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Summary

This thesis is focused on the efficient reduction of charge of electrospray droplets

to produce homogeneously sized polymer particles by electrospraying a polymer

solution. In the electrospraying process, a steady micro-jet is emitted, from the tip

of the so-called Taylor cone, breaking up into highly charged tiny droplets. When

using a polymer-containing solution, it results in narrowly dispersed particle sizes,

from micrometer to nanometer scale, depending on liquid properties and operating

conditions.

Therefore, electrospray is gaining research interest in different fields such as phar-

maceutics. Among its advantages over other liquid atomization methods includes

its ability to produce much smaller particles (in the few-microns and nano-metric

size ranges) with size homogeneity and high energy efficiency.

But one problem is that the high charge induced on the droplets by this technique

may distort the size uniformity. This occurs if the droplet undergoes a Coulombic

instability. Just before that, while the volatile solvent is being evaporated, thus

reducing its diameter, the droplet is maintaining its charge. Then, the so-called

Rayleigh limit is reached when the repulsive Coulomb forces overcome the surface

tension and the droplet explodes. After that, the created polymer particle loses its

shape and size.

An electrospray-neutralization setup has been developed in which the droplet charge

was reduced significantly, preventing Coulombic instabilities, and being able to gen-

erate homogeneous polymer particles in a controlled atmosphere conditions, obtain-
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ing the desired particle morphology, and preventing filamentous particles.

To achieve an appropriate particle charge reduction, it was necessary to produce an

opposite polarity ion current which must be comparable to the electrospray current,

usually from tens to hundreds of nano-amperes. For this reason, we have developed

and optimized a unipolar ion source based on corona discharge. This home-made

tool was strategically attached to the system, allowing the electrospray droplets to

be effectively discharged before they explode.

Another interesting feature of this system is that we can easily collect those particles

by properly incorporating an extraction system. Due to the fact that, after the

particle charge has been reduced sufficiently, they do not follow (at least with the

same strength) the electric field anymore, they could be extracted by the gas velocity

field, obtaining a high collection efficiency.

To check the robustness of our system, different polymer solutions with different

electrical conductivities have been used, producing PS, PVP, chitosan particles.

Another possible advantage of reducing the droplet charge is that, since the through-

put of a single emitter is too low from an industrial point of view, a barrier needs

to be overcome: scaling-up the process. But in a multiple-emitter electrospray, the

space charge might a problem in terms of developing a miniaturized system. Then,

managing the space charge by controlling the charge reduction might be a key point

in order to scale-up the process.
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— A scientist in his laboratory is not a mere technician:

he is also a child confronting natural phenomena that

impress him as though they were fairy tales.

Marie Curie

1
Introduction and Aims

1
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1.1 Particle Engineering Encapsulation

The concept of nanotechnology was firstly introduced by Richard Feynman, physicist

and Nobel Prize laureate, on December 29, 1959, during the American Physical

Society’s annual meeting (Feynman, 1960) in a lecture entitled “There’s Plenty

of Room at the Bottom”. He discussed about the problem of manipulating and

controlling things on a small scale, challenging the audience with questions like how

to write the entire 24 volumes of the Encyclopaedia Britannica on the head of a pin.

He also discussed the question of how to read it, and even further, how to make

copies of it.

In recent years, Nanotechnology has become a strong branch in the never-ending

story of Science, and more specifically, Particle Engineering plays an important

role given that not only nanoparticles (< 100 nm), but also submicroparticles (<

1 µm), and small microparticles (1-10 µm) (Nature, 2019) are receiving increasing

interest in diverse technological and scientific applications (Anderson et al., 2016;

Bayda et al., 2020). Therefore, there exists a significant need for the development

of efficient delivery methods and carriers.

Particle size monodispersity, as well as ‘shape monodispersity’, are critical in some

applications of polymer-based micro- and nanoparticles. In nutritional and medical

applications, the overall objective is to enhance the targeted and prolonged pharma-

cological effect, thus obtaining an efficient drug delivery. Then, particle size matters

since these particles will be delivered to the body through different delivery routes,

and for some administrations not only very specific sizes are required (i.e. inhal-

able route size 1-3 µm is desirable) but also very small sizes (intravenous delivery)

2
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1.1. Particle Engineering Encapsulation Chapter 1. Introduction and Aims

(Kipp, 2004; Bisht et al., 2010; Emami et al., 2018; Calzoni et al., 2019). Moreover,

particulate delivery systems protect the pharmaceutical compound from degrada-

tion immediately after preparation, while storing, and during transportation, and,

even further, providing certain benefits which reduce side effects such as improved

bioavailability, biocompatibility, and, absorbability (Elsabahy and Wooley, 2012;

Cejková et al., 2013; Webster et al., 2013; Wicki et al., 2015; Montané et al., 2020;

Dima et al., 2020; Cun et al., 2021). In summary, these particles are used as vehicles

for drug delivery (Xie et al., 2006b; Xu et al., 2009), where the release profile of an

encapsulated active pharmaceutical ingredient (API) is strongly influenced by the

particle size.

Promising developments also concern agricultural industry in applications like fer-

tilizers, pesticides, herbicides, sensors and quality stimulants, among others, where

there is a need for continuous innovation due to the growing global challenges of

food security and climate change (Parisi et al., 2015; Paramo et al., 2020; Sharma

et al., 2021; Dhiman et al., 2021). Encapsulation of nanoparticles protects the ac-

tive content and can affect diffusion, interaction and activity. Furthermore, Particle

Engineering has also become important in the cosmetic (Katz et al., 2015; Bilal

and Iqbal, 2020; Fytianos et al., 2020), food (Sridhar et al., 2021), animal feed

(Hill and Li, 2017; Peters et al., 2016), chemical (Qu et al., 2013; Ibrahim et al.,

2016), electronics (Tan et al., 2019), and other industries, seeking to alter particles’

characteristics to allow businesses to deliver better products and services.

The industrial production of particles by liquid-to-particle conversion provides a

simple, low cost, and chemically versatile manufacturing route over broad ranges of

particle sizes and morphologies (Okuyama and Lenggoro, 2003). Indeed, different

widely used Particle Engineering technologies have implemented diverse and complex

designs to develop particle delivery systems, mainly for biological purposes Wan et al.

(2013); Giorgiutti-Dauphiné and Pauchard (2018); Pardeshi et al. (2021), such as

spray drying (Masters, 1991), emulsion solvent evaporation method (Park and Kim,

2004; Sheorey et al., 1991), spray freeze drying (Schiffter et al., 2010; Sebastiao et al.,

2019; Adali et al., 2020), complex coacervation (Rutz et al., 2017; Brito de Souza

et al., 2020), and many more (Pawar et al., 2018).

3
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In addition, some authors have developed numerous conventional methods for pro-

ducing microspheres from a polymer-containing solution: Berkland et al. (2001)

combined an acoustic excitation method with a non-solvent carrier stream to pro-

duce poly(d,l-lactide-co-glycolide) PLG microspheres. They precisely controlled the

droplet size distribution for a wide diameter range, from ∼5 to >500 µm. But for

spheres as small as ∼1–2 µm in diameter the size distribution was broader. They

also showed results in encapsulation and in vitro release of a model drug compound,

rhodamine B. Artiga et al. (2020) used an inkjet-based technology to encapusulate

14 nm diameter gold nanoparticles (AuNPs) in a chitosan hydrogel, genereting 30

µm diameter polymeric particles, where they obtained a high throughput, though.

They demonstrated biocompatible cell-adhesion properties and resist degradation

over a large range of pH, being relevant for a variety of potential health applications.

Xu et al. (2009) used a microfluidic flow-focusing device to fabricate monodisperse

biodegradable drug-loaded microparticles, engineered with defined sizes, ranging

from 10 µm to 50 µm, and being nearly monodisperse (polydispersity index = 3.9

%).

More specifically, Spray Drying (Masters, 1991), one of the most commonly used

techniques, has successfully been developed for the generation of droplet sizes of the

order of tens and hundreds of microns, where a wide dispersion of droplet sizes can

be tolerated. This technique has been implemented for the industrial production

of dried foods, pharmaceuticals, and fertilizers (Wang and Langrish, 2009; Vehring

et al., 2020; Boel et al., 2020), among others.

But, yet, it has been difficult to extend such approaches to the droplet size range

below about one micrometer (Sosnik and Seremeta, 2015; Salama, 2020; Malamatari

et al., 2020; Jafari et al., 2021). Making homogeneous micrometer and nanometer

droplets by liquid fragmentation with high energy efficiency is inherently difficult,

as the conversion of mechanical energy to surface energy must be controlled at

nanometric scales (Rosell-Llompart and Gañán-Calvo, 2008).

4
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1.2. Electrospray Technique Chapter 1. Introduction and Aims

1.2 Electrospray Technique

1.2.1 Introduction

Electrohydrodynamic atomization (EHDA), also known as electrospray, is gaining

research interest in different fields such as pharmaceutics. Among its advantages

over other liquid atomization methods includes its ability to produce much smaller

particles (in the few-microns and nano-metric size ranges) with size homogeneity

(Bodnár et al., 2018; Smeets et al., 2018) and high energy efficiency (Rosell-Llompart

et al., 2018; Gañán-Calvo et al., 2018).

Early fundamental studies on instabilities of electrified liquids where conducted by

Rayleigh (1878, 1882). Later, Zeleny (1917) described for the first time long jets of

electrified glycerin, becoming a pioneer in the electrospray technique. Key contribu-

tions were made by Taylor (1964), who analyzed the electro-hydro-static equilibrium

of conical menisci. From that moment, the electrospray was reborn and nowadays

is commonly used in many fields, existing many reviews about it, for a wide range

of applications.

In the electrospraying process, the liquid to be atomized is electrified in order to

establish a high non-uniform and axisymmetric electric field at the vicinity of the

liquid meniscus. This field pulls the liquid in the direction of minimum potential,

thus causing the liquid-gas interface to adopt a conical shape. Then, when the

electric stresses overcome the surface tension, from the tip of such Taylor cone

meniscus (Taylor, 1964) a steady micro-jet is emitted, which breaks up into highly

charged tiny droplets (Fig. 1.1). The so-called cone-jet mode (Rosell-Llompart

et al., 2018) is sustained by continuously feeding liquid to the Taylor cone, typically

through a capillary tube. Downstream, the high electrical charge on the droplets

produces the Coulomb repulsion between each other forming the characteristic spray

plume. Notably, the jet breakup often happens by the Rayleigh mechanism, which

periodically releases droplets in repeatable sizes (Hartman et al., 2000), resulting in

narrowly dispersed droplet sizes, from micrometer to nanometer scale, depending

on liquid properties and operating conditions (Rosell-Llompart and Fernández de

la Mora, 1994; Chen et al., 1995). Indeed, at the minimum flow rate (Qmin) not
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Figure 1.1. Electrospray main operation elements. Left: Conventional ES

setup. Right: Droplet emission region.

only the smallest possible jet is developed, thus the smallest droplets are produced,

but also the jet breakup is more regular, favouring the size monodispersity (Rosell-

Llompart and Fernández de la Mora, 1994; Gañán-Calvo et al., 2013; Scheideler and

Chen, 2014).

Some other features, that make the electrospray technique as unique, are related

to the electrical charge carried by the droplets, which are unfeasible in other at-

omization techniques. For example, the aggregation is prevented since the charged

droplets repel each other and therefore the size distribution is not distorted. The

trajectory of the droplets (i.e. the shape of the electrospray plume) can be modified,

if necessary, by tuning the electric field. This is possible to a certain extent since

the space charge plays an important role. A clear example is shown in Sochorakis

et al. (2019), where the authors used an additional electrode to conveniently direct

several electrospray plumes in a linear array preventing lateral tilting.

Another advantage over other atomization systems when using a solution that con-

tains solutes such as polymers or colloidal particles is that, since the micro-jet is

roughly a couple of orders of magnitude smaller than the nozzle, clogging in the cap-

illary tube may be easily prevented. Typically, the jet diameter is a few micrometers

while the nozzle diameter is usually tens to few hundreds of micrometers.
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In other atomization methods, like spray drying, it is common the use of gas streams

to produce droplets, making the process more energetically expensive, whereas in

electrospray the electrical force is predominant over inertia and no other energy

sources are needed.

Other important applicable feature is that, since electrospray is based on lami-

nar micro-flows, different liquids can be coaxially combined forming coaxial jets

in order to produce structured multi-phase droplets, which can be used to make

core-shell particles (Loscertales and Gañán-Calvo, 2002; Loscertales et al., 2004;

Gómez-Mascaraque et al., 2019; Smeets et al., 2019).

Unfortunately, a noticeable issue is the low throughput that can be a problem for

some applications in terms of productivity, where attempts for higher production

evolves nozzle designs (Morad et al., 2016). Then, there is a need for scaling up

the process by increasing the number of emitters to increase the throughput (Bo-

canegra et al., 2005; Deng et al., 2006; Deng and Gomez, 2007; Almeŕıa et al., 2011;

Yang et al., 2012; Lojewski et al., 2013; Olvera-Trejo and Velásquez-Garćıa, 2016;

Sochorakis, 2018; Sochorakis et al., 2019).

In sum, electrospray (ES) is a feasible technique for nebulising liquids to produce

charged micro- and nano-sized droplets, with near size monodispersity, being an un-

rivalled method compared to other liquid atomization methodologies, which produce

larger droplets, and/or wider dispersion of droplet sizes.

1.2.2 Electrospray operation and scaling laws

The simplest electrospray setup may be formed by few elements (Fig. 1.1). First

element is a metallic capillary tube by which the conductive liquid is pumped to a

nozzle. In order to obtain a fine control of the steady liquid flow rate of the order

of nl/min to µl/min, the feeding is usually carried out by pressurizing the line or by

means of a liquid pump. Another important element is a high voltage power supply

(HVPS), which is connected to the capillary tube, providing electrical potential to

the liquid meniscus.

To establish the electrostatic field that pulls the liquid meniscus from the nozzle,
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an Earth-grounded counter electrode is usually placed at a given distance. Since

the droplets are driven towards the counter electrode, the distance depends on the

application requirements (space flexibility, liquid evaporation rate, particle drying,

deposition spot area, etc.).

Beyond the conventional setup, another not mandatory element, but widely used

for spray stability, is the extractor ring electrode. This additional element is sym-

metrically placed near the electrospray capillary tube. In down or up configuration,

the voltage difference between both the extractor ring and the liquid meniscus es-

tablishes the electric field necessary to generate the electrospray. An advantage of

the ring down configuration is that, downstream the extractor ring, the distance

adjustment with a counter electrode allows more flexibility due to the Taylor cone

is screened from external electrodes.

The parametric space defined by both the voltage (V ) provided to the ES liquid

and the liquid flow rate (Q), at which the system operates stable, was studied by

Cloupeau and Prunet-Foch (1989), where they discovered the existence of a stability

island defined by the minimum and maximum parameter values with respect to the

configuration of the electrodes in the system. Outside the stability island boundaries,

a variety of electrohydrodynamic (EHD) modes develop, where the most commonly

used are:

— Periodic EHD modes: Electro-dripping1, Spindle2, Intermittent cone-jet3.

— Steady EHD modes: Cone-jet4, Multi-jet5.

— Cone-jet sub-modes: Varicose jet breakup6, Whipping jet7.

Furthermore, the stability of the electrospray is also governed by the liquid mechan-

ical and electrical properties. Consequently, a decrease of the volumetric flow rate

(Q) will be imposed by an increase on the electrical conductivity (K). Likewise, an

1Cloupeau and Prunet-Foch (1990); Verdoold et al. (2014); Hijano et al. (2015)
2Sample and Bollini (1972); Cloupeau and Prunet-Foch (1990); Grace and Marijnissen (1994);

Jaworek and Krupa (1999)
3Smith (1986); Juraschek and Röllgen (1998); Marginean et al. (2004); Bober and Chen (2011)
4Cloupeau and Prunet-Foch (1990); Hijano et al. (2015); Rosell-Llompart et al. (2018)
5Cloupeau and Prunet-Foch (1990); Grace and Marijnissen (1994); Juraschek and Röllgen

(1998)
6Huebner and Chu (1971); Grace and Marijnissen (1994); López-Herrera et al. (2005)
7Huebner and Chu (1971); Ku and Kim (2002); Barrero and Loscertales (2007); Eggers and

Villermaux (2008)
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increase of the surface tension (γ) will impose an increase on the voltage (V ) needed

to sustain the stable cone-jet mode.

Different authors have developed physical models to predict the scaling laws that

govern the electrospray process. Fernández de la Mora and Loscertales (1994) pro-

posed, based on experimental work, theoretical considerations, and dimensional

analysis, that for given liquid properties and operation conditions, the jet radius

(rj), as well as the electrical current (I) could be predicted (for a liquid with high

electrical conductivity (K)) by the following scaling laws:

rj ≈
(
Qε0εr
K

)1/3

(1.1)

I = f(εr)

(
γKQ

εr

)1/2

(1.2)

where εr is the relative permittivity of the liquid, ε0 is the electrical permittivity of

vacuum (8.854 pF/m), γ is the surface tension, and f is an empirical function.

Independently, Gañán-Calvo et al. (1997) proposed the following scaling laws:

rj = Q1/2

(
ρε0

π4γK

)1/6

(1.3)

I = 4.25

 γQK

ln
(√

Q/Q0

)
1/2

(1.4)

where is defined as Q0 = γε0/Kρ, being ρ the liquid density. They considered

that the droplet diameter can be deduced as dd ∼ 2.3rj, convenient for practical

purposes.

Due to the increasing interest on the electrospray technique, there exist further

efforts for revising the scaling laws for much wider liquid properties ranges (Chen

and Pui, 1997; Hartman et al., 1999; Gañán-Calvo, 1999, 2004; Ku and Kim, 2002;

Gamero-Castaño and Hruby, 2002; Smith et al., 2006; Basak et al., 2007; Higuera,

2009; Gañán-Calvo and Montanero, 2009; Maißer et al., 2013; Gañán-Calvo et al.,

2013; Xia et al., 2019).

Even though polymer solution electrospray (Faramarzi et al., 2016; Smeets et al.,
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2017; Bodnár et al., 2018) is a widely used technique, unfortunately, despite a well-

established theoretical framework exists for pure solvents electrosprays, the com-

plexity of the mechanisms involved requires an improvement of the understanding

on this area.

1.2.3 Applications of electrospray

Interest in the electrospray route for producing small droplets and particles has been

rekindled in different areas (Yurteri et al., 2010; Bock et al., 2012). In addition, due

to features like high droplet charge number, dispersion of droplets by electrical

repulsion, etc, there exists a wide range of applications where electrospray is used.

Yamashita and Fenn (1984) settled down the electrospray technique as a novel ion

source. They succeeded in the production in vacuo of a wide variety of cluster

ions for examination by various spectroscopic techniques. In 2002, Professor John

Fenn was awarded a share of the Nobel Prize in Chemistry (Fenn, 2003) for his

contributions specifically related to the development of electrospray ionization (Fenn

et al., 1989, 1996). Nowadays, Electrospray ionization mass spectrometry (ESI-MS)

is a commonly used technique for large molecules and routine liquid chromatography-

tandem mass spectrometry.

The fact that droplet trajectories are controlled by the electrical field makes elec-

trospray deposition (ESD) very suitable for making thin coatings and particulate

films on a counter electrode for different applications (Hoyer et al., 1996; Hogan

et al., 2007; Hogan and Biswas, 2008; Jaworek, 2007a; Rietveld et al., 2006; Khan

et al., 2012; Gulfam et al., 2012; Bodnár and Rosell-Llompart, 2013; Arumugham-

Achari et al., 2013; Altmann et al., 2014; Tang and Gomez, 2017; Jaworek et al.,

2018). In energy production, storage and conversion devices, ESD has been used

to improve the performance of materials, such as solar cells, photo-electrochemical

cells, rechargeable batteries, and capacitors Tang et al. (2016); Kelder et al. (2018);

Castillo et al. (2018). Recently, ESD has been used for applications using (O)LEDSs

for lightning devices, and quantum dots to achieve luminescent properties (Koekoekx

et al., 2020), or in biomolecule deposition (Morozov, 2010; Librán et al., 2017;
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Kavadiya and Biswas, 2018).

Due to the unique feature which is the generation of sized monodisperse droplets,

electrospray is widely used on particle synthesis (Fantini et al., 2006; Jaworek and

Sobczyk, 2008; Almeŕıa et al., 2010; Bock et al., 2012; Pawar et al., 2018). As men-

tioned above, with great interest on the pharmaceutical and nutraceutical industries,

solid biodegradable micro- and nanoparticles made out of polymer are widely used in

therapeutics for remedial treatment of diseases (drug delivery, biomedical imaging,

implant coating, tissue engineering, sensing...) (Yurteri et al., 2010; Chen and Pui,

2010; Bock et al., 2012; Nguyen et al., 2016; Mai et al., 2017; Nikolaou and Krasia-

Christoforou, 2018; Boda et al., 2018; Sverdlov Arzi and Sosnik, 2018; Steipel et al.,

2019; Wang et al., 2019; Ali et al., 2021; Rostamabadi et al., 2021), due to enhanced

solubility of a payload of drug in order to improve drug stability and bioavailability.

Furthermore, depending on their size, the particles can be targeted to different body

organs with controlled drug release

Another application with increasing interest is related to the field of satellite propul-

sion, where electrospray thrusters are a type of electrostatic propulsion. Nowadays,

the miniaturisation of satellites, as well as the increasing number of commercial

launches, are highlighting the need for electric propulsion, which makes the tech-

nique of electrospray useful as it can work in the thrust range of a few micro-Newtons

(Gamero-Castaño and Hruby, 2001). Recent developments use ionic liquids as a pro-

pellant, providing efficient propulsion capabilities to micro and nano satellites (1–100

kg) when very precise positioning is required for space missions (Gassend et al., 2009;

Dandavino et al., 2014; Lemmer, 2017). Depending on the emission regime from the

Taylor cone, there are two types of electrospray thrusters that expands the possibili-

ties: colloid thrusters rely on droplet emission, and field emission electric propulsion

(FEEP) thrusters rely on ion emission. Microfabricated arrays have been developed

by some authors to obtain increase thrust (Lemmer, 2017; Dandavino et al., 2014;

Gassend et al., 2009; Alexander et al., 2006; Stark et al., 2005; Alexander et al.,

2006; Gassend et al., 2009; Dandavino et al., 2014; Lemmer, 2017).

Some other fields where electrospray has a significant influence must be mentioned:

As a source of droplets or particles for calibration of aerosol instruments (Hogrefe
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et al., 2004; Steiner et al., 2017) or sizing of different types of colloids (oxides, metals,

and polymers) (Lenggoro et al., 2002), in food technology, where food encapsulation

and packaging are enhanced the food properties and conservation (Gomez-Estaca

et al., 2012; Khan et al., 2012; Gomez-Estaca et al., 2012; Echegoyen et al., 2017;

Librán et al., 2017; Gómez-Mascaraque et al., 2019; Tsai and Ting, 2019; Yilmaz

et al., 2019; Niu et al., 2020; Wang et al., 2020; Torres-Giner et al., 2020), or the

increasing interest in cosmetics (Mehta et al., 2017; Bae et al., 2019).

The effect of glow corona discharge present during electrospraying for given condi-

tions has been used for decontamination of liquids or in material processing (Jaworek

et al., 2019).

Other approaches for the production of nanomaterials are, for example, emulsion

electrospray (Wang et al., 2013; Jaworek, 2008; Wang et al., 2013; Ho Lee et al.,

2021), and ES combined with its electrohydrodynamic twin technique, electrospin-

ning (Zong et al., 2018; Dai et al., 2018).

1.2.4 Droplet charge as a problem

Even though the electrical charge carried by the electrospray droplets is usually an

advantage, unfortunately, from the point of view of using electrospray to produce

particles, the net electrical charge carried by the droplets leads to several issues.

First, when making non-conductive particles collected as a particulate film on a

substrate under the spray, the buildup of static charge on the film causes the pro-

gressive expansion of the electrospray plume (Bodnár and Rosell-Llompart, 2013).

Meanwhile, hypothetically, micro-discharges in the film could develop, damaging the

particles (although, to our knowledge, the existence of micro-discharges inside elec-

trospray films has not been directly observed) (Uecker et al., 2010). Second, when

multiplexing electrosprays, the electrostatic repulsion between different sprays lim-

its the scalability of the process (Bocanegra et al., 2005; Deng et al., 2006; Almeŕıa

et al., 2011; Sochorakis et al., 2019). Thirdly, the charged droplets attain fast speeds

in the high electrical field (of order m/s) and can reach the collection electrode as

incompletely dried particles, thus forming a continuous film instead of a particu-
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late film. This situation is favored with low volatility solvents (e.g. DMF), larger

droplets (several micron in diameter, commonly encountered), and multiplexed sys-

tems, where the spray cannot be allowed to expand much (Sochorakis et al., 2019).

Coulombic instabilities of the droplets

A fourth issue caused by the high electrical charge on the droplets is the occurrence of

the so-called Coulombic instabilities (CIs), which trigger during droplet evaporation

when the destabilizing electrical stress on the droplet’s surface (where the net charge

resides) grows to the point at which it exceeds the stabilizing capillary tension stress,

which grows slower (Gomez and Tang, 1994; Davis and Bridges, 1994; Saville, 1997;

Duft et al., 2003).

Theoretically, the Coulombic instability will occur, for a spherical charged droplet

of an inviscid perfectly conducting fluid, when it reaches a critical droplet diameter

(Rayleigh, 1882):

dR =

(
q2

8π2ε0γ

)1/3

, (1.5)

where q is the droplet charge, γ is the surface tension coefficient of the liquid, and ε0

is the electrical permittivity of vacuum (8.854 pF/m). Some authors use the Rayleigh

limit charge expression related to the electrical charge necessary for a droplet with

diameter d to undergo droplet fission (Fernández de la Mora, 2007):

qR =
√

8π2ε0γd3 (1.6)

Coulombic instabilities are particularly detrimental for liquid-to-particle conversion,

as they lead to non-spheroidal (elongated or filamentous) particle shapes or mixed

fragment sizes (Li et al., 2007; Almeŕıa et al., 2010; Bodnár et al., 2018). Fig. 1.2

shows an example of polystyrene particles, produced in our laboratory, carrying

filaments due to Coulombic instability events during drying. CIs can sometimes be

prevented by the early formation of a solid shell on the evaporating droplet (Bock

et al., 2012; Almeŕıa and Gomez, 2014; Bodnár et al., 2018). In the case of polymeric

solutes, this strategy works only within a narrow range of solute concentrations
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(Fantini et al., 2006; Meng et al., 2009), while sometimes only working in one region

of the spray (due to even slight differences in droplet size and charge) (Bodnár,

2016). Another way an early shell may form is by uptake of a non-solvent vapor,

e.g., at ambient relative humidity (Bodnár et al., 2018).

Figure 1.2. SEM images of polystyrene particles carrying filaments devel-

oped due to Coulomb instabilities.

1.2.5 Charge reduction of electrospray droplets

Reducing the droplet charge may be a steeping-stone on the way to prevent the

Coulomb instabilities, as well as other charge related issues like those mentioned

above. Few authors have discussed about the usefulness of discharging electrosprays,

probably due to the fact that the charge itself constitutes an advantage for their

applications. Indeed, controlled discharging (total or partial) of electrosprays may

be necessary for different practical purposes. For instance, in the case of particle

production, reducing significantly the electrical mobility of the droplets may lead

to obtain free aerosols, and consequently to easily transport the particles to be

collected, minimizing the particle losses (provoked, without discharging, by space

charge), and with the advantage of the possibility of controlled manipulation of the

transported particles (not possible in general electrospray applications) (Yurkstas

and Meisenzehl, 1964; Noakes et al., 1989; Cloupeau, 1994). For example:

— Tuning the drying path when the solvent evaporation rate is low to help the

particles to properly dry.

— Heating the neutralized particles along a tubular oven to make them solid (not
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hollow) and, moreover, reducing their size.

In addition, it is well-known that the throughput of a single emitter is too low from

an industrial point of view, thus a barrier needs to be overcome: scaling-up the

process. But in a multiple-emitter electrospray (Sochorakis et al., 2019), the space

charge might be a problem in terms of developing miniaturized systems. Then,

managing the space charge by reducing the droplet charge in a controlled manner

may be a key point in order to scale-up the process.

Therefore, we believe that the discharge of electrospray droplets can be a tool for

manipulating the transported electrosprayed droplets/particles.

Aerosol charging/discharging. Brief review

The transport of aerosol particles is influenced by the net electrostatic charge they

carry (Liu et al., 1985; Pähtz et al., 2010), both in natural environments as in artifi-

cial systems, generated in industrial production or in the laboratory (Forsyth et al.,

1998; Hinds, 1999). The electrical charge may be desirable or undesirable. As an

example of desirable, the net electrical charge on aerosol particles is famously used

for characterizing the size distribution of ultrafine aerosol particles, by determina-

tion of their electrical mobility (Cheng et al., 1981; Flagan, 2011). Net electrical

charge is also important in the electrical sensing/detection of particles constitutes an

important method for aerosol measurement (such as in mobility spectrometers (Rus-

sell et al., 1995), diffusion charging-based sensors (Burtscher, 1992), electrical low

pressure impactor (ELPI) (Keskinen et al., 1992)). Advantages of electrical sensing

over optical sensing is cost, the possibility to miniaturize, and to collect with high

time resolution (< 1s); see Dhaniyala et al. (2011). Electrodynamic levitation of

particles is another important example of the importance of charge (Wuerker et al.,

1959; Davis, 1997; Achtzehn et al., 2005; Conangla et al., 2020). Electrical charge is

also exploited in particles sampling (Flagan and Seinfeld, 1988) and in electrostatic

precipitators and other devices designed to remove particles from gas/air streams

[electrostatic air cleaning] (Cheng et al., 1981; Mizuno, 2000; Jaworek et al., 2007,

2006). In this case, active charging of the aerosol particles is necessary to achieve

as high a charge state as possible, so field charging by corona discharges is common
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(Flagan, 2011).

On the other hand, the electrical charge may also be undesirable, thus existing a

need for reducing the charge, for example, to reduce electrostatic losses in aerosol

measuring equipment, or to establish a reference low charge state in aerosol dif-

ferential mobility analyzers. Then, when undesired, the aerosol particles can be

neutralized. In unipolar clouds, such as aerosols created artificially, the neutral-

ization of the cloud needs the droplets to be presented with a bipolar or unipolar

stream of ions (of opposite polarity for the latter). This is for example the case of

the electrospray technique (Rosell-Llompart et al., 2018).

First attempts to reduce aerosol charge involved the use of radioactive sources

(Cooper and Reist, 1973; Fan et al., 2003; Ji et al., 2004), bipolar corona discharge

(Zamorani and Ottobrini, 1978; Adachi et al., 1983, 1993; Romay et al., 1994; Stom-

mel and Riebel, 2004), photoionization by UV-light (Burtscher et al., 1982; Matter

et al., 1995) and by soft X-ray radiation sources. Also aerosol neutralization by

post-DBD (dielectric barrier discharge) has been suggested (Mathon et al., 2017).

In the particular case of electrosprays, some authors have tried to neutralize them

by similar techniques (Yurteri et al., 2010), such as radioactive sources (Lewis et al.,

1994; Chen et al., 1995; Kaufman et al., 1996; Lenggoro et al., 2000; Frey et al.,

2005; You et al., 2014), with the disadvantage that in many laboratories the use

of radioactive materials is forbidden, or a proper licensing is difficult to obtain.

Others are oppositely charged electrosprays (Borra et al., 1999; Camelot et al., 1999;

Morozov, 2011; Fu et al., 2012; Mou et al., 2013; Tang et al., 2016, 2017; Fernandez

de la Mora and Barrios-Collado, 2017; Fernandez de la Mora, 2018), soft X-rays

(Modesto-Lopez et al., 2011; Liu and Chen, 2014) or sub-kHz AC electrospray (Dau

et al., 2020).

The corona discharge approach was attempted in producing inhalation aerosols for

drug delivery (Noakes et al., 1989; Zimlich et al., 2002; Davies et al., 2005), phar-

maceutical particles (Tang and Gomez, 1994; Ijsebaert et al., 2001; Zimlich et al.,

2002; Davies et al., 2005; Xie et al., 2006b,a; Ciach, 2006, 2007; Xie and Wang, 2007;

Almeŕıa and Gomez, 2014), and ceramic powders (Rulison and Flagan, 1994; Tang

et al., 2017). One advantage of this method over others is the higher concentra-
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tion of ions generated. An interesting design for production of particles which uses

corona discharge is the so-called “Delft Aerosol Generator” (DAG), firstly intro-

duced by Meesters et al. (1992), where the corona discharge needle is naked, facing

the electrospray nozzle. Other authors used a device similar to the DAG (Hartman

et al., 1995; Xie et al., 2006b), and Cloupeau (1994), being first in isolating corona

needle using counter electrodes for ES and corona discharge, dedicated a critical

study section to the DAG device. In this case, they do not report information

about droplets reaching the corona needle affecting the corona discharge process,

or, otherwise, amount of ions reaching the Taylor cone, affecting the electrospray

stability. Other authors isolated the corona by a cylindrical mesh (Ebeling et al.,

2000; Lu and Koropchak, 2004). Interestingly, corona ions have also been used to

charge-reduce droplets and analyte ions in electrospray ionization mass spectrome-

try (ESI-MS) (Fenn, 2003), an analytical technique by which solutes (importantly,

proteins and large biological entities) can be transformed into gas-phase ions and be

weighed by standard mass spectrometers (Ebeling et al., 2001, 2000; Bornschein and

Ruotolo, 2015; Campuzano and Schnier, 2013). However, the aim in these studies

is ion analysis; therefore, the optimal configurations and chemical compositions of

those studies do not apply to the goal of producing particles.

In none of the mentioned works where the electrospray is combined with corona ions

to make particles could we find data on the droplet discharging efficiency, the particle

morphology changes, or their dependence on the independent variables of the prob-

lem (electrode geometrical parameters, corona conditions, electrospray conditions,

etc.). Nor have the ion losses and droplet losses to the electrodes been investigated

typically, despite their importance. All these important questions must be answered

to improve and optimize electrospray-corona systems. Some authors have published

numerical methods to simulate the mechanisms concerning the electrospray neu-

tralization (Higuera, 2016; Khalifehei and Higuera, 2020), and, in addition, such

data should be useful for informing numerical simulations on these systems. One

recent exception is Mustika et al. (2021), focused on producing low-charge airborne

nanoparticles by electrospraying dilute nanoparticle suspensions, and having unsuit-

able particle losses for our purpose.
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1.2. Electrospray Technique Chapter 1. Introduction and Aims

1.2.6 Corona discharge

A well-known method to generate unipolar ions is the corona discharge (Townsend,

1915; Goldman et al., 1985; Chang et al., 1992; Adamiak and Atten, 2004), an

atmospheric-pressure plasma. It consists of a stream of ions generated at a high-

field ionization region by electrical breakdown of the surrounding gas around the

active sharp electrode. The emission begins when the electric field near the electrode

surface reaches a certain threshold, E0. Theoretically, the threshold (E0) at the tip

of a hyperbolic point can be written in the form of the Peek’s law:

E0 = 3.1× 104δ

(
1 +

0.308√
0.5δr

)
(1.7)

where δ = PT0/P0T , and r is the electrode radius in cm, T0 the standard tempera-

ture, T the actual temperature, P0 the standard pressure and P the actual pressure

of gas.

In the low field drift region, which connects the ionization region with the low

potential counter electrode, ions or electrons, when positive or negative polarity,

respectively (Loeb, 1948), are drifted reacting with neutral gas molecules. The space

charge field will determine the ion density distribution and the I-V characteristics

(Townsend, 1915; Lama and Gallo, 1974; Giubbilini, 1988), which, for a point-to-

plane configuration, follows the so-called Townsend’s law:

IC
VC

= C (VC − V0) (1.8)

where IC is the corona current emitted at the needle tip, VC is the corona voltage

provided to the needle, and C is a constant that depends on the system configuration.
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— We are just an advanced breed of monkeys on a minor

planet of a very average star. But we can understand

the Universe. That makes us something very special.

Stephen Hawking

2
Unipolar Corona Ion Source for

Electrospray Droplet Discharging
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2.1 Introduction

The generation of highly charged droplets by the electrospray technique (Rosell-

Llompart et al., 2018) may lead to several issues, thus reducing their charge is

needed. One example is when polymer solution electrosprays are used to produce

homogeneous particles and the net electrical charge carried by the droplets may

trigger occurrence of the so-called the Coulombic instabilities (Bodnár et al., 2018),

thus distorting the particle size distribution and morphology.

In our study, focused on electrospray neutralization for the production of globular

particles, one of the important design decisions was whether the needle should be

exposed or hidden behind an orifice (Cloupeau, 1994). In prior works, the corona

needle has been hidden by different ways (Frey et al., 2005; Nagato et al., 2006;

Viikov et al., 2009), but none of them have studied the effect of the orifice size on

the extracted current. If the corona needle is exposed to the spray, then the field

lines pervading the zones of the spray will be focused on the needle, so the droplets

will/may have a strong tendency to accumulate on the needle if they are not neu-

tralized. Whereas if the needle is hidden behind an orifice, the ion current extracted

can be in principle be regulated or reduced to the level needed to achieve the dis-

charging of the spray. Another advantage of hiding the needle is that the system

becomes more controllable. This is due to the fact that both corona needle and

electrospray (or any other external system) are thus electrostatically isolated from

each other, with the possibility of controlling each electrostatic field independently,

which is very important in order to tune the extracted corona current to properly

study the effects of the ions on the electrospray droplets. In case of polymer solu-
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2.1. Introduction Chapter 2. Unipolar Ion Source

tion electrosprays, the final particle shape, size, or any other characteristic, may be

affected by the amount of ions that collide with the particles, reducing the charge,

before they are being dried.

Our objective was the development and characterization of an ion generating device

suitable for the neutralization of electrosprays in the 10-100 nA range. Although

electrosprays have currents in a broader range, typically between about 10 nA (for

large particles) and about 500 nA (for small droplets from highly conductive liq-

uids). However, we focus on the 10-100 nA range where electrospray currents typi-

cally lie when used for producing small microparticles and submicrometer particles

from polymeric solutions (Bodnár, 2016; Bodnár et al., 2018; Carrasco-Munoz et al.,

2021). In this study we determine the configurations leading to stable production of

ions in this current range, and we characterize the distribution of the extracted ions

(ion profiles) and the sensitivity of the extracted current and ion profiles to key ge-

ometrical parameters. Our hypothesis is that it is possible to neutralize (or severely

discharge) an electrospray plume by a corona ion plume having similar current in a

coaxial configuration.
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2.2. Methodology Chapter 2. Unipolar Ion Source

2.2 Methodology

2.2.1 Corona ion source design

A purpose-made unipolar ion source was built. It consisted of a corona discharge

needle (15 µm tip radius, 32o total angle), made by sharpening a tungsten rod (Alfa

Aesar, 1.5 mm diameter), axi-symmetrically anchored inside a modified tee connec-

tor (IDEX P-714 Low-Pressure Tee Assembly, Natural PEEK) which acts as the

housing. The anchoring was made by a PEEK nut and an PTFE ferrule flangeless

fitting (parts of the IDEX P-714). A head electrode (Fig. 2.1a), mechanized from a

brass rod (RS, 12 mm diameter), was used as an Earth-grounded counter electrode,

and had an orifice through which the ions were extracted. The voltage difference

between the corona needle and the head electrode establishes the electric field to

sustain the corona discharge. Fig. 2.1b shows a photography of the device where

the housing is capped with the head electrode. The applied electric potential at

the corona needle was provided by a HVPS (Ultravolt HVRACK-4-250-0032), and

continuously monitored by means of a HV probe (Testec, TT-HVP-40, 109Ω). The

current at the head electrode was measured by a picoammeter (Keithley 6485). Syn-

thetic air was fed to the corona discharge region at a low flow rate QC (13.3 ml/min,

corresponding to a plug-flow gas speed of 71 mm/s). The corona discharge needle,

centered and tight inside the device. The Earth-grounded head electrode, through

a nanoammeter, measured the non-extracted current from the ions that did not exit

the device through the orifice. Therefore, the voltage difference between the corona

needle and the head electrode orifice, at a given distance d (Fig. 2.1a), established

the electric field needed to sustain the corona discharge. The polarity used for the

corona discharge was negative because it is highly localized at atmospheric pressure

conditions: air at 1 atm.

Since the head electrode orifice allows the ions to pass through it, both diameter

and thickness are important parameters that are studied. For this purpose, different

head electrodes were mechanized with different orifice sizes for both diameter, a, and

thickness, t, shown in Table 2.1. The edge of each orifice was hand polished trying

to make it both rounded and smooth enough to prevent sparks.
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2.2. Methodology Chapter 2. Unipolar Ion Source

(a) Configuration inside the head electrode (b) Ion source

Figure 2.1. Elements of the ion source device. (a) Sketch of the head

electrode, including the interior of the ion source with the corona discharge

needle and the PEEK thread where the head electrode is screwed. The zone

between the needle tip (high voltage) and the orifice (low voltage) is the

ionization zone. (b) Picture of the device used as an ion source.

Table 2.1. Head electrodes orifices dimensions, where a is the diameter and

t is the thickness. Coloured cells match with each other in one parameter. In

all cases, D was 12 mm (Fig. 2.1a).

Head # 1 2 3 4 5

a [mm] 1.0 1.5 2.0 1.5 1.5
t [mm] 0.4 0.4 0.4 0.6 2.0

Synthetic air was fed to the corona discharge region in order to control the ambient

composition surrounding the corona needle tip, allowing the renewal of air as well

at low flow rate QC (typically 13.3 ml/min, corresponding to plug-flow gas speed of

71 mm/s). We have tried nitrogen as the feeding gas, but the corona did not work

as stable as when using synthetic air, so we finally decided to use the latter. Since

the chamber is not pressurized, the corona works at atmospheric pressure (1 atm).

To determine the distance of the needle tip to the head orifice d (Fig. 2.1a), we used

a dial indicator mounted on an optical microscope. In this way, by focusing on each

element the relative positions between the needle tip and the orifice outer edge were

measured, and then we obtained d after subtracting the orifice thickness t.

Last but not least, we checked the centering of the negative corona discharge emission

(near the needle tip) relative to the head electrode orifice to guarantee that the radial

coordinate of the electric field, within the ionization zone (region between the needle
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2.2. Methodology Chapter 2. Unipolar Ion Source

tip and the orifice), is homogeneously distributed, and therefore the ion flux is axi-

symmetric. For this reason, to check the emission point centering, a camera with a

zoom lens attached was used for visualization purposes (Fig. 2.2).

(a) Focused on the head electrode orifice (b) Focused on the corona needle tip

Figure 2.2. The light coming from the negative corona discharge emission

point allows us to ensure a centered position of the needle tip.

2.2.2 Extracted current characterization

The characterization of the unipolar ion source device is important to understand

how intense is the ion current, after the ions exit the device through the orifice, as

a function of an external electric field. Thus, we obtain information about the ion

current reaching a zone of interest that may be useful for some applications. In our

case, we are interested in ion flows that allow us to discharge an electrospray plume

by exposing it to the unipolar ion source. Therefore, the ion current must be of the

order of the electrospray current.

A. Extracted ion current characterization with a plate electrode

To characterize the unipolar ion source, we measured the extracted ion current (IExt)

on a brass plate from those ions that were generated by a corona discharge, afterward

passed through the head electrode orifice, and finally, by following the electric field

lines, driven towards a counter electrode.

The counter electrode was a flat brass plate (100 × 100 × 1 mm) mounted in front of
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2.2. Methodology Chapter 2. Unipolar Ion Source

the ion source, as shown in Fig. 2.3, at a distance H. In order to efficiently attract

the ions, the area of the plate electrode was chosen large enough compared to the

narrow ion plume expected, and so the ion plume does expand significantly, thus

preventing ion losses. The purpose was to establish an adjustable external electric

field between the plate electrode and the head electrode, which will attract the ions

passing through the orifice to the plate. The extracted ion current (IExt) is directly

measured by a battery powered nanoammeter, connected inline with the HVPS. The

characterization was performed inside a closed chamber.

Figure 2.3. Setup used for characterizing the extracted ion current through

the ion orifice towards a plate electrode. System schematic comprising unipo-

lar ion source, and ion current measurement electrode. Acronyms: DAQ =

Data acquisition; HV = high voltage; HVPS = HV power supply; A = am-

meter; HF = HEPA filter; R = rotameter; RS = safety resistor (250 MΩ).

The current measured at the plate electrode was recorded by hand, since the nanoam-

meter was connected inline, thus floating at high voltage. On the other hand, the

output voltages from the picoammeter of the head electrode, the HV probes, and the

two HVPS remote monitoring were recorded by a data acquisition system (National

Instruments PCI-6221 DAQ card).
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B. Extracted ion current characterization with a covered ring electrode

In applications like electrospray neutralization, the electric field, which depends on

the electrodes’ voltages and geometries, presumably governs the trajectories of both

ions and droplets. In order to characterize the unipolar ion source in a situation

closer to an electrospray-neutralization system, an additional configuration was used.

As will be shown in the following two chapters, the electrospray will be created

from an electrified needle facing a ring counter electrode. Therefore, the counter

electrode was replaced by a ring (Fig. 2.4), at a distance H, and connected to high

voltage in order to attract the ions. To ensure the trapping of any central ions,

the ring was covered with a metal disc (12.7 mm diameter) (Fig. 2.4b). These

(a) Sketch of the corona device-to-ring setup

(b) Photography of

the extracted ion cur-

rent path

Figure 2.4. Setup used for characterizing the extracted ion current through

the ion orifice towards a covered ring electrode. (a) System schematic com-

prising unipolar ion source, and ion current measurement electrode. (b) Pho-

tography of the ion source and the covered ring electrode. Acronyms: DAQ

= Data acquisition; HV = high voltage; HVPS = HV power supply; A =

ammeter; HF = HEPA filter; R = rotameter; RS = safety resistor (250 MΩ).

geometry changes allowed us to determine IExt without elimination of the essential

elements. Compared to the previous configuration, the electric field is changed, and

one objective was to check whether there exists any ion losses through, for instance,

the ring electrode support (black Delrin R© piece at the upper-left side in Fig. 2.4b),

because the intention of the device is to be attached to the electrospray system.
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2.2.3 Ion current profile determination

We also investigated how the ion flux is spatially distributed. In other words, how

the ion plume expandes along its journey, and how intense the ion current flux is

throughout a cross section, at a given distance. Regarding our goal of exposing

an electrospray plume to the ion source, understanding the ion plume is key to

comprehend, in advance, whether the ions could reach all zones of the spray.

To determine the ion current profile, we measured a small fraction of the total

extracted ion current (IExt) as a function of the position in an orthogonal plane

and, for this purpose, the setup was slightly changed (Fig. 2.5). The flat brass plate

(100 × 100 × 1 mm) was again used as an electrode to measure the extracted ion

current (IExt) but, in this case, it was Earth-grounded through a nanoammeter. In

addition, an orifice (1 mm diameter) was drilled in its center to measure a small

fraction of the total current IPin, on a 1 mm diameter pin electrode. This electrode

Figure 2.5. Sketch of the setup made for determine the flux profile of the

extracted ion current, exiting the ion orifice toward the counter electrodes. A

fraction of the extracted ion current is measured at a pin electrode while the

ion source can be moved in the X direction.

was Earth-grounded through the Keithley 6485 picoammeter and electrically isolated

from the plate electrode by a teflon piece, was inserted through the plate orifice. To

reduce the signal noise, the backside of the pin was isolated by a BNC connector.
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2.2. Methodology Chapter 2. Unipolar Ion Source

For easier visualization, a photo of the system is shown in Fig. 2.6.

Figure 2.6. Photos of the setup used for the determination of the ion current

profiles. Left: Photo taken perpendicular to the ion source axis showing the

insertion of the pin electrode through the plate. Right: Photo taken at an

angle where the large plate-to-pin area ratio can be appreciated

Another change in the setup, compared to the previous design, is about the elec-

trodes where the electrical potential is now applied. Since the current to be measured

at the pin electrode IPin was expected to be very small, below 10 nA, we used a

picoammeter, which can not be floating at high voltage. Therefore, to adjust the

external electric field between the ion source and the plate and the pin electrodes,

these were Earth-grounded (through ammeters), and the head electrode was set at

a high negative voltage. Consequently, we needed to adjust (increase) the voltage

at the corona discharge needle to a value that we could sustain a corona discharge.

Finally, to scan the ion flux profile we needed to control the horizontal position X

of the ion source relative to the pin electrode, and, for that purpose, the ion source

was mounted, perpendicular to the plate, on a linear stage. The linear stage was

mechanically coupled by a simple gear assembly to a linear potentiometer (Vishay

5 kΩ) that, connected, to a voltage reference (10 V) as input, allowed us to monitor

the output voltage VX as a function of the horizontal position. The calibration curve

is shown in Fig. 2.7.

Furthermore, the pin-plate electrode assemblage was mounted on a lab jack, which

allowed setting its height so that the pin electrode and the corona device orifice were

positioned at the same height.

In this setup, both plate and pin currents, as well as the potentiometer output
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2.2. Methodology Chapter 2. Unipolar Ion Source

voltage VX were recorded by the data acquisition system, as the other signals. The

safety resistor were removed.

Figure 2.7. Calibration of the positioning system. The line is a linear fit

from a linear regression analysis
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2.3 Results on corona discharge in point-to-plate

configuration

2.3.1 I-V characteristic of corona discharge in point-to-plane

configuration

We have first used several corona discharge needles naked (head electrode removed)

in front of a disc electrode (37.5 mm diameter) to characterize the corona current

as a function of the voltage, and thus obtaining the I-V characteristic curve for this

point-to-plane configuration and different needle tip radius (Table 2.2).

Table 2.2. Tungsten needles used in the corona discharge characterization

experiment, where r is the tip radius, α is the angle near the tip, and H is

the needle tip-to-disc distance. In all cases, they were made from a 1.5 mm

diameter tungsten rod.

Needle # n1 n2 n3

r [µm] 30 15 440
α [o] 22 32 28

H [mm] 4.50 5.80 5.80

In addition, in order to study the effect of the surrounding gas, the system was

enclosed inside a chamber at atmospheric pressure (Fig. 2.8). The gases used were

synthetic air and nitrogen. The corona needle was connected to high voltage and

the disc electrode was grounded through an nanoammeter.

Furthermore, we tried to study the effect of the corona discharge polarity, but in the

case of positive polarity it was not possible to maintain a stable corona discharge

with any needle in either gas. In fact, sparks and glow channels were created,

making the process unsuitable to be used to neutralize electrosprays. Two examples

of the development of glow channels at a given positive voltage are shown in Fig.

2.9. Then, due to the more successful control of the corona discharge in negative

polarity, we chose this as the preferential one, since using it with electrosprays, the

latter would conveniently work at positive polarity. Indeed, electrosprays are more

commonly operated at positive polarity.

To obtain the I-V characteristic curves, the chamber was previously filled with the
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Figure 2.8. Chamber used to obtain the corona discharge I-V characteristic

curves in a point-to-plane configuration, with a controlled gas ambient. Syn-

thetic air and nitrogen were used. The disc electrode diameter was 37.5 mm,

and in this case has been digitally added due to unavailability of a proper

photo.

Figure 2.9. Snapshots of glow channels created with positive corona dis-

charge for needles n1 and n2. Exposure time = 500 ms.

appropriate gas (synthetic air or nitrogen), at a flow rate of ∼1.3 l/min for 5 minutes.

The gauge pressure was measured inside the chamber by a digital manometer, and

was constant during all the experiments. During each run, the gas flow rate was

lowered to ∼0.4 l/min. Then, operating in current regulation, both current and

voltage were recorded.

Fig. 2.10 shows the I-V characteristic curves, of negative corona discharge, for the

tungsten needles shown in Table 2.2. The data was digitally filtered by a moving

average filter. When synthetic air was used (nAiri ), the highest corona current (IC),

at a given voltage (VC), was obtained for nAir2 , the needle with the smallest tip radius

(15 µm). For the needle with slightly bigger tip radius, n1 (30 µm), the current was
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Figure 2.10. Corona discharge I-V characteristic curves for 3 different

corona needles ngasi in two different gases (synthetic air and nitrogen).

a little lower, even though the distance to the plate (H) was slightly smaller for n1

than for n2 (H1 < H2). In the case of nAir3 , corresponding to a much larger needle

tip radius (440 µm), the current was significantly lower than the others, and even

further, the current was not stable until ∼20 µA.

The branches corresponding to nitrogen shown in Fig. 2.10 appeared at much lower

voltages. Notice that there is no branch for nN2
3 because in this case the corona

discharge was unstable. Even though the corona current, with nitrogen, was sig-

nificantly higher than when using synthetic air, the system was quite unstable and

fluctuations were present along the runs, making the process much more unstable

than in the other case. Moreover, although the data shown is filtered and the fluctu-

ations are not visible, it is clear, when comparing with the previous data nAiri , that

when using synthetic air the corona current was more stable (>20 µA for nN2
3 ).

Figure 2.11 shows, according to Townsend’s law (Eq. 1.8), the evolution of IC/VC

vs. VC . From the linear extrapolation (at low IC/VC in nair2 for the comparison)

we found that the corona onset voltage VC,0 was -2.37 kV for nair1 and -2.06 kV for

nair2 . In the case of nair3 the corona onset occurred at a higher voltage, VC,0 = -3.98

kV, and, in accordance with Peek’s law (Eq. 1.7), this is due to the fact that a

larger needle tip radius needs a higher voltage VC,0 to accumulate enough charge

at its surface to reach the critical electric field E0 that initiates the ion emission.
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Figure 2.11. IC/VC vs. VC for each corona discharge needle in synthetic

air, nairi . Insets: Photos of the ion emission at the tip of each needle. Linear

regressions for each of the branches: nair1 : IC/VC = -3.27VC - 6.76,

nair2 : IC/VC = -3.16VC - 7.51, nair3 : IC/VC = -4.89VC - 19.46.

Therefore, n3 is the least efficient needle.

From these experiments, we concluded that, due to the need of operating with a

stable corona discharge for long periods of time, the best option for our purpose is

to use, in our system, the corona needle #2 (15 µm radius) with synthetic air and

negative polarity.
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2.4 Results on corona discharge in point-to-orifice

configuration

The current fraction exiting the corona device through an orifice must be small

because corona currents (a few µA) far exceed electrospray currents (tens of nA).

Furthermore, the capture of ions by the droplets depends critically on the droplets’

and ions’ trajectories, thus on the electrical field, which depends on the electrodes’

voltages and geometries. The corona head acts as the counter electrode to the corona

needle, thus collecting most of the ions emitted from the corona, and allowing only a

small fraction of the corona current to pass through its orifice and become available

to interact with other systems, for instance, electrospray droplets.

Therefore, taking into account the physics involved, in the following sections we

have studied the behavior of the ion source device with the aim of obtaining relevant

information such as reproducibility, stability of the extracted ion current (IExt), as

well as its sensitivity to an external electric field.

2.4.1 Stability of the corona discharge within the ion source

The stability of the corona discharge within the ion source device is a determining

factor because our goal is to extract, from the initial corona current (IC), a stable low

fraction, of about 2 or 3 orders of magnitude lower than IC . To neutralize different

electrosprays, which work at a very low and stable current of tens of nanoamperes,

they will be exposed to this small amount of ions. In addition, the ability to work

steady for long periods of time would make this technology industrially applicable.

The corona discharge current (IC) and voltage (VC) were recorded for one hour at

the following working conditions: head electrode #4 (Table 2.1), needle #2 (Table

2.2), d = 1.30 mm, H = 13.0 mm, VPlate = 300 V, QC(air) = 0.4 l/min (setup

in Fig. 2.3, pg. 26). Figure 2.12 shows the recorded data over time. The corona

current (red line) and the head electrode current (grey line) were very similar and

considerably stable for one hour, with average values of IC ∼ -15.33 µA and IH ∼

-15.13 µA. The latter is slightly lower than the former, consistent with the emission
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Figure 2.12. Stability test of the corona discharge within the unipolar ion

source device, where both corona current, IC (red line), and head electrode

current, IH (grey line), were stable over time, while the corona voltage, VC
(blue line), being in average steady, fluctuated appreciably. Conditions: head

electrode #4, d = 1.30 mm, H = 13.0 mm, VPlate = 300 V, QC = 0.4 l/min.

of ions through the head electrode orifice. The corona voltage (blue line) was VC ∼

-1.82 kV on average and, even though this signal fluctuated slightly, the high voltage

power supply, working in current regulation, could maintain a steady corona current.

2.4.2 Effect of the gas flow rate through the orifice

We also established that the gas flow rate, at low values, does not affect the corona

discharge process within the device. This is true for values below a flow rate of

∼60 ml/min. Indeed, even in experiments were the feeding gas flow rate was QC

= 0 ml/min, the behavior of the corona discharge was similar to those experiments

where gas was used.

This is an useful result because our objective is to expose the ion flux to an electro-

spray plume to discharge the droplets, as well as being able to extract the neutralized

aerosol within a controlled flow field. Being able to maintain a gentle gas flow rate

through the corona device to renew the surrounding the corona discharge environ-

ment, prevents any significant distortion of the flow for outside the ion source device.

The main conclusion is that the system can be fed at a low range of flow rates while
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running a stable corona discharge.

2.4.3 I-V characteristics of the ion source device

We next characterized the corona discharge within the ion source device, in the

point-to-orifice configuration with the setup in Fig. 2.3, pg. 26. Head electrode

#4 (Table 2.1) and corona needle #2 (tip radius r = 15 µm, Table 2.2), where

used with a needle tip-to-orifice distance d = 1.30 mm (Fig. 2.1a). For d smaller

than ∼1 mm the corona discharge was difficult to initiate due to the occurrence of

electrical sparks. The head electrode faced the plate electrode at a distance H =

13.0 mm, and at VPlate = 300 V. Then, similarly to previous subsection, the voltage

was scanned, and both the corona current and the voltage were recorded. Synthetic

air was used at a flow rate of QC = 0.4 l/min.

Two independent runs using the same needle at the same above working conditions

were performed in order to test the system’s reproducibility. Figure 2.13a shows

the I-V characteristic curves for the comparison of these two runs n2 and n
′
2. In

Fig. 2.13b, data is presented in the form of the Townsend’s law (Eq. 1.8) as IC/VC

vs. VC , and the linear regressions are included and extrapolated to zero ordinate to

obtain the corona onset voltage (VC,0). The slightly difference between branches for

n2 and n
′
2 and their corona onset voltage, shows that the corona’s response is quite

reproducible. A possible reason for this difference is that these runs corresponded

to two different days, between different experiments in which the head electrode was

switched, thus the geometry could have changed slightly.

Another observation to take into account was that the corona discharge produced

sparks above the upper part of the branches shown, making the process unstable.

On the other hand, below the lower part of these branches, the corona discharge was

not stable either since it needs to reach the onset voltage to be sustained. Therefore,

this results in a few tens of microamperes range where the corona discharge can work

steadily.

In Fig. 2.10, the branch corresponding to nAir2 has been included in the graph to

compare the corona discharge behavior in the ion source device against the case in
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(a)

(b)

Figure 2.13. Comparison of different corona discharge characteristic curves

in a point-to-orifice configuration. To check the reproducibility, both n2 and

n
′
2 correspond to the same tapered tungsten needle at same working condi-

tions, but different days. Curve for nAir2 (presented in previous subsection)

has been added for comparison, as well as curve for nµ which corresponds to

a commercial tungsten micro-needle. (a) Corona discharge I-V characteristic

curves. (b) I/V vs. V in the form of Townsend’s law (Eq. 1.8)

which the corona discharge was naked (point-to-plane configuration). (Upper data

values have been subtracted for better visualization.) Since in nAir2 the distance of

the needle tip to the counter electrode (plate) was significantly greater (d = 5.80

mm) than in the case of the ion source, where the distance to the orifice was ∼1.30

mm, the current of the former was much lower with a higher onset voltage.

38

UNIVERSITAT ROVIRA I VIRGILI 
PRODUCTION OF HOMOGENEOUS PARTICLES BY CONTROLLED NEUTRALIZATION OF ELECTROSPRAYS 
Antonio Jesús Carrasco Muñoz 



2.4. Results. Point-to-plane configuration Chapter 2. Unipolar Ion Source

In addition, commercial tungsten micro-needles (1-µm tip radius, typically used for

micro-dissection) have also been tested at the same above working conditions (head

electrode #4, d = 1.30 mm, H = 13.0 mm, QC = 0.4 l/min), with the expectation

of generating much higher corona current. Nonetheless, although more current, and

a much lower onset voltage were obtained (branch nµ in Fig. 2.13), these needles

melted very quickly (∼30 minutes), compromising the stability of the process.
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2.5 Results on the extracted ion current

2.5.1 Extracted current stability

Usually, artificial charged aerosols are generated at steady conditions. This is, in

fact, necessary when fluctuations may distort the process. A clear example is the

electrospray, where changes in current (due to changes in flow rate, conductivity, etc)

will disrupt the uniformly sized distribution of the droplets. Hence, it is important

to maintain the ion source at stable conditions if trying to neutralize electrosprays.

During the experiment of the previous subsection, the extracted current (IExt) was

also measured at the plate electrode, which was connected to high voltage at VPlate

= 300 V to attract the ions (setup in Fig. 2.3, pg. 26). The extracted current (IExt)

was measured as discrete values at the plate electrode by a nanoammeter which was

floating at the high voltage VPlate. The working conditions were the same as before:

head electrode #4 (Table 2.1), needle #2 (Table 2.2), d = 1.30 mm, H = 13.0 mm,

QC = 0.4 l/min. Fig. 2.14 shows, as a function of time, the stable current generated

by the corona discharge, IC (same left axis than in Fig. 2.12), and the extracted

current (IExt) reaching the plate electrode (right axis), obtaining for the latter a

mean value of IExt = -24.7 nA, with a standard deviation of 1.1 nA (excluding the

first two points, belonging to the initial transient).

Figure 2.14. Long term stability of the extracted current. Circles connected

with lines represent instantaneous values of the current collected on the plate

electrode (IExt). Conditions: head electrode #4, d = 1.30 mm, H = 13.0

mm, VPlate = 300 V, QC = 0.4 l/min
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As conclusion, this system is able to provide a stable extracted ion current (IExt)

for long periods of time. In this case, it was working stably for one hour, with a

value of IExt = -24.7 ± 1.1 nA.

2.5.2 Sensitivity of the extracted current to the corona cur-

rent

Another important question to answer is how sensitive the extracted ion current

(IExt) is to the corona discharge current (IC). This information is crucial to know

the range of operation of IExt by tuning IC , within a stable range. For this reason,

the characterization of the extracted ion current (IExt) as a function of the corona

discharge current (IC) is presented in this subsection.

For different voltage values at the plate electrode, VPlate (setup in Fig. 2.3, pg. 26)

the corona current (IC) was scanned, by current regulation, through the operation

range from the onset voltage V0 until the current at which the corona discharge

got unstable. The working conditions were the same as before: head electrode #4

(Table 2.1), needle #2 (Table 2.2), d = 1.30 mm, H = 13.0 mm, QC = 0.4 l/min.

The extracted current (IExt) was measured as discrete values at the plate electrode

by a nanoammeter which was floating at the high voltage VPlate.

Fig. 2.15a shows the extracted current (IExt) as a function of the corona current

(IC) for different voltages at the plate electrode (VPlate). As expected, IExt increases

when IC increases. However, it appears to develop a plateau, although in fact has

a power law dependence, as shown in Fig. 2.15b where the same data is plotted

by the logarithmic values. In addition, the sensitivity of IExt to VC is not very

pronounced. Nonetheless, the dependence with VPlate may allow, along with IC , a

fine adjustment/control of the extracted current (IExt), being, in this case, similar

to the electrospray current.

To know how efficient is the ion extraction from the corona discharge within the

device through the orifice, the ion extraction efficiency F is computed as the fraction

of the total initial corona discharge current (IC) which is measured at the plate (IExt)
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(a)

(b)

Figure 2.15. Sensitivity of the extracted current (IExt) to the corona current

(IC) for different voltage values (VPlate) at the plate electrode. (a) Extracted

current values as circles connected by lines vs. corona current. (b) Log-Log

plot of extracted ion current IExt (< 0) including linear regressions.

as extracted ions, for a given plate voltage (VPlate):

F [%] =
IExt
IC
× 100 (2.1)

Fig. 2.16a shows the ion extraction efficiency, F as a function of the corona current

(IC) where each branch corresponds to a different VPlate. In this case, F decreases

when IC increases, following a power law as shown in Fig. 2.16b. Notice that the

F values are very small, indicating that probably these ions come from those field

lines close to the axis.

As a conclusion, a fine adjustment of the extracted ion current (IExt) is possible, for

a given external electric field, where the efficiency of the ion extraction is higher at
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low corona current (IC).

(a)

(b)

Figure 2.16. Ion extraction efficiency as a function of the corona discharge

current (IC) for different voltage values (VPlate) at the plate electrode. (a) Ion

extraction efficiency values as circles connected by lines vs. corona current.

(b) Log-Log plot of the ion extraction efficiency F including linear regressions.

2.5.3 Sensitivity of the extracted current to the external

electric field

The unipolar ion source may be used for applications where a continuous ion flux

is needed. But those applications might operate with electric fields and therefore it

is important to understand how sensitive the extracted ion current (IExt) is to an

external electric field. For this reason, we present in this subsection the characteri-

zation of the extracted ion current (IExt) as a function of a constant external electric

field.
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The external electric field (| ~EExt| ∼ VR/H) was established by providing a high volt-

age at the plate electrode (VPlate), placed at a fixed distance H with the ion source

head electrode (Earth-grounded). The working conditions were: head electrode #4

(Table 2.1), needle #2 (Table 2.2), d = 1.30 mm (Fig. 2.1a, pg. 24), H = 13.0

mm, QC = 0.4 l/min. The extracted current (IExt) collected at the plate electrode

was measured by a nanoammeter floating at VPlate versus discrete values of VPlate.

Although the corona voltage (VC) was the constant parameter in each scan, we op-

erated under voltage regulation, at different values of corona current (IC) (Fig. 2.3,

pg. 26).

(a)

(b)

Figure 2.17. Sensitivity of the extracted current (IExt) to an external field

(| ~EExt| ∼ VR/H) for different the corona current (IC) values. (a) Extracted

current values as circles connected by lines vs. corona current. (b) Log-Log

plot of extracted ion current IExt (< 0) including linear regressions. H =

13.0 mm.

Fig. 2.17a shows the extracted current (IExt) as a function of the plate electrode
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voltage (VPlate) where each branch corresponds to a given corona current value (IC).

IExt increases significantly by increasing VPlate, for any IC , following a power law,

as shown in Fig. 2.17b. This is very interesting result because, while the corona

discharge is strongly shielded from the external electrical field by the Earth-grounded

head electrode, the amount of extracted ions is strongly dependent by this electrical

field. This suggests that the external electric field strength attracts toward the plate

the amount of ions that exit the ion source device, and that otherwise would fly-back

towards the head electrode. IExt can be adjusted by tuning the external electric field

to obtain a wider range than by scanning IC (see previous subsection). Furthermore,

both parameters IC and the external electric field | ~EExt| ∼ VR/H could be used as

control parameters to obtain a fine/coarse control of the extracted ion current.

As previously shown, the efficiency of the ion extraction (Eq. 2.1, pg. 42) from

the corona discharge emission within the device through the orifice, F , is computed,

but, in this case, as a function of VPlate, for a given value of IC . Fig. 2.18a shows the

ion extraction efficiency, F as a function of VPlate, where each branch corresponds

to a different IC . Interestingly, in this case F increases when VPlate increases, for

any IC , following a power law as can be seen in Fig. 2.18b.

As a conclusion, the unipolar ion source can provide an ion current which is sta-

ble and sensitive to external electrical field, being adjustable with a fine control.

Consequently, this information brings the possibility of making controlled changes

in the geometry, if needed. For instance, in the case of electrospray droplet dis-

charge, this can be an advantageous feature, since we have obtained similar current

that can be adjusted depending on the system requirements, for example, changes

in electrospray solution conductivity which would work at a different electrospray

current. Indeed, the electrospray creates its own electric field which would affect the

ion extraction. Moreover, in the case of particle production by electrosprays, from

a polymer solution for example, if changes in the system geometry were necessary,

like, for example, due to the solvent evaporation rate is high and the Coulombic

explosions may appear nearer to the emission point (Taylor cone), we might place

the ion source closer to the electrospray system in order to introduce deeper the ions

in the plume and prevent the explosions.
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(a)

(b)

Figure 2.18. Ion extraction efficiency as a function of the plate electrode

voltage (VPlate) for different corona discharge current values (IC). (a) Ion

extraction efficiency values as circles connected by lines vs. plate electrode

voltage. (b) Log-Log plot of the ion extraction efficiency F including linear

regressions. H = 13.0 mm.

Finally, in the case that an application needed a much higher electric field, the head

electrode may be connected to high voltage to obtain a better control of the required

external electric field. In that case, the voltage difference between the head electrode

and the corona discharge needle should be kept at a value that allows to sustain a

stable corona discharge.

2.5.4 Characterization with covered ring electrode

In the case of discharge of electrospray droplets, the capture of ions by the droplets

depends critically on the droplets’ and ions’ trajectories, thus on the electrical field,
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which depends on the electrodes’ voltages and geometries.

We studied how sensitive the ionic current passing through the head electrode orifice

into the spray region (IExt) is to both the corona current (IC) and the ring voltage

(VR), in an electrospray system (setup in Fig. 2.4). In these experiments, the

electrospray capillary was removed. Also, to ensure the trapping of any central

ions, the ring was covered with a metal disc (12.7 mm diameter). These geometry

changes allowed us to determine IExt without elimination of the essential elements.

The working conditions were: head electrode #3 (Table 2.1), needle #2 (Table 2.2),

d = 2.50 mm, H = 17.0 mm, QC = 20 ml/min. Fig. 2.19 shows that IExt is (i)

weakly dependent on the corona current, and (ii) can be regulated by means of the

electrical field ~EExt in the region outside of the corona device through VR, where

| ~EExt| ∼ VR/H.

Figure 2.19. Plot of extracted ion current IExt (< 0) measured at the

counter electrode (ring plus disk, as shown in the inset) versus the corona

current IC , at varying ring voltage VR (values displayed). (H = 17.0 mm.

QC = 20 ml/min.). Electrode diagram is included, showing the absence of

electrospray capillary and the covering of the ring with a disc.

Then, from Fig. 2.19 we can conclude that the electrical field outside of the corona

device (head electrode) strongly influences the ion current available to discharge

droplets. Indeed, the current reached has been as high as -182 nA, therefore covering

a wide range of ion currents that may cover the needs for neutralization of different

electrosprays.
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Figure 2.20. Log-Log plot of extracted ion current IExt (< 0) measured

at the counter electrode (ring plus disk, as shown in the inset) versus the

corona current IC , at varying ring voltage VR (values displayed). (H = 17.0

mm. QC = 20 ml/min.). Electrode diagram is included, showing the absence

of electrospray capillary and the covering of the ring with a disc. Lines are

power-law fits.

In Fig. 2.20, the data has been plotted in log-log scale to show that the behaviour

of the extracted ion current as a function of the corona discharge current, follows a

power-law in all cases.

The conclusion is that, in a configuration which is more similar to an electrospray

setup, the extraction of ions is still weakly sensitive to corona current and strongly

sensitive to the external electric field.

2.5.5 Effect of the orifice diameter

To study the effect of the orifice diameter, a (Fig. 2.1a), three head electrodes #1,

2, 3, previously presented in Table 2.1, and with the same orifice thickness of t =

0.4 mm were used. Their diameters (ai) are included in Table 2.3, together with the

corona needle tip-to-orifice distances (di) used. Due to the difficulty of adjusting di,

there are small differences between the values, specially in the case of d3, which is

∼0.8 % smaller. The other working conditions in these tests were: needle #2 (Table

2.2), H = 13.0 mm, IC = -30 µA, QC = 20 ml/min (setup in Fig. 2.3).
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Table 2.3. Parameters used in this study, where ai is the head electrode

orifice diameter, and di is the needle tip-to-orifice distance. In all cases: t =

0.4 mm, D = 12 mm (Fig. 2.1a).

Head # 1 2 3

ai [mm] 1.0 1.5 2.0
di [mm] 1.31 1.30 1.21

(a)

(b)

Figure 2.21. Comparison of different I/V characteristic curves for different

orifice diameter values (ai). (a) Extracted current values as circles connected

by lines vs. plate voltage. (b) Log-Log plot of extracted ion current IExt (<

0) including linear regressions. IC = -30 µA, ti = 0.4 mm, H = 13.0 mm.

Fig. 2.21 shows, for different orifice diameters a1, a2, a3, the extracted ion current

(IExt) as a function of the plate electrode voltage (VPlate), at a given corona discharge

current of IC = -30 µA. Apart from the aforementioned sensitivity of IExt to the

external electric field and power law dependence (Fig. 2.21b), a clear tendency of

increasing IExt versus orifice diameter, at any VPlate, is observed. This is expected

since the bigger the orifice diameter is, the more number of electric field lines would
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be permitted to pass through it, allowing a bigger amount of ions to escape the ion

source, even with space charge presence.

2.5.6 Effect of the orifice thickness

Another crucial parameter is the orifice thickness (ti), where a preliminary expec-

tation was that the thicker the orifice is, the smaller the amount of ions would pass

through it, because as the thickness increases more electric field lines entering the

orifice would be directed to the walls instead of continuing through the orifice. In

addition, as shown in Fig. 2.22 in the situation a, an ion following the red electric

field line would exit the device, reaching the target, whereas the same ion in the

situation b, with a thicker orifice, even though it passes through the orifice, it would

fly-back toward the head electrode. Another ion following the blue electric field

line would pass through the orifice only in a, flying back toward the head electrode

though, whereas in b it would directly impact the orifice wall.

Figure 2.22. Sketch of the electric field lines for two different orifice thick-

nesses.

Similarly to previous subsection, three head electrodes previously presented in Table

2.1 have been used to study the effect of the orifice thickness. But in this case the

head electrodes were #2, 4, 5 which have the same orifice diameter, a = 1.5 mm,

Their thicknesses (ti) are presented, together with the corona needle tip-to-orifice

distances (di) in Table 2.4. There is a slight difference between the distances di,

due to the difficulty of adjusting it. The working conditions were: needle #2 (Table

2.2), H = 13.0 mm, IC = -30 µA, QC = 20 ml/min (setup in Fig. 2.3).
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Table 2.4. Parameters used in this study, where ti is the head electrode

orifice thickness, and di is the needle tip-to-orifice distance. In all cases: a =

1.5 mm, D = 12 mm (Fig. 2.1a).

Head # 2 4 5

ti [mm] 0.4 0.6 2.0
di [mm] 1.30 1.26 1.18

(a)

(b)

Figure 2.23. Comparison of the extracted ion current (IExt) as a function

of the plate electrode voltage (VPlate), for three different orifice thicknesses

(ti). (a) Extracted current values as circles connected by lines vs. plate

voltage. (b) Log-Log plot of extracted ion current IExt (< 0) including linear

regressions. IC = -30 µA, ai = 1.5 mm, H = 13.0 mm.

Fig. 2.23a shows the extracted ion current (IExt) as a function of the plate electrode

voltage (VPlate), at a given corona discharge current of IC = -30 µA, and, this

time, for different orifice thicknesses t2, t4, t5 (Table 2.4). And, as before, plotted

in logarithmic scale in Fig. 2.23b to show that the curves follow a power law.

Comparing data from head electrode #5, which had the thickest orifice (t5 = 2.0
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mm), with the others (#2 and 4), the current is much smaller for the former probably

due to the fact that a thicker orifice would affect directing the electric field lines

to the orifice wall much more strongly than in the case of a thinner diameter, as

mentioned earlier.

On the other hand, comparing data for head electrodes #2 and 4, whose thicknesses

slightly differed (t2 = 0.4 mm and t4 = 0.6 mm), we would expect the current IExt

using the thinner (#2) to be slightly higher than the other. But on the contrary,

IExt was a little higher for the thinner (t2), although the observed difference falls

within the reproducibility due to both thickness values are quite similar compared

to t5. This could be due to several factors like, for example, the contribution of

different experimental errors, or it could be the difference of the needle tip-to-orifice

distances. In any case, it seems clear that head electrodes with thinner orifice walls

can to extract a higher ion current than thicker orifices under the same conditions

of operation. Although this conclusion suggests that, to obtain an efficient ion

extraction, the head electrode orifice should be as thin as possible, sharp borders

should be avoided to prevent sparks.

2.5.7 Extracted ion current profiles

In axisymmetric configurations, a consequence of the space charge is the spreading

of the plume of ions in the radial coordinate as these ions travel in the direction of

the axis, towards a counter electrode. Therefore, controlling the ion flux in the gap

is crucial to control the process.

The profile of the extracted ion current (IExt) as a function of the distance provides

information about the radial distribution of the ions, which is interesting when

applications require to control the ions’ distribution along a planar surface. In

the case of electrosprays, for example, exposing an ion flux to an oppositely charged

droplet plume might need the ion density to be high enough near the droplet emission

to reach an efficient discharge before the droplets explode, but also not too high to

prevent the destabilization of the process if the ions reach the Taylor cone.

To measure current profiles, setup was modified (Fig. 2.5, pg. 28). In this experi-
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ments, the head electrode was placed at high voltage as explained in subsection in

page 28. Since the positioning system was too large to keep the chamber closed,

the experiments were performed in open chamber, at laboratory conditions of RH

= 34.7 % and T = 19.4 oC. Other experimental conditions were: head electrode #3

(Table 2.1), needle #2 (Table 2.2), d = 2.65 mm.

To outline the ion current profile, the horizontal position of the ion source orifice

relative to the pin electrode (X) was scanned, from right to left and vice versa,

by using a linear stage, while the extracted current was measured both at the pin

electrode (IPin) and at the plate electrode (IExt). But firstly the vertical position

(Y ) was set at its coordinate origin (Y = 0 mm) by determining the point at which

IPin was maximized. Then, different profiles were measured as function of several

parameters, such as the external electric field strength (| ~EExt| ∼ ∆V/H) [by varying

the voltage difference (∆V = VH) between head and plate electrodes at a fixed

distance (H)], the corona current (IC), and the gas velocity at the orifice (vgas)

[computed as the gas flow rate (QC) divided by the orifice area (A): vgas = QC/A].

A. Profiles for different external electric field (| ~EExt| ∼ VH/H)

Fig. 2.24 shows several profiles of both IPin (upper graph) and its percentage dis-

tribution IPin/IExt (bottom graph) as function of different head electrode voltages

(VH), at the following fixed conditions: H = 10 mm, IC = -6.57 µA, vgas = 0

mm/s. The current IPin reaches a maximum when passing through the center, X

= 0 mm, and the curves, decreasing smoothly, are symmetrical. Comparing the

profiles for different VH , we obtained the same result as above-mentioned where the

total extracted ion current (IExt) increases as VH is increased. But, even further, the

fraction IPin/IExt increases near X = 0 mm is sensitive to VH , suggesting that the

ion distribution near the center does depend on the electric field strength, increas-

ing homogeneously as VH increases. Another interesting result is that the profile

borders (tails), which depend on the spreading angle due to the electric field and

the space charge, are comparable to the distance H, forming the ion plume a ∼45

degrees cone in all cases.

Consequently, this results indicate that the ion plume shape, as a ion density distri-
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Figure 2.24. Extracted ion current profiles for different external electric field

strength values by measuring a fraction of the total current (IExt) by a pin

electrode (IPin) as a function of the X coordinate, scanned in two directions.

Upper side: direct values. Bottom side: percentage distribution. H = 10

mm, IC = -6.57 µA, vgas = 0 mm/s.

bution, is symmetrical, with a maximum ion current (IPin) at its center whose ion

density (IPin/IExt) surrounding the center depends on the external electrical field,

being steeper at higher VH .

B. Profiles at different gas velocity at the orifice (vgas)

It has already been mentioned that the gas flow rate (synthetic air), in our system,

does not have a significant effect on the extracted ion current (subsection in pg.

36), at values below a flow rate of ∼60 ml/min. Now, to check whether the gas

affects the ion plume distribution, several profiles have been measured, at different

gas velocities at the orifice.

Shown in Fig. 2.25, the ion current profiles for three different gas velocities are es-

sentially identical. The corona discharge was not stable at higher values. Therefore,
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Figure 2.25. Extracted ion current profiles, at different gas velocities at the

head electrode orifice. H = 10 mm, IC = -6.57 µA, VC = -3.86 kV, VH =

-1.30 kV, IExt = -240 nA

a conclusion is that the gas velocity at the orifice, for low gas flow rates, does not

affect the distribution of ions at the counter plate electrode. In future experiments,

gas flow rate will be set at low values to renew the environment near the corona

needle tip.

C. Profiles at different distance (H)

In this case, two profiles were measured at different ion source orifice-to-plate elec-

trode distance (H = 10, 20 mm) to be compared. Fig. 2.26 shows the ion current

profiles, where, at the upper graph can be observed that for the one measured at

a smaller distance (H = 10 mm), extracting a higher amount of ions (IExt = -240

nA), the ion density is more focused to the center, and, on the contrary, the profile

at larger distance (H = 20 mm), which extracts less ions (IExt = -123 nA), is more

widely distributed along the X axis.

On the other hand, in the bottom graph, where IPin and X have been scaled by

dividing all values by their maximum, it can be observed that both scaled profiles

are pretty identical. This means that actually the ion flux behaves similarly for

either value of H, and consequently the ion density distribution, at each extent, is

similar.
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Figure 2.26. Extracted ion current profiles, at different distance with the

counter electrodes (H). Upper side: direct values. Bottom side: scaled values.

IC = -6.57 µA, VC = -3.86 kV, vgas = 10 mm/s.

As a conclusion, the ion spreading for a symmetrical configuration did not change

significantly, being an important result that provides insight before exposing the

ions to an oppositely charged system.
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2.6 Results on the evolution of the corona needle

tip

After being exposed to DC corona discharge, the corona needle tip may be eroded

from sputtering due to the bombardment of positive ions formed in the interelectrode

region (Brodie, 1975). Therefore, the tip erosion may affect the long-term stability of

the process if the needle tip is distorted, thus changing the radius and, consequently,

the electric field which is responsible for sustaining the corona discharge.

Fig. 2.27 shows, from two different orientations, that the needle tip surface was af-

fected by the exposition to corona discharge. Indeed, from bottom pictures is visible

a fractal structure (cauliflower-like shape) developed at the tip, similar to those found

by Nashimoto (1988), although they used air containing DMPS (dimethylpolysilox-

ane) vapor to grow amorphous silicon oxide structures and thin films on a tungsten

wire cathode. In our case, elemental analysis (EDX) determined that the structure

was formed by tungsten dioxide, WO2.

To assess the evolution of the tip shape after being exposed to negative DC corona

discharge, SEM pictures were taken over time, between some experiments. The

pictures are shown in Fig. 2.28, sorted by time from left to right, in columns with

two different orientations. Panel a corresponds to the same images as previously

(upper images in Fig. 2.27). This was the first time we detected a relevant erosion

at the needle tip. Thereupon, panel b, the needle was gently cleaned with a soft

cloth to continue with the experiments. Since the structure was not solid, it could

be easily removed. From that moment, we decided not to clean the needle tip to

follow its evolution. After a total of ∼3 hours of corona discharge experiments,

the needle tip was checked again by SEM and, as shown in panel c, although the

structures grew again, the shape of the tip was not significantly distorted. Finally,

SEM images in panel d corresponded to the status of the tungsten needle tip after

a period of around 40-50 hours of being exposed to corona discharge, for different

type of experiments, at an average corona current (IC) of around -20 µA. Clearly,

the needle tip shape has not changed considerably over time, demonstrating that

the durability of the tungsten needle, at least with this shape, is crucial to develop
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Figure 2.27. SEM pictures of the corona needle tip (#2), at different mag-

nifications. A fractal structure (cauliflower-like shape) was grown after being

exposed to corona discharge. Left column: needle tip front side. Right col-

umn: tip rotated 90o.

unipolar ion source devices ensuring long-term stability.

Figure 2.28. Corona needle tip evolution. SEM pictures of the tip corona

needle tip (#2) after being exposed to corona discharge in different dates.

Upper photos: needle tip front side. Bottom photos: tip rotated 90o. Scale

bars: 50 µm.
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Figure 2.29. SEM pictures of the tip of a commercial tungsten micro-

needle, at different magnifications, dramatically distorted after being exposed

to corona discharge. The fractal structure (cauliflower-like shape) grew after

being exposed to corona discharge. Left column: before corona discharge

exposition. Right column: after corona discharge exposition.

On the contrary, as shown in Fig. 2.29, the aforementioned (early in page 37) 1-

µm radius tungsten micro-needles were dramatically distorted by short exposition to

corona discharge (∼30 minutes). Then, they are not suitable for long-term processes

due to the low durability.

As a conclusion, there exist a balance between the extracted current, and the sta-

bility of the needle tip shape, which, for the same material, strongly depends on the

needle tip radius, and suggests to preferentially use larger tip radius values which,

providing less extracted current, would preserve the stability of the process.
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2.7 Conclusions

The main conclusions from this work are as follows:

Regarding the corona discharge characteristics in a point-to-plane configuration, we

have observed that by comparing two different gas compositions for the DC corona

discharge, synthetic air and nitrogen, we have found that with air the system works

much more stably than in the case of nitrogen. Although when using nitrogen the

extracted ion current was significantly higher in our system, due to the need of

operating in stable conditions for long periods of time, the best option was to use

air.

We have compared positive and negative corona discharge polarities, and only in

the case of negative polarity we could produce a stable ion current for long periods

of time, being the appropriate polarity for next experiments.

The corona needle tip radius was studied. Smaller radius generates more corona

current at lower voltage, shifting the onset voltage to lower values.

Regarding the study of the extracted ion current through the ion source orifice:

It is possible to generate a stable ion flux which is adjustable with current similar

to that of the typical electrospray current, by means of the presented unipolar ion

source.

The extracted ion current was adjusted by tuning the corona discharge current,

although the sensitivity is not high. Higher extraction efficiencies were obtained

at low corona current values, probably due to a weaker space charge. Moreover,

the extracted ion current was adjusted over a wide current range by tuning the

external electric field. In this case, higher extraction efficiencies were obtained at a

higher external electric field. This conclusion was also reached with a configuration

in which a covered ring as the counter electrode was used, being this configuration

more similar to an electrospray setup.

The orifice dimensions strongly affects the ion current extraction. The extracted ion
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current was higher, as the orifice diameter was increased, and as the orifice thickness

was decreased.

The extracted ion current is not affected by the flow rate of the corona discharge

feeding gas (synthetic air) at low values (<60 ml/min). On the other hand, the

corona discharge was unstable above ∼60 ml/min and below the corona onset volt-

age.

Extracted ion current profiles revealed that the ion distribution is typically sym-

metrical with the maximum at the axis, as expected. An increase of the external

electric field increased the ion density near the axis, whereas the profile tails were

less affected.

On the other hand, the gas velocity at the orifice did not affect the ion profile shape.

Therefore, a low gas flow rate can be used to renew the gas environment near the

corona needle tip.

Needle tip evolution: there exist a balance between the extracted current, and the

stability of the needle tip shape, which, for the same material, strongly depends

on the needle tip radius, suggesting to preferentially use larger tip radius values

which, even though provide less extracted current, would preserve the stability of

the process.

For the case of the 15-µm radius tungsten needle, the shape of the tip did not change

considerably over time, demonstrating the high durability of this tungsten needle.
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— The good thing about science is that it’s true whether

or not you believe in it.

Neil deGrasse Tyson

3
Neutralization of Electrospray Droplets
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3.1 Introduction

Electrohydrodynamic atomization (EHDA), also known as electrospray, is a widely

used technique for the atomization of liquids, mainly due to its unique feature of

generating tiny droplets within a narrow size distribution (Rosell-Llompart et al.,

2018).

By applying a high electrical potential (high voltage) to a conductive liquid in a

capillary tube, of the order of a few kilovolts, a high electrostatic field is established.

An intrinsic effect of this high voltage-based technique is that the electric field force

governs the space surrounding the liquid meniscus over others, like capillary or grav-

itational force, pulling the liquid meniscus in the direction of the field, thus forming

a cone shape called Taylor cone. When the electrical force overcomes the surface

tension, a micro-jet develops. Downstream, the jet breaks up into highly electrically

charged droplets, and, if the so-called cone-jet mode is established by continuously

feeding liquid, the system is capable of working in a steady state, creating droplets

in a mono-disperse size distribution that can be from tens of nanometers to a few

micrometers, being the main characteristic of this technique.

As a consequence, the electric field lines drive the droplets towards a counter elec-

trode, thus forming a characteristic spray shape, bringing different benefits, like,

for instance, the ability to make depositions (Castillo et al., 2018; Kelder et al.,

2018; Jaworek et al., 2018; Tang and Gomez, 2017; Arumugham-Achari et al., 2013;

Bodnár and Rosell-Llompart, 2013; Jaworek, 2007a; Hogan et al., 2007; Hogan and

Biswas, 2008). The electrostatic field distribution and therefore the droplets’ tra-

jectories will strongly depend on the counter electrodes added in the system. The
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electric repulsion may not necessarily be a problem since it helps to prevent the

agglomeration of the droplets. Also, the high droplet charge number is useful for

some applications like Electrospray Ionization (ESI) (Fenn et al., 1989), where the

droplets undergo Coulomb fissions by successively reaching the Rayleigh limit, and

multi-charged ions are produced from macromolecules.

But the charge on the droplets may be a non-desired effect, becoming a problem

for some applications. One example is when the electrospray droplets are used for

calibration of sizer devices, where the droplet size may be distorted by the Coulomb

instabilities. Another example is in colloidal thrusters where the droplets used to

generate thrust must be discharged to prevent them to fly back to the satellite

thus reducing thrust. Or in polymer solution electrosprays, where the narrow size

distribution and morphology of dried particles is crucial in the areas of medical and

pharmaceutical applications (Rostamabadi et al., 2021; Ali et al., 2021; Sverdlov

Arzi and Sosnik, 2018; Boda et al., 2018; Nguyen et al., 2016; Bock et al., 2012;

Yurteri et al., 2010), ceramics (Tang et al., 2016; Suhendi et al., 2013), and food

encapsulation (Echegoyen et al., 2017).

We have studied the conditions to reduce the droplet charge that yield to the pre-

vention of the Coulomb instabilities. We show that this configuration allows to

easily discharge a charged aerosol generated by electrospray, and efficiently extract

the discharged aerosol to a sampling device to be characterized.

We present a new approach for in-situ charge reduction of electrospray droplets,

which allows the efficient transport (extraction) of the discharged aerosol. A unipolar

ion source based on corona discharge generates a controllable ion flux of opposite

polarity to the electrospray. The ions are introduced axially into the spray, while the

Taylor cone is screened from the ions by an extractor ring electrode. Efficient and

steady droplet discharge and extraction through an orthogonal aerosol-extraction

tube was attained when the inlet of the tube was near the spray emission and the

ring electrode, resulting in dramatic changes in droplets’ trajectories.
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3.2 Methodology

3.2.1 Materials

All the chemical reagents were used as purchased, without further purification. Ethy-

lene glycol (EG) (reagent grade, CAS Number 107-21-1) was purchased from Sigma

Aldrich. Sodium chloride (NaCl) (ACS grade, CAS Number 7647-14-5) was pur-

chased from Scharlau. Synthetic dry air 99,998% purity was purchased from Car-

buros Metálicos, Spain (20.9% ±1% O2 with 3 ppm molar of H2O, 0.2 ppm molar

of THC and 1 ppm molar of CO and CO2, the rest being N2).

3.2.2 Solution preparation and characterization

We have used two different liquid solution conductivities with a nonvolatile solvent

(EG). A stock solution was first made by dissolving 21 mg of NaCl in 75 ml of ethy-

lene glycol and stirring the solution overnight. This initial solution was then diluted

under stirring to obtain 0.007% w/v and 0.0007% w/v solutions. The electrical

conductivity was measured with a portable conductivity meter (CRISON 35) using

a glass-body probe (CRISON 50 61). The solutions concentrations and properties

are given in Table 3.1.

Table 3.1. Properties of the solutions.

Solution
code

Solutes and
concentrations

Solvent
Electrical

conductivity, S/m
Solution density,

g/cm3

007EG NaCl: 0.007% w/v
Ethylene

glycol
9.6 ×10−4 (24.5oC) 1.116 (25.0oC)1

0007EG NaCl: 0.0007% w/v
Ethylene

glycol
1.13 ×10−4 (24.5oC) 1.116 (25.0oC)1

1Not available. Value shown is for the pure solvent.
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3.2.3 Electrospray-corona apparatus and particle extraction

system

The electrospray and corona subsystems were housed in a chamber for gas ambient

control (Fig. 3.1). The chamber consisted of a fixed black Delrin R© platform (to

which the electrospray subsystem and corona ion source were mounted), a Delrin R©

base frame sitting on the platform, a black Delrin R© wall for all the connections

(electrical, gas, and liquid supplies, particle sampling and extraction, etc.) which

is screwed to the base frame, and a removable glass urn made of three glass panels

(175×130×1.8 mm) and a glass top (135×135×3 mm) (Fig. 3.2). The urn’s edges

sit on rubber seals, so the urn can be lifted easily. During electrospraying, the

urn was in place (except where noted) and synthetic dry air was supplied to the

chamber at 4.4 lpm. The air exited the chamber through the particle extraction

tube and passed through the collection filter, as well as through a port exhausting

to a remote fume hood. The chamber gas inflow was set to maintain about 5-10 Pa

in the chamber, sensed by a Magnehelic differential pressure meter (cat. no. 2000-

125Pa C). Meanwhile, the relative humidity in the chamber (RH) was monitored

using a Vaisala HM34 meter probe inserted through the Delrin R© lateral wall.

A. Electrospray subsystem

The electrospray capillary was made of 304 stainless-steel capillary tubing (Tubos

Capilares, Spain; 160 µm ID, 400 µm OD), square cut to a 30 mm length, and

polished on its exit end. It was centered inside a square-ended glass tube (1.16 mm

ID, 2.00 mm OD) and its protrusion varied (∼0.5 mm in the particle generating

experiments, and longer in the ethylene glycol experiments). When spraying poly-

mer solutions, a gentle sheath flow of solvent-saturated gas (synthetic air) flowed

through the glass tube, around the capillary, at a typical average speed of 70 mm/s,

to prevent polymer precipitation at the Taylor cone (TC) meniscus caused by sol-

vent evaporation. The use of such flow was first suggested by Larsen et al. (2004)

but is not widely practiced, although we often find it necessary when making small

particles by electrospray (Bodnár and Rosell-Llompart, 2013; Bodnár et al., 2018).
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Figure 3.1. Setup used for generating ions and electrospray droplets. System

schematic comprising electrospray with co-flow, unipolar ion source, sampling

tube with filter assembly. Acronyms: DAQ = Data acquisition; HV = high

voltage; HVPS = HV power supply; A = ammeter; HF = HEPA (High Effi-

ciency Particulate Air) filter; R = rotameter; RS = safety resistor (250 MΩ).

The liquid solution was fed to the capillary by a syringe pump (Harvard Apparatus

PHD 2000) from a glass syringe (Hamilton R© syringe, 1000 series GASTIGHT R©, 1

ml) connected to a 27-gauge × 1/2” hypodermic needle fitted to a PTFE capillary

tubing (Teknokroma, 360 µm ID, 580 µm OD) into the electrospray capillary.

A ring electrode (5 mm ID, 1 mm thickness) was placed beneath the electrospray

capillary in nozzle-to-ring down configuration (Figs. 3.1 & 3.3). This configuration is

commonly used in electrospray practice to provide electrostatic shielding (Cloupeau,

1994; Jaworek, 2007b). The voltage difference between the capillary and the ring

established the electric field that is needed to generate the electro-atomization. Here,

the ring has the important additional benefit of shaping the electrical field to guide

the ions to interject the droplets’ trajectories.
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Figure 3.2. Electrospray neutralization apparatus. The glass walls are glued

together forming an urn. This urn, which can be easily separated from the

frame, is resting on rubber seals stuck to the frame. The frame can be moved

horizontally to adjust the sampling tube position when inserted through the

Delrin R© lateral wall.

Figure 3.3. Photography of the discharge zone with height parameters, being

h the distance between the electrospray nozzle and the extractor ring and H

the distance between the extractor ring and the ion source head electrode.

B. Unipolar ion source

In conceiving the ion source, we hypothesized that attaining efficient discharging

required injecting the ions coaxially with the spray. In addition, we hypothesized

that the ion and spray currents must be alike (though not necessarily equal). Since
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corona currents easily exceed electrospray currents by an order of magnitude or

more, an orifice plate (“corona extractor”) was placed in front of the corona needle.

This limited the ionic current passing to the spray region. In the context of particle

production by electrospray and corona discharging, an intermediate electrode was

previously used also by Tang et al. (2017), and briefly by Cloupeau (1994). There-

fore, as above presented in previous Chapter, the home-made unipolar ion source

consisted of a corona discharge needle (tungsten Alfa Aesar, 1.5 mm diameter rod,

sharpened to 15 µm tip radius, with 32o total angle) housed inside a modified tee

connector (IDEX P-714 Low-Pressure Tee Assembly, Natural PEEK), capped with

an Earth-grounded “head electrode” which coaxially had an orifice for ion extraction

into the spray region (Figs. 3.1 & 2.1a). The voltage difference between the corona

needle and the head electrode established the electric field to sustain the corona

discharge. Synthetic dry air was continuously fed to the corona discharge region at

a low flow QC as shown in Fig. 3.1 (at 13.3 ml/min, corresponding to plug-flow gas

speed at the exit orifice of 71 mm/s). However, this flow did not significantly affect

the current of ions available to the spray.

The electrospray capillary, the ring electrode, and the corona needle were each con-

nected to a channel of a Ultravolt high voltage power supply (HVPS) (HVRACK-4-

250-0032) each through a high voltage-rated 250 MΩ resistor, used for user safety.

For the first two, we used voltage regulation, whereas for the corona needle we

used current regulation. The electric potential at each electrode was continuously

monitored by respective HV probes (Testec, TT-HVP-40, 1 GΩ), and the electrical

currents flowing through these electrodes and through the corona head electrode

were measured inline by battery powered nano-ammeters (home-made current-to-

voltage amplifier-based designs). The signs of the reported currents are given in Fig.

3.1. The outputs from the ammeters, voltage, and current monitor from the HVPS,

and from all the HV probes are fed to a National Instruments PCI-6221 DAQ card

on a desktop computer.
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C. Droplet collection systems

Discharged droplets from the spray were extracted into an antistatic tube (SCAT

Conductive plastic tube, 4 mm ID, 6 mm OD, 6 cm length) inserted through the

chamber Delrin R© lateral wall. This extraction tube was connected to a Swinny

filter holder made of either metal (stainless steel) or plastic (polypropylene). The

holder housed a glass microfiber filter (a Whatman 25 mm diameter filter with

1.6 µm pore size). The extraction gas was provided by a vacuum pump (Laboport

N86KT.18). The filter assembly (filter holder plus filter) was placed inside a purpose-

made Faraday-cage, whose inner metal shell (for plastic filter holder) or the metal

filter holder is connected to a Keithley 6485 picoammeter to monitor the residual

electrical charge current carried by the electrospray droplets to the filter assembly.

D. Illumination and photography

Two cameras (Olympus PEN E-PL7 and Olympus PEN EP-1)) were used for pho-

tographing (i) the electrospray plume with a Nikkor macro lens (60 mm, 1:2.8) under

darkfield illumination using a single white LED spot lamp, and (ii) the Taylor cone

with an Edmund Optics VZM 450i zoom imaging lens under brightfield illumination

to verify the cone-jet mode in all the experiments (Rosell-Llompart et al., 2018).

3.2.4 Electrospray discharging protocol

Stable combination of the electrospray with the ions and with the extraction gas flow

relies on balancing the right electrode voltages and the right flow speeds. To achieve

a stable balance, we used the following protocol with a closed chamber. Initially,

with the extraction tube kept far from the spray axis, we set both the chamber

airflow in (which vents to the fume hood) and the corona discharge airflow. With

the corona head electrode covered, we established the electrospray in cone-jet mode

and the corona discharge. For the first, we set the voltage difference between the

ES capillary and the ring electrode at their approximate final values (known from

previous practice runs), and then we feed the liquid solution through the capillary

(with the coflow on when in use). The ES capillary and ring voltages were chosen
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to be high enough to drive the droplets towards the head electrode (kept at Earth-

ground), rather than back toward the ring (data shown later). The direct currents

were monitored at the electrospray capillary (IES), at the ring (IR), and at the

corona head (IH) (Fig. 3.1). Any positive ring current at this stage is interpreted

as due to droplet deposition.

Next, after both the electrospray and the corona discharge were stable, the vacuum

pump was turned on to start the extraction airflow. Within a few seconds, the head

electrode was uncovered to allow the passage of ions through the head electrode

orifice into the spray region. This disturbs the spray, which typically became a

floating dense aerosol cloud. At the same time, typically, the Taylor cone shrunk a

bit. If a change to multi-jet spraying mode happened (Rosell-Llompart et al., 2018),

we regained stability in the cone-jet mode by lowering the ES capillary voltage.

(Therefore, to prevent that the cone-jet will become unstable when the ions are

introduced into the system, we start with a slightly elongated cone shape.) Often,

we recorded a finite current at the ring electrode (IR < 0), which is due to ion

collection, and an increase in the ES capillary current (I∗ES) (Fig. 3.1).

Immediately after, the extraction tube was approached to the aerosol cloud at the

desired location. Often this distorted the discharging process, so, meanwhile the

tube was positioned, the voltages were readjusted to maintain a steady and stable

process (spray outline, cone, currents). We assumed that the droplet extraction

was maximized when we saw the whole aerosol entering the tube. The ‘dead’ time

between the moment when the corona orifice was uncovered (to admit ions into the

spray region) and the moment when we started the timer (needed for establishing

the particle collection time) was very small (typically one or a few seconds), and

negligible compared to the total particle collection time.
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3.3 Results and discussion

We have used a non-volatile solvent, ethylene glycol, to investigate the role of the

various parameters on the generation of ions and of droplets separately (3.3.1), and

the effects of the ions on the spray plume shape for a low-volatility solvent without

the presence of solutes (3.3.2). This absence of solutes simplifies the system under

study. Otherwise, accumulation of solutes on electrode surfaces could change the

electrical field over time.

3.3.1 Electrostatic control of ion and droplet trajectories

The corona head acts as the counter electrode to the corona needle, thus collecting

most of the ions emitted from the corona, and allowing only a small fraction of the

corona current to pass through its orifice and become available to interact with the

electrospray droplets. This current fraction must be small because corona currents

(a few µA) far exceed electrospray currents (tens of nA). The capture of ions by the

droplets (Fig. 3.1) depends critically on the droplets’ and ions’ trajectories, thus on

the electrical field, which depends on the electrodes’ voltages and geometries. First,

in the absence of spray, we studied how sensitive the ionic current passing through

the head electrode orifice into the spray region (IExt) is to both the corona current

(IC) and the ring voltage (VR). In these experiments, the electrospray capillary was

removed. Also, to ensure the trapping of any central ions, the ring was covered with

a metal disc (12.7 mm diameter). These geometry changes allowed us to determine

IExt without elimination of the essential elements. Fig. 3.4 shows that IExt is (i)

weakly dependent of the corona current, and (ii) can be regulated by means of the

electrical field EExt in the region outside of the corona device through VR, where

EExt ∼ VR/H (same data presented in Chapter 2, subsection 2.5.4, pg. 46, is

duplicated and reduced by selecting the ring voltage (VR) range which has been

used in next experiments).

It is shown that the electrical field outside of the corona device (head electrode)

strongly influences the ion current available to discharge droplets. Note that in the

absence of a ring electrode, it would be challenging to control the Taylor cone stabil-
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Figure 3.4. Log-Log plot of extracted ion current IExt (< 0) measured at

the counter electrode (ring plus disk, as shown in the inset) versus the corona

current IC , at varying ring voltage, VR (values displayed). (H = 17.0 mm.

QC = 20 ml/min.). Electrode diagram is included, showing the absence of

electrospray capillary and the covering of the ring with a disc. Lines are

power-law fits.

ity. A single voltage difference (between the capillary and the head electrode) would

be simultaneously controlling: (1) the droplet generation near the Taylor cone at

the capillary exit, and (2) the ionic current available for droplets’ discharging. Such

configuration has, in fact, been proposed in the prior literature (see Introduction).

The (better) configuration used here includes a ring electrode, and this allows inde-

pendent control of (1) and (2). Its voltage difference with the head electrode (here,

VR) governs the trajectories of ions and droplets in the space between, while its

difference with the electrospray capillary (∆V = VES − VR) governs the formation

of the Taylor cone.

Such independent control is demonstrated by Fig. 3.5. In Fig. 3.5a, the electrospray

was monitored in the absence of corona, while varying both VR and VES at constant

difference (∆V ). We found near constancy for the electrical current at the capillary

IES as shown in Fig. 3.5b. This demonstrates that the droplet generation process

was affected minimally, if at all. Meanwhile, the electrospray droplet trajectories ex-

perienced big changes, as is evident from the spray appearance (Fig. 3.5c). Through

the voltage scan, also the head electrode and ring currents varied widely, for low

enough values of VR (Fig. 3.5b). The former decreased and the latter increased as
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part of the spray was diverted toward the ring, while both currents consistently add

up to the electrospray capillary current, as expected.

Fig. 3.6 plots the ring current IR versus ring voltage VR from Figs. 3.5a-b. This

current is associated with droplet deposition on the ring due to droplet flying-back

toward it, causing liquid accumulation over time on the ring electrode (visible in

Fig. 3.5c). The accumulated liquid probably attracted electrical field lines, thus

reinforcing the flying-back. We believe this to be the reason for the increase in ring

current over time as observed in Fig. 3.6, along with a shift in the VR at which the

flying-back starts (from ∼1.3 to 1.5 kV).

Figure 3.5. Experiment showing the effect of the electric field between ring

and counter electrode (without ions) on the electrospray plume (for solution

0007EG). (a) VR and VES versus experiment time, varied with ∆V ∼2.8 kV

(also shown). (b) Electrode currents IES , IR and IH , and the sum of these

two, versus experiment time. (c) Snapshots corresponding to some of the

current measurements. The last photo was made after (at time shown with

an arrow in (a)) the liquid accumulated on the ring and corona head was

wiped with a cloth, without interrupting the spraying. (H = 17.0 mm, h =

1.3 mm, Q = 5 µl/min.).

75

UNIVERSITAT ROVIRA I VIRGILI 
PRODUCTION OF HOMOGENEOUS PARTICLES BY CONTROLLED NEUTRALIZATION OF ELECTROSPRAYS 
Antonio Jesús Carrasco Muñoz 



3.3. Results and discussion Chapter 3. Electrospray Neutralization

Figure 3.6. IR as a function of VR throughout the experiment.

3.3.2 Discharging of ethylene glycol electrosprays

The droplet neutralization process requires a suitable combination of three elements:

1) the electrospray plume, 2) the ion plume, and 3) the gas flow field responsible for

removing discharged droplets (into the extraction tube). We have qualitatively in-

vestigated how the ions influence the spray plume shape using non-volatile (ethylene

glycol) solutions in the presence or absence of extraction flow. Fig. 3.7 illustrates

different situations in which the electrospray is electrically discharged, or not, by an

ion stream having similar electric current to the electrospray. In Fig. 3.7a ions and

extraction flow are absent, and the spray adopted a typical plume shape, in which

the droplets follow predictable trajectories which are close to the electrical field

lines (Arumugham-Achari et al., 2013; Higuera, 2012). In Fig. 3.7b, the addition of

corona ions leads to chaotic wavy motions of the spray plume when the extraction

tube is still far away from the spray. The droplet trajectories did not follow the

electrical field lines, as they are convected by spurious gas currents. This proves

that most of the droplets lost most of their initial charge. A similar situation was

found when a ring electrode is not present. However, the use of a ring made it easier

to control the system, as already mentioned for the ions and droplet separately.

In Fig. 3.7c, the extraction flow (set by the extraction tube) was brought near

the spray region, cancelling the chaotic motion as the droplets were suctioned into

the tube. In this case, the droplets followed nearly steady trajectories, which de-

part strongly from the electric field lines (which are nearly the same as the droplet
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Figure 3.7. Ethylene glycol electrospray (solution 007EG) (a) in absence

of extraction flow and ions, and (b-e) in presence of extraction flow under

different situations: (b) Exposed to corona ions, but tube located far (for

which the discharged aerosol does not follow the electric field lines). (c)

Exposed to corona ions, but tube located near (controlled spray discharging

and extraction). (d) Ions turned off, while tube is near the spray (presence

affecting the droplet trajectories). (e) Ions are on, and tube closer. (Better

extraction.) VES = 4.6 kV, VR = 1.0 kV, IES = 46 nA, IC = -12.0 µA, IExt
= -60 nA, H = 17.0 mm, h = 2.2 mm, Q = 0.5 µl/min (without gas coflow).

QC = 20 ml/min. vtube = 5.5 m/s. The glass urn was removed in these

experiments to attain best image quality. Scale bars: 3 mm.

trajectories in Fig. 3.7a). If, while the flow was on, the ions were turned off, the

extraction flow became uncapable of suctioning the spray into the tube, as demon-

strated in Fig. 3.7d. (They moved slightly away from the extraction tube, indicating

electrostatic repulsion due to an initial accumulation of charged droplets.)

From these tests, we conclude that the droplets’ trajectories are very different when

the ions are present than when they are not. Therefore, the capture of ions by
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the droplets is very efficient, enough to greatly reduce their initial net electrical

charge. The droplets follow mostly the electrical field lines when the ions are not

present, whereas they follow closely the gas streamlines when they are discharged

(or significantly discharged). Interestingly, this observation allows us to roughly

estimate the electrical mobility of the droplets before neutralization. As the air

speed at the inlet of the tube vtube is 5.5 m/s and the electrical field strength in

this region is of the order of VR/ODRing = 1.0 kV/7 mm = 1.4×105 V/m, the

droplets’ initial electrical mobility µ (speed/field strength) must be of the order of

vtube/ (VR/ODRing), namely (5.5 m/s)/(1.4×105 V/m) = 4×10−5 m2/(V·s).

In Figure 3.7e, the ions had been turned on again and the electrospray aerosol was

extracted into the extraction tube as before (Fig. 3.7c), demonstrating that the

process is reversible. Note that here the tube was very close to the spray axis, and

the extraction was still robust.

In sum, the spray suffered dramatic changes when ions were introduced (with similar

electrical current), and the proximity of the gas flow at the inlet of the extraction

tube was critical to attain steady droplet discharging and extraction.
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3.4 Conclusions

We demonstrate a continuous process for the effective reduction of the electrospray

droplets’ charge in situ using opposite-polarity unipolar ions from a corona source.

In our design a fraction of the current produced in a negative corona discharge is

introduced axially into the electrospray, approximately matching the electrospray

current. The discharged aerosol is then extracted orthogonally by an antistatic ex-

traction tube, and the droplets are then easily transported and collected on a filter.

Electrospraying in capillary-ring configuration allows us to stabilize the spraying

process independently from the presence of ions. Meanwhile, the spray-ions interac-

tions are controlled mainly by the voltage difference between the ring electrode and

the ion source. Droplet flyback towards the ring can be prevented robustly over a

wide range of ring voltages.

Stable electrospray discharging allowed the continuous extraction of the discharged

droplets into an antistatic tube with high efficiency. The removal of droplets by a

proximal antistatic tube is critical to the stability of the process, as it prevents the

charge reversal of the droplets with consequent migration toward the Taylor cone

and/or collision events with other droplets.

We have found that the geometrical and electrostatic parameters are key to maximize

droplet discharging and minimize droplet loss.

We found that the distance between the ring electrode and ion source controlled the

location where the ions interacted with the droplets.
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— Life is movement. Movement is change. Every time

tiny particles swing through time and space, something

is changing.

Neale Donald Walsch

4
Monodisperse Particles by Efficient

Neutralization of Electrosprays
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4.1 Introduction

Nanoparticles (< 100 nm), submicroparticles (< 1 µm), and small microparticles

(1-10 µm) are receiving increasing interest in diverse technological, scientific, nutri-

tional, and medical areas (Cun et al., 2021; Dima et al., 2020; Wicki et al., 2015;

Cejková et al., 2013; Webster et al., 2013). Several technologies, such as Spray Dry-

ing, are widely used where the production of particles covers ranges from tens to

hundreds of microns, and tolerates a wide dispersion of droplet size. This is the case

of industrial production of dried foods, pharmaceuticals, and fertilizers (Vehring

et al., 2020; Wang and Langrish, 2009; Masters, 1991). Yet, it has been difficult

to extend such approaches to the droplet size range below about one micrometer

(Jafari et al., 2021; Malamatari et al., 2020; Salama, 2020; Sosnik and Seremeta,

2015; Nandiyanto and Okuyama, 2011).

Fittingly, electrospraying is an atomization technique capable of generating droplets

in the micron- and submicron size ranges with size homogeneity and high energy ef-

ficiency (Rosell-Llompart et al., 2018; Gañán-Calvo et al., 2018). Therefore, interest

in the electrospray route for producing small particles has been rekindled in the ar-

eas of ceramics (Tang et al., 2016; Suhendi et al., 2013), pharmaceutics/therapeutics

(Ali et al., 2021; Sverdlov Arzi and Sosnik, 2018; Boda et al., 2018; Nguyen et al.,

2016; Bock et al., 2012; Yurteri et al., 2010), nutraceuticals (Rostamabadi et al.,

2021), food encapsulation (Echegoyen et al., 2017), and cosmetics (Mehta et al.,

2017).

Unfortunately, the net electrical charge carried by the electrospray droplets may

lead to several issues. First, the fast speeds attained by the charged droplets in the
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high electrical field (of order m/s) may lead them to reach the collection electrode as

incompletely dried particles, thus forming a continuous film instead of a particulate

film. Second, when multiplexing electrosprays, the electrostatic repulsion between

different sprays limits the scalability of the process (Sochorakis et al., 2019; Almeŕıa

et al., 2011; Deng et al., 2006; Bocanegra et al., 2005). Thirdly, Coulombic instabil-

ities (CIs) during droplet evaporation (Duft et al., 2003; Saville, 1997; Gomez and

Tang, 1994) are particularly unfavorable as they lead to non-spheroidal (elongated

or filamentous) particle shapes or mixed fragment sizes (Bodnár et al., 2018; Almeŕıa

et al., 2010; Li et al., 2007).

Although several works, focused on making small particles by electrospray, have at-

tempted the reduction of the droplets’ charge by gas-phase ions, by either of several

approaches (Lenggoro et al., 2000; Yurkstas and Meisenzehl, 1964; Meesters et al.,

1992; Cloupeau, 1994; Mustika et al., 2021). In none of the cited works combining

electrosprays with corona ions to make particles could we find data on the droplet

discharging efficiency, the particle morphology changes, or their dependence on the

independent variables of the problem (electrode geometrical parameters, corona con-

ditions, electrospray conditions, etc.). Nor have the ion losses and droplet losses to

the electrodes been investigated typically, despite their importance. All these im-

portant questions must be answered to improve and optimize electrospray-corona

systems. In addition, such data should be useful for informing numerical simulations

on these systems (Higuera, 2016; Khalifehei and Higuera, 2020).

In this work, we have used three different polymer solutions in volatile solvents,

which led to different particle sizes from small microparticles (diameter ∼ 1 µm) to

nanoparticles (diameter ∼ 200 nm). In addition, we approximately match the ionic

current to the electrospray current. We hypothesize that, in a stable process, these

two currents must be alike (though not necessarily equal) to prevent that the ions

discharge the Taylor cone. Therefore, an orifice plate (“corona extractor”) placed in

front of the corona needle limited the ionic current passing to the spray region. In the

context of particle production by electrospray the use of an intermediate electrode

was previously used only by Tang et al. (2017) and briefly by Cloupeau (1994).

To prevent the ions from reaching the Taylor cone, a ring-shaped electrode was

placed in front of the electrospray capillary. This configuration is commonly used in
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electrospray practice to provide electrostatic shielding (Jaworek, 2007b; Cloupeau,

1994). Here, the ring has the important additional benefit of shaping the electrical

field to guide the ions to interject the droplets’ trajectories.
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4.2 Methodology

The experiments for this Chapter were carried out in collaboration with Elena

Barbero-Colmenar.

4.2.1 Materials

All the chemical reagents were used as purchased, without further purification.

Polystyrene (PS) (CAS Number 9003-53-6, weight-average molecular weight (Mw)

of 35 kDa), methyl ethyl ketone (MEK) also known as butanone (ACS grade, CAS

Number 78-93-3, residue on evaporation 0.0020%), curcumin (CUR) (99% purity,

CAS Number 458-37-7, 368.38 g/mol), and polyvinylpyrrolidone (PVP) (CAS Num-

ber 9003-39-8, Mw of 40 kDa) were purchased from Sigma Aldrich. Chitosan (CAS

Number 9012-76-4, Mw of 150 kDa) was purchased from Acros organics. Acetic acid

glacial extra pure was purchased from Scharlau. Ultrapure water (Millipore, USA)

was used throughout. Sodium chloride (NaCl) (ACS grade, CAS Number 7647-14-

5), ethanol absolute (ACS reagent grade, CAS Number 64-17-5), and acetone (ACS

reagent grade, CAS Number 67-64-1) were purchased from Scharlau. Synthetic dry

air 99,998% purity was purchased from Carburos Metálicos, Spain (20.9% ±1% O2

with 3 ppm molar of H2O, 0.2 ppm molar of THC and 1 ppm molar of CO and CO2,

the rest being N2).

4.2.2 Solution preparation and characterization

We have used different liquid solutions based on polymer solutions in volatile solvents

(PS in MEK, PVP in ethanol:acetone 1:1 by volume, and chitosan in ethanol:water:acetic

acid 5:4:1 by volume). The necessary mass of solvent was added to a given mass of

solute, followed by magnetic stirring overnight (3 hours in the case of the chitosan

solution). However, PS solutions at 3% w/w were prepared by dilution of a 5%

w/w PS in MEK prepared in this way. A 5 ml Gay-Lussac pycnometer was used to

measure the density of some solutions. We measured the electrical conductivity with

a portable conductivity meter (CRISON 35) using a glass-body probe (CRISON 50
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61). The solutions concentrations and properties are given in Table 4.1.

Table 4.1. Properties of the polymer solutions.

Solution code
Solutes and

concentrations
Solvent

Electrical
conductivity, S/m

Solution
density, g/cm3

3PS-MEK PS: 3% w/w Butanone 6.9 ×10−5 (23.3oC) 0.807 (24.8oC)

1CUR-5PVP
PVP: 5% w/v Ethanol/acetone

1.43×10−3 (24.0oC) 0.815 (20.5oC)
CUR: 1% w/w (1:1 v/v)

0.1CUR-5PVP
PVP: 5% w/v

Ethanol 1.21 ×10−3 (21.6oC) 0.790 (20.0oC)a

CUR: 0.1% w/w

2C10A50E
Chitosan: Eth:H2O:AcOH

0.105 (22.5oC) 0.883 (21.0oC)
2% w/w (5:4:1 v/v)

aNot available. Value shown is for the pure solvent.

4.2.3 Electrospray-corona apparatus and particle extraction

system

In addition to the electrospray-corona apparatus system presented in #3.2.3, the

following elements were used for this study.

A. Particle collection systems

Discharged droplets/particles from the spray were extracted into an antistatic tube

(SCAT Conductive plastic tube, 4 mm ID, 6 mm OD, 6 cm length) inserted through

the chamber Delrin R© lateral wall. This extraction tube was connected to a Swinny

filter holder made of either metal (stainless steel) or plastic (polypropylene). The

holder housed a glass microfiber filter (a Whatman 25 mm diameter filter with 1.6

µm pore size for PS aerosols, either a 25 mm × 1.0 µm or a 13 mm × 1.6 µm

filter for PVP-CUR aerosols, and a 13 mm × 0.3 µm filter for chitosan aerosols).

The extraction gas was provided by a vacuum pump (Laboport N86KT.18). The

filter assembly (filter holder plus filter) was placed inside a purpose-made Faraday-

cage, whose inner metal shell (for plastic filter holder) or the metal filter holder is

connected to a Keithley 6485 picoammeter to monitor the residual electrical charge

current carried by the electrospray droplets to the filter assembly. For comparison,
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in the absence of corona ions, electrospray particles were also collected on silicon

wafers (Si-Mat, Germany, <100>, 525 µm thickness, P/Boron, 1-30 ohm·cm). A

silicon wafer fragment sitting on top of a thin steel ruler (165×13, mm) was placed

underneath the spray, on top of the corona head electrode. The ruler was Earth-

grounded and was inserted through a slit on the chamber Delrin R© lateral wall, and

the Si wafer remained on the ruler all the time during the collection.

B. Particles’ collection and charge-reduction efficiencies

The particle masses collected on the filter assembly (FA) mFA and on the extraction

tube mtube (which includes the connector to the FA) were obtained by the weight

differences before and after particle collection determined with a 5-digit analyti-

cal balance (Mettler Toledo XS205 Dual Range). The extracted particle mass was

computed as m = mFA +mtube and the extraction efficiency as:

η = m/mES (4.1)

where mES is the mass of polymer in the electrosprayed solution, which we computed

from the polymer mass fraction in the solution Cp, the infusion flow rate Q, the

solution density ρ, and the collection time t as mES = Cp ·Q · ρ · t. The extraction

efficiency can be decomposed as the sum of the contributions from the filter assembly

ηFA = mFA/mES and from the extraction tube ηtube = mtube/mES:

η = ηFA + ηtube (4.2)

The residual electrical charge current carried by the electrospray droplets to the

filter assembly IFA, time-averaged over the collection time, is used to determine the

discharge efficiency ζ defined as the fractional reduction in the initial charge of the

droplets which, after combining with the ions, lead to particles collected on the filter

holder. Such efficiency is computed as:

ζ = 1− 〈IFA〉
IES · ηFA

(4.3)
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where IES is the electrospray current, and (IES · ηFA) is an estimate of the initial

electrospray current associated with the droplets which correspond to the particles

on the filter. “〈 〉” means time averaging (necessary when the IFA signal changed

with time). A value of 1 for ζ would mean that the aerosol collected on the filter

holder is overall electrically neutral.

C. Particle morphology and size characterization

The particles were imaged by scanning electron microscopy (SEM) (FEI Quanta

600) to determine particle morphology and size. After they were collected, on filters

or on Si wafers, they were stored in a dry ambient until imaged, done typically on the

same or the following day. Before being imaged, particles collected on the filters were

either transferred to the carbon tape of the SEM sample holder by gently dabbing

the tape on the particle collection, or by sticking a cut piece of the filter membrane

with particles onto the C tape. Prior to imaging any samples, they were coated with

a ∼27 nm Au layer (30 mA, 180 s) in a sputter coater (either a Quorum Q150R

ES or a Quorum Q150T S plus). The particle size distribution was determined by

manually sizing particles in the SEM images using ImageJ software (version 1.53e).

D. Illumination and photography

Two cameras (Olympus PEN E-PL7 and Olympus PEN EP-1)) were used for pho-

tographing (i) the electrospray plume with a Nikkor macro lens (60 mm, 1:2.8) under

darkfield illumination using a single white LED spot lamp, and (ii) the Taylor cone

with an Edmund Optics VZM 450i zoom imaging lens under brightfield illumination

to verify the cone-jet mode in all the experiments (Rosell-Llompart et al., 2018).

4.2.4 Electrospray discharging protocol

In this study, the protocol used to discharge the polymer solution electrosprays was

the same as in the case of ethylene glycol electrosprays presented in subsection 3.2.4,

pg. 71.
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4.3 Results and discussion

We apply the developed system to the production of two different types of particles in

example systems based on polystyrene (PS) solutions (#4.3.4), polyvinylpyrrolidone-

curcumin (PVP-CUR) solutions (#4.3.5), and chitosan solutions (#4.3.6).

4.3.1 Polystyrene particles from discharged PS/MEK elec-

trosprays

To demonstrate the use of our charge reduction method to produce particles we have

chosen a solution of 3% w/w of 35 kDa PS in MEK. This polymer solution leads to

Coulombic explosions of the droplets, as revealed by the formation of progeny parti-

cles (Bodnár, 2016). Indeed, we made a morphology test to choose the appropriate

liquid flow rate at which, for this solution, the particles were carrying filaments.

Figure 4.1. Filamentous PS particles made from 3PS-MEK solution which

were collected on Si wafers, without corona ions. Conditions: low RH (<3%),

5 l/min dry air supplied to the chamber, images from the center of the depo-

sition. Electrode configuration with h = 1.7 mm, and ring-to-wafer distance

H = 18.5 mm. All scale bars: 5 µm.
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Fig. 4.1 shows the resulting particles from electrosprayed particles, deposited on sili-

con wafers, at different liquid flow rate. The particles were most of them filamented,

and we observed long filaments and also progenies. Particle size increases with the

liquid flow (as it is expected). Based on these results we chose the 3PS-MEK solu-

tion at a liquid flow rate of 3.0 and 5.0 µl/min for the neutralization experiments.

Therefore, this solution is suitable to test whether exposure to ions can reduce the

droplets’ initial charge sufficiently to prevent such explosions. We either sampled

the electrospray by collecting it onto a Si wafer (to confirm the existence of progeny

particles) or we extracted it by sucking it into an antistatic tube after discharging

the spray by corona ions. The tube flow runs through a collection filter, where the

collected particles were weighed and inspected by SEM. The filter was housed in

either a metal or a plastic filter holder. When a metal holder was used, the Fara-

day cage electrical current was also monitored during collection (see Methodology,

pg. 85). Collections for several tens of minutes were performed, at various test

conditions and configurations, which are listed in Table 4.2.

Figure 4.2 shows images of electrospray discharging under different conditions. The

sprays in all cases were substantially steady and their shape resembled compara-

ble situations observed with the ethylene glycol sprays (subsection 3.3.2 and Fig.

3.7c,e). The Taylor cone was monitored throughout the experiments under bright-

field illumination, as in the example of Fig. 4.2, to ensure that cone-jet mode was

achieved (Rosell-Llompart et al., 2018). Between M.1 and M.2 (3 µl/min) the tube

was placed at a height difference of 1 mm, with minimal impact on the shape of

the spray plume, which appeared to completely enter the extraction tube. Raising

the liquid flow rate from 3 to 5 µl/min (from M.2 to M.3) resulted in a widened

spray plume and increase in light scattering. Both these changes are consistent with

typical electrospray behavior. The spray plume widens due to electrostatic repulsion

in the radial direction, as more charge is injected into the spray. Light scattering

increases as the result of increased droplet size (obtained at the higher liquid flow

rate).

Raising the corona current IC threefold between M.3 and M.4 (from –5.4 to –14.8 µA)

did not result in appreciable differences in plume shape or scattered light intensity.

This is consistent with the fact established earlier in Fig. 3.4 that the ionic current
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Table 4.2. Parameters and data for the particle collection experiments with

polystyrene electrosprays.a

Sampleb
Q

(µl/min)

H
(mm)

IC
(µA)

Tube
radial

position
(mm)

IES

(nA)c
I∗ES

(nA)d
IR
(nA)

IExt

(nA)e
I ′Ext

(nA)f
Collection

time
(min)

Extraction
efficiency,

η
(%)

Filter
assembly
fraction,
ηFA

(%)

Discharge
efficiency,

ζ
(%)

M.1
3.0 18.5 -5.5 2.0 25 25 -22 -40 -44

41.3 109 89 86

P.1 41.2 108 63 –

M.2
3.0 18.5 -5.4 2.7 25 27 -22 -40 -47

44.6 108 100 93

P.2 44.6 107 81 –

M.3
5.0 18.5 -5.4 2.5 29 43 -19 -40 -58

24.2 102 68 83

P.3 23.0 110 65 –

M.4
5.0 18.5 -14.8 3.3 29 36 -20 -50 -53

12.2 112 79 87

P.4 24.0 107 52 –

M.5 5.0 12.0 -12.4 2.0 30 40 – -90 – 24.3 111 103 95

aIn all cases: VES = 2.3 kV, VR = 0.9 kV, vcoflow = 70 mm/s, vtube = 5.5 m/s, QC

= 20 ml/s, RH < 2 %.
bMetallic (M.x) and plastic (P.x) filter holder.
cMeasured just before introducing the ions.
dMeasured during spraying with corona ions present.
eIonic current injected into the spray region estimated from Fig. 3.4 as a function of

VR and IC .
f Ionic current injected into the spray region estimated according to a charge balance

(see text).

IExt reaching the ring region is insensitive to the corona needle current. However,

from M.4 to M.5, where H went from 18.5 to 12.0 mm (at constant voltages) to

intensify the electric field, the ionic current IExt (shown in Table 4.2) had a big effect

on the spray shapes (Fig. 4.2). In addition to the ionic current increase, H must

change the ions’ trajectories as they were injected closer to the ring. Therefore, the

current flux (current per unit cross-sectional area) must be much greater in M.5 than

in M.4 (or M.3). This explains why H is reduced from M.4 to M.5 the electrospray

plume appears to be neutralized closer to the Taylor cone, where the droplet density

is higher, the plume is narrower, and therefore the current flux for the droplets is

also higher (than would be found further downstream in the absence of ions). In

other words, one would expect that in order to discharge the electrospray efficiently,

not only the ionic and spray currents, but their associated fluxes should be matched,

as well. Note also that for the M.5 run, the plume electrostatic expansion appears

to cease (with the spray attaining constant width).
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Figure 4.2. Polystyrene-MEK solution electrospray neutralization (3PS-

MEK). Representative snapshots taken during the discharge (scale bar: 3

mm). Right: Taylor cone and jet. Common parameters: VES = 2.3 kV, VR
= 0.9 kV, h = 1.7 mm, vtube = 5.5 m/s, vcoflow = 70 mm/s. See Table 4.2

for additional information.

Unlike in the ethylene glycol experiments (previous chapter), we did not observe

liquid accumulation on the electrodes. However, we found small amounts of particles

deposited at the entrance of the extraction tube (both on outer and inner walls), as

is visible in Fig. 4.2 and Fig. 4.3. Maybe, the particles which had deposited early

repelled other particles electrostatically, thus preventing continued deposition.

Figure 4.3. Particle deposition on the antistatic extraction tube walls.

Finally, it is interesting to compare the ionic current obtained from a charge balance,

with the ionic current estimated from the direct measurements shown in Fig. 3.4.
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The two values are shown in Table 4.2, as I
′
Ext and IExt respectively. The former is

the sum of the current contributions due to the ions only, namely: (i) the ring current

(IR), which is due to the ions (as its value is 0 before the ions are introduced), (ii)

the electrospray capillary current (I∗Ext) when the ions are present, which includes

the part of the ions which reach the Taylor cone and the ions that combine with the

droplets, (iii) decreased by the filter assembly current (IFA), which is the residual

droplets’ charge which the ions were not able to cancel out: I
′
Ext = IR−(I∗Ext−IFA).

The two values in the Table for IExt are quite similar, which leads to two conclusions:

(i) That the droplets are indeed significantly discharged by the capture of ionic

charge; and (ii) that the ionic plume spreads significantly, enough to reach the ring.

4.3.2 PS/MEK discharging efficiencies

Fig. 4.4 shows the time traces of the filter assembly current, IFA, for the same

conditions from Fig. 4.2 when a metal filter holder was used. These currents were

always positive and slowly decreasing with time, with a similar decay rate. Such

decay may be due to the slow buildup of charge on the filter, eventually leading

to rejection of incoming positively charged particles. When plastic filter holders we

used (P.x conditions) the FA currents were erratic, fluctuating around 0 nA (shown

later in Fig. 4.6); so, these were not used to determine discharging efficiencies. In

all cases, the current was always much smaller than IES, consistent with extensive

discharging of the spray by the ions (Table 4.2). Note that a small but finite residual

charge could be desirable to prevent coalescence while the droplets are drying up.

The IFA traces were integrated and used to compute discharging efficiencies ζ by

Eq. 4.3. These are shown in Fig. 4.5 by blue bars and ranged between 83 and 95%.

Incomplete droplet discharging is not surprising because the extent of discharging

of the individual droplets must depend on each droplet’s exposure to a certain ion

flux as it travels through its trajectory, which probably varies for different droplet

trajectories. In addition, theoretically, under a constant influx of ions the droplets

should eventually reverse sign and achieve a limiting stationary negative charge level.

In fact, we cannot rule out the presence of negatively charged particles as IFA is a

net current.
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Figure 4.4. Faraday-cage electrometer signal IFA corresponding to the resid-

ual current carried by the particles. Common parameters: VES = 2.3 kV, VR
= 0.9 kV, h = 1.7 mm, vtube = 5.5 m/s, vcoflow = 70 mm/s. See Table 4.2

for additional information.

Figure 4.5. Efficiencies associated to the masses collected on the filter as-

sembly ηFA (dark orange) and on the tube and connector ηtube (light orange),

discharge efficiency ζ (blue bars). Common parameters: VES = 2.3 kV, VR =

0.9 kV, h = 1.7 mm, vtube = 5.5 m/s, vcoflow = 70 mm/s. See Table 4.2 for

additional information.

4.3.3 PS/MEK mass efficiencies (extraction versus filter col-

lection)

Fig. 4.5 also shows mass collection efficiencies (orange bars) associated with the

mass fractions collected on the extraction tube ηtube (tube and connector) and on

the filter assembly ηFA (filter and holder), whose sum equals the extraction efficiency

η (Eq. (4.2)). The filter assembly fraction was systematically larger when a metal

filter holder was used, compared to plastic (for otherwise the same conditions). For

the metal holder set, the highest two filter collection fractions were observed for

conditions M.2 and M.5, which also had the highest discharge efficiencies ζ. At
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Figure 4.6. Electrospray neutralization when plastic filter holders were used.

Left: Snapshots of the discharged ES plumes extractions. Right: Faraday-

cage current of each run (P.x conditions).

the lowest flow rate, the filter collection efficiency depended on the extraction tube

position. On increasing the flow rate from 3 to 5 µl/min, we observed a drop in the

filter collection efficiency ηFA. This might be attributed to the difficulty of handling

an increased spray current and wider spray plume. The filter efficiency increased

dramatically when at 5 µl/min we reduced H (condition M.5), for which we think

that the ionic and spray current fluxes are matched nearer to the droplet generation
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zone (see earlier discussion).

The extraction efficiencies η were numerically higher than 100% (102 to 112%) for all

the tested conditions. Ancillary tests indicate as most probable cause the absorption

of solvent traces in the polymer matrix of the collected particles. Regardless, the

important overall conclusion from these data is that the extraction efficiencies η

were near 100% in all cases, consistently with the entering of the whole aerosol into

the extraction tube observed (Fig. 4.2), and with the high discharging ζ (subsection

4.3.2).

4.3.4 Morphologies of the particles collected on filters from

PS/MEK sprays

The characteristics of the particle residues observed by SEM reflects whether the

droplets suffered the first Coulombic instability (CI) before it is prevented by the

strength of the polymer shell forming by solvent drying (Bodnár et al., 2018). First,

we imaged the particle residues by SEM to show that in the absence of ions the

droplets underwent CI. These are shown in Fig. 4.7, in panels Si.1 and Si.2, corre-

sponding to collections on Si wafers at flow rates of 3 and 5 µl/min. In both cases,

filamented main particles and progeny particles were the predominant, structures,

revealing CIs (Almeŕıa et al., 2010; Bodnár et al., 2018). This finding agrees with

our previous work with this solution composition (made with even the same polymer

batch) albeit for slightly lower Q of 2 µl/min (Bodnár, 2016).

When the electrospray at 3 µl/min was exposed to the corona ions, particles with

globular morphology were instead collected on the filter, as shown in panel M.1

in Fig. 4.7. On the other hand, similar ion conditions were not as effective on

the 5 µl/min spray as shown by the significant fraction of filamentous particles in

panel M.3. Although this means that the droplets for this case suffered Coulombic

instability, the low residual current, the high discharging efficiency, and the large

collection efficiency shown in Fig. 4.5 (M.3) prove that the electrospray droplets still

picked up a significant ionic current. On raising the corona current to -14 µA (M.4)

(from -5.5 µA at condition M.3) the particles’ morphologies did not vary appreciably
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Figure 4.7. Comparison of morphology and sizes of PS particles made

from 3PS-MEK solution which were collected either on Si wafer, without

corona ions, (conditions Si.1 and Si.2) or on a filter, with corona ions present

(conditions M.x, Table 4.2). Electrode configuration with h = 1.7 mm, H =

18.5 mm except for M.5 (H = 12.0 mm). The filters were housed in the metal

holder. All scale bars: 2 µm.

from condition M.3. This is clearly consistent with the fact, shown earlier in Fig 3.4,

that the current injected into the spray does not change much with corona current.

Therefore, the neutralizing capacity of the ions was not significantly improved when

the corona current was increased.

On the other hand, when the distance H between the ion source and the ring elec-
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trode was decreased to 12.0 mm in condition M.5 (from 18.5 mm in M.4), spheroidal

particles without filaments were collected (Fig. 4.7). This reveals that the droplets

were electrically discharged early enough to prevent the first Coulombic instability.

This finding is consistent with the images of the spray in Fig. 4.2, which show that

the reduction in H between conditions M.4 and M.5 resulted in a significant nar-

rowing of the spray plume and, probably, an upstream shifting of the discharging

zone (as argued earlier).

Importantly, the addition of corona ions to the spray did not apparently change

the sizes of the particles (comparing Si.x and M.x conditions in Fig. 4.7). This

proves that the ions did not interfere with the jet formation process. At least, the

jet diameter at the jet breakup position did not change appreciably, because the

particle size remains approximately the same. However, the electrical current at the

ES capillary increased when the ions were introduced (from IES to I∗ES as shown in

Table 4.2). This has been seen for many conditions. The current increase could be

due to (i) ions reaching the Taylor cone, or (ii) ions reducing the space charge of the

spray cloud (the net charge due to the ion and the spray clouds), thus increasing

the electrical field at the Taylor cone and the current (partially offset by the down-

adjustment of voltage explained in our protocol in pg. 71). Regardless, the fluid

dynamics of the jet formation was not perturbed by the ions enough to change the

jet width at breakup. If it had, a change would probably have been seen in the

particle size between the Si-wafer and filter particle collections of Fig. 4.7.

The previous argument assumes the known fact that the length of jet transforming

into a single droplet (the jet breakup wavelength) is fairly insensitive to how much

electrical charge it carries (which would decrease if ions hit the jet) (Gamero-Castaño

and Hruby, 2002). Nonetheless, the arrival of ions to the jet cannot be ruled out just

from the insensitivity of particle size to them. This is due to two opposing tendencies.

On the one hand, a significant deposition of ions on the jet near its breakup region

would lower the net electrical surface charge, thus reducing the normal electrical

stresses that oppose the surface tension stresses. As a consequence, the jet break-

up process would be accelerated, happening “earlier”, i.e., further upstream (as

demonstrated with electrospinning jets by Fong et al. (1999); see also Saville (1971)).

This would cause the breakup of the jet in a region where it is thicker, thus resulting
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in slightly bigger particles. On the other hand, ions reaching the jet (and the spray)

would also reduce the net charge on the jet (and the spray). Therefore, the electrical

potential would be lowered at the site of ion arrival, thus intensifying the axial

component of the electrical field, which is responsible for accelerating the charged

jet. Therefore, its thinning rate would be increased, resulting in a thinner jet.

Understanding the relative importance of these two tendencies is beyond the scope

of this work. Nonetheless, we can conclude that if ions landed on the jet in our

experiments, they did not appreciably affect the size of the jet at its breakup point.

Figure 4.8. Particle diameter histograms from 100 particles (each) for the

two conditions leading to filament-free particles (M.1 and M.5), where dp =

mean diameter, and σ = standard deviation.

Fig. 4.8 shows the particle size histograms of the particles collected on filters for

the cases leading to globular (filament-free) particles: M.1 and M.5. The particles

were uniformly sized and shaped at these conditions. Particle diameter count means

increased slightly with flow rate from 1.12 µm at 3 µl/min (M.1) to 1.34 µm at 5

µl/min (M.5), while the standard deviations were similar. This increase in particle

size with flow rate reflects the “scaling-law” dependence of droplet size with flow

rate for which particle volume varies approximately linearly with solution flow rate

(Rosell-Llompart et al., 2018).

Although most of the particles were collected on the filters (Fig. 4.9a), some of them

landed on the inside of the filter holder cap (Fig. 4.9b), and for selected conditions

(M.1, M.3, M.5) we inspected them by SEM, finding that a significant fraction of

the particles had filaments. This may indicate that such particles either initially

carried more charge or were not as efficiently discharged as those landing on the

filter. SEM images of the particles deposited on the filter holder are shown in Fig.
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4.10.

(a) Particle deposit (b) Metallic filter holder

Figure 4.9. Examples of particle collections on a 13 mm filter (a) and on

metallic filter holder (25 mm) (b).

Figure 4.10. Representative SEM images of particles deposited on the metal

holder inlet for conditions M.1, M.3 & M.5, where some of them were carrying

filaments from Coulomb explosions.
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4.3.5 Curcumin-loaded PVP particles from discharged elec-

trosprays

We have also applied this methodology to produce polymer-model drug particles

made of polyvinylpyrrolidone (PVP) and curcumin (CUR), as a carrier-drug model.

We chose a composition of 5% w/w PVP and 1% w/w CUR in ethanol/acetone (1:1

v/v) as this is a relatively dilute solution capable of producing small particles. Using

h = 1.2 mm and H = 17.0 mm, we established the cone-jet mode (Fig. 4.11a) at a

liquid flow rate of 1.0 µl/min with an electrospray current of 32 nA. The particles

collected on Si wafer without ionic discharging were filamentous, as shown in Fig.

4.11c, whereas the particles on the filter after discharging were mostly globular,

with a minor presence of filaments, as shown in Fig. 4.11d. The size distribution

on the filter particles is monomodal and homogeneous, with count mean (Martin)

diameter and standard deviation of 655 ± 143 nm (Fig. 4.11e). The collection

efficiencies η in two independent experiments were 100% and 97%, where the filter

assembly fractions ηFA were 90% and 76% for collection times of 64 and 44 min,

respectively. The averaged value for the residual current was +3.0 nA in both cases,

corresponding to discharging efficiencies ζ of 90% and 88%.

We performed an ancillary experiment at elevated ambient humidity of 43-53% RH

(after lifting the chamber glass urn), using a solution of 5% w/w PVP and 0.1%

w/w CUR in ethanol, at liquid flow rate Q = 0.75 µl/min, and with h = 1.0 mm and

H = 27.0 mm. Without ions, on a Si wafer we collected submicrometric particles

having mixed geometries: globular, spherical, or elongated (Fig. 4.12a). With ions,

a 20 min filter collection resulted in similarly sized nearly spherical and monomodal

nanoparticles (Fig. 4.12b), with a narrow particle size distribution with count mean

and standard deviation of 430 ± 64 nm, shown in Fig. 4.12c. Just as seen before in

the PS experiments (#4.3.4), here the ions did not change the size of the particles,

so we conclude that the ions did not affect the jet breakup pattern. The electrospray

current did not change when the ions were added during the low relative humidity

experiments (I∗ES = IES = 32 nA), while IR went from 0 to –3 nA.
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Figure 4.11. Morphology and sizes of particles made from PVP-curcumin

solution 1CUR-5PVP. (a) Snapshot of a steady electrospray during discharg-

ing and extraction, inset showing the Taylor cone. (b) Example of particle

deposit on filter (25 mm dia.). (c,d) SEM images of particles sprayed at Q

= 1.0 µl/min, RH < 2%, h = 1.2 mm, H = 17.0 mm, as collected on a Si

wafer without ions (c) and on a filter (d). (e) Particle size histogram for (d)

from 129 particles. dp = particle mean diameter, σ = standard deviation. All

scale bars: 2 µm.

4.3.6 Chitosan particles particles from discharged electro-

sprays

To check the robustness of this system, we have also tried to discharge the droplets

of a more conductive electrosprayed solution, where the amount of ions must be

increased to be capable of reduce the droplet charge and extract the resulting aerosol.

Therefore, we have applied this methodology to produce polymer particles made of
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Figure 4.12. Morphology and sizes of particles made from PVP-curcumin

solution 0.1CUR-5PVP. (a,b) SEM images of particles from solution 0.1CUR-

5PVP sprayed at Q = 0.75 µl/min, h = 1.0 mm, H = 27.0 mm, RH = 43%,

as collected on Si wafer without ions (a) and on filter (b). (c) Particle size

histogram for (b) from 300 particles. dp = particle mean diameter, σ =

standard deviation. All scale bars: 2 µm.

chitosan, a biodegradable and biocompatible polymer which has been used as a

carrier in polymeric nanoparticles for drug delivery (Mohammed et al., 2017). We

chose a composition of 2% w/w chitosan in ethanol:water:acetic acid (5:4:1 v/v)

ethanol/acetone (1:1 v/v) as this solution is capable of producing smaller particles

than previously due to a higher electrical conductivity. Using h = 1.44 mm and H

= 12.3 mm, we established the cone-jet mode (Fig. 4.13) at a liquid flow rate of 0.8

µl/min, at RH = 60 %, which produced an electrospray current of 520 nA.

In this case, the particles collected on Si wafer without ionic discharging were glob-

ular (did not carry filaments), as shown in Fig. 4.14a, although the size distribution

was not as narrow as in previous sections. The particles on the filter after discharg-

ing were globular as well, as shown in Fig. 4.14b, with a size of the main particles of

200-250 nm, where, as can be observed, the ion exposure did not change the particle

size or morphology. The process was stable, with a collection time of 35 min where

103

UNIVERSITAT ROVIRA I VIRGILI 
PRODUCTION OF HOMOGENEOUS PARTICLES BY CONTROLLED NEUTRALIZATION OF ELECTROSPRAYS 
Antonio Jesús Carrasco Muñoz 



4.3. Results and discussion Chapter 4. Particles by ES-Neutralization

we decided to stop the experiment. The averaged value for the residual current was

+0.8 nA, corresponding to a discharging efficiency ζ close to 99%.

As a conclusion, we are able to reduce the charge of droplets from a chitosan solution

electrospray with a high electrospray current (IES = 520 nA) and extract the aerosol

with high efficiency and without distorting the particle morphology, expanding the

possibilities of this methodology.

Figure 4.13. Neutralization and extraction of electrosprayed chitosan solu-

tion (2C10A50E). (a) Stable Taylor cone. (b) Snapshot of a steady electro-

spray during discharging and extraction. Q = 0.8 µl/min, h = 1.0 mm, H =

27.0 mm, RH = 43%, IES = 520 nA.
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Figure 4.14. SEM images of particles made from solution 0.1CUR-5PVP

sprayed at Q = 0.8 µl/min, h = 1.0 mm, H = 27.0 mm, RH = 43%, IES =

520 nA, as collected on Si wafer without ions (a) and on filter (b).

4.4 Conclusions

We demonstrate, for different cases of polymer solution electrosprays, a continu-

ous process for the effective prevention of Coulombic instabilities in electrospray

droplets’ by reducing their charge in situ using opposite-polarity unipolar ions from

a corona source. The discharged aerosol is then extracted orthogonally by an an-

tistatic extraction tube, and dry particles are then collected on a filter where their

residual electrical charge is continuously measured.

Stable electrospray discharging allowed the continuous extraction of the discharged

droplets/particles into an antistatic tube with near 100% efficiency. The removal of

particles by a proximal antistatic tube is critical to the stability of the process, as it

prevents the charge reversal of the droplets with consequent migration toward the

Taylor cone and/or agglomeration events with other particles.

We have found that the geometrical and electrostatic parameters are key to maximize

droplet discharging and minimize droplet loss.
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We found that the distance between the ring electrode and ion source controlled the

location where the ions interacted with the droplets. Reducing this distance inten-

sified the electric field, it increased ionic current flux near the axis (current/area),

causing the upstream shift of the droplet discharging by the ions, and resulting in

higher extraction efficiency, filter collection fraction, and more globular particles.

Therefore, an ion stream with higher current flux seems capable of matching the

spray current nearer to the Taylor cone, where it has a higher current flux as well.

This finding is significant because it suggests that ultra-compact systems based on

this principle could be developed.

For the fraction reaching the (metal) filter assembly, the electrical discharging is

greater than 80%. The presence of residual electric charge on the extracted droplets/particles

may explain why the mass on the filter is lower when a plastic filter holder is used

than when a metal one is used (when electrical fields are weaker). The extracted

aerosols had a significant residual charge (less than 20% the electrospray current).

This suggests that dissimilar degrees of discharging are attained by droplets follow-

ing different trajectories in the spray. Nonetheless, in future applications of this

method, a small residual electrostatic charge on the extracted particles could be

beneficial to prevent agglomeration in the aerosol phase.

Regarding particle size and shape, the discharging process did not affect the over-

all size of the electrospray particles (droplet residues), while greatly reducing the

fraction of elongated/filamentous particles (which is a typical signature of Coulom-

bic instabilities). Particle globularity was positively correlated with collection and

discharging efficiencies. For the PS and PVP particles, the size distributions for

the particles collected on the filters were monomodal and homogeneous, with small

relative standard deviations (as small as 10.6%).

For the case of the chitosan particles, although there was no improvement in particle

morphology, we still managed to successfully discharge and extract with high effi-

ciency a polymer solution with an electrical conductivity three orders of magnitude

higher than the previous ones, expanding the possibilities and making the system

more robust.

In sum, the use of corona ions significantly expands the range of polymer concentra-
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tions over which globular particles with monomodal size distribution can be made

by electrospray. We hope that, in addition, the ability to transport the particles

away from the electrospray region, will also inspire studies where the particles are

subject to secondary in-line thermal or chemical post-processing of the particles in

aerosol form.
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— Equipped with his five senses, man explores the uni-

verse around him and calls the adventure Science.

Edwin Hubble

5
General Conclusions
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In the second chapter, we have presented a purpose-made unipolar ion source device

which has been characterized, obtainin different conclusions:

Regarding the corona discharge characteristics in a point-to-plane configuration, we

have observed that by comparing two different gas compositions for the DC corona

discharge, synthetic air and nitrogen, we have found that with air the system works

much more stably than in the case of nitrogen. Although when using nitrogen the

extracted ion current was significantly higher in our system, due to the need of

operating in stable conditions for long periods of time, the best option was to use

air. We have compared positive and negative corona discharge polarities, and only in

the case of negative polarity we could produce a stable ion current for long periods

of time, being the appropriate polarity for next experiments. The corona needle

tip radius was also studied. Smaller radius generates more corona current at lower

voltage, shifting the onset voltage to lower values.

Regarding the study of the extracted ion current through the ion source orifice we

can conclude that:

It is possible to generate a stable ion flux which is adjustable with current similar

to that of the typical electrospray current, by means of the presented unipolar ion

source. The extracted ion current was adjusted by tuning the corona discharge

current, although the sensitivity is not high. Higher extraction efficiencies were

obtained at low corona current values, probably due to a weaker space charge.

Moreover, the extracted ion current was adjusted over a wide current range by

tuning the external electric field. In this case, higher extraction efficiencies were

obtained at a higher external electric field. This conclusion was also reached with a

configuration in which a covered ring as the counter electrode was used, being this
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configuration more similar to an electrospray setup.

The orifice dimensions strongly affects the ion current extraction. The extracted ion

current was higher, as the orifice diameter was increased, and as the orifice thickness

was decreased. The extracted ion current is not affected by the flow rate of the corona

discharge feeding gas (synthetic air) at low values (<60 ml/min). On the other hand,

the corona discharge was unstable above ∼60 ml/min and below the corona onset

voltage. Extracted ion current profiles revealed that the ion distribution is typically

symmetrical with the maximum at the axis, as expected. An increase of the external

electric field increased the ion density near the axis, whereas the profile tails were

less affected. On the other hand, the gas velocity at the orifice did not affect the

ion profile shape. Therefore, a low gas flow rate can be used to renew the gas

environment near the corona needle tip.

Needle tip evolution: there exist a balance between the extracted current, and the

stability of the needle tip shape, which, for the same material, strongly depends

on the needle tip radius, suggesting to preferentially use larger tip radius values

which, even though provide less extracted current, would preserve the stability of

the process. For the case of the 15-µm radius tungsten needle, the shape of the tip

did not change considerably over time, demonstrating the high durability of this

tungsten needle.

In the second chapter, we have demonstrated a continuous process for the effective

reduction of the electrospray droplets’ charge in situ using opposite-polarity unipo-

lar ions from a corona source. In our design a fraction of the current produced

in a negative corona discharge is introduced axially into the electrospray, approxi-

mately matching the electrospray current. The discharged aerosol is then extracted

orthogonally by an antistatic extraction tube, and the droplets are then collected

on a filter. Electrospraying in capillary-ring configuration allows us to stabilize the

spraying process independently from the presence of ions. Meanwhile, the spray-

ions interactions are controlled mainly by the voltage difference between the ring

electrode and the ion source. Droplet flyback towards the ring can be prevented

robustly over a wide range of ring voltages.

Stable electrospray discharging allowed the continuous extraction of the discharged
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droplets into an antistatic tube with high efficiency. The removal of droplets by a

proximal antistatic tube is critical to the stability of the process, as it prevents the

charge reversal of the droplets with consequent migration toward the Taylor cone

and/or collision events with other droplets.

We have found that the geometrical and electrostatic parameters are key to maximize

droplet discharging and minimize droplet loss.

We found that the distance between the ring electrode and ion source controlled the

location where the ions interacted with the droplets.

In the third chapter, we have demonstrated a continuous process for the effective pre-

vention of Coulombic instabilities in electrospray droplets’ by reducing their charge

in situ using opposite-polarity unipolar ions from a corona source. The discharged

aerosol is then extracted orthogonally by an antistatic extraction tube, and dry parti-

cles are then collected on a filter where their residual electrical charge is continuously

measured. Stable electrospray discharging allowed the continuous extraction of the

discharged droplets/particles into an antistatic tube with near 100% efficiency. The

removal of particles by a proximal antistatic tube is critical to the stability of the

process, as it prevents the charge reversal of the droplets with consequent migration

toward the Taylor cone and/or agglomeration events with other particles. Reducing

this distance intensified the electric field, it increased ionic current flux near the

axis (current/area), causing the upstream shift of the droplet discharging by the

ions, and resulting in higher extraction efficiency, filter collection fraction, and more

globular particles. Therefore, an ion stream with higher current flux seems capable

of matching the spray current nearer to the Taylor cone, where it has a higher cur-

rent flux as well. This finding is significant because it suggests that ultra-compact

systems based on this principle could be developed.

For the fraction reaching the (metal) filter assembly, the electrical discharging is

greater than 80%. The presence of residual electric charge on the extracted droplets

and/or particles may explain why the mass on the filter is lower when a plastic filter

holder is used than when a metal one is used (when electrical fields are weaker).

The extracted aerosols had a significant residual charge (less than 20% the electro-

spray current). This suggests that dissimilar degrees of discharging are attained by
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droplets following different trajectories in the spray. Nonetheless, in future applica-

tions of this method, a small residual electrostatic charge on the extracted particles

could be beneficial to prevent agglomeration in the aerosol phase.

Regarding particle size and shape, the discharging process did not affect the over-

all size of the electrospray particles (droplet residues), while greatly reducing the

fraction of elongated/filamentous particles (which is a typical signature of Coulom-

bic instabilities). Particle globularity was positively correlated with collection and

discharging efficiencies. The size distributions for the particles collected on the fil-

ters were monomodal and homogeneous, with small relative standard deviations (as

small as 10.6%).

In sum, the use of corona ions significantly expands the range of polymer concentra-

tions over which globular particles with monomodal size distribution can be made

by electrospray. We hope that, in addition, the ability to transport the particles

away from the electrospray region, will also inspire studies where the particles are

subject to secondary in-line thermal or chemical post-processing of the particles in

aerosol form.
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Giorgiutti-Dauphiné, F. and Pauchard, L. (2018). Drying drops: Drying drops

containing solutes: From hydrodynamical to mechanical instabilities. European

Physical Journal E, 41(3).

Giubbilini, P. (1988). The current-voltage characteristics of point-to-ring corona.

Journal of Applied Physics, 64(7):3730–3732.

Goldman, M., Goldman, A., and Sigmond, R. S. (1985). The corona discharge, its

properties and specific uses. Pure and Applied Chemistry, 57(9):1353–1362.

Gomez, A. and Tang, K. (1994). Charge and fission of droplets in electrostatic

sprays. Physics of Fluids, 6(1):404–414.

Gomez-Estaca, J., Balaguer, M. P., Gavara, R., and Hernandez-Munoz, P. (2012).

Formation of zein nanoparticles by electrohydrodynamic atomization: Effect of

the main processing variables and suitability for encapsulating the food coloring

and active ingredient curcumin. Food Hydrocolloids, 28(1):82–91.
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Olvera-Trejo, D. and Velásquez-Garćıa, L. F. (2016). Additively manufactured

MEMS multiplexed coaxial electrospray sources for high-throughput, uniform gen-

eration of core–shell microparticles. Lab Chip, 16(21):4121–4132.

133

UNIVERSITAT ROVIRA I VIRGILI 
PRODUCTION OF HOMOGENEOUS PARTICLES BY CONTROLLED NEUTRALIZATION OF ELECTROSPRAYS 
Antonio Jesús Carrasco Muñoz 



Bibliography Bibliography
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