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Abstract

Cutting-edge methods in the computational analysis of structures have been de-

veloped over the last decades. Such modern tools are helpful to assess the safety

of existing buildings. Two main finite element (FE) modeling approaches have

been developed in the field of masonry structures, i.e. micro and macro scale.

While the micro modeling distinguishes between the masonry components in order

to accurately represent the typical masonry damage mechanisms in the material

constituents, macro modeling considers a single continuum material with smeared

properties so that large scale masonry models can be analyzed. Both techniques

have demonstrated their advantages in different structural applications. However,

each approach comes along with some possible disadvantages. For example, the

use of micro modeling is limited to small scale structures, since the computational

effort becomes too expensive for large scale applications, while macro modeling can-

not take into account precisely the complex interaction among masonry components

(brick units and mortar joints).

Multi scale techniques have been proposed to combine the accuracy of micro

modeling and the computational efficiency of macro modeling. Such procedures

consider linked FE analyses at both scales, and are based on the concept of a rep-

resentative volume element (RVE). The analysis of a RVE takes into account the

micro structural behavior of component materials, and scales it up to the macro

level. In spite of being a very accurate tool for the analysis of masonry structures,

multi scale techniques still exhibit high computational cost while connecting the FE

analyses at the two scales.

Machine learning (ML) tools have been utilized successfully to train specific mod-

els by feeding big source data from different fields, e.g. autonomous driving, face

recognition, etc. This thesis proposes the use of ML to develop a novel homogeniza-

tion strategy for the in-plane analysis of masonry structures, where a continuous
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nonlinear material law is calibrated by considering relevant data derived from micro

scale analysis. The proposed method is based on a ML tool that links the macro and

micro scales of the analysis, by training a macro model smeared damage constitutive

law through benchmark data from numerical tests derived from RVE micro models.

In this context, numerical nonlinear tests on masonry micro models executed in a

virtual laboratory provide the benchmark data for feeding the ML training proce-

dure. The adopted ML technique allows the accurate and efficient simulation of the

anisotropic behavior of masonry material by means of a tensor mapping procedure.

The final stage of this novel homogenization method is the definition of a calibrated

continuum constitutive model for the structural application to the masonry macro

scale.

The developed technique is applied to the in-plane homogenization of a Flemish

bond masonry wall. Evaluation examples based on the simulation of physical lab-

oratory tests show the accuracy of the method when compared with sophisticated

micro modeling of the entire structure. Finally, an application example of the novel

homogenization technique is given for the pushover analysis of a masonry heritage

structure.

Keywords: Masonry · Finite Element Method · Macro Scale Modeling · Micro

Scale Modeling · Multi Scale Modeling · Material Homogenization · Heterogeneous

Material · Machine Learning · Continuum Damage Mechanics · Pushover Analysis
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Resumen

En las últimas décadas se han desarrollado diversos métodos avanzados para el

análisis computacional de estructuras. Estas herramientas modernas son también

útiles para evaluar la seguridad de los edificios existentes. En el campo de las es-

tructuras de la obra de fábrica se han desarrollado principalmente dos técnicas de

modelizacón por elementos finitos (FE): la modelización en escala micro y en escala

macro. Mientras que en un micromodelo se distingue entre los componentes de la

obra de fábrica para representar con precisión los mecanismos de daño caracteŕısticos

de la misma, en un macromodelo se asignan las propiedades a un único material con-

tinuo que permite analizar modelos de obra de fábrica a gran escala. Ambas técnicas

han demostrado sus ventajas en diferentes aplicaciones estructurales. Sin embargo,

cada enfoque viene acompañado de algunas posibles desventajas. Por ejemplo, la

micromodelización se limita a estructuras de pequeña escala, puesto que el esfuerzo

computacional que requieren aumenta rápidamente con el tamaño de los modelos,

mientras que la macromodelización, por su parte, es un enfoque promediado que

no puede por tanto tener en cuenta precisamente la interacción compleja entre los

componentes de la fábrica (unidades de ladrillo y juntas de mortero).

Hasta el momento, se han propuesto algunas técnicas multiescala para combinar

la precisión de la micromodelización y la eficiencia computacional de la macromod-

elización. Estos procedimientos aplican el análisis de FE vinculado a ambas escalas

y se basan en el concepto de elemento de volumen representativo (RVE). El análisis

de un RVE tiene en cuenta el comportamiento microestructural de los materiales

componentes y lo escala hasta el nivel macro. A pesar de ser una herramienta muy

precisa para el análisis de obra de fábrica, las técnicas multiescala siguen presentando

un elevado coste computacional que se produce al conectar los análisis de FE de dos

escalas. Además, diversos autores han utilizado con éxito herramientas de apren-

dizaje automático (machine learning (ML)) para poner a punto modelos espećıficos
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alimentados con grandes fuentes de datos de diferentes campos, por ejemplo, la

conducción autónoma, el reconocimiento de caras, etc.

Partiendo de los anteriores conceptos, este tesis propone el uso de ML para de-

sarrollar una novedosa estrategia de homogeneización para el análisis en plano de

estructuras de mamposteŕıa, donde se calibra una ley de materiales continua no

lineal considerando datos relevantes derivados del análisis a microescala. El método

propuesto se basa en una herramienta de ML que vincula las escalas macro y mi-

cro del análisis mediante la puesta a punto de una ley constitutiva para el modelo

macro a través de datos producidos en ensayos numéricos de un RVE micro modelo.

En este contexto, los ensayos numéricos no lineales sobre micro modelos de mam-

posteŕıa ejecutados en un laboratorio virtual proporcionan los datos de referencia

para alimentar el procedimiento de entrenamiento del ML. La técnica de ML adop-

tada permite la simulación precisa y eficiente del comportamiento anisotrópico del

material de mamposteŕıa mediante un procedimiento de mapeo tensorial. La etapa

final de este novedoso método de homogeneización es la definición de un modelo

constitutivo continuo calibrado para la aplicación estructural a la macroescala de

mamposteŕıa.

La técnica desarrollada se aplica a la homogeneización en el plano de un muro de

obra de fábrica construido con aparejo flamenco. Ejemplos de evaluación basados

en la simulación de pruebas f́ısicas de laboratorio muestran la precisión del método

en comparación con una sofisticada micro modelización de toda la estructura. Por

último, se ofrece un ejemplo de aplicación de la novedosa técnica de homogeneización

para el análisis pushover de una estructura patrimonial de obra de fábrica.

Palabras claves: Obra de fábrica · Método de los elementos finitos · Macro-

modelización · Micromodelización · Modelización multiescala · Homogeneización de

materiales · Material heterogéneo · Aprendizaje automático · Mecánica del daño

continuo · Análisis pushover
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Zusammenfassung

In den letzten Jahrzehnten wurden modernste numerische Methoden zur Simulation

von Bauwerken entwickelt. Diese Werkzeuge sind hilfreich, um auch die Stand-

sicherheit von Bauwerken des Bestands zu beurteilen. Speziell im Bereich des

Mauerwerkbaus wurden zwei Finite-Elemente (FE) basierte Techniken entwickelt:

Mikro- und Makromodellierung. Während bei der Mikromodellierung zwischen den

Mauerwerkskomponenten unterschieden wird - um typische Schadensmechanismen

im Mauerwerk genau abzubilden - werden bei der Makromodellierung die Eigen-

schaften auf ein einziges Festkörpermaterial gemittelt, damit komplette Mauerw-

erksbauten analysiert werden können. Beide Techniken haben ihre Vorteile. Allerd-

ings überwiegen die jeweiligen möglichen Nachteile: Die Mikromodellierung ist auf

kleine wandartige Mauerwerksstrukturen beschränkt, da der Rechenaufwand zu groß

wird, je größer die Modelle sind. Andererseits ist die Makromodellierung ein ver-

schmierter Ansatz, der die Interaktion der Mauerwerkskomponenten (Ziegelsteine

und Mörtelfügen) nicht korrekt berücksichtigen kann.

Um die Genauigkeit der Mikromodellierung mit der Recheneffizienz der Makro-

modellierung zu kombinieren, wurden Mehrskalenverfahren entwickelt. Solche Ver-

fahren berücksichtigen die direkte Verknüpfung der FE-Berechnungen auf beiden

Skalen und beruhen auf dem Konzept eines repräsentativen Volumenelements (RVE).

Die Berechnung eines RVE repräsentiert das mikrostrukturelle Verhalten von Bauteil-

materialien und skaliert es auf die Makroebene. Obwohl es sich um ein sehr genaues

Werkzeug für die Analyse von Mauerwerksbauten handelt, verursachen Mehrskalen-

verfahren immer noch hohe Rechenkosten während sie die FE Berechnungen auf

beiden Skalen miteinander verbinden.

Verschiedenste Bereiche der Wissenschaften bedienen sich dem Werkzeug des

maschinellen Lernens. Beispiele aus der Wissenschaft zeigen, dass solche Modelle

durch das Einspeisen von großen Datenmengen erfolgreich trainiert werden konnten,
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z.B. autonomes Fahren, Gesichtserkennung, usw. Diese Dissertation schlägt eine

neuartige Homogenisierungsstrategie für die Simulation von Mauerwerk (im ebenen

Spannungszustand) vor, bei der ein kontinuierliches, nichtlineares Materialgesetz

kalibriert wird, indem relevante Daten aus der Simulation im Mikrobereich berück-

sichtigt werden. Die vorgeschlagene Methode basiert auf einem maschinellen Lern-

werkzeug, das die Makro- und Mikroskalen miteinander verbindet, indem ein Ma-

terialgesetz auf Makroebene trainiert wird. Die dabei einzuspeisenden Benchmark-

Daten werden aus numerischen Tests an RVE-Mikromodellen generiert.

In diesem Zusammenhang liefern numerische nichtlineare Tests an Mauerwerksmikro-

modellen, die in einem virtuellen Labor durchgeführt werden, die Benchmark-Daten

für das ML-Trainingsverfahren. Das angewandte ML-Verfahren ermöglicht die genaue

und effiziente Simulation des anisotropen Verhaltens von Mauerwerk mit Hilfe eines

Tensor-Mapping-Verfahrens. Der letzte Schritt dieser neuartigen Homogenisierungsmeth-

ode ist die Definition eines kalibrierten konstitutiven Materialgesetzes für die An-

wendung auf die Simulation von Mauerwerk auf der Makroebene.

Die entwickelte Technik wird auf die Homogenisierung einer Mauer aus flämis-

chem Verbundmauerwerk in der Ebene angewendet. Bewertungsbeispiele, die auf

der Simulation physikalischer Labortests basieren, zeigen die Genauigkeit der Meth-

ode im Vergleich zu einer ausgefeilten Mikromodellierung der gesamten Struktur.

Abschließend wird ein Anwendungsbeispiel der neuartigen Homogenisierungstech-

nik für die Pushover-Analyse eines historischen Mauerwerkes gegeben.

Stichwörter: Mauerwerk · Finite Element Methode · Makromodellierung · Mikro-

modellierung · Mehrskalen Modellierung · Homogenisierung von Materialien · Het-

erogene Festkörper · Maschinelles Lernen · Bruchmechanik · Pushover Analyse
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of the materials tension behavior . . . . . . . . . . . . . . . . . . . . 76

xxi



4.5 Force displacement results of numerical analyses of a single triangle

element following the constitutive model described in Chapter 4 for

two different deformations: (a) pure tension and (b) pure compression 82

4.6 Setup of the diagonal compression test as reported in Garcia-Ramonda

et al. (2020) and Segura et al. (2021) . . . . . . . . . . . . . . . . . . 84

4.7 Crack patterns of the unreinforced masonry walls after having per-

formed the diagonal compression experiments (Garcia-Ramonda et al.

(2020) and Segura et al. (2021)) . . . . . . . . . . . . . . . . . . . . . 85

4.8 Force-displacement plots of the diagonal compression tests of unre-

inforced masonry walls developed by Garcia-Ramonda et al. (2020)

and Segura et al. (2021), and the numerical simulation of the micro

modeled wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9 Contour plots of the damage tension parameter and scaled total de-

formation of the model at different analysis stages . . . . . . . . . . . 87

5.1 Overview of the machine learning homogenization technique, showing

all included procedures at multiple scales and the machine learning

technique as connector . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Overview of the computation graph G implemented to TensorFlow

for the machine learning material homogenization technique . . . . . 100

5.3 Zoom into the constitutive law implemented to the computation graph

G of the machine learning material homogenization technique consid-

ered in this thesis. It shows the inputs and outputs of the model . . . 102

5.4 Zoom into the optimization procedure of the computation graph G of

the the machine learning material homogenization technique consid-

ered in this thesis. It shows the computation of the gradients and the

construction of the Adam optimizer . . . . . . . . . . . . . . . . . . . 103

5.5 Flowchart of the training loop of the computation graph for the ma-

chine learning homogenization technique . . . . . . . . . . . . . . . . 105

5.6 Example of micro-scale modeled representative volume element for

the virtual laboratory. The volume ΩRV E consists of brick units and

mortar joints, both numerically modeled as nonlinear homogeneous

continuum materials, and the RVE’s boundary δΩRV E . . . . . . . . . 108

5.7 Three dimensional strain space for the 26 variation of the angles θ

and φ in Equation 5.24. . . . . . . . . . . . . . . . . . . . . . . . . . 111

xxii



5.8 Four deformed RVEs by applying a variation of boundary conditions . 111

5.9 Example showing the entities of Equation 5.27 for the up-scaling pro-

cedure of a masonry RVE finite element model with 4 node quadri-

lateral elements each having kj = 4 Gauss integration points . . . . . 113

5.10 RVE of the virtual laboratory for a small masonry wall specimen of

Example 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.11 Example 5.1: results of the optimization procedure to find the closest

isotropic linear elasticity matrix to an orthotropic one. Showing the

progression of the parameters E and ν and the ratio of the actual loss

to the initial loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.12 Overview of the different spaces considered in the mapping procedure 124

5.13 Chart of the operational flow in order to obtain the post-machine-

learning constitutive model. Showing the fictitious position of the

representative single element in a macro model . . . . . . . . . . . . . 128

5.14 Two FE models with different mesh refinements to demonstrate en-

ergy regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.15 Force - Displacement curves of model 1 and model 2 of (a) compres-

sion and (b) shear load examples, respectively. The models differ in

the number of FE elements, the similar results illustrate mesh inde-

pendence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.16 Overview of general application procedure of the post-machine-learning

constitutive law for the analysis of structures at the macro scale in-

cluding Algorithm 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 Virtual laboratory: representative volume element of the micro scale

finite element analysis, showing a) the micro model and b) the finite

element mesh discretization . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 Flemish bond RVE virtual laboratory: damage contour plots of the

26 cases considered in the virtual laboratory, showing the damage

variables d+/d− depending on the significant damage (T for tension,

C for compression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Variable results of the optimization procedure in order to find the

closest isotropic matrix to an anisotropic one, showing the evolution

of the variables E and ν and the ratio of the actual and initial loss . . 146

xxiii



6.4 Demonstration of the deviation of the principal directions of the

isotropized strain and stress vectors, respectively. Exemplary the

principal direction evolution of the virtual laboratory cases 3, 5, 11

and 21 are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.5 Principal stress values of the isotropized stresses σ̃iso,adj of the virtual

experiment 18 plotted over the norm of the strain vector ε̃iso. A

separation of the curves into three sets is shown, depicting the borders

of the sets as the peaks of the principal stresses σ1 and σ2, respectively.149

6.6 Results of the machine learning optimization procedure for the con-

stitutive law Ψ. Showing the separation into the six training runs

each depicting the evolution of the corresponding variable and the

ratio of the actual training cost and the initial training cost during

optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Comparison of the prediction results obtained by the trained constitu-

tive model Ψ. Showing the principal stress values of the anisotropic

results of the damage equivalent adjusted stresses from the virtual

laboratory and the predicted stresses plotted versus the norm of the

boundary applied strain vector. . . . . . . . . . . . . . . . . . . . . . 153

6.8 Comparison of the maximum principal stress values of the virtual

laboratory results for the data used in training (26 cases) and the

data used for evaluation (58 cases) and the predictions of the machine

learning model Ψ. The results are shown at the anisotropic scale . . . 154

6.9 Schematic views of the micro and macro models of the compression

and the shear compression tests. . . . . . . . . . . . . . . . . . . . . . 156

6.10 Compression test: vertical reaction force vs. vertical displacement

curves of the micro and the macro models. . . . . . . . . . . . . . . . 158

6.11 Compression test: crack patterns of the micro model and the macro

model Ψ, and the contour plots of the maximum principal strain εmax

and the displacement at a vertical top displacement of dy = 10.0 mm. 159

6.12 Shear compression test: curves showing the horizontal reaction force

vs. horizontal displacement of the micro model and the macro model

Ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xxiv



6.13 Shear compression test: crack patterns of the micro model and the

macro model Ψ, and the contour plots of the maximum principal

strain εmax and the displacement at a horizontal top displacement of

dx = 3.8 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1 Macro model calibration results for conventional macro model analy-

sis of large scale structures. Showing a) the crack width distribution

of the numerical calculation at failure, and b) the numerical results

compared with the experiment (Sandoval et al. (2017)) in terms of

angular strain versus horizontal reaction force curve. . . . . . . . . . 167

7.2 Two dimensional FE models of the facades of the Palacio Pereira for

the numerical analyses in diana fea . . . . . . . . . . . . . . . . . . 168

7.3 Micro model FE mesh for the numerical calibration of the Palacio

Pereira in-situ experiment and a schematic three dimensional display

of the Palacio Pereira brick size . . . . . . . . . . . . . . . . . . . . . 170

7.4 Micro model calibration results of the Palacio Pereira in-situ shear

test in terms of angular strain - horizontal force curve. Comparison

of the experimental results (Sandoval et al. (2017)) with the numerical

micro model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Contour plots of the the damage tension parameter d+ for the mi-

cro model analysis of the Palacio Pereira in-situ experiment for four

different horizontal displacements . . . . . . . . . . . . . . . . . . . . 171

7.6 The representative volume element of the Palacio Pereira virtual lab-

oratory showing the brick mortar allocation, the model size and the

FE mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.7 Palacio Pereira RVE virtual laboratory: damage contour plots of the

26 cases considered in the virtual laboratory, showing the damage

variables d+/d− depending on the significant damage (T for tension,

C for compression) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.8 Post machine learning macro model analysis of the Palacio Pereira in-

situ shear test. Showing a) the FE mesh, b) the first principal strains

at the ultimate analysis stage, and c) the horizontal reaction force

plotted against the angular strain for the numerical macro analysis

and the recorded values during the experiment . . . . . . . . . . . . . 176

xxv



7.9 Two dimensional FE models of the facades of the Palacio Pereira for

the numerical analyses in kratos multiphysics . . . . . . . . . . . 177

7.10 Numerical and experimental results of the Palacio Pereira in-situ ex-

periment, showing the horizontal force plotted over the angular strain

for the experiment and the numerical analyses carried out in diana

fea and kratos multiphysics by considering a conventional macro

model, a micro model and a machine learning based macro model cal-

ibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.11 South facade Palacio Pereira: contour plots of the horizontal displace-

ment at failure of the structures, showing the results for the analysis

in diana fea and kratos multiphysics . . . . . . . . . . . . . . . 180

7.12 South facade Palacio Pereira: contour plots of the cracks at failure

of the structures, showing the results for the analysis in diana fea

and kratos multiphysics . . . . . . . . . . . . . . . . . . . . . . . 181

7.13 South facade Palacio Pereira: pushover curves showing the base shear

force Fx plotted against the control node displacement dx of the most

upper right node of the FE models for the conventional diana fea

and the isotropic and orthotropic machine learning kratos multi-

physics approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.14 South facade Palacio Pereira: Photos of damages present in the fa-

cade after the 2010 Santiago de Chile earthquake, showing large shear

cracks in and above the spandrels of the window openings . . . . . . 183

7.15 East facade Palacio Pereira: contour plots of the horizontal displace-

ment at failure of the structures, showing the results for the analysis

in diana fea and kratos multiphysics . . . . . . . . . . . . . . . 184

7.16 East facade Palacio Pereira: contour plots of the cracks at failure of

the structures, showing the results for the analysis in diana fea and

kratos multiphysics . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.17 East facade Palacio Pereira: Pushover curves showing the base shear

force Fx plotted against the control node displacement dx of the most

upper right node of the conventional diana fea and the isotropic

and orthotropic machine learning kratos approaches. . . . . . . . . 186

xxvi



7.18 Photo of damages in the Palacio Pereira east facade after the 2010

Santiago de Chile earthquake, showing shear cracks over the openings

at the most southern part of the facade . . . . . . . . . . . . . . . . . 187

A.1 Modal analysis: cumulative effective mass from the eigenvalue anal-

ysis depending on the number of eigenmodes . . . . . . . . . . . . . . 205

A.2 Normalized mode shapes with mass participation higher than 5 % in

the x-direction and higher than 4 % in the y-direction . . . . . . . . . 207

A.3 Acceleration spectra considered in the seismic assessment of the Pala-

cio Pereira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

A.4 Response spectrum analysis with inelastic spectra of 2010 earthquake:

principal stress contours for major vibration modes in the x-direction. 208

xxvii



xxviii



List of Tables

3.1 Material properties of the smeared crack model for the finite element

model of the Palacio Pereira in diana fea . . . . . . . . . . . . . . 47

3.2 Maximum acceleration values derived from each pushover analysis

and ultimate displacements of the control nodes in x- or y-direction.

Seismic performance in terms of displacements and accelerations and

transformation factors from MDOF to SDOF according to the N2

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Comparison among the maximum displacements derived from the

nonlinear dynamic analyses (NDA) and the performance displace-

ments of the pushover analyses (NSA). Calculation of relative errors

of NSA displacements compared with NDA displacements. . . . . . . 55

3.4 Failure mechanisms detected by nonlinear dynamic and multi direc-

tional static analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Strain and stress properties needed for the Bézier damage law in
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Table 4.2

TLECPB Tension Lubliner Exponential Compression

Petracca Bézier

Table 4.2

TRBCPB Tension Rankine Bézier Compression Pe-
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Chapter 1

Introduction

1.1 Background and motivation

Humans have been using masonry structures to build their surrounding environment

since very ancient times. It all started with rocks put together in order to be

protected from natural or social hazards. Humans could construct from small walls

passing to houses and up to large structures (e.g. temples, palaces, fortresses) by

developing their own techniques that severely improved the use of masonry. It

has always been one of the prioritized construction materials. At the end of the

industrialization age the invention of reinforced concrete provoked an important

reduction of the use of masonry in construction. Engineers started to think in

other dimensions and tried to reflect this in their architecture. High rise buildings

scratching the sky were only possible when constructing out of concrete or steel.

The workmanship required less manpower and machines facilitated the construction

with new building materials. This has led to a debatable use of resources that was

anything else but sustainable. However, the generation of the 21st century is tackling

climate change and the construction world must take action. More sustainable

materials must be found, recycled and brought into a circular economy that does not

allow ignorance anymore. Constructing out of masonry plays an important role for

this change. Bricks can be reused and also produced from other recycled materials.

Furthermore, bricks are available locally and short transport routes reduce carbon

emissions. Therefore, investigating in the field of masonry is much more than the

preservation of architectural heritage, as it is part of the story about how humans

tackle environmental issues in their built environment.
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CHAPTER 1. INTRODUCTION

Masonry is an assembly of many different materials - a conjunction of rocks/stones

or bricks usually bound together with mortar. There is no unique definition of how

to allocate the units in order to obtain masonry, as it depends on the explicit knowl-

edge developed by each cultural group in order to construct. Inside these cultural

groups, the knowledge of how to construct masonry has been passed on from one

generation to the other. Furthermore, each technique has been improved over time

through the application of the latest technological developments.

Today’s world contains a collection of many different masonry construction tech-

niques. In any region, masonry features the local and traditional way of construct-

ing. This collection must be saved by the present society. Many of the still existing

structures around the globe belong to instances that represent our social values, e.g.

churches, temples and mosques represent our religious values while palaces represent

the administrative institutions that have allowed the development of our society. Up

to now, people have endeavored to communicate these social values in their archi-

tecture. The master builders of past times knew that their built environment also

represents cultural values and consequently they tried to design to perfection. Since

there was no other possibility than to construct from timber or stones at that time,

the architects and engineers had to invent the best structures out of these limita-

tions. And the master builders trained themselves in using materials for complex

structures, such as masonry arches, as can be observed in many churches from the

Gothic and Baroque age. They knew about the properties of masonry, i.e. the weak

strength in tension and strong strength in compression. Thus, they minimized the

occurrence of tensile stresses by optimizing the geometry of structures. At that time

the builders used simple analysis approaches in order to build their masterpieces.

Each generation - and thanks to the age of masonry many former generations already

existed - has always improved its construction techniques and assessment tools so

that large structures could be built.

Nowadays, demanding mathematical tasks are done by computers. Great effort

has been put into the development of computer hardware in order to increase com-

putation capacities. Modern software is continuously improved in order to facilitate

the work of all. Nowadays, structural engineers also employ these tools in order to

assess the stability of structures. The finite element (FE) method is one of the most

renowned approaches employed to perform structural analysis. Computer aided de-

sign tools allow the detailed modeling of large structures. The FE method can then
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CHAPTER 1. INTRODUCTION

be utilized in order to compute the stress/deformations corresponding to particular

loading and boundary conditions. A great visualization of the results is given by

post processing software. The availability of such numerical tools has also brought

the structural analysis of masonry structures to a next level.

The availability of numerical analysis for masonry structures is a fundamental

step towards overcoming the limitations faced by the master builders of ancient

times. In the past decades, several numerical modeling techniques for the assess-

ment of existing masonry buildings have been developed. Masonry structures are

more vulnerable when exposed to horizontal loading. Such loads can be induced by

strong winds or earthquake actions. Under such conditions, masonry’s poor strength

in tension can be exhausted easily and large cracks can lead to total collapse of struc-

tures. Numerical analyses simulating these loading scenarios can help to assess the

vulnerability of historical structures and to identify weak parts that require struc-

tural intervention. However, conventional procedures include assumptions and are

very often restricted to regular structures. Especially historical structures are char-

acterized by irregularities in plan and elevation and when exposed to horizontal

actions, conventional assessment methods are not representative anymore. There-

fore, further improved procedures that also take irregularities into account should

be developed.

The more accurate way of modeling masonry is the renowned micro modeling ap-

proach. Masonry is modeled by differing between the material components. Broadly

spoken, the geometrical model consists of brick units and mortar joints. Distinct

constitutive models assigned to each component are able to represent its respec-

tive natural material behavior. The numerical simulation of such micro modeled

structures is able to represent the damage and cracks very accurately when com-

pared to experimental data. However, this approach requires a large computational

cost and restricts its application to small-scale structures. Large investigative effort

was put into a technique that assumes masonry to be a continuum material with

smeared material properties. This technique is called macro modeling. The major

advantages are less modeling and computational effort. Thus, large-scale structures

can be analyzed through simulations of earthquakes, wind loads, soil settlements,

etc. Many different types of simulations have been carried out and are still being

developed in order to investigate the causes of a wide variety of potential structural

problems. However, masonry is a composite material and averaging its properties
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makes each analysis strongly dependent on the assumptions made by the analyst

while defining the homogenized constitutive model. Therefore, the simulation of

damage might give either correct or false assessments. In order to overcome this in-

accuracy, multi-scale approaches have been investigated as they are able to combine

the micro and macro modeling. These approaches have shown to be able to connect

the advantages of both techniques, even though the computational cost is still too

expensive (Petracca (2016)).

It becomes clear from the previous considerations that novel tools must be con-

sidered for the numerical analysis of masonry structures in order to minimize compu-

tational effort and optimize the assumed material properties at the same time. K.C.

Park, a renowned Professor Emeritus from University of Colorado at Boulder, men-

tioned in a keynote speech given at the International Centre for Numerical Methods

in Engineering (CIMNE Barcelona) that “Paradigm Changes in Engineering Mod-

eling” are taking place. He motivated young researchers in the field of mechanics

to utilize directly processed data in order to identify system parameters, and he

talked about the convenience of skipping analytic model construction stages when

practical and reliable alternative solutions can be achieved through data models. He

refers to keywords like big data, artificial intelligence, machine learning etc. Those

approaches have been pushed forward in many scientific and industrial fields. In

fact, large amounts of data are nowadays utilized to train machine learning models

and artificial neural networks that have applications in almost every field. Such

models establish patterns in large data training sets that enable predictions on data

that are not part of the training set. The most famous application of such models is

face recognition in photos. So why not use this strong contemporary tool of learning

from data in the research field of masonry?

Considering the above, two challenges in the numerical analysis of masonry struc-

tures are evolving. On the one hand, advanced numerical simulation techniques

applied to large structures must be developed in order to correctly assess the di-

verse structural response of masonry structures. On the other hand, constitutive

models utilized in macro modeling approaches must be defined in order to correctly

represent the peculiar material behavior of masonry.

Consequently, this research addresses both these challenges. Firstly, it evaluates

the opportunities of macro modeling by developing a novel nonlinear simulation

technique for the seismic analysis of irregular masonry structures. The technique is
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applied to a complex case study. Based on this application, the conventional ap-

proach of defining macro model properties is explored and its limitations are demon-

strated. Secondly, the use of machine learning to overcome some of these limitations

is investigated. The main motivation of this work is to utilize the modern tool of

machine learning to develop well-trained constitutive models based on data derived

from small-scale micro modeling results. This procedure leads to the development

of a novel homogenization strategy based on machine learning, allowing the reliable

calibration of relevant parameters for the macro modeling of masonry structures.

1.2 Scope and objectives

The primary objective of this thesis is to develop a machine learning based ho-

mogenization technique for the non-linear numerical analysis of masonry structures

in order to provide more representative homogenized properties for the analysis at

the masonry macro scale. The research is performed within the scope of non-linear

advanced simulations of masonry at the macro scale, the definition of nonlinear con-

tinuum damage models and the elaboration of machine learning tools. The study

focuses on two-dimensional structures which can be simulated as being in the state of

plane stress. In order to accomplish the primary goal of the studies, several specific

objectives have been defined. These are summarized in the following.

(a) To generate a comprehensive state-of-the-art collection including investigative

results with objectives similar to the one of this study, including the improve-

ment of nonlinear numerical simulation techniques and the optimization of

homogenization techniques for masonry.

(b) To demonstrate the importance of macro modeling techniques for the analysis

of masonry structures by developing an advanced novel nonlinear analysis tool

for the seismic assessment of irregular masonry structures. This step of the

research allows the understanding of possible limitations of conventional macro

model material definitions.

(c) To analyze and improve constitutive continuum damage models for the nonlin-

ear analysis of masonry by means of a calibration procedure based on machine

learning.
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(d) To facilitate macro scale analysis by utilizing a machine learning based homog-

enization technique. The development of the technique includes the following

objectives:

• To define a set of constitutive models eligible for machine learning models

and representative for masonry material behavior.

• To compile a suitable numerical computation graph inside the machine

learning model.

• To generate large data sets in a virtual laboratory as training input for

the machine learning model.

• To derive a post machine learning constitutive model suitable for numer-

ical macro scale analysis of masonry.

(e) To apply the machine learning based homogenization technique to a real scale

masonry wall in order to evaluate the trained post homogenization macro

scale model, and compare its performance with that of sophisticated micro

modeling.

(f) To run seismic nonlinear analyses on a large scale structure by utilizing the

machine learning based material homogenization technique, and comparing

the results with a continuum FE homogenization approach.

1.3 Outline of the thesis

This document is separated into four parts. Part I is an introduction to the topic

and consists of three chapters.

Chapter 1 presents the author’s motivation to develop a machine learning ho-

mogenization technique for masonry and defines the research background. It also

depicts the objectives and the scope of the research, and gives an outline of the

thesis document.

Chapter 2 introduces the research of this thesis by presenting a literature review

on the underlying topics. Firstly, it gives an overview of numerical analysis of

masonry structures and specifies it into three modeling strategies. Special attention

is given to the currently available multiscale and homogenization techniques by also
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including the ideas behind micro and macro modeling. Secondly, it presents a short

summary of available numerical tools for the seismic analysis of masonry. Finally,

deep insights are given into the history of machine learning techniques and its use

in the field of structural engineering.

Chapter 3 includes an advanced numerical simulation technique for masonry

in order to demonstrate the advantages and limitations of macro scale modeling.

This chapter presents a novel multi directional pushover approach applicable to the

seismic analysis of irregular masonry structures. The novel method is compared

with conventional nonlinear seismic analyses approaches in order to investigate the

method’s performance on seismic vulnerability analyses. This chapter also highlights

the limitations and drawbacks of macro scale analysis by discussing its conventional

approach of defining homogenized material properties for masonry. A case study of

an existing masonry heritage structures allows the development of a detailed discus-

sion.

Part II summarizes the investigations made on the machine learning homoge-

nization technique. It consists of two chapters.

Chapter 4 details the theoretical backgrounds of the constitutive models utilized

for the nonlinear analysis of masonry. The adopted continuum damage law is based

on two damage variables indicating the state of damage in tension or compression,

respectively. The damage variables have separate damage evolution laws. Numeri-

cal benchmark examples illustrate its functionality and versatility of the approach,

while the application of the constitutive model to a masonry wall demonstrates the

accuracy of numerical analysis results when compared with experimental tests.

Chapter 5 proposes the novel machine learning based homogenization technique,

including fundamental background information, e.g. numerical software tools, gra-

dient descent operators, loss functions and the computation graph. Chapter 5 also

introduces the concept of a virtual laboratory. Numerous micro scale analyses on

masonry representative volume elements generate large data sets of coupled strain

and stress pairs. The data then serve as training input for the machine learning

model. In order to utilize the data for training, a previous step of data isotropiza-

tion prepares them for the constitutive machine learning model. This procedure

includes least square fitting, parameter optimization and transformations by using

the tensor mapping concept in order to define anisotropic and isotropic linear elas-
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tic parameters of the homogenized masonry material. The post machine learning

constitutive model is defined. Each step of presented procedure is accompanied by

depicting the numerical implementation algorithm.

Part III presents some meaningful application examples of the machine learning

based homogenization technique and discusses the results derived from the given

methodology.

Chapter 6 presents the structural application of the machine learning based

homogenization technique to a masonry wall built in Flemish bond. A numerical

virtual laboratory campaign by considering 26 micro model analyses is performed

in order to generate the training set of the machine learning model. The machine

learning model takes into account an advanced constitutive model in order to analyze

the prediction results. Optimization results of the model are compared by analyzing

the results of post machine learning macro scale analysis and micro scale analysis.

Chapter 7 presents the application example of the machine learning based ho-

mogenization technique for the pushover analysis of a real masonry structure. For

this purpose, an analogous procedure as presented for the Flemish bond wall is ap-

plied in order to define the macro constitutive model of the considered case study.

The case study is the Palacio Pereira, an heritage building located in Santiago de

Chile. In this context, the post machine learning constitutive model is assigned to

the FE models of the two principal facades of the structure. Both models are subject

of nonlinear pushover analyses. In order to discuss the results of the novel homog-

enization technique compared with available standard methods, the same nonlinear

pushover analyses are applied to the facade models by using a conventional macro

scale approach. A final presentation of the results compares and discusses both the

methodologies.

Part IV includes the closing Chapter 8 of the dissertation discussing the per-

formed research, presenting the main conclusion, defining the main contributions

and discussing suggestions for future works on machine learning based homogeniza-

tion techniques.
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Chapter 2

Literature review

2.1 Introduction

This chapter presents a literature review about the numerical finite element analysis

of masonry. Masonry is a heterogeneous component material that requires proper

techniques when modeled via FE analysis. In this context, the review includes

a general overview of numerical modeling techniques and their respective field of

application. Modern data driven models are also introduced as they have been

applied to the analysis of masonry structures, as well as the topic of machine learning

based constitutive modeling for material homogenization.

Section 2.2 presents previous research insights about numerical modeling of ma-

sonry. In this context, two modeling techniques are presented: micro and macro

modeling. After having presented the advantages and drawbacks, an introduction

is given to multi scale techniques. Such approaches aim to profit from the advan-

tages of both micro and macro techniques and connect them within a sophisticated

computational framework. Its applicability to large scale masonry structures is dis-

cussed.

Section 2.3 gives an introduction on modern numerical machine learning applica-

tions in the field of civil engineering. In this context, a first general overview is given

in order to show its wide ranging fields of application in the structural engineering

world. Furthermore, this section presents specific examples for machine learning

in the numerical analysis of masonry structures. A closing subsection proposes a

discussion regarding the use of artificial neural networks for constitutive modeling.

A recent work presenting the use of machine learning for material homogenization
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is presented.

The chapter finalizes with a summary given in Section 2.4.

2.2 Numerical analysis of masonry structures

In the last decades numerical analysis has become an established tool to evaluate

the structural behavior of buildings in the entire field of civil engineering. The large

efforts made in order to improve the FE method were essential for this growth.

A strong contribution has also been the development of technical devices, such as

processor speed and memory size of computers. Nowadays, large numerical three

dimensional models of bridges, high rise buildings, soil foundation interactions, etc.

with an unimaginable amount of finite elements can be build up and solved in the

scope of the FE method. These achievements did not pass by to the structural

analysis of masonry buildings.

Since always the research on structural behavior of masonry aims to capturing

its heterogeneous behavior. The heterogeneity comes from its composition of brick

units and mortar joints. The geometrical allocation of both the components made

modeling of masonry to a difficult task. Having the FE numerical analysis by hand,

the geometrical arrangement of the masonry components could be respected in de-

tailed micro models. Page (1978) made the first scientific achievements into this

direction. Being micro modeling a very detailed and time intense analysis method,

its results can now be compared with less effortless tools such as macro model-

ing. As a consequence macro modeling can be applied to the analysis of large scale

structures.

Apart from FE modeling of masonry, there exist numerical analysis tools like

the discrete element method, discontinuous modeling, limit analysis, etc. Insights

on these procedures and other analytic approaches are given by the review papers

of Lourenço (2002); Roca et al. (2010); Theodossopoulos and Sinha (2013); D’Altri

et al. (2019)

The literature review of this thesis only summarizes a small part of available

numerical analysis methods for masonry structures. In the following of this section

an introduction to the micro mechanical and the macro mechanical modeling of

masonry is made. Both these techniques represent the masonry material in a more

or a less detailed model, respectively. The consideration of the advantages and
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drawbacks of micro and macro modeling of masonry, made in the last decades, led

to multi-scale approaches. The efforts made in this direction are also summarized

in the following.

2.2.1 Micro modeling

From an intuitive point of view, the heterogeneous component material masonry

cannot be modeled as a single smeared homogeneous material with just one con-

tinuum constitutive law. The reasons are obvious. Masonry consists of brick units

that are arranged following a geometrical ordered pattern or a random allocation.

A mortar joint, usually made of a cement or clay mixture, serves as glue to ensure

the geometrical allocation of the brick bond. Both these materials have differing

linear elastic properties, such as the elasticity or the lateral strain behavior. Apart

from the linear behavior, the brick and the mortar point out distinct post peak

performance, e.g. the ductility. The noticeable differences in its behavior does then

have the biggest effect when put together as a masonry structure. Then also the

geometrical allocation of the components plays a significant role while modeling

masonry. In order to be able to now numerically model masonry, the approach of

micro modeling has won large interest in the last decades. This approach consists

of distinguishing between the components and taking the spatial distribution of the

components into account.

The main aim of masonry micro models is the ability to model all possible

failure modes of masonry structures. These modes have been presented carefully

in numerous investigations (Lourenço and Rots (1993), Lourenço and Rots (1997),

Petracca (2016)) and will be summarizes here. The five basic types of masonry crack

mechanisms are (Figure 2.1):

(a) cracking in the masonry joints

(b) diagonal tension cracking in the brick units

(c) splitting of brick units in tension caused by mortar dilatancy at high values of

normal stresses

(d) sliding of brick units along the joints

(e) cracking of the brick units in direct tension

13
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Figure 2.1: In-plane crack mechanisms of masonry: a) cracking in the joint, b)
diagonal cracking of brick units, c) splitting of brick units due to dilatancy in the
mortar joints, d) sliding of the bricks along the mortar joints, e) cracking of the
bricks in direct tension

In the last decades, several researchers put huge effort in micro modeling of ma-

sonry in order to represent these mechanisms. Many different modeling techniques

were elaborated. The main procedures in FE analysis range from detailed micro

modeling (DMM) approaches to simplified (SMM) and continuous (CMM) ones.

Figure 2.2 shows the most important micro modeling techniques applied to masonry

structures. All these methods are based on assumptions made about the masonry

components and its interaction. Their conceptional background and scientific appli-

cations will be presented in the following.

2.2.1.1 Detailed micro modeling

The detailed micro modeling of masonry is the most accurate one. This technique

takes into consideration the components and an interaction of the bond between

the components while setting up the micro model. The brick units and the mortar

joints are then discretized with continuum elements. Additional interface elements
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Figure 2.2: Overview of available micro modeling techniques for masonry. Showing
the modeling background for the brick units, the mortar and a unit mortar joint
interaction

represent the frictional behavior in between the two components. The detailed

approach allows an accurate response of the FE analysis results. Nonetheless, is

this procedure very time intense and highly expensive on computational cost. Thus

the technique is only applicable to small scaled structures. As a result, researchers

came up with simplified strategies to model the heterogeneity of masonry in means

of FE analysis.

2.2.1.2 Simplified micro modeling

The simplified micro modeling (SMM) technique ranges back to investigations made

by Page (1979). His motivation arose, since previous researchers considered the

complex material behavior of masonry as a smeared linear elastic one. This approach

did not consider masonry as a two-phased material. Thus Page (1979) assumed that

the brickwork masonry consists of linear elastic brick units and inelastic mortar joint

interactions. Back in the days, this procedure was not called SMM technique, since

it was the first general approach to model masonry by distinction of the units and

the joints.

Nowadays, more detailed models have been established in terms of SMM. How-

ever, the general modeling technique of considering the brick units as continuous
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elements and the mortar joints as inelastic interfaces is still in use.

SMM considers the mortar joint as the weakest zone of the masonry material.

As described above, this is taken into account by modeling the mortar joint and the

unit-mortar interaction as a single lumped nonlinear interface. Thus a basic SMM

FE model consists of continuous linear elastic brick elements allocated according to

the masonry bond and are linked by non-linear mortar joint interface elements. The

mortar joints then underlie the modeling concept of zero-thickness and the unit’s

dimensions are expanded in relation to the mortar thickness.

This technique is restricted to mortar joint cracking only and is not capable

of representing all the mechanisms of masonry cracking shown in Figure 2.1. In

order to also enable cracking in the brick units vertical discontinuous interface ele-

ments at the middle of the bricks have been introduced. Then vertical cracking of

the brick units can be covered during an analysis. The SMM has been performed

in several investigations (Lotfi and Shing (1994), Lourenço (1996), Lourenço and

Rots (1997), Gambarotta and Lagomarsino (1997), Macorini and Izzuddin (2011),

Petracca (2016), Minga et al. (2018), Chisari et al. (2018), Kumar and Barbato

(2019)).

In the last decades a variety of constitutive models that is able to represent the

unit/mortar interface have been introduced. Fortunately, many of the respective

researchers have applied their numerical techniques to a benchmark experiment

from the TU Eindhoven. In 1992, Raijmakers and Vermeltfoort (1992) performed

shear compression tests on English bond masonry walls. Numerical analysis results

applying the SMM approach in order to reproduce the experimental results are

shown in Figure 2.3.

Instead of defining interface elements in the middle of the brick units, yet another

possibility to respect cracking in the units, is to model them with a non-linear

continuous material law that takes into account softening and cracking.

2.2.1.3 Continuous micro modeling

The continuous micro modeling approach is considering the components of the ma-

sonry as continuum elements being connected without any interface interaction.

Both the components are then assigned with a respective linear-elastic or nonlin-

ear damage material model. This approach is a simplification of the detailed micro

modeling technique. All analyses further carried out in this thesis apply the CMM
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Figure 2.3: Schematic comparison of experimental and numerical shear compression
test analysis of the TU Eindhoven experiment (Raijmakers and Vermeltfoort (1992)).
Showing the crack patterns of two experimental tests (a) and b)) and the numerical
results of different simplified micro modeling approaches: c) Lourenço and Rots
(1997), d) Macorini and Izzuddin (2011), e) Petracca (2016) and f) Kumar and
Barbato (2019)

technique for micro model analysis.

Some of the first continuous micro modeling approaches for masonry lead back to

investigations made by Page (1988). This research discusses the behavior of a simple

masonry wall subjected to concentrated loads. Therefore, a FE micro model has

been constructed that differs clearly between the brick units and the mortar joints

without taking into account any interface condition. By performing experimental

tests, the material behavior of the respective component has been investigated very

properly and resulted in the definition of continuum models for each component.

Figure 2.4 shows a typical FE mesh that has been utilized in the research of Page

(1988).
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Figure 2.4: Continuous FE micro model elaborated in the research made in Page
(1988)

Further investigations and applications of the CMM techniques have been carried

out in Berto et al. (2004), Barbosa et al. (2010), Parisi et al. (2011), Drougkas et al.

(2015), Petracca (2016), Petracca et al. (2017), Drougkas et al. (2019), Prakash

et al. (2020). Figure 2.5 shows an overview of different fields of application of CMM

extracted from these researches.

2.2.2 Macro modeling

Masonry macro modeling techniques consider masonry as a homogeneous material

with average properties. No distinction is made between the brick units and the

mortar joints. A single material model taking into account the linear elastic and the

nonlinear inelastic behavior is assigned to all elements of the model. This technique

is customized for the application to large scale structures and finds its use broadly

in practice oriented industry. It is less suitable for the detection of local masonry
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Figure 2.5: Continuous micro modeling: presentation of investigations using the
continuous micro modeling approach for numerical analysis of masonry. Showing
(a) micro model small wall model analysis from Berto et al. (2004), (b) large scale
wall analysis with door opening Parisi et al. (2011), (c) continuous micro model
analyses of TU Eindhoven shear wall Petracca et al. (2017) and (d) masonry micro
model periodic cell analyses Drougkas et al. (2019)

failures such as described in Figure 2.1 than used for the structural assessment of

entire masonry structures.

In this context, macro modeling approaches tremendously facilitate the geometri-

cal modeling of masonry structures, since no specific masonry bond must be included

to the FE models. That is also a reason why very few large scale structure analysis

can be found in literature that apply the micro modeling technique.

Furthermore, the FE element mesh size can be chosen quite coarse when applying

the macro modeling approach. Whereas micro models require the smallest element

size to be at least the thickness of the mortar joint. Thus a huge FE model, in terms
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of number of nodes and elements, and a even larger number of solvable numerical

equations would arise. However, if modeling at the macro scale is considered, the

smeared approach allows a FE mesh with elements of any thoughtful chosen size

(engineering conscience).

However, the material models of macro scale masonry models must be chosen

wisely. Usual models are smeared damage models that are able to represent damaged

regions in the structures after nonlinear analysis. Such constitutive models should

at least respect the material behavior of masonry. On the one hand a differentiation

between tension and compression behavior should be made. Masonry belongs to the

family of mineral building materials, which in general means that the compression

strength is much higher than the tension one. In this context, proper yield criteria

should be implemented that also respect this behavior. It has been also shown

in previous research that such yield criteria do also serve in order to improve the

model performance in terms of shear behavior (Petracca et al. (2017)). Masonry is

also known to be an orthotropic material. Therefore proper approaches including

orthotropy to the macro modeling have been elaborated (Lourenço (1995), Pelà et al.

(2013)). Nonetheless, further improvements must be developed.

Generally spoken, macro modeling comes along with a tremendous decrease of

computational effort. That is why many works have been presented in the last

decades that consider numerical analysis of entire masonry structures. And macro

modeling has become a preferred tool also in research. A huge amount of numerical

linear and nonlinear analyses have been carried out that discuss the assessments

of towers, churches, cathedrals, fortresses, bridges, etc. Each investigation has en-

hanced the numerical analysis of masonry. Many research insights can be found

here: Lourenço et al. (2011), Roca et al. (2013), Almac et al. (2013), Pelà et al.

(2013), Saloustros et al. (2015), Torelli et al. (2019), Micelli and Cascardi (2019),

Brunelli et al. (2021), Milani and Clementi (2021), etc. Nonetheless, the given in-

vestigation examples are only a small excerpt from the entire investigation catalog

about numerical analysis of large scale masonry structures. Figure 2.6 shows some

macro scale numerical analysis examples.
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Figure 2.6: Large scale masonry analysis: presentation of investigations using the
macro modeling approach for numerical analysis of masonry large scale structures.
Showing (a) the numerical analysis of Mallorca cathedral Roca et al. (2013), (b) the
structural assessment of a 14th century masonry tower Micelli and Cascardi (2019),
(c) the seismic analysis of the Hagia Sofia in Istanbul Almac et al. (2013) and (d)
the numerical analysis of the church of the Poblet Monastery Saloustros et al. (2015)

2.2.3 Multiscale modeling

Macro modeling implies a direct closed-form formulation of specific constitutive laws

capable to represent the masonry material. However, applying such laws to homog-

enized geometrical models does not take into account the component interaction

of bricks and mortar. It is hardly possible to study anisotropic behavior nor can

stress redistribution or strain localization caused by damage be considered correctly

in macro models. Nonetheless, macro modeling is the prior technique for numerical
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analysis of large scale masonry structures. On the other hand, the micro modeling

method most accurately represents the component material. In nonlinear analysis,

damage propagation can be simulated with high precision by representing the typical

masonry damage mechanisms shown in Figure 2.1. However, analyzing the masonry

by distinctly modeling each component is time expensive on geometry construction

and connected with a huge computational effort.

Given both the advantages and disadvantages of the modeling techniques macro

and micro modeling, multi-scale modeling approaches have the aim to provide a

direct relationship between both scales. The literature review of this thesis aims

to present computational first order homogenization techniques. Such techniques

are also known as FE2 methods, since the boundary problem of the FE problem is

solved at two scales with strongly differing sizes (l << L, where L is the size of the

model at macro scale and l is the size of the micro scale). A general introduction

to FE2 methods is made in Schröder and Hackl (2014). In this context, several

investigations have been made on applying first order multiscale techniques to the

heterogeneous material masonry. A coarse overview is given in the following.

The general work flow of computational first order homogenization is the weak

coupling of the micro and the macro scale. In this context, the large scale analysis

takes place at the macro level where the strains at each Gauss point are computed. In

order to now include the microscopic influence of the heterogeneous material to the

macro scale, the strain field is scaled down to the micro scale. At this level the strains

are applied as boundary conditions to a representative volume element (RVE). The

RVE is modeled by clearly distinguishing between the material components. A

numerical FE analysis calculates the corresponding stresses at the micro scale. In

order to obtain the stress at the macro scale, a volume average of the micro scale

RVE stress is computed. Then the so called up scaled stress can be mapped to the

macro scale as the corresponding macro scale stress.

In this context, computational homogenization of masonry has been carried out

in Massart (2003), Massart et al. (2007a), Massart et al. (2007b) for the in-plane

analysis of small scaled masonry walls. The here applied multi scale scheme avoids

the complex definition of macro scale constitutive laws by retrieving the response

from computations carried out on micro model unit cells. These approaches have

been later extended for the analysis of out-of-plane analysis of masonry walls (Mer-

catoris et al. (2009), Mercatoris and Massart (2011), Massart et al. (2011)). Figure
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2.7 shows results from computational homogenization applied to an in plane loaded

masonry wall. The plot is extracted from the investigations mentioned above. It

demonstrates the damages computed at the unit cell level and the macro scale level,

respectively.

Figure 2.7: Masonry multi scale analysis of in-plane loaded masonry wall Massart
(2003)

The insights obtained by the analyses presented have been further improved by

defining more proper boundary fluctuation fields and implementing new constitutive

modeling approaches for the analysis at micro scale in Petracca et al. (2016) and

Petracca et al. (2017). Figure 2.8 shows the analysis results for the multi scale

analysis of a large scale out-of-plane loaded masonry wall.

Such techniques have shown to very accurately represent experimental results

performed on masonry walls. However, the presented techniques require the homog-

enization to be performed at each Gauss point of the macro scale model. This brings

along a huge computational effort that makes the analysis of large scale masonry

structures too expensive. Hence, appropriate alternatives to the classical computa-

tional homogenization have been presented, that disconnect the macro and micro

scale analysis completely. Zaghi et al. (2018) have introduced an off-line technique

that computes the RVE solutions of the micro scale separated from the macro anal-

ysis. In this context, the RVE was subjected to multiple numerical analyses, each
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Figure 2.8: Masonry multi scale analysis: First order homogenization results of
out-of-plane analysis of large scale masonry wall Petracca et al. (2017)

applying different boundaries, and the results were stored in a database. Conse-

quently, the analysis at macro scale can now access to the database and is able

to extract the suitable results by taking into account the strain field of the macro

scale. The research made by Zaghi et al. (2018) has strongly influenced the present

work since the idea of creating a virtual laboratory has evolved from the presented

concept. Furthermore, utilizing processed data for homogenization has embarked

the methodology of machine learning based homogenization for masonry.
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2.3 Machine learning applications in civil engi-

neering

Nowadays, data analysis, machine learning and artificial intelligence are technologies

that are impacting almost every field in a significant way, e.g. techniques in face

recognition Bhele and Mankar (2012), intelligent self driving networks Huang et al.

(2020b), automatic translation systems Singh et al. (2017), modern medicine Sidey-

Gibbons and Sidey-Gibbons (2019) or bio organic chemistry Panteleev et al. (2018),

but also in the research on human behavior Ma and Peters (2020) in order to optimize

marketing concepts Ma and Sun (2020). Such investigations, among many others,

have significantly improved machine learning and artificial intelligence application

to almost all research fields. Furthermore, this has been accelerated by the large

computational capacity. Also in the field of civil engineering, machine learning and

artificial neural network (ANN) models have gained importance. This section shall

give a short overview of its impact to structural engineering, the research in the

field of heritage masonry structures and homogenization techniques for component

materials.

2.3.1 Application field: structural engineering

The use of machine learning for the structural design has been driven forward by

Adeli and Yeh (1989). In this research a perceptron based machine learning model

has been trained to design structural steel beams. At that time training set sizes

were restricted due to computation power. Training such models with a set of 24

examples took 2400 min which is very time intense. And models predict better the

more training examples they take into consideration. Nonetheless, has it been an

impressive start for machine learning in structural design.

Very good insights of machine learning in structural engineering are given in

several review papers: for research articles from 1989-2000 Adeli (2001), from 2001

- 2016 Amezquita-Sanchez et al. (2016) and the most recent investigations are sum-

marized in Amezquita-Sanchez et al. (2020). Many of the actual investigations are

made on structural system identification by machine learning and ANN (Jiang et al.

(2016), Yongding and Zhang (2018), Yuen et al. (2019)). Other researchers inves-

tigate on structural health monitoring and use machine learning to analyze crack
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propagation (Smarsly et al. (2016), Ibrahim et al. (2019)). A research proposed by

Kostić and Gül (2017) has utilized machine learning for the damage detection of

a bridge caused by complex temperature effects. The mentioned researches have

shown that the use of ANNs can successfully determine the existence, location and

severity of damage.

Another very specific review article on using machine learning for structural

health monitoring of heritage buildings is given by Mishra (2021). The article

presents a large amount of already carried out case studies of different kinds of

heritage structures about the mentioned topic.

Furthermore, ANNs and machine learning have also been used in recent inves-

tigations in order to design and assess structures. Many of them consider seismic

induced vibrations as main loading case of the investigations. Greco et al. (2017)

have presented an automatic approach for the seismic collapse prediction of planar

frame structures. It has been shown that this technique results in similar collapses

when compared to nonlinear static procedures such as pushover analysis. At the

same time, time savings are ranging from 55.0% to 96.0%. Another research carried

out by Asteris (2019) has presented a bee-colony based ANN for the prediction of

the fundamental vibration period of an infilled frame reinforced concrete structure.

Another recent investigation is using a machine learning optimization algorithm

to improve finite element model updating of structures Naranjo-Pérez et al. (2020).

It has been shown that, by using a multi-objective harmony search algorithm and a

non-crowded Pareto front, a clear reduction of simulation time of FE model updating

could be obtained. Furthermore a robust selection of the best updated model among

all the possible optimal solutions was guaranteed. Figure 2.9 shows the modal

analysis results of the method applied to a steel bridge.

Many investigations on engineering structures appeared in the last years and

the research field is growing. Several investigations connecting machine learning

with the research on heritage and masonry structures were already published. The

following section shall give a short overview.

2.3.2 Application field: masonry structures

The research field of masonry and heritage structures has gained importance in the

last decades. Therefore, novel numerical tools such as ANNs have been also applied

to improve the assessment methods for masonry buildings.
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Figure 2.9: Machine learning technique utilized for FE model updating applied to
the modal analysis of a steel bridge showing the experimental vibration modes and
the updated vibration modes Naranjo-Pérez et al. (2020)

Garzón-Roca et al. (2013) have investigated the use of an ANN to determine

the maximum axial load that can be withstood by a masonry wall. In this context,

an advanced ANN based on sigmoid functions has been trained in order to predict

the load reduction factor. 1944 data items, coming from a parametric study, have

been used for the model training. The data includes walls with different geometry

effects such as the slenderness ratio or load eccentricity, but also different stiffness

and tensile strengths.

Another very interesting research goes further and directly addresses training a

failure criteria curve for masonry. Firstly, Plevris and Asteris (2014) have developed

a method to predict the yield criteria for compression only states. They further

improved their technique by also considering tension and shear loading cases in

Asteris and Plevris (2017). Their main objective was modeling the yield surface for

masonry in a dimensionless form. So they trained an ANN with experimental data in

order to obtain reliable and robust approximations for the anisotropic failure surface

of masonry. Figure 2.10 shows the surfaces obtained by the approaches investigated

in Plevris and Asteris (2014) and Asteris and Plevris (2017).

Aguilar et al. (2016) have also investigated the use of ANNs to predict the shear

strength of reinforced masonry walls. The model has been trained by data obtained

from experiments. The ANN model has shown to be able to accurately comply with

evaluation data and at the same time it represents them less conservative.

Beside techniques, that aim to predict the structural material behavior, ANN

have also been utilized to estimate the damage occurring in masonry buildings after
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(a) (b)

Figure 2.10: Prediction of failure criteria for masonry using artificial neural networks,
showing (a) the prediction of the compression only regiment by Plevris and Asteris
(2014) and (b) the entire load case prediction for compression, tension and shear
Asteris and Plevris (2017)

seismic actions. In this context, Ferreira et al. (2020) developed an ANN that has

been trained with gathered damage data that was discovered after an earthquake.

The ANN was elaborated in order to improve the precision of already established

empirical methods, such as the widely used vulnerability index method. It has been

shown that the ANN delivers more accurate results and complements the conven-

tional method.

The here mentioned investigations on the use of machine learning in the research

field of masonry have been extracted from academia and demonstrate the intense

use of such techniques in many different fields. However, in order to also address

masonry homogenization techniques based on machine learning, several approaches

are going to be presented in the following.

2.3.3 Data-driven constitutive modeling and material ho-

mogenization

Liu et al. (2020) express the vision of using machine learning models for the use

of composite materials as follows: With the unprecedented growing data from ex-

periments and computer simulations, rapid increasing computing power, and emerg-
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ing advanced algorithms, one should expect unforeseeable and revolutionary impacts

across nearly the entire domain of design and analysis of composite materials and

structures over the next two decades. This phrase tremendously motivates the re-

search community working on material homogenization techniques and Liu et al.

(2020) have published a rewarding review article on machine learning and com-

posite structures. The work focuses on three important applications of ANN for

composite materials. (i) learning constitutive models (ii) accelerating multi scale

and (iii) design optimization.

The learning constitutive models application is summarized by Liu et al. (2020)

as an approach postulating general polynomial functions that approximate the ho-

mogenized material. This method also includes the possibility to build a constitutive

model by considering the respective constitutive models of the components. Such

approaches connect the strains and stresses of composite materials by the construc-

tion of an ANN in between. These models are trained in order to accurately define

a mathematical connection of strains and stresses inside the layers of a neural net-

work. However, such techniques strongly depend on the amount of training data.

Such constitutive models are generally trained by experimental data. Experiments

usually result in one dimensional strain stress relations. Constitutive models on the

other side are implemented to two or three dimensional analyses. Then the model

trained by data coming from one dimensional analyses does not properly represent

the spatial dependencies.

The accelerating multi scale approach has the basic idea of using ANN models to

accelerate multi scale modeling by replacing the FE2 based model with a model con-

structed from data. Liu et al. (2020) describe the conventional multi scale modeling

process by the function f(I) = O, where I is the input coming from the macro scale

and O is the output coming from the micro sub-scale (RVE-scale). The function f

describes a mathematical connection, thus such descriptions can also be defined by

ANN formulations. In this context, the idea of RVE based numerically simulated

training data has evolved. However, Liu et al. (2020) determine these techniques

as computational expensive, since large sets of data are required for training and

additionally the trained ANN must be implemented to the analysis at the FE stage.

Furthermore, the ANN models suffer the deficiency of physical interpretation. Engi-

neers usually want to understand the mathematical relations that comprehensively

describe the materials of their analyses.
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The design optimization approach refers to tailoring the geometrical orientation

of the constituents of composite materials so that their capabilities are mostly uti-

lized, e.g. the orientation of reinforcement bars in concrete (named as a simplified

problem in this context). However, such optimization procedures become more chal-

lenging the more complex the composite material. Performing design optimization

then becomes numerically expensive. Advantages and drawbacks of ANN techniques

substituting the optimization process are given in Liu et al. (2020).

The research of this thesis focuses on the composite material masonry that is

already built in existing structures. Therefore design optimization procedures ap-

plying ANN are not purposeful. The numerical homogenization of masonry can

be carried out much better by the given inspirations of nonlinear constitutive mod-

els and accelerating multi scale approaches. Therefore, this section continues the

discussion by introducing some comparable techniques.

The classical approaches of defining mathematical constitutive models in order to

describe the linear and non linear behavior of materials depends strongly on exper-

imental data. The elaboration of constitutive laws by machine learning techniques

also meets these requirements. However, data driven models have the advantage to

improve model performance when additional data becomes available. Such models

can be trained offline and later be used for online application. A recent investi-

gation has developed a machine learning based plasticity model that follows this

concept (Huang et al. (2020a)). In this context, a feed forward neural network uti-

lizing proper orthogonal decomposition has been used in order to substitute analytic

formulations of plasticity models. The trained ANN model has been applied as con-

stitutive model for several 2D and 3D application examples. Figure 2.11 shows the

application to the 3D Cook’s membrane problem. The ANN model delivers very

accurate results when compared to conventional plasticity model analysis.

Another related investigation has been made by Gorji et al. (2020) in order to

study the potential of a recurrent neural network for the modeling of path depen-

dent plasticity. In this context, uni and multi axial stress strain response have been

investigated. While considering multi axial cases Gorji et al. (2020) have also dis-

cussed monotonic and arbitrary loading paths. Latter requires a specific training

capacity of the ANN, since a strain value can be related to multiple stress values

(due to loading - unloading and plastic deformations). Recurrent neural networks

are able to take such effects into account. Therefore, Gorji et al. (2020) apply them
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Figure 2.11: Result comparison of the 3D Cook’s membrane problem utilizing (a)
a conventional plasticity model and (b) an artificial neural network based plasticity
model from Huang et al. (2020a)).

for their needs.

A recent investigation made by Logarzo et al. (2021) steps further and intro-

duces machine learning constitutive models for inelastic homogenization techniques,

by developing so called smart constitutive laws. The research is motivated by the

drawbacks connected with classical multi scale homogenization techniques, such as

computational cost, and aims to tackle these by utilizing machine learning. In this

context, a RVE based approach is considered that numerically produces training

data at the micro scale of the considered heterogeneous material. Then a smart

constitutive model architecture is defined. It consists of a recurrent neural network.

Figure 2.12 shows the structure of the considered model. It depicts the three com-

ponents of the 2D strain vector as the model inputs and the corresponding stress

components and localized information as model outputs. The trained model has

been implemented as smart constitutive model into the FE solver and application

examples have underlined the ability of such models for material homogenization.

2.4 Summary

This chapter has presented the framework of the research performed in this thesis.

The presented topics of this literature review have aimed to categorize the thesis

into the topics of (i) numerical modeling of masonry, (ii) homogenization techniques

for heterogeneous materials, and (iii) research on data driven models for engineering

problems.

Firstly, an introduction to numerical modeling techniques for masonry structures
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Figure 2.12: Architecture of the artificial neural network used as smart constitutive
law in the investigations of Logarzo et al. (2021)

has been made. In this context, the micro modeling technique has been presented

as the most accurate tool to model the nonlinear behavior of masonry. Several tech-

niques have shown to represent typical masonry failure mechanisms at component

scale. However, it has been proven that micro modeling is too expensive on com-

putational cost, and therefore macro modeling of masonry has been presented as

the tool for large scale numerical analysis. This approach smears the heterogeneous

material masonry on a simplified continuum model. The presented references have

underlined both the advantages and drawbacks of micro and macro modeling. These

insights have led to the presentation of multi scale techniques. In this context, first

order homogenization procedures have been discussed. The main drawback of these

techniques is the huge computational effort that prevents the method from being

applied to large scale masonry structures. In order to overcome this problem, the

literature review has introduced the concept of off-line techniques that are able to

decrease the computational effort substantially.

In the second part, data-based modeling approaches applied to the field of civil

engineering have been presented. Therefore, an overview of research applications of

machine learning tools to the field of structural engineering have been presented.
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Further discussions have been also made on machine learning applications to the

research field of masonry. These insights have shown extensive possibilities of data

driven analysis for investigations in the field. A final section has further continued

review by discussing the use of machine learning and artificial neural networks for

constitutive model definition. In this context, general procedures utilizing recur-

rent neural networks for plasticity based modeling have been introduced. A recent

research article presented the use of machine learning for the definition of smart

constitutive laws that were trained by numerically produced data. The works done

there have strongly motivated the research of this thesis facing the difficulties of

masonry material homogenization.
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Chapter 3

An advanced macro model seismic

analysis of irregular masonry

structures

3.1 Introduction

Masonry structures have shown to be very vulnerable to seismic actions. Several

methods have been proposed to deal with the assessment of their seismic safety.

The available approaches differ in the level of complexity based on the assumed

fundamental hypotheses. Even though linear methods have been used in the past

decades, nonlinear methods have been preferably applied to the seismic analysis of

masonry structures.

Nonlinear analyses of masonry structures are advanced approaches that require

a certain amount of expertise. Such advanced analyses have been enabled thanks

to macro modeling approaches. Large structures would never be simulated in terms

of micro models, since there computational effort is tremendous. Instead, macro

modeling enables a quick geometry definition of large models, the material can be

defined in terms of a single smeared constitutive model and the computational effort

is minimized. These simplifications in numerical analyses led to a large number of

modern and novel simulation methods. These approaches improved significantly the

assessment of masonry heritage structures. Especially the vulnerability on seismic

actions could be evaluated more effectively.

The nonlinear static analysis (NSA), also known as pushover analysis, models the

35



CHAPTER 3. AN ADVANCED MACRO MODEL SEISMIC ANALYSIS OF
IRREGULAR MASONRY STRUCTURES

earthquake action as a system of seismic equivalent lateral forces increasing mono-

tonically during the analysis. Another possibility is offered by nonlinear dynamic

analysis (NDA) that can be performed by regarding complete earthquake accelera-

tion time histories. This last approach is certainly very accurate but its computation

time is higher than in the NSA. A recent study Endo et al. (2017) has shown that

for simple symmetric masonry buildings, the capacity curve of the pushover analysis

with mass proportional lateral loading pattern, expressed in terms of the relation-

ship between the structure’s base acceleration and top displacement, provides a good

agreement with the envelope of the hysteretic loops from NDA. Another recent in-

vestigation Lagomarsino and Cattari (2015) has presented a discussion on the use of

NSA and NDA for the performance based assessment of existing masonry buildings.

Several recent works provide examples of applying pushover analysis to churches,

fortresses and towers, e.g. Milani and Valente (2015); Endo et al. (2015); Torres

et al. (2018); Degli Abbati et al. (2019). A parametric study of the important ef-

fect of material properties assumption on the results derived from nonlinear seismic

analyses is reported in Mendes and Lourenço (2014).

Nonlinear static and dynamic methods have been employed to assess the seismic

behavior of masonry buildings without box behavior (Mendes and Lourenço (2009);

Lourenço et al. (2011)), i.e. presenting flexible floors and/or deficient floor-to-wall

or wall-to-wall connections. These studies have shown limitations and possibilities

for the different approaches to account for the lacking box behavior in the evaluation

of the seismic response of the building.

Existing masonry structures often exhibit structural irregularities, as possible

consequence of historical interventions and subsequent modifications to their layout.

Such irregularities, which can be observed both in plan and in elevation, are frequent

in historical masonry structures, especially in those of the urban centers. Static

analysis methods present several limitations for this class of buildings, since they

cannot represent properly the complex 3D dynamic response during the earthquake.

This chapter investigates the possibility to use multiple nonlinear static anal-

yses to assess the seismic behavior of irregular masonry structures without a box

behavior. The research proposes the use of a series of pushover analyses conducted

by rotating the loading direction from 0◦ to 360◦. This working strategy allows to

evaluate the seismic response of the building along several directions, in addition

to the two “principal” loading directions assumed in conventional pushover analysis
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of regular buildings. The development of such novel nonlinear assessment methods

demonstrates the wide range of possibilities given to the research world of masonry

structures by macro modeling approaches.

The chapter is structured as follows. Section 3.2 gives an overview of avail-

able pushover procedures, such as conventional approaches and extended ones for

the application to irregular buildings. Section 3.3 introduces the so-called multi

directional pushover analysis (MDPA) and outlines the MDPA application proce-

dure. Section 3.4 presents the application of the MDPA in a case example to a very

complex building located in Santiago de Chile, the Palacio Pereira. This historical

masonry building presents structural irregularity both in plan and in elevation, and

exhibited structural deficiencies (flexible timber floors, inadequate floor-to-wall and

wall-to-wall connections) when it was struck by 2010 Chile earthquake. The MDPA

results are finally compared with the results made by a NDA. The chapter closes

with a summary and a short discussion on the definition of homogenized macro

model material properties for masonry.

3.2 Overview of available pushover procedures

3.2.1 Conventional approaches

The conventional NSA approach evaluates the seismic capacity by increasing mono-

tonically an invariant lateral load pattern applied to the structural model. The

gradual increase of horizontal loads leads to progressive damage, and thus to grad-

ual decrease of the stiffness until reaching the collapse condition. The Eurocode 8

(EC8) European Committee for Standardization (2004) recommends the use of the

“uniform” and “modal” loading patterns in NSA. The first consists in lateral forces

proportional to mass regardless of elevation, while the second is proportional to lat-

eral force distributions given by previous elastic (modal) analysis. The applicability

of the conventional pushover approach is restricted to structures vibrating predom-

inantly in the first mode and with time-independent deformation shape. For this

reason, the N2 method Fajfar (2000), suggested by EC8 to determine the seismic

demand, is applicable only to structures fulfilling specific requirements for plan and

elevation regularity. A recent research Lagomarsino et al. (2018) suggests the appli-

cation of a proper lateral load pattern in the pushover analysis of masonry buildings
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with low participating mass in the first mode.

The evaluation of the seismic capacity in NSA refers to the relationship between

the total base shear and the displacement of a representative control node. The

choice of the control node is straightforward in buildings with rigid floors well con-

nected to the walls. For such cases, the EC8 suggests the location of the control

node to be at the center of mass at the top floor level. However, the choice of a

suitable control node becomes difficult in NSA of irregular buildings with flexible

diaphragms (Nakamura et al. (2017); Lagomarsino et al. (2018)) since the lack of

box behavior leads to local damage and failure mechanisms (Mallardo et al. (2008);

Lourenço et al. (2011); Avila et al. (2018); Palazzi et al. (2019)). Recent works pro-

pose the selection of different control nodes in NSA in order to follow the response

of the most critical structural members during the analysis (Pelà et al. (2009); Endo

et al. (2015); Lagomarsino et al. (2018)).

3.2.2 Extension to irregular buildings

The EC8 proposes a simplified procedure for the estimation of the torsional effects,

also known as extended N2 method Fajfar et al. (2005), consisting in the definition

of a proper amplification factor for the displacements, based on the results of an

elastic modal analysis. The method combines the results from a NSA of a 3D struc-

tural model of the irregular structure with those from a linear dynamic (spectral)

analysis, in order to estimate the torsional amplifications. The extended N2 method

has been applied to the pushover-based seismic analysis of asymmetric reinforced

concrete (RC) framed structures with rigid floors (Fajfar et al. (2005); G.P. Cimel-

laro, T. Giovine , D. Lopez-Garcia (2014)). Available standards are in need of

improvement in order to provide practical specifications for the seismic analysis of

irregular masonry buildings.

Several researches have addressed the possibility of extending the applicability

of conventional pushover procedures by trying to overcome some of their intrinsic

limitations (De Stefano and Mariani (2014)). The modal pushover analysis (MPA)

(Chopra and Goel (2004)) considers the inertia force distributions for different modes

with the aim of including also the contributions from higher vibration modes. These

modal contributions are then combined by using the Square Root of the Sum of

Squares (SRSS) or Complete Quadratic Combination (CQC) rules. The adaptive

pushover analysis (APA) (Gupta and Kunnath (2000)) considers an adaptive force
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distribution that is updated during the analysis according to the variable distribu-

tion of inertia forces given by the stiffness degradation and evolving damage. Re-

cent works on seismic analysis of masonry buildings with flexible diaphragms have

presented critical comparisons between the results from NDA and MPA or APA

Lourenço et al. (2011); Endo et al. (2017); Nakamura et al. (2017) showing that

these non-conventional pushover procedures should be used with caution since they

may not provide meaningful improvements in terms of load-displacement diagrams

and failure mechanisms.

3.3 Multi directional pushover analysis

3.3.1 Motivation

The NDA on spatial models of buildings considers the two horizontal components

of the seismic action acting simultaneously. This allows NDA to evaluate in a direct

manner the complex tridimensional response of structural systems subjected to multi

directional earthquake ground motions.

Figure 3.1: Examples of East-West vs. North-South acceleration relationship for
the recorded earthquakes: L’Aquila 2009 recorded at Via Aterno - Centro Valle and
Chile 2010 recorded at Santiago Central Station

Figure 3.1 shows the directional variability of the ground accelerations recorded
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during the Mw 6.3 L’Aquila earthquake of 2009 (L. Luzi, F. Pacor, R. Puglia (2017))

and the Mw 8.8 Chile earthquake of 2010 (Sandoval et al. (2017); Boroschek et al.

(2010)). The plot of the East-West versus the North-South acceleration values at

the same time instant provides a point cloud, with some orientations characterized

by larger responses, as shown by the arrows in Figure 3.1. This visual plotting shows

the multi directional character of real earthquake ground motions and suggests how

NDA can directly account for it in the evaluation of the seismic vulnerability.

The NSA procedures presented in Section 3.2 cannot address the aforementioned

issue. The NSA of spatial models of buildings considers increasing horizontal loading

patterns acting separately along the “principal” directions of the buildings, e.g. the

longitudinal/transversal or North-South/East-West directions. This constitutes a

strong limitation for the case of irregular buildings without box behavior, being not

possible to include within the procedure the evaluation of the effect of bidirectional

loading on structural members prone to local damage and failure mechanisms.

Recent works available in the literature have investigated the extension of the

conventional NSA procedures to tridimensional analysis of structures subjected to

bidirectional components of ground motions (Huang and Gould (2007); Reyes and

Chopra (2011); Camara and Astiz (2012); G.P. Cimellaro, T. Giovine , D. Lopez-

Garcia (2014)). These researches have carried out bidirectional NSA, i.e. by consid-

ering two simultaneous loading patterns along perpendicular horizontal directions,

in the seismic assessment of RC chimneys, RC core wall tall buildings, irregular RC

frames and cable-stayed bridges, respectively.

Two researches Cannizzaro et al. (2017) and Chácara et al. (2019) have recently

addressed the topic of multi directional pushover-based seismic assessment applied

to masonry buildings. Both investigations have considered a discrete macro-element

modeling technique for the analysis of an historical palace damaged by L’Aquila

earthquake, and a brick masonry structure prototype tested in the laboratory. The

first case study is a building that underwent seismic retrofitting interventions before

L’Aquila earthquake and thus exhibited a global box behavior with overall resisting

response after the earthquake, as also confirmed by the numerical analyses. The

second case study is a laboratory specimen including a main gable wall with two

returns, i.e. an experimental prototype of a structural member with a predominant

out-of-plane failure response.
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3.3.2 Proposed procedure

The present research aims to contribute to further developments on multi directional

pushover procedures for the seismic analysis of masonry buildings. This section

presents the description of the different stages of the proposed methodology, while

the following section will present its practical application to an irregular historical

masonry building without box behavior. The considered real building has been

chosen purposely in order to present a novel challenging case study of MDPA of a

complex structure with prevailing out-of-plane mechanisms in case of earthquake.

The working steps of the proposed MDPA are listed in the following.

Step 1: A spatial 3D FE model is developed with nonlinear constitutive laws for

the materials. The modeling of diaphragms has to account for the actual stiffness of

roofs and floors. In case that their rigidity is negligible and floor-to-wall connection

is weak, the in-plane tying effect can be neglected and the floors may be modeled

as lumped masses at the level of stories in order to simplify the FE model.

Step 2: The MDPA is applied to the spatial 3D FE model to determine the seismic

capacity of the structure. The method considers multiple NSAs executed along dif-

ferent directions with respect to the plan of the building, after establishing an angle

of variation ϕn between subsequent orientations. This work, as a first approach to

the topic, suggests to consider at least eight NSAs, i.e. to assume ϕn = 45◦ (Figure

3.2), with horizontal loading patterns proportional to the distribution of the masses

in the FE model (constant accelerations along the height). Future works may con-

sider ϕn = 22.5◦ or ϕn = 30◦, depending on the complexity of the investigated case

study until achieving a good compromise between computation cost and accuracy

of results.

Step 3: The control nodes to draw the load-displacement capacity diagrams are

selected by carefully analyzing the most vulnerable structural members of the ma-

sonry building. For the case of irregular systems, the typical existence of different

failure mechanisms leads to the choice of different control nodes. Out-of-plane

displacements have to be controlled with caution in overturning walls of masonry

buildings without box behavior.

Step 4: The nonlinear force-displacement relationship of the multi-degree of free-

dom (MDOF) system is plotted for the selected control node corresponding to the
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Figure 3.2: Proposal of basic directions to be considered in the multi directional
pushover analysis

failure mechanism. The pushover curve of the MDOF system is transformed into

the capacity curve of an equivalent single-degree of freedom (SDOF) system, by

evaluating the transformation factor Γ according to the N2 method:

Γ =

∑
miΦi∑
miΦ2

i

=
m?∑
miΦ2

i

(3.1)

where m? is the mass of the equivalent SDOF system, mi is the mass of the i-th node

of the FE model and Φi is the normalized displacement of the i-th node. Since this

factor shows to be very sensitive to the applied load pattern in NSA and the related

deformed shape, this work considers the displacement shape Φi derived from the

initial elastic stage of a pushover analysis with mass-proportional horizontal loading

pattern and without gravity loads applied (Cattari et al. (2015); Lagomarsino et al.

(2018)). The displacement shape is normalized to the highest control displacement.

Within the framework of the proposed MDPA, different transformation factors Γ

are calculated for different NSA loading orientations, and this constitutes a novel

contribution to the approach compared to previous studies considering a unique

transformation factor for all the considered directions (Cannizzaro et al. (2017)). In
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particular, for a specific NSA loading orientation, the direction for the calculation

of the transformation factor Γ is that of the largest horizontal component (X or Y)

of the control displacement. For the specific case of masonry buildings without box

behavior, e.g. the case study investigated in this paper, if the overturning mech-

anisms of walls are the most vulnerable, the out-of-plane displacement directions

are considered for the calculation of the transformation factors Γ, see Section 3.4.3.

The capacity curve of the equivalent SDOF system is expressed eventually in terms

of its force F ? and displacement d?:

F ? =
Fb
Γ

(3.2)

d? =
dn
Γ

(3.3)

where Fb and dn are the base shear force and the control node displacement of the

MDOF system. The capacity curve of the equivalent SDOF system is evaluated

only along the direction of the largest horizontal component (X or Y) of the control

displacement. However, its shape is affected by the orientation of the loading

direction with respect to the plane of the wall. Finally, the capacity diagram is

expressed in the acceleration-displacement format by dividing the forces in the

F ?-d? curve by the mass m? of the equivalent SDOF system.

Step 5: The capacity curve showing the relationship between the base shear force

and the displacement of the SDOF equivalent system is idealized by a bilinear

method. The simplified elastic perfectly-plastic bilinear capacity curve for the

equivalent SDOF system can be evaluated by engineering judgment and guidelines

available in regulatory documents (Ministero delle Infrastrutture e dei Trasporti.

Circolare 21 gennaio 2019 (2019)). The ultimate displacement is identified in cor-

respondence to a decrease of 20% of the maximum load capacity of the structure

(European Committee for Standardization (2005); Ministero delle Infrastrutture

e dei Trasporti. Circolare 21 gennaio 2019 (2019)). However, the execution of

pushover analysis in the softening range is usually not straightforward in contin-

uum FE models of masonry structures within the smeared crack approach, due to

convergence problems related to the brittleness of the elements. For this reason, it

is important to identify properly the ultimate displacement as the condition corre-
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sponding to the full development of the collapse mechanism in the FE structural

model. The yield displacement is given by an energy equivalence criterion, i.e. by

assuming that the areas under the actual and idealized force-displacement curves

are equal (European Committee for Standardization (2004)).

Step 6: The performance point (PP) is obtained by comparing the seismic capacity

of the SDOF system with the demand expressed by an inelastic response spectrum,

as indicated in the procedure of the N2 method Fajfar (2000); European Committee

for Standardization (2004). The displacement demand for the equivalent SDOF

system is finally transformed into that of the MDOF system, using Equation 3.3.

3.4 Application example

3.4.1 The Palacio Pereira

In the era of Chile’s economic boom in the 1870s, rich mine magnates bought prop-

erties in the center of the city of Santiago and constructed “Haciendas” which due

to their imposing and neoclassical style more or less appeared like palaces (“Pala-

cios”). One of these buildings is the Palacio Pereira which was commissioned by

Luis Pereira, designed by the French architect Lucien Ambroise Hénault and con-

structed in 1872. Figure 3.3 shows the building from the exterior in 2013.

Figure 3.3: Exterior view of the Palacio Pereira in 2013 before the works of restora-
tion

The Palacio Pereira is a two-story building made of unreinforced masonry com-

posed of traditionally produced clay bricks with dimensions 0.40×0.20×0.06m3 and
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lime mortar. Vertical loads are transmitted to the foundations by the 0.6 m thick

load bearing walls, that act also as shear resisting elements in case of application

of horizontal actions. The height of the complete building is approximately 10 m.

The floor and roof structures are made of timber members.

Figure 3.4 shows a schematic view in plan of the wall layout in first and second

floor of the Palacio Pereira. As shown, the building is remarkably irregular in plan

with a L shape, and also presents irregularity in elevation due to the presence of

2-storey volumes along with 1-storey ones surrounding the interior courtyard.

Figure 3.4: Plan view of the first and second floors’ walls

Several geometrical criteria provided by the EC8 (European Committee for Stan-

dardization (2004)) for building regularity do not comply with the construction

characteristics of the Palacio Pereira:

• Plan Irregularity (EC8, section 4.2.3.2). The Palacio Pereira is not symmetric

in plan and does not present any rigid diaphragm at floor and roof levels, since

these structural parts are made of timber. The structural eccentricities e0x and

e0y exceed by more than 30% the torsional radii rx and ry, respectively. The

eccentricities e0x and e0y are the distances between the barycenters of mass and

stiffness along the x and y direction, respectively. The torsional radii rx and ry

are the square roots of the ratio of the torsional and the lateral stiffness in y

or x direction, respectively. (Palacio Pereira: e0x = 3.24 m, e0y = 1.79 m, 0.3

rx = 0.91 m and 0.3 ry = 0.79 m).
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• Elevation Irregularity (EC8, section 4.2.3.3). The difference of translation stiff-

ness is about 75% between the first and second levels of the structure. This

specifies an abrupt change in elevation. Setbacks are present and in several parts

they do not comply with the specifications from the standard.

The Palacio Pereira suffered demanding seismic actions during its lifetime. Two

strong earthquakes in 1985 and 2010 caused severe damage to the building. An

overview of the present damages after the two earthquakes is given in Kalkbrenner

et al. (2019). Even though many portions of the building were damaged, the entire

structure has been restored to host cultural facilities and reopened in 2019.

3.4.2 Numerical modeling

A 3D FE model was built for the analysis of the Palacio Pereira before the recent

restoration, i.e. in the structural configuration struck by 2010 earthquake. All

computations were carried out by using the FE software diana fea TNO (2017).

Figure 3.5 shows the FE model of the building. All the walls of the Palacio Pereira

were modeled by shell elements, i.e. the triangular three-noded element T15SH and

the quadrilateral four-noded element Q20SH, with an average element size of 0.5

m. Three-point in-plane integration is used for triangular elements , while 2 × 2 in-

plane integration is used for quadrilateral elements . The three-point Simpson rule

is used for through-thickness integration in the shell elements. The total number

of nodes and elements is 14144 and 12597, respectively. The FE model does not

include any horizontal rigid diaphragm due to the flexibility of the roofs and floors

existing in 2010. However, the corresponding masses of floors and roofs are added

to the load bearing walls supporting the unidirectional floors. The model presents

two horizontal levels of added masses in the form of distributed loads applied to the

walls’ nodes at the floor and roof levels. The distributed weight of the floors and

the roof are 0.3 kN/m and 1.0 kN/m, respectively. All base nodes of the walls are

fixed, with both translation and rotation constrained.

The total strain based rotating crack model implemented in the diana fea

software is chosen for the masonry material. This constitutive model considers an

exponential softening curve under tension and a parabolic softening curve under

compression. Table 3.1 shows the material properties applied in the FE model of

the Palacio Pereira. Their values were calibrated through the numerical simulation
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Figure 3.5: 3D Model of the Palacio Pereira for finite element analysis

of an in-situ shear test performed on a portion of an existing wall located at the

first floor of the building Sandoval et al. (2017).

Table 3.1: Material properties of the smeared crack model for the finite element
model of the Palacio Pereira in diana fea

Material property Symbol Value Unit
Density ρ 1800 kg/m3

Y oung′s modulus E 1.785 GPa
Poisson′s ratio ν 0.2 -

Compressive strength f−p 2100 kN/m2

Compressive fracture energy G− 15.7 kN/m
Tensile strength f+

p 120 kN/m2

Tensile fracture energy G+ 0.01 kN/m
Residual compressive strength f−r 900 kN/m2

Residual tensile strength f+
r 20 kN/m2

Figure 3.6a shows the experimental setup of the in-situ shear test executed on a

1.00 × 2.00 m2 portion of the wall, reproducing two 1 m2 specimens one upon the

other. The loading was applied by a 600 kN force-controlled hydraulic jack, while

four displacement transducers were used to measure the diagonal shortening and

lengthening in each specimen. Figure 3.6b shows the experimental cracking pattern

obtained after the test, with two diagonal cracks going through the two specimens.

The in-situ shear test provided a shear strength τmax = 0.23MPa for the existing

masonry. Figure 3.6d shows the shear stress vs. angular strain response for the

two specimens. The observed experimental behavior was simulated numerically by

means of a FE analysis of the in-situ experimental test. Conventional values were
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assumed for density and Poisson’s ratio in the FE model, whereas the compressive

strength of 2.1 MPa was defined in accordance with the standard ASCE 41-06 ASCE

(2007) for poor masonry. The remaining FE model parameters in Table 3.1 were

evaluated in order to obtain a good agreement with the experimental evidence in

terms of cracking pattern and stress-strain responses, see Figures 3.6c and 3.6d.

(a) (b) (c) (d)

Figure 3.6: In situ shear test campaign to calibrate the material properties of the
Palacio Pereira: (a) Shear compression test-setup, (b) post-test crack pattern of the
experiment, (c) crack pattern of the FE analysis and (d) experimental and numerical
stress-strain curves

Appendix A.1 shows the summarized results of a linear modal and a response

spectrum analysis.

3.4.3 Multi directional pushover analysis

The NSAs are carried out by considering a mass proportional distribution of hori-

zontal forces. First, the pushover analyses are run along the four typical directions

assumed in conventional NSA of regular buildings: positive transversal (P0), nega-

tive transversal (P180), positive longitudinal (P90) and negative longitudinal (P270).

Second, supplementary NSAs are run along additional directions, according to the

proposed MDPA approach, with the purpose of activating all the possible local

collapse mechanisms around the building. The four additional pushover loading di-

rections are P45, P135, P225 and P315. Figure 3.7 shows the eight pushover directions

considered in the MDPA of the Palacio Pereira.

Each NSA is carried out by considering a two-step procedure. In the first stage,

the gravitational loading is applied to the model. In the second stage, the structure is
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Figure 3.7: Loading directions assumed in the proposed multi directional pushover
analysis of the Palacio Pereira.

horizontally pushed by a mass proportional horizontal loading pattern. The nonlin-

ear numerical problem is solved by using an arc-length control and Newton-Raphson

method.

Figure 3.8 shows the control nodes for NSA and NDA that have been chosen

according to the collapse mechanisms observed in the eight pushover analyses. Large

out-of-plane displacements occur in the walls during the MDPA, thus the control

nodes are placed at their top.

Figure 3.8: Overview of the locations of the failure mechanisms detected during the
multi directional pushover analysis, and positions of the considered control nodes.
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Table 3.2 shows the ultimate out-of-plane displacement values du of the chosen

control nodes, and the maximum accelerations amax derived from the eight MDPAs.

The maximum acceleration values range between 0.154 g and 0.234 g.

Table 3.2: Maximum acceleration values derived from each pushover analysis and
ultimate displacements of the control nodes in x- or y-direction. Seismic performance
in terms of displacements and accelerations and transformation factors from MDOF
to SDOF according to the N2 method

Peak values N2-method
node amax du Γ dpp app
(dir.) [ g ] [ m ] [ - ] [ cm ] [ g ]

P0 E (x) 0.193 0.254 2.68 6.69 0.177
P45 E (x) 0.154 0.048 2.66 3.99 0.148
P90 G (y) 0.216 0.116 3.16 2.68 0.167
P135 G (y) 0.176 0.071 3.44 4.69 0.171
P180 D (x) 0.234 0.042 2.68 4.11 0.233
P225 A (x) 0.192 0.048 2.66 4.44 0.191
P225 D (x) 0.192 0.062 2.66 5.24 0.189
P225 G (y) 0.192 0.042 2.81 2.92 0.182
P270 C (y) 0.225 0.292 3.16 2.92 0.176
P315 A (x) 0.170 0.078 2.69 7.31 0.169

The elastic design spectra of the Chilean standards NCh433 (Kalkbrenner et al.

(2019)) is used to evaluate the structural response at the performance point (PP).

The PP is determined by considering the procedure presented in Section 3.3.2. Table

3.2 shows the transformation factor Γ, the acceleration app and displacement dpp

at the performance point for the MDOF system corresponding to each NSA. As

previously mentioned in Section 3.3.2, different transformation factors are calculated

for different NSA loading orientations. Table 3.2 indicates the direction considered

for their calculation (X or Y) for each pushover direction, according to the control

displacement chosen to describe the obtained partial collapse mechanisms. It is

worth noticing that NSA P225 is able to activate overturning mechanisms in three

different walls and for this reason the results are detailed for the three cases (control

nodes A, D and G).

The determination of the local failure mechanisms through the MDPA of the

Palacio Pereira is carried out by considering the progressive damage appearing dur-

ing each NSA. Figure 3.8 shows the locations of all the failure mechanisms detected
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during the eight pushover analyses. As shown, the seismic response of the building

is characterized by partial mechanisms, as expected in an irregular masonry building

without box behavior. Figure 3.9 shows the total displacement contours at the PP

for each pushover analysis. Figure 3.10 shows the capacity curves of each NSA for

the out-of-plane displacement of the relevant control nodes. The description of each

failure mechanism derived from MDPA is presented in detail in the following.

• Pushover P0 The mechanism in P0 is an out of plane failure of the eastern part

of the south facade along the positive x-direction. The global displacements at the

PP are shown in Figure 3.9a. The first plateau of the capacity curve with control

node E of Figure 3.10a is produced by the cracks developing in the spandrels of

the walls perpendicular to the overturning part of the south facade. Increasing

lateral acceleration leads to large displacements of the wall and finally to out of

plane collapse of the eastern part of the south facade. This failure is designated

as Mechanism I.

• Pushover P45 The lateral acceleration activates the same failure observed in P0,

i.e. the Mechanism I. Figure 3.9b shows the global displacements of the structure

at the PP. As in P0, the lateral acceleration induces first the development of cracks

in the spandrels of the wall transversal to the east portion of the south facade.

This behavior can be detected by analyzing the capacity curve of control node E

shown in Figure 3.10b. At an acceleration of approximately 0.12 g, the slope of

the capacity curve flattens and then the increasing acceleration leads to the out

of plane collapse.

• Pushover P90 A further rotation of 45◦ of the pushover angle activates a dif-

ferent mechanism than the previous one displayed by P0 and P45. The lateral

acceleration leads to the out of plane failure of a big portion of the east facade

along the positive y-direction (Mechanism II). Figure 3.9c shows the global dis-

placements of P90 at the PP. Figure 3.10c presents the capacity curve of control

node G. At an acceleration of approximately 0.18g the wall perpendicular to the

east facade at location of control node B undergoes shear cracking. This causes

a sudden drop of the structural capacity. Further cracks appear in the walls per-

pendicular to the east facade while increasing the acceleration, until reaching the

overturning of the facade.
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(a) of P0 (b) of P45

(c) of P90 (d) of P135

(e) of P180 (f) of P225

(g) of P270 (h) of P315

Figure 3.9: Global displacements at the performance point for all the individual
nonlinear static analyses of the proposed multi directional pushover approach
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(a) Mechanism I: P0 - node E (b) Mechanism I: P45 - node E

(c) Mechanism II: P90 - node G (d) Mechanism III: P135 - node G

(e) Mechanism IV: P180 - node D (f) Mechanism IV: P225 - node D

(g) Mechanism V: P225 - node G (h) Mechanism VI: P225 - node A

(i) Mechanism VII: P270 - node C (j) Mechanism VIII: P315 - node A

Figure 3.10: Capacity curves and evaluation of the performance point for all the
individual nonlinear static analyses of the proposed multi directional pushover ap-
proach
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• Pushover P135 Figure 3.9d shows the global displacements of P135 at the PP,

and depicts an out of plane failure of only the northern part of the east facade

in positive y-direction (Mechanism III). Figure 3.10d shows the capacity curve

of control node G. The first drop of stiffness of the capacity curve is caused by

cracks in the spandrels of the facade. Further increase of the load results in cracks

at the perpendicularly connected walls which activate the collapse.

• Pushover P180 Figure 3.9e shows the global displacements at the PP for Mech-

anism IV, that is the out of plane failure along the negative x-direction of the

western part of the wall overlooking the courtyard parallel to the south facade.

Figure 3.10e shows the capacity curve of P180 with the corresponding control node

D. Cracks in one perpendicular wall cause a first change of stiffness at 0.11 g lat-

eral acceleration. A sudden drop of capacity occurs at 0.18 g due to cracks in the

corner and at the connection of the walls. The cracks grow further and lead to

the out of plane failure at control node D.

• Pushover P225 Figure 3.9f shows that the NSA along this direction activates

several mechanisms. First, there is the out of plane failure at node D which

has already been introduced as Mechanism IV. This mechanism leads to total

collapse of the FE model. However, two further large displacements of walls can

be detected, such as the out of plane displacements in negative x-direction of

the western part of the south facade at node A (Mechanism V). Further large

displacements occur at the northern part of the east facade in negative y-direction

and activate Mechanism VI. Figure 3.10f, 3.10g and 3.10h show the capacity

curves of the three nodes corresponding to the mechanisms. Large cracks at the

connection to the perpendicular walls appear in Mechanism IV. Cracks in the

spandrels of the perpendicular wall of Mechanism VI decrease the stiffness and

the connection of the east facade cracks in Mechanism VI.

• Pushover P270 The pushover analysis along this direction activates Mecha-

nism VII. Figure 3.9g shows large out of plane diplacements at the inner wall

parallel to the east facade at node C. Figure 3.10i shows the capacity curve of

control node C during P270 and demonstrates the beginning of the nonlinear range

at a lateral acceleration value of approximately 0.19 g. This loading leads to large

cracks in the connection to the perpendicular wall. Further increase of the lateral

acceleration loads activate the out of plane collapse until total failure of the wall.
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• Pushover P315 Figure 3.9h shows large deformations occurring at the most

western part of the south facade. Figure 3.10j shows the capacity curve of the

corresponding control node A. The formation of cracks in the lower spandrel of

the perpendicular wall initiates the drop of capacity at around 0.09g. At approx-

imately 0.11g the crack in the upper spandrel of the same wall becomes larger

and causes further yielding. Increase of the lateral acceleration leads to growing

cracks. Finally, Mechanism VIII is activated and the wall fails out of plane.

Table 3.3 shows the maximum displacements of the control nodes A, C, D, E and

G in x- and y-direction, respectively. Section 3.4.5 presents a careful comparison of

their values with those derived from NDA in Section 3.4.4.

Table 3.3: Comparison among the maximum displacements derived from the non-
linear dynamic analyses (NDA) and the performance displacements of the pushover
analyses (NSA). Calculation of relative errors of NSA displacements compared with
NDA displacements.

NDA NSA (PP)

Control Node Direction
t dmax Id

dpp χNSA
[ s ] [ cm ] [ cm ] [ % ]

A x
29.10 7.45 P315 7.31 1.9
28.20 -6.65 P225 -4.44 33.2

C y
29.54 2.90 − − −
19.71 -2.81 P270 -2.92 3.91

D x
29.06 5.51 − − −
28.20 -9.45 P225 -5.24 44.5

E x
28.97 8.78 P0 6.69 23.8
28.22 -6.80 − − −

G y
29.51 4.75 P135 4.69 1.26
28.17 -3.06 P225 -2.92 4.58

χ̄NSA 16.2

3.4.4 Nonlinear dynamic analysis

This section presents the results of the NDA of the Palacio Pereira. The transient

acceleration which acts on the FE model of the building is the time history of

the 2010 earthquake recorded at the Santiago Central Station in the transversal
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and longitudinal directions, respectively. Figure 3.11 shows the most significant

time frame of 80 seconds of the time history of the 2010 earthquake acceleration in

longitudinal (y) and transversal (x) directions.

(a) Longitudinal ground acceleration (b) Transversal ground acceleration

Figure 3.11: Time history of the 2010 earthquake longitudinal and transversal ac-
celerations recorded at the Central Station of Santiago

The NDA is performed by letting both the x and y components acting simul-

taneously. The time integration method is the Newmark-beta with γN = 1
2

and

βN = 1
4
. An automatic time step actualization is used with maximum time step

size 4tmax = 0.025s and minimum step size is 4tmin = 1.0 · 10−9. The maximum

time step size is based on the criterion of 4t = 0.1 ·T1 suggested by Chopra Chopra

(1995), being T1 = 0.268 s the period of the first mode. However, since the contribu-

tion of the first mode is not predominant in this structure, as intensely discussed in

the linear analyses shown in Appendix A.1.1, the automatic time step actualization

has been controlled throughout all the analysis to ensure the proper accuracy of the

results. The constitutive model is the total strain based crack model as for the NSA.

The classical Rayleigh damping matrix of type CRay = a0M + a1K is used in

NDA. The definition of the coefficients a0 and a1 can be obtained by regarding the

method presented by Chopra Chopra (1995). The range of the modes not over-

damped ranges from mode 2 to mode 18 for the Palacio Pereira. The corresponding

eigenfrequencies are shown in Appendix A.1.1. The coefficients for the implemen-

tation of the damping model are a0 = 0.2365 s−1 and a1 = 0.009852 s. Figure 3.12

shows the obtained values for the damping ratios versus the frequency.

The NDA of the Palacio Pereira is performed until the end of the 80 seconds

of the earthquake excitation. This is in agreement with the real behavior of the

Palacio Pereira during the earthquake in 2010, because the collapse of the building

did not occur, even though the structure was severely damaged.

Several initiating failure mechanisms can be detected by considering the anal-

ysis results. The results of the last step at 80 seconds show a significant amount
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Figure 3.12: Rayleigh damping model

of accumulated hysteretic damage on the building, and the activated failure mecha-

nisms are not sufficient to interrupt the NDA. The entire set of results is analyzed to

identify possible failure mechanisms, as reported in the next section. The maximum

displacements of the NDA and the PPs of the NSA are compared by considering

the same control nodes. Table 3.3 shows the maximum displacements of the control

nodes A, C, D, E and G directly compared with the performance displacements

from the MDPA. The overall maximum displacement during the NDA is reached by

control node D in the negative x direction with a value of 9.45 cm. Figure 3.13 shows

the displacements in x direction at 28.20 seconds of the NDA, where the maximum

displacement is reached.

Figure 3.13: Contour plot of displacements in x direction provided by nonlinear
dynamic analysis at 28.2 seconds.

Even though the base accelerations of the earthquake record reach similar max-

imum values in x and y directions, the displacements of the structure are bigger in

x than in y direction. This is due to the intrinsic irregularity of the building. A

similar behavior is obtained by the PP of the NSA results, where the displacements

in x direction are bigger than the ones in y direction.

Table 3.3 shows the percentage relative errors of NSA displacements compared
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with the NDA reference values, for the different control nodes and along both posi-

tive and negative directions. All these different relative errors are averaged for the

NSA. The mean relative error χ̄NSA of the MDPA results 16.2%, showing a proper

approximation of the MDPA results to the ones obtained by NDA. This impor-

tant outcome shows the capability of the proposed MDPA to reproduce the overall

seismic response of the irregular masonry building without box behavior.

3.4.5 Comparison and discussion

MDPA including eight pushover analyses provides useful information about vari-

ous possible collapse mechanisms in the considered irregular structure without box

behavior. The NDA, which considers simultaneously the two perpendicular time

histories of the earthquake and accounts directly for nonlinear dynamic effects, can

be compared with the overall results of the proposed MDPA. This kind of compari-

son is necessary in order to evaluate the capability of the MDPA to display all the

damage and collapse mechanisms provided by the NDA and produced by the 2010

earthquake. The description of the failure mechanisms is based on the contour plots

of crack width at meaningful steps of the analysis. Plots of each analysis are gen-

erated for both the MDPA at each PP and NDA at the step when the mechanism

is clearly detectable. The smallest cracks plotted have a width of 1.0 mm. Figures

3.14 and 3.15 show all the local failure mechanisms mentioned in Section 3.4.3. The

similarities of the mechanisms obtained by NDA and MDPA are analyzed in the

following.

Mechanism I (Figure 3.14a and 3.14b) shows very similar crack patterns for both

NDA and P0 NSA. The spandrels of the perpendicular walls are cracked and the

mechanism is produced by the out of plane deformation in the positive x direction.

Mechanism II (Figure 3.14c and 3.14d) presents the entire out of plane over-

turning of the east facade of the Palacio Pereira. It is caused by vertical cracks in

all the walls perpendicularly connected to the facade. Both the NDA and the P90

NSA present this mechanism.

Mechanism III (Figure 3.14e and 3.14f) is identified by an out of plane overturn-

ing in positive y direction of the east facade with control node G. Large cracks in

the walls connected perpendicularly to the facade are correctly displayed by both

NDA and P135 NSA. Both the analyses present cracks in the spandrels close to node

G.
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(a) NDA - mechanism I (b) NSA (P0) - mechanism I

(c) NDA - mechanism II (d) NSA (P90) - mechanism II

(e) NDA - mechanism III (f) NSA (P135) - mechanism III

(g) NDA - mechanism IV (h) NSA (P225) - mechanism IV

Figure 3.14: Contour plots of the crack width larger than 1.0 mm for mechanisms I
to IV provided by the nonlinear dynamic and static analyses (NDA and NSA)
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(a) NDA - mechanism V (b) NSA (P225) - mechanism V

(c) NDA - mechanism VI (d) NSA (P225) - mechanism VI

(e) NDA - mechanism VII (f) NSA (P270) - mechanism VII

(g) NDA - mechanism VIII (h) NSA (P315) - mechanism VIII

Figure 3.15: Contour plots of the crack width larger than 1.0 mm for mechanisms
V to VIII provided by the nonlinear dynamic and static analyses (NDA and NSA)
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Mechanism IV (Figure 3.14g and 3.14h) is the out of plane overturning in nega-

tive x direction with control node D. Both the NDA and the P225 NSA show cracks

at the connections to the perpendicular walls.

Mechanism V (Figure 3.15a and 3.15b) displays an out of plane overturning in

the negative y-direction of the facade at node G. For both the NDA and P225 NSA

large cracks appear at the corners with the perpendicular walls.

Mechanism VI (Figure 3.15c and 3.15d) shows the out of plane overturning in

negative x direction at node A. For both NDA and P225 NSA large cracks appear

in the corner. The cracks occurring in the spandrels of the perpendicular connected

walls are less pronounced in the NSA than in the NDA.

Mechanism VII (Figure 3.15e and 3.15f) presents the local out of plane over-

turning in negative y-direction of the wall with control node C and appears both in

the NDA and P270 NSA. Large cracks in the perpendicular wall and the spandrels

are correctly represented by both the analyses.

Mechanism VIII (Figure 3.15g and 3.15h) consists of large cracks in the corner

and in the spandrels of the facade as well as in the perpendicular walls. The out

of plane overturning of the wall is correctly provided by both the NDA and P315 NSA.

Table 3.4 shows a visual summary of which mechanisms are detected by the

NDA and the MDPA, respectively. It illustrates that the results of the NDA and

the overall results of the proposed MDPA with eight loading directions are in a

very good agreement. In particular, there is an important advantage offered by the

MDPA compared with the conventional NSA along only the principal directions of

the building. In fact, the execution of P0, P90, P180 and P270 would exhibit only

four different mechanisms (I, II, IV and VII), whilst the proposed MDPA displays

a total of eight mechanisms. The novel MDPA approach allows to cover all the

collapse mechanisms provided by the NDA.
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Table 3.4: Failure mechanisms detected by nonlinear dynamic and multi directional
static analyses

I II III IV V VI VII VIII
NDA X X X X X X X X
P0 X
P45 X
P90 X
P135 X
P180 X
P225 X X X
P270 X
P315 X

3.5 Summary

This chapter has dealt with numerical simulation techniques for the assessment of

masonry structures. It has strongly focused on the benefits of macro modeling strate-

gies. Without macro modeling approaches, such advanced numerical analyses would

not be possible, since more detailed computational strategies, e.g. micro or conven-

tional multi scale modeling, would require larger computational resources. Macro

modeling allows to run large scale analysis and facilitates significantly the devel-

opment of novel simulation techniques that enable the assessment of the structural

behavior of masonry.

In particular, this chapter has evidenced that such novel approaches are neces-

sary in order to asses the seismic vulnerability of masonry structures. The macro

modeling strategy has been utilized in order to discuss a novel approach for the

seismic analysis through the application of the FE method to irregular masonry

structures without box behavior. Nonlinear dynamic analysis (NDA) is currently

the most adequate tool for this type of structure. To avoid the well-known large

computational effort of nonlinear time history analysis, nonlinear static analysis

(NSA) is usually carried out in seismic assessment. NSA generally exhibits signifi-

cant limitations when dealing with irregular structures. This chapter has presented

a novel multi directional pushover approach (MDPA) suitable to analyze existing

buildings with plan and elevation irregularity, as well as without box behavior.
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The proposed MDPA consists in performing sequentially a set of pushover anal-

yses with mass proportional horizontal loading along eight directions with respect

to the plan of the building. The approach breaks somehow one of the fundamen-

tal hypotheses of conventional NSA that consists in executing the pushover only

along the principal directions of the masonry structure. The objective is to assess

systematically the vulnerability of the structural members of the irregular building

along a large set of lateral loading directions. This idea overcomes the limitations

of conventional NSA that usually reveals to be unable to account for the multi di-

rectionality of the real earthquake motions. A masonry building with important

irregularity in plan and elevation, and without box behavior, has been considered

to show the advantages of the novel MDPA procedure. The case study has been the

Palacio Pereira in Chile, an historical palace damaged by an earthquake in 2010.

The development of a MDPA has provided meaningful results about the assess-

ment of the seismic behavior of the Palacio Pereira. The procedure has consisted

in executing eight mass proportional pushover analyses by sequentially varying the

loading direction of 45 degrees in plan. The overall results of the MDPA have shown

eight possible local failure mechanisms consisting on out-of-plane overturning of par-

tial portions of the facades. It is worth noticing that the conventional approach of

executing pushover analyses along the principal axes of the building would provide

only four collapse mechanisms. The application of the new MDPA approach has

led to the detection of four more local failure mechanisms of the structure than the

ones obtained from a classical NSA approach. In addition, the average relative error

of MDPA performance displacements, compared with NDA reference values for the

different failure mechanisms, results moderate (16.2%).

The NDA has been carried out by applying simultaneously the two perpendicular

base accelerations of the 2010 Santiago de Chile earthquake. This analysis has

shown several damage mechanisms in the structure during the base excitation. In

particular, all the failure mechanisms provided by the NDA are equivalent to those

reproduced by the MDPA.

The investigations made in this chapter have shown that a MDPA is a suitable

procedure for the seismic analysis of irregular (in plan and in elevation) masonry

buildings without box behavior. The main limitations of the standard pushover

procedures applied to irregular structures can be overcome by considering the pro-

posed MDPA since it shows to yield results more consistent with NDA. The selection
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of a meaningful case-study of a masonry building hit by an earthquake in 2010 has

demonstrated that the MDPA overall results are also in agreement with real damage

observations (Kalkbrenner et al. (2019)).

This chapter has given deep insights to the analysis of masonry structures by us-

ing a macro modeling approach. One of the crucial points of the procedure has been

the definition and calibration of the mechanical parameters for the homogenized ma-

terial of the masonry macro model. The material properties of the here presented

case study of the Palacio Pereira have been obtained by calibrating a numerical

model that simulates a single in-situ shear test. This is a commonly established way

of calibrating numerical models for large masonry structures, i.e. there are very few

experimental tests available as reference for the determination of the macro model

parameters. Those calibrated models are able to represent the correct behavior of a

single calibration experiment, e.q. the in-situ shear test available in the specific case

study examined. However, masonry is a complex anisotropic material, with both lin-

ear and nonlinear material responses strongly depending on the applied stress/strain

state. The definition of material properties of a large structure by only taking into

account one specific test loading condition, neglects all the other possible responses

that the material might experience under different deformation/stress states. That

is why the following chapters of the thesis investigate in detail a novel technique in

order to reproduce multiple stress/strain states while calibrating the homogenized

numerical constitutive law of masonry macro models.
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Chapter 4

Constitutive model

4.1 Constitutive law

An effective stress definition is adopted to distinguish between damaged/undamaged

and loading/unloading stages. It is based on the principle of strain equivalence that

assumes the comparison between damaged and undamaged configurations by strain

consideration with reference to the elastic material behavior Woody Ju et al. (1998).

σ̄ = C : ε (4.1)

Where σ̄ is the effective stress tensor, ε the strain tensor and C is the fourth

order elasticity tensor. The works of Cervera et al. (1995); Faria et al. (1998); Wu

et al. (2006) introduce separated internal damage variables to use damage scalar

models for tensile and compressive stress contributions and introduce the stress

tensor as follows

σ = (1− d+) σ̄+ + (1− d−) σ̄− (4.2)

In this expression, σ denotes the stress tensor. The internal damage variables

d+ and d− indicate the grade of damage in tension and compression, respectively.

The values of d+/d− can range from 0 to 1, whereas the value 0 stands for no

damage and the value 1 for complete damage. The tensors σ+ and σ− are the
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positive and negative parts of the effective stress tensor and account for different

nonlinear behavior in tension and compression. The decomposition of the effective

stress tensor σ̄ is performed according to Wu et al. (2006) as follows

σ̄+ = P+ : σ̄ (4.3)

σ̄− = σ̄ − σ̄+ = P− : σ̄, (4.4)

where P+ and P− are fourth-order projection tensors expressed according to

Faria et al. (2000)

P+ =
∑
i=1

H(σ̄i)pii ⊗ pii (4.5)

P− = I − P+. (4.6)

Where σ̄i is the i-th principal stress or eigenvalue of the effective stress tensor

σ̄. The symmetric tensor pii is the outer product of eigenvector ni belonging to

the i-th principal stress (pii = ni ⊗ ni). The Heaviside function H(σ̄i) guarantees

that the positive projection tensor P+ is only computed by positive values of the

effective stress tensor. It is defined as follows

H(x) =

0, for x ≤ 0

1, for x > 0.
(4.7)

4.2 Yield criteria

Lubliner et al. (1989) introduce a proper yield criteria that considers two scalar

values that respect different material behavior in tension and compression. The

values τ+ (tension) and τ− (compression) indicate the equivalent uni-axial stress of

the respective parts σ̄+ or σ̄− of the effective stress tensor. In this research the

Lubliner yield criteria modified by Petracca et al. (2016) is considered. The scalars

for tension (τ+) and compression (τ−) are then defined as follows.

68



CHAPTER 4. CONSTITUTIVE MODEL

τ+ = H(σ̄max)

[
1

1− α

(
αĪ1 +

√
3J̄2 + βσ̄max

)f+
p

f−p

]
(4.8)

τ− = H(−σ̄min)

[
1

1− α

(
αĪ1 +

√
3J̄2 + κβ〈σ̄max〉

)]
(4.9)

The modification of the formulation for τ− from the definition in Lubliner et al.

(1989) to the one presented here (Petracca et al. (2016)), is the introduction of κ

in Equation 4.9. This constant better controls the effect of the compression surface

on the shear strength of the model. It ranges from 0 (Drucker-Prager surface) to 1

(Lubliner surface).

Ī1 is the first invariant of the effective stress tensor, and J̄2 the second invariant

of the deviatoric stress tensor. σ̄max denotes the maximum principal stress and

σ̄min the minimum principal stress of the effective stress tensor. The application of

the Heaviside function H(x) guarantees the evolution of the tension yield surface if

at least one positive principal stress value exists (analogous for the negative yield

surface). 〈•〉 are the Macaulay brackets so that

〈x〉 =

0, for x < 0

x, for x > 0.
(4.10)

The constants α and β are dimensionless scalar values and can be computed by

the following expressions considering the yield values of tension and compression

behavior of the material

α =
kb − 1

2kb − 1
(4.11)

β = (1− α)
f−p
f+
p

− (1 + α) (4.12)

Where, kb is a multiplier to respect the increasing strength under biaxial com-

pression states, so that kb = f−bi /f−p , with f−bi as the biaxial compression strength and

f−p as the uni-axial peak strength in compression. f+
p is the tension peak strength.
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Figure 4.1: Yield surfaces for the tension equivalent stress τ+ and the compression
equivalent stress τ− in the two dimensional principal stress state

Additional to the above introduced yield criteria in tension, a classic Rankine

damage criteria is also applied in this thesis. For this case, the positive equivalent

stress value is computed as follows

τ+ = 〈σ̄max〉 (4.13)

Figure 4.1 shows the yield surface of the Rankine and Lubliner model in tension

and the modified Lubliner model in compression in the two dimensional principal

stress state, respectively. The effect of a variation of κ, introduced by Petracca et al.

(2016) in order to modify the surface in case of mixed stress states, is shown for three

different values. The depicted yield surfaces are utilized in the application examples

of this thesis. Deeper insights on the effect of κ are given in Petracca (2016).

Expressions 4.8 and 4.9 are valid for 2D analysis. In case 3D analysis are con-

sidered, the negative equivalent stress must be extended inside the brackets by a

coefficient that accounts for three dimensional compression stress effects (Petracca

(2016)).
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4.3 Damage evolution

A threshold value must be introduced in order to distinguish between an undamaged

and a damaged state of the material. Damage is an irreversible process and there-

fore the threshold must also indicate if the model undergoes loading/unloading or

reloading. Thus, two additional scalar values r±n are introduced as actual threshold

values and defined as follows

r± = max
{
r±0 ; max

t0≤n≤te
τ±n

}
(4.14)

Where n indicates the actual step of an analysis going from a start time t0 to an

end time te with a step size 4t. Furthermore, τ±n is the actual uni-axial equivalent

stress, r±0 is the initial threshold value, with r+0 = f+
p , if no hardening function in

tension is considered and r+0 = f+
0 , if a damage onset stress for tension behavior

is considered. r−0 = f−0 defines the elastic limit in compression. Observing the

maximum value of the uni-axial equivalent stress ensures that during unloading

and prospective reloading the maximum value remains the threshold. It follows the

damage criteria

Φ±(τ±, r±) = τ± − r± ≤ 0 (4.15)

Petracca et al. (2017) came up with a valuable combination of damage evolution

in tension and in compression. The research presented in detail that a combination

of an exponential softening law in tension and a quadratic hardening and softening

law in compression fits astonishingly good for the numerical analysis of masonry

structures. Thus those damage evolution laws are also applied in the present re-

search. Furthermore a novel extended model for the behavior in tension is presented

in the following.

4.3.1 Compression behavior

To ensure hardening and softening in compression behavior, Petracca et al. (2017)

established a novel hardening-softening law based on quadratic Bézier curves. Figure

4.2 shows the thoroughly developed post linear evolution behavior. It consists of
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three Bézier splines and a final residual part. The computation of each part can be

done as follows

Figure 4.2: Uni-axial strain-stress curve of the material’s compression behavior with
Bézier control nodes

Υ(ξ−) =



B(ξ−, ε−0 , ε
−
i , ε

−
p , f

−
0 , f

−
i , f

−
p ) εc,0 < ξ− ≤ ε−p

B(ξ−, ε−p , ε
−
j , ε

−
k , f

−
p , f

−
j , f

−
k ) ε−p < ξ− ≤ ε−k

B(ξ−, ε−k , ε
−
r , ε

−
u , f

−
k , f

−
r , f

−
u ) ε−k < ξ− ≤ ε−u

f−u

(4.16)

Where B(•) is a Bézier function that requires the coordinates of three control

points and is defined as

B(X, x1, x2, x3, y1, y2, y3) = (y1 − 2y2 + y3) p
2 + 2p(y2 − y1) + y1 (4.17)

with

p =
−B +

√
D

2A
(4.18)

and
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A = x1 − 2x2 + x3 (4.19)

B = 2(x2 − x1) (4.20)

C = x1 −X (4.21)

D = B2 − 4AC (4.22)

ξ− is introduced as a strain-like counterpart to the current damage threshold

r− and is defined as the ratio of the damage threshold and the materials Young’s

modulus

ξ− =
r−

E
(4.23)

Finally the damage variable d− can be calculated as follows

d−(r−) = 1− Υ(ξ)

r−
(4.24)

Following this procedure of computing the damage in compression also requires

a fracture energy regularization which depends on the elemental size. The basics are

explained in the following. However, a detailed discussion can be found in Petracca

(2016) on fracture energy regularization.

The total specific fracture energy g−calc of the uni-axial damage evolution law can

be calculated as follows

g−1 =
f−p ε

−
p

2
(4.25)

g−2 = G
(
ε−p , ε

−
j , ε

−
k , f

−
p , f

−
j , f

−
k

)
(4.26)

g−3 = G
(
ε−k , ε

−
r , ε

−
u , f

−
k , f

−
r , f

−
u

)
(4.27)

g−calc = g−1 + g−2 + g−3 (4.28)

Where G is the area beneath the Bézier curves, that can be computed by taking

into account the control nodes
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G(x1, x2, x3, y1, y2, y3) =
x2y1

3
+
x3y1

6
− x2y3

3
+
x3y2

3
+
x3y3

2
− x1

(y1
2

+
y2
3

+
y3
6

)
(4.29)

The energy regularization can now be performed by stretching the post peak part

of the uni axial compression damage evolution. Then the following control nodes of

the Bézier formulation must be adapted to

ε̄−i = ε−i + S(ε−i − ε−p ) (4.30)

Where i = j, k, r, u and S is a stretching factor calculated as follows

S =
g− − g−1
g−calc − g

−
1

− 1 (4.31)

with

g− =
G−

ldis
(4.32)

To avoid a sudden fall from the peak stress in compression to zero, the stretcher

S must always be larger than −1.0. This leads to the condition

ldis <
2G−

ε−p f
−
p

(4.33)

Where ldis is the size of the dissipative zone which is assumed to be equal to the

characteristic length of the finite element. The effects of different elemental charac-

teristic lengths can be observed in Petracca et al. (2017). All the numerical tests

performed in this thesis comply with the condition of Equation 4.33.

The formulation of the Bézier like damage evolution law requires several input

parameter (three control points per Bézier spline). Hence the parameters c−1 , c−2 and

c−3 are introduced in order to minimize the number of required input values. Those
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factors are able to adjust the post peak part and avoid a specific definition of the

post peak control points. Table 4.1 shows all required input values for the damage

evolution in compression. The values marked in gray are the necessary ones for the

correct law application thanks to the introduction of the c-factors. The computation

of the remaining inputs of the Bézier like damage evolution law is attached to the

appendix files of this thesis (Appendix B.1).

Table 4.1: Strain and stress properties needed for the Bézier damage law in com-
pression

ε−0 ε−i ε−p ε−j ε−k ε−r ε−u
f−0 f−i f−p f−j f−k f−r f−u
c−1 c−2 c−3

4.3.2 Tension behavior

4.3.2.1 Exponential softening

Figure 4.3 displays the uni-axial tension behavior of the material for post-peak

exponential softening.

Figure 4.3: Uni-axial strain-stress curve for exponential softening of the material’s
tension behavior

According to an exponential softening behavior assumed in tension, the damage

variable d+ evolves as follows
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d+(r+) = 1− r+0
r+
exp

[
2Hdis

(r+0 − r+
r+0

)]
(4.34)

Where Hdis is the discrete softening parameter, and can be calculated considering

Hdis =
ldis

lmat − ldis
(4.35)

Where lmat = 2EG+/(f+
t )2.

4.3.2.2 Extension of the tension damage behavior

The tension behavior of brittle materials is usually modeled as a combination of

linear elastic behavior up to the tension peak and followed by an exponential soften-

ing as shown in Section 4.3.2.1. However, in order to better represent the pre peak

hardening of masonry’s tension behavior, this thesis considers a hardening part for

the damage evolution in tension. Investigations performed in a later part of this the-

sis show that, while homogenizing the material masonry, pre-peak hardening occurs

also in tension. Therefore, the Bézier like hardening and softening evolution law

introduced in Section 4.3.1 is also implemented for the damage behavior in tension.

Figure 4.4 shows the relation for the uni-axial tension damage evolution.

Figure 4.4: Uni-axial strain-stress curve for Bézier -like hardening and softening of
the materials tension behavior
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The computation is carried out analogously to the one presented for compres-

sion damage evolution. Substituting the corresponding tension parameters to the

Equations 4.16 to 4.33, leads to the damage parameter in tension as follows

d+(r+) = 1− Υ(ξ+)

r+
(4.36)

with ξ+ as the strain-like counterpart for tension behavior.

4.4 Available constitutive laws

This section presents the constitutive models available for the numerical analysis

carried out in this thesis in terms of possible combinations of yield criteria and

damage evolution laws. Two different yield criteria have been presented for tension

behavior in order to compute the tension uni-axial equivalent stress. The first theory

is based on the Lubliner yield criteria presented in Equation 4.8. The second is based

on the classic Rankine criterion shown in Equation 4.13. For compression behavior

the only criteria available is the modified Lubliner yield of Equation 4.9 and from

here on named as Petracca yield criteria.

Two different damage evolution laws have been presented in this thesis. For

compression behavior an advanced Bézier based damage evolution law has been

presented in Equation 4.24. For tension behavior an exponential softening (Equation

4.34), which is typical for brittle materials such as masonry, has been chosen. This

thesis considers also the formulations made for the Bézier based damage evolution

law also for the tension damage behavior (Equation 4.36). Table 4.2 displays all the

possible combinations included in the work of this thesis. Additionally an overview

of all the required parameters is listed in Table 4.3.

4.5 Constitutive tensor

The constitutive tensor contains information about the actual state of the analysis

(loading/unloading) and whether there has already occurred damage or not. The

most important indicator therefore is the damage criteria Φ presented in Equation

4.15. If the damage criteria is positive or equal to 0, the constitutive tensor is
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Table 4.2: Overview of the available constitutive law combinations of this thesis

Tension Compression
Yield Damage Yield Damage

Rankine Lubliner Expo Bézier Petracca Bézier

TRECPB X X X X
TLECPB X X X X
TRBCPB X X X X
TLBCPB X X X X

Table 4.3: Required parameters for the model’s integrity

Tension
f+
0 f+

p f+
r ε+p G+ c+1 c+2 c+3

TRECPB / TLECPB X X
TRBCPB / TLBCPB X X X X X X X X

Compression
f−0 f−p f−r f−bi ε−p G− κ1 c−1 c−2 c−3

TRECPB / TLECPB /
TRBCPB / TLBCPB X X X X X X X X X X

the tangent stiffness tensor. Otherwise, no proceeding damage is occurring during

the analysis and the constitutive tensor is equal to the secant stiffness tensor. The

following sections describe the implementation of the constitutive tensors to the

above presented constitutive models.

4.5.1 Secant stiffness tensor

The constitutive law from Equation 4.2 can be rewritten in terms of the secant

stiffness tensor Cs as follows

σ = (I −D) : C︸ ︷︷ ︸
Cs

: ε (4.37)

where D is a fourth order tensor that contains the projection matrices P± and

the damage variables d± as follows (Pelà et al. (2011))
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D = d+P+ + d−P− (4.38)

4.5.2 Algorithmic tangent stiffness tensor

This thesis applies an algorithmic procedure of perturbations introduced by Martinez

et al. (2011) in order to compute the tangent stiffness tensor Ct. This method

complies for isotropic and orthotropic material laws so that the tangent stiffness

matrix can be written in matrix form with the following components

Ct =


ct,11 . . . ct,1n

...
. . .

...

ct,n1 . . . ct,nn

 (4.39)

Where n is the rank of the matrix, e.g for 2D Voigt notation: n = 3. The

computation of the entries is column based so that in total n calculations must be

performed to obtain the entire tangent stiffness matrix. The column vectors ct,j,

with j = 1, . . . , n of Ct can then be calculated as follows:

ct,j =
δjσ

χpert
(4.40)

Where χpert is the perturbation factor, a small value (here χpert = 10−8) that

is used to compute the perturbation strain vector εpert,j by adding χpert to the j-th

entry of ε. The perturbation strain εpert,j can then be applied to the constitutive

law, and the resulting stress vector is the perturbation stress vector σpert,j (following

the procedure starting from Equation 4.1). δjσ then defines the increment between

the stress vector σ and σpert,j and is computed as follows

δjσ = σpert,j − σ (4.41)

Where σ is the previously computed stress tensor by applying the constitutive

model.
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4.6 Numerical implementation

The constitutive model presented in the previous sections is implemented as a con-

stitutive law available in the open source framework of kratos multiphysics

Dadvand et al. (2010). kratos is a multi-disciplinary simulation software that

has been developed at the CIMNE - International Centre for Numerical Methods

in Engineering. The coding language for the object oriented implementation of the

constitutive law is C++. The constitutive model is strain driven, thus the model’s in-

put is the strain vector coming from the FE analysis results obtained at the kratos

core stage. The outputs of the constitutive model are then returning the stress vec-

tor and the constitutive matrix. Both entities enable a further step computation

at the FE analysis level. Algorithm 4.1 shows the numerical implementation of the

constitutive law for the 2D plane stress condition and Voigt’s notation.
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Algorithm 4.1 Implementation of the presented constitutive law

input: constitutive law parameters
output: Cauchy stress tensor σ, constitutive matrix

START

1: step n = 0
2: Initialize damage thresholds and damage variables, r±n+1 = r±0 and d±n+1 = 0
3: for n→ n+ 1 do
4: Nonlinear FE iteration at Gauss point level starts
5: Call strain vector εn+1 from the FE analysis level
6: Compute effective stress vector σ̄n+1 . Eq.(4.1)
7: Decompose effective stress vector to σ̄+

n+1 and σ̄−n+1 . Eq. (4.3),(4.4)
8: Calculate equivalent stresses τ+n+1 and τ−n+1 . Eq. (4.8),(4.9)
9: Compute damage criteria Φ+ and Φ− . Eq. (4.15)

10: if Φ± > 0 then
11: Update thresholds r±n+1 and variables d±n+1 . Eq. (4.14), (4.24), (4.34),

(4.36)
12: else
13: r±n+1 = r±n and d±n+1 = d±n

14: Compute Cauchy stress vector σn+1 . Eq. (4.2)
15: if Nonlinear FE iteration at Gauss point level has converged then
16: Proceed with algorithm step 19
17: else
18: Reform the system and go back to algorithm step 5

19: Pass results to FE analysis level
20: if Φ± > 0 then
21: Calculate tangent constitutive matrix Ct via perturbation . Eq.(4.40)
22: pass σn+1, Ct

23: else
24: Calculate secant constitutive matrix Cs . Eq. (4.37)
25: pass σn+1, Cs

END

4.7 Application examples

4.7.1 Cyclic loading analysis of a single element model

This section presents an example applying the above described constitutive model.

The numerical model for this analysis is a 2D triangle element with a single Gauss

point. The two base nodes of the triangle are fixed in all directions and a dis-
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placement is applied to the top node of the triangle. Two cases are considered: a)

stretching (pure tension state) and b) compressing (pure compression state) the tri-

angle. This example applies for tension an exponential softening damage evolution

and the Lubliner yield criteria and in compression the Petracca yield criteria with

Bézier like hardening and softening. In both cases, the displacement is performed

by alternating between increasing displacements (loading) and decreasing displace-

ments (unloading) in order to show the functionality of the law under cyclic loading.

Figure 4.5 depicts the boundary force - top displacement curves of both the cases.

(a) Tension test

(b) Compression test

Figure 4.5: Force displacement results of numerical analyses of a single triangle
element following the constitutive model described in Chapter 4 for two different
deformations: (a) pure tension and (b) pure compression
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4.7.2 Diagonal compression test of Flemish bond masonry

wall

This section presents the application of the above described constitutive damage

model to a Flemish bond masonry wall. A summary is presented of experimental

tests performed at the Laboratory of Technology of Structures and Building Ma-

terials (LATEM) of the Technical University of Catalonia (UPC - BarcelonaTech),

with emphasis on the diagonal compression tests. The description of the numerical

micro model, the constitutive law parameters and the numerical analysis results are

also presented.

This example follows two main objectives. First, the demonstration of the ability

of the damage model to represent the experimental results of a diagonal compression

test. Second, to show the calibration of the numerical model further utilized in this

thesis, especially in the application example of Chapter 6.

4.7.2.1 Experimental program

The experimental program summarized in this thesis has been performed by Lar-

isa Garcia-Ramonda and Jorge Segura Domingo (Garcia Ramonda (2020) and Se-

gura Domingo (2020)). The author advises to read the presentation of the entire

experimental campaign made in Garcia-Ramonda et al. (2020) and Segura et al.

(2021) for further information, since a brief presentation is presented here.

Materials The masonry walls were built with handmade solid clay bricks and

a low mechanical performance lime mortar. The dimensions of the bricks were

311 × 145 × 40 mm3. The mortar utilized to bind the masonry bricks was based

on a commercial premixed hydraulic lime mortar. In order to reduce its strength,

the mortar was modified with limestone filler additions as explained in Segura et al.

(2020).

Masonry wall The masonry wall built up in the laboratory had the nominal

dimensions 1270 × 1270 × 311 mm3 and consisted of two leafs. It was constructed

in Flemish bond with 21 courses and a mortar thickness of 15 mm.

Testing setup and procedure Figure 4.6 shows the setup of the diagonal com-

pression test performed in the laboratory. The wall was constructed on a metallic
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bench and two robust steel braces were installed at two diagonally opposite corners

of the wall. Both braces were connected by two Dywidag bars on each side. In order

to introduce the diagonal load to the wall, two hydraulic jacks pulled these bars.

Two orthogonal LVDTs were installed on each side of the wall. One was measur-

ing the deformations in the diagonal loading direction (compression), i.e. in same

direction as the bars, and the other the perpendicular one (tension).

(a) (b)

Figure 4.6: Setup of the diagonal compression test as reported in Garcia-Ramonda
et al. (2020) and Segura et al. (2021)

Results During the experimental analyses performed in the laboratory five unre-

inforced masonry walls (URM) were constructed. Each wall was loaded until failure.

The deformations were measured in the LVDTs installed on each wall, and the ap-

plied force was measured at the jacks. Figure 4.7 shows the failure crack patterns of

the walls after the experiments. Each case shows perfectly developed shear cracks

by presenting cracking in the mortar joints and the bricks, respectively.

4.7.2.2 Numerical micro model analysis

This section reports the results of the numerical analysis of the diagonal compression

test applied to a micro modeled masonry wall. Both materials, mortar and bricks,

are modeled separately, each one following the continuum damage model introduced
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Figure 4.7: Crack patterns of the unreinforced masonry walls after having performed
the diagonal compression experiments (Garcia-Ramonda et al. (2020) and Segura
et al. (2021))

in this Chapter. For both the bricks and the mortar, an exponential softening behav-

ior in tension and a Bézier-like hardening softening in compression are considered.

Both the materials underlie the modified Lubliner (Petracca) damage surface model.

Table 4.4 shows the material parameters applied in this numerical analysis. For both

the materials the Bézier controllers are defined as follows: c−1 = 0.65, c−2 = 0.5 and

,c−3 = 1.5.

Table 4.4: Material properties, brick unit and mortar joint, for the numerical analysis
of the shear compression test applied to a Flemish bond masonry wall (Garcia-
Ramonda et al. (2020) and Segura et al. (2021))

Brick unit

E ν f+
p G+ f−0 f−p f−r ε−p G− kb κ

7000.0 0.2 1.5 0.048 2.0 6.0 2.0 0.01 3.6 1.2 0.16

[MPa] − [MPa] [ N
mm

] [MPa] [MPa] [MPa] − [ N
mm

] − −

Mortar joint

E ν f+
p G+ f−0 f−p f−r ε−p G− kb κ

1800.0 0.2 0.15 0.020 2.0 6.0 2.0 0.01 3.6 1.2 0.16

[MPa] − [MPa] [ N
mm

] [MPa] [MPa] [MPa] − [ N
mm

] − −

The numerical simulation of the diagonal compression test was applied by mono-

tonically increasing the diagonal displacements of the steel braces. Figure 4.8 depicts

the force-displacement curves of the numerical and the experimental results. The

numerical model was calibrated in order to be able to represent the experimental

curves of the two walls with higher capacities (URM 1 and URM 4). The curves of

Figure 4.8 show that these requirements of the numerical model could be fulfilled
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with a very good agreement.

A short discussion about the results obtained during the non linear numerical

analysis of the micro modeled Flemish bond wall is made. Figure 4.9 shows contour

plots of the tension damage variable d+ at various diagonal displacement values ud

of the analysis. After a displacement of ud = 0.68 mm tension damage starts in

the mortar joints, since the mortar’s tension strength is less than the one of the

bricks. After having increased the diagonal displacement up to ud = 1.39 mm, the

mortar damage propagates and some brick units enter into damage. At a diago-

nal displacement of ud = 2.09mm first connected staircase cracks passing through

mortar and bricks, respectively, appear. Further raising the diagonal displacements

of the braces develops wide diagonal joined cracks. The crack pattern obtained

from the numerical simulation matches to the diagonal cracks that occurred in the

experimental test (Figure 4.7).

Figure 4.8: Force-displacement plots of the diagonal compression tests of unrein-
forced masonry walls developed by Garcia-Ramonda et al. (2020) and Segura et al.
(2021), and the numerical simulation of the micro modeled wall
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Figure 4.9: Contour plots of the damage tension parameter and scaled total defor-
mation of the model at different analysis stages
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4.8 Summary

This chapter has presented the constitutive nonlinear damage model used in this

thesis for the numerical simulation of masonry with micro and macro modeling. A

strain-based constitutive model that aims to respect the brittle material behavior of

masonry has been introduced. By splitting the effective stress tensor into a tension

and a compression part, separate damage evolution laws can be implemented in

order to differ between tension and compression damage. This strategy ensures an

orthotropic material behavior that differs between tension and compression states.

In order to define those damage variables, specific nonlinear functions have been

introduced. An advanced damage evolution law elaborated by Petracca (2016) has

been presented. The same research has also introduced a novel formulation for

yield criteria that better represents the material response under shear. This model

delivers highly accurate numerical results when compared with experimental results,

as demonstrated in structural applications with micro and macro models of masonry

by Petracca (2016). The present research has adopted the same constitutive model.

An application example has shown to produce accurate results while applying the

constitutive law to the numerical simulation of a diagonal shear compression test.

Micro modeling includes the complex interaction of units and joints. Cracking

in masonry micro models appears first in the mortar joints, thus the total stiffness

decreases, but the load can still be increased. This phenomenon produces a harden-

ing behavior also in tension, that has been modeled by means of a uniaxial Bézier

softening law. When masonry is considered as homogenized, this hardening behav-

ior should also be considered in the nonlinear homogenized damage model prior

to softening. Therefore, this chapter has presented a hardening- softening damage

evolution for tension behavior applicable to brittle homogenized materials. The

mathematical formulation has been adopted from the Bézier curves already applied

for the compression uni-axial nonlinear damage behavior. Investigations made in a

later part of this research (Chapter 6) further motivate these assumptions.

The constitutive model introduced in this chapter will also serve as the fun-

damental part of the machine learning homogenization technique explained in the

following chapter. The model will be the substance of a variety of tests applied

to micro models of masonry walls. Furthermore, the constitutive law will serve

as the machine learning model in order to train the parameters of a macro model

88



CHAPTER 4. CONSTITUTIVE MODEL

constitutive law.
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Chapter 5

Machine learning material

homogenization

5.1 Introduction

Classical computational homogenization techniques, such as the first order com-

putational homogenization presented by Petracca et al. (2016) and Petracca et al.

(2017), still do not disconnect both the micro and the macro-scale at the solving

stage. If applied in finite element analysis, the procedure transfers strains from a

Gauss point of the macro-scale to a boundary value problem of a representative

volume element (RVE) at the micro scale. Thus a boundary value problem of an

entire RVE is solved in order to obtain stress results for only one Gauss point at

the macro-scale. As a consequence, the microscopic behavior of the heterogeneous

masonry material can be represented accurately at the macro-scale. However, the

computational cost is very high, and increases further with the size of the model at

macro scale.

Research made in Zaghi et al. (2018) introduces an off-line technique to avoid

solving the RVE at each analysis step. The strains at the macro scales are not sent to

a micro model RVE, but to a large database. The creation of this database includes

the strain and stress results of previously performed analyses on the RVE. Thus the

strains coming from the macro-scale can “choose” their corresponding stress state

from the database by comparing the incoming strains with the ones of the database.

The works made in Zaghi et al. (2018) contributed substantially to the approach,

since a virtual laboratory was used to construct the database. However, the method
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still implies jumping away from the macro-scale at the solving stage.

The idea of the present research is to avoid hopping around at multiple scales.

The key issue is then finding a single homogeneous continuum damage model for

the macro scale analysis of masonry that takes into account more realistically its

anisotropic behavior due to material heterogeneity. This research focuses on utilizing

a machine learning model to predict such a homogeneous continuum damage model

for masonry structures.

Figure 5.1 shows the work flow of the homogenization technique. It includes

the main idea of starting from data production in a virtual laboratory at the micro

scale, goes further to the machine learning and finalizes in a post machine learning

constitutive law applicable to macro analysis of masonry structures.

Figure 5.1: Overview of the machine learning homogenization technique, showing
all included procedures at multiple scales and the machine learning technique as
connector

This chapter presents all steps required for the construction of a machine learning

model that is able to homogenize the masonry material. Section 5.2 introduces the

machine learning model applied in this research. It serves as the connector of the

analysis at the multiple scales. For this purpose, this section clarifies the integration

of the constitutive model of Chapter 4 into the machine learning framework. Related

tools, such as computation graphs - including the constitutive law - and training

loops - essential for machine learning - are defined. This part is initially headed by

giving a fundamental background of machine learning and the software as applied

in this thesis.
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Machine learning models learn from large amounts of data. Section 5.3 introduces

a space, where relevant data can be produced: the virtual laboratory. Subject of

this lab is a representative volume element modeled at the micro scale - a numerical

model that contains clear information about the material’s heterogeneity. A variety

of nonlinear numerical experiments are carried out on the RVE in order to obtain a

large amount of data that include the heterogeneous characteristics of the material.

Section 5.4 presents a method to isotropize the data obtained from the virtual

laboratory, based on the works of Norris (2006) and Rossi et al. (2021). The pre-

sented procedure becomes necessary, since the data coming from the virtual labora-

tory are following an anisotropic elasticity rule, while the constitutive law integrated

into the machine learning is based on the hypothesis of isotropic elasticity. In order

to utilize the data for training of the isotropic model, a mapping procedure must be

adopted, that allows working at both anisotropic and isotropic spaces (Oller et al.

(2003), Pelà et al. (2011)).

After having isotropized the data, the machine learning model can be trained.

Training results in an approximated model that is most suitable to represent the

training data. Furthermore, this model can be stored and utilized in order to predict

the masonry material behavior for macro scale analyses. Section 5.5 presents the

so-called post machine learning constitutive law.

Section 5.6 terminates the chapter by giving a summary about the homogeniza-

tion technique.

5.2 Machine learning technique

5.2.1 Fundamentals

When a certain task is extremely difficult to program, machine learning tools start

to make sense. The general idea of machine learning is to collect data and utilize

it to train a “black box” model how to solve a certain task by learning from them.

This way of learning connects a set of inputs Itrue and a set of outputs Otrue by

searching a function F so that

F (Itrue) = Otrue (5.1)

This function aims to fit the inputs to the outputs. Thus a fundamental part of
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a machine learning model is a mathematical formulation that is able to achieve this

connection. Such a fitting can be attained by introducing adjustable parameters to

the function F . This procedure of adjusting parameters in order to obtain a best

possible fitting can be called optimization by learning.

Broadly spoken there exist two types of learning methods: supervised and unsu-

pervised learning. It depends on the kind of data that are at disposal. While super-

vised learning considers coupled pairs of inputs and outputs, unsupervised learning

only has access to some outputs of the input examples. In that case underlying pat-

terns of the input data are analyzed. However, this research implies having coupled

pairs of inputs and outputs that train the model by supervised learning.

The goal of supervised learning is to adjust the models parameters Θ so that the

given inputs Itrue fit to the given outputs Otrue as accurately as possible. The given

outputs Otrue are compared with predicted outputs Opred in a loss function L(Θ).

If the loss function does not fulfill a predefined loss minimum, an adjustment of the

model’s parameters Θ is carried out in order to approximate the outputs Opred of

the model to the given outputs Otrue. The most popular algorithms to perform such

optimization are gradient descent operators Ruder (2016).

5.2.1.1 Gradient descent operators

Gradient descent operations update the models parameters Θ in the opposite direc-

tion of the gradient of the loss function ∇ΘL(Θ) w.r.t. the parameters Θ, in order

to minimize the loss function. A learning rate η defines the velocity the optimization

heads towards the minimum. A classical gradient descent operation can be defined

as follows:

Θn = Θn−1 − η · ∇ΘL(Θn−1, Itrue, Otrue) (5.2)

Where Θn is the vector of the optimized variables at step n and Θn−1 at the pre-

vious step n−1. ∇ΘL(Θ) is the gradient of the loss function w.r.t. the parameters.

The gradient descent operator in Equation 5.2 considers a constant learning rate η

for all the model’s variables. As a consequence, the parameters are optimized to the

same extent. However, some variables require smaller or larger learning rates than

other parameters. Thus the procedure of Equation 5.2 may lead to problems while
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optimizing a machine learning model with a large number of trainable variables.

Let a short example clarify the problem. Two parameters of a constitutive

model are considered: f−p , the peak compression strength and f+
p , the peak tension

strength. If a brittle material is assumed, e.g. concrete or mortar, the ratio between

f−p and f+
p approximately counts around 10.0. If both parameters are variables of

an optimization procedure with a constant learning rate η, the smaller value, in this

case f+
p would be modified faster than the larger value. This may lead to divergence

problems during optimization and should be avoided.

As a consequence, proper and easily applicable gradient descent operations that

enable adaptive and parameter individual learning rates must be considered for the

present research and are summarized in Ruder (2016).

Adagrad optimizer A standard adaptive gradient descent optimizer is the Ada-

grad optimizer Ruder (2016). It optimizes while adapting learning rates for each

specific parameter Θi of all parameters Θ. In a first step the gradient per i-th

parameter must be considered as follows

gn,i = ∇ΘL(Θi, Itrue, Otrue) (5.3)

After having substituted the gradient into Equation 5.2 the update rule of the

Adagrad optimizer does then modify the learning rate and the optimization as fol-

lows

Θn = Θn−1 − η(Gn,ii)
−0.5 · gn,i (5.4)

Gn,ii is a diagonal matrix containing the sum of the squares of all the previous

gradients gn,i, Duchi et al. (2011). As a result, larger updates of the learning rate for

more frequent appearing parameters and smaller updates for less frequent appearing

parameters can be achieved. However, Adagrad optimizer decreases the learning

rates monotonically, thus further improvements are required.

Adam optimizer A strong achievement to gradient descent optimization has been

made by Kingma and Ba (2015). The introduction of the Adam (Adaptive Momen-
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tum Estimator) optimizer enables to consider an exponentially decaying average of

past linear and squared gradients mn,i and vn,i. Equation 5.2 can then be adjusted

as follows

Θn,i = Θn−1,i − η ·
mn,i√

vn,i + χadap
· ωt (5.5)

mn,i = β1mt−1,i + (1− β1)gt,i (5.6)

vn,i = β2vt−1,i + (1− β2)g2t,i (5.7)

ωt =

√
1− βt2

1− βt1
(5.8)

With β1, β2 ∈ [0, 1) as parameters to control the decay rate. A smoothing term

χadap (usually a value around 1.0e−08) ensures that the denominator cannot switch

to zero.

The work done in this research applies the Adam Optimizer. As shown in the fol-

lowing Section the machine learning model contains several parameters that require

different updates while optimizing. A great benefit of the Adam Optimizer is to

be able to tune the learning rates per parameter automatically. Recommendations

made in Ruder (2016) characterize it as the best overall choice. Due to the bias

correction factor ωt it performs better than other adaptive optimizers.

5.2.1.2 Batch sizing for training

Each optimization procedure requires to be fed by the inputs and outputs. The

previously described procedure considers feeding the entire set of inputs Itrue and

outputs Otrue to the gradient of the loss function as a batch. Thus the gradients are

computed for all the values encountered in Itrue and Otrue before the parameters can

be optimized. For large sets of training data this leads to an expensive computational

process before the proper optimization takes place. This drawback can be avoided

by breaking down the training data set into mini-batches as shown in the following
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Itrue =
(
I1:mtrue, I

m+1:2m
true , . . . , I

(n−1)m:n
true

)
(5.9)

Otrue =
(
O1:m
true, O

m+1:2m
true , . . . , O

(n−1)m:n
true

)
(5.10)

Where m is the number of sets per mini-batch. Feeding the mini-batch to the

model decreases the computational effort of computing the gradients and optimizes

the variables faster. In the present work mini-batches are applied to the machine

learning model.

5.2.1.3 Loss function

Loss functions are used to count machine learning prediction errors. The error is

a scalar value that indicates which stage the optimization process has reached: Is

the model already accurate enough or is there still a long way to go? A classical

computation of the loss function is the L2 loss function that computes a mean

square error as follows

L2 =
1

n

n∑
i=1

(
Otrue −Opred

)2
(5.11)

The entire loss function applied to the gradient descent optimization can then

be written as follows

L(Θ) =
1

m

m∑
j=1

1

n

n∑
i=1

(
Otrue −Opred(Θ, Itrue)

)2
(5.12)

Where m is the batch size of the inputs and outputs and n is the length of the

vectors Otrue and Opred.

5.2.2 TensorFlow

For the numerical implementation of the here subjected machine learning model, the

open source framework TensorFlow started by the Google Brain project is utilized

(Abadi et al. (2015)). TensorFlow performs an optimization by constructing a graph
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of mathematically connected nodes and running a session over the graph for multiple

times until a certain criterion is reached. A basic graph for optimization problems

consists of the following entities: tensors, variables, operations and placeholders (for

TensorFlow 1 versions).

Tensors are multi-dimensional arrays containing integer, float or double types,

complex numbers but also string elements. Variables are the parameters of the

model that are modified during a graph session in order to obtain a trained ma-

chine learning model. In other words, they are trained after each session executed.

Operations connect the nodes of an entire graph by defining abstract computations

between them. Such computations are already implemented to the environment of

TensorFlow, e.g. the operation add tensor of node 1 to tensor of node 2 and give the

result to node 3. However, even more complex actions (e.g. matrix multiplication,

gradient computation, optimizer construction) can directly be called. Placeholders

are empty TensorFlow tensors that are essential for the graph. They define which

data flows through. During a session the placeholders are fed with training input

data in order to optimize the model.

Performing an optimization with TensorFlow consists of two substantial parts:

the graph construction and running the graph in a graph session. In the step of con-

structing the computation graph the above described entities are connected. The

connections are made according to the mathematical model one aims to optimize.

This includes defining the tensors, the variables, the placeholders and the mathe-

matical operations.

The second step is running the graph in order to perform the optimization. For

this purpose, the inputs of the machine learning model are fed to the placeholders.

These inputs do then run through the graph and define all the nodes numerically

until the output of the graph is produced. If the aim of the TensorFlow model is

optimization, the graph must be run multiple times in order to be able to modify

the model’s variables at the end of each graph running step.

Supported frontend languages to build machine learning models with TensorFlow

are python or C++. They enable a user friendly construction of the machine learning

models. In this research a python based application programming interface (API)

is utilized.

In the following the described entities of Section 5.2.1 and Section 5.2.2 are

mapped to the present problem in order to define the constitutive law machine
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learning model. The computation graph for the machine learning homogenization

technique implemented to TensorFlow is discussed and the examination of the graph

session is described.

5.2.3 The constitutive law machine learning model

This Section presents the construction of the specific machine learning model as

utilized in this thesis. In order to apply the machine learning approach the funda-

mentals explained in Section 5.2.1 must be mapped to the present scientific issue.

Thus the fundamental questions are: Which are the coupled input and output items

and which mathematical formulation connects them?

The function F (Itrue) This research aims to find a correlation between strains

and stresses for a homogenized material. For any material, constitutive laws can

define such a correlation. Thus the here considered mathematical formulation for

the machine learning model is derived from a constitutive law and is defined as

function Ψ(Itrue).

The input Itrue and output Otrue The constitutive law function Ψ considered

in this thesis is based on strain equivalence. Thus the input Itrue of the function Ψ

is a set of strain states εtrue. In order to perform the supervised learning, the model

requires the reference true output stresses σtrue as the output Otrue.

The parameters Θ In order to obtain the predicted output of the machine learn-

ing model, the strains εtrue run through the model and are adjusted by the consti-

tutive law material parameters in order to compute the predicted output.

The predicted output Opred The predicted output Opred of the machine learning

model is the predicted stress σpred computed by the constitutive law function Ψ.

After having introduced the machine learning model’s participating entities the

general mathematical formulation of the optimization process can be stated as fol-

lows

99



CHAPTER 5. MACHINE LEARNING MATERIAL HOMOGENIZATION

Ψ
(
εtrue,Θ

)
≈ σtrue (5.13)

The model searches a modification of the parameters Θ of the constitutive model

Ψ, so that by inputting strain states εtrue an accurate approximation to the reference

stresses σtrue can be achieved. A predefined learning criterion checks the error

value of the actual optimization state. If the error value is less or equal to the

learning criterion, the optimization finishes and stores the actual modification of

the parameters Θ as the optimized model parameters Θ?. Then the model can be

utilized to predict stresses σ̃pred by entering any strain state ε̃. It follows

Ψ
(
ε̃,Θ?

)
= σ̃pred (5.14)

5.2.3.1 Computation graph

Figure 5.2 shows the computation graph for the machine learning homogenization

technique. It depicts an universal graph construction that can be utilized for any

machine learning technique that aims to fit a strain driven constitutive law.

Figure 5.2: Overview of the computation graph G implemented to TensorFlow for
the machine learning material homogenization technique

The starting node of the computation graph is the definition of the parameters
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Θ. This node contains all the variables that are essential to define the constitutive

law (e.g. compression strength, tension strength, etc.). The parameters of each

constitutive law that are in the scope of this thesis are shown in Table 4.3. A

specific command, able to specify if these parameters are trainable or not, can be

called. All the variables are then send to the node of the constitutive law function

Ψ. The variables associated as trainable are also send to the optimization procedure

P .

Another starting node is the placeholder node. It contains the empty tensors for

the strains ε̂ and the stresses σ̂. The placeholder entity ε̂ is sent to the node of the

constitutive law function as the strain input. And the placeholder σ̂ is passed to

the node of the loss function L.

The main node of the computation graph is the constitutive law function. Here

the predicted stresses σpred are computed. The user of the machine learning ho-

mogenization technique must now define the constitutive law he wants to predict.

The inputs are always the parameters Θ of the chosen law and the placeholder ε̂ as

the input strains. Both these inputs are the dependencies for all the mathematical

relations inside the constitutive law node. These mathematical operations result in

the predicted stress outcome. Each of them is a function depending always on the

two input entities Θ and ε̂ and can be described as follows

fi(Θ, ε̂) (5.15)

Where i in this case is the i-th node inside the constitutive law node. Each node

describes a function that enables the computation of the functions gradients w.r.t

the parameters Θ. They are essential for the optimization procedure in node P

∇Θfi(Θ, ε̂) (5.16)

.

Apart from the graph’s universality, namely to be applicable to any strain driven

constitutive law, this thesis aims to investigate the predictability of an advanced

constitutive law (Chapter 4) for the macro analysis of masonry structures. Thus

the construction of this node must be specified. Figure 5.3 shows a zoom into

the constitutive law function of Figure 5.2 and displays how the predicted stresses

σpred are calculated. The function of each node shown in Figure 5.3 is sent to the
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optimization node P .

The computation shown in Figure 5.3 is capable to utilizing any of the con-

stitutive laws summarized in Section 4.4 , since they are all implemented to the

computation graph. This includes changing the yield criteria in order to compute

the positive or negative equivalent stress on the one hand, but also the damage

evolution law for positive or negative stresses on the other hand.

Figure 5.3: Zoom into the constitutive law implemented to the computation graph G
of the machine learning material homogenization technique considered in this thesis.
It shows the inputs and outputs of the model

The next node of the computation graph is the calculation of the loss function

L. Any loss function can be chosen. This research adopts the L2 loss as introduced

in Equation 5.12. It can be adopted according to the present discussions as follows

L(Θ) =
1

n

n∑
i=1

(
σ̂ − σpred

)2
(5.17)

with n as the length of the stress vector in Voigt notation and i denotes the

i-th component of both the vectors σ̂ and σpred. The input to this node is the

placeholder σ̂ on the one hand, and the predicted stress σpred from the constitutive

law node on the other hand. The output is passed to the optimization node P .

The final optimization of the machine learning problem is executed in the node

P . This includes the computation of the gradients of all the previously appearing
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functions. The gradients are then passed to an optimizer. The work here utilize

the Adam optimizer introduced in Equation 5.5 . Figure 5.4 shows an overview

of the here adopted optimization node P . The inputs are the entities of all the

previous nodes and additionally the two scalars β1 and β2 (Equation 5.5) for the

Adam optimizer.

Figure 5.4: Zoom into the optimization procedure of the computation graph G of the
the machine learning material homogenization technique considered in this thesis. It
shows the computation of the gradients and the construction of the Adam optimizer

The here presented computation graph of the machine learning material homog-

enization procedure can be written as follows

G = f
(
ε̂, σ̂,Θ,L,P

)
(5.18)

where G is a function that depends on the placeholders ε̂ and σ̂, the constitutive

law parameters Θ, the loss function L and the optimizer P . After having carefully

constructed the computation graph G, the main part of the machine learning model

can start by running G in a training loop.

5.2.3.2 Training loop

Machine learning models are based on multiple steps of training. As mentioned

in Section 5.2.1, loss functions can only be minimized by repeatedly performing

optimization procedures. Thus improvements in accuracy of the machine learning

model inside the computation graph can only be achieved by running it in a repetitive

operation: a training loop.

A training loop consists of a certain number of optimization steps, the so-called

epoch steps. In each epoch step one iteration over the entire data set of training

is executed. Consequently, the loop starts with an initial epoch step and ends, if a
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learning criteria could be reached. An additional user defined maximum number of

steps nepoch can be utilized in order to stop the optimization at a certain point.

Before starting the training loop, several important steps must be carried out in

order to initialize the computation graph G and to be able to evaluate the training

accuracy during learning. The initialization of the variables or parameters Θ can be

achieved by setting them to predefined values. Then a vector of initialized param-

eters Θinit is introduced. It serves as the variable configuration in the first epoch

iteration step of the loop. The evaluation of training accuracy can be achieved by

splitting the entire input set of data into a set for training and a set for evaluation

so that

〈•〉train = ζ · 〈•〉true (5.19)

〈•〉eval = (1− ζ) · 〈•〉true (5.20)

where 〈•〉may either denote the input strains or the input stresses of the machine

learning model. ζ is a value ranging from 0 to 1 that defines the participation of the

input data set in the training procedure. Here, the data set 〈•〉train is utilized for

the training part in each epoch iteration and 〈•〉eval is taken to evaluate the error

after each iteration. It assesses the accuracy of the machine learning model online,

so to say during the actual optimization by using a data set that is not touched

while training.

As mentioned in Section 5.2.1.2 batch sizing facilitates the learning process since

small sets decrease the number of gradients that must be computed. In this research

a batch size m of a single entry is chosen. Thus training is performed by taking one

strain state and its corresponding stress state from the training set per optimization.

Thus a second loop inside the actual i-th epoch iteration unzips the training set and

optimizes the variables.

Machine learning models learn better the more random the training data enter

to the model. Therefore, a previous randomization of the coupled training set is

performed at the beginning of each epoch step. This procedure is able to avoid re-

peatedly feeding the coupled input sets to the computation graph in the same order.

This randomization can be performed without doubts regarding path dependence,

since the training data of this thesis is produced by monotonically increasing the
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deformations so that loading/unloading cases do not appear.

Inside the second loop - at mini batch level - the actual training starts by feeding

the training inputs εtrain and σtrain to the graph’s placeholders ε̂ and σ̂, respectively.

Accessing the command

G
(
ε̂ = εtrain, σ̂ = σtrain,Θ,L,P

)
.optimize (5.21)

leads to the start of the optimization procedure.

After having executed the optimization step, a learning rate ωlearn is calculated.

It is the absolute value of the difference between the loss error computed with the

optimized variables of the actual epoch step and the loss error computed with the

previous variable configuration. If ωlearn is less than a initially defined learning

criteria ωcrit the optimization ends. Else the optimization continues with a further

epoch iteration. Figure 5.5 shows a flowchart of the here applied training loop.

Figure 5.5: Flowchart of the training loop of the computation graph for the machine
learning homogenization technique

5.2.3.3 Numerical implementation

Algorithm 5.2 presents the numerical implementation of the optimization procedure

of the machine learning homogenization technique. It includes the construction of

the computation graph and the loop over the graph session execution.
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Algorithm 5.2 Find Θ? so that Ψ
(
εtrue,Θ

?
)
≈ σtrue

input: εtrue, σtrue, Θinit, η, nepoch, ωcrit
output: Θ?

Construct computation graph G
1: Build placeholders ε̂, σ̂
2: Build variable list Θ
3: Compute the effective stress vector σ̄ = f(Θ, ε̂) . Eq. (4.1)
4: Decompose effective stress vector to σ̄± = f(σ̄) . Eqs. (4.3)and (4.4)
5: Compute equivalent stresses τ± = f(Θ, σ̄±) . Eqs. (4.8) and (4.9)
6: Calculate the damage thresholds r± = f(Θ, τ±) . Eq. (4.14)
7: Compute the damage variables d± = f(Θ, r±) . Eqs. (4.24), (4.34), (4.36 )
8: Compute the predicted stress σpred = f(σ̄, d±) . Eq. (4.2)
9: Define the error loss L = f(σ̂,σpred) . Eq. (5.17)

10: Build the optimizer P = f(L, η,∇f(•))
11: Store the graph G = f(ε̂, σ̂,Θ,L,P)

Prepare the training loop

1: Extract training set (εtrain,σtrain) from (εtrue,σtrue)
2: Initialize the graph G(P , ε̂, σ̂,Θ = Θinit)

Run graph in training loop

1: epochi = 1
2: for epochi < nepoch do
3: Randomize order of training set (εtrain,σtrain), but keep couples
4: for (ε,σ) in zip (εtrain,σtrain) do
5: G(ε̂ = ε, σ̂ = σ,Θ,L,P).optimize

6: Compute the learning rate ωlearn
7: if ωlearn < ωcrit then
8: end
9: else

10: epochi → epochi + 1

5.3 Virtual laboratory

This research presents a technique that targets the homogenization of a heteroge-

neous material. Thus the material’s heterogeneity must be represented in a carefully

constructed micro-model. Such a model takes into account the constitutive behav-

iors of the material’s components. It is called a representative volume element

(RVE). RVEs can be exposed to different boundary conditions producing different
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strain states, in order to analyze the anisotropic material’s behavior. Catching this

behavior is essential for any homogenization technique.

The here investigated technique necessitates a space where boundary conditions

can be applied to a properly micro-modeled RVE in order to determinate its be-

havior. This space is called virtual laboratory (VL). Laboratories exist in order

to perform physical experiments on real structures and to analyze the structure’s

material behavior. Applying the amount of experiments necessary to obtain enough

training data for the machine learning model, would be detrimental for a real labo-

ratory from both the economical and technical points of view. However, performing

the experiments numerically in a virtual space would enable a reasonable data pro-

duction for the machine learning model.

The accuracy of the machine learning homogenization technique is based on

several operational needs. Two of them can be influenced by the virtual laboratory:

a) a large amount of data, and b) a broad data representation. Need a) is crucial

for any machine learning model: the more input data in learning, the bigger is

the scope of representative data that was considered during training. Thus, the

prediction is also more representative. Need b) is crucial for the homogenization

technique: the data should represent the nonlinear behavior of the RVE in order

to be able to respect it in the homogenization technique. Also the heterogeneous

and anisotropic behavior of the RVE must be respected. Both requirements can be

achieved by performing the virtual experiment up to failure and at the same time by

carrying out a large amount of experiments on the same RVE, each of them taking

into account the application of different boundary conditions. Then, each analysis

of the RVE material runs through its entire nonlinear response and result data can

be stored including all this information.

This section explains the fundamental idea of the virtual laboratory. Its main

parts are the construction of the RVE, the application of multiple varying boundary

conditions producing different deformation states, and the solution of each of the

multiple boundary value problems. The procedure is explained by showing examples

of 2D RVE models of masonry. However, it can be applied similar to the analysis of

3D models.
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5.3.1 Representative volume element

As firstly described by Hill (1963) in the field of continuum mechanics, a RVE is a

sample of a heterogeneous material that is, on average, structurally typical of the

whole material. Thus one can find an RVE of the composite material that can rep-

resent the material constitutive response of a comparable model at a macroscopic

homogeneous scale by only neglecting an insignificant small difference in the RVE

surface deformation and traction.

The subject of the here presented virtual laboratory is a micro model of a ma-

sonry wall. In order to be able to utilize this micro model as an RVE, it must comply

with the definition above. Hence, the micro model must a) be able to represent both

the homogeneous components of the masonry and b) consider the geometrical al-

location of the components to each other - known as the masonry bond. Thus,

a carefully designed geometrical model of the RVE has to be elaborated. At the

same time, the composite components require being modeled by specific damage

constitutive laws that are able to represent the component’s behavior, respectively.

Figure 5.6 shows the schematic view of a micro model RVE of a masonry structure

as it is considered in this research. Where ΩRV E is the volume of the RVE and δΩRV E

describes the boundary where the external forces or deformations are applied. Both

homogeneous components, brick units and mortar joints, are modeled by nonlinear

continuum damage models.

Figure 5.6: Example of micro-scale modeled representative volume element for the
virtual laboratory. The volume ΩRV E consists of brick units and mortar joints, both
numerically modeled as nonlinear homogeneous continuum materials, and the RVE’s
boundary δΩRV E
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5.3.2 The boundary value problem

A boundary value problem consists of the volume or the region of the considered

problem and its boundaries. On the boundary an entity of deformation or traction

is applied. The research done in Petracca et al. (2016) summarize several boundary

displacement fluctuations that can be applied to RVEs:

There exists the concept of zero displacement fluctuation, where the displacement

fluctuations vanish in every point of the entire volume ΩRV E. Another method of

applying boundary conditions are zero boundary displacement fluctuations. The dis-

placement fluctuations then only disappear on the RVE’s boundary δΩRV E. More-

over there exists the idea of applying periodic boundary displacement fluctuations,

where the displacements of two opposite points on the boundary are equal.

This work adopts the concept of zero boundary displacement fluctuations. The

boundary condition is then applied as a displacement of the boundary δΩRV E by

monotonically increasing the boundary values at each analysis step. For the 2D

analysis of the RVE the boundary conditions of a single virtual experiment are

defined as follows

dx = (εxx · x+ εxy · y) · t (5.22)

dy = (εyy · y + εxy · x) · t (5.23)

Where dx and dy are the displacements applied to all points of the RVE boundary

δΩRV E in x- and y-direction, respectively. t is the actual analysis time instance, so

that t ∈ [t0, te], with t0 as the start time instance and te the end time instance of

the analysis. After each step n of the analysis a scalar ∆t is added to the previous t.

The scalar values εxx, εyy and εxy are the components of a previously defined strain

vector in Voigt’s notation. The strain vector then defines the displacement shape of

the RVE.

A determination of the boundary conditions in terms of a strain vector allows

performing a variety of virtual experiments. A modification of the strain vector in

Equations 5.22 and 5.23 results in a specific boundary condition that deforms the

RVE. A further modification of these values causes a novel boundary condition and

a different displacement shape. Therefore, the strain vector can then be chosen as

the modification tool for the virtual laboratory in order to be able to run a variety
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of different virtual experiments. However, the choice of the strain vector is not

arbitrary. As mentioned, the virtually produced data should cover a wide range of

possible deformations of the RVE. A well defined database of different strain vectors

possibly ensures a wide scope of the input data for the machine learning model.

Investigations made by Zaghi et al. (2018) show that all possible two dimensional

strain states can be defined as the coordinates of a three dimensional sphere in a

coordinate system where the components εxx, εyy and εxy of the strain vector are

the axes. The strain vector can then be defined as follows

ε =

εxxεyy
εxy

 = λ

 cos θ

sin θ cosφ

sin θ sinφ

 (5.24)

Where θ, φ and λ are the three parameters that define the coordinates of the

sphere. The components of the strain vector depend on periodic sine and cosine

functions. Thus all possible strain configurations can be obtained by modifying the

angles θ and φ in the interval [−π, π]. The scalar λ is the norm of the strain vector

so that

λ = ||ε|| =
√
ε2xx + ε2yy + ε2xy (5.25)

Figure 5.7 shows the three dimensional strain space and a variation of 26 com-

binations of the two angles in order to define the set of strain vectors. The norm of

each strain vector is equal to 1. Figure 5.8 depicts the RVE exposed to four different

boundary conditions caused by varying the strain vector of Equation 5.24. It also

shows the difference of the deformation shapes.

5.3.3 Solution of the boundary value problem

The solution of each boundary value problem of the virtual laboratory is searched

numerically. A non-linear finite element analysis is performed for each virtual exper-

iment. The number nvl of analysis in the virtual laboratory depends on the number

of variations of the strain vector ε of Equation 5.24. Hence all strain states are

stored in a matrix εd consisting of nvl column vectors as follows
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Figure 5.7: Three dimensional strain space for the 26 variation of the angles θ and
φ in Equation 5.24.

Figure 5.8: Four deformed RVEs by applying a variation of boundary conditions

εd =
[
ε1 ε2 . . . εnvl

]
(5.26)

Each finite element analysis does then take its corresponding entry of the matrix

εd in order to define the boundary conditions and runs until complete failure of the

micro model can be achieved.

For the finite element analyses, this research utilizes the open source framework

kratos multiphysics Dadvand et al. (2010). It offers the possibility to run the

nvl analyses of the virtual laboratory by a user defined loop. So that all nvl analyses

can be run automatically by a single command file. Moreover, kratos includes

the constitutive laws introduced in Chapter 4, so that the material components of

the masonry RVE can be numerically modeled by an appropriate law for brittle

materials. The modularity of kratos also allows to write user specific python files,
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that have access to the data structure while FE solving, e.g. writing user specific

output files automatically. Being able to write such specific files is a great advantage

for the preparation of the machine learning training data. The stresses appearing

during the analyses of the RVE must be up-scaled to a macro scale level in order to

serve as training input for the prediction of a homogenized constitutive model. The

following section describes the procedure of up-scaling the stresses.

5.3.4 Up-scaling of strain and stress states

The finite element solution delivers the local deformations at all the Gauss points

of the micro model RVE. The strains and stresses of the micro scale must then be

transformed to a macro level by up-scaling each entity in order to use the coupled

strain and stress pairs for training. For this purpose, a single representative entity

must be defined that considers all the solution values of each Gauss point of the

RVE.

This transition takes place by computing an average of all the saved RVE stresses.

Thus, this research presents a procedure, written in a user specified python file, that

accesses to the solving stage of kratos and computes a mean volume over all the

Gauss points. The implemented procedure that computes the up-scaled stresses is

defined as follows and is valid for 2D elements only

σ̃i =
1

ARV E

n∑
j=1

[Aj
kj

kj∑
l=1

σi,jl

]
(5.27)

Where σ̃i is the i-th component of the mean stress vector σ̃. n is the total number

of finite elements of the RVE, ARV E is the total area of the RVE. Aj is the area

of the j-th element of the RVE, kj is the total number of Gauss points of the i-th

element. And σi,jl is the i-th component of the stress vector σ of the j-th element at

the l-th Gauss point. Figure 5.9 shows the entities of Equation 5.27 for a masonry

RVE finite element model with four node quadrilateral elements each having kj = 4

Gauss integration points.

The corresponding up-scaled strains can be derived by transforming the applied

boundary strains ε from Equation 5.24 to the engineering notation as follows
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Figure 5.9: Example showing the entities of Equation 5.27 for the up-scaling pro-
cedure of a masonry RVE finite element model with 4 node quadrilateral elements
each having kj = 4 Gauss integration points

ε̃ =

 εxx

εyy

2εxy

 (5.28)

Where εxx, εyy and εxy are the components of the strain vector ε applied to the

boundary of the RVE during the analysis. It has to be taken into account, that

ε̃ contains values for each analysis step n amplified by the actual time instance t

explained in Equation 5.22 and 5.23. Thus consistency of coupled pairs of ε̃ and σ̃

can be guaranteed.

This procedure of constructing a mean over the stresses and the strains to one

single vector, respectively, results in values belonging to a representative single el-

ement (RSE). Thus this single element contains both the averaged vectors and is

representative for the RVE. It has the characteristic element size lch,RSE. The ele-

ment size lch,RSE is computed as the average value of all the characteristic element

sizes of the RVE.

5.3.5 Numerical implementation

The virtual laboratory is programmed as a loop over nvl analysis which depend

on the parameters chosen to define the strain vector εd of Equation 5.26. Each

numerical experiment of the virtual laboratory has a total analysis step number of
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n by monotonically increasing the analysis time instance t. Algorithm 5.3 shows the

numerical implementation of the automated loop of the virtual laboratory.

Algorithm 5.3 Automated procedure of the virtual laboratory

input: n, nvl
output: ε̃, σ̃

START

1: Build the finite element model of the RVE
2: Set up the boundary strain vector εd . Eq. (5.26)
3: Initialize the lists of the averaged strains ε̃ and stresses σ̃
4: Initialize virtual laboratory loop i = 1
5: while i ≤ nvl do
6: Define the i-th boundary condition dx/y = f(εd,i, t) . Eqs. (5.22), (5.23)
7: procedure kratos solving stage
8: for each analysis step j ∈ n do
9: Apply boundary condition and solve the boundary value problem

10: Compute up-scaled strains ε̃j and stresses σ̃j . Eqs. (5.27), (5.28)
11: Append upscaled entities: ε̃.append(ε̃j) and σ̃.append(σ̃j)

12: i→ i+ 1 . Go to next virtual experiment

END

5.4 Data isotropization

5.4.1 The problem

The data produced in the virtual laboratory serves as the training data of the

machine learning model previously described in Section 5.2. The model behind

this technique is a constitutive nonlinear model based on linear elastic isotropy. It

assumes an isotropic relation between the input strains εtrue and the input stresses

σtrue. Thus the data coming from the virtual laboratory should also follow an

isotropic strain stress relation. The possible predictions made by an isotropic model

can then be improved. This section presents a mapping procedure that is able to

isotropize the data coming from virtual laboratory.

The masonry RVE introduced in the previous section consists of two materials.

Each of them following an isotropic nonlinear damage constitutive law, respectively.

But when put together into a heterogeneous material, isotropic behavior of the com-

posite cannot be assumed directly. Due to the spatial organization and the complex
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brick-mortar interaction, it exhibits different behavior in different directions.

This section shows, that the raw data coming from the virtual laboratory and

the masonry RVE does not follow an isotropic elasticity relation. This means that

the up-scaled stresses of the RVE are related to the applied boundary strains by

an anisotropic condition. Thus a procedure is presented in this section that is able

to isotropize the relation between both mentioned entities. This method is called

data isotropization. It is basically a preparation of the input data for the machine

learning model in order to ensure consistent input output flow at an isotropic level.

All the necessary steps of the method are clarified in the following. An accompanying

example illustrates the problem at a linear elastic level.

The method is based on a transformation between an anisotropic and an isotropic

space. It requires a transformation tensor that is capable of modifying between

both the spaces. This tensor can be computed from the raw elastictity tensor at the

anisotropic level and the isotropic elasticity at the isotropic level. Thus Section 5.4.2

presents a computation method that is able to obtain both these matrices from the

results of the virtual laboratory. Once the raw and the isotropic elasticity matrices

are defined, the transformation procedure can be applied as described in Section

5.4.3.

5.4.2 Linear elastic properties

This section presents the computation of the raw linear elasticity tensor from strain

and stress states computed in a virtual laboratory. Furthermore, it presents a proce-

dure that is able to find the closest isotropic tensor to the raw elasticity tensor. The

computation takes place in the linear elastic range and holds for two dimensional

problems in Voigt notation.

In order to compute both the linear elastic matrices, values of the strain vector

ε̃ and the stress vector σ̃ must be extracted that are still in the linear elastic range.

It is then satisfactory to gather the first entry of the i-th virtual experiment of all

nvl analyses and store them in a matrix so that

σ̆ =

[
σ̃1 σ̃1+n1 σ̃1+n1+n2 . . . σ̃1+n1+n2+···+nnvl−1

]
(5.29)

Where σ̆ is a matrix of rank 3×nvl that includes the analysis results of the first

analysis step of each virtual experiment extracted from the up scaled stresses σ̃. The
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subscript denotes the position of the first result value of each virtual experiment in

the entire set of σ̃. Where n1, n2, . . . , nvl are the scalar entries of a vector n that

contains the number of analysis steps per analysis, e.g. n1 is the total number of

analysis steps of the first virtual experiment, and so on. The vector n then holds

nvl entries. The computation of the corresponding strain vector ε̆ containing only

the first strains of each analysis can be constructed from ε̃, accordingly.

5.4.2.1 Raw elasticity tensor

Given the set of stresses and the set of strains in the linear elastic range of all the

virtual experiments, the raw elasticity tensor can be computed starting from linear

elasticity

σ̆︸︷︷︸
3×nvl

= Craw︸ ︷︷ ︸
3×3

: ε̆︸︷︷︸
3×nvl

(5.30)

Rearranging Equation 5.30 leads to the computation of the raw elasticity tensor

as a least squares problem

Craw = σ̆︸︷︷︸
3×nvl

: ε̆+︸︷︷︸
nvl×3

(5.31)

Where ε̆+ denotes the Moore-Penrose inverse of ε̆ that has a common use in

solving least square problems (also known as pseudoinverse). It is a generalization

of the inverse matrix used for non symmetric matrices. So that AA+ = I for a

(n× k) matrix A (n 6= k).

Example 5.1 shows the application of the above described procedure to a masonry

RVE. It also gives suggestions for the further procedure of the data isotropization

for masonry RVEs.

Example 5.1. Computation of the linear elastic properties of a small masonry RVE

- raw elasticity tensor

Subject of this example is a two dimensional micro model of a small masonry

wall specimen. The model consists of four horizontal brick layers. The vertical offset

of one layer to the other is half the size of the brick’s length. The dimensions width

× height of the wall specimen count 0.31 m ×0.23 m, while each brick unit measures
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Figure 5.10: RVE of the virtual labora-
tory for a small masonry wall specimen of
Example 5.1

Table 5.1: Linear elastic proper-
ties chosen for Example 5.1

Young’s Poisson
modulus E ratio ν

Bricks 5.0 GPa 0.2
Mortar 2.0 GPa 0.2

0.15m× 0.044m. The thicknesses of the mortar joints are, 1.55cm for the horizontal

and 1.1cm for the vertical joints, respectively. Figure 5.10 shows the RVE of the

micro model. For the finite element analysis a mesh with quadrilateral elements each

having four Gauss integration points was chosen. The average element is squared

with an edge length of 3mm. Each material is provided with a linear elastic plane

stress elasticity law defined by the isotropic elasticity matrix with the properties

of the Young’s modulus E and the Poisson ratio ν. Table 5.1 shows the material

properties of the virtual laboratory campaign.

In order to perform the virtual laboratory, the total number of virtual experi-

ments is chosen to be nvl = 26. Different strain vectors are computed according to

Equation 5.24 by utilizing different values of the angles cos and θ. These bound-

ary strain vectors are then applied as boundary conditions to the RVE in separate

analysis. The stress results of each analysis are up-scaled and the first result of each

analysis is extracted according to the procedure described in Section 5.3, in order

to obtain the matrices σ̆ and ε̆.

Given these results, the raw elasticity tensor Craw can be computed according

to Equation 5.31. For the here considered example the following tensor can be

obtained.

Craw =

 4.26 0.77 0.70 · 10−6

0.77 3.90 0.06 · 10−6

0.17 · 10−6 0.22 · 10−6 1.56

GPa (5.32)

The result shows a matrix structure close to that of an orthotropic elasticity

matrix. Thus, the following paragraph holds a discussion about how to obtain a
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totally orthotropic tensor out of the raw elasticity tensor Craw.

5.4.2.2 Orthotropic elasticity tensor

Masonry structures, when composed of uniform brick layers and constant mortar

joint thicknesses exhibit a different elastic response in the layer direction than in

its perpendicular one. Substance of this thesis are such uniform masonry bonds.

Example 5.1 has shown that the structure of the raw elasticity tensor Craw is really

close to the ideal orthotropic one. This shall be highlighted in the following by

performing a transformation of the raw elasticity tensor to the orthotropic one and

by evaluating its error.

The general orthotropic linear elastic tensor for two-dimensional problems in the

plane stress condition reads as follows

C =
1

1− ν12ν21

 E1 ν21E1 0

ν12E2 E2 0

0 0 G

 (5.33)

Here E1/2 is the Young’s modulus of the material in the 1- and the 2-direction,

respectively, where such directions are perpendicular to each other. The same holds

for the Poisson ratios ν12/21. G is the shear modulus of the linear elastic material.

The identification of the directions 1 and 2 is not required since the orthotropic

matrix is utilized only for the computation of the closest isotropic matrix.

The orthotropic linear elasticity matrix is symmetric and has zero entries in the

first two entries of the third column and of the third row. As can be observed in

Example 5.1, these entries are not equal to zero, however, they seem negligible small

when compared with the other entries. Anyway, these values must be equalized to

zero, in order to obtain an orthotropic matrix, as follows

craw,ij = 0.0 , with i, j = (1, 3), (2, 3), (3, 1), (3, 2) (5.34)

Where craw,ij is the entry of the raw elasticity matrix at the i-th row and the

j-th column. Moreover must be ensured that the orthotropic elasticity matrix is

symmetric. This can be achieved as follows

Cortho = 0.5 ·
(
Craw +CT

raw

)
(5.35)
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After having performed the transformation from the raw elasticity tensor to

the orthotropic tensor an error evaluation utilizing the Frobenius norm must be

considered. The Frobenius norm is defined as follows

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij (5.36)

Where A is a matrix of rank m × n with the components aij. After having

calculated the Frobenius norm of the initial raw elasticity matrix Craw and of Cortho

the error of the orthotropic transformation can be computed as follows

χ =

∥∥∥∥∥ 1

‖Craw‖F
·Craw −

1

‖Cortho‖F
·Cortho

∥∥∥∥∥
F

(5.37)

This procedure computes the Frobenius norm of the difference between the norms

of the raw elasticity matrix and the orthotropic matrix. This error states the accu-

racy of the orthotropic matrix. In the following, Example 5.1 will be continued by

applying the above stated procedure.

Example 5.1 (continued). Computation of the linear elastic properties of a small

masonry RVE - orthotropic elasticity matrix

The computation of the orthotropic elasticity matrix according to Equation 5.35

results in

Cortho =

4.26 0.77 0.0

0.77 3.90 0.0

0.0 0.0 1.56

GPa (5.38)

Comparing the orthotropic matrix with the raw matrix as shown in Equation

5.37 gives an error of χ = 3.06 · 10−7. This value is negligible small, thus ”cleaning”

the raw elasticity matrix as shown in Equation 5.35 can be applied to the procedure

of evaluating the linear elastic properties of an averaged RVE, without large error

values χ.

The above continuation of Example 5.1 has shown that the up-scaled linear

elastic material behavior of the considered masonry RVE is extremely close to or-

thotropic behavior. As explained, this is typical for masonry structures. For any
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RVE considered in this work, the RVEs are geometrically similar to the RVE shown

in Example 5.1. It is obvious, that the error between the raw and the orthotropic

elasticity matrix must always be discussed for any RVE considered in the virtual

laboratory.

5.4.2.3 Closest isotropic elasticity matrix

In order to apply the previously mentioned transformation procedure between the

real and the isotropic scale an isotropic elasticity matrix is required. Thus this

paragraph presents an optimization procedure that finds an isotropic elasticity ma-

trix closest to an anisotropic one. The method is described in the following and

an application example, as continuation of Example 5.1, is carried out. A closed

form procedure has been presented in Norris (2006) and further improved in the

work of Rossi et al. (2021). The research defines the closest isotropic matrix to

an anisotropic one. The procedure is also applied here, in order to show that the

optimization delivers equal results.

An isotropic elasticity matrix is defined by two parameters, e.g. the Young’s

modulus E and the Poisson ratio ν. Both theses parameters can then be utilized as

the trainable variables of an optimization algorithm. The goal of this algorithm is

to find a variable constellation of E and ν, so that an error function L reaches its

minimum. The error computation considers the raw elasticity matrix Craw and the

wanted isotropic elasticity matrix Ciso as inputs. Ciso is the isotropic plane stress

linear elastic matrix that here depends on the trainable variables E and ν as follows

Ciso =
E

1− ν2

1 ν 0

ν 1 0

0 0 1−ν
2

 (5.39)

The error function L itself is then defined as the Frobenius norm of the difference

between Craw and Ciso. It follows

L = ‖Craw −Ciso‖F (5.40)

The Adam optimizer (Section 5.2.1.1) then calculates all gradients w.r.t. the

variables E and ν of the linear elastic isotropic matrix and searches the minimum
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of the error L. Once arrived at the minimum, the isotropic elasticity matrix Ciso

closest to the raw elasticity matrix is defined. The optimization procedure can either

be applied by taking the raw or the orthotropic elasticity matrix. However, the

error value χ between the raw and the orthotopric matrix should then be negligible

small. Since this is the case in Example 5.1 its continuation is performed with the

orthotropic matrix.

Before continuing the example, let the alternative closed form definition of the

closest isotropic matrix for the two-dimensional case be introduced. Considering

an anisotropic elasticity matrix, here named as Craw, the works presented in Norris

(2006) and Rossi et al. (2021) define a closed form for the computation of the closest

isotropic matrix Ciso according to the following steps.

Ciso = 3
(α?

3
κ?
)
J + 2µ?K (5.41)

Where the coefficient α? = 2, the matrix J = ttT , with tT = (2−0.5, 2−0.5, 0), the

matrix K = I4 − J . Where I4 = diag
(
1.0, 1.0, 0.5

)
. The values κ? and µ? depend

on the original anisotropic matrix in the following way

µ? = 0.2(c00 − 2c01 + c11 + c22) (5.42)

κ? =
mTCanisom

α2
(5.43)

Wherem =
(
1, 1, 0

)T
and the cij define the corresponding entry of the anisotropic

matrix. The definition of the closest isotropic matrix is based on the Frobenius norm

||Craw −Ciso||F . Thus, this procedure follows the same conceptual idea as the op-

timization procedure of finding the closest isotropic matrix. The continuation of

Example 5.1 shows the application of both methods. Equal results can be observed.

Example 5.1 (continued). Computation of the linear elastic properties of a small

masonry RVE - closest isotropic elasticity matrix

In order to obtainCiso as the closest matrix toCortho, the optimization procedure

to train the variables E and ν is carried out. Figure 5.11 shows the results along

the whole optimization. The curves depict the progression of E, ν and the ratio of

the actual loss and the initial loss. All curves show a horizontal tangent at the end.
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This indicates that a closest constellation is achieved. The final values are E = 3.91

GPa and ν = 0.194.

Figure 5.11: Example 5.1: results of the optimization procedure to find the closest
isotropic linear elasticity matrix to an orthotropic one. Showing the progression of
the parameters E and ν and the ratio of the actual loss to the initial loss

The alternative closed form procedure shown in Equation 5.41 results in the

following isotropic matrix

Ciso =

4.061 0.789 0

0.789 4.061 0

0 0 1.636

GPa (5.44)

The equal matrix is obtained by substituting the values E and ν obtained above

in the plane stress elasticity matrix of Equation 5.39.

This section has shown that the orthotropic linear elasticity parameters can be

directly derived from the virtual laboratory results in the linear range. Further-

more, a procedure that finds an isotropic linear elastic material closest to the raw

or orthotropic behavior, has been presented. Thus the linear elastic properties of

the masonry RVEs can be computed apart from the optimization of the nonlinear

damage constitutive law. Anyway, in order to perform the entire machine learning

optimization, results following an isotropic material behavior are required. Thus,

the entire linear and nonlinear range of the up-scaled raw RVE results must be

mapped to isotropic results. This can be done in a consistent transformation from

an anisotropic to an isotropic space as shown in the following.
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5.4.3 Isotropic mapping of up-scaled stresses

Previous works have introduced and applied the concept of mapping stresses and

strains from orthotropic to isotropic formulations. Oller et al. (2003) define an

orthotropic yield criteria that uses an isotropic formulation in a mapped space to

then transform it back to an orthotropic formulation in the real space. This method

includes a transformation from an orthotropic stress and strain space to an isotropic

one by introducing transformation tensors. The transformation tensors are defined

so to enable a consistency while transforming and back-transforming. The presented

mapping procedure in Oller et al. (2003) can be applied for the transformation from

an anisotropic to an isotropic space analogously.

The transformations between the spaces can be obtained by introducing the

transformations from the real orthotropic stress and strain spaces to the mapped

isotropic spaces, respectively. For two dimensional problems in Voigt notation it is

defined as follows

σiso = Aσ : σortho (5.45)

εiso = Aε : εortho (5.46)

Where σiso and εiso are the stress tensor and the strain tensor in the isotropic

space. The respectively linked entities in the orthotropic space are σortho and εortho.

The Aσ is the stress transformation tensor and Aε is the strain transformation

tensor.

The stresses at both spaces underlie constitutive models based on strain equiva-

lence and the concept of effective stresses. Thus they can be computed in terms of

the corresponding strain tensor and the linear elasticity tensor, so that

σiso = Ciso : εiso (5.47)

σortho = Cortho : εortho (5.48)

Considering the formulations made in Equations 5.45, 5.46, 5.47 and 5.48 a sym-

metric transformation condition (A−1σ = Aε)
T between the orthotropic and isotropic

elasticity tensor can be made
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Cortho = A−1σ : Ciso : Aε (5.49)

Figure 5.12 shows an overview of the consistent mathematical connections made

between the real orthotropic and the mapped isotropic spaces.

Figure 5.12: Overview of the different spaces considered in the mapping procedure

The choice of the transformation tensors in general is arbitrary, but consistency

of the transformation procedure must be ensured. The works made in Pelà et al.

(2011), Pelà et al. (2013) and Pelà et al. (2014) go further and propose that the

transformation tensors should embody the anisotropic properties of the material.

For orthotropic materials they assume the stress transformation tensor to be a diag-

onal matrix with each diagonal’s component depending on the orthotropic material

strength in the respective direction. This specific definition supposes to previously

define the material strengths in each orthogonal direction by running uniaxial ex-

periments. The strain transformation tensor in Pelà et al. (2013) can be chosen

arbitrarily, but consistency must be guaranteed.

However, the work done in this thesis follows a different approach. As introduced

in the previous sections, both the orthotropic and isotropic tensors are already

defined. Thus, this research utilizes a method, that defines the transformation
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tensors Aσ and Aε by considering a classical transformation of tensors as follows

Cortho = T T : Ciso : T (5.50)

Here T is a transformation tensor that still needs to be defined. In order to do

so, let the square roots
√
Cortho and

√
Ciso of both Cortho and Ciso be considered.

Such square roots exist, since Cortho and Ciso are symmetric positive definite (SPD).

Then Equation 5.50 can be rearranged by utilizing the symmetric square roots as

follows

√
Cortho :

√
Cortho = T T :

√
Ciso :

√
Ciso : T (5.51)

Originating from this definition one can compute the transformation tensor ac-

cording to

T =
(√

Ciso

)−1
:
√
Cortho (5.52)

Once the transformation tensor T is defined, it can be transferred to the concept

of mapped spaces so that, Aε = T and Aσ = T−T . The method of mapping

strains and stresses to an isotropic space must be applied to the entire set of up-

scaled strains and stresses coming from the virtual laboratory. Then the isotropic

up-scaled stresses and strains read

ε̃iso = T : ε̃ (5.53)

σ̃iso = T−T : σ̃ (5.54)

Where ε̃ and σ̃ are all the coupled strains and stresses coming from the virtual

laboratory.

5.4.4 Equivalent damage computation

In order to obtain isotropic training data that follow a bi-dissipative d+/d− damage

law, the input data of the machine learning model can be further modified. This

method is optional and follows the idea of using the isotropic strains and stresses

from equation 5.53 and 5.54 in order to calculate two equivalent damage variables
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d±eq. Both equivalent damage variables can then be used in order to compute adjusted

stresses according to Equation 4.2. The adjusted stresses serve as the input of the

machine learning model. The following explanation utilizes the stresses and strains

of the mapped isotropic space. The method is applied to the entire set of nvl virtual

experiment results in order to obtain a positive and a negative equivalent damage

variable for each coupled strain-stress pair, respectively.

In a first step the effective isotropic stress is computed based on the isotropic

strains and the isotropic elasticity tensor as follows

σ̃iso,eff = Ciso : ε̃iso (5.55)

In order to enable the computation of a positive and a negative equivalent damage

variable, the following tensors of the mapped isotropic space must be split into their

positive and negative parts according to Equations 4.3 and 4.4: the effective isotropic

stress tensor σ̃iso,eff , the isotropic stress tensor σ̃iso and the isotropic strain tensor

ε̃iso. These entities and the equivalent damage variables can then be placed in

Equation 4.2 and the following equation can be obtained

σ̃iso = (1− d+) · σ̃+
iso,eff︸ ︷︷ ︸

σ̃+
iso

+ (1− d−) · σ̃−iso,eff︸ ︷︷ ︸
σ̃−
iso

(5.56)

Splitting Equation 5.56 into two terms, one with the positive and the other

with the negative isotropic stresses σ̃±iso, allows the computation of the equivalent

damage variables d±eq separately. Each equation is then multiplied by the positive and

negative part of the isotropic mapped strains ε̃±iso, respectively. Then the following

equation to compute the equivalent damage variables can be obtained

d±eq = 1− σ̃±iso : ε̃±iso
σ̃±iso,eff : ε̃±iso

(5.57)

Now, adjusted isotropic stresses can be computed by utilizing the equivalent

damage variables as follows.

σ̃iso,adj = (1− d+eq) · σ̃+
iso,eff + (1− d−eq) · σ̃−iso,eff (5.58)

Where now σ̃iso,adj ≈ σ̃iso, except of the latest part of the non linear range. The

application of the damage equivalent stress adjustment is optional and depends on
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the quality of the virtual laboratory data. Hence the user of the machine learning

model, after having analyzed the stresses, can choose if the procedure is applied.

Further insights will be given in the application example of Chapter 6 where the

damage equivalent adjustment is applied.

5.5 Post machine learning constitutive model

The definition of the post machine learning constitutive model finalizes the machine

learning homogenization technique. During the definition of the preceding procedure

several assumptions have been made which also must be taken into account for the

application of the post machine learning constitutive model. Thus a consistent

constitutive model must be presented that can be utilized during the finite element

analysis of a masonry structure at macro scale.

This section presents the procedure and the implementation that enables to use

the result of the machine learning homogenization technique. The principal parts

of the post machine learning constitutive model are based on the definitions made

in Chapter 4. This section gives an overview of the necessary modifications to the

model as described in Chapter 4 in order to include energy regularization and the

space transformation procedure. It starts with a general operation flowchart showing

how the post machine learning constitutive law is included to the analysis of homo-

geneous masonry at a macro scale. In a second part energy regularization is tackled.

Mesh independence must be guaranteed while using the optimized constitutive law

at the macro scale. This section introduces a proper approach.

Finally, this section includes the mapping procedure that is utilized in data

isotropization of Section 5.4 in order to transform from an anisotropic to an isotropic

space. The transformation ensures compatibility between the optimized machine

learning model trained at the mapped isotropic space and the real anisotropic space.

The post machine learning model presented in this section is implemented as an

available constitutive model of the finite element program kratos multiphysics.

5.5.1 General operation flow

Figure 5.13 shows a flowchart of how the post-machine-learning constitutive law is

extracted from the machine learning procedure by considering all analyses at the
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multiple scales.

Figure 5.13: Chart of the operational flow in order to obtain the post-machine-
learning constitutive model. Showing the fictitious position of the representative
single element in a macro model

In order to obtain a consistent post machine learning constitutive law, the ex-

planation of the general operation flow starts from the analysis of the virtual labo-

ratory. Then the procedure moves forward to an up-scaled procedure, that averages

the stresses and strains of the RVE in a representative single element (RSE). These

stresses are then send to the machine learning technique and train a constitutive

model, that represents a homogeneous damage constitutive model for the RSE. The

RSE is then multiple times fictitiously positioned in the element of a homogeneous

macro model. In this way the constitutive model trained at the RSE level can be

reflected and utilized for the analysis at macro scale. A factor ωch can be introduced,

that counts the number of multiple positions of the RSE in the macro element. It

is important for the energy regularization and mesh independent results during the

homogenization technique and is defined as follows

ωch =
lch,macro
lch,RSE

(5.59)

Where lch,RSE is the mean value of all the characteristic lengths lRV E of the RVE

and lch,macro is the characteristic length of the element at macro scale.

The parameters of the post-machine-learning constitutive law have been obtained

during the machine learning procedure and are stored as optimized parameters in

Θ?. Most of the parameters included in Θ? can be directly used for the post-
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machine-learning constitutive law. Anyway, especially the fracture energies, that

contribute to mesh independent results, are substance of further discussions.

5.5.2 Energy regularization

As shown in Figure 5.13 two different scales of mesh sizes are present. On the one

hand there is the characteristic length lch,RSE of the RSE and on the other there is

the characteristic length of the element at macro scale.

The same problem occurs for two different micro models with different finite

element meshes. Then an energy regularization must be performed in order to

obtain mesh independent results. For both the damage evolution laws present in

this thesis, namely the exponential softening and the Bézier like hardening softening

behavior, the energy is regularized. This procedure has been introduced in Section

4.3. It is simple and straight forward, since the energy regularization is based on

the user input of the fracture energy G− or G+. Both values are divided by the

characteristic element length lch in order to compute a specific fracture energy g−

or g+. These specific values then regularize the energy of the element. The flow of

energy regularization for classical application (Chapter 4) is as follows

G± −→ g± =
G±

lch
(5.60)

However, this flow is not necessary for the post machine learning constitutive

law, since the specific fracture energies g± can be directly computed from the opti-

mized constitutive law parameters Θ? and the known characteristic element length

lch,RSE of the RSE. However, it has been shown in Figure 5.13 that the element

sizes of the RSE and the macro model are unequal. Thus it must be shown that the

fracture energy Gc/t of the post machine learning constitutive law is computed in

a consistent way. It all depends on the elemental size. The difference in elemental

size of the both scales is measured by the factor ωch as introduced in Equation 5.59.

The following calculations prove the approach.

Giving the specific fracture energy gRSE of the RSE by the parameters Θ?, one

can compute the fracture energy GRSE by applying Equation 4.32 as follows
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GRSE = gRSE · lch,RSE (5.61)

As already explained, the RSE is fictitiously placed in the macro element. The

counter for this is ωch. If lch,RSE is smaller than lch,macro, than ωch > 1. Thus ωch is

a multiplier that defines the amount of fracture energy GRSE that is placed in the

macro element. Thus the fracture energy Gmacro can be computed as follows:

Gmacro = GRSE · ωch (5.62)

By now substituting Equations 5.59 and 5.61 into 5.62 the following equation

can be obtained

Gmacro = gRSE · lmacro (5.63)

Equation 5.63 proofs that the specific fracture energy gRSE obtained by the

machine learning model can directly enter into the post machine learning constitutive

law. The energy regularization takes place in the opposite direction as shown for

regular application in Equation 5.60 as follows

g± −→ G± = g± · lmacro (5.64)

The following example shows the performance for two tests with different FE

mesh refinements.

Example 5.2. Numerical tests of the post machine learning constitutive model in

terms of FE mesh independence.

Subject to this example is a rectangle material model with lateral lengths of

0.5m × 0.25m. Two different FE models have been developed. Model 1 contains

16 × 8 elements (128 total) and model 2 contains 26 × 14 elements (364 total).

Only four node quadrilateral elements have been considered. Figure 5.14 shows

the two models and the FE mesh refinement. For both the tests the post machine

learning constitutive model with Bézier like hardening and softening in tension and
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compression is chosen with equal material properties.

Figure 5.14: Two FE models with different mesh refinements to demonstrate energy
regularization

Both models are fixed on one of the short edges, this can be obtained by con-

straining displacement of the nodes of that specific boundary in x and y direction.

Two different load applications are applied to the models, in order to obtain a com-

pression and a shear case. Load case 1 (compression) is applied by monotonically

increasing the displacements of the second short edge in negative x-direction. Load

case 2 (shear) is applied by monotonically increasing the displacements of the second

short edge in negative y-direction.

Figure 5.15 shows the results in terms of boundary force - displacement curves

of both the models for load case 1 and 2. Equal results of both the models and

analyses have been obtained for this compression and shear examples, respectively.

5.5.3 Space transformation

The constitutive model subjected in this thesis (Chapter 4) and implemented to

the machine learning technique is based on an isotropic strain stress relation as

shown in Equation 4.1. That is why the strains and stresses, coming from the

virtual laboratory and contributing as inputs of the machine learning model, have

been transformed into an isotropic relation, as introduced in Section 5.4. Without

transforming, their real relation, would be an orthotopic or even an anisotropic

one and would not serve for the constitutive model implemented into the machine

learning procedure of this thesis.

This mapping procedure of transforming between multiple spaces (anisotropic -

isotropic - anisotropic) must also be included to the post machine learning consti-

tutive model for the finite element analysis of macro scale masonry structures.
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(a) Load 1: Compression

(b) Load 2: Shear

Figure 5.15: Force - Displacement curves of model 1 and model 2 of (a) compression
and (b) shear load examples, respectively. The models differ in the number of FE
elements, the similar results illustrate mesh independence

The input strains ε̃ and the predicted stresses σ̃pred coming from the machine

learning model are defined in an isotropic space. Hence, the trained constitutive law

is not directly applicable to the macro modeling approach of masonry, since it does

not include the anisotropy of masonry. Thus, during the macro scale analysis, the

strains coming from the finite element solving stage are defined in the anisotropic

space and must be transformed to an isotropic space, in order to apply the optimized

constitutive law. The strain state at the isotropic space can then be obtained by

applying the mapping procedure as follows

ε̃iso = T : ε̃ (5.65)

Where ε̃ is the anisotropic strain state coming from the finite element solving

stage. The transformation tensor T has been obtained previously, while trans-
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forming the input training data for the optimization procedure at machine learning

level. ε̃iso is the strain state at the isotropic space and is ready to run through

the procedure described in Algorithm 4.1. This results in σ̃iso, the stress state at

the isotropic space. In order to finalize the post machine learning constitutive law,

the stress state at isotropic level must be transformed back to the initial space by

applying a transformation as follows

σ̃ = T T : σ̃iso (5.66)

Where σ̃ is the computed stress at the anisotropic space obtained by applying

the post-machine-learning constitutive model. Figure 5.16 shows an overview of the

mapping procedure and its implementation to the constitutive law at an isotropic

space.

Figure 5.16: Overview of general application procedure of the post-machine-learning
constitutive law for the analysis of structures at the macro scale including Algorithm
4.1

Table 4.2 shows the available constitutive laws presented in this thesis at the

isotropic scale. All these laws are also implemented to the machine learning pro-

cedure and can be used for the macro model analysis after an optimization result

has been found. The parameters that define these laws are summarized in Table

4.3 but must be completed or substituted as the present section has shown. In a

first step, the transformation tensor must be included to the parameters of the post-
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machine-learning constitutive law. The tensor was obtained during the machine

learning homogenization technique and is essential for the correct and consistent

application. The discussion held about the energy regularization has shown, that it

is not necessary to define the fracture energies G+ and G−, but the specific fracture

energies g+ and g−.

5.6 Summary

This chapter has presented in detail a procedure in order to homogenize the het-

erogeneous material masonry by utilizing machine learning. The machine learning

model optimizes the parameters of a homogeneous nonlinear damage constitutive

model until a modification of the parameters is obtained that represents training

data as best as possible.

This Chapter has started with the introduction of the fundamentals of machine

learning and how it is applied in this thesis. A supervised learning procedure has

been chosen in order to train a mathematical model by inputting coupled sets of

inputs and outputs. The mathematical model is assumed to be a strain driven

constitutive law. The available laws have been introduced in the previous Chapter

4. The implementation of these laws to a machine learning model has been narrowly

presented in this chapter. A computation graph has been constructed, that includes

all the mathematical operations of the constitutive model. In order to train the

computation graph, a batch sized training loop has been elaborated.

Strain and stress states serve as the training data inputs and outputs of the com-

putation graph. The data inputs must be capable of representing the heterogeneous

behavior of masonry structures. For this purpose, a virtual laboratory has been in-

troduced. This laboratory is able to perform a large amount of numerical nonlinear

analysis at the micro scale of masonry. The results of each virtual experiment are

then averaged and stored in representative vectors of stresses and strains.

Masonry is an anisotropic material thus the stored data also follow an anisotropic

elasticity relation. In contrast, the constitutive laws implemented to the machine

learning procedure are based on isotropic elasticity. Thus, a procedure has been

introduced in this section that has shown to make the data, coming from the vir-

tual laboratory, compatible to the machine learning model. This approach has been

called data isotropization. It enables the transformation from an anisotropic space
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to an isotropic one. The calculation of the closest isotropic tensor to an anisotropic

one allows to define a transformation tensor. It furthermore allows the back trans-

formation to the anisotropic real space.

After having introduced the machine learning model and its training data, a

closed training procedure can be started. The result is an optimized modification of

constitutive law parameters that can be used for a post machine learning application

at the macro scale. Therefore, this chapter has given an overview explaining the

correct use of the post machine learning constitutive model. The overview includes

a consistent use of the model by correctly relating the machine learning results to

the post constitutive model.

The following chapter presents the application of the entire procedure to a ma-

sonry wall. It includes the performance of the virtual laboratory, the definition

of homogenized linear elastic properties and the execution of the machine learning

procedure in order to define a homogenized nonlinear constitutive model. Homoge-

nization results and a post machine learning application will be discussed.
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Application examples
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Chapter 6

Machine learning homogenization

of Flemish bond masonry wall

6.1 Introduction

This chapter presents an application example of the proposed novel machine learning

homogenization technique for masonry structures. It demonstrates that a unique

optimized constitutive law can be found by machine learning that is able to represent

the behavior of masonry, thanks to training data derived from RVE micro models.

Macro models for the numerical modeling of masonry are usually not as accurate as

micro models. However, this application example shows that there exists a single ho-

mogenized constitutive model that is able to reproduce accurate results comparable

with those obtained by micro modeling. The applied technique extremely facilitates

the modeling of masonry structures at a macro scale without loosing accuracy by

smearing from heterogeneous to homogeneous properties.

The numerical micro model of a masonry wall built in Flemish bond is subject

of the homogenization technique. The geometry and the material properties of the

here considered masonry wall model have been introduced in the application exam-

ple of Chapter 4. A numerical analysis of a diagonal compression test has shown

that the finite element micro model is able to accurately reproduce experimental

results (Section 4.7.2). This application example then represents a calibrated nu-

merical micro model, which can be utilized for the micro scale analysis in the virtual

laboratory of the homogenization method.

This chapter is separated into several sections. Section 6.2 summarizes the vir-
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tual laboratory campaign. It introduces the representative volume element used

for the numerical analyses and presents the results. Section 6.3 observes the data

obtained from the virtual laboratory, and presents the preparation for their applica-

tion to the machine learning model. Section 6.4 gives an overview of the considered

machine learning model. An evaluation example demonstrates the accuracy of the

obtained model, and shows good prediction results of the optimized models also for

an additionally performed virtual laboratory. Section 6.5 presents the post machine

learning application of the macro scale laws. Very accurate results of numerical

macro analyses can be obtained when compared with the results of equivalent micro

scale analyses. A discussion and a summary closes this chapter.

6.2 Micro scale virtual laboratory campaign

This section presents the numerical analysis at the micro scale in order to obtain

input data for the machine learning model. The data are produced in a virtual

laboratory campaign. The framework of this campaign includes the definition of the

considered RVE, the background information of the numerical finite element analy-

sis, the performance of a number of nvl virtual experiments and the presentation of

the results.

6.2.1 The representative volume element

The representative volume element of the here presented virtual laboratory cam-

paign is based on the analyses made in Section 4.7.2. This section has treated the

numerical analysis of a diagonal compression test of a Flemish bond masonry wall.

The material properties and the constitutive models of each material of the micro

model have been calibrated in order to be able to reproduce the results of real ex-

perimental tests. Thus, the material properties of the calibrated numerical model

of the diagonal compression test can be adopted for the micro model of the RVE.

However, the dimensions of the diagonal compression test model are considered to

be too large for the RVE analysis of the virtual laboratory. Hence, a smaller ge-

ometrical model is extracted from the numerical model subjected in Section 4.7.2.

The RVE is a squared rectangle with an edge size of 0.53 m. The total number

of finite elements counts 6160, of which 1624 follow the material properties of the
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mortar joint and 4536 the brick unit. Figure 6.1 shows the numerical model of the

RVE considered for this virtual laboratory, with the mortar and the brick elements,

respectively, and the finite element mesh discretization.

(a) RVE micro model (b) FE discretization

Figure 6.1: Virtual laboratory: representative volume element of the micro scale
finite element analysis, showing a) the micro model and b) the finite element mesh
discretization

Both materials, either the mortar joints or the brick units, follow an isotropic

d+/d− damage law as introduced in Chapter 4. The material properties of the

constitutive laws are summarized in Table 4.4. The damage criteria assumed are

the Petracca yield criteria as shown in Equations 4.8 and 4.9. The damage evolution

law in tension follows an exponential softening and a Bézier like hardening softening

behavior in compression.

6.2.2 Numerical analyses and results

The virtual laboratory campaign consists of nvl = 26 numerical analyses. Each

analysis applies a different deformation condition on the boundary of the RVE.

The analyses are performed until complete failure of the RVE is obtained. The 26

cases have been generated automatically according to the procedure described in

Section 5.3.2. The angles θ and φ that define the boundary applied strain vector

ε of Equation 5.24 are varied by utilizing a step size of π/4 in order to modify the
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angles that generated each strain case. The intervals of the angles for the generation

of the 26 cases are defined as follows

θ ∈
[
− π, π

]
(6.1)

φ ∈
[
− π/2, π/2

]
(6.2)

By considering a variation of 26 cases, different combinations of tension and

compression states can be assured. This large set of training data covers a wide

scope of different deformation states, thus it is able to catch the anistropic behavior

of the masonry RVE.

The results of the virtual experiments are discussed and stored according to the

up-scaling procedure introduced in Section 5.3.4. Thus, the corresponding strain

and stress vectors of a representative single element (RSE) are obtained (Equations

5.28 and 5.27 , respectively). The size of the characteristic element length of the

RSE counts lch,RSE = 0.006 m.

Table 6.1 shows a summary of the results obtained by each case. It includes

the unit vector of the boundary applied strain state ε̃ that demonstrates the multi

directional deformations of the masonry RVE. Column 3 shows the stress state

caused by the applied boundary conditions. While C stands for compression and

T for tension. In total there are 5 compression/compression, 5 tension/tension

and 16 mixed tension/compression states. Since the strength in tension is far less

than the strength in compression for both the brick units and the mortar joints,

respectively, the models with tension/compression states fail in tension. Column 4

demonstrates the peak principal stresses calculated from the up-scaled stresses σ̃

that causes the corresponding failure of each case (compression or tension stress).

While the deviation of the compression peak stresses per case does not vary that

much, the tension peak stresses cover a range from 0.07 MPa to 0.66 MPa. This

is an evidence for anisotropic behavior, since the tension peak stress of the model

strongly depends on the “direction” of the imposed deformation.

Figure 6.2 shows an overview of the damage patterns at an ultimate state of each

case analyzed in the virtual laboratory. It demonstrates the variety of different crack

patterns and failure mechanisms. The patterns of each case are indicated whether

142



CHAPTER 6. MACHINE LEARNING HOMOGENIZATION OF FLEMISH
BOND MASONRY WALL

Table 6.1: Virtual laboratory: summary showing the unit vectors of the applied
boundary strains in engineering notation, the corresponding stress state (C = Com-
pression, T = Tension), the peak principal stress leading to the corresponding dam-
age and the indication whether damage in tension or compression is significant

Case
Unit boundary strain Stress state Principal peak stress

Damage in
(εxx, εyy, γxy) (σ1/σ2) [MPa]

1 (−1.0, 0.0, 0.0) C/C −6.87 C
2 (−0.71, −0.71, 0.0) C/C −7.18 C
3 (−0.53, −0.38, −0.76) C/C −7.19 C
4 (−0.53, −0.38, 0.76) C/C −7.19 C
5 (−0.45, 0.0, −0.89) T/C 0.07 T
6 (−0.45, 0.0, 0.89) T/C 0.07 T
7 (−0.53, 0.38, −0.76) T/C 0.13 T
8 (−0.53, 0.38, 0.76) T/C 0.13 T
9 (−0.71, 0.71, 0.0) T/C 0.17 T
10 (0.0, −1.0, 0.0) C/C −6.87 C
11 (0.0, −0.45, −0.89) T/C 0.19 T
12 (0.0, −0.45, 0.89) T/C 0.19 T
13 (0.0, 0.0, −1.0) T/C 0.25 T
14 (0.0, 0.0, 1.0) T/C 0.25 T
15 (0.0, 0.45, −0.89) T/C 0.21 T
16 (0.0, 0.45, 0.89) T/C 0.21 T
17 (0.0, 1.0, 0.0) T/T 0.17 T
18 (0.71, −0.71, 0.0) T/C 0.66 T
19 (0.53, −0.38, −0.76) T/C 0.57 T
20 (0.53, −0.38, 0.76) T/C 0.57 T
21 (0.45, 0.0, −0.89) T/C 0.49 T
22 (0.45, 0.0, 0.89) T/C 0.49 T
23 (0.53, 0.38, −0.76) T/T 0.46 T
24 (0.53, 0.38, 0.76) T/T 0.45 T
25 (0.71, 0.71, 0.0) T/T 0.43 T
26 (1.0, 0.0, 0.0) T/T 0.65 T

the damage variable d+ or d− leads to failure of the RVE masonry wall.

The virtual laboratory is terminated and serves as the data production part

of the machine learning homogenization technique. The outcomes are the coupled

sets of strains ε̃ and stresses σ̃ of each analysis step for all the considered virtual

experiments. These data require further preparation as shown in the following.
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Figure 6.2: Flemish bond RVE virtual laboratory: damage contour plots of the
26 cases considered in the virtual laboratory, showing the damage variables d+/d−

depending on the significant damage (T for tension, C for compression)
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6.3 Data preparation and isotropization

This section performs the data isotropization of the representative strains ε̃ and

stresses σ̃ from the virtual laboratory. This procedure consists of the following

steps. Firstly, the matrices ε̆ and σ̆, only containing the first result of each virtual

experiment, must be extracted from ε̃ and σ̃ according to Equation 5.29. These

matrices of strain and stress states represent the linear elastic behavior of the RVE

under different boundary conditions. Both can then be utilized in order to compute

the raw linear elasticity matrix Craw as presented in Equation 5.31. The following

matrix is obtained for the presented application example

Craw =

 5.44 0.83 0.25 · 10−6

0.83 4.29 0.01 · 10−6

0.03 · 10−6 0.04 · 10−6 1.71

GPa (6.3)

In a second step, the closest isotropic matrix must be found. Thus the opti-

mization procedure as introduced in Section 5.4.2.3 is applied. A machine learning

model is trained in order to minimize a loss function that takes into account the

Frobenius norm of the difference between Craw and Ciso. (Equation 5.40). The ma-

chine learning model variables are the Young’s modulus E on the one side and the

Poisson’s ratio ν on the other side. These variables define the isotropic linear elastic

plane stress matrix.

The procedure terminates with a value of E = 4.64 GPa and ν = 0.187. Figure

6.3 shows the evolution of both the variables during optimization. The computation

of the normed error χ as introduced in Equation 5.37 is calculated to be χ = 0.12

for the obtained isotropic elasticity matrix. This value is the smallest error that can

be achieved while searching the closest isotropic matrix to the raw anisotropic one

of this example.

The isotropic elasticity matrix for the application example then reads

Ciso =

4.80 0.90 0.0

0.90 4.80 0.0

0.0 0.0 1.95

GPa (6.4)

In order to now transform the entire set of raw strains and stresses coming from

the virtual laboratory, the transformation matrix T must be defined. Substituting
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Figure 6.3: Variable results of the optimization procedure in order to find the closest
isotropic matrix to an anisotropic one, showing the evolution of the variables E and
ν and the ratio of the actual and initial loss

the actual modifications of the isotropic elasticity matrix and the raw anisotropic

matrices into Equation 5.52, leads to the following transformation matrix

T =

1.06 −0.01 0.0

0.0 0.95 0.0

0.0 0.0 0.93

 (6.5)

Applying the transformation matrix T to Equation 5.53 and 5.54 results in an

entire isotropized set of training data consisting of the isotropized strains ε̃iso and

the isotropizd stresses σ̃iso. The isotropic data set can now be utilized for train-

ing of the machine learning model. However, this application example applies the

damage equivalent stress computation introduced in Section 5.4.4. The reasons are

explained in the following.

The constitutive model implemented to the machine learning technique is based

on strain equivalence. This implies that the principal direction of the strain vector

that enters the model is equal to the principal direction of the outgoing stress vector.

Thus the coupled input pairs (strain and stress states) of the machine learning model

should also comply with this requirement. Hence an investigation of the principal

directions of the isotropized strains ε̃iso and stresses σ̃iso must be made.

Figure 6.4 shows the evolution of the principal directions during the analysis

for selected cases analyzed in the virtual laboratory. The values are related to the

principal directions of the isotropized strains ε̃iso and the isotropized stresses σ̃iso.

It demonstrates that there exist analysis results that do not conform with the above
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mentioned requirement. While the principal direction of the isotropized strains

remains constant during the entire analysis of a case, the principal directions of the

isotropized stresses are changing and deviate from the one of the strains.

Figure 6.4: Demonstration of the deviation of the principal directions of the
isotropized strain and stress vectors, respectively. Exemplary the principal direction
evolution of the virtual laboratory cases 3, 5, 11 and 21 are shown.

An equivalent damage computation as shown in Section 5.4.4 can solve this

problem. The procedure includes computing equivalent damage variables d+eq and d−eq

based on the isotropic strains ε̃iso, the elasticity matrix Ciso and the isotropic stresses

σ̃iso. Then a modified damage equivalent isotropic stress σ̃iso,adj can be computed

by only taking into account the isotropic strains, the equivalent damage variables

and the isotropic elasticity matrix (Equation 5.58). The principal directions of the

damage equivalent stresses do then remain constant and are equal to the ones of the

isotropic strains.

The data preparation is finished and the training data can be passed to the

machine learning model. The machine learning inputs are εtrue = ε̃iso and σtrue =

σ̃iso,adj.
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6.4 Machine learning homogenization

6.4.1 The computation graph

The computation graph G considered for model training includes the constitutive

model presented in Chapter 4. The damage evolution law for both tension and com-

pression behavior then follows a Bézier like hardening softening function. The yield

criteria in tension is assumed to be the Rankine and in compression the Petracca

criterion. The constitutive model for the graph G is called Ψ.

The set of trainable parameters is called Θ. Table 6.2 shows the entries of

both the parameter sets and indicates the corresponding trainable variables of the

machine learning model.

Table 6.2: Overview of the trainable variables for the considered machine learning
model as applied in the application example of the novel masonry homogenization
technique

Constitutive Model Ψ

Tension f+
0 f+

p f+
k f+

r ε+p ε+j ε+k ε+u
Compression f−0 f−p f−k f−r f−bi ε−p ε−j ε−k ε−u

6.4.2 Model training and results

Training the constitutive law machine learning model includes optimizing a large

number of variables during the training procedure. Table 6.2 shows that for the

computation graph G a number of 17 variables must be adjusted in order to define

the constitutive model. In order to facilitate and improve the optimization, these

variables are trained by several different coupled input sets εtrue,i and σtrue,i, with

i as the number of sets. These sets can be obtained by separating the entire input

set εtrue and σtrue. Such a separation depends on the strain stress curves of each

considered case of the virtual laboratory as explained as follows.

Figure 6.5 shows a plot of the principal stresses of σ̃iso,adj of the analysis of

the virtual experiment case 18. It demonstrates a separation of the two curves

into three sets. The boundaries of the sets are defined by the peak values of the

principal stresses σ1/2, respectively. They indicate when hardening of the material
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ends and softening starts. Consequently three sets are obtained. The first contains

the coupled strains and stresses up to the σ1,peak. The second set includes the

coupled pairs of strains and stresses going from the σ1,peak to the σ2,peak and the

third contains the remaining pairs.

Figure 6.5: Principal stress values of the isotropized stresses σ̃iso,adj of the virtual
experiment 18 plotted over the norm of the strain vector ε̃iso. A separation of the
curves into three sets is shown, depicting the borders of the sets as the peaks of the
principal stresses σ1 and σ2, respectively.

The obtained sets are then fed to separated training loops. Each loop training a

proportion of the entire set of trainable variables, namely the ones that are defined

in the range of a set.

Let a short example clarify this approach: training the residual compression

strength while inputting set 1 into the training loop is pointless, since the coupled

pairs of set 1 do not represent the post peak behavior nor the residual compression

strength. Thus the variables not affected in the range of the corresponding set

can be switched to non-trainable. Consequently, the optimization procedure can be

facilitated tremendously. At least three optimization procedures are performed in

order to train a portion of the variables shown in Table 6.2 .

In case the virtual experiment is exposing a tension/ tension or compression/

compression state, the sets are divided analogously. However, the curves are only

separated into two sets. Each appended to the corresponding set out of the three

original sets.
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Table 6.3 shows the distribution of the trainable variables according to the intro-

duced sets for the constitutive model Ψ. It clarifies which variable is kept constant

during the optimization and which is trained. Once an optimum has been reached

for a variable, the value is frozen for the following training loop. The number of

runs for the optimization of model Ψ is six. That is because the number of trainable

variables of this model is large and several more optimization runs are performed

with set 2.

Table 6.3: Overview showing the training procedure for constitutive model Ψ indi-
cating the variables that are trained during the feeding of the sets Set 1, Set 2 and
Set 3. Showing also the multiple runs with different variables training

Constitutive law Ψ

Tension parameters Compression parameters

f+
0 f+

p f+
r ε+p ε+j ε+u f−0 f−p f−bi ε−p ε−j

Set 1 R1 X X x x x x x x x x x

Set 2

R1 x x x X X x x x x x x
R2 x x X x x X x x x x x
R3 x x x x x x X x x X x
R4 x x x x x x x X X X x

Set 3 R1 x x x x x x x x x x X

Figure 6.6 shows the optimization results depending on each run. The figure

shows the results of each training run introduced in Table 6.3. On the left of the

figure, the ratio of the actual loss and the initial loss is shown. This ratio is an indi-

cator for training improvement. The flatter the curve, the closer is the optimization

to the minimum and no further improvement can be obtained. For all the training

runs of the constitutive model Ψ a flat curve evolves after a certain amount of epoch

steps.

The constitutive models of the Bézier like damage evolution laws have been

introduced in Chapter 4 by considering factors c±i with i = [1, 2, 3]. These have

been introduced in order to define dependencies between the control nodes of the

Bézier curves in the softening range. The machine learning model did not utilize

these factors, since the control nodes of the curves have been all defined as variables

of the optimization procedure. A back calculation in order to obtain the factors c±i
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can be performed. Table 6.4 shows the optimized variables in terms of the factors

ci for the model Ψ.

Table 6.4: Optimization results of the parameters of the machine learning model Ψ
in terms of the Bézier regulators

Tension Parameters

f+
0 f+

p f+
r e+p c+1 c+2 c+3

[Mpa] [Mpa] [Mpa] [−] [−] [−] [−]

Model Ψ 0.21 0.32 0.01 0.0007 0.5 0.135 5.68

Compression Parameters

f−0 f−p f−bi f−r e−p c−1 c−2 c−3

[Mpa] [Mpa] [Mpa] [Mpa] [−] [−] [−] [−]

Model Ψ 0.65 6.44 6.77 1.06 0.0081 0.5 0.20 1.86

Figure 6.7 depicts plots of the strain norm |ε̄| versus principal stresses of selected

compression/ compression and tension/ tension cases from the virtual laboratory. It

compares the anisotropic stress results σ̄aniso,adj of the numerical experiments (real

curve) with the stresses σaniso,pred calculated by applying the trained constitutive

model (predicted curve). Both stresses are computed as follows

σ̄aniso,adj = T T : σ̄iso,adj (6.6)

σaniso,pred = T T : Ψ(εiso,Θ
?)︸ ︷︷ ︸

σiso,pred

(6.7)

6.4.3 Model evaluation

A substantial step of machine learning is evaluating the results. Such en evaluation

can be obtained by testing the prediction accuracy of the model for data which

was not part of training. As introduced in Chapter 5 the data input set of the

machine learning model is split into a training set and a testing/evaluation set

(Figure 5.5). After each epoch training step a testing step is performed. This
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Figure 6.6: Results of the machine learning optimization procedure for the consti-
tutive law Ψ. Showing the separation into the six training runs each depicting the
evolution of the corresponding variable and the ratio of the actual training cost and
the initial training cost during optimization
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Figure 6.7: Comparison of the prediction results obtained by the trained constitutive
model Ψ. Showing the principal stress values of the anisotropic results of the damage
equivalent adjusted stresses from the virtual laboratory and the predicted stresses
plotted versus the norm of the boundary applied strain vector.

procedure ensures that an online check of the model accuracy during training is

made. However, the testing and training sets are subsets of the same input set.

Thus, both sets contain results obtained from the same deformation states and they

are never completely independent from each other. In order to avoid this, a new

virtual laboratory campaign is performed. It applies novel and different boundary

applied strains on the same masonry RVE. Consequently, a set of evaluation data

evolves which is completely disconnected to the data used for training. This virtual

campaign is called new virtual laboratory in the following.

The new virtual laboratory performed for this evaluation example consists of

58 different cases. The results of the new campaign pass through the same data

isotropization procedure as the previous virtual laboratory results did. This results

in a coupled set of anisotropic strains and anisotropic adjusted stresses (equivalent

damage).
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In order to now evaluate the trained model Ψ, predicted stresses must be com-

puted. The anisotropic strains from the new virtual laboratory must then be mapped

to the isotropic space. They serve as the input of the two trained constitutive mod-

els. Their outputs are the isotropic predicted stresses, which are back-transformed

to the anisotropic space. Then three stress sets are obtained. The first is the vector

of true stresses coming from the new virtual laboratory and the two remaining are

vectors of the predicted stresses. Their results are shown in terms of peak values

of the principal stresses. Figure 6.8 shows these maximum values for the evaluation

set (58 cases) from the new virtual laboratory on the right. On the left of the same

figure, the analogous results from the training set (26 cases) are depicted. All results

are shown at the anisotropic level.

Figure 6.8: Comparison of the maximum principal stress values of the virtual labora-
tory results for the data used in training (26 cases) and the data used for evaluation
(58 cases) and the predictions of the machine learning model Ψ. The results are
shown at the anisotropic scale

The achieved results present a very good fitting for the machine learning model

Ψ. On the one hand, the model fits the virtual laboratory training set results (Figure

6.8 left). On the other hand, it predicts the results that have been obtained by the

new virtual laboratory.

The very accurate prediction results shown here, represent the performance of the

trained model for a direct comparison of strains and stresses. However, the models
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are going to be used as the constitutive laws inside a finite element analysis of a

macro modeled masonry wall. Thus, the following section evaluates the performance

of the trained model at the finite element analysis level.

6.5 Post homogenization application

The main goal of the machine learning homogenization technique is to utilize the

trained constitutive law for the application at the macro scale analysis. Hence,

this section presents the application of the trained model Ψ to the analysis of two

different in plane tests performed on a masonry wall. The results obtained from both

the macro scale analyses are compared with the results of a numerical micro model.

The micro model has exactly the same geometrical masonry bond allocation as the

RVE used in the virtual laboratory. The section is structured by firstly explaining

the two numerical tests, followed by a discussion about the results from the micro

and macro models.

6.5.1 Numerical analyses

Subject of the numerical analyses are two 2D micro and a macro models of the same

masonry wall. The micro model wall respects the same geometrical allocation of the

bricks (Flemish bond) as utilized for the RVE of the virtual laboratory. However, the

dimensions of the wall measure 1.27× 1.27 m2, which is larger than the dimensions

of the RVE. Each of the two walls is subjected to two different boundary conditions.

The first analysis is a compression test and the second one is a shear compression

test. The walls are loaded by incrementally applying displacements on top of the

wall until failure. Figure 6.9 shows the concepts for both the numerical tests.

Compression test The finite element nodes of the base of the wall are fixed for

displacements in any direction. The load is applied by monotonically increasing a

vertical displacement to the top nodes of the wall’s finite element model in order to

perform the compression test.

Shear compression test The finite element model of the shear compression test

is subjected to two loading sets. The first is an incrementally increasing vertical
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Figure 6.9: Schematic views of the micro and macro models of the compression and
the shear compression tests.

displacement similar to the model of the compression test. This vertical displace-

ment moves up to a predefined value of dy = 0.09 mm where no failure of the wall

is caused. This vertical displacement is kept constant during the second step of

the analysis and equals a vertical load of σ0 ≈ 0.30 MPa. After having reached the

vertical displacement, a monotonic increasing horizontal top displacement is applied

in order to burden the wall in shear. The horizontal displacement is then applied

until ultimate failure of the model.

A total number of four numerical analyses is performed in this example. Two of

them are the micro model analyses of the compression and the shear compression

test, respectively. The material properties of the micro model components have been

introduced in Table 4.4 and are also applied here. The remaining two analyses are

the macro model analysis of both the compression and the shear compression test.

The smeared material properties of the macro models have been predicted in the

previous sections in terms of optimal fitting of the parameters Θ of the constitutive

model Ψ. The properties applied are shown in Table 6.4.

All the analysis are calculated by utilizing the finite element program kratos

multiphysics. The analyses at macro scale utilize the novel implemented constitu-

tive law introduced in Section 5.5. It applies the transformation matrix T in order

to map the strains and stresses from the anisotropic to the isotropic scale (and vice
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versa).

6.5.2 Analyses results and comparison

Compression test The vertical reaction force of the two analyses was measured

during the boundary application in order to compare the results. Figure 6.10 shows

this force plotted against the applied vertical top displacement for the micro and the

macro model analyses, respectively. The two tests remain in the linear range up to a

top displacement of dy ≈ 0.8 mm. The initial stiffness of the tests is approximately

equal. After having reached the damage onset, material hardening starts for the

analyses. The hardening progress can also be seen as approximately equal up to a

top displacement of dy ≈ 6.0 mm. Table 6.5 shows the maximum vertical reaction

forces and the corresponding top displacements of the two models. The capacity

of the macro model Ψ is slightly larger than the capacity of the micro model. A

deviation of the peak value from the macro scale analyses with respect to the peak

of the micro model counts 6.6 %.

Table 6.5: Compression test: peak values of the micro and the macro models.

Vertical force Displacement at peak
Fy [MN ] dy,peak [mm]

Micro Model 2.18 6.5
Macro model Ψ 2.33 7.5

Figure 6.11 shows the crack patterns of the compression tests in terms of the

contour plots of the maximum principal strains and total displacements. All plots

are taken at a top displacement of dy = 10.0 mm. The crack pattern of the micro

model analysis exhibits the hourglass shape which is typical for compression tests

on brittle materials such as masonry. The macro model analyses is able to produce

an overall crack pattern very similar to the one of the micro model. The results of

the compression test have shown that the trained macro model is an appropriate

model when compared with the compression test analysis of a micro model.

Shear compression test The comparison of the shear compression test applied

to the micro and the macro model is based on the measurements of the horizontal
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Figure 6.10: Compression test: vertical reaction force vs. vertical displacement
curves of the micro and the macro models.

reaction force Fx. Figure 6.12 depicts the curves of the force plotted against the

horizontal top displacement dx for the two analyses, respectively. The initial stiffness

demonstrates an equal linear elastic behavior for both the models. A damage onset

starts at a horizontal top displacement of dx ≈ 0.03 mm. Further increasing of

the deformation leads to similar behavior of the models up to a reaction force of

Fx ≈ 180.0 kN . From there on, the curve of the macro model Ψ rises flatter than

the micro model curve until both the analyses reach their peak.

Table 6.6 shows the peak values of the horizontal reaction forces for both the

analyses and the corresponding horizontal top displacements at the peak. A devia-

tion of 9.7 % between the force peaks can be observed.

Figure 6.13 shows the contour plots of the maximum principal strain and the

global displacement at a horizontal top displacement of dx = 3.8 mm for the results
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Figure 6.11: Compression test: crack patterns of the micro model and the macro
model Ψ, and the contour plots of the maximum principal strain εmax and the
displacement at a vertical top displacement of dy = 10.0 mm.

of the micro model and the macro model analyses, respectively. The maximum

strain contour plot of the micro model demonstrates a diagonal crack that passes

through the mortar joints and the brick units. Such a pattern is typical for shear

compression tests of masonry walls (Petracca (2016)). This single diagonal crack

leads to ultimate failure of the micro model.

The crack pattern of macro model Ψ, shown in the contour plot of the maximum

strain, demonstrates a single diagonal crack. This crack leads to failure of the model

at a horizontal top displacement very similar to the one of the micro model.

The numerical analysis results of the compression and the shear compression

tests show that the macro model Ψ is able to represent the micro model results very

accurately. This is shown in the comparison of the force displacement curves on the

one hand and in the evolution of cracks on the other hand.
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Figure 6.12: Shear compression test: curves showing the horizontal reaction force
vs. horizontal displacement of the micro model and the macro model Ψ.

Table 6.6: Shear compression test: peak values of the micro and the macro models.

Horizontal force Displacement at peak
Fx [MN ] dx,peak [mm]

Micro Model 0.24 2.2
Macro model Ψ 0.22 2.1
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Figure 6.13: Shear compression test: crack patterns of the micro model and the
macro model Ψ, and the contour plots of the maximum principal strain εmax and
the displacement at a horizontal top displacement of dx = 3.8 mm.
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6.6 Summary

This chapter has presented the application of the machine learning homogenization

technique to the numerical analysis of a Flemish bond masonry wall. Chapter 5 has

presented the theoretical background and the steps of the homogenization procedure.

The present chapter has adopted the necessary tasks and furthermore clarified their

application.

In the first step, the virtual laboratory has been build up, by including the micro

modeling of a masonry RVE in Flemish bond, and the calibration of the brick and

mortar material properties. The RVE has been subjected to a number of virtual

experiments. A total of 26 boundary conditions have been created in order to cover a

wide range of different deformations of the RVE. The results of the 26 cases have been

presented in this chapter in terms of plots of the damage contours, and peak values of

principal stresses. It has been shown that the results exhibit the typical anisotropy

of masonry micro models. For this purpose, the virtual laboratory results have been

made compatible with the isotropic constitutive laws implemented in the machine

learning model by applying the transformation procedure presented in Chapter 5 to

the entire set of the virtual laboratory results. Furthermore, it has been shown that

the computation of damage equivalent stresses has become necessary. This is due

to equality of the principal direction angle of the strain and stress vectors.

In a second step of the application example, the essential part of the homogeniza-

tion technique has been carried out, i.e. the machine learning. Its actual purpose

has been to find a single constitutive law, that can be applied to the macro scale

analysis of masonry, without loosing the accuracy of micro modeling. Therefore,

the computation graph of the machine learning model has been introduced. This

example has considered a constitutive model that utilizes advanced yield criteria

and damage evolution laws. The graph has been defined by these assumptions and

its corresponding set of trainable variables.

Once the model has been set up, the actual training procedure has been executed.

In order to minimize the computational cost of the training loops, the data input

coming from the virtual laboratory has been split into a number of sets. As a result,

the procedure of variable training has also been split up to the number of obtained

sets. An overview showing the trainable variables of the model and each set has been

given. The results of the training loop have been presented in terms of evolution of
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the training loss and the variable modifications per set and per model.

A table has been drawn that summarizes the final variable results of the model.

These results have been taken in order to evaluate the machine learning prediction.

In order to evaluate the predictions offline, a second new virtual laboratory campaign

has been carried out. Its results have been compared with the prediction results

made by the model. The predictions have shown to be very accurate and the trained

model is able to represent the virtual laboratory results.

The last step of the machine learning homogenization technique has been the

evaluation of the results at a finite element analysis level. Thus, a post machine

learning application of the trained constitutive model has been performed. Two

numerical tests, a compression and a shear compression test, have been carried out.

The analyses have been carried out at two scales, micro and macro scale, in order

to be able to compare the macro scale results with the micro scale results. Thus,

two models have been built up. The micro model properties have been chosen to be

equal to the ones of the RVE, and the macro model properties have been assumed

to be those predicted by the machine learning. Force-displacement curves and crack

patterns of the micro and macro model analyses have been investigated in order to

compare the analysis results. It has been shown that the macro models are able to

represent the micro model results very accurately.
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Chapter 7

Seismic Analysis of Palacio Pereira

using Machine Learning based

Homogenization

7.1 Introduction

The previous Chapters have introduced a machine learning based homogenization

technique that results in a homogeneous constitutive law that can be used for the

macro scale analysis of masonry structures. This Chapter investigates its applicabil-

ity on real scale structures and discusses its results when compared to conventional

macro scale analyses.

The structure chosen for this application example, is the Palacio Pereira already

introduced in Chapter 3. Subject will be multiple numerical pushover analyses of

the buildings facades within a two-dimensional macro scale approach. Both facades

of the Palacio Pereira (Southern and Eastern) are charged during each analysis with

monotonically increasing horizontal accelerations. Such an analysis is known as

mass proportional pushover analysis.

Section 7.2 shows the conventional approach of applying nonlinear pushover anal-

ysis to masonry structures. Therefore a geometrical FE model of the two facades is

build up within the commercial FE software diana fea TNO (2017). The macro

material properties are calibrated by adjusting them in order to be able to represent

the results of an in-situ experiment. The experiment has been performed by San-

doval et al. (2017) and its results will be presented here together with the diana
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fea macro model calibration.

After having demonstrated the conventional approach of defining macro model

material properties, Section 7.3 shows the application of the novel approach for

material homogenization based on machine learning. The nonlinear pushover anal-

yses of the facades are then numerically performed within the open source software

kratos multiphysics Dadvand et al. (2010). The post machine learning consti-

tutive model is implemented in its framework.

Unlike the conventional approach, the machine learning based homogenization

requires the calibration of a micro model, training data production and the machine

learning. Each respective step has been demonstrated in the detailed application

example of Chapter 6. An analogous procedure is utilized here in order to carry out

the machine learning based homogenization of the Palacio Pereira.

Section 7.4 presents and discusses the results of the pushover macro scale analyses

of the facades carried out in diana fea and kratos multiphysics, respectively.

The final Section 7.5 gives a summary of this Chapter.

7.2 Conventional macro scale seismic analysis

7.2.1 Macro model calibration

Numerical analysis of entire masonry buildings is a challenging task, since the het-

erogeneous material of masonry must be simplified to a smeared macro model ap-

proach. Therefore, a conventional technique is the calibration of a numerical macro

model that aims to fit appropriately the results of an experimental test. In case of

the Palacio Pereira, an in-situ experiment has been performed by Sandoval et al.

(2017). The test setup and the final crack pattern are shown in Figure 3.6a and

3.6b.

The calibration of this experiment has been performed in diana fea. There-

fore, a numerical FE model of the in-situ experiment has been built up by using

symmetry. The nodes of the upper boundary are fixed in horizontal and vertical

direction. However, in order to apply the weight acting on this wall, a fixed ver-

tical displacement is applied that is equal to a load of 0.14 MPa (also assumed by

Sandoval et al. (2017)). The nodes of the lower boundary are fixed only in vertical

direction. An incrementally increasing horizontal load, simulating the force induced
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by the hydraulic jack, is applied by displacing the lower boundary nodes in horizon-

tal direction. Non linearity of the material is included to the model by utilizing the

total strain based rotating crack model implemented in diana fea. A parabolic

softening behavior in compression and an exponential softening behavior in tension

is assumed. The analysis is carried out until failure.

Figure 7.1 depicts the crack pattern of the numerical analysis by showing the

crack width distribution. A consistent single shear crack is evolving during the

numerical analysis. Moreover, Figure 7.1 shows the plots of the horizontal force

over the angular strain curves of the in-situ experiment and the numerical calibra-

tion analysis, respectively. The curve of the numerical analysis is in a very good

agreement with the curves of the experiment.

Figure 7.1: Macro model calibration results for conventional macro model analysis
of large scale structures. Showing a) the crack width distribution of the numerical
calculation at failure, and b) the numerical results compared with the experiment
(Sandoval et al. (2017)) in terms of angular strain versus horizontal reaction force
curve.

The conventional approach of calibrating macro model material properties for

large scale analysis applications, based on reproduction of one physical experimental

test, is completed. Table 7.1 shows the material properties obtained during macro

model calibration. These properties are from now on utilized for the macro model

large scale pushover analyses of the Palacio Pereira in diana fea.

7.2.2 Macro scale pushover analysis

Figure 7.2 shows the two dimensional FE models of the Southern and Eastern facade

of the Palacio Pereira as modeled in diana fea. Four noded quadrilateral elements

have been used for the numerical FE models with an average size of approximately
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Table 7.1: Material properties of the macro crack model for the finite element model
of the Palacio Pereira in diana fea of Chapter 7

Material property Symbol Value Unit
Density ρ 1800 kg/m3

Y oung′s modulus E 775.0 MPa
Poisson′s ratio ν 0.2 -

Compressive strength f−p 1.65 MPa
Compressive fracture energy G− 5.0 kN/m

Tensile strength f+
p 0.095 MPA

Tensile fracture energy G+ 0.05 kN/m
Residual compressive strength f−r 0.5 MPa
Residual tensile strength f+

r 0.005 MPa

0.22 m. In both the models all base nodes of the FE element mesh are fixed in x

and y direction, respectively. The material parameters have been adopted from the

previous calibration and are summarized in Table 7.1. The weights of the first floor

and the roof are added as point mass to the respective nodes of the mesh.

(a) South facade

(b) East facade

Figure 7.2: Two dimensional FE models of the facades of the Palacio Pereira for the
numerical analyses in diana fea

The nonlinear mass proportional pushover analysis is applied to both the facades.

Each analysis is performed in two steps. Firstly, the self weight of the structure

is applied in gravity direction (y-direction). Secondly, the monotonically increasing
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lateral pushover acceleration is applied horizontally. The numerical problem is solved

using an arc length control and the Newton-Raphson method.

The results are going to be discussed in Section 7.4 by comparing them with the

novel machine learning based homogenization approach.

7.3 Machine learning based homogenization ap-

proach for seismic analysis

7.3.1 Micro model calibration

The machine learning based homogenization technique rests upon the performance

of a virtual laboratory in order to produce the training data. The virtual laboratory

requires a micro model RVE in order to run the multiple numerical experiments.

However, the material properties of the RVE must be calibrated previously. There-

fore, a proper micro model analysis of the experimental in-situ test shown in Section

7.2.1 is performed.

The real brick/mortar allocation of the Palacio Pereira for the micro model has

been taken from pictures made during the in-situ experiment and the size of the

bricks used for the construction. Figure 7.3 shows the FE model with brick mortar

distinction and shows the dimensions of the brick. The mortar thickness is assumed

to be approximately 20 mm. The average element size counts 10× 10 mm2 so that

the mortar is modeled by two elements in its thickness direction. The total number

of elements counts 10300.

As for the calibration of the macro model in diana fea the boundaries are

chosen as follows. The top nodes of the FE model are constrained in horizontal

and vertical direction. Whereas the bottom nodes are constrained only in vertical

direction so that the monotonically increasing load can be applied in horizontal

direction.

Both the components, brick unit and mortar joint, are modeled by continuous

elements with d+/d− damage models (Chapter 4). Both yield criteria, in tension and

compression, are the Petracca modified Lubliner yield criteria that better controls

the damage effects under shear loading. In compression the damage evolution follows

the Bézier like hardening softening behavior as introduced in Chapter 4 and in

tension an exponential softening is assumed. A calibrated micro model can be

169



CHAPTER 7. SEISMIC ANALYSIS OF PALACIO PEREIRA USING
MACHINE LEARNING BASED HOMOGENIZATION

Figure 7.3: Micro model FE mesh for the numerical calibration of the Palacio Pereira
in-situ experiment and a schematic three dimensional display of the Palacio Pereira
brick size

obtained when using the material properties, as shown in Table 7.2 .

Table 7.2: Material properties, brick unit and mortar joint, for the numerical analysis
of the in-situ shear compression test applied to an inner wall of the Palacio Pereira

Brick unit

E ν f+
p G+ f−0 f−p f−r ε−p G− kb κ

1400.0 0.2 0.6 0.12 2.0 6.7 1.0 0.03 35.0 1.2 0.16

[MPa] − [MPa] [ N
mm

] [MPa] [MPa] [MPa] − [ N
mm

] − −

Mortar joint

E ν f+
p G+ f−0 f−p f−r ε−p G− kb κ

200.0 0.2 0.3 1.5 0.5 2.0 0.1 0.03 35.0 1.2 0.16

[MPa] − [MPa] [ N
mm

] [MPa] [MPa] [MPa] − [ N
mm

] − −

Figure 7.4 shows the results of the numerical analysis when compared with the

experimentally recorded strain - force curve. Figure 7.5 shows the evolution of the

diagonal shear crack for different analysis steps.
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Figure 7.4: Micro model calibration results of the Palacio Pereira in-situ shear test
in terms of angular strain - horizontal force curve. Comparison of the experimental
results (Sandoval et al. (2017)) with the numerical micro model results

Figure 7.5: Contour plots of the the damage tension parameter d+ for the micro
model analysis of the Palacio Pereira in-situ experiment for four different horizontal
displacements

7.3.2 Virtual laboratory performance

Proceeding from the calibrated model of the previous Section, a micro model RVE is

constructed. Figure 7.6 shows the micro model considered for the virtual laboratory

of the Palacio Pereira homogenization. It is assigned with the material parameters

of the previous calibration (Table 7.2 ). The geometry of the RVE is obtained by
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extracting a cut from the micro model used for calibration. The edge size of the FE

model is 0.76 m and counts 5928 elements.

Figure 7.6: The representative volume element of the Palacio Pereira virtual labo-
ratory showing the brick mortar allocation, the model size and the FE mesh

The virtual laboratory is carried out in the same way as already presented in

the application example of Chapter 6. A number of nV L = 26 different boundary

conditions are applied to the RVE so that 26 different strain/stress conditions are

represented in the training data set. Each respective analysis is carried out until

failure. Figure 7.7 depicts the ultimate damages of each virtual experiment, respec-

tively. The entire set of stored coupled strain and stress states counts 30160. All of

them serve as input for model training.
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Figure 7.7: Palacio Pereira RVE virtual laboratory: damage contour plots of the
26 cases considered in the virtual laboratory, showing the damage variables d+/d−

depending on the significant damage (T for tension, C for compression)
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7.3.3 Constitutive model determination

7.3.3.1 Linear elastic parameters

The determination of the anisotropic and the corresponding closest isotropic matrix

is performed analogously as done in Section 6.3. The following raw (anisotropic)

elasticity matrix Craw, the closest isotropic elasticity matrix Ciso and the transfor-

mation matrix T can be obtained after applying the procedure described in Section

5.4 as follows

Craw =

 921.9 116.4 −0.428

116.4 635.3 −0.145

−0.429 −0.145 250.5

MPa (7.1)

Ciso =

762.4 132.6 0.0

132.6 762.4 0.00

0.0 0.0 314.9

MPa (7.2)

T =

1.1 −0.02 −0.0005

0.0 0.92 −0.0001

0.0 0.0 0.89

 [−] (7.3)

The isotropic linear parameters assumed in the following machine learning pro-

cedure are then E = 739.3 MPa and ν = 0.174.

7.3.3.2 Damage model parameters

The computation graph of the tensorflow Abadi et al. (2015) application con-

tains the constitutive damage model introduced in Chapter 4. It considers the

bi-dissipative d+\d− damage law with the Bézier like damage evolution both in ten-

sion and compression behavior. Furthermore, a Rankine yield criteria is considered

for tension behavior. Whereas for the compression behavior the Petracca yield crite-

rion is chosen. These assumptions are based on the application example of Chapter

6. Where the Graph G has shown to be able to train a very accurate macro model

damage law. Therefore, the same model modifications are chosen for the Palacio

Pereira application.

These assumptions lead to a machine learning model with 17 trainable variables.

In order to separately train tension and compression parameters the training input
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set is divided into three different sets. Each set does then serve as input for six

training steps (see procedure description in Chapter 6).

Table 7.3 shows the optimization results of the machine learning procedure. The

values are then stored together with the transformation matrix T (Equation 7.3)

and the isotropic elasticity parameters E and ν in a separate file that serves as

material property file for the post machine learning application.

Table 7.3: Optimization results of the parameters of the machine learning model for
the homogenization of the Palacio Pereira in terms of the Bézier regulators

Tension Parameters

f+
0 f+

p f+
r e+p c+1 c+2 c+3

[Mpa] [Mpa] [Mpa] [−] [−] [−] [−]

0.15 0.37 0.012 0.0008 0.5 0.82 16.7

Compression Parameters

f−0 f−p f−bi f−r e−p c−1 c−2 c−3

[Mpa] [Mpa] [Mpa] [Mpa] [−] [−] [−] [−]

0.88 4.58 4.81 0.57 0.069 0.5 0.04 1.09

7.3.4 Model evaluation by in-situ shear test analysis

The previous machine learning based homogenization of the masonry properties of

the Palacio Pereira is going to be evaluated here. Therefore, a numerical macro

analysis, taking into account the machine learning based macro constitutive law, of

the in-situ experiment is carried out.

Figure 7.8 depicts the FE mesh of the model. The average element size is ap-

proximately 35 × 35 mm2. It also shows the results of the first principal strain at

the ultimate analysis stage reproduces accurately the diagonal shear crack of the

in-situ experiment. Figure 7.8 plots also the horizontal reaction force over the an-

gular strain. The numerical results present the same initial stiffness behavior as

the results from the experimental curve. Also the ductility can be reproduced very

properly.
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However, the peak value of approximately 150.0 kN cannot be reached by the

numerical macro model analysis. Nonetheless, this material model is considered

to be on the safe side, since the peak value is less than the value reached in the

experiment. One must also have in mind, that the virtual laboratory takes into

account distinct deformation cases that serve for the model calibration. A discussion

about this behavior in connection with the application to the large scale structure

is following in this chapter.

Figure 7.8: Post machine learning macro model analysis of the Palacio Pereira in-
situ shear test. Showing a) the FE mesh, b) the first principal strains at the ultimate
analysis stage, and c) the horizontal reaction force plotted against the angular strain
for the numerical macro analysis and the recorded values during the experiment

7.3.5 Macro scale pushover analysis of Palacio Pereira

The mass proportional pushover analyses in kratos multiphysics are carried out

by utilizing the machine learning based homogenized material damage law elabo-

rated in the previous sections. In this context, the orthotropic approach, applying

the previously defined transformation procedure (with T from Eq. 7.3) is consid-

ered. In addition an isotropic approach is applied, where the transformation matrix
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T is equalized to the identity matrix I.

The aim of this analyses is to compare the results with the ones obtained by

the conventional approach applied in diana fea, where the material is considered

isotropic. Therefore, the equal FE mesh discretization of the South and East facade

used in diana fea of the Palacio Pereira is elaborated for the kratos multi-

physics analyses. Figure 7.9 shows both the FE models.

(a) South facade

(b) East facade

Figure 7.9: Two dimensional FE models of the facades of the Palacio Pereira for the
numerical analyses in kratos multiphysics

Each analysis is carried out analogously to the pushover analysis performed in

diana fea. In a first step the selfweight is applied by activating gravity acceleration.

Secondly, monotonically increasing horizontal accelerations are applied to the model.

Each one is preformed until failure. Section 7.4 presents the results and compares

them with the ones obtained in the diana fea analyses.

7.4 Results and discussion

This Section presents the results of the pushover analyses of the Palacio Pereira. It

gives a comparison of the conventional macro scale and the machine learning based

homogenization approach for the application of smeared damage models. Firstly,

a short discussion about the linear elastic parameters is given. In a second step,
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the control node displacements, the damage patterns and the failure modes of the

seismic pushover analyses will be presented and discussed.

7.4.1 Linear parameters

Equation 7.4 shows the plane stress linear elasticity matrix Cconv of the diana fea

macro model analysis. With the Young’s modulus and the Poisson’s ratio being

E = 775.0 MPa and ν = 0.2.

Cconv =

807.29 161.46 0.0

161.46 807.29 0.0

0.0 0.0 322.92

MPa (7.4)

When comparing this matrix with the elasticity matrix of the machine learning

approach at isotropic scale (Equation 7.2 ) a slightly stiffer, but almost negligible

difference in linear behavior at isotropic scale of both the approaches is expected.

The following Section clarifies this statement.

7.4.2 Nonlinear analyses

7.4.2.1 Comparison of in-situ analysis results

Figure 7.10 shows the results of the macro model analysis performed in diana fea

and the micro model analysis carried out in kratos multiphysics that has been

utilized to calibrate the respective damage material models. The models parameters

were adjusted in order to be able to numerically represent the results of an experi-

mental in-situ test carried out in the Palacio Pereira. Figure 7.10 also presents the

results of the post machine learning application of the trained macro model law.

7.4.2.2 South facade

Conventional macro approach Figure 7.11a shows the ultimate displacement

of the pushover analysis carried out with diana fea. First cracks appear at a base

shear force of around Fx ≈ 1.2MN in the centered and the right neighbored spandrel

at the first floor. These shear cracks evolve with increasing lateral acceleration. At

a base shear force of approximately Fx ≈ 1.5 MN shear cracks also appear in the

spandrels of the base floor. While the lateral force is increasing further, the cracks
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Figure 7.10: Numerical and experimental results of the Palacio Pereira in-situ experi-
ment, showing the horizontal force plotted over the angular strain for the experiment
and the numerical analyses carried out in diana fea and kratos multiphysics
by considering a conventional macro model, a micro model and a machine learning
based macro model calibration.

grow and at a maximum base shear force of Fx,max ≈ 1.8 MN they completely

disconnect the right part of the south facade from its left part. The final crack goes

from the third opening at the base floor towards the fourth opening at the first floor

and from there a diagonal shear crack going upwards further divides the facade. All

locations are indicated from the right edge of the facade. Figure 7.12a shows the

ultimate crack pattern of the south facade analysis by plotting the contours of the

crack widths.

Machine learning based homogenization approach Figure 7.11b shows the

ultimate displacement of the pushover analysis performed with kratos multi-

physics and the orthotropic law. The first damages appear at a base shear force

Fx ≈ 1.5 MN above both the biggest openings in the center of the facade. With

increasing lateral acceleration the cracks start growing and further cracks appear in

the remaining spandrels. While further increasing the load up to Fx ≈ 2.5 MN ,

two main shear cracks start to develop. One of them starting at the spandrel of the

biggest opening in the first floor and the other expanding in the base floor from the

opening right to the biggest one. At a maximum base shear of Fx,max ≈ 2.7 MN

both these cracks are connecting to a single crack entirely disconnecting the right

part of the facade from the left part so that total failure occurs. This mechanism

can be further investigated by considering Figure 7.12b. It shows the crack patterns

of the pushover analysis at ultimate stage by plotting the contour of the tension

damage parameter d+.
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(a) Conventional approach diana fea

(b) Machine learning approach kratos multiphysics (orthotropic)

Figure 7.11: South facade Palacio Pereira: contour plots of the horizontal displace-
ment at failure of the structures, showing the results for the analysis in diana fea
and kratos multiphysics

Pushover curves Figure 7.13 shows the pushover curves for the conventional

(diana fea) and the novel machine learning approach (kratos multiphysics)

in terms of isotropic and orthotropic analysis approach, respectively. It plots the

recorded base shear force Fx versus the horizontal control node displacement dx.

The control node is located at the most upper right corner of the model for both

the analyses.

Both the curves of the conventional and the isotropic machine learning based

approach show an equal linear elastic behavior and thus outline a similar rigidity

of both the models. This is in a very good agreement with the discussion already

held in Section 7.4.1. When considering the orthotropic machine learning based

approach, a slight decrease of stiffness can be observed.

However, a difference can be detected when comparing the maximum base shear

forces. The conventional macro scale analysis performed in diana fea has a max-

imum force of Fx,max = 1.8MN . This value undercuts the capacity of the machine

learning based homogenization approach, as well as for the isotropic and the or-
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(a) Conventional approach diana fea

(b) Machine learning approach kratos multiphysics (orthotropic)

Figure 7.12: South facade Palacio Pereira: contour plots of the cracks at failure
of the structures, showing the results for the analysis in diana fea and kratos
multiphysics

thotropic approach, significantly. Since both the maximum values lie at approxi-

mately Fx,max = 2.7MN .

Comparison with real earthquake damage Figure 7.14 shows two photos of

the south facade in the damaged state captured after the 2010 Santiago de Chile

earthquake. Shear cracks can be found in the spandrels of the building. A large crack

is present in the spandrel at the center of the building which has been also detected

by the numerical analyses. Furthermore Figure 7.14 also shows the cracks above the

openings of the base floor that have been a result of the numerical analyses, too.

7.4.2.3 East facade

Conventional macro approach The horizontal displacement at an significantly

damaged state of the pushover analysis performed in diana fea is shown in Figure

7.15a by presenting a displacement contour plot. The damage mechanism develops
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Figure 7.13: South facade Palacio Pereira: pushover curves showing the base shear
force Fx plotted against the control node displacement dx of the most upper right
node of the FE models for the conventional diana fea and the isotropic and or-
thotropic machine learning kratos multiphysics approaches

as follows. The first small cracks initiate at a base shear force of approximately

Fx ≈ 1.4 MN . Those cracks are located above almost all the openings spread over

the facade. Further increasing the horizontal load up to Fx ≈ 1.7 MN leads to the

development of the two principal cracks located at the spandrels of the southern

part (left) of the east facade. At a maximum base shear force of Fx,max ≈ 2.2 MN

the principal cracks are further expanding so that the right part of the facade is

disconnected completely from the left part. Total failure has been reached. This

mechanism is also clarified in Figure 7.16a. It demonstrates the crack pattern of

the pushover analysis for the east facade by showing the contour plot of the crack

widths.

Machine learning based homogenzation approach Figure 7.15b depicts the

horizontal displacement of the pushover analysis carried out in kratos multi-

physics considering the orthotropic approach at the ultimate stage. The failure

has developed as follows. First damage starts with a base shear force of Fx ≈ 1.8

MN . Cracks initiate above almost all the spandrels of the facade. While further

increasing the load up to Fx ≈ 2.5 MN , two main cracks at the openings of the

southern part (left) of the east facade evolve. Within an increase of 0.3MN these

cracks are expanding so that the facade is separated completely. The total failure

mechanism occurs at a shear base force of Fx,max ≈ 2.8 MN . Figure 7.16b also
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(a) (b)

Figure 7.14: South facade Palacio Pereira: Photos of damages present in the facade
after the 2010 Santiago de Chile earthquake, showing large shear cracks in and above
the spandrels of the window openings

illustrates the corresponding failure mechanism by showing the contour plot of the

tension damage parameter d+.

Pushover curves Figure 7.17 plots the pushover curves for the numerical analyses

of the Palacio Pereira east facade. It has been evaluated analogously to the curves

of the south facade.

Again, the curves of the conventional diana and the isotropic machine learning

based kratos approach show a similar linear elastic behavior, while considering

orthotropic behavior a slight decrease of stiffness can be observed.

However, the maximum shear forces, differ significantly. While the conventional

approach has a force limit of Fx,max = 2.2 MN , the capacity of the machine learning

based homogenization approaches is greater. It counts for the isotropic approach

Fx,max ≈ 3.0 MN and for the orthotropic one Fx,max ≈ 2.8 MN .

Comparison with real earthquake damage Figure 7.18 shows a photo of the

east facade of the Palacio Pereira. It depicts damaged areas at the most left part

of the facade. A crack can be found at the upper floor close to the second opening.

This crack has also been presented by both the numerical analyses.
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(a) Conventional approach diana fea

(b) Machine learning approach kratos multiphysics (orthotropic)

Figure 7.15: East facade Palacio Pereira: contour plots of the horizontal displace-
ment at failure of the structures, showing the results for the analysis in diana fea
and kratos multiphysics

7.4.3 Discussion

The presented numerical analyses of the Palacio Pereira facades has utilized a con-

ventional and a novel approach of defining the macro model material damage laws.

It has been shown that on the isotropic level both the techniques show similar elastic

behavior. Whereas a decrease of stiffness is observed when applying the orthotropic

transformation. A discussion about the linear elastic parameters has been carried

out in Section 7.4.1. And the seismic pushover analyses have underlined this.

Furthermore it has been shown that the capacity of the novel machine learn-

ing based approach is significantly greater than the one obtained by applying the

conventional approach. However, this is only true for the comparison of the results

from the large scale structures. When discussing the results of the numerical in-situ

experiment, the capacity of the conventional material model is greater than the one

of the machine learning based model.

These differences may lie in the assumptions made during the conventional model

calibration. This approach has just taken into account one specific calibration ex-

periment, namely the in situ shear test. The analyses carried out in this chapter

have shown that this hypothesis is not a limitation but results in more conservative

results on the safe side. On the other hand, the novel machine learning approach
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(a) Conventional approach diana fea

(b) Machine learning approach kratos multiphysics (orthotropic)

Figure 7.16: East facade Palacio Pereira: contour plots of the cracks at failure
of the structures, showing the results for the analysis in diana fea and kratos
multiphysics

has utilized the same experiment only for the calibration of the virtual labora-

tory micro model RVE. While performing the virtual laboratory, multiple different

strain-stress relations have been numerically tested and later used for macro model

training. Hence the trained model considers a wider scope of possible damage mech-

anisms and accompanying nonlinear behavior in a more complete model calibration

set. For the seismic analyses of the Palacio Pereira facades this leads to larger model

capacities.

Furthermore, the conventional macro model constitutive law does not consider

orthotropic behavior. It applies a smeared isotropic approach. However, masonry

is not an isotropic material. In contrast, the machine learnig based model applies

the transformation process from orthotropic to isotropic scales in order to take into

account the masonry’s orthotropy. Applying this approach to the here presented

Palacio Pereira has shown a signifcant decrease in stiffness when including the or-

thotropic behavior to the constitutive model.
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Figure 7.17: East facade Palacio Pereira: Pushover curves showing the base shear
force Fx plotted against the control node displacement dx of the most upper right
node of the conventional diana fea and the isotropic and orthotropic machine
learning kratos approaches.

7.5 Summary

This chapter has shown an application example of the machine learning based ma-

terial homogenization procedure to the seismic analysis of a large scale masonry

structure. The case study considered in this chapter has been the Palacio Pereira

that was also investigated in Chapter 3 of this thesis. The chapter has presented a

comparison of this novel material homogenization approach with an approach con-

ventionally used for large scale analysis of masonry buildings. In this context, two

dimensional nonlinear pushover analyses have been applied to the south and the

east facade of the building. These analyses have been carried out by means of con-

ventional macro scale analysis, and a machine learning based macro scale analysis.

In a first step, the conventional approach of defining macro model material prop-

erties for large scale analysis of masonry structures has been carried out. The facade

macro models have been calibrated by considering a single in-situ shear experiment

carried out in the Palacio Pereira. It has been shown that there exists a proper

homogeneous macro model that is able to numerically model the nonlinear cracking

behavior of the real experiment. This has been shown by comparing the results in

terms of force - strain curve. Very good results could be achieved. The tool used for

this conventional approach has been the FE software diana fea. The calibrated

FE macro model has then been utilized for the large scale analyses of the Palacio
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Figure 7.18: Photo of damages in the Palacio Pereira east facade after the 2010
Santiago de Chile earthquake, showing shear cracks over the openings at the most
southern part of the facade

Pereira facades. The obtained results of both the in situ test calibration and the

Palacio Pereira pushover analyses perfomed in diana fea have then served in order

to compare the results with the novel homogenization approach.

In a second step, the machine learning based approach has been presented.

Therefore, a micro model, that distinguishes between brick units and mortar joints

and considers the correct masonry bond of the Palacio Pereira, has been calibrated.

The result data of the in-situ experiment have been also utilized for micro model

calibration. In this context, a material model has been found for the brick units

and mortar joints, respectively. The results have been shown to be in a very good

agreement with the experimentally obtained results. Proceeding with the calibrated

micro model, the virtual laboratory has been performed by using the RVE, having

carried out the multiple virtual experiments and having stored the representative

strain stress states as training data. With these data, the material parameters of

a proper constitutive model have been elaborated. The linear elastic properties

have been computed by having applied the procedure of anisotropic to isotropic
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scale mapping. The nonlinear material law parameters have been obtained by the

machine learning based approach. The homogenized macro constitutive model has

been evaluated by performing a numerical macro scale analysis of the in-situ shear

experiment. An equal linear elastic behavior and a similar ductility could have been

observed. It has also been observed that the peak value of the macro analysis shows

a slightly smaller value than the in-situ, i.e. on the safe side.

The comparison of the results derived from the conventional macromodel and

the novel machine learning based approach has shown the following outcomes:

• The novel machine learning based homogenization approach is able to repro-

duce the orthotropic behaviour of masonry in the elastic range, beside the

conventional isotropic hypothesis. The linear elastic behaviors of the con-

ventional and the novel machine learning based homogenization approach are

equal at the isotropic level, and differ when the machine learning model con-

siders orthotropic behavior for the large scale structure analysis.

• The crack evolution and the failure mechanisms are very similar for the nu-

merical macro analyses of the in-situ experiment and the facades.

• The crack patterns of both the analyses comply with the cracks observed in

the Palacio Pereira after the 2010 Santiago de Chile earthquake.

• The peak value of the conventional macro model analysis is larger than the

one obtained by the corresponding machine learning based approach when

comparing the in-situ shear analysis.

• The capacity of the models utilizing the novel machine learning approach is

larger than the conventional macro model analysis when comparing the results

of the pushover analyses of the facades.

Novel achievements have been obtained by representing the anisotropy in the

masonry macro model by means of the machine learning based homogenization

approach. A first example at a small-scale structure, i.e. the in-situ experiment, has

shown a similar linear elastic behavior when comparing with the machine learning

based macro model, where orthotropy is applied to the macro model approach thanks

to the implementation of the transformation mapping procedure. This example has
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served as an evaluation test of the machine learning based model, and has presented

a good agreement between the different linear behaviors.

The second macro model analysis has been carried out for the large-scale struc-

ture. The results have shown a significant difference in the linear elastic behavior of

the machine learning based macro model when compared with that of the conven-

tional macro model one of commercial software. These outcomes are once again a

direct result of the implementation of the transformation mapping procedure within

the machine learning based macro model, which allows the representation of ma-

terial’s anistropy. It is worth noticing that the geometry of large masonry models

of entire building facades is much more complex than that of small single masonry

walls, due to the presence of openings and spandrels. This fact leads to more com-

plex stress/strain conditions during the analysis of complex masonry facades, and

the anisotropic behavior embedded into the macro model can exhibit a greater in-

fluence on the analysis results. The anisotropic response of the material to multiple

stress/strain conditions is directly considered in the machine learning based macro

model, since data coming from multiple virtual experiments, each one considering

different stress/strain conditions, are considered for model calibration. The obser-

vations of this large-scale application example have shown the significant influence

of the anisotropic behavior during numerical analysis of existing masonry build-

ings. These effects become more apparent the larger the analyzed structure is. The

machine learning based macro model has shown a better representation of this be-

havior than conventional macro model techniques in commercial software, where

the calibration of model parameters is challenging and often based on approximate

hypotheses.

189



CHAPTER 7. SEISMIC ANALYSIS OF PALACIO PEREIRA USING
MACHINE LEARNING BASED HOMOGENIZATION

190



Part IV

Conclusions

191





Chapter 8

Conclusions

8.1 Summary

The principal aim of this research has been the development of a homogenization

technique for masonry by using machine learning tools. The main motivation of the

thesis has been to define a homogenized material model that improves the conven-

tional approaches of defining the macro scale material properties of masonry. Ma-

sonry is a heterogeneous material composed of units and joints and homogenizing

its material properties comes along with simplifications that often tend to neglect

the material’s anisotropy. From a structural engineering point of view, modeling

such composite materials is a challenging task.

Recent investigations respected the heterogeneity of masonry by studying the

mechanical behavior by means of micro models. This approach carefully distin-

guishes between the material components by modeling separately their nonlinear

material responses. Results obtained from micro modeling have shown to represent

the damage patterns and failure mechanisms of masonry very accurately. How-

ever, these approaches are restricted to small scale masonry structures since their

computational effort is very high.

Therefore, special attention was given to techniques that average the hetero-

geneous material behavior and consider continuous continuum models. These ap-

proaches are known as macro scale models, able to afford the analysis of large-scale

structures with a minimum of computational effort. Both linear and advanced non-

linear static and dynamic analysis procedures could be applied to entire masonry

buildings. However, defining a strong tool that is able to determine robustly the
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macro mechanical material properties is still a pending task in the field. In order to

tackle this problem, the multi scale or homogenization techniques have received great

interest in the last decades, as their aim is to connect both modeling accuracy of

micro modeling and computational efficiency of macro modeling. These approaches

have shown to be very accurate. However, they still produce high computational

costs. Chapter 2 has pointed out these three modeling techniques (micro, macro

and multi scale) and their main contributions to the field in order to illustrate the

main tasks of the present research.

Chapter 2 has introduced machine learning and its possible inclusion as a mod-

ern tool for the homogenization of the masonry material. A short presentation of

machine learning history and its original application has been made. Explicit in-

sight on the use of machine learning in structural engineering have demonstrated its

ascending position in the current research.

As mentioned above, the macro modeling technique has opened new doors for

the numerical simulation of masonry structures. Masonry structures are able to bear

large compression loads, while masonry’s weakness lies in the low tension and shear

resistance. This issue makes masonry structures vulnerable to horizontal loads, such

as wind or seismic actions. In order to assess the vulnerability of complex and large

masonry structures, the macro modeling approach has shown to be one of the most

useful one. Chapter 3 has presented an advanced numerical earthquake simulation

technique for masonry structures. It has demonstrated the wide ranging possibilities

of macro modeling, and its positive effects on assessing the masonry structures. A

multi directional nonlinear static analysis procedure for irregular masonry structures

without box behavior has been developed. The application to a case study has shown

that the novel approach performs better than conventional pushover analyses, and

that the results are in very good agreement with nonlinear dynamic analysis results.

Furthermore, the limitations of macro modeling concerning the material property

definition have been presented by discussing a conventional approach of homogeniz-

ing the macro model material properties. Chapter 3 has shown the importance of

macro modeling for the numerical analysis of masonry on the one hand, but also

its strong dependency on the assumptions made during the process of choosing the

input material parameters on the other hand.

The use of macro modeling for masonry in commercial engineering has demon-

strated a general acceptance of using assumption-based macro material property
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definition. Therefore, this thesis has presented a machine learning technique that

trains the parameters of a unique constitutive law available for macro scale anal-

ysis with a more rigorous approach than in conventional practice. The presented

technique utilizes data from micro model analyses in order to optimize macro model

parameters. This procedure has been called machine learning homogenization tech-

nique in the present research. It consists of performing analyses at two stages: an

experimental campaign in a virtual laboratory, followed by and the actual constitutive

model training. The virtual laboratory covers the scope of training data production.

Those data, derived from a large amount of virtual experiments, have provided a

complete representation of the heterogeneous mechanical behavior of masonry micro

models when subjected to different stress/strain states. The second stage - consti-

tutive model training - includes the construction of the machine learning model and

its parameters’ training by being fed with the data from the virtual laboratory.

Both stages, the virtual laboratory campaign and the model training, have re-

quired the formulation of proper constitutive damage models. On the one hand,

these models must be able to represent the brittle behavior of the masonry com-

ponents for the micro scale analysis in the virtual laboratory. On the other hand,

their applicability to smeared macro scale approaches must be ensured. In the last

years, several detailed micro modeling techniques have been presented that utilize

continuum damage models for each component of masonry. Therefore, the present

research has considered a strain driven bi-dissipative damage constitutive model that

has been utilized successfully for the micro model analysis of masonry walls. Chapter

4 has presented this constitutive model in detail, including the description of yield

criteria and damage evolution laws. An application example has demonstrated the

model’s capability of representing the correct failure mechanisms and material re-

sponses when compared with experimental tests. The accuracy of the application

example has also justified the use of the constitutive model for the micro mechanical

analyses in the virtual laboratory.

Chapter 5 has presented the definition of the machine learning homogenization

technique and its implementation. Fundamentals on gradient descent optimization

and loss functions have been presented in order to detail the applied machine learn-

ing technique. The python based application programming interface (API) tensor-

flow has been introduced. This API utilizes the concept of computation graphs.

A computation graph is based on sequentially performed mathematical operations
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by taking an input and calculating the corresponding output. This concept has

shown to be suitable for the implementation of strain driven constitutive models,

since they are based on the same input-output principle (strains-stresses). Chapter

5 has presented the numerical implementation of the constitutive laws introduced

in Chapter 4 to a machine learning model.

The concept of the virtual laboratory has been introduced as a general tool

for the production of training data. The virtual laboratory is necessary since the

prediction accuracy of a machine learning model strongly depends on the quality

of the training data. In the present research, the data must have been able to

represent accurately the heterogeneous material behavior of masonry. Therefore,

a well defined micro model representative volume element (RVE) of the considered

masonry material has been the subject of this laboratory. The application of different

boundary conditions in multiple virtual experiments and the storage of their results

(coupled strain and stress states) have shown to be able to create a database that can

be utilized for model training. These sets contain information about the anisotropic

damage behavior of the micro modeled masonry RVE.

Chapter 5 has also clarified that the data coming from the virtual laboratory has

to undergo a modification in order to serve as correct training input for the machine

learning model. On the one hand, the selected constitutive model is defined in

an isotropic space. On the other hand, the real material behavior of masonry is

anisotropic. Consequently, the data isotropization procedure has been introduced

to connect both spaces. This approach includes the prediction of isotropic linear

elastic results, and the application of a transformation procedure.

Chapter 5 has been finalized with the definition of an anisotropic constitutive

damage model, based on the isotropic constitutive damage models presented in

Chapter 4 that have also been implemented as the machine learning models. The

optimization of these models has been obtained by utilizing the isotropized training

data. These optimized models still do not represent the anisotropic behavior of ma-

sonry. Therefore, the research has also implemented the transformation procedure

(utilized in data isotropization) to the post machine learning constitutive model.

In Chapter 6, the machine learning based homogenization techniques for ma-

sonry has been evaluated within an application example. A Flemish bond masonry

has been chosen in order to define a homogenized constitutive model for macro scale

analysis. The first step of the application has been the calibration of the material
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properties of a micro modeled wall. A numerical micro model of a diagonal com-

pression test has been constructed and the material properties of each component

have been modified in order to be able to represent the real experimental results.

The calibration results have also been used in order to demonstrate the accuracy of

the applied constitutive model.

Starting from the calibrated micro model, a RVE of the Flemish masonry bond

wall has been constructed. A virtual laboratory campaign has been performed by

applying a large variety of boundary conditions to the RVE. The stored results have

been passed through the data isotropization procedure in order to define the linear

elastic properties and the transformation requisites, and to prepare the data set for

model training.

A constitutive law has been implemented into the machine learning model, by

utilizing the law presented in Chapter 4 that better determines the macro model

behavior in tension and shear. The machine learning results have been evaluated

by running a second virtual laboratory. These results have been compared with

the predictions made by the trained model. The model has shown to be able to

accurately predict the peak values of the virtual laboratory results.

A final application of the post machine learning constitutive law has been per-

formed. Two numerical tests have been considered, i.e. a compression test and a

shear compression test. Having considered multiple tests demonstrates the perfor-

mance of the homogenized constitutive models when exposed to different stress/strain

conditions. Both tests were modeled at the micro and macro scale in order to com-

pare the results of the homogenized constitutive model and the micro model. The

obtained outcomes have shown that the macro model is able to represent results

similar of those derived from micro modeling.

After the application example of the Flemish bond masonry, the machine learning

based homogenization has been applied to a large scale structure. The investigated

case study has been the seismic nonlinear analysis of the main facades (south and

east) of the Palacio Pereira by means of mass proportional pushover analyses at the

macro scale. The analyses have been carried out by considering two different ap-

proaches, i.e. a conventional procedure of macro modeling and the machine learning

based macro modeling approach. The latter has been formulated both under the

hypotheses of isotropy and orthotropy. The constitutive law of the novel machine

learning based macro modeling approach has been elaborated in the same way as
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for the nonlinear model of the Flemish bond masonry of Chapter 6.

The analyses have been carried out by considering two different approaches of

homogenizing the masonry material of the Palacio Pereira. Firstly all the analy-

ses have been performed by utilizing a conventional procedure of macro modeling.

In a further step the same pushover analyses have been performed using the ma-

chine learning based macro modeling approach on an isotropic and an orthotropic

level. The constitutive law of the novel approach has been elaborated equally as the

nonlinear material damage law of the Flemish bond masonry.

The research has shown that both the conventional and the novel approach are

able to detect the real damage observed in the Palacio Pereira facades after the

2010 earthquake. When comparing the results of both the approaches, similar linear

elastic behaviors are observed on the isotropic level. The novel approach has also

shown to present a larger capacity than the conventional one.

The research presented in this thesis has shown to be able to calibrate a nu-

merical macro constitutive model for masonry, bay considering a significantly larger

number of experiments (on a virtual scale) than conventional macro model calibra-

tion procedures. This new approach gives a more versatile alternative than the ones

provided by commercial software.

8.2 Main contributions

The main novelties presented in this research lie in the following original contribu-

tions:

• The development of a novel pushover method for the seismic analysis of ma-

sonry structures at the macro scale. The so-called multi directional pushover

analysis has shown to be able to better represent the possible failure mecha-

nisms than conventional pushover techniques.

• The formulation of an anisotropic continuum damage model for nonlinear anal-

ysis of masonry structures based on a bi-dissipative d+/d− damage model for

masonry that better represents the tension damage evolution. A transforma-

tion procedure able to map from an anisotropic to an isotropic space has been

included into the model.
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• The definition of a machine learning technique able to homogenize a compos-

ite material like masonry. The smeared properties are presented in a single

damage constitutive model. In comparison to conventional homogenization

techniques, the novel procedure disconnects micro and macro analysis scale

while homogenizing the material, with important benefits in terms of compu-

tational efficiency.

• The elaboration of a virtual laboratory instrument able to numerically produce

data that can be utilized for big data analysis tools, such as machine learning or

artificial intelligence. This approach is clearly promoting the idea of assessing

the mechanical behavior of material by the use of directly processed data. In

this regard, an experimental campaign performed in the virtual laboratory

produced data that accurately represent the anisotropic behavior of masonry

and could be used for training of a specific machine learning model.

• The definition of a numerical transformation procedure that is able to find the

closest isotropic linear elastic properties to a given anisotropic material. This

method includes linear least square fitting, machine learning prediction and

the concept of space transformation. The procedure has been compared with

analytic procedures.

• The application and discussion of the developed homogenization tool to a

Flemish bond masonry wall. The proposed technique has shown to present

results that are in very good agreement with those obtained from micro mod-

eling.

• The application and discussion of the developed tool to a large scale masonry

structure. The case study of the Palacio Pereira, a heritage building located

in Santiago de Chile, has been investigated. The results obtained by the novel

tool have been compared with the ones of a conventional tool, as well as

with the damage patterns observed after the 2010 earthquake suffered by the

structure. The results have shown the possibility of exhibiting different linear

elastic behaviors (isotropic and anisotropic) and greater capacities of the novel

homogenization method.
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8.3 Suggestions for future works

The proposed machine learning homogenization technique has shown to result in a

damage constitutive model for the macro scale analysis of masonry that is able to

predict accurately the complex mechanical behavior of masonry. This concluding

section presents some possible ideas for future works, as potential continuation of

the present research.

• A larger amount of physical laboratory tests could be performed in order

to obtain an optimal matching between experimental and numerical behavior.

This contribution would improve the robustness of the developed methodology.

• The presented homogenization technique has shown to represent very accu-

rately the complex behavior of in-plane loaded masonry walls. However, ma-

sonry has shown to be very vulnerable when exposed to out-of-plane deforma-

tions, too. Therefore, a very interesting supplement to the present research

would be the investigation of machine learning homogenization techniques for

out-of-plane loaded masonry walls. This research would consist in consider-

ing shell elements for the RVE model, since those are able to represent the

out-of-plane deformations. Moreover, extended boundary conditions for the

virtual laboratory must be defined that are able to also expose the RVE to

out-of-plane displacements.

• The research has shown an application example of the homogenization tech-

nique to a two-dimensional Flemish bond masonry wall. The results are in

good agreement with those obtained by micro modeling. Further work may

address the extension to different bond patterns for masonry, and different

properties of materials contituents.

• The proposed method has been applied to the analysis of a real case study. A

future research may address the same activity by considering a complete mul-

tidisciplinary approach, combining both experimental and numerical tasks.

Possible stages of the investigation could be: i) execution of an experimental

campaign in order to evaluate the mechanical response of masonry both in-

plane and out-of-plane; ii) calibration of a RVE able to represent accurately the

experimentally observed material behavior; iii) execution of the machine learn-

ing homogenization technique, by including the virtual laboratory campaign
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and model training with extension to out-of-plane behavior; iv) application

of the post machine learning constitutive model to the macro analysis of the

three dimensional large scale structure.

• The massive research field of big data analysis offers many different machine

learning approaches. This work has considered the optimization of a predefined

mathematical model in terms of a constitutive law. Such laws are coherently

defined in a mathematical way and may restrict the intuitiveness of machine

learning. Therefore a proposal for future works could be the analysis of less

restricted machine learning models in order to homogenize heterogeneous ma-

terials. Starting from more flexible constitutive models and passing on to

complete data pattern analysis as done in artificial intelligence, e.g. regression

trees, deep neural networks etc.

• The present research has elaborated a method that is able to define the av-

eraged material properties of masonry for the application in nonlinear macro

scale analysis. There are also investigations that contributed strongly to the

improvement of macro scale analysis in general (e.g. crack tracking technolo-

gies, that are able to predict crack localization patterns more accurately).

Therefore, an overarching research for macro scale analysis could be investi-

gated by combining such techniques with the here presented machine learning

homogenization technique.

• The application of the machine learning homogenization technique to other

heterogeneous materials. The challenges of structural engineering for the 21st

century lie in the development of sustainable materials. The use of these

materials should support the construction field in order to reach well-defined

climate change goals. Numerical techniques should facilitate the structural

assessment of buildings constructed with sustainable materials. Such materi-

als are for example: masonry from upcycled bricks, fiber-reinforced concrete,

cross-laminated timber, etc. Therefore, a suggestion for future works is to in-

vestigate and apply the machine learning homogenization techniques to these

types of new materials.
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Appendix A

Seismic analysis of the Palacio

Pereira

A.1 Linear Seismic Analysis

A.1.1 Modal Analysis

The modal analysis of the Palacio Pereira is performed to obtain the modal shapes,

their eigenfrequencies and participating masses. Figure A.1 shows the trend of vari-

ation of the cumulative effective mass at each direction with the increasing number

of modes of vibration. For the x- and y-directions, a value around 70% seems to

be the maximum value that can be reached after considering 500 eigenmodes. This

result suggests to combine 500 modes in the response spectrum analysis to get the

most accurate results.

Figure A.1: Modal analysis: cumulative effective mass from the eigenvalue analysis
depending on the number of eigenmodes

Table A.1 shows the most important vibration modes derived from the eigenvalue

analysis, i.e. those with effective mass participation higher than 4%.
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Table A.1: Main vibration modes of the Palacio Pereira

Mode number Period Frequency Effective mass
[−] [s] [Hz] [%]
2 0.267 3.75 6.61

X 14 0.177 5.66 5.69
16 0.170 5.87 15.23
6 0.238 4.20 4.22

Y 17 0.161 6.21 14.40
18 0.156 6.40 18.28

Figure A.2 shows that the vibration modes reported in Table A.1 are local ones

and involve just small percentage of the mass of the whole structure. This result is

typical in irregular masonry buildings without box behavior.

A.1.2 Response spectrum analysis

The response spectrum analysis (RSA) of the Palacio Pereira is performed by us-

ing four different spectra, shown in Figure A.3. The elastic spectra of the 2010

earthquake are the same used by Sandoval et al. (Sandoval et al., 2017; Valledor

et al., 2015). The other two spectra are calculated following the Chilean standards

NCh433 (Instituto Nacional de Normalización, 2009) for a building with a soil type

III and a maximum ground acceleration A0 = 0.3 g, according to the location of the

building.

The reduction factor R∗, suggested by the Chilean standards for the reduction

of the elastic spectra in the RSA, is calculated as follows:

R∗ = 1 +
T ∗

0.1T0 + T ∗

R0

(A.1)

where T ∗ is the vibration period with the highest translational mass in the di-

rection of the analysis, T0 is a parameter depending on the foundation soil, R0 is the

factor of modification of the response according to the structural typology. Since

the RSA is executed along the two perpendicular directions x and y, two different

reduction factors are calculated. The parameter T ∗ = 0.170 s in the x direction, and

T ∗ = 0.156 s in the y direction, being the modes 16 and 18 those with the highest

translational masses in the two directions of the analysis, see Table A.1. The pa-
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(a) Mode 2 (x) (b) Mode 6 (y)

(c) Mode 14 (x) (d) Mode 17 (y)

(e) Mode 16 (x) (f) Mode 18(y)

Figure A.2: Normalized mode shapes with mass participation higher than 5 % in
the x-direction and higher than 4 % in the y-direction

rameter T0 = 0.3 for a type II soil, and R0 = 2 for unreinforced masonry buildings.

Therefore, the reduction factors R∗ = 2.48 in the x direction and R∗ = 2.44 in the

y direction.

The inelastic spectra of the 2010 earthquake record is evaluated by using the

same reduction factors R∗. Two different combination rules, the SRSS and the

CQC, are adopted. As mentioned in Section A.1.1, 500 eigenmodes are considered.

Figure A.4 shows the principal stress contours for major modes in the x-direction

(2, 14, 16) and in the y-direction (6, 17, 18) derived from the RSA with the 2010

earthquake inelastic spectra. The red contour indicates the regions in the building

where the tensile principal stress exceeds the tensile strength of the material of 0.12

MPa. These regions may be interpreted as cracks corresponding to the activation
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(a) Component in x direction (b) Component in y direction

Figure A.3: Acceleration spectra considered in the seismic assessment of the Palacio
Pereira

of local out-of-plane mechanisms (modes 2, 14, 6, 17), and in-plane failures in the

east facade (mode 16) and south facade (mode 18).

(a) Mode 2 (x) (b) Mode 6 (y)

(c) Mode 14 (x) (d) Mode 17 (y)

(e) Mode 16 (x) (f) Mode 18 (y)

Figure A.4: Response spectrum analysis with inelastic spectra of 2010 earthquake:
principal stress contours for major vibration modes in the x-direction.
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Machine learning homogenization

technique

B.1 Bézier regulators

In Section 4.3.1 three regulators to facilitate the post peak part definition of the

Bézier like damage evolution are introduced. The dependencies for the remaining

variables are then

fc,i = fc,j = fc,p

fc,k = fc,r + cc,1 · (fc,p − fc,r)

εj = εp + α · cc,2
εk = εp + α

εr =
(εk − εj) · (fc,p − fc,r)

fc,p − fc,k
+ εj

εu = cc,3 · εr

ε0 =
fc,0
E

εi =
fc,p
E

α = 2(εp −
fc,p
E

)

(B.1)

Where above equation presents the computation of the missing variables for
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the Bézier like damage evolution in compression. In order to compute the missing

variables for the damage evolution in tension, a substitution of the corresponding

values must be carried out. As shown in Equation 4.18 the factor A of the Bézier

definition may not be equal to 0. Hence the numerical implementation must ensure

this by customizing factor x2 as follows

x2 =

x2 + 1.0E − 06 · (x3 − x1), ifA ≤ 1.0E − 12

x2, else
(B.2)
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http://hdl.handle.net/10803/670566.
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Saloustros, S., Pelà, L., Roca, P., and Portal, J. (2015). Numerical analysis of

structural damage in the church of the Poblet Monastery. Engineering Failure

Analysis, 48:41–61.

Sandoval, C., Valledor, R., and Lopez-Garcia, D. (2017). Numerical assessment

of accumulated seismic damage in a historic masonry building. A case study.

International Journal of Architectural Heritage, 11(8):1177–1194.
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