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A una estrella despistada

Abstract
Quantum computing is a nascent technology with prospects to

have a huge impact in the world. Its current status, however, only
counts on small and noisy quantum computers whose performance
is limited. In this thesis, two different strategies are explored to take
advantage of inherently quantum properties and propose recipes to
seize quantum computing since its advent. First, the re-uploading
strategy is a variational algorithm related to machine learning. It
consists in introducing data several times along a computation
accompanied by tunable parameters. This process permits the
circuit to learn and mimic any behavior. This capability emerges
naturally from the quantum properties of the circuit. Second, the
unary strategy aims to reduce the density of information stored
in a quantum circuit to increase its resilience against noise. This
trade-off between performance and robustness brings an advantage
for noisy devices, where small but meaningful quantum speed-ups
can be found.
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Resumen

Castellano
La computación cuántica es una tecnología emergente con potencial

para resolver problemas hoy impracticables. Para ello son necesarios
ordenadores capaces de mantener sistemas cuánticos y controlarlos con
precisión. Sin embargo, construir estos ordenadores es complejo y a
corto plazo sólo habrá ordenadores pequeños afectados por el ruido y
sujetos a ruido (NISQ). Para aprovechar los ordenadores NISQ se exploran
algoritmos que requieran pocos recursos cuánticos mientras proporcionan
soluciones aproximadas a los problemas que enfrentan.
En esta tesis se estudian dos propuestas para algoritmos NISQ: re-

uploading y unary. Cada estrategia busca tomar ventaja de diferentes
características de la computación cuántica para superar diferentes obstáculos.
Ambas estrategias son generales y aplicables en diversos escenarios.
En primer lugar, re-uploading está diseñado como un puente entre la

computación cuántica y el aprendizaje automático (Machine Learning).
Aunque no es el primer intento de aplicar la cuántica al aprendizaje
automático, re-uploading tiene ciertas características que lo distinguen de
otros métodos. En concreto, re-uploading consiste en introducir datos en
un algoritmo cuántico en diferentes puntos a lo largo del proceso. Junto
a los datos se utilizan también parámetros optimizables clásicamente que
permiten al circuito aprender cualquier comportamiento. Los resultados
mejoran cuantas más veces se introducen los datos. El re-uploading
cuenta con teoremas matemáticos que sustentan sus capacidades, y ha
sido comprobado con éxito en diferentes situaciones tanto simuladas como
experimentales.
La segunda estrategia algorítmica es unary. Consiste en describir los
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problemas utilizando sólo parte del espacio de computación disponible
dentro del ordenador. Así, las capacidades computacionales del ordenador
no son óptimas, pero a cambio las operaciones necesarias para una cierta
tarea se simplifican. Los resultados obtenidos son resistentes al ruido, y
mantienen su significado, y se produce una compensación entre eficiencia
y resistencia a errores. Los ordenadores NISQ se ven beneficiados de
esta situación para problemas pequeños. En esta tesis, unary se utiliza
para resolver un problema típico de finanzas, incluso obteniendo ventajas
cuánticas en un problema aplicable al mundo real.
Con esta tesis se espera contribuir al crecimiento de los algoritmos

disponibles para ordenadores cuánticos NISQ y allanar el camino para
las tecnologías venideras.

English
Quantum computing is an emergent technology with prospects to solve

problems nowadays intractable. For this purpose it is a requirement to
build computers capable to store and control quantum systems without
losing their quantum properties. However, these computers are hard to
achieve, and in the near term there will only be Noisy Intermediate-Scale
Quantum (NISQ) computers with limited performance. In order to seize
quantum computing during the NISQ era, algorithms with low resource
demands and capable to return approximate solutions are explored.
This thesis presents two different algorithmic strategies aiming to

contribute to the plethora of algorithms available for NISQ devices,
namely re-uploading and strategy. Each strategy takes advantage of
different features of quantum computing, namely the superposition and
the density of the Hilbert space in re-uploading, and entanglement among
different partitions of the system in unary, to overcome a variety of
obstacles. In both cases, the strategies are general and can be applied in
a range of scenarios. Some examples are also provided in this thesis.
First, the re-uploading is designed as a meeting point between quantum

computing and machine learning. Machine learning is a set of techniques
to build computer programs capable to learn how to solve a problem
through experience, without being explicitly programmed for it. Even
though the re-uploading is not the first attempt to join quantum computers
and machine learning, this approach has certain properties that make it
different from other methods.
In particular, the re-uploading approach consists in introducing data

into a classical algorithms in different stages along the process. This
is a main difference with respect to standard methods, where data is
uploaded at the beginning of the procedure. In the re-uploading, data
is accompanied by tunable classical parameters that are optimized by a
classical method according to a cost function defining the problem. The
joint action of data and tunable parameters grant the quantum algorithm
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a great flexibility to learn a given behavior from sampling target data.
The more re-uploadings are used, the better results can be obtained.
In this thesis, re-uploading is presented by means of a set of theoretical

results supporting its capabilities, and simulations and experiments to
benchmark its performance in a variety of problems.
The second algorithmic strategy is unary. This strategy describes a

problem making use of only a small part of the available computational
space. Thus, the computational capabilites of the computer are not
optimal. In exchange, the operations required to execute a certain task
become simpler. As a consequence, the retrieved results are more resilient
to noise and decoherence, and meaningful. Therefore, a trade-off between
efficiency and resillience against noise arises. NISQ computers benefit
from this circumstance, especially in the case of small problems, where
even quantum advantage and advantage over standard algorithms can be
achieved.
In this thesis, unary is used to solve a typical problem in finance called

option pricing, which is of interest for real world applications. Options
are contracts to buy the right to buy/sell a given asset at certain time
and price. The holder of the option will only exercise this right in case
of profit. Option pricing concists in estimating this profit by handling
stochastic evolution models.
This thesis aims to contribute to the growing number of algorithms

available for NISQ computers and pave the way towards new quantum
technologies.





1. Introduction

Nature isn’t classical, dammit, and if you want
to make a simulation of Nature, you’d better
make it quantum mechanical, and by golly it’s
a wonderful problem because it doesn’t look so
easy.

Richard Feynman
The scientific and innovation community is nowadays immersed in the
advent of a new technological paradigm that promises to change the
world as it is known. The emergence of quantum technologies will
likely have a great impact in many different areas. In particular, a
great revolution is expected to occur in the field of computing, as firstly
proposed by Feynman [Fey82; Pre21]. Quantum computing is the main
field of study of the present thesis. However, it is also valuable to highlight
other emerging quantum technologies such as communication [GT07],
cryptography [Ben+92] or materials [Nat16].
The first inspiration to come to the idea of quantum computers was

the hardness to simulate natural phenomena. Classical computers were,
and still are, extremely valuable to deal with the description of the world
the human beings live in, but they fail at describing the Nature using the
laws of quantum mechanics. The exponentially large size of the quantum
Hilbert space is in fact responsible for this claim. The ideal solution to
this problem was first sighted by Feynman [Fey82], that is, to build a
computer following the same rules as Nature to describe its quantum
behavior, that is, a quantum computer.
In addition to simulating quantum mechanics, there are other relevant

consequences that emerge from this new paradigm of computation. Classical
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computers are formally defined with the concept of a Turing Machine
[Tur38]. Quantum computers cannot be a Turing Machine, but a
different kind, commonly known as a Quantum Turing Machine, where all
classical components are substituted by their more-sophisticated quantum
counterparts. Quantum computing was gradually extended until its range
of applicability reached fields outside the pure simulation of Physics,
for instance in the seminal works from Refs. [Bra+02; BV97; Deu85;
Gro96; Sho97], where some problems are treated whose resolution using
quantum devices is more efficient than using classical ones. This case
is commonly known as a quantum advantage. Quantum advantages
can be exponential, the most desired but rarest kind, for instance in
case of Shor’s integer-factoring algorithm [Sho97], and polynomial as in
Grover’s search algorithm [Gro96]. The main difference between both
cases steeps in two different complexity classes available in the field of
quantum computing [AB09; Vaz02]
In addition to the theoretical advantages of quantum computing when

dealing with a variety of problems, classical computers are slowly approaching
their physical limits. Moore’s law [Moo65] roughly predicts that the
components of classical computer will reduce their size and energy
requirements at a constant rate. This rate will necessarily come to
an end in the fabrication of components as it is nowadays performed
when the limit of quantum mechanics is reached. This phenomenon has
already started [Ben18].
Quantum computing is different from classical computing from first

principles. There exist two main inherently quantum properties that
differentiate both paradigms [NC10], namely entanglement and superposition.
Both are born from the definition of the quantum bit - qubit - and the
conjunction of several qubits.
One qubit is conceived as the quantum counterpart of a classical bit.

If bits can take values 0 and 1, then qubits are

|ψ〉 = α |0〉+ β |1〉 , (1.1)

with |α|2 + |β|2 = 1. The contemporary coexistence of both states is
known as superposition, that is, quantum states are linear combinations of
several well-defined states. A qubit only maintains its superposition state
if it remains unobserved. At the moment a measurement is performed,
the quantum state collapses to one of its well-defined states |0〉 / |1〉 with
probability |α|2/|β|2 and the superposition is lost.
If several qubits are set together, it is possible to obtain a quantum

state as

|ψ〉 =
2n−1∑
i=0

αi |i〉 , (1.2)
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with
∑2n−1

i=0 |αi|2 = 1 and |i〉 is the combination of |0〉 and |1〉 that
corresponds to the binary representation of i. It is clear that there are 2n

available complex coefficients, while a naive product conjunction of single-
qubit states would return only 2n degrees of freedom. Entanglement is
responsible for the emergent properties among different quantum systems
to give rise to joint systems much larger than the sum of isolated parties.
In particular, the dimensionality of the Hilbert space grows exponentially
with the number of qubits. It is also important to note that quantum
computing makes use of exponentially high-dimensional spaces, but these
spaces are dense as well. In contradistinction, classical computing is built
upon discrete possibilities of strings composed of 0’s and 1’s.
Despite the theoretical advantages presented above and the aforementio-

ned results, there are prominent inconvenients to be overcome before the
existence of quantum computers is a reality. Those inconvenients are
mainly related to quantum decoherence preventing quantum systems with
many entangled particles to show quantum behavior and the inherent
difficulty of experimental accurate control over these systems [HR96;
Lan95; Unr95]. Even though different proposals already appeared to
solve or at least reduce the impact of decoherence and reach a completely
operational fault-tolerant quantum computing [AB08; Got97; Sho95;
Sho96; Ste96], a physical realisation of such devices is still far from being
possible.
The current scenario corresponds to the Noisy Intermediate-Scale

Quantum (NISQ) era [Pre18], that is a moment in time when available
quantum computers have moderate numbers of qubits, around hundreds
of them, and the logical operations available to apply on the qubits
are not completely accurate. In addition, quantum states cannot be
indefinitely maintained along time and the purely quantum properties
are steadily lost during the execution of a quantum algorithm. The two
greatest achievements until the present time are a double attainment of
the so-called quantum supremacy, that is, using a quantum computer
to solve a problem more efficiently and with better performance than
any classical computer [Aru+19; Zho+20]. In both cases, the problems
solved are picked to favor the quantum implementation, and they are
of no particular interest except for the experiment itself. However, the
technological improvement needed to actually accomplish this goal must
be highlighted. On the other hand, computers in the NISQ era are
not expected to change the world by themselves, but rather to be an
intermediate step towards a new generation of devices.
One of the most prominent fields of research for NISQ devices are

Variational Quantum Algorithms (VQA) [Bha+21; Cer+20]. These family
of algorithms are constructed as hybrid models combining quantum and
classical resources. The chosen models are usually quantum circuits
with fixed architectures but adjustable classical parameters. The circuits
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are trained using a classical optimizer in such a way that an optimal
configuration of parameters suffices to reach approximate solutions to a
problem of interest. Variational approaches aim to use classical resources
to mitigate possible hardware imperfections and limit the demand of
quantum requirements.
Another burning question is how to construct algorithms for quantum

computers that are resilient enough to noise as to retrieve meaningful
outcomes from the device. An extended, not unique, approach consists
in spreading the information contained within a quantum system into a
much larger one. The information is now encoded as a global property of
the quantum system, much harder to destroy and with a chance to be
recovered from a partial decay of the system. Specific implementations
differ among different examples [Kit03; Ste96].
In this thesis a work for both a VQA and a deterministic noise-resilient

algorithm are presented. In the first case, a VQA framework is developed
to present a general strategy capable to address a wide variety of Machine
Learning (ML) problems. The strategy is here referred as the re-uploading
strategy. For the noise-resilient algorithm, an example of a real-world
problem related to financial calculations is explored to demonstrate
quantum advantage already feasible on current quantum computers. It is
here called unary strategy.

Re-uploading strategy

The re-uploading strategy described along Ch. 3 is a very general
framework to bring the fields of quantum computing and ML together.
ML comprisses all algorithms that can learn how to solve particular
problems from sampling data, without being explicitly designed for it.
Re-uploading is not the first approach to attempt this path, see Ch. 2 for
a brief review on different subjects on this topic. However, re-uploading
comes up with a novel idea: data serving as input to any ML algorithm
is introduced several times into a quantum circuit. The re-uploading
strategy belongs to the class of hybrid quantum-classical algorithm.
The idea behind the repeated injection of data into the quantum circuit

is to explore all the available Hilbert space and take advantage of it. As
mentioned before, the Hilbert space available for performing computations
is not only highly dimensional, but also dense, in contradistinction to
the classical scheme of computation. To accomplish this goal, the data is
interspersed with series of tunable parameters. These parameters, when
optimized, drive the behavior of the quantum circuit to approximately
what is required to solve a given problem. This behavior is learnt by
sampling a training data as in all ML algorithms.
The key ingredient that makes the re-uploading strategy useful for

ML is the natural emergence of non-linear properties. Non-linearities
are needed in ML to make models capable to approximate arbitrary
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functions, and then capable to learn and mimic the properties of any
data. In classical models for ML, non-linearities are artificially introduced,
unlike in the re-uploading strategy here presented, where non-linearities
arise naturally from the quantum properties of the circuits.
In this thesis, several aspects of re-uploading are treated. First,

theoretical support is given as a justification to use the method with
general purposes. Although theoretical support is made explicit for
particular cases, general arguments are given to glimpse universality for
broader situations. Then, several applications of the re-uploading strategy
for different problems are developed with satisfying results to benchmark
its performance in different scenarios. The implementations have been
implemented on noiseless and noisy simulations of quantum systems, and
on actual quantum devices, where the performance degrades in average
as the noise increases. The examples of this thesis include regression of
test functions, classification of data and extracting physical results from
experimental data using the re-uploading strategy.

Unary strategy

The unary strategy aims to explore the possibility to reduce the overall
performance of quantum algorithms in exchange to gain robustness against
noise. In the present work, this is accomplished by reducing the Hilbert
space used along the computation. This way, the information in the
quantum state does not spread over all the available space, and thus
decoherence and noise do not destroy the quantum state entirely. The
unary strategy is used in this work to solve a problem of quantitative
finances called option pricing. This is a real-world problem with realistic
applications.
The algorithm is built on the unary representation of quantum states.

The Hilbert space considered takes into account only those states in the
computational basis where there is only one qubit in the |1〉 state, and
all others qubit are |0〉. On the one hand, this reduces significantly the
amount of information that can be stored into the quantum state, from
eO(n) to O(n). On the other hand, this reduction simplifies the circuit
needed to execute a given algorithm, which translates into a mitigation
of potential errors. In addition, the unary algorithm always resides in
the restricted area of the Hilbert space, and thus any measurement must
reflect this fact. This triggers a native post-selection mechanism that
permits to mitigate errors.
The financial problem to be solved is known as option pricing. The

holder of an option gets the right to buy/sell a given asset at a certain
price and date. This right is only exercised if it grants some economical
benefit. The problem of option pricing consists in estimating the expected
pay-off of this option by running a stochastic model of price evolution.
Even though the theoretical and asymptotical performance of the unary
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algorithm is low with respect to the standard representations. The aim
of unary strategy is not to compete against other efficient methods,
but rather to show that it is possible to obtain a trade-off between the
quantum advantage obtained and the resilience against noise. In the
current NISQ era, robustness brings advantage since more theoretically
efficient approaches retrieve meaningless final results. In addition, a
slight quantum advantage is possible even in the less efficient unary
scheme thanks to the Quantum Amplitude Estimation (QAE) recipe.
Furthermore, practical applications of the option pricing problem make
it useful in the first NISQ era.

Structure of this thesis
Chapter 2 covers a brief overview of the status of both classical and

quantum ML. This chapter gives, first, an overall context of the current
situation, and second, all background serving as preliminary contents for
next chapters.
In Chapter 3, the entire re-uploading strategy is covered as described

above. This chapter is composed by different sections treating distinct
subjects. Technical appendices to this chapter can be found in App. A.
The content of this chapter is based on the works in Refs. [Dut+21;
Pér+20a; Pér+21a; Pér+21b; Pér19; Pér21].
In Chapter 4, the unary strategy and its implementation for financial

problems is explained. Technical appendices to this chapter can be found
in App. B. This chapter is based on the works in Refs. [Ram+21; RP20]



2. Quantum and Classical ML

The world isn’t getting any easier. With all these
new inventions I believe that people are hurried
more and pushed more... The hurried way is not
the right way; you need time for everything - time
to work, time to play, time to rest.

Hedy Lamarr
Machine Learning (ML) is nowadays one of the most important fields of
computation, being ubiquitious both in research and industry. In recent
years, it has gained a strong presence mainly due to the improvement of
computing techniques and the increase of available data, both aspects
supported by the emergent surge of technological capabilities. ML
has been used to develop algorithms capable to solve complex tasks
in an automatic manner. For instance, a classic problem of ML is to
automatically recognize handwritten digits [Den12]. Current capabilities
allow to solve much more complex problems, being the most prominent
playing chess [CHH02], Go [Sil+16] or solving the protein folding problem
[Jum+21]. The scientific research also benefits from the development of
ML [Car+19]
ML is a broad field including all different algorithms and techniques

with the capability to improve automatically by collecting experience and
sampling data. [MCM13; Mit+97; Rus10]. These algorithms can learn in
a general sense, and are prepared to carry specific tasks without being
specifically programmed with this purpose.
The main three steps needed to carry a given ML algorithm are

essentially:
1 Model design: the architecture of the ML model is created. These
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models usually have some more or less fixed structure with tunable
parameters. Those parameters can reach the number of millions in
some complex cases. The chosen architecture can be in principle
designed from scratch. Nevertheless, there already exists a catalogue
of pre-defined models whose competitive performances have been
proven under broad conditions. In most cases, the pre-defined
architectures can be adjusted to match the needs of the problem to
solve.

2 Training: once the model is obtained, it is compulsory to tune the
parameters in such a way that the algorithm is capable to solve a
given task. This is done by learning from some training dataset.
The action of the model is to receive some input (x) and return
some output (y) = f(x). Ideally, the output y provides the solution
to the problem of interest. The training is done by improving the
obtained solution for the values of x provided by the dataset. In
case the dataset also includes the expected solution, the training is
performed by comparing output and solution for the same point and
minimizing those differences. Otherwise, some more imaginative
methods are needed.

3 Generalization: the final aim of any ML technique is to generalize
the method, that is, being able to provide good results even for data
previously unseen. This step lies at the core of the ML strategies.
This step is checked by making the algorithm act on a different
dataset known as the test set. The output of this test set should
be correct and similar to the one of the training set. Otherwise,
the traning must be repeated to ensure generalization. There exist
techniques for achieving this goal.

There exist mainly three different approaches to tackle a problem using
ML techniques, depending on the features of the datasets to deal with:

• Supervised learning: In supervised learning the dataset contains
couples of both input and output. The goal of the algorithm is
to mimic the general behavior mapping input to output, both for
the training and for unseen data. Common applications of this
approach are regression and classification [Nie15].

• Unsupervised learning: In this case the dataset only has input,
and there is no possible reference for the possible output of the
algorithm. The training of the algorithm is accomplished by
comparing outputs of different inputs and understanding the similarities.
A celebrated application of unsupervised learning is clustering [DHS12;
Est02].

• Reinforcement learning: The main relationship for this problem
is the one between an agent (the model) and the environment. The
agent must obtain the best possible cumulative reward through
a given process by combining strategies of inmediate gains and
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Figure 2.1: Feedforward Neural Networks (FfNN). Left layer is the input,
while right layer is the output. Data is processed from left to right. In the same
layer, several processings are taken in parallel, one in each neuron. Different
steps are then carried in different layers.

further exploring [KLM96; Sch98].
The aim of this section is not to provide an exhaustive review of

ML techniques. Instead, it is a bibliographical shallow survey of those
techniques of both classical and quantum ML related to future content
in this thesis, in particular in Ch. 3.

2.1 Classical Machine Learning

In this section general concepts of Classical Machine Learning (CML)
are covered as a technical introduction to ML.

2.1.1 Neural Networks

Classical Machine Learning (CML) is mostly dominated by the presence
of Neural Networks (NN). They are a successful family of models capable
to solve a great variety of tasks with high performance. NNs are inspired
in animal brains. All NNs are composed by unit cells, neurons, that
process data. Each neuron receives some input and returns some output.
Input data is processed in each neuron depending on some fixed behavior,
commonly known as the propagation function, and tunable parameters.
In a NN, neurons are connected to other neurons following a specific
architecture. The connections between neurons can also be tunable.
The main strength of a NN resides on the emergent properties appearing

from the correlations between all different neurons. Data is processed in
several parallel and / or subsequent steps to give the chance to the NN
to disclose the most important joint properties of data. Therefore, a NN
is a method capable to find the most interesting pieces of the dataset to
solve the problem of interest.
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Feedforward Neural Networks (FfNN) are the most general model
for NNs and their basic architecture [Hof92; KLM96; Nie15]. This
architecture is versatile and provide good performances for a wide variety
of problems. Standard FfNNs can be simply defined as a series of layers
where neurons are connected between consecutive layers, see Fig. 2.1.
Each neuron receives some input ~x coming from the previous layer and
produces an output y, which is forwarded to the next layer. The general
behaviour of each neuron in the FfNN is

y = σ (~w · ~x+ b) , (2.1)

where ~w · ~x =
∑

j wj · xj , ~w is the weight vector connecting neurons, b
is the bias and σ(·) is known as the activation function. This function
can be chosen among different options, and it is not required that all
neurons have the same one. It is important to mention that this scheme
of weights and biases plays a key role to grant the NN enough flexibility
as to solve different problems by adjusting its parameters.
The explicit computation performed in every neuron is then as follows.

The role of the input layer is to introduce data into the NN, possibly
with some pre-processing performed within the neuron. In general, this
processing is void and the action of the input layer is just an identity map.
However, depending on the problems it can be convenient to apply some
refinement of raw data. In the case of the hidden layers, the processing
is given by the function

ylj = σ

(nl−1∑
k=0

wlj,ky
l−1
k + blj

)
; (2.2)

where l is the index of the hidden layer and j, k run over all neurons of the
corresponding layer. In terms of indices, the input layer can be labelled
with l = 0. Notice that this definition is recursive and the activation
function of each neuron has some other activation functions, possibly
different, together with the corresponding weights and biases. Therefore,
each layer adds a new step in the complexity of the final output provided
by the NN.
It is worth mentioning that there are theoretical results supporting

the general use of the FfNN model. The first result guaranteeing that a
FfNN can represent any continuous function, that is most functions of
interest, was obtained in Ref. [Cyb89]. In this preliminar but fundamental
result, the FfNN is restricted to be a single-hidden-layer NN, and the
σ(·) function is restricted to be a sigmoid (hence the symbol). A sigmoid
function satisfies the property

σ(x)→
{

1 as t→∞
0 as t→ −∞ , (2.3)
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and the most celebrated example is σ(x) = (1 + e−x)−1. Further results
extended the role of the σ(·) function to be any non-constant non-bounded
continuous function [Hor91]. The results supporting universality for multi-
layer NNs were achieved later [Les+93].
Apart from the basic FfNN model, there exists a great variety of

NNs whose peak performances are achieved under different conditions.
Recursive NNs apply the same connections recursively over a structured
input. They are for instances broadly used for Natural Language Processing
[HMS05]. Recurrent NNs connect layers with themselves and are useful
for handwriting or speech recognition [Gra+09; LW15]. Autoencoders
efficiently encode high-dimensional into small parameter spaces data [Kra91],
and they are applied in problems such as face-recognition and face-
generation [KW19]. Convolutional NNs apply filters to input data and
are commonly used in image processing [Val+20]. Boltzmann Machines
(BM) have capabilities to learn probability distributions over sets of
inputs [AHS85b; DS19].

Training the NN
The aim of any NN, in particular the FfNN model, is to learn from

input data to return input capable to solve a given problem. For the
simple assumption of a supervised learning problem, a given sample of
outputs is provided by the problem itself, namely ~yo. The action of the
NN can be in general described as a function

NN(~x;W,B), (2.4)

where W = {wlj,k} is the set of all weights and B = {blj} is the set of
all biases. It is straightforward to see that the aim is to make ~y ≈ NN .
In order to train the NN it is required to measure and minimize the
differences between these two quantities. This is usually accomplished by
defining a cost function χ2(W,B) such that the approximation is better
as χ2(W,B) decreases. A common example of this quantity is

χ2(W,B) =
1

2
Average
{~x,~y}

(~y −NN(~x;W,B))2 , (2.5)

although other possibilities can also be considered [Nie15].
The next step consists in finding an optimal set of parameters (W,B)

such that

(W,B)opt = argmin
{W,B}

χ2(W,B). (2.6)

This operation can be achieved in many different ways. In general, this
problem is passed to an optimization program returning an instance
of the optimal parameters, the corresponding value of χ2(W,B) and
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other informations depending on the method to optimize. Optimizing
a multi-variable function as in this scenario is in general a NP-hard
problem [Jai17; Par17], unless the landscape of χ2(W,B) is convex,
as in this case [Nie15]. There exists a large variety of optimization
methods capable to solve different problems, for instance those based
on gradients, such as Stochastic Gradient Descent (SGD) [Nie15], quasi-
Newton methods [Byr+95; Nas84; NW06], conjugate-direction [Pow64],
simplex sampling [NM65] or genetic strategies [Han06]. The performance
of each method strongly depends on the characteristics of the function to
optimize, and in general it is not possible to know which method is more
convenient for a particular problem prior to carrying the optimization.
The family of NNs have found in SGD a method returning high quality

solutions for many instances of problems of interest. The gradient-descent
piece consists in updating the sets of parameters (W,B) along many
iterations by

W l = W l−1 − ηW
∂χ2(W,B)

∂W
(2.7)

Bl = Bl−1 − ηB
∂χ2(W,B)

∂B
, (2.8)

where ηW,B can change along the process following different recipes [KB17;
Nes83; Qia99; Sut13; Zei12], and the derivative ∂χ2/∂{W,B} can be
computed exactly or approximately [Spa05; Spa98]. Thus, any gradient-
descent based method looks for a standard steepest descent. NNs can
use SGD methods very efficiently thanks to two features, namely batch
optimization and backpropagation [Nie15].
Batch optimization consists in estimating the gradient over only a subset

of the training set instead of averaging all the possible values of {~x}. In
every iteration, the choice of the training data subset is different. Batch
optimization brings two advantages respect to the standard gradient-
descent strategy. First, there is an improvement in the efficiency since the
number of function evaluations required per iteration is reduced. After
few iterations all the available values of input {~x} have been used and
thus participate in the optimization process, and thus the final result is
statistically identical to a standard procedure. Second, the alternation
between among subsets of {x} permits to circumvent local minima. In
case a given subset encounters a local minima for a given configuration,
this scenario disappears in the next iteration. It is then more likely to
reach nearly-optimal minima.
Backpropagation techniques lie at the core of optimization in NNs [Nie15].

This method allows to compute the gradient values with respect to all
different weights and biases efficiently. The results from layer i+ i are
recovered for layer i successively, and the global amount of operations
required is largely diminished. The backpropagation algorithm has as
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main computing rules

∂χ2(W,B)

∂bij
= δij (2.9)

∂χ2(W,B)

∂wij,k
= yi−1

k δij , (2.10)

with

δLj = (Oj − yLj )σ′(zLj ) (2.11)

δlj =
∑
k

wl+1
j,k δ

l+1
k σ′(zlj). (2.12)

Backpropagation is efficiently implemented because the number of operations
needed to obtain an estimate of the derivative is small. In addition,
it is entirely based on linear algebra and matrix-vector multiplication.
The hardware progress accomplished in the last years focuses on fast
and efficient implementation of these operations, in particular through
Graphical Processing Units (GPU) [NVF20].

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

y

Overlearning
Generalization fit
Training data

Figure 2.2: Graphical description
of the overlearning phenomenon. The
model is capable to fit the training data
(black dots) extremely well (solid red
line). However, the general behavior of
the training data (dashed blue line) is
lost in the process and not captured by
the fitting model.

An extremely successful training
process for NNs with large
number of parameters may
lead to an overlearning phenomenon,
see Fig. 2.2. Overlearning
appears when the training data
offers a great complexity. A
model with a large enough
number of parameters can
represent all tiny details present
in the training data, when
properly trained. However,
it is important to have in
mind that the scope of ML in
general is not to fit a given
training data, but to generalize
the properties of the training
data to provide competitive
solutions for unseen datasets.
Thus, overfitting must be avoided. There are several techniques with
this purpose, like controlling the number of parameters (W,B), adding a
normalization term λ(|W |2 + |B|2) to the cost function, or controlling the
performance on the test set to pick the best configuration with respect
to this metric, probably not the optimal one according to χ2(W,B).
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2.1.2 Support Vector Classifier
Support Vector Classifiers (SVC) are an alternative method to NNs for

supervised and unsupervised learning [Ben+02; CV95]. In these models,
the classification of data is performed by means of a support vector, hence
the name, capable to distinguish different classes. For instance, a couple
{~x, y}, with y = ±1, is classified by means of the hyperplane

~w · ~x− b = 0, (2.13)

where the classes y = ±1 correspond to both sides of the plane, ideally
with some margin if data is linearly separable. In case it is not possible,
the optimal boundary can be found by optimizing the cost function

χ2(~w, b) =
1

2
Average
{~x,~y}

(max(0, 1− y(~w · ~x− b)) + λ|~w|2, (2.14)

where λ determines a trade-off between increasing the margin-size and
retaining all samples in the correct side of the space. This parameter is
also related to the overlearning processes of Sec. 2.1.1.
There exists an alternative method to linearly separate non-separable

data, known as the kernel trick [Pre+86]. In this case, the data is
embedded into some non-linear function ϕ(~x) and a kernel function

Kij = k(~xi, ~xj) = ϕ(~xi) · ϕ(~xj). (2.15)

Subject to this transformation, weights and bias are transformed accordingly.
Tha main purpose of this kernel trick is to find a mapping from input
data ~x to other embedded space where classification can be done linearly.

2.2 Quantum Machine Learning
Quantum computers have some properties that make them suitable, in

principle, to solve problems related to ML more efficiently or accurately
than the standard classical counterparts. In particular, a quantum
computer with n qubits can store up to O(2n) real numbers in its inner
quantum state, while n bits are only capable to store n binary variables.
In recent years, a new surge of Quantum Machine Learning (QML)
algorithms has emerged dealing with many different problems. Some of
these examples are reviewed in this section, see for instance Refs. [Bha+21;
Cer+20] for condensed overviews. Complete reviews in QML can be read
in Refs. [DB17; Per+18].
This section does not include any quantum-inspired algorithm designed

to be executed on a classical computer in spite of their potential utility.
Quantum-inspired methods, in particular the celebrated Tensor Networks
(TN)s [BB17; Orú14a; Orú14b; Vid04; Vid07; Vid08; VMC08], take
advantage of efficient representations of quantum states to approximate
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them with high accuracies. TNs were originally conceived to store
quantum states, but they present high levels of flexibility and capabilities
to carry arbitrary data structures. Some methods apply the general
TN structure to solve ML problems, both in the field of quantum
physics [Tor+20] and general problems [Con+21; CWZ21; Mar+20;
RS20; SS17; Wan+20a]. General ML strategies used to solve problems of
quantum physics are neither considered in this section [Hua+21b].
QML has not accomplished yet an efficient and scalable manner to

introduce arbitrary data into a quantum circuit. This lack of uploading
methods constitutes a problem when looking for quantum advantages,
specially for exponential speed-ups. The reason is that embedding data
in a quantum state exploiting the complete storage capability requires the
specification of exponentially many terms. In case this translates into an
exponential number of operations, a bottleneck appears preventing any
remarkable quantum speed-up. This problem is expected to be overcome
by a Quantum Random Access Memory (QRAM) [GLM08], that is, a
quantum operation whose action is

U(x) |0〉 = |ψ(x)〉 , (2.16)

where x is the input data and |ψ(x)〉 is a quantum state where the input
data is encoded in some convenient manner. QRAMs aim to condensate
the loading of large amounts of data into a small number of quantum
operations. Nevertheless, no experimental implementation of a QRAM
has been achieved yet.

2.2.1 Supervised learning in QML

Many QML algorithms developed so far tackle the problem of supervised
learning, both for classification or regression of data. Strategies can
include hybrid quantum-classical schemes for optimization, but most
of them follow the same scheme of embedding classical data into the
quantum circuits and look for the optimal measurement dividing them,
as it was carried by classical SVCs.
To extend classical kernels to the realm of quantum computing it is

compulsory to define a quantum operation V (~x) taking as input the data
of interest and performing the operation

|ψ(~x)〉 = V (~x) |0〉 , (2.17)

where the choice of |0〉 as initial state is arbitrary since any other quantum
state could by chosen and the corresponding transformation could be
absorbed in V (~x). In the case where the data of interest is quantum,
there is no special needs to embed it in a quantum circuit.
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|0〉 / V (~xi) ×

|0〉 / V (~xj) ×

|0〉 H • H |Kij |2

Figure 2.3: Quantum circuit for
computing the kernel of two input data.
V (~x) embeds data into the quantum
circuit. The ancilla qubit performs a
standard swap test to measure the value
of the kernel for the ~x instances of
interest.

The kernel function can be
directly measured as

Kij = 〈ψ(~xi)|ψ(~xj)〉 , (2.18)

where the final K matrix
is hermitian with Kii = 1.
Ideally, |Kij | ∼ 0 if ~xi
and ~xj differ between them.
Moreover, the properties of
this kernel are a cornerstone in
the success of any supervised
learning task.

The existence of this kernel allows to perform supervised learning both
for classification and regression. During the first period of QML, these
methods were used to develop standard tools of ML using quantum
circuits with no variational parameter, such as a standard SVC [RML14]
and Principal Component Analysis (PCA) [LMR14]. Recent works show
that quantum kernel methods can only achieve quantum advantage if an
appropriate kernel is computed more efficiently using quantum means
than classical computation [KBS21]. In fact, a theoretical quantum speed-
up on supervised learning has been already accomplished [LAT21]. The
main feature of such algorithm is the dataset to be classified, specifically
chosen to be mapped to the discrete-logarithm problem. The discrete
logarithm belongs to the BQP class and can be solved with a quantum
computer exponentially faster than using a classical one [Sho97].
Two problems arise when implementing kernel methods as described

above on actual quantum computers. First, finding embeddings V (~x)
leading to kernel methods with competitive performances is far from
trivial. The Hilbert space reaches 2n dimensions, where n is the number
of qubits. The enormous dimensionality of the Hilbert space opens up
the space to embed input data in such a way that different instances lie
far from each other in the HIlbert space. To develop the mapping, it is
in general a requirement to include deep circuits with many entangling
gates and high connectivity between qubits. The literature does not
provide embeddings for almost any problem. Second, deep and complex
circuits do not perform properly on nowadays quantum computers due
to noise and decoherence. Thus, it is not expected that experimental
implementations of kernel methods provide competitive results in the
near-term. In fact, the discrete logarithm example [LAT21] requires a
Quantum Phase Estimation (QPE) step, including a Quantum Fourier
Transform (QFT) [NC10], which is out of scope for any state-of-the-art
quantum device.
It is also worth it mentioning a general algorithm to be used, among

others, in QML. The HHL algorithm [HHL09] is a linear algebra algorithm
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to invert matrices exponentially more efficient than any classical algorithm
under certain conditions. These conditions are a best-case scenario and
are usually not completely fulfilled. Inverting matrices has plenty of
applications in the field of ML, in particular for SVCs [RML14] or bayesian
learning [Zha+19]. However, the hardware demands of this algorithm
and derivatives cannot be yet satisfied by current machines.
In order to bring QML closer to the NISQ, several approaches emerged

to include VQAs in kernel recipes to exploit the capabilities of these
methods. VQAs constitute the largest family of quantum algorithms
at the present time. The usefulness of such algorithms is that they are
expected to provide approximate solutions to specific problems without
a great size or quality of the quantum computers, that is during the
NISQ era. VQAs are based on hybrid quantum-classical schemes. The
quantum part is composed by a circuit with a fixed structure and gates
depending on classical parameters. The exact operation performed by
the circuit depends on the set of parameters serving as input. The
classical part is a classical optimizer looking for an optimal set of circuit
parameters such that a given function of the measurement is minimized.
Canonic examples of a VQA are the Variational Quantum Eigensolver
(VQE) [Per+14] and Quantum Approximate Optimization Algorithm
(QAOA) methods [FGG14]. From a mathematical perspective, a VQA
can be seen as a circuit U(θ) performing the operation

|ψ(θ)〉 = U(θ) |0〉 . (2.19)

This U(θ) is commonly known as the Ansatz of the circuit and comprehends
both the architecture and the distribution of classical parameters. Then,
an observable M is measured for the output state |ψ(θ)〉, and some cost
function encoding the problem and depending both on M and θ, χ2

M (θ)
drives the search for the optimal configuration of parameters as

θopt = argmin
θ

χ2
M (θ). (2.20)

This kind of algorithms is only successful if two conditions are matched.
First, U(θ) must be flexible enough as to obtain an accurate approximation
to the lowest possible value of χ2

M (θ). Finding an Ansatz with the
properties to approximate a given state is no trivial problem [NY21;
SJA19]. Nevertheless, the existence Solovay-Kitaev theorem guarantees
accurate approximations with a manageable depth of the Ansatz [DN06;
NC10]. Second, the classical optimizer must be capable to find a
competitive configuration of optimal parameters. Related to this topic,
it has been recently demonstrated that training any VQA is a NP
problem [BK21], and further difficulties, such as Barren Plateaus (BP)
to be commented later, appear [McC+18]. As an attempt to avoid these
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problems, adiabatic strategies have been added to the existing variational
ones [GL18; STC21]
Mixing the framework of VQAs and kernel methods requires to define

the global operation

|ψ(~x, θ)〉 = U(θ)V (~x) |0〉 , (2.21)

and the output of the quantum circuit can be defined as

Kij = 〈ψ(~xi, θ)|M |ψ(~xj , θ)〉 , (2.22)

where M is an observable encoding some property of interest. It is
possible to compute the kernel by comparing the states corresponding
to labels i, j. However, it is also common to retrieve information only
of one index, say i, by directly measuring that state. For example,
taking |ψ(~xi, θ)〉 as a single-qubit state it is possible to relate Kii to some
function f(~xi) ∈ [−1, 1] by selecting M = Z. This approach is usually
taken both in classification [Llo+20; Sch+20] and regression [Mit+18].

|0〉 / V (~x) U(θ) 〈M〉

Figure 2.4: Quantum circuit
for measuring the expected
value of a given data ~x, as
in Eq. (2.22), with 〈M〉 =
〈ψ(~x, θ)|M |ψ(~x, θ)〉. If no
comparison between input data
~xi, ~xj is desired, no ancilla qubit
is required.

The canonical example of kernel
methods both with and without VQA
pieces is described in Ref. [Hav+19].
In this work, a simple yet useful
embedding map to classify 2-dimensional
input data instances into two different
classes is implemented on a superconducting
device. The classes are defined based
on measurement outcomes. The
standard kernel method show a clear
separation between classes. The

classifier using a VQA reaches a success of ∼ 95%.
Notice that the operator U †(θ)MU(θ), where θ stands for a set of

tunable parameters, is equivalent to finding the optimal measurement
to distinguish a certain property [Sch21]. This observation links with
the optimal separation of quantum states [Hel76]. Two quantum states
are completely distinguishable if they are orthogonal, and the certainty
to discriminate them decreases as the relative overlap increases. The
computational cost of obtaining the optimal measurement strategy grows
exponentially with the number of qubits. Thus, variational methods
aim to look for approximately optimal measurements with reduced
computational costs.
In order to improve the performance of these variational methods,

two main actions can be carried. The first one is to include variational
parameters φ into the embedding layer, V (~x, φ) to gain expressibility
in the kernel method. The second approach is to introduce the data ~x
redundantly into the circuit. A motivation is to multiply the available
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information in the circuit while circumventing the no-cloning theorem
[WZ82]. This theorem prevents the copy of quantum states. The idea of
redundancy was included in theoretical [VT20], numerical [Mit+18] and
experimental works [Hav+19].
A conjunction of both redundancy and variational parameters in the

embedding step was developed in terms of the re-uploading strategy,
greatly detailed in Ch. 3 [Pér+20a]. In the re-uploading and similar
strategies, the embedding and optimal measurement steps are fused into
one combined step. The addition of flexible embedding schemes allow to
find a quantum circuit capable to separate data in a nearly optimal
manner. In addition, a measurement maximizing distinguishability
is also accomplished. This strategy has already shown its universal
representation capability [Pér+21b; SSM21].

Training a VQA
Several properties of quantum computers must be considered when QML

algorithms rely on findign an optimal configuration of parameters must
be found. Many references delegate this search to the classical optimizer
without providing any other instruction to help with the procedure. It
would be straightforward to think that the process followed by any classical
optimizer is equivalent both for quantum and classical computation. It is
in fact expected that VQA can outperform classical methods during the
NISQ era [HN21] under certain conditions. This is, however, not true in
most cases.
The landscape defined by any quantum variational method is affected

by sampling uncertainties, what difficults the attainment of accurate
measurements. The only possible strategy to retrieve information from a
quantum circuit is by measuring observables. A measurement of interest is
repeated N to return an estimate of the expected value of such observable
as

〈M̄〉 = 〈ψ|M |ψ〉N , (2.23)

where the approximation to the exact expected value 〈M〉 measured with
an infinite number of shots is bounded by

|〈M̄〉 − 〈M〉| ∼ O(N−1/2). (2.24)

This phenomenon is inherently quantum and cannot be avoided due to the
nature of quantum computers. It can be only mitigated considering more
shots or performing techniques such as Quantum Amplitude Estimation
(QAE) [Bra+02]. Many modern classical optimization algorithms are
designed to seize all the numeric precision computers can provide [nik+20;
Vir+20], in particular for gradient-based methods [Byr+95; NC10; NW06;
Spa98]. The fine-tuning is required to achieve the best possible final
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results. The reason for this phenomenon is that many algorithms
take advantage of approximation methods whose peak performances
are matched at a particular and small computing precision. In case
these conditions are not fulfilled, the performance of the recipes degrades
severely.
A variety of methods have been developed to deal with the problem of

computing gradients in VQAs. First, there exist recipes to analytically
evaluate the gradient of a given quantum circuit with respect to some
parameter [Mit+18; Sch+19]. The evaluation is exact up to measurement
uncertainty. The key observation to design a gradient evaluator for
quantum circuits depending on ~θ is known as the parameter shift rule.
Gradient components with respect to some parameters are evaluated as
a combination of two circuit evaluations as

∂f

∂θi
= r

(
f(~θ + sêi)− f(~θ − sêi)

)
, (2.25)

where s = π/4r and r is the absolute value of the eigenvalues of the
unitary gate where θi comes into, annd êi is the unitary vector in the
direction i, that is only the i-th component of ~θ is modified. Notice
that this observation may looks similar to an standard finite-differences
method. However, it does not depend on any approximation and is, in
fact, exact. This way, only a sampling uncertainty error comes into the
calculation. Further works have extended these results to consider also
measurement phenomena [Swe+20], and have generalized the parameter
shift rule to compute not only first, but higher order derivatives [Hub+21].
Measurement uncertainty is not the only source of inaccuracies appearing

when optimizing VQAs. The presence of noise and decoherence also
contribute to erratic evaluations of functions on a quantum circuit. There
already exist attempts to use the possible noise occurring in the quantum
devices to estimate gradients more accurately [MBE21].
Another important inconvenient encountered for quantum circuit optimi-

zation is related to the landscape defined by the parameters and the cost
function to be minimized. Nowadays it is not clear what is the shape of
the parameters landscape, and thus it is difficult to actually design an
optimization method suiting these properties.
A first approach to minimize an objective function taking into account

the geometry of the landscape is provided by the Natural Gradient (NG)
algorithm. This algorithm is inherited from classical computing [Ama98],
and consists in evaluating gradients by weighting them with the Fisher
information matrix [Fis22; Sav76]. The aim of doing such trick is to gain
information about the landscape for optimizing a given function since the
Fisher information gives insights on the local geometry structure of the
landscape, and it is then more likely to obtain competitive results. Since
the first proposal of NG for quantum circuits [Sto+20], several recipes
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have been published to take profit of this feature [Bec+20; Cer+21a;
Gac+21; Mey21]. The main reason preventing a systematic application
of NG to the field of VQA is the large amount of measurements needed
per iteration.
A prominent problem for all the family of VQAs is known as the

BPs. This phenomenon is recognized when the average value of the
derivatives of a given circuit vanishes exponentially as the system size
increases [McC+18]. The direct consequence is that the landscape
becomes essentially flat and it is then extremely difficult to find a
parameter configuration with low values of the cost function of interest.
The phenomenon of BPs appear in many instances of VQAs [Bra+20a;
Bra+20b; HD21a]. The immediate consequence of the existence ofBPs is
that an exponentially large number of measurements is needed to resolve
an average derivative. BPs compromise the performance of gradient-free
optimization methods as well [Arr+20].
Two different sources give rise to BPs. First, the mapping of a set of

classical algorithms to an exponentially large Hilbert space induces large
separations between close sets, that is, the probability of two objects
to be close is exponentially small. The appearance of BPs is closely
related with the definition of the cost function of interest [Cer+21b;
UB21; UBY20]. In fact, local cost functions reduce the presence of BP.
The expressibility of the Ansätze has also a relationship with this source
of error [Hol+21; NY21; SJA19]. The landscape of BPs due to cost
function can be understood as a large flat space with a narrow deep well
in some point. It is extremely difficult to find the optimal point since
most of the parameter space does not provide any information about it.
The second source of error is the noise of the quantum circuit [Wan+21b].
Random errors make different outputs indistinguishable, and thus the
landscape is in average flattened.
BPs are nowadays the main problem to be overcome for achieving

quantum advantage in any VQA-dependent procedure. In case the BP
issue cannot be solved, it will be exponentially hard to train a quantum
circuit. Current methods cannot deal with a problem of such difficulties,
and quantum hardware is not competitive enough yet to execute this kind
of algorithms accurately. However, it has been shown for small circuits
that finding an optimal set of parameters is feasible. The improvement
of all different parts of VQAs will translate into the exploitation of NISQ
devices.

2.2.2 Other approaches in QML
This chapter is mainly focused on supervised learning due to its

connection to the novel work presented in subsequent chapters. Nevertheless,
other approaches in QML have also experimented large improvements in
recent years. In this section, some major contributions to this field are
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covered in order to give a broad perspective of the status of the field.

Quantum Boltzmann Machines
BMs are a model for ML coming from its classical approach. Even

though the model is well understood from a theoretical and mathematical
point of view, it is not broadly used. The main reason is that the training
of such model is not efficient in the classical case [AHS85a]. This property
may change with the advent of quantum computers since the training
methods differ and could take advantage of the special features of BMs.
The idea of BMs come from statistical physics. There exists a system

with a total energy, and the probability of finding a particular state
of the system when meauring depends on this energy. In a nutshell, a
BM is composed by neurons of two kinds: some neurons are visible and
some are hidden. The neurons can take continuous or discrete values
depending on the exact choice, and these neurons are connected by a
two-local hamiltonian

H(x; a, b) =
∑
{i,j}

aijxixj +
∑
i

bixi, (2.26)

where the weights ai,j and bi are supposed to control the behavior of the
model. In this hamiltonian there is no distinction between visible (v)
and hidden (h) neurons. The BM is then sampled to obtain a specific
configuration of the visible neurons. The probability of obtaining a given
visible result v is

P (v) = Z−1
∑
h

e−H((v,h);a,b), (2.27)

where Z is the partition function taking all possible outcomes into account
for normalization.
The main application of BMs, both in classical and quantum computers,

is to learn a probability distribution. The distribution can be taught
as a training dataset to mimic, or can be modeled by looking at the
relationships between different inputs as in unsupervised or reinforcement
learning schemes.
BMs have been recently explored both for circuit and adiabatic quantum

computing. In the case of circuits, examples considering VQAs [ZLW21]
and time evolution [Shi+20] were developed with appreciable success. In
the case of quantum annealing, the computer is used to train the model
adiabatically [Dix+21], leading to a much more efficient optimization
technique.

Autoencoders
Autoencoders are general recipes to transform raw data into much

more compressed versions of it to store and send it more efficiently while
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minimizing the loss of information. In the most extreme case where the
only information of interest is a label, a very large and sophisticated
data instance can be compressed to just an integer variable. In any case,
autoencoders must carry a compressor and an uncompressor to recover
the original data.
Quantum computing has developed several autoencoding algorithms

during recent years [ROA17; VPB18; Wan+17]. In addition to theoretical
proposals, experimental implementations have been already achieved
[PTP19]. It is worth it highlighting the work from Ref. [Bra21], which uses
the data re-uploading strategy presented in Ch. 3 to build an autoencoder.

Generative models
The aim of generative models, both for CML and QML is to learn a

probability distribution and sample synthetic data from this learning
[Du+20; LW18a; VBB19]. An interesting feature of generative models in
QML is that models receive as input some white noise that creates similar
but different outcomes. Quantum computers are capable to generate
purely random states that are beneficial in this subject. In addition, it
has been already shown that Born machines are capable to give rise to
generative models more efficiently than any classical method [Coy+20].
The model of quantum Generative Adversarial Networks (qGAN) is

the generative proposal for quantum computing, in this case using VQAs.
The overview of this approach is that two networks, a generator and a
discriminator, compite against each other. Only the discriminator must
be previously trained. This way, the generator learns to produce data
very close to the real one, and the discriminator knows to distinguish
accurately [LW18b]. Several examples of this approach have recently
emerged [RA19; ZLW19].

Quantum neural networks
In quantum neural networks, every processing unit from the classical

models is substituted by a qubit, and the connections among neurons
are translated into quantum gates. For instance, standard FfNN-like
quantum circuits [Alt01; FN18; TG19] and other models with different
purposes and architectures [CCL19; FG20] and convenient trainability
properties [Pes+20; Zha+20].

Reinforcement learning
In reinforcement learning for QML, the main expectation is that

quantum phenomena, namely superposition and entanglement, can provide
quantum speed-up with respect to classical methods [Don+08; DTB16;
DTB17]. Preliminary reinforcement learning algorithms have been already
tested [Jer+21].
In the quantum approach for reinforcement learning, agent and environment

have access to different Hilbert spaces and interchange information
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via unitary maps. The quantum mapping opens up a larger range of
possibilities as compared to the classical counterpart since there is much
more freedom in the former.
Reinforcement learning has been used both as an application of VQAs

and quantum annealing. In the case of variational circuits, subsequent
improvements have been accomplished increasing the efficiency and
hardness of the problem to solve [Che+20; LS20; LS21]. For the case of
annealing, the main quantum advantage can be achieved by optimization
of complex systems, in particular for BM [Cra+19]. Experimental
implementations have also appeared recently [Cár+18; Lam17; Yu+19].
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Las cosas que parecen duras tienen una elasticidad...
...una elasticidad retardada.

Julio Cortázar

One of the main features of quantum computing relies on the high
density of the computational space. Classical computing is built upon
discrete frameworks of strings composed of 0’s and 1’s, in contradistinction
to quantum computing where all superpositions of a number of states
are, in principle, available. Thus, every quantum computational system
conforms a dense space where an infinite number of states can be described.
The main focus now are the capabilities of the smallest possible quantum
system. A single qubit is defined by the computational eigenstates |0〉
and |1〉. As mentioned, this qubit can in principle be any state of an
infinite plethora of superpositions of both eigenstates. This observation
permits proposing algorithms where the focus is not on the different
states carried by a quantum computation, but rather on the coefficients
that define a given quantum state. In fact, a qubit can only store one bit
of information (0, 1, alternatively) in their states of the computational
basis, but there is room for two natural numbers (or one complex) in its
internal degrees of freedom. An example of a state fulfilling this condition
would be

|ψ〉 =
√

1− f2 |0〉+ feiφ |1〉 , (3.1)

with f ∈ [0, 1] and φ ∈ [0, 2π). In this example, the encoded complex
number is feiφ
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It is straightforward and efficient to drive one qubit to the state |ψ〉
by means of some single-qubit rotation. For example, starting from the
standard state |0〉, |ψ〉 = Rz(φ)Ry(2 arcsin(f)) |0〉. It is also direct to
extend this recipe to store functions f(x), φ(x) instead of fixed values in a
quantum circuit, only if the functional forms are known. Therefore, there
is room for any complex function z(x) ∈ C; |z(x)| ≤ 1 in a single-qubit
circuit. Thus, storing mathematical functions can be achieved by passing
the dependency on x to the parameters defining the operations in the
circuit.
In case the quantum system to manipulate is larger, the complexity of

the algorithm to tune all the coefficients of such state grows exponentially
with the number of qubits. In addition to naive approaches, some other
sophisticated techniques exist to deal with similar problems, like signal
processing or qubitization [Hua+21a; LC17; LC19].
The situation becomes much more complicated when the function to

store in the quantum system is known only through samples, that is, its
functional form remains veiled. In this case, it is simply not possible
to load well-defined functions to the circuit. This scenario becomes of
interest in the field of ML. The re-uploading strategy here presented
is a ML framework for learning functions from samples, that is solving
a problem generalizing data, using a quantum computer assisted by a
classical optimizer.
Re-uploading makes use of several gates depending on independent

variables or data x and some tunable parameters. The gates are standard
single-qubit rotations on the Bloch sphere. These gates are applied
sequentially, that is, the independent variable is re-uploaded throughout
the circuit. The more re-uploadings of x come into the circuit, the more
flexibility the circuit has to produce a determined output state. The
dependency in x within the gates is linear and kept simple, so that the
scheme can adapt to any kind of output state. It also avoids the emergence
of biases since no feature of the desired function is introduced in the
gates. The tunable parameters present in the different gates have the
power to arbitarily shape the final output state of a quantum circuit given
a sufficient number of re-uploadings. To find the optimal parameters,
classical optimization methods are utilized to force the output state to
match some conditions encoded within the definition of a loss function.
With these ingredients it is possible to claim that single-qubit systems
are capable to store in its degrees of freedom functions only learnt from
samples.
The re-uploading strategy permits to circumvent a fundamental limitation

existing in quantum computing, namely the no-cloning theorem [WZ82].
Quantum no-cloning theorem prevents a quantum state to be copied
into some other quantum register. This limits the available processing of
quantum data to either modify it only once or to have several copies of
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such data to process it in different steps. In contradistinction, classical
devices can copy data. For instance, a NN takes the same input as many
times as desired when processing it. The implicit solution considered by
the re-uploading strategy consists therefore in using a classical device to
copy data and introduce it repeatedly in the quantum circuit. In fact,
using this line of thought it is possible to find an equivalence between
NNs and this re-uploading scheme, see Sec. 3.1.2.
This re-uploading technique introduces changes in the overall structure

of QuantumMachine Learning (QML) algorithms as well. As seen in Ch. 2,
many of these algorithms are performed in three steps, namely uploading
data, processing data and measurement. Re-uploading combines the
upload and processing steps into one stage. This avoids several difficulties
concerning these issues. Re-uploading tecnhniques do not make use of
sophisticated embedding schemes nor large quantum systems to transfer
classical data into the quantum ciruits. The linear encoding used in this
scheme is capable to capture correlations among different features of the
sampling data. Due to the classical optimization in the recipe, this step
is accomplished with no prior knowledge on the dataset the quantum
algorithm deals with.
The linear encoding gives also rise to highly non-trivial functions

naturally due to the quantum nature of the algorithm. One single-qubit
operation is capable to introduce a rotation in the Bloch sphere, where the
only complexity in the operation depends on the parameter describing such
rotation, in this case a linear dependency. This does not supply enough
computational power to deal with non-trivial problems. However, a
consecutive application of non-commuting single-qubit operations triggers
the appearence of non-linear terms. These terms are the reason why the
re-uploading strategy is a flexible and general model to address QML
problems.
The re-uploading technique emphasizes the capabilities of quantum

circuits that make use of a small number of quantum resources. They
are of most importance to the field of quantum computing, in particular
for the first phase of quantum computing or NISQ era [Pre18]. In fact,
algorithms that need few qubits may be proven relevant even though they
do not attempt any quantum improvement, since they may be useful
pieces of larger and more advantageous circuits. Considering circuits with
few quantum resources as the building blocks for larger circuits avoids a
drawback to arise as well. Even though it is possible to store a complex
function in a single-qubit circuit, retrieving that information from the
quantum state is costly and requires a large amount of measurements,
for instance performing full tomography methods [DPS03]. Indeed, the
Holevo bound [Hol73] limits the accesible information when a quantum
system of n qubits is measured to only n classical bits at a time.
The linear encoding used in the re-uploading scheme is another advantage
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when using this strategy as a piece of larger circuits. Due to this encoding
it is possible to include in the upload-processing step data stored in some
quantum register. This is feasible using controlled gates whose control
qubits are the data register, and the target qubits are the processing ones.
To do so, a map between the original scheme and the controlled rotations
must be included into the quantum circuit.
This chapter is based on the articles from Refs. [Dut+21; Pér+20a;

Pér+21a; Pér+21b]. It is structured as follows. First, the theoretical
aspects and comparison of re-uploading with CML approaches are detailed
in Sec. 3.1. Then, numerical benchmarks for some test functions both in
classical simulators and experimental devices can be found in Sec. 3.2.
Two applications based on this scheme with superficial modifications are
then explained in the following sections. Sec. 3.3 contains a quantum
classifier accomplished in classical simulations, and Sec. 3.4 describes the
experimental implementation of this classifier on an ion-trapped quantum
device. Sec. 3.5 is devoted to a machine learning approach to High
Energy Physics (HEP) application to determine the content of protons
from experimental data obtained at Large Hadron Collider (LHC).

3.1 Theoretical support

There exists a fundamental question in the field of ML of whether a
given model can represent any function. In this case, the model is a
quantum circuit following the re-uploading strategy, and any possible
functionality must be encoded within the degrees of freedom of the output
state. If that is the case, it is important to find the sequence of gates
required to accomplish this goal. This section is devoted to answer these
questions.
In classical cases, this problem was solved by a series of theorems

establishing that a given function can be re-expressed as a linear combina-
tions of other specific functions. The most fundamental family of theoretical
results in this field is the harmonic anaylisis and Fourier series [Dir29;
Rie67]. Those results demonstrate that a great range of functions can be
re-expressed as sums of trigonometric functions with fixed frequencies. In
classical machine learning, the Universal Approximation Theorem (UAT)
proves that a NN with a unique intermediate hidden layer can converge to
approximate any continuous function [Cyb89; Hor91]. In both approaches,
it is important to notice that each step of the process, namely neurons
for UAT or terms for Fourier series, is fed with the original data of the
problem. The query complexity of the process increases linearly with the
number of steps, namely the degree of approximation.
Data re-uploading strategies are conceived as a quantum analogous of

the well-known classical model of NNs. In the case of feed-forwarding
NNs, data is entered in the network in such a way that it is processed by
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(a) Classical NN (b) Re-uploading Quantum Circuit

Figure 3.1: Simplified working schemes of a classical NN and a single-qubit
re-uploading scheme. In the NN, the processing layer receives information
from every neuron in the input layer, and the processing is done in parallel.
In contradistinction, the single-qubit circuit receives input from the previous
processing unit and the data (introduced classically). It processes everything
sequentially. The output of both models are flexible enough to accomodate
many constraints.

subsequent layers of neurons. The key observation is that the original
data is introduced as many times as neurons in the first hidden layer, and
then the result of one layer is introduced several times in the next one
until the output layer is reached. Strictly speaking, data is re-uploaded
onto the NN. In case NN were affected by some sort of no-cloning theorem,
they could not work as they do. Thus, a circuit is designed such that its
architecture allows data to be introduced several times. This observation
is critical to develop theoretical support for the expressibility of quantum
circuits in order to support progress in QML [BGL20; GTN21; LAT21;
Llo+20; LMR13; Mit+18; NY21; Pér+20a; Pér+21a; RML14; SJA19;
SSM21; Zhu+19].
An architecture where data can be re-uploaded and processed along

the computation is designed. Fig. 3.1 shows a comparison between a
single-layer classical NN model and the quantum circuit here proposed.
In the case of NN, data is re-uploaded many times in one step, once
per neuron, and processed in parallel. Then, all partial processings are
collected into a final output neuron. This model can approximate any
continuous function in the output neuron, as stated in Th. 3.1.3, [Cyb89;
Hor91]. In the case of the quantum circuit, data points are introduced
in each processing unit, in this case a single-qubit operation. As it is a
single-qubit system, there is no room for parallel processing, and then
the calculation is done sequentially, since every gate receives as input the
result from the last one.
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In this chapter, it is shown that quantum and classical models here
discussed are formally equivalent for the same number of processing
units. Two independent proofs that any bounded complex function can
be approximated in a convergent way by a single-qubit quantum circuit
are presented. Thus, it constitutes a single-qubit approximant. This
demonstrates the precise representation power of a single-qubit circuit,
which increases as more layers are added. As for classical models, query
complexity, achieved through re-uploading of data, is attached to accuracy.
The first proof makes contact with harmonic analysis. This is a natural
step as single-qubit gates are expandable in Fourier series that can be
arranged to fit existing theorems. The second method is analogous to
the UAT using a translation into quantum circuits. In both cases, the
quantum theorems inherit the applicability and characteristics of their
classical counterparts.
In this section, the problem is first defined in Sec. 3.1.1. The two

theorems constituting the core of the work are presented in Sec. 3.1.2,
and demonstrated in Sec. 3.1.3. Conclusions are commented in Sec. 3.1.4.

3.1.1 Set-up of the problem
The most general representation of a single-qubit quantum state stores

a single complex number, as stated in Eq. (3.1), explicitly with f, φ real
numbers and f ∈ [0, 1], φ ∈ [0, 2π). The aim is to encode a complex
function within the values (f, φ) by defining them as f : Rm → [0, 1] and
φ : Rm → [0, 2π). The functional forms of f(x) and φ(x) are unknown,
otherwise solving this problem is trivial. To do so, the circuit U (k)

f,φ(x) is
designed in such a way that its output state approximates the desired
complex function as

〈1| U (k)
f,φ |0〉 ∼ f(x)eiφ(x), (3.2)

where k stands for the number of uploadings of data, also referred to as
query complexity. Note that building an approximation to a bounded
complex function suffices to address any bounded complex function by
shifting and re-scaling the target function to another one that fits in
the model. In addition, approximating a complex function includes the
capability of fitting real-valued functions by either setting φ(x) = 0
or relating the real-valued function to the modulus of other complex
functions. The latter approach is lesser demanding since a degree of
freedom is set free. Initial |0〉 and comparing 〈1| can be chosen arbitrarily
without loss of generality, since any state can be transformed into any
other by slightly modifying the U (k)

f,φ operation. The general operation is
described in a specific way.
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Definition 3.1.1 The k-th approximating circuit is defined as

U (k)
f,φ(x,Θ) =

k∏
i=1

U(x, ~θi), (3.3)

where U(x, ~θ) is a fundamental gate depending on x and a set of
parameters ~θ, with Θ = {~θ1, . . . , ~θk}.

This general construction allows to obtain great performances in QML
problems for a wide variety of fundamental gates U(x, ~θ), as it is seen
in later examples. However, there are two particular choices, to be
defined later, that provide mathematically provable universality. The
expected behavior of this operation U (k)

f,φ is that the approximation
from Eq. (3.2) will improve as the number k increases, that is, as
the independent variable is re-uploaded multiple times and the query
complexity increases. The appropriate choice of the parameters Θ
enables a systematic approximation of any functionality. The optimal
configuration will depend on f(x) and φ(x).
It is possible to interpret the operation for the re-uploading strategy

in Def. 3.1.1 for a single-qubit system by making use of the geometrical
arguments picturing the Bloch sphere. Two initial states on the Bloch
sphere are considered. Those states must be rotated by the same operation
U(x, ~θ) to another arbitrary pair of states. In the case where rotations
do not depend on x is first considered, many different operations can be
applied, but all of them can be fused into an overall one. The optimal
rotation for one point does not fit another one, and thus accomodating
several data is not possible, see Fig. 3.2(a) for an illustration. On the
other hand, making the operations x-dependent provides the possibility
to transport different points along different paths, see Fig. 3.2(b). As
more layers are applied, more independent rotations are included into
the circuit, and the conjunction of many simple operations permits to
obtain systems of increasing flexibility.
It is also worth to mention that the re-uploading strategy allows to

increase the distinguishability between two data points. General strategies
of QML look for circuits that provides optimal measurement schemes
for some given datasets, see Sec. 2.2.1. In that case the performance
of the classifier is upper-bounded by the distinguishability obtained by
the embedding scheme when uploading data into the quantum circuit.
Re-uploading circumvents this limitation. This becomes particularly
useful when two close points x1, x2 have very different properties, for
example in the vicinity of the border between two classes in a supervised
learning problem.
In general, the set of parameters for a given gate ~θi is composed of a

set of angles. The quest for the optimal set of parameters Θ is driven
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(a) x-independent rotations (b) x-dependent rotations

Figure 3.2: Geometrical interpretation of standard single-qubit operations
(a) and the re-uploading strategy (b). The initial states, X crosses around
the |0〉 state, must move towards two different target states, + crosses in the
equatorial plane 〈Z〉 = 0. Standard operations are combination of rotations,
what leads to another rotation. Thus, it is not possible to achieve a tailored
rotation for both initial states. On the contrary, many x-dependent rotations
allows to obtain overall flexible rotations.

by optimizing a particular loss function L(Θ; f, φ, x). This loss function
must be designed in such a way that Eq. (3.2) becomes an equality as
L → 0. The optimal parameters are then

Θopt = argminΘL(Θ; f, φ, x). (3.4)

The presence of classical optimization methods makes this scheme belong
to the family of variational algorithms.

Optimization techniques
In this chapter, optimizers are taken as black boxes. Finding the

optimal configuration corresponding to a minimum (or equivalently a
maximum) of a given cost function is a extremely complicated, in fact a
NP, problem. As the number of parameters increases, the search space
grows exponentially, and so does the difficulty of the problem. Of course,
this also depends on the particular loss function that is to be solved.
Purely convex functions are usually easier to optimize since all movements
lead to the global minimum. Take for instance the function f(x) = |x|2.
In this case, the obvious solution is x = 0. However, this scenario is
certainly not common in general optimization problems.
One of the hardest features of the optimization procedures is that there

is no possible way, apart from exhaustive search, to ensure that a given
configuration Θopt provided by an optimizer is the best possible one, that
is the global minimum. One can know if this is a local minimum, that
is whether there are or not better points in the vicinity of that solution,
but all remaining space is unexplored. This becomes particularly difficult
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when the loss function is full of local minima, for example if f(x) is some
combination of trigonometric functions. In this case it is very likely to get
trapped in a local minimum, while this local minimum will not probably
be the global one.
NNs are commonly trained using the Stochastic Gradient Descent (SGD)

[Nie15] with standardized acceptable results, see Sec. 2.1.1. This is a
consequence of a previous knowledge on the landscape of the loss functions.
Unlike NNs, quantum algorithms do not have any particular optimization
method with high performance in wide varieties of problems. In the case
of the QML problems presented along this chapter, even the landscape is
unknown. Therefore, the optimization strategy to follow to obtain the
best possible results is far from being trivial.
A first attempt on developing direct SGD was intended following

known recipes for estimating gradients on quantum circuits, see Sec. 2.2.1,
[Hub+21; Sch+19; Swe+20]. This was tried in the seminal quantum
classifier paper [Pér+20a]. However, the results obtained in this scenario
did not rise to the challenge when compared against other methods. In
summary, final results did get stuck in local minima far away from results
obtained with other methods.
There are two optimization methods that have worked along the

examples presented in this chapter, namely the quasi-Newton L-BFGS(-B)
method [Byr+95], and the genetic CMA algorithm [Han06].
The L-BFGS(-B) method constructs in every iteration an approximation

of the Hessian matrix taking as input information the function evaluation
in the current iteration and previous ones, up to an adjustable limit. On
the one hand, this method can explore the vicinity of a given point by
computing first and second order derivatives. On the other hand, the
algorithm saves memories of the previous steps, and then small increases
of the landscapes can be overcome using informetion collected before. This
idea follows from the inertial thought implemented in other optimizers
[KB17; Nie15]. Thus, the search for optimal points is a downhill descent
in average. These properties make the algorithm resilient to get stuck in
shallow local minima. In this work, the method is implemented as given
by scipy [Vir+20].
The L-BFGS(-B) method is sometimes used in NNs when the training

dataset is small. This is understood in terms of local minima. Landscapes
of NNs, as in the quantum models observed in this section, are full of
local minima. SGD overcomes them by using different batches of training
data and descending in different directions so that the final average is a
good result. If there is no data available, some other method less sensitive
to local minima is needed.
The second method commonly used through this chapter is the genetic

algorithm CMA. Genetic algorithms are inspired by biological evolution
and natural selection. An initial population is generated, and from those
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individuals only the most adapted ones are chosen to propagate their
information to the next generation, which is created by adding changes to
their parents. This way, the landscape is explored and only the individuals
with smaller values of the cost function survive, contributing to the overall
improvement of the population. This algorithm, which is not gradient-
based, permits exploring vast landscapes where the derivative information
is missing or useless. In exchange, large numbers of function evaluations
are usually required to go depp into the landscape and find actual global
minima, specially due to the BP phenomenon, see Sec. 2.2.1 [McC+18].
Nevertheless, genetic algorithms can extract the interesting combination
of parameters very efficiently. The particular CMA strategy chosen stands
for the specific manner to create new generations. It generates new
individuals as gaussian perturbations of the parents [Han06]. In this
chapter, the algorithm is implemented as provided by Ref. [nik+20].
It is worth mentioning that optimization is carried mostly on quantum

simulators in all examples here presented, unless stated otherwise. This
eliminates a further difficulty that optimization of quantum circuits have.
In the future, specific optimization methods for quantum computing
will be needed to address these problems efficiently. The reason is
that quantum computng has two main sources of errors that degrade
the retrievement of values for loss functions: noise and decoherence
from the circuit, and sampling uncertainty from the measurements. In
principle, optimization techniques can help to mitigate systematic errors,
but statistical ones pose a challenge on the attainment of acceptable
results.
In terms of noise and decoherence, the functions evaluations are

distorted when measured, and thus it is not possible to accurately
determine the function values. Thus, the optimizer receives corrupted
information and is is simply not possible to drive the search for optimal
parameters efficiently. As the quality of quantum computers increases
towards fault tolerant computing, these errors will be slowly corrected
and mitigated.
Sampling uncertainty adds further unaccuracies to the measured values

obtained. This becomes important when decoherence is neglictible since
it becomes the main source of errors. The error can be only reduced
by increasing the number of measurements, but it is not possible to
overcome it. The effect of sampling uncertainties attacks the core of
many optimization methods that rely on high precision computing. This
dependency must be circumvented to progress towards efficient optimizers,
see Sec. 2.2.1 [Swe+20].

3.1.2 Two theorems on universality
The structure of the algorithm previously presented is completed with

the design of the single-qubit gates U aforementioned in Definition 3.1.1.
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In the following, two sets of single-qubit gates are used to construct
quantum circuits that represent arbitrary complex functions. Each set
is based on known results from the theory of function approximations,
namely Fourier series [Dir29; Rie67] and UAT [Cyb89; Hor91], respectively.
The range of applicability of these theorems for quantum circuits and
the conditions for universality are thus inherited from their classical
counterparts.

Non-linearities
Before coming into technical details for demonstrating universality, it

is important to highlight a requirement of U (k)
f,φ , that is the emergence

of non-linearities. Non-linearities are needed in all methods looking for
universal representability. They appear as an essential ingredient in all
classical theorems. For instance, the Fourier series [Dir29; Rie67] are built
upon trigonometric functions, and UAT [Cyb89; Hor91] explicitly require
non-linear functional forms. While in the classical case non-linearities
are introduced artificially, the quantum case makes them appear taking
advantage of inherent properties of quantum operations. For this purpose,
the fundamental gates U(x, ~θ) cannot commute between them for any
combination of (x, θ), except for the trivial case where two gates are equal.
Due to the mathematical structure of the SU(2) group containing all
possible single-qubit operators, non-linear terms emerge naturally. This
can be observed via the Baker-Campbell-Haussdorf (BCH) formula [Eic68;
Hal15; VV18].

Definition 3.1.2 BCH formula
Let eM = eY eZ be, for M,Y,Z matrices and possibly [Y, Z] 6= 0.

The BCH formula gives the solution to the matrix M in terms of a
formal series not necessarily convergent whose first terms are

M = Y + Z +
1

2
[Y,Z] +

1

12
([Y, [Y,Z]] + [Z, [Z, Y ]]) + . . . (3.5)

The quantum operationsRz(α), Ry(ϕ), corresponding to exponentiation
for = −iα/2σz, Y = −iϕ/2σy, are considerd. The overall operation of
interest is U = e−iϕ/2σye−iα/2σz . Following the BCH formula, this final
operation can be written as

U = e−iM ; M =
ϕ

2
σY +

α

2
σz +

αϕ

4
σX −

αϕ

24
(ϕσY + ασY ) . (3.6)

In this particular case, the series comes to an end because of the
commutation relationships between the Pauli matrices σY , σZ . However,
even in this simple case, it is possible to detect polynomial terms up
to degree 3 (α2ϕ, αϕ2), while the original operations depend only on
variables with polynomial degree 1.
This formulation gives some insight on how to design global universal
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operations [Pér+20a]. Rotations around at least two axis are required to
make non-linear quantities appear. However, it is also remarkable that a
rotation around a third axis contributes with more parameters, but it is
not strictly needed since this third axis emerges naturally with the first
non-commuting term.
The single-qubit classifier is constructed as a series of gates which are

in general SU(2) matrices. There exist many possible decompositions of
an SU(2) rotational matrix. In particular,

U(β, ϕ, α) = e
−iβ

2
σze

−iϕ
2
σye

−iα
2
σz . (3.7)

According to Def. 3.1.1, the overall operation is generated as a series
of simple rotations. Thus, with no loss of generality, β = 0, since this
parameter can always be absorbed by the α parameter of the following
layer. Using the SU(2) decomposition law, the above parametrization
can be written in a single exponential

U(β = 0, ϕ, α) = e−i~ω(ϕ,α)·~σ, (3.8)

with ~ω(ϕ, α) = (ω1(ϕ, α), ω2(ϕ, α), ω3(ϕ, α)) and

ω1(ϕ, α) = d N sin (−α/2) sin (ϕ/2) , (3.9)
ω2(ϕ, α) = d N cos (α/2) sin (ϕ/2) , (3.10)
ω3(ϕ, α) = d N sin (α/2) cos (ϕ/2) , (3.11)

where N =
(√

1− cos2 d
)−1

and cos d = cos (α/2) cos (ϕ/2).
The re-uploading scheme codifies an independent variable x into the

parameters of the U gate as α(x), ϕ(x), where the exact dependency is
to be defined yet. Thus

U (k)
f,φ(x,Θ) =

k∏
i=1

e−i~ω(ϕ(x),α(x))·~σ. (3.12)

Applying the BCH formula to the above equation, the overall expression
of the global operation is

U (k)
f,φ(x,Θ) = exp

(
−i

k∑
i=1

~ω(ϕi(x), αi(x)) +Ocorr

)
, (3.13)

where Ocorr involves higher order terms of Pauli matrices due to the
property [σi, σj ] = 2iεijkσk, where εijk is the Levi-Civitta symbol.
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All ~ω terms are trigonometric function, and thus unconstant, bounded
and continuous, as required by UAT [Hor91]. Hence, the sum of all of
them must fulfill the same properties.

k∑
i=1

~ω(ϕi(x), αi(x)) = ~η(x). (3.14)

There are still remaining terms Ocorr of the BCH expansion. Instead
of applying such expansion, it is possible to use again the SU(2) group
composition law to obtain the analytical formula of U (k)

f,φ(x,Θ) = ei
~ξ(x)·~σ,

where ~ξ(x) will be an inextricably trigonometric function of x. The Ocorr
terms are proportional to ~σ matrices, so Ocorr = ~%(x) ·~σ for some function
~%(x). Then,

U (k)
f,φ(x,Θ) = ei

~ξ(x)·~σ = ei~η(x)·~σ+i~%(x)·~σ. (3.15)

Thus, Ocorr terms can be absorbed in ~η(~x). As the resulting function is
a combination of trigonometric function, which satisfies the constraints
for Th. 3.1.3, it is expected to have enough flexibility as to represent a
huge variety of functions.
Notice that the arguments on the appearances of higher-order terms

may provide insights and lines of thought towards the attainment of
universality, but they do not suffice to demonstrate it. Up to this point
there is no further knowledge of the inner structure of ~ξ(x). The many
combined trigonometric functions can contribute to cancel terms with
each other so that the final result does not provide universality, even
though it has all the required ingredients. Therefore, further development
is needed to prove universality.

Theorems
Two different methods are explored to link the universality of the

quantum circuit here presented with standard mathematical representability
theorems, namely Fourier series and UAT. In both cases, first the
mathematical theorems are stated. Then, a quantum gate is defined
such that the repeated application of this gate allows to extend those
mathematical results to a quantum circuit.
Fourier series as a constructive method permits expressing a great range

of target functions defined within an interval as a sum of a set of known
functions, see Th. 3.1.1. If a circuit as explicited in Def. 3.1.1 is created
by repeating the gate UF from Def. 3.1.3, the output state is compatible
with a Fourier series, see Th. 3.1.2. Intuitively, α, β, ϕ, λ are related to
the coefficients of a single Fourier step, while ω may be identified as the
corresponding frequency. The relationship between these parameters and
the original Fourier coefficients is explicitly shown in Sec. 3.1.3.
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FOURIER SERIES

Theorem 3.1.1 Fourier series
[Car66; Dir29; Rie67]
Let z be any function z : R → C with a finite number of finite
discontinuities integrable within an interval [a, b] ∈ R of length P .
Then

zN (x) =

N∑
n=−N

cne
i 2πnx
P , (3.16)

where

cn =
1

P

∫
P
z(x)e−i

2πnx
P dx, (3.17)

approximates z(x) as

lim
N→∞

zN (x) = z(x). (3.18)

Definition 3.1.3 Let the fundamental Fourier gate UF be

UF (x;ω, α, β, ϕ, λ︸ ︷︷ ︸
~θ

) = Rz (α+ β)Ry(2λ)Rz (α− β)Rz(2ωx)Ry(2ϕ),

(3.19)

with α, β, ϕ, λ, ω ∈ R.

Theorem 3.1.2 Quantum Fourier series
Let f, φ be any pair of functions f : R → [0, 1] and φ : R → [0, 2π) ,
such that z(x) = f(x)eiφ(x) is a complex function with a finite number
of finite discontinuities integrable within an interval [a, b] ∈ R of length
P . Then, there exists a set of parameters {~θ1, ~θ2, . . . , ~θN} such that

〈1|
N∏
i=1

UF (x, ~θi) |0〉 = zN (x), (3.20)

with zN (x) the N -terms Fourier series.
Proof in Sec. 3.1.3.
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UAT

Theorem 3.1.3 Universal Approximation Theorem
[Cyb89; Hor91; Les+93]
Let Im denote the m-dimensional cube [0, 1]m. The space of continuous
functions on Im is denoted by C(Im), and | · | denotes the uniform
norm of any function in C(Im). Let σ : R → R be any non-constant
bounded continuous function. Given a function f ∈ C(Im) there exists
an integer N and a function

G(~x) =

N∑
n=1

αnσ(~wn · ~x+ bn), (3.21)

such that

|G(~x)− f(~x)| < ε, ∀~x ∈ Im, (3.22)

for ~wn ∈ Rm and bn, αn ∈ R for any ε > 0.

Definition 3.1.4 Let the fundamental UAT gate UUAT be

UUAT(~x; ~ω, α, ϕ︸ ︷︷ ︸
~θ

) = Ry(2ϕ)Rz(2~ω · ~x+ 2α), (3.23)

with {~ω, α, ϕ} ∈ {Rm,R,R}.

Theorem 3.1.4 Quantum UAT

Let f, φ be any pair of functions f : Im → [0, 1] and φ : Im → [0, 2π)
, such that z(~x) = f(~x)eiφ(~x) is a complex continuous function on Im,
with Im = [0, 1]m. Then there is an integer N and a set of parameters
{~θ1, ~θ2, . . . , ~θN} such that∣∣∣∣∣f(~x)eiφ(~x) − 〈1|

N∏
i=1

UUAT(~x, ~θi) |0〉
∣∣∣∣∣ < ε, (3.24)

for any ε > 0.
Proof in Sec. 3.1.3.
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When the building blocks are the UF (x, ~θi) defined in Eq. (3.19), the
unitary operation as defined in Eq.(3.3) generates a total unitary gate
that outputs a N -term Fourier series when applied to an initial state
|0〉. Taking |0〉 as the initial state implies no loss of generality, since
|0〉 can be transformed into any other initial state by adjusting the
first UF . The Fourier series behavior is only achieved if all {~θi} take
specific values leading to a final result that exactly matches the Fourier
coefficients. However, since this procedure relies on quantum-classical
variational methods, optimal parameters are searched by means of a
classical optimizer. This freedom gives room to configurations surpassing
the performance of the standard Fourier series, especially for shallow
circuits. However, the recipe to construct the Fourier series by performing
well-defined calculations is instead lost. In addition, the Fourier series
is obtained only in the last step. Intermediate steps have the functional
forms of a Fourier series, but not its values. For details on the proof of
this theorem the reader is referred to Sec 3.1.3.
The UAT, Th. 3.1.3 demonstrates that any continuous function of

a m-dimensional variable can be uniformly approximated as a sum
of a specific set of functions with adjustable parameters. The first
formulation restricted the functions to be sigmoidal functions [Cyb89].
Later works extended the result to any non-constant bounded continuous
function [Hor91]. This theorem is directly applied to NNs containing one
hidden layer.
This theorem is an existence theorem, and thus it does not specify

how many terms from Eq. (3.21) are needed to achieve an accuracy ε
nor what values the parameters must take. Note that although the UAT
supports approximations for real functions, it can be immediately applied
to complex functions by substituting the real-valued function σ(·) with
some complex-valued function. In particular, it works if σ(·)→ ei(·). A
proof is shown in Appendix A.1.
In the case of quantum circuits as designed in Def. 3.1.1, a quantum

analogous of the UAT is available if the repeated gates is the one from
Def. 3.1.4. Intuitively, ~ω and α are equivalent to the weights and bias in a
NN, while ϕ plays the role of the coefficient. The output state, although
different to the standard UAT, fulfills the same requirements to ensure
universality, see Th. 3.1.4. Both classical and quantum theorems are
analogous, and one can arrive at its proof by following the steps developed
in Ref. [Cyb89]. All theorems supporting the original formulation of
the UAT also hold for the quantum version. For more details on the
demonstration of the quantum UAT, the reader is referred to Sec. 3.1.3.
The quantum universality theorems here proposed inherit the range of

applicability, advantages and limitations of their classical counterparts.
The Fourier approach is guaranteed to work for all integrable functions
with a finite number of finite discontinuities. This range of functions
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includes –but is not limited to– continuous functions. The UAT only
gives support to continuous functions, which is useful from a practical
perspective, but less robust than the Fourier series.
The Fourier theorem holds for functions depending on a single variable.

However, the extension to multi-dimensional spaces is complicated and
requires a space of parameters whose size increases exponentially with
the number of dimensions [Rie67]. However, in the UAT case the use
of multi-variable ~x arises naturally by adjusting the dimension of the
weights.

3.1.3 Proofs of universality theorems
This section is devoted to the proofs of Theorems 3.1.2 and 3.1.4

supporting universality for quantum circuits. The reader interested in
final results may skip this subsection without any regret.

Demonstration for the quantum Fourier series
The quantum circuit proposed in Theorem 3.1.2 fulfills the requirement

that every new gate plays the role of a new step in the original Fourier
series. The proof is based on an inductive procedure and can be then
decomposed in two steps. First, it is shown that the first gate of the
circuit is equivalent to the 0-th constant Fourier term. Then, if there are
N gates in a row forming a N -term Fourier series, adding a new gate
provides a (N + 1)-terms Fourier series if previous values are modified.
Let the fundamental gate UF (x, ~θ) defined in Eq. (3.19) be

UF (x; ~θ) = UF (x;ω, α, β, ϕ, λ) = Rz (α+ β)Ry(2λ)Rz (α− β)Rz(2ωx)Ry(2ϕ) =

=

(
cosλ cosϕeiαeiωx − sinλ sinϕeiβe−iωx − cosλ sinϕeiαeiωx − sinλ cosϕeiβe−iωx

sinλ cosϕe−iβeiωx + cosλ sinϕe−iαe−iωx − sinλ sinϕe−iβeiωx + cosλ cosϕe−iαe−iωx

)
,

(3.25)

It is possible to recast the above choice of fundamental gate using the
following redefinition of parameters,

a+ = cosλ cosϕeiα, (3.26)
a− = − sinλ sinϕeiβ, (3.27)
b+ = − cosλ sinϕeiα, (3.28)
b− = − sinλ cosϕeiβ. (3.29)

A more compact representation of the fundamental gate follows

Lemma 3.1.5 The fundamental gate can be expressed as

UF (x;ω, α, β, ϕ, λ) =

(
a+e

iωx + a−e
−iωx b+e

iωx + b−e
−iωx

−b∗−eiωx − b∗+e−iωx a∗−e
iωx + a∗+e

−iωx

)
, (3.30)

as can be verified by simple substitution from Definition 3.1.3.
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Note that this expression corresponds to a unitary matrix, due to the
relations involved in the definition of the coefficients a± and b±. Note
also that a unitary matrix has three degrees of freedom, which are here
fixed by 5 parameters. An intuition behind the role of these parameters
is that α, β, ϕ, λ are related to the coefficients of one Fourier step, that is
a±, b±, while ω can be identified with the corresponding frequency.
A total circuit can be constructed by multiplying k fundamental gates

to obtain U (k)
f,φ as in Definition 3.1.1. Starting with this composite gate,

the proof for the main Fourier approximation theorem 3.1.2 is feasible.

Proof. The proof of this constructive theorem consists in making contact
with harmonic analysis and proceeds by induction.
i) The first circuit consists only of one fundamental gate, chosen with

frequency ω = 0, that is

UF0 =

(
A0 B0

−B∗0 A∗0

)
, (3.31)

This, indeed corresponds to the first constant term of Fourier series.
ii) It is assumed that the N -th approximant circuit takes the form for

a Fourier series, but not its value constraints.

N∏
i=0

UFi =

( ∑N
n=−N Ane

iΩnx
∑N
n=−N Bne

iΩnx

−∑N
n=−N B

∗
ne
−iΩnx

∑N
n=−N A

∗
ne
−iΩnx

)
. (3.32)

where the frequencies are Ωn are free, and to be fixed later. The result of
adding a new fundamental gate my left multiplication. corresponds to

N+1∏
i=0

UFi =

( ∑N+1
n=−N−1 Ãne

iΩ̃nx
∑N+1
n=−N−1 B̃ne

iΩ̃nx

−∑N+1
n=−N−1 B̃

∗
ne
−iΩ̃nx

∑N+1
n=−N−1 Ã

∗
ne
−iΩ̃nx

)
(3.33)

where the new coefficients Ω̃n need to be fixed and frequencies in terms
of the old ones Ωn and the new single gate frequency ω added to the
circuit. It is easy to see that the addition of a gate changes the frequency
in one unit, that is, Ω̃n = Ωn ± ω. Then, the general structure of the
series can be adapted to a Fourier expansion by choosing

Ωn = (2n+ 1)
π

2
. (3.34)

After fixing the values that the frequencies must take, it is straightforward
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to re-arrange terms in the matrix and reach

Ã0 = A0a− −B∗0b− (3.35)
Ã±n = A±na− −B∗∓nb− +A±(n−1)a+ −B∗∓(n−1)b+ (3.36)

Ã±(N+1) = A±Na+ −B∗∓Nb+ (3.37)

B̃0 = B0a− +A∗0b− (3.38)
B̃±n = B±na− +A∗∓nb− +B±(n−1)a+ +A∗∓(n−1)b+ (3.39)

B̃±(N+1) = A∗∓Na+ +A∗∓Nb+ (3.40)

This provides the explicit connection between approximant circuits and
Fourier expansions for the coefficients of the global unitary matrix.

�

The above theorem is sufficient to prove that the output probability of a
series of approximant circuits can reproduce any functionality. Notice that
the proof ensures that for any number of re-uploadings N it is possible
to arrange terms in such a way that the final output state is a Fourier
series. However, the intermediate steps follow a Fourier-like expression
but do not maintain the required values of coefficients and frequencies.
The mathematical form is the same, but the values of different coefficients
must be changed to match the Fourier ones only in the last step.

Demonstration for the quantum UAT

An alternative manner to design a single-qubit universal approximant
is related to the equivalent UAT broadly used in NNs [Cyb89]. The idea
is to start from a different fundamental gate.
Let the fundamental gate UUAT(~x; ~θ) defined in Eq. (3.23) be explicitly

UUAT(x; ~ω, α, ϕ) = Rz(2 (~ω · ~x+ α))Ry(2ϕ) =

=

(
cos(ϕ)ei(~ω·~x+α) − sin(ϕ)ei(~ω·~x+α)

sin(ϕ)e−i(~ω·~x+α) cos(ϕ)e−i(~ω·~x+α)

)
, (3.41)

A full circuit can be constructed by multiplying k fundamental gates
to obtain U (k),UAT

f,φ as in Def. 3.1.1. The quantum UAT 3.1.4 using this
fundamental gate is now proven.

Proof. The classical UUAT is defined in Eq. (3.41). By direct inspection
it is straigthforward to check that every entry in this matrix can be
understood as one term of f̄N in Eq. (3.21). From this definition the
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recursive rule that defines all steps is obtained. If

AN = 〈0|
N∏
n=1

UUATn |0〉 (3.42)

BN = 〈1|
N∏
n=1

UUATn |0〉 (3.43)

then the updating rule is

AN+1 = AN cos(ϕN+1)ei~ωN+1·~xeiαN+1 −BN sin(ϕN+1)ei~ωN+1·~xeiαN+1 (3.44)
BN+1 = AN sin(ϕN+1)e−i~ωN+1·~xeαN+1 +BN cos(ϕN+1)e−i~ωN+1·~xeiαN+1(3.45)

Having this updating rule in mind, it is possible to write

BN =

2N−1∑
m=0

cm(ϕ1, . . . , ϕN )eiδm(α1,...,αN )ei ~wm(~ω1,...,~ωN )·~x, (3.46)

where the inner dependencies of cm are products of sines and cosines of
ϕn, and those of δm and ~wm are linear combinations of αn and ωn.
The procedure follows now as in the proof of the UAT in Ref. [Cyb89].

S is the set of functions of the form BN (~x), and CC(Im) the set of
continuous complex-valued functions in Im, defined as in Theorem 3.1.3.
It is assumed that S ⊂ CC(Im), and S 6= CC(In). Now, the Theorem
A.2.1 is applied, known as Hahn-Banach theorem. This theorem allows
to state that there exists a linear functional L acting on CC(In) such
that

L(S) = L(S̄) = 0, L 6= 0. (3.47)

Notice that this theorem is applicable since there are no restriction in
working only with real numbers.
Theorem A.2.2, known as Riesz representation theorem, is called now.

The functional L is

L(h) =

∫
In

h(x)dµ(x) (3.48)

for µ ∈M(In) non-null and ∀h ∈ CC(In). In particular,

L(h) = AN (~x)dµ(~x) = 0, (3.49)

and thus∫
In

ei ~vm(ω1,...,ωN )·~xdµ(~x) = 0. (3.50)
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This is the usual Fourier transform of µ. By calling Theorem A.2.3,
Lebesgue Bounded Convergence theorem, if the FT (µ) = 0, then µ = 0,
and a contradiction is encountered with the only made assumption.
The measure of all half-planes being 0 implies that µ = 0. ~w is fixed,

and for a bounded measurabe function h, the linear functional is defined
as

F (h) =

∫
In

h(~w · ~x)dµ(x), (3.51)

which is bounded on L∞(R) since µ is a finite signed measure. Let h be
an indicator of the half planes h(u) = 1 if u ≥ −b and h(u) = 0 otherwise,
then

F (h) =

∫
In

h(~w · ~x)dµ(x) = µ(Π~w,b) + µ(H~w,b) = 0. (3.52)

By linearity, F (h) = 0 for any simple function, such as sum of indicator
functions of intervales [Ash72].
In particular, for the bounded measurable functions s(u) = sin(~w · ~x), c(u) =

cos(~w · ~x)

F (c+ is) =

∫
In

exp{i ~w · ~x}dµ(~x) = 0. (3.53)

The Fourier Transform of this F is null, thus µ = 0.
�

For the sake of completeness, the three theorems required for the proof
are covered in App. A.2.

Link to output of quantum circuits
Last sections were devoted to prove that specific series of circuits return

functionalities able to represent a wide range of functions. In this last
step, previous results are related to the output of quantum circuits.

Theorem 3.1.6 The computational basis output of a single-qubit quantum
circuit can provide a convergent approximattion to any desired function.

Proof. The output of a k-th approximant circuit can be cast a an
approximation expansion of an arbitrary function. It is sufficient to
initalize a register in the |0〉 state and measure the output in the
computational basis. It follows

〈1|
N∏
i=0

Ui |0〉 = zN (x) (3.54)
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where zN (x) can take different forms and U can provide Fourier or UAT
approximations.
If the fundamental gate is UF , then the output is the truncated Fourier

series

zN (x) =
N∑

n=−N
Bne

i2πnx, (3.55)

where Bn are free complex coefficients. This result holds for single-variable
functions.
If the fundamental gate is UUAT, then the output is a function

zN (~x) =

2N−1∑
m=0

cm(ϕ1, . . . , ϕN )eiδm(α1,...,αN )ei ~wm(~ω1,...,~ωN )·~x, (3.56)

according to Eq. (3.46). This result holds for single- and multi-variable
functions.
According to Theorems 3.1.1 and 3.1.3, both expressions can approximate

any desired function.
�

3.1.4 Discussion
The theorems here presented demonstrate formally that a single-qubit

circuit has enough flexibility to store any complex function z(x) in its inner
degrees of freedom by sequentially applying single-qubit gates depending
on the independent variable x and tunable parameters. This result is
useful when the functional form of z(x) is unknown and can only be
learnt by sampling data. The learning process is performed by a classical
optimizer.
This result guarantees that two different independent real functions can

be represented by single-qubit circuits. It provides the highest possible
degree of compression of data in such a small state since there is no more
possible room in the Hilbert space. In addition, there are no fundamental
limitations in the complexity or dimensionality of the functions that can
be encoded into the circuit.
Two different approaches were followed for the proof, leading to two

different sets of single-qubit gates. First, there is a link between Fourier
series and quantum circuits if a quantum gate with 5 tunable parameters
is defined, only if x is one-dimensional. A quantum circuit composed by
N gates provides an output state whose components can be written as
a N -terms Fourier series. Unlike in the classical case, since the process
is variational, this result ensures at least the Fourier series, but permits
better approximations. This proof inherits the assumptions of Fourier
theorems. For the second proof, a link with the UAT was found by
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applying gates depending on 3 parameters. Such circuit delivers a output
state compatible with the formulation of UAT. This proof is inherited
from the equivalent one for NNs and supports only approximation for
continuous functions. In exchange, multidimensional dependencies on x
are supported as well.
These results can serve as a starting point for studying the expressibility

of quantum systems beyond one qubit, see also [NY21; SJA19; SSM21].
When more qubits are added, the exponential size of the Hilbert space
triggered by the entanglement is likely to play an essential role to be fully
understood yet.
The core of the proof relies on the non-linearities arising from the

consecutive application of non-commuting gates, and the linear encoding
of data as arguments for the different gates. As a consequence, rotations
around only two axis are necessary and sufficient to achieve any kind of
non-linearities. The linear encoding provides unbiased approximations.
Therefore, although the theorems give support to specific designs of
quantum gates, it is likely that some other gates constructed taking these
two ingredients into account can also provide accurate approximations.
This can be advantageous for some problems with challenging properties.
These results will serve as full theoretical support to the examples

provided in Secs. 3.2, and as partial support to the examples provided in
Secs. 3.3 and 3.5.

3.2 Numerical benchmark

In this section, the practical performance of the theorems explained
in Sec. 3.1.2 is explored by fitting test functions from sample data
using the theoretical models here presented. Two different kinds of
benchmarks for real and complex functions, respectively, are presented.
These benchmarks collect results using both UF and UUAT gates from
Defs. 3.1.3 and 3.1.4. Benchmarks are performed using first simulations
that include no decoherence nor sampling uncertainty, and then passing
the obtained results to a quantum device to test the experimental
performance. Simulations with up to 6 layers are considered.
The aim of this benchmark is to compare the results of quantum and

classical methods. The classical Fourier representation can be obtained
by following Theorem 3.1.1. In the UAT case, the description from
Theorem 3.1.3 is followed, with σ(·) being a cosine for real functions
and ei(·) for complex functions. The parameters are found by employing
specific classical optimization methods. For the quantum UAT case,
H |0〉 = |+〉 is taken as the initial state. Note that the choice of initial
state does not compromise the validity of any result since it is possible
to transform any state into any other by adjusting the first layer of the
approximation method.
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All simulations are performed using the framework QIBO [Eft+20a]. The
code computing the numerical experiments as well as the final results can
be found on GitHub [Pér21]. Benchmarks for real and complex functions
are described in Sec. 3.2.1 and Sec. 3.2.2, respectively. Results are covered
in Sec. 3.2.3. Final remarks can be read in Sec. 3.2.4.

3.2.1 Benchmark for real functions
For the first benchmark, a single-variable, real-valued function −1 ≤

f(x) ≤ 1 related to the observable 〈Z〉 ∼ f(x) is considered. The
quantum state to represent is then

|ψ(x)〉Z =

√
1 + f(x)

2
|0〉+ eiφ

√
1− f(x)

2
|1〉 , (3.57)

where φ is a phase that in general may be x-dependent, but it is neglected
at this stage. The χ2 function that drives the optimization is then

χ2 =
1

M

M∑
j=1

(〈Z(xj)〉 − f(xj))
2 , (3.58)

where M is the total number of samples of x.
The Z benchmark is first tested against four different functions of

interest

ReLU(x) = max(0, x), (3.59)
tanh(ax) for a = 5, (3.60)

step(x) = x/|x|; 0 if x = 0, (3.61)
poly(x) = |3x3(1− x4)|. (3.62)

All functions are conveniently rescaled to fit the limits −1 ≤ f(x) ≤ 1.
In all cases, x ∈ [−1, 1]. The ReLU(·) and tanh(·) functions are chosen
given the central role they play in the field of ML. step(·) presents a
discontinuity, which implies a challenge in the approximation. poly(·)
is chosen as it contains wavy features arising from non-trigonometric
functions.
Next, the approach is tested against four functions of two variables in

order to check how the quality of the approximations evolves as more
dimensions are added to the problem. Those are known 2D functions
named adjiman, brent, himmelblau, threehump [Ard16]. These functions
are chosen as representatives of a variety of difficulties the algorithm
needs to overcome. In the 2D case, the functions are conveniently rescaled
to fit the limits −1 ≤ f(x, y) ≤ 1 and (x, y) ∈ [−5, 5]2. A definition of
these functions can be found in Appendix A.3.
In this benchmark, both the UAT and Fourier quantum and classical

methods are considered for the one-dimensional functions. However, 2D
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functions are only tested for UAT methods since theorem 3.1.2 from
Sec. 3.1 does not support multidimensional Fourier series.

3.2.2 Benchmark for complex functions
In order to test the performance of the presented algorithm for fitting

complex functions, a tomography-like benchmark is proposed. Since
complex functions have real and imaginary parts, one needs to measure
at least two observables in the qubit space. In this case, the observables
are 〈X〉 and 〈Y 〉 for the real and imaginary parts, that is 〈X〉+ i〈Y 〉 ∼
f(x)eig(x). The quantum state that permits this identification is

|ψ(x)〉XY =

√
1 +

√
1− f(x)

2
|0〉+eig(x)

√
1−

√
1− f(x)

2
|1〉 . (3.63)

for 0 ≤ f(x) ≤ 1It is then possible to construct a χ2 function as

χ2 =
1

M

M∑
j=1

∣∣∣〈X(x)〉+ i〈Y (x)〉 − f(x)eig(x)
∣∣∣2 . (3.64)

For the X − Y benchmark the algorithm is tested against all possible
combinations of real and imaginary parts of the functions defined in
Eqs. (3.59)–(3.62), conveniently renormalized to ensure that 〈X〉2 +
〈Y 〉2 ≤ 1.

3.2.3 Results
In all results presented in this section there are three different final

values. First, the Fourier and the UAT classical methods are used to
approximate a target function. The Fourier method is obtained following
the constructive recipe of Th. 3.1.1. The UAT is applied using a single-
hidden-layer NN. Second, the same function is approximated using the
quantum procedures defined in this work, simulating the wave function
evolution with classical methods. In both cases, the best outcome obtained
with different initial conditions used in the optimization step is retained.
Finally, the parameters obtained using the simulation of the quantum
procedure are translated to the experimental device to execute the circuit
of interest in the actual superconducting machine. Details concerning the
experimental implementation can be found in App. A.4. The theoretical
optimal parameters may be, in principle, different than the experimental
ones. Hence, an optimization performed directly on the experimental
parameters could improve the final results [Pér+–].
The resulting fit for all four single-variable real-valued functions from

Eqs. (3.59)–(3.62) is shows in Fig. 3.3. In this case the Z benchmark
with 5 layers is considered. A classical approximation (blue), a quantum
exact simulation (red) and its experimental implementation (green) are
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depicted. All methods follow the overall shape of the target function.
Classical Fourier approximations return less accurate predictions on the
value of f(x) due to the periodic nature of the model. The quantum
Fourier and both classical and quantum UAT models return better results
for all values of x. This behaviour is observed in all benchmarks. The
experimental results retain the qualitative properties of the exact models,
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Figure 3.3: Fits for four real-valued functions using the Z benchmark with
five layers. Blue triangles represent classical models, namely Fourier and UAT,
while red dots represent its quantum counterparts computed using a classical
simulator. Green squares are the experimental execution of the optimized
quantum model using a superconducting qubit. The target function is plotted
in black for comparison. The analysis for experimental errors is plotted for the
ReLU function and the UAT model.
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although a loss in performance is visible. In addition, an analysis of
experimental uncertainties is also depicted at the UAT ReLU plot from
Fig. 3.3.
Fig. 3.5(a) shows a summary of the values of χ2 for classical and their
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Figure 3.5: Values of χ2 for the Z benchmark in all four test 1D and 2D
functions using classical computation (blue scatter), classical simulation of
the quantum algorithm (red scatter) and experimental implementation with
a superconducting qubit (green scatter). Fourier models are depicted with
triangles, while UAT models are represented by crosses. In the 2D case, only
UAT models are considered.
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analogous quantum simulated models and their experimental validation.
In the case of classical and simulated quantum models a general trend
towards better approximations –implying lower values of χ2– is observed
with an increasing numbers of layers.
The simulated Fourier model performs better than its classical counterpart.

This is due to the fact that a classical Fourier series does not contain
tunable parameters, while its quantum version does. However, the
result from the classical Fourier series constitutes a lower bound for
any approximation method based on optimization since at least the
quality of the Fourier series is guaranteed.
In the UAT case of Fig. 3.5(a), no approach returns significantly better

results. The classical algorithm performs better in the poly(x) case, but
the results with the simulated quantum method improve the classical
ones in the tanh(5x) case. Both models present similar trends as the
number of layers increases.
Despite the fact that the Fourier model contains more parameters
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Figure 3.6: Fits for the complex function f(x) = tanh(5x) + iReLU(x)
properly normalized using the X − Y benchmark for five layers. Blue triangles
represent a classical model, while red dots represent its quantum counterparts
computed using a classical simulator. Green squares are the experimental
execution of the optimized quantum model using a superconducting qubit. The
target function is plotted in black for comparison.
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than the UAT model, the latter performs better as seen in Fig. 3.5(a).
Therefore, the UAT method seems more appropriate for the functions
used here.
The experimental realization of the quantum approximation models

suffers from circuit noise and sampling uncertainties, and therefore
degrades the quantity χ2. This is more prominent as more layers are
added to the model. As a direct consequence, the approximation of
the quantum model to the target function loses accuracy. The inherent
sampling uncertainty sets a lower bound in the value of χ2 obtained
through experiments.
In general, Fig. 3.5(a) supports the claim that every layer grants the

model more flexibility, and thus enhances the capability of fitting the
target function. This flexibility is given by the number of re-uploadings
of the independent variable and not by the amount of parameters. In
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addition, having too many parameters likely hinders the optimization
procedure.
Figure 3.4 depicts the approximations obtained for the Himmelblau(x, y)

function comparing the target function and all different methods considered.
Figure 3.5(b) summarizes the values of χ2 for all 2D-functions taken into
account in this work.
All different executions capture the overall shape of the function, but

some differences exist in the different plots. Classical simulations return
values for Z < −1, Z > 1, and thus lead to three minima in this case. On
the other hand, the quantum simulation cannot clearly distinguish those
minima. The experimental execution presents sharp contours because of
the inherent noise and sampling uncertainty.
The values of χ2 in Fig. 3.5(b) measure the accuracy of the approximations.

As before, is is seen that a larger number of layers provides better
approximations to the target function. In agreement to the one-dimensional
Z benchmark, the scaling is similar for both quantum and classical
methods.
A complex function in the X − Y benchmark is depicted in Fig. 3.6.

In that case, the X measurement leads to tanh(5x) while the imaginary
part contains ReLU(x). All the observations made for the Z benchmark
hold in this case.
Fig. 3.7 shows values of χ2 for all possible combinations of real and

imaginary parts using the functions described in Eqs.(3.59)–(3.62), being
the real and imaginary parts. In this case, it is possible to see a common
advantage for the quantum models. In particular, the functions tanh(5x)
and ReLU(x) work better in any combination. This reflects the behaviour
already observed in Fig. 3.5(a), where these functions present better
performance than other functions considered.

3.2.4 Discussion
The results presented in this section are the numerical and experimental

confirmations that the theoretical works presented in Sec. 3.1 have
some utility in practice. With this purpose, numerical evidences on
the flexibility and approximation capabilities of the quantum circuits are
given.
The benchmarks were obtained using first simulations of quantum

systems optimized by classical means for a set of test functions. As
benchmarks, 1D and 2D real functions, and 1D complex functions are
included. Final results are compared against classical counterparts. In
general, it is possible to see that quantum and classical methods scale
equivalently. This is the numerical confirmation that quantum procedures
can perform similarly to classical ones, at least theoretically.
A further step has been carried by implemented the found solutions in

an actual quantum device built upon superconducting trasmon qubits.
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No further optimization is performed in this stage. Experimental results
confirm the trend seen by simulation, and the finite coherence and
imperfections of the qubit do not seem to impact results significantly for
small numbers of gate.
The obvious next step to tackle in this experiment is to actually carry

the optimization procedure on the quantum device. However, the lack of
accurate retrievement of values for the cost function limits the performance
achievable in this direction. Future work will deal with problems of this
kind [Pér+–].

3.3 Re-uploading for a quantum classifier

The re-uploading strategy can be used to address classification problems
with minimal amounts of quantum resources. As it is seen in this section,
even a single-qubit circuit is a system versatile enough as to build a
universal quantum classifier upon it. The computational capabilities
are obtained by combining quantum features and classical optimization
subroutines. In fact, there exist no theoretical limits in the dimensionality
of data that can be classified with this strategy. On the other hand,
multiple class classification can be accomodated even in the smallest
possible Hilbert space. The main reason why this is possible is the
density of the Hilbert space the quantum processing takes place in.
The single-qubit classifier here proposed does not attempt to address

classically intractable problems, and the achievement of quantum advantage
is out of scope. The focus of the work of this chapter is rather to
illustrate that even the most minimalistic quantum systems provide large
computational power. In this work, the aim is to distill the minimal
amount of quantum resources required to solve a given supervised learning
problem in practice. Quantum resources include qubits and gates. The
problems to be solved in this section are not trivial, even though they
can be expressed with simple datasets.
This quantum classifier also extends the idea of re-uploading to multiple

qubits and entangling architectures. There is currently no theoretical
work supporting the universality of such circuits. However, extensive
benchmarks were carried to compare the efficiency of this strategy
as entanglement expands the superpositions carried along with the
classification. The main result in this section is to show that there
is a trade-off between the number of qubits and depth of the circuit. That
is, fewer qubits may be used at the price of re-uploading data in several
steps along the computation. In summary, similar results can be obtained
for similar query complexities even in the case of different architectures.
Thus, despite the lack of theoretical evidence, it is expected that quantum
systems with several entangled qubits possess more capabilities to perform
classification than the single-qubit systems. To what extent complex
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systems outperform simple ones is still unclear.
The power of single- and multi-qubit classifiers following the data

re-uploading strategy is illustrated by a series of examples. All the
examples here presented were computed by means of classical simulations.
Later, this approach was experimentally demonstrated on a trapped-ions
quantum computer, see Sec. 3.4. First, it is attempted to distinguish
between points in a plane divided in two classes. The classes are
determined by a geometrical boundary. Then, the number of regions, that
is classes, is extended on the plane to address more complicated datasets.
As a last extension, the dimensionalty of the datasets is increased from
plane (2D) to points in space (3D) and hyperspace (4D). A complete
benchmark is done for every problem as addressed with quantum circuits
with differentes properties, that is number of qubits and entanglement
schemes.
This section is structured as follows. First, the adaptations needed to

transform the general re-uploading strategy to a single-qubit quantum
classifier scheme including measurement strategy are explained in Sec. 3.3.1.
The extension from single- to multi-qubit is depicted in Sec. 3.3.2. Results
are reviewed in Sec. 3.3.3. Sec. 3.3.4 covers final comments.
The contents of this section are based on the work in Ref. [Pér+20a].

This work constitutes the seminal paper of all the re-uploading strategy.
It is important to mention that some technical details were polished as
more comprehension of the scheme was acquired. These improvements,
however, do not compromise the validity of the results here displayed,
even though these implementations do not constitute an optimal one.

3.3.1 Quantum classifier
In this section the different ingredients required to build the quantum

classifier are described in detail, namely the quantum circuit, the measure-
ment strategy, the cost functions and the general working principle for
mixing all pieces in a consistent way.

Quantum circuit
We take as the starting line of the quantum classifier the general scheme

defined in Def. 3.1.1, and specify the quantum circuit used in terms of
their processing gates. For this application of the re-uploading strategy,
the gates take the role of Defs. 3.1.3 and 3.1.4, but they do not exactly
match the ones previously proposed. Nevertheless, it mantains the most
important properties, namely re-uploading and linear encoding of data,
and non-commuting matrices interspersed. In the single-qubit classifier,
data is introduced in simple rotations which are easy to characterize. The
definition of each layer is

U(~x; ~θ, ~w) = U3(~θ + ~w ◦ ~x), (3.65)
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where ~θ, ~w, ~x are 3D vectors and ~w ◦ ~x =
(
w1x1, w2x2, w3x3

)
is the

Hadamard product of two vectors. U3 is the most general single-qubit
unitary gate defined as U3(~θ) = Rz(θ1)Ry(θ2)Rz(θ3). In case the data
points have dimension lesser than 3, the rest of the components of ~x until
reaching this dimensionality are set to 0, and the corresponding terms in
~w are then irrelevant.
It is also possible to enlarge the dimensionality of the input space in

the following way. The definition of one layer can be extended to

Û
(
~x; ~θ, ~w

)
= U

(
~x(j); ~θ(j), ~w(j)

)
· · ·U

(
~x(1)~θ(1), ~w(1)

)
, (3.66)

where each data point is divided into j vectors of dimension three. In
general, each unitary U could absorb as many variables as degrees of
freedom in an SU(2) unitary. Each set of variables act at a time, and all
of them have been shown to the circuit after j iterations. Then, the layer
structure follows. The complexity of the circuit only increases linearly
with the size of the input space. This recipe to enlarge dimensionality
is not supported by the theorems from Sec. 3.1. However, numerical
results show that slight modifications on the scheme permit to keep the
functioning principle of the quantum algorithm.
Further refinement and understanding of the re-uploading technique

sheds light on some properties of the proposed circuit that could be more
efficient only in the single-qubit case. Since one layer is defined as the
sequence of gates RzRyRz, when two layers are set together pairs of Rz
gates appear in consecuive positions. These gates do commute between
them, and therefore the inner parameters of those gates can fuse to give
rise to only one parameter, and non-linearities do not rise. This way, the
overall depth of the circuit is reduced. As a consequence, this scheme
includes some tunable parameters whose presence does not entail any
improvement in the capability of the circuit.
For the sake of completeness the complete circuit is made further

explicit now. Following the recipe from Def. 3.1.1, the overall operation
for the classifier is

U (k)(~x; Θ,W ) =

k∏
i=1

Û(~x; ~θi, ~wi), (3.67)

where the optimals parameters Θ = {~θi},W = {~wi} are different for each
layer (i). Then, the output state of this circuit depending on ~x will be

|ψ(~x; Θ,W )〉 = U (k)(~x; Θ,W ) |0〉 (3.68)

The quest for optimal configurations of Θ and W is done by classically
minimizing some loss function. This loss function χ2 will depend both
on the parameters and on the dataset to be classified. The quantity
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χ2 is designed in such a way that χ2 → 0 implies that the circuit can
correctly guess all the classes from the training dataset. However, it is
worth to mention than an optimal set of parameters do not always imply
a good performance on unseen test datasets, since classifiers must learn
to generalize their training sets, see 2.1.1. Therefore, to measure the
quality of the quantum classifier the accuracy A, measured on the testset
as

A(Θ,W ) =
Correct guesses

Number of samples
, (3.69)

is considered. Thus, benchmark not only the adaptability of the quantum
classifier, but also its generalization capability are benchmarked

Measurement
The measurement strategy to retrieve useful information for the classifi-

cation from the circuit is key to achieve versatile models. The final states
|ψ(~x; Θ,W )〉 are measured, and the results are used to compute the cost
function χ2 that quantifies the error made in the classification of the
training set. The minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any preferred supervised
machine learning technique.
To design a successful measurement recipe find an optimal way to

distinguish among output quantum states belonging to different classes
must be found. Following the guiding principle of Ref. [Hel76] the optimal
scenario to distinguish between two quantum states appears when the
states are orthogonal. This is easily achieved for the single-qubit case for
binary classifications. Classes A and B are attached to two orthogonal
states, for instance |0〉 ad |1〉. The output state of the circuit is then
measured, with a probability P (0), P (1) of obtaining |0〉 , |1〉 respectively,
with P (0) + P (1) = 1. A given datapoint is then guessed as A if
P (0) > P (1), and as B otherwise. A more flexible criterium is possible
by introducing some boundary λ. In this case a point is guessed as A if
P (0) > λ. Notice that for λ = 1/2 the direct comparison is recovered.
Thus, the presence of λ can only improve the final result. An optimal λ
is chosen to get the best possible accuracy A on some unseen test set.
It is convenient for understanding more complex datasets to picture

the division of the Hilbert space into different areas, where each area
corresponds to a different class. In this dichotomic classification, the
Bloch sphere is divided in northern |0〉 and southern |1〉 hemispheres.
The parameter λ can move the boundary from the equator to some other
convenient parallel.
The assignment of classes to the output reading of a single qubit

becomes a much more difficult problem when many classes are involved
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in the dataset. The Hilbert space spanned in a single qubit is two
dimensional, and there only exist pairs of orthogonal states. Thus, it
is convenient to develop some other strategies to distinguish between
different classes when measuring the output states.
The geometrical vision provides insights to address this problem. One

possible strategy is to divide the Bloch sphere through parallels. The
quantity P (0) is compared to three thresholds 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ 1.
The value of P (0) must then fall into one of these areas. A second more
robust strategy consists in dividing the Bloch sphere into equivalent
classes as separate as possible. This is obtained by computing the overlap
between the output state and some label-state that targets a given class.
The set of label-states is chosen in such a way that the members are
maximally orthogonal among them. This strategy divides the Bloch
sphere into different classes, where the boundary between two of them
lies on the points where the relative fidelity of a given state with two
different label states is equal.
Finding the optimal set of label-states is a problem on its own. It

can be solved almost trivially in a small number of cases. For 2 classes,
solutions are |0〉 and |1〉. For 3 classes, the label-states must form a
regular triangle in any equatorial plane. For 4 classes, a tetrahedron is
needed. This opens up the field of platonic solids [AS03], that are the
solutions to 4, 6, 8, 12 and 20 classes, corresponding to the number of
verteices. For other numbers of classes, solutions must be found through
some other method. Figure 3.8 shows the particular cases that can be
applied to a classification task of four and six classes.
In general, a good measurement strategy may need some prior computa-

tional effort and refined tomography of the final state. For a single-qubit
classifier, the tomography protocol will only require three measurements.
There is an alternative experimental approach to avoid tomography.
Comparing some output state with some other is equivalent to measure
their relative fidelities [NC10], that is

Fy(~x,Θ,W ) = | 〈φy|ψ(~x; Θ,W )〉 |2 (3.70)

This can be done by adding a unitary gate Uy at the end of the circuit
such that Vy |0〉 = |φy〉 and measuring the probability of getting |0〉 as

Fy(~x,Θ,W ) = | 〈0|V †y U(~x; Θ,W ) |0〉 |2 (3.71)

In the case where more qubits are available, a swap test can be used as
well [Kan+19].

A fidelity cost function
We propose a simple cost function motivated by the geometrical

interpretation introduced above. The final goal of the quantum classifier
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Figure 3.8: Representation in the Bloch sphere of four and six maximally
orthogonal points, corresponding to the vertices of a tetrahedron and an
octahedron respectively. The single-qubit classifier will be trained to distribute
the data points in one of these vertices, each one representing a class.

is then to force the output states |ψ(~x; Θ,W )〉 to be geometrically close
to the corresponding label state. That implies that the average fidelity
between the output states and the corresponding label states must be
maximal in average. The following cost function carries out this task:

χ2
f (Θ,W ) =

M∑
{~x,y}

(
1−Fy(~x,Θ,W )2

)
, (3.72)

where data and classes pairs {~x, y} run over the training dataset.

A weighted fidelity cost function
The next step is to define a refined version of the previous fidelity cost

function to be minimized. Maximixing the overlap between output states
and the label states is equivalent to minimizing the overlap to other label
states. Since the room in a single-qubit Hilbert space has dimension two,
the latter overlap cannot be zero. A vector whose components are the
relative fidelities among the label state is defined as,

(Yy)i = | 〈φy|ψi〉 |2. (3.73)

This quantity stores the expected fidelities for a successful classification.
For example, given a four-class classification and using the vertices of a
tetrahedron as label states (as shown in Figure 3.8), the ideal output state
would have complete overlap with the corresponding class, say 0, and a
relative fidelity 1/3 for any other class. Thus, ~Yy = (1, 1/3, 1/3, 1/3).
One expects Ys(~x) = 1, where s is the correct class, and Yr(~x) = 1/3

for the other r classes. In general, Yy(~x) can be written as a vector with
one entry equal to 1, the one corresponding to the correct class, and the
others containing the overlap between the correct class label-state and
the other label-states.The expected fidelities are then compared with the
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obtained fidelities for a given output state of a successful classification,
Yy(~x).
With this definition, a cost function inspired by conventional cost

functions in artificial NNs can be constructed. By weighting the fidelities
of the final state of the circuit with all label states, the weighted fidelity
cost function is

χ2
wf (Θ,W, ~α) =

1

2

M∑
{~x,y}

 C∑
j=1

(αjFj(~x; Θ,W )− (Yy)j)
2

 , (3.74)

where M is the total number of training points, C is the total number of
classes, (~x, y) are set of training data and classes and ~α = (α1, · · · , αC)
are introduced as class weights to be optimized together with Θ and W
parameters. The weighted fidelity cost function needs more parameters
than the fidelity one. Notice however that the parameters in ~α have the
capability to enlarge and decrease the size of the areas corresponding to
the different classes by weighting the classes. Large values of αy increase
the probability to guess the class y. This is useful when datasets are
unbalanced.

The main computational difference between χ2
f and χ2

wf lies in how
many relative fidelities must be measured to compute the cost function.
The χ2

wf requires as many fidelity measurements as classes for every
evaluation of the cost function in the optimization subroutine, while
the χ2

f needs just one. For few classes and one qubit, it is not a
such a big difference since tomography is not extremely costly. The
extra cost in terms of number of parameters and then hardness of the
optimization affects only the classical part of the computation. The
classical requirements are increased to reduce the overall contribution of
quantum resources. This fact links with the NISQ line of thought.
Besides the larger computational cost of χ2

wf with respect to χ2
f ,

there is a qualititative difference betweeen both. The fidelity cost
function retrieves information about how close an output state is from
its corresponding label state. Thus, the only mechanism of the optimizer
to obtain good results is to minimize this distance. Loosely speaking,
χ2
f looks for an optimal configuration by moving towards where the

output state should be. On the contrary, χ2
wf retrieves a more complete

information, since the distance to all label states is measured in every
interaction. There is then more insight when updating the parameters in
every new evaluation. The geometrical interpretation is that the output
state moves away from the wrong classes while approaching the right
one. The differences between both cost functions induce that the χ2

wf is
expected to provide better results.
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Quantum classifier: multi-variable ~x ⇒ multi-class {y}
1. Optimization on the training dataset
|0〉 U(~x, ~θ1, , ~w1) U(~x, ~θ2, ~w2) · · · U(~x, ~θk, ~w2)

⇒ •

• • ⇐ • Classical Optimizer ⇐ χ2(Θ,W ) ⇒ Θ,W

−→ ~F(~x,Θ,W )

2. Retrieving results from test dataset
|0〉 U(~x, ~θ1, , ~w1) U(~x, ~θ2, ~w2) · · · U(~x, ~θk, ~w2) −→ ~F(~x,Θ,W )⇒ guessed y

Figure 3.9: Functioning scheme of the quantum classifier. In the first stage,
a training dataset is used to find optimal parameters. The output states are
measured to construct a cost function χ2

f , χ
2
wf , to be minimized. Once this

process is complete, second stage starts. In this step, the quantum circuit is
executed using data points vecx from the testset. Fidelities are measured, and
from that information a class y is guessed.

Optimization and retrievement of results

The cost function defines the two steps needed to carry classification
task, namely the training and the retrievement of results.
For optimizing the circuit, the well-known hybrid classical-quantum

models can be used, see Fig. 3.9. The quantum circuit is executed and
measured several times. From those measurements the fidelity results
from Eq. (3.70) are retrieved. If the fidelity cost function χ2

f is used, then
is is only needed to measure the fidelity with respect to the label state
corresponding to the class of the data point. If χ2

wf is the chosen cost
function, then all fidelities must be measured for each point. Then, those
results are given to the classical optimizer to look for the optimal set of
parameters Θ,W .
When the set of optimal parameters has been obtained, it is time to

run the quantum circuit with data points from the testset. At the end
of the execution, measurements are made to obtain the relative fidelities
between the output state and all label states. In this step it is compulsory
to take all possibilities into account since no prior knowledge is available.
From that information, it is possible to guess a class y, commonly by
choosing the largest fidelity. The number of correctly guessed points will
determine the accuracy A(Θ,W ).

3.3.2 From single- to multi-qubit quantum classifier

Entanglement makes the dimensionality of the Hilbert space of composite
quantum systems increase exponentially as more particles are added. This
phenomenon lies at the core of the impossibility to simulate quantum
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mechanics by classical means. Therefore, quantum advantage can only be
achieved by those quantum algorithms whose number of qubits is at least
moderately large, only if they are entangled. In this case, the single-qubit
quantum classifier cannot expect to overcome any classical method.
On the other hand, the classical analog to the single-qubit classifier

here presented is a single-hidden-layer NN, as stated in Theorem 3.1.4.
Nevertheless, using this architecture is rare. The amount of neurons
needed to achieve good performance and the inefficiency of training
methods prevents an extended use of this NN. Instead, other kinds of NNs
were developed to circumvent this limitation. One of the most celebrated
models is the deep FfNN, see Sec. 2.1.1. In this case, many neurons are
distributed through several layers, and each layer is connected to the
previous and next ones, except for the extrema. Connections between
two consecutive layers can happen in principle among all possible pairs
of neurons. In this case, data is processed in several steps, and more

|0〉 U(1, 1) U(1, 2) U(1, 3) · · · U(1, N)

|0〉 U(2, 1) U(2, 2) U(2, 3) · · · U(2, N)

(a) Ansatz with no entanglement

|0〉 U(1, 1) • U(1, 2) • · · · • U(1, N)

|0〉 U(2, 1) • U(2, 2) • · · · • U(2, N)

(b) Ansatz with entanglement

Figure 3.10: Two-qubit quantum classifier circuit without and with
entanglement. Here, each layer includes a single-qubit operation with data
re-uploading per plus a CZ gate if entanglement is considered. The last layer
never carries an entanglement gate. For a fixed number of layers, the number of
parameters to be optimized doubles the one needed for a single-qubit classifier.
The depth is also doubled, up to physical realization of the CZ gate.

|0〉 U(1, 1) U(1, 1) U(1, 2) · · · U(1, N)

|0〉 U(1, 1) U(2, 1) U(2, 2) · · · U(2, N)

|0〉 U(1, 1) U(3, 1) U(3, 2) · · · U(3, N)

|0〉 U(1, 1) U(4, 1) U(4, 2) · · · U(4, N)

(a) Ansatz with no entanglement

|0〉 U(1, 1) • U(1, 2) • · · · • U(1, N)

|0〉 U(2, 1) • U(2, 2) • · · · • U(2, N)

|0〉 U(3, 1) • U(3, 2) • · · · • U(3, N)

|0〉 U(4, 1) • U(4, 2) • · · · • U(4, N)

(b) Ansatz with entanglement

Figure 3.11: Four-qubit quantum classifier circuit without and with
entanglement. Here, each layer includes a single-qubit operation with data
re-uploading per qubit plus two CZ gates if entanglement is considered. The
order of CZ gates alternates in each layer between (1)-(2) and (3)-(4) qubits and
(2)-(3) and (1)-(4) qubits. The last layer never carries an entanglement gate. For
a fixed number of layers, the number of parameters to be optimized quadruples
the one needed for a single-qubit classifier. The depth is only doubled, up to
physical realization of the CZ gate.
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complex features and correlations of the training data are captured. In
addition, the training of such models can be done more efficiently using
techniques such as back-propagation [GBC16; Nie15; RHW86].
The natural step to take is to extend the single-qubit formalism to

a framework which is more similar to the deep-learning approach of
classical methods. The generalization should carry entanglement as a
crucial resource for obtaining quantum advantage. The expectation of
the model is to improve the overall performance of the quantum classifier
as more qubits are added, aiming to mimic the features of hidden layers
in deep NNs. Ideally, incorporating entanglement among qubits could
lead to a reduction in the number of re-uploadings needed to solve some
classification problem. However, even though the relationship between
a single-qubit quantum classifier and a single-hidden-layer NN is well
understood, see Fig. 3.1 and properly supported by theoretical results,
see Th. 3.1.4, the interpretation of multi-qubit classifiers in terms of
deep-learning scheme is far from straightforward.
In contradistinction to the single-qubit quantum classifier, the extension

to many qubits and addition of entanglement does not have yet theoretical
results supporting its applicability and universality. However, it is
expected that these circuits have at least the same flexibility as single-
qubit circuits. The work in Ref. [SSM21] deals with the representation
capabilities of single-depth circuits when distributed along several qubits.
Thus, this work does not deal with the possible correlations among
subsequent re-uploadings of data on different qubits.
As in multi-layer NNs, the design of multi-qubit quantum classifiers

is heuristic. In the classical case there is no recipe to know the optimal
number of layers and neurons, and neurons per layer, to solve some
problem with the best possible performance. In general, it depends
strongly on the problem. In the quantum case, several properties of the
circuits must be decided. For instance, how to upload data onto the
circuit, namely whether all features are included in all gates and repeated,
or distributed along larger parts of the circuit. Another purely quantum
extra degree of freedom is the addition of entanglement. Entanglement
is in general an open problem when finding Ansätze for parameterized
quantum circuits [NY21; SJA19]
Figures 3.10 and 3.11 show the explicit circuits proposed for classification

in this work. In these models, layers are a set of parallel single-qubit
operations occurring simultaneously. Entanglement is introduced by
means of CZ gates between layers of rotations. In the case of circuits
with entanglement, those gates are absorbed in the definition of layer.
For the two-qubit circuit, the CZ entangling gate is applied after each
set of rotations, except for the last one. For the four-qubit classifier, two
CZ gates are applied after each rotation set interspersed between qubits
(1)-(2) and (3)-(4); and (2)-(3) and (1)-(4) qubits, see Fig. 3.11 for a
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graphical description. In both images, the gate U(i, j) corresponds to
the gates from Eq. (3.65) and (3.66) depending on the dimension of the
training data, applied on i-th qubit, j-th layer.
Each rotational layer is composed by the same gates as in the single-

qubit case. Thus, the the number of parameters needed to define the
circuit is multiplied times the number of qubits present. The depth of
the circuit, however, is only doubled with respect to the single-qubit one,
up to the physical realization of entangling gates.

Measurement strategy and cost function for a multi-qubit classifier

In the single-qubit classifier, the only available measurement strategy
consists on comparing the output quantum state of the circuit with
the label-states representing the different classes. This can be done
using performing simple tomography procedures or directly measuring
relative fidelities. However, when more qubits are considered, this
protocol becomes rapidly outdated. First, the number of dimension of
the Hilbert space defined by the quantum system increases exponentially,
and thus the possibilities of finding maximally orthogonal sets label-
states become much more diverse. Second, tomography protocols suffer
from exponentially larger costs in terms of number of measurements as
the size of the quantum system increases. To overcome these barriers,
two different measurement strategies for the multi-qubit classifiers are
proposed.
First, the single-qubit measurement is generalized in a natural way.

The final output state is compared with one chosen label-state from the
computational basis. This, however, becomes unrealizable for a large
number of qubits. Due to the exponential increase of the dimensionality
of Hilbert spaces, the number of orthogonal states becomes quickly much
larger than the number of classes provided by the dataset. With this
method, it is only possible to retrieve information from an exponentially
small subspace of the Hilbert space. In particular for the first steps of
the optimization, where the output state is created following random
parameters, this measurement protocol only captures insufficient and
random oddments.
The second strategy consists in measuring only one qubit and assign

different classes depending on the result. Notice that this qubit cannot
be longer described as a pure state |ψ〉, but rather as a density matrix
ρ. This permits to compress the information of large Hilbert spaces into
smaller subspaces. This strategy follows similar to the single-qubit one.
This approach aims to join ideas of binary multi-qubit classifiers [FN18]
and the possibility of multi-class classification by introducing thresholds
and single-qubit label states, see Section 3.3.1.
Another piece that should be adapted to accomodate multi-qubit

measurements is the definition of the cost function. A different cost
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function for each measurement strategy is attached. The new cost
functions are inspired in the previous χ2

f , χ
2
wf from Eqs. (3.72) and (3.74).

For the first strategy, the fidelity cost function χ2
f is used. Its generalization

to more qubits is straightforward. However, the orthogonal states used
for a multi-qubit classifier are taken as the computational basis states.
A more sophisticated set of states could be considered to improve the
performance of this method.
For the second strategy, the weighted fidelity cost function χ2

wf is used.
As stated above, only one qubit is considered, thus

Fy,q(~x; Θ,W ) = 〈φy| ρq(~x; Θ,W ) |φy〉 , (3.75)

where ρq is the reduced density matrix of the qubit to be measured. Then,
the weighted fidelity cost function can be adapted as

χ2
wf (Θ,W, α) =

1

2

∑
{~x,y}

C∑
j=1

 Q∑
q=1

(αj,qFc,q(~x; Θ,W )− (Yy)j)
2

 , (3.76)

where an average is computed over all Q qubits that form the classifier.
Notice that the α parameters evolved from being a vector to a C × Q
matrix. Eventually, the number of measured qubits and effectively the
number of optimizable parameters can be reduced.

3.3.3 Numerical benchmark of the quantum classifier
In this section the performance of the quantum classifier previously

described is numerically benchmarked against several distinct classification
problems. The results here present demonstrate numerically that this
method is capable to successfully solve multi-class classification problems
for multi-dimensional data. A single-qubit classifier suffices, but multi-
qubit circuits reach comparable final results with less processing layers.
In summary, the flexibility of the quantum classifier depends mainly on
the query complexity of the algorithm, that is, how many times the data
is re-uploaded into the circuit. The complete code can be viewed in Ref.
[Pér19].
The benchmark is carried by constructing several different classifiers

with different numbers of layers. This makes possible to control the query
complexity of a given circuit. Then, the models are trained to obtain the
optimal parameters {Θ,W} for each layer, plus {α} when applicable. The
cost functions used to drive the optimization are χ2

f , χ
2
wf from Eqs. (3.72)

and (3.74) for the single-qubit classifiers, and its multi-qubit analogues,
see Eq. (3.76), for multi-qubit classification.
The datasets to classify for the benchmark are composed by random

points in the space [−1, 1]d whose classes are defined by geometrical
means. The data points are always the same, while the assignment of
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χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.50 0.75 – 0.50 0.76 – 0.76 –
2 0.85 0.80 0.73 0.94 0.96 0.96 0.96 0.96
3 0.85 0.81 0.93 0.94 0.97 0.95 0.97 0.96
4 0.90 0.87 0.87 0.94 0.97 0.96 0.97 0.96
5 0.89 0.90 0.93 0.96 0.96 0.96 0.96 0.96
6 0.92 0.92 0.90 0.95 0.96 0.96 0.96 0.96
8 0.93 0.93 0.96 0.97 0.95 0.97 0.95 0.96
10 0.95 0.94 0.96 0.96 0.96 0.96 0.96 0.97

Table 3.1: Results of the single- and multi-qubit classifiers with data re-
uploading for the circle problem. Numbers indicate the success rate, that is
correctly guessed samples over total number of samples. Words “Ent." and “No
Ent." refer to considering entanglement between qubits or not, respectively.
Minimization was in this case done using the L-BFGS-B algorithm. For this
problem, both cost functions χ2

f , χ
2
wf lead to high success rates, although the

weighted fidelity one achieves it with lesser numbers of layers. The multi-qubit
classifier increases this success rate, although entanglement does not produce
any appreciable effect.

classes differs depending on the problem. After the training is complete,
the classifier is tested against an unseen testset one order of magnitude
larger than the training set. The reason to proceed in this way is to check
the generalization capabilities of the quantum classifier without facing a
too costly optimization step.
Classifications with 1, 2 and 4 qubits were carried, with and without

entanglement for the multi-qubit cases, for the two cost fuctions defined
above. The number of layers tested in every case are L = {1, 2, 3, 4, 5, 6, 8, 10}.
The problems tackled run from simple two-dimensional binary classification
to multi-dimensional and multi-class classifications. Non-convex classes,
which are considered difficult for classification, are also covered.

Binary classification of a circle

This example is the easiest one considered.The dataset is a random
set of data points {~x} ∈ [−1, 1]2, that is ~x = (x1, x2);−1 ≤ xi ≤ 1 .
The classification task is to determine whether these points satisfy the
condition x2

1 +x2
2 < r2 for some radius r. From a geometrical perspective,

this is equivalent to infer from a point whether it is inside a circle of
radius r or not. The value of r was chosen in such a way that the area of
the circle is half the total area of the feature space, in this case r =

√
2/π.

This way, a random classifier obtains an accuracy of 50%. The training
dataset is composed of 200 random points, while the testset has 4000
previously unseen points to densely populate the feature space.
The results of the classification for the circle problem are summarized

in Tab. 3.1. First, it is worth noticing that the χ2
wf cost function delivers

much better results than the simpler χ2
f , in particular for classifiers with
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Figure 3.12: Results of the circle classification obtained with a single-qubit
classifier with different number of layers using the L-BFGS-B minimizer and
χ2
wf cost function. One layer returns a random classifier, while the circular

shape is already captured with two layers. More layers refine the previous result.

few layers. With χ2
wf , the single qubit classifier achieves over 90% of

success with only two layers, 12 parameters. The two- and four-qubit
classifiers reach that threshold with two layers as well, that is 22 and 42
parameters. In addition, the introduction of entanglement does not change
the final result in any case. The results show a saturation in the success
rate, so that adding more layers leads to no further improvement. The
flexibility achieved with few layers is enough to capture all the available
data, and the fine tuning required here to improve the results needs of
further strategies in the training, such as increasing and densifying the
training dataset around the border between classes.
In Fig. 3.12 it is depicted the evolution of the single-qubit classifier

for the circle problem as more layers (1, 2, 4, 8) are added. The first
layer cannot provide any information since the classification is essentially
random. However, adding a second layer is enough for the classifier
to broadly capture the general properties of the classifier. When this
comprehension is complete, subsequent layers lead to further refinements
of the classification.
The characterization of a closed curve is not a trivial problem in

classical Machine Learning. Single-layer NNs work in a linear regime,
that is, the approximations to any curve must be done by superposition
of many linear functions. The quantum classifier is constructed using
rotations as building-blocks. Thus, the classification of a circle seems a
natural function to classify, in the same sense as a linear dataset is easily
understood by a NN. Thus, the quantum classifier must be tested in more
complex scenarios to properly benchmark its capabilities.

Multi-class classification: 3 circles

Multi-class classification is now addressed for the first time. Here it
is shown that a single-qubit classifier is capable to solve this problem.
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χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.73 0.56 – 0.75 0.81 – 0.88 –
2 0.79 0.77 0.78 0.76 0.90 0.83 0.90 0.89
3 0.79 0.76 0.75 0.78 0.88 0.89 0.90 0.89
4 0.84 0.80 0.80 0.86 0.84 0.91 0.90 0.90
5 0.87 0.84 0.81 0.88 0.87 0.89 0.88 0.92
6 0.90 0.88 0.86 0.85 0.88 0.89 0.89 0.90
8 0.89 0.85 0.89 0.89 0.91 0.90 0.88 0.91
10 0.91 0.86 0.90 0.92 0.90 0.91 0.87 0.91

Table 3.2: Success rates of the single- and multi-qubit classifiers with data
re-uploading for the 3-circles problem. Words “Ent." and “No Ent." refer to
considering entanglement between qubits or not, respectively. The L-BFGS-B
minimization method with the weighted fidelity and fidelity cost functions is
used. Weighted fidelity cost function presents better results than the fidelity cost
function. The multi-qubit classifier reaches 0.90 success rate with a lower number
of layers than the single-qubit classifier. The introduction of entanglement
slightly increases the success rate respect the non-entangled circuit.

The same 2D plane as for the circle problem is divided in four different
regions of different shapes and sizes. In this case, three classes correspond
to three different circular sectors with different centers and radii. The
fourth class is the remaining space among circles. This dataset is referred
to as the 3 circles problem. This dataset is non-linear and conceptually
difficult to solve for a classical NN.
The summary of results for this multi-class problem is depicted in

Tab. 3.2. The single-qubit classifiers surpasses the 90% threshold with
10 layers, 54 parameters. In this problem, the difference between cost
functions χ2

f and χ2
wf is smaller than in the circle problem. In addition,

the classifier saturates at success rates of ∼ 91%. The introduction of
several qubits and entanglement makes possible to reach the saturation
regime with less parameters, specially for the weighted fidelity function.
In light of these results it is possible to observe that the performance of

the classifier does not only depend on the number of parameters, but also
on the minimization process and the presence of local minima. Notice
that success rates do not always improve with the number of layers and
parameters.
As for the previous problem, the evolution of the final results as more

layers are taken into account is observed. Fig. 3.13 shows this data for an
increasing number of layers. It is worth mentioning that in the very first
attempt with one layer the classifier is capable to identify four different
regions, that is four different classes, but the boundaries among them are
only vaguely learnt. A significant change is observed from 3 to 4 layers.
At this stage, the geometrical figures of the datasets are captured by the
classifier. With 10 layers, further refinements are accomplished.
The 3-circles problem is an illustrative example to see how the output
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Figure 3.13: Results of the 3 circles classification obtained with a single-qubit
classifier with different number of layers using the L-BFGS-B minimizer and χ2

wf

cost function. With one layer, the classifier intuits the four regions although
the central one is difficult to tackle. With more layers, this region is clearer for
the classifier and the circular regions are adjusted.

(a) Guessed points

|0

|1

| + ||

(b) Output states on the Bloch sphere

Figure 3.14: Left: Results for a classification problem. The color corresponds
to the classification guess. Bottom: output states of all data points projected on
the Bloch sphere, where some states are printed for reference. Color corresponds
to the actual class, and not to the classifier guess. Crosses stand for the label
states of the different classes. Points belonging to the same class tend to gather
around its label state.

state behaves for classifying data. In Fig. 3.14 we can see a classification
of data, as extracted from the documentation Qibo [Eft+20b]. The first
plot, Fig. 3.14(a), shows the guesses of the classifier (left) and what
points are correctly guesses by the classifier (left), as in other examples
here provided. In the second plot, Fig. 3.14(b), the output states of all
different points are projected in a Bloch sphere as in a world map. The
states |0〉 , |1〉 , |+〉 , |−〉 are printed for reference. The colors correspond
to the actual classes, and not to the guesses of the classification, while
crosses stand for the label states of each class. It is straightforward to see
that all points corresponding to the same class gather around the label
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χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.87 0.87 – 0.87 0.87 – 0.90 –
2 0.87 0.87 0.87 0.87 0.92 0.91 0.90 0.98
3 0.87 0.87 0.87 0.89 0.89 0.97 – –
4 0.89 0.87 0.87 0.90 0.93 0.97 – –
5 0.89 0.87 0.87 0.90 0.93 0.98 – –
6 0.90 0.87 0.87 0.95 0.93 0.97 – –
8 0.91 0.87 0.87 0.97 0.94 0.97 – –
10 0.90 0.87 0.87 0.96 0.96 0.97 – –

Table 3.3: Success rates of the single- and multi-qubit classifiers with data
re-uploading for the four-dimensional hypersphere problem. Words “Ent." and
“No Ent." refer to considering entanglement between qubits or not, respectively.
The L-BFGS-B minimization method with the weighted fidelity and fidelity
cost functions is used. The fidelity cost function is likely to get stuck in local
minima for the multi-qubit classifiers. χ2

wf results are much better, peaking
at 0.98 success rates with only two layers in the entangled four-qubit classifier.
Unlike in other examples, the presence of entanglement significantly improves
the performance.

states.

Classification of high-dimensional datasets: hypersphere
The quantum classifier does not have any restriction in the dimension

of the re-uploaded data. As mentioned in Sec. 3.3.1, every gate can
accomodate up to three features of data. In case the dimension is larger,
then the re-uploading steps can be split into different steps, see Eq (3.66).
Larger dimensionality can be managed by using more gates.
With this idea more complicated classifications can be addressed. In

particular, the classification of a 4D hypersphere is used as testbed. This
problem is just an extension of the circle one, where the radius of the
hypersphere changed to fill half the volume of the feature space. This
time, the training set is composed of 1000 random points.
Results are summarized in Tab. 3.3. A single-qubit classifier reaches

its maximum success rate 97% for 8 layers, 82 parameters, with the χ2
wf

cost function. Two-qubit classifiers peak at 5 layers (62 parameters) for
the entangled case, and four-qubits classifiers have their maximum with
2 layers (82 parameters). Note that, in this case, entanglement provides
better final results as compare to other problems. Four-qubit classifiers
with more layers are not considered due to their training computational
cost.

Classification of non-convex datasets: tricrown
Non-convex patterns are usually difficult to classify for in Supervised

Learning frameworks. In this example two concentric circles with different
radii defining three different classes of similar sizes are studied. Thus,
this is a non-convex and multi-class problem.
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Figure 3.15: Results obtained with the single-qubit classifier for the tricrown
problem, using the weighted fidelity cost function during the training. Notice
that 2 layers can capture 2 classes reasonably well, while the inner one is
forgotten. 4 layers locate all classes in their corresponding places, and 5 layers
learn the general shape of the datset. Then, further layers add refinement to
the classification.

χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.34 0.51 – 0.43 0.77 – 0.81 –
2 0.57 0.63 0.59 0.76 0.79 0.82 0.87 0.96
3 0.80 0.68 0.65 0.68 0.94 0.95 0.92 0.94
4 0.84 0.78 0.89 0.79 0.93 0.96 0.93 0.96
5 0.92 0.86 0.82 0.88 0.96 0.96 0.96 0.95
6 0.93 0.91 0.93 0.91 0.93 0.96 0.97 0.96
8 0.90 0.89 0.90 0.92 0.94 0.95 0.95 0.94
10 0.90 0.91 0.92 0.93 0.95 0.96 0.95 0.95

Table 3.4: Success rates of the single- and multi-qubit classifiers for the
tricrown problem. Words “Ent." and “No Ent." refer to considering entanglement
between qubits or not, respectively. The χ2

wf cost function presents better
success rates than χ2

f . The multi-qubit classifiers improve the results obtained
with the single-qubit classifier but the using of entanglement does not introduce
significant changes.

Results for this tricrown problem are summarized in Tab. 3.4. A success
rate of 93% is achieved with 10 layers for the single-qubit classifier and
cost function χ2

wf . Two-qubit classifiers peak at 94% (3 layers), while
four-qubit obtain 96% (2 entangled layers).
The results of different layers for single-qubit classifiers with different

numbers of layers show the evolution in the performance of the classification,
see Fig. 3.15. 4 layers are needed to learn the concentric patterns, and
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the fifth one establishes the topology of the different regions. From this
point, more layers just refine the final results.

Other datasets: non-convex, sphere, squares, wavy lines

The single- and multi-qubit classifiers are tested in more datasets to
complete the benchmark. These extra datasets cover different kinds of
training data and aim to show that the quantum classifier can adapt
itself to large varieties of problems. From a qualitative point of view,
the results here presented are just an extension of the ones seen before.
Thus, the reader can skip these lines to Sec. 3.3.3 without any regrets.
All tables and figures summarizing data are depicted at the end of the
section. The datasets are similar to all previous datasets. Data points
~x ∈ [−1, 1]d, and the sizes are 200 / 4000 for the training / test sets. The
only exception is the sphere problem, where the sizes are 500 / 4000. The
design of the problems was made in such a way that a random classifier
guesses 1 / (# classes) correctly.
The results described in the following reinforce the properties previously
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(a) Non-convex: χ2
wf , 1 qubit, 6 layers
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(b) Crown: χ2
wf , 2 qubits without entanglement,

4 layers
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f , 2 qubits without entanglement,

6 layers
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(d) Wavy lines: χ2
wf , 2 qubits with

entanglement, 6 layers

Figure 3.16: Best results for 2D problems analyzed in this section. The
problem and architecture is detailed in each caption. For similar results, the
simpler architecture was chosen. Colors in the left part of each figure represent
the different classes obtained from the classifier outputs, while the right images
show correctly (green) and wrongly (red) classified points. Black solid lines
define the problem boundaries.
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χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.49 0.55 – 0.49 0.76 – 0.76 –
2 0.82 0.75 0.75 0.86 0.94 0.85 0.96 0.96
3 0.93 0.74 0.85 0.96 0.95 0.95 0.95 0.97
4 0.93 0.74 0.88 0.95 0.96 0.97 0.95 0.96
5 0.91 0.95 0.90 0.97 0.95 0.96 0.95 0.97
6 0.96 0.94 0.93 0.98 0.97 0.97 0.95 0.97
8 0.96 0.96 0.95 0.98 0.98 0.97 0.96 0.97
10 0.95 0.92 0.95 0.96 0.96 0.96 0.96 0.97

Table 3.5: Results of the single- and multi-qubit classifiers with data re-
uploading for the non-convex problem. Numbers indicate the success rate, i.e.
the number of data points classified correctly over the total number of points.
Words “Ent." and “No Ent." refer to considering entanglement between qubits
or not respectively. The L-BFGS-B minimization method with the weighted
fidelity and fidelity cost functions is use. Both cost functions lead to higher
success rates, although the weighted fidelity cost function is better. It achieves
the 0.98 success with two qubits, entanglement, and four layers.

observed. The classifier starts in a first stage where the performance
improves as more layers are added. Then, a stationary stage is reached.
Larger number of qubits and entanglement advance the appearance of
this stationary regime.
In the following, each different problem carries its own results table.

The best instance for each problem in a 2D feature space is plotted in
Fig. 3.16. Notice in this figure that all missed points are located near
the borders of the problem. This means that the classifier is properly
understanding the properties of the dataset, but more training is needed
to fine-tune the bordering regions.

Non-convex problem
Classification problems where classes are mutually non-convex are

considered difficult since the separation between both classes is hard to
characterize. In this problem, both zones are separated through the line
x2 = −2x1 + 3/2 sin(πx1). With this boundary, there is no area so small
that the classifier can achieve good results even if this area is neglected.
Tab. 3.5 summarizes the results for this problem. Best performance

(98%) is achieved with a single-qubit classifier of 6 layers (32 parameters)
using the χ2

wf cost function. The fidelity cost function χ2
f gets 96% in the

same conditions, but peaks at 97% for 2 entangled qubits with 8 layers
(80 parameters). See this example in Fig. 3.16(a).

Crown
This one is a binary version of the tricrown dataset. The most

interesting feature of this dataset is that one class is composed of two
different disconnected regions. Thus, the classifier must find a way to
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χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.44 0.50 – 0.44 0.59 – 0.66 –
2 0.48 0.50 0.51 0.53 0.73 0.72 0.70 0.96
3 0.91 0.50 0.56 0.74 0.75 0.95 0.78 0.96
4 0.80 0.74 0.56 0.86 0.97 0.97 0.92 0.96
5 0.90 0.93 0.88 0.89 0.97 0.96 0.97 0.94
6 0.92 0.91 0.94 0.95 0.94 0.95 0.95 0.93
8 0.90 0.93 0.95 0.92 0.94 0.94 0.96 0.94
10 0.90 0.92 0.91 0.92 0.95 0.93 0.96 0.93

Table 3.6: Results of the single- and multi-qubit classifiers with data re-
uploading for the crown problem. Numbers indicate the success rate, i.e. the
number of data points classified correctly over the total number of points.
Words “Ent." and “No Ent." refer to considering entanglement between qubits
or not respectively. The L-BFGS-B minimization method with the weighted
fidelity and fidelity cost functions is use. As happens in other problems, the
results obtained with the weighted fidelity cost function are better than the
ones obtained with the fidelity cost function. The multi-qubit classifiers and
the introduction of entanglement increase the success rates.

χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.53 0.70 – 0.53 0.70 – 0.70 –
2 0.77 0.73 0.53 0.78 0.94 0.96 0.96 0.96
3 0.76 0.74 0.77 0.78 0.92 0.94 0.94 0.95
4 0.84 0.83 0.78 0.89 0.92 0.94 0.95 0.94
5 0.89 0.85 0.77 0.90 0.94 0.94 0.95 0.94
6 0.90 0.89 0.88 0.92 0.87 0.93 0.94 0.94
8 0.89 0.87 0.90 0.93 0.92 0.89 0.94 0.93
10 0.93 0.91 0.90 0.93 0.94 0.92 0.92 0.92

Table 3.7: Results of the single- and multi-qubit classifiers with data re-
uploading for the three-dimensional sphere problem. Numbers indicate the
success rate, i.e. the number of data points classified correctly over the total
number of points. Words “Ent." and “No Ent." refer to considering entanglement
between qubits or not respectively. The L-BFGS-B minimization method with
the weighted fidelity and fidelity cost functions is use. The weighted fidelity
cost function is better than the fidelity cost function. There are no significant
differences between the two-qubit and the four-qubit classifiers. Both are better
than the single-qubit classifier and the introduction of entanglement does not
increase the success rates.

understand disjoint regions as belonging to the same class.

The χ2
f function reaches its best result (94%) for 2 entangled qubits

and 6 layers (60 parameters). For χ2
wf , a 97% accuracy is obtained for 2

unentangled qubits, 4 layers (40 parameters). See Tab. 3.6 for a summary,
and Fig. 3.16(b) for an example.
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Sphere
This quantum classifier is able to classify multidimensional data, as

shown with the four-dimensional hypersphere. A three-dimensional figure
is also tested, a regular sphere of size half the feature space.
For this problem, the fidelity cost function reaches its maximum, 93%,

with a single-qubit classifier of 10 layers (60 parameters). The same
success is obtained with a two-qubit entangled classifier and 6 layers (72
parameters). With the weighted fidelity, this success rate grows up to
96% for two- and four- qubit classifier of 2 layers (24 and 48 parameters
respectively) with and without entanglement. All results are written in
Table 3.7.

Squares
This problem divides a 2D area into four quadrants with straight lines.

This is one of the easiest problems for a NN. By construction, NNs can
establish a separation between classes by using biases, and thus straight
lines are immediate to understand. This problem aims to see how a
quantum classifier performs against a NN in the latter’s field.
The fidelity cost function reaches 99% of success in a two-qubit classifier

without entanglement and 6 layers (60 parameters). Any two-qubit result
is comparable with the success rate of the classical models. Something
similar can be found for the weighted fidelity. The maximum success,
96%, is obtained with a two-qubit entangled classifier with 4 layers (40
parameters). The results are written in Table 3.8 and the best performance
is plotted in Figure 3.16(c).

χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.58 0.48 – 0.70 0.92 – 0.90 –
2 0.76 0.96 0.97 0.74 0.91 0.94 0.95 0.95
3 0.90 0.96 0.98 0.90 0.94 0.95 0.95 0.95
4 0.89 0.98 0.96 0.88 0.94 0.95 0.95 0.95
5 0.91 0.97 0.98 0.89 0.94 0.94 0.95 0.94
6 0.92 0.99 0.94 0.93 0.94 0.94 0.94 0.94
8 0.93 0.98 0.94 0.93 0.94 0.95 0.95 0.94
10 0.94 0.97 0.93 0.94 0.94 0.94 0.94 0.93

Table 3.8: Results of the single- and multi-qubit classifiers with re-uploading
data for the squares problem. Numbers indicate the success rate. Words
“Ent." and “No Ent." refer to considering entanglement between qubits or not
respectively. The L-BFGS-B minimization method is used. In this problem, the
fidelity cost function χ2

f presents better results. It achieves the 0.99 success
with the two-qubit classifier with six layers and no entanglement.

Wavy lines
This problem is the four-class version of the non-convex problem. Now

the area is divided into four regions by two different functions. The
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borders’ equations are x2 = sin(πx1) ± x1. The important feature of
this problem is that there are some areas in the problem too small to be
caught by the classifier.
As can be seen in Figure 3.16(d), most of the failure points are in these

small non-convex areas. The classifier would rather adjust the rest of
the points instead of tuning those zones and losing everything else. The
results for this problem are not as good as for other problems, but still
94% for the fidelity cost function is obtained, two entangled qubits and 10
layers (200 parameters) and the weighted fidelity, four entangled qubits
and 4 layers (80 parameters).

χ2
f χ2

wf

Qubits 1 2 1 2 4
Layers No Ent. Ent. No Ent. Ent. No Ent. Ent.

1 0.70 0.52 – 0.76 0.75 – 0.88 –
2 0.86 0.75 0.80 0.84 0.89 0.88 0.91 0.92
3 0.74 0.82 0.84 0.84 0.92 0.91 0.92 0.92
4 0.80 0.85 0.87 0.87 0.89 0.93 0.92 0.93
5 0.85 0.90 0.88 0.87 0.92 0.92 0.93 0.93
6 0.92 0.92 0.91 0.88 0.93 0.94 0.93 0.93
8 0.90 0.91 0.91 0.92 0.92 0.92 0.93 0.94
10 0.92 0.91 0.93 0.90 0.93 0.93 0.93 0.93

Table 3.9: Results of the single- and multi-qubit classifiers with re-uploading
data for the wavy lines problem. Numbers indicate the success rate. Words
“Ent." and “No Ent." refer to considering entanglement between qubits or not
respectively. The L-BFGS-B minimization method with the weighted fidelity
and fidelity cost functions is used. Results with the weighted fidelity cost
function and multi-qubit classifiers are vaguely better than other configurations.
Entanglement does not change significantly the results.

Comparison to classical classifiers
The field of Machine Learning has a great development for classical

computers. Thus, the performance of the quantum classifiers against
classical methods can be compared to check if this proposal can in some
sense compete against well established methods.
To do so, the standard ML library scikit-learn [Ped+11] is used

to solve the same examples as in the quantum classifier. The classical
models here used are simple ones in order to get fair comparisons, that is,
quantum and classical models with similar complexities. The aim of this
benchmark is not to review the capabilities of classical Machine Learning,
which are known to be extensive, but rather to settle whether quantum
or classical models work better for similar circumstances.
The results were obtained using two different methods. First, single-

hidden-layers NNs of 20 neurons with all activation functions available
in scikit-learn and a lbfgs solver. The function used to this extent
is sklearn.neural_network. MLPClassifier. For a SVC, sklearn
.svm.SVC with different kernels was used. Note that NNs have a controllable
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Problem (# classes) Classical classifiers Quantum classifier
NN SVC χ2

f χ2
wf

Circle (2) 0.96 0.96 0.96 0.97
Crown (2) 0.96 0.82 0.95 0.97
Non-Convex (2) 0.98 0.97 0.96 0.98
Sphere (2) 0.93 0.91 0.93 0.96
Hypersphere (2) 0.89 0.92 0.91 0.98
Tricrown (3) 0.96 0.83 0.93 0.97
3 circles (4) 0.94 0.92 0.91 0.91
Squares (4) 0.99 0.95 0.99 0.95
Wavy Lines (4) 0.98 0.89 0.93 0.94

Table 3.10: Comparison between single-qubit quantum classifier and two
well-known classical classification techniques: NNs with a single hidden layer
composed of 100 neurons and Support Vector Classifiers (SVC), both with
the default parameters as defined in scikit-learn python package [Ped+11].
Results of the single-qubit quantum classifier are obtained with the fidelity
and weighted fidelity cost functions, χ2

f and χ2
wf defined in Eq. (3.72) and Eq.

(3.74) respectively. This table shows the best success rate, being 1 the perfect
classification, obtained after running ten times the NN and SVC algorithms and
the best results obtained with single-qubit classifiers up to 10 layers.

number of tunable parameters that can be adjusted to match the number
of the quantum classifier. For SVCs this is not possible and the complexity
of the algorithm depends on the size of the training set.
A summary of results can be seen in Tab. 3.10. In classical models,

only the best final result is retrieved for each problem and NN or SVC.
For quantum results, single-qubit results with different cost functions are
depicted. In all problems it is possible to see that quantum and classical
performance are at least comparable to classical methods.
It is important to mention that even though final results of quantum

and classical methods perform in a similar way, the effort required to
achieve these results is very different. Quantum algorithms are not as
efficient as classical ones.

3.3.4 Discussion

The quantum classifier here proposed and based on the general re-
uploading strategy has shown capabilities to successfully accomplish
non-trivial supervised learning tasks, in an equivalent sense as simple
NNs can. The classification problems here addressed consists in learning
complex geometrical figures in multidimensional spaces.
The key ingredient for the quantum classifier, apart from the re-

uploading scheme, is the measurement strategy. A set of label states is
created so that each one corresponds to a different class. The quantum
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circuit is forced to deliver output states in average as close as possible to
the corresponding label state, depending on the class of the training data.
The identification of the class is then defined as the smallest distance
between the output and the different label states. These target states
are chosen in a maximally orthogonal way as a strategy to make them as
distinguishable as possible. As a consequence, each label corresponds to
a region in the Bloch sphere.
The optimization process is driven by two different cost functions. The

simplest one, fidelity cost function, simply measures the fidelity between
the output state and its corresponding label. A more sohpsticated one,
weighted fidelity cost function, is inspired in NNs. It measures the
distance to all classes and compare it to the ideal case.
The single-qubit classifier is extendable to multi-qubit architectures.

This allows for the introduction of entanglement between the qubits.
An entangling Ansatz is shown as a proof of concept, while exhaustive
exploration of Ansätze is out of the scope for the moment.
We benchmarked several quantum classifiers with different numbers of

layers, qubits and entanglement mappings against classical classification
methods. The test problems are data points embedded in 2D, 3D and
4D feature spaces, where each class is defined by means of geometrical
figures. In all cases, the single-qubit classifier provides success rates of
over 90%. More qubits and entanglement can increase this success while
reducing the effective number of layers. However, the number of calls to
classical data remains approximately constant for different classifier with
the same performance. In terms of cost functions, the weighted fidelity
one helps to find better results, at the cost of increasing the number of
trainable parameters. In addition, as more layers are considered, the
probability to get stuck in local minima increases as well, as expected
from an optimization problem involving large numbers of parameters.
After publishing the original work on the quantum classifier [Pér+20a],

several publications have been developed based on this method. Reference
[Eas+21] carried an exhaustive study and nice representations of the
re-uploading classifier. Reference [HD21b] develops an exploration on
the landscape of loss functions generated by the quantum classifier. This
model is also part of the documentation of some quantum computing
packages [Ahm19; Qib20].

3.4 Experimental quantum classifier

A surge of algorithms for QML that theoretically or even numerically
work has appeared during recent years. However, examples of successful
implementations of some QML recipe on an actual quantum processor are
much scarcer. Quantum devices at the state of the art suffer the effects
of noise and decoherence, thus the performance of their calculations
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is limited. In addition, different experimental platforms have different
properties that make them more or less suitable for a particular algorithm,
and it is then difficult to gain insights on the optimal experimental
configuration to accomplish a given task.
A technology that suits the data re-uploading strategy algorithm is

the ion trap. The framework here described makes use of quantum
systems that are sparse in qubits, but those qubits must be faithfully
controlled to successfully accomplish the QML task faced. Ion trap devices
are capable to control small systems very accurately, even though the
scalability of the machines is not as convenient as in other platforms like
photonics or superconductors [Bro+11; RK19; Wan+21a]. In recent years,
ion-trap experiments have shown its worth and widened the range of
feasible experiments [FMM+17; Hem+18; JDK+20; NCK+20; RTP+20].
Those results support the choice of ion traps for the implementation here
presented as well.
In this chapter, it is shown that the data re-uploading strategy can

be implemented on an ion-trap quantum processing unit (QPU). The
experiment here performed consists in applying a simplified version of
the quantum classifier, that is, a simplified circuit to solve the same
problems. This simplified version is close to the formulation described
in Th. 3.1.4, since it provides the best results with the smallest number
of parameters and depth of the circuit. The experimental approach here
presented constitutes, to the best of our knowledge, the first successful
implementation of a quantum classifier in a system that is very sparse in
qubits.
The main difference between running quantum experiments on classical

simulators or actual quantum devices is that simulated methods do not
always capture the complexity and features of the experiment faithfully.
Elements as native gates or noise environment are completely device-
dependent. In this work, the qubit is controlled in an optimal way, so
that the inherent properties of the system are utilized to improve the
overall performance of the classifier.
In this section, the translation from simulation to experiment is treated

in Sec. 3.4.1. Results are reviewed in Sec. 3.4.2. Final remarks are
collected in Sec. 3.4.3.The experimental setup is detailed in App. A.5.

3.4.1 Single-qubit quantum classifier on the experiment
In order to implement the quantum classifier on the ion-trap quantum

device, some shallow modifications must be taken into account.

Quantum circuits
The circuits used to perform the classification tasks on the experiment

are a simplified version of the simulated ones. The reason to simplify the
algorithm is to obtain a quantum circuit with equivalent query complexity
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as in the original formulation, but less parameters and rotations. This
is an attempt to reduce the overall number of operations required to
carry the task. The circuit is again defined as a series of gates, as in
Eq. (3.67), but the building blocks, corresponding to Eqs. (3.65) changes.
Two different single-qubit operations are proposed.
The Ansatz A is directly inherited from Th. 3.1.4, and it is defined as

UA(~x, ~θ, ~w) = Rz(θz)Ry(~w · ~x+ θy), (3.77)

where ~x is the data point and θz, θy, ~w are tunable parameters. Note
that this operation unlike the one in Eq. (3.65) compresses all the x-
dependency in only one argument of the rotation, namely the angle
around the y-axis. On the other hand, the z-rotation is only included
to generate non-linearities. It is also worth mentioning that this Ansatz
permits the data ~x to have any number of features. All data can be easily
accomodated by increasing the dimensionality of ~w.
Ansatz B is more similar to the definition in Eq. (3.65). For simplicity,

only 2D problems are addressed with this Ansatz. The gate is defined as

UB(~x, ~w, ~θ)Rz(w2x2 + θ2)Ry(w1x1 + θ1). (3.78)

In this case, the non-linearities are expected to arise faster than for Ansatz
A since both features of ~x interact with each other.

Optimization technique
The working procedure used for the experimental quantum classifier

follows the scheme depicted in Fig. 3.9 for the simulated one. The
retrieving stage is similar, up to the technical details required to use an
actual quantum machine, to be detailed later. However, the optimization
stage itself is performed in two steps, a simulated and a experimental one,
see Fig. 3.17 for a schematic description of the optimization procedure.
First, the training set is considered for optimization on a simulated

framework, as in the original proposal. This stage returns a set of optimal
parameters in the simulated scenario Θsim,W sim, attached to a given
value of the cost function χ2

f (Θsim,W sim) and a theoretical accuracy
A(Θsim,W sim) computed on the test set. In this experiment only the
fidelity cost function χ2

f from Eq. (3.72) is considered.
The second step is then performed on the experiment. The parameters

Θsim,W sim provide a given accuracy when the quantum circuit is run
on the experimental setup. It is likely that the imperfections of the
experimental device limit the capabilities of the algorithm. In order to
mitigate this effect, a new optimization step is performed on the quantum
machine taking as starting point the previously obtained Θsim,W sim.
This will ideally lead to some new parameters Θq = Θsim + δΘ and
equivalently for W . The new set of parameters is ideally capable to
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Quantum classifier: multi-variable ~x ⇒ multi-class ~c

1. TRAINING USING CLASSICAL SIMULATION

|0〉 U(~x, ~θsim
1 ) U(~x, ~θsim

2 ) · · · U(~x, ~θsim
k )

⇒ •

• • ⇐ • Classical Optimizer ⇐ χ2
f (Θsim,W sim) ⇒ (Θsim,W sim)

−→ ~F sim(~x,Θ,W )

2. TRAINING USING QUANTUM PROCESSING UNIT

|0〉 U(~x, ~θq1) U(~x, ~θq2) · · · U(~x, ~θqk)
⇒ •

• • ⇐ • Experimental Optimizer ⇐ A(Θq,W q) ⇒
{

Θq = Θsim + δΘ
W q = W sim + δW

−→ ~F q(~x,Θ,W )

Figure 3.17: Schematic description of the training algorithm used in this
work. In a first step, data re-uploading is trained using a classical simulation.
The simulated quantum circuit is composed of single-qubit gates U depending
on variational parameters (Θ,W ) and the data points ~x. The output state is
measured to obtain the fidelity between the output state and the corresponding
label state. This quantity encodes the probabilities that will serve to classify the
given pattern into a category. A classical optimization is performed to obtain
optimal values Θsim,W sim. This optimization is driven by the cost function
χ2
f evaluated on training data. In a second step, a further optimization is

accomplished only using the quantum device, taking as starting point the values
Θsim,W sim and delivering a set Θq,W q suiting better the experiment. The
quantity to minimize is the accuracy A evaluated on the test dataset. The aim
of the experimental optimization is to mitigate and even compensate possible
systematic experimental errors.

suit better the requirements and mitigate any systematic error of the
experimental setup, and thus to obtain improved accuracies.
The experimental optimization is carried by scanning the parameter

space in the vicinity of Θsim,W sim and retrieving the configuration Θq,W q

with best accuracy Aq. This second step is available for quantum devices
only if the loss function in the parameter space near the vicinity of the
minimum is smooth and large deviations from the optimal parameters
translate into small changes in the loss function. Unfortunately, this full
scan is extremely time expensive for current machines, and then it is only
possible to provide results optimized in these two steps in a small number
of examples.

3.4.2 Results
Results from the experimenta setup were obtained following the same

problems as in the simulated classifier, and all descriptions hold in
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this approach. To reduce the computational cost of the experimental
implementation, the training dataset is set to 250 points, and the test
dataset to 1000.
We describe the results for the circle problem in a detailed way to

compare the performance of the theoretical model and its experimental
counterpart. Fig. 3.18 shows experimental results for this classification
problem for an increasing number of layers, and a comparison between the
test data as classified by the QPU and an ideal classical qubit simulator.
It is possible to see the improvement in the classification of results as
more layers are added, up to 4 layers. In that case, the classification
accuracy for the QPU is Aq = 93± 2%, slightly lower than its classically
simulated counterpart Asim = 97%. The error here refers to the standard
deviation of 10 repeated trials performed on the same dataset and it
reflects the underlying systematic uncertainty leading to an uncertainty
of the accuracy. This confirms experimentally the expected behavior of a
re-uploading scheme, namely the classifier is more accurate as more layer
are added to the quantum circuit.
It is worth noting a difference between simulated and experimental

results. In Fig. 3.18(e), the guessed boundary between classes is sharply
defined, even though it does not match exactly the theoretical boundary
and the classification is slightly deformed. That is a consequence of
simulation, the output state is described with arbitrary accuracy and
thus the border between two zones in the Bloch sphere is perfectly defined.
The results on the experimental data, 3.18(e), show uncertainty in the
determination of classes. For instance, in the higher part of the circuit,
there is a cluster of points where different classes are interspersed. The
origin of this phenomenon is the sampling uncertainty. All points near
the boundary can be wrongly measured, leading to misclassification. In
addition to the uncertainty region, some outliers are misclassified, see
blue points at the border of the feature space and an orange one in the
center. In the simulation scenario, the reason for misclassification is a
defective training or model.
Results for the experimental optimization step are also provided in this

example. Figs. 3.19(a) show the landscape of the accuracy for a specific
subset of parameters in the vicinity of the optimum point as provided
by the classical simulation. The smoothness of the landscape around
the starting point (Θsim,W im) induces that only three parameters are
actually contributing to significant changes in the cost function, and
thus the computational cost of scanning for the optimal configuration
is manageable. A deviation between the theoretical and experimental
optimal parameters is appreciable. In addition to the landscape, the error
in the classification is depicted in Fig. 3.19(a), where the experimental
errors are estimated separatedly, see App. A.5. After corrections, accuracies
for the simulated and experimental setups are similar. The experimental
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(a) QPU, 1 layer
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(b) QPU, 2 layers
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(c) QPU, 3 layers
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(d) QPU, 4 layers; Aq = 93± 2%
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(e) Cl. simulation, 4 layers; Asim =
97%

Figure 3.18: Classifier test results. The ion trap based QPU classifier
performed on 1000 random data points tests depicted in blue for points within
and orange outside the boundary separating the circular feature shown in solid
line. The depth of the circuit is increased by one, starting from 1-layer in
(a) to 4 in (d). The result of the 4-layer QPU classifier (d) is compared with
the same 4-layer simulator (e). Notice that the border between classes in the
experimental results is not as sharply defined as in the simulated classification.
This difference is due to the uncertainty of the quantum measurements and
systematic errors.

optimization brings an improvement of nearly 5% with respect to the
initial parameters (Θsim,W sim).
The next result presented corresponds to the 4D-hypersphere problem,

depicted in Fig. 3.20. In this figure, the number of points guessed as
inside and outside the hypersphere are printed in different colors and
represented in a histogram. A black line corresponding to the boundary
is also depicted. The x axis corresponds to the radius of the data
point. The overlap region around the boundary corresponds to the failure
rate, and thus to that area where the classification is ambiguous. This
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Figure 3.19: Experimental optimization: The ion trap based QPU classifier
used for binary classification of data within or outside a bounded circle is trained
by varying the training parameters (θ1, θ2, θ3) in the vicinity of the parameters
obtained from the simulated training. The error surface plotted in color-coded
surface plot in (a) shows the deviation of the optimal parameters from the
trained minimum (?). These plots are for 2-layer QPU and corresponds to
Fig. 3.18(b). Similar training performed on the QPU leads to the betterment
of the accuracy in the 3 and 4 layer QPU as shown in (b). Note that the
improvement is more pronounced in the first two layers only.
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(c) Experimental optimization

Figure 3.20: Binary classification of the hypersphere dataset. The histograms
in (a) and (b) represent the class association of points within a hyper shell
(given by the bin-width) denoted by blue (classified as within the hyper-sphere)
and orange (outside the hyper-sphere) for QPU (a) and simulation (b). The
overlap region shows the ambiguity in classifying the points within a certain
radius. The accuracy of the QPU is improved by performing the experimental
optimization near the vicinity of the simulated optima in a series of ten training
steps. The reduction in the error with respect to the simulated results (b) is
shown in (c).

representation is only feasible due to the spherical symmetry of the
problem.
Our results show that is is feasible to classify the data as well as the

simulator does. As in the circle example, the parameter set inherited
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(a) Non-convex - QPU
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(b) Non-convex - Sim.
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(c) Crown - QPU
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(d) Crown - Sim.
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(e) Tricrown - QPU
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(f) Tricrown - Sim.

1.0 0.5 0.0 0.5 1.0
X1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

X 2

(g) 3 circles - QPU
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(h) 3 circles - Sim.
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(i) squares - QPU
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(j) squares - Sim.
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(k) wavy lines - QPU
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(l) wavy lines - Sim.

Figure 3.21: Classifier test results for other classification problems. The ion
trap based QPU classifier performed on 1000 random test data points. Colors
and symbols stand for different classes, separated by the lines shown in solid
black. The results are computed using 4 layers, both from QPU and simulation
(Sim.). Notice that the border between classes in the experimental results is
not as sharply defined as in the simulated classification. This difference is due
to the uncertainty of the quantum measurements.

from classical simulation implies a high error rate. This error can be
further reduced from ∼ 13% to ∼ 2% after the experimental optimization
step is performed, see Fig. 3.20(c).

Equivalent results for all problems presented in the theoretical model of
the classifier were tested without experimental optimization. Results for
2D problems are depicted in Fig. 3.21. A summary of results comparing
Quantum Processing Unit (QPU) and simulated methods is written in
Tab. 3.11
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Problem (# classes) Classical algorithms Quantum re-uploading Ansatz
Neural Network Support Vector Machine Simulation QPU(θsim) QPU(θq)

Circle (2) 0.98 0.96 0.97 0.93 0.96 A
Crown (2) 0.71 0.82 0.92 0.87 B
Non-Convex (2) 0.98 0.79 0.95 0.92 B
Sphere (2) 0.95 0.91 0.74 0.66 A
Hypersphere (2) 0.76 0.92 0.75 0.64 0.73 A
Tricrown (3) 0.97 0.83 0.95 0.91 A
3 circles (4) 0.93 0.92 0.90 0.85 B
Squares (4) 0.99 0.95 0.97 0.93 A
Wavy Lines (4) 0.99 0.89 0.94 0.90 A

Table 3.11: Comparison between single-qubit re-uploading quantum classifier
and two well-known classical classification techniques, namely single-hidden-
layer neural networks and support vector machines. The experimental data
and its simulated analogue is provided here with 4 Layer and 100 repetitions
on the quantum part, and its equivalent in complexity for the neural network.
The uncertainty of experimental data is ±2%. The error refers to the standard
deviation of 10 repeated trials performed on the same dataset and it implies
that underlying systematic uncertainty leads to an uncertainty of the accuracy.
Only two cases have been further optimized using an exploration done only with
the quantum device.

3.4.3 Discussion
The experimental implementation of the quantum classifier on an ion

trap QPU was accomplished. The key ingredient for this implementation
is the high quality of the control achieved by ion trap platforms for small
systems. This is, to the best of our knowledge, the first experimental
attainment of supervised learning problems with a single-qubit quantum
processing unit. The experiment shows an advantage on the number of
physical gates required when compared to classical approaches.
The experimental classifier is trained in two steps, a simulated and an

experimental one, to enhance the performance of the algorithm. Gate-
level fine tuning on the application of operations is also performed for
further experiments. The experimental optimization ehances the accuracy
up to 5−10% depending on the problem, and final results are comparable
to those obtained by the classical simulation of the quantum classifier
and by classical methods, for models with similar numbers of parameters.
As in Sec. 3.2, this experiment suffers a lack of purely experimental

optimization, in spite of the experimental optimization step. This stage
is a refinement of parameters to obtain the same results provided by
classical simulators while mitigating possible experimental noise. The
difficulty of this task is not to be compared with a full optimization.
Future works are expected to deal with this subject.
This work is the second experimental confirmation that the data

re-uploading strategy is a useful scheme towards implementing QML
algorithms in NISQ devices with few qubits.
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3.5 Data re-uploading for determining the proton content

It has been shown through this chapter that data re-uploading is
a general strategy for applying QML to classical data. Theoretical
mathematical support that ensures the universality of this strategy is
provided, and it is demonstrated by means of both numerical classical
simulation and experiments on quantum processing devices that regression
of functions and classification of data is possible on some testbeds. In
this last section of the chapter a real-world machine learning problem is
addressed with the data re-uploading strategy and show that this approach
is general enough to be useful in a huge variety of scenarios. The problem
here faced is related to High Energy Physics (HEP): determining the
proton content from experimental data using ML strategies. This problem
is of most importance since the knowledge of hadron contents, in particular
for protons, is crucial for HEP experiments, such as LHC. The standard
model predicts the behavior of the interactions between fundamental
particles, but not between hadrons. Thus, the inner structure of hadrons
must be well known in order to interpret experimental results properly.
This is not the first attempt to develop works in the frontier between

quantum computing and HEP. This field is highly demanding in terms of
computational resources, and thus any advantage provided by quantum
computing would be useful. Some examples are computation of helicities
[Bep+21], simulation of final-state radiation [Nac+21], and studies on
the description of hadronic structure [Ale+19b; Li+21; LLa20].
Quantum Chromodynamics (QCD) provide theoretical recipes to under-

stand and compute all possible interactions between particles in the
standard model with strong charge, namely quarks and gluons [HM85].
These particles compose the nucleons, namely protons and neutrons.
Thus, from a theoretical perspective, it is possible to know the exact
content of a nucleon from first principles. However, the complexity of
the calculations needed to accomplish this task is enormous. One must
take into account all different possibilities of interactions to occur, which
is extremely hard since the number of particles is not conserved, but
it rather increases during collision processes. In addition, the theory is
highly non-perturbative, and thus one cannot approximate to some given
order since the remaining contribution is never neglictible with respect to
the considered one. In summary, theoretical computa-tions to describe
nucleons are not feasible nowadays.
The main framework to describe the non-perturbative structure of

hadrons, protons in this case, are Parton Distribution Functions (PDF)
[FC20; Fey88]. PDFs are typically determined from regression models
that compare a large amount of experimental data and theoretical
predictions. A well established technique for obtaining PDFs is the
NNPDF methodology [Bal+15], where regression models are implemented
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through NNs.
The approach here proposed to address the PDF problem with QML

is to make use of data re-uploading strategy to extract PDFs from
experimental data, which is referred to as quantum PDF (qPDF). To
accomplish this task, two steps were taken. First, the reference data is a set
of PDFs obtained by classical methods and a quantum circuit, the qPDF,
able to mimic this behavior is designed. Second, the obtained simulated
results are submitted to public quantum hardware to benchmark the
current performance of experimental devices on this real-world problem.
Finally, the quantum model substitute the NN in NNPDF methodology
to learn PDF directly from experimental data.
There are several reasons to attempt qPDF recipes, mainly regarding

the efficiency of the algorithms. Since this example is the only one
presented in the chapter that potentially matches the requirements of
real-world problems, any waving must be taken into account. The first one
is the reduction in energy consumption required to perform computations.
Secondly, it is shown in the results here presented that the number of
parameters required to reach acceptable qPDF fits is in average lower than
in modern classical approaches. Furthermore, since PDF determination is
an inherently quantum problem, the presence of entanglement may bring
advantage to solve the regression task. Finally, quantum hardware can
bring advantage in terms of running time as compared to the classical
counterparts. The lower number of parameters implies that the number of
operations needed to obtain comparable solutions is smaller. In addition,
this model possesses an exact hardware representation, which is not
possible in classical cases.
The results presented in this section are conceived as a proof-of-concept

for future implementations of qPDFs on quantum hardware. Neither
the performance of quantum simulation nor the quality of quantum
hardware at the present time suffice to implement the qPDF approach
more efficiently than current classical methods used in modern PDF
determinations.
This section is structured as follows. First, the definition for the qPDF

model is described in Sec. 3.5.1. Sec. 3.5.2 is devoted to the exact quantum
circuits here used in terms of gates, parameters and test performance.
Experiments for the circuits in actual quantum devices are carried in
Sec. 3.5.3. Sec. 3.5.4 describes how to use the qPDF framework to extract
PDFs from experimental data from LHC. Final remarks are written in
Sec. 3.5.5.

Workflow design

The complete workflow of this project is composed of three different
steps, schematically shown in Fig. 3.22.

1 Design of the most adapted quantum circuit Ansatz for qPDF
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2 Feasibility study to deploy the qPDF architecture on real quantum
devices

3 Integration of the qPDF model into a global PDF fitting framework
taking the role of classical NNs

Stage 2

Convergence?

Quantum Circuit

LossInput 
PDF data

Optimization

qPDF Workflow

Ansatz 
Tuning

Quantum Hardware qPDF fit from data

Stage 1

No

Yes

Stage 3

Figure 3.22: Schematic workflow for
the implementation of qPDF. The initial
input data is a classical model for PDF.
The Ansätze are modified until they
are flexible enough to fit these data.
Then, the same model is testes on an
experimental quantum device. As a last
step, the simulated circuit is introduced
into a full PDF procedure to compare
classical and quantum performances.

In the first step several
Ansätze for circuits were
tested to choose the one with
more flexibility to learn and
generalize PDF-like datasets.
The re-uploading strategy pro-
vides a general framework
to design circuits capable
to represent any data, but
particular architecture is not
determined by this approach.
This stage is analogous to
the hyper-optimization tuning
performed in classical machine
learning applications. However,
since there are many possible
architectures and no pre-
defined initial Ansatz is assumed,
empirical tests and refinement
through trial and error is
needed. The calculations
are done using the exact
classical simulation provided
by QIBO [Eft+20a; Eft+20b],

where both exact wavefunctions and expected values for hamiltonians
are computed. For all tests, the model is trained to fit PDF generated
by classical means, in particular from the NNPDF3.1 set [Bal+17]. This
serves to find the optimal quantum circuits defined in the next subsection.
The second stage deals with the deployment of the qPDF model in actual

quantum devices. In this case, both measurement and its uncertainty and
noise models become relevant. This stage helps to determine the minimum
number of measurements required to retrieve acceptable descriptions of
PDFs on quantum hardware. The experimental implementation of the
qPDF model is done using the Qiskit language [Ale+19a] from the
OpenQASM [Cro+17] codegenerated by Qibo.
Finally, we use the qPDF model in an actual functioning classical

PDF fitter based on experimental data, mostly from LHC measurements.
The quantum model is integrated in the NNPDF fitting framework
n3fit [CC19; FC20] using the simulation tools. This implementation
opens the possibility to perform quantum fits of PDF on similar datasets
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for modern PDF releases.

3.5.1 Quantum circuits for PDF
We define in the following the Ansätze for quantum circuits needed to

accomplish the qPDF fitting. First, the PDFs are defined as

fi(x,Q0), (3.79)

where x ∈ [0, 1] is the momentum fraction of the incoming hadron carried
by the parton of flavour i (quarks and gluon), at an energy scale Q0. The
normalization rule for PDFs is∑

i

∫ x=1

x=0
xfi(x,Q0) = 1. (3.80)

Following this definition, modifications to the data re-uploading are now
added to accomodate it to PDF. These modifications leave unaffected the
most important properties of data re-uploading, namely query complexity
and arising of non-linearities.
To introduce the x variable in the quantum circuit, the same structure

as in the previous examples is followed

|ψ(x,Θ)〉 = U (k)(x,Θ) |0〉 =
k∏
j=1

U(x, ~θi) |0〉 , (3.81)

where Θ are tunable parameters to be optimized through a loss function.
The exact definition of the different layers is left for later since there are
some features of the problem to be discussed before.
The second key ingredient in the model is the way to retrieve information

from the circuit. In this problem, the structure of the proton is determined
through several different functions, as many as flavours in the protons.
Thus, many different independent measurements must be designed to
extract information. A n-qubit circuit is considered to run the quantum
algorithm on, where each qubit corresponds to one flavour. The set of
hamiltonians to build is then

Zi =
n⊗
j=0

Zδij , (3.82)

where δij is the Kronecker delta. The choice of hamiltonians is heuristic,
and measures the population of |0〉 and |1〉 states of a particular qubit.
The values of qPDFs will be then related to the probability to measure
one particular qubit in the excited state. The function

zi(x,Θ) = 〈ψ(x,Θ)|Zi |ψ(x,Θ)〉 , (3.83)



92 Chapter 3. Data re-uploading strategy for QML

is taken as the outcome of the circuit. The next step is then to relate this
outcome to the PDF values. Every zi(x,Θ) will be associated to only
one parton i, and thus as many qubits as partons are needed. The qPDF
model at a given (x,Q0) coordinates is then

qPDF (x,Q0,Θ) =
1− zi(x,Θ)

1 + zi(x,Θ)
. (3.84)

This choice, as well as the hamiltonian, is heuristic and supported by
empirical results. It only allows the qPDFs to take positive values,
although there is no upper bound in this quantity. This is no hard
constraint since it is possible to drop the possitivity with simple re-
scaling. Theoretical motivations can be drawn from the fact that PDFs
can be made non-negative [CFH20], but their values can in principle grow
to any real value, see for instance the gluon PDF in Fig. 3.24.

3.5.2 Ansätze
It is seen and discussed that the re-uploading of classical data in

conjunction with tunable weights and biases following the scheme wx+ b
permits to represent arbitrary functions, for example PDFs, in single-qubit
systems, see Theorems 3.1.2 and 3.1.4. On the other hand, Ref. [SSM21]
shows that a Fourier approximation of an arbitrary function is possible
even if the weights are fixed. Therefore, two different Ansätze were
considered in this work, where the main difference between them is the
presence or absence of tunable weights.
The x independent variable of the dataset is constrained to take values

between 0 and 1. However, the representation of PDF is usually given in a
logarithmic scale in x since variations in PDF among orders of magnitude
are prominent. This observation encourages using not only x as the
independent variable, but also log(x) to properly capture the behavior of
the functions at small scales.
The first Ansatz, named Weighted Ansatz, is inherited from the works

in Refs. [Pér+20a] and later [Pér+21b]. The x variable is introduced
following the weights and biases scheme. The single-qubit operation
acting as building block of the Ansatz is

Uw(θ, x) = Rz(w2 log(x) + b2)Ry(w1x+ b2). (3.85)

Note the presence of rotations around two different axis, Y and Z, in the
definition of this gate, to make non-linearities emerge from the quantum
mechanical nature of the single-qubit operations. In addition, each axis
introduces one scale, namely linear or logarithmic.
The second Ansatz, Fourier Ansatz, limits the weights to fixed values [SSM21].

Its single-qubit operation is

Uf (θ, x) = Ry(b2)Rz(w2)Ry(−π/2 log x)Ry(b1)Rz(w1)Ry(πx), (3.86)
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Figure 3.23: On the left, an example of one layer architecture is shown. On
the right, the scheme of a full Ansatz circuit including 8 qubits and entangling
gates. The U l(θl, γl, x) from the left figure enters the full ansatz as U l. Note
that the last layer does not have any entangling gate.

where again two axis are involved. The choice of the weights π in the
linear scale and −π/2 in the logarithmic scale depends on the dataset.
For the PDF set chosen to test the Ansätze, x ∈ [10−4, 1]. This way, all
the amplitude of the single-qubit gates is exploited.
The single-qubit operations are introduced into a more general structure

to create several-qubits multi-layered global Ansätze to fit the PDFs.
The reason for this procedure is that it is expected to obtain better
approximations as more layers are added to the circuit and the query
complexity of the algorithm increases. The construction of layers is made
in two steps. First, a layer of parallel single-qubit operations is applied
to each qubit in the circuit. Second, a layer of entangling gates is added
to the circuit. In this problem, all entangling gates are controlled Z
rotations depending on some parameter Rz(γ). Entangling gates connect
one qubit with next or previous one alternatively. Sections of rotations
and entangling gates are interspersed along the circuit, except for the
last iteration where only single-qubit gates are considered. Parameters
for every gate are independent from all other parameters and optimized
simultaneously. See Fig. 3.23 for a schematic description of the Ansatz
structure.
For the first stage of tuning Ansätze, simulation methods are used.

The optimization procedure takes as loss function the standard Pearson’s
χ2[Pea00] to compare qPDF predctions against classical calculations of
NNPDF3.1 NNLO [Bal+17]. This dataset is composed by a central value
fi and an uncertainty σfi , both depending on x and Q0. For this exercise,
a grid of x values x ∈ [10−4, 1] and a fixed value Q0 = 1.65 GeV are
considered. The dataset of interest contains 8 different flavours, namely
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Single-flavour fit Multi-flavour fit
Layers (Parameters) χ2 χ2 Layers (Parameters)

1 (32) 28.6328 1 (32)
2 (64) 1.0234 – –
3 (96) 0.0388 0.1500 2 (72)
4 (128) 0.0212 0.0320 3 (112)
5 (160) 0.0158 0.0194 4 (152)
6 (192) 0.0155 0.0154 5 (192)

Single-flavour fit Multi-flavour fit
Layers (Parameters) χ2 χ2 Layers (Parameters)

1 (32) 900.694 1 (32)
2 (64) 57.2672 – –
3 (96) 0.0410 47.4841 2 (72)
4 (128) 0.0232 0.0371 3 (112)
5 (160) 0.0165 0.0216 4 (152)
6 (192) 0.0156 0.0160 5 (192)

Table 3.12: Comparison of χ2 values for the Weighted (left) and Fourier
(right) Ansätze average of all single-flavour fits and the corresponding multi-
flavour fit.

Single-flavour Multi-flavour
Weighted Fourier Weighted Fourier

Qubits (q) 1 (per flavour) 8
Layers (l) 5 5

Parameters
2 · l · q weights

4 · l · q 16 · l weights
32 · l

2 · l · q biases 16 · l biases
No entanglement 8(l − 1) entangling

Table 3.13: Summary for the Ansätze chosen for this work. The preferred
number of l ayers was chosen as a compromise between small χ2 and number
of parameters. Results depicted in Tab. 3.12 determine that the multi-flavour
Weighted Ansatz is the best candidate model.

quarks, antiquarks and the gluon: i ∈ {s̄, ū, d̄, g, d, u, s, c(c̄)}.
Values of Pearson’s χ2 after full optimization are summarized in

Tab. 3.12, both for Weighted and Fourier Ansätze. In both cases, the left
column shows an average fit for all flavours when optimized individually,
while the right column shows the fit for all flavors simultaneously. Compa-
risons are made between models with similar numbers of parameters.
For the same number of layers, circuits with entanglement have more
parameters since every entangling gate has one of them. Thus, unentangled
circuits of n layers with entangled ones with n− 1 layers are compared
until both numbers of parameters agree. The reason for this comparison
is that entanglement is expected to improve the overall quality of this
method.
Standard classical optimization methods were used to find optimal

parameters. The optimization procedure was carried in two steps. First,
the CMA genetic algorithm is used to find optimal solutions in the single-
flavour scenario [Han06; nik+20]. Then, this result is taken as starting
point in the multi-flavour optimization carried through the L-BFGS-B
method [Byr+95] included in the library scipy [Vir+20]. This two-
step optimization ensures that competitive results are obtained for the
multi-flavour cases.
Some results of the final configuration after full optimization are

depicted in Figs. 3.24 and 3.25. Fig. 3.24 show the multi-flavour qPDF
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Figure 3.24: Multi-flavour qPDF fits using the Weighted Ansatz (orange
curves) and the Fourier Ansatz (blue curves) with 5 layers and 8 qubits. The
mean value and 1σ uncertainty of the target PDF data is shown by means of a
solid black line and a shaded grey area.
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Figure 3.25: Comparison
between single-flavour fits
(left) and multi-flavour fits
(right) for the gluon, up and
strange quarks PDFs. For
the single-flavour fits the
Weighted Ansatz (orange
curves) and Fourier Ansatz
(blue curves) are composed
by 1 qubits and 6 layers.
On the other hand for the
multi-flavour fits, the Ansätze
are composed by 8 qubits and
5 layers. The mean value and
1σ uncertainty of the target
PDF data is sshown by means
of a solid black line and a
shaded grey area.

both for Weighted and Fourier Ansätze, for 5 layers, and 8 qubits, as
compared to the classical results. In Fig. 3.25, a comparison of single-
and multi-flavour optimizations focusing on certain flavours is detailed,
for Weighted and Fourier Ansätze with similar numbers of parameters.
Notice that in both cases qPDFs and classical data overlap with high
accuracy
The results here presented permit to claim several interpretations. First,

entanglement is not enough to provide good approximations by its own.
Entanglement can in principle access to the correlations between different
qubits, which in this case encode different flavours and qPDF. However,
every layer introduces a new re-uploading of data and takes another
step towards non-linearity, which is needed for representing arbitrary
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functions. Results from Tab. 3.12 show that entanglement, and possibly
more parameters, help to obtain better results when comparing models
with the same query complexity. For the same number of parameters,
both number of layers and entanglement provide the same capabilities.
Thus, both entanglement and query complexity contribute to the overall
performance. Secondly, the goodness of the Weighted Ansatz respect
to the Fourier one is unveiled. Built-in weights grant large flexibility,
especially in cases with small numbers of layers.
We retain the Weighted Ansatz with 5 layers as the final model, both for

single- and multi-flavour scenarios. For the sake of comparison, equivalent
Fourier Ansätze were chosen as well. The total amount of parameters
is 192, which is a manageable number, see Tab. 3.13 for a detailes
comparison. In addition, tests run on both Ansätze reveiled that the
Weighted Ansatz is easier to train using gradient-based methods like
L-BFGS-B.

3.5.3 Experimental configuration
Low-depth quantum circuits are able to represent a full set of PDFs

when the calculations are carried by means of classical simulation. However,
in the results presented up to this moment, no measurement uncertainty
or noisy executions of quantum circuits have been taken into account.
In this section it is explored how the capabilities are transferred the
theoretical models to realistic quantum computers. First, the trained
single-flavour model onto the IBM Athens quantum processor [Ale+19a]
is loaded to check how much the noise degrades the final results. The
resilience of ths quantum model in the single-flavour scenario is expected
to be larger than in the multi-flavour case because of the absence of
entangling gates. Gate fidelities for two-qubit gates are around an order
og magnitud worse than for single-qubit operations.
For experimental results, each parton is evaluated at 20 values of x

logarithmically spaced in x ∈ [10−4, 1]. The expecation value zi(x,Θ)
is evaluated for every x with 213 = 8192 shots. Then, each evaluation
is repeated 5 times to probe statistical averages and uncertainties in
estimation. See Fig. 3.26(a) for a comparison between experimental results
in the IBM Athens quantum and its corresponding noisy simulation as
provided by qiskit. From those results it is possible to claim that single-
flavor models with only one qubit perform properly on cloud-accessible
quantum processors, and it is then possible to extrapolate this model
to actual machines. In addition, the agreement between experimental
results and simulation credits the simulation environment to properly
simulate the real situation.
The next step is to extend the experimental implementation to multi-

flavor models. Quantum computers required for theses models must have
several qubits and be able to execute two-qubit gates. It is expected
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that decoherence play an important role in this case. It is benchmarked
by executing the optimized model on the qiskit simulator for noisy
computers, taking as noise model the one corresponding to the best
possible configuration of the IBM Melbourne quantum processor. This
processor was chosen since it is the only publicly available processor with
enough number of qubits. The 8 qubit circuit is mapped onto Melbourne
in a way that it matches the chip architecture and the entangling gates
are directly applicable.
The first step of the multi-flavor execution on a virtual quantum

(a) Single flavour fits in IBM Athens

(b) Multi-flavour fits in IBM Melbourne-like simulator

Figure 3.26: a) Single-flavour fit for all flavours. The red lines represent
the prediction of the qPDF model with simulated noise from the IBM Athens
processor [Ale+19a]. Green points are the results of running the circuit on the
Athens quantum processor. The mean value and 1σ uncertainty of the target
PDF data is shown by means of a solid black line and a shaded grey area. b)
Multi-flavour fit for all flavours. Blue lines are the mean and the blue shadowed
area the 1σ uncertainty of the circuit measurement results for an ideal noise
free quantum device. The red curve refers to simulated circuit measurements
using the noise model for the IBM Melbourne processor [Ale+19a]. Similarly,
green and orange curves show simulation results with noise reduced by 50% and
90% respectively. The mean value and 1σ uncertainty of the target PDF data
is shown by means of a solid black line and a shaded grey area. In both cases
the Weighted Ansatz, for 5 layers and 8 qubits was used.
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computer is to add measurement gates. In this case, the circuit must be
run 8 times, one per flavor, to measure each qubit independently from
the other ones. As in the single-flavor scenario, each qubit is measured
8192 times, a sufficient number to estimate the expected value of the
hamiltonians of interest with low uncertainty, and thus reconstruct the
PDF accurately. It is immediately seen that the errors present in the
IBM Melbourne device drastically deteriorate the performance of the
pre-trained quantum model, see Fig. 3.26(b). To understand better the
effect of noise, the noise environment is used to create simulators with the
same noise structure as IBM Melbourne but smaller noise values. Thus,
a noise model N = NMelbournet is available, where NMelbourne is the noise
model provided by qiskit and t is an interpolation parameter. This
way, the noise model can be linearly scaled down while maintaining all
the characteristics, namely connections among qubits, single-, two-qubit
and readout errors and thermalization. For t = 0, no noise is considered,
while for t = 1, the full device is simulated. Results for t = {0, 0.1, 0.5, 1}
are depicted in Fig 3.26(b).
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Figure 3.27: The error as a function
of the error interpolation parameter
terror. The y-axis is given as the ratio
between the error, χ2, and the error on
an ideal quantum computer, χ2

ideal.

A summary of the obtained
results is also depicted in
Fig. 3.27. Here, the relation
between the obtained χ2 and
the ideal one is explored as a
function of the error parameter
t. The aim is to explore
how robust must a quantum
computer be in order fo return
acceptable representations of
qPDF. It is possible to see that
a χ2 an order of magnitude
larger than the ideal one
is achieved at (extrapolated)
value t ∼ 0.007.
The analysis shows that even

though it is theoretically possible to fit PDF with the qPDF model here
proposed, as it was demonstrated by means of classical simulations, the
noise and decoherence in state-of-the-art quantum devices are still to
high to provide accurate computation frameworks.

3.5.4 qPDF determination from experimental data
In previous sections the process of finding a quantum circuit capable to

capture the properties of physical PDFs by mimicking classically known
results is described. Furthermore, the possibility to extend theoretical
models to experimental devices is also explored. In this section the last
step of the workflow is addressed, see Fig. 3.22, andthe qPDF model is
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used to learn PDFs from the only available dataset in reality, that is
experimental measurements of physical observables, in this case physical
cross sections measured at the LHC.
In this stage it is proven that the qPDF methodology has the potential to

replace NNs underlying at the core of the NNPDF family of proceedings
to learn PDFs from experimental data classically. Current quantum
devices are far from supplying enough computational capability to tackle
this problem in practice. However, classical simulation shows that the
data re-uploading strategy can indeed replace NNs as a universal function
approximation of arbitrary functions, such as PDFs, at least from a
theoretical perspective.
This section describes the NNPDF methodology and the changes needed

to incorporate the qPDF model to the general framework to perferm
a full fit. The dataset used to fit PDFs is the NNPDF3.1, including
deep inelastic scattering and hadronic collider data. Finally, the obtained
PDFs and qPDF are compared showing that results are compatible and
usable in realistic computation of physical observables.

The NNPDF methodology
NNPDF methodology is based on two main ingredients. First, a Monte

Carlo approach to synthetic generation of artificial measurements is
required. Second, NNs are used to model PDFs. In the following some
main aspects are outlined, and the reader is referred to a more in-depth
review for further details [Bal+15].
First, data replicas must be generated. This procedure propagates

experimental uncertainties through the PDF fit by leveraging experimental
uncertainties obtained from experiments. Synthetic copies of data are
then created and indistinguishable from actual data.
The PDF fit is done following the functional form

fi(x,Q0) = x−αi(1− x)βiNNi(x,Q0), (3.87)

where i is the parton of interest and NN(·) is the function provided by
the NN. The preprocessing factors x−αi , (1 − x)βi guarantee a correct
behavior for x ≈ {0, 1}, where there could be a lack of experimental
data to properly constraint the NN. This function cannot be directly
compared to experimental data, it must be convoluted with the partonic
cross rection to obtain physical predictions comparable to measurable
observables,

P =

∫
dx1 dx2 f

i
1(x1, q

2)f j2 (x2, q
2)|Mij({pn})|2, (3.88)

where x1, x2 are momentum fractions of two particles, and {i, j} run over
all possible partons. The quantity Mij is the matrix element for the given
processes, computed analytically with other methods, and {pn} represent
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all momenta involved in the computation. Nevertheless, a numerical
integration of this quantity would be impractible. Instead, theoretical
predictions are approximated as products between the PDF functions
and a fastkernel table with the relevant information [Bal+10; BCH17].
The optimization process consists in minimizing the Pearson’s χ2

defined as

χ2 =

Ndat∑
i,j

(D − P )iσ
−1
ij (D − P )j , (3.89)

where Di and Pi are respectively the i-nth data point from the training
set and its theoretical prediction and σij is the experimental covariance
matrix.
This procedure is then repeated for each synthetic replica. In all cases,

only the experimental data changes and must be calculated in every step.
The final PDF is the average among all replicas and the error bands are
given by enveloping 68% of the replicas, that is the number associated to
a 1σ width in a normal distribution.
The latest NNPDF methodology, NNPDF3.1, as described in Ref.

[CC19] is taken. The NN module is replaced with the qPDF model. Since
both qibo and NNPDF3.1 are based on tensorflow, integration can be
accomplished without adapting the programming language. A number of
changes must be done in order to make the integration complete. The
dataset included in this fit correspond to that of NNPDF3.1, which is
detailed in Ref. [Bal+17] and includes data from deep-inelastic scattering
experiments, fixed-target data and hadronic collider data from experiments
at Tevatron and LHC. Technical details can be found in App. A.6.

Experimental qPDF results
We compare the published reference PDFs and their uncertainties to the

qPDF results obtaining with this method to check that both results are
compatible. Quarks u and d, and gluon g are depicted in Fig. 3.28. For
these flavors, the qPDF central result is within the 1−σ uncertainty bar of
the reference classical PDF, and both classical and quantum uncertainty
bars have strong overlaps for the considered range.
Phenomenological implications must be addressed to benchmark the

performance of the qPDF model. Examples related to the most common
Higgs production channels with mH = 125 GeV are summarized in
Tab. 3.14. In this table, cross sections are depicted for different channels
and compared to reference values [Alw+14; Car+20; SC20]. For all
examples, reference values and qPDF results are compatible within
uncertainty ranges.
These results support the claim that the NNPDF methodology where

NNs are replaced with quantum circuits can be used for regression
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Figure 3.28: Fit results for the gluon and the u and s quarks. As previously
seen in Fig. 3.24, qPDF is able to reproduce the features of NNPDF3.1. This is
also true when the fit performed by comparing to data and not by comparing
directly to the goal function. The differences seen at low-x can be attributed to
the lack of data in that region.

Channel NNPDF3.1 NNLO qPDF
ggH 31.04± 0.30 pb 31.71± 0.51 pb
tt̄H 0.446± 0.003 pb 0.464± 0.008 pb
WH 0.133± 0.002 pb 0.135± 0.002 pb
ZH 0.0181± 0.0002 pb 0.0184± 0.0002 pb
VBF 2.55± 0.03 pb 2.62± 0.04 pb

Table 3.14: The cross-sections for Higgs production at 13 TeV in various
channels at NLO using the settings described in the text. From top to bottom:
gluon fusion, tt̄H production,WH production, ZH production and vector boson
fusion. Standard Model Higgs boson with mass mH = 125 GeV is assumed.

problems to unknown functional forms, in particular the PDFs and
inner structure of the proton. Classical state-of-the-art and quantum
results are coherent from a phenomenological point of view. In addition,
it is reasonable that the same level of accuracy from classical methods
can be reached with adequate fine-tuning.

3.5.5 Discussion
It is possible to highlight certain advantages that the quantum model

here proposed has in comparison to standard ML methodology for fitting
PDFs. First, non-linearities emerging from quantum operations and
entanglement help to reduce the number of parameters required to obtain
a flexible PDF representation, as compared to equivalent NNs. Second,
from a hardware perspective, the implementation of a qPDF fit on a
quantum processor and the use of native gates as operations can accelerate
the evaluation and training of PDFs. In addition, it is expected that
the energy consumption of quantum devices is smaller than of classical
hardware based on hardware accelerators such as graphical processing
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units.
However, the current status of quantum devices does not provide

enough quality to implement this model. All typical difficulties from
experimental quantum hardware appear in this problem, including noise,
decoherence and measurement uncertainty. More accurate or even fault
tolerant quantum computing will be necessary for succesfully carrying
this method on quantum devices.
On the other hand, the results here presented should be considered

a proof-of-concept. Standard machine learning implementations are so
optimized that no quantum simulation algorithm is competitive in terms
of performance nor efficiency against classical methods. The advantage
of qPDFs will come as the quantum hardware becomes more precise.
The work here presented is a first attempt to join quantum machine

learning into the field of PDF determination. This approach can open
a new surge of algorithms for the field of HEP, which can benefit from
quantum computing.

3.6 Conclusions

Throughout this chapter the re-uploading strategy is developed since
its inception to several examples of applications. All the contents here
covered support the claim that data re-uploading is a general strategy to
employ in QML problems and to apply in the first generation of NISQ
devices, including some already existing processors.
Re-uploading strategy is a general approach whose main focus is to

replace a NN with some quantum circuit. The circuit can be as small as
one qubit. The key ingredient is to upload data several times in subsequent
operations applied to the circuit to permit multiple processing of data.
As compared to NNs, each operation receiving data is the quantum
counterpart of a neuron. For single-qubit circuits, the comparison to
single-hidden-layer NNs is direct. In fact, it is mathematically proven
that both models are formally equivalent. Even though the relationship
between deep learning classical approaches and multi-qubit re-uploading
circuits is not clear, it is expected that steps are taken in this direction
in the future.
Data is uploaded to the circuit following the linear mapping used in

NNs, that is as ~x → ~w · ~x + θ, with ~w the weight and θ the bias. This
encoding allows to encode data in an unbiased manner, thus it is possible
to carry supervised learning problems without any prior knowledge of
the dataset to classify.
The cornerstone of the re-uploading strategy is that non-linearities

emerge naturally from the quantum properties of the circuits. By applying
two gates around different axis, one of them depending linearly on x,
non-linear terms arise as a consequence of the non-commutativity of



3.6 Conclusions 103

quantum operations. Quantum circuits are capable to represent any
functional form thanks to this inherently quantum property.
Data re-uploading is also a strategy to circumvent the no-cloning

theorem. In this approach, classical data is introduced several times in
the circuit, but the copy of data is not performed using quantum, but
classical resources. It is then possible to increase the number of calls
from the circuit to the data, unlike in most QML approaches where data
is introduced at the beginning of the algorithm.
The performance of the re-uploading strategy is directly related to the

query complexity of the circuit, that is the number of re-uploading along
the algorithm. In fact, this quantity remains approximately constant for
similar performances, while the number of qubits or depth in circuits are
more unstable. Entanglement plays a role in the performance, but the
improvement attained is not as significant as expected.
Present results give support to different QML applications. The first one

is regression. It is shown in Sec. 3.2 that the quantum algorithm is capable
to learn arbitrary functional forms from sampling data. Sections 3.3
and 3.4 address supervised classification tasks successfully. In both cases,
both numerical and experimental benchmarks are performed. Also in
both cases, the training step is mostly carried on classical simulations of
quantum systems. The reason to proceed in this way is that optimization
on quantum devices is much harder than on classical devices. Thus,
actual quantum optimization is a task left for future extensions of the
present work.
In Sec. 3.5, a real-world problem is addressed with the re-uploading

strategy. The problem is determining the proton content from experimental
data of HEP. This application, although only classically simulated,
presents a strong evidence that re-uploading approaches can actually
deal with real problems. Current status of experimental devices does not
endure running running this kind of algorithms due to the yet persistent
quantum noise and decoherence.
It is expected that future improvements in the device quality and

optimization methods will help the data re-uploading strategy to enhance
its range of applicability and performance, and it will hopefully be an
interesting ingredient in the development of QML.





4. Unary strategy for finance

Más vale el buen nombre que las muchas riquezas.
Miguel de Cervantes

Quantum computing posseses the inherent property of entanglement.
Entanglement is the reason for the exponential size of the Hilbert space
with respect to the number of qubits. Entanglement is also a key feature in
the speed up achieved in the most prominent quantum algorithms [Gro96;
Sho97]. However, there is another application available for entanglement,
that is effectively distributing the information of a small quantum system
across a larger one. The reason is that this procedure allows to store
the information as a global and share property of many small quantum
system, making it resilient against errors and decoherence. For example,
this strategy lies at the core of quantum error correction codes [Cor+98;
Got97; Sho95].
In this chapter an application of this line of thought is explored, looking

for computing financial products using a near-term NISQ device. The
main difference between the algorithm here proposed and other quantum
algorithms, in particular for finance, is that the unary representation
is used, that is, the Hilbert space is restricted to those components of the
computational basis with only one |1〉 qubit, and |0〉 for all other qubits.
Previous works considering the unary representation can be found in
Refs. [Bab+18; Pou+18; SW20].
The unary basis has some advantages and inconvenients with respect to

the standard binary computations. It is clear that the unary basis does
not have the capabilities to store an exponential number of coefficients
with respect to the number of qubits, but rather a linear one. Thus, a
worse asymptotic scaling is retrieved in the unary case. However, this
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permits to simplify logical operations carried on those quantum states
and leads to lesser gates to be applied on a given circuit. In addition, the
unary representation brings a native post-selection strategy that results
in error mitigation. It is likely that all algorithms to be executed NISQ
must perform some error mitigation technique to obtain proper results.
The properties of the unary basis make it useful in a near-term regime,

both with respect to the size of the problem and the quality of the quantum
computer. In case the size of the problem increases, the overhead of
the standard binary representation with respect to the unary one is
compensated by the asymptotic behavior. In terms of resilience against
error, the unary basis can provide better results as well. Quantum
advantage is feasible for small problems, and it is also possible to find
interesting problems where this small size is useful.
The benefits of the unary representation are explored in the field of

quantitative finances. This field is expected to be transformed with the
bloom of the first generation of quantum computers, see Ref. [OML19b].
In recent years there has been a surge of methods and algorithms for
solving financial problems using quantum computers [Egg+19; Mar+21;
OML19a] , in particular for hard optimization problems [KPS19; Mol+18;
Pra15; RL18; Ros+16].
The prominent problem of pricing financial derivatives is taken into

consideration. Many computational obstacles of this problem can be
overcome by quantum computing, in particular, the pricing of european
options. Options are contracts that allow the holder to buy / sell some
asset at a pre-established time at a future date. The problem is then
to estimate if the price of the given option will increase or not with
respect to the agreed value. The evolution of the asset price follows a
stochastic process described by the Black-Scholes model [BS73]. Then, a
payoff function, specified by contract as well, must be incorporated to
this evolution to obtain the expected return of the option. The main
method to classically perform this computation is the costly Monte Carlo
simulation.
Quantum algorithms have been already proposed to solve the option

pricing problem more efficiently that their classical counterparts [RGB18;
Sta+20; WE19]. The key ingredient to develop this algorithm is that
quantum computers provide a quadratic speed-up in the number of
evaluations required to obtain a given accuracy using a Monte Carlo
simulation. This exploits the idea of QAE [AR20; Bra+02; Gri+21;
Mon15]. The quantum advantage achieved via Quantum Amplitude
Estimation (QAE) holds only if there exists an efficient way of loading of
data, namely a distribution in the asset prices, into the quantum circuit.
With this purpose, qGANs [DK18; LW18b] have been analyzed to address
this issue [ZLW19].
The algorithm here proposed to solve the option pricing problem is
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divided in three steps. First, a circuit working on the unary basis of the
asset prices is constructed. The evolution of the asset price is computed
using an amplitude distributor such that the output state corresponds
to a probability distribution of prices. Second, the payoff is computed
using quantum gates. This steps greatly simplifies thanks to the unary
representation. Finally, a QAE procedure is carried to obtain quantum
advantage. This last step is common to previous approaches.
The option pricing problem suits the requirements for a unary basis

approach since a great accuracy is not needed to obtain results of interests.
The estimates for the number of gates indicate that the crossing point
between the unary and the binary algorithm is located at least in a number
of qubits rendering a good precision, < 1%. This rate matches the usual
precision obtained in real-world applications. It is worth mentioning
that this estimation relies on machines suiting perfectly the needs of this
algorithm, but real hardware architecture can lean the scale towards the
unary approach.
This chapter is organized as follows. First, the unary representation

and its corresponding operations are presented and defined in Sec. 4.2.
Sec. 4.1 covers the required background to present the financial problem
here addressed. The application of the unary representation to finance
is depicted in Sec. 4.3. A comparison between the previous binary
algorithm and the unary one in this chapter is performed in Sec. 4.4, and
the corresponding results are depicted in Sec. 4.5. Final remarks can be
read in Sec. 4.6.

4.1 Background
The unary algorithm here presented is constructed upon three different

legs coming from different fields. They are the economical Black-Scholes
model as applied for European options, the QAE procedure providing
quantum advantage respect to standard Monte Carlo, and a quantum
algorithm developed in the standard binary representation to compute
the payoff of an European option pricing, as described in Ref. [Sta+20].

4.1.1 European options and the Black-Scholes model
In the market of financial derivative, options are contracts signed

to acquire the right to buy/sell (call/put) some asset at a previously
established price (strike). The contract expires at a future point in time
(maturity date). The holder of the contract will only execute the call/put
option if the actual price is lower/higher than the agreed strike, and thus
some benefit is obtained from the trading.
To decide whether an option is profitable at the time of the contract

sign, the holder must estimate the expected payoff of the option. This
quantity will depend on the evolution of the price of the asset, which
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follows a stochastic process. A simple, yet successful model for option
pricing is the Black-Scholes model [BS73], to be detailed shortly. The
second step consists in computing the contract specified payoff function
over the Black-Scholes distribution of prices to obtain the expected
return. In particular, European options only allow to call/put the asset
exactly at the maturity date. This is then the only data of interest. In
contradistinction, other options in the market, for instance the Asiatic or
American options rely on more sophisticated payoff functions.
The Black-Scholes model for the evolution of an asset price is described

by the stochastic equation

dST = ST r dT + ST σ dWT , (4.1)

where T is the time and ST is the price at time T , r is the interest
rate, σ is the volatility and WT describes a Brownian process. Brownian
processesWT are continuous stochastic evolutions starting atW0 = 0 and
consisting of independent gaussian increments. Specifically, let N (µ, σs)
be a normal distribution of mean µ and standard deviation σs. Then,
the increment related to two steps T, S of the Brownian processes is
WT −WS ∼ N (0, T − S), for T > S.
The most important feature for the Black-Scholes model is that there

exists a first-order-approximate analytical solution to Eq. (4.1). The
solution reads

ST = S0e
(r−σ

2

2
)T eσWT ∼ e

N
((
r−σ

2

2

)
T,σ
√
T
)
, (4.2)

corresponding to a log-normal distribution. A more detailed description
of the procedure to solve this model is outlined in App. B.1.
The expected return of an option is computed by integrating the payoff

function over the price probability distribution. This step is usually
carried by means of a Monte Carlo simulation. Depending on the option,
this procedure can be extremely costly.
For European options, the payoff function is computed as

f(ST ,K) = max(0, ST −K), (4.3)

and thus the expected payoff is

C(ST ,K) =

∫ ∞
K

(ST −K) dST , (4.4)

where K is the agreed strike price. Since European options are executable
only at the maturity date, the expected payoff can be computed only by
integrating at time T . In contradistinction, Asiatic options return an
average over time. American options allow to execute the contract at
any point before the maturity date, thus the calculation of the expected
payoff requires more sophisticated and costlier methods [KV90].
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4.1.2 Quantum Amplitude Estimation
QAE is an inherently quantum technique designed to estimate the

probability of measuring a certain outcome from a given state more
efficiently as direct sampling. For a given precision, the number of
function calls is quadratically reduced with respect to direct sampling
[Bra+02; Suz+20b]. This technique lies at the core of the quantum
advantage obtained for Monte Carlo simulations [Mon15]. QAE extends
the ideas developed by Grover algorithm [Gro96].
The QAE procedure considers an algorithm A such that

A |0〉n |0〉 =
√

1− a |ψ0〉n |0〉+
√
a |ψ1〉n |1〉 , (4.5)

where the last qubit serves as a flag qubit separating good(|0〉) and
bad(|1〉) outcomes. The states |ψ0,1〉n can be non-orthogonal. The final
state can be sampled N times to obtain an estimate ā with an accuracy

|a− ā| ∼ O(N−1/2), (4.6)

as dictated by the sampling error of a multinomial distribution.
For implementing QAE it is required to construct the operator

Q = −AS0A†Sψ0 , (4.7)

where the operators S0 and Sψ0 are inherited from Grover,

S0 = I− 2 |0〉n 〈0|n ⊗ |0〉 〈0| , (4.8)
Sψ0 = I− 2 |ψ0〉n 〈ψ0|n ⊗ |0〉 〈0| . (4.9)

The S0 operator changes the sign of the |0〉n |0〉 state, while Sψ0 takes
the role of an oracle and changes the sign of all bad outcomes.
It turns out that the eigenvalues of Q are e±i2θa , where a = sin2(θa/2).

The original algorithm makes use of the QPE algorithm [NC10] to obtain
the numerical values of these eigenvalues [Bra+02]. The accuracy obtained
with N function calls is given by

|a− ā| ∼ O(N−1) (4.10)

with probability at least 8/π2 ≈ 81%. This approach will only be useful
in the case fault tolerant computers are available. The high quality of the
hardware required to perform Quantum Phase Estimation successfully
prevents to use it for QAE. Further details are available in App. B.3.1.
In order to anticipate the use of QAE techniques to the NISQ era,

some approaches have emerged without the Quantum Phase Estimation
requirement [Gri+21; Suz+20b]. These examples are less resource-
demanding. The key property that allows to circumvent the use of
Quantum Phase Estimation is

QmA |0〉 = cos ((2m+ 1)θa) |ψ0〉n |0〉+
+ sin ((2m+ 1)θa) |ψ1〉n |1〉 .

(4.11)
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An integerm is chosen to prepare the state here described and measure the
outcome with N shots, so that the value sin2 ((2m+ 1)θa) is estimated
with a precision of O(N−1/2). The process is repeated several times with
different values of m defined by a set of {mj}. Finally, all measurements
are combined to extract a final estimation whose precision is bounded by
∼ N−1/2M−1, with M =

∑J
j=0mj , where J is the last index. The exact

scaling of the precision depends on the choice of {mj}. Further details
on the iterative method are outlined in App. B.3.2.

4.1.3 Binary algorithm

The algorithm constructed on the standard binary basis laying the
groundwork for the unary algorithm here presented is introduced in Ref.
[Sta+20]. The algorithm is divided in three different parts. A complete
scheme is depicted in Fig. 4.1.

Amplitude distributor: this element encodes into the circuit the
distribution of prices for a given asset with a certain interest rate and
volatility. The operator representing piece is labeled as D. In this
algorithm, D is implemented using qGANs [DK18; LW18b; ZLW19].
These methods demand previous knowledge on the classical solution of
the Black-Scholes model from Eq. (4.2).

Payoff calculation: the expected payoff is encoded into the amplitude
of an ancillary qubit. For computing the payoff, it is only required to
encode this information properly and then measure the ancilla qubit to
retrieve the information. This piece is further subdivided in two more
steps. First, a comparator C separated the prices in larger and smaller
than the strike K. Then, a set of controlled rotations R encode the
expected information into the amplitude of the ancilla qubit.

Quantum Amplitude Estimation: the ancilla qubit is measured
using the QAE recipe to obtain an estimate of the expected payoff more
efficiently than by classical methods. The operator Q, which includes the
D and R, is applied several times.

For further detals on the binary algorithm, the reader is referred to
Refs. [Ram+21; Sta+20].

4.2 The unary representation

The key ingredient of the complete unary strategy is the unary represen-
tation. In this representation, the Hilbert space corresponding to the
computational framework is spanned by those quantum states with one
qubit in the |1〉 state while all other qubits remain in |0〉. Thus, the
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Figure 4.1: Full circuit for the binary algorithm for option pricing that
include all three steps, namely, the amplitude distributor D, payoff estimator
comprised of the comparator and payoff estimator C and R respectively, followed
by components of QAE, Q. The operator Q is repeated m times, where m
depends on the QAE algorithm. The payoff is indirectly measured in the last
qubit.

general representation of a n-qubits quantum state in the unary basis is

|ψ〉 =
n−1∑
i=0

ai |i〉n =
n−1∑
i=0

ai

n−1⊗
j=0

|δi,j〉

 =

= a0 |00 . . . 01〉n+a1 |00 . . . 10〉n+. . .+an−2 |01 . . . 00〉n+an−1 |10 . . . 00〉n ,
(4.12)

where |i〉n corresponds to the i-th element of the unary basis and δi,j is the
Kronecker delta. These states satisfy the normalization

∑n−1
i=0 |ψi|2 = 1

as well.
A well known example of a state in the unary representation is the

W state defining a three-qubit multipartite entanglement class [DVC00].
The properties of the unary representation make it probably better suited
to run on NISQ devices than the binary one. This claim will be detailed
later. While it holds that exponentially more qubits are required to store
equivalent quantum states, the unary approach is capable to retain more
useful information and it is then much more robust against noise.
For a fixed number of qubits n, the unary representation only provides

n different states from the computational basis, as a n-level qudit. In this
sense, adding a qubit to this system is equivalent to adding a new level
to an isolated qudit. The unary representation allows for a restricted
Hilbert space whose number of degrees of freedom grows linearly, unlike
in the standard binary representation, where the dimensionality increases
exponentially. Indeed, only n out of 2n states are taken into consideration,
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and the quantum states that belong to the unary representation are a
restricted part of the total Hilbert space.
Since the unary representation cannot expand through the whole Hilbert

space, only those quantum operations compatible with this feature are
applied. Such operations are entangling gates acting on the |01〉 , |10〉
states of two qubits, namely

U =


1 0 0 0
0 U 0
0 0
0 0 0 1

 , (4.13)

where U is any arbitrary single-qubit operation. Implementing this
operation among all possible pairs of qubits is enough to obtain arbitrary
operations. In the case only gates between first neighbors are allowed,
adding standard SWAP gates, namely Eq. (4.13) with U = X, is enough
to implement any operation U between any pair of qubits. This property
only holds if the initial state belongs to the unary basis. Many computers
start in the |0〉⊗n state, and thus adding one X gate suffices to initialize
the unary representation.
This problem requires gates transporting amplitude from one qubit to

the neighbor one. Those gates are the equivalent to Ry and Rx, namely
partial-SWAP and partial-iSWAP gates, defined as

=


1 0 0 0
0 cos(θ/2) − sin(θ/2) 0
0 sin(θ/2) cos(θ/2) 0
0 0 0 1

 , (4.14)

=


1 0 0 0
0 cos(θ/2) −i sin(θ/2) 0
0 −i sin(θ/2) cos(θ/2) 0
0 0 0 1

 , (4.15)

partial-
SWAP(θ)

partial-
iSWAP(θ)

Although the partial-iSWAP may seem more artificial for moving
probability amplitudes from one state to other, this gate is more convenient
than the standard partial-SWAP. This entangling gate comes naturally
from the capacitive coupling of superconducting qubits [Bia+10; SS03].
As a matter of fact, Google’s Sycamore chip in which the supremacy
experiment was performed [Aru+19] allows for this type of gates natively.
They are also of great importance for quantum chemistry applications
[Bar+18; Gar+20] or combinatorial optimization [CEB20; Had+19;
Wan+20b].
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By correctly setting the parameters in the partial-iSWAP gates it is
possible to obtain any quantum state representing a probability distribution
as

|ψ〉 =

n−1∑
i=0

eiφi
√
pi |i〉n , (4.16)

where pi is the probability of measuring the i-th state, and complex
phases eiφ are simply ignored.
The unary representation resides within a restricted and small part

of the Hilbert space, and all unused space can be used as a flag for the
appearence of error. The post-selection mechanism provided by the unary
representation is based on a high distinguishability between those states
inside and outside the unary basis. Simple measurements of the output
state in the Z basis are enough to check if an error has occurred or not. All
read-out must reflect one and only one |1〉, and all other |0〉s. Any failed
repetition can be discarded. A trade-off between number of executions
and error mitigation is obtained. The noisier a quantum computer is,
the more repetitions will be ignored, in exchange of retrieving only runs
where no error is detected. Notice that other error mitigation techniques
are also applicable. However, the scope of this work is to focus on the
native mechanism.
The properties of the unary representation make it probably better

suited to run on NISQ devices than the binary one. While it holds that
exponentially more qubits are required to store equivalent quantum states,
the unary approach is capable to retain more useful information and it is
then much more robust against noise.

4.3 Unary algorithm
The option pricing problem is addressed in this chapter by designing an

algorithm relying on the unary representation. The economical tool used
in this approach is the Black-Scholes model described in Sec. 4.1.1[BS73].
The distribution of asset prices is encoded into the quantum circuit in a
unary state. The structure of this algorithm follows the one in Sec. 4.1.3
[Sta+20], namely amplitude distributor module, payoff computation and
QAE module.
There are two main advantages of the unary representation as compared

to the binary one. In terms of circuit complexity, the unary scheme
allows for a significant simplification of all different pieces composing the
algorithm. The unary approach brings further benefit in practice due to
the native post-selection strategy that results in error mitigation. On the
other hand, the unary algorithm requires more qubits than a binary one
for a given precision. Both features make the unary approach adapted to
run in NISQ devices.
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Figure 4.2: Full circuit for the option pricing algorithm in the unary
representation. The gate D is the probability distributor, and C +R represent
the computation of the payoff. After applying the algorithm, the oracle Sψ0 ,
the reverse algorithm and S0 follow. The last step is applying the algorithm
again. This block Q is to be repeated for Amplitude Estimation. Measurements
in all qubits is a requirement for post-selection. The qubit labelled as q3 is the
one starting the unary representation.

4.3.1 Description of the algorithm
The global structure of the unary algorithm is inherited from the binary

one, as outlined in Sec. 4.1.3. A scheme for the full circuit is depicted
in Fig. 4.2. In summary, the circuit is composed by one first X gate
that initializes the unary basis, one set of amplitude distributor (D)
and payoff calculator (C +R), and m rounds of Amplitude Estimation
Q = AS0A†Sψ0 . Read-out in all qubits is a requirement for post-selection
to reduce errors.

Amplitude distributor D
The starting point is the probability distribution of asset prices is based

on the Black-Scholes solution from Eq. (4.2). In the unary representation,
each state in the computational basis will correspond to a specified value
in the price, thus the probability distribution is discretized. In particular,
the qubit activated as |1〉 determines the asset value. The precision is
determined by the number of qubits n in the circuit. The final price
distribution at any time can be mapped to the unary representation by a
fixed-depth quantum circuit. The probability of the asset to take a price
is captured by the probability of measuring the corresponding qubit as
|1〉. This step takes the role of a Monte Carlo spread of asset values. See
Fig. 4.3 for a graphical scheme on this idea.
The circuit needed to encode the asset prices into the quantum system

acts as a distributor of probability amplitudes. The initial state is set
as |00 . . . 010 . . . 00〉n, i. e., the active qubit in |1〉 is the middle one. To
initialize the unary representation only one X gate is needed. Then,
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Figure 4.3: Scheme for the quantum representation of a given asset price at
maturity date. For a given number of Monte Carlo paths, a binning scheme must
be applied in such a way that the prices of the asset are separated according to
its value. Different Monte Carlo paths that end up in the same bin are color
coded accordingly. Each bin is mapped then to an element of the unary basis,
whose coefficient is the number of Monte Carlo paths in this bin. The quantum
representation of the asset price at maturity contains all possible Monte Carlo
paths simultaneously. The precision is then bounded by the numbers of bins
that can be stored on a quantum state, i. e. how many qubits are available.
|0〉

p− SWAP (θ1)|0〉
...

... . .
. ...

|0〉
p− SWAP (θn/2−1)|0〉

p− SWAP (θn/2)|0〉
p− SWAP (θn/2+1)|0〉

p− SWAP (θn/2+2)|0〉
...

...
. . .

...
|0〉

p− SWAP (θn−1)|0〉

Figure 4.4: Quantum circuit for loading any probability distribution in
the unary representation D, plus unary initalization. The circuit works as a
distributor of amplitude probabilities from its middle qubit to the ones in the
edges, using partial-SWAP gates that act only on nearest neighbors. Time
dependence is encoded in the angles determining the gates. The first X gate
is needed to start the unary representation, but it does not take part in the
distribution procedure.

coefficients in the final register encoding the asset price distribution is
generated using partial-SWAP gates between the different qubits, see
Eq. (4.14). Every partial-SWAP gate substracts amplitude from one state
and passes it to the next one. In the first step, partial-SWAP gates connect
the middle qubit and its first neighbors. Subsequent steps propagate the
effect to further qubits. Since the middle qubit has a probability of being
measured pn/2 = 1, this mechanism distributes the whole amplitude to
the rest of asset prices far from the central value. See Fig. 4.4 for a
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graphical description of this procedure. Note that the partial-SWAP gate
can be substituted by partial-iSWAP gates, see Eq. (4.15), for convenience
when applied to experimental setups. The parameters needed to match
the final asset price distribution can be exactly computed. A detailed
procurement of those parameters is described in App. B.2.
Any final probability distribution in the asset prices at any time t

can be obtained with the Amplitude Distributor D. The circuit depth
is independent of time. All the necessary information, including time
dependency, is carried within the set of angles defining the partial-SWAP
or -iSWAP gates {θ1, θ2, . . . , θn−1}. Given n qubits, the depth is always
bn/2c+ 1. Similar ideas were exploited to describe the exact solution of
the Ising model [Cer18; Heb+17; VCL09].
To map a known probability distribution into the unary system, exactly

(n− 1) parameters are required. This claim holds in the cases the final
probability distribution is classically computable or remains unknown. In
the first case, since the final distibution is available, the quest for quantum
parameters can be addressed by solving an exact set of n equations and
n − 1 variables, see App. B.2. In case only the differential equation is
known, but not its solution, other methods can attempt to solve this
problem [IOL07].

Payoff calculator C +R
The circuit design to compute the expected payoff acts right after the

amplitude distributor D to encode the expected return on an ancillary
qubit. In the unary algorithm, this step is significantly simpler than for
the binary counterpart. The procedure attempts to prepare an entangled
state of the form

|Ψ〉 =
√

1− a |ψ0〉n |0〉+
√
a |ψ1〉n |1〉 , (4.17)

where |ψ0,1〉n are states in a superposition of the basis elements correspon-
ding to asset prices below (0) and above (1) the strike K respectively.
The payoff is encoded in the amplitude

√
a, with |a| ≤ 1. Notice that the

expected return will in general not be bounded by 1, thus a re-scaling
must be applied to relate the quantum procedure to the exconomical
values. After this step, QAE can be applied.
In the European option case, the most relevant point is to distinguish

between those prices Si contributing to the expected return, that is prices
greater than the strike K, and those that do not contribute. Only prices
Si ≥ K will have some effect on the ancillary qubit. This is acomplished
by the C piece of the circuit. In the unary representation, this tasks
turns out to be very simple. The computation of the expected payoff
can be carried by applying single-qubit-controlled Y rotations, cRy(θ),
summarized as the R operator. The control qubits are those encoding a
given price Si. Only those prices above the agreed strike K will control
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|qk+1〉 •

...
...
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Figure 4.5: Quantum circuit that encodes the expected payoff in an ancillary
qubit in the unary representation C +R. Each qubit with a mapped option
price higher than the designated strike controls a cRy gate on the ancilla, where
the rotation angle is a function of its contribution to the expected payoff. The
comparator C is constructed through the control wires, while the R piece is
performed by rotations in the last qubit.

applied gates to the ancillary qubit. The depth of this circuit will be
n − k, where k is the unary label of the strike K. See Fig. 4.5 for a
graphical description of this part.
The rotation angle for each controlled rotation depends on the price

represented by the control qubit. Each price contributes differently to
the expected payoff. The angle will be

φi = 2 arcsin

√
Si −K
Smax −K

, (4.18)

where the denominator is introduced for normalization. Recall that
|a| ≤ 1. The application of the payoff calculator to a proper quantum
state representing a price distribution results in

|Ψ〉 =

n−1∑
Si≤K

√
pi |i〉n |0〉+

n−1∑
Si>K

√
pi cos(φi/2) |i〉n |0〉+

+
n−1∑
Si>K

√
pi

√
Si −K
Smax −K

|i〉n |1〉 . (4.19)

This state is now in the form of Eq. 4.17. The probability of measuring
|1〉 in the ancillary qubit is

P (|a〉) =
∑

S−i>K
pi

Si −K
Smax −K

. (4.20)

The encoded payoff is easily recovered after measuring the probability
of obtaining |1〉 as the outcome. A simple multiplication times the
normalization factor returns the quantity of interest.
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Amplitude Estimation
Note that Eq. (4.19) suits the application of QAE on it. As described

in Sec. 4.1.2, the key ingredient is the operator Q = Sψ0A†S0A. In this
section a description on how to implement the operators Sψ0 and S0 in
the unary implementation is carried. A graphical assistance is depicted
in Fig. 4.6

|ψ〉
|a〉 X Z X

(a) Sψ0

•

|a〉 X H H X

|ψ〉

(b) S0

Figure 4.6: Quantum circuit
representation of Sψ0 (a) and
S0 (b) required to perform
Amplitude Estimation in the
unary basis. Notice that
operator S0 is much simpler
in the unary representation
as it does not require multi-
controlled CNOT gates.

The oracle operator Sψ0 acts
by identifying those elements of
the quantum state corresponding to
accepted outcomes. This task is
already performed by the algorithm A,
and the information is carried by the
ancilla qubit, with |1〉 for accepted
results. Thus, the function of this
oracle can be achieved by performing
local operations in the ancilla qubit.
The required operation is

Sψ0 = (I⊗n ⊗ (XZX)), (4.21)

where the X gates could even be
deleted since they add a global sign.
For the case of the operator S0

a detail that greatly simplifies this
computation is remarkable . The
operator S0 is normally defined using
|0〉 since most quantum algorithms
start on that state, as depicted in Eq. (4.17). However, a more apt
definition should instead include a generic |initial〉 state as a basis for
operator S0, the state onto which the algorithm A is first applied. For the
unary case, except for the first extra X gate, it is possible to consider the
algorithm as starting in that state of the unary basis, heavily simplifying
the overall construction. That being the case, S0 can be constructed out
of 2 single-qubit gates and one entangling gate. This supports a great
simplification of the unary algorithm with respect to the binary one.
With the operator Q constructed, QAE schemes can be performed.

Since the unary algorithm is aimed towards NISQ devices, it is feasible to
use an Iterative Quantum Amplitude Estimation (IQAE) scheme without
QPE, as mentioned in Sec. 4.1.2 and explained in detail in App. B.3.
In the implementation here presented, only the options with minimal
consecutive executions of Q are considered.

4.3.2 Error mitigation
The algorithms of the NISQ era need to present resilience against

gate errors, noise and decoherence. The literature provides a variety
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of error mitigation techniques, see Refs. [EBL18; TBG17]. Some of
those techniques might find valid applications in the unary algorithms as
well. However, in this unary approach the focus lies on the native error
mitigation poperties described in Sec. 4.2.
Since the algorithm is designed to perform in the unary basis, all

outcomes must reflect this fact. The strategy is as simple as measuring all
qubits and not only the ancilla one. This step allows to ensure that the
output state did not suffer errors taking it out the unary repesentation.
This way, all outcomes not belonging to the unary representation are
discarded. This triggers a trade-off between number of accepted samples
and reduction of errors.

4.4 Comparison between unary and binary algorithms
The unary algorithm is conceived since the beginning as an alternative

approach to the binary one with some properties that make it suit better
for implementation in NISQ devices. In this section a comparison the
resource demands of both algorithms in terms of circuit design and
number of gates is treated. The analysis includes the proper algorithm
and the QAE procedure. A detailed treatment of errors is then left for
subsequent sections.

4.4.1 Gate count
In order to properly count the number of gates required for executing

the algorithm, some particular choices have been made. In practice,
quantum computers make use of a native set of gates with the capability
to construct any unitary with some overhead in the number of operations.
The count is carried taking CNOT and partial-iSWAP gates as the native
entangling gates. A chip connectivity between all qubits with theoretical
common operations, see Sec. 4.4.2 for further details, is also assumed for
the sake of simplicity. The overhead of extra SWAP gates to account for
non-existing connections is not considered in these calculations. In all
cases, the counting for single-qubit gates is made by compiling subsequent
gates into a single one. All two-qubit gates are decomposed into the
native entangling gate and a number of single-qubit gates, counting for
all possible overheads. This is particularly prominent in the binary case
where many Toffoli gates are needed.
The unary algorithm requiresO(n) partial-SWAP gates for accomplishing

the amplitude distributor D. For computing the payoff, O(κn) controlled-
rotation gates are needed, where 0 ≤ κ ≤ 1 stands for the qubit
corresponding to the strike price K. The results from Table 4.1, left,
collects the gate counting of the full circuit for both the unary and
binary algorithms, as a function of the number of qubits. for CNOT and
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Unary CNOT partial-iSWAP
D C +R Sψ0 S0 D C +R Sψ0 S0

1-qubit gates 2n 2κn 1 4 1 κ10n 1 9
2-qubit gates 4n 2κn 0 1 n κ5n 0 2
Circuit depth 3n 4κn 1 5 n/2 15κn 1 10

Binary CNOT partial-iSWAP
D C +R Sψ0 S0 D C +R Sψ0 S0

1 qubit gates 3nl (16+5κ)n 1 20n - 23 8nl (86+5κ)n 1 80n - 113
2 qubit gates nl 14n 0 12n - 18 2nl 28n 0 24n - 36
Circuit depth nl+l (27+2κ)n 1 24n - 30 6nl+l (97+2κ)n 1 90n - 129

Table 4.1: Scaling of the number of 1- and 2-qubit gates and circuit depth as
a function of the number of qubits n representing the asset value in unary and
binary representations, for the amplitude distributor D, payoff estimator C +R
and QAE operators Sψ0 and S0. Ideal chips architectures are assumed. The
scalings in case CNOT or partial-iSWAP gates are implemented are compared.
In case the experimental device can implement both CNOT and partial-iSWAP
basic gates, the total amount of gates and total depth would be reduced. For
the unary circuit, the parameter 0 ≤ κ ≤ 1 depends on the position of the strike
in the qubit register. The parameter 0 ≤ κ ≤ 1 characterizes the number of 1s
in the binary representation of the strike price. For the amplitude distributor, l
is the number of layers of the qGAN.

partial-iSWAP gates as the native entangling gates.
The amplitude distribution module D substantially benefits from having

partial-iSWAP gates as the native operation. However, this implies an
overhead for the payoff computation C+R, where CNOT gates introduce
a gain. In the ideal case where both partial-iSWAP interactions between
first neighbors and CNOT-based connections to the ancilla qubit are
available, the best possible scaling is obtained. Explicitly, the total
number of gates would be (4κ + 1)n + 1, and the depth of the circuit
would become (4κ+ 1

2)n.
The gate count for the binary algorithm is summarized in Tab. 4.1, right,

in the same conditions as the unary one. The CNOT-connection turns
out to be more convenient in this case. The results here provided include
also the qGAN piece used for uploading the asset price distribution into
the quantum circuit, thus a dependency on the number of layers emerges.
However, no training cost required for qGANs is considered.
It is worth emphasizing that the gate overhead for the unary algorithm is

much lower than for the binary case. The main reason for this result is that
the unary circuit does not implement any three-qubit gate, which is only
decomposable in a large number of two-qubit gates. This simplification is
overcome by the exponential advantage of the binary algorithm for large
numbers of n, provided that the asset prices distribution is efficiently
uploaded.
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Figure 4.7: Scaling of the number of gates required for the full algorithm,
including a step, m = 1, of Amplitude Estimation, with the number of bins, for
different native gates: CNOT gates (a), partial-iSWAP gates (b) and the best
possible combination (c), in which one is allowed both CNOT and iSWAP gates
as native to the device. The scaling is calculated assuming ideal connectivity,
which would largely hinder the binary implementation were that not the case.

A complete comparison between unary and binary circuits is shown in
Fig. 4.7. In this comparison, the numbers κ = 1/2, number of controlled
rotations in the unary algorithm, and l = logn(2)/2, number of layers in
the qGAN for the binary case, are fixed. The comparison is made for the
same precision in the asset price representation. For a given number of n
bins, the unary algorithm needs n qubits, thile the binary representation
has enough with only log2(n) of them, plus qubits overhead. The simple
operations of the unary algorithm make this option mode convenient for
a number of bins n ∼ 100. For large values of n, the binary approach
outperforms the unary option, as the number of gates is logarithmically
lower. In case quantum resources have limited numbers and quality, as it
is expected in NISQ devices, circumstances favor the unary approach to
the detriment of the binary one.

4.4.2 Ideal chip architecture

From the theoretical description of the algorithms described in Sec. 4.3
for the unary algorithm and Ref. [Sta+20] for the binary one it is possible
to infer the connectivity requirements. Those are described in this section,
where the condition is that any pair of qubits with a common interaction
in theory has direct connection in the chip.
The unary algorithm can be performed with a very simple chip. The

amplitude distribution module D only needs local interaction between
first-neighbor qubits to upload the asset prices to the quantum register.
Thus, the qubits can be arranged on a 1D line with two-local interactions.
In addition, if this connection carries a partial-SWAP native gate, the D
operations can be performed without any overhead. This realization of
the quantum circuit would result in a decrease in the number of needed
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gates by factor of 6 in the amplitude distributor module as compared to
the CNOT entangling gate. Note also that superconducting qubits allow
for a natural implementation of the partial-iSWAP gate [Bia+10]. For
the expected payoff, the ancillary qubit interacts with any other qubit
from the quantum register, ideally relying on CNOT gates.

On the other hand, the binary algorithm for payoff calculation needs a
much more complex chip connectivity. For the sake of comparison with
the simplest chip architecture presented for the unary algorithm, the
most basic connectivity needed to perform the steps described for the
binary scheme is displayed in Fig. 4.8. In the binary case, log2(n) qubits
(q in the figure) are needed to store the price distribution with the same
accuracy as the unary case with n qubits. A total amount of log2(n) + 1
auxiliary ancilla qubits are needed (in the figure c and b). They payoff is
stored at another ancilla a. A total number of 2(log2(n) + 1) qubits is
needed.

It is clear that the number of necessary qubits for the binary algorithm,
including ancillas, scales asymptotically better than in the unary approach.
Nevertheless, the need for Toffoli gates and almost full connectivity may
eliminate this advantage in practical problems for NISQ devices. The
simplicity of the architecture needed to implement the unary algorithm
might yield an advantage over alternative algorithms as well.

q0 q1 q2 q3 q4 q5 q6

a

... q(n-1)

Ideally: partial-iSWAP gate

Ideally: CNOT gate

(a) Unary algorithm

q0

q1 q2

q3

c0

c1

c2

c3ba

(b) Binary algorithm

Figure 4.8: Ideal chip architecture to implement the unary and binary
algorithms for option pricing. a) In the unary chip, only a single ancilla qubit,
labelled as a in the image, has to be non-locally controlled by the rest of the
qubits. All other interactions are first-nearest-neighbor gates. b) For the binary
implementation with 4 qubits of precision, q0,q1,q2,q3, where a and c stand
for ancillary and carrier qubit, respectively, and b is another ancilla. The
algorithm requires a number of ancillary and carrier qubits equal to the number
of precision qubits plus two, 4+2 in this example. Full connectivity is needed
between the precision qubits and two ancillas.
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4.5 Results

In this section the binary and unary algorithms for a given option
pricing problem are simulated. The aim is to compare the performance
of both approaches. Two main comparisons are made relating this topic.
First, the performances are tested for circuits without any noise, where
the only source of error comes from the sampling uncertainty at the
measurement step. In a second step, both approaches are tested against
increasing noise levels in order to verify the resilience to error of both
unary and binary algorithms. Both steps are presented as the same
process. The final target of these calculations is to discern which approach
is more beneficial for NISQ computers. The calculations were carried
using the qiskit [Ale+19a] framework. The code is publicly available in
Ref. [RP20].
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Figure 4.9: Percentage error from the
exact value of the expected payoff, for
the classical computation, as a function
of the number of bins in the probability
distribution. With only∼ 50 bins, errors
for the option price below 0.5% are
already reached.

The financial problem addressed
in this example is a standard
European option with fixed
properties. The asset price
at T = 0 is S0 = 2, its
interest rate is r = 0.05,
and its volatility is σ =
0.4. The maturity time
is T = 0.1 years. The
agreed strike price is K =
1.9. The simulation of the
asset price is carried taking
the Black-Scholes model from
Sec. 4.1.1 up to three standard
deviations in the log-normal
probability distribution. For
the quantum circuits simulation,
a 8 bins model is considered.
Thus, the unary algorithm encodes the asset price distribution in 8 qubits,
and the binary one in log2(8) = 3 of them. Ideal chip structured from
Sec. 4.4.2 are considered. In terms of payoff calculation, the reference
value is computed classically, with a precision of 104 bins.
First of all, it is important to estimate the range of applicability of the

unary and binary algorithms as a function of the number of bins n. From
the calculations presented in Sec. 4.4.1, it is possible to conclude that the
crossing point in the number of gates lies at n ∼ 100. That is, below this
threshold, the unary algorithm needs less gates than the binary one to
be executed. Real-world applications require at least an accuracy < 1%.
The question to answer here is whether this accuracy can be reached in
the range of applicability of the unary or the binary algorithm.
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The error of the expected payoff as a function of the number of bins n
is plotted in Fig. 4.9. The error depends both in the binning n and the
position of the strike K, that is, if K lies at the center or the extrema
of a bin. The error will decrease in general as n increases. Therefore,
the results fall within a reasonable accuracy around the exact value for
a sufficiently large number of bins. The results in Fig. 4.9 show that
∼ 50 bins are enough to achieve accuracies near 0.5%. This regimes
corresponds to an advantage for the unary approach. This shows that the
unary algorith can be implemented and obtain better performance than
the binary one, and still return accurate results with small discretization
errors.
The noise maps used in the simulations to model the noise are simple

yet descriptive. The complete model is controlled by a tunable parameters
ε such that it vanishes for perfect circuits, and reaches ε = 1 for a random
execution. For single- and two-qubit gate errors, a depolarizing noise is
considered. This noise is described by the transformation

ρ→ (1− ε)ρ+
ε

d
Tr(ρ)I, (4.22)

where I is the identity gate of dimension d. The depolarizing transformation
occurs after each gate, with the difference that for two-qubit gates the
error grows up to 2ε. For measurement errors, the probability of obtaining
a wrong outcome is modeled as 10ε and symmetric, that is measuring
incorrect |0〉 or |1〉 is equally probable. It is remarkable that no thermal
relaxation nor thermal dephasing have been included into the noise models.
The reason is that the execution times for the considered circuits are far
below coherence times of qubits due to the shallow depth of the circuits.
The execution time of a single-qubit gate is ∼ 1000 shorter than the
decoherence time. This description is adjusted to a simplified version of
state-of-the-art computers [Aru+19].

Amplitude Distribution loading - D
The capabilities of the unary and binary amplitude distribution modules

are compared in Fig. 4.10(a). The quantity here depicted is the Kullback-
Leibler divergence [KL51]. This quantity measures the distance between
two probability distributions, and it vanishes when both are indistinguishable.
It is clear to see that the approximation of D for the unary algorithm
achieves better results than the binary distributor. For the maximum
amount of noise allowed, the difference rises up to an order of magnitude.

Expected Payoff - C +R
It is shown in Fig. 4.10(b) the average error of the expected payoff

as computed with the unary and binary approaches, when compared to
the classical value. The unary algorithm presents slightly better results
than the binary one for all errors considered. This difference is too
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Figure 4.10: a) Kullback-Leibler divergence between the target probability
distribution and those achieved by the quantum algorithms, b) percentage
error in the payoff calculation for depolarizing and measurement errors.
Calculations made for equivalent 8 unary and 3 binary qubits for depolarizing
and measurement errors (only in b) ), up to 0.5% for single-qubit gates, 1%
for two qubit gates and 5% for read-out errors, consistent with state-of-the-art
devices. Crosses stand for average results, and the shaded regions encompass
the central 70% of the instances. Each probability distribution is estimated
using 100 experiments with 104 samples each. The shaded regions encompass
the central 70% of the instances in each case. The unary algorithm is more
robust against these errors.

small to conclude that the unary approach is more convenient. Note
that the deviations in the expected payoff reach a minimum for a finite
value in the error parameter ε ∼ 0.005%. This is easy to understand
by considering the theoretical expected value. Both algorithms return
low approximations to the expected value, with the values of a from
Eq. (4.19) a < 0.5. As the noise is considered, the value of a tends to its
random value a = 0.5. Thus, there is a middle point where a corresponds
to an accurate approximation of the expected value.

Quantum Amplitude Estimation
In this QAE part, results will be presented in three steps. First,

instances without any noise considered are shown. The noiseless devices
present convergent results within errors due to approximations. Then,
an analysis of the errors and the statistical uncertainty of the expected
payoff value when applying QAE with errors is performed. In this case, an
extension to larger numbers of bins n is carried for the unary algorithm.
Only QAE without QPE can be performed on NISQ devices. In these

simulations, a procedure based on weighted averages that consider both
mean values and uncertainties is used, for a given series of QAE steps,
see App. B.3.2 for further details. In our results, every instance has
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been repeated 100 times. The choice of mj is linear, mj = j, with
j = {0, 1, 2, . . .}, in order to control how the performance evolves. The
confidence level was adjusted to 1− α = 0.95.
Figure 4.11 shows the increasing accuracy of the expected payoff using

a QAE recipe as more iterations are utilized. These results confirm
that QAE reduces the statistical uncertainty of the final results as more
sophisticated circuits, that is with more iterations, are considered.
Interesting results arise when considering the robustness against noise,

in particular in this example depolarizing and read-out errors, of both
unary and binary algorithms. The results in the deviation of the expected
payoff with respect to the ideal case is depicted in Fig. 4.12. The
number of QAE iterations was limited to 4 due to the computational
cost of each simulation. Unary and binary algorithms show very different
behaviors. First, the unary case endures the application of QAE with
M = {0, 1, 2, 3, 4} iterations when the noise levels are moderate. The
errors in the expected payoff reach a 60% for the maximum noise level
allowed. The worsening of the results is gradual. Take, for instance
M = 2. Results with low errors are obtained up to error rates ε ∼ 0.3%.
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Figure 4.11: a) Mean and uncertainty of the outcomes of the expected payoff,
details can be found at App. B. The dashed lines indicate the exact values.
Unary and binary approaches are depicted, and convergence to the optimal
values are obtained for both. Notice that these values are not the same since the
outcomes of both algorithms are not equally related to the payoff due to bining.
The shaded regions correspond to the statistical uncertainty. b) Statistical
uncertainties in the expected payoff. The dotted lines indicate the uncertainty
given by classical sampling, while the dot-dashed lines represent the optimal
uncertainty provided by Amplitude Estimation. Results of the simulations lie
in between. In this figure procedures with the same number of applications of
the A or A† operators, for noiseless circuits, are compared.
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Figure 4.12: Results of the errors in the expected payoff respect to the optimal
value, for the unary (a) and binary (b) representation, with M iterations of
QAE considering depolarizing and read-out errors together. Scattering points
stand for average values, while the shaded region corresponds to the statistical
uncertainties. In the unary case, the expected payoff is resilient to errors, while
the binary approach returns acceptable results only for M = 0, while M ≥ 1
rapidly saturates to a random circuit.
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Figure 4.13: Results of the sampling uncertainties of the expected payoff,
same conditions as above. Scattering points represent the obtained uncertainties
while dash-point lines represent theoretical bounds. For every color and symbol,
the lower bound is for optimal QAE, and the upper bound is for sampling. In
every case, each iteration of QAE reduces the uncertainty. For the unary case,
the scattering points tend to return larger uncertainties as the errors increase,
while for the binary case the uncertainties remain approximately constant. This
difference is a direct consequence of the reduction of valid samples triggered by
post-selection.
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Beyond this threshold, the returns become slightly more erratic. The
results from the binary algorithm are totally different. When no QAE
step is taken, M = 0, the results are comparable to the unary ones, see
for instance Fig. 4.10. However, the accuracy disappears completely at
the first iteration M ≥ 1 with small levels of noise ε ∼ 0.04%. A regimen
of saturation is immediately reached in the binary case. This stationary
regime corresponds to the random circuit where a = 0.5. The differences
between both behaviors can be attributed to the post-selection regime
resulting in a native mitigation of errors. The simpler structure of the
unary circuit plays also a role.
It is also interesting to study the evolution of the uncertainty in the

expected payoff calculation as more iterations of QAE are introduced
into the circuit. This kind of errors is an exclusive consequence of the
sampling uncertainty in the measurement step, which cannot be avoided.
This can be observed in Fig. 4.13, where the obtained uncertainties are
bounded between the classical sampling and the optimal QAE.
There appears a very remarkable behavior of the uncertainties in the

unary approach to be noticed. The obtained uncertainties present a
tendency to increase as errors get larger, unlike in the binary algorithm
that does not present this feature. The reason lies in the native post-
selection procedure only applicable in the unary representation. As
errors become more likely to happen, the post-selection filter rejects more
instances. The direct consequence is that the number of accepted shots
drops for large errors, causing less certain outcomes. The joint action
of this processes is that the uncertainty decreases more slowly for the
unary algorithm than for the binary one. This behaviour contrasts with
the error obtained in Fig. 4.12, where the binary results reflect a poor
performance.

Figure 4.14: Graphical
explanation for the difference
between accuracy and precision
[Pek07].

The apparently contradictory result
is related to the distinction between
accuracy and precision. Accuracy
stands for how close is a measurement
to the exact value of a quantity, and
precision encodes the dispersion of
different measurements, see Fig. 4.14.
QAE is an algorithm to increase
the precision of a measurement with
respect to the number of samples,
but it does not provide any further
information regarding the accuracy.

Indeed, QAE for the binary algorithm reflects the expected tendency for
the increase in precision, but comes with very poor results in accuracy.
The unary algorithm grows slower in terms of precision, but maintains
more accurate results. This decrease in precision might lead to losing the
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quantum advantage provided by QAE in the presence of significant error.
In App. B.3.2 the limit of QAE iterations that can be performed given
the error rates of the quantum device while still maintaining quantum
advantage for the unary representation is further studied.
The results presented up to this moment support the use of QAE

procedures even in NISQ devices in the unary representation. The
resilience against noise shown by this approach is greater than in the
binary algorithm. The noise here considered must be moderate to retrieve
useful information from the calculation. However, the noise levels here
considered are compatible with state-of-the-art computer [Aru+19].
As a last step, the results of the unary algorithm are extended to

larger number of bins 8 ≤ n ≤ 20. Figure 4.15 show the deviation in the
expected payoff and the sampling uncertainty for many different numbers
n with a noise level fixed at ε = 0.3% for depolarizing and measurement
errors. The purpose of this calculation is to extract the behavior of the
deviation in the payoff as more qubits and complex circuits are taken
into account. It is clearly seen that the errors increase with the number
of bins n, as expected. Larger systems imply more gates, and thus
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Figure 4.15: Results for the error and sampling uncertainties of the expected
payoff for increasing number of bins for up to M iterations of Amplitude
Estimation for the unary approach, considering depolarizing and read-out errors
together. For the error in payoff, scattering points represent the mean values
obtained for the experiment, while shadowed areas include 70% of the instances.
In the sampling uncertainties, scattering points represent uncertainties obtained
and dash-point lines represent theoretical bounds, where each line is accompanied
with the corresponding marker. For every color and symbol, the lower bound
is for optimal quantum advantage, and the upper bound is for sampling. The
noise lvel is fixed to ε = 0.3%. Each experiment is repeated only 10 times to
reduce computational costs.
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the errors are more likely to appear. In particular, for between 13 and
18 qubits, a larger error is observed. It is expected that this behavior
encounters a completely random regime for a sufficiently large number
of gates, although this regime is not observed. In contradistinction, the
binary algorithm finds this situation at early stages. As in previous
results, the increasing uncertainty with the number of bins n reflect the
more measurements rejected due to larger error probabilities. A slower
convergence is the direct consequence.

4.6 Conclusions

This chapter has explored the strategy of encoding information in
a quantum state using a low level of compression. In particular, the
unary representation here presented utilizes only those state in the
computational basis with only one |1〉 among all qubits, while all others
are |0〉. This choice is not unique, but it is representative of the idea
of dilluting the information across a large Hilbert space. The unary
approach brings a clear advantage with respect to standard algorithms,
namely the simplification achieved with the unary representation make the
computation easier to execute and more resilient to noise and decoherence.
It is even possible to reach quantum advantage in this regime. On the
other hand, the storage capability of the quantum state is exponentially
reduced.
The range of applicability of the unary representation is a NISQ regime

with few and noisy qubits, at a middle stage between state-of-the-art
current and fault-tolerant computers. In case the unary representation
returns a simplified circuits easier to implement in a quantum computer
for small numbers of qubits, the execution is more robust against noise and
more profitable. This situation cannot be maintained for large number of
qubits since the exponential capabilities of standard algorithms overcome
any other feature of the algorithm.
The unary representation is tested for solving the financial problem of

European option pricing. The economical problem is solved by means of
the celebrated Black-Scholes models for the evolution of stochastic prices.
The accuracies required in finance to solve this problem usefully are about
< 1%. These values are compatible with developing a unary algorithm in
a regime with few qubits. The problem is solved in three steps, namely
uploading of a probability distribution of prices, computation of the
expected return and an iterative QAE procedure. Each piece makes
explicit use of the unary representation to simplify its implementation.
For uploading the distribution of prices at the maturity date when

the option expires, the unary representation uses a circuit where the
only operations are partial-SWAP gates. The parameters controlling
these gates can be found by classical means if the classical distribution
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is known, which is guaranteed in this problem. The circuit has a linear
depth with the number of qubits. For the computation of the expected
return, all steps can be taken with controlled-rotation gates at most. The
number of operations is at most equal to the number of qubits. The
quantity of interest is transported to an ancillary qubit. In the iterative
QAE step, the required operators offer a much simpler implementation,
allowing for a general reduction in the algorithmic complexity. The
overall simplification comes in terms of number of gates and required
connectivity to accomplich all operations.
The unary representation permits a native post-selection method that

results in a strong error mitigation. Since the unary algorithm resides in
a restricted region of the Hilbert space, the outcomes must reflect this
property. Any outcome with zero or more than one qubit in the |1〉 state
is automatically rejected. This ability reduces the acceptance of erroneous
outcomes mitigating errors and increasing the performance of the quantum
algorithm. In exchange, the effective number of measurements is reduced
due to the active filter.
The use of QAE pieces triggers the presence of quantum advantage

by substituting Monte Carlo methods with its quantum analogues. This
advantage could even be checked on state-of-the-art quantum computers.
Experimentally, the advantage is exclusive of the unary algorithm since
the binary one presents so erratic results that no useful quantity can be
extracted. In summary, QAE on unary representation allows to maintain
robust results at the price of reducing the convergence rate. Nevertheless,
the attainment of quantum advantage is still feasible.
The results presented through this chapter entails that using quantum

algorithms with a dilluted encoding of information may present advantages
in the NISQ era with respect to the standard dense algorithms. The
advantages are essentially a greater resilience to noise and a greater
resilience to noise and simple implementation of operations. The advantage
can only be obtained in a regime with few qubits. In some particular
cases, like the one here presented, a dilluted representation can bring
quantum advantage even for real-world applications.
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It is better to be lucky. But I would rather be
exact. Then when luck comes you are ready.

Ernest Hemingway
This thesis covers two different strategies related to seizing quantum

computers during the NISQ era, known as re-uploading and unary
strategies. The aim of both strategies is to take profit of two purely
quantum properties that settle the difference between quantum and
classical computing: superposition (for re-uploading) and entanglement
(for unary).

The re-uploading strategy is developed along Ch. 3. Re-uploading
is a general technique to bring the fields of Machine Learning (ML)
and quantum computing together. The differential element of the re-
uploading strategy with respect to other Quantum Machine Learning
(QML) techniques is that data must be introduced sequentially and several
times in the quantum system. Data is accompanied by some classical
parameters that can be optimized to make the quantum circuit behave
as desired. Thus, the re-uploading strategy is a hybrid quantum-classical
Variational Quantum Algorithms (VQA). This procedure permits to load
and process data in the same step, unlike in most QML examples, where
both steps are separate. One important property of the re-uploading
strategy is that non-linearities, a requirement in ML to ensure the
solving capabilities of a given model, emerge naturally form the quantum-
mechanical properties of the system. It is demonstrated in this thesis
that the re-uploading model is formally equivalent to other classical ML
models.
From a practical perspective, it is shown that the re-uploading strategy



134 Chapter 5. Final remarks

performs successfully when facing a variety of problems on regression and
classification of data. First, classical simulations of the quantum method
were attempted, to pave the way towards experimental implementations.
For simple problems suiting small computers, experiments on superconduc-
ting and ion-trap qubits were satisfactorily performed, while problems
requiring larger computers do not return meaningful results.
The unary strategy consists in using only some of the computational

states available in a complete Hilbert space to implement an algorithm,
in this case to solve the financial problem of option pricing. Reducing the
available space translates into a losing of asymptotical performance, but
as a trade-off a great resilience against noise is obtained. This robustness
is achieved thanks to a simplification of the circuits with respect to other
standard algorithms, and to a post-selection mechanism that allows to
easily detect corrupted outcomes. In all steps of the calculation, all qubits
of the quantum state are entangled to all others.
The aim of the unary algorithm is to be useful during the first stage

of the NISQ era. A quantum advantage is obtained in the algorithm
here presented, not as prominent as with other standard methods, but
maintaining the usability of final outputs. The trade-off between perfor-
mance and resilience against noise brings an advantage for the unary
algorithm, at least for those problems whose size requirements do not
exceed the range of advantage. This situation is fulfilled in the case of
NISQ computers for the option pricing problem of interest with acceptable
precision range.
Both strategies are in a position to be implemented on current or

near-future quantum devices, thus contributing with useful recipes to
the status of NISQ computing. There are still many open research lines
in both strategies to improve the performance and applicability of both
methods. For example, the re-uploading strategy could benefit of efficient
training procedures and specific embeddings to upload data, while the
unary strategy could still explore further error mitigation and detailed
differences between experimental implementations of the recipe here
presented and other standard methods taken as reference. Nevertheless,
the novel proposals here described will hopefully help to begin the era
of a profitable employment of NISQ devices, as soon as the hardware is
ready to be used.
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A. Technical appendices for re-uploading

A.1 Classical UAT for complex functions

The standard formulation of the UAT supports the approximation of
complex function using ei(·) as the activation function.
The approximations according to the UAT of the function are followed

z(~x) = a(~x) + ib(~x), (A.1)

using trigonometric functions as σ(·),

a(x) =
N∑
j=1

αi cos(~wj · ~x+ aj) (A.2)

b(x) =

N∑
j=1

βi sin(~vj · ~x+ bj). (A.3)

Then

z(x) =

N∑
j=1

αi cos(~wj · ~x+ aj) + i

N∑
j=1

βi sin(~vj · ~x+ bj), (A.4)

and this equation is can be rearranged as

z(x) =

N∑
j=1

αj
2

(
ei(~wj ·~x+aj) + e−i(~wj ·~x+aj)

)
+
βj
2

(
ei(~vj ·~x+bj) − e−i(~vj ·~x+bj)

)
,

(A.5)
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what encourages the UAT formulation for complex functions as an
analogous to Eq. (3.21)

G(~x) =

N∑
n=1

γne
iδnei~un·~x. (A.6)

A.2 Mathematical theorems for proving quantum UAT

Theorem A.2.1 : Hahn-Banach [Ban29; Hah27]
Set K = R or C. Let V be a K−vector space with a seminorm

p : V → R. If ϕ : U → K is a K−linear functional on a K−linear
subspace U ⊂ V such that

|ϕ(x)| ≤ p(x) ∀x ∈ U, (A.7)

then there exists a linear extension ψ : V → K of ϕ to the whole space
V such that

ψ(x) = ϕ(x) ∀x ∈ U (A.8)
|ψ(x)| ≤ p(x) ∀x ∈ V (A.9)

Theorem A.2.2 : Riesz Representation [Rie14]
Let X be a locally compact Hausdorff space. For any positive linear

functional ψ on C(X), there exists a uniruq regular Borel measure µ
such that

∀f ∈ Cc(X) : ψ(f) =

∫
X
f(x)dµ(x) (A.10)

Theorem A.2.3 : Lebesgue Bounded Convergence [Wei74]
Let {fn} be a sequence of complex-valued measurable functions on a

measure space (S,Σ, µ). Suppose that {fn} converges pointwise to a
function f and is dominated by some integrable function g(x) in the
sense

|fn(x)| ≤ g(x),

∫
S
|g|dµ <∞ (A.11)

then

lim
n→∞

∫
S
fndµ =

∫
S
fdµ (A.12)
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A.3 Definitions of 2D functions for universality
The definitions used for the 2-dimensional functions [Ard16] that serve

for benchmarking the proposed algorithms are defined as

Himmelblau(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2, (A.13)

Brent(x, y) =
(x

2

)2
+
(y

2

)2
+ e
−
(
(x2−5)

2
+( y2−5)

2
)
)
, (A.14)
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(A.15)

Adjiman(x, y) = cos(x) sin(y)− x

y2 + 1
, (A.16)

where a normalization to −1 ≤ f(x, y) ≤ 1 is applied after this
definition. A graphical representation of these functions is depicted
in Fig. A.1.

Figure A.1: Graphical representation of 2-dimensional functions utilized for
benchmarking. A regularization is applied to obtain Z ∈ [−1, 1].

A.4 Superconducting experiment for a universal approximant
The experimental implementation of the single-qubit universal approximant

as detailed in Sec. 3.2 was performed in a superconducting qubit circui.
The qubit is a 3D transmon geometry [Pai+11] located inside an aluminum
three-dimensional cavity. The cavity bare frequency, ωc = 2π× 7.89 GHz,
is greatly detuned from the qubit frequency, ωq = 2π × 4.81 GHz. Hence,
there is a qubit state-dependent dispersive shift on the cavity resonance,
2|χ| = 2π × 1.5MHz. The qubit anharmonicity is α = −2π × 324 MHz
and the qubit relaxation and spin-echo decay times are, respectively,
T1 = 15.6 µs and T2E = 12.0 µs. These time scales exceed the operation
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Figure A.2: a) T1 measurement with exponential fit (top) and spin-echo
measurement, T2E , with exponential fit (bottom). b) Randomized benchmarking
of the DRAG corrected pulses. The fit corresponds to the expression Apn +B,
where A and B have dimensions of voltage, n is the number of Clifford gates,
and p is the fidelity per gate. ε = 1− p is the error per gate.

times needed to implement the algorithm up to 6 layers by 2 orders of
magnitude. See Fig. A.2(a) for a experimental fit on these times.
The experiment was realized in a dilution fridge with a base temperature

of approximately 20 mK. The qubit rotation pulses were defined by an
arbitrary waveform generator and then upconverted with a microwave
signal generator to the gigahertz frequency range before being sent to the
qubit/cavity system. The signal was low-pass filtered and attenuated by
a total of 50dB before reaching the aluminum cavity. The input port of
the cavity was undercoupled while the output port was overcoupled in
order to maximize the readout signal amplitude. The outgoing signal was
amplified by a cryogenic low noise amplifier and a second amplification
stage at room temperature. The downconversion is performed with the
same microwave generator as used in the upconversion of the measurement
pulse, guaranteeing phase coherence in the downconversion process. The
signal is read out in a digitizer, with a Field Programmable Gate Array
(FPGA) that demodulates and averages the results before sending the
data to the main measurement computer.
In order to implement the gate sequences defined in Sec. 3.2, the

correspondence between logical and physical gates as shown in Fig. A.4
is followed. The phase of each pulse is selected at the pulse generator to
modify the rotation axis, producing either RX or RY rotations as required.
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The RZ rotations are, in turn, virtual [McK+17a]. The microwave pulses
incorporate a DRAG correction [Cho+10; Mot+09] which leads to an
error per gate ε = 0.01 found with randomized benchmarking [MGE11],
see Fig. A.3. Randomized benchmarking measures errors in Clifford
gates and not arbitrary angle rotations, which are instead used in this
experiment, yet offers a reasonable estimate on the overall fidelity of the
implemented gates. The gate error observed is probably limited due to
a non-ideal filtering of the measurement lines in the fridge. In order to
achieve better qubit state readout visibility and shorter operation times,

(a) Full sequence (b) Pulse sequence

Figure A.4: a) Complete pulse sequence. First, the reset protocol is performed
which corresponds to two pulses at the cavity and the qubit frequencies,
respectively. Note that the qubit pulse is of considerably lower amplitude
than the cavity pulse. Also, both pulses have a longer duration than the qubit
rotation sequence (timings not to scale). The RY pulses are shown to have
different amplitudes to determine each rotation angle. Finally, the readout
corresponds to a pulse at the cavity frequency which is later read out by a
digitizing card. b) Sequence performed in the experiment. Blue boxes represent
actual pulses. Logical RY and RZ rotations are explicitly shown below the blue
boxes [McK+17a]. Note that RZ pulses do not correspond to any microwave
pulse, instead subsequent pulses change rotation axis, indicated by a prime,
R

(N)
Y,N .
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Optimal p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

parameters -2.501 1.685 1.757 2.105 3.822 -1.788 -1.507 -4.640 0.430 1.875 5.038 -1.906

Rotational RZ,1 RY,1 RZ,2 RY,2 RZ,3 RY,3 RZ,4 RY,4
angles∗ p1 + p2x p3 p4 + p5x p6 p7 + p8x p3 p10 + p11x p12

x = −0.5 2.939 1.757 0.194 4.495 0.813 0.430 5.639 4.377
x = 0 3.782 1.757 2.105 4.495 4.776 0.430 1.875 4.377
x = 1 5.467 1.757 5.927 4.495 0.136 0.430 0.630 4.377

∗ Angles between 0 and 2π

Table A.1: Optimal parameters and angles obtained for ReLU(x) and 4
layers. Above the 12 parameters that define the rotational angles obtained
through simulations. Below the corresponding angles of the 8 rotations for three
different values of x. Note that RY rotations are not x-dependent, hence they
are equal for all three x values.

a reset protocol is applied prior to the main sequence [Gee+13].
Figure A.4 shows the total pulse sequence, which includes preparation

and measurement pulses in addition to the pulse sequence shown in the
main text. The Y rotations are performed through microwave pulses at
the qubit frequency while the Z rotations, as already stated, are phase
changes in subsequent pulses. Both qubit and cavity pulses are generated
at 70 MHz and then upconverted to the gigahertz range. The qubit
pulses are gaussian pulses with a total duration of 21 ns. A proper DRAG
correction is performed with a resulting error per gate of ε = 0.01 as
shown in Fig. A.3. The cavity pulse has a total length of around 2 µs.
The reset protocol consists of a pulse driving the qubit and a pulse driving
the cavity mode, with a total duration of around 2 µs. An example of
the rotation angles for the ReLU(x) function in the 4-layer case is shown
in Table A.1.
The readout consists of a cavity tone at the frequency of the cavity

for the qubit in the |0〉 state. High/low transmission corresponds to the
qubit being in the ground/excited state, assuming the system does not
escape from the computational basis. Each data point requires around
5 · 104 measurements in order to average out the amplifier noise. A reset
protocol that drives the qubit into the ground state is implemented prior
to each individual sequence. This has two benefits. The first one allows
to start with a qubit state nearly polarized into the ground state. A
second benefit is the reduction in the overall duration of the experiment,
since the waiting time between individual measurements is not limited
by the qubit relaxation time.

A.5 Ion trap experiment for a universal classifier

The ion-trap qubit utilized in this experiment is realized on a 138Ba+

ion trapped and laser cooled in a linear blade trap. The mapping between
computational and electronic states is |0〉 → S 1

2
,− 1

2
and |1〉 → D 5

2
,− 1

2
.
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Both states are coupled by an electric quadrupole E2 transition at
1762 nm wavelength. To manipulate the qubit an ultra-low-linewidth
laser is compulsory. Laser cooling of the ion to the Doppler limit, ensures
that the qubit is not influenced by the external motion. The most relevant
parameters of the trapped ion in this experiment are the qubit coherence
time (5 ms) and the Rabi π-time (12 µs) of the qubit [DM20; Yum+17].
The qubit is well-characterized in terms of both its internal [DM20] and
external states [Hor+20].
An ultra-low linewidth laser at 1762 nm wavelength is required to

control the qubit. The laser achieves an estimated linewidth of ≤ 100 Hz.
Prior to performing each algorithmic cycle the qubit is first Doppler cooled
to the Lamb-Dicke regime [DM20] via a fast dipole transition (between S-
P levels) at 493 nm and a re-pump laser (between D-P levels) at 650 nm.
Subsequently, the qubit is initialized to the state | 0〉 ≡

∣∣∣ S 1
2
,− 1

2

〉
by

optical pumping [Deh57], achieved by selectively de-populating the state
S 1

2
,+ 1

2
. A high fidelity state initialization of ≥ 99% is achieved within

an optical pumping time of ≤ 50µs only. Once the qubit is initialized,
any single qubit rotational gate is implemented by resonantly driving
the qubit with full control over the laser phase, power and laser on-time.
A direct digital synthesizer is used to control the phase, frequency and
power of the laser as the sequential gates are applied on the qubit. The
synthesizer eliminates the long term frequency drift of the synthesizer
clock, thus maintaining the phase relations of the sequential gates of the
classifier. As classical data is uploaded in-the-fly, the latency of uploading
the synthesizer parameters play a crucial role. The latency is minimized
by pre-loading the full sequence of the phase, frequency and power data
to an on-chip memory of the synthesizer. The synthesizer output is then
controlled by an external trigger generated from a FPGA.
The classification algorithm requires the repetition of any pair of non-

commuting rotational gates. Rz and Ry are chosen, instead of the active
gates of the ion qubit Rx and Ry. Active rotations are realized by the
application of resonant laser at the qubit frequency. On the other hand,
Rz can be implemented by a combination of the other two active gates
or by varying the qubit energy [Mas17; McK+17b]. Both these methods
are error prone as the qubit-light interaction is switched on for certain
time. It is chosen instead to perform the Rz by changing the laser phase
without interacting with the ion [Kni+08].The resultant error is thus
limited by only the Ry gate in each layer. Furthermore, every Rz(φ) gate
followed by a Ry(θ) gate can be concatenated to a single gate R(φ, θ)
representing a qubit rotation, in a Bloch sphere representation, about
the (φ, 0) axis by angle θ. The concatenation makes the effective circuit
depth half of the original.
Each data point shown in Fig. 3.18 or any of the other classifier plots,
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Algorithm |0〉 Ry(θ1) Rz(θ2) Ry(θ3) Rz(θ4) Ry(θ5) · · · Vy

Experiment |0〉 R(π/2, θ1) R(θ2, θ3) R(θ2, θ3) · · · Vy

(a) Theoretical design of the classifier circuit and its experimental implementation

Doppler cool
(DC)

Re-pump

Optical pump (OP)

Gates R(φ, θ)R(φ, θ) · · · R(φ, θ)

Basis projection Vy

Reset

DC
300 µs

OP
50 µs

Data uploading
50-100 µs

Projection
15µs

State detection
2 ms

(b) Operational scheme for the ion-trap experiment

Figure A.5: Experimental implementation of quantum classifier circuit: (a)
The algorithm to implement the quantum classifier is represented by gates in the
top qubit, grouped in pairs Ry, Rz. In the bottom qubit, couples of gates are
concatenated into one rotational gate R(φ, θ) with modified rotation axis. For
one qubit it is possible to define at most two orthogonal states, so the unitary
operation Vy adds any rotation to accomodate label states, see Eq. (3.70).(b) The
time sequence used in the experiment to perform each classifier measurement.

comprises of 100 repeat experiments. Every experiment, consists of
a sequence of operations performed on the qubit as shown in Fig. A.5.
Depending on the data to be uploaded, single qubit gates are implemented
by resonantly driving the qubit transition between |0〉 , |1〉 with well-
controlled phase and operation time, while the frequency and power of
the laser are kept constant. An acousto-optic modulator controls the
phase and frequency of the 1760 nm laser implementing the rotation gates.
The phase of the modulator is directly controlled by a synthesizer which
supplies the radio-frequency signal to the modulator via an amplifier.
The laser-qubit interaction time sets the rotation angle θ. Therefore,
direct and precise control over the axis and angle of rotations is available.
The optimal gate to apply repeatedly on the experiment is defined as:

R(φ, θ) =

[
cos θ2 −ie−iφ sin θ

2

−ieiφ sin θ
2 cos θ2 .

]
(A.17)

The time sequence shown in Fig. A.5 is controlled by a FPGA with a
time jitter below 1 ns. The current version of the synthesizer controlling
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the phase of the laser is limited by the on-chip memory to 16 phase
modulation steps thus limiting the layers to six, which is sufficient for the
current discussion. Once the circuit runs over all the layers, the overlap
between the final state of the qubit and a label state is measured. In case
of binary classification, the final state is projected on to the label state |0〉
and the overlap is measured by observing spontaneously emitted photons
while the qubit is excited by 493 nm laser. With a photon collection
time of 2 ms, the bright state is clearly discriminated from the dark
state. For any classification problem with more than two classes, two
additional rotations are required before performing state discrimination.
The overlap for each data point based on a threshold is designated a
success (1) or failure (0) to be within a class.
The accuracy of the data re-uploading algorithm primarily relies on

the the fidelity of individual single qubit rotation gate. The residual
error in the gate operation is reflected in the accuracy of the classifier.
In Eq. (A.17), the rotation angles are related to experimental values as
φ = (∆/~)top + δφ and θ = (Ω/~)top, where ∆ is the laser detuning, top
is the operation time of gates, Ω′ is the modified Rabi frequency and δφ
is the relative phase of the laser with respect to the qubit. The modified
Rabi frequency is Ω′ =

√
Ω2

0 + ∆2 with Ω0 denoting the resonant Rabi
frequency. Furthermore, the resonant Rabi frequency is proportional to
the square root of the intensity, I0, at the ion position. Therefore each of
the independent variables δφ, top, ∆ and I0 contributes to the error in a
rotation gate as follows:
δφ Phase: The synthesizer controls the radio-frequency phase of the

modulator which determines the relative phase of the laser. Each
synthesizer is synchronized to a rubidium atomic clock which is
accurate to one part in 1010 and thus contributes negligibly to the
phase error. The direct digital synthesizer is however triggered by
the FPGA which has time jitter below 10 ns leading to phase noise
on the qubit below 0.1% for a Rabi π time of 12 µs.

top Interaction time: The laser-qubit interaction time is determined
by the FPGA, precise up to 1 ns. Therefore, due to the time
jitter below 10 ns, its contribution to the accuracy is below 0.1%.
Occasional collision with the residual background gas molecule
during the interaction time leads to a projection to the state |0〉, thus
losing the final state information and hence error in the classification.
This error becomes usually smaller with larger statistics.

∆ Laser-qubit detuning: The detuning of the laser with respect
to the qubit frequency modifies the Rabi frequency. The range
of Rabi frequency fluctuation within the experimental time is
quantified to about 10 min. To ensure that the accuracy is limited by
systematic errors, statistical errors in the classification are measured
by repeating the experiment, see Fig. A.6a. The error decreases from
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Figure A.6: Systematic error analysis: All the results shown here are related
to the binary classification of circle as in Fig. (3.18). The errors are classification
error. (a) The classifier error as a function of the number of repeated experiments.
The error bar at each point corresponds to 1 standard deviation of a number
of repeat measurements for same number of repeated experiments under the
same condition. The exact number of repeat measurements varies between 5
and 10. (b) Variation of the resonance frequency as a function of time. The
range of Rabi frequency fluctuation within a typical experimental time of ≤ 10
minutes is about 2 kHz. (c) Error in binary classification of a circle feature
with the variation of laser frequency detuning measured in terms of the Rabi
frequency. The variation in the value of classification error is about 2% within
the experimental time of ∼ 10 min. (d) The same plot as in (c) but by varying
the laser power measured in terms of the Rabi frequency.

12% to about 4% for 100 repetitions and then enters a stationary
regime limited by systematic errors. The fluctuation of the laser
frequency with respect to the atomic resonance is captured over
a time period of 20 min (twice the duration of an experiment) as
plotted in Fig. A.6b. The random variation of the Rabi frequency
over time is mostly caused by the magnetic field noise as the
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laser frequency drift was separately measured to be ≤ 5 kHz/24
hrs [Yum+17]. To minimize the impact of the residual magnetic
field noise, electronic levels weakly sensitive to such noise are used.
In addition, the detuning also indirectly influence the modified
Rabi frequency. To check its influence, the Rabi frequency is varied
as shown in Fig. A.6c, by varying the detuning within a 2 kHz
range (as expected from the Fig. A.6b). The result shows below
5% accuracy for the classifier when operating for 10 min.

I0 Laser intensity: The Rabi frequency is fixed by setting the power
and frequency of the laser at the start of the experiment. Any
change in the Rabi frequency during the experiment leads to error
in applied qubit rotation angle. The intensity is influenced by two
factors, the laser power noise and the laser beam pointing error. In
the experiment, the laser beam is tightly focused on the ion by a
high Numerical Aperture ∼ 0.4 in-vacuum lens. In order to capture
the influence of laser power variations on the classification error, the
power is varied, see Fig. (A.6d). Thus it is seen that the influence
of intensity noise accounts to 5% error in accuracy. To avoid the
influence of Rabi frequency fluctuation within the experimental
time of ∼ 10 min, the Rabi frequency is reduced from 625 kHz to
80 kHz such that the absolute error also reduces. This leads to an
overall error of only 2% on the classifier output.

A.6 Quantum circuits in NNPDF methodology

The latest implementation of the latest iteration of the NNPDFmethodo-
logy is described in Ref. [CC19]. This implementation is very modular
and one can seamlessly swap the Tensorflow based backend by any other
provider. Qibo, which is also partially based on Tensorflow can be easily
integrated with the NNPDF methodology.
As previously mentioned, all results in this section corresponds to the

simulation of the quantum device on classical hardware. Such a simulation
is very costly from a computational point of view which introduces a
number of limitations that need to be addressed in order to produce
results in reasonable time frames.
FK reduction: the definition of the quantum circuit depends on both

the set of parameters θ and the value of the parton momentum fraction
x (see Eq. (3.81)) which means the circuits needs to be simulated once
per value of x. The union of all FK tables for all physical observables
(following Eq. (3.88)) amounts to several thousand values of x. Since such
a large number of evaluations of the quantum circuit is impracticable,
a further approximation is introduced where each partial FK table is
mapped to a fixed set of 200 nodes in the x-grid. This simplification
introduces an error to the total χ2 of the order of ∆χ2 = 0.14 ± 0.01
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Figure A.7: Predictions
for a toy ss̄ initiated Drell-
Yan process with qPDF
and a simplified version
of NNPDF3.1 where the
positivity constraint has been
removed.
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when averaged over PDF members. This error on the cost function is
however negligible for the accuracy reached in this work.
Positivity: in the fitting basis, as defined in section 3.5.1, the PDF

cannot go negative. Physical predictions however are computed in
the flavour basis [Bal+09] where the rotation between basis can make
some results go negative. However, physical observables (differential or
total cross sections) cannot be. This physical constraint is included
in NNPDF3.1 via fake pathological datasets. These have not been
implemented for qPDF as they correspond to a fine-tuning of the methodology
which is beyond the scope of this work.
The removal of the positivity constraint from the fit introduces an

unphysical distortion to the results as the PDF could produce negative
predictions for physical predictions. Such results are unphysical because
they would correspond to situations in which the probability of finding a
particular phase space configuration is negative, which makes no sense. In
Fig. A.7, the “negativity” between qPDF and a version of NNPDF3.1 with
the positivity constraints removed is compared. We observe that both
fits behave similarly, proving such unphysical results are a consequence
of the removal of the constraint rather than a problem in the qPDF
methodology.
Momentum Sum Rule: the PDFs as defined in Eq. (3.87) are

normalized such that [Bal+15],∫ 1

0
dx x fg(x,Q0)

1−
∫ 1

0
dxxfΣ(x,Q0)

' 1, (A.18)

this equation is known as the momentum sum rule and it is imposed
in n3fit through an integration over the whole range of x which is
impracticable in this implementation for the reasons mentioned above.
Instead, in qPDF these are only checked afterwards, finding a good
agreement with the expected values (despite not being imposed at fitting
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time). Indeed, for qPDF the result for the average over all replicas
is 1.01 ± 0.01, which is to be compared with the NNPDF3.1 result of
1.000± 0.001, where the constraint was imposed at fit time.

Extra results

With all ingredients implemented, it is possible to run a NNPDF3.1-
like fit using the qPDF. As a base reference for the comparison, the
NNPDF3.1 NNLO fit [Bal+17] is taken, which is the latest release by the
NNPDF collaboration. The plots comparing the NNPDF sets with qPDF
are then produced using a reportengine [Kas19] based internal NNPDF
tool. The extra result here presented complement the one showed in the
main text, in particular related to Fig. 3.28.
We can start by comparing the χ2/N result for the datasets that have

been considered in the fit, shown in Fig. A.8(b). One would expect
a perfect fit when χ2/N = 1, however this is not the case even in the
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(a) Distance (as defined by Eq. (A.19)) between
qPDF and NNPDF3.1. When the distance is kept
under d(fi, ri) = 10 the two fits are 1-σ compatible.
All partons except for u and s are below or around
the 1-σ distance for the entire range considered.
Note however, by comparing to Fig. 3.24 that the
fits for both the u and s quarks are compatible in
the most relevant regions for these particles.

(b) χ2/N per experiment grouping. There is a
deterioration of the goodness of the fit (measured
by the χ2) for some of the experiments for the
central value. The goodness of the fit is very similar
between the reference and qPDF for most of the
experiments being considered.

Figure A.8: Collection of extra results for the qPDF method integrated in
the NNPDF methodology as extracted from LHC data.
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Figure A.9: Theoretical predictions computed with the method describe
in [BCH17] in order to compare the same prediction with three different PDF
sets. Note that the predictions for the qPDF set is compatible with both
the experimental measurements and the released PDF set. The parton-level
calculation has been performed with the NLOjet++ [Nag02] and MCFM [CN19]
tools.
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Figure A.10: PDF correlation matrix for flavours in a grid of x points for
NNPDF3.1 NNLO (left) and the qPDF (right).

reference and it is due to a combination of missing higher order corrections
(a lack of a better theory) or inconsistencies in the experimental results.
The similarity on the phenomenological results obtained by both fitting
methodologies as shown in Fig. A.8(b) is well understood as well by
looking at the distance plots between the qPDF and the reference in
Fig. A.8(a),

d2(fi, ri) =
〈fi〉 − 〈ri〉

1
Nf
σ(fi)2 + 1

Nr
σ(ri)2

, (A.19)

where i is the flavour being considered and f and r corresponds to
qPDF and the reference (NNPDF3.1) respectively. The central value is
taken over the N replicas of the set, generally of the order of 100.
Indeed, for most partons the difference between both fits are under the

1-σ level (distance equal to 10 for 100 replicas) growing up to 2-σ for the
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u and s quarks.
In Fig. A.9 it is shown specifically a comparison between the reference

NNPDF3.1 and qPDF for selected datasets, and the LHAPDF-compatible
PDF grid is provided. The accuracy of the qPDF central value is similar
to that of NNPDF3.1. Furthermore, the error bars for the predictions
of both PDF set overlap with the experimental error bars, and, in some
cases, also among themselves.
Finally, in Fig. A.10the PDF correlations for NNPDF3.1 and qPDF

replicas using Pearson’s coefficient in a fixed grid of 100 points distributed
logarithmically in x = [10−4, 1] are computed.
This leads to conclude that the methodology described in this paper

can be used for regression problems to unknown functional forms such
as the proton internal structure and produce results that are perfectly
coherent, from a phenomenological point of view, with the state of the art.
In addition it is believed that with adequate tuning one could achieve
the same level of accuracy of the classical approach.
We finalize this section by showing phenomenological results where the

LHAPDF grids produced with this approach are used for a full fixed order
prediction. In summary going back circle to the master equation, i.e.,
computing numerically Eq. (3.88) with no approximations using state of
the art tools.





B. Technical appendices for unary

B.1 Details for the Black-Scholes model
The Black-Scholes model for the evolution of an asset is based on the

stochastic differential equation [BS73]

dST = ST r dT + ST σ dWT , (B.1)

where r is the interest rate, σ is the volatility and WT describes a
Brownian process. Recall that a Brownian process WT is a continuous
stochastic evolution starting atW0 = 0 and made of independent gaussian
increments. To be specific, let N (µ, σs) be a normal distribution with
mean µ and standard deviation σs. Then, the increment related to two
steps of the Brownian processes is WT −WS ∼ N (0, T − S), for T > S.
The above differential equation can be solved analytically up to first

order using Ito’s lemma [Itô44]. The essential observation if that WT is
treated as an independent variable with the property that (dWT )2 is of
the order of dT . Thus, the approximated derivative dST can be written
as

dST =

(
∂ST
∂T

+
1

2

∂2ST
∂W 2

T

)
dT +

∂ST
∂WT

dWT . (B.2)

By direct comparison to Eq. (B.1), it is straightforward to see that

∂ST
∂WT

= ST σ, (B.3)

∂ST
∂T

+
1

2

∂2ST
∂W 2

T

= ST r. (B.4)
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Using the initial condition S0 at T = 0, and the Ansatz

ST = S0 exp{(f(T ) + g(WT ))}, (B.5)

the solution for the asset price turns out to be

ST = S0e
(r−σ

2

2
)T eσWT ∼ S0e

N
((
r−σ

2

2

)
T,σ
√
T
)
. (B.6)

This final result corresponds to a log-normal distribution.

B.1.1 European Option
An option is a contract where in its call/put form, the option holder

can buy/sell an asset before a specific date or decline such a right. As a
particular case, European options can be exercised only on the specified
future date, and only depend on the price of the asset at that time. The
previously agreed price that will be paid for the asset is called exercise
price or strike. The day on which the option can be exercised is called
maturity date.
A European option payoff is defined as

f(ST ,K) = max(0, ST −K), (B.7)

where K is the strike price and T is the maturity date. An analytical
solution exists for the payoff of this kind of options.
The expected payoff is given by

C(ST ,K) = averageST≥K (ST −K) =

∫ ∞
d1

(ST −K) dST =

=

∫ ∞
d1

S0√
2π
e−

(
x−

(
r−σ2

2

)
T

)2

2σ2T e
−x2

2 dx, (B.8)

yielding the analytical solution

C(ST ,K) = S0CDFN (d1)−Ke−rTCDFN (d2), (B.9)

with

d1 =
1

σ
√
t

(
log

S0

K
+

(
r +

σ2

2

)
T

)
(B.10)

d2 = d1 − σ
√
T (B.11)

CDFN (x) =
1√
2π

∫ x

−∞
e

−u2

2 du. (B.12)
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This analytical development for the European option using the Black-
Scholes model cannot be extended to some exotic options, like the
American (the option can be exercised at any point) or the Asian (the
final option price depends on a time average of the price until the maturity
date). Therefore, in a general case the expected payoff return of an option
cannot be obtained analytically, but rather performing a Monte Carlo
simulation where many different scenarios are taken into consideration,
and a global estimation is obtained.

B.2 Details for the Amplitude Distributor D in the unary basis

Figure 4.4 is considered. In the unary basis, every qubit represents
the basis element in which the qubit is |1〉. Thus, the coefficient of every
element depends on as many angles as partial-SWAP gates are needed to
reach its corresponding qubit. Thus, the central qubits of the circuit will
depend only on 2 angles, and the number of dependencies increases one
by one as the gates move to the outer part of the circuit. The very last
two qubits depend on the same angles. As the procedure goes by and
moves away from the middle qubit, each qubit inherits the same angle
dependency than the previous ones plus an additional rotation. Starting
from the two edges, their coefficients verify the following ratios∣∣∣∣ψ0

ψ1

∣∣∣∣2 = tan2(θ1/2) (B.13)∣∣∣∣ψn−1

ψn−2

∣∣∣∣2 = tan2(θn−1/2). (B.14)

Then |ψi|2 = pi, where {pi} is the target probability distribution of the
asset prices at maturity. The next step corresponds to considering the
qubits 1 and 2, as well as n− 3, n− 2. The relations for their coefficients
must obey∣∣∣∣ ψiψi+1

∣∣∣∣2 = cos2(θi/2) tan2(θi+1/2) (B.15)∣∣∣∣ψn−1−i
ψn−2−i

∣∣∣∣2 = cos2(θn−i/2) tan2(θn−1−i/2). (B.16)

Then, it is straightforward to back-substitute parameters step by step
until we arrive to the central qubits. This procedure fixes all the angles
for the partial-SWAP gates used in the amplitude distributor.
The exact algorithm to be followed can be also found in the provided

code [RP20].
Once the exact solution for the angles is inserted into the circuit

depicted in Fig. 4.4, the amplitude distributor algorithm is completed.
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The quantum register then reads

|Ψ〉 =

n−1∑
i=0

√
pi |i〉 . (B.17)

Note that describing a probability distribution with squared amplitudes
of a quantum state allows for a free phase in every coefficient of the
quantum circuit. For simplicity, we will set to zero all these relative
phases by only operating with real valued partial-SWAP gates.
Let us turn our attention to the gates which are needed in the above

circuit. Sharing probability between neighbor qubits can be achieved
by introducing a two-qubit gate based on the SWAP and Ry operations.
This variant on the SWAP gate performs a partial SWAP operation,
where only a piece of the amplitude is transferred from one qubit to
another. This operation preserves unarity, that is the state remains as a
superposition of elements of the unary basis. This partial-SWAP, can be
decomposed using CNOT as the basic entangling gate as

=
•

• Ry(θ) •
(B.18)partial-

SWAP(θ)

where the usual CNOT gate in the center of the conventional SWAP
gate has been substituted by a controlled y-rotation, henceforth referred to
as cRy gate. In turn, the cRy operation can be reworked as a combination
of single-qubit gates and CNOT gates [Bar+95]:

•
Ry(θ)

=
• •

Ry(θ/2) Ry(−θ/2)
(B.19)

This decomposition will come into play for the expected payoff calculation
algorithm as well, albeit with angle φ in the payoff circuit.
For the purposes of this algorithm, both the CNOT and partial-iSWAP

basis gates are analogous, but the direct modeling to partial-iSWAPs
can economize the total number of required gates for the amplitude
distributor. Partial-iSWAP gates can be used to decompose CNOT gates.
More explicitly, a CNOT gate an be reproduced with two iSWAP gates,
and 5 single qubit gates.

B.3 QAE
QAE is a general framework to estimate the probability of obtaining

a certain outcome if measuring a given quantum state. This procedure
allows to gain quantum advantage with respect to Monte Carlo samplings.
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QAE is in general defined from an algorithm A such that

A |0〉n |0〉 =
√

1− a |ψ0〉n |0〉+
√
a |ψ1〉n |1〉 , (B.20)

where the last qubit serves as an ancilla qubit and the states |ψ0,1〉n can
be non-orthogonal. The ancilla qubit is a flag which enables to identify
the states as good (|1〉) or bad (|0〉). The state A |0〉n |0〉 can be directly
sampled N times, and the estimate for probability of finding a good
outcome will be ā, with

|a− ā| ∼ O(N−1/2), (B.21)

as dictated by the sampling error of a multinomial distribution.
However, QAE can improve this result. Let us first define the central

operator for QAE [Bra+02]

Q = −AS0A†Sψ0 , (B.22)

where the operators S0 and Sψ0 are inherited from Grover’s search
algorithm [Gro96], being

S0 = I− 2 |0〉n 〈0|n ⊗ |0〉 〈0| , (B.23)
Sψ0 = I− 2 |ψ0〉n 〈ψ0|n ⊗ |0〉 〈0| . (B.24)

The S0 operator changes the sign of the |0〉n |0〉 state, while Sψ0 takes
the role of an oracle and changes the sign of all bad outcomes.

B.3.1 QAE with QPE

The original QAE makes use of a QPE subroutine to study the operator
Q, with eigenvalues e±i2θa , with a = sin2(θa) [Bra+02]. The procedure of
QPE is then applied to extract an integer number y ∈ {0, 1, . . . , 2m − 1}
such that θ̄a = πy/2m is an estimate of θa, with m the number of ancilla
qubits. Recall that a QFT is required to perform QPE.
The value of θ̄a leads to an estimate of ā, such that

|a− ā| < 2π
√
a(1− a)

2m
+

π2

22m
∼ O

( π

2m

)
(B.25)

with probability at least 8/π2 ≈ 81%.
The original QAE procedure requires the implementation of QPE,

which is highly resource demanding. Hence, the complexity of the circuit
precludes its feasibility in the NISQ era.
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Algorithm 1: Algorithm for QAE based on gaussian distribution
of the measurements.

1 GaussianAmplitudeEstimation(Nshots, J , mj, α)
2 z ← CDF−1

N (1− α/2)
3 Ensure m0 = 0
4 a← | 〈1| A |0〉 |2 with Nshots samples
5 θ

(0)
a ← arcsin

√
a ∆θ

(0)
a = z

2
√
Nshots

6 for j ← 1to J do
7 a← | 〈1|QmjA |0〉 |2 with Nshots samples
8 θarray ← MultipleValuesArcsin(a,mj−1)

9 θa ← min
(
|θarray − θ(j−1)

a |
)

10 ∆θa ← z
2(2mj+1)

√
Nshots

11 θ
(mj)
a ←

θa
∆θ2a

+
θ
(j−1)
a

(∆θ
(j−1)
a )2

1

∆θ2a
+ 1

(∆θ
(j−1)
a )2

12 ∆θ
(mj)
a ←

(
1

∆θ2
a

+ 1

(∆θ
(j−1)
a )2

)−1/2

13 [aj ,∆aj ]← [sin2 θja, sin
(

2θja
)

∆θ
(j)
a ]

14 return [aj ,∆aj ]

Algorithm 2: Extracting multiple values for the arcsin, auxiliary
function needed in Alg. 1.

1 MultipleValuesArcsin(a,m)
2 θ0 ← arcsin

√
a // The value of θ0 is bounded between 0

and π/2
3 The arcsin function has several solutions θarray ← [0] ∗ (2m+ 1)

θarray[0]← θ0

4 for k ← 1tom do
5 θarray[2k − 1]← kπ − θ0

6 θarray[2k]← kπ + θ0

7 θarray ← θarray/(2m+ 1)
8 return θarray

B.3.2 IQAE

Here, a method is presented for obtaining the most probable value of a in
an iterative fashion following similar methods as other QAE without QPE
algorithms. We base this procedure in the theory of confidence intervals
for a binomial distribution assuming normal distributions [Wal13].
A binomial distribution with probability a is considered, i. e. for every
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sample the chance of obtaining 1 is a, while the chance of obtaining 0
is 1− a. Then, if an estimate â of a was obtained using N samples, the
true value of a lies in the interval

a = â± CDF−1
N (1− α/2)

√
â(1− â)

2
√
N

, (B.26)

with confidence (1− α).
From this result QAE can construct an iterative algorithm returning

the optimal value of a using QAE. A set of mj for j = 0, 1, 2, 3, . . . is
considered. For every mj the probability of obtaining |1〉 is sin2((2mj +
1)θa), where a = sin2(θa). In the θ space, for a given m the values and
error of θ obtained are

θa =
1

2m+ 1
arcsin

(√
a
)

∆θa =
1

2m+ 1

CDF−1
N (1− α/2)

2
√
N

. (B.27)

It is important to understand two main properties of Eq. (B.27). First,
there are 2m+ 1 possible values for θa within the interval θa ∈ [0, π/2]
as the sin2(·) function is π-periodical. For every new iteration it will be
necessary to choose one of them. It is very important to set mj = 0 at
first because this case is the only one for which θa corresponds to the
expected value for a. Otherwise, several possible values of a arise and it
is not possible to tell which one is correct. Combining results for several
values of mj , it is possible to bound the uncertainty to be as small as
desired.
The algorithm is based on the following statements. For a given

collection of measurements and uncertainties {θi,∆θi}, the weighted
average and uncertainty from the first j terms is

θ̃j =

∑j
i=0 θi/∆θ

2
i∑j

i=0 1/∆θ2
i

∆θ̃j =

(
j∑
i=0

1/∆θ2
i

)−1/2

. (B.28)

Notice also that this relation is recursive, as θ̃j+1 can be obtained by
combining θ̃j and θj+1. The same holds for uncertainties. Thus, the
interpretation of this algorithm is that for every new step j a new term
is added to the series {θ,∆θ}. The individual uncertainties decrease as
∼ ((2m+ 1)−1), and the final global uncertainty is obtained as

∆θ =
CDF−1

N (1− α/2)√
N

 J∑
j=0

(2mj + 1)2

−1/2

, (B.29)

where J denotes the last iteration performed. The full recipe for the
algorithm is described in Algs. 1 and 2.
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In the case of a linear selection of mj , i. e. mj = j; j = (0, 1, 2, ..., J),
the asymptotic behavior of this uncertainty is ∆θ = O(N−1/2M−3/4),
with M the sum of all m. For discovering it we just have to compute

J∑
j=0

(j + 1)2 = 4

J∑
j=0

j2 + 4

J∑
j=0

j +

J∑
j=0

1. (B.30)

We now take the identities
∑J

j=0 j = J(J + 1)/2 = M and
∑J

j=0 j
2 =

J(2J + 1)(J + 2)/6. Then, it is direct to check that

∆θ = O(N−1/2J−3/2) = O(N−1/2M−3/4). (B.31)

This behavior already surpasses the tendency of the classical sampling,
but does not reach the optimal QAE with QPE.
In the case of an exponential selection of mj , i. e. mj = {0}∪{2j}; j =

(0, 1, 2, ..., J) we can take the identities
∑J

j=0 2j = 2J − 1 = M and∑J
j=0 22j = (22J − 1)/3. Then it is direct to check that

∆θ = O(N−1/22−J) = O(N−1/2M−1). (B.32)

Extension of QAE to error-mitigation techniques
The error-mitigation procedure proposed for the unary algorithm

discards some of the algorithm instances to retain outcomes within
the unary basis. This reduces the precision achieved in the algorithm
with respect to the ones predicted in Eqs. (B.31) and (B.32) in order to
maintain accuracy. This section provides some lower bounds on how many
QAE iterations can be done while still reaching quantum advantage.
We will work now in the scheme where mj = j. Let us assume that, in

every iteration of QAE, only a fraction p̃j of the shots are retained. The
equivalent version of Eq. (B.29) is now

∆θ = CDF−1
N (1− α/2)

 J∑
j=0

(2mj + 1)2Np̃j

−1/2

. (B.33)

As more errors are bound to occur, p̃j decreases as mj increases, we
can state a bound for the accuracy as

∆θ ≤ CDF−1
N (1− α/2)√
Np̃J

 J∑
j=0

(2mj + 1)2

−1/2

, (B.34)

since the precision is at least as good as the one obtained for the worst-case
scenario. Comparing the trends, both in the linear and the exponential
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case, with the classical scaling, it is possible to see that quantum advantage
is still achieved provided

p̃J ≥M1−2α, (B.35)

with α = 3/4 in the linear case and α = 1 in the exponential case. These
quantities for the linear case correspond to the dashed lines in Figs. 4.13
and 4.15(b).
The probability of retaining a shot is at least the probability of having

no errors in the circuit, considering that some double errors may lead to
erroneous instances that belong even though to the unary basis. This
zero-error probability in the worst case scenario, that is, at the last
iteration of QAE, is written as

p0 =
(

(1− pe)an+b
)mJ

, (B.36)

where pe is the error of an individual gate, and a and b are related to the
gate scaling, see Tab. 4.1 for the details. In principle, one can expand the
calculation of p0 by considering different kinds of errors for different gates,
but for the sake of simplicity we will focus on this analysis. Rearranging
together the results for Eqs. (B.31), (B.32) and (B.35) it is possible to
see that quantum advantage is obtained if the individual gate errors is
bounded by

pe < 1−m
2−4α

(an+b)mJ
J . (B.37)





C. Qibo

Qibo is an open-source software project to write and execute both
quantum circuits and adiabatic quantum computing in a user-friendly
manner [Eft+20a; Eft+20b]. In the global perspective, Qibo comes as
a python library to join other such as qiskit [Ale+19a], cirq [Cir21],
Forest [SCZ16], Qulacs [Suz+20a] or QCGPU [Kel18] among many others
[Be18; Be20; BG16; Ce18; De07; De19; Fe18; JB20; Jon+19; Luo+19;
Mey+20; Mic21; Mou+20; MS20; Pe17; SHT18; Ve19; We20; ZW17;
ZYL15]. The effort of the Qibo project is coordinated by TII1 and
Qilimanjaro2. The current status of Qibo is that quantum algorithms
can only be exactly simulated on classical hardware, but future plans
forsee to extend the calculations on approximate classical methods such
as the family of TNs [BB17], and on actual quantum devices.

The structure of Qibo is designed to be easy to use but extremely
efficient to perform calculations. The final target is to make the catalogue
of functionalities and the available applications increase with time. The
high-level API receives the instructions from the user and allocates
automatically all different ingredients through the code to be finally
executed on a specific and optimized backend. The API can receive both
simple instructions, such as gates and circuits, but also more ellaborated
models, for example a VQE. In this chapter a shallow review on the
capabilities of Qibo is covered.

1Quantum Research Center, Technology Innovation Institute, Abu Dhabi, United
Arab Emirates

2Qilimanjaro Quantum Tech, Barcelona, Spain

https://tii.ae/
https://tii.ae/
http://www.qilimanjaro.tech/
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C.1 Circuits

Quantum circuits are the main paradigm for implementing a quantum
computing in Qibo. The circuits in Qibo are an abstract object capable
to implement different tools normally used in theoretical descriptions.

Initialization

The circuit object is initialized by defining the number of qubits.
Automatically, a quantum state object |ψ〉 with exactly 2n complex
coefficients is generated. Qibo also permits the use of a density matrix
ρ, initially defined as ρ = |ψ〉 〈ψ|, with 4n complex coefficients. Density
matrices imply more costly calculations both in time and in storage
memory since there are more numbers to manage. However, the use of
density matrices allow represent mixed states, including those affected
by noise.

Gates

Quantum operations are added to the circuit subsequently to modify
the state. The available operations are of three kinds

• Gates: Standard unitary gates U are mainly used in Qibo. These
operations modify the quantum state as Uψ, and the density
matrix as UρU †. Gates can be defined to affect one or two qubits.
Qibo allows to implement on any qubit any gate controlled by an
arbitrary set of qubits. In case any gate is parameterized, the circuit
incorporates a list of parameters that can be updated in subsequent
executions.

• Channels: Quantum channels are the standard tool to introduce
decoherence in a quantum circuit. Channels are defined as a
set of unitary gates to be applied on a density matrix ρ with
different probabilities. As an additional feature, the quantum state
representing the circuit is transformed automatically into a density
matrix to accomodate the quantum channel.

• Measurements: the measuring step is the only chance to retrieve
information from the quantum circuits. In Qibo, measurements can
be allocated at the end of the circuit to finish the computation,
but also on any intermediate step. In the latter case, the circuit is
modified accordingly to capture all the outcomes possibilities.

Hamiltonians

Hamiltonians serve the purpose of measuring quantities of interest in
the quantum circuit. Qibo allows to define a hamiltonian as a full matrix
by setting all components, and also from a symbolic description. In
the case of quantum circuits, hamiltonians can be used to measured the
expected value of quantum state, and also to compare it with the ground
state. Qibo supports corresponding tools to manage those calculations.
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Callbacks
It is often of interest to study the change of different quantities along

the execution of a given circuit. To carry this task, Qibo implements the
callbacks functionality allowing to extract those quantities when possible
at any point of the circuit. Interesting and commonly used callbacks
are expected values with respect to some hamiltonian, but entanglement
entropy, overlap with respect to a target state or norm of the quantum
state are also included.
Callbacks can only be used in simulation backends since any measurement

on an actual device would destroy the computation. This is however a
useful tool to develop proof-of-concept models to scale later.

Models
Different circuit models play the role of pre-defined architectures with

specific functionalities for solving particular problems. The prominent
examples of VQE [Per+14] and QAOA [FGG14] are included, but also
less known examples as the qPDF [Pér+21a].

Optimization
Many models defined on quantum circuits depend on VQAs where

some optimization method is required. Built-in classical optimizers
are available in Qibo to be used in all methods. The optimizers are
both gradient-descent [KB17; Nie15], quasi-newton [Byr+95; Vir+20], or
genetic [Han06] algorithms.
For simulation backends there is an available option to parallelize

the different pieces of optimization across different computation cores,
improving the overall performance of the process.

C.2 Adiabatic computing
The adiabatic computing section of Qibo performs all necessary calculations

to gradually modify a quantum state according to an adiabatic scheme
[Far+00]. In adiabatic computing, the ground state of a known hamiltonian
is taken as the starting line. Then, a time-dependent hamiltonian
is triggered in such a way that the starting one is slowly modified
into another problem hamiltonian. The ground state of the problem
hamiltonian encodes the desired solution to a given problem. Then,
the quantum state evolves according to the time-dependent Schrödinger
equation. If the time evolution is slow enough, the overlap between the
final evolved state and the ground state of the problem hamiltonian is
close to 1.

Hamiltonian
Hamiltonians drive the time evolution in adiabatic quantum computing.

Qibo uses a Trotter implementation [Pae+19] of the hamiltonians of
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interest to execute them more efficiently than if all information is conserved
along the different steps.

Solver
Numerically solving the Schrödinger equation is far from being trivial.

Qibo incorporates different solvers to perform the evolution in several
manners. Those solvers include the exponential and trotterized exponential
evolution, and Runge-Kutta methods.

C.3 Backends

Backends are the main strength of Qibo when competing against other
similar libraries. The organization behind Qibo plans to add quantum
machines and approximate simulation methods to the available backends.
However, at the time of writing this thesis, Qibo can only be executed
on exact classical simulators.

C.3.1 Classical Simulation - Hardware acceleration
Qibo was in origin designed to be easily used and to perform efficient

computation. The most prominent feature for accomplishing this task is
the capability of Qibo to adapt its management of computation to the
environment. Depending essentially on the size of the quantum circuit
to be simulated, the execution can be performed on several hardware
simulations:

• Single-thread CPU: Central Processing Units (CPU) are the main
component of a classical computer. They are used as general-
purpose machines. For Qibo, this mode means that all calculation
are passed to only one CPU core. It is convenient to use this mode
for small circuits, up to 15 qubits, since the memory storage does
not need to be extremely large, and the overhead of using other
methods do not compensate the gain.

• Single-thread GPU: Graphical Processing Units (GPU) were developed
for ML for their capability to perform linear algebra operations.
This feature is now useful for simulating quantum circuits efficiently.
In this mode, the CPU passes the data to GPU to perform the
calculation. This translates into an overhead in the computation.
Only for moderately large circuits this overhead is compensated by
the more efficient calculation of a GPU. The ideal range is between
15 and 30 qubits. Over that size, current GPUs do not have enough
memory to execute the calculation.

• Multi-thread CPU: this method is essentially useful for executing
quantum circuits whose storage requirements exceed the capabilities
of one CPU. The recommended range is for more than 15 qubits.
The performance does not in general overcome a GPU.
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• Multi-thread GPU: this is the most special mode, and exclusive of
Qibo. Computational efforts are distributed accross many GPUs
with a significant overhead. This method is only efficient for
simulating large circuits, over 30 qubits.

QIBOJIT backend
Just-In-Time (JIT) compilation is a computational framework that

optimizes the execution of a given algorithm in subsequent runs of it. In
the case of Qibo, the JIT compilation is assisted by cupy [Oku+17] and
numba [LPS15]
For using the JIT backend, custom operators optimized for this functioning

scheme were developed and implemented in Qibo

QIBOTF backend
The first release of Qibo was built on Tensorflow [Mar+15]. The

QIBOTF backend supports custom operations to be implemented using
the general Tensorflow framework.
This backend support hardware management as inherited from Tensorflow.

Some operations are implemented faster than in the original code, but in
exchange some features, specially for automatic differentiation, were lost
in the process.

TENSORFLOW and NUMPY backends
In both cases, the calculations are performed using the einsum method

of the corresponding Tensorflow or Numpy package [Har+20]. All function-
alities are taken from the parent libraries.

C.4 Examples

Qibo looks forward to creating a community of users contributing to the
development of the open-source project. As a starting line of extended
collaboration, several examples were developed by the creators of Qibo

• Examples inspired in the data re-uploading strategy explored in
Ch. 3 [Pér+20a; Pér+21a].

• Examples on the unary strategy from Ch. 4 [Ram+21]
• Measuring the tangle of a three-qubit state [Pér+20b].
• The performance of a VQE when solving a condensed matter

problem as in Ref. [Bra+20a]
• Examples of Grover’s algorithm [Gro96] for a 3SAT problem [GJ90]

and cryptographic applications [Ber+08].
• A quantum autoencoder [Bra21]
• The Quantum Singular Value Decomposer [BGL20]
• Adiabatic evolutions for a exact Cover problem [GJ90]
• Shor’s factorization algorithm [Sho97] and a version requiring less

qubits [Bea03]
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The list of available examples is expected to grow in the short term.



D. Bibliography

El Universo (que otros llaman la Biblioteca) se
compone de un número indefinido, tal vez infinito,
de...

Jorge Luis Borges

Books
[AB09] S. Arora and B. Barak. Computational complexity: a modern

approach. Cambridge University Press, 2009. isbn: 978-
0521424264.

[Ash72] R. B. Ash. Real Analysis and Probability. Elsevier, 1972.
isbn: 978-0120652013. doi: 10.1016/c2013-0-06164-6.

[DHS12] R. Duda, P. Hart, and D. Stork. Pattern Classification.
Wiley, 2012. isbn: 978-1118586006.

[DS19] K. Du and M. Swamy. Neural Networks and Statistical
Learning. Springer London, 2019. isbn: 978-1447174523.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. USA: W. H.
Freeman & Co., 1990. isbn: 978-0716710455. doi: 10.5555/
574848.

https://doi.org/10.1016/c2013-0-06164-6
http://www.deeplearningbook.org
https://doi.org/10.5555/574848
https://doi.org/10.5555/574848


170 Chapter D. Bibliography

[Got97] D. Gottesman. Stabilizer codes and quantum error correction.
California Institute of Technology, 1997. arXiv: quant-
ph/9705052.

[Hel76] C. W. Helstrom. Quantum detection and estimation theory
/ Carl W. Helstrom. English. Academic Press New York,
1976. isbn: 978-0123400503.

[HM85] F. Halzen and A. D. Martin.Quark & Leptons: An Introductory
Course In Modern Particle Physics. John Wiley & Sons,
1985. isbn: 978-0471887416.

[Hof92] N. Hoffmann. Simulation Neuronaler Netze. Vieweg+Teubner
Verlag, 1992. isbn: 978-3322832009. doi: 10.1007/978-3-
322-83200-9.

[Jai17] P. Jain. Non-convex optimization for machine learning.
Hanover, Massachusetts: Now Publishers, 2017. isbn: 978-
1680833683.

[MCM13] R. Michalski, J. Carbonell, and T. Mitchell.Machine Learning:
An Artificial Intelligence Approach. Symbolic Computation.
Springer Berlin Heidelberg, 2013. isbn: 978-3662124055.

[Mit+97] T. M. Mitchell et al. Machine learning. McGraw Hill, 1997.
isbn: 978-0070428077.

[NC10] M. A. Nielsen and I. L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge
University Press, 2010. isbn: 978-1107002173. doi: 10 .
1017/CBO9780511976667.

[Nie15] M. A. Nielsen. Neural networks and deep learning. Vol. 25.
Determination press USA, 2015.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer
New York, 2006. doi: 10.1007/978-0-387-40065-5.

[Par17] P. M. Pardalos. Non-convex multi-objective optimization.
Cham: Springer International Publishing Imprint Springer,
2017. isbn: 978-3319610054.

[Pre+86] W. H. Press et al. Numerical Recipes: The Art of Scientific
Computing. USA: Cambridge University Press, 1986. isbn:
978-0521308119. doi: 10.5555/6771.

[Rus10] S. Russell. Artificial intelligence: a modern approach. Upper
Saddle River, New Jersey: Prentice Hall, 2010. isbn: 978-
0136042594.

[Spa05] J. C. Spall. Introduction to stochastic search and optimization:
estimation, simulation, and control. Vol. 65. John Wiley &
Sons, 2005.

https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1007/978-3-322-83200-9
https://doi.org/10.1007/978-3-322-83200-9
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.5555/6771


171

[Sut13] I. Sutskever. Training recurrent neural networks. University
of Toronto, Canada, 2013. isbn: 978-0499220660. doi: 10.
5555/2604780.

[Wei74] A. J. Weir. General integration and measure. Vol. 2. CUP
Archive, 1974. isbn: 978-0521297158.

Articles
[Aad+15] G. Aad et al. Measurement of the inclusive jet cross-section

in proton-proton collisions at s =
√

7 TeV using 4.5 fb−1

of data with the ATLAS detector. Journal of High Energy
Physics 2015.2 (Feb. 2015). doi: 10.1007/jhep02(2015)
153.

[Aai+12] R. Aaij et al. Inclusive W and Z production in the forward
region at

√
7TeV. Journal of High Energy Physics 2012.6

(June 2012). doi: 10.1007/jhep06(2012)058.

[AB08] D. Aharonov and M. Ben-Or. Fault-Tolerant Quantum
Computation with Constant Error Rate. SIAM Journal on
Computing 38.4 (Jan. 2008). doi: 10.1137/s0097539799359385.

[AHS85a] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A Learning
Algorithm for Boltzmann Machines. Cognitive Science 9.1
(Jan. 1985). doi: 10.1207/s15516709cog0901_7.

[AHS85b] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A Learning
Algorithm for Boltzmann Machiness. Cognitive Science 9.1
(Jan. 1985). doi: 10.1207/s15516709cog0901_7.

[Ale+19b] A. Alexandru et al. Gluon field digitization for quantum
computers. Physical Review D 100.11 (Dec. 2019). doi:
10.1103/physrevd.100.114501.

[Alw+14] J. Alwall et al. The automated computation of tree-level
and next-to-leading order differential cross sections, and
their matching to parton shower simulations. Journal of
High Energy Physics 2014.7 (July 2014). doi: 10.1007/
jhep07(2014)079.

[Ama98] S.-i. Amari. Natural Gradient Works Efficiently in Learning.
Neural Computation 10.2 (Feb. 1998). doi: 10 . 1162 /
089976698300017746.

[AR20] S. Aaronson and P. Rall. Quantum Approximate Counting,
Simplified. Symposium on Simplicity in Algorithms. Society
for Industrial and Applied Mathematics, (Jan. 2020), pp. 24–
32. doi: 10.1137/1.9781611976014.5.

https://doi.org/10.5555/2604780
https://doi.org/10.5555/2604780
https://doi.org/10.1007/jhep02(2015)153
https://doi.org/10.1007/jhep02(2015)153
https://doi.org/10.1007/jhep06(2012)058
https://doi.org/10.1137/s0097539799359385
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1207/s15516709cog0901_7
https://doi.org/10.1103/physrevd.100.114501
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1137/1.9781611976014.5


172 Chapter D. Bibliography

[Aru+19] F. Arute et al. Quantum supremacy using a programmable
superconducting processor. Nature 574.7779 (Oct. 2019).
doi: 10.1038/s41586-019-1666-5.

[AS03] M. Atiyah and P. Sutcliffe. Polyhedra in Physics, Chemistry
and Geometry. Milan Journal of Mathematics 71.1 (Sept.
2003). doi: 10.1007/s00032-003-0014-1.

[Bab+18] R. Babbush et al. Encoding Electronic Spectra in Quantum
Circuits with Linear T Complexity. Physical Review X 8.4
(Oct. 2018). doi: 10.1103/physrevx.8.041015.

[Bal+09] R. D. Ball et al. A determination of parton distributions with
faithful uncertainty estimation. Nuclear Physics B 809.1-2
(Mar. 2009). doi: 10.1016/j.nuclphysb.2008.09.037.

[Bal+10] R. D. Ball et al. A first unbiased global NLO determination
of parton distributions and their uncertainties. Nuclear
Physics B 838.1-2 (Oct. 2010). doi: 10.1016/j.nuclphysb.
2010.05.008.

[Bal+15] R. D. Ball et al. Parton distributions for the LHC run II.
Journal of High Energy Physics 2015.4 (Apr. 2015). doi:
10.1007/jhep04(2015)040.

[Bal+17] R. D. Ball et al. Parton distributions from high-precision
collider data. The European Physical Journal C 77.10 (Oct.
2017). doi: 10.1140/epjc/s10052-017-5199-5.

[Ban29] S. Banach. Sur les fonctionnelles linéaires II. Studia Mathematica
1 (1929).

[Bar+18] P. K. Barkoutsos et al. Quantum algorithms for electronic
structure calculations: Particle-hole Hamiltonian and optimized
wave-function expansions. Physical Review A 98.2 (Aug.
2018). doi: 10.1103/physreva.98.022322.

[Bar+95] A. Barenco et al. Elementary gates for quantum computation.
Physical Review A 52.5 (Nov. 1995). doi: 10.1103/physreva.
52.3457.

[BCH17] V. Bertone, S. Carrazza, and N. P. Hartland. APFELgrid:
a high performance tool for parton density determinations.
Comput. Phys. Commun. 212 (2017). doi: 10.1016/j.cpc.
2016.10.006.

[Bea03] S. Beauregard. Circuit for Shor’s Algorithm Using 2n+3
Qubits. Quantum Info. Comput. 3.2 (Mar. 2003). doi: 10.
5555/2011517.2011525.

[Ben+02] A. Ben-Hur et al. Support Vector Clustering. The Journal of
Machine Learning Research 2 (Mar. 2002). doi: 10.5555/
944790.944807.

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1007/s00032-003-0014-1
https://doi.org/10.1103/physrevx.8.041015
https://doi.org/10.1016/j.nuclphysb.2008.09.037
https://doi.org/10.1016/j.nuclphysb.2010.05.008
https://doi.org/10.1016/j.nuclphysb.2010.05.008
https://doi.org/10.1007/jhep04(2015)040
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1103/physreva.98.022322
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1016/j.cpc.2016.10.006
https://doi.org/10.1016/j.cpc.2016.10.006
https://doi.org/10.5555/2011517.2011525
https://doi.org/10.5555/2011517.2011525
https://doi.org/10.5555/944790.944807
https://doi.org/10.5555/944790.944807


173

[Ben+92] C. H. Bennett et al. Experimental quantum cryptography.
Journal of Cryptology 5.1 (Jan. 1992). doi: 10 . 1007 /
bf00191318.

[Ben18] P. Bentley. The end of Moore’s Law: what happens next?
BBC Focus (May 2018).

[Bep+21] K. Bepari et al. Towards a quantum computing algorithm
for helicity amplitudes and parton showers. Physical Review
D 103.7 (Apr. 2021). doi: 10.1103/physrevd.103.076020.

[Ber+08] D. J. Bernstein et al. ChaCha, a variant of Salsa20. Workshop
record of SASC. Vol. 8. (2008), pp. 3–5.

[BG16] S. Bravyi and D. Gosset. Improved Classical Simulation of
Quantum Circuits Dominated by Clifford Gates. Physical
Review Letters 116 (June 2016). doi: 10.1103/PhysRevLett.
116.250501.

[BGL20] C. Bravo-Prieto, D. García-Martín, and J. I. Latorre.Quantum
singular value decomposer. Physical Review A 101.6 (June
2020). doi: 10.1103/physreva.101.062310.

[Bia+10] R. C. Bialczak et al. Quantum process tomography of a
universal entangling gate implemented with Josephson phase
qubits. Nature Physics 6.6 (Apr. 2010). doi: 10.1038/
nphys1639.

[Bra+02] G. Brassard et al. Quantum amplitude amplification and
estimation (2002). doi: 10.1090/conm/305/05215.

[Bra+20a] C. Bravo-Prieto et al. Scaling of variational quantum circuit
depth for condensed matter systems. Quantum 4 (May 2020).
doi: 10.22331/q-2020-05-28-272.

[Bra21] C. Bravo-Prieto. Quantum autoencoders with enhanced data
encoding. Machine Learning: Science and Technology 2.3
(July 2021). doi: 10.1088/2632-2153/ac0616.

[Bro+11] K. R. Brown et al. Single-qubit-gate error below 10−4 in
a trapped ion. Physical Review A 84.3 (Sept. 2011). doi:
10.1103/physreva.84.030303.

[BS73] F. Black and M. Scholes. The Pricing of Options and
Corporate Liabilities. Journal of Political Economy 81.3
(May 1973). doi: 10.1086/260062.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory.
SIAM Journal on computing 26.5 (1997).

[Byr+95] R. H. Byrd et al. A Limited Memory Algorithm for Bound
Constrained Optimization. SIAM Journal on Scientific Computing
16.5 (Sept. 1995). doi: 10.1137/0916069.

https://doi.org/10.1007/bf00191318
https://doi.org/10.1007/bf00191318
https://doi.org/10.1103/physrevd.103.076020
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/physreva.101.062310
https://doi.org/10.1038/nphys1639
https://doi.org/10.1038/nphys1639
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.22331/q-2020-05-28-272
https://doi.org/10.1088/2632-2153/ac0616
https://doi.org/10.1103/physreva.84.030303
https://doi.org/10.1086/260062
https://doi.org/10.1137/0916069


174 Chapter D. Bibliography

[Cár+18] F. A. Cárdenas-López et al.Multiqubit and multilevel quantum
reinforcement learning with quantum technologies. PLOS
ONE 13.7 (July 2018). doi: 10 . 1371 / journal . pone .
0200455.

[Car+19] G. Carleo et al. Machine learning and the physical sciences.
Reviews of Modern Physics 91.4 (Dec. 2019). doi: 10.1103/
revmodphys.91.045002.

[Car+20] S. Carrazza et al. PineAPPL: combining EW and QCD
corrections for fast evaluation of LHC processes. Journal of
High Energy Physics 2020.12 (Dec. 2020). doi: 10.1007/
jhep12(2020)108.

[Car66] L. Carleson. On convergence and growth of partial sums
of Fourier series. Acta Math. 116 (1966). doi: 10.1007/
BF02392815.

[CC19] S. Carrazza and J. Cruz-Martinez. Towards a new generation
of parton densities with deep learning models. The European
Physical Journal C 79.8 (Aug. 2019). doi: 10.1140/epjc/
s10052-019-7197-2.

[CCL19] I. Cong, S. Choi, and M. D. Lukin. Quantum convolutional
neural networks. Nature Physics 15.12 (Aug. 2019). doi:
10.1038/s41567-019-0648-8.

[Ce18] Z.-Y. Chen and et al. 64-qubit quantum circuit simulation.
Science Bulletin 63.15 (Aug. 2018). doi: 10.1016/j.scib.
2018.06.007.

[CEB20] J. Cook, S. Eidenbenz, and A. Bartschi. The Quantum
Alternating Operator Ansatz on Maximum k-Vertex Cover.
2020 IEEE International Conference on Quantum Computing
and Engineering (QCE). IEEE, (Oct. 2020). doi: 10.1109/
qce49297.2020.00021.

[Cer+21a] M. Cerezo et al. Sub-quantum Fisher information. Quantum
Science and Technology 6.3 (June 2021). doi: 10.1088/
2058-9565/abfbef.

[Cer+21b] M. Cerezo et al. Cost function dependent barren plateaus in
shallow parametrized quantum circuits. Nature Communications
12.1 (Mar. 2021). doi: 10.1038/s41467-021-21728-w.

[Cer18] A. Cervera-Lierta. Exact Ising model simulation on a quantum
computer. Quantum 2 (Dec. 2018). doi: 10.22331/q-2018-
12-21-114.

[CFH20] A. Candido, S. Forte, and F. Hekhorn. Can MS parton
distributions be negative? Journal of High Energy Physics
2020.11 (Nov. 2020). doi: 10.1007/jhep11(2020)129.

https://doi.org/10.1371/journal.pone.0200455
https://doi.org/10.1371/journal.pone.0200455
https://doi.org/10.1103/revmodphys.91.045002
https://doi.org/10.1103/revmodphys.91.045002
https://doi.org/10.1007/jhep12(2020)108
https://doi.org/10.1007/jhep12(2020)108
https://doi.org/10.1007/BF02392815
https://doi.org/10.1007/BF02392815
https://doi.org/10.1140/epjc/s10052-019-7197-2
https://doi.org/10.1140/epjc/s10052-019-7197-2
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1016/j.scib.2018.06.007
https://doi.org/10.1109/qce49297.2020.00021
https://doi.org/10.1109/qce49297.2020.00021
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1007/jhep11(2020)129


175

[Che+20] S. Y.-C. Chen et al. Variational Quantum Circuits for
Deep Reinforcement Learning. IEEE Access 8 (2020). doi:
10.1109/access.2020.3010470.

[CHH02] M. Campbell, A. Hoane, and F.-h. Hsu. Deep Blue. Artificial
Intelligence 134.1-2 (Jan. 2002). doi: 10.1016/s0004-
3702(01)00129-1.

[Cho+10] J. M. Chow et al. Optimized driving of superconducting
artificial atoms for improved single-qubit gates. Phys. Rev.
A 82 (Oct. 2010). doi: 10.1103/PhysRevA.82.040305.

[CN19] J. Campbell and T. Neumann. Precision phenomenology
with MCFM. Journal of High Energy Physics 2019.12 (Dec.
2019). doi: 10.1007/jhep12(2019)034.

[Cor+98] D. G. Cory et al. Experimental Quantum Error Correction.
Physical Review Letters 81.10 (Sept. 1998). doi: 10.1103/
physrevlett.81.2152.

[Coy+20] B. Coyle et al. The Born supremacy: quantum advantage
and training of an Ising Born machine. npj Quantum
Information 6.1 (July 2020). doi: 10.1038/s41534-020-
00288-9.

[CV95] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning 20.3 (Sept. 1995). doi: 10.1007/bf00994018.

[CWZ21] S. Cheng, L. Wang, and P. Zhang. Supervised learning with
projected entangled pair states. Physical Review B 103.12
(Mar. 2021). doi: 10.1103/physrevb.103.125117.

[Cyb89] G. Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals, and Systems 2.4
(Dec. 1989). doi: 10.1007/bf02551274.

[De07] K. De Raedt and et al. Massively parallel quantum computer
simulator. Computer Physics Communications 176.2 (2007).
doi: 10.1016/j.cpc.2006.08.007.

[De19] J. Doi and et al. Quantum Computing Simulator on a
Heterogenous HPC System. Proceedings of the 16th ACM
International Conference on Computing Frontiers. CF ’19.
Alghero, Italy: Association for Computing Machinery, (2019),
pp. 85–93. isbn: 9781450366854. doi: 10.1145/3310273.
3323053.

[Deh57] H. G. Dehmelt. Slow Spin Relaxation of Optically Polarized
Sodium Atoms. Physical Review 105.5 (Mar. 1957). doi:
10.1103/physrev.105.1487.

https://doi.org/10.1109/access.2020.3010470
https://doi.org/10.1016/s0004-3702(01)00129-1
https://doi.org/10.1016/s0004-3702(01)00129-1
https://doi.org/10.1103/PhysRevA.82.040305
https://doi.org/10.1007/jhep12(2019)034
https://doi.org/10.1103/physrevlett.81.2152
https://doi.org/10.1103/physrevlett.81.2152
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1038/s41534-020-00288-9
https://doi.org/10.1007/bf00994018
https://doi.org/10.1103/physrevb.103.125117
https://doi.org/10.1007/bf02551274
https://doi.org/10.1016/j.cpc.2006.08.007
https://doi.org/10.1145/3310273.3323053
https://doi.org/10.1145/3310273.3323053
https://doi.org/10.1103/physrev.105.1487


176 Chapter D. Bibliography

[Den12] L. Deng. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine 29.6 (2012).

[Deu85] D. Deutsch. Quantum theory, the Church–Turing principle
and the universal quantum computer. Proceedings of the
Royal Society of London. A. Mathematical and Physical
Sciences 400.1818 (1985).

[Dir29] P. G. L. Dirichlet. Sur la convergence des séries trigonométriques
qui servent à représenter une fonction arbitraire entre des
limites données. Journal für die reine und angewandte
Mathematik 4 (1829).

[Dix+21] V. Dixit et al. Training Restricted Boltzmann Machines
With a D-Wave Quantum Annealer. Frontiers in Physics 9
(June 2021). doi: 10.3389/fphy.2021.589626.

[DK18] P.-L. Dallaire-Demers and N. Killoran. Quantum generative
adversarial networks. Physical Review A 98.1 (July 2018).
doi: 10.1103/physreva.98.012324.

[DM20] T. Dutta and M. Mukherjee. A single atom noise probe
operating beyond the Heisenberg limit. npj Quantum Information
6.1 (Jan. 2020). doi: 10.1038/s41534-019-0234-z.

[DN06] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev
Algorithm. Quantum Info. Comput. 6.1 (Jan. 2006). doi:
10.5555/2011679.2011685.

[Don+08] D. Dong et al. Quantum Reinforcement Learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 38.5 (Oct. 2008). doi: 10.1109/tsmcb.2008.
925743.

[DPS03] G. M. D’Ariano, M. G. Paris, and M. F. Sacchi. Quantum
Tomography. Advances in Imaging and Electron Physics.
Elsevier, (2003), pp. 205–308. doi: 10.1016/s1076-5670(03)
80065-4.

[DTB16] V. Dunjko, J. M. Taylor, and H. J. Briegel. Quantum-
Enhanced Machine Learning. Physical Review Letters 117.13
(Sept. 2016). doi: 10.1103/physrevlett.117.130501.

[DTB17] V. Dunjko, J. M. Taylor, and H. J. Briegel. Advances in
quantum reinforcement learning. 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC).
IEEE, (Oct. 2017). doi: 10.1109/smc.2017.8122616.

[Du+20] Y. Du et al. Expressive power of parametrized quantum
circuits. Physical Review Research 2.3 (July 2020). doi:
10.1103/physrevresearch.2.033125.

https://doi.org/10.3389/fphy.2021.589626
https://doi.org/10.1103/physreva.98.012324
https://doi.org/10.1038/s41534-019-0234-z
https://doi.org/10.5555/2011679.2011685
https://doi.org/10.1109/tsmcb.2008.925743
https://doi.org/10.1109/tsmcb.2008.925743
https://doi.org/10.1016/s1076-5670(03)80065-4
https://doi.org/10.1016/s1076-5670(03)80065-4
https://doi.org/10.1103/physrevlett.117.130501
https://doi.org/10.1109/smc.2017.8122616
https://doi.org/10.1103/physrevresearch.2.033125


177

[DVC00] W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be
entangled in two inequivalent ways. Physical Review A 62.6
(Nov. 2000). doi: 10.1103/physreva.62.062314.

[Eas+21] P. Easom-Mccaldin et al.On Depth, Robustness and Performance
Using the Data Re-Uploading Single-Qubit Classifier. IEEE
Access 9 (2021). doi: 10.1109/access.2021.3075492.

[EBL18] S. Endo, S. C. Benjamin, and Y. Li. Practical Quantum
Error Mitigation for Near-Future Applications. Physical
Review X 8.3 (July 2018). doi: 10.1103/physrevx.8.
031027.

[Eic68] M. Eichler. A new proof of the Baker-Campbell-Hausdorff
formula. Journal of the Mathematical Society of Japan
20.1-2 (Apr. 1968). doi: 10.2969/jmsj/02010023.

[Est02] V. Estivill-Castro. Why so many clustering algorithms.
ACM SIGKDD Explorations Newsletter 4.1 (June 2002).
doi: 10.1145/568574.568575.

[Fe18] E. S. Fried and et al. qTorch: The quantum tensor contraction
handler. PLOS ONE 13.12 (Dec. 2018). Ed. by I. Hen. doi:
10.1371/journal.pone.0208510.

[Fey82] R. P. Feynman. Simulating physics with computers. International
Journal of Theoretical Physics 21.6-7 (June 1982). doi:
10.1007/bf02650179.

[Fey88] R. P. Feynman. The Behavior of Hadron Collisions at
Extreme Energies. Special Relativity and Quantum Theory.
Springer Netherlands, (1988), pp. 289–304. doi: 10.1007/
978-94-009-3051-3_25.

[FG20] L. Franken and B. Georgiev. Explorations in Quantum
Neural Networks with Intermediate Measurements. ESANN.
(2020), pp. 297–302.

[Fis22] R. Fisher. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical
or Physical Character 222.594-604 (Jan. 1922). doi: 10.
1098/rsta.1922.0009.

[FMM+17] C. Figgatt, D. Maslov, C. Monroe, et al. Complete 3-
Qubit Grover search on a programmable quantum computer.
Nature Communications 8.1 (Dec. 2017). doi: 10.1038/
s41467-017-01904-7.

https://doi.org/10.1103/physreva.62.062314
https://doi.org/10.1109/access.2021.3075492
https://doi.org/10.1103/physrevx.8.031027
https://doi.org/10.1103/physrevx.8.031027
https://doi.org/10.2969/jmsj/02010023
https://doi.org/10.1145/568574.568575
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1007/bf02650179
https://doi.org/10.1007/978-94-009-3051-3_25
https://doi.org/10.1007/978-94-009-3051-3_25
https://doi.org/10.1098/rsta.1922.0009
https://doi.org/10.1098/rsta.1922.0009
https://doi.org/10.1038/s41467-017-01904-7
https://doi.org/10.1038/s41467-017-01904-7


178 Chapter D. Bibliography

[Gar+20] B. T. Gard et al. Efficient symmetry-preserving state preparation
circuits for the variational quantum eigensolver algorithm.
npj Quantum Information 6.1 (Jan. 2020). doi: 10.1038/
s41534-019-0240-1.

[Gee+13] K. Geerlings et al. Demonstrating a Driven Reset Protocol
for a Superconducting Qubit. Phys. Rev. Lett. 110 (Mar.
2013). doi: 10.1103/PhysRevLett.110.120501.

[GLM08] V. Giovannetti, S. Lloyd, and L. Maccone.Quantum Random
Access Memory. Physical Review Letters 100.16 (Apr. 2008).
doi: 10.1103/physrevlett.100.160501.

[Gra+09] A. Graves et al. A Novel Connectionist System for Unconstrained
Handwriting Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31.5 (May 2009). doi:
10.1109/tpami.2008.137.

[Gri+21] D. Grinko et al. Iterative quantum amplitude estimation.
npj Quantum Information 7.1 (Mar. 2021). doi: 10.1038/
s41534-021-00379-1.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for
database search. Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing - STOC ’96.
ACM Press, (1996). doi: 10.1145/237814.237866.

[GT07] N. Gisin and R. Thew. Quantum communication. Nature
Photonics 1.3 (Mar. 2007). doi: 10.1038/nphoton.2007.
22.

[GTN21] T. Goto, Q. H. Tran, and K. Nakajima. Universal Approximation
Property of Quantum Machine Learning Models in Quantum-
Enhanced Feature Spaces. Physical Review Letters 127.9
(Aug. 2021). doi: 10.1103/physrevlett.127.090506.

[Had+19] S. Hadfield et al. From the Quantum Approximate Optimization
Algorithm to a Quantum Alternating Operator Ansatz. Algorithms
12.2 (Feb. 2019). doi: 10.3390/a12020034.

[Hah27] H. Hahn. Über lineare Gleichungssysteme in linearen Räumen.
Journal für die reine und angewandte Mathematik 157
(1927).

[Hal15] B. C. Hall. The Baker–Campbell–Hausdorff Formula and
Its Consequences. Graduate Texts in Mathematics. Springer
International Publishing, (2015), pp. 109–137. doi: 10.
1007/978-3-319-13467-3_5.

https://doi.org/10.1038/s41534-019-0240-1
https://doi.org/10.1038/s41534-019-0240-1
https://doi.org/10.1103/PhysRevLett.110.120501
https://doi.org/10.1103/physrevlett.100.160501
https://doi.org/10.1109/tpami.2008.137
https://doi.org/10.1038/s41534-021-00379-1
https://doi.org/10.1038/s41534-021-00379-1
https://doi.org/10.1145/237814.237866
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1103/physrevlett.127.090506
https://doi.org/10.3390/a12020034
https://doi.org/10.1007/978-3-319-13467-3_5
https://doi.org/10.1007/978-3-319-13467-3_5


179

[Han06] N. Hansen. The CMA Evolution Strategy: A Comparing
Review. Towards a New Evolutionary Computation. Springer
Berlin Heidelberg, (2006), pp. 75–102. doi: 10.1007/3-
540-32494-1_4.

[Har+20] C. R. Harris et al. Array programming with NumPy. Nature
585.7825 (Sept. 2020). doi: 10.1038/s41586-020-2649-2.

[Hav+19] V. Havlíček et al. Supervised learning with quantum-enhanced
feature spaces. Nature 567.7747 (Mar. 2019). doi: 10.1038/
s41586-019-0980-2.

[HD21a] P. Huembeli and A. Dauphin. Characterizing the loss landscape
of variational quantum circuits. Quantum Science and Technology
6.2 (Feb. 2021). doi: 10.1088/2058-9565/abdbc9.

[HD21b] P. Huembeli and A. Dauphin. Characterizing the loss landscape
of variational quantum circuits. Quantum Science and Technology
6.2 (Feb. 2021). doi: 10.1088/2058-9565/abdbc9.

[Heb+17] M. Hebenstreit et al. Compressed quantum computation
using a remote five-qubit quantum computer. Physical Review
A 95.5 (May 2017). doi: 10.1103/physreva.95.052339.

[Hem+18] C. Hempel et al. Quantum Chemistry Calculations on a
Trapped-Ion Quantum Simulator. Physical Review X 8.3
(July 2018). doi: 10.1103/physrevx.8.031022.

[HHL09] A. W. Harrow, A. Hassidim, and S. Lloyd.Quantum Algorithm
for Linear Systems of Equations. Physical Review Letters
103.15 (Oct. 2009). doi: 10 . 1103 / physrevlett . 103 .
150502.

[HMS05] B. Hammer, A. Micheli, and A. Sperduti. Universal Approximation
Capability of Cascade Correlation for Structures. Neural
Computation 17.5 (May 2005). doi: 10.1162/0899766053491878.

[HN21] A. W. Harrow and J. C. Napp. Low-Depth Gradient Measurements
Can Improve Convergence in Variational Hybrid Quantum-
Classical Algorithms. Physical Review Letters 126.14 (Apr.
2021). doi: 10.1103/physrevlett.126.140502.

[Hol73] A. Holevo. Bounds for the quantity of information transmitted
by a quantum communication channel. (1973), pp. 177–183.

[Hor+20] N. V. Horne et al. Single-atom energy-conversion device
with a quantum load. npj Quantum Information 6.1 (May
2020). doi: 10.1038/s41534-020-0264-6.

[Hor91] K. Hornik. Approximation capabilities of multilayer feedforward
networks. Neural Networks 4.2 (1991). doi: 10.1016/0893-
6080(91)90009-t.

https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1088/2058-9565/abdbc9
https://doi.org/10.1088/2058-9565/abdbc9
https://doi.org/10.1103/physreva.95.052339
https://doi.org/10.1103/physrevx.8.031022
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1162/0899766053491878
https://doi.org/10.1103/physrevlett.126.140502
https://doi.org/10.1038/s41534-020-0264-6
https://doi.org/10.1016/0893-6080(91)90009-t
https://doi.org/10.1016/0893-6080(91)90009-t


180 Chapter D. Bibliography

[HR96] S. Haroche and J.-M. Raimond.Quantum Computing: Dream
or Nightmare? Physics Today 49.8 (Aug. 1996). doi: 10.
1063/1.881512.

[Hua+21a] H.-Y. Huang et al. Power of data in quantum machine
learning. Nature Communications 12.1 (May 2021). doi:
10.1038/s41467-021-22539-9.

[IOL07] S. Iblisdir, R. Orús, and J. I. Latorre. Matrix product states
algorithms and continuous systems. Physical Review B 75.10
(Mar. 2007). doi: 10.1103/physrevb.75.104305.

[Itô44] K. Itô. Stochastic integral. Proceedings of the Imperial
Academy 20.8 (1944).

[JB20] T. Jones and S. Benjamin.QuESTlink—Mathematica embiggened
by a hardware-optimised quantum emulator. Quantum Science
and Technology 5.3 (May 2020). doi: 10.1088/2058-9565/
ab8506.

[Jer+21] S. Jerbi et al.Quantum Enhancements for Deep Reinforcement
Learning in Large Spaces. PRX Quantum 2.1 (Feb. 2021).
doi: 10.1103/prxquantum.2.010328.

[Jon+19] T. Jones et al. QuEST and High Performance Simulation
of Quantum Computers. Scientific Reports 9.1 (July 2019).
doi: 10.1038/s41598-019-47174-9.

[Jum+21] J. Jumper et al. Highly accurate protein structure prediction
with AlphaFold. Nature (July 2021). doi: 10.1038/s41586-
021-03819-2.

[Kan+19] M.-S. Kang et al. Implementation of SWAP test for two
unknown states in photons via cross-Kerr nonlinearities
under decoherence effect. Scientific Reports 9.1 (Apr. 2019).
doi: 10.1038/s41598-019-42662-4.

[Kha+15] V. Khachatryan et al.Measurement of the Z boson differential
cross section in transverse momentum and rapidity in proton-
proton collisions at 8 TeV. Physics Letters B 749 (Oct.
2015). doi: 10.1016/j.physletb.2015.07.065.

[Kit03] A. Kitaev. Fault-tolerant quantum computation by anyons.
Annals of Physics 303.1 (Jan. 2003). doi: 10.1016/s0003-
4916(02)00018-0.

[KL51] S. Kullback and R. A. Leibler.On Information and Sufficiency.
The Annals of Mathematical Statistics 22.1 (Mar. 1951).
doi: 10.1214/aoms/1177729694.

[KLM96] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research
4 (May 1996). doi: 10.1613/jair.301.

https://doi.org/10.1063/1.881512
https://doi.org/10.1063/1.881512
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1103/physrevb.75.104305
https://doi.org/10.1088/2058-9565/ab8506
https://doi.org/10.1088/2058-9565/ab8506
https://doi.org/10.1103/prxquantum.2.010328
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41598-019-42662-4
https://doi.org/10.1016/j.physletb.2015.07.065
https://doi.org/10.1016/s0003-4916(02)00018-0
https://doi.org/10.1016/s0003-4916(02)00018-0
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1613/jair.301


181

[Kni+08] E. Knill et al. Randomized benchmarking of quantum gates.
Physical Review A 77.1 (Jan. 2008). doi: 10.1103/physreva.
77.012307.

[Kra91] M. A. Kramer. Nonlinear principal component analysis
using autoassociative neural networks. AIChE Journal 37.2
(Feb. 1991). doi: 10.1002/aic.690370209.

[KV90] A. Kemna and A. Vorst. A pricing method for options based
on average asset values. Journal of Banking & Finance 14.1
(Mar. 1990). doi: 10.1016/0378-4266(90)90039-5.

[KW19] D. P. Kingma and M.Welling. An Introduction to Variational
Autoencoders. Foundations and Trends® in Machine Learning
12.4 (2019). doi: 10.1561/2200000056.

[Lam17] L. Lamata. Basic protocols in quantum reinforcement learning
with superconducting circuits. Scientific Reports 7.1 (May
2017). doi: 10.1038/s41598-017-01711-6.

[Lan95] R. Landauer. Is quantum mechanics useful? Philosophical
Transactions of the Royal Society of London. Series A:
Physical and Engineering Sciences 353.1703 (Dec. 1995).
doi: 10.1098/rsta.1995.0106.

[LAT21] Y. Liu, S. Arunachalam, and K. Temme. A rigorous and
robust quantum speed-up in supervised machine learning.
Nature Physics (July 2021). doi: 10.1038/s41567-021-
01287-z.

[LC17] G. H. Low and I. L. Chuang.Optimal Hamiltonian Simulation
by Quantum Signal Processing. Physical Review Letters
118.1 (Jan. 2017). doi: 10.1103/physrevlett.118.010501.

[LC19] G. H. Low and I. L. Chuang. Hamiltonian Simulation by
Qubitization. Quantum 3 (July 2019). doi: 10.22331/q-
2019-07-12-163.

[Les+93] M. Leshno et al. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any
function. Neural Networks 6.6 (Jan. 1993). doi: 10.1016/
s0893-6080(05)80131-5.

[LLa20] H. Lamm, S. Lawrence, and Y. Y. and. Parton physics on
a quantum computer. Physical Review Research 2.1 (Mar.
2020). doi: 10.1103/physrevresearch.2.013272.

[LMR14] S. Lloyd, M. Mohseni, and P. Rebentrost.Quantum principal
component analysis. Nature Physics 10.9 (July 2014). doi:
10.1038/nphys3029.

https://doi.org/10.1103/physreva.77.012307
https://doi.org/10.1103/physreva.77.012307
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1016/0378-4266(90)90039-5
https://doi.org/10.1561/2200000056
https://doi.org/10.1038/s41598-017-01711-6
https://doi.org/10.1098/rsta.1995.0106
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1103/physrevlett.118.010501
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1016/s0893-6080(05)80131-5
https://doi.org/10.1016/s0893-6080(05)80131-5
https://doi.org/10.1103/physrevresearch.2.013272
https://doi.org/10.1038/nphys3029


182 Chapter D. Bibliography

[LPS15] S. K. Lam, A. Pitrou, and S. Seibert. Numba. Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure
in HPC - LLVM ’15. ACM Press, (2015). doi: 10.1145/
2833157.2833162.

[LS20] O. Lockwood and M. Si. Reinforcement learning with quantum
variational circuit. Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment.
Vol. 16. 1. (2020), pp. 245–251.

[LS21] O. Lockwood and M. Si. Playing Atari with Hybrid Quantum-
Classical Reinforcement Learning. NeurIPS 2020 Workshop
on Pre-registration in Machine Learning. PMLR. (2021),
pp. 285–301.

[LW18a] J.-G. Liu and L. Wang. Differentiable learning of quantum
circuit Born machines. Physical Review A 98.6 (Dec. 2018).
doi: 10.1103/physreva.98.062324.

[LW18b] S. Lloyd and C. Weedbrook.Quantum Generative Adversarial
Learning. Physical Review Letters 121.4 (July 2018). doi:
10.1103/physrevlett.121.040502.

[Mar+21] A. Martin et al. Toward pricing financial derivatives with
an IBM quantum computer. Physical Review Research 3.1
(2021).

[Mas17] D. Maslov. Basic circuit compilation techniques for an ion-
trap quantum machine. New Journal of Physics 19.2 (Feb.
2017). doi: 10.1088/1367-2630/aa5e47.

[MBE21] J. J. Meyer, J. Borregaard, and J. Eisert. A variational
toolbox for quantum multi-parameter estimation. npj Quantum
Information 7.1 (June 2021). doi: 10.1038/s41534-021-
00425-y.

[McC+18] J. R. McClean et al. Barren plateaus in quantum neural
network training landscapes. Nature Communications 9.1
(Nov. 2018). doi: 10.1038/s41467-018-07090-4.

[McK+17a] D. C. McKay et al. Efficient Z gates for quantum computing.
Phys. Rev. A 96 (Aug. 2017). doi: 10.1103/PhysRevA.96.
022330.

[McK+17b] D. C. McKay et al. Efficient Z gates for quantum computing.
Physical Review A 96.2 (Aug. 2017). doi: 10.1103/physreva.
96.022330.

[MGE11] E. Magesan, J. M. Gambetta, and J. Emerson. Scalable and
Robust Randomized Benchmarking of Quantum Processes.
Phys. Rev. Lett. 106 (May 2011). doi: 10.1103/PhysRevLett.
106.180504.

https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1103/physreva.98.062324
https://doi.org/10.1103/physrevlett.121.040502
https://doi.org/10.1088/1367-2630/aa5e47
https://doi.org/10.1038/s41534-021-00425-y
https://doi.org/10.1038/s41534-021-00425-y
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/PhysRevA.96.022330
https://doi.org/10.1103/physreva.96.022330
https://doi.org/10.1103/physreva.96.022330
https://doi.org/10.1103/PhysRevLett.106.180504
https://doi.org/10.1103/PhysRevLett.106.180504


183

[Mit+18] K. Mitarai et al. Quantum circuit learning. Physical Review
A 98.3 (Sept. 2018). doi: 10.1103/physreva.98.032309.

[Mol+18] N. Moll et al. Quantum optimization using variational
algorithms on near-term quantum devices. Quantum Science
and Technology 3.3 (June 2018). doi: 10.1088/2058-
9565/aab822.

[Mon15] A. Montanaro. Quantum speedup of Monte Carlo methods.
Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 471.2181 (Sept. 2015). doi: 10.
1098/rspa.2015.0301.

[Moo65] G. E. Moore. Cramming more components onto integrated
circuits. Electronics 38.8 (Apr. 1965). doi: 10.1109/n-
ssc.2006.4785860.

[Mot+09] F. Motzoi et al. Simple Pulses for Elimination of Leakage
in Weakly Nonlinear Qubits. Phys. Rev. Lett. 103 (Sept.
2009). doi: 10.1103/PhysRevLett.103.110501.

[MS20] M. Möller and M. Schalkers. A Cross-Platform Programming
Framework for Quantum-Accelerated Scientific Computing.
Computational Science – ICCS 2020. Ed. by V. V. Krzhizhanovskaya
et al. Cham: Springer International Publishing, (2020),
pp. 451–464. isbn: 978-3-030-50433-5. doi: 10.1007/978-
3-030-50433-5_35.

[Nac+21] B. Nachman et al. Quantum Algorithm for High Energy
Physics Simulations. Physical Review Letters 126.6 (Feb.
2021). doi: 10.1103/physrevlett.126.062001.

[Nag02] Z. Nagy. Three-Jet Cross Sections in Hadron-Hadron Collisions
at Next-To-Leading Order. Physical Review Letters 88.12
(Mar. 2002). doi: 10.1103/physrevlett.88.122003.

[Nas84] S. G. Nash. Newton-Type Minimization via the Lanczos
Method. SIAM Journal on Numerical Analysis 21.4 (Aug.
1984). doi: 10.1137/0721052.

[Nat16] Nature Editorial. The rise of quantum materials. Nature
Physics 12.2 (Feb. 2016). doi: 10.1038/nphys3668.

[NCK+20] Y. Nam, J.-S. Chen, J. Kim, et al. Ground-state energy
estimation of the water molecule on a trapped-ion quantum
computer. npj Quantum Information 6.1 (Apr. 2020). doi:
10.1038/s41534-020-0259-3.

[Nes83] Y. Nesterov. A method for unconstrained convex minimization
problem with the rate of convergence O (1/kˆ 2). Doklady
an ussr. Vol. 269. (1983), pp. 543–547.

https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1109/n-ssc.2006.4785860
https://doi.org/10.1109/n-ssc.2006.4785860
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1007/978-3-030-50433-5_35
https://doi.org/10.1007/978-3-030-50433-5_35
https://doi.org/10.1103/physrevlett.126.062001
https://doi.org/10.1103/physrevlett.88.122003
https://doi.org/10.1137/0721052
https://doi.org/10.1038/nphys3668
https://doi.org/10.1038/s41534-020-0259-3


184 Chapter D. Bibliography

[NM65] J. Nelder and R. Mead. A Simplex Method for Function
Minimization. Comput. J. 7 (1965).

[NY21] K. Nakaji and N. Yamamoto. Expressibility of the alternating
layered ansatz for quantum computation. Quantum 5 (Apr.
2021). doi: 10.22331/q-2021-04-19-434.

[Oku+17] R. Okuta et al. CuPy: A NumPy-Compatible Library for
NVIDIA GPU Calculations. Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Thirty-
first Annual Conference on Neural Information Processing
Systems (NIPS). (2017).

[OML19a] R. Orús, S. Mugel, and E. Lizaso. Forecasting financial
crashes with quantum computing. Physical Review A 99.6
(June 2019). doi: 10.1103/physreva.99.060301.

[OML19b] R. Orús, S. Mugel, and E. Lizaso. Quantum computing for
finance: Overview and prospects. Reviews in Physics 4 (Nov.
2019). doi: 10.1016/j.revip.2019.100028.

[Orú14a] R. Orús. A practical introduction to tensor networks: Matrix
product states and projected entangled pair states. Annals
of Physics 349 (Oct. 2014). doi: 10.1016/j.aop.2014.06.
013.

[Orú14b] R. Orús. Advances on tensor network theory: symmetries,
fermions, entanglement, and holography. The European
Physical Journal B 87.11 (Nov. 2014). doi: 10.1140/epjb/
e2014-50502-9.

[Pae+19] S. Paeckel et al. Time-evolution methods for matrix-product
states. Annals of Physics 411 (Dec. 2019). doi: 10.1016/j.
aop.2019.167998.

[Pai+11] H. Paik et al. Observation of High Coherence in Josephson
Junction Qubits Measured in a Three-Dimensional Circuit
QED Architecture. Phys. Rev. Lett. 107 (Dec. 2011). doi:
10.1103/PhysRevLett.107.240501.

[Pea00] K. Pearson. X. On the criterion that a given system of
deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably supposed
to have arisen from random sampling. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science
50.302 (July 1900). doi: 10.1080/14786440009463897.

[Ped+11] F. Pedregosa et al. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12 (2011).

[Pér+–] A. Pérez-Salinas et al. Experimental optimization for single-
qubit approximants. Preparation (–).

https://doi.org/10.22331/q-2021-04-19-434
https://doi.org/10.1103/physreva.99.060301
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1140/epjb/e2014-50502-9
https://doi.org/10.1140/epjb/e2014-50502-9
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevLett.107.240501
https://doi.org/10.1080/14786440009463897


185

[Per+14] A. Peruzzo et al. A variational eigenvalue solver on a
photonic quantum processor. Nature Communications 5.1
(July 2014). doi: 10.1038/ncomms5213.

[Per+18] A. Perdomo-Ortiz et al. Opportunities and challenges for
quantum-assisted machine learning in near-term quantum
computers. Quantum Science and Technology 3.3 (June
2018). doi: 10.1088/2058-9565/aab859.

[Pér+20a] A. Pérez-Salinas et al. Data re-uploading for a universal
quantum classifier. Quantum 4 (Feb. 2020). doi: 10.22331/
q-2020-02-06-226.

[Pér+20b] A. Pérez-Salinas et al. Measuring the Tangle of Three-Qubit
States. Entropy 22.4 (Apr. 2020). doi: 10.3390/e22040436.

[Pér+21a] A. Pérez-Salinas et al. Determining the proton content with
a quantum computer. Physical Review D 103.3 (Feb. 2021).
doi: 10.1103/physrevd.103.034027.

[Pér+21b] A. Pérez-Salinas et al. One qubit as a universal approximant.
Physical Review A 104.1 (July 2021). doi: 10 . 1103 /
physreva.104.012405.

[Pou+18] D. Poulin et al.Quantum Algorithm for Spectral Measurement
with a Lower Gate Count. Physical Review Letters 121.1
(July 2018). doi: 10.1103/physrevlett.121.010501.

[Pow64] M. J. D. Powell. An efficient method for finding the minimum
of a function of several variables without calculating derivatives.
The Computer Journal 7.2 (Feb. 1964). doi: 10.1093/
comjnl/7.2.155.

[Pra15] M. L. de Prado. Generalized Optimal Trading Trajectories:
A Financial Quantum Computing Application. SSRN Electronic
Journal (2015). doi: 10.2139/ssrn.2575184.

[Pre18] J. Preskill. Quantum Computing in the NISQ era and
beyond. Quantum 2 (Aug. 2018). doi: 10.22331/q-2018-
08-06-79.

[PTP19] A. Pepper, N. Tischler, and G. J. Pryde. Experimental
Realization of a Quantum Autoencoder: The Compression of
Qutrits via Machine Learning. Physical Review Letters 122.6
(Feb. 2019). doi: 10.1103/physrevlett.122.060501.

[Qia99] N. Qian.On the momentum term in gradient descent learning
algorithms. Neural Networks 12.1 (Jan. 1999). doi: 10.
1016/s0893-6080(98)00116-6.

[Ram+21] S. Ramos-Calderer et al. Quantum unary approach to option
pricing. Physical Review A 103.3 (Mar. 2021). doi: 10.
1103/physreva.103.032414.

https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.3390/e22040436
https://doi.org/10.1103/physrevd.103.034027
https://doi.org/10.1103/physreva.104.012405
https://doi.org/10.1103/physreva.104.012405
https://doi.org/10.1103/physrevlett.121.010501
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.2139/ssrn.2575184
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/physrevlett.122.060501
https://doi.org/10.1016/s0893-6080(98)00116-6
https://doi.org/10.1016/s0893-6080(98)00116-6
https://doi.org/10.1103/physreva.103.032414
https://doi.org/10.1103/physreva.103.032414


186 Chapter D. Bibliography

[RGB18] P. Rebentrost, B. Gupt, and T. R. Bromley. Quantum
computational finance: Monte Carlo pricing of financial
derivatives. Physical Review A 98.2 (Aug. 2018). doi: 10.
1103/physreva.98.022321.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature 323.6088
(Oct. 1986). doi: 10.1038/323533a0.

[Rie14] F. Riesz. Démonstration nouvelle d’un théorème concernant
les opérations fonctionnelles linéaires. Annales scientifiques
de l’École Normale Supérieure. Vol. 31. (1914), pp. 9–14.

[Rie67] B. Riemann. Über die Darstellbarkeit einer Function durch
eine trigonometrische Reihe. Abhandlungen der Königlichen
Gesellschaft der Wissenschaften zu Göttingen 13 (1867).

[RML14] P. Rebentrost, M. Mohseni, and S. Lloyd. Quantum Support
Vector Machine for Big Data Classification. Physical Review
Letters 113.13 (Sept. 2014). doi: 10.1103/physrevlett.
113.130503.

[ROA17] J. Romero, J. P. Olson, and A. Aspuru-Guzik. Quantum
autoencoders for efficient compression of quantum data.
Quantum Science and Technology 2.4 (Aug. 2017). doi:
10.1088/2058-9565/aa8072.

[Ros+16] G. Rosenberg et al. Solving the Optimal Trading Trajectory
Problem Using a Quantum Annealer. IEEE Journal of
Selected Topics in Signal Processing 10.6 (Sept. 2016). doi:
10.1109/jstsp.2016.2574703.

[Sav76] L. J. Savage. On Rereading R. A. Fisher. The Annals of
Statistics 4.3 (May 1976). doi: 10.1214/aos/1176343456.

[Sch+19] M. Schuld et al. Evaluating analytic gradients on quantum
hardware. Physical Review A 99.3 (Mar. 2019). doi: 10.
1103/physreva.99.032331.

[Sch+20] M. Schuld et al. Circuit-centric quantum classifiers. Physical
Review A 101.3 (Mar. 2020). doi: 10.1103/physreva.101.
032308.

[Sch98] J. Schmidhuber. A General Method for Incremental Self-
Improvement and Multi-Agent Learning. Evolutionary Computation:
Theory and Applications. Scientific Publ. Co., Singapore.
In. (1998), pp. 81–123.

[Sho95] P. W. Shor. Scheme for reducing decoherence in quantum
computer memory. Physical Review A 52.4 (Oct. 1995). doi:
10.1103/physreva.52.r2493.

https://doi.org/10.1103/physreva.98.022321
https://doi.org/10.1103/physreva.98.022321
https://doi.org/10.1038/323533a0
https://doi.org/10.1103/physrevlett.113.130503
https://doi.org/10.1103/physrevlett.113.130503
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1109/jstsp.2016.2574703
https://doi.org/10.1214/aos/1176343456
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physreva.99.032331
https://doi.org/10.1103/physreva.101.032308
https://doi.org/10.1103/physreva.101.032308
https://doi.org/10.1103/physreva.52.r2493


187

[Sho96] P. W. Shor. Fault-tolerant quantum computation. Proceedings
of 37th Conference on Foundations of Computer Science.
IEEE. (1996), pp. 56–65.

[Sho97] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer. SIAM
Journal on Computing 26.5 (Oct. 1997). doi: 10.1137/
s0097539795293172.

[SHT18] D. S. Steiger, T. Häner, and M. Troyer. ProjectQ: an
open source software framework for quantum computing.
Quantum 2 (Jan. 2018). doi: 10.22331/q-2018-01-31-
49.

[Sil+16] D. Silver et al. Mastering the game of Go with deep neural
networks and tree search. Nature 529.7587 (Jan. 2016). doi:
10.1038/nature16961.

[SJA19] S. Sim, P. D. Johnson, and A. Aspuru-Guzik. Expressibility
and Entangling Capability of Parameterized Quantum Circuits
for Hybrid Quantum-Classical Algorithms. Advanced Quantum
Technologies 2.12 (Oct. 2019). doi: 10.1002/qute.201900070.

[Spa98] J. C. Spall. An overview of the simultaneous perturbation
method for efficient optimization. Johns Hopkins apl technical
digest 19.4 (1998).

[SS03] N. Schuch and J. Siewert. Natural two-qubit gate for quantum
computation using theXYinteraction. Physical Review A
67.3 (Mar. 2003). doi: 10.1103/physreva.67.032301.

[SSM21] M. Schuld, R. Sweke, and J. J. Meyer. Effect of data
encoding on the expressive power of variational quantum-
machine-learning models. Physical Review A 103.3 (Mar.
2021). doi: 10.1103/physreva.103.032430.

[Sta+20] N. Stamatopoulos et al. Option Pricing using Quantum
Computers. Quantum 4 (July 2020). doi: 10.22331/q-
2020-07-06-291.

[Ste96] A. M. Steane. Error Correcting Codes in Quantum Theory.
Physical Review Letters 77.5 (July 1996). doi: 10.1103/
physrevlett.77.793.

[Sto+20] J. Stokes et al. Quantum Natural Gradient. Quantum 4
(May 2020). doi: 10.22331/q-2020-05-25-269.

[Suz+20b] Y. Suzuki et al. Amplitude estimation without phase estimation.
Quantum Information Processing 19.2 (Jan. 2020). doi:
10.1007/s11128-019-2565-2.

https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1038/nature16961
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1103/physreva.67.032301
https://doi.org/10.1103/physreva.103.032430
https://doi.org/10.22331/q-2020-07-06-291
https://doi.org/10.22331/q-2020-07-06-291
https://doi.org/10.1103/physrevlett.77.793
https://doi.org/10.1103/physrevlett.77.793
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.1007/s11128-019-2565-2


188 Chapter D. Bibliography

[SW20] M. Steudtner and S. Wehner. Estimating exact energies in
quantum simulation without Toffoli gates. Physical Review
A 101.5 (May 2020). doi: 10.1103/physreva.101.052329.

[Swe+20] R. Sweke et al. Stochastic gradient descent for hybrid quantum-
classical optimization. Quantum 4 (Aug. 2020). doi: 10.
22331/q-2020-08-31-314.

[TBG17] K. Temme, S. Bravyi, and J. M. Gambetta. Error Mitigation
for Short-Depth Quantum Circuits. Physical Review Letters
119.18 (Nov. 2017). doi: 10 . 1103 / physrevlett . 119 .
180509.

[TG19] E. Torrontegui and J. J. García-Ripoll. Unitary quantum
perceptron as efficient universal approximator. EPL (Europhysics
Letters) 125.3 (Mar. 2019). doi: 10.1209/0295-5075/125/
30004.

[Tur38] A. M. Turing. On Computable Numbers, with an Application
to the Entscheidungsproblem. A Correction. Proceedings
of the London Mathematical Society s2-43.1 (1938). doi:
10.1112/plms/s2-43.6.544.

[UB21] A. V. Uvarov and J. D. Biamonte. On barren plateaus and
cost function locality in variational quantum algorithms.
Journal of Physics A: Mathematical and Theoretical 54.24
(May 2021). doi: 10.1088/1751-8121/abfac7.

[UBY20] A. Uvarov, J. D. Biamonte, and D. Yudin. Variational
quantum eigensolver for frustrated quantum systems. Physical
Review B 102.7 (Aug. 2020). doi: 10.1103/physrevb.102.
075104.

[Unr95] W. G. Unruh.Maintaining coherence in quantum computers.
Physical Review A 51.2 (Feb. 1995). doi: 10.1103/physreva.
51.992.

[Val+20] M. Valueva et al. Application of the residue number system
to reduce hardware costs of the convolutional neural network
implementation. Mathematics and Computers in Simulation
177 (Nov. 2020). doi: 10.1016/j.matcom.2020.04.031.

[Vaz02] U. V. Vazirani. A survey of quantum complexity theory
(2002). doi: 10.1090/psapm/058/1922899.

[VCL09] F. Verstraete, J. I. Cirac, and J. I. Latorre. Quantum circuits
for strongly correlated quantum systems. Physical Review
A 79.3 (Mar. 2009). doi: 10.1103/physreva.79.032316.

https://doi.org/10.1103/physreva.101.052329
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.1103/physrevlett.119.180509
https://doi.org/10.1103/physrevlett.119.180509
https://doi.org/10.1209/0295-5075/125/30004
https://doi.org/10.1209/0295-5075/125/30004
https://doi.org/10.1112/plms/s2-43.6.544
https://doi.org/10.1088/1751-8121/abfac7
https://doi.org/10.1103/physrevb.102.075104
https://doi.org/10.1103/physrevb.102.075104
https://doi.org/10.1103/physreva.51.992
https://doi.org/10.1103/physreva.51.992
https://doi.org/10.1016/j.matcom.2020.04.031
https://doi.org/10.1090/psapm/058/1922899
https://doi.org/10.1103/physreva.79.032316


189

[Ve19] B. Villalonga and et al. A flexible high-performance simulator
for verifying and benchmarking quantum circuits implemented
on real hardware. npj Quantum Information 5.1 (Oct. 2019).
doi: 10.1038/s41534-019-0196-1.

[Vid04] G. Vidal. Efficient Simulation of One-Dimensional Quantum
Many-Body Systems. Physical Review Letters 93.4 (July
2004). doi: 10.1103/physrevlett.93.040502.

[Vid07] G. Vidal. Entanglement Renormalization. Physical Review
Letters 99.22 (Nov. 2007). doi: 10.1103/physrevlett.99.
220405.

[Vid08] G. Vidal. Class of Quantum Many-Body States That Can
Be Efficiently Simulated. Physical Review Letters 101.11
(Sept. 2008). doi: 10.1103/physrevlett.101.110501.

[Vir+20] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods 17 (2020).
doi: 10.1038/s41592-019-0686-2.

[VMC08] F. Verstraete, V. Murg, and J. Cirac. Matrix product states,
projected entangled pair states, and variational renormalization
group methods for quantum spin systems. Advances in
Physics 57.2 (Mar. 2008). doi: 10.1080/14789940801912366.

[VT20] F. J. G. Vidal and D. O. Theis. Input Redundancy for
Parameterized Quantum Circuits. Frontiers in Physics 8
(Aug. 2020). doi: 10.3389/fphy.2020.00297.

[VV18] A. Van-Brunt and M. Visser. Explicit Baker–Campbell–Hausdorff
Expansions. Mathematics 6.8 (Aug. 2018). doi: 10.3390/
math6080135.

[Wal13] S. Wallis. Binomial Confidence Intervals and Contingency
Tests: Mathematical Fundamentals and the Evaluation of
Alternative Methods. Journal of Quantitative Linguistics
20.3 (July 2013). doi: 10.1080/09296174.2013.799918.

[Wan+17] K. H. Wan et al. Quantum generalisation of feedforward
neural networks. npj Quantum Information 3.1 (Sept. 2017).
doi: 10.1038/s41534-017-0032-4.

[Wan+20b] Z. Wang et al. XY mixers: Analytical and numerical results
for the quantum alternating operator ansatz. Physical Review
A 101.1 (Jan. 2020). doi: 10.1103/physreva.101.012320.

[Wan+21a] P. Wang et al. Single ion qubit with estimated coherence
time exceeding one hour. Nature Communications 12.1 (Jan.
2021). doi: 10.1038/s41467-020-20330-w.

https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1103/physrevlett.93.040502
https://doi.org/10.1103/physrevlett.99.220405
https://doi.org/10.1103/physrevlett.99.220405
https://doi.org/10.1103/physrevlett.101.110501
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1080/14789940801912366
https://doi.org/10.3389/fphy.2020.00297
https://doi.org/10.3390/math6080135
https://doi.org/10.3390/math6080135
https://doi.org/10.1080/09296174.2013.799918
https://doi.org/10.1038/s41534-017-0032-4
https://doi.org/10.1103/physreva.101.012320
https://doi.org/10.1038/s41467-020-20330-w


190 Chapter D. Bibliography

[WE19] S. Woerner and D. J. Egger. Quantum risk analysis. npj
Quantum Information 5.1 (Feb. 2019). doi: 10 . 1038 /
s41534-019-0130-6.

[WZ82] W. K. Wootters and W. H. Zurek. A single quantum cannot
be cloned. Nature 299.5886 (Oct. 1982). doi: 10.1038/
299802a0.

[Yu+19] S. Yu et al. Reconstruction of a Photonic Qubit State with
Reinforcement Learning. Advanced Quantum Technologies
2.7-8 (Mar. 2019). doi: 10.1002/qute.201800074.

[Yum+17] D. Yum et al. Optical barium ion qubit. Journal of the
Optical Society of America B 34.8 (July 2017). doi: 10.
1364/josab.34.001632.

[Zha+19] Z. Zhao et al. Bayesian deep learning on a quantum computer.
Quantum Machine Intelligence 1.1-2 (May 2019). doi: 10.
1007/s42484-019-00004-7.

[Zho+20] H.-S. Zhong et al. Quantum computational advantage using
photons. Science 370.6523 (2020). doi: 10.1126/science.
abe8770.

[Zhu+19] D. Zhu et al. Training of quantum circuits on a hybrid
quantum computer. Science Advances 5.10 (Oct. 2019). doi:
10.1126/sciadv.aaw9918.

[ZLW19] C. Zoufal, A. Lucchi, and S. Woerner. Quantum Generative
Adversarial Networks for learning and loading random distributions.
npj Quantum Information 5.1 (Nov. 2019). doi: 10.1038/
s41534-019-0223-2.

[ZLW21] C. Zoufal, A. Lucchi, and S. Woerner. Variational quantum
Boltzmann machines. Quantum Machine Intelligence 3.1
(Feb. 2021). doi: 10.1007/s42484-020-00033-7.

[ZYL15] P. Zhang, J. Yuan, and X. Lu.Quantum Computer Simulation
on Multi-GPU Incorporating Data Locality. Algorithms
and Architectures for Parallel Processing. Cham: Springer
International Publishing, (2015), pp. 241–256. doi: 10.
1007/978-3-319-27119-4_17.

Preprints
[Alt01] M. V. Altaisky. Quantum neural network. (2001). arXiv:

quant-ph/0107012 [quant-ph].

[Arr+20] A. Arrasmith et al. Effect of barren plateaus on gradient-free
optimization. (2020). arXiv: 2011.12245 [quant-ph].

https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/s41534-019-0130-6
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1002/qute.201800074
https://doi.org/10.1364/josab.34.001632
https://doi.org/10.1364/josab.34.001632
https://doi.org/10.1007/s42484-019-00004-7
https://doi.org/10.1007/s42484-019-00004-7
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1126/sciadv.aaw9918
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1007/s42484-020-00033-7
https://doi.org/10.1007/978-3-319-27119-4_17
https://doi.org/10.1007/978-3-319-27119-4_17
https://arxiv.org/abs/quant-ph/0107012
https://arxiv.org/abs/2011.12245


191

[BB17] J. Biamonte and V. Bergholm. Tensor Networks in a Nutshell.
(2017). arXiv: 1708.00006 [quant-ph].

[Bec+20] J. L. Beckey et al. Variational Quantum Algorithm for
Estimating the Quantum Fisher Information. (2020). arXiv:
2010.10488 [quant-ph].

[Bha+21] K. Bharti et al. Noisy intermediate-scale quantum (NISQ)
algorithms. (2021). arXiv: 2101.08448 [quant-ph].

[BK21] L. Bittel and M. Kliesch. Training variational quantum
algorithms is NP-hard – even for logarithmically many qubits
and free fermionic systems. (2021). arXiv: 2101.07267
[quant-ph].

[Bra+20b] C. Bravo-Prieto et al. Variational Quantum Linear Solver.
(2020). arXiv: 1909.05820 [quant-ph].

[Con+21] I. Convy et al. Mutual Information Scaling for Tensor
Network Machine Learning. (2021). arXiv: 2103.00105
[quant-ph].

[Cra+19] D. Crawford et al. Reinforcement Learning Using Quantum
Boltzmann Machines. (2019). arXiv: 1612.05695 [quant-ph].

[Cro+17] A. W. Cross et al. Open Quantum Assembly Language.
(2017). arXiv: 1707.03429 [quant-ph].

[DB17] V. Dunjko and H. J. Briegel. Machine learning & artificial
intelligence in the quantum domain. (2017). arXiv: 1709.
02779 [quant-ph].

[Dut+21] T. Dutta et al. Realization of an ion trap quantum classifier.
(2021). arXiv: 2106.14059 [quant-ph].

[Eft+20a] S. Efthymiou et al.Qibo: a framework for quantum simulation
with hardware acceleration. (2020). arXiv: 2009 . 01845
[quant-ph].

[Egg+19] D. J. Egger et al. Credit Risk Analysis using Quantum
Computers. (2019). arXiv: 1907.03044 [quant-ph].

[Far+00] E. Farhi et al.Quantum Computation by Adiabatic Evolution.
(2000). arXiv: quant-ph/0001106 [quant-ph].

[FC20] S. Forte and S. Carrazza. Parton distribution functions.
(Aug. 2020). arXiv: 2008.12305 [hep-ph].

[FGG14] E. Farhi, J. Goldstone, and S. Gutmann. A Quantum
Approximate Optimization Algorithm. (2014). arXiv: 1411.
4028 [quant-ph].

[FN18] E. Farhi and H. Neven. Classification with Quantum Neural
Networks on Near Term Processors. (2018). arXiv: 1802.
06002 [quant-ph].

https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/2010.10488
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/2101.07267
https://arxiv.org/abs/2101.07267
https://arxiv.org/abs/1909.05820
https://arxiv.org/abs/2103.00105
https://arxiv.org/abs/2103.00105
https://arxiv.org/abs/1612.05695
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1709.02779
https://arxiv.org/abs/1709.02779
https://arxiv.org/abs/2106.14059
https://arxiv.org/abs/2009.01845
https://arxiv.org/abs/2009.01845
https://arxiv.org/abs/1907.03044
https://arxiv.org/abs/quant-ph/0001106
https://arxiv.org/abs/2008.12305
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1802.06002
https://arxiv.org/abs/1802.06002


192 Chapter D. Bibliography

[Gac+21] J. Gacon et al. Simultaneous Perturbation Stochastic Approximation
of the Quantum Fisher Information. (2021). arXiv: 2103.
09232 [quant-ph].

[GL18] A. Garcia-Saez and J. I. Latorre. Addressing hard classical
problems with Adiabatically Assisted Variational Quantum
Eigensolvers. (2018). arXiv: 1806.02287 [quant-ph].

[Hol+21] Z. Holmes et al. Connecting ansatz expressibility to gradient
magnitudes and barren plateaus. (2021). arXiv: 2101.02138
[quant-ph].

[Hua+21b] H.-Y. Huang et al. Provably efficient machine learning for
quantum many-body problems. (2021). arXiv: 2106.12627
[quant-ph].

[Hub+21] T. Hubregtsen et al. Single-component gradient rules for
variational quantum algorithms. (2021). arXiv: 2106.01388
[quant-ph].

[JDK+20] S. Johri, S. Debnath, I. Kerenidis, et al. Nearest Centroid
Classification on a Trapped Ion Quantum Computer. (2020).
arXiv: 2012.04145 [quant-ph].

[KB17] D. P. Kingma and J. Ba. Adam: A Method for Stochastic
Optimization. (2017). arXiv: 1412.6980 [cs.LG].

[KBS21] J. M. Kübler, S. Buchholz, and B. Schölkopf. The Inductive
Bias of Quantum Kernels. (2021). arXiv: 2106 . 03747
[quant-ph].

[Kel18] A. Kelly. Simulating Quantum Computers Using OpenCL.
(2018). arXiv: 1805.00988 [quant-ph].

[KPS19] I. Kerenidis, A. Prakash, and D. Szilágyi.Quantum Algorithms
for Portfolio Optimization. (2019). arXiv: 1908 . 08040
[math.OC].

[Llo+20] S. Lloyd et al. Quantum embeddings for machine learning.
(2020). arXiv: 2001.03622 [quant-ph].

[LMR13] S. Lloyd, M. Mohseni, and P. Rebentrost.Quantum algorithms
for supervised and unsupervised machine learning. (2013).
arXiv: 1307.0411 [quant-ph].

[LW15] X. Li and X. Wu. Constructing Long Short-Term Memory
based Deep Recurrent Neural Networks for Large Vocabulary
Speech Recognition. (2015). arXiv: 1410.4281 [cs.CL].

[Mar+20] J. Martyn et al. Entanglement and Tensor Networks for
Supervised Image Classification. (2020). arXiv: 2007.06082
[quant-ph].

https://arxiv.org/abs/2103.09232
https://arxiv.org/abs/2103.09232
https://arxiv.org/abs/1806.02287
https://arxiv.org/abs/2101.02138
https://arxiv.org/abs/2101.02138
https://arxiv.org/abs/2106.12627
https://arxiv.org/abs/2106.12627
https://arxiv.org/abs/2106.01388
https://arxiv.org/abs/2106.01388
https://arxiv.org/abs/2012.04145
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2106.03747
https://arxiv.org/abs/2106.03747
https://arxiv.org/abs/1805.00988
https://arxiv.org/abs/1908.08040
https://arxiv.org/abs/1908.08040
https://arxiv.org/abs/2001.03622
https://arxiv.org/abs/1307.0411
https://arxiv.org/abs/1410.4281
https://arxiv.org/abs/2007.06082
https://arxiv.org/abs/2007.06082


193

[Mey21] J. J. Meyer. Fisher Information in Noisy Intermediate-
Scale Quantum Applications. (2021). arXiv: 2103.15191
[quant-ph].

[Pes+20] A. Pesah et al. Absence of Barren Plateaus in Quantum
Convolutional Neural Networks. (2020). arXiv: 2011.02966
[quant-ph].

[Pre21] J. Preskill. Quantum computing 40 years later. (2021).
arXiv: 2106.10522 [quant-ph].

[RA19] J. Romero and A. Aspuru-Guzik. Variational quantum
generators: Generative adversarial quantum machine learning
for continuous distributions. (2019). arXiv: 1901.00848
[quant-ph].

[RK19] S. Resch and U. R. Karpuzcu. Quantum Computing: An
Overview Across the System Stack. (2019). arXiv: 1905.
07240 [quant-ph].

[RL18] P. Rebentrost and S. Lloyd.Quantum computational finance:
quantum algorithm for portfolio optimization. (2018). arXiv:
1811.03975 [quant-ph].

[RS20] J. Reyes and M. Stoudenmire. A Multi-Scale Tensor Network
Architecture for Classification and Regression. (2020). arXiv:
2001.08286 [stat.ML].

[RTP+20] M. S. Rudolph, N. B. Toussaint, A. Perdomo-Ortiz, et al.
Generation of High-Resolution Handwritten Digits with an
Ion-Trap Quantum Computer. (2020). arXiv: 2012.03924
[quant-ph].

[Sch21] M. Schuld. Supervised quantum machine learning models
are kernel methods. (2021). arXiv: 2101.11020 [quant-ph].

[SCZ16] R. S. Smith, M. J. Curtis, and W. J. Zeng. A Practical
Quantum Instruction Set Architecture. (2016). arXiv: 1608.
03355 [quant-ph].

[Shi+20] Y. Shingu et al. Boltzmann machine learning with a variational
quantum algorithm. (2020). arXiv: 2007.00876 [quant-ph].

[SS17] E. M. Stoudenmire and D. J. Schwab. Supervised Learning
with Quantum-Inspired Tensor Networks. (2017). arXiv:
1605.05775 [stat.ML].

[STC21] B. F. Schiffer, J. Tura, and J. I. Cirac. Adiabatic Spectroscopy
and a Variational Quantum Adiabatic Algorithm. (2021).
arXiv: 2103.01226 [quant-ph].

https://arxiv.org/abs/2103.15191
https://arxiv.org/abs/2103.15191
https://arxiv.org/abs/2011.02966
https://arxiv.org/abs/2011.02966
https://arxiv.org/abs/2106.10522
https://arxiv.org/abs/1901.00848
https://arxiv.org/abs/1901.00848
https://arxiv.org/abs/1905.07240
https://arxiv.org/abs/1905.07240
https://arxiv.org/abs/1811.03975
https://arxiv.org/abs/2001.08286
https://arxiv.org/abs/2012.03924
https://arxiv.org/abs/2012.03924
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/1608.03355
https://arxiv.org/abs/1608.03355
https://arxiv.org/abs/2007.00876
https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/2103.01226


194 Chapter D. Bibliography

[Suz+20a] Y. Suzuki et al. Qulacs: a fast and versatile quantum circuit
simulator for research purpose. (2020). arXiv: 2011.13524
[quant-ph].

[Tor+20] G. Torlai et al.Quantum process tomography with unsupervised
learning and tensor networks. (2020). arXiv: 2006.02424
[quant-ph].

[VPB18] G. Verdon, J. Pye, and M. Broughton. A Universal Training
Algorithm for Quantum Deep Learning. (2018). arXiv: 1806.
09729 [quant-ph].

[Wan+20a] J. Wang et al. Anomaly Detection with Tensor Networks.
(2020). arXiv: 2006.02516 [cs.LG].

[Wan+21b] S. Wang et al. Noise-Induced Barren Plateaus in Variational
Quantum Algorithms. (2021). arXiv: 2007.14384 [quant-ph].

[Zei12] M. D. Zeiler. ADADELTA: An Adaptive Learning Rate
Method. (2012). arXiv: 1212.5701 [cs.LG].

[Zha+20] K. Zhang et al. Toward Trainability of Quantum Neural
Networks. (2020). arXiv: 2011.06258 [quant-ph].

Software and others
[Ahm19] S. Ahmed. Data-reuploading classifer. (2019). url: https:

//pennylane.ai/qml/app/tutorial_data_reuploading_
classifier.html.

[Ale+19a] G. Aleksandrowicz et al. Qiskit: An Open-source Framework
for Quantum Computing. (2019). doi: 10.5281/ZENODO.
2562110. url: http://zenodo.org/record/2562110.

[Ard16] M. A. Ardeh. BenchmarkFcns Toolbox. (2016). url: http:
//www.benchmarkfcns.xyz/.

[Cir21] Cirq Developers. Cirq. (2021). doi: 10 . 5281 / ZENODO .
4062499. url: https://zenodo.org/record/4062499.

[Eft+20b] S. Efthymiou et al.Quantum-TII/qibo: Qibo 0.1.1. Version v0.1.1.
(Oct. 2020). doi: 10.5281/zenodo.4071702. url: http:
//doi.org/10.5281/zenodo.4071702.

[Kas19] Z. Kassabov. Reportengine: A framework for declarative
data analysis. Version v0.27. (Feb. 2019). doi: 10.5281/
zenodo.2571601. url: http://doi.org/10.5281/zenodo.
2571601.

[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org.
(2015). url: https://www.tensorflow.org/.

https://arxiv.org/abs/2011.13524
https://arxiv.org/abs/2011.13524
https://arxiv.org/abs/2006.02424
https://arxiv.org/abs/2006.02424
https://arxiv.org/abs/1806.09729
https://arxiv.org/abs/1806.09729
https://arxiv.org/abs/2006.02516
https://arxiv.org/abs/2007.14384
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/2011.06258
https://pennylane.ai/qml/app/tutorial_data_reuploading_classifier.html
https://pennylane.ai/qml/app/tutorial_data_reuploading_classifier.html
https://pennylane.ai/qml/app/tutorial_data_reuploading_classifier.html
https://doi.org/10.5281/ZENODO.2562110
https://doi.org/10.5281/ZENODO.2562110
http://zenodo.org/record/2562110
http://www.benchmarkfcns.xyz/
http://www.benchmarkfcns.xyz/
https://doi.org/10.5281/ZENODO.4062499
https://doi.org/10.5281/ZENODO.4062499
https://zenodo.org/record/4062499
https://doi.org/10.5281/zenodo.4071702
http://doi.org/10.5281/zenodo.4071702
http://doi.org/10.5281/zenodo.4071702
https://doi.org/10.5281/zenodo.2571601
https://doi.org/10.5281/zenodo.2571601
http://doi.org/10.5281/zenodo.2571601
http://doi.org/10.5281/zenodo.2571601
https://www.tensorflow.org/


195

[nik+20] niko et al. CMA-ES/pycma: r3.0.3. (Apr. 2020). doi: 10.
5281 / zenodo . 3764210. url: https : / / zenodo . org /
record/3764210 (visited on 06/03/2021).

[NVF20] NVIDIA, P. Vingelmann, and F. H. Fitzek. CUDA, release:
10.2.89. (2020). url: https://developer.nvidia.com/
cuda-toolkit.

[Pek07] Pekaje. Accuracy and precision. (2007). url: https://
commons.wikimedia.org/w/index.php?curid=1862863.

[Pér19] A. Pérez-Salinas. Quantum classifier with data re-uploading.
(2019). url: https://github.com/AdrianPerezSalinas/
universal_qlassifier.

[Pér21] A. Pérez-Salinas. Universal-Approximator. (2021). url:
https://github.com/UB-Quantic/Universal-Approximator.

[Qib20] Qibo Team. Data-reuploading classifer. (2020). url: https:
//qibo.readthedocs.io/en/stable/tutorials/reuploading_
classifier/README.html.

[RP20] S. Ramos-Calderer and A. Pérez-Salinas. Quantum Finance.
(2020). url: https://github.com/UB-Quantic/quantum-
unary-option-pricing.

Acronyms
BCH Baker-Campbell-Haussdorf
BM Boltzmann Machines
BP Barren Plateaus
CML Classical Machine Learning
CPU Central Processing Units
FfNN Feedforward Neural Networks
FPGA Field Programmable Gate Array
GPU Graphical Processing Units
HEP High Energy Physics
IQAE Iterative Quantum Amplitude Estimation
JIT Just-In-Time
LHC Large Hadron Collider
ML Machine Learning
NG Natural Gradient
NISQ Noisy Intermediate-Scale Quantum
NN Neural Networks
PCA Principal Component Analysis
PDF Parton Distribution Functions
QAE Quantum Amplitude Estimation
QAOA Quantum Approximate Optimization Algorithm

https://doi.org/10.5281/zenodo.3764210
https://doi.org/10.5281/zenodo.3764210
https://zenodo.org/record/3764210
https://zenodo.org/record/3764210
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://commons.wikimedia.org/w/index.php?curid=1862863
https://commons.wikimedia.org/w/index.php?curid=1862863
https://github.com/AdrianPerezSalinas/universal_qlassifier
https://github.com/AdrianPerezSalinas/universal_qlassifier
https://github.com/UB-Quantic/Universal-Approximator
https://qibo.readthedocs.io/en/stable/tutorials/reuploading_classifier/README.html
https://qibo.readthedocs.io/en/stable/tutorials/reuploading_classifier/README.html
https://qibo.readthedocs.io/en/stable/tutorials/reuploading_classifier/README.html
https://github.com/UB-Quantic/quantum-unary-option-pricing
https://github.com/UB-Quantic/quantum-unary-option-pricing


196 Chapter D. Bibliography

QFT Quantum Fourier Transform
qGAN quantum Generative Adversarial Networks
QML Quantum Machine Learning
QPE Quantum Phase Estimation
QPU Quantum Processing Unit
QRAM Quantum Random Access Memory
SGD Stochastic Gradient Descent
SVC Support Vector Classifiers
TN Tensor Networks
UAT Universal Approximation Theorem
VQA Variational Quantum Algorithms
VQE Variational Quantum Eigensolver


	9. Tesi.pdf
	1 Introduction
	2 Quantum and Classical Machine Learning
	2.1 Classical Machine Learning
	2.1.1 Neural Networks
	2.1.2 Support Vector Classifier

	2.2 Quantum Machine Learning
	2.2.1 Supervised learning in QML
	2.2.2 Other approaches in QML


	3 Data re-uploading strategy for QML
	3.1 Theoretical support
	3.1.1 Set-up of the problem
	3.1.2 Two theorems on universality
	3.1.3 Proofs of universality theorems
	3.1.4 Discussion

	3.2 Numerical benchmark
	3.2.1 Benchmark for real functions
	3.2.2 Benchmark for complex functions
	3.2.3 Results
	3.2.4 Discussion

	3.3 Re-uploading for a quantum classifier
	3.3.1 Quantum classifier
	3.3.2 From single- to multi-qubit quantum classifier
	3.3.3 Numerical benchmark of the quantum classifier
	3.3.4 Discussion

	3.4 Experimental quantum classifier
	3.4.1 Single-qubit quantum classifier on the experiment
	3.4.2 Results
	3.4.3 Discussion

	3.5 Data re-uploading for determining the proton content
	3.5.1 Quantum circuits for PDF
	3.5.2 Ansätze
	3.5.3 Experimental configuration
	3.5.4 qPDF determination from experimental data
	3.5.5 Discussion

	3.6 Conclusions

	4 Unary strategy for finance
	4.1 Background
	4.1.1 European options and the Black-Scholes model
	4.1.2 Quantum Amplitude Estimation
	4.1.3 Binary algorithm

	4.2 The unary representation
	4.3 Unary algorithm
	4.3.1 Description of the algorithm
	4.3.2 Error mitigation

	4.4 Comparison between unary and binary algorithms
	4.4.1 Gate count
	4.4.2 Ideal chip architecture

	4.5 Results
	4.6 Conclusions

	5 Final remarks
	Appendices
	A Technical appendices for re-uploading
	A.1 Classical UAT for complex functions
	A.2 Mathematical theorems for proving quantum UAT
	A.3 Definitions of 2D functions for universality
	A.4 Superconducting experiment for a univ. approximant
	A.5 Ion trap experiment for a univ. classifier
	A.6 Quantum circuits in NNPDF methodology

	B Technical appendices for unary
	B.1 Details for the Black-Scholes model
	B.1.1 European Option

	B.2 Details for the Amplitude Distributor D in the unary basis 
	B.3 QAE
	B.3.1 QAE with QPE
	B.3.2 IQAE


	C Qibo
	C.1 Circuits
	C.2 Adiabatic computing
	C.3 Backends
	C.3.1 Classical Simulation - Hardware acceleration

	C.4 Examples

	D Bibliography



