the ontology were merged to their parents due to data
scarcity. For instance, leaf nodes such as Blender, Chopping (food), and Tooth-
brush had to be merged with their parent Domestic sounds, home sounds. This
motivated us to keep the latter class as a valid class despite that it is blocked
in the AudioSet Ontology (Gemmeke et al., 2017). A natural extension of
FSD50K is to grow these merged leaf nodes by adding more data.

3.3.4 Applications

FSD50K allows evaluation of approaches for a variety of sound recognition
tasks. The most evident is multilabel sound event classification with large
vocabulary (Fonseca et al., 2019c, 2021a). In this context, the proposed data-
set supports several approaches such as learning sound event representations
directly from waveforms (Cakir et al., 2016; Park & Yoo, 2020); analysis of
label noise mitigation methods leveraging the non-exhaustive labeling of the
dev set (Fonseca et al., 2019b,a, 2020b); multimodal approaches using au-
dio and text information (e.g., using the provided Freesound tags, title, and
textual description for the clips) (Elizalde et al., 2019; Favory et al., 2020a);
evaluation of hierarchical classification via ontology-aware learning frameworks
(Jati et al., 2019; Cramer et al., 2020; Shrivaslava et al., 2020); or approaches
specifically combining strong and weak labels (Kumar & Raj, 2017). By lever-
aging the common vocabulary between FSD50K and AudioSet, we hope that
a number of tasks become possible, such as experimenting with domain adapt-
ation techniques (Gharib et al., 2018), or cross-dataset evaluation (Bogdanov
et al., 2016) under different acoustic conditions. Other tasks include search
result clustering in large vocabulary datasets (Favory et al., 2020b) or univer-
sal sound separation (Kavalerov et al., 2019a). Given its large vocabulary and
diversity, FSD50K is well suited to learn unsupervised general-purpose audio
representations (Niizumi et al., 2021; Tsouvalas et al., 2021), and the audio
data can serve as stimuli for listening experiments in cognitive sciences.
In addition, the collection of FSD50K has already accomplished several high-
impact milestones. A subset of the curated data has been used for a number of
smaller datasets for sound event classification (Fonseca et al., 2018b, 2019b,c;
Abeßer, 2021), source separation (Wisdom et al., 2021), and as a soundbank
to generate synthetic data for sound event detection (Turpault et al., 2019;
Yadav & Foster, 2021). Likewise, from the beginning of its creation, subsets
of FSD50K have enabled several sound recognition Challenges, specifically: i)
DCASE 2018 Task 2 “General-purpose tagging of Freesound audio with Audi-
oSet labels” (Fonseca et al., 2018b), ii) DCASE 2019 Task 2 “Audio tagging
with noisy labels and minimal supervision” (Fonseca et al., 2019c), iii) DCASE
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2019 Task 4 “Sound event detection in domestic environments with weakly
labeled data and soundscape synthesis” (Turpault et al., 2019), iv) DCASE
2020 Task 4 “Improving sound event detection in domestic environments using
sound separation” (Turpault et al., 2020b), and v) DCASE 2021 Task 4 “Sound
Event Detection and Separation in Domestic Environments” (Turpault et al.,
2019; Wisdom et al., 2021). These multiple contributions showcase the value
of this effort.

3.3.5 FSD50K and AudioSet

Because FSD50K and AudioSet are based on the same ontology and thus are
partially compatible, we discuss the main similarities and differences between
both. Table 3.5 summarizes some of them.

Table 3.5: Comparison of some properties of FSD50K and AudioSet.

FSD50K AudioSet

classes 200 527
content waveform features
dev clips 40,966 ≈2M
eval clips 10,231 20,383
clip length 0.3-30s ≈10s
dev labeling CpI CpI
eval labeling exhaustive CpI
source Freesound audio YouTube video
train/val split ✓ -
P.563 SNR (mean, median) [dB] (26, 25) (14, 10)

Both datasets use the AudioSet Ontology for organization, however FSD50K
uses a smaller subset. All classes in FSD50K are represented in AudioSet,
except Crash cymbal as well as four classes that are blacklisted in AudioSet
but not in FSD50K (Human group actions, Human voice, Respiratory sounds,
and Domestic sounds, home sounds). The official AudioSet release consists of
audio features pre-computed at a time resolution of 960ms, released under CC-
BY-4.0 license. FSD50K provides audio waveforms under several CC licenses
as decided by Freesound users. In terms of stability, FSD50K is downloadable
as several zip files from its Zenodo page.24 AudioSet features can be down-
loaded as a tar.gz file from the AudioSet website.4 The original YouTube video
soundtracks, however, are gradually disappearing as they are subject to dele-
tions and other issues, and their usage may be affected by copyright policies.
As seen in Table 3.5, AudioSet’s dev set is significantly larger than FSD50K’s
whereas AudioSet’s eval set is roughly twice that of FSD50K. Since AudioSet
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has a vocabulary 2.6 times larger, this means that in some classes there is
more evaluation content in FSD50K. Clips in AudioSet last ≈10s, whereas in
FSD50K their length varies from 0.3 to 30s. Therefore, label weakness is more
homogeneous in AudioSet, whereas it varies significantly in FSD50K, yielding
quasi-strong labels as clips get shorter, and much weaker labels in the longest
clips.
In terms of labeling, FSD50K provides event predominance annotations (“Present
and predominant” & “Present but not predominant”, Section 3.2.5) while Au-
dioSet only provides presence annotations (“Present”). While it is not easy
to objectively compare label quality in both datasets, we speculate that the
labeling of both dev sets could be generally regarded as Correct but Potentially
Incomplete (CpI), i.e., both dev sets would be affected by a certain amount of
missing labels. However, it seems reasonable to assume that, in the FSD50K
portion of rather short sounds with PP annotations (see Section 3.3.2), the
amount of missing labels is minimal. The eval set of FSD50K was exhaust-
ively annotated; therefore, absence of labels means absence of sound events
(except human error). By contrast, the eval annotations in AudioSet would
be in general CpI, similar to those of the AudioSet train set. Unlike AudioSet,
FSD50K consistently provides all relevant labels in a hierarchical path, except
in a few specific cases of ambiguous ancestors. As additional resources, we
provide additional metadata (e.g., Freesound tags and class-wise annotation
FAQs) and allow flagging labeling errors.26

Finally, despite both datasets being highly heterogeneous, we make the fol-
lowing conjectures. Freesound clips are typically recorded with the goal of
capturing audio, which is not necessarily the case in YouTube videos. Ad-
ditionally, given the AudioSet size, its audio clips are presumably recorded
with a higher diversity of devices. This would provide AudioSet with a higher
diversity of audio qualities, often including more real-world and lower SNR
conditions than Freesound audio (see Table 3.5 for a rough SNR estimation
described in Section 3.3.2). Thus, a certain acoustic mismatch between both
datasets may be expected. In our view, both datasets suppose complementary
resources for sound event research.

3.4 Experiments

In this Section, we conduct a set of multi-label SET experiments to give a
sense of the performance that can be achieved with FSD50K using a baseline
pipeline (Section 3.4.1), and to learn about the main challenges to consider
when splitting Freesound audio for SER tasks (Section 3.4.2). For reprodu-
cibility, implementation details of evaluation metrics, learning pipeline, and
networks can be inspected in the open-source code.25



94 The Freesound Dataset 50k (FSD50K)

3.4.1 Baseline Systems

Next, we benchmark several commonly used deep networks on the proposed
FSD50K.

3.4.1.1 Learning Pipeline

Incoming audio is downsampled to 22.050 kHz and transformed to 96-band,
log-mel spectrogram as input representation. To deal with the variable-length
clips, we use Time-Frequency (T-F) patches of 1s (equivalent to 101 frames of
30ms with 10ms hop)—thus the input to all models is of shape TxF=101x96.
Clips shorter than 1s are concatenated until such length, while longer clips are
sliced in several patches with 50% overlap inheriting the clip-level label (a.k.a.
false strong labeling (Morfi & Stowell)). We adopt the train/val split designed
in Section 3.2.8.3. We implement a learning pipeline in TensorFlow (Abadi
et al., 2015). Models are trained using Adam optimizer (Kingma & Ba, 2015)
to minimize binary cross-entropy loss, with initial learning rate depending on
the network (see Table 3.7), which is halved whenever the validation PR-AUC
plateaus for 5 epochs (no tolerance). Models are trained up to 100 epochs,
earlystopping the training whenever the validation PR-AUC is not improved
in 10 epochs. We use a batch size of 64 and shuffle training examples between
epochs. Once the training is over, the model checkpoint with best validation
PR-AUC is selected to predict scores and evaluate performance on the eval
set. We optimize PR-AUC (instead of other metrics based on ROC curves)
because PR curves can be more informative of performance when dealing with
imbalanced datasets (Davis & Goadrich, 2006). Likewise, we use PR-AUC
(instead of mAP) for simplicity as it is a built-in metric in TensorFlow. For
inference, we pass each (eval or val) T-F patch through the model to compute
output scores, which are then averaged per-class across all patches in a clip
to obtain clip-level predictions, as in Gemmeke et al. (2017). We note this
aggregation must be done also for validation—preliminary experiments valid-
ating at patch-level using inherited clip-level labels revealed misleading results.
Extensive hyper-parameter tuning (beyond learning rate) is not conducted.

3.4.1.2 Network Architectures

Current trends in SER encompass mainly CNNs (Hershey et al., 2017; Kong
et al., 2020a) and CRNNs (Cakır et al., 2017; Pérez-López et al., 2019). We run
experiments with the following networks, all of them ending with a fully con-
nected layer of 200 units (the vocabulary size) with sigmoid activation to sup-
port multi-label classification. The main hyperparameters for the CRNN and
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Visual Geometry Group (VGG)-like architectures are set via non-exhaustive
preliminary experiments.

CRNN. This is one of the most used architectures for SED (Cakır et al.,
2017), and to a lesser extent for SET (Ebbers & Häb-Umbach, 2019). Our
model, inspired by Cakır et al. (2017), has three convolutional layers of 128
filters with a receptive field of (5,5), each of them followed by Batch Normal-
ization (Ioffe & Szegedy, 2015), Rectified Linear Unit (ReLU) activation and
max-pooling. The max-pooling sizes are (t, f ) = (2, 5), (2, 4) and (2, 2)—
since we are not interested in detecting events’ timestamps, we pool also in the
time dimension which reduces dimensionality without harming performance in
our experiments. To model events’ temporal structure in the incoming feature
maps, the convolutional stack is followed by a bidirectional GRU layer of 64
units, returning the last output of the output sequence.

VGG-like. VGG-based architectures have been widely used for both SET
(Dorfer & Widmer, 2018) and SED (Kim & Pardo, 2019). We use a model
inspired by the original architecture (Simonyan & Zisserman, 2015) from com-
puter vision, but reduced to a much smaller size. In particular, this model
has three convolutional layers of 32 filters, two convolutional layers of 64 fil-
ters, and one convolutional layer of 128 filters. All convolutional layers have
a receptive field of (3,3) and are followed by Batch Normalization and ReLU
activation. Between each group of convolutional layers with same number of
filters, max-pooling of size (2,2) is applied. Output feature maps are sum-
marized by concatenating global max pooling and global average pooling per
channel. Summarizing the learnt audio representation via combination of these
two poolings provided a small mAP boost with respect to using either of them
individually. Then, the outcome is passed through a fully connected layer of
256 units.
Finally, we also experiment with two architectures taken off-the-shelf from the
computer vision literature. While the two previous networks received some
tuning in their design, the next ones are the original architectures without any
tuning whatsoever—only the input/output shapes to match our task.

ResNet-18. ResNets (He et al., 2016a) have been sucessfully used for SET
(Jansen et al., 2018; Kong et al., 2020a; Fonseca et al., 2020b).

DenseNet-121. DenseNets are reported to outperform ResNets for image
recognition (Huang et al., 2017), and have been recently used for SET (Fonseca
et al., 2019a; Iqbal et al., 2020).
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3.4.1.3 Results

Table 3.6 lists the results for the considered architectures, and Table 3.7 lists
the learning rates used (after tuning on val set) as well as the number of weights
for each architecture.

Table 3.6: Evaluation performance for the architectures considered.

Model mAP d′d′d′ lwlrap

CRNN 0.417 ± 0.003 2.068 ± 0.015 0.519 ± 0.002
VGG-like 0.434 ± 0.002 2.167 ± 0.011 0.514 ± 0.003
ResNet-18 0.373 ± 0.001 1.883 ± 0.020 0.465 ± 0.001
DenseNet-121 0.425 ± 0.002 2.112 ± 0.032 0.505 ± 0.004

Table 3.7: Learning rates used (after tuning on val set) and number of weights for
the architectures considered.

Model lr Weights

CRNN 5e-4 0.96M
VGG-like 3e-4 0.27M
ResNet-18 1e-5 11.3M
DenseNet-121 5e-5 12.5M

Each network is trained from scratch three times with different random ini-
tialisation and different orderings in the training data. We report average
and standard deviation of the evaluation performance across the three trials.
The following results and discussion are based on the particular train/val/eval
split used. Interestingly, the best overall model across all metrics is VGG-like,
despite being less modern and more lightweight than the other architectures.
This result accords with similar recent findings in music genre recognition (Won
et al., 2020b). The building blocks of VGG-like are very similar to those of
the CNN14 network in Kong et al. (2020a), which rivals state-of-the-art res-
ults in AudioSet classification (Kong et al., 2020a). However, CNN14 is much
deeper and heavier (81M weights). The VGG-like model is closely followed by
DenseNet-121, which has many more weights, and then by the CRNN, which
shows the best lω lrap. CRNN architectures are also used in some top SED sys-
tems, e.g., in recent DCASE Challenge Task 4 editions (Turpault et al., 2019,
2020b). ResNet-18 is found to be the worst performing model. Curiously,
we also observe that the optimal learning rate tend to be rather low for this
architecture (Table 3.7). We also tried ResNet-34 in preliminary experiments,
obtaining similar results (at the expense of many more weights). Our results
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contrast with the successful results of Ford et al. (2019); Kong et al. (2020a),
which achieved state-of-the-art performance for AudioSet classification using
ResNet architectures. Factors possibly influencing this different behaviour
include the different amount of training data (much larger in AudioSet) or
the data itself. Overall, the results of Table 3.6 suggest that, at our scale of
data, smaller models with basic tuning and audio-informed design choices can
outperform much larger off-the-shelf computer vision architectures; however,
DenseNet-121 with no tuning provides good performance.
It is also interesting to compare the results of DenseNet-121 and ResNet-18,
which have an order of magnitude more weights than the other models (12.5M
and 11.3M, respectively). It can be seen in Table 3.6 that the performance
achieved by DenseNet-121 outperforms that of ResNet-18 by a large margin.
If we take into account the good AudioSet classification performance of ResNet
architectures reported in Ford et al. (2019); Kong et al. (2020a), the contrast
of results suggests that the ResNet-18 architecture requires more data or regu-
larization than DenseNet-121 in order to show superior performance. Possible
ways to evaluate this hypothesis include analyzing the impact of increasing
training data or using data augmentation to train these networks.
Figure 3.7 shows the per-class AP (averaged across three trials) for all classes
in FSD50K, using the best-performing VGG-like model (dark blue), and the
CRNN model (light blue). Leaf nodes with top recognition include Applause,
Burping, eructation, Purr, and Computer keyboard, with AP over 0.75. The
worst performance is shown in Boat, Water vehicle, Cowbell, Speech synthesizer,
Tap and Tick. After inspection of the latter classes, we conjecture this is due to
aspects such as high intra-class variation, confound with other similar classes,
ambiguity in the class definitions, or very short length of sound events—all of
them being relevant challenges in SER. Finally, it can be seen that most per-
class APs by the CRNN are slightly lower than those of the VGG-like model—
as expected since VGG-like has a higher overall mAP. However, there are a few
exceptions in which the CRNN performs better, such as in different types of
speech (either spoken, sung, screamed, yelled or whispered). This is interesting
as CRNNs were originally proposed for speech recognition (Sainath et al., 2015)
before being adapted for SER (Cakır et al., 2017). Other exceptions include
some human sounds and animal vocalizations of marked temporal behaviour,
e.g., types of laughter (Chuckle, chortle or Giggle), Gasp, or Crying, sobbing;
Bark, Meow or Chicken, rooster. This highlights the different behaviour, for
some classes, of a model including a recurrent layer with respect to another
relying only on convolutional layers.
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3.4.2 Impact of Train/Validation Separation

In Section 3.2.8.3 we discussed some factors to consider when splitting Free-
sound audio data for machine learning, and we designed a validation set em-
phasizing the issue of data contamination. Here, we experimentally analyze
the impact of contamination in this setting. To this end, we pick one archi-
tecture from Section 3.4.1 (the CRNN) and we train and evaluate it utilizing
three different train/validation splits in order to show their differences. Spe-
cifically, let us consider three candidate validation sets obtained with different
approaches:

1. val_random is computed via random sampling. We run 3000 trials of
a train/validation separation and we select the validation set with min-
imum Jensen-Shannon (JS) divergence35 with respect to the development
set.

2. val_is is computed via iterative stratification (Sechidis et al., 2011).
We run 3000 trials of a train/validation separation and we select the
validation set with the minimum number of shared uploaders between
training and validation.36

3. val is the validation set proposed in Section 3.2.8.3.

In all cases, the validation set is initialized with most of the data that was
transferred from the first evaluation set prototype to the development set for
balancing purposes (Section 3.2.8.2). Since this content is exhaustively labeled,
it is well suited for evaluation purposes. The main characteristics of the three
validation sets are listed in Table 3.8.

Table 3.8: Main statistics for the considered validation sets.

Validation Set Clips Duration JS Shared PR-AUC
Uploaders Drop

val_random 4697 9.7h 1.8×10−2 930 0.15
val_is 4543 9.3h 6.8×10−3 857 0.14
val (proposed) 4170 9.9h 2.1×10−2 641 ≈ 0

The sets val_random and val_is amount to ≈ 15% of the development data
associated with leaf nodes (see Table 3.4); val is slightly lower (13.3%) due to

35The JS divergence is based on the Kullback-Leibler divergence but it is symmetric. We
use it as a distance metric to measure similarity between the development and validation
distributions, similarly as in Cramer et al. (2020).

36Minimizing the JS divergence is not needed here as stratification is already the objective
of this method, hence all separations have a fairly consistent JS divergence.
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allocating less validation data for the most abundant classes as well as some
approximations (Section 3.2.8.3). All validation sets have a similar duration.
In terms of stratification, the split done through iterative stratification, val_is,
yields more similar class distributions than the other two, which are on par.
The main differences lie in the uploaders “shared” between train and valid-
ation, both in number and in their nature. In particular, val_random and
val_is suffer from within-class (WC) and between-class (BC) contamination
as no measure was taken to prevent them. By contrast, val was designed to
minimize WC contamination while being relatively flexible with BC contam-
ination. Therefore, not only is the number of shared uploaders less in the
proposed val, but also the contamination is limited mostly to BC.
To compare the candidate splits, we train the CRNN of the previous Section
using the three of them (in this case, with a learning rate of 1e-4 and no
learning rate scheduling). Figure 3.8 illustrates the learning curves (PR-AUC
for train, validation, and evaluation) using each of the splits.
We display 60 training epochs allowing validation and evaluation performance
to roughly stabilise. From Figure 3.8 and Table 3.8 several observations can be
made. In the left and middle plots of Figure 3.8 (corresponding to val_random
and val_is), validation performance is substantially better than evaluation per-
formance. In these cases, the classifier is trained and validated on clips from
the same uploader and the same class (i.e., WC contamination). We call this
the “uploader effect” (following the analogy of the “album effect” (Mandel
& Ellis, 2005) or “artist effect” (Flexer & Schnitzer, 2009)). In Table 3.8, it
can be seen that the number of uploaders shared between train and valida-
tion is positively correlated with the validation-evaluation PR-AUC drop. In
the cases of val_random and val_is we observe substantial performance drops,
whereas with val the performance drop is negligible. Results from Figure 3.8
and Table 3.8 suggest that, when contamination is considered and minimized,
validation performance is a good proxy of evaluation performance—otherwise,
it can be overly optimistic. Consequently, if the model is tuned using the
validation set it may occur that, depending on the type and amount of con-
tamination, the tuning reflects model’s ability to partially overfit train data
rather than to generalise to unseen data. In addition, our results indicate that
the distinction between WC and BC contamination seems reasonable in the
context of Freesound audio organized with a large vocabulary, confirming our
initial hypothesis that WC is the most harmful type while BC has lesser impact
(Section 3.2.8.3).
Lastly, we observe a slightly higher train performance and slightly lower val-
idation and eval performances when using val (right plot of Figure 3.8), which
content comes mostly from a variety of small uploders. Under the assump-
tion that not all training examples are equally informative (which is the basis
for disciplines like instance selection (Liu & Motoda, 2002)), this may occur
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because the content transferred to val includes some highly informative ex-
amples. Yet, we propose this train/validation split for systems’ benchmarking
because we deem it more methodologically correct than the others given that
data contamination is minimized. In summary, carefully splitting Freesound
audio is important as it can have a non-negligible impact on learning and
performance. Therefore, for reproducibility and fair comparability of results,
system benchmarking should be done explicitly specifying the validation split
that was used.

3.5 Summary and Conclusion

In this Chapter, we introduced FSD50K, a dataset containing 51,197 Freesound
clips totalling over 100h of audio manually labeled using 200 classes drawn
from the AudioSet Ontology. The audio clips are CC-licensed, thereby making
the dataset freely distributable (including audio waveforms). We proposed a
methodology for creating datasets of sound events based on i) human validation
of previously nominated candidate labels, followed by ii) a refinement process
where labels are reviewed and completed to approach a complete transcription
of the audio material for the vocabulary under consideration. In order to
gather human annotations, we employed a mixture of crowd-sourcing strategies
and recruited trained annotators. During this process, we experienced how
human labeling of everyday sounds is a laborious and complex task, especially
when using a large vocabulary encompassing multiple audio domains. Special
emphasis was put on the careful curation of the evaluation set content and
labels, so that it can serve as a reliable benchmark. To our knowledge, a
large-vocabulary, stable and exhaustively labeled evaluation set of this size
is unprecedented. This evaluation resource can be valuable for benchmarking
sound event classification systems, regardless of the methodology used for their
training. Overall, in this Chapter we showed that it is important to acquire
solid knowledge of the specifics of the source data—in our case, Freesound
audio and metadata, and the AudioSet Ontology—and identify data challenges
and limitations, so that the dataset creation process can be adapted to these
particularities, and pitfalls in the creation can be avoided.
Through FSD50K classification experiments, we showed that smaller models
with basic tuning and audio-informed design choices can outperform larger off-
the-shelf computer vision architectures. Further, motivated by data constraints
encountered when splitting FSD50K’s development set into training and val-
idation sets, we considered the issue of contamination, and distinguished two
types: within-class and between-class contamination. Within-class contamin-
ation occurs when content from the same uploader and belonging to the same
class is placed at both train and validation sets. In contrast, between-class
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contamination occurs when content from the same uploader but not from the
same class is placed at both train and validation sets. Our results show that,
in presence of within-class contamination, validation performance is overly op-
timistic, substantially better than evaluation performance. This is attributed
to the fact that the classifier is trained and validated on clips from the same
uploader and the same class. In contrast, when this type of contamination is
minimized, validation performance is a good proxy of evaluation performance,
even in presence of some between-class contamination. These results confirm
our hypothesis that within-class is the most critical type to be avoided, while
between-class has a lesser impact. Thus, within-class data contamination must
be considered when splitting Freesound audio for machine learning tasks as it
can have a considerable effect on the evaluation of sound event classifiers.
FSD50K is an open and stable dataset aimed at complementing AudioSet in
order to foster reproducible large-vocabulary SER research. In the future, data-
set extensions could be carried out. In fact, FSD50K has already been used
and adapted for other research tasks than sound event classification, as dis-
cussed in Section 3.3.4. More data could be added via semi-automatic methods
by leveraging models trained on FSD50K to scale up efficiently. Likewise, the
vocabulary could be extended by growing the merged leaf nodes in FSD50K.
We hope FSD50K and its creation process to be useful as an example model
for open audio datasets.
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Figure 3.7: Per-class average precision for all classes in FSD50K, using the best-
performing VGG-like model (dark blue) and the CRNN model (light blue). Top 3
rows show the 144 leaf nodes and bottom row comprises the 56 intermediate nodes.
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Figure 3.8: Learning curves (PR-AUC for train, validation, and evaluation) for the
CRNN model using the three train/validation splits specified in Table 3.8 (val_random
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stantially better than evaluation performance when using val_random and val_is, in
which the classifier is trained and validated on clips from the same uploader and the
same class (WC contamination). When this type of contamination is minimized (val),
validation performance is a good proxy of evaluation performance.





CHAPTER 4
Improving Sound Event

Classification by Increasing
Shift Invariance in

Convolutional Neural
Networks

4.1 Introduction

At the end of the previous Chapter, we evaluated a series of off-the-shelf and
commonly-adopted CNNs on FSD50K in order to give a sense of the classi-
fication performance possible with this dataset. Results in Section 3.4.1 show
that a VGG-like architecture achieves the most promising results among the
CNNs considered. In this Chapter, we focus on improving the generalization
capabilities of this architecture by increasing its invariance against shifts in
input spectrograms, and also by training it with mixup augmentation. The
adoption of these approaches, together with a larger capacity VGG network
and a more suitable summarization pooling, allows us to obtain a new state-
of-the-art performance on the FSD50K classification benchmark.
As mentioned in Section 2.5.2, recent studies have put into question the
commonly-assumed shift invariance property of CNNs, showing that small
shifts in the input can affect the output predictions substantially (Azulay &
Weiss, 2018; Engstrom et al., 2018; Zhang, 2019). These works empirically
show the brittleness of CNNs against minor input perturbations, and their
only-partial invariance to shifts. These works also argue that one of the causes
of the lack of shift invariance is a wrongly executed subsampling operation that
ignores the classic sampling theorem, yielding aliasing problems. To address
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this issue, the predominant trend consists of adding anti-aliasing measures to
the CNN architectures, adopting low-pass filter based solutions, usually for
image recognition tasks (Zhang, 2019; Vasconcelos et al., 2020). A different
line of work is to design architectural changes to explicitly enforce invariance
in the network, for example via adaptive sampling of incoming feature maps
(Chaman & Dokmanic, 2021). To our knowledge, this kind of techniques aimed
at fostering shift invariance in CNNs have not been evaluated for sound event
classification.
In this Chapter, we ask whether lack of shift invariance is a problem in sound
event classification, and whether there are benefits in addressing it. To this
end, we apply several mechanisms aimed at increasing shift invariance in the
subsampling operations of CNNs, and evaluate them on the large-vocabulary
sound event classification task of FSD50K. Specifically, we adopt mechanisms
from the two trends mentioned above, namely, low-pass filters (non-trainable
as proposed in Zhang (2019), as well as a trainable version proposed by us), and
adaptive polyphase sampling (Chaman & Dokmanic, 2021). We insert these
architectural changes into the max-pooling layers of VGG variants (Simonyan
& Zisserman, 2015), and we evaluate their effect on FSD50K using models of
small and large capacity, and in presence of a strong regularizer such as mixup
(Zhang et al., 2018). We show that these simple changes consistently improve
sound event classification in all cases considered. We also demonstrate em-
pirically that the proposed pooling methods increase shift invariance in the
network, making it more robust against time/frequency shifts in input spec-
trograms. This is achieved without adding any (or adding only few) trainable
parameters, which makes the proposed mechanisms an appealing alternative
to conventional pooling layers. The outcome is a new state-of-the-art mAP of
0.541 on the FSD50K classification benchmark when not using external train-
ing data, outperforming the models evaluated in the previous Chapter by a
large margin.
The rest of this Chapter is organized as follows. In Section 4.2 we describe the
proposed methods to reinforce shift invariance in CNNs. Section 4.3 outlines
the experimental methodology followed to evaluate the methods, and also de-
tails the base architecture where the pooling mechanisms are inserted. The
results of our evaluation are reported in Section 4.4, including a characteriza-
tion of the increase of shift invariance achieved (Section 4.4.4). This Chapter
ends with a summary and final remarks in Section 4.5.
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4.2 Methods

Our focus is on evaluating mechanisms to improve shift invariance applied
to the subsampling operations within max-pooling layers in CNNs. A max-
pooling layer with squared size k and stride s can be understood as the cascade
of two operations, as illustrated in the top diagram of Figure 4.1: a densely-
evaluated (i.e., with unit stride) max-pooling operation with size k, followed
by a subsampling operation with stride s greater than unity.

stride-s

APS

LPFm,nMPk,1

MPk,1

stride-sMPk,1

yaps

ylpf

ympx

x

x

Figure 4.1: Max-pooling layer and proposed methods to improve shift invariance.
Top: A max-pooling layer can be decomposed into a densely-evaluated max-pooling
operation with size k, followed by a subsampling operation with stride s. Middle: In-
clusion of a low-pass filter before subsampling. Bottom: Adaptive Polyphase Sampling
(APS) can be used instead of naive subsampling.

4.2.1 Low-pass Filtering Before Subsampling

We focus on the effect of low-pass filtering feature maps before subsampling in
the context of a max-pooling layer, inspired by Zhang (2019). The subsampling
operation may incur in aliasing problems as the incoming signal (the feature
map) is not band-limited. The classic signal-processing fix is to add a low-
pass filter before subsampling (Oppenheim et al., 2001). A simple manner to
realize this filter is through a 2D kernel, LPFm,n, of size m x n, such that the
max-pooling layer for an incoming feature map x becomes

yl p f = Subsamples(LPFm,n(MaxPoolk,1(x))), (4.1)

where MaxPoolk,1 is a max-pooling operation across areas of size k x k and unit
stride, LPFm,n applies a low-pass filter of size m x n, and Subsamples denotes
naive subsampling with a stride s, as illustrated in the middle diagram of
Figure 4.1. A graphical example of these concepts is illustrated in Figure 4.2
for a case of max-pooling of size 2x2, a LPF5,5, and a subsampling operation
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subsampling

max( )
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conv( )
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LPFm,n

Figure 4.2: Introducing low-pass filtering before subsampling within a max-pooling
operation. Top: A typical max-pooling operation of size 2x2. Middle: The max-
pooling operation in the top can be decomposed into a unit-stride max-pooling oper-
ation of size 2x2, followed by a subsampling operation with stride s = 2. Bottom: A
low-pass filter LPFm,n with m = n = 5 is applied before subsampling using a convolu-
tion operation. As a result, the energy of bins in the output feature map changes, as
depicted by the different colour scheme.

with stride s = 2. Figure 4.2 also depicts a non-trainable LPF (front) and a
trainable LPF (back).
Inserting low-pass filtering before subsampling can have different benefits when
applied within CNNs. First, in case the feature maps present energy variations
of too high frequency for the subsampling operation to be carried errorless,
LPFm,n may help to mitigate aliasing.37 This can reduce the amount of corrup-
ted information flowing through the network. Second, the signal processing

37By high-frequency energy variations in the feature map we refer to rapid spectro-
temporal modulations or sharp patterns in the 2D signal formed by a feature map. This
should not be confused with the frequency components of the input audio signal. The high-
frequency energy variations are not necessarily constrained to a specific region of the feature
map. For example, a sequence of human clapping sounds forms a time-frequency representa-
tion with a series of transients. In its corresponding feature map, the energy variations given
by such a sequence of transients can generate high frequencies, even at the lowest end of the
spectrum.
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literature demonstrates how preventing aliasing can favour shift invariance in
a given process (Oppenheim et al., 2001). One way to see it is that LPFm,n

spreads possible sharp patterns across neighbouring feature map bins. Intu-
itively, when subsampling differently-shifted versions of a spectrogram, the
subsampled feature maps are likely to be more structurally similar if they
have been previously low-pass filtered. This could provide the network with
improved generalization to this kind of small shifts, potentially increasing clas-
sification performance. Third, LPFm,n is essentially blurring or smoothing out
the incoming feature map, which could be understood as a form of regular-
ization. For example, L2 regularization is a common way to penalize outlier
weights with large absolute values, driving them close towards zero (Cortes
et al., 2012). It could be argued that the proposed LPFm,n inflicts a similar effect
on the feature map bins, smoothing out the most drastic energy variations—
in other words, attenuating the high frequency components in the 2D signal
formed by the feature map. In Section 4.4 we discuss through experiments
which of these hypotheses seem more plausible.
To implement LPFm,n, one of the most basic characteristics of common 2D
image-oriented low-pass filter kernels is: non-negative weights that add up to
unity (Distante et al., 2020). This can be realized in several ways.

Non-trainable Low-pass Filters. These are commonly defined as binomial
filters, which are in turn discrete approximations of Gaussian filters. To gen-
erate 1D binomial filters, a simple manner is to repeatedly convolve the base
averaging mask [1,1] with itself, in order to get filter masks such as [1,2,1],
[1,3,3,1], or [1,4,6,4,1], for one, two and three convolutions, respectively. Then,
a 2D squared binomial mask can be obtained simply by convolving a 1D bino-
mial filter with its transpose (Distante et al., 2020). An example of this type
of low-pass filter with 5x5 size can be seen at the bottom diagram of Figure 4.2
(LPFm,n at the front). In Section 4.4 we denote this type of filters as BlurPool
for consistency with Zhang (2019) as the non-trainable low-pass filters that we
use in our experiments are largely inspired by this work.

Trainable Low-pass Filters. These can be defined by randomly initializ-
ing a kernel with dimensions m x n, and learning their weights through back
propagation. In order to imprint the low-pass nature to the filter, its weights
can be passed through a softmax function to ensure non-negativity and nor-
malization. An example of this type of low-pass filter with 5x5 size can be seen
at the bottom diagram of Figure 4.2 (LPFm,n at the back). In Section 4.4 we
denote this type of filters as Trainable Low-pass Filter (TLPF). A potential al-
ternative is to create auxiliary loss functions to encourage the filter weights to
adopt a low-pass behaviour through loss penalization. Trainable low-pass fil-
ters have also been used recently within a learnable audio frontend (Zeghidour
et al., 2021).
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In this Chapter, we compare non-trainable low-pass filters (BlurPool) and
trainable low-pass filters (TLPF) constrained via softmax function, for sim-
plicity. As illustrated in Figure 4.2, a given low-pass filter can be applied
over the incoming feature map via a convolution operation. This convolution
operation can also incorporate the required subsequent subsampling stride s.
More specifically, in our case the term Subsamples(LPFm,n(·)) in Equation 4.1
is implemented via a depthwise separable convolution using either a trainable
or non-trainable LPFm,n, and a stride s.

4.2.2 Adaptive Polyphase Sampling

Adaptive Polyphase Sampling (APS) is a downsampling mechanism that dir-
ectly addresses the lack of shift invariance caused by subsampling operations
(Chaman & Dokmanic, 2021). The underlying principle of APS is based on
a simple observation: the result of subsampling a T-F patch and subsampling
its shifted-by-one-bin version can be different when bins are sampled at the
same fixed positions (see top diagram in Figure 4.3). This happens because
the energies captured by the same grid over two shifted patches are likely to
be different. However, when subsampling a feature map, multiple candidate
grids could actually be used instead of always using the same grid (as typically
done). Intuitively, a time/frequency shift applied over an input patch could be
seen conceptually as translating its energy bins from one grid to another. One
way to be robust to these shifts is to select the subsampling grid adaptively
based on some criterion, such that the grid follows the shift at the input (see
bottom diagram in Figure 4.3).
More formally, given an input feature map x, and considering a subsampling
operation38 with stride s = 2, there are four possible grids that can be used
for subsampling, depending on which bin from the four options in each 2x2
area is passed to the output. The bottom diagram in Figure 4.3 shows two
grids of the four possible in this case. Subsampling with each grid will yield
one of the four possible candidate subsampled feature maps, termed polyphase
components (Chaman & Dokmanic, 2021), which can be denoted as

{
yi j

}1
i, j=0.

Analogously, if we consider a shifted-by-one-bin version of the input feature
map, x̃, its polyphase components are given by

{
ỹi j

}1
i, j=0.

The conventional course of action consists of always choosing the same sub-
sampling grid and consequently returning the same polyphase component (e.g.,
y00 by picking the top left bin in each 2x2 area). However, as mentioned,
depending on the input patch, this will likely cause different downsampled
outputs when the patch is simply shifted by one bin (y00 ̸= ỹ00). It can be

38This subsampling operation would follow a densely-evaluated max pooling operation in
order to form a typical max-pooling layer, see Figure 4.1.
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feature map

naive 
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shifted by 1 bin
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Figure 4.3: Underlying principle of adaptive polyphase sampling with stride
s = 2. The Figure illustrates a feature map (left side) and a version of itself shif-
ted downwards by one bin (right side). Different levels of blue represent the energy
in every bin. Red dots represent the sampling locations in a given grid. Top: When
the same fixed sampling grid is always used (naive subsampling), a small shift in the
input can cause a change in the output feature map (top right case). Bottom: When
the grid is selected adaptively based on input’s energy (adaptive polyphase sampling),
the output feature map remains the same (i.e., the subsampling process becomes more
robust to input shifts).

demonstrated that the set
{

ỹi j
}
is a re-ordered version of

{
yi j

}
(which may

be potentially shifted, but carrying identical energy values) (Chaman & Dok-
manic, 2021). Therefore, by adaptively choosing a polyphase component in a
permutation invariant way, a very similar subsampled output, yiaps japs , would
be obtained regardless of sampling from x or x̃. The adaptive selection can be
done by maximizing a given criterion, for example, maximizing some norm lp,
as given by

iaps, japs = argmax
i, j

{
∥yi j∥p

}1
i, j=0 , (4.2)

where p ∈ {1,2}. In this way, by substituting the naive subsampling in a max-
pooling layer by APS (as illustrated in the bottom diagram of Figure 4.1),
robustness to incoming time/frequency shifts is increased.
The benefit from APS comes from the generalization to shifts embedded in the
network’s architecture, in a fashion conceptually similar to what is done with
LPFm,n (Section 4.2.1). APS, in contrast, provides no explicit measures against
potential aliasing problems.
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4.3 Experimental Setup

4.3.1 Evaluation and Training Details

We evaluate the proposed methods on the large-vocabulary sound event classi-
fication task posed by the FSD50K dataset introduced in Chapter 3. We follow
the evaluation procedure described in Section 3.4 (with minor deviations). We
outline it next for convenience. Incoming clips are transformed to log-mel
spectrograms using a 30ms Hann window with 10ms hop, and 96 bands. To
deal with the variable-length clips, we use T-F patches of 1s, equivalent to
101 frames, yielding patches of T ×F = 101×96 that feed the networks. Clips
shorter than 1s are replicated while longer clips are trimmed in several patches
with 50% overlap inheriting the clip-level label. We train, validate and eval-
uate using the proposed train set, val set and eval set. Models are trained
using Adam optimizer (Kingma & Ba, 2015) to minimize binary cross-entropy
loss. Learning rate is 3e-5, halved whenever the validation metric plateaus for
10 epochs. Models are trained up to 150 epochs, earlystopping the training
whenever the validation metric is not improved in 20 epochs. We use a batch
size of 128 and shuffle training examples between epochs. Once the training is
over, the model checkpoint with the best validation metric is selected to predict
scores and evaluate performance on the eval set. For inference, we compute
output scores for every (eval or val) T-F patch, then average per-class scores
across all patches in a clip to obtain clip-level predictions. Our main evalu-
ation metric is balanced mAP, that is, AP computed on a per-class basis, then
averaged with equal weight across all classes to yield the overall performance,
following Gemmeke et al. (2017); Fonseca et al. (2020a). In addition, we report
d′ and lwlrap for the top systems.

4.3.2 Baseline Model

As a base network, we use a VGG-like architecture (Simonyan & Zisserman,
2015) for the following reasons: i) this type of architecture has been widely
used for SET (Hershey et al., 2017; Dorfer & Widmer, 2018; Kong et al., 2020a;
Ebrahimpour et al., 2020) and is the most competitive baseline for FSD50K
when compared to others of higher complexity (see Section 3.4.1), which also
accords with recent music tagging evaluations (Won et al., 2020b); ii) due to its
limited size compared to the other baselines of Section 3.4.1, it allows faster ex-
perimentation; iii) this architecture conveniently features several max-pooling
layers that allow the study of the proposed pooling mechanisms (Simonyan &
Zisserman, 2015). Specifically, the network that we use for the majority of our
experiments is similar to a VGG type A (Simonyan & Zisserman, 2015). The
network, denoted as VGG41, consists of 4 convolutional blocks, with each block



4.3 Experimental Setup 113

comprising two convolutions with a receptive field of (3,3), and each convolu-
tion followed by Batch Normalization (Ioffe & Szegedy, 2015) and ReLU activ-
ation. Between the blocks, max-pooling layers of size 2x2 (and same stride) are
placed by default—they will be substituted by the proposed pooling mechan-
isms. A densely-evaluated max pooling operation (of size 3x3 and unit stride)
will sometimes be inserted between the convolutions within each block—we
will refer to it as Intra-block Pooling (IBP). This provides partial translation
invariance but not dimensionality reduction, allowing the same (max) element
to be transferred to the output in adjacent spatial locations. This tweak has
been applied in various non-audio applications (Goodfellow et al., 2016), and
to a lesser extent also in SET tasks (Ebrahimpour et al., 2020). Finally, in
order to summarize the final feature map information before the output clas-
sifier, we use a global pooling in which we first aggregate information along
the spectral dimension via averaging for every time step, then max-pool the
outcome in the time dimension. We found out that aggregating first spectral
and then temporal information in this manner is the most beneficial for our
task among other combinations. VGG41 has 1.2M weights, which allows for
relatively fast experimentation. The baseline and topline configurations using
VGG41 are also evaluated using VGG42 (of 4.9M weights), where we double
the width of the network with respect to VGG41 (i.e., using twice the number
of filters in every convolutional layer).

4.3.3 mixup

We evaluate the baseline and top performing methods proposed in Section 4.2
with or without mixup augmentation (Zhang et al., 2018), which was intro-
duced in Section 2.3.4. This is done in order to further improve the general-
ization capabilities of our system, and also to analyze the methods’ behavior
in presence of a strong regularizer. Following (Zhang et al., 2018), we sample
λ from a beta distribution λ ∼ Beta(α,α), for α ∈ (0,∞) (see Section 2.3.4 for
details). The hyperparameter α, which controls the interpolation strength, is
set to 1.25 after tuning on the val set.
We choose mixup because the concept of mixing sounds is an audio-informed
operation (unlike other data augmentation methods), and it has been proven
useful for SET in several previous works (Fonseca et al., 2019a; Kong et al.,
2020a; Gong et al., 2021b). In our view, mixup can be interpreted from two
different perspectives, as mentioned in Section 2.3.4. First, it is a regularizer to
mitigate overfitting, which can be important at our scale of data, especially for
some classes that present less than a hundred training clips. Second, mixup is
a mechanism that allows to cover during training a diversity of examples that
may be encountered in evaluation, hence improving generalization. In partic-
ular, upon the creation of FSD50K, audio clips with multiple sound sources
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were prioritized to some extent for the eval set, whereas the dev set presents
a higher proportion of single-source clips (see Section 3.2.6). It can therefore
be argued that a kind of domain shift exists between both sets, which is being
partially compensated through mixup. Hence, this type of augmentation is
specially well aligned with the recognition task of FSD50K.
It must be noted that the original formulation of mixup and BC learning
considers multi-class problems, where the training examples feature one single
label per example, hence using one-hot encoded vectors to represent the labels
(Zhang et al., 2018; Tokozume et al., 2018). In contrast, our current problem
deals with multi-label data and thus the binary vectors that we are combining
are potentially multi-hot (see Section 2.3.1). To better understand the key
ingredients of mixup, in Section 4.4.2 we provide an ablation study comparing
different variants of the original algorithm.

4.4 Experiments

We evaluate the methods proposed in Section 4.2 on the SET task posed by
FSD50K, using VGG41 (Section 4.4.1) and also using mixup and VGG42 (Sec-
tion 4.4.3). In Section 4.4.4 we demonstrate that the methods are increasing
the network’s robustness to input shifts. In Section 4.4.5 we include a per-
class analysis to show how the proposed methods affect the different classes
in FSD50K. Sections 4.4.6 and 4.4.7 provide discussion and comparison with
previous work on FSD50K. For all the classification results (Tables 4.1, 4.2,
4.3 and 4.4), we report average and standard deviation of the evaluation per-
formance across three trials of each experiment. In each trial, the network is
trained from scratch with different random initialisation and different ordering
in the training data. Code for the experiments is available.39

4.4.1 Evaluation using a Small Model

Table 4.1 shows the results of inserting the pooling mechanisms individually
into VGG41 (left section) as well as in some pairwise combinations (right
section). By looking at the left section, it can be seen that all the evalu-
ated methods outperform the baseline system. That is, inserting each of the
methods alone into a standard VGG-like architecture improves recognition per-
formance. The mAP boosts range from 0.003 in the worst case (APS l2) to
0.023 in the best case (APS l1). If we focus on the low-pass filter based solu-
tions, we observe that this classical signal processing technique is beneficial for
CNN-based sound event classification. While it may seem that blurring the

39https://github.com/edufonseca/shift_sec

https://github.com/edufonseca/shift_sec
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Table 4.1: mAP obtained by inserting different pooling mechanisms into the VGG41
baseline. TLPF = Trainable Low-pass Filter, APS = Adaptive Polyphase Sampling,
IBP = Intra-block Pooling.

Method mAP Method mAP

VGG41 (baseline) 0.457 ± 0.003 + BlurPool 5x5 + IBP 0.479 ± 0.003
+ BlurPool 3x3 0.475 ± 0.002 + TLPF 5x5 + IBP 0.481 ± 0.002
+ BlurPool 5x5 0.476 ± 0.003 + TLPF 5x5 + APS l1 0.484 ± 0.002
+ TLPF 3x3 0.476 ± 0.003 + APS l1 + IBP 0.478 ± 0.001
+ TLPF 5x5 0.479 ± 0.003
+ TLPF 6x6 0.477 ± 0.001
+ APS l1 0.480 ± 0.001
+ APS l2 0.460 ± 0.002
+ IBP 0.472 ± 0.002

feature maps can smooth out relevant detailed information (thus leading to
performance degradation) results indicate that it is indeed helpful. The choice
of trainable vs. non-trainable low-pass filters does not seem critical, yet the
trainable version TLPF seems to produce slightly higher mAP values. The
different sizes of these filters allow to find a trade-off between high-frequency
smoothing and loss of information in the incoming feature maps (the larger the
size, the stronger the smoothing effect). Results seem to indicate that larger
smoothing areas (5x5 vs. 3x3) are beneficial. By looking at results with APS,
we observe that l1 outperforms l2 as norm criterion. We also did preliminary
experiments with other metrics such as l∞, l0 and variance, but we found l1
to be the best choice overall. Interestingly, a naive tweak like IPB also shows
some impact, although more modest than that of the other methods. The two
top methods when applied individually are APS l1 and TLPF 5x5, showing on
par performance.
We set out to combine some of the methods in pairs in order to see if they are
complementary (right section). Combining low-pass filtering (which operates
before subsampling between convolutional blocks) and IBP (which operates
between convolutions within every block) seems to provide a small but con-
sistent boost, for both BlurPool and TLPF. When joining the top performing
methods, specifically, low-pass filtering the incoming feature maps with TLPF
5x5, followed by subsampling them with APS, we observe a small performance
boost. A possible explanation for their complementarity could lie in TLPF
addressing aliasing issues while APS is agnostic to it. Finally, joining APS
and IBP does not yield further boosts.
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Table 4.2: mAP obtained by exploring different low-pass filter shapes in TLPF over
the baseline of Table 4.1. Filters can be 2D squared (m x n), or 1D in frequency (1 x
n) or time (m x 1). IBP is always applied.

TLPF m x n mAP

TLPF 3x3 0.478 ± 0.002
TLPF 4x4 0.480 ± 0.004
TLPF 5x5 0.481 ± 0.002
TLPF 6x6 0.480 ± 0.001
TLPF 1x4 0.475 ± 0.005
TLPF 1x5 0.480 ± 0.001
TLPF 1x6 0.480 ± 0.002
TLPF 4x1 0.469 ± 0.004
TLPF 5x1 0.470 ± 0.004
TLPF 6x1 0.472 ± 0.002

Table 4.2 shows the results of exploring different low-pass filter shapes in TLPF.
In previous work, low-pass filters are usually adopted for computer vision tasks,
hence they are of squared size, e.g., Zhang (2019); Vasconcelos et al. (2020).
Here, we seek to find out if there is one axis of the audio spectrogram feature
maps (time or frequency) along which low-pass filtering is more beneficial. To
this end, we run experiments using 1D trainable low-pass filters applied only
along the frequency axis (filters of size 1 x n) or the temporal axis (filters of
size m x 1). At the top section of Table 4.2, we first report the results by
progressively increasing the area of squared filters. A sweet spot in the size
5x5 can be observed. Then, we report results by low-pass filtering only along
the frequency axis. Interestingly, we find out that much of the performance
obtained with squared filters is already achieved by smoothing out the spectral
variations alone. In contrast, when we apply the low-pass filters only along the
time axis the performance is noticeably worse (bottom section of Table 4.2).

4.4.2 Ablation Study of mixup Strategies

In this Section, we explore several variants of mixup to better understand its
behaviour. Table 4.3 shows the results of exploring different mixup variants
using the VGG41 baseline of Table 4.1. The top section in Table 4.3 lists
the results for the default mixup augmentation as described in Section 2.3.4.1,
applying the mix operation over log-mel spectrograms and linear-mel spectro-
grams. The processing pipeline is identical in both cases except that, in the
linear case, we apply the mix over the linear mel energies, and then apply log
compression to the mixed outcome. The motivation to run this experiment is
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Table 4.3: mAP obtained by exploring different mixup variants over the baseline of
Table 4.1.

Approach mAP

mixup over log-mel spectrograms (mixup) 0.497 ± 0.003
mixup over linear-mel spectrograms 0.485 ± 0.004
sum log-mel spectrograms & OR(labels) 0.492 ± 0.003
sum linear-mel spectrograms & OR(labels) 0.490 ± 0.002
mixup & 1-epoch warm-up 0.499 ± 0.001
mixup & 4-epoch warm-up 0.499 ± 0.003

that, arguably, mixing items in the log domain does not seem the most correct
course of action. However, in practice it can be seen that the best results are
achieved by mixing in the log domain.
In the middle section, we explore an alternative to mixup, in which the mixture
is not carried out via convex combination of input spectrograms and labels, as
given by Equation 2.1. Here, instead, the mixture is simply done by summing
up the spectrograms, and applying the OR operation to the original target
vectors. The spectrograms can be summed up either in the log domain or in
the linear domain, in an analogous manner to the processing done for the results
of the top section of Table 4.3. Due to the OR operation applied to original
target vectors, the resulting target vector is still a binary vector yyy ∈ {0,1}C
for a vocabulary of C classes. Note that this is different in mixup, where the
convex combination of binary vectors leads to final target vectors with real
values for the active classes, tasking the network to predict less confidently.
Consequently, in this alternative there is no longer need for a λ parameter.
The experimental results obtained are inconsistent. When operating directly
in the log domain, the default processing of performing mixtures via convex
combinations seems to be helpful (see first and third rows of Table 4.3). In
contrast, when mixing in the linear domain, better results are achieved by the
proposed alternative that does not employ convex combinations (see second
and fourth rows of Table 4.3).
Finally, in the bottom section of Table 4.3, we explore the inclusion of an
initial warm-up training period in which mixup is disabled (1 and 4 epoch),
before activating it. This is motivated by a similar strategy adopted in Zhang
et al. (2018), where it is reported to speed up convergence in speech recognition
experiments. It can be observed that this warm-up period seems to provide
a marginal lift with respect to the default mixup reported at the top row of
Table 4.3. However, such lift is within the standard deviation ranges obtained
by running three trials of each experiment. For simplicity, in the following we
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shall adopt the standard mixup operation applied over log-mel spectrograms,
corresponding to the top row of Table 4.3. We shall refer to it simply as mixup.

4.4.3 Evaluation using Regularization and a Larger Model

Next, we select the best setups of the two pooling mechanisms considered on
VGG41 (one based on low-pass filtering and another based on APS), as well as
their combination. Table 4.4 shows the results using these setups, now adding
mixup augmentation and also doubling the width of the network, which means
multiplying its number of weights approximately by four. As mentioned, the
adopted mixup implementation is that of the top row of Table 4.3. Table 4.4
also shows results when substituting TLPF by the analogous BlurPool in our
best system (bottom row).

Table 4.4: mAP obtained by using top performing pooling mechanisms in presence
of mixup and with the larger capacity VGG42. Values in parenthesis are absolute
improvements over the corresponding baseline. TLPF = Trainable Low-pass Filter,
APS = Adaptive Polyphase Sampling, IBP = Intra-block Pooling.

VGG41 VGG41 VGG42
Method + mixup + mixup

Baseline 0.457 ± 0.003 0.497 ± 0.003 0.523 ± 0.002
+ APS l1 0.480 ± 0.001 0.513 ± 0.003 0.538 ± 0.004

(+0.023) (+0.016) (+0.015)
+ TLPF 5x5 + IBP 0.481 ± 0.002 0.511 ± 0.003 0.539 ± 0.002

(+0.024) (+0.014) (+0.016)
+ TLPF 5x5 + APS l1 0.484 ± 0.002 0.515 ± 0.003 0.541 ± 0.002

(+0.027) (+0.018) (+0.018)

+ BlurPool 5x5 + APS l1 0.478 ± 0.002 0.512 ± 0.003 0.538 ± 0.002
(+0.021) (+0.015) (+0.015)

The left column of Table 4.4 lists the best results from Table 4.1, showing
mAP boosts from 0.023 to 0.027 with respect to the baseline. When we train
VGG41 using mixup (center column), substantial performance improvements
are observed, demonstrating the good alignment of this operation with SET
in general—which accords with Kong et al. (2020a); Gong et al. (2021b)—
and with the FSD50K classification task in particular, as discussed in Section
4.3.3. All methods perform in the same ballpark, showing boosts of up to 0.018
with respect to the baseline, where the combination of TLPF and APS yields
top mAP.
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Our motivation to combine the proposed methods with mixup is twofold. In
addition to improving generalization, we want to analyze the methods’ beha-
viour in presence of a strong regularizer. If the proposed methods act solely
as a general form of regularization, we would expect them to provide limited
boosts when combined with mixup. We do observe a certain improvement de-
crease when combined, but the boosts are still solid, both when using VGG41
and VGG42 (center and right columns). These results suggest that the pro-
posed methods are addressing problems beyond lack of regularization, presum-
ably reinforcing robustness to time/frequency shifts at the input. In Section
4.4.4, we demonstrate that this is indeed the case by systematically applying
time/frequency shifts to a set of input spectrogram patches, and analyzing the
network’s robustness against these shifts with and without the proposed pool-
ing mechanisms. Finally, when inserting these pooling methods into VGG42
in presence of mixup (right column), we see that they are also beneficial within
a larger-capacity model where performance is more competitive (in our case,
increasing the capacity from 1.2 to 4.9M weights). In particular, combining
TLPF and APS yields the top mAP again, showing a boost of 0.018 over the
baseline.
Finally, the last row of Table 4.4 lists results when substituting TLPF 5x5 by
the analogous BlurPool in our best system. Similar to the results reported
in Table 4.1 when comparing trainable vs. non-trainable low-pass filters, the
observed performance differences are not large, yet the trainable version TLPF
seems to yield slightly higher mAP values. Figure 4.4 shows an example of a
non-trainable fixed low-pass filter used in BlurPool 5x5, as well as a selection
of four learned low-pass filters used in TLPF 5x5. Specifically, the filters
in Figure 4.4 are extracted from the VGG41 baseline after insertion of the
corresponding filtering approach (BlurPool 5x5 or TLPF 5x5). In BlurPool,
all low-pass filters in the network are the same by construction, hence we only
show one of them (left side). In TLPF, multiple filters are learned that feature
different patterns (right side).

Figure 4.4: Example of low-pass filters extracted from the VGG41 baseline after
insertion of BlurPool 5x5 (left) or TLPF 5x5 (right). In BlurPool all low-pass filters
in the network are fixed by construction. In TLPF multiple different filters are learned.
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4.4.4 Characterizing the Increase of Shift Invariance

In previous experiments we have seen that classification performance is im-
proved when we adopt the proposed pooling mechanisms, presumably due to
the increase of shift invariance. Here, we demonstrate empirically that these
pooling mechanisms are indeed addressing this problem. To this end, we apply
shifts to a set of input spectrogram patches and analyze the network’s robust-
ness against these shifts with and without the proposed pooling mechanisms.
The set of data for this evaluation consists of 1000 audio clips from FSD50K’s
eval set.40 They are selected at random after applying the following constraints
for a more controlled experimental scenario: i) we choose clips with one single
label (i.e., presumably containing one single sound event); ii) we choose clips
with a minimum length of 2s, so that we can always select a patch in the
time span [0.5, 1.5] s, allowing the discard of potential preceding silence that
sometimes occurs.
The shifts applied to the input 1s T-F patches of T ×F = 101×96 obey one of
the two following protocols. The first protocol (denoted as time-n f ) is simply
a time shift of the patch by n f frames, with n f ∈ {1,3,5}. Each unity of n f

corresponds to 10ms (the hop size when framing the input audio signal). The
second protocol (denoted as freq-nb) consists of shifting the input patch by nb
mel bands upwards in frequency, with nb ∈ {1,3,5}. The nb original highest
bands are discarded, and the nb lowest bands in the new patch are filled with
white noise centered at the mean value of the original lowest band. By doing
this, we analyze the effect not only of frequency shifts but also of small artificial
perturbations in the input.
For every input patch, we i) apply one shift according to one of the above pro-
tocols; ii) compute network predictions for both original and shifted patches,
and iii) measure the predictions’ sensitivity to the shift using two metrics,
namely, classification consistency and mean absolute change. Classification
consistency refers to the percentage of cases in which the network predicts the
same top class for both original and shifted patches (Zhang, 2019; Chaman &
Dokmanic, 2021). Mean Absolute Change (MAC) is a metric that measures
the absolute change of the probability predicted for the top class after the shift,
averaged across the 1000 examples (Azulay & Weiss, 2018). The motivation to
use MAC is to rule out the possibility that variations in classification consist-
ency are originated by tiny differences between the top class and the second
most likely class predicted.
Table 4.5 shows the result of this evaluation for the time and frequency pro-
tocols. In Table 4.5, baseline corresponds to the VGG41 baseline of Table 4.1,

40For future reproducible evaluations, this list of 1000 files is released at https://github.
com/edufonseca/shift_sec.

https://github.com/edufonseca/shift_sec
https://github.com/edufonseca/shift_sec
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whereas proposed corresponds to the same model after incorporating TLPF
5x5 and APS l1.

Table 4.5: Classification consistency (in %, higher is better) and mean absolute
change (MAC) (lower is better) when applying time and frequency shift protocols
over input patches. Models evaluated are the baseline of Table 4.1 and the same
model after inserting TLPF 5x5 and APS l1 (proposed). The proposed model exhibits
higher robustness to shifts.

Protocol Consistency (%) MAC
baseline proposed baseline proposed

time-1 82.0 92.5 0.078 0.030
time-3 75.2 87.2 0.106 0.048
time-5 74.0 83.2 0.110 0.062
freq-1 63.5 79.8 0.175 0.078
freq-3 53.3 67.6 0.234 0.145
freq-5 49.0 60.0 0.263 0.199

In the results of the time protocol (top section), we see that by applying a time
shift of only 1 frame (10ms), the baseline network changes its top prediction
18% of the time. Note that this is a minor modification in the time framing
of the input audio signal, which can be regarded as imperceptible to a human
in most cases. The proposed network (including the mechanisms to increase
shift invariance) shows higher classification consistency than the baseline for
all the cases considered. As the time shifts increase, the network becomes less
consistent (according to our definition). These findings are confirmed by the
proposed network consistently showing smaller MAC values, i.e., the output
probability for the top class is more robust to the time shifts. By looking at
the results of the frequency protocol (bottom section of Table 4.5), we observe
a similar trend, with the proposed network showing increased robustness to
frequency shifts and small perturbations (i.e., larger classification consistency
percentages and smaller MAC values than the baseline model). Interestingly,
we see that the classification consistency values in the frequency protocol are
overall lower than those observed for the time protocol (and vice versa for the
MAC values). For example, the minimal shift applied in time yields consistency
values of 82.0% and 92.5% for baseline and proposed models, respectively. In
contrast, the minimal shift applied in frequency leads to analogous values of
63.5% and 79.8%. This can be due to several reasons. First, the network
considered may be more sensitive to frequency shifts than to time shifts. This
could be linked to results in Section 4.4.1, where low-pass filtering along the
frequency axis is shown to be more effective than along time. Second, it could
happen that the frequency shifts affect the semantics of the input examples to
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Figure 4.5: Predicted score for the correct class of water dripping (top) and computer
keyboard typing (bottom) examples, as a function of shifted time frames (top) and
mel bands (bottom). Inserting the pooling mechanisms (TLPF 5x5 + APS l1) makes
the predictions more stable against spectrogram shifts.

some degree (which is more unlikely with the time protocol). Third, in this
protocol we are introducing small artificial perturbations never seen at training
time, which may confuse the network. Regardless, the proposed approach
exhibits higher robustness to the applied shifts in all cases analyzed. Similar
trends are observed when using the proposed methods alone (either TLPF or
APS). In summary, results of Table 4.5 demonstrate that the proposed pooling
mechanisms increase shift invariance in the network.
Figure 4.5 shows the classification stability of the same models used for Table
4.5 with two examples: applying the time shift protocol over a water drip-
ping sound (top) and the frequency shift protocol over a computer keyboard
typing sound (bottom). In the top plots, predictions for the Drip class are
stable when we insert the proposed pooling mechanisms, as one would expect
upon shifting the signal framing by few miliseconds. However, the baseline
predictions show certain fluctuations. Similarly, in the bottom plots the pro-
posed network exhibits higher robustness against the frequency shifts and the
induced perturbations.

4.4.5 Per-class Analysis

In this Section we include a per-class analysis to show how the proposed meth-
ods affect the different classes in FSD50K. Figure 4.6 shows the scatter plot
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Figure 4.6: Per-class AP for the baseline using VGG42 and mixup vs. the same
model after inserting TLPF 5x5 and APS l1 (see Table 4.4). Only the 144 leaf nodes
in FSD50K are displayed, grouped by main sound family in the AudioSet Ontology.

of per-class AP values for the baseline vs. topline systems using VGG42 and
mixup. In particular, the baseline has no explicit measures to increase shift in-
variance, whereas the topline features TLPF 5x5 and APS l1 (see right column
of Table 4.4). The diagonal line divides the space into classes improved (above
the line) or worsened (below the line) by the proposed method. Classes in
Figure 4.6 are grouped according to the main sound families of the AudioSet
Ontology (Gemmeke et al., 2017).41 Only the 144 leaf nodes in FSD50K are
displayed, i.e., we ignore the 56 intermediate nodes in this visualization (see
Section 3.3.1 for more context on the distinction between leaf and intermediate
nodes). It can be seen that the point cloud is slightly above the diagonal, with
the majority of the classes undergoing an AP improvement, which can reach
up to 0.1 approximately. Yet there are a few classes that are worsened by the
inclusion of the proposed method. From the viewpoint of sound families, it

41In Figure 4.6, the sound family Channel, environment and background from the AudioSet
Ontology is missing because none of the classes in FSD50K belongs to this family.
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is hard to make interpretations as all the families feature both improved and
worsened classes, and also the intra-family diversity can be very high.
Table 4.6 lists the 10 classes that benefit the most and the 10 classes that
are harmed the most due to the inclusion of the proposed method. These are
the classes showing the largest AP deviations from the diagonal in Figure 4.6
(which are also listed in Table 4.6 as ∆AP). By looking at Table 4.6, it is

Table 4.6: List of the 10 most benefited classes and 10 most harmed classes by
inserting TLPF 5x5 and APS l1 on VGG42 with mixup (see right column of Table 4.4).
∆AP is the increment (left)/decrement (right) of AP observed.

Top 10 Classes ∆AP Worst 10 Classes ∆AP

Gong 0.115 Tick-tock -0.050
Growling 0.094 Bass drum -0.049
Accordion 0.076 Giggle -0.043
Tambourine 0.072 Female singing -0.036
Bicycle bell 0.069 Wind -0.032
Wind chime 0.068 Finger snapping -0.031
Harp 0.068 Drum kit -0.030
Mechanical fan 0.065 Ratchet, pawl -0.029
Fixed-wing aircraft, airplane 0.062 Sigh -0.027
Cutlery, silverware 0.062 Organ -0.026

not easy to observe very consistent patterns. Classes typically featuring a
higher density of sharp spectro-temporal modulations can be found among the
top classes (e.g., Accordion or Harp) but also among the worst classes (e.g.,
Finger snapping or Ratchet, pawl). Analogously, classes usually presenting
smoother noise-like spectro-temporal variations are also found in both sides of
the Table (e.g., Mechanical fan and Fixed-wing aircraft, airplane in the top
classes; Wind and Sigh among the worst classes). A complete list of per-class
increments/decrements due to the insertion of the proposed method is available
in Figure E.1.
To gain a better grasp of what TLPF is doing, in Table 4.7 we list the analog-
ous data, considering now the inclusion of TLPF 5x5 (but not APS l1). Here, it
seems that a somewhat more consistent pattern can be observed. Most of the
top classes are prone to having sharp spectro-temporal modulations (with the
addition of Tabla or Frog or Acoustic Guitar). Also, among the worst classes,
some featuring noise-like spectrograms with smoother variations are more pre-
valent (e.g., Boiling or Chirp, tweet or Bathtub (filling or washing)). A possible
explanation is that low-pass filtering feature maps with higher frequency com-
ponents tends to be beneficial (as discussed in Section 4.2.1), whereas further
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Table 4.7: List of the 10 most benefited classes and 10 most harmed classes by
inserting TLPF 5x5 and IBP on VGG42 with mixup (see right column of Table 4.4).
∆AP is the increment (left)/decrement (right) of AP observed.

Top 10 Classes ∆AP Worst 10 Classes ∆AP

Gong 0.085 Bass drum -0.048
Tabla 0.082 Ratchet, pawl -0.034
Frog 0.074 Boom -0.030
Tambourine 0.072 Boiling -0.029
Wind chime 0.071 Tick-tock -0.028
Acoustic guitar 0.070 Drum kit -0.026
Accordion 0.064 Vehicle horn, car horn, honking -0.018
Growling 0.062 Chirp, tweet -0.018
Idling 0.060 Female singing -0.015
Bicycle bell 0.057 Bathtub (filling or washing) -0.015

blurring time-frequency variations that are already smooth can be detrimental.
It is conceivable that this kind of insight is less observable when combining
low-pass filtering with another approach such as APS. However, a more sys-
tematic analysis is needed to make stronger claims. This could be carried out
by estimating a metric of how sharp or edgy spectrograms are, and determin-
ing whether there is a correlation between the most benefited classes and the
sharpness of their spectrograms.
Finally, in order to see the different behaviour of the two proposed methods,
Figure 4.7 shows the scatter plot of per-class AP for TLPF 5x5 & IBP vs.
APS l1 using VGG42 and mixup (see right column of Table 4.4). In this case,
we observe that the point cloud is centered around the diagonal line, showing
that both methods perform similarly overall, with each method being slightly
more proficient in a certain subset of classes. This suggests that joining both
methods can lead to small boosts, as previously discussed from Table 4.4.

4.4.6 Discussion

We have seen that two methods with different underlying principles targeting
the increase of shift invariance yield improvements within the same ballpark
in our task. Further, we have empirically shown that they increase model’s ro-
bustness to spectrogram shifts. These facts indicate that there is indeed some
lack of this property in the CNN under test, and suggest that reinforcing shift
invariance is beneficial for sound event classification. One interesting obser-
vation is that while anti-aliasing measures are helpful to increase performance
and shift invariance, they do not seem strictly necessary in light of the overall
similar performance attained by APS.
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Figure 4.7: Per-class AP comparing the top configuration of each proposed method
alone inserted into VGG42 with mixup: APS l1 vs. TLPF 5x5 & IBP (see Table 4.4).
Only the 144 leaf nodes in FSD50K are displayed, grouped by main sound family in
the AudioSet Ontology.

In terms of model size, the impact is negligible for all evaluated methods. Spe-
cifically, TLPF 5x5 adds 6k (0.50%) and 12k (0.24%) trainable parameters
over VGG41 and VGG42 respectively. Its non-trainable counterpart (Blur-
Pool 5x5) adds the same number of non-trainable parameters. APS does not
require any additional parameters (trainable or non-trainable). The additional
compute required by the methods is also limited. For the low-pass filtering
methods, one additional convolution is needed to apply the low-pass filter over
the incoming feature maps for every subsampling operation. Analogously, the
only additional compute required by APS is the computation of the polyphase
components and their norms in every subsampling operation. Thus, the pro-
posed architectural modifications (which apply only to the pooling layers) yield
consistent recognition boosts when inserted into a well-known CNN, with min-
imal additional computation. This makes them an appealing alternative to
conventional pooling layers.
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Table 4.8: State-of-the-art on FSD50K.

Method mAP d′d′d′ lwlrap

Baseline VGG-like (Section 3.4.1) 0.434 2.167 0.514
PSLA (not using ImageNet) (Gong et al., 2021b) 0.452 - -
Audio Transformers (Verma & Berger, 2021) 0.537 - -
VGG42 + APS l1 (ours) 0.538 2.415 0.575
VGG42 + TLPF5x5 + IBP (ours) 0.539 2.417 0.581
VGG42 + TLPF 5x5 + APS l1 (ours) 0.541 2.431 0.582
PSLA (using ImageNet) (Gong et al., 2021b) 0.567 - -

4.4.7 Comparison with Previous Work

Table 4.8 lists previously published results on FSD50K, including mAP,
d-prime (d′) and lwlrap when available. Our proposed systems outperform
the baseline models evaluated in Chapter 3 by a large margin. In addition,
our best system obtains state-of-the-art mAP of 0.541, slightly outperforming
recent Transformer-based approaches (0.537) (Verma & Berger, 2021), as well
as the PSLA approach when trained only on FSD50K (0.452) (Gong et al.,
2021b). PSLA makes use of a collection of training techniques (ImageNet
pretraining, data balancing and augmentation, label enhancement, weight av-
eraging, and ensemble of several models) (Gong et al., 2021b). Among all of
them, the key ingredient seems to be ImageNet pretraining, without which the
performance decreases dramatically. While using transfer learning from Im-
ageNet seems to provide substantial boosts, we consider transfer learning from
external datasets a different track. Our proposed state-of-the-art approach
consists of simple architectural changes inserted into a widely-used CNN at
minimal computational cost along with simple augmentation.

4.5 Summary and Conclusion

In this Chapter, we have evaluated two pooling methods to improve shift in-
variance in CNNs in the context of a sound event classification task. These
methods are based on low-pass filtering and adaptive sampling of incoming fea-
ture maps, and are implemented via small modifications in the pooling layers
of CNNs. We have evaluated the effect of these architectural changes on the
FSD50K dataset, using models of different capacity and in presence of strong
regularization.
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Results show that the models evaluated indeed present a problem of only-
partial shift invariance—a property that is often taken for granted in CNNs—
and that adopting the proposed methods to improve it yields recognition
boosts. The improvements observed are within the same ballpark for both
methods, despite them having different underlying principles, which allows for
small further boosts via their combination. Inserting these pooling methods
into VGG variants makes the networks exhibit higher robustness to time/-
frequency shifts and small perturbations in the input spectrograms. These
facts suggest that reinforcing shift invariance in the models evaluated is be-
neficial for sound event classification, which could also apply to other CNN
architectures. For example, this improved property can be useful to enhance
the recognition of sources producing sounds with slightly different time/fre-
quency patterns. This is a convenient skill given the intra-class variation of
everyday sounds, as introduced in Section 2.2.3. The proposed architectural
changes applied to a widely-used CNN yield consistent recognition improve-
ments with minimal additional computation, which makes them an appealing
alternative to conventional pooling layers. Our best system incorporates these
architectural changes and simple mixup augmentation in order to achieve a
new state-of-the-art mAP of 0.541 on FSD50K.



CHAPTER 5
Training Sound Event

Classifiers With Noisy Labels

5.1 Introduction

Until now, in this thesis, we have assumed that the labels accompanying train-
ing data are correct. However, as introduced in Section 1.3.1, this ideal state
may not always be realistic. Large-scale audio datasets inevitably bring in label
noise issues, since it is intractable to exhaustively annotate large amounts of
audio. On the other hand, gathering data from web repositories and inferring
labels automatically from metadata supports rapid train data collection, but
at the likely cost of a substantial level of label noise. Consequently, label noise
emerges as a pressing issue for the future of SET that can hinder the proper
learning of classifiers, especially if they are based on deep networks (Arpit
et al., 2017; Zhang et al., 2017).
This Chapter is dedicated to the study of techniques to improve performance
in presence of noisy labels in SET. Our first contribution is FSDnoisy18k,
an openly-available audio dataset that supports the investigation of real label
noise, including an empirical characterization of the noise and a CNN baseline
system (Section 5.2). The dataset is singly-labeled and it consists of a small
amount of clean data, and a much larger amount of noisy data containing a
substantial amount of real-world label noise. To our knowledge, no previous
audio dataset has specifically provided for the study of label noise in SET.
Then, we explore simple and efficient approaches to mitigate the effect of label
noise, that are agnostic to network architectures or learning settings. The
main advantage of these approaches is that they can be easily incorporated
into existing deep learning pipelines, requiring only minimal intervention of
the learning pipeline, and no extra resources. First, we consider regularization
techniques in Section 5.3. Common regularization methods against label noise
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include weight decay and dropout, which act on the weights or hidden units of
the network. Here, we study regularization techniques external to the model
that can mitigate the effect of label noise. To regularize the model from the
outside, we consider Label Smoothing Regularization (LSR) and mixup.
In Section 5.4 we first provide an empirical evaluation of noise-robust loss
functions, originally proposed for image recognition. To our knowledge, this
is the first time that these loss functions have been used for SET. In addition,
using the information provided by loss functions, we explore sample rejection
strategies to first identify and then discard potential noisy labeled examples
during the learning process. This is done without additional networks or data
resources, unlike other works in the literature, e.g, Han et al. (2018).
It must be noted that the techniques mentioned above address generic problems
of labels. However, labelling everyday sound data has inherent problems, some
of which are described in Section 5.2. To conclude this Chapter, in Section 5.6
we address the problem of missing labels, one of the big weaknesses of large au-
dio datasets, and one of the most conspicuous issues for AudioSet. We propose
a simple and model-agnostic method based on a teacher-student framework
with loss masking to first identify the most critical missing label candidates,
and then ignore their contribution during the learning process. Section 5.7
ends this Chapter with a summary of the main results and a discussion about
our findings.

5.2 FSDnoisy18k: a Sound Event Dataset for the
Study of Label Noise

In this Section, we introduce FSDnoisy18k, an openly-available audio dataset
that supports the investigation of real label noise. The dataset contains 42.5
hours of audio across 20 sound classes, including a small amount of manually-
labeled data and a larger quantity of real-world noisy data. In addition, we
characterize the label noise of the dataset empirically, and provide a CNN
baseline system. Experiments suggest that training with large amounts of
noisy data can outperform training with smaller amounts of carefully-labeled
data.

5.2.1 Dataset Creation

FSDnoisy18k was created before the release of FSD50K presented in Chapter 3.
The annotations for FSDnoisy18k were gathered through Freesound Annotator
using an early version of the final procedure and tools described in Sections
3.2.4 and 3.2.5, which we summarize next.
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The source of audio content to create FSDnoisy18k is Freesound, as done with
FSD50K. The 20 classes of FSDnoisy18k are drawn from the AudioSet Onto-
logy: Acoustic guitar, Bass guitar, Clapping, Coin (dropping), Crash cymbal,
Dishes, pots, and pans, Engine, Fart, Fire, Fireworks, Glass, Hi-hat, Piano,
Rain, Slam, Squeak, Tearing, Walk, footsteps, Wind, and Writing (Gemmeke
et al., 2017). They are selected based on data availability as well as on their
suitability to allow the study of label noise (see Section 5.2.2 for some spe-
cific examples). As a first step, we did a mapping of Freesound clips to the
selected classes: we assigned a number of Freesound tags to every class and,
for each class, we selected the Freesound clips tagged with at least one of the
tags. This process led to a number of automatically-generated candidate an-
notations indicating the potential presence of a sound class in an audio clip.
These annotations are at the clip level and hence are considered weak labels
(although for some files the target signal fills the file entirely, which could be
considered strongly-labeled). Next, a small portion of the candidate annota-
tions was human-validated. We used an early version of the validation task
described in Section 3.2.5 deployed in Freesound Annotator.42 In this task,
users verify the presence/absence of a candidate sound class in an audio clip
with a rating mechanism. For every class, users are presented with a series
of audio clips, and asked: Is <class> present in the following sounds? Users
must select one of the responses: Present and Predominant (PP), Present
but not Predominant (PNP), Not Present (NP) and Unsure (U), as defined
in Table 3.1. Participants in the validation task included voluntaries from
the Freesound community as well as researchers and students from the Music
Technology Group.
Audio clips that ended up with multiple labels had all but one label removed
in order to foster a type of label noise (see Section 5.2.2). Next, we defined a
clean portion of the dataset consisting of correct labels, obtained by a second
verification of the clips marked as PP. The remaining portion is referred to as
the noisy portion. The clean portion of the data consists of audio clips whose
annotations are rated as PP (almost all with full inter-annotator agreement),
meaning that the label is correct and, in most cases, there is no additional
acoustic material other than the labeled class. A few clips may contain some
additional sound events, but they occur in the background and do not belong to
any of the 20 target classes. This is more common for some classes that rarely
occur alone, e.g., Fire, Glass or Wind. The noisy portion of the data consists
of audio clips whose candidate annotations received no human validation, i.e.,
the only supervision comes from the user-provided tags. Hence, the noisy
portion features a certain amount of label noise, which is characterized next.

42https://annotator.freesound.org/

https://annotator.freesound.org/
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5.2.2 Label Noise Characteristics

The label noise literature typically deals with synthetic noise imposed on the
data (Reed et al., 2015; Tanaka et al., 2018; Zhang & Sabuncu, 2018). Whereas
synthetic label noise allows precise control of noise conditions, it may result
in unrealistic conditions. FSDnoisy18k features real label noise that can be
representative of audio data retrieved from the web, particularly from Free-
sound. In Frénay & Verleysen (2014), a generic taxonomy of label noise from
a statistical viewpoint is proposed, including models of label noise that differ
in the dependencies among the agents involved. In Shah et al. (2018), two
types of label noise are proposed (a generic label corruption noise, and a label
density noise) for multi-label data based on AudioSet. We propose a tax-
onomy of label noise for singly-labeled data following an empirical approach.
The taxonomy is shown in Figure 5.1 and includes the noise types identified
through manual inspection of a per-class, random, 15% of the noisy data in
FSDnoisy18k. Its concepts are explained next along with the main use cases
found in FSDnoisy18k.

label

correct incorrect

complete incomplete in-vocabulary out-of-vocabulary

in-vocabulary out-of-vocabulary

Figure 5.1: Taxonomy of label noise based on the analysis of the noisy data in
FSDnoisy18k. The taxonomy considers two facets. Top levels (blue) of the taxonomy
describe the observed label in terms of correctness and completeness. Bottom level
(green) of the taxonomy categorizes the nature of the true or missing label, for an
observed label that is incorrect or incomplete, respectively.

The taxonomy uses the terms correct and complete as defined in Section 2.3.2.
In particular, the term complete label follows the strict definition introduced
in Section 2.3.2: a label that fully describes all the acoustic content of the
audio clip such that there is no additional acoustic material present. Then,
we distinguish between additional events that are already part of our target
class set (In-Vocabulary (IV)), or are not covered by those classes (Out-Of-
Vocabulary (OOV)). Zhang & Sabuncu (2018) and Wang et al. (2018) use the
terms closed-set for IV, and open-set for OOV. Given an observed label that is
incorrect or incomplete, the true or missing label can then be further classified
as IV or OOV.
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Some classes are prone to include incorrect labels when the clips are retrieved
only on the basis of their existing user-provided tags, e.g., Bass guitar, Crash
Cymbal, or Engine; typically, the true label does not belong to the list of con-
sidered classes (incorrect/OOV). Other classes are prone to have audio clips
with acoustic material that is additional to the provided (and correct) label,
e.g., Rain, Fireworks or Slam, and, again, the missing label usually does not be-
long to the list of considered classes (incomplete/OOV). Finally, a few classes
are related to each other. It can happen that one class contains clips that
actually belong to another class in the dataset, e.g. Wind and Rain (incor-
rect/IV). Alternatively, two sound classes can co-occur in an audio clip, e.g.
Slam and Squeak, despite only a single label is available (incomplete/IV). For
completeness, correct and complete labels mean no label noise, i.e., clean data.
In addition to the aforementioned noise types, two more types arise in the
context of web audio and Freesound in particular. First, determining whether
a sound class is present in an audio clip can be subjective, even for an expert.
This happens with human imitations or heavily processed sounds (e.g., with
sound effects). We refer to these clips as ambiguous as it is unclear whether
the label is correct or not. The second noise type relates to i) the variable
clip lengths and ii) the weak nature of the clip-level labels. As mentioned in
Section 3.3.2, a naive but common way of processing variable-length clips is
to split them into several fixed-length patches, each inheriting the clip-level
label (coined false strong labeling in Morfi & Stowell). This can generate false
positives if the label is not active in a given patch. This type of label noise is
conceptually similar to the label density noise of Shah et al. (2018).
The analysis of the noisy data revealed that roughly 40% of the analyzed labels
are correct and complete, whereas roughly 60% of the labels show some type
of label noise, whose distribution is listed in Table 5.1.

Table 5.1: Distribution of label noise types in a random 15% of the noisy data of
FSDnoisy18k.

Label Noise Type Amount

Overall 60%
Incorrect/OOV 38%
Incomplete/OOV 10%
Incorrect/IV 6%
Incomplete/IV 5%
Ambiguous labels 1%
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The most frequent types of label noise correspond to out-of-vocabulary (OOV)
problems, either in the form of incorrect labels (that generate false positives)
or incomplete labels (which generate false negatives). Furthermore, we have
observed that a few clips within the incorrect/OOV category are incorrectly
labeled according to the semantic meaning of the class, and yet they are re-
latively similar (in terms of their acoustics) to the true label. For example,
in Clapping there is a certain amount of applause sounds and claps generated
by drum machines. We estimate that ≈10% of the clips analyzed shows this
phenomenon, although it is highly subjective. This ≈10% is included in the
38% of incorrect/OOV labels. The label density noise is only relevant in few
classes, especially Slam, and to a lesser extent Fireworks and Fire. This type
of noise was quantified by counting the audio clips that present at least one
segment of 2s (or more) where the observed label is not present (2s is the patch
length used in the baseline system, see Section 5.2.4). The degree of total label
noise per-class ranges from 20% to 80% roughly. A per-class description of the
label noise similar to that of Table 5.1 is available at the dataset companion
site in order to facilitate per-class analysis.43

5.2.3 Dataset Description

FSDnoisy18k contains 18,532 mono audio clips (42.5h) unequally distributed in
the 20 aforementioned classes drawn from the AudioSet Ontology (Gemmeke
et al., 2017). The audio clips are of variable length ranging from 300ms to
30s, and each clip has a single ground truth label (singly-labeled data). The
dataset is split into a test set and a train set as seen in Figure 5.2.

noisy small

noisy clean test set

15813 / 38.8 1772 / 2.4 947 / 1.4

train set

Figure 5.2: Data split in FSDnoisy18k, including number of clips / duration in hours.
Blue = noisy data. Yellow = clean data.

43http://www.eduardofonseca.net/FSDnoisy18k/

http://www.eduardofonseca.net/FSDnoisy18k/
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The test set is drawn entirely from the clean portion, while the remainder of
data forms the train set. The train set is composed of 17,585 clips (41.1h)
unequally distributed among the 20 classes. The distribution of training clips
across the 20 classes is shown in Figure 5.3. The total number of training
audio clips per-class ranges from 316 to 1170. The train set features a clean
subset and a noisy subset. In terms of number of clips their proportion is
≈10%/90%, whereas in terms of duration the proportion is slightly more ex-
treme (≈6%/94%). The per-class percentage of clean data within the train set
is also imbalanced, ranging from 6.1% to 22.4%. The number of audio clips
per class ranges from 51 to 170, and from 250 to 1000 in the clean and noisy
subsets, respectively. The limitation of 1000 clips per class in the noisy subset
was imposed in order to mitigate data imbalance among classes.

Figure 5.3: Per-class distribution of training clips in FSDnoisy18k. Blue = noisy
data. Yellow = clean data.

Further, a noisy_small subset is defined (dark blue box in Figure 5.2), which
includes an amount of (noisy) data comparable (in terms of duration) to that
of the clean subset. The test set is composed of 947 clips (1.4h) that belong
to the clean portion of the data. Its class distribution is similar to that of
the clean subset of the train set. The number of per-class audio clips in the
test set ranges from 30 to 72. The test set enables a multi-class classification
problem. The dataset is openly available from its companion site,43 along
with the proposed data splits for reproducibility and a more detailed dataset
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description. FSDnoisy18k is an expandable dataset that features a per-class
varying degree of types and amount of label noise. The dataset opens the door
to the evaluation of a variety of measures against label noise as well as other
approaches, from semi-supervised learning, e.g., self-training (Elizalde et al.,
2017) to learning with minimal supervision (Veit et al., 2017).
FSDnoisy18k has some overlap with FSD50K, especially in the clean portion
of the dataset. At the same time, FSDnoisy18k contains audio data that are
not present in FSD50K, especially in the noisy portion, given that this portion
is not curated after its automatic retrieval.

5.2.4 Baseline System

In this Section we describe a baseline system for FSDnoisy18k, the main aspects
of which are illustrated in Figure 5.4.

Figure 5.4: Baseline system for FSDnoisy18k.

Some of the techniques to combat label noise covered in subsequent Sections
will be incorporated into this system. Incoming audio is transformed to 96-
band, log-mel spectrogram as input representation. To deal with the variable-
length clips, we use time-frequency patches of 2s (which is equivalent to 100
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frames of 40ms with 50% overlap). Shorter clips are replicated while longer
clips are sliced in several patches inheriting the clip-level label. The model
used is a CNN featuring 3 convolutional layers and 1 dense layer following
that of Salamon & Bello (2017), with two main changes. First, we include
Batch Normalization (Ioffe & Szegedy, 2015) between each convolutional layer
and ReLU non-linearity. Second, we use pre-activation, a technique initially
devised in deep residual networks (He et al., 2016b) which essentially consists
of applying Batch Normalization and ReLU as pre-activation before each con-
volutional layer. It was proved beneficial for acoustic scene classification in our
previous work (Fonseca et al., 2018a), as well as in preliminary experiments
with FSDnoisy18k. The model has ≈0.5M weights. The loss function is CCE,
the batch size is 64, and we use Adam optimizer (Kingma & Ba, 2015) with
initial learning rate of 0.001, which is halved whenever the validation accur-
acy plateaus for 5 epochs. Earlystopping is adopted with a patience of 15
epochs on the validation accuracy. To this end, a 15% validation set is split
randomly from the training data of every class. The system is implemented in
Keras and TensorFlow. The prediction for every clip is obtained by computing
predictions at the patch level, and aggregating them with geometric mean to
produce a clip-level prediction. The goal of the baseline is to give a sense of
the classification accuracy that a well-known architecture can attain and not
to maximize the performance. Extensive hyper-parameter tuning or additional
model exploration was not conducted. Code for the training framework and a
more detailed description of the baseline are available at the code release.44

5.2.4.1 Experiments

We present the experiments carried out with the baseline system. The results
for different subsets of training are listed in Table 5.2.

Table 5.2: Average classification accuracy (%) and 95% confidence interval (across
7 runs) obtained by the baseline system using different subsets of FSDnoisy18k for
training (see Figure 5.2); all = entire train set.

Approach all noisy noisy_small clean

baseline 71.6 ± 0.4 66.5 ± 0.6 44.4 ± 1.1 60.2 ± 0.5

From right to left, it can be seen that using the clean subset leads to an
accuracy increase45 of 15.8% with respect to using the noisy_small subset
(consisting of roughly the same amount of data). However, curating the clean
subset requires significant effort. Training with the noisy subset provides a

44https://github.com/edufonseca/icassp19
45Performance differences are expressed in terms of absolute accuracy.

https://github.com/edufonseca/icassp19
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boost of 6.3% over the performance obtained with the clean subset (despite the
considerable amount of label noise present). Nevertheless, this improvement
comes at the expense of using data that is an order of magnitude greater
(see Section 5.2.3). Finally, using the entire train set, that is, adding a small
amount of manually-curated data to the noisy subset, increases the accuracy
by 5.1% over the performance obtained using only the noisy subset. The results
suggest that large amounts of Freesound audio with the level of supervision
provided by user-generated tags mapped to classes of the AudioSet Ontology
can be a feasible option for training sound event classifiers. This can be useful
in case of no labeling budget, as long as the computational resources can be
accommodated. If only limited budget is available, curating a small portion of
data to be combined with larger amounts of noisy data yields top performance.

5.3 Regularization Techniques to Handling Noisy
Labels

Regularization aims to prevent overfitting and improve generalization, which
can also be beneficial against label noise. Common regularization strategies
include weight decay and dropout (Srivastava et al., 2014), which act on the
weights or hidden units of the network. For example, dropout has been shown
useful in reducing label noise memorization (Arpit et al., 2017). In this Sec-
tion, we study some regularization techniques external to the model that can
mitigate the effect of label noise. In particular, we consider LSR and mixup.
The former operates on the ground truth labels, while the latter operates on
both ground truth labels and input training examples, as illustrated in Fig-
ure 5.5. Noise-robust loss functions are covered in Section 5.4. We show that
these simple regularization methods can be effective in mitigating the effect of
label noise, providing up to 1.9% of accuracy boost when incorporated into a
baseline CNN, while requiring minimal intervention and computational over-
head.
As introduced in Section 2.3.1, we consider a dataset D with training examples
(xxx,yyy) and C classes. Let yyy ∈ {0,1}C be a vector representing the target label
distribution for a given input example xxx. In this Section, we consider a multi-
class classification problem (i.e., only a single target label is available per input
example). Hence, the ground truth distribution is a one-hot encoded vector
yyy= δc,t , with δc,t being the Dirac delta, which equals 1 for the target class label,
c = t, and 0 otherwise. Assuming CCE as default loss function, the training
goal is to update the network weights in order to minimize CCE, which means
maximizing the log-likelihood of the correct label.
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T-F

mixup

predictions labels

LSR

noise-robust
loss function

deep network

Figure 5.5: Sketch of the model-agnostic approaches against label noise considered
in Sections 5.3 and 5.4, indicating the component(s) of the learning pipeline where
they operate.

5.3.1 Label Smoothing Regularization

Maximizing the log-likelihood of the (potentially) correct label means encour-
aging the model to be confident about its predictions, which can be harmful
in presence of training data with noisy labels. To address this issue, LSR
models the noise on the labels using a smoothing parameter ε, as explained
next (Szegedy et al., 2016). Given a training instance, the ground truth label
distribution is changed from a one-hot encoded vector yyy = δc,t , to:

yyy′ = (1− ε)δc,t +
ε
C
. (5.1)

This is equivalent to the combination of the original distribution yyy weighted
by 1− ε, and another distribution (in this case, uniform, i.e., 1/C) weighted
by ε. Essentially, we smooth the label distribution by replacing the 1 and
0 hard classification targets with float soft targets (i.e., real-valued). Other
distributions can be used to spread ε across the non-active labels, e.g., using
prior knowledge of the dataset. By using LSR we are not only seeking to
maximize the log-likelihood of training labels; we also aim at regularizing the
model by promoting less confident output distributions without discouraging
correct classification (Goodfellow et al., 2016). This property can make a
classifier less vulnerable to label noise.

5.3.2 mixup

As mentioned in Section 2.3.4.1, mixup is typically understood as a data aug-
mentation technique that acts as a regularizer by favoring linear behavior in-
between training examples, encouraging networks to predict less confidently
on linear interpolations of examples. Zhang et al. (2018) report that mixup
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enhances the robustness of deep networks to corrupted labels for image recog-
nition in an experiment inflicting artificial label noise to a clean dataset. Here,
we are interested in evaluating whether mixup is helpful in a sound event classi-
fication setting with real-world label noise. mixup bears similarities with LSR
in the sense that the external supervision is given in the form of multiple soft
labels rather than with hard labels. However, mixup produces new examples
with only two active labels (two-hot encoded vectors), whereas with LSR no
label is strictly inactive due to the smoothing distribution of ε (see Equation
5.1). In addition, mixup modifies both target labels and input examples, unlike
LSR which modifies only the target labels.

5.3.3 Experiments

The evaluation of the LSR and mixup in presence of label noise is conducted
using the FSDnoisy18k dataset presented in Section 5.2. We use only the noisy
set of FSDnoisy18k, composed of 15,813 audio clips (38.8h), and the test set,
composed of 947 audio clips (1.4h) with correct labels. We evaluate these
approaches by incorporating them to the baseline system of Section 5.2.4,
following the experimental setup mentioned in that Section. Code for the
experiments is available at the code release. 46

5.3.3.1 Label Smoothing Regularization

First, the default version of LSR as described in Section 5.3.1 is evaluated for
several ε, which implies a uniform distribution of ε across the non-active labels.
This can also be seen from a probabilistic perspective, where the observed label
is correct with probability 1−ε and, otherwise, any other label can be correct
with equal probability (Goodfellow et al., 2016). Results in Table 5.3 indicate
a small improvement over the baseline system. Larger values of ε do not lead
to better scores in our experiments. In addition, we experiment with different
smoothing strategies leveraging prior knowledge of FSDnoisy18k. A per-class
estimation of the label noise is available at the dataset companion site. Based
on this information, we group the audio categories in two groups, according
to the estimated amount of noise (low/high). Specifically, the low-noise group
is composed by the categories Bass guitar, Clapping, Crash cymbal, Engine,
Fire, Rain, Slam, Walk, footsteps and Wind, while the high-noise group is
complementary. Then, we assign a different ε to each group such that

εlow = ε−∆ε
εhigh = ε +∆ε

(5.2)

46https://github.com/edufonseca/waspaa19

https://github.com/edufonseca/waspaa19
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Table 5.3: Average classification accuracy (%) and 95% confidence interval (across 7
runs) obtained by LSR and mixup approaches incorporated into the baseline system
of Section 5.2.4.

Approach Accuracy

Baseline (see Table 5.2) 66.5 ± 0.6
LSR (ε = 0.1) 66.8 ± 1.0
LSR (ε = 0.15) 67.1 ± 1.1
LSR (ε = 0.15±0.05) 68.1 ± 0.8
mixup (α = 0.1) 67.1 ± 0.8
mixup (α = 0.2) 66.6 ± 0.7
warm-up (10 epochs) & mixup (α = 0.3) 68.4 ± 0.5

where we grid-search for ∆ε ∈ {0.025,0.05} on the validation set, the latter
providing best results. This simple way of encoding prior knowledge of la-
bel noise through a noise-dependent ε leads to the best LSR-based perform-
ance. However, a finer grouping of the categories in three levels of noise
(low/mid/high) does not provide further gain.
We also experiment with non-uniform smoothing distributions in order to
model per-class information, in particular: i) mapping each estimated amount
of per-class noise to a per-class label energy within the target vector, and ii)
using a distribution based on the number of per-class T-F patches in the data-
set. However, adding this level of specificity leads to performance degradation
in our experiments.

5.3.3.2 mixup

We conduct experiments with the default version as explained in Section 2.3.4.1
for several values of the interpolation strength α. Examples to be mixed up
are log-mel patches drawn randomly from the training data. In particular, we
try both intra- and inter-batch variants, that is, applying mixup to examples
of the same batch after random permutation, or to examples of two different
batches. No major differences are observed. In Zhang et al. (2018), the au-
thors carry out experiments using mixup against memorization of corrupted
labels and find out that larger values of α (e.g., {8,32}) perform best. They
hypothesize that increasing α creates virtual examples further away from the
training distribution, thus hampering noise memorization. Surprisingly, in our
experiments we find that larger values of α do not yield any improvement, the
best accuracy being obtained with α = 0.1, as seen in Table 5.3. The main
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differences between our work and Zhang et al. (2018) are that FSDnoisy18k
features real-world label noise (mainly of OOV type) in sound events, while
Zhang et al. (2018) consider artificial label noise of IV type (i.e., randomly
flipping labels of training examples) in images.
We also evaluate mixup by using a warm-up training period in which mixup is
not applied. This is motivated by experiments conducted also in Zhang et al.
(2018), in this case for speech recognition, although unrelated to label noise
mitigation. We choose warm-up periods of 5 and 10 epochs, and we evaluate
α ∈ {0.1,0.2,0.3,0.4,1,2}. Warm-up based mixup shows a significant improve-
ment over its default version, as can be seen in Table 5.3, the highest accuracy
being obtained with a warm-up period of 10 epochs and α = 0.3. A possible ex-
planation for the effectiveness of mixup is that continuously creating different
virtual examples hinders label noise memorization. Also, it could contribute
to reduce the overall exposure to label noise. For example, let us consider
two training examples inputting mixup, of which only one is correctly labeled.
Due to the properties of the beta distribution, the low range of α used means
that one input example clearly dominates over the other in the new virtual
example. Without mixup, we would be in a scenario where we learn from one
correct label and another incorrect label. When mixup is applied, the scenario
changes. We now learn either from one almost-correct label set (whenever the
correctly labeled example dominates), or from another label set which is not
entirely wrong (whenever the incorrectly labeled example dominates). Non-
etheless, a more in-depth analysis would be required to better understand how
mixup mitigates the effect of label noise.

5.4 Using Loss Functions to Mitigate the Effect of
Label Noise

In this Section we first provide an empirical evaluation of noise-robust loss
functions, originally proposed for image recognition. These loss functions are
designed to provide some robustness against corrupted labels. To our know-
ledge, this is the first time that these loss functions have been used for SET.
Then, we develop sample rejection strategies (also known as instance selection
strategies) that use the loss values associated with training examples in order
to detect and discard examples that are potentially noisy labeled. This is done
without additional networks or data resources, unlike other works in the lit-
erature, e.g, Han et al. (2018). Evaluating the proposed methods, we show
that noise-robust loss functions can be effective in improving performance in
presence of corrupted labels. We also show that the proposed sample rejection
strategies can be effective in mitigating the effect of label noise, providing up
to 2.5% of accuracy boost when incorporated into two different CNNs, while
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requiring minimal intervention and computational overhead.

5.4.1 Noise-Robust Loss Functions

As explained in Section 2.3.1, the training of a deep network is based on up-
dating the network weights to minimize a loss function that expresses the
divergence between the network predictions and the ground truth labels. If
the ground truth labels are corrupted, the weights’ update can be suboptimal
thus hindering model convergence. In these cases, loss functions that are ro-
bust against label noise can be helpful. Next, we describe the noise-robust
loss functions evaluated in this thesis and their underlying principles. All of
them are modifications of the CCE loss commonly-used for multi-class classi-
fication. The CCE loss is given by Equation 2.2, which we include here again
for convenience:

Lcce =−
C

∑
c=1

yc log(pc), (5.3)

where yc is the c’th element of the target label (a one-hot encoded vector), pc is
the c’th element of the network predictions (the predicted class probabilities),
and C is the number of classes in the vocabulary. Since yyy is a one-hot encoded
vector, only one term of the summation in Equation 5.3 is different from zero,
and therefore contributes to the loss.
The soft bootstrapping loss function, Lso f t , dynamically updates the target
labels based on the current state of the model (Reed et al., 2015). More
specifically, the updated target label is a convex combination of the current
model’s prediction and the (potentially noisy) target label. The idea is to pay
less attention to the noisy labels, in favour of the model predictions, which are
more reliable as the learning progresses. This approach is referred to as soft
bootstrapping and the loss function Lso f t is expressed by:

Lso f t =−
C

∑
c=1

[βyc +(1−β )pc] log(pc), β ∈ [0,1]. (5.4)

The generalized cross-entropy loss, Lq, is a generalization of CCE and Mean
Absolute Error (MAE) proposed in Zhang & Sabuncu (2018). CCE is sensitive
to label noise as it puts more emphasis on hard or difficult examples. Due to
the logarithm in Equation 5.3, the examples for which the softmax predictions
differ more from the target labels are also weighed more in the gradient up-
date. This weighting property is beneficial when dealing with clean data, but
it can be undesirable in the case of noisy labels. In contrast, MAE weighs
all the predictions equally, a property that has been theoretically shown to be
beneficial against corrupted labels (Ghosh et al., 2017). However, in prelimin-
ary experiments we obtained poor performance using MAE with FSDnoisy18k,
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in accordance with Zhang & Sabuncu (2018), who reported difficulties when
training with this loss function, leading to performance drop in other datasets.
To take advantage of the benefits of CCE (its weighting property) and MAE
(its noise-robustness), a generalization of those functions has been recently
proposed (Zhang & Sabuncu, 2018). This generalized cross-entropy loss is the
negative Box-Cox transformation of the softmax predictions:

Lq =
1− (∑C

c=1 yc pc)
q

q
, q ∈ [0,1]. (5.5)

where q controls the closeness of Lq to CCE or MAE. When q = 1, Equation
5.5 reduces to the expression of MAE. When q→ 0, applying L’Hopital’s rule
to Equation 5.5 yields the expression of the CCE given by Equation 5.3. Fig-
ure 5.6 shows the curves for CCE loss as well as several instantiations of the
generalized cross-entropy loss, for different values of q. It can be appreciated
the different attenuation of loss contributions for the lowest predictions.
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Figure 5.6: Generalized cross-entropy loss for different values of q (red, green, blue),
and categorical cross-entropy loss (black), as a function of the predicted score.

5.4.2 Loss-based Instance Selection

Arpit et al. (2017) showed that deep neural networks in presence of label noise
tend to learn first easy and general patterns from the underlying clean data,
before fitting or memorizing the noise. In other words, the negative impact of
label noise becomes more severe as learning progresses. This motivates us to
view the learning process as a two-stage process.
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In the first stage, we adopt Lq during a training period of n1 epochs. While in
the first epochs it is likely that label noise is not extremely critical (as long as
there are some clean and simple instances in the dataset), it is not trivial to
know when noise memorization kicks in as this depends on the data and the
model; hence it is safer to adopt a noise-robust loss function.
After n1 epochs, the model has converged to some extent and, therefore, it can
be used for sample rejection or instance selection during training, a concept
treated in the label noise literature (Han et al., 2018; Zhang & Sabuncu, 2018).
Intuitively, when labels are corrupted, model predictions are likely to be less
congruent with the noisy target labels, yielding artificially high losses (see
left side of plot in Figure 5.6). By discarding them, we prevent data points
that presumably feature corrupted labels from contributing to the total loss.
This idea of using the loss associated with training instances as a proxy to
discriminate between clean and noisy instances has been previously considered
for image recognition (Han et al., 2018; Arazo et al., 2019). Thus, in the
second stage of the process, we use the current state of the model to identify
instances with large training loss. Assuming they correspond to noisy labeled
examples, the goal is to reject them for the gradient update, thereby reducing
noise memorization.
We experiment with two approaches to ignore large-loss instances in the second
stage, as illustrated in Figure 5.7.
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Figure 5.7: Approaches for loss-based instance selection. Left: discard instances
from each mini-batch. Right: prune train set.

The first one consists of discarding large-loss instances from each mini-batch of
data dynamically at every iteration. This is based on a time-dependent, noise-
robust loss function that exhibits a change of behaviour as learning progresses,
starting to discard potentially corrupted instances after n1 epochs. The second
approach consists of pruning the train set after n1 epochs based on loss values,
keeping only a subset of the train set to continue the learning process. To this
end, we use the current model checkpoint to make predictions on the entire
train set, and we compute the Lq losses associated to the softmax predictions.
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Regardless of the approach (discarding from each mini-batch, or pruning the
train set), the rejection of large-loss examples is as follows. We first compute
an array of loss values Lq ∈RN×1, with the loss associated with every example
in the mini-batch (N = 64) or the train set (N = 13,441 after keeping 15% for
validation). Then, we define a threshold tm such that elements in Lq greater
than tm are discarded for the computation of the total loss. We experiment
with two simple ways of defining the threshold tm: i) tm = m ·max(Lq) with
m ∈ [0,1], and ii) tm = percentile(Lq, l) where l is the percentile ∈ [0,100].

5.4.3 Experiments

The evaluation of the loss-based approaches in presence of label noise is con-
ducted using the FSDnoisy18k dataset presented in Section 5.2. Code for the
experiments is available at the aforementioned code repositories.44 and 46

5.4.3.1 Noise-Robust Loss Functions

We present the experiments carried out with the proposed noise-robust loss
functions, evaluated by replacing the CCE loss by each one of them in the
baseline system of Section 5.2.4. Classification accuracy results for the different
subsets of training data and loss functions are listed in Table 5.4.

Table 5.4: Average classification accuracy (%) and 95% confidence interval (across 7
runs) obtained by noise-robust loss functions using different subsets of FSDnoisy18k
for training (see Figure 5.2); all = entire train set.

Approach all noisy noisy_small clean

baseline 71.6 ± 0.4 66.5 ± 0.6 44.4 ± 1.1 60.2 ± 0.5
Lso f t ,β = 0.3 73.1 ± 0.6 66.8 ± 0.6 46.0 ± 0.9 –
Lso f t ,β = 0.7 72.6 ± 0.6 67.6 ± 0.7 44.6 ± 1.0 –
Lq,q = 0.5 73.4 ± 0.8 68.4 ± 0.5 45.0 ± 1.0 –
Lq,q = 0.7 74.3 ± 0.7 66.7 ± 1.2 43.2 ± 1.2 –

We show results after fine-tuning the hyper-parameter of every loss function on
the validation set. When training with the entire train set or the noisy subset,
the top-performing loss function is consistently Lq, followed by Lso f t . This
means that Lso f t , and especially Lq, originally proposed for image recognition,
also work well for sound classification tasks. More specifically, Lq provides an
accuracy increase over the baseline of 2.7% and 1.9% for the entire train set
and noisy subset, respectively. The results confirm the insights in Zhang &
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Sabuncu (2018), where it is shown that Lq works well with both OOV and IV
noisy labels, which is the case of FSDnoisy18k.
When training with the entire train set, the noise-robust loss functions are
applied selectively based on data origin, i.e., they are applied only to the
data coming from the noisy subset, whereas for the clean subset the regular
CCE loss is adopted. Specifically, this means: i) in Lso f t the target labels are
updated only for data points coming from the noisy subset; ii) when testing
Lq, only data points from the noisy subset contribute with Lq to the total loss.
For Lso f t , and especially Lq, this selective procedure leads to slightly better
performance, in contrast to the naive way of mixing all the data and applying
the noise-robust approaches indiscriminately. This suggests that Lq is more
effective when a greater amount of label noise is present.
It is interesting to compare i) the accuracy boost obtained from adding manually-
curated data to the noisy subset, versus ii) the boost resulting from using the
noisy subset with the top-performing loss function. The baseline classification
accuracy when training with the noisy subset is 66.5%. If we add a small
amount of curated data, we obtain a 5.1% boost (see all column). Conversely,
if we leverage the top performing Lq we obtain an increase of 1.9% (i.e., ≈37%
of the boost by manual curation). Note that the manual curation requires a
significant effort, while the latter approach requires very little engineering ef-
fort and adds minimal computational cost. Combining both approaches yields
top performance.

5.4.3.2 Loss-based Instance Selection

We present the experiments carried out with the instance selection approaches.
We evaluate these approaches by incorporating them to the baseline pipeline of
Section 5.2.4. We use only the noisy set of FSDnoisy18k, composed of 15,813
audio clips (38.8h), and the test set, composed of 947 audio clips (1.4h) with
correct labels. In addition to using the baseline model of Section 5.2.4, the
proposed approaches are tested with a model of higher capacity illustrated in
Figure 5.8. This model is a CNN based on Dense Convolutional Networks
(DenseNet) (Huang et al., 2017), which has been shown to improve informa-
tion flow in the network by connecting layers directly to all subsequent layers,
combining their features by concatenation. In particular, we use four dense
blocks composed of a bottleneck layer and a convolutional layer. In addition,
we include Squeeze-and-Excitation (SE) blocks that calibrate the features ex-
tracted channel-wise by modelling channel interdependencies (Hu et al., 2018).
These architectural blocks have been proven useful for sound event classific-
ation (Jeong & Lim, 2018). We refer to this model as DenSE due to its
composition. DenSE is more accurate than the baseline (see Table 5.5) while
using less weights (458k). Implementation details can be checked in the code
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Dropout(0.5) + Dense(20) + Softmax

BN + ReLu + Flatten
 

Concatenate

GlobalAvgePool2D
Dense(n/2) + ReLu
Dense(n) + Sigmoid
Multiply

BN + ReLu + Conv2D(n, 1x1)
BN + ReLu + Conv2D(n, 3x3)

BN 
Conv2D(15, 3x3)
Concatenate

Total weights:
458k

SE x4

Figure 5.8: DenSE model based on DenseNet (Huang et al., 2017).

release.46

Table 5.5 lists the results for this evaluation. We include three baseline ap-
proaches (top section). Each of them follows a constant behaviour during the
learning process, unlike the proposed approaches which feature two different
learning stages (bottom section). The baselines are: i) using plain CCE loss
(Lcce); ii) adopting the discard-from-every-mini-batch approach using CCE
loss since the beginning of the training (Lcce,discard); iii) using plain general-
ized cross-entropy loss function (Lq). The optimal values of every approach are
determined through grid search on the validation set. Results suggest that dis-
carding instances right from the scratch (Lcce,discard) provides lifts with respect
to not discarding anything at all (Lcce). However, the accuracy obtained is still
lower than using plain generalized cross-entropy loss (Lq). A possible explana-
tion is that using the model as an instance selector from the very beginning of
training is suboptimal because the model needs some training period to gain
proficiency. The better results obtained in the bottom section of Table 5.5
seem to back this hypothesis.
For the approach of discarding from every mini-batch after n1 epoch, Lq,discard,



5.4 Using Loss Functions to Mitigate the Effect of Label Noise149

we experiment with n1 ∈{10,15,20,25} epochs, m∈{0.93,0.96,0.99}, and using
percentiles of loss values in order to discard {1,3,5} T-F patches. Note that
we are discarding T-F patches at every mini-batch, and not entire clips (as
explained in Section 5.2.4). Results in Table 5.5 show accuracy boosts47 of
0.4% and 0.6% over using plain Lq, by discarding 5 patches/mini-batch and
using m = 0.93 for the baseline and DenSE models, respectively.

Table 5.5: Average classification accuracy (%) and 95% confidence interval (across
7 runs) obtained by approaches for loss-based instance selection. Approaches in the
top section follow a constant behaviour during the learning process. Approaches in
the bottom section have two stages, as described in Section 5.4.2, where n1 indicates
number of epochs prior to the stage of instance selection, for (Baseline Model | DenSE).

Approach Baseline Model DenSE

Lcce (baseline in Table 5.2) 66.5 ± 0.6 67.9 ± 0.7
Lcce,discard 67.7 ± 0.9 68.6 ± 0.7
Lq 68.4 ± 0.5 69.2 ± 0.8
Lq,discard (n1 = 25|n1 = 10) 68.8 ± 0.9 69.8 ± 0.7
Lq,prune (n1 = 20|n1 = 15) 69.0 ± 0.6 70.2 ± 0.5

For the approach of pruning the train set, Lq,prune, rejecting clips using per-
centiles yields better results. We explore pruning {100,200,300,400,500} clips
in the train set using the corresponding loss percentiles after n1 ∈ {10,15,20}
epochs. In order to compute loss values at the clip-level, we aggregate the
patch-level losses using arithmetic mean. Improvements of 0.6% and 1.0% can
be seen over plain Lq by pruning 200 and 400 clips from the train set, for the
baseline and DenSE models, respectively.
The approach based on Lq,prune slightly outperforms the one based on Lq,discard
for the two models considered, although the differences lie within the confidence
intervals. Additionally, we observe that results yielded by Lq,discard present
more stochasticity than those of Lq,prune. This could happen as the former
discards patches from a tiny distribution of losses (64 instances in our case),
compared to considering the entire train set loss distribution in the latter.
Regarding the models, DenSE attains higher accuracy boosts with respect to
the best baseline (plain Lq). Further, in general, results obtained with DenSE
seem slightly more stable than with the baseline. We hypothesize this oc-
curs due to the higher proficiency of DenSE, which allows better identification
of the corrupted examples. Additionally, this model has less weights, which
in principle makes it less prone to noise memorization. These aspects make
DenSE more suitable for the proposed methods.

47Performance differences are expressed in terms of absolute accuracy.
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5.5 Discussion

In this Section we provide a brief discussion of the approaches studied so far in
Sections 5.3 and 5.4. One of the most important aspects, and the motivation
for studying these approaches, is that they are easy to incorporate to existing
pipelines. LSR and mixup can be added as simple functions within the data
loader that feeds the network. Lq,discard can be implemented as a custom loss
function by providing information of the current epoch. The approach based on
Lq,prune can be easily added to any training procedure with few lines of code.
Furthermore, all methods cause minimal computational overhead. The top-
performing approaches on the baseline system are those based on loss-based
instance selection, especially Lq,prune, which provides an accuracy increase over
the CCE baseline of up to 2.5%. It must be noted that while we prune the
dataset only once, the pruning could be done several times in an iterative fash-
ion until convergence, potentially improving performance. Also, this method
can be used for dataset cleaning.
However, these approaches seem to be highly dependent on the period n1 prior
to instance selection and on the amount of rejected instances, which in turn
can depend on the model used, the dataset and its type and amount of label
noise. We also note that some of the reported accuracy scores feature not small
confidence intervals. Beyond the non-deterministic nature of results obtained
with GPU, we conjecture that some stochasticity is due to the noisiness of the
labels. For instance, the validation set used to take decisions is composed of
noisy labeled data. It is conceivable that the approach performing best on the
validation set does not necessarily perform best on the cleanly-labeled test set,
this being an inherent problem of evaluation with noisy labels.

5.6 Addressing Missing Labels in Multi-label
Sound Event Classification

The label noise mitigation techniques studied so far address generic problems
of labels, but not any specific pattern of label noise. However, labelling every-
day sound data has inherent problems, some of which are described in Section
5.2 and also in Section 3.3.3 in the context of FSD50K. In this Section, we
address the problem of missing labels, one of the big weaknesses of large au-
dio datasets, and one of the most conspicuous issues for AudioSet (Gemmeke
et al., 2017). Our contribution is two-fold. First, we propose a simple and
model architecture-agnostic method based on a teacher-student framework to
first identify the most critical potentially missing labels in AudioSet, and then
ignore their contribution in the learning process through a loss masking ap-
proach. We then analyse the effect of the proposed method via a set of ex-
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periments using two model architectures of different capacity and two train
sets of different size. We find that a simple optimisation of the training la-
bel set can lead to a non-negligible improvement in recognition performance
without additional compute. We also discover that most of the improvement
comes from ignoring a tiny portion of the missing labels. The ultimate goal
is to demonstrate how prior knowledge of a dataset can be leveraged to build
simple, efficient, and model-agnostic solutions to improve recognition perform-
ance, which can complement other approaches focused on improving network
architectures.

5.6.1 Missing Labels in AudioSet

We refer to missing labels as those labels that would be included in an ideal,
exhaustive annotation but which are missing from the current set. The ex-
istence of missing labels in AudioSet is due to the dataset curation process.
This process consisted of two steps: the compilation of a list of candidate la-
bels per clip, and the human validation of the labels nominated in that list.
This process is also adopted in other datasets, e.g., FSD50K. In the case of
AudioSet, the list of candidate labels was compiled by means of a series of
automatic methods, including the processing of the available metadata (e.g.,
video title and/or description) as well as a query-by-example method. These
methods can be sub-optimal due to the high inter- and intra-class variation
of sound events in the AudioSet Ontology (Gemmeke et al., 2017). In addi-
tion, the list of candidate labels was limited to a maximum of ten labels per
clip. There are therefore several ways by which some existing sound events
fail to be nominated by the system, or are nominated but ranked below the
top ten, thus leading to missing labels. We call the nominated labels that
have received human validation explicit labels (that can in turn be positive or
negative, depending on the human rating being “Present” or “Not Present”).
The remaining labels which are not proposed by the nomination system (the
vast majority) are referred to as implicit negative labels, and have received no
human validation. Hence, it is likely that some of the implicit negative labels
are indeed missing (positive) labels.
AudioSet poses a multi-label problem, which is usually addressed by a deep
network with an output layer composed by C binary classifiers, with C being
the number of classes in the vocabulary, as mentioned in Section 2.3.1. In this
setting, binary classification loss functions are typically adopted, composed
by two terms, one accounting for the positive examples, and the other for
the negative ones. The default option is binary cross-entropy, introduced in
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Equation 2.3 which we show here again for convenience:

Lbce =−
C

∑
c=1

yc log(pc)+(1− yc) log(1− pc), (5.6)

where pc represents the network output prediction and yc the ground truth
label for class c. The implicit negative labels are considered negative examples
(despite not having been rated), and are, therefore, covered by the second term
of Equation (5.6). If a sound event is actually present, we want the model
to emit a high score even if the “Present” label is missing. However, this
virtuous behaviour will be penalized (with the penalty increasing for higher
output predictions) due to the back-propagation of an artificially high loss
contribution, which causes a misleading gradient update. We hypothesize this
hinders the learning process to some extent.

5.6.2 Method

To address this issue, we propose a two-step strategy based on a teacher-
student framework (Ba & Caruana, 2014) depicted in Figure 5.9.
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Figure 5.9: Proposed teacher-student framework. Top: Identification of potential
missing labels per class using teacher’s predictions and creation of enhanced label set.
Bottom: Training a student model while ignoring missing labels through loss masking.

First, a teacher model is trained using the original AudioSet labels, yyy, and the
teacher’s predictions are used to build a new enhanced label set, ȳyy, where the
suspected missing labels are flagged. Second, ȳyy is used to train a student model
where the flagged labels are ignored through a loss masking approach. Next
we explain the proposed method in detail.
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The first step consists of identifying the potential missing labels per class. To
do so, a teacher model is trained using the original AudioSet labels, yyy. We use
the trained teacher model to predict scores for the train set, leading to a set
of RC×1 scores per audio clip. The teacher’s predicted scores are used to take
decisions on labels’ veracity. We focus on the predictions associated with the
implicit negative labels as explained in Section 5.6.1. Our hypothesis is that
the top-scored implicit negative labels (henceforth, top-scored negatives) are
likely to correspond mostly to missing “Present” labels, i.e., false negatives.
Under this hypothesis, we rank implicit negative labels based on the teacher’s
predictions and we create a new label set, ȳyy, by flagging a given percentage
of the top-scored negatives per class, with the intention of ignoring them in
the student’s learning. Note that, unlike other teacher-student pipelines where
teacher’s predictions are used as ground truth to train a student (e.g., via soft
labels (Ba & Caruana, 2014; Li et al., 2014)), our case features a skeptical
teacher whose supervision is used to highlight flaws in the current ground
truth, estimating potentially missing labels and flagging them in a new label
set. The outcome of this first step is an enhanced training label set, ȳyy, where
the label information is encoded as multi-hot target vectors with three states
(positive, negative, and to-be-ignored labels).
The second step consists of training a student model using the label set op-
timised through the teacher’s predictions. The goal here is to ignore the loss
contributions of the previously flagged labels in the loss function computation.
This is done through a simple loss masking approach, where we minimally
modify the student’s learning pipeline so as to create a binary mask of size
C× 1 per input example, using the information encoded in the new target
label vector ȳyy. Each element of the binary mask, Mc, is defined as (5.7)

Mc =

{
0, if label is implicit negative and score > tc
1, otherwise,

(5.7)

where tc is a per-class threshold computed as a given percentile of the per-class
scores distribution. In practice, we compute the loss function L following (5.6)
as usual, and Mc is applied to the negative term of L in order to discard the
loss contributions of potentially missing labels, as follows

L′bce =−
C

∑
c=1

yc log(pc)+Mc(1− yc) log(1− pc), (5.8)

A similar masking approach to ignore false negatives in SER was recently used
in Kim & Pardo (2019).
Another way to introduce this method is from the perspective of knowledge dis-
tillation (Hinton et al., 2015). A typical formulation of distillation is
L(pteacher, pstudent), whereas our method could be formulated as
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L( f (pteacher), pstudent). For f identity, standard distillation is recovered. We
define one instantiation of f as a nonlinear transform applied to the teacher
scores for the implicit negatives—our skeptical teacher. Similarly, other classes
of f might also be relevant to accommodate label noise.

5.6.3 Experiments

5.6.3.1 Experimental Setup

We evaluate the proposed method using an internal version of AudioSet (Gem-
meke et al., 2017), including information about which labels are explicit/im-
plicit.48 In order to study the impact of missing labels as a function of training
data size, we use two train sets with similar class distributions but one roughly
five times larger than the other, as specified in Table 5.6.

Table 5.6: Train sets and architectures used in our experiments.

Train set Clips Hours

tr_small 506,721 1407
tr_large 2,467,357 6853
Architecture Weights Mult-Adds

ResNet-50 30M 1860M
MobileNetV1 3.7M 69.2M

One of the motivations to choose the size of tr_small as roughly 0.5M clips is
that this volume of data is closer to what could be gathered from other online
repositories. For example, Freesound contains slightly over 0.5M audio clips
at the time of writing (see Section 3.2.3). For evaluation, we use an internal
eval set of 47,132 audio clips. Incoming audio clips are transformed to log-mel
spectrograms using a 25ms Hann window with 10ms hop, and F = 64 mel log-
energy bands. The network is presented with T-F patches of T = 96 frames
(corresponding to a duration of 0.96s) with 50% overlap.
In order to assess the impact of missing labels on models of different capa-
city, we employ two CNNs as students: ResNet-50 (He et al., 2016a) and
MobileNetV1 (Howard et al., 2017). Both are taken from the computer vis-
ion literature and have also proven successful in audio recognition research
(see Hershey et al. (2017) and the recently released YAMNet49). ResNet-50

48The work presented in Section 5.6 was carried out during an internship at Google Re-
search.

49https://github.com/tensorflow/models/tree/master/research/audioset/yamnet

https://github.com/tensorflow/models/tree/master/research/audioset/yamnet


5.6 Addressing Missing Labels in Multi-label Sound Event
Classification 155

is based on residual units, with shortcut connections that perform identity
mappings added to the outputs of a small group of stacked layers. This allows
information to pass through while leaving additional residual mappings to be
learned, and was found to support the training of substantially deeper net-
works, thus yielding accuracy gains (He et al., 2016a). MobileNetV1 is based
on depthwise-separable convolutions, in which a standard convolution (that
filters and combines inputs into outputs in the same step) is factorized into i)
a depthwise convolution that does the filtering and ii) a 1x1 convolution to
combine the results into a set of outputs. This decomposition reduces com-
putation and model size significantly Howard et al. (2017). Table 5.6 shows
model size and Mult-Adds for both architectures. For training we use Adam
optimizer (Kingma & Ba, 2015) and a fixed learning rate of 1e-5. We use
random weight initialization with a standard deviation of 0.001.
For evaluation, we pass each 0.96s evaluation patch through the model to
compute classifier output scores, which are then averaged per-class across all
patches in a clip to obtain clip-level predictions, as done in Gemmeke et al.
(2017). As evaluation metrics we use primarily d′ and lwlrap, which we in-
troduced in Section 2.3.7. In order to avoid the impact of potential missing
positive labels in the evaluation set, only samples with explicit labels for a
given class (both positive and negative) are used in the calculation of d′ for
that class. Because this excludes many “easy” samples, the resulting d′ values
are substantially lower than including all non-positive samples as negatives.)
Both metrics are computed on a per-class basis, then averaged with equal
weight across all classes to yield the overall performance shown in Table 5.7
and Figure 5.10.

5.6.3.2 Overall Performance vs. Discarded Negatives

As explained in Section 5.6.2, we first train a teacher model with the unmod-
ified labels and use it to predict scores in the train set. We used an internal
ResNet-50 model for the teacher which had been trained using several tweaks
to improve performance, similar to those used in the publicly-released YAM-
Net model.49 Based on the teacher’s predicted scores, we generate a total of
18 new label sets, each of them using a different threshold tc, i.e., discarding a
different proportion of top-scored negatives in the train set. Finally, for every
enhanced label set, we train a student model on the train set, and predict on
the evaluation set, reporting the best performance obtained. While choosing
parameters based on the test set introduces overfitting, our experience with
data at this scale (i.e., validation and test sets in the range of hundreds of
hours) is that results obtained by this suspect methodology are in practice
similar to those from a more rigorous separation of tuning and evaluation sets.
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Figure 5.10: Classification performance as a function of the proportion of top-scored
negative labels that are discarded. Each point in the lines corresponds to one operating
point. The leftmost point in each curve, marked with a square, corresponds to using
all negative labels.

The results in Figure 5.10 illustrate the impact of missing labels by plotting
performance (d′ and lwlrap) as a function of the amount of top-scored negatives
discarded, similar to the treatment of noisy ImageNet labels in Northcutt et al.
(2021). We experiment with progressively discarding
tc ∈ {0,0.1,0.2,0.4,0.6,0.8,1,2,3,4,5,6,7,8,9,10,15,20} % of top-scored negat-
ives for the two train sets and architectures mentioned. Each point in the lines
is the result of one experiment trial using one label set with a given amount of
discarded negatives. The leftmost point (at x = 0.0%, marked with a square)
corresponds to normal training, i.e., no labels ignored and all false negative
labels included. We use it as our baseline.
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Common to all the curves of Figure 5.10, we observe three regions from left
to right: a steep increase at the beginning of the curve, followed by a sweet-
spot, and a final decay that is more severe in lwlrap than in d′. A possible
interpretation of this behaviour is as follows. We conjecture that the top-scored
negatives correspond either to missing “Present” labels (i.e., false negatives
(FNs)), or they are “decoys”, difficult (and thus informative) true negatives
(TNs), perhaps from similar classes, and especially useful in learning. First, we
remove some critical FNs that damage the learning process, hence the sudden
performance increase at the left of the curves. As we continue discarding
more top-scored negatives, we keep removing FNs, but we also start to remove
some TNs. Therefore, performance increases more slowly, until a sweet-spot
is reached where both effects cancel out. Finally, if we keep ignoring more
top-scored negatives, performance is degraded. As to why the decay in d′ is
much less pronounced than in lwlrap, a possible explanation lies in the way
d′ works. d′ characterizes the separation of the positive and negative score
distributions as the distance between their means. It may be that removing
the high scoring tail changes the mean of the negative distribution (hence d′

increases suddenly), but as we remove more labels with much more frequent
scores the mean of the negative distribution barely changes (and consequently
so d′). By contrast, lwlrap does not suffer from this issue, its curves showing
a decay as expected. Based on this intuition, we consider the right end of the
d′ curves less reliable.
Table 5.7 lists the performances for baselines and best operating points for all
the train sets and architectures considered. Based on the results of Figure 5.10
and Table 5.7, next we make a number of observations.

Table 5.7: Classification performance for baselines and best operating points for
architectures and train sets considered.

Model Train set d′ lwlrap
baseline best baseline best

ResNet-50 tr_small 1.186 1.244 0.363 0.425
tr_large 1.334 1.367 0.451 0.484

MobileNetV1 tr_small 1.132 1.192 0.357 0.409
tr_large 1.290 1.322 0.425 0.468

Effect of Ignoring the Highest Ranked Top-scored Negatives. The
proposed method yields performance improvements in all cases considered.
The best operating points are usually between 3 and 6% discarded for d′, and
between 1 and 4% for lwlrap. We believe this result is relevant as AudioSet
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training examples are often treated as if they had complete labels. However, the
most important pattern we observe in all cases is the consistent steep increase
at the beginning of the curves. In all cases, most of the improvement comes
from removing just ≈1% of the top-scored negatives. Further, in most cases,
just by removing a tiny percentage (<=0.2%) of (potentially) missing labels,
approximately half of the total boost is already attained. Two observations can
be made from these findings. First, this indicates that a tiny portion of labels
is troublesome and it is moderately affecting classifier performance, a concept
which is basis for disciplines like instance selection, where it is assumed that not
all training examples are equally informative, some of them being redundant
and some being harmful (Liu & Motoda, 2002). Second, these findings become
interesting as they contrast with the common trend of acquiring more and more
training data to improve recognition performance, even if noisily labeled (Sun
et al., 2017) (something we also find useful in our experiments in general).

Effect of Train Set Size. Table 5.7 shows improvements with respect to the
baseline of ≈0.060 for d′ when training with tr_small for both architectures,
whereas when using tr_large, improvements are almost half of that (≈0.033).
This relationship also holds for lwlrap when using ResNet-50,50 whereas when
using MobileNetV1, the performance difference between training with tr_small
and tr_large is smaller. These results seem to indicate that the damage done by
missing labels, and consequently the performance boost obtained by discarding
them, can be higher when the dataset is smaller. A possible explanation is that
larger amounts of data help to mitigate the effect of these errors in the label
space, which accords with Sun et al. (2017). However, even when training with
massive amounts of audio (almost 7000h, see Table 5.6), the impact of these
labelling errors can still be observed. The d′ sweet spot occurs roughly in the
same region for both train sets. The lwlrap sweet spot seems to move slightly
to minimal discards when training with larger amounts of data.

Effect of Model Architectures. The proposed method is effective for both
model architectures considered despite having different underlying principles
and significantly different numbers of parameters, in a proportion of around 8:1.
The overall trend of the curves in Figure 5.10 is similar for both architectures.
As can be seen in Table 5.7, in terms of d′, both architectures show very
similar improvements with respect to their corresponding baselines. In terms
of lwlrap, however, results are inconsistent, with ResNet-50 providing a greater
improvement than MobileNetV1 when training on tr_small, and vice versa
when training on tr_large. We do not observe consistently larger improvements

50By chance, absolute improvements for both metrics are numerically similar in this case,
despite the metrics are conceptually different and their numeric range is also different.
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using ResNet-50, even though its much larger number of parameters might
lead one to expect it to overfit labeling errors more readily. As an aside,
regardless of missing labels, when comparing baselines, ResNet-50 outperforms
MobileNetV1 as expected, but not by a particularly large margin considering
the huge difference in number of parameters between the architectures.

Effect on Evaluation Metrics. By looking at Table 5.7, it can be seen
that d′ improvements reach up to relative 5.3% (MobileNetV1) and lwlrap
improvements reach up to relative 17.1% (ResNet-50), both cases occurring
when using tr_small (≈ half a million clips), where improvements are more
evident.
Finally, we carried out a small informal listening test in which we inspected
some of the clips associated with the discarded top-scored negatives for a few
classes. As expected, most clips were missing “Present” labels, some of them
being flagrant labelling errors, but difficult to detect considering the train
set size. These findings indicate that the proposed method, while simple,
is effective in identifying missing labels in a human annotated dataset like
AudioSet, and it is able to improve training over unnoticed missing labels.
Additionally, it can be useful for dataset cleaning or labeling refinement. Re-
labelling a small amount of flagged top-scored negatives may lead to better
results than the proposed method. While the presented results are specific
to AudioSet, we believe the insight and impact found can also apply to other
large-scale audio datasets, especially those annotated via human validation of
sub-optimally nominated candidates.

5.6.3.3 An Example of Applying the Method

For easier assimilation, we provide an example of application of the proposed
method. Table 5.8 illustrates the details of the operating point of 0.1% discard
in tr_small for the Ambulance (siren) and Speech classes. The total number of
labels is the number of clips in the train set (506,721). The number of explicit
labels (i.e., human rated, which are both positive and negative) is usually a
tiny portion, in the range of a few hundreds or thousands (as in Ambulance
(siren)), except for a few high prior classes such as Speech. Implicit labels
(all negative) form the remainder of the clips. Note that Ambulance (siren)
represents the typical case that holds for the vast majority of classes, while
Speech represents an extreme case relevant to only a handful of classes. In this
operating point, we ignore the top-scored 0.1% of the implicit negatives, which
is usually around 500 labels per class, except for the few high prior classes, in
which it is less.
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Table 5.8: Label counts for two example classes at one operating point of Figure 5.10
(tr_small and discarding 0.1% of top-scored negatives)

Class Total Explicit Implicit To Ignore

Ambulance (siren) 506,721 1657 505,064 504
Speech 506,721 464,262 42,459 42

5.6.3.4 Per-class lwlrap Analysis

In this Section, we provide a brief per-class analysis to see how the proposed
method affects the classes as a function of their prior in the dataset. As a case
study we focus on lwlrap since the improvements are observed more easily,
and we compare the baseline with the best operating point of ResNet-50 on
tr_small. Figure 5.11 shows the scatter plot of per-class lwlrap values for
baseline (i.e., no label rejection) vs. those of the best operating point (3%
discard); the diagonal line divides the space into classes improved (above the
line) or worsened (below the line) by discarding.
We divide the 527 AudioSet classes into three groups according to their prior:
i) 15 largest classes with prior ρc > 0.01 (red), ii) 474 smallest classes with
a prior ρc < 0.00325, corresponding, approximately, to the subset of 474 leaf
nodes in the hierarchy of the AudioSet Ontology (Gemmeke et al., 2017) (blue),
and iii) remaining 38 classes of medium size (green). Table 5.9 lists the number
of classes in which performance improves, along with the average improvement,
for every group of classes.

Table 5.9: Number of classes with improvement and average improvement for the
three groups of classes in Figure 5.11.

Group Classes Classes w/ Avg lwlrap
Improvement Improvement

large 15 2 (13.3%) 0.082
medium 38 27 (71.1%) 0.086
small 474 359 (75.7%) 0.106

In light of Figure 5.11 and Table 5.9, we see the following. Classes with high
prior tend to get slightly worse. While the performance changes observed are
relatively small, this is is somewhat surprising as the number of labels ignored
is even smaller in these cases—a possible explanation is that most of the labels
being discarded correspond to informative TNs. On the contrary, groups of
classes with medium and small priors present a similar percentage of classes
showing improvement, being slightly larger in the group of small classes. In



5.7 Summary and Conclusion 161

0.0 0.2 0.4 0.6 0.8 1.0
baseline

0.0

0.2

0.4

0.6

0.8

1.0

3%
 d

isc
ar

d

small
medium
large

per-class lwlrap

Figure 5.11: Per-class lwlrap for baseline (no label rejection) vs. best operating
point (3% discard) for ResNet-50 on tr_small.

addition, the average improvement is also higher in the group of small classes,
with an absolute difference of 0.02. While a more in-depth study is needed
before making stronger claims, results seem to indicate that the impact of
missing labels (and of the proposed method) is greater on classes with low
prior, which goes in line with findings in Section 5.6.3.2 about the effect of
train set size. Classes that benefit the most out of this process are: Waterfall,
Fusillade, Sizzle and Babbling, featuring improvements greater than 0.3. The
procedure carried out can be useful to detect classes with labelling errors,
applicable in dataset cleaning or labeling refinement.

5.7 Summary and Conclusion

In this Chapter, we first have presented FSDnoisy18k, an openly-available
dataset that facilitates the investigation of label noise in multi-class sound
event classification. The dataset is singly-labeled and consists of a small
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amount of manually-labelled data and a large amount of noisy data, featuring
a per-class varying degree of types and amount of real label noise. An empir-
ical characterization of the label noise in the noisy subset reveals that ≈60%
of the labels show some type of label noise, mostly corresponding to OOV
noisy labels. Experimental results with a CNN baseline system suggest that
large amounts of Freesound audio with the level of supervision given by the
user-provided tags can be a feasible option for training sound event classifiers.
Then, we explored simple and efficient approaches in order to improve the
performance of sound event classifiers trained in presence of noisy labels. We
strived for proposing approaches that are agnostic to network architectures and
learning settings, hence they can be easily incorporated into existing learning
pipelines. The simple regularization methods studied can be effective in mit-
igating the effect of label noise, providing up to 1.9% of accuracy boost when
incorporated into a baseline CNN in our experiments. In particular, we found
out that small variations of the original methods are beneficial in our task,
namely, encoding prior knowledge of label noise through a noise-dependent ε
in LSR, and using a warm-up training period before mixup. We observe a sim-
ilar behaviour with the considered noise-robust loss functions, which achieve
on par performance boosts. We also find that the noise-robust loss functions
considered tend to be more effective when a greater amount of label noise
is present. Both regularization mechanisms and noise-robust loss functions
require very minimal engineering effort.
Going one step further, our results suggest that rejecting the contribution of
noisy samples during training (or the contribution of noisy labels associated to
some samples) can be more effective than previous approaches based on accept-
ing the noisy labels and mitigating their effect—at least for the regularization
methods and robust loss functions considered. In particular, when incorpor-
ated into the training of two different CNNs, the considered loss-based sample
rejection methods provide absolute accuracy boosts of up to 2.5% when train-
ing on the noisy subset of FSDnoisy18k. Specifically, our top approach uses
the model being trained as an instance selector to prune the train set during
the learning process. Remarkably, this is done without additional networks or
data resources, unlike other works in the literature, e.g, Han et al. (2018).
In the case of addressing missing labels for multi-label AudioSet classification,
the first important takeaway is that we have identified missing labels as a
pathology in the labelling of AudioSet, which is often ignored. By using a
teacher-student framework with loss masking to identify and ignore the most
critical potentially missing labels, we obtained multiple relevant findings: i)
most of the improvement comes from filtering out a tiny portion (<1%) of
the most critical estimated missing labels, showing a moderate impact on per-
formance; ii) the damage done by missing labels (and the performance boost
obtained by discarding them) becomes higher as the train set gets smaller—
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however, even when training with massive amounts of audio, the impact of
these labelling errors can still be observed; iii) when applied to two CNN ar-
chitectures of different nature and size, the proposed method is effective in
identifying missing labels and it is able to improve training over unnoticed
missing labels, behaving similarly in both cases. It is conceivable that these
insights will also apply to large-scale audio datasets beyond AudioSet, since
the problem of missing labels is endemic. The main shortcoming of sample/la-
bel rejection is the risk of mistakenly discarding legit valuable information due
to flaws of the detection mechanisms, which may lead to performance degrad-
ation. A clear direction for future work consists of improving noise detection
mechanisms and making them less dependent on external decisions and tuning.
Overall, one of the main advantages of the proposed methods is that they can
be easily plugged into existing deep learning pipelines, requiring only minimal
intervention of the learning pipeline, negligible computational overhead, and
no extra resources such as clean data or auxiliary classifiers. By showing the
aforementioned improvements with purposely-chosen simple methods, we have
demonstrated that label noise is indeed a problem in SET, and addressing it
can bring benefits. In particular, we have identified missing labels as a patho-
logy in the labelling of AudioSet (and possibly in everyday sound labelling in
general). Increasing robustness against label noise is a promising research dir-
ection that may lead to performance boosts when audio labels are unreliable,
and that can relax the dependency on careful and expensive manual annota-
tions. Considering their simplicity and efficiency, the proposed approaches
show promise in increasing robustness against noisy labels. However, in ab-
solute terms, the performance boosts achieved are not very large. We believe
our work puts some grounds and paves the way for the investigation of more
complex approaches.
Importantly, as some of our experiments indicate, in order to obtain better
performance, substantially larger amounts of noisy data may be needed to
compensate supervision’s quality with quantity, compared to the scenario of
training with clean labels. The success of each methodology (using noisy or
clean labels) will depend on factors such as the ratio of noisy labeled data vs.
clean labeled data, as well as the type and amount of label noise. While col-
lecting noisy labeled data will be generally cheaper than carefully annotating
audio, larger volumes of data may require also larger computational resources,
which may not be available to everyone. Another factor that must be con-
sidered is the source(s) for the clean and noisy labeled data. For example, in
the experiments of Sections 5.2 to 5.4, both the noisy data and the clean data
used for training come from Freesound, same as the data used for evaluation.
However, in other possible scenarios, the noisy labeled data may come from a
different source than the target data—for example, in the case where the noisy
labeled data for training are gathered from some web audio repository not par-
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ticularly related with the target task under consideration. In this case, issues
of domain mismatch between training and evaluation data could occur, which
may represent an obstacle for models’ generalization. Lastly, as explained in
Section 2.6.2, we believe that the label noise work carried out in this thesis has
contributed to the progressive consolidation of this research direction in the
SER community.



CHAPTER 6
Self-Supervised Learning of

Sound Event Representations

6.1 Introduction

So far in this thesis, we have assumed that textual labels accompanying the
audio data are always available, either provided by humans or automatically
derived from audio metadata. Either way, the presented supervised learning
algorithms depend on this external supervision, which carries important limita-
tions. The construction of human-labeled audio datasets for SER is notoriously
time-consuming and subjective, imposing limitations on dataset size and label
quality. Likewise, automatically generating labels from metadata can produce
substantial levels of label noise, which can hinder successful supervised training
of classifiers.
As introduced in Section 1.3.2, the alternative to the supervised learning
paradigm consists of using learning algorithms that do not depend on any
external supervision, but that have the ability to extract supervision from the
audio data. These self-supervised learning methods aim at learning repres-
entations without the need for external supervision. Absent explicit labels,
the success of these methods relies on the design of proxy learning tasks in
which pseudo-labels are generated from patterns in the data. By solving proxy
tasks on unlabeled data, these methods learn mappings from input examples to
low-dimensional representations, that can then be used for downstream tasks
such as sound event classification. The main advantage of the self-supervision
paradigm is that potentially unlimited data could be exploited, without need
for prior manual labelling or metadata.
This Chapter explores multiple strategies to learn general-purpose audio rep-
resentations from unlabeled data. We focus on self-supervised contrastive audio
representation learning, where representations are learned by comparing pairs
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of examples selected by some semantically-correlated notion of similarity (Le-
Khac et al., 2020). Specifically, comparisons are made between positive pairs of
“similar” and negative pairs of “dissimilar” examples, with the goal of learning
a representation that pulls together positive pairs and thus reflects semantic
structure, as introduced in Section 2.7. In order to generate pairs of positive
examples, we create different versions or views of the original input examples.
These views are created via compositions of data augmentation methods, which
are one of the key elements in our learning pipelines.
The rest of the Chapter is organised as follows. Section 6.2 introduces the data
augmentation methods that will be used in the subsequent Sections to create
differently-augmented views of sound events.
In Section 6.3, we propose the proxy task of similarity maximization to learn
representations by contrasting differently-augmented views of sound events.
The views are computed primarily via temporal proximity sampling, followed
by mixing of training examples with unrelated backgrounds, and other data
augmentations. We first analyze the main components of the proposed pipeline
via ablation experiments. Then, we evaluate the learned representations using
a linear evaluation protocol, and in two in-domain downstream sound event
classification tasks, namely, using limited manually labeled data, and using
noisy labeled data.
In Section 6.4, we explore the use of unsupervised automatic sound separation
to decompose sound scenes into multiple semantically-linked views for use in
contrastive learning. In addition, we go one step further and propose to jointly
optimize the proxy tasks of similarity maximization and coincidence prediction.
We evaluate the learned representations as features for a query-by-example re-
trieval task, as well as on the established downstream shallow-model AudioSet
classification task, where our unsupervised audio representation rivals state-
of-the-art alternatives. Section 6.5 concludes the Chapter with a summary of
the key results and a discussion about our main findings.

6.2 Data Augmentation to Create Different
Example Views

In this Section, we introduce the data augmentation methods that will be used
in this Chapter to create differently-augmented views of sound events. We
seek to learn sound event representations by contrasting differently-augmented
views of sound events. To this end, a number of semantics-preserving aug-
mentations are explored in order to create different example views. In order to
come up with good views for contrastive learning, Tian et al. (2020) argue that
their mutual information must be reduced while the downstream semantically-
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relevant information between the views is retained. Another important ob-
servation is that, since contrastive learning pulls together representations of
positive views, the proxy task attempts to ignore the transformations applied
to create them. Consequently, how the pairs of views are generated determines
the invariant properties promoted in the learned representation.
Using a single transformation to generate data views has been shown as in-
ferior to the composition of several augmentations, which is essential to obtain
effective representations for vision tasks (Chen et al., 2020b). By compos-
ing multiple augmentations, the goal is to define a more challenging learning
task so that higher-quality representations can emerge. However, not all com-
positions are necessarily valid; rather, the elements in the composition must
adequately complement each other (Chen et al., 2020b). In this Chapter, we
use a variety of data augmentation methods:

temporal proximity sampling,

a method based on example mixing (mix-back),

a variety of other simple augmentations such as random resized cropping
or SpecAugment (Park et al., 2019), and

automatic sound separation.

To our knowledge, this is the first time that some of these augmentations are
used to define proxy tasks for sound event representation learning, such as
automatic sound separation, random resized cropping or SpecAugment. Our
proposed example mixing augmentation (mix-back) is introduced in Section
6.3.1.1 along with other simple augmentations. The usage of automatic sound
separation as data augmentation for representation learning is argued in Sec-
tion 6.4.1. Here, we describe temporal proximity sampling as it is the one
augmentation that we always use in our learning pipelines.
Temporal proximity sampling consists of randomly selecting two audio snippets
as basic units to construct pairs of examples, instead of leveraging entire audio
clips. These audio snippets are typically short—in our case, around 1 second.
When randomly sampling audio snippets within a prescribed temporal prox-
imity, we are likely to sample i) the same sound sources emitting somewhat
different acoustic patterns as they evolve over time; or ii) different sources
that are related semantically or casually with the initial ones. Thus, the tem-
poral coherence among neighboring audio snippets implies a natural form of
data augmentation. This simple method has been proven effective in our ex-
periments of Sections 6.3.3.1 and 6.4.4.1 (Fonseca et al., 2021c,b), as well as
in many other contrastive audio representation learning works (Jansen et al.,
2018, 2020; Saeed et al., 2021; Wang & van den Oord, 2020), analogous to the
common practice of random cropping with images (Chen et al., 2020b,c).
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6.3 Similarity Maximization for Sound Event
Representation Learning

In this Section, we propose to learn sound event representations using the proxy
task of similarity maximization, where we contrast differently-augmented views
of sound events. The different views are computed via temporal proximity
sampling, mixing of training examples with unrelated background examples,
and a composition of other data augmentations. We first provide an empirical
evaluation of the different components of the proposed method through an
ablation study. Then, we evaluate the learned representations using the linear
evaluation protocol, and in two downstream sound event classification tasks,
namely, using limited manually annotated data, and using noisy labeled data.
Our results suggest that unsupervised contrastive pre-training can mitigate
the impact of data scarcity and increase robustness against noisy labels. To
our knowledge, the work included in this Section is the first one conducting
contrastive sound event representation learning by maximizing the similar-
ity between differently-augmented views created with multiple augmentations.
Code for the experiments is available.51

It is interesting to note that other approaches similar to what we propose
in this Section—published in Fonseca et al. (2021c)—were also proposed by
other researchers at a similar time (Saeed et al., 2021; Wang & van den Oord,
2020). Both Fonseca et al. (2021c) and Saeed et al. (2021) were presented
at the 2021 IEEE “International Conference on Acoustics, Speech and Signal
Processing”, and were uploaded to arXiv within weeks of difference in October
and November of 2020.52 The work by Wang & van den Oord (2020) was
presented in December of 2020 at the NeurIPS 2020 “Self-Supervised Learning
for Speech and Audio Processing Workshop”.
Specifically, Saeed et al. (2021) propose the COntrastive Learning for Audio
(COLA) approach. The main differences of COLA with respect to our ap-
proach are: i) the only augmentation used is temporal proximity sampling; ii)
the contrastive loss function has a different scoring function, as we will see later
in Section 6.3.1.2. The main difference of the approach of Wang & van den
Oord (2020) with respect to ours is the format of the data used as starting
point in the learning pipeline. In order to compute different views of the same
input example, their starting point is the raw waveform of examples and its
corresponding log-mel spectrogram. This multi-format strategy is shown to
provide significant gains compared to the single-format counterpart (typically,
using only log-mel spectrograms, as we do in our experiments). However, per-
formance gain comes at the expense of needing two different encoder networks

51https://github.com/edufonseca/uclser20
52https://arxiv.org/abs/2011.07616 and https://arxiv.org/abs/2010.10915

https://github.com/edufonseca/uclser20
https://arxiv.org/abs/2011.07616
https://arxiv.org/abs/2010.10915
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(one per audio format) instead of one (see Figure 6.1).

6.3.1 Learning Framework

We seek learning sound event representations from unlabeled data via contrast-
ive learning using the proxy task of similarity maximization. This proxy task
consists of maximizing the agreement between differently-augmented views of
the same audio example. To do so, we first create pairs of correlated views
(denoted as positive examples) via different augmentations of a single sound
event example. Then, their corresponding embedding representations are com-
pared using a contrastive loss that pulls together representations of positive
examples, while pushing apart those of negative ones (i.e., unrelated examples)
(Chen et al., 2020b; Nandan & Vepa, 2020). In other words, this type of loss
attempts to co-locate the representations of two positive examples in the same
spot of the embedding space, thus promoting invariance to the transforma-
tions applied to generate the views. This task is based on recent work on
visual representation learning (Chen et al., 2020b), commonly referred to as
SimCLR. Our hypothesis is that discriminative sound event representations
can emerge by solving this task. Figure 6.1 illustrates the main components
of the proposed method, which we explain next. Implementation details and
hyperparameter choices can be inspected in the released code.51

A pair of positive examples is constructed by selecting two audio snippets
within the same audio clip. Analogously, a pair of negative examples is con-
structed by selecting two snippets from different clips. This is based on the
assumption that, generally, two snippets within a given temporal proximity
are much more likely to be semantically related than two snippets from inde-
pendent recordings.

6.3.1.1 Data Augmentation Front-end

Temporal Proximity Sampling. The incoming training examples to our
framework are log-mel spectrograms of audio clips. From each training ex-
ample, X , we sample two views, which we call T-F patches. These patches,
xi ∈ X and x j ∈ X are selected randomly over the length of the clip spectro-
gram. However, there are other ways to select

{
xi,x j

}
∈ X . Section 6.3.3.1

analyzes the benefits of sampling
{

xi,x j
}
at random over other alternatives.

Mix-back. The first operation that we apply to each incoming patch is what
we call mix-back. It consists in mixing the incoming patch xi with a background
patch, bi, as follows:

xm
i = (1−λ )xi +λ [E (xi)/E (bi)]bi, (6.1)
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Figure 6.1: Framework for contrastive learning of audio representations based on
similarity maximization. The framework is composed of an augmentation front-end,
a common encoder fθ , and a common projection head gφ . Dashed lines between
networks denote shared weights. The augmentation front-end is composed of temporal
proximity sampling (TPS), mix-back and other data augmentations. Primes in the
data augmentation (DA) blocks illustrate that each block is a different instance of
the same augmentation policy. The Figure illustrates the creation of pairs of positive
examples—the pairs of negatives are constructed from different clips.

where λ ∼ U (0,α), U is a uniform distribution, α ∈ [0,1] is the mixing hyper-
parameter (typically a small value), and E (·) denotes the energy of a given
patch. A similar approach is used in Jansen et al. (2018) to create examples
for triplet loss-based training. The energy adjustment of Equation 6.1 ensures
that xi is always dominant over bi, even if E (bi)>> E (xi), thereby preventing
aggressive transformations that may make the proxy task too difficult. Before
Equation 6.1, patches are transformed to linear scale (inversion of the log in
the log-mel) to allow energy-wise compensation, after which mix-back is ap-
plied, and then the output, xm

i , is transformed back to log scale. Background
patches b are randomly drawn from the training set (excluding the input clip
X ), hence they are out-of-batch in the vast majority of cases. As mentioned in
Section 6.2, recent work shows that useful representations arise if data views
share as little information as possible, while preserving relevant semantic in-
formation that keeps the predictive power for related downstream tasks (Tian
et al., 2020). That is our motivation to use mix-back: i) shared information
across positives is decreased by mixing xi and x j with different backgrounds,
and ii) semantic information is preserved due to sound transparency (i.e., a
mixture of two sound events inherits the classes of the constituents) and the
fact that the positive patch is always predominant in the mixture. Mix-back
can be understood as a data augmentation method, but we separate it from
the others as it involves two input patches.
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Other Stochastic Data Augmentation Methods. After temporal prox-
imity sampling and mix-back, we finally adopt other data augmentation meth-
ods. We choose data augmentation methods that are directly computable over
T-F patches (rather than waveforms). One of the main criteria is that the aug-
mentations are simple and suitable for on-the-fly computation. Therefore, we
prioritize speed rather than acoustical or mathematical correctness. We con-
sider data augmentation methods both from the computer vision and audio
literature:

Random resized cropping. This is a common augmentation in the
computer vision literature, used for example for ImageNet training (Rus-
sakovsky et al., 2015). It consists of making a random sized crop of the
incoming patch and resizing it to the original patch dimensions. We fol-
low the Inception-style random cropping (Szegedy et al., 2015), also ad-
opted in Chen et al. (2020b) for visual representation learning. The size
of the crop is distributed uniformly within a pre-specified range of the in-
coming patch size. While, a priori, this image augmentation might seem
not appropriate for spectrograms, we are interested in knowing whether
there is any benefit from the stretching effect that it might inflict over
the time and frequency dimensions.

Random time/frequency shift. In the time dimension, this is a time
delay. The hyperparameter n f determines the maximum number of delay
frames. The actual delay is drawn from a uniform distribution U (1,n f ).
In the frequency dimension, we shift the input patch by a number of
mel bands upwards in frequency. The highest bands that are shifted
beyond the patch dimensions are placed in the lowest bands of the new
transformed patch. The hyperparameter nb determines the maximum
number of shifting bands. The actual shift is drawn from a uniform
distribution U (1,nb).

Compression. This augmentation consists of a simple compression of
the log-mel energies obtained by multiplying them with a scaling factor
drawn from a uniform distribution U (αc,1), where αc ∈ (0,1) is a hyper-
parameter.

specAugment. specAugment (Park et al., 2019) is described in Section
2.3.4.2. In these experiments, we apply two frequency masks and two
time masks. Time warping is not applied. The width of the frequency
masks and time masks is drawn from uniform distributions, U (0,Fm)
and U (0,Tm), where Fm and Tm are hyperparameters representing the
maximum number of consecutive bands or time frames being masked by
one mask, respectively.
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Gaussian noise addition. This augmentation consists of addition of
Gaussian noise directly on the log-mel energies. The noise is given by a
Gaussian distribution N

(
0,σ2

)
with mean 0 and standard deviation σ .

In turn, σ is drawn from a uniform distribution U (0,αg), where αg is a
hyperparameter.

Implementation for the above augmentation methods is available in the re-
leased code.51 Each augmentation method has one or more hyperparameter(s)
that must be manually tuned and that are kept constant for a given experiment.
As seen above, each of these manually-tuned hyperparameter(s) determines a
uniform distribution from which the actual parameter determining the spe-
cific augmentation is drawn. This process is done at the patch level, that is,
for every patch a new parameter is drawn from each distribution, leading to
a different instantiation of the augmentation method. In this way, the data
augmentation operations specifically applied over each view of a given example
are in fact two different instantiations of the same family of transformations.
This is indicated by DA and DA′ in Figure 6.1.
The final augmentation policy adopted consists of sequentially applying ran-
dom resized cropping, compression and Gaussian noise addition. Nonetheless,
as we discuss in Section 6.3.3.3, other augmentation policies may also be valid
and possibly lead to better performance. These augmentation methods trans-
form xm

i into the input patch x̃i for the encoder network.

6.3.1.2 Similarity Maximization

Encoder Network. We use a CNN-based encoder network fθ with para-
meters θ to extract the embedding hi = fθ (x̃i) from the previously augmented
patch x̃i, where hi is the embedding right before the final fully-connected clas-
sification layer. Once the contrastive learning process is over and the encoder
is trained, the representation hi can be used for downstream tasks. In Section
6.3.3.4 we experiment with different encoder networks.

Similarity Projection Head. Following Chen et al. (2020b), a simple pro-
jection network gφ with parameters φ maps hi to the final L2-normalized low-
dimensional representation zi where the contrastive loss is applied. Our head
consists of a Multi-Layer Perceptron (MLP) with one hidden layer, batch-
normalization, and a ReLU non-linearity. Note that the projection head is
only used during contrastive learning, i.e., once the training is over, only the
trained encoder is used for downstream tasks. It must also be noted that the
embeddings zi and z j are obtained with a single instantiation of the encoder
network and the projection head (see shared weights in Figure 6.1).
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Contrastive Loss. To compare a positive pair of examples, xi and x j, we
adopt the normalized temperature-scaled cross-entropy (NT-Xent) loss given
by (Le-Khac et al., 2020; Chen et al., 2020b):

Lsimi, j =− log
exp(sim(zi,z j)/τ)

∑2N
v=11v ̸=i exp(sim(zi,zv)/τ)

, (6.2)

where zi and z j are the metric embeddings corresponding to the patches xi

and x j, sim(uuu,vvv) = uuu⊤vvv/∥uuu∥∥vvv∥ represents cosine similarity whose sensitivity is
adjusted by a temperature value τ ∈ (0,1], 1v ̸=i ∈ {0,1} is an indicator func-
tion that returns 1 when v ̸= i, and N is the batch size. Since two views are
generated from each incoming audio clip, the batch size is extended from N
to 2N elements. This allows for one pair of positive examples and 2(2N− 2)
pairs of negative examples for every input clip—the overall loss includes both
Lsimi, j and Lsim j,i . By minimizing the objective in Equation 6.2 during train-
ing, parameters θ and φ are adjusted to maximize the numerator (i.e., the
agreement between embeddings of positives, assigning them to neighboring
representations) while simultaneously minimizing the denominator (i.e., the
similarity between embeddings of negatives, forcing them to distant spots in
the embedding space).
The COLA approach utilizes bilinear similarity instead of cosine similarity as
scoring function in Equation 6.2, reporting performance boosts (Saeed et al.,
2021).

6.3.2 Experimental Setup

6.3.2.1 Dataset

The experiments conducted with our proposed framework are based on the
FSDnoisy18k dataset presented in Section 5.2, whose main characteristics are
outlined next. FSDnoisy18k contains 42.5h of Freesound audio distributed
across 20 classes drawn from the AudioSet Ontology (Gemmeke et al., 2017).
The dataset includes a small clean training set (1772 clips / 2.4h), a larger noisy
train set (15,813 clips / 38.8h), and a test set (947 clips/ 1.4h). Labels in the
clean and test sets are manually-labelled whereas labels in the noisy set are
inferred automatically from metadata, hence featuring real-world label noise.
The dataset is singly- and weakly-labeled, and clips are of variable-length in
range [0.3, 30]s.
We decided to avoid large-scale datasets, e.g., AudioSet (Gemmeke et al.,
2017), due to the computationally intensive contrastive learning experiments
that we set out to conduct. Utilizing AudioSet (over 5000h of audio) would
have been intractable under our compute resources at the time. FSDnoisy18k
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is much smaller than AudioSet while it has a much more reduced vocabulary
(20 classes vs 527 in AudioSet). As mentioned in Section 5.2.3, the number of
clips per class in the noisy set of FSDnoisy18k ranges from 250 to 1000. This
represents a relatively large amount of per-class training data when compared
to other popular related datasets (Salamon et al., 2014; Piczak, 2015b; Fon-
seca et al., 2018b; Cartwright et al., 2019c), making FSDnoisy18k a reasonable
candidate for this kind of study. The main shortcoming is that FSDnoisy18k’s
limited vocabulary implies that the learned representations are not transfer-
able to unrelated datasets or downstream tasks. Therefore, we conduct an
in-domain evaluation, that is, we evaluate the learned representations using
also FSDnoisy18k. Specifically, FSDnoisy18k allows evaluation of learned rep-
resentations on two real-world scenarios: using a small clean set for training,
and a larger noisy set for training.
The FSD50K dataset proposed in Chapter 3 would have been a natural can-
didate for this study. Its vocabulary of 200 classes seems reasonably large to
be able to learn general-purpose audio representations that can then be trans-
ferred to other downstream tasks or datasets, as done in a recent work by
Niizumi et al. (2021). Unfortunately, FSD50K was not finished by the time
these experiments started.

6.3.2.2 Learning Pipeline

Our learning methodology consists of two stages. First, we carry out unsu-
pervised contrastive learning of a low-dimensional representation. Then, we
conduct the evaluation of the learned audio representation using supervised
tasks. In both stages, incoming audio is transformed to 96-band log-mel spec-
trograms, and to deal with variable-length clips we use T-F patches of 1s
(equivalent to 101 frames of 30ms with 10ms hop). Shorter clips are replic-
ated; longer clips are trimmed in several patches. Thus, the input to all models
is of shape TxF=101x96, as in the pre-processing of FSD50K (Section 3.4.1).
We use three CNN architectures in our study. On the one hand, we use a
ResNet-18 (He et al., 2016a) as this network is widely used among visual rep-
resentation learning works (Chen et al., 2020b,c). On the other hand, we also
adopt a VGG-like and a CRNN very similar to those evaluated with FSD50K
in Section 3.4.1. As mentioned in that Section, these networks are commonly-
used for SER tasks. Models are always trained using SGD with momentum
0.9 and weight decay 10−4, using a batch size of 128 and shuffling examples
between epochs.
For the unsupervised contrastive learning experiments (covered in Sec-
tion 6.3.3), we follow the approach described in Section 6.3.1. In this stage,
we always train on the noisy set and validate on the clean set of FSDnoisy18k.
Models are trained for 500 epochs, with initial learning rate of 0.03, divided
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by 10 in epochs 325 and 425.
For the supervised learning experiments assessing the learned representa-
tions (covered in Section 6.3.4), we adopt two downstream classification tasks:
one training on the noisy set and validating on the clean set of FSDnoisy18k,
and another training on the clean set, after separating 15% for validation pur-
poses (see Section 6.3.4.2). Models are trained for 200 epochs to minimize
categorical cross-entropy, reducing the learning rate in epochs 80 and 160.
The initial learning rate is 0.1 when training from scratch, and 0.01 in case
of initializing with unsupervised pre-trained weights in order to constrain the
learning process.

6.3.2.3 Evaluation Methodology

To quantify the quality of the learned audio representations, we follow three
approaches: i) a variation of the standard k-Nearest Neighbour (kNN)
evaluation in Wu et al. (2018), ii) the widely used linear evaluation protocol
(Oord et al., 2018; Chen et al., 2020b), and iii) fine-tuning a model end-
to-end.

kNN Evaluation. For the kNN evaluation, we estimate the representation z
for each validation patch and compare it against every other patch in the given
set via cosine similarity. The prediction for every patch is, then, obtained by
majority voting across the k neighbouring labels, where k = 200 as in Wu et al.
(2018). In turn, clip-level predictions are obtained by majority voting of patch-
level ones. This evaluation is used for fast contrastive learning experimentation
as no additional training is required.

Unlike kNN evaluation, linear evaluation protocol and end-to-end fine-tuning
involve further training and passing patches through an entire model to pro-
duce prediction probabilities.

Linear Evaluation Protocol. The linear evaluation protocol involves train-
ing an additional linear classifier on top of the pre-trained unsupervised em-
bedding on a given downstream task. In other words, this means training an
additional linear classifier on top of the frozen base network. In this setting,
we use test accuracy as a proxy for the quality of the learned representation,
as in Chen et al. (2020b).

End-to-end Fine-tuning. This evaluation approach consists of fine-tuning
a model on a given downstream task after initializing it with the pre-trained
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contrastive weights. Unlike in the linear evaluation protocol, here all the
weights in the network are updated on the downstream task, hence the term
end-to-end.

In linear evaluation and end-to-end fine-tuning, patch-level predictions are av-
eraged per-class across all patches in a clip to obtain clip-level predictions.
Common to the three evaluation methods in this Section, once clip-level pre-
dictions are gathered for a given set, overall accuracies are computed on a
per-class basis, then averaged with equal weight across all classes to yield the
performance reported in Sections 6.3.3 and 6.3.4. For linear evaluation and
end-to-end fine-tuning, we report test accuracy provided by the best valida-
tion accuracy model. However, learning curves for the contrastive learning
experiments using kNN evaluation were found to be relatively noisy, such that
best accuracy is not always representative of the overall quality of the train-
ing process. Consequently, we decided to use the average validation accuracy
across the last 50 epochs, as top performing model checkpoints appear at the
end of the training. Finally, results by the three above evaluation methods are
compared against supervised baselines, where metrics are computed following
an identical procedure to that of end-to-end fine-tuning.

6.3.3 Ablation Study

In this Section, we report on ablation experiments carried out in order to study
the main components of our proposed method of Figure 6.1. Results reported
in this Section are always using kNN validation accuracy as a result of
the kNN evaluation method described in the previous Section. In the analysis
of each component, we always start from the best configuration found, then
evaluate other alternatives.

6.3.3.1 Temporal Proximity Sampling

Table 6.1 shows the results for different implementations of the temporal prox-
imity sampling, that is, different ways of sampling T-F patches within the
incoming audio clip. In particular, we compare i) sampling patches at random
within the clip, and ii) deterministic sampling of patches in which they are sep-
arated by a sampling distance of d time frames (where each frame corresponds
to a time shift of 10ms, as per the hop size adopted when framing the audio
signal). It can be seen that stochastically sampling patches provides superior
performance. We study the impact of progressively increasing d between a
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Table 6.1: kNN validation accuracy for several mechanisms of temporal proximity
sampling. d is the distance between patches, in number of time frames. Each frame
corresponds to a time shift of 10ms, given by the hop size adopted when framing audio.

Sampling Method kNN

Sampling at random 70.1
d = 0 (same T-F patch) 51.1
d = 25 61.5
d = 75 65.1
d = 125 67.9
d = 200 69.9
d = 300 68.5
d = 400 69.7

first randomly sampled patch xi and a second patch x j.53 The overall trend
observed is that the higher the distance, the better the representation learned.
As the patch length is 101 frames, when d < 101 both sampled patches overlap
(middle section of Table 6.1). Results show that the cases featuring overlap-
ping patches (d < 101) underperform no overlapping ones (d > 101, bottom
section of Table 6.1), where performance saturates. This observed behaviour
aligns to some extent with recent results in computer vision, where increasing
the distance between image crops is beneficial only up to some values, after
which performance decreases due to little semantic content shared between the
views (Tian et al., 2020).

6.3.3.2 Mix-back

Table 6.2 shows results for mix-back for best mixing hyperparameter α ∈
{0.02,0.05,0.1,0.2}. It can be seen that using mix-back helps considerably,
and adjusting the energy is also beneficial. The latter means that the fore-
ground patch is always dominant over the background patch, thus preventing
potentially aggressive transformations. The optimal values for the mixing hy-
perparameter α are small, which indicates that a light mixture is preferred
(see Section 6.3.1.1 for details). Interestingly, we observe that lightly adding
backgrounds from other patches (i.e., mix-back, Table 6.2) is more beneficial
than adding artificial Gaussian noise (see first and second rows from Table
6.3). These results suggest that mixing with natural backgrounds from real
audio signals is suitable for contrastive audio representation learning.

53The distance d between patches might be bounded due to clip length, which lies in the
range [0.3, 30] seconds.
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Table 6.2: kNN validation accuracy for several mix-back settings. α ∈ [0,1] is the
mixing hyperparameter.

Mix-back Setting (α) kNN

Mix-back w/ E adjustment (0.05) 70.1
Mix-back w/o E adjustment (0.02) 66.2
w/o mix-back 63.3

6.3.3.3 Other Stochastic Data Augmentation Methods

Table 6.3 lists the main results for several data augmentation policies. Each
row represents the best result after non-exhaustively sweeping the correspond-
ing data augmentation hyperparameters. We started by exploring data aug-
mentation methods individually (from bottom to top in Table 6.3). The top
data augmentation applied individually is random resized cropping. Through
visual inspection of a number of T-F patches, we found out that the optimal
random resized cropping applies a mild cropping (instead of a severe one),
which can be seen as a small stretch in time and frequency that also involves a
small frequency transposition. In particular, the original Inception-style imple-
mentation of random resized cropping considers crops whose size is distributed
uniformly between 8% and 100% of the incoming image size (Szegedy et al.,
2015). Here, after a non-exhaustive sweep of the crop size, the best validation
kNN accuracies were found when applying a much less aggressive cropping,
specifically, using crop sizes distributed uniformly between 80% and 100% of
the incoming T-F patch size. This is the cropping configuration in which the
cropped T-F patches most resemble the original patch, among the configura-
tions considered. This result suggests that more severe croppings (i.e., smaller,
such as those applied with images in computer vision) provide transformations
that are too aggressive and thereby unsuitable for our task. This random res-
ized cropping slightly outperforms specAugment (Park et al., 2019), which has
been successfully used for contrastive learning of speech embeddings (Nandan
& Vepa, 2020), and which also works well for sound events.
Then, we explored compositions of data augmentation methods based on the
mentioned random resized cropping. We found out that, to a lesser extent,
compression and Gaussian noise addition also improve the learned represent-
ation. We adopt this data augmentation policy (top row of Table 6.3) for all
experiments reported in Sections 6.3.3 and 6.3.4. The configuration of best hy-
perparameters after non-exhaustive tuning consists of: crop sizes distributed
uniformly between 80% and 100% of the incoming T-F patch size, compression
with αc = 0.75, and Gaussian noise addition with αg = 0.01.
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Table 6.3: kNN validation accuracy for several data augmentation (DA) settings.
RRC = random resized cropping.

DA Policy kNN

RRC + compression + Gaussian noise 70.1
RRC + compression 69.6
RRC + specAugment 70.0
RRC 69.0
specAugment (Park et al., 2019) 68.0
w/o DA 60.1

However, a subsequent more thorough exploration of the augmentation meth-
ods revealed promising results by composing random resized cropping and
specAugment, yielding almost top results (70.0). It is conceivable that a more
exhaustive (and costly) exploration of the data augmentation compositions
may lead to better results, e.g., complementing random resized cropping and
specAugment with other softer augmentations such as compression or Gaus-
sian noise addition. Nonetheless, this should be done carefully. For example, in
our experiments we have seen that the ordering of the augmentations matter,
and joining individually-tuned augmentations can be suboptimal as different
augmentations in a composition affect each other.

6.3.3.4 Encoder and Temperature

For encoder architectures, we explore ResNet-18, VGG-like and CRNN, ob-
taining kNN validation accuracies of 70.1, 67.7 and 67.1, respectively. These
results may suggest that networks with higher capacity (ResNet-18 in our case)
are better suited for contrastive audio representation learning, which accords
with previous insight in the visual domain (Chen et al., 2020b). We will see
more results supporting this hypothesis in Section 6.3.4. We also experiment
with the temperature τ of the NT-Xent loss function (Equation 6.2), which has
been found to be a relevant parameter in Chen et al. (2020c). In particular we
sweep τ ∈ {0.1,0.2,0.3,0.4}, obtaining the kNN validation accuracies of 68.9,
70.1, 68.9 and 67, respectively. Results show the framework’s sensitivity to τ,
which we also find to be dependent on the projection head configuration.

6.3.3.5 Discussion

In general, we observe that the proposed framework of Figure 6.1 is sensitive
to hyperparameter changes, and that the various settings of each compon-
ent affect each other, thus requiring extensive experimentation for appropriate
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tuning. At the same time, computation runtimes for unsupervised contrast-
ive pre-training experiments are longer than those for supervised classification
experiments. This is due to i) the higher number of training epochs used,
which we found useful in accordance with Chen et al. (2020b), and ii) a more
computationally expensive learning algorithm, which includes pairwise com-
parisons of embeddings after the forward pass as well as several data augment-
ation methods. As a consequence, the results reported here are the outcome
of a non-exhaustive exploration of the components in the data augmentation
front-end of Section 6.3.1.1. It is possible that a more in-depth exploration of
the augmentation methods and their interaction leads to further performance
boosts.
From Sections 6.3.3.1 and 6.3.3.2 we observe that i) sampling overlapped T-F
patches when drawing positive examples is detrimental, and ii) lightly mix-
ing the positive examples with natural backgrounds is beneficial. This could
indicate that the original positive examples sometimes share time-frequency
patterns that can be used to lower the NT-Xent loss function of Equation 6.2,
but that hinder the learning of useful audio representations. These undesired
patterns are denoted as shortcuts in the computer vision literature (Mind-
erer et al., 2020). Examples of shortcuts in self-supervised audio representa-
tion learning may include recording equipment, room acoustics or background
noise. FSDnoisy18k is based on Freesound audio, which in turn is composed
of audio contributed by uploaders. As we discussed in Sections 3.2.6 and 3.4.2,
clips coming from the same uploader are likely to share some of these pat-
terns, which has been shown to have an impact in supervised sound event
tagging. We conjecture that this could be a source of shortcuts in our setting,
which is being mitigated by the stochastic sampling of positive T-F patches
and mix-back. This interesting topic warrants further investigation.
Finally, negative examples are drawn from clips within the current batch at
every iteration, as done in Jansen et al. (2020); Chen et al. (2020b). Some
previous works report advantages of using larger batch sizes as a way to provide
more negative examples, which facilitates training convergence. For example,
batch sizes up to 8k are used in Chen et al. (2020b). Our compute resources
do not support such large batch sizes, hence all our experiments are conducted
with a batch size of 128, commonly used for supervised learning experiments.
Based on insights from Chen et al. (2020b); Wang & van den Oord (2020), it is
conceivable that using larger batches yields better results than those reported
here.
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Table 6.4: Test accuracy for linear evaluation protocol (second column), and for two
downstream sound event classification tasks: a larger noisy set and a small clean set for
training. *This column also corresponds to the supervised baselines to be compared
with the linear evaluation. p-t = pre-trained.

Model Linear Larger noisy set Small clean set
(weights in M) - random* p-t random p-t

ResNet-18 (11) 74.3 65.4 78.2 56.5 77.9
VGG-like (0.3) 70.0 70.6 72.8 61.1 72.3
CRNN (1) 64.4 72.0 74.2 58.7 69.1

6.3.4 Evaluation of Learned Representations

6.3.4.1 Baseline Systems and Linear Evaluation

Table 6.4 presents the test accuracies for the linear evaluation protocol and the
corresponding supervised baselines (second and third columns, respectively).
In the third column, we observe that the supervised CRNN and VGG-like per-
form similarly (72.0 and 70.6), while ResNet-18 performs worse (65.4). This
trend accords with the results obtained for the baseline systems of FSD50K
in Section 3.4.1 and Table 3.6. In the current setting, this could be due to
the capacity of ResNet-18 (the largest by far), which may lead to overfitting
of the smaller dataset (and the noisy labels to some degree). In linear eval-
uation of the contrastive weights, however, ResNet-18 is the top performing
system (74.3). This finding accords with the kNN evaluation of Section 6.3.3.4
and with findings in Chen et al. (2020b). Thus, with ResNet-18 the super-
vised baseline is exceeded by a considerable margin, whereas with VGG-like
and CRNN most of the supervised performance is recovered (99% and 89%,
respectively).

6.3.4.2 In-Domain Downstream Prediction Tasks

As mentioned in Section 6.3.2.1, we conduct an in-domain evaluation of the
learned audio representations, similar to that of Cartwright et al. (2019a) in the
context of urban sounds. In particular, we utilize the two downstream sound
event classification tasks posed by FSDnoisy18k: i) training on the larger set
of noisy labels (as done always so far for unsupervised contrastive learning),
and ii) training on the small set of clean data (in this case, keeping 15% of
the clean set for validation purposes). For each task, we compare a supervised
baseline trained from scratch, with fine-tuning the network initialized with un-
supervised pre-trained weights. These correspond respectively to the columns
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random and p-t (pre-trained) in Table 6.4. This set of experiments aims at
measuring the benefits of unsupervised contrastive pre-training with respect
to training from scratch in noisy- and small-data regimes.
Table 6.4 shows that unsupervised contrastive pre-training brings great be-
nefits, achieving better results than training from scratch in both tasks and
across all network architectures considered. For both tasks, using the ResNet-
18 architecture as encoder yields top accuracy in the pre-trained setup, and the
lowest accuracy when trained from scratch. This suggests that the performance
attainable with ResNet-18 supervised from scratch is limited, potentially by
limited data and/or label quality. In contrast, unsupervised contrastive pre-
training seems to alleviate these problems, leveraging ResNet-18’s capacity and
yielding superior performance. Greater pre-trained vs. random improvements
are observed in the “smaller clean” task. Also, interestingly, the pre-trained
performance in the “smaller clean” task shows little degradation with respect
to that of the “larger noisy” task, despite having far fewer training examples.
As established in Section 6.3.2.1, the noisy set has 15,813 clips whereas the
clean set has only 1772 clips—a proportion of almost 9:1. Specifically, for
ResNet-18, the pre-trained performance decreases from 78.2 to 77.9, whereas
training from scratch yields a substantial accuracy drop (from 65.4 to 56.5).
A possible explanation for the similar pre-trained performance across down-
stream tasks may be that, in the “smaller clean” task, the pre-trained model
is fine-tuned with unseen clean data (albeit a small amount). However, in the
“larger noisy” task, the model is fine-tuned with the same data previously used
for unsupervised contrastive learning, and the supervision that is now available
for fine-tuning is affected by label noise. Yet, even when using the same data,
unsupervised contrastive pre-training still outperforms training from sractch.

6.4 Self-Supervised Representation Learning from
Automatically Separated Sound Scenes

In the previous Section, we have seen that the simultaneous use of a diversity of
augmentation methods is critical to the success of the similarity maximization
task, which is consistent with the findings reported in Chen et al. (2020b). For
audio modeling, commonly-adopted augmentation strategies include mainly
those explored in the previous Section, which have also been used by recent
works: temporal proximity sampling (Jansen et al., 2018, 2020; Saeed et al.,
2021; Wang & van den Oord, 2020), artificial example mixing (Jansen et al.,
2018; Wang & van den Oord, 2020), time/frequency masking (Nandan & Vepa,
2020; Wang & van den Oord, 2020), time/frequency shifts (Jansen et al., 2018;
Wang & van den Oord, 2020), Gaussian noise addition (Jansen et al., 2018) and
random resized cropping. In most cases, these augmentations introduce arti-
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ficial, handcrafted transformations with hyperparameters that must be tuned
to lie within a semantics-preserving range. However, typical sound scene re-
cordings already tend to be quite complex, involving mixtures of several sound
sources at varying levels and unexpected channel distortions. Therefore, these
artificial augmentation techniques risk introducing an unrealistic domain shift
that can hinder generalization to real-world applications.
Real-world sound scenes consist of time-varying collections of sound sources,
each generating characteristic sound events that are mixed together in audio re-
cordings. The association of these constituent sound events with their mixture
and each other is semantically constrained: the sound scene contains the union
of source classes and not all classes co-occur naturally. With this motivation,
in this Section we explore the use of unsupervised automatic sound separation
to decompose unlabeled sound scenes into multiple semantically-linked views
for use in self-supervised contrastive learning. This provides a sort of inverse
to traditional example mixing augmentation: instead of constructing artificial
mixtures, we decompose a sound scene into a collection of simpler channels that
share semantic aspects with the original recording and each other. In contrast
to the previous approaches, this automatic separation approach is data-driven
and input-dependent, producing ecologically valid views that eliminate the
need for parameter tuning for the given dataset.
We find that learning to associate sound mixtures with their constituent separ-
ated channels elicits semantic structure in the learned representation and yields
stronger representations than past approaches that use the mixtures alone. We
also show that learning to associate pairs of mixtures and their separated chan-
nels is complementary to some of the commonly-used data augmentations from
the previous Section. Furthermore, we pair this augmentation procedure with
a multitask objective that includes the proxy tasks of similarity maximization
and coincidence prediction, which exhibit complementary behavior for different
downstream representation use cases. Finally, we discover that a wide range of
separation model competencies enable useful (and complementary) augment-
ations, suggesting that optimal sound separation performance is not essential
for representation learning. The best representation learned with our sound-
separation informed framework achieves an mAP of 0.326 on the downstream
shallow-model AudioSet classification task. This exceeds previous results on
this benchmark by a large margin under the same evaluation protocol (Jansen
et al., 2018, 2020), and is on par with the state-of-the-art under comparable
evaluation settings (Wang & van den Oord, 2020).
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6.4.1 Sound Separation as Data Augmentation

Sound separation has been studied as preprocessing to improve supervised
sound event detection (Turpault et al., 2020b, 2021). Here, we propose sound
separation as an augmentation to generate pairs of positive examples for con-
trastive learning. In Section 6.2, we highlighted two observations: First, suit-
able views for contrastive learning are those such that their mutual inform-
ation is reduced while the semantically-relevant information between them is
retained (Tian et al., 2020). Second, the proxy learning task attempts to ignore
the transformations applied to create the views, that is, to learn representa-
tions invariant to such transformations.
We propose to decompose an incoming audio clip, which in general is a mix-
ture of multiple sound events, into its constituent sources. We then use the
mixture and these separated channels to form positive pairs for contrastive
learning. In particular, the comparison of the input mixture and one of the
separated channels should meet the requirements established above: i) the mu-
tual information is reduced as, in principle, there is at least one input sound
source that is no longer in the separated channel; ii) some relevant semantics
are preserved as the sound source(s) present in the separated channel is also
present in the input mixture. Therefore, in theory, this comparison would be
well suited for contrastive learning. Further, with this comparison we are pro-
moting the learning of representations that are invariant to combinations of
naturally co-occurring or overlapping sources—a valuable property for general-
purpose audio recognition applications. We use this mixture vs channel com-
parison as the default contrastive setup for the majority of our experiments,
as illustrated in the proposed learning framework depicted in Figure 6.2. By
contrast, the comparison between two separated channels would not be appro-
priate for the similarity maximization task as, in principle, each channel would
contain different sources, thereby violating the semantic preservation require-
ment. However, this channel vs channel comparison could still be useful for the
coincidence prediction task, where the semantic equality demand is relaxed to
require only some consistency between the examples in order to support their
coincidence prediction. We evaluate experimentally these hypotheses in Sec-
tion 6.4.4, uncovering several nuances.

6.4.1.1 MixIT for Unsupervised Sound Separation

For a sound separation system we use a model trained with Mixture Invariant
Training (MixIT) (Wisdom et al., 2020). MixIT is an unsupervised method
in which training examples are constructed by mixing existing audio clips,
and the model is tasked to separate the resulting mixtures into a number of
latent sources, such that an optimal remix of the separated sources best ap-
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Figure 6.2: Sound-separation informed framework for contrastive learning of audio
representations. It is composed of an unsupervised sound separation and augment-
ation front-end, a common encoder fθ , and two task-specific heads, gφ and gγ , for
the similarity maximization and coincidence prediction tasks respectively. Dashed
lines between networks denote shared weights. Each separated channel feeding each
proxy task (xsim

c for similarity maximization or xcoin
c for coincidence prediction) is se-

lected randomly between the two output channels from the MixIT separation model.
The concat block stacks the latent representations for each view to define the input
to the coincidence prediction head. Primes in the data augmentation (DA) blocks
illustrate that each block is a different instance of the same augmentation policy,
combining Temporal Proximity and SpecAugment. Note that the front-end illustrates
the creation of pairs of positive examples—the pairs of negatives are constructed from
different clips.

proximates the original mixtures. The main advantage of MixIT compared to
previous methods is that it does not require knowledge of ground truth source
signals, which allows leveraging large amounts of unlabeled data. In addition,
MixIT has shown great promise in the task of universal sound separation, that
is, separating arbitrary sounds instead of specializing to, for example, speech
(Kavalerov et al., 2019b; Wisdom et al., 2021).
Our separation models were trained on AudioSet (Gemmeke et al., 2017) while
ignoring all available labels and using previously proposed training settings
(Wisdom et al., 2020). All MixIT separation models were provided by Scott
Wisdom of Google Research. The separation model architecture used is based
on an improved time-domain convolutional network (TDCN++) (Kavalerov
et al., 2019b), which is similar to a Conv-TasNet (Luo & Mesgarani, 2019).
This model consists first of an encoder that maps short frames of the input
waveform to a latent space. Then, separation is done in the latent space where
M masks are predicted for the target sources. Finally, M separated waveforms



186 Self-Supervised Learning of Sound Event Representations

are reconstructed through a decoder from the masked features. Separated
sources are constrained to add up to the input mixture via a consistency pro-
jection layer (Wisdom et al., 2019). One of our goals is to assess the benefits of
MixIT separation pre-processing coupled with a contrastive learning back-end.

6.4.1.2 Composition of Augmentations

As discussed in Section 6.2, composing several augmentations is important to
obtain effective representations. This has been shown for vision tasks (Chen
et al., 2020b), and it is also suggested by the results of Section 6.3.3. By
composing multiple augmentations, we define a more challenging learning task
so that higher-quality representations can emerge.
Here, in order to construct a more challenging proxy task, we combine sound
separation with temporal proximity sampling and SpecAugment (Park et al.,
2019) (in this order). Temporal proximity sampling was introduced in Section
6.2, and was proven effective in the experiments of Section 6.3.3.1. Here,
it consists of randomly selecting two audio snippets of 0.96s as basic units
to construct pairs of examples, instead of leveraging entire AudioSet clips of
typically 10s.
Then, we apply SpecAugment on the log-mel spectrograms of the selected audio
snippets, with time warping and time/frequency masking (Park et al., 2019).
SpecAugment has gained popularity as data augmentation in supervised clas-
sification, and it has also been used to generate views for contrastive learning
of speech (Nandan & Vepa, 2020). By using it, we also observed competitive
results in the experiments of Section 6.3.3.3.
The combination of temporal proximity sampling and SpecAugment is repres-
ented by the data augmentation (DA) blocks in Figure 6.2. Together with the
preceding unsupervised sound separation stage, they form the front-end for
the two proxy tasks. In Section 6.4.4.3 we further extend these compositions
including different convergence states of the separation model which provide
distinct transformations to the incoming audio.

6.4.2 Proxy Learning Tasks

This Section describes the two proxy tasks used in our framework: a similarity
maximization task, and a coincidence prediction task. For both, a pair of
positive examples is constructed by selecting two audio snippets within the
same 10s AudioSet clip, either from the input mixture or from the resulting
separated channels. Analogously, a pair of negative examples is constructed by
selecting two snippets from different clips (mixtures or separated channels).
This is based on the assumption that two snippets within a given temporal
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proximity are much more likely to be semantically related than two snippets
from independent recordings.

6.4.2.1 Similarity Maximization

As introduced in 6.3.1, the similarity maximization task consists of maximizing
the agreement between differently-augmented views of the same audio example.
This loss attempts to co-locate the two representations in the same spot of the
embedding space, thus promoting invariance to the transformations applied to
generate the views. Its block diagram is depicted in the top half of Figure 6.2.

Front-end. The pipeline starts with one input mixture xm (i.e., one AudioSet
clip). Using the separation model, every incoming mixture xm is separated into
two output channels, from which one is randomly selected for this proxy task,
xsim

c . Next, xm and xsim
c undergo temporal proximity sampling and SpecAug-

ment transformations (see Section 6.4.1.2). Note that each example xm or xsim
c

undergoes a different instance of the same transformation policy (indicated by
DA and DA′ in Figure 6.2).

Encoder Network. The outputs from the DA blocks, x̃sim
m and x̃sim

c , feed a
convolutional encoder fθ in order to extract low-dimensional embeddings h.
Specifically, for the top branch we obtain hsim

m = fθ
(
x̃sim

m
)
, where hsim

m is the
representation after a d-dimensional embedding layer and θ are the encoder’s
parameters. Once the training is over and the encoder has converged, the
representation h is evaluated on downstream tasks.

Similarity Projection Head. We use a simple MLP, gφ with parameters
φ, to map the representation h to the final metric embedding z, the domain in
which the contrastive loss is applied. This head is used to allow the representa-
tion h to back away from the representation at the training objective. Previous
work reports better downstream performance using h instead of z (Chen et al.,
2020b), something we also observed in preliminary experiments.

Contrastive Loss. To compare a positive pair of examples, xm and xsim
c , we

adopt the NT-Xent loss (Le-Khac et al., 2020; Chen et al., 2020b) introduced
in Equation 6.2, which we also include next for convenience:

Lsimi, j =− log
exp(sim(zi,z j)/τ)

∑2N
v=11v ̸=i exp(sim(zi,zv)/τ)

, (6.3)
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where zi and z j are the metric embeddings corresponding to xm and xsim
c ,

sim(uuu,vvv) = uuu⊤vvv/∥uuu∥∥vvv∥ represents cosine similarity whose sensitivity is adjus-
ted by a temperature value τ ∈ (0,1], 1v ̸=i ∈ {0,1} is a function that returns 1
when v ̸= i, and N is the batch size. Since two views are generated from each
incoming audio clip, the batch size is extended from N to 2N elements, allowing
for one pair of positive examples and 2(2N−2) pairs of negative examples for
every input mixture—the overall loss includes both Lsimi, j and Lsim j,i .

6.4.2.2 Coincidence Prediction

The coincidence prediction task relies on the slowness prior in representation
learning (Wiskott & Sejnowski, 2002). Audio waveforms of sound sources can
vary quickly, whereas the corresponding perceived semantics typically change
at a much slower rate. Consequently, there should be a relatively stable latent
representation in order to explain the semantic perception of the sound events.
This representation would ideally support the prediction of whether a pair of
examples are coinciding within a given temporal proximity. This task is a
generalization of the correspondence prediction task proposed for audio-visual
multimodal learning (Arandjelovic & Zisserman, 2017), where the task is to
predict time correspondence between audio and video frames. Here, we relax
the time scale requirement to predict coincidence within a prescribed temporal
proximity, specifically within the (maximum) 10s of AudioSet clips. The task
diagram is depicted in the bottom half of Figure 6.2.

Front-end and Encoder Network. In Jansen et al. (2020), this proxy
task has been applied directly to audio snippets drawn from the same/differ-
ent temporal proximity. Here, we adopt the augmentation front-end described
in Section 6.4.1, which is the same as for the similarity maximization task.
The processing carried out by the augmentation front-end yields the augmen-
ted examples x̃coin

m and x̃coin
c from xm and xcoin

c . Then, we use a convolutional
encoder to extract d-dimensional embedding representations h. Note that the
same encoder network is shared across both proxy tasks, fθ , as can be seen in
Figure 6.2.

Coincidence Projection Head. Once the embedding representations for a
pair of examples are obtained, we use a coincidence network, gγ with paramet-
ers γ, tasked to predict the (non)-coincidence between the pair. More specific-
ally, we feed gγ with the concatenation of the two embeddings [hcoin

m ,hcoin
c ]∈R2d .

The coincidence head consists of an MLP with one output unit, mapping the
concatenated embedding representation to the probability that the input pair
is coinciding—a binary classification task.
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Loss. In a generic batch of N pairs of within-clip coinciding examples (i.e.,
positive pairs), X =

{
(xi

1,x
i
2)
}N

i=1, we define N− 1 pairs of negative examples
per each pair of positives. This is done by pairing the non-coinciding examples
(xi

1,x
j
2) for i ̸= j. In this setting, for a given batch X and focusing on our goal

of optimizing the representation h, the coincidence loss function follows the
class-balanced binary cross entropy expression (Jansen et al., 2020):

Lcoin(X) =− 1
N

N

∑
i=1

loggγ([hcoin,i
m ,hcoin,i

c ])

− 1
N(N−1) ∑

1≤i, j≤N
j ̸=i

log
[
1−gγ([hcoin,i

m ,hcoin, j
c ])

]
.

(6.4)

6.4.2.3 Joint Optimization

We conjecture that jointly optimizing the two objectives above in a multi-task
setting can favor learning complementary information for semantic representa-
tion learning. Both proxy tasks share the ultimate goal of contrastive learning,
that is, supporting relationships between pairs of positives and pairs of neg-
atives so as to force a semantically structured embedding space. However,
each task pursues this goal in a slightly different way, in terms of underlying
principle and implementation.

Underlying Principle. The similarity maximization task essentially aims
to co-locate the representations of both examples in a positive pair at the
same point in the embedding space. Therefore, for successful representation
learning, it is usually required that some semantic relationship is preserved
between the two examples, e.g., the two examples share some class label(s).
By contrast, the coincidence prediction task is based on a weaker condition.
Instead of co-locating representations, the goal is to assign a representation
that supports coincidence prediction, establishing a clear relationship between
the representations for both examples, but not necessarily requiring their col-
location.

Implementation The NT-Xent loss of Equation 6.3 follows a canonical ver-
sion of contrastive loss, explicitly measuring similarity of embeddings as the
scoring function (Le-Khac et al., 2020). By contrast, the binary cross entropy
loss of Equation 6.4 is not a contrastive loss per se, but rather a loss typically
used for classification, fed with probabilities. In this case, one could argue
that the coincidence head serves as a learned similarity measure between two
points in the embedding space, conceptually analogous to the handcrafted scor-
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ing functions typically present in the canonical contrastive losses (e.g., cosine
similarity in the NT-Xent loss).

6.4.3 Experimental Setup

In Section 6.3.2 we discussed how our limited computational resources influ-
enced the choice of dataset and some design choices for the experiments with
the framework of Figure 6.1. In contrast, the experiments described in the
current and following Sections with the framework of Figure 6.2 were conduc-
ted during an internship at Google Research. This allowed leveraging larger
amounts of data and computational resources.

6.4.3.1 Evaluation Methodology

By optimizing the training objectives of Equations 6.3 and 6.4, the goal is to
learn semantically discriminative audio representations. We train our frame-
work using a superset of the AudioSet training set consisting of around 3M
audio clips, while ignoring all available labels. To evaluate the learned repres-
entation h, we use the trained encoder fθ as a feature extractor following the
next two evaluation methodologies. We adopt these evaluation methodologies
to allow direct comparison with past work by Jansen et al. (2018, 2020).

Query by Example (QbE) Retrieval. Given a small subset of AudioSet
with around 100 examples per class, cosine distance is computed between i)
all the within-class target pairs, and ii) all the (present, not-present) pairs
as non-target trials. Then, we sort the resulting distances in ascending order
and compute per-class AP of ranking target over non-target trials. Averaging
per-class AP leads to the reported QbE mAP. This is a direct measurement of
the representation semantic consistency without requiring further training.

Downstream Classification with Shallow Model. This is a supervised
classification task carried out by training and evaluating a shallow architec-
ture on top of the fixed embeddings previously learned. In particular, we use
an MLP with one 512-unit hidden layer and ReLU activation, followed by a
527-way classification layer with sigmoid activation. For this purpose, we use
the entire AudioSet training set version and report classification mAP. This
measures the usefulness of the learned representation for a large-vocabulary
downstream supervised classification task. This evaluation method is concep-
tually analogous to the linear evaluation protocol of Section 6.3.2.3. Here,
however, we use an MLP instead of the linear classifier used in linear evalu-
ation.
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For every experiment, we train our framework until QbE convergence, which
typically occurs between 400k and 600k steps, after which QbE mAP plateaus.
We select an encoder checkpoint from this plateau and report the QbE mAP.
Then, we use this checkpoint to extract features for the entire AudioSet and
conduct the shallow classifier evaluation. After L2-normalizing the embed-
dings, we train on the AudioSet training set, allowing 5% for validation where
we optimize mAP, then report classification mAP on the evaluation set.

6.4.3.2 Implementation and Training Details

Sound Separation. A critical parameter in the proposed framework is the
number of output waveforms in the separation model, M, which must be defined
at train time. Upon inspection of a few AudioSet clips selected randomly, we
realize that many clips contain one or two dominant sources (i.e., in the fore-
ground, lasting long within the clip), sometimes accompanied by additional
sources (either in the foreground but very short, e.g., impact sounds, or in
the background).54 We therefore ran preliminary experiments with M = {2,4}
and saw that results using M = 4 were slightly worse for both proxy tasks.
We attribute this to the fact that when M = 4 it is not uncommon to find
near-empty output channels, filled with mild background noise, or with sound
sources active only in a very short period of time. We hypothesize that using
these channels to create positive pairs can be problematic. To confirm our hy-
pothesis, we designed simple heuristics (based on energy and cosine similarity)
to detect these near-empty channels, in order to allow discarding the “worst”
channel in every contrastive setup, thus keeping only the other 3 channels from
where to pool positive examples. This led to a small but consistent perform-
ance improvement, confirming our initial hypothesis, yet still underperforming
results with M = 2. While further optimizations to allow using M = 4 could be
pursued, for simplicity we decided to adopt M = 2 in our experiments, which is
the minimal separation possible. In some cases, the two output waveforms com-
ing out of the separation model will contain one source each, whereas in other
cases they will contain several sources each. Consequently, we use the term
separated channels (and not sources) as it is deemed more appropriate. We be-
lieve M = 2 is sufficient to evaluate our hypothesis of sound separation serving
as a valid transformation for view generation in contrastive learning. Note that
sound separation is only used during the learning of the representation—in our
downstream tasks no separation is applied.

Temporal Proximity Sampling and SpecAugment. The DA blocks in
Figure 6.2 consist first of temporal proximity sampling, i.e., random selection of

54The main exception to this rule is music segments.
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0.96 s waveform snippets within the (maximum) 10s AudioSet clips. Snippets
are transformed to log-mel spectrogram patches using a 25ms Hann window
with 10ms hop, and 64 log-mel energy bands, leading to T-F patches of T×F =
96× 64. SpecAugment is then applied using i) two frequency masks and two
time masks, with a max width of 10 bands or frames, respectively; and ii) time
warping with 8 frames as maximum warp (Park et al., 2019).

Networks. For the encoder we use a convolutional network based on CNN14
from Kong et al. (2020a). Our modifications from the original CNN14 include
removing Batch Normalization (Ioffe & Szegedy, 2015) and Dropout (Srivast-
ava et al., 2014), which was not found to be beneficial in our experiments. In
addition, we substitute the classifier layer and the preceding fully-connected
layer by an embedding convolutional layer with d filters, followed by a global
max pooling operation to produce the d-dimensional representation h, which
is used for downstream tasks. We use d = 128 unless stated otherwise. The
resulting encoder network has 76M weights. The similarity head consists of an
MLP with one hidden layer of 256 units and ReLU non-linearity, followed by
an output layer with 128 units, which is the dimension for the metric embed-
dings z feeding the NT-Xent loss. The coincidence head consists of an MLP
with two hidden layers of 512 units and ReLU nonlinearities, followed by an
output layer with one single unit to produce coincidence predictions feeding
the class-balanced binary cross entropy loss.

Training Details. Experiments are carried out considering each proxy task
individually as well as the full framework trained jointly. When both tasks
are trained jointly, the two objectives are optimized from scratch and equally
weighted obtaining a joint loss L joint = Lsim +Lcoin, using one optimizer to up-
date all the networks. We use the Adam optimizer (Kingma & Ba, 2015) with
a learning rate of 1e-4 whenever the coincidence prediction task is involved, or
3e-4 when only the similarity maximization task is considered. The temper-
ature parameter in Equation 6.3 is set to τ = 0.3. Learning rates and τ are
tuned by optimizing QbE mAP on a validation set different from that used to
report results.

Batch Size. The framework is trained on Google Cloud TPUs of 32 cores
with a global batch size of 2048, which means local batches of 64 examples per
core. Loss contributions and gradients are computed locally in each replica,
then aggregated across replicas before applying the gradient update. Con-
trastive learning approaches typically benefit from comparison with multiple
negative examples. In our framework, negative examples are drawn from clips
within the current batch at every iteration, as done in Section 6.3.3 and also in
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previous works (Jansen et al., 2020; Chen et al., 2020b; Wang & van den Oord,
2020). This approach is more practical than relying on a memory bank (Wu
et al., 2018), a memory queue (He et al., 2020), or negative mining techniques
to find suitable negatives (Jansen et al., 2018). However, with this simple ap-
proach the quality and diversity of negatives are limited by the batch size (in
our case, the local batch size). Recent works show how increasing batch sizes
provide solid improvements in visual (Chen et al., 2020b) and audio (Wang &
van den Oord, 2020) contrastive representation learning. For example, Wang
& van den Oord (2020) utilize batch sizes of up to 32k examples. Here, we do
not explore this avenue and evaluate our proposed approach using the afore-
mentioned more usual batch size. Based on previous literature (Le-Khac et al.,
2020; Chen et al., 2020b; Wang & van den Oord, 2020), if our approach shows
promise using the batch size selected for our experiments, it is expected to
provide better performance under more favorable conditions given by larger
batches.

6.4.4 Experiments

This Section describes the experiments run using the framework of Figure
6.2, or portions of it. For simplicity, in the following Tables the similarity
maximization task and the coincidence prediction task are sometimes referred
to as SimCLR and CP, respectively.

6.4.4.1 Baseline Experiments

Table 6.5 lists the performance when sound separation is ablated from the
front-end in Figure 6.2, which is equivalent to all DA blocks being fed by the
input mixture xm.

Table 6.5: mAP without sound separation in the front-end (i.e., using only the
input mixture). SA = SpecAugment, TP = Temporal Proximity, CP = Coincidence
Prediction.

Representation QbE mAP Classification mAP

Log-Mel Spectrogram (baseline) 0.423 0.065
simCLR & SA 0.551 0.196
simCLR & TP 0.591 0.248
simCLR & TP & SA 0.613 0.265
CP & TP & SA 0.599 0.286
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We use log-mel spectrogram as a baseline handcrafted representation. As ex-
pected, both SpecAugment and temporal proximity with the similarity max-
imization task as back-end substantially outperform the naive log-mel spec-
trogram. The effectiveness of temporal proximity is noteworthy considering
its simplicity. Initially proposed in Jansen et al. (2018), it has been widely
adopted in contrastive learning works (Jansen et al., 2020; Wang & van den
Oord, 2020; Saeed et al., 2021), some of which use it as the sole augmentation
(Jansen et al., 2020; Saeed et al., 2021). Note that the approach simCLR & TP
is conceptually comparable to the recent COLA (Saeed et al., 2021). Combin-
ing temporal proximity and SpecAugment outperforms either one alone, thus
validating the composition in the DA blocks of the front-end. Finally, results
indicate different tendencies for the two proxy tasks, with the similarity max-
imization providing better QbE mAP, and the coincidence prediction attaining
better classification mAP.

6.4.4.2 Sound Separation for Contrastive Representation Learning

We now report the experiments including the unsupervised sound separation
block in the front-end, as depicted in Figure 6.2. We assess various compar-
isons enabled by sound separation preprocessing, namely: i) comparing the
input mixture with one of the separated channels (mix vs chan); ii) comparing
the two separated channels (chan vs chan); or iii) comparing the input mix-
ture with anything else, i.e., either with the input mixture or with one of the
separated channels (mix vs any). Table 6.6 shows the performance with the
similarity maximization (SimCLR) task as back-end.

Table 6.6: mAP using sound separation (SSep) in the front-end and the SimCLR
back-end. Temporal proximity sampling is always applied; SpecAugment (SA) is
applied as specified.

Comparison SSep SA QbE mAP Classification mAP

Mix vs mix (baseline) - - 0.591 0.248
Mix vs mix (baseline) - ✓ 0.613 0.265
Mix vs chan ✓ - 0.631 0.272
Mix vs chan ✓ ✓ 0.640 0.282
Mix vs any ✓ ✓ 0.638 0.279
Chan vs chan ✓ ✓ 0.611 0.254

By looking at the first rows of Table 6.6, we can benchmark SpecAugment
and sound separation. We see that sound separation preprocessing (third row)
provides a bigger boost in both metrics compared with SpecAugment (second
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row), yet the best performance is obtained from their composition (fourth
row). This trend for the mix vs chan comparison also holds for the other
contrastive setups. Results indicate that comparing the input mixture with
the separated channels provides substantially better representations than the
baseline approach of leveraging only the input mixture. This confirms the
usefulness of sound separation preprocessing for contrastive learning of audio
representations. Allowing the input mixture to be compared with itself in
addition to the separated channels (mix vs any) does not lead to performance
boosts. Generally, the performance of mix vs any and mix vs chan were very
similar across the experiments we ran. Hence, we adopt mix vs chan as best
setup in order to focus on the effect of sound separation.
Finally, comparing both separated channels (chan vs chan) performs signific-
antly worse, on par with the non-separated baseline (for QbE mAP) or even
worse (for classification mAP). If we assume the separation has successfully
isolated independent sources in each output, this comparison violates the se-
mantic preservation principle (thus hindering the learning of semantic repres-
entations), so we might have expected decrements even larger than the ≈0.03
mAP with respect to mix vs chan for both metrics. After inspection of a few
dozen separation examples, we identify two potential explanations for this ob-
servation. First, the result of the separation algorithm is not always perfect.
This depends on the complexity of the input mixture—this is to be expec-
ted considering the great diversity of AudioSet clips. When this happens, the
same source can be present in both separated channels. Second, even when
the separation is satisfactory, there are some classes that retain a semantic
relationship, e.g., two different instruments from the same family, or two dif-
ferent vocalizations from the same or similar animals. When used as a pair
of positives, their relationship may still provide a useful learning supervisory
signal compared to pairs of unrelated negative examples.
Table 6.7 shows the performance with the coincidence prediction task as back-
end. Similar to the SimCLR back-end (Table 6.6), we again observe that

Table 6.7: mAP using sound separation in the front-end and the coincidence predic-
tion back-end. Temporal proximity sampling and SpecAugment are applied.

Comparison QbE mAP Classification mAP

Mix vs mix (baseline) 0.599 0.286
Mix vs chan 0.619 0.293
Chan vs chan 0.590 0.283

the mix vs chan comparison yields top performance, outperforming the no-
separation baseline. Comparing both separated channels (chan vs chan) again
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leads to the worst results, in this case underperforming the baseline for QbE
mAP, while being on par in terms of classification mAP. In addition to corrob-
orating the utility of sound separation in the front-end, these results also show
that coincidence prediction benefits from composing augmentations, which was
not explored in the previous work of Jansen et al. (2020), where only temporal
proximity is used.
Comparing performance across both proxy tasks, we notice that SimCLR al-
ways yields the best QbE mAP while coincidence prediction produces top clas-
sification mAP. This could be due to a better alignment between SimCLR’s
underlying principle (maximizing/minimizing the cosine similarity between
positives/negatives) and the QbE retrieval mAP (computed by ranking pair-
wise cosine distances). Finally, regarding the performance using the chan vs
chan comparison, coincidence prediction shows substantially better classifica-
tion mAP than similarity maximization (specifically, a mAP on par with the
latter’s best case). This accords with our intuition that coincidence prediction
is tolerant of semantic differences between positives due to its weaker assump-
tions. However, for QbE mAP, the opposite behaviour is observed, presumably
because this tolerance does not help the QbE objective.

6.4.4.3 Separation Processing at Different Convergence States

In Section 6.4.4.2 we show that sound separation is beneficial for our tasks,
even when the separation is less than perfect as can occur when input mixtures
are difficult to separate. This leads us to ask whether the processing provided
by a separation model before convergence can also be a valid form of augment-
ation for contrastive representation learning. To answer this, we experiment
with separation examples generated by multiple training checkpoints of a single
separation network. We view the separation checkpoints as audio processors
that implement complex modifications on the incoming audio. A qualitative
assessment of output streams as learning progresses indicates four types of
processors corresponding to four convergence states, and we empirically char-
acterize their behavior as follows.55 Figure 6.3 shows example spectrograms
of the separated channels for each of these processors given the same input
mixture.

1. Separation after full convergence (S2, 1.7M steps). This is the
separation model used for experiments in Section 6.4.4.2.

2. Separation before convergence (S1, 5k steps). Separation per-
formance is more limited.

55Note that the description of every processor is approximate and somewhat dependent
on the input’s complexity. For example the S1 model could provide a good separation when
fed with an easy mixture.
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3. Filtering with early training model (F, 500 steps). Outputs are
produced by the separation model very early during training. After ∼500
steps, sources are not separated, and the output channels are differently
filtered versions of the input. Most sources in the input are present in all
outputs, but often with different levels/spectral content, such as different
spectro-temporal modulations.

4. Noise with untrained model (N, 0 step). Outputs are produced by
the separation model untrained. They feature a clearly audible, wide-
band structured noise, correlated with the input signal. Audio artifacts
are sometimes present. Both output channels are very similar.
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Figure 6.3: Spectrograms of the two separated channels obtained with four check-
points (S2, S1, F, N) of the same separation model, given one input mixture (top left).
The input mixture contains a guitar melody (up to ≈8s) followed by applause. For
illustration purposes, this is a simple case where the separation is purely temporal
(i.e., sources do not overlap). The general case features overlapping sources.

In Table 6.8 we show the results of substituting S2 with the other identified
processors, while keeping the rest of the framework as in Figure 6.2. By look-
ing at the top left section of Table 6.8, two observations can be made. First,
the four processors all provide valid forms of augmentation to generate posit-
ive views for contrastive learning. While sound separation is beneficial (S2),
a poorer separation is also valuable (S1) and the earlier checkpoints of the
separation network (which do not actually provide separation) are also useful
(F and N). Second, an untrained, quasi-random TDCN++ provides structured
noise that surprisingly yields the best single-checkpoint performance (N).
Following the common practice of composing augmentations to achieve more
powerful representations (Chen et al., 2020b), we investigate combining the
processors. The bottom left section of Table 6.8 shows the best results ob-
tained when combining processors using the OR rule, that is, applying only
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Table 6.8: mAP using different checkpoints of the separation model as learning
progresses (top), as well as some combinations (bottom). As back-end, the SimCLR
task is used (left), as well as the two proxy tasks trained jointly (right). Temporal
proximity sampling and SpecAugment are applied. Comparison is always mix vs chan.
CP = Coincidence Prediction.

Models SimCLR SimCLR & CP
QbE Classification QbE Classification

S2 (1.7M) 0.640 0.282 0.649 0.289
S1 (5k) 0.639 0.283 0.651 0.293
F (500) 0.651 0.280 0.659 0.297
N (0) 0.659 0.286 0.663 0.301
S2 ∨ F 0.653 0.283 0.658 0.300
S2 ∨ N 0.660 0.297 0.671 0.306
S2 ∨ F ∨ N 0.667 0.285 0.672 0.310

one randomly selected processor at a time. It can be seen that sound separ-
ation and the quasi-random TDCN++ noise turn out to be complementary
augmentations, resulting in a more beneficial composition. Adding the F pro-
cessor seems to provide lift for QbE mAP, but not for classification mAP.
Applying two processors in cascade to every example does not improve per-
formance.

6.4.4.4 Joint Learning Framework

Lastly, the right side of Table 6.8 lists the results when training the entire
framework of Figure 6.2, jointly optimizing both proxy tasks. We observe
trends similar to using the SimCLR back-end alone (left side of Table 6.8), but
with increased performance. When compared to the coincidence prediction
back-end alone (i.e., S2 in Table 6.8 vs second row of Table 6.7), QbE mAP
is improved by a large margin whereas classification mAP is on par. Overall,
while the boost from jointly optimizing both tasks is sometimes not very large,
it is consistent across almost all cases considered, both for individual processors
as well as their combinations. We also note that the changes needed in the
framework to accommodate a second task are minimal—only an additional
MLP head and corresponding loss function—and the training setup carries no
modifications—both tasks are trained jointly from scratch using one optimizer.
Adopting a curriculum learning instead could enhance performance, as done
in Jansen et al. (2020).
Results suggest that the key ingredient is not the quality of the sound separa-
tion process, but rather the combination of diverse processing provided by the
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separation model as its learning progresses. While training a separation model
requires a certain effort, once it is done several non-parametric augmentation
generators become available, facilitating the generation of useful positive ex-
amples. While we choose a MixIT-based TDCN++, in principle, any source
separation methodology could be used (and there may be additional benefit to
using supervised systems).

6.4.4.5 Comparison with Previous Work

In Table 6.9 we compare our best setup with previous work on the downstream
supervised classification task defined in Section 6.4.3.1. Works are grouped by
ascending embedding dimensionality, d.

Table 6.9: Comparison with previous work using the downstream supervised clas-
sification with shallow model on AudioSet. mAP reported is classification mAP.
MM = Multimodal approach.

Method d MM mAP

Unsupervised triplet (Jansen et al., 2018) 128 - 0.244
C3 (Jansen et al., 2020) 128 ✓ 0.285
Separation-based framework (ours) 128 - 0.310
CPC (Wang et al., 2020) 512 - 0.277
Separation-based framework (ours) 1024 - 0.326
MMV (Alayrac et al., 2020) 2048 ✓ 0.309
Multi-format (Wang & van den Oord, 2020) 2048 - 0.329
L3 (Arandjelovic & Zisserman, 2017) 6144 ✓ 0.249
AudioSet baseline (Gemmeke et al., 2017) - - 0.314
Supervised PANN (Kong et al., 2020a) - - 0.439
Supervised PSLA (Gong et al., 2021b) - - 0.474

Results are strictly comparable only in the top section as those works are the
only ones using the same training data, evaluation protocol and downstream
embedding dimensionality, d = 128. Note that C3 is based on audio-video mul-
timodality for representation learning (Jansen et al., 2020), while our proposed
framework outperforms it using only audio.
We also compare our system with works that use somewhat different evaluation
settings in terms of, e.g., training data, embedding dimensionality or shallow
classifier type, thus hindering a fair comparison. For example, most previous
works use larger d values, ranging from 512 to 6144—we expect performance to
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improve to some extent as d increases (Kong et al., 2020a). This could be due
to the fact that the embedding representation contains more information that
can be leveraged by the shallow model in the downstream task. We confirm
this by increasing our d from 128 to 1024, which yields an absolute increase of
0.016 mAP. Some of these works leverage multimodal data for training such as
audio-video (L3 (Arandjelovic & Zisserman, 2017)) or audio-video-text (MMV
(Alayrac et al., 2020)), while reporting worse performance than our lower-d
audio-only framework.
The current unsupervised state-of-the-art on this task is achieved by Wang &
van den Oord (2020), who propose a contrastive learning setup that maxim-
izes the agreement between raw audio and its spectral representation. Among
several variants proposed by the authors, we select the one that is more com-
parable to our proposed framework (i.e., using only log-mel as input and one
encoder). Our reported performance is on par with this approach (0.326 vs
0.329) despite it leveraging higher d (2048 vs our 1024) and a much larger
batch size (32768 vs our 64), potentially having an impact on performance as
discussed in Section 6.4.3.2. Better results are reported in Wang & van den
Oord (2020) by combining two different encoders (one per audio format) and
concatenating their output representations into a d = 4096 embedding.
Finally, for reference, we include the current supervised state-of-the-art on
this task. PANN is based on data balancing and augmentation (Kong et al.,
2020a), whereas PSLA makes use of a collection of training techniques to boost
performance (ImageNet pretraining, data balancing and augmentation, label
enhancement, weight averaging and model aggregation) (Gong et al., 2021b).
Gemmeke et al. (2017) provide a baseline for AudioSet based on a shallow
fully-connected neural network classifier for the 485 categories available at the
time.

6.5 Summary and Conclusion

In this Section, we summarize the main results and takeaways of this Chapter
and we discuss several aspects of self-supervised audio representation learning.

6.5.1 Similarity Maximization for Sound Event
Representation Learning

In Section 6.3, we first presented a framework for unsupervised contrastive
learning of sound event representations, based on maximizing the similarity
between differently-augmented views of the same log-mel spectrogram. Via
ablation experiments, we showed that the simultaneous use of a diversity
of augmentation methods is important for the success of the proposed sys-
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tem, which is consistent with the findings reported in Chen et al. (2020b) for
visual representation learning. Specifically, appropriately tuning the compos-
ition of positive patch sampling, mix-back, and other augmentations leads to
successful representation learning. The evaluation on in-domain sound event
classification tasks with FSDnoisy18k suggests that unsupervised contrastive
pre-training can mitigate the impact of labeled data scarcity, and increase
robustness against noisy labels, as recently found in supervised image classific-
ation (Hendrycks et al., 2019a). Specifically, when training a linear classifier
on top of the pre-trained embeddings, we recover most of the corresponding
supervised performance, and even surpass it using a ResNet-18 architecture. In
addition, we show that fine-tuning several models initialized with pre-trained
weights outperforms corresponding supervised baselines trained from scratch
at our scale of data.
In particular, the results attained with the ResNet-18 architecture are remark-
able. In Section 6.3, for the downstream tasks of fine-tuning on a small amount
of clean labels (2.4h), and on a somewhat larger amount of noisy labels (38.8h),
training a ResNet-18 from scratch yields the lowest accuracy compared to other
models (a CRNN and a VGG-like network). The number of weights of these
models are 11M, 1M and 0.3M, respectively. The performance of ResNet-18
in these tasks can be limited potentially by data scarcity and/or label quality.
Similarly, in Section 3.4.1 we saw that training a ResNet-18 from scratch on
FSD50K (80.4h) performs substantially worse than using other models. The
poor results of ResNet-18 trained from scratch with tens of hours contrast with
the good results of doing so with AudioSet (over 5000h of training audio) (Kong
et al., 2020a). While the aforementioned Freesound-based datasets are differ-
ent from AudioSet in a number of aspects (e.g., see Section 3.3.5), the most
objective difference is the data size. A possible explanation for these different
results is that the ResNet-18 architecture needs a certain amount of regulariza-
tion in order to show its superior performance. Using large amounts of training
data (as in AudioSet) can provide sufficient regularization, but the aforemen-
tioned Freesound-based datasets may fall short for training ResNet-18 from
scratch. Remarkably, fine-tuning a ResNet-18 after unsupervised contrastive
pre-training in the two downstream tasks of Section 6.3 yields top accuracy
among several models (and the best results in the experiments of that Section).
These findings suggest that unsupervised contrastive pre-training allows to al-
leviate the aforementioned problems of overfitting or lack of regularization,
and to take advantage of ResNet-18’s higher capacity at our scale of data.
Further, results of Section 6.3 suggest that the proposed method is able to learn
useful audio representations in a scenario with relatively limited resources in
terms of data and compute (training with less than 40h of audio). This con-
trasts with the general trend of using AudioSet for unsupervised contrast-
ive pre-training (Jansen et al., 2018, 2020; Tagliasacchi et al., 2020; Wang &
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van den Oord, 2020; Saeed et al., 2021), which we also did in this Chapter
(Fonseca et al., 2021b).

6.5.2 Self-Supervised Representation Learning from
Automatically Separated Sound Scenes

In Section 6.4, we presented a sound separation-based contrastive learning
framework for unsupervised audio representation learning. We showed that
sound separation can be seen as a valid augmentation to generate positive views
for contrastive learning, and that learning to associate sound mixtures with
their constituent separated channels elicits semantic structure in the learned
representation, outperforming comparable systems without separation. We
demonstrated that sound separation can be successfully combined with other
commonly-used augmentations, such as temporal proximity sampling and Spe-
cAugment, in order to define more challenging proxy tasks. We discovered that
the transformations provided by different checkpoints of the same separation
model as learning progresses are valid (and sometimes complementary) forms
of augmentation for generating positives. This finding suggests that optimal
sound separation performance is not essential for representation learning. In
addition, we showed the benefit of jointly training the proxy tasks of similarity
maximization and coincidence prediction.
By appropriately combining several separation processors followed by the joint
optimization of the two aforementioned proxy tasks, we obtain downstream Au-
dioSet classification results competitive with the state-of-the-art in unsuper-
vised representations under comparable evaluation settings, and outperforming
several multimodal approaches.
It is important to reflect on the implications of this and other achievements in
the unsupervised learning literature. Our best learned representation achieves
an mAP of 0.326 on the downstream shallow-model AudioSet classification
task. In particular, this consists of first unsupervised representation learning,
followed by training a shallow MLP of ≈336k weights on the learned represent-
ation, now with AudioSet labels. At the other side, one of the top works on su-
pervised AudioSet classification achieves an mAP of 0.439 by training a model
of 81M weights from scratch, along with data balancing and augmentation
(Kong et al., 2020a).56 While the state-of-the-art unsupervised performance
still lags behind the supervised one, the gap is being progressively reduced. For
instance, at the beginning of 2020, the state-of-the-art unsupervised mAP on
the downstream AudioSet task was 0.285 (Jansen et al., 2020). Also, having

56We use Kong et al. (2020a) as a state-of-the-art supervised reference because the better
results of Gong et al. (2021b) are obtained via a large collection of training techniques, which
can distort the comparison.
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a downstream task with far fewer labeled data—a more common real-world
case—would have a more severe impact on the supervised learning paradigm,
further reducing the gap. Therefore, in our view, self-supervised representa-
tion learning is a promising direction able to bridge the current gap between
unsupervised and supervised learning, and potentially minimize the reliance
on costly annotation efforts.

6.5.3 Discussion

In general, we observe that contrastive learning experiments require longer
runtimes than supervised classification experiments. Reasons include a greater
number of training steps required for convergence as well as a more compu-
tationally expensive learning algorithm, which includes pairwise comparisons
of embeddings after the forward pass and several data augmentation methods.
For example, the handling of multiple channels in the separation front-end of
Figure 6.2 was found particularly expensive. Longer training times slow down
the pace of experimentation, which can prevent in-depth exploration of data
augmentation methods and other components in the pipeline.
Overall, we have seen how unsupervised contrastive pre-training yields prom-
ising results in three downstream sound event classification tasks that pose
different real-world challenges: i) training on a small amount of clean labels of
FSDnoisy18k (2.4h), ii) training on a somewhat larger amount of noisy labels
of FSDnoisy18k (38.8h), and iii) training on a very large amount of large-
vocabulary labels using an internal version of AudioSet (over 6500h). We have
obtained very positive results in the two first tasks, which may be regarded
as small-data regime (Bornschein et al., 2020). Here, unsupervised contrastive
pre-training has led to performance boosts that exceed supervised baselines
trained from scratch. In the large-scale AudioSet task, we have obtained com-
petitive results, outperforming a shallow fully-connected classifier trained from
scratch, but still far from the supervised state-of-the-art. We hypothesize that
the usefulness of unsupervised contrastive pre-training depends on the amount
of available labeled data in the downstream supervised classification task. In
the small-data regime, the effects of data scarcity make supervised baseline
classifiers less powerful, hence unsupervised contrastive pre-training is more
effective. On the contrary, in the large-data regime, supervised classifiers are
more proficient, hence the impact of unsupervised contrastive pre-training be-
comes more limited.
The above discussion suggests two main usages of unsupervised contrastive
pre-training for sound event classification. One usage consists of applying
unsupervised contrastive pre-training as a warm-up for a supervised classifier.
This means training first in unsupervised fashion on a given labeled dataset,
then using the unsupervised pre-trained weights as network initialisation for
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fine-tuning on the same data, now using the labels. In this case, the expected
performance boost is likely to be higher in the small-data regime, as our results
suggest.
The other usage is to conduct unsupervised contrastive pre-training on a large
piece of data (in terms of size and coverage) in order to learn general-purpose
audio representations, with the goal of transferring them to different supervised
downstream tasks to improve classification. We did not follow this approach
for several reasons. In Section 6.3, we used FSDnoisy18k for unsupervised
training due to compute limitations. This dataset has a vocabulary limited to
20 classes, hence the learned representations are not suitable for transferring
knowledge to other tasks. In Section 6.4, we opted for the downstream Audi-
oSet classification task as i) it has been used in previous works with which we
wanted to compare our proposed system, and ii) given the large vocabulary
of the downstream task, it is a representative benchmark despite the fact that
the audio data are the same as in the unsupervised pre-training. The alternat-
ive of using external datasets for evaluation of general-purpose representations
is more popular in visual (Chen et al., 2020b) and speech (Kawakami et al.,
2020) representation learning. For general-purpose audio representations, re-
cent works have also proposed this type of evaluation—e.g., Saeed et al. (2021)
with 9 datasets and Niizumi et al. (2021) with 6 datasets, two of which differ
from those used in Saeed et al. (2021). This type of out-of-domain evaluation is
suitable and desirable for audio representation learning. A necessary milestone
is for the community to agree on a solid benchmark formed by a common list
of representative sound classification datasets.



CHAPTER 7
Summary and Future

Perspectives

7.1 Introduction

In this thesis, we have investigated several strands of dataset creation as well as
supervised and unsupervised learning in order to train large-vocabulary sound
event classifiers, creating new data resources and using them as well as other
existing ones in novel and alternative ways. In particular, we have advanced the
state-of-the-art of sound event classification by proposing new large-vocabulary
datasets, novel CNN architectural improvements, and multiple algorithms for
learning with noisy labels and from unlabeled data. The proposed learning
algorithms contribute to the transition from traditional supervised learning
using clean labels to other learning strategies less dependent on annotation
effort such as supervised learning using noisy labels and self-supervised repres-
entation learning. For the sake of open research and reproducibility, we strived
to make openly available all datasets created and almost all source code used
for this dissertation.
We started with an introduction to sound event classification and the different
learning paradigms that we discuss in this dissertation (Chapter 1). We contin-
ued by providing background on the research field of sound event recognition,
describing a sound event classification pipeline based on supervised learning,
and summarising the existing literature on datasets, deep networks, and learn-
ing approaches using noisy labels and unlabeled data (Chapter 2). Then, we
introduced the FSD50K dataset, including a description of the creation process,
a characterization of the dataset, and a set of experiments to provide baseline
systems as well as further insights on the data (Chapter 3). We advanced the
state-of-the-art of sound event classification by proposing novel architectural
changes that increase shift invariance in a well-known CNN, making it more ro-
bust against input time/frequency shifts (Chapter 4). We next introduced the
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FSDnoisy18k dataset to support the investigation of label noise in sound event
classification, and explored efficient and network-agnostic approaches to mit-
igate the effect of label noise while training sound event classifiers (Chapter
5). Finally, we proposed multiple strategies to learn audio representations
from unlabeled data using self-supervised contrastive learning based on com-
positions of data augmentation methods (Chapter 6). In addition, we have
significantly contributed to enabling and fostering sound event classification
research on the multiple learning paradigms considered. This was achieved
not only by the release of multiple open datasets and source code repositories,
but also through the co-organization of two DCASE Challenge Tasks in 2018
and 2019 (Appendix A).
In this final Chapter, we enumerate our main contributions from a global
point of view (Section 7.2), summarize the main conclusions from the previous
Chapters (Section 7.3), and discuss the impact of this thesis (Section 7.4).
Finally, we end this dissertation with a discussion about future perspectives
on the topic of sound event classification using different types of supervision
(Section 7.5).

7.2 Summary of Contributions

This thesis contributes to the advancement of the state-of-the-art in sound
event classification using different types of supervision. Through the generated
data and code resources and the proposed learning methodologies gathered in
multiple publications, as well as the co-organized DCASE Challenges, the au-
thor hopes that this thesis paves the way for future machine listening research.
The main contributions of this thesis can be summarized as follows:57

7.2.1 Technical Contributions

A comprehensive review of the field of sound event recognition discussing
its main characteristics and challenges, and a review of the literature on
datasets and convolutional neural networks for sound event recognition,
as well as approaches for learning with noisy labels and self-supervised
learning (Chapter 2).

Development of FSD50K, which contains 51,197 Freesound audio clips,
totalling 108.3h of audio manually labeled using 200 classes drawn from
the AudioSet Ontology. To our knowledge, this is the largest fully-open

57Links to code repositories as well as dataset download websites, companion websites,
and other relevant websites can be found in Appendix A, C and D. Code is available for all
works listed in this Section, except for those conducted at Google Research.
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dataset of human-labeled sound events, and the second largest after Au-
dioSet. Further, the large-vocabulary, stable and exhaustively labeled
evaluation set is unprecedented. We provide a detailed description of
the FSD50K creation process tailored to the particularities of Freesound
data, including challenges encountered and solutions adopted (Section
3.2). The dataset release includes metadata used during the creation
process as well as Freesound metadata for the clips forming the dataset.

A comprehensive characterization of FSD50K along with a discussion
of limitations and key factors to allow its audio-informed usage. This
characterization includes classification experiments to provide baseline
systems as well as critical insight on the main factors to consider when
splitting Freesound audio data for machine listening tasks (Sections 3.3
and 3.4). Code and pre-trained models are available (Appendix D).

Novel architectural modifications to increase shift invariance in CNNs
based on low-pass filtering and adaptive sampling of feature maps. These
modifications make the network exhibit higher robustness to time/fre-
quency shifts in the input spectrograms. By addressing this often-taken-
for-granted issue in CNNs along with data augmentation, we achieve
new state-of-the-art classification performance on FSD50K (Chapter 4).
Code and pre-trained models are available (Appendix D).

Development of FSDnoisy18k, which contains 18,532 Freesound audio
clips, totalling 42.5h of audio distributed in 20 classes drawn from the Au-
dioSet Ontology. FSDnoisy18k consists of a small amount of manually-
labeled clean data, and a much larger amount of noisy data containing
a substantial amount of real-world label noise. To our knowledge, this
is the first dataset to specifically provide for the investigation of real
label noise in sound event classification, including an empirical charac-
terization of the noise and a CNN baseline system (Section 5.2). The
companion site includes a detailed characterization of the dataset as well
as code for baseline experiments.

Exploration and development of a series of techniques and learning
strategies to mitigate the effect of label noise during the training of
sound event classifiers. These approaches include regularization tech-
niques, noise-robust loss functions, and sample rejection strategies to
identify and discard potential noisy labeled examples during the learn-
ing process. These model-agnostic approaches can be easily incorporated
into existing deep learning pipelines, requiring minimal intervention and
computational overhead (Sections 5.3 and 5.4). Code is available (Ap-
pendix D).
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Development of a model-agnostic method to address the problem of miss-
ing labels in large sound event datasets, using AudioSet as a use case.
The method is based on a teacher-student framework with loss mask-
ing to first identify the most critical missing label candidates, and then
ignore their contribution during the learning process (Section 5.6).

Development of a novel self-supervised contrastive learning framework for
learning audio representations from unlabeled data, based on the proxy
task of similarity maximization. This task consists of maximizing the
agreement between differently-augmented views of sound events (Section
6.3). Code and pre-trained models are available (Appendix D).

Development of a novel self-supervised contrastive learning framework for
learning audio representations from unlabeled data, based on the joint
optimization of similarity maximization and coincidence prediction tasks.
These tasks are optimized across example views constructed via composi-
tions of unsupervised sound separation models and other augmentations.
To our knowledge, this is the first time that automatic sound separation
is used as augmentation to create views for sound event representation
learning. The result is an unsupervised audio representation that rivals
state-of-the-art alternatives on the shallow AudioSet classification bench-
mark (Section 6.4).

7.2.2 Other Academic Contributions

Technical Program Co-Chair of DCASE Workshop 2021.

Co-organizer of the DCASE Challenge Task 2 in 2018 and 2019, where
the topic of label noise was included for the first time as a research
problem in the community.

7.2.3 Publications

The research carried out in this thesis has been published in the form of several
papers in top international conferences and journals. The content of Chapter 3
is currently under review in IEEE/ACM Transactions on Audio, Speech, and
Language Processing (Fonseca et al., 2020a). Similarly, parts of the research
presented in Chapter 4 are currently under review in IEEE Signal Processing
Letters (Fonseca et al., 2021a). The FSDnoisy18k along with the evaluation
of noise-robust loss functions presented in Chapter 5 has been published in
ICASSP (Fonseca et al., 2019b). Also in Chapter 5, the parts of the research
related with regularization techniques and sample rejection strategies have
been published in WASPAA (Fonseca et al., 2019a), and those related with
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addressing the problem of missing labels using a teacher-student framework
have been published in IEEE Signal Processing Letters (Fonseca et al., 2020b).
The first part of Chapter 6 focused on optimizing a similarity maximization
task has been published in ICASSP (Fonseca et al., 2021c). The second part of
Chapter 6 focused on a multitask objective and sound separation as augment-
ation has been published in WASPAA (Fonseca et al., 2021b). Finally, the
content of Appendix A related to the organization of the DCASE Challenge
Tasks has been published in the DCASE Workshop (Fonseca et al., 2018b,
2019c). It must be noted that this dissertation focuses only on a subset of
all the papers published during the thesis period. The full list of the author’s
publications during this thesis, either as a first author (12 papers) or through
various collaborations (7 papers), is provided in Appendix B.

7.3 Summary of Conclusions

At the end of each Chapter, we included a Section summarising the most relev-
ant results and conclusions of the corresponding work. For easier consumption,
here we summarize the main takeaways of each Chapter.
While creating FSD50K, we experienced how human labeling using a large
vocabulary of everyday sounds is a laborious and complex task, as we discuss
in Chapter 3. Special emphasis was put on the careful curation of the evalu-
ation set content and labels, so that it can serve as a reliable evaluation bench-
mark, which is unpredecented given its large-vocabulary, stability, exhaustive
labeling and size. We showed that it is important to acquire solid knowledge of
the specifics of the source data—in our case, Freesound audio and metadata,
and the AudioSet Ontology—and identify data challenges and limitations, so
that the dataset creation process can be adapted to these particularities, and
pitfalls in the creation can be avoided. Through classification experiments,
we showed that smaller models with basic tuning and audio-informed design
choices can outperform larger off-the-shelf computer vision architectures. Fi-
nally, we showed that within-class data contamination must be considered
and minimized when splitting Freesound audio for machine learning tasks as
it can have a considerable effect on the evaluation of sound event classifiers.
In contrast, our results suggest that between-class contamination has a lesser
impact.
In Chapter 4, we evaluated two pooling methods to improve shift invariance in
CNNs using the FSD50K sound event classification task. Results show that the
VGG variants evaluated indeed present a problem of only-partial shift invari-
ance. Inserting the proposed pooling methods into these architectures makes
the networks exhibit higher robustness to time/frequency shifts and small per-
turbations in the input spectrograms, and leads to recognition boosts. These
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facts suggest that reinforcing shift invariance in the models evaluated is be-
neficial for sound event classification, which could also apply to other CNN
architectures. The proposed architectural changes yield consistent recognition
improvements with minimal additional computation, which makes them an
appealing alternative to conventional pooling layers. Our best system incor-
porates these architectural changes and simple mixup augmentation in order
to achieve a new state-of-the-art mAP on FSD50K.
Chapter 5 focused on training sound event classifiers in presence of noisy labels.
We explored simple and efficient approaches that are agnostic to network archi-
tectures, hence they can be easily incorporated into existing learning pipelines,
requiring minimal intervention and computational overhead. Our results sug-
gest that rejecting the contribution of noisy samples during training can be
more effective than approaches based on accepting the noisy labels and mitig-
ating their effect, such as regularization methods and noise-robust loss func-
tions. In particular, our top approach on FSDnoisy18k is a loss-based sample
rejection method that uses the model being trained as an instance selector to
prune the train set during the learning process. Further, we identified missing
labels as a pathology in the labelling of AudioSet. By using a teacher-student
framework with loss masking to identify and ignore the most critical poten-
tially missing labels, we found out that most of the improvement comes from
filtering out a tiny portion (<1%) of the most critical estimated missing labels.
We also showed that the damage done by missing labels becomes higher as the
train set gets smaller—however, even when training with massive amounts of
audio, the impact of these labelling errors can still be observed.
Chapter 6 focused on learning audio representations from unlabeled data us-
ing self-supervised contrastive learning. We showed that the simultaneous
use of a diversity of augmentation methods is important for successful audio
representation learning. Our evaluation with FSDnoisy18k suggests that un-
supervised contrastive pre-training can mitigate the impact of labeled data
scarcity, and increase robustness against noisy labels at this scale of data. In
addition, we showed that sound separation is a valid augmentation to gener-
ate positive views for contrastive learning, and that learning to associate sound
mixtures with their constituent separated channels elicits semantic structure in
the learned representation, outperforming comparable systems without separa-
tion. We discovered that the transformations provided by different checkpoints
of the same separation model as learning progresses are valid (and sometimes
complementary) forms of augmentation for generating positives. This finding
suggests that optimal sound separation performance is not essential for repres-
entation learning. By appropriately combining several separation processors
followed by the joint optimization of the proxy tasks of similarity maximiza-
tion and coincidence prediction, we obtain downstream AudioSet classification
results competitive with the state-of-the-art in unsupervised representations
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under comparable evaluation settings, and outperforming several multimodal
approaches.

7.3.1 Discussion

Throughout this dissertation, we have discussed the advantages and shortcom-
ings of three learning methodologies: supervised learning using clean labels,
supervised learning using noisy labels, and self-supervised learning from un-
labeled data. The success of each of these methodologies, and how proficient
the resulting sound classifiers are, depends on a number of factors. Using clean
labels clearly provides the strongest supervision for training sound event clas-
sifiers. However, this costly supervision is typically constrained by annotation
budget, which often limits the amount of exhaustively labeled data that can
be gathered. The other two learning methodologies considered reduce the de-
pendence on careful and costly manual annotation processes to some degree,
making these methodologies more sustainable in terms of annotation effort.
In fact, one of the main advantages of these methodologies is that collect-
ing training data without careful annotations (or any annotations at all) is
cheaper, thereby downplaying or sidestepping annotation budget limitations,
and opening the door to using much larger amounts of training data.
Results in Chapter 5 suggest that the combination of larger amounts of noisy
labeled data and techniques to mitigate the effect of label noise can compensate
for the deficiencies of the supervision to some extent. In this way, this com-
bination of more data with weaker supervision can become a substitute for
smaller amounts of clean labels. However, the success of each methodology
(using noisy or clean labels) will depend on factors such as the ratio of noisy
labeled data vs. clean labeled data, as well as the type and amount of label
noise. Another factor that must be considered is the source(s) for the clean
and noisy labeled data. In a scenario where the noisy labeled data comes from
a different source than the target data, issues of domain mismatch can occur—
for example, in the case where noisy labeled data for training is gathered from
some web audio repository not particularly related with the task under consid-
eration. Consequently, a domain mismatch between training and evaluation
data could occur, which may represent an obstacle for models’ generalization.
Results in Chapter 6 show the promise of using self-supervised contrastive
representation learning to learn unsupervised audio representations that can
then be used for supervised downstream tasks, thus reducing the reliance on
external supervision. In particular, we discussed how a classifier warmed up
with unsupervised contrastive pre-training, or trained on unsupervised learned
representations, can be competitive with, or even outperform, baseline classi-
fiers trained from scratch under certain conditions. Nonetheless, it must be
noted that the baseline supervised classifiers used for comparison are relatively
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simple. Their performance could be improved by adding enhancements to the
traditional supervised learning setup, for example by using data augmenta-
tion methods. Once again, these results and conclusions can vary depending
on factors such as ratio of unlabeled pre-training data vs. labeled fine-tuning
data, and also the diversity of the unlabeled pre-training data and potential
domain mismatch issues.
The aforementioned critical factors may vary substantially among different use
cases. Hence, they must be carefully considered when deciding what method-
ology to adopt, if multiple choices are feasible. Nonetheless, there are three
conditions that are likely to apply for the majority of use cases:

A certain amount of clean labels is needed, even when opting for learn-
ing with noisy labels or self-supervised learning, at least for evaluation
purposes. In addition, when learning with noisy labels, it is also recom-
mended to use clean labels for validation purposes—tuning and optim-
izing models on noisy validation sets can lead to misleading results, as
mentioned in Sections 3.4.1 and 5.5. Likewise, for self-supervised repres-
entation learning, clean labels are required for the fine-tuning of unsu-
pervised pre-trained models or shallow models trained on unsupervised
representations.

To achieve a given classification performance via learning with noisy la-
bels or self-supervised learning, typically larger amounts of training data
are likely to be needed, compared to the amount needed to reach such
performance in a conventional supervised learning fashion. This is to
compensate for the weaker supervision provided by the noisy labels or the
proxy tasks in self-supervised learning. The critical non-trivial question
of how much additional data is needed will depend on the aforementioned
factors and on how powerful the learning algorithms are.

The processing of larger amounts of training data will unavoidably re-
quire more computational resources. Thus, learning with noisy labels and
self-supervised learning are typically associated with longer runtimes, es-
pecially the latter as self-supervised learning algorithms tend to be more
computationally intensive, as discussed in Section 6.5.3. In our view, this
can carry serious implications for the future of machine listening, which
we further discuss in Section 7.5.2.
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7.4 Impact of this Work

The contributions listed in the previous Section have already had an impact
on the research community. To measure this research impact we utilize easy-
to-access metrics, namely, citations count, code repositories star count, and
number of dataset downloads at the time of writing.58 These metrics are
chosen based on their accessibility, transparency and wide adoption. However,
we acknowledge that these metrics are not necessarily rigorous indicators of
research impact, and should be understood only as rough indicators.

The work carried out during this thesis has received 516 citations as per
Google Scholar.

The released code repositories have received 225 stars.

The released datasets have been downloaded multiple times. In particu-
lar, the number of unique downloads as per Zenodo records for FSD50K
and FSDnoisy18k are 6693 and 4079, respectively. In addition, the two
datasets created for the DCASE Challenge Tasks, FSDKaggle2018 and
FSDKaggle2019, have been downloaded 7427 and 2472 times from Zen-
odo, and 6189 and 5110 times from the Kaggle platform, respectively.

One of the outcomes of this thesis with highest impact is FSD50K, which has
already enabled a series of research directions, from sound classification to
sound separation or representation learning. In addition, it has already been
used for multiple machine learning competitions and for the creation of smaller
datasets to enable further research in various tasks. A detailed list of both
current and potential applications can be found in Section 3.3.4. Further, the
work of this thesis has contributed to the consolidation of the research avenues
of learning with noisy labels and self-supervised representation learning in the
context of everyday sounds. As discussed in Sections 2.6.2 and 2.7.3, research
on these topics prior to this thesis was scarce. We hope this thesis’ work serves
as a stepping stone to the proliferation of further research in these relevant
directions, as it has already begun to happen in the topic of learning with
noisy labels, with multiple publications building upon the work of this thesis
and the organized DCASE Challenge Tasks (see Section 2.6.2 for examples).

7.4.1 Broader Impact

The author hopes that the research carried out in this thesis also has an im-
pact beyond the context of sound event classification, or even beyond machine

58Data from September 28th, 2021.
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listening. Next, we list some works from other research fields that have built
upon the work of this thesis. Audio data from FSD50K (Fonseca et al., 2020a)
has already been used for source separation (Wisdom et al., 2020), speech en-
hancement (Tzinis et al., 2021), or COVID-19 detection from audio signals
(Ponomarchuk et al., 2021), and can serve as stimuli for listening experiments
in cognitive sciences. One of our work on learning with noisy labels (Fonseca
et al., 2019b) has been used in the fields of speech emotion recognition (Zhong
et al., 2020), text classification (Tayal et al., 2020), and time-series classifica-
tion for electrical signals (Castellani et al., 2021). Our work on unsupervised
contrastive learning (Fonseca et al., 2021c) has been used in a work dealing
with contrastive learning of seismic signal representations collected with sensor
networks (Meyer et al., 2021). Our work on acoustic scene classification (Fon-
seca et al., 2017a, 2018a), which has not been covered in this dissertation but
was conducted at the beginning of this thesis, has been cited in works related to
pathological voice detection (Narendra & Alku, 2020), biosignals-based anxi-
ety detection (Petrescu et al., 2020), or agricultural water management (Fan
et al., 2019).
Finally, another goal that we wanted to achieve is to improve the utility of
Freesound for the research community. With the work of this thesis, especially
the audio datasets and DCASE Challenge Tasks, the usage of Freesound audio
for research has become more popular. This can be noticed in the increasing
number of papers citing Freesound in the last years compared to the years
prior to the beginning of this thesis,59 and also in the increasing interest from
both academia and industry in doing research with FSD50K.

7.5 Future Perspectives

In this thesis, we have conducted research on dataset creation and learning
algorithms for sound classification using alternative types of supervision. All
the topics covered are bound to be relevant for the future of sound event
classification, as we witness a transition to larger amounts of training data
with weaker supervision. In this Section, we first discuss a number of future
directions for these research topics, that can be addressed by leveraging the
findings and resources outcome of this thesis. Then, we identify challenges that,
in our view, must be considered for the future of machine listening research.

59A list of papers that mention Freesound or use Freesound data for research every year
can be found at http://labs.freesound.org/papers/.
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7.5.1 Future Methodologies

A More Sustainable Dataset Creation Methodology. The creation of
FSD50K included tasks that required a considerable human effort, such as
exhaustively labeling the evaluation set in order to obtain a solid benchmark.
Further, we tried to obtain a set of labels as reliable as possible that could serve
as a favorable starting point for future dataset extensions. These potential ex-
tensions could rely on (semi-) automatic methods to scale up more efficiently
at the expense of certain amount of label noise. Fortunately, nowadays there
are a few available resources in terms of data and pre-trained models that can
aid dataset creation approaches. For example, more data for FSD50K could be
curated via semi-automatic methods by leveraging existing pre-trained models
such as the models proposed in Chapter 4, the recently released YAMNet,60

or the models in Kong et al. (2020a). A possible semi-automatic approach for
dataset creation could rely on active learning, where the informativeness of
unlabeled data is estimated, and the most informative examples can be selec-
ted for human annotation. In particular, an strategy that seems appropriate
is query-by-committee active learning, where several models with different un-
derlying principles are used to estimate example informativeness (Han et al.,
2016). Audio clips for which the models disagree the most could be regarded as
more informative; hence, these clips can be prioritized for human annotation.
On the contrary, models’ agreement will often mean that the audio clip can be
automatically labeled. Hence, we can use the models as a supervision mechan-
ism, producing machine-generated annotations that substitutes the analogous
human rating. In this way, dataset creation moves away from the dependence
on manual labour in favour of automatic means to optimize human labeling.

A Unified Learning Framework for Sound Event Classification. In
this dissertation, we have analyzed the paradigms of learning with noisy labels
and unsupervised learning separately. However, there is nothing stopping us
from combining them in a single unified learning framework for sound event
classification. A possible instantiation of such framework is as follows. An
initial stage of unsupervised audio representation learning would serve two
purposes. On the one hand, it would serve as a warm-up model initialization
for subsequent fine tuning on labeled data. On the other hand, the structured
embedding space learned could be used for label noise detection. This could
be done in several ways. A simple approach consists of detecting inconsistent
labels in clusters of similar representations in order to prune the train set
before or during the supervised fine-tuning stage. In this way, the detection
of noisy labels could be based on a learned audio representation, instead of—
or in combination with—loss values or score values associated with training

60https://github.com/tensorflow/models/tree/master/research/audioset/yamnet
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examples, as done in Sections 5.4 and 5.6, respectively. This approach could
be useful when dealing with noisy labeled data. Further, it could also be
useful when dealing with clean weak labels whenever the processing is done
by segmenting audio clips in short T-F patches, as done in this thesis or in
Hershey et al. (2017, 2021). In these cases, inheriting the clip-level labels for
every patch creates false positive examples that could be detected with the
proposed approach.

Multimodal Self-Supervised Audio Representation Learning. As the
gap between unsupervised and supervised learning is reduced, self-supervised
representation learning is a promising direction for the future of sound event
classification, potentially able to minimize the reliance on costly annotation ef-
forts. In this thesis, we have focused on audio-only representation learning, that
is, learning from unlabeled audio. However, web repositories such as YouTube
or Flickr are sources of audiovisual data. Using audio-video multimodality for
audio representation learning opens the door to new possibilities based on the
design of novel proxy learning tasks to exploit the natural supervision between
both modalities. Recent works following this multimodal methodology report
promising results outperforming audio-only approaches (Wang et al., 2021).
The main downside, however, is that the computational requirements to pro-
cess video signals can grow substantially.

7.5.2 Future Challenges

As mentioned earlier, the adoption of the paradigms of learning with noisy
labels and self-supervised learning are often associated with larger amounts of
training data to compensate for the weaker supervision. While these paradigms
are more sustainable in terms of annotation effort, they are less sustainable
in terms of computational requirements for the development of sound event
classifiers.
As the amounts of training data keep growing, there is a point when not every-
one may have enough computational resources to process such amounts of data
in reasonable runtimes, thus restricting the access to these exciting research
avenues. In particular, some of the experiments carried out in this thesis are
a luxury that not everyone can afford. The author had the opportunity to
intern at Google Research, with access to large amounts of data and compu-
tational resources. Thanks to that, experiments in Sections 5.6 and 6.4 using
AudioSet were possible. However, doing this kind of experiments using uni-
versity infrastructure would have slowed down experimentation substantially,
especially for the experiments based on self-supervised learning. This would
have translated into suboptimal analysis and characterization of the proposed
methods. Thus, in our view, access to computational resources can influence
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how representative and generalizable experimental results are, as well as the
impact of the research work. This can lead to an unfortunate segregation of the
research community according to the available computational resources, as not
all research institutions will be able to afford the processing of certain amounts
of data, or certain type of experiments. A possible measure to alleviate this
problem consists of fostering the inclusion of a set of experiments using smaller
portions of data, in addition to other experiments with full large-scale datasets.
The ultimate goal is to lower the barrier for those who can only afford limited
compute, allowing system development in a more affordable research track.
In addition, intensive experimentation with large amounts of data can pose
a challenge from the environmental standpoint. To our knowledge, this is
an unexplored area in sound event classification; however, recent work ana-
lyzes the environmental impact of developing speech recognizers by estimating
the amount of CO2 emitted during the training process (Parcollet & Ravanelli,
2021). The authors find out that the carbon footprint of training speech recog-
nizers is not negligible, although they depend on factors such as geographical
location, type of GPU or hyperparameter tuning. Noticeably, it is shown that
the evolution of CO2 emissions vs. performance exhibits an exponential beha-
viour, where the final tiny performance improvements tend to come at a very
high carbon cost. This raises the question of whether being competitive with
state-of-the-art performance justifies the extra carbon footprint. Solutions to
this problem are yet unclear, but a first step is to raise awareness and stimulate
the debate on the environmental implications of doing research with very large
amounts of data.
Relatedly, in various passages of this dissertation we have made references to
the state-of-the-art performance in several tasks. This performance is based
on evaluation metrics computed over evaluation sets. An evaluation set aims
to be a faithful and comprehensive sample of reality, that is, of the real-world
challenges and particularities of a given task. However, this ideal state is dif-
ficult to reach. For example, in the context of sound event classification, it is
reasonable to expect that not absolutely all of the textual labels in an evalu-
ation set will be correct. Further, it is difficult to create an evaluation set with
a selection of audio material and acoustic conditions that fully accounts for the
diversity of sounds that we all encounter everyday. While sound event classi-
fication research is largely based on objective evaluation performance, another
evaluation from the perspective of user experience may provide complementary
insight. For example, it is unclear how much objective performance boost is
needed for it to be noticed from a user experience perspective in a given task.
Analysing these just-noticeable differences might be relevant for the selection
of sound event classifiers for real-world applications. Similarly, it can also be
relevant to know how much objective performance is necessary for a classifier
to provide a satisfactory user experience in a particular task. A natural next
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step of this thesis consists of conducting subjective evaluations of proposed
sound event classifiers and audio representations in the context of Freesound.
This would imply the deployment of the proposed technology in the Freesound
infrastructure followed by a subjective evaluation with the help of users from
the Freesound community. Certainly, this endeavour is far from trivial, for
example in terms of design and implementation of the evaluation protocols.
Yet, it may provide additional insight to that of a purely objective evaluation,
and help to shape future machine listening research on sound event classifiers
and other related topics.



APPENDIX A
DCASE Challenge Tasks on
Learning with Noisy Labels

A.1 Introduction

The Detection and Classification of Acoustic Scenes and Events (DCASE)
Challenge is a scientific evaluation promoting environmental sound research
and evaluation on common publicly available datasets. The DCASE Chal-
lenge has had almost annual editions since 2013, supporting the development
of approaches for scene and event analysis, and tracking the performance of
machine listening systems over time. The DCASE Challenge is structured in
multiple Challenge Tasks including tasks such as as acoustic scene classifica-
tion, sound event classification, detection and localization, audio captioning,
anomaly detection, and more. Further information about the DCASE Chal-
lenge and its multiple editions can be found in the DCASE website.61

In order to foster open research on sound recognition, the author of this thesis
along with other researchers organized two DCASE Challenge Tasks in 2018
and 2019.62 In particular, the motivation behind these tasks is i) to foster
research on sound event classification using a larger vocabulary of classes com-
pared to previous Challenge Tasks; ii) to consolidate the research topic of
learning with labels of varying levels of reliability, where labels can feature
different levels of noise.
Both Challenge Tasks were organized as a collaboration between the Music
Technology Group at Universitat Pompeu Fabra (UPF) and Sound Under-
standing at Google Research. The Challenge Tasks organizers were the author
of this thesis and Frederic Font from Universitat Pompeu Fabra, and Manoj

61http://dcase.community/
62In this Appendix, for simplicity, sometimes we will refer to the organized DCASE Chal-

lenge Tasks as simply the task(s).
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Plakal and Daniel P.W. Ellis from Google Research. The problem formulations
and recognition tasks were designed jointly, whereas the audio datasets were
mainly developed at the UPF and the baseline systems were mainly developed
at Google Research. Both competitions were hosted on the Kaggle platform,63

for which Addison Howard and Walter Reade of Kaggle provided assistance
with the the task design and deployment.
One of the most important outcomes of these Challenge Tasks is the generation
of open knowledge. On the one hand, the preparation of the tasks included
the creation of openly available datasets. After the Challenges concluded, the
full list of reference labels were released (including development and evalu-
ation data), thus enabling further research beyond the Challenges. Likewise,
the preparation of the tasks also included the open release of baseline system
frameworks that participants could use to build their systems on top of them.
On the other hand, during the Challenges a number of participants were active
in the Kaggle discussion forums exchanging ideas and related scientific papers.
Further, some participants even shared their code, ranging from beginners’
guides for audio experimentation to sophisticated deep learning approaches.
In addition, Challenge winners were asked to publish code for the winning
solutions under an open license.
Next, we report on the organization of the 2018 (Section A.2) and 2019 (Section
A.3) DCASE Challenge Tasks, introducing the motivation, task setup, dataset
and main outcomes. Links to multiple relevant web artifacts on the Kaggle
and DCASE websites are included, should the reader want to consult more
detailed task descriptions, datasets, baseline systems, or results.

A.2 DCASE 2018 Task 2: General-purpose Audio
Tagging of Freesound Content with AudioSet
Labels

In previous DCASE Challenge editions, there had been two audio tagging tasks,
each focused on a specific domain of sounds. In DCASE 2016 (Mesaros et al.,
2018a), the task targeted domestic audio tagging for which the CHiME-Home
dataset was used, including 7 sound categories and 6.8h of recordings (Foster
et al., 2015). In DCASE 2017 (Mesaros et al., 2017b), the task focused on
audio tagging in the context of smart cars, for which a larger dataset featuring
17 categories was utilized.
Recently, however, general-purpose sound event recognizers have gained atten-
tion, where a wide range of sounds events are considered, not tied to a specific

63https://www.kaggle.com/
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domain. This research has been mostly triggered by AudioSet, a large-scale au-
dio dataset structured with an ontology of 632 sound events (Gemmeke et al.,
2017).
In this DCASE Challenge Task, we focus on general-purpose audio tagging
using a dataset of 41 categories and almost 18h of training data. Specifically,
the goal of this task is to build an audio tagging system that can categor-
ize an audio clip as belonging to one of a set of 41 diverse categories drawn
from the AudioSet Ontology (related to musical instruments, human sounds,
domestic sounds, animals, etc.). One of the motivations for this task comes
from the large amount of user-generated audio content that is available on
the web, which can be a resource of great potential for sound recognition re-
lated research. The use of such data for training audio tagging systems poses
issues that have not been addressed in previous DCASE Challenges. In partic-
ular, this task deals with user-generated audio clips retrieved from Freesound,
which are very diverse in terms of acoustic content, recording techniques, clip
duration, etc. Likewise, these audio clips sometimes feature incomplete and in-
consistent user-provided metadata. To prepare the dataset for this task, some
audio clips were manually labeled using the subset of 41 categories, while a
larger set of clips was automatically categorized on the basis of their existing
user-provided metadata. As a result, the dataset features a small amount of
reliable annotations, and a large amount of non-verified annotations that could
include a small amount of label noise.
Therefore, this task addresses two main challenges of i) recognizing an in-
creased number of diverse sound events, and ii) leveraging subsets of training
data featuring annotations of varying reliability. Submissions to this task will
provide insight towards the development of broadly-applicable sound event
classifiers. Potential applications include automatic description of multimedia
content, and acoustic monitoring applications.

A.2.1 Task Setup

The goal of this task is to predict the category for each audio clip in a test set.
The task setup is a multi-class classification problem, and hence the systems to
be developed in this task can be denoted as single-tag audio tagging systems,
as illustrated in Figure A.1. This task was hosted on Kaggle—a platform
for machine learning competitions—and ran from March 30th to July 31st
2018. The resources associated to this task (dataset download, submission,
and leaderboard) can be found on the Kaggle competition page.64

64https://kaggle.com/c/freesound-audio-tagging
Note that competition name on Kaggle is abbreviated from the full DCASE Task name to
“Freesound General-Purpose Audio Tagging Challenge”.

https://kaggle.com/c/freesound-audio-tagging
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Figure A.1: Overview of a single-tag tagging system.

As described in Section A.2.2, the audio data for this task are split into a
train set and a test set, both made publicly available when the competition
launched. The train set, for which ground-truth annotations were provided, is
used for system development while the test set is kept for the evaluation of the
resulting systems. The test set, whose true labels were not released, is further
divided into two divisions: i) 19% of the test samples are used to calculate the
public leaderboard (providing a live ranking of all participants), and ii) the
remaining 81% feeds the private leaderboard, used for the final ranking which
is revealed only when the competition ends.

A.2.1.1 Evaluation Metric and Competition Rules

The task used mean Average Precision @ 3 (mAP@3) as the evaluation metric,
as defined in the Evaluation section of the competition page.64 This metric
accepts up to three ranked predicted labels for each audio clip in the test set,
and gives full credit if the correct label occurs first, with lesser credit for correct
label predictions in second or third place.
Participants were required to run their systems on the test set and submit the
system output—the predicted labels—in a comma-separated data file (CSV).
Participants could submit a maximum of two submissions per day, and select
two final submissions to be considered for the ranking. Additionally, parti-
cipants were encouraged to submit a technical report describing their systems.
A detailed description of the task rules can be found in the Rules section of
the competition page,64 and the most important points are summarized in the
DCASE Challenge page.65

65http://dcase.community/challenge2018/task-general-purpose-audio-tagging#task-
rules

http://dcase.community/challenge2018/task-general-purpose-audio-tagging#task-rules
http://dcase.community/challenge2018/task-general-purpose-audio-tagging#task-rules
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A.2.1.2 Judges’ Award

To complement the leaderboard results of the mAP-based ranking, the or-
ganizers of the task introduced a complementary Judges’ Award to promote
submissions using novel, problem-specific and efficient approaches. Details
about the Judges’ Award rules and requirements can be found in the Discus-
sion section of the competition page.66

A.2.2 Dataset

The dataset used for the task was prepared by the task organizers during
the months previous to the start of the competition, and is called “Freesound
Dataset Kaggle 2018” (or FSDKaggle2018 for short). FSDKaggle2018 can be
considered a subset of FSD50K introduced in Chapter 3, except for a few audio
clips that were discarded during FSD50K’s curation process, and a few class
labels that were merged into their parents for the final vocabulary of FSD50K.
Next, we describe the creation process of FSDKaggle2018. The dataset can be
downloaded from Zenodo.67

A.2.2.1 Annotation Procedure

FSDKaggle2018 is composed of audio content collected from Freesound, and
it is organized using categories of the AudioSet Ontology. As a first step,
we did a mapping of 268,261 Freesound clips to their corresponding AudioSet
categories. To do that, we assigned a number of Freesound tags to almost all of
the 632 AudioSet categories and, for each category, we selected audio clips from
Freesound tagged with at least one of these tags. This process led to a number
of automatically generated candidate annotations that express the potential
presence of a sound category in an audio clip. These annotations are at the
clip level and hence can be considered weak labels. However, some audio files
are specific sound examples of the category under consideration, where the
acoustic signal fills almost the entirety of the file, which could arguably be
considered as strong labels.
In order to validate the candidate annotations, we used Freesound Annotator,27

an online platform for the collaborative creation of open audio datasets (Section
3.2.3). We deployed a validation task in which Freesound Annotator users can
manually verify the presence or absence of a candidate sound category in an
audio clip with a rating mechanism. For every sound category, users first go
through a training phase to get familiar with the category, read its description

66https://www.kaggle.com/c/freesound-audio-tagging/discussion/59932
67https://doi.org/10.5281/zenodo.2552859

https://www.kaggle.com/c/freesound-audio-tagging/discussion/59932
https://doi.org/10.5281/zenodo.2552859
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provided by AudioSet, and listen to some selected sound examples. Then,
users are presented with a series of audio clips, and prompted the question:
Is <category> present in the following sounds? Users must select one of the
response types listed in Table 3.1: Present and predominant (PP), Present
but not predominant (PNP), Not Present (NP) or Unsure (U). Along with the
audio clips, users are also given links to the corresponding Freesound sound
pages where the original tags and descriptions are available and can be used as
an aid for the validation process. Participants in the validation task included
voluntaries from the Freesound community as well as researchers and students
from the Music Technology Group.
Among the various features implemented in the validation task, it is worth
mentioning the utilization of quality control mechanisms such as the periodic
inclusion of verification clips to test the reliability of the submitted responses.
Likewise, in order to choose which audio clips to present to each user, we
adopt a prioritization scheme that considers inter-annotator agreement. More
specifically, each candidate annotation is presented to several users (i.e., annot-
ators) until agreement is attained by two different users on a response type.
When a candidate annotation reaches an agreement status, it is considered
validated and is no longer presented to other users.

A.2.2.2 Dataset Curation

After generating candidate annotations and collecting user ratings in the Free-
sound Annotator, each candidate annotation had a particular distribution of
ratings {PP, PNP, NP, U} (see Table 3.1). Then, a curation step was carried
out to select which categories and audio clips to be finally included in FSDK-
aggle2018. Considering all annotations, two annotation subsets were created
for each sound category:

Manually-verified annotations: composed of those annotations rated
only as PP (a great majority with inter-annotator agreement but not all
of them, hence PP & PP or single PP).

Non-verified annotations: composed mainly of the un-rated candidate
annotations, and complemented with a small amount of rated annota-
tions. This small amount of rated annotations can include any rating
distribution except i) those corresponding to the manually-verified por-
tion, and ii) those that clearly denote an incorrect mapping (e.g., NP,
NP & U, etc.).

For each sound category, a quality estimate QE for the non-verified annotations
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can be computed according to

QE =
#PP+#PNP

#PP+#PNP+#NP+#U
, (A.1)

where #X denotes the number of ratings of type X gathered in the category.
Next, a number of restrictions were applied sequentially to the categories an-
d/or the audio clips within them. First, we discarded all categories not belong-
ing to leaf nodes of the AudioSet hierarchy, leaving a total of 474 categories.
Then, we removed audio clips shorter than 300ms and longer than 30s, as well
as those clips with Creative Commons Non-commercial or Sampling+ licenses.
All sound categories that, after the previous filtering, did not have i) a min-
imum of number of manually-verified annotations, and ii) a minimum number
of manually-verified + non-verified annotations, were discarded. Note that in
order to accept the non-verified annotations in a category, a minimum QE was
required (see Section A.2.2.3).
We observed that quite a few leaf sound categories were discarded because they
did not have sufficient number of clips. In some of these cases, making use of
the hierarchical relationships in AudioSet, we decided to aggregate the content
of these leaf categories together with that of their immediate parents in order
to create new candidate parent categories. Similar requirements (in terms of
QE and amount of data) were applied to these newly formed categories for
them to be accepted in the raw version of FSDKaggle2018.
After this process, an analysis was carried out in terms of i) number of in-
domain68 candidate annotations per audio clip and ii) semantic aspect of the
resulting categories. The analysis revealed that the vast majority of the audio
clips presented a single candidate annotation and, for the sake of simplicity, we
decided to discard audio clips with multiple annotations.69 We also discarded
a few categories with somewhat abstract or vague meaning like “Recording”
or “Effect unit”.
Finally, the audio clips with manually-verified annotations for every category
were split into roughly 70%/30% for train and test sets. The split was car-
ried out considering clip duration (so as to have short and long clips in both
sets). Then, we complemented the manually-verified portion of the train set
with the non-verified annotations. This addition was performed such that the
maximum number of clips per category was 300 in order to mitigate data im-
balance among categories. The dataset curation resulted in the selected 11,073
sounds/annotations organized with 41 AudioSet categories.

68Considering only the set of valid categories at this point of the process, instead of all
the AudioSet categories.

69Note that the automatically generated candidate annotations depend on the user-
generated tags in Freesound and on the mapping to the AudioSet Ontology. Hence their
reliability relies on the subsequent validation process.
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A.2.2.3 Dataset Description

FSDKaggle2018 contains a total of 11,073 files provided as uncompressed PCM
16 bit, 44.1 kHz, mono audio files. All audio clips are released under either Cre-
ative Commons Attribution or Zero licenses. The clips are unequally distrib-
uted in 41 categories of the AudioSet Ontology. The full list can be inspected
in the competition page.
The dataset most relevant characteristics are as follows:

Audio clips are annotated with a single label.

The duration of the audio clips ranges from 300ms to 30s due to the
diversity of the sound categories and the preferences of Freesound users
when recording sounds.

The dataset is split into a train set and a test set.

The train set is meant to be for system development and includes 9473
audio clips unequally distributed among 41 categories. The minimum
number of audio clips per category in the train set is 94, and the max-
imum is 300. The total duration of the train set is almost 18h.

Out of the 9473 clips from the train set, 3710 have manually-verified an-
notations and 5763 have non-verified annotations. The latter are properly
flagged so that participants can opt to use this information during the
development of their systems.

The test set is composed of 1600 clips with manually-verified annota-
tions and with a similar category distribution to that of the manually-
verified portion of the train set. The minimum number of manually-
verified audio clips per category in the test set is 25, and the maximum
is 110. The test set is complemented with 7800 padding clips.70 These
clips, which are not used for scoring the systems, are added to prevent
undesired practices (considering that the test set was made publicly avail-
able when the competition launched).

As mentioned in Section A.2.2.2, all manually-verified annotations are
annotations validated as PP (Present and Predominant). This means that,
in most cases, there is no additional acoustic material other than the labeled
category. In few cases, there may be some additional sound events, but these
additional events will be out-of-vocabulary, i.e., they won’t belong to any of the
41 AudioSet categories of FSDKaggle2018. The non-verified annotations
have a QE of at least 65% in each category. This means that some of them

70Hence, the dataset available from Kaggle contains 18,873 audio files.
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are most probably inaccurate. It can happen that audio clips corresponding
to some of the non-verified annotations present several sound sources (even
though only one label is provided as ground truth). These additional sources
are typically out-of-vocabulary, but in a few cases they could be within the
vocabulary.

A.2.3 Challenge Outcomes

This scientific evaluation attracted 558 teams with a total of 5684 submissions
in the Kaggle platform. At the end of the competition, 20 teams submitted
technical reports to the DCASE Challenge describing their solutions.
Below we give a short summary of the main takeaways from the submissions
to the DCASE Challenge. The full list of technical reports submitted to the
DCASE Challenge is available from the DCASE website, along with multiple
tables summarizing the main aspects of the systems.71

The issue of variable clip duration was usually addressed by selecting fixed-
length chunks from the clips, either via random slicing or using fixed-length
sliding windows. The most common acoustic representation was log-mel ener-
gies. Data augmentation was quite popular, especially mixup augmentation.
Deep learning approaches were widely adopted, especially CNN architectures
including mainly VGG, DenseNet, ResNet or ResNeXt, and also a few CRNN
architectures. Nonetheless, conventional classifiers like support vector machine
or gradient boosting machine were also used to some extent. Model ensembles
were used heavily across the board, reaching up to a committee of 30 mod-
els. The problem of label noise was sometimes addressed with semi-supervised
learning, and sometimes with noise robustness measures like label smoothing
or loss masking.

A.3 DCASE 2019 Task 2: Audio Tagging with
Noisy Labels and Minimal Supervision

In this DCASE Challenge Task, we seek to foster label noise research in general-
purpose sound event tagging. We follow up on the DCASE Challenge 2018
Task 2 described in Section A.2, and propose to investigate the scenario where
a small set of manually-labeled data is available, along with a larger set of noisy-
labeled data, in a multi-label audio tagging setting, and using a vocabulary of
80 classes of everyday sounds.
The proposed task addresses two main research problems. The first problem is
how to adequately exploit a large quantity of noisy labels, many of which are

71http://dcase.community/challenge2018/task-general-purpose-audio-tagging-results
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incorrect and/or incomplete, and how to complement it with the supervision
provided by a much smaller amount of reliable manually-labeled data (minimal
supervision). The second problem is given by the acoustic mismatch between
the noisy train set and the test set. Distribution shifts between data have been
shown to cause substantial performance drops in machine learning, both for
vision (Recht et al., 2019) and audio (Mesaros et al., 2018c). In our case, the
noisy train set comes from a different web audio source than the test set, which
is sometimes a real-world constraint.

A.3.1 Task Setup

The goal of this task is to predict appropriate labels for each audio clip in a
test set. The predictions are to be done at the clip level, i.e., no start/end
timestamps for the sound events are required. Some test clips bear one ground
truth label while others bear multiple labels. Hence, the task setup is a multi-
label classification problem and the systems to be developed can be denoted as
multi-label audio tagging systems, as illustrated in Figure A.2. This task was
hosted on the Kaggle platform from April 4th to June 10th 2019. The resources
associated to this task (dataset download, submission, and leaderboard) can
be found on the Kaggle competition page.72

Figure A.2: Overview of a multi-label tagging system.

As described in Section A.3.2, the audio data for this task consists of a test
set and two train sets: a curated train set and a noisy train set, that allow to
experiment with training data of different levels of reliability and coming from

72https://www.kaggle.com/c/freesound-audio-tagging-2019
Note that the competition name on Kaggle is abbreviated from the full DCASE2019 Challenge
task name to “Freesound Audio Tagging 2019”.

https://www.kaggle.com/c/freesound-audio-tagging-2019
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different sources. System evaluation was carried out on Kaggle servers (see
Section A.3.1.1) using the test set, which is further split into two divisions, for
the public and private leaderboards. During the competition, the test subset
corresponding to the public leaderboard was used to provide live ranking of
all participants. To compute the final private leaderboard, at the end of the
competition, systems were re-evaluated using the unseen private test set, of
which neither the audio nor the labels were accessible to participants.

A.3.1.1 Evaluation Metric and Competition Rules

The task was evaluated using the lwlrap metric (see Section 2.3.7). This gen-
eralizes the mean reciprocal rank (MRR) used in the 2018 Challenge (Section
A.2.1.1) to the case of multiple true labels per test item. In contrast to plain
lrap, which averages precisions within a sample then across samples, thereby
downweighting labels that occur on samples with many labels, lwlrap calculates
the precision for each label in the test set, and gives them all equal contribution
to the final metric. A Python implementation of lwlrap is provided online.73

This scientific evaluation was set up as a Kaggle Kernels-only competition.
This means that all participants had to submit their systems as inference mod-
els in Kaggle Kernels (similar to Jupyter Notebooks), to be evaluated on remote
servers. In addition, inference run-time was limited to a maximum of one hour
in a Kernel with one GPU, and memory constraints were also imposed. These
constraints aim to discourage the usage of large model ensembles that were
prevalent in the previous 2018 Challenge edition. Participants could submit
a maximum of two submissions per day, and select two final submissions to
be considered for the private leaderboard ranking. A detailed description of
the task rules can be found in the Rules section of the competition page;72 the
most important points are summarized in the DCASE Challenge page.74

To complement the leaderboard results of the lwlrap ranking, the task organ-
izers introduced a complementary Judges’ Award to promote submissions us-
ing novel, problem-specific and efficient approaches. Details about the Judges’
Award rules can be found in the Judges’ Award section of the Kaggle website.72

A.3.2 Dataset

The dataset used is called FSDKaggle2019, and it employs audio clips from
the following sources:

73https://colab.research.google.com/drive/1AgPdhSp7ttY18O3fEoHOQKlt_3HJDLi8
74http://dcase.community/challenge2019/task-audio-tagging#task-rules
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Freesound Dataset (FSD): a dataset under development based on Free-
sound content organized with the AudioSet Ontology (Gemmeke et al.,
2017).75 These data are used to create the curated train set and the test
set.

The soundtracks of a pool of Flickr videos taken from the Yahoo Flickr
Creative Commons 100M (YFCC100M) dataset (Thomee et al., 2016).
These data are used to create the noisy train set.

FSDKaggle2019 is freely available from Zenodo,76 all clips are provided as
uncompressed PCM 16 bit 44.1 kHz mono audio files, its ground truth labels
are provided at the clip-level (i.e., weak labels), and its partitioning is depicted
in Figure A.3.

YFCC

test set

19,815 clips / 80 hours 4970 / 10.5

noisy train set
curated 
train set

FSD FSD

4481 / 12.9

Figure A.3: Data split in FSDKaggle2019, including number of clips / duration
in hours, and data origin. Colors depict quality of labels: orange, yellow and green
correspond to noisy labels, correct but potentially incomplete labels, and exhaustive
labels, respectively.

The human-labeled portions of FSDKaggle2019 (i.e., curated train set and test
set) can be considered a subset of FSD50K introduced in Chapter 3, except
for a few audio clips that were discarded during FSD50K’s curation process.

A.3.2.1 Curated train set and test set

The first step carried out in the creation of FSDKaggle2019 was the definition
of a vocabulary of 80 classes drawn from the AudioSet Ontology (Gemmeke
et al., 2017). This vocabulary was chosen based on the following criteria: i) we
consider leaf nodes of the AudioSet hierarchy for which there is enough data
available in FSD, ii) we aim to encompass a diverse range of everyday sounds,
and iii) we remove few clearly isolated classes (those with the weakest semantic
relations with any of the rest), thus promoting confounds between semantic-
ally/acoustically similar classes to some extent. The main sound families (i.e.,

75This dataset under development would eventually be FSD50K, introduced in Chapter 3.
76https://doi.org/10.5281/zenodo.3612637

https://doi.org/10.5281/zenodo.3612637
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groups of sound classes) in the resulting vocabulary are, in descending order
of prevalence, human sounds, domestic sounds, musical instruments, vehicles,
animal sounds, natural sounds, materials, and mechanisms. The full list of 80
classes is available in the Data section of the Kaggle website.72

In a second step, we did a mapping of Freesound clips to the selected 80 class
labels. To this end, a set of keywords was defined connecting the user-provided
Freesound tags with the AudioSet labels. Using this mapping, for every class,
we retrieved the audio clips that feature at least one of the defined keywords
among their tags. This process led to a number of automatically-generated
candidate annotations indicating the potential presence of a sound class in an
audio clip (i.e., weak labels, as timing information is not included). Nonethe-
less, in some audio clips the target signal fills the clip length almost completely,
which can be considered as a strong label. Subsequently, the candidate an-
notations were human-validated using a validation task deployed in Freesound
Annotator27 (Section 3.2.3). In this task, users verify the presence/absence
of a candidate sound class in an audio clip with a rating mechanism. The
vast majority of provided labels have inter-annotator agreement but not all
of them. The outcome is a set of clips where the corresponding label(s) are
correct; nevertheless, it can happen that a few of these audio clips present
additional acoustic material beyond the provided label(s).
The resulting data were split into a train set and a test set. We refer to this
train set as curated in order to distinguish it from the noisy set described in
Section A.3.2.2. To mitigate train-test contamination, the split was carried
out considering the clip uploaders in Freesound. We allocated all audio clips
uploaded from the same user into either the curated train set or the test set, so
that the sets are disjoint at the Freesound user level. The partition proportion
was defined to limit the supervision provided in the curated train set, thus
promoting approaches to deal with label noise.
Finally, labels in the test set were further refined using the refinement annota-
tion tool described in Section 3.2.7. This annotation task consists of two stages:
i) pre-existent labels can be re-validated, and ii) potentially missing labels can
be added through exploration of the AudioSet Ontology (Favory et al., 2018).
The outcome is a set of exhaustively labeled clips where the label(s) are correct
and complete considering the target vocabulary; nonetheless, few clips could
still present additional (unlabeled) acoustic content out of the vocabulary.
The main characteristics of the curated train set, noisy train set and test set
are listed in Table A.1. The curated train set consists of 4970 clips with a total
of 5752 labels. Labels per clip ranges from 1 to 6 with a mean of 1.2. The test
set consists of 4481 clips with a total of 6250 labels. Labels per clip ranges
from 1 to 6 with a mean of 1.4. Note the increased number of labels per clip
with respect to the curated train set, due to the process of exhaustive labelling.
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Table A.1: Main stats of the sets in FSDKaggle2019. ∗A few classes have slightly
less than 75 clips.

Aspect curated train noisy train test

Clips/class ∼75∗ 300 ∼ 50 - 150
Total clips 4970 19,815 4481
Labels/clip 1.2 1.2 1.4
Clip length ∼0.3 - 30s ∼15s ∼0.3 - 30s
Total duration ∼10.5h ∼80h ∼12.9h
Labelling correct noisy exhaustive

(inexhaustive)

In both cases, clip length ranges from 0.3s to 30 due to the diversity of the
sound classes and the preferences of Freesound users when recording/uploading
sounds.

A.3.2.2 Noisy train set

The noisy train set was prepared using the YFCC100M dataset (Thomee et al.,
2016), which has the advantages of i) being a very large and diverse dataset
that is not correlated with Freesound in acoustics or domain, and ii) offering
permissive Creative Commons licenses that allow ease of use, modification, and
redistribution. The original dataset contained ∼99M photos and ∼793k videos
from ∼581K Flickr users. We dropped videos with licenses that disallowed
making derivatives or commercial use, videos that were no longer available,
and videos with audio decode errors that we could not transcode, leaving us
with ∼201K 44.1 kHz mono WAV files. Video length varied with a maximum
of 20 minutes, and a mean of ∼37s and median of ∼20s.
The Flickr video metadata (title, description, tags) proved to be too sparse
to meaningfully map to our class vocabulary. Therefore, we used a content-
based approach where we generated video-level predictions from a variety of
pre-trained audio models: a shallow fully-connected network as well as vari-
ants of VGG and ResNet (Hershey et al., 2017), all of which were trained
on a large collection of YouTube videos using the AudioSet class vocabulary.
We generated sliding windows of ∼1s containing log mel spectrogram patches
and aggregated the per-window predictions (using either maximum or aver-
age pooling) to produce a video-level vector of class scores. For each of our
80 classes, we kept the top 300 videos by predicted score for that class. We
browsed the video labels and selected the maximum-pooled VGG-like model as
producing a balance between reasonable predictions and a substantial amount
of label noise. As a further source of noise, each final clip was produced by
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taking a random slice of a video of length up to 15 seconds (videos shorter
than 15 seconds would be taken in their entirety). Hence, the label noise can
vary widely in amount and type depending on the class, including in- and
out-of-vocabulary noises (see Section 5.2.2).
As listed in Table A.1, the noisy train set consists of 19,815 clips with a total
of 24,000 labels (300 * 80). Labels per clip ranges from 1 to 7 with a mean
of 1.2. Clip length ranges from 1s to 15s (by construction), with a mean of
14.5s. Therefore, the per-class training data distribution in FSDKaggle2019
is, for most of the classes, 300 clips from the noisy set and 75 clips from the
curated set. This means 80% noisy / 20% curated at the clip level, while at the
duration level the proportion is more extreme considering the variable-length
clips. Since most of the train data come from YFCC100M, acoustic domain
mismatch between the train and test set can be expected. We conjecture
this mismatch comes from a variety of reasons. For example, through acoustic
inspection of a small sample of both data sources, we find a higher percentage of
high quality recordings in Freesound. In addition, audio clips in Freesound are
typically recorded with the purpose of capturing audio, which is not necessarily
the case in YFCC100M.

A.3.3 Challenge Outcomes

This scientific evaluation attracted 880 teams with a total of 8618 submissions
in the Kaggle platform. At the end of the competition, 14 teams submitted
technical reports to the DCASE Challenge describing their solutions.
Below we give a short summary of the main takeaways from the submissions
to the DCASE Challenge. The full list of technical reports submitted to the
DCASE Challenge is available from the DCASE website, along with multiple
tables summarizing the main aspects of the systems.77

Similar to the 2018 Challenge edition, the most popular acoustic represent-
ation was log-mel energies; however, in this edition more teams turned to
raw waveforms as input representation. All submissions used deep learn-
ing approaches, especially CNN and CRNN architectures, including VGG,
DenseNet, ResNe(X)t, Shake-Shake, Frequency-Aware CNNs, Squeeze-and-
Excitation, and MobileNet. Also in a similar fashion to the 2018 Challenge
edition, a widespread use of model ensembles was observed, sometimes heavily.
Successful exploitation of the the noisy train set appeared to be challenging.
Hence a number of participants focused on exploiting the smaller clean set us-
ing data augmentation methods such as mixup, multiple variants of SpecAug-
ment, SpecMix, or Test Time Augmentation. To tackle the problem posed by
noisy labels, a variety of approaches were utilized rather than a clear common

77http://dcase.community/challenge2019/task-audio-tagging-results
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trend. The proposed approaches include semi-supervised learning for instance
selection or pseudo-label generation, multi-task learning, robust loss functions
and per-class loss weighting, stochastic weight averaging, adaptive-weighting
of noisy samples, and MixMatch.
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author related with the thesis work.
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Co-organizer of DCASE Challenge 2018 Task 2 “General-purpose audio tag-
ging of Freesound content with AudioSet labels”.
(http://dcase.community/challenge2018/task-general-purpose-audio-tagging)

Co-organizer of DCASE Challenge 2019 Task 2 “Audio tagging with noisy
labels and minimal supervision”.
(http://dcase.community/challenge2019/task-audio-tagging)
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Paper shortlisted for Best Student Paper Award in WASPAA 2021: “Self-
Supervised Learning From Automatically Separated Sound Scenes” (Fonseca
et al., 2021b).

Developer of awarded proposal for Google Faculty Research Awards 2017 in
the Machine Perception category.
(https://research.google/outreach/past-programs/faculty-research-awards/?category=2017)
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Awardee of 3 Nvidia GPU cards.
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Resources

In this thesis, we strived to make available as many resources as possible for
the sake of open research and reproducibility. Next, we provide the URLs to
access the data and code resources developed in this thesis. These URLs have
also been referenced where appropriate in the main body of this manuscript.

D.1 Datasets

FSD50K is an audio dataset of human-labeled sound events containing
51,197 Freesound clips unequally distributed in 200 classes drawn from the
AudioSet Ontology.
(https://doi.org/10.5281/zenodo.4060431)
(Companion site: https://annotator.freesound.org/fsd/release/FSD50K/)

FSDnoisy18k is an audio dataset collected with the aim of fostering the
investigation of label noise in sound event classification. It contains 42.5
hours of audio across 20 sound classes, including a small amount of manually-
labeled data and a larger quantity of real-world noisy data.
(https://doi.org/10.5281/zenodo.2529933)
(Companion site: http://www.eduardofonseca.net/FSDnoisy18k/)

FSDKaggle2019 is an audio dataset containing 29,266 audio files annot-
ated with 80 labels of the AudioSet Ontology. FSDKaggle2019 has been
used for the DCASE Challenge 2019 Task 2.
(https://doi.org/10.5281/zenodo.3612636)

FSDKaggle2018 is an audio dataset containing 11,073 audio files annot-
ated with 41 labels of the AudioSet Ontology. FSDKaggle2018 has been
used for the DCASE Challenge 2018 Task 2.
(https://doi.org/10.5281/zenodo.2552859)
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D.2 Code

Code for the paper “Learning Sound Event Classifiers from Web Audio with
Noisy Labels” (Fonseca et al., 2019b).
(https://github.com/edufonseca/icassp19)

Code for the paper “Model-agnostic Approaches to Handling Noisy Labels
When Training Sound Event Classifiers” (Fonseca et al., 2019a).
(https://github.com/edufonseca/waspaa19)

Code for the paper “Unsupervised Contrastive Learning of Sound Event
Representations” (Fonseca et al., 2021c).
(https://github.com/edufonseca/uclser20)

Code for the paper “Improving Sound Event Classification by Increasing
Shift Invariance in Convolutional Neural Networks” (Fonseca et al., 2021a).
(https://github.com/edufonseca/shift_sec)

Code for the paper “FSD50K: an Open Dataset of Human-Labeled Sound
Events” (Fonseca et al., 2020a).
(https://github.com/edufonseca/FSD50K_baseline)

https://github.com/edufonseca/icassp19
https://github.com/edufonseca/waspaa19
https://github.com/edufonseca/uclser20
https://github.com/edufonseca/shift_sec
https://github.com/edufonseca/FSD50K_baseline


APPENDIX E
Additional Figures and Tables

In this Appendix, we provide one additional Figure to support the discussion
of results in Chapter 4.
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Figure E.1: Per-class increment/decrement of AP for all classes in FSD50K when
inserting TLPF 5x5 and APS l1 on VGG42 with mixup (see right column of Table
4.4). Top 3 rows show the 144 leaf nodes and bottom row comprise the 56 intermediate
nodes.



APPENDIX F
Glossary

F.1 Acronyms

lwlrap Label-Weighted Label-Ranking Average Precision
AP Average Precision
APS Adaptive Polyphase Sampling
BCE Binary Cross-Entropy
CCE Categorical Cross-Entropy
CNN Convolutional Neural Network
CNNs Convolutional Neural Networks
CRNN Convolutional Recurrent Neural Network
CRNNs Convolutional Recurrent Neural Networks
DCASE Detection and Classification of Acoustic Scenes and Events
FAQs Frequently Asked Questions
IBP Intra-block Pooling
IQA Internal Quality Assessment
IV In-Vocabulary
kNN k-Nearest Neighbour
LSR Label Smoothing Regularization
MAC Mean Absolute Change
MAE Mean Absolute Error
mAP Mean Average Precision
MFCCs Mel-frequency Cepstral Coefficients
MIR Music Information Retrieval
MixIT Mixture Invariant Training
MLP Multi-Layer Perceptron
MLPs Multi-Layer Perceptrons
OOV Out-Of-Vocabulary
QbE Query by Example
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246 ACRONYMS

ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RNNs Recurrent Neural Networks
SEC Sound Event Classification
SED Sound Event Detection
SER Sound Event Recognition
SET Sound Event Tagging
SNR Signal-to-Noise Ratio
T-F Time-Frequency
TLPF Trainable Low-pass Filter
VGG Visual Geometry Group
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