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“Knowledge is the golden ladder over which we climb to heaven; knowl-
edge is the light which illuminates our path through this life and leads
to a future life of everlasting glory.”
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Abstract
Mechanical resonators based on low dimensional materials

have attracted a lot of attention due to their remarkable prop-
erties. Their ultra-low mass and high Q factors make them ex-
ceptional sensors, offering new possibilities in the studies of the
material strength and the thermodynamic properties of low di-
mensional materials. The goal of this thesis is to shed light on
the thermal and elastic properties of low dimensional materials
across a wide temperature range.

The first part of the thesis is focused on the study of the tem-
perature dependence of the stiffness of carbon nanotubes. By
measuring the resonance frequency of singly clamped carbon
nanotube resonators as a function of temperature, we can obtain
information on the Young’s modulus of the measured carbon nan-
otubes. We observe a relative shift of the Young’s modulus over
a large temperature range with a slope of −(173± 65) ppm/K,
consistent with two different theoretical models based on the
thermal dynamics of the lattice. The results show the depen-
dence of the fundamental mechanical mode on the phonons in
carbon nanotubes via the Young’s modulus. The measured data
also indicates the coupling between mechanical modes and the
phonon thermal bath in nanotubes. The phonon thermal bath in
our experiments likely operates in the Akhiezer limit.

In the second part of the thesis, we present the tempera-
ture dependence of the thermal conductivity and the specific
heat capacity in the MoSe2 monolayer in a larger temperature
range. Both the thermal conductivity and the specific heat ca-
pacity measurements are consistent with predictions based on
first-principles. The results show that the phonon transport in a
MoSe2 monolayer can be both diffusive and ballistic, depending
on the temperature of the monolayer. The method used in this
measurement can be used to investigate the thermal properties
of many two-dimensional materials. Furthermore, it opens the
possibility to investigate interesting thermal transport regimes in
two-dimensional materials like hydro-dynamic regime or anoma-
lous heat conduction.

HTTP://ICFO.EU/
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Abstracto
Los resonadores mecánicos basados en materiales de baja dimen-

sionalidad han llamado la atención de la comunidad científica debido
a sus singulares propiedades. Su pequeña masa y sus altos factores
de calidad (Q) los convierten en sensores excepcionales, ofreciendo
un nuevo abanico de posibilidades en el estudio de las propiedades
mecánicas y termodinamicas de los materiales de baja dimensionali-
dad. El objetivo de ésta tesis es el estudio de las propiedades térmicas y
elásticas de los materiales de baja dimensionalidad en un amplio rango
de temperaturas.

La primera parte de la tesis se centra en la evolución de la rigidez de
los nanotubo de carbono en función de la temperatura. La medida de
la frecuencia de resonancia de un resonador basado en un nanotubos
de carbono con un único punto de anclaje en función de la temper-
atura, ofrece información sobre el módulo de Young de dicho nanotubo.
Observamos un cambio relativo del módulo de Young en un amplio
rango de temperaturas con una pendiente de −(173± 65) ppm/K, en
acuerdo con dos modelos teóricos diferentes basados en la dinámica
térmica de la red cristalina del material. Los resultados muestran la in-
fluencia de los fonones del nanotubo de carbono en el modo mecánico
fundamental a través del módulo de Young. Los datos también indi-
can el acoplamiento entre los modos mecánicos y el baño térmico de
fonones en los nanotubos. Es probable que el baño térmico de fonones
en nuestros experimentos opere en el límite de Akhiezer.

En la segunda parte de la tesis, presentamos la evolución de la
conductividad térmica y la capacidad calorífica específica de una mono-
capa MoSe2 en función de la temperatura para un rango más amplio.
Tanto la conductividad térmica como las medidas de la capacidad
calorífica específica concuerdan con las predicciones basadas en los
primeros principios. Los resultados muestran que el transporte de
fonones en la monocapa MoSe2 puede ser difusivo o balístico, depen-
diendo de la temperatura de dicha monocapa. El método utilizado en
esta medida se puede utilizar para investigar las propiedades térmicas
de muchos materiales bidimensionales. Asimismo, abre la posibilidad
de investigar distintos regímenes de transporte térmico en materiales
bidimensionales cómo el régimen hidrodinámico o la conducción de
calor anómala.

HTTP://ICFO.EU/
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Chapter 1

Introduction

1.1 Nanotechnology

Nanotechnology is a term used to describe science, technology,
and engineering that is focused on manipulating, understanding,
and controlling matter on molecular and atomic scales.

The concept of nanotechnology goes back to 1959 when ac-
claimed physicist Richard Feynman gave his, now famous, talk
There is Plenty of Room at the Bottom. In his talk, he described the
possibility of manipulating individual atoms and molecules to
perform synthesis. The actual term nanotechnology was used
for the first time in 1974 by Norio Taniguchi when he described
the process of thin-film deposition and ion beam patterning with
nanometer precision. Two major achievements pushed nanotech-
nology into the modern era: the scanning electron microscope in
1981 by Gerd Binnig and Heinrich Rohrer and the discovery of
fullerenes in 1985 by Harry Kroto, Richard Smalley, and Robert
Curl. The scanning electron microscope provided an unprece-
dented tool for the visualization and manipulation of individual
atoms. The discovery of fullerenes led to the discovery of carbon
nanotubes with potential applications in nanoscale electronics
and devices.

Nowadays, the imaging and manipulation of matter at the
nanoscale have become a standard discipline around the world
and many techniques for manipulation and imaging at the nano-
scale have been developed. Notable examples include scanning
tunneling and scanning electron microscopy, atomic force mi-
croscopy, electron- and ion-beam lithography, and molecular
beam epitaxy. With the improved level of control, industries are
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(a) (b)

(c)

500 μm

FIGURE 1.1: (a) Imec demonstrated field effect transistors with
lateral silicon nanowires in the gate-all-around configuration. [1]
(b) Part of the gyroscope chip used in various devices. [2] (c)
Eight sharp tips of the NASA’s Phoenix Mars Lander’s AFM

sent to Mars. [3]

pushing the boundaries of nanoscale systems. A prime exam-
ple of this is the commercially available microprocessors man-
ufactured using extreme ultraviolet lithography, which contain
transistors with features of only 5 nm (Fig. 1.1a).

Another field where nanomechanical systems get a lot of
attention is in sensing applications where they are routinely em-
ployed to measure force, charge, and mass. Nanomechanical
resonators are especially well suited for sensing applications due
to their low mass and high sensitivity. Miniaturization in these
systems has led to higher sensitivity to external forces acting on
them. Smaller dimensions have also enabled more integration
with other devices, which has led to many industrial applications
such as gyroscopes (see Fig. 1.1b), accelerometers, and blood
sensors in hospitals.
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1.2 Low dimensional materials as nanomechan-
ical resonators

Mechanical resonators based on low dimensional materials have
recently attracted considerable attention. In particular, two di-
mensional materials such as monolayers made of transition metal
dichalcogenides (TMD) [4–6] and graphene [7–18] and one di-
mensional materials such as carbon nanotubes [19–30] and semi-
conducting nanowires [31–38]. Common to all these systems is
their low mass, which makes them fantastic sensors of external
forces and adsorbed mass [23, 25, 29, 39]. They have been suc-
cessfully used in many different research fields such as surface
science [37, 38, 40, 41], nano-magnetism [42, 43] and light-matter
interaction [34].

Thermoelasticity Thermoelastic properties of materials are im-
portant when designing various mechanical structures. This
includes large industrial structures such as spacecrafts [44] and
nuclear plants [45], as well as modern, state-of-the-art nano- and
micro-mechanical devices. In small structures, a rich set of prop-
erties has caught the interest of the research community like dissi-
pation [46, 47], fluctuations [48, 49] and torque generation [50, 51].
Fundamentally, the thermal behavior of the stiffness of materials
emerges from the complicated interactions of binding energy
and lattice dynamics and it is quantified by the Young’s modu-
lus. In this thesis the Young’s modulus of carbon nanotubes is
investigated from room temperature down to a few Kelvins.

Thermal transport Heat transport is of interest in both indus-
trial applications and fundamental research. One of the major
challenges in industrial systems is the dissipation of heat. The
heat generated by computer processors becomes increasingly
important with higher transistor densities and clock speeds. The
inability to properly dissipate the heat in processors has led to
saturation in processor clock speed in recent years. This makes
the study of thermal propagation in nanoscale devices very im-
portant for future miniaturization. Furthermore, fundamental
aspects of heat propagation are also important to investigate.
At low temperatures, heat transport can enter into interesting
regimes such as transport without dissipation, called ballistic
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transport [52–54] or the phonon hydrodynamic regime that has
been predicted for two-dimensional materials [55, 56]. In this
thesis a mechanical resonator based on TMD monolayer is used
to investigate heat transport in two-dimensional materials.

1.3 Thesis motivation and outline

In this thesis, we used low dimensional materials to fabricate
nanomechanical resonators and to study their thermodynamic
and mechanical properties. First, we use the exquisite sensing ca-
pabilities of cantilevers made of carbon nanotubes to investigate
the thermal behavior of their stiffness. Second, we investigate
thermal transport in 2D materials over a large temperature range.

The structure of the thesis is as follows:

• Chapter 2 gives a brief introduction to the optical and me-
chanical properties of low dimensional materials such as
graphene, TMD monolayer, and carbon nanotubes.

• Chapter 3 introduces the main theoretical concepts needed
to understand linear and nonlinear resonators, as well as
basic optomechanical concepts.

• Chapter 4 details the fabrication process of hybrid optome-
chanical resonators based on carbon nanotubes.

• Chapter 5 details the study of the thermal behavior of car-
bon nanotube Young’s modulus.

• Chapter 6 presents the study of the thermal properties of
TMD monolayers over a large temperature range.
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Chapter 2

Low dimensional
Materials

In this chapter, we will give a brief introduction to the physical
properties of graphene, carbon nanotubes, and TMDs. We de-
scribe their mechanical and optical properties which arise from
their unique crystallographic structure.

FIGURE 2.1: Visualisation of graphene hexagonal lattice (left)
and carbon nanotube (right).



6 Chapter 2. Low dimensional Materials

2.1 Carbon Nanotubes

2.1.1 Graphene

The discovery of graphene by Andre Geim and Konstantin Novo-
selov in 2004 brought a huge impact on research activities in 2D
materials [57] and was rewarded with the Nobel prize in 2010. In
the first experiments, they demonstrated interesting mechanical
and electrical properties of graphene. Recently, twisted bilayer
graphene has attracted attention in the scientific community
because of the discovery of superconductivity in this system [58].

Graphene is a two-dimensional sheet of carbon atoms ar-
ranged in a hexagonal lattice. Graphene is the basic building
block of most other carbon allotropes (see Fig. 2.2). The extraor-
dinary mechanical, thermal, optical, and electrical properties of
graphene come from the unique electronic structure of the car-
bon atom [59]. Carbon has four covalent electrons, occupying
the 2s, 2px, 2py, 2pz orbitals. Each carbon atom forms 3 sp2 in-
plane covalent, so-called, σ-bonds with the neighbouring atoms.
The bond length is 1.42 Å and the angle between the bonds is
120°. These strong bonds give graphene its enormous mechanical
strength.

The 2pz orbital of each atom is orthogonal to the lattice plane
and forms the electronic π-bonds of the crystal.

In 3D graphite, the spacing between the graphene layers is
3.35 Å.

2.1.2 From Graphene to Carbon Nanotubes

Already before the discovery of graphene, carbon nanotubes
have been an object of intense research after their experimental
discovery by Iijima et al. (1991) [60]. Single-wall carbon nan-
otubes can be seen as a single layer of graphene rolled up into a
tube. Usually, we denote them as 1D objects with axial symmetry.
Properties of carbon nanotubes depend on their chirality, which
represents the difference between the orientation of the graphene
lattice and the nanotube axis. We define the chiral vector as

Ch = n1a1 + n2a2.

The integer pair (n1, n2) uniquely determines the type of the
nanotube. Special cases are armchair nanotubes, where n1 = n2
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(a)

(b) (c) (d)

FIGURE 2.2: Graphene is the basic building block of other car-
bon materials with different dimensionality. (a) 2D graphene
lattice, (b) 0D fullerene, also called buckyball, (c) 1D carbon
nanotube, (d) graphene layer stacked in 3D graphite. Figure

adapted from [57].

and zig-zag nanotubes, where n2 = 0. All other nanotubes are
called chiral nanotubes. An illustration of different nanotubes is
shown in the Fig. 2.3.

The mechanical properties of carbon nanotubes are remark-
able. The hybridized sp2 bonds between carbon atoms are so
strong that the intrinsic strength exceeds any other material [62].
Their very low mass density, high chemical stability, and mechan-
ical strength make them an excellent choice for the implementa-
tion of various mechanical resonators [28, 63–65].

In addition to single-walled carbon nanotubes, there are also
multi-walled carbon nanotubes. A multi-wall carbon nanotube
can be seen as concentric single-walled carbon nanotubes stacked
together, possibly with different chiralities. Multi-wall carbon
nanotubes typically have a larger diameter and length when
compared to single wall CNTs [66].
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y

x

a1

a2

Ch

(n1,n2)

(0,0)

θ

T

armchair zig-zag chiral

(a) (b)

FIGURE 2.3: (a) Single wall carbon nanotube is defined by the
chirality vector Ch and the translation vector T. The unit cell
(green dashed hexagon) is determined by the two lattice vectors
a1 and a2 and contains two atoms. (b) The three geometric
classes of carbon nanotubes, armchair (n, n), zigzag (n, 0) and

chiral (n1, n2). Adapted from [61]

2.2 Monolayer transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) are a class of layered
materials of significant interest due to their thickness-dependent
electrical and optical properties. Similar to graphite, TMD bulk
crystals are formed by monolayers bound to each other by van
der Waals forces. New physical properties emerge when a bulk
crystal of a macroscopic dimension is thinned down to the atomic
layer.

Fabrication methods of single-layer TMDs include exfoliation,
chemical vapor deposition (CVD), and molecular beam epitaxy.
Exfoliation represents a top-down approach, that is usually not
compatible with industrial processes. This technique usually
produces high-quality samples that have a small size [68]. The
CVD technique for growth introduces more complexity and ex-
pensive equipment, but it is often used to produce much larger
monolayers compared to mechanical exfoliation [69, 70].

The general type of these monolayers is MX2, where M is
a transitional metal atom (W, Mo, etc.) and X is a chalcogen
atom (Se, S, or Te). One layer of M atoms is sandwiched between
two layers of X atoms as seen on 2.4. The thickness of a single
layer of a TMD is calculated based on the interlayer separation
in the bulk material and its value is t ≈ 0.6 nm. Due to their 2D
nature, TMD monolayers are naturally very light. This makes
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(a) (b)

(c)

Eg ΔSO

FIGURE 2.4: (a) Cross-section and (b) typical band structure of
a TMD monolayer. It shows the valence band splitting due to
spin-orbit coupling ∆SO as well as the direct band gap Eg. (c)

Visualisation of a TMD lattice. Adapted from [67]

them great candidates when designing mechanical resonators for
sensing applications. For example, nanomechanical systems have
successfully been used in mass sensing applications [23]. The
smallest detectable adsorbed mass on the mechanical resonator
is given by [39]:

δm = 2meff
δ f
fm

, (2.1)

where meff is the effective mass of the resonator, f0 is resonance
frequency and δ f is the frequency noise of the resonator. We can
see that the mass resolution δm is directly proportional to the
effective mass of the resonator.

The Young’s modulus and strain are important parameters
in the context of mechanical resonators. The Young’s modulus
gives the ratio between strain and stress in the material. The
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Young’s modulus of WSe2 is EWSe2 = 116 Nm−1 and for MoSe2
it is EMoSe2 = 104 Nm−1 [71]. They also exhibit high in-plane
strength as TMD monolayers can be strained up to 20 % before
breaking [72, 73]. By controlling the tension in the resonator we
can change the resonance frequency of the mechanical resonator.
In a drum-like resonator, this can be achieved by applying a
voltage between the monolayer and the back gate. Another way
would be to cool the resonator so that the thermal contractions
change the tension in the monolayer and therefore the resonance
frequency of the resonator.

Unlike a single sheet of graphene, TMDs are semiconductors
with a direct bandgap at the K point (Fig. 2.4b). The bandgap of
TMD monolayers is in the range of 600-1500 nm [74].

When a photon of a specific wavelength is absorbed in a
TMD monolayer, an electron is created in the conduction band
and a hole in the valence band. These two particles with op-
posite charge are attracted by the Coulomb interaction and they
form a bound state called an exciton [75]. The excitons are well
known in traditional semiconductors (like GaAs or ZnO), but in
TMD monolayers their binding energy is much larger. The large
binding energy is explained by the dielectric screening and the
confinement of electrons within the monolayer and the resulting
electron screening that is weaker than that in 3D systems. [76–79].

These excitons greatly increase the absorption of light in TMD
monolayers. The absorption of the TMD monolayer is in the
range of 5-10 % for white light but can be as high as 20 % at
561 nm [80], which is unprecedented for such thin material.

In photoluminescence (PL) experiments, the recombination
of the excited electron and the hole in the TMD monolayer emits
a photon that corresponds to the exciton energy. In TMD multi-
layers, because of their indirect bandgap, photoluminescence is
reduced by several orders of magnitude [81]. This effect enables
us to distinguish between TMD monolayers and multilayers with
great accuracy.
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Chapter 3

Nanomechanics and
Optomechanics

In this chapter, we will introduce some basic concepts of nanome-
chanics that are necessary to understand the dynamical prop-
erties of resonators at the nanoscale. We will begin with the
simple model of a linear harmonic resonator. We will then inves-
tigate its response to incoherent fluctuating thermal forces. Next,
we will discuss nonlinear vibrations. Finally, we will discuss
optomechanical effects in the resonators.

FIGURE 3.1: Visualisation of a single clamped carbon nanotube
resonator.
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first
mode

second
mode

third
mode

FIGURE 3.2: Schematic of the first three flexural modes of a
single clamped beam (left), a doubly clamped beam (middle)
and single clamped beam with extra mass at the free end (right).

Adapted from [83].

3.1 Introduction

To make modern nano- and micro-resonators, engineers use a
wide variety of different materials and geometries, from single-
and doubly-clamped beams, drums made out of single-layer 2D
nanomaterials, like graphene and TMDs, to more complicated
and highly integrated systems. The simplest model to describe
the properties of these systems is the damped harmonic oscillator.
A harmonically oscillating system is described by a linear rela-
tionship between its restoring force and displacement [82]. By
solving the Euler-Bernoulli equation for mechanical resonators,
we can obtain the set of orthogonal eigenmodes, where each one
has a distinct eigenfrequency and mode shape (see Fig. 3.2). For
a small subset of simple geometries, we can calculate analytical
solutions, but for the geometrically more complex systems, finite-
element simulations can be used to obtain the eigenfrequencies
and eigenshapes. Analytical solutions can also be found for car-
bon nanotube resonators by treating them as one-dimensional
strings and for drum-like resonator made of TMDs by treating
them as two-dimensional membranes.
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3.2 Linear driven oscillator

The equation of motion of a damped harmonic oscillator driven
by a time-dependent force F(t) is given by

meff
d2x(t)

dt2 + meffγm
dx(t)

dt
+ kx(t) = F(t) (3.1)

where the constant γm represents the linear mechanical dissipa-
tion rate, k is the mechanical spring constant, meff is effective
mass and x(t) is the position as a function of time t. F(t) repre-
sents any external time dependent force which can be a random
noise force or a coherent oscillating force. From here we can
define the undamped angular resonance frequency as

ω0 =

√
k

meff
, (3.2)

which is determined by the elastic properties, the mass and the
boundary conditions of the system. Both ω0 and γm are given
in radial units. When presenting the experimental data in this
thesis, the ordinary frequency f0 = ω0

2π will be used, expressed in
Hz units.

Interaction of the mechanical resonator with the environment
is characterised by the term meffγm

dx(t)
dt in Eq. 3.1, where γm

defines the rate of the energy exchange between them. The
Q factor is a dimensionless figure of merit that quantifies the
damping of the system. The Q factor is defined by

Q = 2π

(
Total energy

Energy lost in one cycle

)
. (3.3)

In the limit of a small damping rate, γm � ω0, the Q factor
simplifies to Q = ω0/γm. This number essentially represents the
number of oscillations before the system loses its energy to the
environment. This gives us the characteristic decay time τ of the
resonator as ω0τ = 1/Q.

Quite often it is convenient to convert equations in the fre-
quency domain. If we perform Fourier transform of Eq. 3.1 we
get

x(ω) = χ(ω)F(ω) (3.4)

The expression describes how the force F(ω) gives rise to a linear
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mechanical response x(ω), where χ is the mechanical suscepti-
bility and is given by

χ(ω) =
1

meff[ω
2
0 −ω2 − iγmω]

. (3.5)

To measure susceptibility, we usually measure the power
spectral density spectrum Sxx(ω) of a time-varying signal x(t).
The power spectral density gives us the distribution of power
in the frequency space of the measured signal x(t). The Wiener-
Khinchin theorem states that the power spectral density of x(t)
is given by the Fourier transform of the autocorrelation of x(t)

Sxx(ω) =
∫ ∞

−∞
d(τ) 〈x(t)x∗(t− τ)〉 e−ωτ, (3.6)

where <...> represents statistical mean. The variance of the mea-
sured signal x(t) is the area under one-sided power spectral
density

〈
x2〉 = 1

2π

∫ ∞

0
dωSx(ω) =

∫ ∞

0
d f Sx( f ). (3.7)

If the Fourier transform of the signal is x(ω), from 3.6, we get

Sxx(ω) = 〈x(ω)x(−ω)〉 . (3.8)

From 3.8 and 3.4 we get

Sxx(ω) = |χ(ω)|2 SFF(ω), (3.9)

where the SFF is the power spectral density of the force noise
acting on the resonator.

3.2.1 Thermal motion in carbon nanotube resonators

The coupling of the mechanical resonator with its environment
leads to the dissipation of the energy quantified by the damping
of the system. In other words, the resonator exchanges energy
with the thermal bath. This coupling also leads to the thermal
force, which is a random fluctuating force δFth(t). This force acts
on the resonator, which leads to thermal or Brownian motion.
This phenomenon is described by the fluctuation-dissipation
theorem, which relates the fluctuations of the physical system
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FIGURE 3.3: The area under the displacement power spectral
density is proportional to the temperature of the mechanical

mode. Adapted from [84].

in thermal equilibrium to the dissipative part in the equation of
motion (Eq. 3.1) of the mechanical resonator. Following linear
response theory [82], we can obtain the single-sided thermal force
noise power spectral density

Sth
F (ω) = −4kBT

ω
Im
(

1
χ(ω)

)
, (3.10)

where kB is the Boltzmann constant and T is the temperature. In
the limit of weak damping, γm � ω0, this equation becomes

Sth
F (ω) = 4meffγmkBT. (3.11)

The spectrum of the thermal noise is white and depends only
on the bath temperature T, dissipation rate γm and the effective
mass of the resonator meff. The result resembles the Johnson-
Nyquist noise [85] of voltage fluctuations across an electrical
resistor. Now, using the Eq. 3.11 we get the thermal power
spectral density of the mechanical resonator

Sth
x (ω) =

4γmkBT
meff[(ω

2
0 −ω2)2 + (γ2

mω2)]]
. (3.12)
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We can use this equation to relate the variance of the displace-
ment and the temperature of the thermal equilibrium. From the
equipartition theorem we get

1
2

meff
〈

ẋ2
th
〉
=

1
2

k
〈

x2
th
〉
=

1
2

kBT. (3.13)

Using the last equation and k = meffω
2 we obtain

〈
x2

th
〉
=

kBT
meffω

2
0

. (3.14)

Further, from Eq. 3.7 we get that the variance of the displacement
is equal to the area under the single-sided displacement spectrum

〈
x2

th
〉
=
∫ ∞

0

1
2π

dωSx(ω) =
kBT

meffω
2
0

(3.15)

This result is illustrated in Fig. 3.3

3.2.2 Duffing oscillator

So far we only looked at the harmonic oscillator model where
there is a linear relationship between force and position, obeying
Hooke’s law. For most systems, this is a very good approxima-
tion, because most of the materials used in these systems can
sustain very large displacements before the linear relation breaks
down. However, at large displacement amplitudes, nonlineari-
ties in the restoring force have to be taken into account. These
forces find their origin in geometrical nonlinearities or nonlinear
external potentials [87, 88]. In general, nonlinearities are not
desirable in practical applications, because they tend to decrease
the dynamic range of the system [89]. To model this behaviour,
we add a restoring force term that is proportional to the cube of
the displacement into the equation of motion. This is called the
Duffing oscillator model and is written as

meff
d2x(t)

dt2 + kx(t) + meffγm
dx(t)

dt
+ αx(t)3 = F(t), (3.16)

where α is Duffing nonlinear coefficient. Solving this equation
gives us the displacement amplitude.
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FIGURE 3.4: Frequency response x/F as a function of ωd/ωm
for the Duffing equation for different value of Duffing coefficient.
The dashed parts of the frequency response are unstable. [86]

x(ωd) =
F0/meff√(

ω2
0 +

3
4 αx(ωd)2 −ω2

d

)2
+ γ2

mω2
d

(3.17)

The nonlinear amplitude is illustrated in the Fig. 3.4. At low
drive force, the amplitude scales linearly with the driving force.
Exceeding a critical amplitude, we get into a regime where the
displacement amplitude equation x(ωd) has three solutions out
of which only two are stable. This leads to bistable behaviour,
where the amplitude is oscillating between the two stable solu-
tions. As we increase the driving force the resonance frequency
shifts towards a higher or lower value based on the sign of the
Duffing constant α (see Fig. 3.4). This frequency shift from the
mechanical resonance frequency ωm can be calculated using

∆ω =
3
8

αeff

meffωm
z2

max. (3.18)
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3.3 CNT as single clamped resonators

The Euler-Bernoulli partial differential equation (PDE) that de-
scribes the motion y (x, t) of a vibrating beam is

∂2y
∂t2 +

YI
ρA

∂4y
∂x4 = 0, (3.19)

where Y is the Young’s modulus, I is the beam’s banding moment,
A is the cross-sectional area, ρ is the density and l is the length
of the resonator (see Fig. 3.5). The solution of Eq. 3.19 can be
represented in the form of pure cosine (and sine) waves y (x, t) =
A cos(αx−ωt). From here we obtain the dispersion relation as

ω0 =

√
YI
ρA

α2. (3.20)

The nonlinear relation between the wavevector α and the fre-
quency ω means that the waveform phase velocity is now a
function of the frequency. The effect of this is that an arbitrary
waveform (one that is not sinusoidal) will change shape as it
propagates. The general solution of Eq. 3.19 is

y (x, t) = cos ωnt [a cos αnx + b sin αnx
+ c cosh αnx + d sinh αnx] , (3.21)

l

y

x

A

FIGURE 3.5: A beam of length L with transverse displacement
y(x).
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where the radial frequency of mode n is ωn =

√
YI
ρA

αn
2, αn are

the wave numbers whereas a, b, c, d are constants that will be de-
termined by satisfying the boundary conditions. Four boundary
conditions are necessary to solve the equation.

The first example is a beam that is clamped only at one end
and free at the other end. The boundary conditions, in this case,
are given by

y |x=0= 0,
∂y/∂x |x=0= 0,

∂2y/∂x2 |x=l= 0,
∂3y/∂x3 |x=l= 0.

 (3.22)

Using these boundary conditions and the general solution (Eq. 3.21)
we obtain a discrete set of frequencies that satisfy the equation

cos αnl cosh αnl + 1 = 0. (3.23)

The zeros of this function can be found numerically, with αnl =
1.875, 4.694, 7.855, 10.996 . . .. In Fig. 3.2 we display the first three
modes for this problem.

3.3.1 Cantilever with an added mass at the free end

In the presence of a particle with mass mbead at the free end of a
cantilever beam, the boundary conditions to satisfy become:

y |x=0= 0,
∂y/∂x |x=0= 0,

∂2y/∂x2 |x=l= 0,

− YI
∂3y
∂x3

∣∣∣∣
x=l

= mbeadc2αn
4yx=l ,

 (3.24)

in which the effect of the bead’s rotary inertia is neglected [90].
Implementing these conditions in Eq. 3.21 leads to the following
characteristic equation

cos Ωn cosh Ωn + 1
+ m∗Ωn (sinh Ωn cos Ωn − sin Ωn cosh Ωn) = 0, (3.25)
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FIGURE 3.6: Cross section of a circular resonator based on the
TMD monolayer. Adapted from [91].

where the eigenvalues Ωn = αnl are solutions of Eq. 3.25 with
m∗ = mbead/mbeam. The eigenmodes associated with the eigen-
values can then be obtained as

Φn(x) = cos(Ωnx)− cosh(Ωnx)

− cos(Ωn) + cosh(Ωn)

sin(Ωn) + sinh(Ωn)
(sin(Ωnx)− sinh(Ωnx)). (3.26)

Figure 3.2 shows the first three eigenmodes where m∗ = 20.
When the ratio between the mass of the bead at the free end and
the mass of the beam becomes large, the mode shapes approach
those of a beam clamped at one end and hinged at the other. The
profile of the fundamental eigenmode is basically unchanged
when increasing m∗, in contrast to what happens for the other
eigenmodes. The influence of the mass of the bead at the free
end is further discussed in the chapter A.1.1.

3.4 TMD as a circular resonator

TMDs can be used to make drum-like circular resonators with a
metallic backgate [13, 92]. If we apply the voltage difference Vg
between the membrane and the back gate it will create a force
that can bend the elastic membrane (see Fig. 3.6). This capacitive
force Fel can be modelled as

Fel =
1
2

dC
dz
(
Vg + ∆φ

)2 , (3.27)

where ∆φ is the work function difference and C is the capacitance
between the membrane and the gate. We can apply a DC or
AC voltage, which can be used to bend or electrically drive the
resonator when the oscillating voltage is around the resonance
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frequency of the resonator. In the small signal approximation,
VAC

g � VDC
g the force can be written as

Fel( f ) =
1
2

dC
dz

(
VDC

g + VAC
g ( f ) + ∆φ

)2
≈ dC

dz
VDC

g VAC
g ( f ).

(3.28)
By applying a DC voltage, we can statically bend the mem-

brane, which introduces tension in the membrane and changes
its resonance frequency. If we assume that the membrane is well
clamped along the edge and that the membrane is under initial
tension (these are good assumptions for the device described
later in this thesis) we can describe the resonance frequency as

f0 =
1

2π

√
4.92E2D

meff
ε− ε0

d3
0.271πR2

0
meff

(
VDC

g + ∆φ
)2

, (3.29)

where E2D is the 2D young modulus of the TMD membrane, meff
is the effective mass, ε is the initial strain, R0 is the drum diameter,
ε0 is the vacuum permitivity and d = dair/ε0 + dSiO2 /εSiO2 is the
effective distance between the membrane and the gate, which
takes into account the different refractive indices of the air and
the SiO2 substrate (see Fig. 3.6). Due to thermal expansion the
strain will change as

ε = ε0 +
∫ T

T0=300 K
α(T0)dT, (3.30)

where α is the thermal expansion coefficient. This change in
tension leads to change in resonance frequency of the mechanical
resonator as we cool it down to cryogenic temperatures.

The Q factor of the resonator is also affected by the voltage
VDC

g applied between the membrane and the back gate. The
mechanical motion generates a displacement current in the mem-
brane, which causes Joule heating. This has the effect of lowering
the Q factor which is now given by the expression

Q−1
eff = Q−1 + RelC′2z

(
VDC

g + ∆φ
)2

2π fmmeff
, (3.31)

where C′z is the derivative of the capacitance, fm is resonance
frequency, Q is the quality factor without the voltage applied
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dIbs

dxIbs(x)

x

FIGURE 3.7: Schematic of optomechanical coupling. The res-
onator (black dot) is placed in the laser beam with the intensity
profile IBS. The thermal force that acts on the resonator is propor-
tional to the derivative of IBS with respect to the displacement.

and Rel is the effective electrical resistance of the membrane [20].

3.5 Optomechanics

Optomechanics is a field of research that studies the coupling
of mechanical systems and electromagnetic radiation. Here we
will focus on a mechanical oscillator coupled to a laser beam via
photothermal back action [93–97]. Back-action refers to the effect
of the detector on the measurements itself; the detector is not
just making the measurements but is also affecting the outcome
of the measurements. In our measurements, the laser used to
detect the mechanical vibrations induces heating of the resonator.
This can change the resonance frequency and the damping of the
resonator.

3.5.1 Photothermal back-action

The dynamical photothermal back-action effect [98] becomes im-
portant when the mechanical resonator oscillates in the presence
of a strong force gradient, especially when the effect of the force
on the resonator is delayed with respect to the displacement
modulation (the photothermal force is typically delayed by the
characteristic time τ) [35, 99]. Large mechanical vibration ampli-
tudes of the nanotube resonator in the laser focal plane result in
a motion dependent optical force (ponderomotive force), which
leads to a modified mechanical response [28]:
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χ−1
eff [ω] = χ−1[ω]−∑

j
Hj[ω]

∂Fj

∂x

∣∣∣∣
x0

, (3.32)

where x0 is the equilibrium position (see Fig. 3.7), χ[ω] is the
intrinsic mechanical susceptibility, Fj is the force associated with
the jth optical forces and Hj[ω] is the Fourier transform of the re-
sponse function taking into account any delay in the application
of Fj [93].

In our case, there is a force Fp due to the conversion of elec-
tromagnetic radiation into heat, which leads to mechanical de-
formation that is similar to the displacement of the resonator.
The effect of the photothermal force Fp is typically delayed by
the characteristic time τ, which is usually modelled using the
first-order function

Hp[ω] =
1

1− iωτ
. (3.33)

The effective mechanical susceptibility χeff remains Lorentzian
if the mechanical quality factor is sufficiently large, which holds
true in our experiments. The effective mechanical frequency ωeff
and effective damping rate Γeff are given by

ωeff = ωm + δωp, (3.34)

Γeff = Γm + Γp, (3.35)

δωp = − 1
2meffωeff

Re {Hp[ω]}
∂Fp

∂x

∣∣∣∣
x0

, (3.36)

Γp =
1

meffωeff
Im {Hp[ω]}

∂Fp

∂x

∣∣∣∣
x0

, (3.37)

where ωm and Γm are the intrinsic resonance frequency and the
dumping rate, respectively, meff is the effective mass of the res-
onator, δωp is the frequency shift due to the photothermal force
Fp and Γp is the damping due to Fp. Using Eq. 3.33 for Hp, we
can simplify Eqs. 3.37 and 3.36 with:

δωp ≈ −ωm
kp

2km(1 + ω2
mτ2)

, (3.38)
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Γp ≈ ωm
ωmτ

1 + ω2
mτ2

kp

km
, (3.39)

where kp = (∂Fp/∂x)|x0 and km = meffω
2. This gives a linear

dependence of ωp and Γp with respect to the input laser power.
Also, moving the equilibrium position to the maximum of the
other detection lobe (see Fig. 3.7) changes the sign of the kp (see
Eq. 3.36 and 3.37). This leads to the opposite effect, for example
heating instead of cooling of the mechanical resonant mode.

We have omitted the quasi-instantaneous force acting on the
particle due to the gradient of the electric field distribution of
the laser beam and the polarisability of the particle as it does not
affect the motion of the nanotube [28].

Photothermal back-action can be used for cooling the res-
onator mode, enabling thermal noise cancellation. This effect can
be of interest in, for example, cavityless nanomechanical sensing
systems [37, 100].
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Chapter 4

Fabrication and Setup

Parts of this chapter were published in:

Mass sensing for the advanced fabrication of nanomechanical
resonators

G. Gruber, C. Urgell, A. Tavernarakis, A. Stavrinadis, S. Tepsic,
C. Magén, S. Sangiao, J. M. de Teresa, P. Verlot, and A. Bachtold

Nano Letters 2019 19 (10), 6987-6992

In this chapter, we will present the details about the fabrica-
tion technique as well as the measurement setup layout. First, we
will describe the technique for growing the carbon nanotubes and
the technique for Pt particle deposition. Next, we will describe
the fabrication of devices based on TMD monolayers. Finally, we
will describe the measurement setup.

4.1 Carbon nanotube mechanical resonator fab-
rication

Here we will describe the fabrication process of a mechanical
resonator made of carbon nanotubes. The device consists of a
single clamped suspended carbon nanotube with a Pt nanopar-
ticle at the tip. The Pt nanoparticle serves as an efficient optical
scatterer, which makes it possible to detect the motion of the car-
bon nanotube without using a cavity [28]. This system enables
ultrasensitive detection of the thermally driven vibrations of a
carbon nanotube mechanical resonator. An additional benefit is
the ultra-low laser probe power, below 1 µW, which enables us to
reduce the effects of the heating and the photothermal backaction
on the resonator.
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FIGURE 4.1: (a) Schematic of the setup. The electron beam is
positioned on the free end of the suspended carbon nanotube
cantilever, generating a secondary electron (SE) current, which is
detected and analyzed using a spectrum analyzer. Using the gas
injection system (GIS), a nanoparticle is grown on the nanotube.
SEM image of the nanotube before (b) and (c) after deposition.

4.1.1 CNT growth

We grow the nanotubes using a CVD technique. The catalyst
consists of a solution of methanol (CH3OH) containing iron (Fe)
catalyst nanoparticles mixed with molybdenum (Mo) which is
used to enhance the catalytic behavior of the Fe. A few droplets
of the catalyst solution are deposited on a piece of a silicon wafer
and are left to dry for a couple of minutes. The silicon chip is
then placed in a CVD oven for growth, where methane gas (CH4)
is decomposed into carbon and hydrogen in the presence of the
iron catalyst. Devices were typically grown at 900 °C using a
gas flux of 100 sccm H2, 500 sccm Ar and 550 sccm CH4. These
parameters were chosen to increase the amount of low diameter
few-walled carbon nanotubes. CNTs grow in all directions from
the catalyst islands and only a fraction of them will be single
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clamped and suspended at the edge of the substrate. In Fig. 4.1
we can see a suspended single clamped CNT after growth.

4.1.2 Characterization using scanning electron microscopy

We use scanning electron microscopy (SEM) for the initial char-
acterization of the suspended devices. All the SEM fabrication
is done in a Zeiss Auriga field emission electron microscope
equipped with a gas injection system (GIS). The schematic of the
fabrication setup is depicted in Fig. 4.1. The electron beam can
be focused to a spot size similar to the diameter of the nanotube
resonator. The collisions between the electron beam and the nan-
otube create the emission of secondary electrons, which result
from inelastic scattering mechanisms. The displacement of the
tube in the electron beam creates a modulation of the secondary
electron current. This fluctuation can be detected using a high
bandwidth secondary electron detector.

First, we operate in the scanning mode, where the electron
beam is scanned across the surface of the sample. The accel-
eration voltage of the electron beam was 5 kV and the typical
beam current was 200 pA. From SEM images we can measure the
length of nanotubes (see Fig. 4.2). The length of the typical de-
vices is in the range between 1 and 15 µm and the diameter from
2 to 6.5 nm. Fig. 4.2 shows the typical image obtained with the
scanning mode. The image looks blurred as we get towards the
free end of the sample, which is the consequence of the mechan-
ical vibration [101, 102]. If the position noise is larger than the
extension of the electron beam, the integrated current becomes
proportional to the probability to find the object at the electron
beam position [103]. For a single clamped beam vibrating in the
scanning plane and at the thermal equilibrium, this probability
is given by

P(r) = u(r · eCNT)
1√

2πσth
e
− (epe1)

2

2σ2
th , (4.1)

where eCNT and e1 are vectors of the axis and the direction
of vibration of carbon nanotube respectively, r is the vector of
the position of the electron beam, u is the fundamental mode
shape [104] and σ2

th is the displacement variance of the thermal
motion. Fig. 4.2c shows the Gaussian cross section measured at
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FIGURE 4.2: (a) SEM images of a carbon nanotube before and
after depositing a Pt particle; magnified view of the free end
is shown on the right side. (b) A typical signal on the signal
analyzer used to measure the resonance frequency. (c) SE current
profiles along the dashed lines marked in (a) with Gaussian fits

(solid lines).

the tip of the nanotube, which enables us to extract the quantita-
tive value of the displacement variance.

Next, we use the SEM in spot mode, where we place the
electron beam at the tip of the resonator and measure the sec-
ondary electron fluctuations using a spectrum analyzer (Agilent
N9020A) [35, 105]. Fig. 4.2b shows the peak at ω0/2π ≈ 250 kHz,
which is the expected frequency for a tube of this dimension.
The combination of the scanning mode and spot mode allows us
to determine the mechanical properties of the carbon nanotube
resonator. The motional variance can be written as [106]

σ2
th =

kBT
k

, (4.2)
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TABLE 4.1: Mechanical properties of the nanotube cantilever
devices discussed in the main text. These include the length L,
the standard deviation of the thermal displacement σ, the spring
constant k, and the mass ratio m∗ between the Pt particle and

the nanotube.

Device fm[kHz] L [µm] σ [nm] k [N/m×10−7] m∗

A 54.5 8.2 87.4 5.42 3.7
B 96.1 6.5 22.8 79.2 4.6
C 194 2.4 16.0 164 83.0
D 77.2 7.8 55.8 13.3 5.5
E 57.1 10.0 44.2 21.0 4.6
F 107 5.0 34.9 33.9 8.8
G 44.5 5.2 80.1 6.46 18.3
H 58.4 4.6 73.5 7.63 60.9
I 48.1 11.9 90.0 5.11 3.7

which yields the spring constant k = 2.1× 10−6 N/m. From here
we can calculate the effective mass meff as

meff =
k

ω2
0

. (4.3)

The variance of motion can also be related to the physical
properties of the nanotube with the following equation [104]

σ2
th = 0.1061

L3kBT
Yr3G

, (4.4)

where r is the radius of the nanotube, G is the thickness of
graphene, T is the temperature, Y is the Young’s modulus, L
is the length, and kB is Boltzmann’s constant.

In Table 4.1 we can see the mechanical parameters of common
devices measured using the technique above.

4.1.3 Particle growth using GIS

Next, we start the procedure of depositing the Pt particle on the
free end of the nanotube. Methylcyclopentadienyl-(trimethyl)-
platinum(IV) was used as a precursor gas to deposit Pt onto the
sample surface when illuminated by the electron beam [107].
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FIGURE 4.3: (a) Measurement of the resonance frequency during
the deposition process; at t ≈ 20 s the GIS valve was opened
and at t ≈ 135 s it was closed and the beam exposure stopped.

(b) Deposited mass determined from (a) using Eq. 4.6

The GIS nozzle is positioned ≈ 500 µm away from the substrate.
While depositing, the mass of the Pt particle is monitored in
real-time using a custom computer program. We continuously
acquire the resonance spectrum of the thermal motion of the
nanotube. The resonance frequency changes with the deposited
mass as

fm =
1

2π

√
k

meff
. (4.5)

It is important to note that the estimated spring constant is
the same when measured before and after the deposition, see
Fig. 4.2c. This shows that the spring constant is not affected by
the deposition process and the change in resonance frequency
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TABLE 4.2: Atomic and mass fraction of carbon, platinum and
oxygen, determined by the EDXS measurements.

element atomic fraction [%] mass fraction [%]
carbon 84.6 41.5
oxygen 8.8 5.8
platinum 6.6 52.7

is due to mass deposition [106, 108]. A typical measurement is
shown in Fig. 4.3a. The gas nozzle is opened at t ≈ 20 s. As
the particle grows the detection becomes strongly nonlinear and
higher harmonics appear. This can be explained by higher inter-
action volume due to the deposition process. The fundamental
frequency decreases over time which is consistent with mass
absorption. We can calculate the deposited mass from

∆m(t) =
k

(2π)2

(
1

f 2
m,t
− 1

f 2
m,0

)
, (4.6)

where fm,t is resonance frequency measured at time t and fm,0
is resonance frequency measured before starting the deposition
process.

Fig. 4.3b shows the deposited mass from the measurements in
Fig. 4.3a using the equation above. Here we can see that the mass
deposition is linear in time and we can determine the deposition
rate [108]. After the deposited mass of the Pt particle reaches the
desired value we close the gas nozzle and stop the electron beam
to prevent spurious growth. The deposited mass divided by the
cantilever mass of different devices can be seen in the table 4.1.

Chemical analysis was conducted via energy-dispersive X-
ray spectroscopy (EDXS) using an EDAX detector. The results are
shown in the table 4.2. Platinum accounts for 52.7 percent of the
mass of the particle. The observed oxygen content is attributed to
the air molecules that diffuse into the particle during the transfer
of the device from the SEM to the STEM [108].
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5 μm3 μm
3 μm

FIGURE 4.4: Optical images of various fabricated mechanical
resonators based on TMD monolayers. The device in the left
image is made of WSe2, and other devices are mode MoSe2.
The diameter of the resonator is marked in the figure. Adapted

from [109].

4.2 TMD monolayer mechanical resonator fab-
rication

Here we will describe the fabrication process of TMD monolayer
mechanical resonators. The devices consists of a TMD monolayer,
specifically MoSe2 or WSe2 monolayers, suspended over holes
with the diameters in range from 2-5 µm (see Fig. 4.4).

The fabrication process consists of three different steps: fab-
rication of the substrate with holes and electrodes, mechanical
exfoliation of a monolayer from bulk material, and dry transfer
of the monolayer onto the substrate. Details of these steps are
given below.

4.2.1 Fabrication substrate

For the fabrication of the substrate, we use a Si++/SiO2 wafer.
The thickness of the Si layer is 1 µm and of the SiO2 is 285 nm. The
fabrication process includes the deposition of gold electrodes and
the etching of holes over which we suspend TMD monolayers.

To evaporate the gold electrodes we start by designing and
then patterning a PMMA mask using electron beam lithography.
Once the PMMA mask is patterned and developed we proceed
with the thermal evaporation of electrodes. First, we use a thin
adhesive layer (5 nm) of Titanium, followed by a 50 nm thick
layer of gold. The final step is to lift off the PMMA and the
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residual gold, which leaves gold electrodes on the substrate.
Next, we proceed with the fabrication of the holes.

Similar to the fabrication of the electrodes, the fabrication of
holes in the substrate also starts by patterning the mask using
electron beam lithography and developing it. The exposed parts
of SiO2 are then etched using reactive ion etching. The depth
of the hole is ∼ 180 nm and is chosen to optimize the motion
detection of the monolayer. We clean the PMMA off the chip,
which leaves the substrate with holes and electrodes. Finally, we
proceed with the dry transfer.

4.2.2 Mechanical exfoliation

We use bulk crystals MoSe2 and WSe2 obtained from hqgraphene
and 2D semiconductors. During the process of exfoliation, we
use PDMS (polydimethylsiloxane). This material is widely used
for mechanical exfoliation as it leaves a very small amount of
contamination on the monolayers.

We start by placing a small piece of bulk crystal onto a 2 mm
thick layer of homemade PDMS. TMD crystal is then covered by
a thin layer (0.1 mm) of PDMS, which we use to peel off layers
from the bulk crystal. This process is repeated until we are left
with monolayers on top of the thick PDMS layer. The thickness
of the crystal is verified by optical contrast measurements and is
also confirmed later in the experimental setup by measuring the
photoluminescence of the monolayers.

4.2.3 Dry transfer

The final device is made by transferring the monolayer from
PDMS over the holes and electrodes on the substrate. First, we
use a micromanipulator to align and position the monolayer
flake over the pre-patterned structure of holes and electrodes.
Then we slowly bring the monolayer and substrate in contact
with each other. Once the monolayer is in contact we start lifting
the PDMS, which leaves the monolayer on the substrate. This
process is very robust and the success rate is around 70-80 % for
holes with a diameter of 3 µm. The success rate drops as we
increase the diameter of the holes, as the monolayer tends to
collapse more often. Figure 4.4 shows some devices fabricated
using this technique.
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FIGURE 4.5: Schematic of the optical setup used for the experi-
ment. Details are given in the main text. Adapted from [84].

4.3 Measurement setup

We developed a low-temperature optical setup that is based on a
3 K base-temperature cryostat with optical and electrical access.
The setup in the configuration outlined below has been optimized
for the detection of nanotube resonators at low temperatures.
Due to the strong interaction between the Pt particle attached
at the free end of the nanotube cantilever with the light, the
collection efficiency of the setup had to be optimized to minimize
the backaction effects. The main parts of the setup are described
below (Fig. 4.5).

The excitation source is a continuous wave HeNe laser with
the wavelength of λ = 633 nm. The output of the laser is passed
through a beam expander with a pinhole for spatial filtering.
Following the beam expander is a high reflection polarizing beam
splitter (reflection to transmission ratio is 99:1). This splitter
essentially defines the excitation and the collection path. In the
reflection path, it collects 99 % of the reflected light.

The next part of the setup consists of two beam splitters, a
CMOS camera, and a LED light source. These elements greatly
facilitate the initial search and alignment of the sample. Both
beam splitters are mounted on a flipping stage so that they can
be removed during the experiment.

The objective used to focus the light onto the sample is 100X
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Mitutoyo Plan Apo NIR HR infinity-corrected objective, with
a numerical aperture of NA = 0.7 and a working distance of
10 mm. The objective is placed outside of the cryostat due to
limited space available in the cryo chamber. The objective is
placed on an XYZ piezo stage (Jena NV40 3 CLE) with a reso-
lution of 2 nm. The piezo is used to move the laser beam with
high accuracy. The objective and the piezo are placed on top of a
millimeter accuracy XYZ positioner for coarse positioning.

The cryostat is a low vibration closed-cycle Helium optical
cryostat from Montana Instruments. The samples are mounted
on a stage which has a base temperature of 3 K, but the tempera-
ture can also be set anywhere between 3 K and 295 K. A radiation
shield is attached to the stage that keeps the temperature at 30 K.
Furthermore, one RF line is connected to a fast piezoelectric stage
inside the cryostat that is used to actuate the nanotubes through
inertia forces.

After reflection, the light can be focused onto a high gain
avalanche photodetector (APD440A2, APD130A2) or a single-
photon counter (Excelitas Technologies, SPCM-AQRH-15). We
feed the output of the APD into a Zurich lock-in amplifier or a
spectrum analyzer (Agilent N9020A).

The interfacing of the setup was done in Python using QTLab,
an IPython based measurement environment.

4.3.1 Detection principle

Carbon nanotube resonator motion detection The detection
principle is presented on the Fig. 4.6a. The intensity profile of
the laser beam is described by a Gaussian distribution [28]. The
fluctuation of the resonator in this Gaussian profile results in
the modulation of the back-scattered intensity, proportional to
the displacement. The optomechanical transduction is propor-
tional to the derivative of the Gaussian intensity profile along the
motion direction; the sensitivity is minimal at the center of the
intensity profile, while it is maximum at the slopes of the profile
as seen in the Fig. 4.6a. Fig. 4.6b shows the results obtained while
displacing the focal point in the focal plane. Two lobes are sep-
arated by the symmetry axis which is orthogonal to the motion
direction.

One can see asymmetry between the two detection lobes in
the Fig. 4.6b. This is the consequence of the dynamical backaction
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described in chapter 3.5, which leads to cooling or heating of the
thermal vibrations in different lobes. This effect becomes even
more prominent as we cool down the device and the Q factor
becomes larger. To avoid backaction cooling or heating of the
mode it is necessary to reduce input laser power. This leads to
a detection problem as the back-scattered light intensity falls
below the noise floor of the APD used in the experiment. For
this situation, we developed a measuring technique using the
single-photon counter as the detector.
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FIGURE 4.6: (a) Schematic illustration of the optical detection
principle of the motion of a nanomechanical resonator. As the
nanoparticle (red dot) displaces in the beam it scatters light pro-
portional to the local intensity of the laser beam (red, dashed
line). Displacement x of the resonator results in fluctuation of
the scattered intensity that is proportional to the intensity gradi-
ent dIbs/dx. (b) The fluctuation of the back-scattered intensity
as the particle is moved in the waist of the focused laser. The
obtained intensity fluctuation identifies the resonator displace-
ment direction and laser waist intensity gradient (black arrow),

as depicted in (a). Adapted from [28].

TMD monolayer resonator motion detection The detection of
the mechanical vibrations of a TMD monolayer is achieved by
placing the monolayer in the gradient of an input laser power.
The gradient is the consequence of the interference of the incom-
ing and the reflected beam from the Si/SiO2 substrate. Fig. 4.7b
shows the simulation of the interference pattern for the particular
substrate and laser wavelength used in our experiments. As the
TMD monolayer displaces in this gradient it will absorb different
amount of light depending on its position (the TMD monolayer
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has constant absorption coefficient at 633 nm, around 5-10 % for
WSe2 and MoSe2 [80]. This absorption effect will modulate the
reflected laser beam intensity at the resonance frequency, which
is later detected using an APD.

As with a carbon nanotube mechanical resonator, the ab-
sorption and backaction effects can strongly influence mechan-
ical vibrations. High Q mechanical resonators based on TMD
monolayers are very sensitive to temperature variations induced
by laser power absorption. Therefore, it is very important to
minimize the power of the input laser beam, especially at low
temperatures.

FIGURE 4.7: (a) Illustration of the TMD monolayer mechanical
resonator probed by a laser beam. (b) Numerical simulation
of interference pattern created by the Si/SiO2 substrate. Black
dashed line at z = 0 presents the position of the TMD monolayer

in the pattern. Adapted from [91].

4.3.2 Single photon counter

When measuring the nanotube cantilever at low temperature it
is necessary to use ultra-low powers (10 nW of the input laser
power) to avoid optical backaction and heating of the nanotube.

To overcome this problem we use the single-photon counter
mentioned above, which operates in the Geiger mode and has a
dark rate of approximately 50 counts per second, corresponding
to ≈ 15 nW at λ = 633 nW. Fig. 4.8 schematically compares
the signal of the APD to the signal of the single-photon counter.
Instead of a continuously varying voltage signal, we have a
sequence of photon pulses, whose density varies over time. This
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FIGURE 4.8: Schematic comparison of the difference between
the single photon counter SPC and APD signal. The APD signal
is a continuous voltage signal linearly proportional to the dis-
placement, while the SPC signal gives the sequence of photon
pulses whose density is proportional to the displacement of the
tube. In the green inset are Excelitas single photon counter and

Thorlabs APD used in the experiment.

kind of signal is called pulse density modulation. They can
be low pass filtered, to obtain a mean photon flux (in cps or
Hz−1 ). The signal is analyzed with time-stamping devices to
acquire the full temporal statistics or resolved with a spectrum
analyzer. Here we acquired the full temporal statistic which is
later numerically averaged to obtain the mean photon flux. We
then performed an FFT to analyze the mean photon flux signal.

The single-photon counter is also used to measure the pho-
toluminescence of TMD monolayers with very high efficiency.
The photoluminescence of the TMD monolayer is enhanced by
several orders of magnitude when compared with a TMD crys-
tal with two or more layers [81]. This is a consequence of the
crossover from indirect- to a direct-gap semiconductor in the
monolayer limit. The photoluminescence measurement of the
TMD crystal provides an easy way to distinguish a monolayer
from a multilayer TMD.
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Chapter 5

Interrelation of elasticity
and thermal bath in
nanotube cantilevers

Parts of this chapter are published in:

Interrelation of elasticity and thermal bath in nanotube
cantilevers

S. Tepsic, G. Gruber, C. B. Møller, C. Magén, P. Belardinelli, E. R.
Hernández, F. Alijani, P. Verlot and A. Bachtold

PRL

In this chapter, we report the first study on the thermal be-
havior of the stiffness of individual carbon nanotubes, which is
achieved by measuring the resonance frequency of their funda-
mental mechanical bending modes. We observe a reduction of
the Young’s modulus over a large temperature range with a slope
−(173± 65) ppm/K in its relative shift. These findings are repro-
duced by two different theoretical models based on the thermal
dynamics of the lattice. These results reveal how the measured
fundamental bending modes depend on the phonons in the nan-
otube via the Young’s modulus. An alternative description based
on the coupling between the measured mechanical modes and
the phonon thermal bath in the Akhiezer limit is discussed.
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5.1 Introduction

In engineering, thermoelasticity is central in determining the elas-
tic limits of structures ranging from large scale spacecrafts [44]
and nuclear plants [45] down to nano-structured systems. A rich
underlying phenomenology emerges for small structures, includ-
ing dissipation [46, 47], fluctuations [48, 49] and torque genera-
tion [50, 51], which are key to the development of state-of-the-art
nano- and micro-electromechanical technologies [110, 111]. Ther-
moelasticity has also been used with success in condensed matter
physics, where thermal measurements of the stiffness unveil the
phase transition of charge-density waves and superconductivity
in transition metal dichalcogenides and high-Tc superconduc-
tors [112–114]. From a fundamental point of view, the thermal
behavior of the stiffness – quantified by the Young’s modulus
– emerges from the non-trivial interplay of the binding energy
and the lattice dynamics. However, the effect of the thermal
lattice dynamics on the stiffness has remained elusive in individ-
ual nanoscale systems due to experimental challenges related to
manipulating and measuring such small objects.

In this work, we use the exquisite sensing capabilities of me-
chanical resonators based on nanoscale systems [14, 23, 25, 29,
32, 37, 38, 115–123] to resolve the small effect associated with
the thermal behaviour of their stiffness. Using the resonance fre-
quency measured by optomechanical spectroscopy, we estimate
the Young’s modulus of micrometer-long nanotube cantilevers
from room temperature down to a few Kelvins. These results
agree with the temperature dependence of the resonance fre-
quency predicted by molecular dynamics simulations, which
take into account the lattice dynamics of the nanotube. Our mea-
surements are also consistent with the Young’s modulus directly
computed from a quasi-harmonic approximation of the free en-
ergy of the phonon modes. This work not only shows how the
stiffness of an individual nanotube is related to its phonons, but
it also highlights the role of the phonon thermal bath in nan-
otube cantilevers, which is a topic of importance in the field of
nanomechanical resonators [14, 23, 25, 29, 32, 37, 38, 115–123].



5.1. Introduction 41

x

1

0

φ
(x

)

0 L
x

mPt/mtube

 0
 20

(d)

54.954.7

x 
10

-1
3

S
V

V
 [V

2 /H
z]

53.152.6

x 
10

-1
1

(c)

Frequency [kHz]

(a)

FIGURE 5.1: (a) Schematic of the experimental setup. The two
double arrows represent the polarization of the fundamental
mode doublet. (b) Device A imaged by SEM after the deposition
of a platinum nanoparticle; the scale bar is 1 µm [108]. (c) Power
spectra of the optical reflection from device A showing the reso-
nance of the thermal motion of the fundamental mode doublet
at 300 K. The two spectra are recorded using different positions
of the nanotube in the laser waist to enhance the signal [28] (d)
Calculated profile ϕ(x) of the fundamental mode shape along
the nanotube axis estimated for two different platinum particle

masses normalized by the nanotube mass.
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5.2 Characterization of nanotube cantilevers

We use the single clamped resonator layout, where one end of
the nanotube is attached to a silicon chip and the other end
is free. This layout avoids prestress in the nanotube built-in
during fabrication, in contrast to what may happen with the
double clamped layout. As a result, the restoring force is given
solely by the bending rigidity. This enables us to probe the
Young’s modulus Y by measuring the resonance frequency, ω0 ∝√

Y [124]. Such a resonance-based methodology is also employed
in thermoelasticity studies on larger scale systems [112–114, 125].

We engineer a platinum particle at the free end of the nan-
otube so that the resonator can be measured by scattering op-
tomechanical spectroscopy (Fig. 5.1a) [28]. We grow the particle
by focused electron beam-induced deposition [108]. Figure 5.1b
shows a scanning electron microscopy image of device A. Trans-
mission electron microscopy (TEM) indicates that nanotubes can
be made from one to a few walls, with a median value of two
walls. The vibrations are detected by measuring the backscat-
tered intensity from a 633 nm laser beam focused onto the particle.
Figure 5.1c shows the optomechanical spectrum of device A. The
resonance frequencies of the fundamental modes polarized in
perpendicular directions are about 52.9 kHz and 54.8 kHz. The
platinum particle does not affect the restoring force nor the eigen-
mode shape of the two fundamental modes (Fig. 5.1d), in contrast
to what happens for higher frequency modes (Sec. A.1). In this
work, we use low laser power so that the resonance frequency is
not affected by absorption heating and optical backaction [28].

The carbon nanotubes were grown on silicon substrates via
chemical vapor deposition. A Zeiss Auriga scanning electron mi-
croscope (SEM) was used to select suitable nanotube cantilevers.
The SEM is equipped with a gas injection system, which was
used to deposit platinum particles at the apex of the nanotubes
for their optomechanical functionalization [28, 108]. Figure 5.2(a)
shows a pristine nanotube cantilever (device A). Figure 5.2(b)
shows the same cantilever after the deposition of a Pt particle.
The free end of the cantilever is blurred in the SEM images due to
the thermally driven motion. The displacement profile was mea-
sured by an SEM line trace across the nanotube at the tip. Figure
5.2(c) shows the observed Gaussian distribution in the secondary
electron current ISE, as expected for thermal vibrations [106]. The



5.2. Characterization of nanotube cantilevers 43

(a)

(b)

0.2 0.4 0.6 0.8 1
−2

0

2

4

6

x[µm]

I S
E

[a
.u

.]

Data
Fit

= 87.4 nmσ

(c)

FIGURE 5.2: Device A imaged by SEM (a) before and (b) after
deposition of a Pt nanoparticle; the scale bars are 1 µm. (c)
Secondary electron signal ISE across the apex of the nanotube;
from a Gaussian fit the displacement variance σ2 = (87.4 nm)2

is determined.

displacement variance σ2 = (87.4 nm)2 was obtained from a fit
of the data. The spring constant k = 5.42× 10−7 N/m was deter-
mined from the equipartition theorem k = kBT/σ2 where kB is
the Boltzmann constant and T is the temperature [106]. The mass
of the deposited Pt particle was controlled during its growth
by monitoring the mechanical resonance frequency of the low-
est flexural mode of the nanotube; the thermal vibrations were
measured by pointing the electron beam onto the apex of the
nanotube in spot mode while recording the noise of ISE [108].
The initial effective mass of the nanotube was m∗0 = 243 ag and
the mass of the deposited particle visible in Fig. 5.2(b) was
mPt = 3.6(11) fg. All discussed samples were fabricated as de-
scribed above. The mechanical properties of the samples that
were optomechanically characterized at low temperature (de-
vices A-I) are summarized in Table 5.1.

We performed high-resolution transmission electron microscopy
(HRTEM) to assess the microscopic structure of nanotube can-
tilevers. The samples were fabricated on silicon aperture win-
dows using the identical procedure as outlined above. HRTEM
imaging was conducted using a Thermo Fisher Titan Cube 60-
300, equipped with an image aberration corrector CETCOR from
CEOS. The microscope was operated at 80 kV to minimize beam
damage and achieve a spatial resolution below 1.4 Å. Figure
5.3 shows atomically resolved images obtained for different de-
vices near the clamping point where the thermal displacement is
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TABLE 5.1: Mechanical properties of the measured nanotube
cantilever devices. These include the length l, the standard
deviation of the thermal displacement σ, the spring constant k
and the mass ratio m∗ between the Pt particle and the nanotube

as defined in Supplementary Section A.1.

Device l [µm] σ [nm] k [N/m] m∗

A 8.2 87.4 5.42× 10−7 3.7
B 6.5 22.8 7.92× 10−6 4.6
C 2.4 16.0 1.64× 10−5 83.0
D 7.8 55.8 1.33× 10−6 5.5
E 10.0 44.2 2.10× 10−6 4.6
F 5.0 34.9 3.39× 10−6 8.8
G 5.2 80.1 6.46× 10−7 18.3
H 4.6 73.5 7.63× 10−7 60.9
I 11.9 90.0 5.11× 10−7 3.7

negligible. The devices shown are a single wall device, a seven
wall device, and a triple wall device. The latter device was also
characterized optomechanically at low temperature before con-
ducting the HRTEM experiments and is referred to as device C
in table 5.1. The amorphous material visible in Figs. 5.3 (a) and
(c) presumably consists of hydrocarbons adsorbed during their
exposure to air and the particle growth [108].

Using such HRTEM images, we determined the number of
walls and the associated diameters for six different devices rang-
ing from a single wall to seven wall nanotubes. Table 5.2 shows
the diameters obtained by HRTEM together with other parame-
ters obtained by SEM. The calculation of the Young’s modulus in
the table is outlined in Section 5.3.

5.3 Estimation of Young’s modulus

The estimated Young’s modulus is similar to previously pre-
dicted and measured values [101, 104, 126–129]. This indicates
that the contamination adsorbed on the nanotube surface has
little contribution to the stiffness of the nanotube. The contam-
ination, which is localized along some portions of nanotubes
as observed by TEM, presumably consists of hydrocarbons ad-
sorbed during their exposure to air and the particle growth. The
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(a) (b) (c)

FIGURE 5.3: HRTEM images recorded near the clamping point
of single wall device T1 (a), seven wall device T6 (b) and triple
wall device C (c). In order to enhance the signal-to-noise ra-
tio multiple images were overlaid and averaged. All image

dimensions are 10 nm by 10 nm.

TABLE 5.2: Properties of different nanotube cantilevers. Can-
tilever length l and spring constant k were obtained by SEM
imaging. Number of walls N and associated diameters di were
obtained by HRTEM. The Young’s modulus Y was calculated as

described in section 5.3.

Dev N l [µm] k [N/m]×10−7 di [nm] Y [TPa]
T1 1 2.8± 0.1 6.51± 1.53 3.24± 0.14 1.04± 0.49

T2 2 2.2± 0.1 19.3± 4.2
3.37± 0.16,
2.58± 0.16

0.91± 0.46

T3 2 1.8± 0.1 33.3± 5.2
3.58± 0.11,
2.80± 0.09

0.79± 0.34

T4 2 3.8± 0.1 7.42± 1.73
3.75± 0.19,
2.89± 0.22

1.31± 0.64

C 3 2.4± 0.1 164± 38
5.84± 0.09,
5.15± 0.08,
4.38± 0.11

1.35± 0.55

T6 7 7.1± 0.1 7.36± 1.83
6.24± 0.07,
5.55± 0.07,
4.88± 0.09,

0.96± 0.33

4.20± 0.10,
3.53± 0.09,
2.88± 0.09,
2.15± 0.14
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typical stiffness reported for such amorphous material is compar-
atively low Y ≈ (50 – 300)GPa [130].

We determine the Young’s modulus at T = 300 K for various
nanotube cantilevers. We use the geometrical parameters deter-
mined by SEM and HRTEM as described in Sec. 5.2 (see table
5.2). The spring stiffness k of a nanotube cantilever composed of
N concentric shells is the sum of the spring constant ki of each
shell,

k =
N

∑
i=1

ki, (5.1)

where we assume that the interaction between the concentric
shells has negligible contribution to the spring stiffness. We
determine Y of a nanotube cantilever with N shells from its
measured spring stiffness, its length and the diameter di of each
shell, using

Y = 0.8488
kl3

∑N
i=1(d

3
i g + g3di)

, (5.2)

where we assume that all the shells have the same Young’s mod-
ulus and the wall thickness is g = 0.34 nm. This expression can
be obtained from Sec A.1.

Figure 5.4 shows the resulting Y for the six measured devices
plotted as a function of the cantilever length. The error bars
represent the standard error ∆Y for each measurement, which is
determined by expanding Eq. 5.2 and calculating the propagation
of the measurement uncertainties in l, k and d (see table 5.2). The
solid line is the mean Young’s modulus Ȳ = ∑ Y/N = 1.06 TPa
whereas the dashed lines indicate the confidence intervals ∆Ȳ.
The latter is estimated by summing the standard error of the Y
value of the different cantilevers and the mean of their standard
error ∆Y divided by

√
N, which yields ∆Ȳ = ±0.28 TPa.

5.4 Measuring the stiffness at low temperature

Figure 5.5 shows the variation of the resonance frequency of
device A when sweeping the temperature T. The variation is
remarkably similar for both fundamental modes, independent
of the temperature sweep direction and of whether the motion
is thermal or driven with a piezo-actuator. This variation of the
resonance frequency ω0 =

√
k/m is associated with the change
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FIGURE 5.4: Y determined from SEM and HRTEM for six dif-
ferent nanotube cantilevers. The error bars represent the stan-
dard error for each measurement. The solid black line marks
the mean value Ȳ = 1.06 TPa of all the measurements and the
dashed black lines indicate the corresponding confidence inter-

vals ∆Ȳ = ±0.28 TPa.

of the spring constant k, which is linearly proportional to Y in the
single clamped layout. We extract the relative shift of the Young’s
modulus from the relation ∆Y(T)

Y(Tmin)
= 2 ∆ω0(T)

ω0(Tmin)
, where Tmin is the

lowest temperature at which we record the vibrations. Figure 5.6a
shows the measurements of nine different devices. They all
feature the same trend with a reduction of the Young’s modulus
when increasing temperature. The dependence is essentially
linear above about 100 K; the slope averaged over devices is
∆Y(T)/Y · 1/T = −(173± 65) ppm/K.

These measurements are related to neither the mass adsorbed
on the nanotube nor the diffusion of adsorbed atoms along the
nanotube nor the thermal expansion of the nanotube nor the
combination of the Duffing nonlinearity and the thermal mo-
tion, as discussed now. The measured T dependence of ω0 could
originate from the variation of the mass m adsorbed on the nan-
otube. However, mass adsorption, which occurs when lowering
T, would lead to a reduction of ω0 [40, 41, 108, 131], which is
just the opposite of what is measured. Moreover, we do not ob-
serve any hysteresis in ω0 when cooling the device from 300 K to
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sweep (cooling or heating), which fundamental mode is mea-
sured, and whether the detected vibrations are thermal or driven

with a piezo-actuator.
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FIGURE 5.6: Comparison of the relative change of the resonance
frequency and the Young’s modulus between experiment (a) and
theory (b) for different nanotubes. The theoretical results are
obtained for different nanotube chiralities with either molecular
dynamics (MD) simulations or quasi-harmonic approximation
(QHA) calculations. The MD simulations and the QHA calcula-

tions quantify ∆ω0/ω0 and ∆Y/Y, respectively.
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cryogenic temperatures and then heating it back to 300 K, which
shows that temperature-induced mass adsorption and desorp-
tion plays a negligible role [41]. Thus, the measured variation of
ω0(T) is not accounted for by adsorbed mass changes.

The measurements could be related to the change in the
length of the nanotube when the thermal environment is var-
ied since the spring constant depends on the nanotube length as
k ∝ l−3. However, the measured resonance frequency reduction
at room temperature ∆ω0(T = 300 K)/ω0 ' −2.2× 10−2 for
device A is much larger than the predicted reduction ∆ω0(T =
300 K)/ω0 = −1.25× 10−3 based on the longitudinal expansion
of the nanotube in different thermal conditions obtained from our
molecular dynamics simulations for an (8,8) CNT. The predicted
relative change in stiffness k(T)/k5K associated with the thermal
expansion of the nanotube as a function of temperature is shown
in Fig. 5.7. The results are obtained by calculating the elonga-
tion of the nanotube for different thermalization temperatures.
Here we assume that the stiffness ratio k(T)/k5K is proportional
to the cube of the function (l5K/l(T)) in which l5K and l(T) are
the length of the CNT at 5 K and at temperature T, respectively.
The decreasing behavior reported in Fig. 5.7 suggests that the
nanotube stretches with the increase in temperature. Overall,
this shows that the thermal expansion is not the cause of the
measured ω0(T) reduction.

Another possible origin could be the nanotube resonance fre-
quency change that arises from the combination of the Duffing
nonlinearity and the thermal motion. Figure 5.8a shows the mea-
sured variation of the resonance frequency as a function of driven
vibrational amplitude

〈
x2

vibra

〉
, which allows us to quantify the

Duffing constant γeff using

∆ω =
3
8

γeff

ω0

〈
x2

vibra
〉

. (5.3)

The driven amplitude is calibrated following the procedure de-
scribed in Ref. [28]. We compute the linear temperature depen-
dence of the resonance frequency expected from the combination
of the Duffing nonlinearity and the thermal vibrations using

∆ω =
3
8

γeff

ω0

〈
x2

th
〉
=

3
8

γeff

ω0

kBT
k

. (5.4)
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FIGURE 5.7: Predicted relative change in stiffness with respect
to temperature induced by the nanotube elongation. MD simu-
lations for a (8,8) CNT fully clamped at one end and free on the

other.

Figure 5.8b shows that the slope of the expected dependence
is positive, in contrast to what we measure. Moreover, the fre-
quency shift ∆ω0(T = 300 K)/ω0 = 3.0× 10−5 is much smaller
in magnitude than the measured value ∆ω0(T = 300 K)/ω0 '
−2.2× 10−2. This shows that the Duffing nonlinearity together
with the thermal vibrations cannot describe our experimental
findings.

Another explanation for our data could be related to the
diffusion of adsorbed atoms along the nanotube. Mechanical
vibrations lead to a force that pushes atoms towards the anti-
node of the mode [132]. Enhancing the vibrational amplitude of
the fundamental mode results in more atoms near the nanotube
free end and, therefore, a larger effective mass of the mode and a
lower resonance frequency. However, we observe the opposite
behavior in Fig. 5.8a. This shows that the effect of the diffusion of
adsorbed atoms is smaller than that of the Duffing nonlinearity
so that it cannot account for the measured T dependence of ω0.
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FIGURE 5.8: Estimation of the Duffing constant and its effect
on the temperature dependence of the resonance frequency for
device A. (a) Variation of the resonance frequency measure as a
function of driven vibrational amplitude measured at T = 100 K.
(b) Estimated frequency shift as a function of temperature due

to the Duffing constant and the thermal vibrations.

5.5 Comparing the measurements with numer-
ical simulations

These measurements can be captured by molecular dynamics (MD)
simulations of the nanotube cantilever dynamics. The temper-
ature dependence of the resonance frequencies of the lowest
energy bending modes obtained from the MD simulations be-
haves in the same way as those we measure (Figs. 5.6a,b). The
associated slope estimated for different nanotube chiralities leads
to ∆Y(T)/Y · 1/T = −(79± 6) ppm/K, which is rather similar
to the measured value. This suggests that the thermal behavior
of the Young’s modulus in our measurements is related to the
lattice dynamics of nanotubes.

We employ a second method to directly compute the Young’s
modulus from the energy dispersion of the nanotube phonon
modes. For this, we evaluate the free energy F(T, ε) of the
phonon modes at T and strain ε with the quasi-harmonic ap-
proximation, yielding

Y(T) =
1

V0(T)

(
∂2F(T, ε)

∂ε2

)
ε=0

, (5.5)

where V0(T) is the equilibrium volume at this temperature. The
resulting Y(T) dependence is also consistent with the measure-
ments (Figs. 5.6a,b). The slope for different chiralities is ∆Y(T)/Y ·
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1/T = −(104± 102) ppm/K. The variation of the slope is larger
than that obtained with molecular dynamics; this difference may
be due to the infinite nanotube length and the purely linear vibra-
tional dynamics considered in the quasi-harmonic approximation
method, while the lengths in the molecular dynamics simulations
are much shorter, that is, less than 40 nm. Overall, the experimen-
tal findings are fairly consistent with both models considering
the typical differences between the values of Y of nanotubes ob-
tained with different experimental and theoretical methods [101,
104, 126–129]. Both theoretical models are described in more
detail in Sec. A.2.

5.6 Discussion of results

These results show how the measured fundamental mechanical
modes are linked to phonons via the Young’s modulus. An al-
ternative way to describe this link is to consider the coupling
of the measured mechanical modes with the thermal bath made
of the phonons of the nanotube. In other words, the measured
T dependence of ω0 is related to the phonon thermal bath. The
phonon thermal bath in our experiments likely operates in the
Akhiezer limit [133]. As discussed in the next paragraph, over
the temperature range that we measure, the phonon modes in
nanotubes with energy h̄ωk similar to kBT have decay rates 1/τk
larger than ω0, since τk ≈ 10 ns was measured for breathing
modes at T = 5 K [134] and we estimate τk to be typically in the
10− 1000 ns range for the longitudinal and twist modes [135]
(The estimation of τk for high-energy bending modes is compli-
cated and beyond the scope of this work.) This sets the Akhiezer
limit ω0τk � 1 at least for the breathing, longitudinal, and twist
modes [132]. It involves three-phonon processes, where one vi-
bration quantum of the measured mode is absorbed together
with the absorption and the emission of high-energy phonons
with frequencies ωk and ωk′ , respectively. The sizeable decay
rates of the high-energy phonons lead to uncertainty in their en-
ergy. This lifts to some extent the restriction associated with the
energy conversation of the three-phonon process, ω0 = ωk −ωk′ ,
which holds in the Landau-Rumer limit when ω0τk � 1. For
this reason, the resonance frequency reduction and the relaxation
in the Akhiezer limit are expected to be larger than that in the
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FIGURE 5.9: (a) Temperature dependence of the mechanical
linewidth for device A. The black line is the average of different
temperature traces (red lines). (b) Temperature dependence of
the linewidth for all the measured nanotubes, from device A at
the top to device I at the bottom; the associated resonance fre-
quencies are 54 kHz, 96 kHz, 194 kHz, 77 kHz, 57 kHz, 108 kHz,
44 kHz, 58 kHz, 48 kHz. The arrows indicate peaks in dissipa-

tion.
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Landau-Rumer limit over the studied temperature range. The
thermoelastic limit [47] does not apply for nanotubes, since the
model relies on phonons that locally reach thermal equilibrium at
different temperatures on the two sides of the beam cross-section,
which is not realistic for such narrow resonators.

We estimate the decay rates for different phonon modes using
the expressions derived by de Martino et al. [135]. For the lon-
gitudinal phonon modes, the decay rate due to phonon-phonon
interactions is given by

τ−1
L =

h̄
4πρr4

{√
kphr

25/4 coth
(

h̄vLkph

4kBT

)
+

√
2exp

(
−h̄vL

2
√

2rkBT

)
sinh

(
h̄vLkph

2

)}
, (5.6)

where h̄ is the reduced Planck constant, ρ = 3.8× 10−7 kg/m2,
r is the nanotube radius, kph is the phonon wave number and
vL = 1.99× 104 m/s is the longitudinal speed of sound. For the
twist phonon modes the decay rate is

τ−1
T =

h̄
2ρ

(
vT

vL

)7/2 21/4 (kphr
)3/2

8πr4

{
coth

(
h̄vTkph

4kBT

)
+

25/4
(

vT

vLkphr

)3/2

exp
(
− h̄v2

T

2
√

2vLrkBT

)
sinh

(
h̄vTkph

2kBT

)}
(5.7)

where vT = 1.23× 104 m/s. We calculate the decay rates for dif-
ferent phonon energies Eph. The wave number is k = Eph/h̄vL for
longitudinal and k = Eph/h̄vT for twist phonons and r = 1 nm.
Figs. 5.10 (a)-(b) show the respective temperature dependencies
of τL and τT.

It is expected that the phonon thermal bath significantly con-
tributes to the measured dissipation via the Akhiezer relaxation,
since a thermal bath results in a resonance frequency reduction
as well as dissipation, both of them being related through the
Kramers–Kronig relations [82]. Figures 5.9a,b show the mea-
sured temperature dependence of the mechanical linewidth of
the different measured devices. The measurements feature one
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FIGURE 5.10: Temperature dependence of the phonon decay
times of the (a) longitudinal and (b) twist phonon modes for

different phonon energies Eph.

or two peaks of dissipation at some specific temperatures. These
observed peaks could arise from the Akhiezer relaxation. The
Akhiezer dissipation rate depends in a complicated way on the
number of phonon modes with energy h̄ωk ≤ kBT, their popula-
tion, and their decay rate [132]. The temperature dependence of
the Akhiezer dissipation rate could feature one or more peaks in
dissipation, especially since the phonon density of states varies
up and down as a function of energy [135, 136] and the temper-
ature behavior of the decay rate changes for different phonon
modes. In addition, the dissipation peaks could emerge at dif-
ferent temperatures for different nanotube chiralities, since the
phonon energy dispersion is chirality dependent.

We show here that the measured temperature dependence
of the dissipation cannot be described by the model that is used
in the literature [137, 138] to quantify dissipation due to defects.
Peaks in dissipation when sweeping temperature is often at-
tributed to microscopic defects. These defects are modeled by
double-well potentials with barrier height V0 and asymmetry ∆
between the two wells. At the high temperature of our experi-
ments, the passage from one well to the other well is thermally
activated with a characteristic time

τd = τd0 exp (V0/kBT), (5.8)

with 1/τd0 the attempt rate to overcome the barrier. Assum-
ing that all defects have similar V0, ∆, and τd0, a peak in dissi-
pation occurs when the characteristic rate 1/τd of the defects
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matches the mechanical resonance frequency, 1/τd = ω0. Our
measurements in Fig. 5.9b show dissipation peaks at different
temperatures. Using the values of these temperatures together
with 1/τd = ω0, we construct a plot of τd as a function of T
(Fig. 5.11a). Despite the relatively large spread in the values of
τd in Fig. 5.11a, the data cannot be described by an exponential
behavior, suggesting that exp V0/kBT ∼ 1 in the measured tem-
perature range in order to force a reasonable description of the
data by Eq. 5.8. Such an analysis would lead to an unrealistically
long τd0 ∼ 2 × 10−6 s, considering that τd0 is typically in the
10−13 s – 10−11 s range [137–139]. If we were considering two or
three different types of defects, each of them with well-defined
characteristics V0, ∆ and τd0, we would also obtain τd0 in the
µs range. Therefore, the model based on defects with narrow
characteristics distribution cannot account for our measurements.
Another possibility with the double-well potential model is to
assume a broad distribution of the defect characteristics V0 and
∆ [137–139]. A peak in dissipation can be obtained in a specific
parameter space region. The peak always features a negative cur-
vature between T = 0 K and the peak temperature (Fig. 5.11b),
which is just the opposite of what is observed in our experiments
(Fig. 5.9). Overall, our measurements cannot be explained by the
double-well potential model with neither a narrow nor a broad
defect characteristics distribution.

5.7 Conclusion and Outlook

In conclusion, we report the first experimental study of the tem-
perature dependence of the Young’s modulus of a nanoscale
system. The measurements are consistent with theoretical pre-
dictions based on the nanotube lattice dynamics. This indicates
that the phonon thermal bath plays an important role in the dy-
namics of nanotube cantilevers, including thermal vibrational
noise, dissipation, and resonance frequency reduction. Further
theoretical work is needed to compute the Akhiezer relaxation in
nanotubes beyond the models used so far, where a single decay
rate is employed for all the high-frequency phonon modes [138,
140, 141]. This may be achieved with a microscopic theory [132]
taking into account the phonon energy dispersion [136] and the
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FIGURE 5.11: (left) Characteristic time τd to overcome the bar-
rier height as a function of temperature, obtained from all the
measured devices as explained in the text. (right) Mechanical
dissipation due to a distribution of defects as a function of tem-
perature, calculated using Eq. A1 from reference [139] with
τd0 = 10−12 s, V0 = 100 meV, ∆ = 20 meV, ω0/2π = 100 kHz
and ζ = 0.25. (c) The temperature of the dissipation peaks as
a function of the nanotube cantilever length. The data do not
indicate any correlation between the dissipation peak tempera-
ture and the length. The same is observed for other geometric
properties of the nanotubes, such as radius, number of walls

and radius/length ratio (not shown).

energy decay of high-frequency phonons [135]. It will be inter-
esting to see whether such a model leads to dissipation peaks at
specific temperatures as observed in our work.
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Chapter 6

Thermal transport in TMD
monolayers

Parts of this chapter were published in:

Optomechanical measurement of the thermal transport
proprieties of transition metal dichalcogenide monolayers

N. Morell, S. Tepsic, A. Reserbat-Plantey, A. Cepellotti, M.
Manca, A. Isacsson, X. Marie, F. Mauri, A. Bachtold

Nano Letters 2019 19 (5), 3143-3150

FIGURE 6.1: Visualisation of a 2D drum like TMD resonator.



60 Chapter 6. Thermal transport in TMD monolayers

6.1 Introduction

Mechanical resonators based on suspended nanoscale objects,
such as monolayer semiconductors [4–6, 142], graphene [7–18],
nanotubes [19–30] and semiconducting nanowires [31–38], have
attracted considerable interest. Because of their small mass, such
resonators become fantastic sensors of external forces and the ad-
sorption of mass [23, 25, 29, 39]. The sensing capabilities of nano-
and micro-resonators have been used with great success in recent
advances in various fields. These include nano-magnetism [42,
43], surface imaging [37, 38], surface science [40, 41], light-matter
interaction [34], persistent currents in normal metal rings [143]
and engineered electron-phonon coupling [27]. In this work, we
show how optomechanical systems can be used to study heat
transport in individual low-dimensional materials.

Heat transport at the nanoscale is of major fundamental in-
terest for a broad range of research fields, such as nanophonon-
ics [144–146], spintronics [147], quantum electron devices [148,
149] and quantum thermodynamics [150]. Heat can be controlled
and measured with good accuracy in devices micro-fabricated
from bulk material. By contrast, heat transport in devices based
on low-dimensional materials cooled at low temperature is still
in its infancy. Measuring their thermal conductance at cryogenic
temperature is a challenging task. It requires the fabrication of
sophisticated devices, which incorporate local heaters and ther-
mometers and careful calibration of the latter [151, 152]. The
difficulty of fabricating reliable devices has hindered progress in
the field for many years.

Lattice vibrations are the main carriers of heat in a large
variety of low-dimensional materials, including carbon nan-
otubes [152, 153], graphene [154] and semiconductor monolay-
ers [155]. Heat transport has been intensively studied at room
temperature and above using Raman measurements [156–163]
and scanning probe microscopy [164, 165]. Heat transport enters
into interesting regimes at low temperatures, such as the dissi-
pationless transport through low-dimensional materials in the
ballistic regime [151, 152, 166] and the phonon hydrodynamic
regime predicted in monolayers [55, 56]. The interpretation of
heat transport measurements can be difficult since the thermal
conductance depends on various quantities that have not been
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measured independently thus far. These include the heat capac-
ity and the phononic mean-free path. Recently, new methods
have been reported to measure the electron contribution of the
thermal conductivity of graphene down to low temperature [167,
168].

Heat transport measurements in low-dimensional materials
have mainly consisted of probing the thermal conductance K,
that is, how well the system conducts heat. In optomechanics,
it is possible to measure how quickly the mechanical resonator
conducts heat [96, 119, 169]. The characteristic time τ for the heat
to travel out of the resonator introduces a retarded force acting
on the mechanical resonator [93, 95].

Here, we combine two methods to measure K and τ in an
optomechanical resonator based on a vibrating MoSe2 mono-
layer. This allows us to unravel the thermal properties of low-
dimensional materials down to cryogenic temperature and with
a device that is simple to fabricate. Our measurements indicate
that the phonon transport is diffusive above ∼ 100 K, while the
majority of phonon carriers are ballistic over the size of the device
at low temperature. The temperature dependence of the specific
heat capacity approaches a quadratic dependence, the signature
of two-dimensional lattices. Both the thermal conductance and
the specific heat capacity measurements can be described by
predictions based on first-principles.

6.2 TMD resonator

The mechanical resonator consists of a MoSe2 monolayer drum
as depicted in Fig. 6.2. The drum is fabricated with the dry
transfer of MoSe2 monolayers using PDMS stamp [170] over
a highly doped Si substrate with pre-patterned holes. MoSe2
monolayers are obtained from mechanical exfoliation of crystals
purchased from 2D Semiconductors. The device is measured in a
cryostat whose temperature can be set between 3 and 300 K. Pho-
toluminescence spectra at 3 K feature narrow peaks associated
with two-dimensional excitons and trions with a wavelength at
∼ 762 nm and ∼ 748 nm [91], respectively, which is in agreement
with previous reports [171, 172]. Photoluminescence maps are
homogeneous [6]. These measurements confirm that the drums
are made from MoSe2 monolayers. The metal electrode attached
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FIGURE 6.2: (a) Schematic of the optomechanical device. The
mechanical vibrations are driven capacitively and detected by
optical interferometry [6]. The MoSe2 monolayer is a mobile
absorber in an optical standing wave produced by a 633 nm
probe laser. The modulated laser reflection intensity is measured
with an avalanche photo-detector feeding a lock-in amplifier. (b)
Optical microscopy image of a typical device. (c) Heat transport
induced by the absorption of the laser power. A temperature
difference ∆T is created from the heat flow. (d) Detection of
the laser-induced temperature rise ∆T using the fundamental

mechanical mode of the optomechanical resonator.

to the MoSe2 flake is used to apply an electrostatic force on the
drum (Fig. 6.2a,b); it does not affect the thermal transport.

Mechanical vibrations are detected by optical interferome-
try [6, 95]. A continuous-wave laser impinges on the center of
the MoSe2 membrane and the reflected laser light intensity is
modulated by an amount proportional to the displacement of
the resonator. The laser forms a standing wave pattern in the
direction perpendicular to the Si substrate, such that the displace-
ment of the monolayer modifies its optical absorption. The laser
spot has a measured radius of about 350 nm. The fact of mea-
suring the mechanical resonator with the laser beam modifies
the dynamics of the mechanical vibrations by a small amount –
increasing the laser power modifies the resonance frequency and
the resonance linewidth. This backaction has two components,
the static and the dynamical backaction. The former allows us to
quantify K and the latter τ.
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6.3 Thermal conductance

We measure the thermal conductance in a way similar to the well-
established method based on Raman measurements employed
at room temperature [156, 157]. The static backaction of the laser
beam is a simple absorption heating effect, which results in a
temperature gradient ∆T between the center of the membrane
and its circular clamp (Fig. 6.2c). The heat flow is given by the
power P absorbed in the membran [91]. In a Raman measure-
ment, ∆T is quantified by the frequency shift of Raman-active
peaks. In our case, ∆T is measured by the frequency shift ∆ fT
of the fundamental mechanical mode (Fig. 6.2d). As a result,
the equivalent thermal conductance is K = P/∆T. Mechanical
MoSe2 drums with their high-quality factor [6] are extremely
good temperature sensors, allowing us to measure the linear
thermal conductance down to 3 K. This is a significant improve-
ment compared to Raman measurements, which are typically
operated at 300 K or above because the detection of the frequency
shift of Raman-active peaks requires comparatively large P.

Figures 6.3a,b show the temperature dependence of the equiv-
alent thermal conductance. The conductance is obtained from the
slope ∆ fm/∆P in Fig. 6.3a using the calibration slope ∆ fm/∆T
in Fig. 6.4c. The conductance is measured in the linear regime be-
cause the applied P is low. The largest ∆T remains below 1 K. We
also show that the absorption coefficient is independent of tem-
perature and gate voltage at the laser wavelength λ = 633 nm. To
ensure that the resonance frequency and the resonance linewidth
Γm depend linearly on the laser power, we estimate ∆ fm/∆P
and ∆Γm/∆P for absorbed laser powers below 35 nW when the
temperature is below 40 K and 60 nW otherwise. We emphasize
that the temperature profile over the surface of the drum in the
measurement of ∆ fm/∆P differs from that of ∆ fm/∆T. This re-
sults in a prefactor in the conversion from the equivalent thermal
conductance K into the thermal conductivity of the monolayer,
as described below.

The temperature dependence of the thermal conductance sug-
gests diffusive transport at high temperature (Fig. 6.3b). Upon in-
creasing temperature above ∼ 100 K, the conductance decreases,
which is attributed to the reduction of the mean-free path due
to phonon-phonon scattering [174]. Below ∼ 100 K, the conduc-
tance gets larger when increasing temperature. This indicates
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FIGURE 6.3: (a) Shift of the resonance frequency ∆ fm as a func-
tion of absorbed laser power P when the drum is in the straight
configuration. (b) Thermal conductance K = P/∆T as a func-
tion of temperature. The right axis shows the conductivity in the
diffusive regime, which is obtained using Eq. 6.4 with η=0.61.
The yellow star symbol at 300 K corresponds to the thermal
conductivity measured with the Raman method [161]; we are
not aware of another measurement of the thermal conductivity
of MoSe2 monolayers. The black line shows the conductivity in
the diffusive regime for an infinitely large monolayer computed
by solving the Boltzmann transport equation as in Ref. [173].
The red and the blue line corresponds to the conductance in the
ballistic regime computed from first principles for the 1.5 and
the 2.5 µm radius drum, respectively, using Eq. 6.5 with α = 2.1

and α = 3.2.
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that phonon-phonon scattering is no more relevant so that the
mean-free path could be limited by e.g. the device size or the
grain boundaries of the crystal. The error bars of the thermal con-
ductance in Fig. 6.3b comes from the uncertainty in the absorp-
tion coefficient A of the monolayer (Section 2 of Supplementary
Information). Since we cannot measure the absorption coeffi-
cient, we choose a large uncertainty, that is, A = 0.057± 0.03.
Figure 6.3b shows that this affects the measured temperature
dependence of the thermal conductance only weakly.

6.4 Photothermal characteristic time

We measure τ from the effect of the dynamical backaction on the
electrostatically driven vibrations. Absorption heating from the
laser beam expands the MoSe2 crystal [6], which is equivalent to a
force acting on the membrane. The crystal expansion responds to
a change in the absorbed laser power with delay, that is, the time
τ for the membrane to heat up or to cool down. The absorbed
laser power oscillates in time because of the oscillating motion
of the membrane in the laser interference pattern used to detect
the vibrations. Overall, the photothermal force oscillates with a
finite phase shift compared to the motion of the membrane. The
in-phase photothermal force modifies the resonance frequency
by ∆ fB and the out-of-phase photothermal force modifies the
resonance linewidth by ∆ΓB as

∆ fB = −1
2

fm
∂zFz

photo

k
1

1 + (2π fmτ)2 , (6.1)

∆ΓB = fm
∂zFz

photo

k
2π fmτ

1 + (2π fmτ)2 . (6.2)

Here, fm is the resonance frequency of the mechanical mode, k its
spring constant, z the coordinate in the direction perpendicular
to the membrane and ∂zFz

photo the derivative of the z-component
of the photothermal force with respect to z. We infer τ from ∆ fB
and ∆ΓB for a fixed laser power using

τ = −∆ΓB/4π fm∆ fB.

The key to quantifying ∆ fT and ∆ fB is to deform the static
profile of the drum with an electrostatic force (Fig. 6.4a). The
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drum is straight when it is not subject to a sizeable electrostatic
force. This is because the drum is mechanically stretched by
the circular clamp, as shown by the strong temperature depen-
dence of fm (Figs. 6.4b,c); the tensile strain in the membrane is
quantified by the measured dependence of fm on the electrostatic
force [6, 91]. The absorbed laser power generates a photothermal
force Fphoto that reduces the stretching force. When the drum
is straight, the photothermal force is perpendicular to the mo-
tion of the vibrations, so that ∆ fB = 0 (Eq. 6.1); in this straight
configuration, we only measure ∆ fT associated with the thermal
conductance. When the drum is bent, the photothermal force
modifies both ∆ fT and ∆ fB. We obtain ∆ fB by subtracting the
frequency shifts measured in the bending and the straight config-
urations (Section 4 of Supplementary Information). We go from
a straight configuration to a bending configuration by applying
a voltage Vdc

g onto the gate electrode.
We measure τ by comparing the resonance frequency and the

resonance linewidth measured with the resonator in the straight
configuration (Vdc

g = 0 V) and in the bending configuration
(Vdc

g = 4 V) (details are described in Section 4 of Supplementary
Information in ref. [91]). Here Vdc

g = 4 V is the largest voltage
that we apply, since a larger voltage may collapse the drum onto
the bottom of the trench. The associated strain is less than 1% [91].
Such a small strain is expected to have no sizeable effect on the
thermal transport properties [52].

Figures 6.5(a-c) show that τ remains constant when varying
temperature within the error bars of the measurements. We
cannot measure τ above 100 K, since the reduced quality-factor
prevents us to resolve ∆ fB. Using the averaged phonon velocity
v ' 1300 m/s computed by first principle [91], the average
time 〈τ〉 = 3.3 ± 2.1 ns results in a mean-free path of about
4.3± 2.7 µm, which is consistent with the 2.5 µm radius of the
drum. This suggests that the majority of the phonon carriers are
ballistic over the size of the drum.

These measurements allow us to directly quantify the equiv-
alent heat capacity of an individual MoSe2 monolayer using
C = 〈τ〉K. Figure 6.5d shows that the temperature dependence
of the heat capacity approaches a T2 dependence. This is con-
sistent with the Td dependence expected for two-dimensional
systems in its simplest form, where d = 2 is the dimensional-
ity. Previous measurements of the phononic heat capacity of
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FIGURE 6.4: (a) Static profile of the drum controlled with an
electrostatic force, by applying the tension Vdc

g on the back gate
(Fig. 1a). In the straight configuration, the measured frequency
shift is solely related to static backaction, which allows us to
quantify the thermal conductance. The drum is stretched by
the force Fstrech from the circular clamp. The force Fphoto pro-
duced by the laser beam reduces the stretching. In the bending
configuration, the frequency shift also depends on dynamical
backaction, because ∂zFz

photo is finite. This allows us to quantify
the time τ for the heat to travel out from the drum. The ampli-
tude of the mechanical vibrations (< 1 nm) is smaller than the
static displacement (. 10 nm) in the bending configuration. (b)
The response of the displacement amplitude of the mechanical
mode as a function of the frequency of the driving force at 3 K.
(c) The resonance frequency of the mechanical mode as a func-
tion of temperature for three different devices when the drum is

in the straight configuration.
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FIGURE 6.5: (a,b) Shifts of the resonance frequency ∆ fB and
the mechanical bandwidth ∆ΓB as a function of absorbed laser
power P. We obtain ∆ fB and ∆ΓB by subtracting the frequency
shift and the bandwidth shift measured in the bending configu-
ration from that measured in the straight configuration. (c) Time
for the heat to travel out of the drum as a function of temper-
ature. The large error bars at 12 and 35 K are due to the drift
of the resonance frequency caused by the automatized heating
and cooling switches in our cryofree cryostat. The dashed black
line corresponds to the averaged τ. (d) Specific heat capacity as
a function of temperature. We convert C = 〈τ〉K into c using
Eq. 6.3 with β = 0.86. The black dashed line corresponds to
the T2 dependence. The black continuous line corresponds to
the specific heat capacity computed from first-principles. Since
the displacement sensitivity of the 1.5 µm radius drums was
not good enough to measure τ, we estimate 〈τ〉 from the value
measured with the 2.5 µm radius drum and the radius ratio. The

error bars come from the uncertainty in 〈τ〉 and K.
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nano-materials were carried out by packing them in macroscopic
ensembles, such as films of nanotube ropes [175] and powders of
MoSe2 multilayered crystals [176]. Such ensemble measurements
suffer from the coupling between nano-systems, which modifies
the heat capacity at low temperature.

6.5 Thermal conductivity and specific heat ca-
pacity

The temperature profile along the heat flow has to be considered
when evaluating the specific heat capacity c and the thermal
conductivity κ of MoSe2 monolayers (Figs. 6.3b and 6.5d). The
temperature is non-uniform over the surface of the drum when
measuring the slope ∆ fm/∆P, while it is uniform during the
measurement of the calibration slope ∆ fm/∆T. These different
temperature profiles add a geometrical constant in the conversion
from C and K into c and κ. In the ballistic regime, the temperature
is taken as constant within a disc corresponding to the region
illuminated by the laser beam of radius r0; outside this region, the
temperature drops as 1/r along the radial coordinate r because
of the conservation of heat flow in our disc geometry [91]. This
contrasts with the constant temperature profile along ballistic
conductors with uniform width. In the diffusive regime, the
temperature decreases logarithmically along r due to phonon
scattering events [157, 177, 178]. The measured C and K are
converted into c and κ using

c =
C

πR2
0tρ

β, (6.3)

κ =
K

2πt
η, (6.4)

where R0 is the radius of the suspended drum, t = 0.64 nm the
thickness of the monolayer, and ρ the mass density of MoSe2. The
geometrical constants β and η are of the order of one and depend
on R0, r0 and the temperature profile [91]. The conductivity in
Fig. 6.3b is determined in the diffusive regime only.

The measured temperature dependence of κ above ∼ 100 K
can be described by first-principles calculations on MoSe2 mono-
layers in the diffusive regime (Fig. 6.3b), whereas the measured
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temperature dependencies of c and K below ∼ 100 K are con-
sistent with predictions in the ballistic regime (Figs. 6.3b and
6.5d). For the comparison between measurements and theory,
we derive the ballistic conductance in our peculiar disc geometry
assuming that the inner reservoir is given by the radius r0 and
the outer reservoir by R0. We obtain

K = 2πr0tα · ρcv
2

, (6.5)

v =
∑q,s Cq,s

2|vq,s|
π

∑q,s Cq,s
, (6.6)

where Cq,s =
dnq,s
dT h̄ωq,s is the specific heat of the phonon of the

branch s with momenta q, ωq,s the phonon pulsation, nq,s the
Bose occupation factor and vq,s the group velocity. The constant
α is another geometric factor of the order of one like β and η.
These three geometrical factors are described in ref. [91]. The
phonon properties of the monolayer lattice are calculated using
density functional perturbation theory. Instead, in the diffusive
regime, the conductivity is derived by an exact solution of the
Boltzmann transport equation taking into account three-phonon
interactions and isotopic scattering [173]. In such a calculation,
we use scattering rates derived by first principles that depend on
the energy and momentum of the involved phonons, in contrast
to the single empirical effective time τ used in Eqs. 6.1 and 6.2,
which describes the characteristic time for the heat to travel out
of the resonator. The conductivity derived with a homogenous
temperature gradient (∇T) can be compared to the measured
conductance through Eq. 6.4, which maps transport with non-
homogenous ∇T to that with homogenous ∇T. The derivation
of Eqs. 6.3-6.6 and information on the first-principle calculations
can be found in Section 5 of Supplementary Information. The
reasonably good agreement between measurement and theory in
Fig. 6.3b suggests that the resistance at the interface between the
monolayer and the substrate does not contribute significantly to
the thermal transport. Future work will be carried out on smaller
diameter drums where the resistance of the interface is expected
to become comparatively larger.
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6.6 Conclusion

Our optomechanical measurements provide a detailed picture of
thermal transport in monolayer MoSe2 lattices down to cryogenic
temperature. Our work opens the possibility to measure thermal
properties in a large variety of different two-dimensional mate-
rials because the devices required for these measurements are
simple to fabricate. We will improve the quality factor of drums
by e.g. increasing their diameter to measure τ and the heat ca-
pacity up to room temperature. This new measurement method
may allow the exploration of the phonon hydrodynamics regime,
which is expected to be robust in monolayer systems [55, 56].
This regime is interesting because heat is carried by collective
excitations of phonon states. This gives rise to a new type of
sound propagation, called second sound. The measurement of
τ should enable the direct access of the velocity of the second
sound. Besides, this new measurement method may shed light
on the divergence of the thermal conductivity in two dimensions,
when the size of the system increases [151]. The origin of this be-
havior is under active investigation with different interpretations
based on either the dimensionality of the system or the special
phononic states that remain ballistic over extraordinarily long
distances [52–54]. Optomechanical measurements also enable
the study of the anisotropic thermal conductivity, as recently
demonstrated in 10-100 nm thick black phosphorus crystals at
room temperature [179].
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we studied nanomechanical resonators based on
low dimensional materials in a temperature range from room
temperature down to a few Kelvins. Extraordinary sensing ca-
pabilities of these systems are used to investigate the thermal
dependence of the crystal properties of low dimensional materi-
als.

In Chapter 5 we employed the hybrid optomechanical scheme
to investigate the thermal behavior of stiffness in carbon nan-
otubes. We demonstrated that the stiffness of the nanotubes is
related to its phonon thermal bath. Phonon thermal bath also
plays important role in the dynamics of nanotube cantilevers,
such as thermal vibrational noise, dissipation, and resonance
frequency reduction. We show evidence that the phonon thermal
bath in our experiments operates in the Akhiezer limit.

In Chapter 6 we used excellent sensing capabilities of mechan-
ical resonators based on TMD monolayer to investigate thermal
properties of TMD monolayers down to cryogenic temperature.
We measured the temperature dependence of thermal conduc-
tivity and phonon mean free path in MoSe2 monolayer. These
measurements indicate the crossover between the diffusive and
the ballistic regime in thermal transport.

7.2 Outlook

The work presented in this thesis offers possibilities for a variety
of future experiments and theoretical work.

Regarding the work in chapter 5, further theoretical work is
necessary to investigate the role of phonon thermal bath in the
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dynamics of nanotube resonators. It is of interest to compute
the Akhiezer relaxation in nanotubes beyond the models used so
far. This may be achieved with a microscopic theory taking into
account the phonon energy dispersion and the energy decay of
high-frequency phonons. It would be interesting to see whether
such a model leads to dissipation peaks at specific temperatures
as observed in our work.

Our work in chapter 6 opens the possibility to study thermal
properties in a variety of different two-dimensional materials.
By fabricating 2D mechanical resonators with bigger diameters
it would be possible to measure interesting thermal transport
regimes like phonon hydrodynamics transport. This regime is
interesting because heat is carried by collective excitations of
phonon states. Optomechanical measurements can also open the
possibility to investigate other types of 2D materials like super-
conducting NbSe2 and its superconducting phase transition.
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Appendix A

Additional information on
chapter 5

A.1 Eigenmodes and spring constant of the de-
vice

In this section, we discuss in more depth the eigenmode shape
of the nanotube cantilever with the platinum particle at the free
end.

A.1.1 Model

The Euler-Bernoulli partial differential equation (PDE) that de-
scribes the motion y (x, t) of a vibrating beam is

∂2y
∂t2 +

YI
ρA

∂4y
∂x4 = 0. (A.1)

In Eq. A.1, Y is the Young’s modulus, I is the second moment
of the cross-sectional area A and ρ is the density of the carbon
nanotube (CNT) with length l. Solution of Eq. A.1 is

y (x, t) = cos ωnt [c1 cos αnx + c2 sin αnx
+ c3 cosh αnx + c4 sinh αnx] , (A.2)

with radial frequency ωn = cαn
2 and c =

√
YI
ρA

. In Eq. A.2, αn is

the wave number whereas c1, ..c4 are constants that will be deter-
mined by satisfying boundary conditions. In the presence of a
particle with mass mbead at the free end, the boundary conditions
to satisfy become: y |x=0= ∂y/∂x |x=0= 0 and ∂2y/∂x2 |x=l= 0,
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−YI
∂3y
∂x3 |x=l= mbeadc2αn

4yx=l [90], in which the effect of the
bead’s rotary inertia is neglected. Implementing these conditions
in Eq. A.2 leads to the following characteristic equation

cos Ωn cosh Ωn + 1
+ m∗Ωn (sinh Ωn cos Ωn − sin Ωn cosh Ωn) = 0, (A.3)

where eigenvalues Ωn = αnl are solutions of Eq.A.3 with m∗ =
mbead/mbeam. The eigenmodes associated with the eigevalues can
then be obtained as

Φn(x) = cos(Ωnx)− cosh(Ωnx)

− cos(Ωn) + cosh(Ωn)

sin(Ωn) + sinh(Ωn)
(sin(Ωnx)− sinh(Ωnx)). (A.4)

Figure A.1 shows the variation of the first three eigenfrequencies
as a function of m∗. When the ratio between the mass of the bead
at the free end and the mass of the beam becomes large, the mode
shapes approach those of a beam clamped at one end and hinged
at the other. The mode shapes for an increasing m∗ are shown in
Figs. A.2. The profile of the fundamental eigenmode is basically
unchanged when increasing m∗, in contrast to what happens for
the other eigenmodes.

The equivalent spring constant associated with the free-end
CNT deflection for the n-th eigenmode, kn, can be calculated as
follows [180]:

kn =
YI
l3

∫ 1
0 (Φ

′′
n(x))2dx

Φn(1)
2 . (A.5)

By letting I = π
(
d3g + dg3) /8 in Eq. A.5, with g and d the

thickness and the diameter of the CNT, respectively, the explicit
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FIGURE A.1: Influence of m∗ on the first three eigenfrequencies
of a beam with added mass (mbead) at the free end.
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FIGURE A.2: Influence of m∗ on the first three eigenmodes: (a)
Φ1(x); (b) Φ2(x); (c) Φ3(x). Functions normalized such that∫ 1

0 Φn(x) = 1.
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form of kn becomes

kn =
πΩ3

nY
(
d3g + dg3)
64l3

× −Ωn cos(2Ωn) + Ωn cosh(2Ωn)

(sin Ωn cosh Ωn − cos Ωn sinh Ωn)2

× 4Ωn sin Ωn sinh Ωn − 2 cos Ωn sinh Ωn

(sin Ωn cosh Ωn − cos Ωn sinh Ωn)2

× sin(2Ωn) cosh2 Ωn

(sin Ωn cosh Ωn − cos Ωn sinh Ωn)2

+
2 cosh Ωn

(
sin Ωn − cos2 Ωn sinh Ωn

)
(sin Ωn cosh Ωn − cos Ωn sinh Ωn)2 . (A.6)

The effect of the added particle at the free end of the CNT on
the standard deviation equation can be now obtained using the
equipartition theorem:

σn
2 =

kBT
kn

. (A.7)

The expression in the special case of m∗ = 0 reduces to Eq.27
of [104]:

σn
2 =

32kl3T
πY (d3g + dg3)Ωn

4 . (A.8)

The resultant standard deviation σ of the cantilever can be ob-
tained by summing up all the independent contributions of eigen-
modes. Considering the first 10 flexural modes the expression
becomes:

σ2 =
N=10

∑
n=1

σn
2 = 0.84879167978

kBl3T
(d3g + dg3)Y

. (A.9)

The numerical coefficient in Eq. A.9 is function of the number
of modes considered in the summation N and depends on the
influence of the added mass. This is illustrated in Figure A.3
and reported in Tab. A.1. The standard deviation of the can-
tilever is primarily given by that of the fundamental eigenmode
independently of the particle mass at the free end.
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FIGURE A.3: Variation of the coefficient of Eq. A.9 as a function
of m∗ and while considering a different number of modes N in

the summation.

TABLE A.1: Numerical values for the coefficient of the standard
deviation in Eq. A.9 when taking into account the fundamen-
tal eigenmode only (N = 1, middle column) and the first ten

eigenmodes (N = 10, right column).

m∗ σ1
2 Y
(
d3g + dg3)
kBl3T

N

∑
n=1

σn
2 Y
(
d3g + dg3)
kBl3T

0 0.8239457176 0.8487916797
0.1 0.8363888890 0.8488254732
0.2 0.8414352614 0.8488261068
0.5 0.8462500190 0.8488263184
1 0.8479201355 0.8488263516
2 0.8485513611 0.8488263602
5 0.8487764942 0.8488263627
10 0.8488133432 0.8488263630
20 0.8488230357 0.8488263631
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FIGURE A.4: Power spectrum of the optical reflection from
device A undergoing thermal motion at 300 K. The two near-
degenerate peaks are associated with the fundamental modes
polarized in perpendicular directions. The spectrum is shown
over a narrower frequency range in Fig. 5.1c. The nonlinearity in
the detection results in higher harmonics of these modes, which

are marked in gray.

A.1.2 Experiment

The model of the previous subsection indicates that the platinum
particle does not affect the restoring force nor the eigenmode
shape of the two fundamental eigenmodes, which are polar-
ized in perpendicular directions, while the shapes of the higher
frequency eigenmodes are strongly modified by the platinum
particle. For the higher frequency eigenmodes, the displacement
amplitude at the free end is suppressed to zero when the par-
ticle has a larger mass than the nanotube. For this reason, our
detection method based on the reflection at the free end can only
measure the two fundamental modes. This is what we observe in
Fig. A.4 for device A. The resonances of the fundamental mode
doublet are clearly visible, whereas the resonance frequencies
of the second bending mode doublet are expected to be about
900 kHz but cannot be detected.

A.2 The theory

In this section, we give more information on the theory describing
the temperature dependence of the Young´s modulus.
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20 nm

0.5 nm

1.084 nm

FIGURE A.5: (8,8) CNT with a total of 2624 atoms. Atoms at
one end are clamped for a length of 0.5 nm. The (8,8) CNT has a

radius of 0.542 nm and a total length of 20 nm.

A.2.1 Molecular dynamics simulations

We report molecular dynamics simulations of the Brownian mo-
tion of carbon nanotubes over a finite temperature range. Sim-
ulations are carried out in the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software [181] for sin-
gle layer CNTs of different chirality. In Figure A.5 we showcase
the geometry of one such CNT.

To account for atom-atom interactions, we use the Tersoff
potential [182] with optimized parameters for lattice dynamics
and phonon thermal transport [183]. We note that this potential
is commonly used for simulating atomic interactions and predict-
ing mechanical properties of carbon-based nanomaterials [184,
185].

To track the Brownian motion of the nanotube, the system is
initially relaxed to ensure equilibrium at the minimum potential
state. The minimization of the total potential energy is performed
via the Polak-Ribiere conjugate gradient algorithm [186]. The
starting point for the minimization procedure is the initial con-
figuration of the atoms and the potential energy of the system
is considered to be in a local minimum when its energy is less
than 1 × 10−10 eV or when the forces are less than 1 × 10−10

eV/Å. After the relaxation, at one end, the translational degrees
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FIGURE A.6: Temperature fluctuation during the termalisation
phase for a (8,8) CNT. For the thermostat temperature of 300 K
we obtain a mean of 300.031 K and standard deviation of 5.69 K.

of freedom are constrained for all atoms for a length of 5 nm (see
Figure A.5). This constraint is applied to obtain a CNT cantilever.
Once the equilibrium position is obtained, Newton’s equations
are integrated using the velocity-Verlet algorithm, with a time-
step dt = 0.1 fs to determine the variation of the position and
velocity of the atoms.

To account for the thermal effects, the system is then equili-
brated in a constant volume and temperature ensemble (NVT).
The temperature is first brought to a certain value and then
kept constant by applying the Nose-Hoover algorithm that ther-
mostats the translational velocity of atoms [187]. The algorithm
for the thermalisation is applied for 10 ns to ensure that a stable
temperature is obtained (see Fig.A.6). Once thermal equilib-
rium is reached, the vibration response is studied in an energy-
conserving ensemble (NVE). In this context, the thermal fluctu-
ations of the CNT are monitored for 50 ns discarding an initial
transient response of 10 ns and the coordinates of all atoms are
saved every 2.5 ps.
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FIGURE A.7: a) The averaged frequency spectrum of all atoms
for the (8,8) CNT at T = 50 K. b) Relative change of the square of
the frequency with temperature for the first three flexural modes
of the CNT from 5K to 330 K with a temperature increment of
5 K. The staircase behaviour of the first flexural mode is due to

the insufficient resolution in frequency
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To obtain the resonance frequencies of the CNT, we compute
the FFT of the extracted time signals from molecular dynamics.
An example of one such FFT averaged over all atoms is shown
in Figure A.7(a) for an (8,8) CNT at 50 K. The thermal influ-
ence on the mechanics of the CNT is obtained by tracking the
natural frequencies as a function of the thermostat temperature.
The relative change of the square of the frequencies for the first
three flexural modes for the (8,8) CNT cantilever is shown in
Figure A.7(b); this quantity is equal to the relative change of the
spring constant ∆k(T)/k. The first three flexural modes highlight
the same reduction with respect to the variation of the thermal
bath. The staircase behaviour of the first flexural mode is due to
the insufficient resolution in frequency (i.e. 20 MHz). Our results
are compared to experimental measurements in Fig. 5.6.

We remark that the spectral analysis performed to extract the
thermal behaviour of the system does not allow for an immedi-
ate classification of the natural modes of the system and their
associated eigenfrequencies. However, it is possible to unravel
spatial information of the nanotube from the time response data
via the proper orthogonal decomposition (POD) method. The
details of this technique can be found in [188] and are briefly
described in Sec. A.2.1. Using POD, we can identify the eigen-
modes corresponding to the resonance peaks of Figure A.7(a).
The mode shapes for the first three flexural modes obtained via
POD for an (8,8) CNT at 50 K are reported in Figure A.8. The
procedure outlined above has been repeated in the temperature
range T ∈ [5, 330] K, for three different chiralities namely (5,10),
(8,8) and (10,10) and the results are shown in Figure 5.6(b).

Proper orthogonal decomposition

The MD simulations provide the time response in a vector u com-
prising the position of M−atoms. The time history consists of N
snapshots of the motion as [u(t1), u(t2), . . . , u(tN)]. We remove
the time average (mean values) of the responses by obtaining
the time-varying part, x(ti) = u(ti)−mean(u). To extract the
proper orthogonal modes of vibrations, a discrete matrix X is first
built such that each row corresponds to a time response of one
atom and each column corresponds to a snapshot of the CNT at
a specific time as:
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FIGURE A.8: Mode shapes obtained via proper orthogonal de-
composition at T = 50 K. (a) First flexural mode. (b) Second
flexural mode. (c) Third flexural mode. Modes are amplified
ten times for visualization. Colormap for the norm of x and y

displacement.

X =
[
x(t1) x(t2) · · · x(tN)

]
=

 x1(t1) · · · x1(tN)
...

. . .
...

xM(t1) · · · xM(tN)

 ,

(A.10)
where xi(tj) is the response of the i− th atom at time tj. Once
matrix X is constructed, the orthogonal modes are obtained by
using the singular-value decomposition (SVD) of the discrete
matrix. The SVD operator decomposes X as:

X = UΣV∗, (A.11)

where U is an M×M real or complex unitary matrix, Σ is a M×
N rectangular diagonal matrix with non-negative real diagonals
σi that are the singular values of X, and V is an N × N real or
complex unitary matrix, with V∗ being its conjugate transpose.
The columns of U and V are the so-called left-singular and right-
singular vectors of X, respectively. Among these matrices, U
corresponds to proper orthogonal modes of vibration that can
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linearly obtain all the snapshots of the motion with minimum
error. Using this matrix we can identify the modes corresponding
to the peaks seen in Figure A.7 and report them in Figure A.8.

A.2.2 Quasi-harmonic approximation

The elastic constants of a solid are defined as appropriate deriva-
tives of the free energy with respect to strain tensor compo-
nents [82]. In particular, the Young’s modulus of a nanotube
along the axial direction can be computed from:

Y(T) =
1

V0(T)

(
∂2F(T, ε)

∂ε2

)
ε=0

, (A.12)

where F(T, ε) is the free energy at temperature T and strain ε
and V0(T) is the equilibrium volume at that temperature. It is
frequent to assume that the temperature dependence of elas-
tic constants is small and close to their zero-temperature value,
which amounts to substituting the internal energy in place of the
free energy in Eq. (A.12). However, in this work, we are particu-
larly interested in the temperature-dependence of the Young’s
modulus. To this end we resort to a quasi-harmonic approxima-
tion of the free energy:

F(T, ε) ≈ F0(ε) + Fvib(T, ε)

≈ F0(ε) + kBT ∑
nk

ln
[

2 sinh
(

h̄ωnk(ε)

2kBT

)]
,

(A.13)

where F0(ε) is the free energy at zero temperature (i.e. the
potential energy) at ε strain, ωnk(ε) is the frequency of vibra-
tional mode n at reciprocal lattice vector k calculated at strain ε.
The nanotube phonon frequencies have been calculated using a
tight-binding model [189] employing the PHON package [190]
(Fig. A.9). From the free energy, we can obtain the temperature-
dependent Young’s modulus via Eq. (A.12). Our results are
compared with experimental measurements in Fig. 5.6.
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FIGURE A.9: (left) Panel shows the phonon band structure and
vibrational density of states for the (10,10) nanotube (see text).
(right) panel shows the same information for the (26,0) nanotube.
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