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Abstract

In this research, we examine the optimization techniques to solve constraint problems. We study the
quantum era and its players as well as IBM, D-Wave, Google, Xanadu, AWS-Braket and Microsoft,
learn over its community, framework and facilities and learn deeply the quantum mechanics’ postulates
that serve to create the most efficient quantum computing algorithms. To know if it is possible to solve
Constraint Search Problem (CSP) problems more efficiently with quantum computing, we have defined
a scenario for both classical computing and quantum computing to have a good benchmark. First, the
proof of concept is focused on the scheduling problem of social workers and later in the batching and
picking issue as a generalization of the Social Workers’ Problem (SWP). The scheduling problem of
social workers is a class of combinatorial optimization problems that can be solved in exponential time
at best. Because it belongs to the type of problem known as NP-Hard, which has a huge impact on
our society, nowadays, the focus on the quantum computer should no longer be just for its enormous
computing capacity. But also, for the use of its imperfection in this Noisy Intermediate-Scale Quantum
(NISQ) era to create a powerful machine learning device that uses the variational principle to solve the
optimization problem by reducing their complexity’s class. We propose a formulation (quadratic) to
solve the social workers’ schedule problem efficiently using Variational Quantum Eigensolver (VQE),
Quantum Approximate Optimization Algorithm (QAOA), Minimum Eigen Optimizer and ADMM
optimizer. The quantum feasibility of the algorithm has been modelled in QUBO form, with docplex
simulated Cirq, Or-Tools and tested on IBMQ computers. After analyzing the results of the previous
approach, a scenario has been designed to solve the SWP as case-based reasoning, both quantumly and
classically. Thus, we could contribute with a quantum algorithm focused on artificial intelligence and
machine learning. In the SWP definition, if instead of patients we have batches and instead of social
workers we get mobile robots, and generalizing the objective function and the restrictions, we have
proposed a proof of concept and a new formulation to solve the problems of picking and batching as
qRobot. We did a proof of concept in this part of the project through a Raspberry Pi 4. We tested the
integration capacity of quantum computing within mobile robotics, with one of the most demanded
problems in this industrial sector: picking and batching problems. The results have been promising
using different technologies. Moreover, in case of computational need, the robot will parallelize part of
the operations in hybrid computing (quantum + classical), accessing CPUs and QPUs distributed in
a public or private cloud. Furthermore, we developed a stable environment (ARM64) inside the robot
(Raspberry) to run gradient operations and other quantum algorithms on IBMQ, Amazon Braket (D-
Wave), and Pennylane locally or remotely. To improve the execution time of variational algorithms
in this NISQ era and the next, we have proposed EVA: a quantum Exponential Value Approximation
algorithm that speeds up the VQE, that is, to date, the flagship of the quantum computation. With
all this, we can still propose several quantum algorithms and answer the hypothesis of this thesis work.
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Chapter 1

Introduction

One of the most frequent problems in our daily lives is optimisation problems, and for a long time,
mathematics has always looked for a way to solve them. The differential calculus technique helps
solve these problems for certain purposes that fulfil certain properties. However, many functions that
appear when trying to solve or model these tasks do not satisfy the hypotheses of the differential
calculus theorems or have additional restrictions that nullify their usefulness.

One of the successes of the last century in the field of mathematics was the development of the
simplex algorithm [81] for solving optimisation problems. This finding allowed and continues to find
the global optimum of a linear function with linear constraints. However, some limitations of this
technique are observed when one wants to generalise the algorithm or tend to solve more complicated
problems that are not only summarised in finding the minimum of a linear function with linear re-
strictions [80]. As a result, several numerical calculation tools were born to approximate optimisation
tasks under certain regularity conditions. Still, they are not enough to try to solve all the problems.
Most of the techniques to solve these optimisation problems require continuity and differentiability
conditions. However, many of the functions that appear in these tasks to be solved do not meet these
conditions, and in some cases, it does not even make sense to talk about these properties because we
are dealing with a discrete set. The field that deals with these last problems are known as combina-
torial optimisation.

The Travelling Salesman Problem (TSP) [150] belongs to this kind of problem where the brute
force algorithms, due to their computational impracticality cost, grows factorially as a function of N ,
with N being the number of cities, making it difficult to have an efficient optimisation algorithm.

Due to this fact, there is then the need to develop specific algorithms for each problem, making
an in-depth study of this field and each of the available techniques essential.

Some of these techniques are what are known as heuristic algorithms. Well, the main objective of
these heuristic algorithms is to approach the global minimum of a function, but without guaranteeing
that it will be achieved. Instead, they find a method of finding good solutions for a certain process
(task). As we discussed earlier, the same argument that prevents the impossibility of finding global
minimum search algorithms for any function makes it not easy to choose the appropriate heuristic
algorithm for each problem either. But, again, the operation of this will depend on the nature of the
function with which we are working, making it necessary to adapt it.

Combinatorial optimisation problems in which social workers visit their patients in their respective
homes and attend to them at a specific time, called Social Workers’ Problem (SWP), are similar to
TSP due to its NP-Hard characteristic require another focus if patient numbers grow considerably. The
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problem of optimising the schedules of social workers who visit their patients at home is a scheduling
and routing problem of the NP-Hard class[78]. These difficulties will be observed with an increasing
number of patients where the number of possible solutions grows exponentially with the size of the
problem. The tasks subject to the labour of the social workers are combinatorial optimisation problems
and require an organisation based on time and its execution. Moreover, because of the importance
of these problems, we usually find them in our daily life. These tasks may be subject to a finite set
of resources and restrictions due, for instance, to the physical characteristics of the environment, the
temporary relationships or the labour regulations. In addition to conditions, the goal is to optimise
one or more criteria represented by an objective function and are usually related to cost, benefit, or
execution time.

The nature of the SWP invites us to analyse the main generalisations of the TSP in search of a
suitable formulation for our problem. To do this, we will analyze some generalizations of TSP such
as the Vehicle Routing Problem (VRP) [72] [145] [229] and the Job Shop Scheduling Problem (JSSP)
[55].

The generic VRP, seen as the generalisation of the TSP, purposes of finding a set of routes at a
minimal cost. Usually, the path is defined from the beginning to the endpoint by passing through the
depot to achieve the demand of all nodes.

VRP is an NP-hard combinatorial optimisation problem that can be exactly solved only for small
cases of traditional computation problems. An approach that allows better results in practice is
the heuristic approach. However, it does not guarantee optimisation. Thus, in the latest decades,
meta-heuristics have emerged as the most hopeful research focus for the VRP family of problems.

Even with the best restrictions, the VRP (and without the scheduling adaptation) continues to
have exponential complexity depending on the growth in the number of input data. This concept
leads us to explore new approaches to solve problems, such as large-scale social workers. Quantum
computing [82] could be one of these approaches.

Since Richard Feynman suggested that computing could be done more efficiently by exploiting
the power of quantum parallelism, [82][202], Today, there is evidence that makes quantum computing
one of the most prominent candidates to replace conventional silicon-based systems partially. During
these last three decades, one finds a series of quantum algorithms more efficient than the better-
known classical counterparts. The most renowned algorithms are the Shor [216] and Grover [21][52]
algorithms. However, there is deep literature on quantum computing and techniques [179].

Quantum computers use qubits. Like a bit, a qubit can be in state 0 or state 1. Furthermore,
like a classical computer, the first program for a quantum computer is just a string of zeros and ones.
However, while a quantum computer runs, qubits can also be infinitely many superpositions between
0 and 1.

We can build complex designs up to quantum computers by combining one-qubit systems.
There are two dominant techniques for quantum computing. Continuous-Time Quantum Comput-

ing [136] used by D-Wave in which the problem to solve is mapped in quantum hamiltonians and the
natural dynamics of physical systems. The Gate based Quantum Computing [163, 225] led by IBM,
in which the computation is made through a series of discrete gate operations. The Ref.[136] argues
how Quantum Walk (QW), Quantum Annealing (QA), and Adiabatic Quantum Computing (AQC)
are related. QW and AQC are pure quantum evolutions (unitary), while QA involves external cooling.

The Adiabatic Quantum Computing proposed by Farhi [144, 93], is based on the adiabatic theorem
[163]. This theorem affirms that if a quantum system is driven by a progressively evolving Hamiltonian,
which grows from one starting point of the Hamiltonian (Hinit) to the final point Hfinal. Thus, if
the systems start in the ground state of Hinit, the system will finish up in the ground state of Hfinal.
Thus, adiabatic computing was the first quantum computing technique [163].

Quantum Annealing, based on the adiabatic quantum computing paradigm, was initially intro-
duced by Kadowaki and Nishimori [131]. Since its proposal, the QA technique has been a light for
solving combinatorial optimisation problems. This technique tries to solve problems similar to how
optimisation problems are solved using the classical simulated annealing [163]. From a multivariate
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function formed from an energy landscape, the ground state corresponds to the optimal solution of the
problem. The QA process must be repeated until finding the optimal solution to the problem. The
most significant advantage of quantum annealing is its high parallelism over classical code execution.
Because it analyses all possible inputs in parallel to find the optimal solution, this is very useful when
we want to reduce the complexity of the NP-complete problems.

QA has confirmed its ability to solve a broad range of combinatorial optimisation problems and
also in other fields, such as quantum chemistry (One of the fields that are taking great advantage of
capacity and the era in which quantum computing is right now) [163], bioinformatics[163] and routing
[145], to mention a few.

We can categorise combinatorial optimisation problems into several groups. Where the need for
adequate techniques for solving such problems. One of the standardised optimisation problems is
Quadratic Binary Optimisation Problems (QUBO)[163, 131, 46].

QUBO, as NP-hard, refers to a pattern matching technique that, among other applications, can
be used in machine learning and optimisation, which involves minimising a quadratic polynomial on
binary variables[163]. QUBO has demonstrated its potential in solving some standard combinatorial
optimisation problems such as the colouring of graphics, workshop planning, vehicle routing and pro-
gramming, neural networks, the partition problem, 3-SAT, and machine learning where the parameters
of the problem can be expressed as Boolean variables [163, 131, 46]. Only to remember that Adiabatic
quantum annealing techniques are also used to solve multi-objective optimisation problems[171]. The
QUBO formulation is suitable for running a D-Wave architecture; nevertheless, QUBO can be mapped
on the Ising model[163].

Advances in quantum computing offer a way forward for efficient solutions to many cases of sub-
stantial eigenvalue problems unsolvable in a traditional way [183]. Quantum approaches to finding
eigenvalues previously relied on the Quantum Phase Estimation (QPE) algorithm. The QPE is one
of the essential subroutines in quantum computation. It serves as a central building block for many
quantum algorithms and offers exponential acceleration compared to classical methods, and requires

several quantum operations O
(

1
p

)
to obtain an estimate with precision p [183, 112].

Variational Quantum Eigensolver (VQE) proposed by Peruzzo[183] based on the variational prin-
ciple and form, estimates the ground state energy of the Hamiltonian of the problem [84]. The VQE
is a hybrid quantum/classical algorithm originally proposed to approximate the ground state of a
quantum system (the state attaining the minimum energy).

Quantum Approximate Optimization Algorithms (QAOA), based on the principles of adiabatic
quantum computation [163, 112, 6], is used to solve QUBO problems. Farhi and Harrow showed the
advantages of QAOA compared to classical approaches [144, 93]. While Rebentrost [200] just debated
the problems of constrained polynomial optimisation using adiabatic quantum computation methods.
Other scientists such as Vyskocil and Djidjev [237] worked on how to apply restrictions in QUBO
systems to avoid the use of large numbers of the coefficients so, thus more qubits, resulting from the
use of quadratic penalties, they proposed a new combinatorial design which involved solving problems
of linear programming of mixed integers to adapt applications restitution. The following work [159]
investigated and solved the Hamiltonian cycle problem in computational frameworks such as quantum
circuits, quantum walks, and adiabatic quantum computing.

These advances in quantum computing have been applied to routing and scheduling techniques.
For example, the Ref. [94] contributed an expansive vision and discussions on Ising formulations for
various NP-complete and NP-hard optimisation problems, emphasising using as few as possible qubits.
In the same way, there have been many works of literature on the VRP and its variants.

We will take advantage of all these related works to define an appropriate strategy for our thesis
project in this NISQ era, going from the formulation of the SWP, its implementation, experimentation,
and the various comparisons and the quantum machine learning approach to solve the SWP to its
generalisation with the qRobot.
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1.1 Motivation

Quantum computing is born with enormous potential at the computational level, being able to break
the internet encryption keys based on the RSA technique, improve the best classical algorithms reduc-
ing their computational cost, and be used for the search for new drugs reducing the time to market
of these drugs or, simply, to use as a logistics management tool for the optimal management of the
medical care of patients who are at home. In addition, my motivation is also based on analysing
quantum algorithms that promote my group’s research to contribute and provide tools to a set of
African scientific groups and engineers to reduce the gap that exists today between the third and the
first world. Suppose I, or the Africans in my situation, cannot make this feasible. In that case, the
difference between the so-called first world and the third world may be even greater since the first
world is already using this technology strategically and commercially. Within the third world coun-
tries, there are several sub-Saharan African countries, such as Benin, where I was born; Cameroon,
where I spent my adolescence; and Ivory Coast, where I lay the first stone to help Africa, through
education and technology using the network of La Salle schools.

In short, my motivation is to research, study, design and implement an NP-complete / NP-Hard
quantum algorithm. Furthermore, I contribute to the QC combinatorial optimisation algorithms for
the DS4DS research group and Africa.

1.2 Work context

To develop this PhD thesis consisting of a theoretical and a practical part, I have had to take some
courses in the foundations of quantum physics. I have had to develop and deepen optimisation
mathematics, visit a quantum laboratory, and work in the Boston ecosystem. I also had the need,
and I am collaborating in varied workgroups such as IBMQ, Xanadu, google, Quantum World, AWS
Braket, local groups such as Hispanic Computation, especially with the PhD Alberto Enciso from
advanced mathematics (CSIC). I have had to take some courses on quantum computing, work on
the Qiskit textbook, Pennylane tutorial, share various results and research topics with the team
led by Steve Wood and Jan Rainer Lahmann, the CTO of Lufthansa and IBMQ, work with several
different frameworks of payment, free, online and locally (Qiskit, Pennylane, Cirq, Qibo, AWS Braket,
Raspberry Pi, etc.). I have participated in various conferences, forums, hackathons and classes. I have
advised on the writing of several quantum computing curricula. To finish, I have met, collaborated
with several renowned scientists of the different computer techniques in marking, and led collaborative
projects and final degrees at Valladolid and La Salle - Ramon Llull university on algorithms and
quantum approaches I designed within the framework of this thesis work.

1.3 Goals

This thesis aims to study art and design a series of quantum algorithms on combinatorial optimisation
problems. To do this, we will define and create a combinatorial optimisation problem with restrictions
and solve it in two different approaches. Conversely, we will formulate the problem mathematically
in a top-down approach, both classically and quantum. On the other hand, we will pose the problem
statistically where we will base its resolution on the machine learning technique of the base case
reasoning algorithm. Later, we will generalise our formulation of the SWP to carry out efficient
management of robots by substituting social workers for robots and patients for pick-up orders. We
call this generalisation qRobot. Finally, we set another objective to design a collaborative didactic
framework in quantum university students with my DS4DS group.
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In the path to attain its primary objective, this PhD research will also have in mind the following
goals:

⋄ Updated state of the art concerning Combinatorial Problem, Linear and Quadratic Constraints
Solvers, Quantum Mechanic, Quantum Computers, Quantum Gates, Quantum Circuits, Quan-
tum Computing, Quantum Machine Learning.

⋄ State of the art of TSP, JSP and VRP.

⋄ State of the art of heuristics for solving the combinatorial problems.

⋄ State of the art of the concept of Hamiltonian of a system, Ising Hamiltonian Model, The
Hamiltonian of a TSP, the Hamiltonian of a JSP, the Hamiltonian of a VRP.

⋄ State of the art of the complexity class and Quantum Complexity class.

⋄ Design and Model, mathematically the Social Workers’ Problem (SWP) as CSP according to
state of the art and the ones proposed in the scope of the PhD work

⋄ Study of the players involved in SWP, namely quantum computing frameworks, quantum com-
puters, and quantum research groups.

⋄ Study and map the SWP in quantum computing.

⋄ Developing and implementing the SWP in this NISQ era.

⋄ Solve the SWP with QML. This methodology will be based on clustering and classification
techniques, resulting in a rule base concerning the SWP. An extensive set of simulation results
will be used as the basis for applying the proposed QML method.

⋄ Designing and implementing a quantum Case-Based Reasoning (qCBR).

⋄ Designing and implementing a Quantum Enhanced Filter: QFilter.

⋄ Designing and implementing qRobot: A Quantum computing approach in mobile robot order
picking and batching problem solver optimisation.

⋄ Designing and implementing EVA: a quantum Exponential Value Approximation algorithm.

⋄ Testing and validating the developed models and approaches.

⋄ Pass on the knowledge acquired to the group of DS4DS collaborators.

1.4 Hypothesis

In this era of quantum computing with few numbers of qubits, we know that quantum optimisation
algorithms based on the variational principle offer a good approximation to the optimal solution, taking
advantage of the fundamentals of quantum mechanics such as superposition or quantum parallelism
plus interference, reducing in some cases the computing’s cost exponentially compared to classical
computing. However, due to this era’s technical problems, NISQ (few useful qubits, decoherence and
noise), to what extent: Could we use quantum computing to solve an optimisation problem with hard
restrictions? Also, is it possible to solve quantum combinatorial optimisation problems in Top and
Down’s philosophy and case-based reasoning?
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1.5 Development of the thesis

This section will briefly present the technical results obtained in the thesis. After reviewing state
of the art, techniques to solve combinatorial optimization problems, quantum fundamentals, current
quantum technologies, and the leading companies in these fields, we have focused on defining combi-
natorial optimization problems to respond to our thesis hypotheses. First, we mathematically design
and formulate the Social Workers Problem (SWP)[29, 31, 30, 178, 25, 9, 67, 10, 7, 8] and define a
heuristic to allow this problem, which includes inequality and time constraints, to be implemented in
current quantum computers with very few qubits. To implement this problem, we have had to analyze
and study the Ansatzes and various variational algorithms such as VQE and QAOA.

Once the results were published at the 16th International Conference on Hybrid Artificial Intel-
ligence Systems (HAIS’21), we began to solve the same problem (SWP) with the Machine Learning
approach, and we called this solution quantum Case-Based Reasoning (qCBR) [33] inspired in classic
Case-Based Reasoning. The qCBR was plated as the sum of two large blocks (a variational classi-
fier and a synthesizer). The qCBR uses a data representation model from a multidimensional vector
in Hilbert space. That is, it creates a vector subspace, where each vector has the information that
defines the SWP on the Hilbert vector space and, when predicting whether an input vector (new
case) corresponds to a previously analyzed class, the qCBR calculates the probability that each type
corresponds to the new vector from the proximity of each of the vector subspaces generated from each
category. The qCBR, with its synthesizer block, refines the retrieved data in the case of not being the
optimal result since the qCBR has the function of ”generating” a new outcome based on the retrieved
information.

To scale the algorithms developed and to be able to compare them in various technologies and
quantum environments on the market (mainly Quantum Annealing and Quantum Gate Based comput-
ing), a problem was defined along the lines of SWP, replacing social workers with mobile robots and,
instead of patients, batches. We call the result qRobot: A Quantum computing approach in mobile
robot order picking and batching problem solver optimization [32]. We developed a new formulation,
turned a Raspberry Pi 4 into a quantum ”computer,” and implemented the solution. Finally, we stud-
ied the comparisons in AWS-Braket (D-wave), Pennylane and Qiskit. The results were promising; the
article was published and on the cover of Algorithms magazine.

In parallel, we have been working to improve the VQE algorithm, the flagship of quantum comput-
ing, and we publish EVA: a quantum Exponential Value Approximation algorithm [15]. We proposed a
different way to VQE to calculate the expected value given a quantum state. It should be remembered
that the largest cloud services platforms for quantum computers charge by the number of shots and
number of circuits. The VQE calculates the expected value by decomposing the Hamiltonian into
Pauli operators and obtains this value for each of them, making simulations on cloud servers more ex-
pensive. After completing our work, we designed an algorithm capable of calculating this value using
a single circuit. Finally, we carried out a cost-time study and verified that it was possible to obtain
a good performance in certain more complex Hamiltonians compared to current methods. Also, to
consolidate our vision of hybrid computing, we contributed a publication on CNNs with the following
article: Quantum Enhanced Filter, QFilter [28]. We proposed a hybrid image classification model
that took advantage of the potential of convolutional networks in Classical computing and replaced
the classical filters with variational quantum filters to reduce the computational cost of classical com-
puting. And similarly, this work would be compared with other classification methods and system
execution on different servers. It should be remembered that convolutional filters are based on the
scalar product and represent a high cost for classical computation. In contrast, this operation (scalar
product) is native to quantum computation (Hilbert vector space).

The feasibility of all the algorithms that we have proposed has been made in various environments
such as Qiskit, AWS-Braket, D-Wave, Pennylane and Qibo.
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1.6 Thesis structure

This thesis is organised as follows. In section (2), we review the Optimisation combinatorial problems
related to our topic. Chapter (3), we introduce the Systems and useful concepts needed for the methods
to solve the optimisation problems. In section (4), we present the Methods to solve combinatorial
optimisation problems. The Quantum Mechanic is introduced in chapter (5), reviewing the Quantum
mechanics postulates. We introduce the Complexity Class in section (6). After analysing the quantum
complexity in chapter (7), we revise the useful Quantum Gates. Quantum Computers and the players
are the objects of chapter (8). Chapter (9), we go deeply into the most important technics in Quantum
Computing. In the next section (10), we develop the Research Design and analyse our experiment
tools, the quantum frameworks, and some experiments over quantum algorithms and technics. Section
(11), we present our approaches to solving the Social Workers’ Problem. Section (12) we present a
quantum machine learning approach to solve the SWP. In section (13) We generalize the SWP as
qRobot. Section (14) and (14.2), we show the results and emphases on a discussion over these results.
Our last chapter is over the conclusion and furthers works.
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Chapter 2

Combinatorial Optimization

problems

2.1 Introduction

The posed problem is combinatorial. For this reason, it is of utmost importance to study the opti-
mization of discrete and combinatorial objects known as Combinatorial Optimization. Which consists
of the structure of a complete exploration algorithm based on the exploration of nodes; the node,
the evaluation functions, the concept of Heuristics, the heuristics with BackTracking [128], the Meta-
heuristic and heuristic procedure.

Combinatorial optimization means searching for an optimal solution in a finite or infinite set of
potential solutions. Optimality is defined concerning some criterion function, which must be minimized
or maximized is usually called the Cost Function or Objective Function.

The Social Workers’ Problem can be seen as the sum of a scheduling and routing problem. Because
of this, we will explore various scheduling and routing algorithms. The first study is the Traveling
Salesman Problem (TSP) algorithm but with the mind of adding some time variables and redefining
the variables to be optimized.

2.2 Travelling Salesman Problem

The Travelling Salesman Problem known as TSP is defined as follows: Given a list of cities and the
distances between each pair of cities, what is the shortest possible route that visits each city exactly
once and returns to the origin city?

TSP is an NP-Hard problem within combinatorial optimization. The problem was first formulated
in 1930 and is one of the most studied optimization problems. Although the situation is computation-
ally complex, many exact heuristics and methods are known so that some instances from one hundred
to thousands of cities can be solved.

In the TSP formulation (2.1) to (2.4), there are N ! Possible routes (for the exact calculation).
However, it can be simplified since, given a path, the starting point does not matter, and this reduces
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the number of routes to be examined by a factor N , leaving (N − 1)!. Since the direction in which
the traveller is travelling does not matter, the number of routes to be examined is again reduced by

a factor of 2. Therefore, it is necessary to consider (N−1)!
2 possible routes.

The number of routes is multiplied by the N factor for each new city, and its growth is factorial.
So, the TSP belongs to the NP-complete complexity class.

min
n∑
i=0

n∑
i̸=jj=0

cijxij , (2.1)

0 ≤ xij ≤ 1. (2.2)

Where xij is an integer and could take the following value i, j = 0, 1, . . . n

n∑
i=0i̸=j

xij = 1, (2.3)

n∑
j=0i̸=j

xij . (2.4)

2.2.1 Constructive heuristics

Following our analysis, we find that the constructive heuristics are based on the nearest neighbour
algorithm (NN)[65] or also called Greedy algorithm[65], which allows the traveller to choose the
nearest unvisited city as the next move. This algorithm quickly returns a lower-cost route. For N
cities randomly distributed on a plane, the algorithm on average returns a path 25% longer than
the smallest path possible. However, in many cases, they exist where the distribution of the given
cities makes the NN algorithm return the worst path [114]. This occurs for both symmetric and
asymmetric TSPs[115]. Rosenkrantz showed that the NN algorithm has an approximation factor of
order O(log|V |) for instances that satisfy the triangular inequality. A variation of the NN algorithm,
called Nearest Fragment operator, is the one that connects a group of closest unvisited cities and can
find the shortest route with successive iterations. The NF operator can also be applied to obtain
initial solutions for the NN algorithm and, besides, be improved in an elitist model where only the
best solutions are accepted.

Another solution approach is the Job Shop Scheduling Problem (JSSP) that we will analyze next.

2.3 Job Shop Scheduling Problems

The Job Shop Scheduling problem, known as JSSP, consists of planning a set of N jobs {J1, ...,JN}
on a set of M resources or physical machines {R1, ...,RM}. Each Ji job consists of a set of visits or
operations {Vi1, . . . , ViM} that have to be executed sequentially. Each Vil Visit has a runtime of
pVil of time during which it requires the exclusive use of a single resource,Vil, starting from start time
stVil to be determined.

Each job has an earlier start time and is sometimes considered a later end time, forcing visit start
times to take values in finite domains.

Regarding the analogy, in our case, the N jobs A1, ..., AN will be the assistants and the physical
machines P1, ..., PM will be patients. So from here, the same description and variables are respected.

The JSSP has three restrictions: sequential or precedence restrictions, capacity restrictions and
non-expulsion restrictions of the machines, in our case, the patients. Sequential constraints are defined
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by the sequence of visits to a job and can be described by linear inequalities of the type: stVil+pVil ≤
stVi(l+1) that is, the visit Vil must be carried out before the visit Vi(l+1) Capacity constraints restrict
the use of each resource to a single visit at each instant of time and can be described as a disjunctive
constraint of the form: stv+ pv ≤ stw ∨ stw+ pw ≤ stv if Pv = Pw. Mode to restrict that two visits
that use the same resource cannot overlap. Lastly, the non-expulsion restrictions express that once
the start time has been determined, stVil for a visit Vil, this visit must be carried out during the time
interval [stVil, stVil + pVil[ without interruption.

The objective is to find optimal planning for a specific criterion, the most common being the
following three:

⋄ Makespan is the end time of the last visit, and time is denoted as Cmax. This version of the
problem is known, in the literature, as J || Cmax.

⋄ Total Flow: it is the sum of the end times of all the works. This version is known as J ||
∑
Ci,

with Ci is the time of completion of the work Ji.

⋄ Tardiness: or delay time of the works. This version is known as J ||
∑
Ti with Ti as the tardiness,

Ti = max{0, Ci − di} with di is the due date of the visit i.

We can consider a JSSP as a TSP executed M times or see it another way as the TSP is a
particularization of the JSSP taking into account N jobs on a single machine. Being the travelling
salesman, the machine and the works the cities.

Another approach to solving the problem is to use a generalization of the TSP . In this case, the
V RP .

2.4 Vehicle Routing Problem

The Vehicle Routing Problem known as VRP is defined as follows: what is an optimal set of routes
for a fleet of vehicles to traverse to deliver to a given group of customers?

In VRP, the goal is to find optimal routes for multiple vehicles visiting a set of locations. (When
there is only one vehicle, it is reduced to TSP).

What do we understand by optimal routes for a VRP? The answer is the same as for a TSP;
routes with the shortest total distance. However, suppose there are no other restrictions for the
Vehicle Routing Problem. In that case, the optimal solution is to assign a single vehicle to visit all
locations and find the least cost route for that vehicle. This is merely solving the TSP.

Since the study focuses on an optimization problem, a good definition for optimal routes would
be to minimize the most extended single path among all vehicles. This is the correct and best-known
definition if the goal is to complete all deliveries as soon as possible.

It is essential to see that the basis of this formulation is TSP. So, we can find a general formulation
on the TSP that includes restrictions such as:

⋄ Capacity restrictions

⋄ Visit time.

It is also observed that the Vehicle Routing Problem can serve to encode the difficulty of finding
the optimal schedules of the n social assistants (vehicles) who visit the m patients (locations).

2.5 Summary

In this section, we have introduced some classical combinatorial algorithms on which we will base the
design of our SWP. We have reviewed state of the art, both the definition and the formulations of
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the TSP with its techniques of constructive heuristics. We also analysed the JSSP , which despite
being an algorithm designed for factories, can be used to model combinatorial planning problems and
finally, the VRP.

To summarise, we observed that even with the best restrictions, heuristics or programming tech-
niques, depending on the size of the data considerably high, the best TSP , JSSP or V RP requires a
very high computational cost for classical computing and would continue to approach an exponential
cost. When the number of the input increases, any polynomial algorithm is more efficient than any
exponential [121]. Another positive feature of polynomial algorithms is that, in a sense, they take
better advantage of technological advances.

In these cases, another approach would be needed, such as using the power of quantum computing
to solve the problem of this magnitude.

Now we have to relate these classical algorithms with the usual concepts that can be of great help
in the development of this thesis.
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Chapter 3

Systems and useful concepts

3.1 Introduction

This chapter will work on concepts and systems we need to solve combinatorial optimization systems.
We will also analyze some necessary concepts that relate the resolution of the Ising Hamiltonian with
graph theory and the basic Hamiltonian path of solving a routing problem such as SWP. But, first,
remember that the Hamiltonian trajectory problem is equivalent to that of a TSP since the task goes
through all the nodes in a graph exactly once.

A Hamiltonian system is a dynamic system, that is, a system whose state evolves with time,
governed by Hamilton’s equations. These systems are essential in dynamic optimization techniques
[97].

Next, we will analyze the Hamiltonian path, Hamiltonian cycles, the Hamiltonians of TSP, VRP
and the Hamiltonian Ising.

3.2 Hamiltonian path and cycles

A Hamiltonian path, in the mathematical field of graph theory, is a path of a graph (Figure (3.1)),
that is, a succession of adjacent edges that visits all the vertices of the graph at one time. When the
last vertex visited is adjacent to the first, the path is a Hamiltonian cycle.

A Hamiltonian cycle is defined as a closed-loop on a graph where every node (vertex) is visited
exactly once.

A loop is just an edge that joins a node to itself; a Hamiltonian cycle is a path travelling from a
point back to itself, visiting every node en route.

Let G = (V,E), and N = |V | be the graph and the Rank respectively. Having the following
vertices {1, ..., N}, and the set of vertices uv to be directed (the order uv matters), it is trivial to
extend to non-directed graphs, just considering a directed graph with vu added to the set of arcs each
time uv is added to the arc set.

Before describing how to particularize the Hamiltonian cycles for a TSP, VRP and the research
design, we will explain the Ising model, a Hamiltonian system, and their relationship with the computer
optimization problems.
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3.3 Ising model and the Hamiltonian system

The Ising model is defined as a mathematical model of ferromagnetism in statistical mechanics. The
model consists of discrete variables representing magnetic dipole moments of atomic ”spins” in one of
two states +1 and −1.

Unfortunately, solving the spin system is costly because the energy landscape is equivalent to
finding the global minimum of a function with several local minima. Thus, Ising’s model describes the
system’s energy, and the operator or equation that describes the system is known as the Hamiltonian.

Finding the lowest energy of the spin system is equivalent to finding its best configuration (the
global minimum of the associated function).

This problem is somewhat equivalent to a QUBO problem that is NP-Hard. The only difference
is that the QUBO works with binary variables and the Ising model with variables between −1 and
1. Thus, we can summarize that the correspondence between a computer problem (QUBO) and a
physical system is variable. But, first, let us detail the Hamiltonian system from the spin glasses.

A Hamiltonian system is defined as a mathematical formalism developed to describe the evolution
equations of a physical system.

Spin glasses are systems of N particles in which each particle can take two values: -1 and +1.
The set of all possible values of the N particles is called the configuration space and is designated as∑
N{+1,−1}N . A configuration σ = σ1, σ2, . . . , σn is an element of the summation in N , and each of

the components σi of this configuration is a spin. Each configuration has an associated energy HN (σ)
from a function which is called the Hamiltonian system. The type of energy function that is chosen
determines the model.

HN =
∑
N

−→ R. (3.1)

The work of many researchers, both mathematical, physical and electronic, has facilitated the
conclusion that spin glasses can be used to model quantum states. The contribution of Manuel de la
Rosa Fernández [204] reaches the same conclusion. Spin glasses are the basis of Hamiltonian systems
that go from neural networks to artificial intelligence problems and go through numerous issues of a
physical nature, such as; studies on states of matter and statistical mechanics.

Mathematically, the fact that a problem is NP-complete means that a mapping to the decision
form of the Ising model can be found with a polynomial number of steps. This assignment can be
reinterpreted as a pseudo-boolean optimization problem [53].

There are constructions known as ”p-spin lenses”, which often lead to interactions of three bodies
or more in H, and which can later be used to reduce the problem to an Ising spin glass, introducing

Figure 3.1: Shows a graph of 26 vertices in which a Hamiltonian cycle is highlighted
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Figure 3.2: A Lattice in the Euclidean plane [240]

Figure 3.3: Five Lattices in the Euclidean plane [240]

a polynomial number of turns that help reinforce the interaction of three bodies through multiple
interactions of two bodies s1s2 [36] [49].

Based on Andrew Lucas’s work[155], the author concludes that almost all famous NP [103] [134]
problems can be written as Ising models with a polynomial spin number that does not scale faster
than N3. This work is essential for writing any quantum algorithm.

3.4 The Hamiltonian of a TSP

Let G = (V,E) be a graph of the TSP, where each arc uv in the graph has an associated weight Wuv

is to find the Hamiltonian cycle so that the sum of the weight of each arc in the cycle is minimized.
Usually, the TSP is solved in a complete graph, but with the developed Hamiltonian mapping of Ising,
it can be solved in an arbitrary graph.
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Let us remember that the decision problem: Is there a path of total weight ≤W?.

Having the following vertices {1, ..., N}, and the set of vertices uv to be directed (the order uv
matters), it is trivial to extend to non-directed graphs, just considering a directed graph with vu
added to the set of arcs each time uv is added to the arc set.

To solve this problem, we use H = HA +HB , with HA the given Hamiltonian for the directed (or
undirected) Hamilton cycles problem from the equation (3.2). So, we only need to add (3.3).

In the mathematical solution proposed by Lucas Andrew, he uses N2 bits xv,i where v represents
the vertex, and i represents its order in a prospective cycle. The first two concepts that are required
are that each vertex can only appear once in a loop and that there must be a jth node in the loop for
each j. Finally, for the nodes in our potential order, if xu,j and xu,j+1 are both 1, then there should
be an energy penalty if uv /∈ E.

These are encoded in the Hamiltonian:

HA = A
n∑
v=1

(1−
N∑
j=1

xv,j)
2 +A

n∑
j=1

(1−
N∑
v=1

xv,j)
2 +A

∑
(u,v)/∈E

N∑
j=1

xu,jxv,j+1. (3.2)

A > 0 is a Lagrange multiplier and is a constant. The ground state of this system has HA = 0 only
if you have an order of vertices in which each vertex is only visited once, and the adjacent vertices in
the cycle have edges in the graph that is one cycle Hamiltonian.

To solve the Hamiltonian path problem, the last sum over j above one is restricted to N − 1. N2

spins are required to solve this problem.

It is easy to slightly reduce the size of the state space for the problem of Hamilton cycles as follows:
node one must always be included in a Hamilton cycle and without loss of generality x1,i = δ1,i. This
only means that the general order of the cycle is chosen so that node 1 is the first. This reduces the
number of variables to (N − 1)2.

HB = B
∑
uv∈E

Wuv

N∑
j=1

xu,jxv,j+1. (3.3)

The constant B must be very small and meet these constraints 0 < Bmax(Wuv) < A. Wuv ≥ 0
for each (uv) ∈ E.

As previously indicated, if the travelling salesman does not have to return to his initial position,
the sum on j can be restricted from 1 to N − 1. In the same way, as for Hamilton cycles, (N − 1)2

spins are required since node one can be adjusted to appear first in the process. From here, the
steps defined above can be followed to map the formulation of the Hamiltonian Ising in a quantum
computer. What must be taken into account is to ensure that the Hamiltonian of Ising is correctly
encoded in the Z base. For this, a problem of eigenvalue and vector must be solved for a symmetric
matrix of dimension 2N × 2N .

3.5 The Hamiltonian of a VRP

From a Vehicle Routing Problem, a binary polynomial optimization can be constructed with equality
constraints considering cases in which K = n − 1. In these cases, the elimination constraints of
the secondary path are not necessary, and the problem is only in the variable. We can write the
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Hamiltonian of the vehicle routing problem defined by the sum of (3.4) and (3.5):

HA = A
n∑
i=1

1−
N∑

j∈δ(i)+
xi,j

2

+A
n∑
i=1

1−
N∑

j∈δ(i)−
xji

2

+A

k − N∑
i∈δ(0)+

x0,i

2

+A

k − N∑
j∈δ(0)+

xj,0

2

.

(3.4)

HB = B
∑
ij∈E

Wijxi,j . (3.5)

3.6 Summary

In this section, we have reviewed the state of the art of useful concepts to develop this thesis. We
have introduced the Hamiltonian path and cycles based on graphs, the Ising model, the Hamiltonian
system, the Hamiltonian of a TSP and the VRP one. We have also revised their classical formulation.

All these concepts, theories and analyses are important to solve combinatorial optimization sys-
tems, and they will help us fully when it comes to modelling our problem. In our case, we will further
develop each constraint subject to the objective function.
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Chapter 4

Solving combinatorial optimization

problems

4.1 Introduction

This chapter will review existing methods for solving constrained optimisation problems. For this, we
need to analyse the existing programming techniques and improve them in the face of our mission.

4.2 Linear Programming

Almost all the approximation algorithms that we know are built based on linear programming (LP).

Linear Programming is defined as the problem of optimising (minimising or maximising) a linear
function subject to linear inequality constraints. The function being optimised is called the objective
function.

Linear Programming corresponds to an algorithm through which real situations are solved. It
aims to identify and solve difficulties to increase productivity concerning resources (mainly limited
and expensive), thus increasing benefits.

How to solve a problem using LP?

The first step in solving a linear programming problem is to identify the essential elements of a
mathematical model; these are:

⋄ Objective Function

⋄ Variables

⋄ restrictions

The next step is to determine the following goals, for which we propose to follow the following
methodology.
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1. Define the objective function criteria

2. Identify and define variables

3. Identify and define constraints

4. Present the Objective Function

4.2.1 The Objective function, decision variables and the constraints

The objective function is directly related to the general question that one wishes to answer. If different
questions arise in a model, the objective function would be associated with the higher-level question,
the fundamental question.

The decision variables are identified, starting from a series of questions derived from the fundamen-
tal question. Decision variables are the controllable factors of the system that one is modelling. They
can take various possible values, of which it is necessary to know their optimal weight, contributing
to the achievement of the objective of the general function of the problem.

When we talk about constraints in a linear programming problem, we are referring to everything
that limits the freedom of the values that decision variables can take. The constraints of the problem
determine the conditions in which the use of resources is feasible, taking into account all the tasks of
the problem.

The best way to find them is by thinking about a hypothetical case that was decided to give infinite
value to the decision variables. For example, in the case of a TSP, one restriction will be to visit the
city only once.

In the case of the allocation algorithm, the decision variables xij are incorporated, which are binary
variables that take the value xij = 1 as long as bi is assigned to aj and that xij = 0. If these options
were not given, the following restrictions (4.1) and (4.2) would be established:

n∑
i=0i̸=j

xij ≤ 1, (4.1)

n∑
j=0i̸=j

aijxij ≤ bi. (4.2)

The first restriction, equation (4.1), means that the set of visits made by an agent will not exceed
the limit of resources that the agent has available. While the second restriction, equation (4.2), means
that visits will be made only by an agent. In the case of an exact TSP, the first set of equalities
ensures that each exit city 0, ..., n reaches exactly one city. The second set of equalities provides that
from each city 1, ..., n exit exactly into a town (both restrictions also imply that there is precisely one
exit from town 0). Finally, the last limitation (4.3) forces a single road to cover all the cities, and it
is not two or more disjoint roads that include all the towns together.

ui − uj + nxij ≤ n− 1. (4.3)

4.2.2 Formulation of linear programming of binary integers

Let us introduce a linear programming of binary integers as follows: If z1z2z3 . . . zn are N binary
variables, which are ordered in a vector z, what is the most substantial value of cx, for some vector c,
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given a constraint?
Sx = b. (4.4)

From (4.4) with S an m × N matrix and b a vector with m components, it is known that the
resolution of this equation has an NP-hard complexity, with a corresponding NP-complete decision
problem. As discussed above, almost most daily challenges are combinatorial optimisation problems,
and many of them can be posed as ILP [210]. In our case, a social worker must maximise visits to a
home patient, given the regulatory restrictions of her/his contract.

Let H = HA + HB be the Hamiltonian (mathematical and physical model introduced above)
defined by (4.5).

HA = A
m∑
j=1

[
bj −

N∑
i=1

Sjixi

]2
. (4.5)

With A ∈ R+. The ground states of HA = 0 enforce the constraint that Sx = b. Then you get
that

HB = −B
N∑
i=1

Cixi. (4.6)

With A≫ B and B is a positive constant.

To find restrictions on the required A/B ratio, we can proceed similarly as before. In many cases,
for simplicity, it is assumed that the constraint of the equation Sx = b can be satisfied with a selection
of x. For such a choice, the most substantial possible value of −∆HB is, in principle, constraint limits,
where:

C =

N∑
i=1

max(Ci, 0). (4.7)

The smallest possible value of ∆HA is related to the properties of the matrix S and would occur
if only a single constraint were violated, and that constraint was broken by the least amount possible,
given by (4.8)

S ≡ min︸︷︷︸
σi ϵ0,1,j

(
max

[
1,

1

2

∑
i

(−1)
σi Sji

])
. (4.8)

This limit could be improved if more specific properties of S and b are known.

It can be concluded that if the coefficients Ci and Sji are integers O(1), we have that C ≤ N
max(Ci) and S ≥ 1, so it is concluded that A/B.

4.3 Quadratic Programming

The Quadratic programming can be stated as the procedure that minimizes a quadratic function of n
variables subject to m linear constraints of equality or inequality.

A quadratic program is the simplest nonlinear problem with inequality constraints. Quadratic pro-
gramming is important because many issues appear naturally as quadratic (least-squares optimisation,
with linear constraints). Besides, it is important because it appears as a sub-problem frequently to
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solve problems, not more complicated linear. The techniques proposed to solve quadratic issues have
a lot in common with linear programming.

Specifically, each inequality must be satisfied as equality. The problem is then reduced to a search
for vertices precisely as it was done in linear programming, where c is a vector of constant coefficients;
A is a matrix (m×n), and it is generally assumed that Q is a symmetric matrix. Since the constraints
are linear and presumably independent, the qualification of the restrictions is always satisfied, so the
Karush-Kuhn Tucker conditions are also sufficient conditions to obtain an extreme that will also be
a global minimum if Q is positively defined. On the other hand, if Q is not defined as positive, the
problem could be unbounded or lead to local minima. Quadratic Programming plays a significant
role in linear and nonlinear optimisation theory since it is closely related to LP and is an essential
intermediate step to effectively solving general Nonlinear Programming problems. In the case of
solving the Ising Hamiltonian, the two instances of solving the quadratic minimisation problems will
be seen. There are several, but they will not be listed in this thesis.

4.3.1 Quadratic Formulation

Let f :Rn → R, f be a quadratic function if:

f (x1, x2, . . . , xn) =

n∑
i,j=1

qijxixj = (x1, x2, . . . , xn)


q1,1 · · · q1,n

...
. . .

...

qn,1 · · · qn,n


 x1

...

xn

 . (4.9)

Let us focus on one of the properties of the Quadratic function as follows:

f (λx1, λx2, . . . , λxn) = λ2f (x1, x2, . . . , xn) . (4.10)

On the one hand, Quadratic Minimization Problems subject to equality constraints require minimizing
the objective function f (x) subject to linear equality constraints Ax = b.

But when these are subject to linear inequality constraints, they require minimising the objective
function f(x) subject to these constraints Ax = b, and may even contain equality constraints.

minf(x) =
1

2
xTQx+ cTx. (4.11)

Subject to:
Ax ≤ b, (4.12)

x ≥ 0. (4.13)

Where c ∈ Rn is a row vector, x ∈ Rn and b ∈ Rn are column vectors. Let consider also that
Q = qij ∈ Mn×n and A = (aij) ∈ Mn×n are matrices and the superscript T denotes the transpose.
The elements qij of Q are constants given such that qij = qji (that is, Q is a symmetric matrix,
QT = Q. Thus, the objective function is expressed in terms of these qij , the elements cj of c and the
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variables xj , as follows:

f(x) =
1

2
xTQx+ cTx =

n∑
j=1

cixj +
1

2

n∑
i=1

n∑
j=1

qijxixj . (4.14)

4.3.2 Change of variables to simplify the quadratic formulation

In some cases, to simplify the objective function and therefore simplify the programming of the
algorithm, it is required to make some variable changes (see Fig. (4.1)). This contribution is analysed
below.

Figure 4.1: Variable change to simplify quadratic programming

Next, the change of variables is studied to simplify quadratic programming. These variable changes
and some linear algebra tricks will help with quantum programming.

When a variable change is made for any matrix P ∈ Rnxnε coordinates to B coordinates, it is to
make the quadratic function easier.

−→x = P−→y ↔ −→y P−1−→x ↔ [−→y ]B = [−→x ]ε. (4.15)

The idea is:

−→x TAx = (P−→y )
T
A (P−→y ) = −→y TPTAP−→y = −→y T

(
PTAP

)−→y = −→y T (D)−→y . (4.16)

Given the quadratic function Q(x) = 2x21 − 4x1x2 + 5x22 we will perceive what happens with the
variable changes. Let us imagine for a moment that the function Q(x) is the Ising Hamiltonian of the
TSP.

Let us find the matrix A. A =

 2 5

−2 5

 How is A found? Following this trick:

A =

a c

d b

 . (4.17)

If we consider that of the function Q(x), a is the constant that multiplies x21 and b is the term that
multiplies x22; a = 2 and a = 5. So far, relatively easy. How are c and d determined? c and d are half
the coefficient of x1x2. So, c = 4

2 = d. From here are the values and eigenvectors to be able to change
the variables.
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Given the characteristic polynomial P (λ) = det(A− λIn) if we want to calculate the eigenvalues,
the characteristic polynomial must be zero. This translates to det(A− λIn) = 0, where In is the
identity matrix of rank n and λ the eigenvalue. Mathematically speaking, if we want the characteristic
polynomial of matrix A to be null, the following linear equation must be solved. The characteristic
polynomial is of rank n, and its roots are the eigenvalues of matrix A. Since in our case matrix A is
of rank 2, it will not be necessary to apply the Laplace expansion formula. Starting from a square
matrix of degree n.

det (A− λIn) = 0. (4.18)

According to Laplace’s theorem, the value of its determinant is equal to the sum of the products of
the elements of a row or column by their attachments, thus taking any row f , the determinant is:

det(P ) =
n∑
j=1

af,jPf,j . (4.19)

And taking a column c, it will be:

det (P ) =

n∑
i=1

ai,cPi,c. (4.20)

Solving the equation of the characteristic polynomial we get:

det

2− λ −2

−2 5− λ

 = 0. (4.21)

Since it is a rank two matrix, the calculation of the determinant is direct and is shown through the
following quadratic expression:

λ2 − 7λ+ 6 = 0. (4.22)

Where the roots of the equation are λ1 = 1 and λ2 = 6. If the eigenvectors are now calculated to
matrix A , this definition is fulfilled.

∃v



x1

x2

x3
...

xn−1

xn


̸= 0/∃λ ∈ C/A · v = λ · v. (4.23)

Where λ is the eigenvalue and v is the eigenvector. And, if this definition is applied, it arrives at
(4.24)  2 5

−2 5

(x1
x2

)
= λ

(
x1
x2

)
. (4.24)
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With this expression −2x1 = x2, we can find the two eigenvectors associated with matrix A.

v1

 1

−2

 and v2

2

1

 . (4.25)

Once this point has been reached, if the quadratic form is rewritten, the reader can understand
how simple it is and, consequently, its resolution or programming will also be more straightforward.

P (y) = λ1y
2
1 + λ2y

2
2 . (4.26)

If we remember that we came from the expression Q(x) = 2x21 − 4x1x2 + 5x22, we can find the
matrix P .

P =

 1 2

−2 1

 . (4.27)

If the matrix P is normalized, the following expression is reached,

P =
1

dist

 1 2

−2 1

 . (4.28)

With dist =
√

12 +−22 as the distance.

P =
1√
5

 1 2

−2 1

 . (4.29)

Retrieving the expression, A = PDPT takes us to D = PTAP , where D is the following matrix:

D =

6 0

0 1

 . (4.30)

These variable changes help simplify the objective function by undoing the crossed variables.

4.4 Quadratic programming with quadratic constraints

The quadratically constrained quadratic program can be defined as an optimisation problem in which
both the objective function and the constraints are quadratic functions.

When the constraints are of order 1, the quadratic formulation just analyzed works for us. But there
are cases when the restrictions must be quadratic; of the type x1 (x1 − 1) ≤ 0 and x1 (x1 − 1) ≥ 0 being
equivalent to the constraint x1 (x1 − 1) = 0, and, in turn, equal to the restriction x1 ∈ {0, 1}. In this
case, a generalization of quadratic programming must be used. Almost for all quantum algorithms
where we want to improve resolution and computation time, Quadratically Constrained Quadratic

CHAPTER 4. SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS Page 51



Program (QCQP) should be used. It is the same studied so far but with quadratic restrictions. For
this, the new objective function P (x) must be minimized

min P (x) =
1

2
xTP0x+ qT0 x+ r0. (4.31)

Subject to:
1

2
xTPix+ qTi x+ ri ≤ 0 for i = 1, . . . ,m, (4.32)

Ax = b. (4.33)

Pi ∈ Sn+, the objective and constraints are quadratic convex, where P0,. . . , Pm are matrices n × n
and x ∈ Rn is the optimization variable. If P1,. . . , Pm ∈ Sn++, the feasible region is the intersection
of m ellipsoids and a cognate set.

When trying to model a problem in binary variables, a degree greater than two may appear in the
function to minimise (or cost function). As most of the quantum computing technique in this NISQ
era is implemented, to handle terms of degree less than or equal to 2, the degree of monomials that
do not meet this condition must be reduced.
Let us analyse different ways to transform a cubic monomial of the cost function into a quadratic one.
Once we have this technique, applying it repeatedly, we can decrease the degree of any monomial.

A first way is to transform the problem min f(w) into the problem min g(k) subject to t = xy con
f(w) = xyz y g(k) = tz.

Later, we will realise that we cannot have a quadratic constraint, so let us find a way to substitute
t = xy for linear constraints.

Taking the constraints t ≤ x, t ≤ y and t ≥ x+y−1, we can transform the problem of minimizef(w)
into the problem:

minimize tz

,

subject to


t ≤ x

t ≤ y

t ≥ x+ y − 1.

This remodelling involves introducing three inequality constraints. Inequality constraints, while
often unavoidable, are somewhat inefficient. This is due to the need to include a set of auxiliary slack
variables necessary to transform each inequality into equality. This procedure is similar to the one
that occurs when modelling a linear programming problem to be solved using the simplex algorithm.
There are more techniques, but we will not dive deeply into them in this thesis. Therefore, let us
analyse for other better methods that allow us to reduce the degree of the monomials.

The first technique we will analyze is to exploit the relationship

f(w) = max
t∈{0,1}

{t(x+ y + z − 2)}.
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This relationship follows from the fact that, on the one hand, if any of the variables x, y, z is equal to
0, we have that (x+ y + z − 2) ≤ 0 and therefore, the maximum on the right will be reached when w
takes the value 0, resulting in 0. If, on the contrary, all the variables are worth 1, we would have the
product w · 1, which takes the maximum value 1 when t = 1.

Now, if the monomial axyz from which we want to reduce the degree has coefficient a < 0, it is
true that

min
x,y,z

axyz = amax
x,y,z

(xyz) = amax
x,y,z

(max
t

(t(x+y+z−2))) = a max
x,y,z,t

(t(x+y+z−2)) = min
t,x,y,z

at(x+y+z−2).

Therefore, if a < 0 we can simply substitute monomials of the form af(w) for a(t(x+ y + z − 2)).
If a > 0 we cannot use the same technique since, although

f(w) = − min
t∈{0,1}

t(−x− y − z + 2),

The above equation with the minus sign does not allow this term to be entered in the cost function.

To solve this problem, let us return to the problem of expressing the equation z = xy in linear
terms. The penalty functions are needed in these cases. We need to construct a penalty function that
takes large values when z ̸= xy and the value 0 when z = xy. Also, it is needed to work carefully on
Lagrange multiplier. This task is important for problems where the degree of the restriction can be
greater than 2; Problems that go beyond those of this NISQ era.

4.5 Summary

In this chapter, we have analysed and studied the methods of solving combinatorial optimisation
algorithms. Furthermore, we have studied Linear Programming and its derivative of binary integers,
Quadratic Programming and Quadratic Programming with Quadratic Constraints. But here, we have
not studied a lead combinatorial optimisation problem-solving algorithm, QUBO. However, the reader
can find it in the section (9.1.1) on quantum computing because of its close connection with the Ising
models. Moreover, QUBO is a problem central to adiabatic quantum computing, where it is solved
by a physical process called quantum annealing.

We can now entirely focus and delve into quantum computing, but to do this, we will introduce
some necessary concepts and theories of quantum mechanics.
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Chapter 5

Introduction Quantum Mechanics

5.1 Introduction

Quantum mechanics [194] is a theory that describes the physical properties of nature on an atomic
scale.

The first revolution[125] of quantum mechanics is the basis of several advances to our modern
society. Almost all modern electronics in the last 50 years have been based on the properties of
quantum mechanics. Semiconductors such as diodes, transistors, integrated circuits, etc., have led to
the considerable growth of electronics today.

Quantum mechanics, in addition to studying the motion of particles, also allows us to understand
the properties of materials and their features to manufacture transistors. These are the basis of all
modern electronics and the control system of millions of devices that we use today. However, in this
thesis work, we focus on the second revolution of quantum mechanics, that is, in using the properties
of quantum mechanics to empower computing. For this, we need to know how quantum information
science is structured (5.2).

The Quantum information science also known as QIS, is the area of information science that
depends on the effects of quantum mechanics. Figure (5.2) breaks down the subtasks of quantum
information science.

During the last decades, the scientific community has dedicated a lot of time and has provided
considerable resources to QIS [251]. As a result of this delivery, improvements have been achieved
in the scientific advances that we see reflected in publications, conferences, and concrete solutions
such as D-Wave, IBMQ, Xanadu, etc. Quantum computing, in particular, and quantum information
science is a hot topic because of its novelty and the promising developments it predicts.

In this thesis work, all the postulates of quantum mechanics on which we rely are referenced by
[173].
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Figure 5.1: TBluefors dilution refrigerators used in the MIT Engineering Quantum Systems group to
operate superconducting qubits at near-zero temperatures [235]

Figure 5.2: The areas of quantum information science (QIS)
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5.2 Moore Law

Another aspect to consider understanding the importance of the properties of quantum mechanics
and thus empower computing is Moore’s law, which states that the number of transistors that can be
integrated into a single chip doubles every 18 months. This process Figure (5.3) leads to a doubling
of the memory and a doubling of the calculation speed. Therefore, it is expected that the size of the
characteristic of the wafer (thin plate of semiconductor material) will be less than 10nm during this
year (2020). At this point, the individual properties of atoms and electrons would begin to dominate,
so Moore’s law would no longer be valid. Therefore, the demands of the miniaturization of electronics
will eventually bring us to the point where quantum effects become important[251].

Figure 5.3: Moore law Roadmap: Quantum Computing Stack Exchange [187]

Because Moore’s law will stop working today, there are even more reasons for the scientific commu-
nity to resort to QIP much sooner than it seems [251][123]. On the other hand, multi-core architecture
is becoming a practical approach; computational speed improvement can be achieved even without
reducing the size of the feature by parallelization.

5.2.1 State of the Quantum Technologies

Another point to highlight is the fact that, despite the intensive development of quantum algorithms,
the number of available quantum algorithms is still small (Fig. (5.4)) compared to that of classical
algorithms basically because the current quantum gates are only several tens of quantum bits (qubits),
which is relatively low for any significant quantum computing operation[189].

This delay was partial until very recently, and it was believed that quantum computing would
never or seldom come true. However, the latest advances in the different techniques (D-Wave, IBMQ,
Xanadu, ...) of quantum gate implementations, as well as the proof of the precision threshold theorem
[153], give rise to optimism (Figures (5.5) and (5.6)) that quantum computers (5.1) to large-scale could
become a reality quite soon [189]. We can also appreciate (Figures (5.7) and (5.8) ) the metrics and
milestones to help monitor the development of quantum computing and the companies and startups
involved in the 2018 quantum computing ecosystem.

One of the most significant problems that QIS faces is the physical deployment issues. There are
many potential technologies, such as nuclear magnetic resonance (NMR), ion traps, quantum cavity
electrodynamics, photonics, quantum dots, and superconducting technologies, to name just a few.
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Figure 5.4: The number of research papers published per year in quantum computing and technologies
[214]

However, it is not clear which technology will prevail. For example, Xanadu (photonics) technology
seems to be most likely for quantum teleportation[127][42].

Right now, there is a big battle going on between the significant manufacturers of quantum com-
puters to achieve the highest number of qubits and ’impose’ their scalability plan. In knowing who
will be able to define the standard and, above all, get the quantum supremacy [24].

Figure 5.5: Quantum Computing is becoming the talk of the town [4]
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5.3 Noisy Intermediate-Scale Quantum

The Noisy Intermediate-Scale Quantum era known as (NISQ) era [189], is defined as the era leading
quantum processors to contain about 50 to a few hundred qubits. Still, it is not advanced enough to
reach fault tolerance nor large enough to profit sustainably from quantum supremacy. It is used to
describe the current state of the art in the fabrication of quantum processors.

The real problem of this era is related to decoherence [60]. Decoherence is associated with the
interaction of qubits with environments that blur the fragile states of overlap (entanglement). This
results in the introduction of random errors due to the environment. However, there are quantum error
correction techniques known as the Quantum Error Correction Concept (QECC)[194][66]. One of the
powerful applications of quantum error correction is based on the protection of quantum information,
as it is dynamically subjected to quantum computing. Imperfect quantum gates affect quantum
computing by introducing errors into the computed data. Also, imperfect control gates add errors
into the processed sequences as incorrect operations can be applied. However, this imperfection gives
rise to exciting computing techniques and algorithms based on variational calculations. This opens up
a world of possibility to the era of Quantum Machine Learning (QML) [47][185][211]. The objective
of QECC is to deal with errors introduced by quantum channels and those presented by (imperfect)
quantum gates during the encoding and decoding process. Because of this, the reliability of the data
processed by quantum computers depends on the probability of error per gate being below a certain
threshold known as the precision threshold theorem. This is what NISQ defines as. ’Noisy’ because
we don’t have enough qubits leftover for error correction, so we’ll have to use the imperfect qubits
directly on the physical layer and ’Intermediate-Scale’ due to its reduced qubit (but not too small).
To understand quantum mechanics, we have to appreciate its postulates. These postulates provide

a connection between the physical world and the mathematical formalism of quantum mechanics. It
is important to emphasize that it is unnecessary to understand quantum mechanics in detail to know
how to make a program on a quantum computer. But if we want to make intelligent and efficient
algorithms, it is more than recommended to understand the fundamentals of quantum mechanics. The

Figure 5.6: The number of qubits achieved by date and organization. Roadmap by MIT [137]
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Figure 5.7: Metrics and milestones to help monitor the development of quantum computing. Roadmap
by MIT [214]

analogy to understand what we mean is the following: To program we can do it in PhP, and python,
high-level languages, but we can also program in C or in assembler (machine language). If we want
to be experts or make efficient algorithms, it would be useful to know the machine’s architecture and
to program in the machine language.

5.4 Postulate 1

The postulate 1 is defined as associated with any isolated physical system is a complex vector space
with an internal product (Hilbert space) known as the state space of the system. The system is fully
described by its state vector, which is a unit vector in the state space of the system.

This postulate explains the space of the quantum state and describes the area where quantum
mechanics takes place. This area is nothing more than linear algebra in Hilbert vector space [246]. It
is essential to know that, given a physical system, quantum mechanics does not tell us what the state
space of that system is, nor can it tell us what the system’s state vector is. Therefore, it is imperative
to have this clear postulate. In other term, what we mean is that it is challenging to know the state
of a quantum system at all times.

Let’s consider that the simplest quantum mechanical system is the qubit. A qubit has a two-
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Figure 5.8: Companies and startups involved in the 2018 quantum computing ecosystem. Roadmap
by Quantum World Association

dimensional state space |0⟩ and |1⟩ that form an orthonormal basis for that state space. Then you
can write an arbitrary state vector in the state space.

|ψ⟩ = a|0⟩+ b|1⟩. (5.1)

Where a and b are complex numbers. The condition that |ψ⟩ is a unit vector is given by ⟨ψ|ψ⟩ = 1,
is therefore equivalent to |a|2 + |b|2 = 1. The term ⟨ψ|ψ⟩ = 1 is known as the normalization condition
for state vectors.

The way a qubit differs from a classic bit is that there are overlaps of these two states, in the form
a|0⟩+ b|1⟩ , where it is not possible to say that the qubit is definitely in the state |0⟩, or definitely in
the state |1⟩. In other words, what we mean is that the quantum state is a linear combination of the
components a and b.

If we had a system of more than one qubit, the expression of the quantum state would be of the
form

∑
i ai|ψi⟩, and we would have a system with the superposition of the states |ψi⟩ and of amplitude

ai for the state |ψi⟩.

5.5 Postulate 2

The postulate 2 is defined as a unitary transformation describes the evolution of a closed quantum
system. That is, the state |ψ⟩ of the system at the time t1 is related to the state |ψ′⟩ of the system at
the time t2 by a unit operator U that depends only on times t1 and t2, |ψ

′⟩ = U |ψ⟩. This postulate
gives a standard for describing quantum state changes over time.
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From Ref. [174] we know that quantum mechanics does not tell us the state space or quantum
state of a particular quantum system; it also does not tell us which unit operators U describe real-
world quantum dynamics. On the other hand, quantum mechanics assures us that the evolution of
any closed quantum system can be described in this way.

|ψ
′
⟩ = U |ψ⟩. (5.2)

In a way, we are saying that if we want to describe an n qubit quantum system subject to time
evolution, we must calculate its unit operators U . The challenge would be to find such unit opera-
tors. Quantum gates are somehow the operators that act on quantum states. This postulate is very
interesting and requires that the quantum system be closed [194][193]. Moreover, various derivatives
emerge from this postulate.

5.5.1 Postulate 2’

The postulate 2’ is defined as the time evolution of the state of a closed quantum system is described
by the Schrödinger equation (5.3).

ih̄
δ|ψ⟩
δt

= H|ψ⟩. (5.3)

Where h̄ is Planck’s constant and H is a fixed hermitian operator known as the Hamiltonian of
the closed system [194].

In some way, we can say that if we know the Hamiltonian of a system, then we understand its
dynamics completely. This concept is precious for modelling the system, and we will use it a lot
throughout our thesis.

During the 20th century, much of the scientific (physical) community has been dedicated to dis-
covering the Hamiltonian of any quantum system. And the conclusion they reached is that, in general,
finding out that the Hamiltonian necessary to describe a particular physical system is challenging.

The Hamiltonian is a Hermitian operator that allows us to make its spectral decomposition with
eigenvalues of energy E and the normalized eigenvectors corresponding to energy E as eigenstates |E⟩.

|H⟩ =
∑
E

E|E⟩⟨E|, (5.4)

|E⟩ = exp(−iEt
h̄

)|E⟩. (5.5)

The lowest energy is known as the ground state energy for the system, and the corresponding
energy proper state (or adequate space or steady-state) is known as the ground state.

|ψ(t2)⟩ = exp[
−iH(t1 − t2)

h̄
]|ψ(t1)⟩ = U(t1 − t2)|ψ(t1)⟩. (5.6)

Where we define

U(t1 − t2) ≡ exp[−iH(t1 − t2)

h̄
]. (5.7)

This interpretation is compelling and extremely useful since it is shown that any unitary operator
U can be written in the form (5.8) tanking h̄ = 1 and t2 = 0 the equation comes out to be (5.6)
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U = exp(−iK). (5.8)

With K, a Hermitian operator.

5.6 Postulate 3

The postulate 3 is defined as quantum measurements are described using a Mm collection of measure-
ment operators. These are the operators that operate in the state space of the system being measured.
The m index refers to the measurement results in the experiment. If the state of the quantum system
is |ψ⟩ immediately before the measurement, the probability that the result m will occur is given by the
equation (5.9).

p(m) = ⟨ψ|MT
mMm|ψ⟩. (5.9)

The state of the system after the measurement is (5.10).

Mm|ψ⟩√
⟨ψ|MT

mMm|ψ⟩
. (5.10)

And, the measurement operator satisfies the completeness equation [194] that is given by the
following equation (5.11) for all the values of the quantum state |ψ⟩.∑

m

MT
mMm = Ip(m) = ⟨ψ|MT

mMm|ψ⟩ = 1. (5.11)

The value of the measure is the probability described by |a|2 + |b|2 = 1.

If we want to make the different Mm observations, the operations we would be doing are the
following:

M0 = |0⟩⟨0| =

1

0

[1 0

]
=

1 0

0 0

 . (5.12)

M1 = |1⟩⟨1| =

0

1

[0 1

]
=

0 0

0 1

 . (5.13)

With ⟨ψ| the conjugate of |ψ⟩, represented by |ψ⟩ = ⟨ψ|T

M0|0⟩ = |0⟩⟨0|0⟩ =

1 0

0 0


1

0

 =

1

0

 = |0⟩. (5.14)

M0|1⟩ = |0⟩⟨0|1⟩ =

1 0

0 0


0

1

 =

0

0

 = 0. (5.15)
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knowing that |0⟩⊥|1⟩, ⟨0|1⟩ disappears; It is cancelled. If we project on any state, we will have:

M0|ψ⟩ = |0⟩⟨0|ψ⟩ = |0⟩a|0⟩+ b|1⟩ = a|0⟩. (5.16)

We can generalize (5.14): let M0, let i be any qubit and let |ψ⟩ be a multi-state of qubits, the
measurement or the projection on the state |0⟩ can be expressed as:

Tr

[
|ψ⟩⟨ψ|M i

0

]
. (5.17)

If the qubit i is measured in the state |0⟩, then the system will be in the state expressed by (5.18).

M i
0|ψ⟩

∥M i
0|ψ⟩∥2

. (5.18)

Another way to get the result of the measurements is to remember that the measurement operator
is Hermitian; this translates to M2

0 = M0 the same for M2
1 = M1. Also remembering that the

relationship of completeness obeys the equation I = MT
0 M0 +MT

1 M1 = M0 +M1.
One of the crucial applications of (5.6) is to distinguish quantum states. We recall that since the

quantum system must be closed (5.4)), getting to find out the quantum states represents a titanic and
less intuitive task as in classical computing.

To clarify what we have just advanced, we will demonstrate the absurdity. We consider two non-
orthogonal quantum states |ψ1⟩ and |ψ2⟩ and assume that the measurement is possible. If |ψ1⟩ and
|ψ2⟩ are prepared, the measures (observations) will respond to the completeness (5.11) equations so
that we can write:

⟨ψ1|M1|ψ1⟩ = 1; ⟨ψ2|M2|ψ2⟩ = 1. (5.19)

Knowing that
∑
iMi = I therefore ⟨ψ1|M1|ψ1⟩ = 1 and must ⟨ψ1|M2|ψ1⟩ = 0 and

√
M2|ψ⟩ = 0.

If we decompose |ψ2⟩ = α|ψ1⟩ + β|φ⟩ with |ψ1⟩ and |φ⟩ they are orthonormal. This leads us to
the fact that |α|2 + |β|2 = 1 and that |β| < 1 while |ψ1⟩ and |ψ2⟩ are not orthonormal. With√
M2|ψ⟩ = β

√
M2|φ⟩. What contradicts completeness’s equation (5.9).

⟨ψ2|M2|ψ2⟩ = |β|2<φ|M2|φ⟩ ≤ |β|2 < 1. (5.20)

Continuing with postulate 3, projective measurements form a particular case of it, being very useful
and straightforward. Due to its simplicity, this measurement is the basis of many algorithms to know
the observables.

A projective measurement is described by an observable, M , a Hermitian operator in the system’s
state space being observed. The observable has a spectral decomposition.

M =
∑
m

mPm. (5.21)

where Pm is known as the projector in the proper space of M with the right value m. If we measure
on the state |ψ⟩, the probability of having the result m is

p(m) = ⟨ψ|Pm|ψ⟩. (5.22)

so, the quantum state just after the measurement will be:

Pm|ψ⟩√
⟨ψ|Pm|ψ⟩

. (5.23)
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Otherwise, what we are saying is that ⟨M⟩ = ⟨ψ|M |ψ⟩. We can generalize this formula with the
mean and variance:

[∆M ]2 = ⟨(M − ⟨M⟩)2⟩ = ⟨M2⟩ − ⟨M⟩2∆M =
√
⟨M2⟩ − ⟨M⟩2. (62)

This formula (62) is the basis of Heisenberg’s uncertainty principle [194]. The important thing
about the Heisenberg principle is that we cannot simultaneously measure/know the position and
velocity of the electron (a particle). Therefore, it is impossible to determine its trajectory. We are
somehow telling ourselves that measurement is destructive (but this is not the basis of Heisenberg’s
principle) because the position and velocity of the particle are in overlap. Measuring one collapses
the wave function and destroys the other component/s.

A mathematical explanation can be described as follows. Suppose A and B are two Hermitian
operators, and |ψ⟩ is a quantum state. Suppose that ⟨ψ|AB|ψ⟩ = x + iy, where x and y are real.
Applying the switches and anti-switches to the Hermitian operators (matrices) A and B, we arrive at
⟨ψ[A,B]ψ⟩ = 2iy and ⟨ψ|{A,B}|ψ⟩ = 2x. This implies that:

|⟨ψ|[A,B]|ψ⟩|2 + ⟨ψ| A,B|ψ⟩|2 = 4|⟨ψ|AB|ψ⟩|2 . (5.24)

For the Cauchy-Schwarz inequality

|⟨ψ|AB|ψ⟩|2 ≤ ⟨ψ|A2|ψ⟩⟨ψ|B2|ψ⟩. (5.25)

underestimating the negative term, we arrive at:

|⟨ψ|[A,B]|ψ⟩|2 ≤ 4⟨ψ|A2|ψ⟩⟨ψ|B2|ψ⟩. (5.26)

if we now consider two observables M1 and M2, and substitute A = M1−⟨M1⟩ and B = M2−⟨M2⟩
in the last equation, we obtain the Heisenberg uncertainty principle from the equation (5.27).

∆M1∆M2 ≥
⟨ψ[M1,M2]ψ⟩

2
. (5.27)

The correct interpretation of the uncertainty principle is that if we prepare a large number of
quantum systems in identical states, |ψ⟩, and then make measurements of M1 in some of those
systems, and of M2 in others, then the standard deviation ∆M1 of the results of M1 multiplied by

the standard deviation ∆M2 of the results of M2 will satisfy the inequality ∆M1∆M2 ≥ ⟨ψ[M1,M2]ψ⟩
2 .

In the commutation relationship for the observable X coordinates and moment P is, [X,P ] = jh̄.
If we introduce it in the equation above, we get to (5.28):

⟨∆X⟩2⟨∆P ⟩2 =
h̄2

4
. (5.28)

We make a parenthesis to explain the behaviour of the phase-in quantum mechanics. We already
know that quantum mechanics is defined in the complex vector space (Hilbert space). We also know
that a vector representation of a vector (wave) can be described with its argument and angle. Besides,
the phase as an operator applied to a quantum state in quantum mechanics does not change the
quantum state.

Now, let us consider that the state eiθ|ψ⟩, where |ψ⟩, is a state vector and θ is a real number. We
say that the state eiθ|ψ⟩, is equal to |ψ⟩ where the factor eiθ is known with the global phase of the
system [194][123]. This property is fascinating and useful when writing a quantum algorithm. Saving
this operation entails a gain in time and computational cost.

Suppose we want to make the measurements of the observables Mm on the quantum state eiθ|ψ⟩,
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with |ψ⟩ the state vector. Then, the respective measurements will be given by the following equations:

⟨ψ|Mm|ψ⟩⟨ψ|e−iθMT
mMme

iθ|ψ⟩ = ⟨ψ|MT
mMm|ψ⟩. (5.29)

We see that the global phase does not affect measures, but another phase does. This phase is
known as the relative phase [123]. We will use an example to explain it. Let’s consider two quantum
states:

|ψ1⟩ = a|0⟩+ b|1⟩ and |ψ2⟩ = a|0⟩ − b|1⟩. (5.30)

We see that the state amplitude |1⟩ of the first quantum state |ψ1⟩ is +b and a, the state amplitude |0⟩
of the second quantum state |ψ2⟩ is −b. We see that the only difference is the sign, not the amplitude.
If two quantum states have the same amplitudes and differ exclusively by the phase (sign), this phase
is known by the relative phase of the system. And generically, we can write it as follows a = exp(iθ)b.
This concept is fascinating and is the basis of quantum gates that will allow quantum computing.

5.7 Postulate 4

The postulate 4 is defined as the state-space of a composite physical system is the tensor product of
the state spaces of the components of physical systems. Furthermore, if we have systems numbered
from 1 to n, and the number of system i is prepared in the state |ψi⟩, then the joint state of the total
system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩.

This postulate is the basis for creating the complex system of more than two qubits or quantum
states. This postulate also allows us to define one of the most exciting and puzzling ideas associated

with composite quantum systems: entanglement. Consider the two-qubit states |ψ⟩ = |00⟩+|11⟩√
2

,

this state has the remarkable property that there are no unique qubit states |a⟩ and |b⟩ such that
|ψ⟩ = |a⟩|b⟩. In other words, we say that |ψ⟩ ̸= |a⟩|b⟩. This property is one of the reasons for the
empowerment of quantum computing.

5.8 Postulate 5 and 6

In this thesis work, we are based on the postulates listed in this reference [173] Quantum Computation
and Quantum Information, where postulate 5 (The temporal evolution of a system) of quantum
mechanics [73] is contemplated like our postulate 2’ (5.5.1) and the postulate 6 (commutation rules)
of quantum mechanics that define the positional and momentum operators that satisfy the following
commutation rules, they are treated as operators not like postulate.

5.9 Summary

This section’s right conclusion highlights that these four postulates of quantum mechanics define how
we can conceptualize and face a problem about quantum mechanics and its computation. The first
postulate establishes the space for quantum mechanics by specifying how the state of an isolated
quantum system should be described. The second postulate illuminates us on the dynamics of the
closed quantum systems and its description through the Schrödinger equation and using the unitary
evolution. In the third postulate, we are explained how to make the measurement describing the
importance of the characteristics (restrictions) when extracting information (measuring) from our
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quantum systems. And finally, the fourth postulate reveals how we can create composite systems.
One of the most shocking and interesting ideas of quantum mechanics is that we cannot directly
observe the state vector and that it is in charge of deciphering the behaviour of any quantum system.
Let’s imagine that we want to know what position the cat is in (5.9). In a classic system, thinking

Figure 5.9: Observability of a classical system

about computing, the location (state vector) of the cat is given by the variable x = 7

Figure 5.10: Observability of a quantum system

In a quantum system, the position (see figure (5.10)) of the cat is not so quickly known. In
quantum, each element in the state vector contains the probability of finding the cat in a specific
place. And it is represented by:

|x⟩ =



0

...

0

...

1

0

...

0



←

Probability of

cat being at

position 7

. (5.31)

Classical physics, classical computation, and our intuition tell us that the fundamental properties
of an object, such as energy, position, and velocity, are directly accessible to observation. However,
these quantities no longer appear essential in quantum mechanics, depend on the state vector, and
cannot be directly observed. Furthermore, merely observing a classical system does not necessarily
change the system’s state; instead, for a quantum system, observation is an invasive procedure that
generally changes the state of the system (the state vector).
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Chapter 6

Complexity Class

6.1 Introduction

The complexity class is defined as a set of computational problems of related resource-based complexity,
and the two most commonly analyzed resources are time and memory.

Some problems appear to be ”intractable” (complexity is exponential in the number of bits n) in
classical computing, but they can be solved polynomially in n by quantum computing. For example,
the factorization of prime numbers is an insoluble problem for classical computing, taking into account
the size of the numbers to be factored. Still, solvable in quantum by Shor’s algorithm [216]. Peter
Shor’s algorithm is based on the fact that a composite number can be represented in prime numbers
in several steps being polynomial in n. The differential and key value of quantum algorithms are
that they can explore all branches of a non-deterministic algorithm in parallel through the concept of
quantum parallelism (superposition of basic states).

There are necessarily three properties that can vary in the definition of a complexity class. The
resource of interest (time, space, ...), the type of problem being considered (decision problem, op-
timization problem, ...), and the underlying computational model (deterministic Turing machine,
probabilistic Turing machine, quantum computer, ...).

We know that classical algorithms can be classified as useful when the number of steps is a poly-
nomial function of size n. Therefore, the computational complexity of these algorithms is typically
denoted as P . The class of problems that can be solved in a non-deterministic manner [123] in poly-
nomial time are called NP [163]. The subclass of these problems, which are the most difficult, is
complete NP problems [163]. For example, the VRP and its derivatives belong to this subclass, and
if one of these problems can be solved efficiently, they can all be solved. The kind of problem that
can be solved with the amount of the memory polynomial in the input size is called PSPACE [163].
Also, the kinds of problems can be solved with high probability by using a random generator known
as BPP, which originates from a time-limited error probability polynomial. In addition to all these
kinds of complexity, there is a final category that can be solved in polynomial time if the exponential
sums of many taxpayers are computable in polynomial time. This is denoted as P#P . In summary,
we can establish this relationship between complexity classes.

P ⊂ BPP,P ⊂ NP ⊂ P#P ⊂ PSPACE. (6.1)
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Being the quantum analogue of BPP, known as BQP [163], the most interesting in our study of
quantum algorithms.

In computational complexity theory, Bounded error Quantum Polynomial-time BQP [163] is the
class of decision problems decidable by a quantum computer in polynomial time with an error prob-
ability of at least 1/3 for all instances. They are problems based on Large Linear Systems, Quantum
material simulations and Quantum walk encompassing the SWP.

6.2 Quantum complexity

The quantum complexity theory is defined as the sub-field of computational complexity theory that deals
with complexity classes defined using quantum computers. This class studies the hardness of computa-
tional problems concerning these complexity classes and the relationship between quantum complexity
classes and classical ones.

Alan Turing [194] defined a class of machines, known as Turing machines, that can be used to
study the complexity of a computational algorithm. In particular, there are the so-called universal
machines, which can be used to simulate any other Turing machine, and the latter can be used to
simulate all the operations carried out on a modern computer.

This led to the formulation of the Church-Turing thesis [194]. One of the most powerful arguments
in computing remains in force today. The study specifies that the class of functions that a Turing
machine can calculate corresponds precisely to the class of functions that one would naturally con-
sider computable by an algorithm. This thesis establishes the equivalence between the mathematical
description defined by a Turing machine and an intuitive concept. Some problems are not foresee-
able, and there is no known algorithm to solve them. The Church-Turing thesis [194] also applies to
quantum algorithms.

We know from the complexity class,[123] that an algorithm is competent if it can be solved in a
polynomial number (P) of steps. We also know that Turing machines can describe these practical
algorithms. With the fusion of these last two concepts, we can formulate a robust version of the
Church-Turing thesis looking for a universality. Any computational model can be simulated in a
probabilistic Turing machine with a polynomial number of computational steps.

6.3 The deterministic Turing machine

The Turing deterministic machine is described by an alphabet A, a set of control states Q, and a
transition function δ.

δ : Q×A→ Q×A×D. (6.2)

The alphabet elements are called letters (A), and by concatenating the letters, we get words. Set
D is related to the read-write head, with elements D = {−1, 0, 1} −1, +1 and 0 that indicate the
movement of the head to the left, to the right and the foot, respectively. The deterministic Turing
machine can be defined as (Q, A, δ, q0, qa, qr), where the state of the machine is specified by q ∈ Q.
In particular, q0, qa, qr ∈ Q denotes the initial state, the acceptance state and the rejection state,
respectively.

The configuration of the Turing machine is given by c = (q, x, y), where x, y ∈ A′
, where A

′
is the

set of all the words obtained by concatenating the letters of A.
The Turing machine has a tape (memory) specified by xy with x being the scan (read). Somehow,

we can define computation as a sequence of configurations that start with initial setup c0 (sometimes
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this initial configuration is called the initial state represented by ε0) until we reach the stop configu-
ration. Computing stops after p calculation steps (interaction) when one of the configurations does
not have a successor or if its state is qa o qr.

6.4 The probabilistic Turing machine.

A probabilistic Turing machine is defined as a non-deterministic Turing machine that chooses between
the available transitions at each point according to some probability distribution.

There are several more computationally dependent Turing machines. The most generic is the
probabilistic Turing machine[163]. Since the transition function assigns probabilities to possible op-
erations, the deterministic machine is a specific case of probability. In other words, a probabilistic
Turing machine is a non-deterministic Turing machine. That randomly selects possible transitions
according to some probability distribution and is defined as follows:

δ : Q×A×Q×A×D. (6.3)

In this case, a stochastic matrix can describe the machine state transitions D = [0, 1]. In the same
way, as in the deterministic Turing machine, a given configuration is a successor configuration with
probability δ. A terminal structure can be calculated from an initial setup with a probability given by
the product of probabilities of intermediate configurations, which lead to it by a particular calculation
defined by a sequence of states. For example, A generalized case is the deterministic Turing machine
of type m. Said m tapes characterize machine, an alphabet A, a finite state of control states Q and
the following transition function.

δ : (Q×Am)→ Q× (A×D)m. (6.4)

The configuration of a machine of type m is given by (q, x1, y1, ., xm, ym), where q is the current
state of the machine, (xi, yi) ∈ A

′ × A′
, and xiyi denote the content of the i-th type. Machines of

type m are suitable for problems related to parallelism [193].

If the computation time required for a machine of a type is t, then the computation time needed
for a device of type m is O(t1/2), while in terms of computational complexity, they are comparable.

6.5 Quantum Turing Machine

The Quantum Turing Machine, also known as the universal quantum computer, is an abstract machine
used to model the effects of a quantum computer.

The following transition function characterizes the Turing quantum machine:

δ : Q×A×Q×A×D → C. (6.5)

In quantum, the transition function moves a given configuration into a range of successor configura-
tions. Each of which has a quantum probability amplitude, which corresponds to a unit transformation
of a quantum state that is the set of complex numbers by C. Scientist and physicist Charles Henry
Bennett demonstrated that m-type Turing machines could be simulated using reversible Turing ma-
chines with a specific reduction in efficiency [193]. Furthermore, Professor of Electrical Engineering
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and Automat Theory, Tommaso Toffoli, demonstrated that finite arbitrary mapping could be calcu-
lated reversibly by padding strings with zeros, permuting them, and projecting some of the bit strings
to other bit strings. In other words, what Toffoli means is that elemental reversible gates can be used
to implement bit string permutations. Finally, one of the most powerful contributions to quantum
computing based on Postulate 2 came from the physical scientist Paul Benioff, who demonstrated that
the unitary evolution of the quantum state (which is reversible) is at least as powerful as a Turing
machine [194][123][193].

The classical probabilistic process can be represented by a tree, which grows exponentially with
possible results. The key difference in quantum computing is that we assign the quantum probability
amplitudes to the branches of a tree, which can interfere with each other.

6.6 Study of complexity

In our case, the concept of computational complexity that we use is essentially the same as the
complexity of the quantum circuit, that is, the minimum number of quantum gates required to prepare
a given unit operator [123]. The computational complexity of U(t) progresses over time. Both the
black hole and the considerations of the quantum circuit suggest the following conjecture summarized
in Figure (6.1) [223][95].

Figure 6.1: The conjectured evolution of the quantum complexity of the operator eiHt [38]

The complexity C(t) grows linearly as follow:

C(t) = Kt. (6.6)

For an exponential time in K and tK , the complexity reaches its maximum possible value Cmax and
flattens for a long time. This is the period of complexity. Equilibrium during which the complexity
fluctuates over the maximum

Cmax(t)K . (6.7)

On a much longer order time scale, quantum repeats exp
[
eK
]

quasi-periodically return complexity
to subexponential values. All this is a conjecture that, at the moment, cannot be proved, but that
can be related to other complex assumptions.

The instance-averaging strategy sometimes allows conclusions about generic behaviour that would
not be possible for specific cases. A particular example, which has generated recent interest, is the
Sachdev-Ye-Kitaev (SYK) approach to coding. By averaging an appropriate set of time-independent
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Hamiltonians, it is possible to demonstrate that almost all Hamiltonians saturate the fast coding limit.
Potentially, this averaging can also be applied to questions about the evolution of complexity[95].

Another type of randomness is stochastic randomness, over which a statistically fluctuating (noisy)
time-dependent Hamiltonian is averaged. The more averaging, the easier it is to conclude, and the
stochastic average is easier than averaging over time independent Hamiltonians. In our case, the unit
matrix that describes our quantum system is written U = eiH .

H =
∑
i<j

Jijsisj +
∑
i

hisi. (6.8)

With H, the Hamiltonian of our objective function. We express H as a sum of Pauli’s tensor products.
This way is even very valid when it comes to finding the unit matrices of various quantum systems
(see (5.7)).

There are many theories and strategies to determine the complexity of a quantum circuit. Going
through approximation theory, based on entropy, or by the geometry of complexity. It can also be
achieved based on the entropy of a classic system as we highlight in the following Lemma [58]:

Quantum complexity for a K qubit system behaves similarly to the entropy of a classical approach
with 2K degrees of freedom.

A practical criterion for calculating the complexity of a unit operator is the concept of the com-
plexity of the quantum circuit. For example, in the case of running a quantum algorithm on IBMQ,
the first thing the IBMQ framework does is to compile all the operations of a single qubit on universal
gates U1, U2 and U3.

Next, we will discuss the complexity of the circuit consists of all K qubit circuits composed of
k-local gates allow us to prepare U . For simplicity, we take the gates to act in series,

U = gNgN−1 . . . g1. (6.9)

The complexity of the U circuit is denoted C(U). It is the minimum number of k-local gates
needed to build U . At last, it depends on the choice of allowable gates and some measures of the
distance and concatenation on the gates. Hence, the concept of quantum relative complexity.

Relative complexity can also be defined for a pair of unit operators. This means that if we have a
system composed of n = 2 unit matrices Un, the relative complexity would be the complexity U1U2

and, in a generic case, U1U2 . . . Un. Inspired by Nielsen’s ideas, we can build various auxiliary theories
[174]. We consider an interesting approach is a theory based on a complexity metric. This theory is
based on the idea of the complexity geometry that consists of defining a new parameter in SU(2K)
different from the standard metric, in which the distance between two elements of SU(2K) reflects its
complexity relative and where SU is a space of the unit matrices of 2K dimensions. To be precise, in
our case, we are calculating the Kolmogorov complexity[79] of a time-independent Hamiltonian with
a tolerance δ. The distance between two spins gives this tolerance Jij within the lattice model (see
figures (3.2) and (3.3)) [88][149] when determining the Hamiltonian of Ising.

In the Kolmogorov complexity calculation, time t does not appear. In this case, the first part is
a fixed overhead that does not scale with t. The second part specifies the time required log t bits.
And the third part establishes that the Hamiltonian also requires bits log t, because to approximate
e−iHt for a time t requires precision in H that is an inverse polynomial in t.

The simplest model is given when a single gate operates at every moment. So, the Kolmogorov
complexity per gate would be ordering one insignificant. Although the choice also encompasses which
group of k qubits performance between the gate at each stage. For example; in the case of k = 2,
there are K(K − 1)/2 possibilities to choose. That means, for each gate, we must add a Kolmogorov
∼ logK2 complexity. We can quickly realize this by assigning a logK2 of complexity to each gate.
The total complexity of a unit operator in the stochastic model is logK2 times the minimum number
of gates required to prepare U .
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6.7 Summary

This chapter is significant because it touches on determining the complexity of a quantum algorithm.
We have reviewed that the complexity of a unitary operator is from the concept of complexity of the
quantum circuit, Nielsen’s idea that marries the postulate 4 of quantum mechanics as the tremendous
and pragmatic contribution Kolmogorov by the gate. Before all this, we have seen that the Turing
machine (probabilistic) is useful for quantum computing.

SWP is a problem that belongs to the BQP complexity class because it behaves like the Quantum
Walk algorithm [20].
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Chapter 7

Quantum Gates

7.1 Introduction

Quantum gates are the operators applied to a quantum system to modify its state (state vector).

As discussed above, Ref. (5.2) allows us to define quantum gates with these operators that act on
quantum states |ψ′⟩ = U |ψ⟩.

7.2 General U-gate

One of the most important contributions to postulate two based quantum computing came from
the physical scientist Paul Benioff [64] who has shown that the unitary evolution of the quantum
state (which is reversible) is at least as powerful as a Turing[123][174]. Both quantum and classical
computing can be viewed as associations of universal quantum gates. For simplicity, we take the gates
to act in series as is shown in figure (7.1),

U = gNgN−1 . . . g1. (7.1)

Figure 7.1: One-qubit circuit of quantum gate association to illustrate unit transformation matrix U

Along these lines, there are two fundamental theorems related to the construction of quantum
circuits.

Theorem 1 [87][174]: All quantum circuits can be constructed using the only unit and NOT con-
trolled gates.
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Theorem 2 [87][174] : All quantum circuits can be constructed (in an approximate sense) using
only Hadamard gates and Toffoli gates.

In the same way, Emil Post announced that any circuit could be built with only three boolean
AND, OR and NOT (fan-out) gates using the Toffoli gates. We won’t go into detail in this demo, but
the following reference validates it [174].

Next, we will look at some new logic gates and then regain the notion of universality for quantum
computing.

Theorem 3[87][174]: A map U : Hn → Hn is unitary if, and only if, the matrix it represents is
in some coordinate representation, A, satisfies A∗A = AA∗ = In, where ∗ is the transposition of the
complex conjugate vector. This property is independent of the chosen coordinate representation.

Let X be the operator associated with a square matrix, whose elements are Xmn = ⟨a(m)|X|a(n)⟩,
which can be written as follows:

˙Xmn =



⟨a(1)|X|a(1)⟩

⟨a(2)|X|a(1)⟩

⟨a(1)|X|a(2)⟩

⟨a(2)|X|a(2)⟩
· · ·

⟨a(1)|X|a(n)⟩

⟨a(2)|X|a(n)⟩
...

. . .
...

⟨a(m)|X|a(1)⟩ ⟨a(m)|X|a(2)⟩ · · · ⟨a(m)|X|a(n)⟩


. (7.2)

7.3 Single qubit gates

Let be a qubit with the matrix representation in the computational base {|0⟩, |1⟩} we assign to these
the representation of natural coordinates:

|0⟩ =

1

0

 , |1⟩ =

0

1

 . (7.3)

we can write based on the linear combination of the qubit by a matrix. Let’s define the fundamental
quantum gates: the Hadamard H gate, the phase shift S gate, the CNOT gate, and the Pauli X, Y, Z
operators. Recall that the Hadamard H-gate, S-phase shift gate, and the NOT quantum gate have
matrix representations in the computational base (CB) {|0⟩, |1⟩}.

7.4 Gate I

I22 =

1 0

0 1

 = |0⟩⟨1|+ |1⟩⟨1|. (7.4)

Gate I, figure (7.2), is identity. Many kinds of literature consider her as the first operator of Pauli.
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7.5 Gate NOT

X22 =

⟨0|X|0⟩ ⟨0|X|1⟩
⟨1|X|0⟩ ⟨1|X|1⟩

 =

⟨0|1⟩ ⟨0|0⟩
⟨1|1⟩ ⟨1|0⟩

 =

0 1

1 0

 = |0⟩⟨1|+ |1⟩⟨0|. (7.5)

We see that the NOT gate (figure (7.3)) maps |0⟩ to |1⟩ and |1⟩ to |0⟩. We can also write the
following operations.

X|0⟩ = |1⟩

0 1

1 0


1

0


0

1

 = |1⟩. (7.6)

In the same way:

X|1⟩ = |0⟩

0 1

1 0


0

1


1

0

 = |0⟩. (7.7)

The NOT gate is known as the X gate.

7.6 Gate Y

Y22 =

⟨0|Y | 0⟩ ⟨0|Y |1⟩

⟨1|Y |0⟩ ⟨1|Y |1⟩

 =

 ⟨0|1⟩ −i⟨0|0⟩

i⟨1|1⟩ ⟨1|0⟩

 =

0 −i

i 0

 = i|0⟩⟨1| − i|1⟩⟨0|. (7.8)

We see that the gate Y (figure (7.4)) maps |0⟩ towards |1⟩ and |1⟩ towards |0⟩ and at the same time,
introduces a phase change. We can also write the following operations

Y |0⟩ = i|1⟩i

0 −1

1 0


1

0

 = i

0

1

 = i|1⟩. (7.9)

In the same way:

Y |1⟩ = −i|0⟩i

0 −1

1 0


0

1

 = −i

1

0

 = −i|0⟩. (89)

Figure 7.2: Circuit of the Quantum Identity gate I
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Figure 7.3: The Circuit of the quantum Pauli’s first gate if we do not consider gate I

Figure 7.4: Circuit of the quantum gate Y. The second gate of Pauli

7.7 Gate Z

Z22 =

⟨0|Z| 0⟩ ⟨0|Z|1⟩

⟨1|Z|0⟩ ⟨1|Z|1⟩

 =

⟨0|0⟩ ⟨0|1⟩

⟨1|0⟩ −⟨1|1⟩

 =

1 0

0 −1

 = |0⟩⟨0| − |1⟩⟨1|. (7.10)

Figure 7.5: Circuit of the quantum gate Z. Third gate of Pauli

We see that the gate Z (figure (7.5)) maps |0⟩ towards |1⟩ and |1⟩ towards |0⟩ and at the same
time, introduces a phase change. We can also write the following operations.

Z|0⟩ = |0⟩

1 0

0 −1


1

0

 =

1

0

 = |0⟩. (7.11)

In the same way:

Z|1⟩ = −|1⟩

1 0

0 −1


0

1

 = −

0

1

 = −|1⟩. (7.12)

If we look closely, we will realize that the operator Z applied to the quantum system does not alter
the output. At most, add a 180-degree phase. This phase does not affect the system since it is an
absolute phase. This is because states |0⟩ and |1⟩ are the two proper states of gate Z. This is why the
base Z is used as the computational base (the base formed by states |0⟩ and |1⟩. Many other bases
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are used as bases as follows.

|+⟩ =
1√
2

(|0⟩+ |1⟩) =
1√
2

1

1

 . (7.13)

and

|−⟩ =
1√
2

(|0⟩ − |1⟩) =
1√
2

 1

−1

 . (7.14)

7.8 The Pauli Operators

The Pauli operators X, Y, Z (also known as σx, σy, σz) correspond to the measurement of the turn
along the x−, y− and z− axes respectively. Its actions in the base states are given by where it is clear
that the base states are elements of Z:

X|0⟩ = |1⟩, X|1⟩ = |0⟩, Y |0⟩ = −j|1⟩, Y |1⟩ = j|0⟩, Z|0⟩ = |1⟩, Z|1⟩ = −|1⟩. (7.15)

These operators fulfil the unit transformation property and the Hermitian property, that is, A∗A =
AA∗ = In.

XX∗ = X2 = Y Y ∗ = Y 2 = ZZ∗ = Z2 = I. (7.16)

They also fulfil some interesting abelian group permutation properties [174][251][186].

XY = jZY X = −jZ. (7.17)

7.9 Hadamard gate

It is one of the fundamental gates of quantum computing that is described as follows:

H =
1√
2

1 1

1 −1

 . (7.18)

H|0⟩ = |+⟩ =
1√
2

(|0⟩+ |1⟩). (7.19)

H|1⟩ = |−⟩ =
1√
2

(|0⟩ − |1⟩). (7.20)

The Hadamard gate H (figure (7.6)) is one of the universal gates of quantum computing. Therefore,
it meets HH∗ = H2 = I. What the Hadamard gate does, is convert a |0⟩ in 1√

2
(|0⟩ + |1⟩), Halfway

between |0⟩, and |1⟩ and converts |1⟩ in 1√
2
(|0⟩ − |1⟩) , which is also “halfway” between |0⟩, and

|1⟩. This property is known as an overlay and will be very useful when performing the Bell EPR
(entanglement). Geometrically, we can see it as a rotation on the Bolch sphere that responds to the
transformation of the qubit state between the bases X and Z.
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Figure 7.6: Hadamard Gate Circuit. A significant gate to get the superposition

This gate combined with the Pauli operators allows us to establish some exciting operations for
quantum computing (See Fig. (7.7)).

HZH =
1√
2

1 1

1 −1


1 0

0 −1

 1√
2

1 1

1 −1

 =

0 1

1 0

 = X. (7.21)

Figure 7.7: A circuit in Qiskit of the operation equivalent to HZH = X

XHZH =
1

2

1 −1

1 1


1 1

1 −1

 =

0 1

1 0

 = X. (7.22)

where HZH = XHZH
Generically, the Hadamard gate of m components can be described by the following equation:

Hm|x⟩xy =
1

2
m
2

∑
y∈Fm2

(−1)xy|y⟩. (7.23)

If we look a little, we can see that the Hadamard gate is a specific case of the Fourier quantum
transform in the vector base Fm2 for |x⟩ = |0⟩.

Hm|0⟩xy =
1

2
m
2

∑
y∈Fm2

(−1)xy|y⟩. (7.24)

We realize that we have an identical superposition of all the states of the orthonormal base Fm2 . This
is widely used to initialize quantum systems to have the same probability distribution.

U = ei∝

 u0 u1

−u1 u0

 . (7.25)

With ∝∈ R and with ui ∈ C so it meets that, u0u0 + u1u1 = 1. This implies that there is only
one θ ∈ [0, π] such that |u0| = cos θ2 and |u1| = sin θ2 . Therefore, we can write that u0 = e−iλ cos θ2
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and u1 = −eiµ sin θ
2 . With λ and µ ∈ R. Rewriting our unit transformation matrix, we will have:

U = ei∝

 u0 u1

−u1 u0

 =

e−iλcos( θ2 ) −eiµsin( θ2 )

−eiµsin( θ2 ) e−iλcos( θ2 )

 . (7.26)

If we note that λ = (β + γ)/2 y µ = (β − γ)/2, β, γ ∈ R, we can arrive at the generic expression
of the unit matrix as an association of the rotation matrices.e−iλcos( θ2 ) −eiµsin( θ2 )

−eiµsin( θ2 ) e−iλcos( θ2 )

 = Rz (β)Ry (θ)Rz (γ) . (7.27)

With

Rz (φ) =

e−iφ/2 0

0 eiφ/2

 = cos
(φ

2

)
I2 − isin

(φ
2

)
Z = e−

iφ
2 Z . (7.28)

Ry (θ) =

cos ( θ2) −sin
(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
 = cos

(
θ

2

)
I2 − isin

(
θ

2

)
Z = e−

iθ
2 Y . (7.29)

Rx (ψ) =

cos
(
ψ
2

)
−sin

(
ψ
2

)
sin
(
ψ
2

)
cos
(
ψ
2

)
 = cos

(
ψ

2

)
I2 − isin

(
ψ

2

)
Z = e−

iψ
2 X . (7.30)

To finish writing that U (θ, β, γ) = Rz (β)Ry (θ)Rz (γ) . We can also use the Euler decomposition
of the unit transformation matrix U to arrive at the expression[174]:

U = ei∝AXBXC. (7.31)

With A, B and C elements of the Clifford group[186][174], ABC = I2. We can now write U =
ei∝ Rz(β)Ry(θ)Rz(γ) with:

A = Rz (β)Ry

(
θ

2

)
. (7.32)

B = Ry

(
−θ

2

)
Rz

(
−β + γ

2

)
. (7.33)

C = Rz(
γ − β

2
). (7.34)

These operators fulfil the property of the unitary transformation and the Hermitian property,
which means, U∗U = UU∗ = In.
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7.10 Gate Rϕ

Let the universal gate U3 be a simplification of the universal matrix described above, we define the
rotate gate Rϕ (Fig. (7.8)) as a specific case of the universal gate U .

U3(θ, ϕ, λ) =

 cos
(
θ
2

)
−eiλsin

(
θ
2

)
eiϕsin( θ2 ) eiλ+iϕcos( θ2 )

 . (7.35)

Figure 7.8: Rϕ Gate of a qubit. This gate is significant for rotational operations

Rϕ = U3 (θ, ϕ, λ) |θ=ϕ=0 = U3 (0, 0, λ) = U1 =

1 0

0 eiλ

 . (7.36)

7.11 Gate T

The gate T (Fig. (7.9)) it is equivalent to the gate Rϕ with λ = π/4. So,

Rϕ|λ=π/4 = U1 =

1 0

0 eiλ

 =

1 0

0 ei
π
4

 . (7.37)

Figure 7.9: T Gate of one qubit. Remember that the inverse of this gate is not itself
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7.12 Gate S

The gate S (Fig. (7.10))is a particular cas of the Rϕ gate with ϕ = π/2. So,

Rϕ|ϕ=π/2 =

1 0

0 ei
π
2

 . (7.38)

Figure 7.10: S Gate of one qubit. Remember that the inverse of this gate is not itself

We want to make two relevant comments about this gate to our path to quantum computing. First,
gate S makes a quarter turn around the Bloch sphere, and its inverse is not in itself like the other
quantum gates described in this work. We can see that gates I, Z, S and T were individual cases of
gate Rϕ. Similarly, gate U3 is the most general of all single-qubit quantum gates. Each gate could be
specified as U3(θ, ϕ, λ) and with this, we can conclude that the single-bit quantum universality resides
at gate U3(θ, ϕ, λ). Qiskit provides gates U2 and U1, which are specific cases of gate U3 where θ = π

2
and θ = ϕ = 0 respectively

U3

(π
2
, ϕ, λ

)
= U2 =

1√
2

 0 −eiλ

eiϕ eiλ+iϕ

U3 (0, 0, λ) = U1 =

1 0

0 eiλ

 . (7.39)

Before running on real IBMQ quantum hardware, all single-qubit operations are compiled on universal
gates U1, U2, and U3. The universality of this quantum gate is seen from the fact that there is an
infinite number of possible gates.

7.13 More than one qubit system.

To express a qubit system, the tensor product is used. The tensor product[225] between more than
two states is denoted as ⊗. If we write a three-qubit system (Fig. (7.11)), it would be like the following
case |011⟩ = |0⟩ ⊗ |1⟩ ⊗ |1⟩

|011⟩ = |0⟩ ⊗ |1⟩ ⊗ |1⟩|011⟩ =

1

0

⊗
0

1

⊗
0

1

 |011⟩. (7.40)
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|011⟩ =


1

0

1


0

0

1




⊗

0

1

 |011⟩ =



0

1

0

0


⊗

0

1

 |011⟩ =



0

0

1


1

0

1


0

0

1


0

0

1





=



0

0

0

1

0

0

0

0



. (7.41)

For a two-qubit system, it would be |01⟩ = |0⟩ ⊗ |1⟩ = |0⟩|1⟩. A binary quantum gate is a unitary

Figure 7.11: A 3-qubit system where we apply a Hadamard gate to each qubit. With this application,
we assign each of the input qubits with the same probability

operation in two qubits, that is, a unitary map F22 → F2 ⊗ F2 with the base {|00⟩, |01⟩, |10⟩, |11⟩}

|00⟩ =



0

0

0

0


, |01⟩ =



0

1

0

0


, |10⟩ =



0

0

1

0


, |11⟩ =



0

0

0

1


. (7.42)

Let K and L be qubits. Let CNOT be a unitary quantum gate acting on L. The gate CNOT
controlled is the binary gate in K ⊗ L defined by:

LCNOT =

1 0

0 0

⊗ I2 +

0 0

0 1

⊗ L. (7.43)
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In this case, L =

0 1

1 0


LCNOT =

1 0

0 0

⊗
1 0

0 1

+

0 0

0 1

⊗ L =

1 0

0 0

⊗
1 1

1 1

+

0L 0L

0L 1L

 . (7.44)

=


1

1 0

0 1

 0

1 0

0 1


0

1 0

0 1

 0

1 0

0 1




+


0

0 1

1 0

 0

0 1

1 0


0

0 1

1 0

 1

0 1

1 0




=



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


,+



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


. (7.45)

Where:

LCNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (7.46)

What CNOT gate (Fig. (7.12)) does is to map |00⟩ → |00⟩, |01⟩ → |01⟩, |10⟩ → |11⟩, |11⟩ → |10⟩.
Generically, CNOT is described as:

LCNOT =



1 0 0 0

0 1 0 0

0 0 q00 q01

0 0 q10 q11


=

I2 02

02 X2

 . (7.47)

Figure 7.12: The two qubits CNOT gate

The following list gives all the gates we need to create our algorithm U1, U2, U3, CNOT and the
identity gate I. Other types of quantum computers have different native gates, such as the two-qubit
atomic gate [83].
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7.14 Toffoli gate

As we have discussed above, the Toffoli gate (Fig. (7.13)) is a fundamental gate for the construction
of quantum circuits. The operation performed by the Toffoli gate is described by the relationship
|q0⟩|q1⟩|q2⟩ → |q0⟩|q1⟩|q0⊕q12⟩. This gate can be built using the Hadamard gate, and phase-controlled
rotation gate and CNOT gates. In the figure (7.13), we observe the implementation of this gate in
Qiskit.

Figure 7.13: The Toffoli gate implemented with 2 CNOT gate, 2 Rϕ|ϕ=π gates and another gate
Rϕ|ϕ=−π

7.15 Summary

At this point, we are ready to create complex quantum circuits. We just have to remember that if we
want to create a quantum system, we can combine two or more than two systems following postulate
2. And, based on the works of Toffoli, Barenco and Emil Post, we can create any quantum circuit
based on quantum gates fundamentals CNOT , Hadamard H, the Paulis gates X, Y and Z and the
Rϕ rotation gate). But before we get fully into quantum computing, we will review the state of the
art of quantum computers in the next chapter.
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Chapter 8

Quantum Computers

8.1 Introduction

From Feynman [162] to today, quantum computers are computers based on quantum mechanics tech-
niques to perform calculations. These computations are based on the probability of an object’s state
on a complete inner-product space known as the Hilbert space[225]. The states represent logical oper-
ations using an electron/photons spin. Spin-up is assigned to logic 1 and spin-down to logic 0. These
discrete states allow for digital calculation [174][166]. The quantum system with two states exploit-
ing electron spin is a qubit. The calculations, or quantum mechanical representation, can process
exponentially more data compared to classical computers. Because in quantum systems, the discrete
states can exist in multiple states simultaneously. Quantum development kits – for coding in quantum
assembly languages QCaaS subscription services – for use-case exploration, algorithm development,
and simulation Partnerships with startups – to drive rapid innovation in QC initiatives Quantum
hardware – to access quantum machines with enormous compute capacities.

One of the quantum mechanics principles used in quantum computing is superposition. The
superposition propriety is when a qubit can be both 0 and 1 simultaneously. As observed, the Hilbert
space is the space of complex vectors. Therefore, the qubit’s superposition can be comprehended like
a linear combinatory of each vector of the basis. Fundamentally, when a qubit is in a superposition of
states, a logical operation applied to it will operate on both states simultaneously. Another principle of
quantum computing that gives quantum computing one of the significant rewards is the entanglement
[195]. This propriety is well-defined when the states of individual qubits are dependent on others.

What the companies (see Fig. (8.1)) do is mostly combine these principles (superposition and
entanglement) with the foremost objective to create the core power of quantum computing [189], hence
quantum parallelism. With this combination, quantum computers perform computation on all possible
inputs instantaneously. This enables quantum computers to explore and design algorithms that no
classical computer will ever be able to create. This is a way to define the Quantum Supremacy[163]
[189][24].
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Figure 8.1: The quantum computing ecosystem [76]

8.2 Simulated annealing

The Simulated annealing (SA) is described as a probabilistic technique for approximating the global
optimum of a given function. Specifically, it is a metaheuristic to approximate global optimisation in
a large search space for an optimisation problem. It is often used when the search space is discrete.

It is one of the most successful and used heuristic techniques. This method is advantageous and
appropriate for optimisation problems in large (considerable) search spaces to solve the issues through
an exhaustive search and with certain cost functions. Simulated annealing (Fig. (8.2)) can be seen
as a random walk through the solution space, where each element (quantum particles) creates a path
across the optimisation horizon. A heuristic is a technique to find an approximate solution. As we
already know, they are useful in a scenario where the time needed to find an exact solution can be
more than considerable. The motion described by the particle but viewed uphill is described as a
thermal jump. This is because Simulated annealing is a physics algorithm that mimics the behaviour
of materials as they cool slowly. The ”walker” is like an atom in a metal driven by temperature to
reconfigure itself. These changes are random but are more likely to move to lower energy settings
than higher energy configurations. That is why it is said that the ”walker” follows a biased random
movement.

This technique is used to model, formulate, and solve combinatorial problems.
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Figure 8.2: Simulated annealing concept. The motion described by the particle but viewed uphill is
described as a thermal jump. This is because Simulated annealing is a physics algorithm that mimics
the behaviour of materials as they cool slowly. The ”walker” is like an atom in a metal driven by
temperature to reconfigure itself. These changes are random but are more likely to move to lower
energy settings than higher energy configurations. That is why it is said that the ”walker” follows a
biased random movement.

8.3 Quantum annealing

The Quantum annealing (QA) is described as a metaheuristic for finding the global minimum of
a given objective function over a given set of candidate solutions that are stated by a process using
quantum decoherence.

Quantum annealing (Fig. (8.3)) copies the simulated annealing philosophy by introducing a few
small changes. In simulated annealing, the solution space is explored by doing thermal jumps from
one solution to the next. But in quantum annealing, what you do is use the quantum effect called the
quantum tunnel [195], which allows us to travel through these energy barriers. It is the same effect
that gives life to tunnel diodes.

Figure 8.3: Advantage of quantum tunnelling over thermal jump taking advantage of the Simulated
Annealing concept
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8.3.1 Quantum Tunneling

The Quantum tunnelling is described as the quantum mechanical phenomenon where a wavefunction
can propagate through a potential barrier.

To understand this characteristic of Quantum Tunneling, we can analyse the basic model to study
the qualitative behaviour of a quantum system. In this model, we have the potential barrier seen in
Figure (8.4) with height V0 And width d = x2 − x1. Let us consider that a particle of mass m with

Figure 8.4: one-dimensional potential barrier

energy E <V0 passes through this potential energy, and we want to know the probability of transition

of the particle P ≡ |ψb|2
|ψa|2 where ψa and ψb are the functions waveform on the left and right side of the

barrier. Therefore, it is necessary to use the equation of motion of quantum systems, the Schrödinger
equation, whose general form is:

Hψ = ih̄
∂ψ

∂t
. (8.1)

In the case of the Figure (8.4), the Hamiltonian is equal to

H =
h̄2

2m

d2ψ

dx2
+ V0 [θ (x1 − x)− θ (x2 − x)]ψ. (8.2)

Now, applying the Schrödinger equation, we arrive at (8.3):

H =
h̄2

2m

d2ψ

dx2
+ V0 [θ (x1 − x)− θ (x2 − x)]ψ = ih̄

∂ψ

∂t
. (8.3)

The particle will behave like a flat wave on the left side of the barrier, remaining as ψa = Ae−ikx +

Beikx with k =
√

2mE
h̄2 . On the right side of the barrier, the particle is also a free particle ψb =

Ce−ikx+Deikx. Using normalization and continuity conditions throughout the space, the probability
of transition would be:

P =
1

1 +
V 2
0 sinh2∆

4E(V0−E)

. (8.4)

With

∆ ≡ d

√
2m (V0 − E)

h̄2
. (8.5)
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If we now apply the limit to P , taking into account that V0 constant and we increase d, the
transition probability becomes smaller and, in the limit, limd→∞ P = 0. In Quantum annealing,
the problem to be solved is modelled by mapping qubits, which are the variables. The energy of
an allocation/mapping given to qubits is the value of the cost function that has a close relationship
with the Hamiltonian. How does it develop? Initially, the system begins with the quantum state
in a full overlay over many possible qubit assignments. Then, the quantum field strength is varied
instead of varying the temperature, as we did in simulated annealing. The intensity of the quantum
field is a parameter that defines the radius of the neighbouring states to which we can move. As
time goes by and we get closer to a solution, this radius gets smaller and smaller. At the end of the
annealing process, the system is established in a particularly low energy configuration (ground state)
that can then be measured, giving us the optimisation problem solution. The cleanest mathematical
formulation of quantum annealing is known for adiabatic quantum optimisation, and this is what
almost all quantum optimisation methods attempt to emulate.

Adiabatic Quantum Computing (AQC)[163] uses a concept of quantum physics known as the
adiabatic theorem[148]. The process followed by the AQC can be summarised in two very recognisable
steps:

1. The first step is to prepare a system and initialise it to its lowest energy state, known as the
ground state.

2. The second step allows us to transform/map our problem in the system.

The adiabatic theorem states that as long as this transformation occurs slow enough, the system
has time to adapt and will remain in the lowest energy configuration. When we are done with our
transformations, we will find solutions.

To use the adiabatic theorem for computation, researchers H. Nishimori and T. Kadowaki demon-
strated that it is necessary to use Ising’s transversal model to code the problem to be optimised and
activate it slowly. The Hamiltonian illustrating this is as follows,

HIsing = −A (t)

∑
i<j

JijZiZj +
∑
i

hiZi

+B (t)
∑
i

hiXi. (8.6)

With Zi the Pauli matrix in Z. In many books, we can see instead of Zi, σz and instead of Xi,
σx or simply σi σx, σy, σz generally representing the Pauli matrices or operators in X, Y y Z.

Taking into account that:

A(t)|t=0 = 0 and B(0)|t=0 = 1. (8.7)

With Xi the Pauli matrix in X (generically σx). As mentioned above, if we want the system to
be in the ground state, the initial condition must be

|ψ(t)⟩|t=0 = |+1⟩x ⊗ |+2⟩x ⊗ . . .⊗ |+n−1⟩x ⊗ |+n⟩x. (8.8)

With |+i⟩x is the proper state of σxi . In some books or articles, we can see the following notification
|+⟩⊗N with N is the number of qubits.

Now suppose that quantum annealing ends at T >> 1, where (t)|t=T = 1 and B(t)|t=T = 0. The
adiabatic theorem ensures that |ψ(t)⟩|t=T will be the ground state of H(t) such that the energy of
the system will be the energy destined for the ground state. This is the basis of adiabatic quantum
computing. There are several derivatives of this technique, but it is not in line with this research.
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8.4 Quantum Computers

The Quantum computers can be defined as computers that use the quantum mechanic’s properties to
store data and perform computations that can be extremely worthwhile for certain tasks. As a result,
they could vastly outperform even our best supercomputers and classical computer.

There are several techniques for building a quantum computer, and the way it is currently done
is by combining multiple various multicore processors [46]. All of this brings to life numerous models
of quantum computing. Theoretical models, quantum circuit models, adiabatic quantum computing,
measurement-based quantum computing, and topological quantum computing, are equivalent to each
other within the reduction of polynomial-time. The most widespread and considerably developed
model is the circuit model for gate-based quantum computation. As discussed in the chapter on
quantum gates, the conceptual generalisation of Boolean logic gates (AND, OR, NOT, NAND, etc.)
is used for classical computing works for quantum computing (Emil Post). With the combination of
these basic gates and the appropriate memory structures based on architecture, it gives life to the
quantum computer.

Quantum annealing has a somewhat different software stack structure than gate-based model
quantum computers. The annealing-based computer must be viewed as a specific case of a quantum
accelerator based on quantum gate algorithms. So instead of a quantum circuit, as in the case
of IBM and company, the level of abstraction is Ising’s classic model. Let’s take back everything
we’ve already talked about solving problems with the Ising model. Like gate model superconducting
quantum computers, superconducting quantum annealers also suffer from limited connectivity. This
means we have to find a smaller embedded graph, combining several physical qubits into one logical
qubit. Since this operation is already NP-Hard, it is necessary to use probabilistic heuristics.

Below, from Figure (8.5) to (8.9), we are presented with examples of Full-stack quantum computer
architectures. To see the architecture being followed for the construction of the quantum indepen-
dently of the Quantum Processing Unit (QPU). The QPU, also known as a quantum chip, is a physical
chip (manufactured by players based on the techniques discussed above) that contains several inter-
connected qubits. It is the fundamental component of a full quantum computer, which includes the
”motherboard∗” environment for the QPU, the control electronics, and many other components.
Currently, there are two dominant configurations for quantum computing. Continuous-Time Quantum
Calculus (D-Wave), in which problems are coded in quantum Hamiltonians and the natural dynam-
ics of physical systems, and the Gate Model Quantum Calculus (IBM) [163][174] [225], in which the
calculation is made through a series of discrete gate operations.

In continuous-time quantum computation, optimisation is achieved by mapping the Hamiltonian
optimisation problem of a controllable quantum system so that the low-energy states correspond to
optimal solutions. The quantum superconducting circuit analysers produced by D-Wave Systems Inc
are the most mature[163][189].

A D-Wave machine is a physical representation of the Ising model and, as such, has a Hamiltonian
”problem” of the form of the equation (6.8).

Returning to our study, the main problem to solve is assigned to the previous Hamiltonian. The
system begins with the Hamiltonian: Hinitial =

∑
i hiZi and the annealing parameter, s is used to

assign the initial Hamiltonian Hinitial to the Hamiltonian problem Hising using H(s) = (1−s)Hinitial+
sHising.

The process is done slow enough based on the annealing theorem to stay close to the system’s
ground state. At the same time, the Hamiltonian varies according to the problem, using tunnels to
remain close to the ground state.

∗In this case, to be a purist, it does not make sense to speak of the motherboard as in classic computers, but of
housing thinking of a datacenter. Since today’s quantum computers live in exceptional houses, another approach would
be to think of a future with possible quantum laptops.
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Figure 8.5: Full-Stack execution [46]

Figure 8.6: compiler infrastructure [46]

For quantum gate-based computers, one of the most promising algorithms for optimisation is the
one known by Ansatz Alternative Quantum Operator, also known as the Approximate Quantum
Optimization Algorithm (QAOA) [112] [189][183][177][39]. QAOA is exclusively designed to run in
polynomial time on NISQ devices [189] and find optimal solutions for optimisation problems. This
algorithm is used to solve critical optimisation problems that classically require exponential compu-
tational complexity to find the optimal solution exactly. Although, in principle, QAOA could be
considered a gate model or a continuous-time configuration [112] [189].

Based on the work of Andrew Lucas, Ising formulations of many NP problems [156], any problem
in NP can be assigned to an NP-hard in polynomial time, and integer factorisation is, in fact, an
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Figure 8.7: An example of general-purpose quantum microarchitecture [46]

Figure 8.8: Example of experimental implementation of microarchitecture for (real) superconducting
qubits [46]

NP problem. Ising’s Hamiltonian is a quadratic function that corresponds to a binary optimisation
problem without quadratic constraints (QUBO), being in NP-hard. A universal Quantum Computing
can solve the Hamiltonian of the same problem in polynomial time. The thing that a Quantum
Annealing cannot do, since it cannot simulate a universal Quantum Computing in polynomial time[13].

Gate-based quantum algorithms are designed, so that solution states interfere constructively. In
contrast, non-solutions interfere destructively by skewing the final probability distribution to measure
solutions. However, the error rates are still around 10−2 and 10−3 and need to be substantially
improved.

Adiabatic quantum computing (AQC) was the first quantum computation model to solve combi-
natorial optimisation problems. Unlike the gate, based on the quantum computation model, it was
based on the adiabatic theorem of quantum mechanics. In this model, to perform any calculation, we
need two Hamiltonians called Hmixer and Hcost. Among them, the fundamental state of Hmixer must
be easily prepared, like |+⟩⊗N and the ground state of Hcost encode the solution to our problem.
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Figure 8.9: Example of the new microarchitecture for the quantum genome sequencing accelerator
[46]

Figure 8.10: Microsoft Quantum Computer [105].

8.4.1 Quantum gate-based computers

In this section, we will present the leading companies that follow the career of the construction of the
quantum computer based on gates.

IBM (Fig. (8.11)) is one of the most advanced technology companies in quantum computing with
cloud computing; IBM Quantum Experience (IBMQ)†. To date, there are more than 250,000 users
who have tried the IBMQ service ‡. In addition, more than 100 companies are paying for its service,
using IBM hardware, getting advice from the company’s experts, and counting on all kinds of services.

Currently, IBM has 15 New York-based quantum cloud computers. The objective is to ensure that
each country can have one, but while waiting for agreements with the different governments, IBM will

†https://quantum-computing.ibm.com/
‡Private data from slack and IBMQ profiles
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Figure 8.11: IBM Quantum Computer [18].

Figure 8.12: Xanadu Quantum Computer [54].

Figure 8.13: Inside D-Wave Quantum Computer [104]

begin its distribution in Germany and Japan.

Recently, IBM offered a quantum processor of up to 53 qubits. On the other hand:

Intel is analysing semiconductor and superconductor qubits, but fundamentally they are more
interested in the qubit semiconductor processor. The essence is to focus on qubit production, partly
backed by a solid microarchitecture. Microsoft (Fig. (8.10)) has some preference for the Majorana-
based approach [138], but they have yet to do the first qubit based on that quasi-particle. Nevertheless,
they are very active in software development. Alibaba is betting very heavily in the field of quantum
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computing. It has a quantum lab that focuses on a range of activities ranging from developing a
quantum processor and classic quantum algorithms to simulating quantum physics[14]. Google is
also one of the leaders in superconducting qubits. The team led by John Martinis has developed the
quantum computer Sycamore§ of 54 qubits and a specific algorithm to show quantum supremacy (the
algorithm generates sequences of random numbers and has no relevant practical applications) [106].
Rigetti is a startup company focused on the superconducting quantum processor. They are progressing
well, but there is still no applicable processor on the market, even though a processor can be used for
some testing purposes. Rigetti’s Aspen-7-25Q-B Quantum Processing Unit (QPU) has 25 qubits with
24 programmable two-qubit gate interactions. The company released its last 31 qubits Aspen -8 QPU
on May 5, 2020 [110][109]. Xanadu (Fig. (8.12)) focuses on continuous-variable quantum computing
based on squeezed light photonics[45]. A slightly different model compared to qubits. The essential
elements of its photonic system are qumodes, each of which can be represented by superimposing on
different numbers of photons [42][127]. Xanadu designs and incorporates photonic quantum silicon
chips into existing hardware to create a complete quantum computing experience.

Following the race to get a quantum computer, Intel researchers (qHiPSTER¶), MIT and the
University of Toronto are addressing the question of how the performance of next-generation quantum
devices submodules can be designed and tested using existing quantum computers. Furthermore,
the methods drawn with the researchers open a new path to the design of quantum processors,
candidates when the demands to calculate the properties of the submodule exceed the capabilities of
classical computing resources. All these steps lead us to the well-known Full-stack [169]. With the

Figure 8.14: The challenge of simulating transmon quantum processors [143]

increasing size of quantum processors, the submodules that make up the processor will be too large to

§https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html
¶Intel Quantum Simulator
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simulate a classic computer accurately. Therefore, one will soon have to fabricate and test each new
design primitive and parameter choice in time-consuming coordination between design, fabrication,
and experimental validation.

8.4.2 Quantum annealing-based computers

This section will present the leading companies that follow the career of the construction of the
quantum computer based on annealing.

D-Wave (Fig. (8.13)) is the pioneer company in the construction of quantum computers during
this last decade. In 2018, its technology reached up to 2000 superconducting qubits. D-Wave Systems’
commitment is in quantum hardware. However, it also offers a programming environment Ocean‖,
for basic operations compared with Qiskit or PennyLane. Fujitsu has invested in the development
of digital annealing. Therefore, its bet is not entirely a quantum computer, but it is used to solve
QUBO problems through simulation[201]. Hitachi also specialises in making a quantum annealing-
based quantum accelerator using semiconductor qubits. Its bet∗∗ is similar to Fujitsu. Seen from

Figure 8.15: Microsoft Quantum Development Kit. Provides an end-to-end scalable quantum devel-
opment environment and leverages the Q# quantum programming language, which enables users to
design, compile, and simulate quantum algorithms [167].

the outside, 1QBit is a software company that identifies insoluble industrial problems and creates the
necessary software to take advantage of the best classical and quantum hardware technologies to solve
them. 1QBit is instead focused on computational finance, materials science, quantum chemistry, and
life sciences. Its algorithms serve both gate quantum computing and quantum annealing. Its frame-
work, 1Qloud, focuses on optimisation issues that map to QUBO for quantum annealing computers
and similar devices from D-Wave. Fujitsu, in contrast, its QEMIST†† platform focuses on advanced
materials and quantum chemistry research, with universal quantum computing processors.

We can observe from the figure (8.14) the challenge of simulating transmon quantum processors.
We can also analyse Microsoft’s framework that offers an end-to-end scalable environment from the
figure (8.15).

‖https://ocean.dwavesys.com/
∗∗https://www.hitachi.com/rd/sc/story/cmos annealing2/index.html
††https://1qbit.com/qemist/
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8.5 summary

This chapter has analysed and defined the state of the art of quantum computers and the companies
creating such computers. We have seen that to date, and there are two potential techniques; Quantum
Annealing and Quantum Gate-Based. Furthermore, we have revised several strategies for building a
quantum computer and are currently done by combining multiple multicore processors. Finally, we
also focus on the challenge of simulating transmon quantum processors.

We can focus on research since we have the necessary ingredients to experiment and implement a
quantum algorithm for the combinatorial optimisation problem.
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Chapter 9

Quantum Computing

9.1 Introduction

In this chapter, we will experiment with quantum computing, mainly on Qiskit (Fig. (10.12)). We
will explore variational techniques and some of their libraries to do this.

9.1.1 Quadratic Unconstrained Binary Optimization Problems

The Quadratic Unconstrained Binary Optimization, commonly called QUBO, is known as a combina-
torial optimization problem with many applications, from finance and economics to machine learning.

QUBO problems are traditionally used in computer science. True and False variables, states that
correspond to 1 and 0 values. A QUBO problem is defined using an upper-diagonal matrix Q, which is
an N ×N upper-triangular matrix of real weights, and x, a vector of binary variables, as minimizing
the function.

H(x)QUBO =
N∑
i

∑
j<i

Qijxixj +
N∑
i

Qixi. (9.1)

Where the diagonal terms Qij are the linear coefficients and the nonzero off-diagonal terms are
the quadratic coefficients Qij . The QUBO is unconstrained in that there are no constraints on the
variables other than those expressed in Q. The diagonal entries of Q are the linear coefficients that
bias the qubits. The nonzero off-diagonal terms are the quadratic coefficients that define the strength
of the coupling between variables.

The input may be full or sparse. Both upper- and lower-triangular values can be used; (i, j) and
(j, i) entries are added together. An exception is raised if a Q value is given to a coupler not present.
Only entries indexed by working couplers may be nonzero. This concept is so powerful that we will
use it in our formulation, taking into account that with the docplex, we can’t formulate inequation
constraints.

The QUBO is usually represented more concisely as equation (9.2)
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min
x∈{0,1 }n

xTQx. (9.2)

We can also find the Hamiltonian of the objective function expressed as an in the scalar notation
of the QUBO form as follows:

H(ai, bij ; qi)QUBO =
N∑
i

∑
j<i

bijqiqj +
N∑
i

aiqi. (9.3)

This form can be easily found in the D-Wave formulation. The transformation between Ising and
QUBO is s = 2x− 1. Let demonstrate that QUBO and the Ising of the Hamiltonian are similar. This
means that we will have the algorithm in Ising form by writing an algorithm for QUBO with a single
variable change. That is very useful to have the algorithm for various platforms based on quantum
gates or quantum annealing.

H(s) =

N∑
i

∑
j<i

Jijsisj +

N∑
i

hisi. (9.4)

With si and sj ∈ {−1, 1}. For the translation in QUBO formulation, let’s consider xi and xj ∈
{0, 1} and using the spin relation s = 2x− 1, we can remap the Hamiltonian as follow:

H(s) =
N∑
i

∑
j<i

Jij(2xi − 1)(2xj − 1) +
N∑
i

hi(2xi − 1)

=
N∑
i

∑
j<i

Jij(4xixj − 2xi − 2xj + 1) +
N∑
i

(2hixi − hi).

(9.5)

Regrouping all the constants into C0 we have the following expression:

H (s) =

N∑
i

∑
j<i

4Jijxixj −
N∑
i

xi
∑
j<i

2Jij −
N∑
i

∑
j<i

2Jijxj +

N∑
i

2hixi − C0. (9.6)

By grouping xi terms together, we can write, ai =
∑N
j<i 2Jij + 2hi, so:

H (s) =
N∑
i

∑
j<i

4Jijxixj −
N∑
i

aixi − 2
N∑
i

∑
j<i

Jijxj + C0. (9.7)

Let us develop the term
∑N
i

∑
j<i Jijxj in term of xi.

N∑
i

∑
j<i

Jijxj = J10x0 + J20x0 + J21x1 + J30x0 + J31x1 + J32x2 + . . .

+ JN0x0 + JN1x1 + JN2x2 + JN2x3 + JN,N−1xN−1.

(9.8)

We can observe that each column has a term:

(J10 + J20 + J30 + . . .+ JN0)x0 + (J21 + J31 + . . .+ JN1)x1 + . . .+ (JN,N−1)xN−1. (9.9)
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Terms
Problem Expression Linear Coefficient Quadratic Coefficient Variable States

QUBO (scalar) ai ai,j qi {0, 1}
QUBO (matrix) Qi,j Qi,j xi {0, 1}

Ising hi Ji,j si {−1, 1}

Table 9.1: Comparation between Ising and QUBO representation and related terminology.

Let’s cast the Jij as some constants bi, so:

b0x0 + b1x1 + b2x2 + . . .+ bN−1xN−1. (9.10)

Since there is no xN in the original sum, so bN = 0. So we can write that:

N∑
i

∑
j<i

Jijxj =
N∑
i

bixi. (9.11)

So, our Hamiltonian can be written as:

H (s) =
N∑
i

∑
j<i

4Jijxixj −
N∑
i

aixi − 2
N∑
i

bixi + C0. (9.12)

Let J
′

ij = 4Jij and h
′

i = ai − 2bi, therefore,

H (s) =

N∑
i

∑
j<i

J
′

ijxixj −
N∑
i

h
′

ixi + C0H (s) = H (x) + C0. (9.13)

Where we can experiment that Ising H(s) and QUBO H(x) are similar in form and relations; they
are isomorphic.

To convert the coefficients from QUBO to Ising:

Jij =
1

4
Qij

hi =
1

2
Qii +

1

4

∑
i<j

Qij .
(9.14)

Or from Ising to QUBO:

Qij = 4Jij

Qii = 2hi −
1

2

∑
i<j

Qij .
(9.15)

9.2 Variational calculation

The variational method is defined as the way to find approximations to the lowest energy eigenstate
or ground state and some excited states. It allows calculating approximate wavefunctions such as
molecular orbitals. The basis for this method is the variational principle.
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The variational calculation [224] is the basis of the variational principle [119]. We can say that
the variational calculus consists of looking for maximums and minimums or extensively looking for
relative ends of a function of functions (functional) over a space of functions. This calculation can
be seen as a generalization of the elementary calculus of a variable’s maximum and minimum real
functions.

Mathematically speaking, when we talk about optimization, we are talking in some way to find
the maximum or minimum of the function that models our scenario; Our objective function. That
is, calculate the minimum or maximum of our objective function. Although it seems easy, in many
cases, the calculation of the minimum or ceiling is not entirely trivial because of the structure of the
data, the size of the data or basically or for the computational cost required to make this calculation
makes it non-trivial. The computational cost [192] is one of the limits of all scientific advances. For
that same reason, the scientific community is working to equip itself with machines that can give it
the most significant computational capacity [82].

Several branches defined and designed alternatives in solving optimization problems by calculating
variations. One of the most contemplated approaches is from Richard Bellman [207], who developed
dynamic programming [207, 35] with apparent alternatives to the calculation of variations.

The work of Sturm-Liouville [206] and Rayleigh-Ritz method [198], are the basis of the Variational
Quantum Eignesolver; the VQE. A dynamic control system that allows us to make the variational
calculation of a quantum state|ψ (θ)⟩ associated with its expectation value H.

Let |ψi⟩ be an eigenvector, of a matrix A which is invariant under transformation by A up to a
scalar multiplicative constant (the eigenvalue λi. That is A|ψi⟩ = λi|ψi⟩. If we define the Hamiltonian
H a matrix that is Hermitian,

H =

N∑
i=1

λi|ψi⟩⟨ψi|. (9.16)

where each λi is the eigenvalue corresponding to the eigenvector |ψi⟩ . Furthermore, the expectation
value of the observable on H on an arbitrary quantum state |ψ⟩ is given by:

⟨H⟩ = ⟨ψ (θ) |H|ψ (θ)⟩. (9.17)

Substituting the value of H and using the Hermitian property in the equation,

⟨H⟩ = ⟨ψ (θ) |

(
N∑
i=1

λi|ψi⟩⟨ψi|

)
|ψ (θ)⟩ =

(
N∑
i=1

λi⟨ψ (θ) |ψi⟩⟨ψi|ψ (θ)⟩

)

=
N∑
i=1

λi|⟨ψi|ψ (θ)⟩|2⟨H⟩ =
N∑
i=1

λi|⟨ψi|ψ (θ)⟩|2.

(9.18)

This ⟨H⟩ =
∑N
i=1 λi|⟨ψi|ψ (θ)⟩|2 demonstrates that the expectation value of an observable on

any state can be expressed as a linear combination using the eigenvalues associated with H as the
weights. Moreover, each of the weights in the linear combination is greater than or equal to 0, as
|⟨ψi|ψ (θ)⟩|2 ≥ 0 and so it is clear that ⟨H⟩

ψ
(−→
θ
) ≥ λmin.

This is very powerful; it implies that the expectation value of any wave function will always be
at least the minimum eigenvalue associated with a given H. Moreover, the expectation value of the
state |ψmin⟩ is provided by ⟨H⟩

ψmin

(−→
θ
) = λmin = Egs. This is the base of the VQE, where Egs is the

ground state energy of that system related to the Hamiltonian H.

A fundamental and relevant concept is knowing that a fixed variational form with a polynomial
number of parameters can only generate transformations to a polynomially dimensioned subspace of
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all states in a Hilbert space of exponential size [174]. This is very important for all algorithms based on
variational calculation. It is also imperative to mention that the ability to generate an arbitrary state
ensures that during the optimization process, the variational form does not limit the set of achievable
states on which the expected value can be taken. Usually, this limitation is given by the classical
algorithm. This leads us to see that there are several variational forms. Some, like Ry and RyRz, are
heuristically designed, regardless of the target domain.

While building a variational form, we must balance two different objectives.
Normally, a variational form n qubits could generate any possible state |ψ⟩ where |ψ⟩ ∈ C and

N = 2n. Nevertheless, we would like the variational form to use as few variables/parameters as
possible. This is the contradiction. We must have expertise when creating the ideal variational form
of our circuit.

In the experimentation chapter, we will work intuitively until we reach our algorithm, fulfilling the
two mentioned objectives.

9.2.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver, most known as VQE, is a flagship algorithm for quantum
chemistry using near-term quantum computers. It is an application of the Ritz variational principle,
where a quantum computer is trained to prepare the ground state of a given molecule.

Unfortunately, we’re still in the Noisy Intermediate-Scale Quantum (NISQ) [189] era because we
don’t have a perfect quantum computer yet. To compensate for the fact that quantum isn’t perfect
yet, researchers started developing algorithms that work both quantum and classical to solve problems.
The VQE[183][117][89] is based on the variational principle, which is dynamic programming. Using
the VQE, we can make smart and adaptive algorithms (Figures (9.1) and (9.2)). This area is known
as Quantum Machine Learning (QML) [48] and one of the warmest QML algorithms nowadays is
the Variational Quantum Eigensolver. This is because its applications range from finance, biology,
scheduling and chemistry. One of the essential characteristics of molecules is their ground state energy.
The ground state energy is just the lowest possible energy state that a molecule can be in. The ground
state energy of a molecule is vital because it gives us more information about the electron configuration
of that molecule.

Figure 9.1: Adaptative Variational Quantum Eigensolver

The VQE is a hybrid quantum/classical algorithm originally proposed to approximate the ground
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state of a quantum chemical system (the state attaining the minimum energy).
By varying the experimental parameters in the preparation of the state and calculating the

Rayleigh-Ritz ratio [238] using the subroutine in a classical minimization, unknown eigenvectors can
be prepared. At the end of the algorithm, the reconstruction of the eigenvector stored in the final set
of experimental parameters that define the state will be done. The variational method in quantum
mechanics is used, which is a way of finding approximations to the energetic state of lower energy or
fundamental state, and some excited states. This allows to calculate approximate wave functions, such
as molecular orbitals and is the basis of this method. It is the variational principle that will enable us
to write the following equation ⟨H⟩

ψ
(−→
θ
) ≥ λi. With λi as eigenvector and ⟨H⟩

ψ
(−→
θ
) as the expected

value. The problem that the VQE solves is reduced to finding such an optimal choice of parameters
−→
θ ,

that the expected value is minimized and that a lower eigenvalue is located. ⟨H⟩ = ⟨ψ (θ) |H|ψ (θ)⟩.
Architecture of the quantum-variational eigensolver (See Fig. (9.2)). Algorithm 1: Quantum

states that have been previously prepared are fed into the quantum modules, which compute ⟨Hi⟩,
where Hi is any given term in the sum defining H. The results are passed to the CPU, which
computes ⟨H⟩. Algorithm 2: The classical minimization algorithm, run on the CPU, takes ⟨H⟩ and
determines the new state parameters, which are then fed back to the QPU. First, we prepare the trial

Figure 9.2: Architecture of the Variational Quantum Eigensolver. The architecture of the quantum-
variational eigensolver. Algorithm 1: Quantum states that have been previously prepared are fed
into the quantum modules, which compute ⟨Hi⟩, where Hi is any given term in the sum defining H.
The results are passed to the CPU, which computes ⟨H⟩. Algorithm 2: The classical minimization
algorithm, run on the CPU, takes ⟨H⟩ and determines the new state parameters, which are then fed
back to the QPU

wavefunction on a quantum processor. Then, we measure the qubits, resulting in an n -bit string
x0...xn−1. Each observed string easily translates into a sample from ⟨ψ (θ) |H|ψ (θ)⟩, because H is
a weighted summation of tensor products of Pauli Z-matrices, and each such term can be computed

CHAPTER 9. QUANTUM COMPUTING Page 106



with a simple parity check. We denote these samples by Hk (θ), k = 1, . . . ,K, where K is a natural
number and is the number of samples.

The sample mean (9.19) is an estimator for ⟨H⟩ = ⟨ψ (θ) |H|ψ (θ)⟩ and is used as the objective
function for the classical optimization algorithm.

mean =
1

K

K∑
k=1

Hk (θ) . (9.19)

The need for the VQE algorithm is seen when solving an optimization problem related to a Hamil-
tonian. Once the Hamiltonian is built, we use/apply VQE to determine the ground state, from which
an optimal solution to our objective function can be sampled with a probability of 1.

Assuming n qubits, we start by applying single qubit Y rotations to every qubit, parametrized
by an angle θ0,i for qubit i. We then repeat the following ptimes. We apply controlled Z gates to
all qubit pairs (i, j) satisfying i < j, where i denotes the control qubit and j the target qubit; and
we add another layer of single-qubit Y rotations to every qubit, parametrized by θk,i for qubit i and
repetition k ∈ {1, . . . , p}.

9.2.2 Noisy VQE for the Optimization problem

In Quantum computing, we can classify the algorithms in 3 groups. Gate circuits [197], Annealing
[55] and Variational [117][24][224]. Although the logic gates are not perfect and have noise by having

Figure 9.3: Minimization principle used in Variational Quantum Eigensolvers to empower Quantum
Machine Learning

the variational principle, we can see in NISQ devices a golden opportunity to have a machine that
analyzes Hilbert’s vector space.

The term ”Noisy Intermediate Scale Quantum” describes the era in which we find ourselves today.
Noisy, because the computer still does not offer enough qubits to save for error correction. So, we
have imperfect qubits at the physical layer, last but not at least ”intermediate scale” because of their
small number of qubits.

This leads us to forget about the imperfections of the gates and only think of the variational ansatz
[117] and that this ansatz can be analyzed efficiently on a quantum computer. Something we can’t
do with a classic computer. Fig. (9.3). summarizes the idea. In short, we can say that we have
a quantum computer that generates variational states, known as a Variational Quantum Computer
[117]. Another way to see it could be, in each of the iterations, we have a quantum circuit close to the
solution we would be looking for. This is the basis of Quantum learning [48]. We are doing machine
learning (ML) on circuit design.

With this vision, we are developing a perfect machine to solve optimization and classification
problems by exploring the entire configuration space of quantum molecules.
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As commented, the VQE are useful because they find the lowest possible eigenvalue of a given
Hermitian matrix H (it doesn’t matter the size of H) using the variational method or the variational
principle. It’s also known that the expected value must always be equal or greater than the lowest
possible eigenvalue. This means that if we just keep minimizing that expectation value, we only get
closer and closer to the minimum eigenvalue of the given H matrix and never below it [117]. With
this powerful concept, the great clue is how to map our objective function into a Hamiltonian model
of a given molecular system. To do that, first, we map the molecular Hamiltonian into a qubit. This
essentially means that we are mapping the electron orbital interactions inside the molecules onto our
qubits. Next, we prepare the set. Our set to be shallow has to cover a good enough range for our
trial wave functions, so since we don’t face our ground state energy. With the information given by a
specific Hamiltonian, now, we calculate the energy of that electron configuration.

At this point, the algorithm measures those values and send them through to the classical optimizer.
The classical optimizer minimizes our parameters, getting a lower expectation value H. After that,
we feed all these values back into the quantum part and reiterate it with this loop many times until it
converges onto the lowest possible energy state for that interatomic distance to follow all the described
steps. All this is achieved regardless of the noise or imperfection of the logic gates.

9.2.3 Quantum approximate optimization algorithm

The Quantum Approximate Optimization Algorithm most known as QAOA, is now as far as the best
quantum approximate optimization algorithm developed and introduced by Farhi, Goldstone, and Gut-
mann, that finds a right solution (not always find the exact solution) to an optimization problem in
polynomial time [144, 93].

One reason why the work done by researchers makes QAOA (see Figures (9.4), (9.5) and (9.6))
very interesting and highly useful for the NISQ era is its potential to display quantum supremacy
[106].

This algorithm belongs to the NISQ era algorithm class already discussed, which are from the
hybrid algorithm class. More precisely, classical-quantum hybrid variational algorithms. We can
safely consider it an evolution of adiabatic time trotted in p steps towards the ground state of a
Hamiltonian (characteristics of a quantum circuit/system) that encodes the problem. The algorithm
does ”discretize” by introducing steps in the time variable (time evolution). Where the steps variable
p defines the accuracy of the solution.

These graphs conceptually show us the differences/evolution between quantum annealing (left)
that follows this adiabatic time evolution path. Simulated annealing (middle) follows the same way
in discrete steps and QAOA that follows adiabatic time evolution path in p steps. These define the
accuracy of the solution.

This algorithm builds on and improves run time on Simulated Annealing. Therefore, intuitively,
we can believe before any demonstration that QAOA is the best candidate to solve combinatorial
optimization problems assigned to the minimization of a Hamiltonian Ising in NISQ devices.

The Adiabatic Quantum Computing (AQC) has one serious problem when the computation time
to solve any problem rises exponentially as ∆E becomes infinitesimally small. This bound ACQ’s
capability to solve a specific instance of hard optimization problems [6].

This means that the difference between the ground state and first excited state energy of the
Hamiltonian H (t) of the problem we will resolve bounds the step size one can take to follow the
adiabatic pathway. QAOA resides in this limitation of AQC. So, and according to the Fig. (9.4),
we trotterize in p step relating to some configuration parameters. The Trotterization [6] formula is
known by the equation (9.20).

e−iHt =
(
e−iH0

t
p−iH1

t
p ∗ . . . ∗−iHk−1

t
p

)p
+ f (γ) . (9.20)
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Figure 9.4: From Annealing to QAOA. These graphs conceptually show us the differences/evolution
between quantum annealing (left) that follows this adiabatic time evolution path. Simulated annealing
(middle) follows the same way in discrete steps and QAOA that follows adiabatic time evolution path
in p steps. These define the accuracy of the solution.

With f (γ) as some polynomial factors equal to zero.
As Hamiltonians are Hermitian operators that are usually a sum of a large number of individual

Hamiltonians
∑
j Hj , we can use Lie product formula [135] as shown by the equation (9.21).

e−i(
∑
j Hj)t = lim

N→∞

(
e−iH0

t
N −iH1

t
N ∗ . . .−iHm−1

t
N

)N
. (9.21)

Since the limit of this series is infinite, when we implement this in quantum computing, we must
truncate the function by introducing a quantifiable bounded error ε refers to ∥e−iHt − U∥ ≤ ε. This
truncation is known as Trotterization, and it’s widely used to simulate non-commuting Hamiltonians
on quantum computers. We will take advantage of this technique in the development of EVA [15].

Suppose we want to simulate one circuit given by the following Hamiltonian:

H = X0 + Y1 + Z2. (9.22)

Where X, Y and Z are, Pauli matrices (In some books, we can find this notation relating to the
Pauli matrices σi (σx, σy, σz)) and the subscripts label the qubits that the Hamiltonians apply to. We
can’t simulate each Hamiltonian separately because they don’t commute(the anti-commutation can
be achieved by noting that XZ = ZX and −Y Z = ZY ) [174]. This is the main reason why we use
Trotterization, where we evolve the whole Hamiltonian by repeatedly switching between evolving X,
Y and Z each for a small period. The first step from the given system is finding the quantum gates
(we are developing on Quantum gate-based computers) that implement each of its terms.

This case is simple since the quantum gates will implement the individual terms correctly.

Rx (θ) = e−i
θ
2X , Ry (θ) = e−i

θ
2Y , Rz (θ) = e−i

θ
2Z . (9.23)
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Where θ specifies the angle by which to rotate the state in a specified axis, this notion is pretty
powerful because it determines how long (as a time (t)) to apply the Hamiltonian to the qubit.

If we consider, in this case, that p = 2 and t = 1 we can simulate/compute our circuit (the
Hamiltonian) by using the Lie formula as shown:

Figure 9.5: QAOA algorithm operation.The system is initialized along the y-direction in the Bloch
sphere in the |+⟩⊗N state. The unitary evolution under H = X0 + Y1 + Z2 is implemented for γiβi
angles for p times. At the end of the algorithm, global measurements in the x and the y basis are

performed to compute the average energy ⟨H⟩ = E(−→γ ,
−→
β ), which is compared to the theoretical

ground state energy Egroundstate

eX0+Y1+Z2 =
(
e−iX0−iY1−iZ2

) (
e−i

X0
2 −iY12 −iZ2

2

)
. (9.24)

In a generic case, the Hamiltonian considered is from the cross-field. The algorithm divides it into
two components H = HA +HB = HIsing. With (9.25) and (9.26).

HA = −A (t)

∑
i<j

JijZiZj +
∑
i

hiZi

 . (9.25)

HB = B (t)
∑
i

hiXi. (9.26)

And execute the steps mentioned above. The graphical representation of these steps is that of the
figure (9.5) and following the processes defined by the figure (9.6). The state obtained after players
of the QAOA can be written as:

|−→γ ,
−→
β ⟩ =

p∏
k=1

e−iβk(HB/J0)e−iγk(HA/J0)|ψ0⟩. (9.27)

Where |ψ0⟩ is the initial state, where the evolution times βk and γk are variational parameters used in

the k-th QAOA layer to minimize the final energy E
(−→γ ,−→β ) = ⟨−→γ ,

−→
β |H|−→γ ,

−→
β ⟩ and where J0 is the

average nearest neighbour coupling, and in the case of B = 0. For each p (interaction), represent the
unusual optimal angles by {(β∗(p), γ∗(p))} which we can also think of as a pair of angle curves, as a
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Figure 9.6: QAOA’s diagram process to perform it experimentally with quantum devices. In our

study, 1000 samples are used to estimate the value of the cost function E
(−→γ ,−→β ) = ⟨−→γ ,

−→
β |H|−→γ ,

−→
β ⟩

at each variational iteration.

function of step-index i. As p is varied, we may think of these minima as a set. And one can do several
studies on this set, for example, the convergence study of variables p and N . This interesting article
[39] reviews how to improve even the QAOA algorithm. At this point, we just need to experiment
and focus on our problem. The next chapter will experiment and solve the Quantum Social Assistant
Workers Scheduling Problem.

9.3 Summary

In this chapter, we have experimented with quantum computing in the Qiskit environment. We have
experimented with variational techniques, variational algorithms like VQE, QAOA, and QUBO tech-
niques. We tested the VQE as one of the best algorithms of this quantum era, and we have also
verified the detailed operation of the QAOA, which is the bet of the gate-based computers that work
as an annealing algorithm. As stated in the QAOA, one of the advantages is that we can increase
the precision arbitrarily. In contrast, QA will only find the solution with probability one when the
time goes to infinity, which is impractical. In addition, if T is too long, it is possible not to find the
outcome as the probability is not monotonic.

Now we have the basis to contribute to the scientific community.
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Chapter 10

Research Design

10.1 Introduction

In this section, we define our research scenario, which is illustrated by figure (10.1). But, first, we will
define the problem and the necessary tools.

The figure (10.1) summarises the work scenario on the tasks proposed for the thesis. First, we
define a problem to help us answer our main hypothesis. Then, we ask whether it is possible to design
a quantum algorithm to solve combinatorial optimisation problems with strict restrictions.

The designed exercise is a project called SWP, which combines routing, planning and combinatorial
tasks. From this point, we solve the SWP using two different techniques: the first with the top-down
approach and the second with the Machine learning technique developing a new qCBR algorithm.

Second, we propose and solve the Batching and Picking Problem with the generalisation of the
SWP called qRobot.

To improve the computation time and make a leap in quality in chemistry, we have proposed new
algorithms known as EVA and reduced-EVA [15], the latter as a new proposal for calculating the
expected value to improve the flagship quantum algorithm VQE.

Therefore, we will continue working to improve the routing and optimisation algorithms for another
sector such as banking in this era of very few useful qubits, pending the lecture of this doctoral thesis.

10.2 Proposed problem

Let n be the number of patients (users) and consider a weekly calendar of visits for each of them.
Our objective is to find an optimal meeting’s timing that minimises the cost of time travel; hence,
money and maximises the number of patient visits in a work schedule. And if there are changes from
the social workers or they hire or fire new workers or any change in patients, the system must adapt
dynamically. Figure (10.2) illustrates the resolution of SWP with VQE. In the end, we assign social
workers to the group with the resultant optimal hours.

In our case study, the daily schedule Table (10.1), is set at 8 hours, and the distance between
patients is at least 15 minutes.

⋄ A set of social workers (N1, N2, N3, . . . )
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Figure 10.1: My research’s path over these 3 years

A sample of the social workers’ schedule
Time Monday Tuesday Wednesday Thursday Friday

9:00 – 10:00 U1 U1 U1 U1 U1

9:30 – 10:30 U4

10:15 – 11:15 U4

11:30 – 12:30 U4U5

11:45 – 12:45 U5

12:00 – 13:00 U2

14:45 – 15:45 U2

15:00 – 16:00 U3

15:15 – 16:15 U3

15:45 – 16:45 U3

16:00 – 17:00 U2

16:30 – 17:30 U3

17:00 – 18:00 U3

Table 10.1: Schedule of patient visits without any association with social workers. Where U1 to U2

are the patients (users) and equal to the variable i or j of the mathematical formulation

⋄ A set of patients (P1, P2, P3, . . .)

⋄ A set of visits (U1, U2, U3, . . .)

each visit is linked to a patient: a patient can have multiple appointments on a day

for each visit, we know the start time and duration

⋄ Social workers can work at most 8 hours per day (that means, social workers cannot do a visit
the first visit at 9:00 and end the last tour at 18:00) (removed to reduce the number of variables,
so this can be solved using Qiskit)

⋄ We know the cost of travelling between each pair of patients. The cost can be seen as a function
of travel time and distance.

The objective is the following:
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⋄ Find a schedule where each visit is assigned to a social worker

⋄ We minimise the travel cost while also respecting that a social worker does not work more than
8 hours per day.

Taking into account, the advances on the speedup of the Quantum Approximate Optimization
Algorithm (QAOA)[112] [189][183][177][39] in the NISQ era, we can affirm that the experiment’s
scenario and its design are representatives. Because the only difficulty that can be added here, for this
combinatorial optimisation problem, is the number of patients and some restrictions. These difficulties
have to do directly with the computational cost (not with the formulation/algorithm) where quantum
computing is called to be more efficient [189]. Hoping to access a more powerful computer, we limited
our test to a 20 qubits computer, the most potent public quantum computer.

In this work, we have chosen n = 5 (20 qubits) because the experiments from the problem of this
class are among the most difficult in our test bench. We will review it in the discussion chapter. We

Figure 10.2: Using the Variational-Quantum-Eigensolver (VQE) as Quantum Machine Learning to
creates an Intelligent social workers schedule problem solver

need to analyse and choose a programming environment to solve our problem. Next, we will focus on
the tools to carry out our experiments.

10.3 Experimentation tools

10.3.1 Programming environments

The race to leadership in quantum computing involves determining standards. Everything currently
points to the NISQ era being quite stable than public opinion imagine. Perhaps, it is not necessary to
think about quantum desktop computers but to focus on generating applications control parameters
for the devices of this era. Based on the work done by Mark Fingerhuth, Toma’sˇ Babej and Peter
Wittek, Open source software in quantum computing[185][211][96], which we had to update, we see
that several players are working hard on high-level programming environments. A change in philosophy
was also seen in mid-2019 with companies specialising in compiler writing and different collaborations
between technology giants such as IBM, Google, Microsoft, AWS-Braket with high-tech startups such
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as Xanadu. All this leads us to think that we will see many more applications in quantum computing
and, above all, quantum datacenters in a few months.

Next, we will analyze the frameworks (Figure (10.3), (10.4) and (10.11) ) and decide on an envi-
ronment for our experimentation.

Figure 10.3: Overview of all published quantum computing programming environments [96]
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Figure 10.4: Detailed characteristics of all published quantum computing programming environments.
Data, August 2018 [96]

10.3.1.1 PennyLane:

PennyLane∗ [45] (See the Fig. (10.5)) is a Python 3-based programming environment for optimization
and machine learning in quantum and hybrid (quantum-classical) computing. The library provides a
unified architecture for quantum computing devices of the era we are in and supports qubit and con-
tinuous variable paradigms. The main feature of PennyLane is the capability to calculate gradients of
variational quantum circuits that are compatible with classical techniques such as backpropagation.

PennyLane extends the standard machine differentiation algorithms in optimisation and machine
learning to include quantum and hybrid calculations. A plugin system makes the framework com-
patible with any simulator or gate-based quantum hardware. For example, Xanadu, through its
framework, provides plugins for Strawberry Fields[45], Rigetti Forest†, Qiskit, Cirq‡ y ProjectQ, al-
lowing PennyLane optimisations to run on publicly accessible quantum devices provided by Rigetti and
IBMQ. Furthermore, PennyLane can be used as a classic environment thanks to its interaction with
accelerated machine learning libraries such as TensorFlow, PyTorch and autograd. Also, PennyLane
can be used for optimisation problem solving using VQE, QAOA, QML or any quantum formulation.
The following is a list of the plugins already developed to make PennyLane universal. PennyLane-SF :
Supports integration with Strawberry Fields, a full-stack Python library to simulate photon quantum

∗https://github.com/XanaduAI/pennylane/
†http://docs.rigetti.com/en/stable/
‡https://cirq.readthedocs.io/en/stable/
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Figure 10.5: Xanadu bets with its PennyLane platform [44].

computing. PennyLane-qiskit : Supports integration with Qiskit, an open-source quantum computing
environment from IBM that provides support for Qiskit Aer quantum simulator devices and IBMQ
hardware devices. PennyLane-cirq : Supports integration with Cirq, an open-source Google quantum
computing environment. PennyLane-Forest : Supports integration with PyQuil, Rigetti Forest SDK
and Rigetti QCS, an open-source quantum computing environment from Rigetti that provides device
support with Quantum Virtual Machine (QVM) and Quantum Processing Units (QPU) hardware.
PennyLane-Qsharp: Supports integration with Microsoft Quantum Development Kit, a quantum
computing framework that uses the Q# quantum programming language.

10.3.1.2 Cirq

Cirq is Google’s commitment (Fig. (10.6)) as a framework for the programming and simulation of
quantum computers. Cirq is a software library for writing, manipulating and optimising quantum cir-
cuits and then running them on and simulating quantum computers.

Cirq takes into account the NISQ era, which is the one we are in, to get the most out of the
hardware, analysing all the details of it before executing the quantum circuit or not. The current

Figure 10.6: Google bets with its Cirq platform.

version of Cirq is alpha, ready to test§.

§https://cirq.readthedocs.io/en/stable/
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10.3.1.3 Qsharp

Qsharp¶ is Microsoft’s push for the bet on its quantum hardware (Fig. (10.7) and (10.8)). Q# is a
new high-level programming language focused on the quantum.

Its features rich integration with Visual Studio, Visual Studio Code and interoperability with
the Python programming language. Enterprise-grade development tools provide the fastest path to
quantum programming on Windows, macOS, or Linux.

Figure 10.7: Bet on Microsoft with its Qsharp platform [168].

Figure 10.8: Azure Quantum Computing [167]

Microsoft as IBM bets for the cloud solution in the short term. In the case of Microsoft, its bet is
Quantum Azure.
Azure Quantum is a cloud platform for quantum computing where developers use the QDK to write Q#
programs and run on quantum hardware or formulate problems to run on quantum-inspired solvers.

The heatmap, figure (10.9), displays the evaluation results from source code documentation,
README files, changelogs, user documentation, and tutorials on a scale of 1 (bad) to 5 (good).
The data was obtained in August 2018 [96].

Qiskit is textitthe IBM programming environment consists of Terra‖ (central compiler and libraries
for quantum programming), Aer∗∗ (noise modelling and simulators without noise), Ignis (error char-

¶https://docs.microsoft.com/es-es/quantum/overview/what-is-qsharp-and-qdk
‖https://qiskit.org/terra

∗∗https://qiskit.org/aer
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Figure 10.9: The heat map on the results of analysis and documentation

acterization and QEC) and Aqua†† (Applications).

Next, I will go into more detail with each of the components to understand it better, as is shown in
figure (10.12). Terra provides the fundamental roots for our software stack. Within Terra, there is a
set of tools for composing quantum programs at the circuit and pulse levels, to optimize the constraints
of a particular quantum physical processor, and to manage batch execution of experiments on remote
access backends.

Aqua, the ”water” element, is the element of life. This library will solve everything related to
Chemistry, Optimisation or AI. Aqua is accessible to experts in chemistry, optimisation, or artificial
intelligence domains who want to explore the benefits of using quantum computers as accelerators for

††https://qiskit.org/aqua
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Figure 10.10: Results of the evaluation for the community analysis. For each project, we indicate
whether there is a public development roadmap and whether the software is published in the form of
releases. Besides, we report the GitHub community profile score, the total number of contributors,
the type of discussion channel focused on the user and the developer, and the type of public code
review process, specifically if it applies to internal (I) external (E) taxpayers. Data were obtained in
August 2018 [96]

specific computational tasks without worrying about how to translate the problem into the language
of quantum machines.

Ignis, the ”fire” element, is dedicated to fighting noise and mistakes to forge a new path. While
Aer, the item ”air”, permeates all the aspects of Qiskit. Simulators, Emulators, and Debuggers.

10.3.1.4 IBM Quantum Experience

IBM Quantum Experience‡‡ (IBMQ) (Figures (10.13) to (10.19)) is an online platform that provides
users of the general public with access to a prototype suite of IBM quantum processors via the cloud.

An online Internet forum to discuss relevant quantum computing issues, a set of tutorials on how
to program IBMQ devices and other educational materials on quantum computing.

It is of utmost importance to perceive and understand the strategy of IBM when he describes the
Qiskit roadmap as a platform and business bet. This strategy determines how to propose and design
the algorithm for the end-user. In just two years of research that I have been following the firm,

‡‡https://quantum-computing.ibm.com/
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Figure 10.11: Evaluation results for the static analysis of each project and its source code [96]

Figure 10.12: Components of Qiskit’s framework [241]

IBM is already beginning to encapsulate many libraries as a black box to allow users to work more
at a high level. This has enormous benefits for the scientific community since quantum computing
developers will increase exponentially. Because the complexity of understanding quantum computing
fundamentals will be reduced, notably, the part of the quantum mechanics and, thus, would not be
necessary. But this will also limit understanding some quantum phenomena better because it will be
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Figure 10.13: IBMQ User Profile

Figure 10.14: IBMQ Circuit Composer

increasingly difficult to reach the low level. However, the low level will be reserved at the level of the
circuit composer.

10.3.2 Experimentation algorithms

For its simplicity, the optimisation based on the decent gradient, where each parameter is updated in
the direction that produces the most significant local change in energy (in our case), is used intuitively.
We also know that the number of evaluations carried out is proportional to selected optimisation
parameters. This will quickly help the algorithm find a local optimum in the proposed search space.
However, this optimisation method is often stuck at a local optimum in many cases. This and the
relative cost in the number of circuit evaluations performed make the descent gradient method not
recommended for use in VQE.
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Figure 10.15: IBMQ Laboratory Profile

Figure 10.16: IBMQ Jupyter Notebook Files view

10.3.2.1 SPSA

Introducing the Simultaneous Perturbation Stochastic Approximation Optimizer known as SPSA[100]
approximates the gradient of the objective function with only two measurements. It does this by
simultaneously disturbing all parameters randomly, in contrast to the decent slope where each param-
eter is independently disturbed. When we need to add a circuit in real condition, that is, with noise,
it is strongly recommended to use SPSA as the classic optimiser. The above description makes the
SPSA the appropriate optimiser for optimising a noisy objective function.

10.3.2.2 SLSQP

The Sequential Least-Squares Programming also known as SLSQP is a sequential least squares pro-
gramming algorithm that uses the Han – Powell quasi-Newton method with a BFGS update of the B
– matrix and an L1 – test function in the step–length algorithm.
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Figure 10.17: IBMQ Jupyter Notebook view

Figure 10.18: From IBMQ’s Jupyter Notebook, the Qiskit version

10.3.2.3 COBYLA

The textitclassic optimizer Constrained Optimization BY Linear Approximation commonly called
COBYLA only evaluates the objective function per optimization iteration. The number of evaluations
is independent of the cardinality of the set of parameters. Therefore, it is recommended to use
COBYLA if the objective function does not produce noise, and it is convenient to minimise the
number of evaluations carried out.

Qiskit, and more specifically in the Aqua library, provides us with several classical optimisers.

10.3.3 VQE Experimentation

As discussed above, it is not possible for a polynomial parameterised variational form to generate
a transformation to any state. Variational forms can be grouped into two categories, depending on
how they address this limitation. The first category of variational forms uses domain or application-
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Figure 10.19: From IBMQ’s a code view from Jupyter Notebook

Name Status Status
Assembler Stable Completed in version 0.9

Circuit Unstable -
Copiler Stable Completed in version 0.9

Converters Unstable -
Dagcircuit Remove Will be part of circuits
Extensions Remove Will be part of circuits

Ignis.characterization - -
Ignis.mitigation - -

Ignis.characterization - -
Providers Stable Completed in version 0.7

Pulse Unstable -
Gasm Remove Passer location to be determined
Gobj Remove Moved into the provider

Quantum info Unstable -
Result Remove Moved into the provider

Schemas Stable Completed in version 0.7
Tests Unstable -
Tools Unstable Various elements to be removed

Transpiler Stable Completed in version 0.9
Validation Stable Completed in version 0.7

Visualization Stable Completed in version 0.9

Table 10.2: Status and release of the modules towards Qiskit 1.0

specific knowledge to limit the set of possible output states. The second approach uses a heuristic
circuit without prior mastery or application-specific expertise.

Therefore, variational shapes have been built for specific quantum computing architectures. Fur-
thermore, the circuits are tuned to take full advantage of the connectivity and gates natively available
from a given quantum device. This leads us to think about the importance of compilers if one wants
to make multiplatform algorithms (thinking of using them on several different quantum computers.).

In the second approach, the gates are layered to obtain a good approximation in a wide range
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Figure 10.20: VQE experiment with three qubits on linear and full entanglement

of states. Qiskit Aqua supports three such variational forms (see Fig. (10.20)): RY RZ, Ry and
SwapRz (we will only discuss the first two). All of these variational forms accept multiple user-
specified configurations. Three necessary arrangements are the number of qubits in the system, the
depth setting, and the entanglement setting. A single layer of a variational form specifies a specific
pattern of single-qubit rotations and CX gates. The depth setting says how frequently the variational
form should repeat this pattern. By increasing the depth setting, at the cost of increasing the number
of parameters that must be optimised, the set of states in the variational form can generate increases.
Finally, the entanglement setting selects the configuration, and implicitly the number, of CX gates.
For example, when the entanglement setting is linear, CX gates are applied to adjacent qubit pairs in
order (and thus (n− 1)CX gates are added per layer). When the entanglement setting is full, a CX
gate is applied to each qubit pair in each layer. The circuits for RyRz corresponding to entanglement
= ”full” and entanglement = ”linear” can be seen by executing the following code snippet:

In the second approach, the quantum gates are layered to obtain good approximation in a wide
range of states. Qiskit Aqua supports three variational forms: RY RZ, RY and SwapRz. All of these
variational forms accept multiple user-specified settings. Three essential settings/configurations are:

⋄ the number of qubits in the system,

⋄ the depth setting,

⋄ and the interlace setting.

A single layer of a variational shape specifies a specified pattern of unique qubit rotations and CX
gates. The depth setting indicates how frequently the variational form should repeat this pattern by
increasing the depth setting. The set of states that the variational form can generate increases at
the cost of increasing the number of parameters to be optimised. Finally, the entanglement pattern
selects the configuration, and implicitly the number, of CX gates. For example, when the entanglement
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configuration is linear, CX gates are applied to adjacent qubit pairs in order and thus (n−1)CX gates
per layer are added. When the entanglement configuration is full, a CX gate is applied to each pair of
qubits in each layer. The circuits for RyRz corresponding to entanglement = ”full” and entanglement
= ”linear” can be seen in Fig. (10.20). Let d be the depth setting and n the number of qubits, the
RyRz parameters have n × (d + 1) × 2, Ry with linear entanglement has 2n×d+ 1

2 parameters, and

Ry with full entanglement has d× n× (n+1)
2 + n parameters.

10.3.4 CPLEX

From IBM literature, linear programming (LP) was revolutionised when the CPLEX® software was
developed. CPLEX (Fig. (10.21)) was the first commercial linear optimiser on the market to be
written in the C programming language. CPLEX gave operations researchers unprecedented flexibil-
ity, reliability, and performance, enabling them to create new optimisation algorithms, models, and
applications. The term CPLEX itself is based on the concept of a Simplex algorithm[124], invented

Figure 10.21: IBM ILOG CPLEX Optimization Studio uses decision optimisation technology to create
optimal plans, and schedules [160].

by George Dantzig in 1947, that is written in C: C-Simplex resulted in CPLEX. The Simplex al-
gorithm became the groundwork of the entire field of mathematical optimisation and provided the
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first practical method of solving a linear programming problem. CPLEX developed over time to
adapt and become a leader in the secondary categories of linear programming, such as integer pro-
gramming (IP), Mixed Integer Programming (MIP), and the latest quadratic programming (QP). The
integer programs are much more challenging to solve than linear programs, but they have a lot of
essential business applications. This was IBM’s bet 20 years ago, and they provided CPLEX with
sophisticated mathematical techniques to solve these very hard integer programs. These techniques
involve the systematic search for possible combinations of the discrete decision variables, using linear
or quadratic programming relaxations to calculate the limits of the value of the optimal solution. MIP
include formulation of problems such as Vehicle routing, Facility location, Personnel scheduling,. . .
These techniques are interesting and necessary when one does not want to program from scratch.
We will propose five different ways of solving our problem in our case. IBM ILOG CPLEX offers C,
C++, Java, .NET, and Python libraries that solve linear programming (LP) and related problems.
Correctly, it solves linearly or quadratically constrained optimisation problems where the objective
to be optimised can be expressed as a linear function or a convex quadratic function. In addition,
the variables in the model may be declared as continuous or further constrained to take only integer
values. CPLEX includes the following technics for high mathematical programming solvers:

⋄ Problem modelling : IBM® ILOG® CPLEX® Optimizer provides a framework to model busi-
ness issues mathematically.

⋄ Improved profits: IBM ILOG CPLEX Optimizer’s mathematical programming provides tech-
nology to help improve efficiency, reduce costs, and increase profitability.

⋄ Fundamental algorithms: IBM ILOG CPLEX Optimizer provides flexible, high-performance
mathematical programming solvers for linear programming, mixed-integer programming, quadratic
programming, and quadratically constrained programming problems. These include a dis-
tributed parallel algorithm for mixed integer programming to leverage multiple computers to
solve difficult problems.

⋄ Robust algorithms for large problems: IBM ILOG CPLEX Optimizer has solved issues with
millions of constraints and variables.

⋄ Industry-leading support : IBM has an impressive rate of product improvement and ample sup-
port resources to serve you.

⋄ High performance: IBM ILOG CPLEX Optimizer delivers the power needed to solve large,
real-world optimisation problems, as well as the speed required for today’s interactive decision
optimisation applications.

⋄ Robust and reliable: A large installed base helps us make IBM ILOG CPLEX Optimizer better
with each release. Every new feature is tested on the world’s biggest, most diverse model library.

10.3.5 DOCPLEX

The Decision Optimization CPLEX Modeling Python, commonly known as docplex from IBM, is a tool
with which data scientists can use their preferred scientific tools (Python, with NumPy/pandas/scipy
stack) to develop optimisation-based projects. The Docplex library is composed of 2 modules:

⋄ IBM® Decision Optimization CPLEX Optimizer Modeling for Python - with namespace doc-
plex.mp. This library is for Mathematical Programming Modeling for Python.

⋄ IBM® Decision Optimization CP Optimizer Modeling for Python - with namespace docplex.cp.
This library id for Constraint Programming Modeling for Python.
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Just add that on May 1, 2020, IBM managed to integrate into its docplex the quadratic program-
ming for Ising model for MIP. However, until the mentioned date, This tool developed by IBM had
some limitations and didn’t allow inequality constraints. Last July 9, IBM unveiled a new module
that will boost research, development, and benchmarking of quantum optimisation algorithms for this
NISQ era[189]. To map a classical model to quantum computing, we need to find the Hamiltonian of
the Ising model. Nevertheless, the Hamiltonians of the Ising model are highly complicated and have
no intuitive[163][84][174]. So, mapping a combinatorial optimisation problem to the Hamiltonian of
the Ising model can be very challenging, complicated, and may require specialised knowledge as the
vectorisation of the matrices with the Kronecker product [85] to express matrix multiplication as a
linear transformation in matrices[244]. With the translator, all kinds of users can write a quantum
optimisation algorithm model using docplex. With this tool, many things become much easier than
writing the Hamiltonian of the Ising model manually basically because the model is short and intuitive.

10.4 Summary

In this chapter, we have experimented on the different quantum programming environments, and we
are ready to choose the background on which we will focus our efforts based on figure (10.10) and
(10.2). Of course, this does not mean that our algorithms are only for that environment. Still, we need
to make a strategic decision to move forward and, above all, make the most of the community and
the libraries that offer us to do some or other tests. Let’s take a look at Qiskit for its community, the
facilities that IBM provides, the scientific community and the network of talent it has. As mentioned
above, Qiskit already has a community of more than 25,000 developers and an available and affordable
team for any questions. It has at any time for all the libraries, especially for its scalability plan. IBMQ
is our bet. However, we experiment and will continue to research and monitor the other frameworks
such as Dwave, AWS-Braket, Cirq, PennyLane, etc.
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Chapter 11

Approaches to solve the SWP

11.1 Introduction

We design this formulation keeping in mind that our device does not admit inequality restrictions. We
will encode the time information that will represent the limits of the constraints in the said formula.

This section will work on the various formulation proposals to adequately solve the proposed
problem, always considering the era (NISQ) we are in and the chosen framework (Qiskit). But one of
the algorithm proposals will assess the generality of the platforms. This algorithm could be executed
(with very few splices) either in a Dwave Ocean, PennyLanne or a Qiskit.

11.2 Social Workers’ Problem based on new VRP formulation

In this proposal, we take advantage of the formulation of the VRP to establish our proposal. We
pursue to avoid using the inequality constraints and use the least number of qubits. We have very few
real qubits with the real environments we are using. But to do some comparative studies, we would
rather use simulators with a greater number of qubits than the quantum computer. To be able to test
our algorithm. Therefore, we will base our algorithm on techniques (VRP, TSP) already consolidated
to achieve efficiency in many qubits. We use VRP’s universal formulation to model the main part of
the proposed algorithm.

Let G = (V,E, c) be a complete graph directed with V = {0, 1, 2, .., n}, as the set of nodes and
E = {(i, j) : i, j ∈ V, i ̸= j} as the set of arcs, where node 0 represents the central, for a team of k
social workers with the same capacity ρ and n remaining nodes that represent geographically dispersed
patients.

Each patient i ∈ V –{0} has a specific demand for visits di ≤ ρ. The non-negative travel cost Wij

is associated with each arc (i, j) ∈ E. To simplify, we consider that the distances are symmetrical.
Where xij are the decision variables of the paths between two patients. The minimum number of

social workers needed to care for all patients is
∑n
i=1 di
Q .
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Minimize:
m∑
k=1

l∑
i=1

n∑
j=1,i̸=j

Wijxijk,. (11.1)

Subject to:
m∑
k=1

n∑
j=1

xijk = 1 ∀i ∈ 1, . . . , n, (11.2)

m∑
k=1

n∑
i=1

xjik = 1 ∀j ∈ 1, . . . , n, (11.3)

l∑
i=1

di
n∑
j=1

xijk ≤ q ∀k ∈ 1, . . . ,m, (11.4)

n∑
j=1

x0jk = K ∀k ∈ 1, . . . ,m, (11.5)

n∑
j=1

xj0k = K, ∀k ∈ 1, . . . ,m, (11.6)

n∑
i=1

xihk −
n∑
j

xhjk = 0 ∀h ∈ 1, . . . , n and ∀k ∈ 1, . . . ,m, (11.7)

xijk ∈ 0, 1, ∀i, j ∈ 0, . . . , n, i ̸= j ∀k ∈ 1, . . . ,m. (11.8)

In this formulation, the objective function equation (11.1) minimizes total travel savings taking
into account the new cost function with the time window. The restrictions equations (11.2) and (11.3)
impose that exactly the arcs k leave the plant; (11.5) and (11.6) are the restrictions on the degree
of entry and exit of the social worker from the central office. The constraints (11.7) are the route
of continuity and the elimination of sub-courses, which ensure that the solution does not contain a
sub-route disconnected from the exchange. Restrictions (11.8) are mandatory. The restriction (11.4)
is the demand of the social workers.

Up to this point, the mathematical formulation of equations (11.1) to (11.8) represents a con-
ventional CVRP. To solve a scheduling problem, we need a time variable. The introduction of time
(schedule) in the original QAOA and QUBO formulations of the CVRP is a significant obstacle to
formulating several important VRP restrictions associated with the VRPTW time window.

Our CVRP QAOA formulation proposal incorporates the schedule (calendar) of table (10.1). This
new formulation describes the temporal evolution of each social worker equivalent to the VRPTW.
Our proposal is expressed by equations (11.9) and (11.10).

Wij = dij + f (tij) . (11.9)

f (tij) = γ
(τi−τj)

2

dmax − dmin
. (11.10)

Where Wij is our cost/weight and time window function, dij is the distance between the patient
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i and j and f(tij) is our time window’s function. f(tij) is a growing function, and we model it by a
quadratic function to weigh short distances concerning large ones. We are taking into account that
the first weight function Wij = dij is a distance function, we want to make f(tij) behave like dij , and
thus, be able to take full advantage of the behaviour of the primary objective function. γ > 0 is a
weighted degree parameter of our time window function; τi is the start time of a time slot for patient
i and τj for the patient j. where dmax represents the maximum distance between all patients and,
dmin is the minimum distance between the gaps of all patients. The term Tij = (τi−τj) > 0 is the
time window.

The simplified Hamiltonian resulting from the schedule optimization problem is as follows:

H =
∑
ij∈E

Wijxi,j +A
n∑
i=1

(1−
N∑

j∈δ(i)+
xi,j)

2 +A
n∑
i=1

(1−
N∑

j∈δ(i)−
xji)

2 +A(k −
N∑

i∈δ(0)+
x0,i)

2+

A(k −
N∑

j∈δ(0)+
xj,0)2.

(11.11)

11.2.1 Social Workers’ Problem based on a QUBO approach

Within the pedagogical nature of this work, we will detail the resolution of the problem step by step
to meet one of the objectives of the thesis.

Let us solve our formulation in QUBO form by considering n = 4 patients. Where Q is a 2N × 2N

matrix with N = n(n− 1) as the number of qubits. So, in this case, N = 12 qubits. Let’s remember
that we are using binary variables so, (xiu,υ)2 = xiu,υ.

3∑
ij∈E

Wijxi,j =
3∑
i

3∑
j
i̸=j

Wijxi,j =


W0,1x0,1 +W0,2x0,2 +W0,3x0,3+

W1,0x1,0 +W1,2x1,2 +W1,3x1,3 +W2,0x2,0 +W2,1x2,1+

W2,3x2,3 +W3,0x3,0 +W3,1x3,1 +W3,2x3,2

 .

(11.12)

A
3∑
i=1

1−
3∑

j∈δ(i)−
xji

2

= A (1− x0,1 − x2,1 − x3,1 + 1− x0,2 − x1,2 − x3,3 + 1− x0,3 − x1,3 − x2,3)
2

= A (3 +−x0,1 − x2,1 − x3,1 − x0,2 − x1,2 − x3,2 − x0,3 − x1,3 − x2,3)
2
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=A



32 + (x0,1)
2

+ (x2,1)
2

+ (x3,1)
2

+ (x0,2)
2

+ (x1,2)
2

+ (x3,2)
2

+ (x0,3)
2

+ (x1,3)
2

+ (x2,3)
2

−6x0,1 − 6x2,1 − 6x3,1 − 6x0,2 − 6x1,2 − 6x3,2 − 6x0,3 − 6x1,3 − 6x2,3

+2x0,1x2,1 + 2x0,1x3,1 + 2x0,1x0,2 + 2x0,1x1,2 + 2x0,1x3,2 + 2x0,1x0,3 + 2x0,1x1,3 + 2x0,1x2,3

+2x2,1x3,1 + 2x2,1x0,2 + 2x2,1x1,2 + 2x2,1x3,2 + 2x2,1x0,3 + 2x2,1x1,3 + 2x2,1x2,3

+2x3,1x0,2 + 2x3,1x1,2 + 2x3,1x3,2 + 2x3,1x0,3 + 2x3,1x1,3 + 2x3,1x2,3

+2x0,2x1,2 + 2x0,2x3,2 + 2x0,2x0,3 + 2x0,2x1,3 + 2x0,2x2,3

+2x1,2x3,2 + 2x1,2x0,3 + 2x1,2x1,3 + 2x1,2x2,3

+2x3,2x0,3 + 2x3,2x1,3 + 2x3,2x2,3

+2x0,3x1,3 + 2x0,3x23

+2x1,3x2,3



,

A
3∑
i=1

1−
3∑

j∈δ(i)+
xi,j

2

= A (1− x1,0 − x1,2 − x1,3 + 1− x2,0 − x2,1 − x2,3 + 1− x3,0 − x3,1 − x3,2)
2

= A (3 +−x1,0 − x1,2 − x1,3 − x2,0 − x2,1 − x2,3 − x3,0 − x3,1 − x3,2)
2

= A



32 + (x1,0)
2

+ (x1,2)
2

+ (x1,3)
2

+ (x2,0)
2

+ (x2,1)
2

+ (x2,3)
2

+ (x3,0)
2

+ (x3,1)
2

+ (x3,2)
2

−6x1,0 − 6x1,2 − 6x1,3 − 6x2,0 − 6x2,1 − 6x2,3 − 6x3,0 − 6x3,1 − 6x3,2

+2x1,0x1,2 + 2x1,0x1,3 + 2x1,0x2,0 + 2x1,0x2,1 + 2x1,0x2,3 + 2x1,0x3,0 + 2x1,0x3,1 + 2x1,0x3,2

+2x1,2x1,3 + 2x1,2x2,0 + 2x1,2x2,1 + 2x1,2x2,3 + 2x1,2x3,0 + 2x1,2x3,1 + 2x1,2x3,2

+2x1,3x2,0 + 2x1,3x2,1 + 2x1,3x2,3 + 2x1,3x3,0 + 2x1,3x3,1 + 2x1,3x3,2

+2x2,0x2,1 + 2x2,0x2,3 + 2x2,0x3,0 + 2x2,0x3,1 + 2x2,0x3,2

+2x2,1x2,3 + 2x2,1x3,0 + 2x2,1x3,1 + 2x2,1x3,2

+2x2,3x3,0 + 2x2,3x3,1 + 2x2,3x3,2

+2x3,0x3,1 + 2x3,0x3,2

+2x3,1x3,2



,
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A

k − 3∑
i∈δ(0)+

x0,i

2

= A (k − x0,1 − x0,2 − x0,3)
2

= A

 k2 + (x0,1)
2

+ (x0,2)
2

+ (x0,3)
2 − 2kx0,1 − 2kx0,2 − 2kx0,3

+2x0,1x0,2 + 2x0,1x0,3 + 2x0,2x0,3


= A

(
k2 + (x0,1)

2
+ (x0,2)

2
+ (x0,3)

2 − 2kx0,1 − 2kx0,2 − 2kx0,3 + 2x0,1x0,2 + 2x0,1x0,3 + 2x0,2x0,3

)
,

A

k − 3∑
j∈δ(0)+

xj,0

2

= A (k − x1,0 − x2,0 − x3,0)
2

= A

 k2 + (x1,0)
2

+ (x2,0)
2

+ (x3,0)
2 − 2kx1,0 − 2kx2,0 − 2kx3,0

+2x1,0x2,0 + 2x1,0x3,0 + 2x2,0x3,0


= A

(
k2 + (x1,0)

2
+ (x2,0)

2
+ (x3,0)

2 − 2kx1,0 − 2kx2,0 − 2kx3,0 + 2x1,0x2,0 + 2x1,0x3,0 + 2x2,0x3,0

)
,

Grouping the terms (11.12) to (11.16)) we reach out to the following expression:

W0,1x0,1 +W0,2x0,2 +W0,3x0,3 +W1,2x1,2 +W1,3x1,3 +W2,1x2,1 +W2,3x2,3+

A



+32 + x20,1 + x22,1 + x23,1 + x20,2 + x21,2 + x23,2 + x20,3 + x21,3 + x22,3

−6x0,1 − 6x2,1 − 6x3,1 − 6x0,2 − 6x1,2 − 6x3,2 − 6x0,3 − 6x1,3 − 6x2,3

+2x0,1x2,1 + 2x0,1x3,1 + 2x0,1x0,2 + 2x0,1x1,2 + 2x0,1x3,2 + 2x0,1x0,3 + 2x0,1x1,3 + 2x0,1x2,3

+2x2,1x3,1 + 2x2,1x0,2 + 2x2,1x1,2 + 2x2,1x3,2 + 2x2,1x0,3 + 2x2,1x1,3 + 2x2,1x2,3

+2x3,1x0,2 + 2x3,1x1,2 + 2x3,1x3,2 + 2x3,1x0,3 + 2x3,1x1,3 + 2x3,1x2,3

+2x0,2x1,2 + 2x0,2x3,2 + 2x0,2x0,3 + 2x0,2x1,3 + 2x0,2x2,3

+2x1,2x3,2 + 2x1,2x0,3 + 2x1,2x1,3 + 2x1,2x2,3

+2x3,2x0,3 + 2x3,2x1,3 + 2x3,2x2,3

+2x0,3x1,3 + 2x0,3x23

+2x1,3x2,3



,
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+A



32 + (x1,0)
2

+ (x1,2)
2

+ (x1,3)
2

+ (x2,0)
2

+ (x2,1)
2

+ (x2,3)
2

+ (x3,0)
2

+ (x3,1)
2

+ (x3,2)
2

−6x1,0 − 6x1,2 − 6x1,3 − 6x2,0 − 6x2,1 − 6x2,3 − 6x3,0 − 6x3,1 − 6x3,2

+2x1,0x1,2 + 2x1,0x1,3 + 2x1,0x2,0 + 2x1,0x2,1 + 2x1,0x2,3 + 2x1,0x3,0 + 2x1,0x3,1 + 2x1,0x3,2

+2x1,2x1,3 + 2x1,2x2,0 + 2x1,2x2,1 + 2x1,2x2,3 + 2x1,2x3,0 + 2x1,2x3,1 + 2x1,2x3,2

+2x1,3x2,0 + 2x1,3x2,1 + 2x1,3x2,3 + 2x1,3x3,0 + 2x1,3x3,1 + 2x1,3x3,2

+2x2,0x2,1 + 2x2,0x2,3 + 2x2,0x3,0 + 2x2,0x3,1 + 2x2,0x3,2

+2x2,1x2,3 + 2x2,1x3,0 + 2x2,1x3,1 + 2x2,1x3,2

+2x2,3x3,0 + 2x2,3x3,1 + 2x2,3x3,2

+2x3,0x3,1 + 2x3,0x3,2

+2x3,1x3,2



+

A
(
k2 + (x0,1)

2
+ (x0,2)

2
+ (x0,3)

2 − 2kx0,1 − 2kx0,2 − 2kx0,3 + 2x0,1x0,2 + 2x0,1x0,3 + 2x0,2x0,3

)
+A

(
k2 + (x1,0)

2
+ (x2,0)

2
+ (x3,0)

2 − 2kx1,0 − 2kx2,0 − 2kx3,0 + 2x1,0x2,0 + 2x1,0x3,0 + 2x2,0x3,0

)
, (11.17)

Now let’s apply the binary variable property x2i,j = xi,j so,

W0,1x0,1 +W0,2x0,2 +W0,3x0,3 +W1,2x1,2 +W1,3x1,3 +W2,1x2,1 +W2,3x2,3

+ A



32 + x0,1 + x2,1 + x3,1 + x0,2 + x1,2 + x3,2 + x0,3 + x1,3 + x2,3

−6x0,1 − 6x2,1 − 6x3,1 − 6x0,2 − 6x1,2 − 6x3,2 − 6x0,3 − 6x1,3 − 6x2,3

+2x0,1x2,1 + 2x0,1x3,1 + 2x0,1x0,2 + 2x0,1x1,2 + 2x0,1x3,2 + 2x0,1x0,3 + 2x0,1x1,3 + 2x0,1x2,3

+2x2,1x3,1 + 2x2,1x0,2 + 2x2,1x1,2 + 2x2,1x3,2 + 2x2,1x0,3 + 2x2,1x1,3 + 2x2,1x2,3

+2x3,1x0,2 + 2x3,1x1,2 + 2x3,1x3,2 + 2x3,1x0,3 + 2x3,1x1,3 + 2x3,1x2,3

+2x0,2x1,2 + 2x0,2x3,2 + 2x0,2x0,3 + 2x0,2x1,3 + 2x0,2x2,3

+2x1,2x3,2 + 2x1,2x0,3 + 2x1,2x1,3 + 2x1,2x2,3

+2x3,2x0,3 + 2x3,2x1,3 + 2x3,2x2,3

+2x0,3x1,3 + 2x0,3x23

+2x1,3x2,3



+
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A



32 + x1,0 + x1,2 + x1,3 + x2,0 + x2,1 + x2,3 + x3,0 + x3,1 + x3,2

−6x1,0 − 6x1,2 − 6x1,3 − 6x2,0 − 6x2,1 − 6x2,3 − 6x3,0 − 6x3,1 − 6x3,2

+2x1,0x1,2 + 2x1,0x1,3 + 2x1,0x2,0 + 2x1,0x2,1 + 2x1,0x2,3 + 2x1,0x3,0 + 2x1,0x3,1 + 2x1,0x3,2

+2x1,2x1,3 + 2x1,2x2,0 + 2x1,2x2,1 + 2x1,2x2,3 + 2x1,2x3,0 + 2x1,2x3,1 + 2x1,2x3,2

+2x1,3x2,0 + 2x1,3x2,1 + 2x1,3x2,3 + 2x1,3x3,0 + 2x1,3x3,1 + 2x1,3x3,2

+2x2,0x2,1 + 2x2,0x2,3 + 2x2,0x3,0 + 2x2,0x3,1 + 2x2,0x3,2

+2x2,1x2,3 + 2x2,1x3,0 + 2x2,1x3,1 + 2x2,1x3,2

+2x2,3x3,0 + 2x2,3x3,1 + 2x2,3x3,2

+2x3,0x3,1 + 2x3,0x3,2

+2x3,1x3,2



+

A
(
k2 + x0,1 + x0,2 + x0,3 − 2kx0,1 − 2kx0,2 − 2kx0,3 + 2x0,1x0,2 + 2x0,1x0,3 + 2x0,2x0,3

)
+A

(
k2 + x1,0 + x2,0 + x3,0 − 2kx1,0 − 2kx2,0 − 2kx3,0 + 2x1,0x2,0 + 2x1,0x3,0 + 2x2,0x3,0

)
(11.18)
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Grouping similar terms:

W0,1x0,1 +W0,2x0,2 +W0,3x0,3 +W1,2x1,2 +W1,3x1,3 +W2,1x2,1 +W2,3x2,3

+A



32

−5x0,1 − 5x2,1 − 5x3,1 − 5x0,2 − 5x1,2 − 5x3,2 − 5x0,3 − 5x1,3 − 5x2,3

+2x0,1x2,1 + 2x0,1x3,1 + 2x0,1x0,2 + 2x0,1x1,2 + 2x0,1x3,2 + 2x0,1x0,3 + 2x0,1x1,3 + 2x0,1x2,3

+2x2,1x3,1 + 2x2,1x0,2 + 2x2,1x1,2 + 2x2,1x3,2 + 2x2,1x0,3 + 2x2,1x1,3 + 2x2,1x2,3

+2x3,1x0,2 + 2x3,1x1,2 + 2x3,1x3,2 + 2x3,1x0,3 + 2x3,1x1,3 + 2x3,1x2,3

+2x0,2x1,2 + 2x0,2x3,2 + 2x0,2x0,3 + 2x0,2x1,3 + 2x0,2x2,3

+2x1,2x3,2 + 2x1,2x0,3 + 2x1,2x1,3 + 2x1,2x2,3

+2x3,2x0,3 + 2x3,2x1,3 + 2x3,2x2,3

+2x0,3x1,3 + 2x0,3x23

+2x1,3x2,3



+A



32

−5x1,0 − 5x1,2 − 5x1,3 − 5x2,0 − 5x2,1 − 5x2,3 − 5x3,0 − 5x3,1 − 5x3,2

+2x1,0x1,2 + 2x1,0x1,3 + 2x1,0x2,0 + 2x1,0x2,1 + 2x1,0x2,3 + 2x1,0x3,0 + 2x1,0x3,1 + 2x1,0x3,2

+2x1,2x1,3 + 2x1,2x2,0 + 2x1,2x2,1 + 2x1,2x2,3 + 2x1,2x3,0 + 2x1,2x3,1 + 2x1,2x3,2

+2x1,3x2,0 + 2x1,3x2,1 + 2x1,3x2,3 + 2x1,3x3,0 + 2x1,3x3,1 + 2x1,3x3,2

+2x2,0x2,1 + 2x2,0x2,3 + 2x2,0x3,0 + 2x2,0x3,1 + 2x2,0x3,2

+2x2,1x2,3 + 2x2,1x3,0 + 2x2,1x3,1 + 2x2,1x3,2

+2x2,3x3,0 + 2x2,3x3,1 + 2x2,3x3,2

+2x3,0x3,1 + 2x3,0x3,2

+2x3,1x3,2



+

A
(
k2 + x0,1 + x0,2 + x0,3 − 2kx0,1 − 2kx0,2 − 2kx0,3 + 2x0,1x0,2 + 2x0,1x0,3 + 2x0,2x0,3

)
+A(k2+x1,0+

x2,0 + x3,0 − 2kx1,0 − 2kx2,0 − 2kx3,0 + 2x1,0x2,0 + 2x1,0x3,0 + 2x2,0x3,0)(11.19)Now let’s group the
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linear terms as following:

2A32 + 2Ak2 + (W0,1 +A (1− 5− 2k))x0,1 + (W0,2 +A (1− 5− 2k))x0,2+

(W0,3 +A (1− 5− 2k))x0,3 +A (W1,0 −A (1− 5− 2k))x1,0 +A (W2,0 −A (1− 5− 2k))x2,0

+A (W3,0 −A (1− 5− 2k))x3,0 + (W1,2 − 10A)x1,2 + (W1,3 − 10A)x1,3 + (W2,1 − 10A)x2,1

+ (W2,3 − 10A)x2,3 − (W3,1 − 10A)x3,1 − (W3,2 − 10A)x3,2

(11.20)
Now let’s group Quadratic terms.

+ 4Ax0,1x0,2 + 4Ax0,1x0,3 + 4Ax0,2x0,3

+ 2Ax0,1x1,2 + 2Ax0,1x1,3 + 2Ax0,1x2,1 + 2Ax0,1x2,3 + 2Ax0,1x3,1 + 2Ax0,1x3,2 + 4Ax1,0x2,0 + 4x1,0x3,0

+ 4Ax2,0x3,0 + 2Ax1,0x1,2 + 2Ax1,0x1,3 + 2Ax1,0x2,1 + 2Ax1,0x2,3 + 2Ax1,0x3,1 + 2Ax1,0x3,2

+ 2Ax2,1x1,2 + 2Ax2,1x1,3 + 2Ax2,1x3,0 + 4Ax2,1x3,1 + 4Ax2,1x3,2 + 2Ax2,1x0,2 + 2Ax2,1x0,3 + 4Ax2,1x2,3

+ 2Ax1,2x0,3 + 2Ax1,2x2,0 + 2Ax1,2x2,1 + 2Ax1,2x3,0 + 2Ax1,2x3,1 + 4Ax1,2x1,3 + 4Ax1,2x3,2 + 4Ax1,2x2,3

+ 2Ax3,1x0,2 + 2Ax3,1x1,2 + 4Ax3,1x3,2 + 2Ax3,1x0,3 + 2Ax3,1x1,3 + 2Ax3,1x2,3

+ 2Ax1,3x2,0 + 2Ax1,3x2,1 + 4Ax1,3x2,3 + 2Ax1,3x3,0 + 2Ax1,3x3,1 + 2Ax1,3x3,2

+ 2Ax0,2x1,2 + 2Ax0,2x3,2 + 2Ax0,2x1,3 + 2Ax0,2x2,3

+ 2Ax2,0x2,1 + 2Ax2,0x2,3 + 2Ax2,0x3,1 + 2Ax2,0x3,2

+ 2Ax3,2x0,3 + 2Ax3,2x1,3 + 2Ax3,2x2,3

+ 2Ax2,3x3,0 + 2Ax2,3x3,1 + 2Ax2,3x3,2

+ 2x0,3x1,3 + 2x0,3x23

+ 2x3,0x3,1 + 2x3,0x3,2

(11.21)

Recalling the quadratic form xTQx+ gTx+ C with the following terms.
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x0,1 x0,2 x0,3 x1,0 x1,2 x1,3 x2,0 x2,1 x2,3 x3,0 x3,1 x3,2
x0,1 0 4 4 0 2 2 0 2 2 0 2 2
x0,2 0 0 4 0 2 2 0 2 2 0 2 2
x0,3 0 0 0 0 2 2 0 2 2 0 2 2
x1,0 0 0 0 0 2 2 4 2 2 4 2 2
x1,2 0 0 0 0 0 4 2 2 4 2 2 4
x1,3 0 0 0 0 0 0 2 2 4 2 2 2
x2,0 0 0 0 0 0 0 0 2 2 4 2 2
x2,1 0 0 0 0 0 0 0 0 4 2 4 4
x2,3 0 0 0 0 0 0 0 0 0 2 2 2
x3,0 0 0 0 0 0 0 0 0 0 0 2 2
x3,1 0 0 0 0 0 0 0 0 0 0 0 4
x3,2 0 0 0 0 0 0 0 0 0 0 0 0

Table 11.1: QUBO Q Matrix for the Social Workers’ Problem

X =



x0,1

x0,2

x0,3

x1,0

x1,2

x1,3

x2,0

x2,1

x2,3

x3,0

x3,1

x3,2



Q =



0 4 4 0 2 2 0 2 2 0 2 2

0 0 4 0 2 2 0 2 2 0 2 2

0 0 0 0 2 2 0 2 2 0 2 2

0 0 0 0 2 2 4 2 2 4 2 2

0 0 0 0 0 4 2 2 4 2 2 4

0 0 0 0 0 0 2 2 4 2 2 2

0 0 0 0 0 0 0 2 2 4 2 2

0 0 0 0 0 0 0 0 4 2 4 4

0 0 0 0 0 0 0 0 0 2 2 2

0 0 0 0 0 0 0 0 0 0 2 2

0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0



g =



W0,1 −A(4 + 2k)

W0,2 −A(4 + 2k)

W0,3 −A(4 + 2k)

W1,0 −A(4 + 2k)

W1,2 − 10A

W1,3 − 10A

W2,0 −A(4 + 2k)

W2,1 − 10A

W2,3 − 10A

W3,0 −A(4 + 2k)

W3,1 − 10A

W3,2 − 10A



, (11.22)

and
C = 2Ak2 + 2A(n− 1)2, (11.23)

We put equations(11.9) and (11.10) together, and we arrive at the following expression:

Wij = dij + γ
(τi−τj)

2

dmax − dmin
, (11.24)

There are several strategies to implement the objective function with inequality constraints, but these
strategies require additional variables that work as a stack. The approach most frequently used in
the scientific community is to use auxiliary binary variables to convert inequality to equality and
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J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12
J1 0 4 4 0 2 2 0 2 2 0 2 2
J2 0 0 4 0 2 2 0 2 2 0 2 2
J3 0 0 0 0 2 2 0 2 2 0 2 2
J4 0 0 0 0 2 2 4 2 2 4 2 2
J5 0 0 0 0 0 4 2 2 4 2 2 4
J6 0 0 0 0 0 0 2 2 4 2 2 2
J7 0 0 0 0 0 0 0 2 2 4 2 2
J8 0 0 0 0 0 0 0 0 4 2 4 4
J9 0 0 0 0 0 0 0 0 0 2 2 2
J10 0 0 0 0 0 0 0 0 0 0 2 2
J11 0 0 0 0 0 0 0 0 0 0 0 4
J12 0 0 0 0 0 0 0 0 0 0 0 0

Table 11.2: Jij Interaction forces between grid neighbours. We assume that Jij = 0 for i and j are
not adjacent.

then proceed, as usual, by squaring the equality constraint following penalty theory. These additional
variables are translated into qubits; today’s extra qubits are scarce for some experiments. To do
this, we define a strategy that allows us to solve combinatorial optimisation problems with inequality
constraints without increasing the number of qubits required. Our strategy is based on coding the
variables of time inequality, the time window following the formulation (11.24).

However, IBM’s significant contribution∗ opens up promising horizons in quadratic programming
with inequality constraints.

Now we only have to code the information in table (10.1), the data (distance, costs and correction)
of each patient and generate our weight matrix, which in turn will serve to calculate our variables
linear g. With all this, we already have all the components for one, write our objective function in
the form QUBO and second solve it.

As we already have our objective function as a QUBO in the form ⟨xT |Q|x⟩ and as we have shown
in chapter (9), based on equations (9.14) and (9.15), and summarized in table (9.1), going from the
QUBO to Ising formulation leads to calculating the values of Jij and hi.

Next, we calculate these variables. We start with Jij as is summarized in table (11.2).

Jij =


qi,j+qi,j

4 i < j

0 otherwise
(11.25)

Let us calculate the external forces hi:

hi =
1

4

N∑
k=1

(qi,k + qk,i)hi =
1

4



(qi,1 + q1,i) + (qi,2 + q3,i) + (qi,3 + q3,i)

+ (qi,4 + q4,i) + (qi,5 + q5,i) + (qi,6 + q6,i)

+ (qi,7 + q7,i) + (qi,8 + q8,i) + (qi,9 + q9,i)

+ (qi,10 + q10,i) + (qi,11 + q11,i) + (qi,12 + q12,i)


. (11.26)

∗https://medium.com/qiskit/towards-quantum-advantage-for-optimization-with-qiskit-9a564339ef26
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Now let calculate i = 1.

h1 =
1

4



(q1,1 + q1,1) + (q1,2 + q2,1) + (q1,3 + q3,1)

+ (q1,4 + q4,1) + (q1,5 + q5,1) + (q1,6 + q6,1)

+ (q1,7 + q7,1) + (q1,8 + q8,1) + (q1,9 + q9,1)

+ (q1,10 + q10,1) + (q1,11 + q11,1) + (q1,12 + q12,1)



=
1

4



(0 + 0) + (4 + 0) + (4 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)


= 5.

(11.27)

Where h1 = 5. Now let calculate i = 2.

h2 =
1

4



(q2,1 + q1,2) + (q2,2 + q2,2) + (q2,3 + q3,2)

+ (q2,4 + q4,2) + (q2,5 + q5,2) + (q2,6 + q6,2)

+ (q2,7 + q7,2) + (q2,8 + q8,2) + (q2,9 + q9,2)

+ (q2,10 + q10,2) + (q2,11 + q11,2) + (q2,12 + q12,2)



=
1

4



(0 + 4) + (0 + 0) + (4 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)


= 5.

(11.28)

Where h2 = 5

Now let calculate i = 3.

h3 =
1

4



(q3,1 + q1,3) + (q3,2 + q2,3) + (q3,3 + q3,3)

+ (q3,4 + q4,3) + (q3,5 + q5,3) + (q3,6 + q6,3)

+ (q3,7 + q7,3) + (q3,8 + q8,3) + (q3,9 + q9,3)

+ (q3,10 + q10,3) + (q3,11 + q11,3) + (q3,12 + q12,3)



=
1

4



(0 + 4) + (0 + 4) + (0 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)


= 5.

(11.29)
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Where h3 = 5 Now let calculate i = 4.

h4 =
1

4



(q4,1 + q1,4) + (q4,2 + q2,4) + (q4,3 + q3,4)

+ (q4,4 + q4,4) + (q4,5 + q5,4) + (q4,6 + q6,4)

+ (q4,7 + q7,4) + (q4,8 + q8,4) + (q4,9 + q9,4)

+ (q4,10 + q10,4) + (q4,11 + q11,4) + (q4,12 + q12,4)



=
1

4



(0 + 0) + (0 + 0) + (0 + 0)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (4 + 0) + (2 + 0) + (2 + 0)

+ (4 + 0) + (2 + 0) + (2 + 0)


= 5.

(11.30)

Where h4 = 5 Now let calculate i = 5.

h5 =
1

4



(q5,1 + q1,5) + (q5,2 + q2,5) + (q5,3 + q3,5)

+ (q5,4 + q4,5) + (q5,5 + q5,5) + (q5,6 + q6,5)

+ (q5,7 + q7,5) + (q5,8 + q8,5) + (q5,9 + q9,5)

+ (q5,10 + q10,5) + (q5,11 + q11,5) + (q5,12 + q12,5)



=
1

4



(0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 0) + (4 + 0)

+ (0 + 2) + (2 + 0) + (4 + 0)

+ (2 + 0) + (2 + 0) + (4 + 0)


= 7.

(11.31)

Where h5 = 7 Now let calculate i = 6.

h6 =
1

4



(q6,1 + q1,6) + (q6,2 + q2,6) + (q6,3 + q3,6)

+ (q6,4 + q4,6) + (q6,5 + q5,6) + (q6,6 + q6,6)

+ (q6,7 + q7,6) + (q6,8 + q8,6) + (q6,9 + q9,6)

+ (q6,10 + q10,6) + (q6,11 + q11,6) + (q6,12 + q12,6)



=
1

4



(0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 4) + (0 + 0)

+ (2 + 0) + (2 + 0) + (4 + 0)

+ (2 + 0) + (2 + 0) + (2 + 0)


=

13

2
.

(11.32)

Where h6 = 6, 5
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Now let calculate i = 7.

h7 =
1

4



(q7,1 + q1,7) + (q7,2 + q2,7) + (q7,3 + q3,7)

+ (q7,4 + q4,7) + (q7,5 + q5,7) + (q7,6 + q6,7)

+ (q7,7 + q7,7) + (q7,8 + q8,7) + (q7,9 + q9,7)

+ (q7,10 + q10,7) + (q7,11 + q11,7) + (q7,12 + q12,7)


=

1

4



(0 + 0) + (0 + 0) + (0 + 0)

+ (0 + 4) + (0 + 2) + (0 + 2)

+ (0 + 0) + (2 + 0) + (2 + 0)

+ (4 + 0) + (2 + 0) + (2 + 0)


= 5.

(11.33)

Where h7 = 5

Now let calculate i = 8.

h8 =
1

4



(q8,1 + q1,8) + (q8,2 + q2,8) + (q8,3 + q3,8)

+ (q8,4 + q4,8) + (q8,5 + q5,8) + (q8,6 + q6,8)

+ (q8,7 + q7,8) + (q8,8 + q8,8) + (q8,9 + q9,8)

+ (q8,10 + q10,8) + (q8,11 + q11,8) + (q8,12 + q12,8)



=
1

4



(0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 0) + (4 + 0)

+ (2 + 0) + (4 + 0) + (4 + 0)


= 7.

(11.34)

Where h8 = 7

Now let calculate i = 9.

h9 =
1

4



(q9,1 + q1,9) + (q9,2 + q2,9) + (q9,3 + q3,9)

+ (q9,4 + q4,9) + (q9,5 + q5,9) + (q9,6 + q6,9)

+ (q9,7 + q7,9) + (q9,8 + q8,9) + (q9,9 + q9,9)

+ (q9,10 + q10,9) + (q9,11 + q11,9) + (q9,12 + q12,9)



=
1

4



(0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 4) + (0 + 4)

+ (0 + 2) + (0 + 4) + (0 + 0)

+ (2 + 0) + (2 + 0) + (2 + 0)


= 7.

(11.35)
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Where h9 = 7

Now let calculate i = 10.

h10 =
1

4



(q10,1 + q1,10) + (q10,2 + q2,10) + (q10,3 + q3,10)

+ (q10,4 + q4,10) + (q10,5 + q5,10) + (q10,6 + q6,10)

+ (q10,7 + q7,10) + (q10,8 + q8,10) + (q10,9 + q9,10)

+ (q10,10 + q10,10) + (q10,11 + q11,10) + (q10,12 + q12,10)



=
1

4



(0 + 0) + (0 + 0) + (0 + 0)

+ (0 + 4) + (0 + 2) + (0 + 2)

+ (0 + 4) + (0 + 2) + (0 + 2)

+ (0 + 0) + (2 + 0) + (2 + 0)


=

9

2
.

(11.36)

Where h10 = 4, 5

Now let calculate i = 11.

h11 =
1

4



(q11,1 + q1,11) + (q11,2 + q2,11) + (q11,3 + q3,11)

+ (q11,4 + q4,11) + (q11,5 + q5,11) + (q11,6 + q6,11)

+ (q11,7 + q7,11) + (q11,8 + q8,11) + (q11,9 + q9,11)

+ (q11,10 + q10,11) + (q11,11 + q11,11) + (q11,12 + q12,11)



=
1

4



(0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 4) + (0 + 2)

+ (0 + 2) + (0 + 0) + (4 + 0)


=

13

2
.

(11.37)

Where h11 = 6, 5
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h1 5
h2 5
h3 5
h4 5
h5 7
h6 6.5
h7 5
h8 7
h9 7
h10 4.5
h11 6.5
h12 7

Table 11.3: Calculated values of the external force hi

Now let calculate i = 12.

h12 =
1

4



(q12,1 + q1,12) + (q12,2 + q2,12) + (q12,3 + q3,12)

+ (q12,4 + q4,12) + (q12,5 + q5,12) + (q12,6 + q6,12)

+ (q12,7 + q7,12) + (q12,8 + q8,12) + (q12,9 + q9,12)

+ (q12,10 + q10,12) + (q12,11 + q11,12) + (q12,12 + q12,12)



=
1

4



(0 + 2) + (0 + 2) + (0 + 2)

+ (0 + 2) + (0 + 4) + (0 + 2)

+ (0 + 2) + (0 + 4) + (0 + 2)

+ (0 + 2) + (0 + 4) + (0 + 0)


= 7.

(11.38)

Where h12 = 7

With the calculated Jij (table (11.2)) and hi (table (11.3)), we can now solve our Social Workers’

Problem with VQE ⟨ψ (θ) |H|ψ (θ)⟩ or QAOA ⟨−→γ ,
−→
β |H|−→γ ,

−→
β ⟩, or with any mentioned variational

method. We are considering that the superposition state N qubits of Q = q1 · · · qN is described by
|ψ⟩ = |ψ1 · · ·ψN ⟩.

HP |ψ⟩ =
∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j |ψ⟩. (11.39)

Where the energy function is as follow and where the notation σzi means that the Pauli-Z operator is
applied to the single-qubit = | · · ·ψi · · · ⟩.

∈I=
∑
i∈V

hi (−1)
ψi

+
∑

(i,j)∈V

Jij (−1)
ψi

(−1)
ψj
. (11.40)
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Another view of the equation (11.40) is given by (11.41) and (11.42).

σzi −→ I︸︷︷︸
1st position

⊗ · · · ⊗ z
σ︸︷︷︸

ith position

⊗ · · · ⊗ I︸︷︷︸
Nth position

, (11.41)

and

σzi σ
z
j
i<j−−→ I︸︷︷︸

1st position

⊗ · · · ⊗ z
σ︸︷︷︸

ith position

⊗ · · · ⊗ z
σ︸︷︷︸

jth position

⊗ · · · ⊗ I︸︷︷︸
Nth position

. (11.42)

11.2.2 The algebraic approach of the Hamiltonian Formulation

We are looking for a more compact Hamiltonian way to make it easier to codify in quantum. To
do this, we vectorise the decision variables xij . We know that vectorization [176][222] of a matrix is
a linear transformation that converts the matrix into a column vector. So, let vec (X), the column
vector mn× 1 obtained by stacking the columns of the matrix X one on top of the other:

vec(X) = [x1,1, . . . , x1,m, . . . , x1,n, . . . , xm,n]
T
. (11.43)

We also know that vectorisation is frequently used with the Kronecker product to express matrix
multiplication as a linear transformation in matrices. In particular.

vec(ABC) = (CT ⊗A)vec(B)vec(ABC) = (IT ⊗AB)vec(C) =

(CTBT ⊗ I)vec(A)vec(AB) = (IT ⊗A)vec(B) = (BT ⊗ I)vec(A).

(11.44)

If we apply vectorization as a linear sum, the matrix vectorization operation can be written in terms
of a linear sum. Let ei be the nth canonical base vector for n dimensional space, that is:

ei = [0, . . . , 0, . . . , 0, . . . , 1, . . . , 0, . . . , 0]
T
. (11.45)

Let Bi a block matrix mn×m defined as follows:

Bi =



0

...

0

Im

0

...

0



= ei ⊗ Im. (11.46)

Bi consists of n block matrices of size m×m, stacked in columns, and all these matrices are all zero
except the ith, which is an identity matrix m×mIm.
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Then the vectorized version of X can be expressed as follows:

vec(X) =
n∑
i=1

BiXei. (11.47)

The multiplication of X by ei extracts the ith column, while the multiplication by Bi places it in the
desired position in the final vector. Alternatively, the linear sum can be expressed using the Kronecker
product:

vec(X) =
n∑
i=1

(ei ⊗ Im)Xei =
n∑
i=1

(ei ⊗ Im)XT . (11.48)

With Xei = XT . Where T is the transpose.

We can simplify our objective function to be implemented in quantum.

11.2.3 Vectorization form of our formulation

The formulation of quantum annealing has been described in countless articles[163] [236][230] as one
of the combinatorial optimisation algorithms solving approaches. Moreover, this formulation is the
basis of the new techniques called to be the flagship of quantum computation. Our QAOA/VQE
formulation takes after reference [233], showing the detailed development for our case. Let the vector
Z of the decision variables xij with Z ∈ 0, 1N and N = n(n+ 1):

Z = [x01, x02, x03, . . . , x10, x12, x13, . . . , xn(n−1)]
T . (11.49)

And applying equation (11.49) and (11.48) taking into account that the decision variable is now Z ,
we arrive at equation (11.50).

H = WTZ +A
n∑
i=1

(
1−

(
ei
T
n

)
Z
)2

+A
n∑
i=1

(
1− vTi Z

)2
+A

(
k − (e0n)

T
Z
)2

+A
(
k − vT0 Z

)2
. (11.50)

With:

Wij = dij + γ
(τi−τj)

2

dmax − dmin
. (11.51)
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Now, let’s develop the resultant equation.

H = WTZ +A
n∑
i=1

(((
ei
T
n

)
Z
)2 − 2

(
ei
T
n

)
z + 1

)
+A

∑
i=1

((
vTi Z

)2 − 2vTi Z + 1
)

+A

[(
(e0n)

T
Z
)2
− 2k (e0n)

T
Z + k2

]
+A

[(
vT0 Z

)2 − 2k
(
vT0 Z

)
+ k2

]
,

H = WTZ +A
n∑
i=1

[(
ei
T
n

)
Z
]2

+
[
vTi Z

]2 − 2A
[(
ei
T
n

)
+ vTi

]
Z + 2A+A[

[(
e0
T
n

)
+ vT0

]2
Z

− 2AKe0
T
n + vT0 Z + 2Ak2].

(11.52)

Regrouping the terms in the quadratic formulation ZTQZ + gTZ + C:

H = A
n∑
i=1

[
(ei ⊗ In)

2
Z2 +

[
vTi
]2
Z2
]

+ w − 2A
n∑
i=1

[(
ei ⊗ ITn

)
+ vTi

]
− 2Ak

[
(e0 ⊗ 1n)

T
+ vT0

]
+ 2An+ 2Ak2.

(11.53)

With the variables Q, g and C:

Q =
n∑
i=1

[
(ei ⊗ In)

2
+
[
vTi
]2]

=
n∑
i=1

[ei ⊗ Inei ⊗ ITn + [viv
T
i ]]. (11.54)

g = w − 2A
n∑
i=1

[(
ei ⊗ ITn

)
+ vTi

]
− 2Ak

[
(e0 ⊗ 1n)T + vT0

]
. (11.55)

C = +2An+ 2Ak2. (11.56)

11.2.4 Mapping the SWP’s formulation into a list of Pauli operators

There is a very close relationship between Clifford’s algebras [182] with Quantum computing. Clifford’s
algebras are abstract structures that have been widely used in various theories of the physical and
mathematical types. In particular, they favoured a comprehensive treatment of operators involved in
Quantum Computing. For example, Clifford’s group defines the computational subspace operations
on the Hilbert vector space.

σ0 = I =

1 0

0 1

 , σ1 = X =

0 1

1 0

 , σ2 = Y =

0 −i

i 0

 and σ3 = Z =

0 0

1 −1

 . (11.57)

Nevertheless, we use the Pauli group for quantum computing. The Pauli group on one qubit is the
16-element matrix group consisting of the 2×2 identity matrix I and all of the Pauli matrices together
with the products of these matrices with the factors ±1 and ±i:
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G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ, } ≡ ⟨X,Y, Z⟩. (11.58)

In the case of n qubits, the Pauli group is defined as Gn in the tensor product of the Hilbert space(
C2
)⊗n

.

Gn = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ, }
⊗
n. (11.59)

With 2n × 2n matrix acting on an n qubits Hilbert space. Using the Pauli group properties, we
can avoid doing costly matrix operations.

The Pauli group is also used for the correction of the quantum error.

11.2.4.1 Mapping of quadratic variables of the Hamiltonian in the Z-basis.

Having the QUBO form of the SWP (equation (11.53)) from the Kronecker product and vectorization,
that can now map theseQ(11.54), g(11.55) and C(11.56) into the computational the Z-basis and Pauli’s
operators.

Qz =

(
Q

4

)
. (11.60)

gz =

(
−g

2
−
(
Iv ⊗

Q

4

)
−
(
Q

4
⊗ Iv

))
. (11.61)

cz =

(
c+

(g
2
⊗ Iv

)
+

(
Iv ⊗

(
Q

4
⊗ Iv

)))
. (213)

cz = cz + tr (Qz) . (11.62)

Qz = Qz − diag (textdiag (Qz)) . (11.63)

11.2.4.2 Coding the Hamiltonian into the Pauli Operators

We can now implement our algorithm with the Aqua library of the Qiskit framework. Using the
group theory that forms the Pauli operators to reduce computational costs by defining operation over
the Pauli components. To do this, we can decompose the Hamiltonian of Ising into a list of the
Pauli operators that make up the Clifford group (a set of mathematical transformations which affect
permutations of the Pauli operators.) Pn = I, (X,Y, Z).

11.2.4.3 Quantum solution from the ground up and closer to the Quantum Native form.

For quantum solver, we used Qiskit. This way to solve the problem is close to the natural way.
Now, we embedded some, IBMQ functions as WeightedPauliOperator, NumPyMinimumEigensolver
and TwoLocal. For the generic, this can be rewritten quickly.

First, we derived the solution from the ground up, using a class QuantumOptimizer that encodes
the quantum approach to solve the problem. Then we instantiated it and solved it. We defined the
following methods inside the class:

1. binary representation: encodes the proposed problem into the Ising Hamiltonian QP.
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2. construct hamiltonian: constructs the Ising Hamiltonian in terms of the Z basis.

3. check hamiltonian: makes sure that the Ising Hamiltonian is correctly encoded in the Z basis:
to do this, the function solved an eigenvalue-eigenvector problem for a symmetric matrix of
dimension 2N × 2N . For the complexity limit N = n (n− 1).

4. vqe solution: solves the proposed problem via VQE by using the SPSA solver with default
parameters.

5. q solution: internal routine to represent the solution in a usable format.

6. qaoa solution: solves the proposed problem via QAOA by using the SPSA solver with default
parameters.

All these six steps, according to our objective function defined by the equations (11.53). These
steps are necessary for quantum programming.

With these steps, we solve our problem through the exact result, VQE and QAOA. Next, we will
discuss the other techniques used to check the code in quantum. But for this, we need the docplex
and the library of quadratic programming.

11.2.5 Resolution of our formulation with docplex

Formulating the problem is equivalent to expressing a VRP with time and contract constraints. So,
we apply the docplex model on the question proposed in the equations (11.11), (11.2), (11.3), (11.5),
(11.6) and (11.8). In [25, 27, 26, 16] all the code can be found.

Now, we can solve the model (the problem) by all classical and quantum techniques.

11.2.6 Cplex solver

We used the cplex solver to solve our algorithm. We use the cplex solver to solve our algorithm.
Now, from May 2020, Qiskit supports Quadratically Constrained Quadratic Programs under

Quadratic Program (under docplex) with binary, integer, and continuous variables, as well as equality
and inequality constraints. But, this requires more ancillary qubits.

In Chapter (4), we have seen how to solve a quadratic function. Qiskit has developed a library to
solve quadratic functions. We will analyse it below.

11.2.7 Solving our Quantum SWP with MinimumEigenOptimizer

For that, we needed to use the Quadratic Program from IBM, so let’s Introduce the MinimumEigen-
Solver and MinimumEigenOptimizer [191]. For this translation, the binary variables taking values in
{0, 1} are replaced by spin variables taking matters in {−1,+1}, which allows replacing the resulting
spin variables by Pauli Z matrices, and therefore, a Hamiltonian. Qiskit provides automatic con-
version from a suitable Quadratic Program to an Ising Hamiltonian, which then permits to leverage
all the Minimum Eigen Solver available in Qiskit Aqua, such as VQE, QAOA, or Numpy Minimum
Eigensolver (classical exact method solver) (Fig.(11.1)).

Qiskit wraps the translation to an Ising Hamiltonian (in Qiskit Aqua, also called Operator), the
call to a Minimum Eigensolver as well as the conversion of the results back to Optimization Result
in the Minimum Eigen Optimizer.

In the following solver, we first illustrate the conversion from a Quadratic Program to an Operator
and then show how to use the Minimum Eigen Optimizer with different Minimum Eigen solver to
solve a given Quadratic Program. The algorithms in Qiskit automatically try to convert a given
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Figure 11.1: Quantum Optimization in Qiskit. A high-level modelling language, a modular set of
state-of-the-art quantum optimisation algorithms for different problem classes, leveraging Qiskit’s
fundamental quantum algorithms as well as core circuit functionality; combined with a uniform and
flexible interface for easy testing, benchmarking, and validation of models and algorithms [191].

problem to the supported problem class if possible; for instance, the Minimum Eigen Optimizer will
automatically translate integer variables to binary variables or add a linear equality constraint as a
quadratic penalty term to the objective.

The circuit depth of QAOA potentially has to be increased with the problem size, which might
be prohibitive for NISQ devices. A possible alternative is Recursive QAOA. Qiskit generalises this
concept to the Recursive Minimum Eigen Optimizer.

11.2.8 Solving our quantum SWP by using the ADMM Optimizer

Another technique we used to solve our proposed problem is by using the ADMM Optimizer[219]. The
ADMM optimiser can solve classes of mixed-binary constrained optimisation problems (MBCO) as a
QUBO subproblem on the quantum device via variational algorithms (VQE, QAOA) and continuous
convex constrained subproblem, which can be efficiently solved with classical optimisation solvers.

To solve our formulation with the ADMM module, we follow these steps:

We first initialise all the algorithms we plan to use. We initialise this case by setting the phase’s
parameters and the QUBO and convex solvers. We used the default parameters for ADMM module
ρ = 1001, β = 1000. With the penalization factor c= 900 of equality constraints Gx = b. The
tolerance for primal residual convergence is set to e−6. The 3-block implementation of the ADMM
is guaranteed to converge for Theorem number 4 of the ref: [219], because we active the inequality
constraint of the continuous variable as recommended by [219]. More details can be found at [191].

As we introduced above, to solve the Quadratic Programming from qiskit as QUBO problems can
be chosen between all the following packages. We are talking about Minimum Eigen Optimizer using
different Minimum Eigensolver, such as VQE, QAOA or Numpy Minimum Eigensolver (classical),
GroverOptimizer, CplexOptimizer (the user needs to install CPLEX is installed. Remember that it is
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for classical).

For the classical optimizer (Cobyla, SLSQP, . . . ) as shown in the Fig. (11.1) and analyze in chapter
9. We used the Cobyla Optimizer and the Minimum Eigen Optimizer using the Numpy Minimum
Eigensolver for QUBOs as classical alternatives to CPLEX for testing, validation, and benchmarking.
In the next step (second), we followed for each ADMM iterations (k = 1, 2, . . . ,) until termination; we
solved our Proposed QUBO problem with the quantum solver and updated the dual variables. And
the last step is to return optimisers and cost variables. All the experiments code can be found at [25,
27, 26, 16], the reader could see the files of the resolution of our algorithms. They can also be found
here [25, 9].

11.2.9 Backtracking

One of the classic techniques that we experimented with to solve our proposed problem is Backtracking
[209, 71]. We also did this study to make comparisons of the methods that we will review in the
chapter reserved for discussions. However, the Social Workers’ Problems that are discussed can be
solved classically using other known algorithms like the brute force; Dynamic Programming [41, 207]
or Greedy Algorithms. In logarithmic, linear-logarithmic time complexity in input data size, and
therefore, in some cases (without regard to the brute force), outshine the backtracking algorithm in
every respect.

Backtracking is not the most efficient algorithm to solve this problem, but it is suitable for the type
of CSP problem (Constraint Satisfaction Problems). Backtracking depends on a user-given scenario
that defines the problem to be solved, the nature of the partial solutions, and how they are scaled into
complete solutions. It is, therefore, a metaheuristic rather than a specific algorithm; it is guaranteed
to find all outcomes to a finite (limited) problem in a bounded amount of time since backtracking
algorithms are generally exponential in both time and space.

In our case, we use the Backtracking algorithm to consider all possible issues within the constraints.

11.2.10 First approach of the SWP’s generalization

In this section, we will propose a more generic formulation that does not consider the limitations of
the era in which we are. This formulation can be programmed on any quantum computer based on
Quantum Annealing or Based on quantum gates.

Let H be our new Hamiltonian as follow,

H = Hm +Hc +Ht, (11.64)

with

Hm = A
n+1∑
i=1

n∑
u=0

n∑
υ = 0

υ ̸= u

xiu,υWu,υ. (11.65)

CHAPTER 11. APPROACHES TO SOLVE THE SWP Page 155



Hc = B(1−
n∑
υ=1

x10,υ)2 +B
n∑
i=2


1−

n∑
u=1

n∑
υ = 1

υ ̸= u

xiu,υ



2

+B

(
1−

n∑
u=1

xn+1
υ,0

)2

+B
n∑
u=1


1−


xn+1
u,0 +

n∑
i=2

n∑
υ = 1

υ ̸= u

xiu,υ





2

+B
n∑
υ=1


1−


x10,υ +

n∑
i=2

n∑
u = 1

u ̸= υ

xiu,υ





2

.

(11.66)

Ht = τ1 + τ
n∑
i=2

τiWi + τ
n∑
i=1

Λi, (11.67)

where

Λi =

(
1−

k∑
k=1

tk,i

)2

(1 ≤ i ≤ n) . (11.68)

Where υ is with a time window [eυ, lυ]

T1 =

(
n∑
υ=1

x10,υw0,υ +
k∑
k=1

ktk,i −
n∑
υ=1

x10,υlυ

)2

. (11.69)

Ti =


i∑

d=1

n∑
u=1

n∑
υ = 1

υ ̸= 1

xdu,υwu,υ +
k∑
k=1

ktk,i −
n∑
u=1

n∑
υ = 1

υ ̸= u

xiu,υlυ



2

(2 ≤ i ≤ n) . (11.70)

tk,i =

1,

0,

the time margin in the tour k

otherwise.
(11.71)

The binary variable i represent the position of the tour. The constants B, A and τ are positive
constants, which must be chosen according to our requirements. Therefore, A < B, to ensure that the
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constraints of Hc are fulfilled. At last, τ < B ranks the time windows constraints over the objective
to minimise the path (tour).
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11.3 Research Results

11.3.1 Experimentation

We test our algorithm mapped on VQE, QAOA, Numpy Minimum Eigensolver (classical), GroverOp-
timizer, CplexOptimizer, Numpy Minimum Eigensolver for QUBOs, Backtracking and CP-SAT Solver
from google on the ibmq-16-melbourne v1.0.0, ibmq-qasm-simulator (up to 32 qubits) with COBYLA
and SLSQP as the classical optimizer. We can consider QAOA as a particular case of VQE. This is one
of the reasons we can apply the Hamiltonian of the Ising model of our proposed formulation directly
to QAOA almost without modify. The Figures (11.2) to (11.13) show the results of our algorithm
once we executed our algorithm under the IBMQ. The optimal visit considers the hours of visits to
form the optimal schedule. We have done several experiments with the QML defining different scenes
using shot configuration. With our quantum machine, we can configure the number of repetitions of
each circuit for sampling we need. With that, we will be doing machine learning on circuit design for
each shot. And when the loop ends, we will get to the ground state energy. Consequently, we solved
our problem by creating one quantum circuit for each shot, and the best circuit will be the one that
optimizes our Social Workers’ Problem. Next, we will see the results (figures and tables) obtained in
each case studied and presented above.
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Figure 11.2: Generated 10 Social Workers’ schedules

Figure 11.3: Generated 10 Social Workers’ Distance Matrix
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Figure 11.4: Generated 10 Social Workers’ Distance Nodes

11.4 Discussions

The VQE works very well and empowers the QML era. From what we expected, the VQE has solved
it by far. With the help of the IBMQ Aqua† program environment (qiskit‡), we were able to test our
algorithm. Too bad that we do not have access to a quantum computer with more qubits. Since in
our case for n = 6, the number of qubits necessary is n(n − 1) = 30qubits for the QASM Simulator
and n = 4 for the real quantum computer (15 qubits). We have not been able to do many more tests
for values of n greater than six since the computer on which we test our algorithm takes too long.

The VQE and the docplex can help the domain of programming in quantum computing, where
we require a high computing capacity. But also can be useful to empower intelligent solutions as the
objective of this article: Using the Variational-Quantum-Eigensolver (VQE) to create an Intelligent
social workers schedule problem solver.

The evaluation of the algorithm on an ibmq 16 melbourne v1.0.0 from IBM was fulfilled. With
any change in the input, variables are mapped proportionally to our cost variable with a time window.

With this work, we are trying to offer to cities an instrument [243] which could optimize the costs
allied to the management of social workers and improve social gains. Moreover, this work could also be
a starting point for many countries in Africa that are seizing the opportunity of the mobile technology
revolution [220] to develop and increase their industrious and e-health system [152].

We would like to add that the suggested formulation (11.50) and (11.51) is not only specific to
the proposed problem. It can be used to solve any family planning, scheduling and routing problem
related to a list of tasks, restrictions, allocation of resources on location and time. The test performed
and showed in Fig. (11.27) allows us to see the behaviour of our formulation with the variation of
the correction factor ε. We understand how our time window Tij = (τi−τj) adapts perfectly at the
extremes to the cost variable in the distance. This achievement is due to the chosen quadratic function
(11.51). We want it to be adapted in this way so that our resultant function weights together the short
distances and time and the long distances and late times. Other functions can be studied to have a test
bench to compare the final results. QAOA, like VQE, takes a qubit operator from the Hamiltonian
of the Ising model. The only mapping that gets done is when QAOA builds a variational form based
on the qubit operator and what we figured was that does not change the original qubit operator
input. Figure (11.25) and (11.26) reveal the comparison work between VQE and QAOA algorithms
for the same configuration parameters. After several tests, we confirmed that our algorithm takes
less execution time with the QAOA instead of the VQE and requires fewer samples for the optimal
solution. But in many cases, we have to increase the seed value to get a reasonably stable result.

†www.qiskit.org/aqua
‡www.qiskit.org
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Figure 11.5: Outcomes from the SWP by the Backtracking algorithm. From Monday to Wednesday

11.5 Benchmarks of SWP

In this section, we are going to make a comparison of all the techniques we used to solve the SWP.
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Figure 11.6: Outcomes from the SWP by the Backtracking algorithm. From Thursday to Friday

11.5.1 Comparing VQE solution with classical solver

The results obtained with the VQE, compared with the classical and idyllic quantum computing
results, demonstrate that the results obtained are correct. The only significant difference is the time
it takes for this era’s quantum computers to compute our algorithm right now. It is worth noting
that no such time has anything to do with the complexity class. On the contrary, nowadays, what is
gained with quantum computers is to observe how well our algorithms work well (See Fig. (11.5) to
(11.22)).

11.5.2 Backtracking

Backtracking is not the most efficient algorithm to solve this problem, but it is suitable for the
type of CSP problem (Constraint Satisfaction Problems). Backtracking depends on a user-given
scenario that defines the problem to be solved, the nature of the partial solutions, and how they are
scaled into complete solutions. It is, therefore, a meta-heuristic rather than a specific algorithm; it
is guaranteed to find all outcomes to a finite (limited) problem in a limited amount of time since
backtracking algorithms are generally exponential in both time and space. In our case, we use the
Backtracking algorithm to consider all possible issues within the constraints. We can observe that,
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Figure 11.7: Outcomes from the SWP by the Quantum Exact solver algorithm. From Monday to
Wednesday

while Backtracking presents an exponential behaviour as the number of patients (which would be the
nodes of the graph) increases, the VQE algorithm, without considering the cost of evaluation and
calibration of the algorithm, has a growth linear. This, as the number of patients grows, will offer
more considerable advantages than a classic algorithm, such as Backtracking, since its temporary cost
will be much lower for more complex problems. Finally, we compare the time cost of executing the
classic algorithm used with the VQE algorithm on the ibmq 16 melbourne. To do this, we changed
the back-end that allows us to perform the algorithm on a real quantum computer with the highest
number of qubits available (15 qubits).

The ibmq 16 melbourne returns in the result array a parameter that indicates the total time
required to run the algorithm, including the calibrations necessary before running the algorithm in
each trial. It is essential to keep in mind since the results’ time will always be very high, but we
are interested in the asymptotic trend that the algorithm follows as we increase the total number of
patients to visit. Besides, it is necessary to consider that this kind of algorithm shows its potential in
the face of highly complex problems. So, the problem we are trying to solve with such a small number
of patients does not allow the VQE algorithm to offer an advantage over a classic algorithm. Still, it
allows us to observe its behaviour and validate that it can solve the problem posed. The results are
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Figure 11.8: Outcomes from the SWP by the Quantum Exact solver algorithm. From Thursday to
Friday

shown in table (11.5) and figures (11.5) and (11.6).

All the tests are done with the calibration from table (11.5.2). Nevertheless, this ref. [141] could
help to dive deeply. Figure (11.20) expresses the structure of the ibmq melbourne quantum device
from IBM. This computer has fifteen superconducting qubits.

11.5.3 Comparison of the algorithms’ complexity

We can observe that, while Backtracking (Fig. (11.21)) and the CPLEX present an exponential
behaviour as the number of patients (which would be the nodes of the graph) increases, the VQE,
QAOA algorithm ((11.22)), without taking into account the cost of evaluation and calibration of
the algorithm, have a logarithmic growth. This, as the number of patients grows, will offer more
considerable advantages than a classic algorithm, such as Backtracking, since its temporary cost will
be much lower for more complex problems (11.21) and (11.22).

11.5.4 OR Tool SAT

To validate the correct implementation and solution of problems, we use the Google OR-tools API,
which is geared towards solving VRP (Google Developers OR Tools, 2019). To use this API, it is
required to assign, at least, a distance between nodes. This distance, for this problem, will be the
calculation of weights, conditioned by the time limitations between schedules. This means that if a
path is not valid, we assign it a weight corresponding to the system maximum (sys.maxsize). Thanks to
this, the API can recognize that paths are not valid since they can be added to the maximum distance
that a vehicle can move in a journey. Therefore, if we also assign this maximum to sys.maxsize, we
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Figure 11.9: Outcomes from the SWP by the Quantum ASM Simulator from IBMQ. From Monday
to Wednesday

cannot move the paths with the same length, preventing us from considering these paths valid. The
result of the algorithm is then as shown in figure (11.23).

11.5.5 Comparing 10 scenarios of SWP with VQE

This section will compare the SWP’ schedules in ten scenarios by fixing the patient’s location and
solving it with the VQE (See Fig. (11.24)).

11.5.5.1 Comparing 5 scenarios of SWP with VQE and QAOA

This section will compare the SWP in five scenarios the algorithm’s scalability by varying the patient’s
number and solving it with the VQE and QAOA (See Fig. (11.25)).
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Figure 11.10: Outcomes from the SWP by the Quantum ASM Simulator from IBMQ. From Thursday
to Friday

Figure 11.11: Outcomes from the SWP by ibmq 16 melbourne v2.1.0 from IBMQ.

11.5.6 Comparing 10 scenarios of SWP on VQE and QAOA

This section will compare the SWP in ten scenarios the algorithm’s scalability by varying the patient’s
number and solving it with the VQE and QAOA (See Fig. (11.26)).
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Figure 11.12: Outcomes from the SWP by ADMM optimizer from IBMQ.

Figure 11.13: Outcomes from the SWP by Minimum Eigen Optimizer from IBMQ.

11.5.7 Comparing 10 banks of the Social Workers’ schedules on QAOA

This section will compare the SWP in ten banks schedules by fixing the patient’s location and solving
it with the QAOA (See Fig. (11.26) and (11.28)).

11.5.8 Comparing the SWP on all quantum algorithms

Since we wanted to make a decent comparison, we mean like many qubit numbers, we had to change
the back-end from the statevector simulator to qasm simulator and the real quantum computer. We
made this change because the superposition calculations of the quantum states or complex amplitudes
that the simulator provides to keep track of the algorithm overthrow the computer. It must be said
that this has nothing to do with the efficiency of the quantum computer but is a tool that facilitates
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Figure 11.14: Here we present the results by Monday of our algorithm. We are comparing the classical
solver and the exact quantum solver, and the Variational Quantum Eigensolver.

Figure 11.15: Here we present the results by Tuesday of our algorithm. We are comparing the classical
solver and the exact quantum solver, and the Variational Quantum Eigensolver.

Qiskit to learn the steps that the algorithm follows.
The results obtained with the qasm simulator are very similar to the results of the real quantum

computer, as seen in the figures (11.12) and (11.13).
We can observe (Fig. (11.19)) in this case that the Quantum exact solver gives the same result as

the backtracking. So instead, the VQE provides a solution with but with a patient change. This can
be a problem if the patients will not be able to change social workers daily. Another limitation can be
the learning process of the top-down approach. Another improvement is to reduce the computational
cost of the top-down algorithm.
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Figure 11.16: Here we present the results by Wednesday of our algorithm. We are comparing the
classical solver and the exact quantum solver, and the Variational Quantum Eigensolver.

Figure 11.17: Here we present the results by Thursday of our algorithm. We are comparing the
classical solver and the exact quantum solver, and the Variational Quantum Eigensolver.

11.6 Conclusion and Further Work

This thesis work has studied, implemented, and proved the feasibility of solving the Constraint Search
Problem more efficiently with quantum computing. We have researched and implemented, in classic
and quantum, several combinatorial optimisation algorithms to solve the problem of social workers
visiting patients at their homes. We have also tested the concepts and techniques of combinational
optimisation in programming environments, Cirq, Qiskit and Pennylane. Considering this, we analysed
the state of maturity of the hardware, the framework, of the scientific community and even the response
time of the technical support of each leading company in this quantum computing career. We have
opted for IBMQ for all the facilities (framework, hardware, support and libraries) they have given
us to be within their community. After the implementation, we have run the algorithms on both
quantum simulators (32q ibmq qasm simulator) and quantum computers (ibmq 16 melbourne v2.3.0 )
from IBM. The results and the discussions are developed in detail in this thesis work.
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Figure 11.18: Here we present the results by Friday of our algorithm. We are comparing the classical
solver and the exact quantum solver, and the Variational Quantum Eigensolver.

Figure 11.19: Here we present the results by analysing Friday of our algorithm. We are comparing
the classical solver and the exact quantum solver, and the Variational Quantum Eigensolver.

11.6.1 Conclusions

We have developed several mathematical formulations and proposed one to solve our problem. Our
proposed formulation allows us to design a strategy to take advantage of the era we are in (NISQ)
(Few useful qubits, limitations in quadratic techniques with inequality restrictions, just to mention
these). Moreover, although it seems specific, said formulation is later generalised to encompass more
generic applications. And we did a comparative analysis of 5 different implementations made and
discussed during this thesis work.
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Figure 11.20: The structure of the ibmq melbourne quantum device from IBM. This computer has
fifteen superconducting qubits, which are connected by the CNOT gate. The bidirectionality of arrows
reflects that each of the qubits can be both a control and a target.

Figure 11.21: Backtracking’s behaviour depending on the execution time and the number of patients.

We have analysed the Ising and the QUBO models in-depth to solve quadratic problems. We have
also studied the Cplex optimisation tools such as IBM’s docplex under its framework Qiskit.

Qiskit’s optimisation tool included the Generic Quadratic Programs that help to model any opti-
misation problem. It is also involved many converters to map the problem to solve to the correct input
format. Converters like, Inequality to Equality to map inequality constraints into equality constraints
with additional slack variables. The converter Integer To Binary is useful in the case of the need
to convert integer variables into binary variables and corresponding coefficients. Linear Equality To
Penalty helps to convert equality constraints into additional terms of the object function. And last
but not least, the Quadratic Program To QUBO converter is used as a wrapper for all the mentioned
converters.

We have analysed the Minimum Eigen Optimizer and the optimiser ADMM alternative to VQE
and QAOA.

We have also developed some guidelines to make it easier for future PhD or graduate students to
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Table 11.4: This is ibmq 16 melbourne calibrations
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take their first firm steps in quantum computing.

11.6.2 Future directions

As a future line, we will repeat the comparative studies of our formulation with the generalised for-
mulation. But for this comparison, we need to be able to count a quantum computer of at least 49
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Number of patients Time (µs)
2 0.1039505
3 0.1451969
4 0.2527237
5 0.6108284

Table 11.5: Experiment scenario using the Backtracking technique with 2, 3, 4 and 5 patients

Figure 11.22: VQE’s behaviour depending on the execution time and the number of patients and
number of trials

Temporal cost (ms) regarding the number of patients and trials used
Patients/Trials 1 5 25

2 147.253512 115.247231 164.301820
3 536.902598 421.142229 512.342655
4 4371.009830 4845.496973 4588.167234

Table 11.6: VQE evolution of trials and number of patients

qubits = n (n− 1). Where n is the number of the patients. Another exciting line that we contemplate
is the design of an adaptive and specific algorithm that considers any modification or configuration
in real-time of the patient or the social worker. Another future line is to design the specific VQE
for the proposed problem to gain efficiency. During our experimentation, we realised that the initial
configurations are not adequate in some cases; these quantum variational algorithms (VQE, QAOA,
ADMM) fail. However, they are today one of the most promising applications of quantum com-
puters in this era (NISQ). We define this future direction to focus on a unique family of quantum
circuits called the Hamiltonian Variational Ansatz (HVA), which the QAOA and adiabatic quantum
computing inspire. By studying its entanglement spectrum and energy gradient statistics, scientists
are experimenting with how HVA exhibits favourable structural properties and optimisation facilities
compared to well-studied hardware ansatz. A line of future that interests us a lot is Quantum Ma-
chine Learning. However, it is worth mentioning that we are already halfway to QML since all the
algorithms based on the variational principle lead us towards this goal. Within this objective, one
of the algorithms of the Qiskit framework is the Recursive Minimum Eigen Optimizer that takes a
Minimum Eigen Optimizer as input and applies the recursive optimisation structure and strategy to
reduce the size of the problem one variable at a time.
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Figure 11.23: SWP solved by OR-Tool-SAT from google

11.7 Summary

In this section, we have presented our contribution to the scientific community as its implementation.
We have proposed, designed, and implemented the algorithm to formulate the problem of social
workers who visit patients at their homes. We have tested brute force techniques, Backtracking,
Dijkstra, ADMM, Minimum Eigen Optimizer using different Minimum Eigensolver, such as VQE,
QAOA or Numpy Minimum Eigensolver (classical), GroverOptimizer, CplexOptimizer and for the
classical optimiser Cobyla, SLSQP, SPSA, . . . ).

In the Generalisation of the solution section, we generalised the algorithm for generic scheduling
and routing problems to be programmed under Quantum Annealing or Qiskit, etc.

In the case of Dwave, the formulation already works for QUBO. The same goes for Qiskit. In addi-
tion, however, we can use the new module from IBMQ (Fig. (11.1)) that boosts research, development,
and benchmarking of quantum optimisation algorithms for the NISQ era and beyond.

This last formulation improves our proposed formulation, in the margin of the social worker waiting
time, but requires more binary variables than the first one and therefore more qubits (that right now
are lacking and very valuable).

Using the Qiskit library, Quadratic Programming, we will model inequality constraints and much
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Figure 11.24: Results of the experimentation by comparing ten scenarios of the combinations of Social
Workers’ schedules for a fixed patient’s location (for Monday). We plot the error bar of the median
distribution of the location of each patient and their schedules concerning the number of repetitions
of the quantum’s instance.

Figure 11.25: Results of the experimentation by comparing six scenarios of the combinations of Social
Workers’ Problem on VQE and QAOA. By changing the number of patients, the social worker shot
configuration intending to analyze the quantum cost to meet the optimal solution. We realize that
the QAOA with the same settings as VQE finds the optimal solution with the little sample. We must
indeed consider the high values of the seed parameter.

more.
Qiskit, in addition to having converters of inequality to equality constraints, allows modelling

from scratch with inequality constraints. So, we have reformulated our system with the library to
have inequality restrictions. But as the techniques (slack) of using Qiskit to model, the system applies
additional variables that limit us when it comes to having useful qubits. So, both the simulations and
the actual tests on the quantum computer are limited since the number of qubits required is higher
than the characteristics of the hardware we use.

The number of qubits for integers it is log2 (ub− lb) for binaries it is 1:1. Inequality constraints
depend on the constraint, i.e. the range of the slack variable to be introduced.
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Figure 11.26: Results of the experimentation by hanging the number of patients, social worker shot
configuration intending to analyze the quantum cost to meet the optimal solution. We realize that
the QAOA with the same settings as VQE finds the optimal solution with the little sample.

Figure 11.27: The Standard Deviation expected total anneal time for 98% per cent success for each
mapping value, with the best ε for each shoot is shown. Our optimal case is for ε = 0, 7. Our most
representative cases are for ε = 0, 4, ε = 0, 7 and ε = 1, 1.

Figure 11.28: Results of the experimentation by comparing ten scenarios of the combinations of Social
Workers’ schedules for a fixed patient’s location. We plot the error bar of the median distribution of
the location of each patient and their schedules concerning the number of repetitions of the quantum’s
instance.
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Chapter 12

The quantum CBR (qCBR)

12.1 Introduction

From our previous works till now, and following the journey of this thesis (10.1), we observe that many
problems can be modelled as the social workers’ problem (SWP)[31], where their resolution may have
two straightforward approaches, Top-Down solution and how to solve them. Top-Down resolution is
a resolution that can be set as standard. Given a combinatorial optimisation problem, its objective
function can be found/written. And use the existing linear o quadratic programming methods of
solving as Simplex [170], Cplex [51] or numerical to solve it. Depending on the problem’s complexity
class, the algorithm can be improved by introducing some heuristics or restrictions in the objective
function to reduce its computational cost for an approximated solution.

On how to solve them, the approach is based on Case-based reasoning[3]. Due to its incremental
and sustained learning approach based on the human learning mode, it is based on how human beings
solve problems—a way of resolution based on past experiences.

In both cases, when the problem’s complexity cost grows, the computational cost begins to be
almost intractable for the current computation paradigm. In addition to the above, resolving these
problems becomes more challenging when the input data present some overlapping issues or when
outstanding accuracy is required, where quantum computing can be the choice.

The problem being solved is the NP complexity class problem, overlapping its input data and
demanding considerable accuracy. For this reason, this work presents the qCBR that tries to ad-
dress both limitations plus the overlapping problems by proposing a Case-Based Quantum Reasoning
(qCBR) method.

The proposal seeks to answer the following questions based on experimentation results.

1. Can a quantum CBR be efficiently implemented in this quantum age?

2. Could it be said quantum CBR have a tolerance to an overlapping problem?

3. Could the proposed quantum CBR be scalable while maintaining a mean accuracy?

4. . Can this CBR be used in other combinational optimisation problems?
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Figure 12.1: Case-Based Reasoning block diagram. For the standard CBR, two essential blocks are
distinguished in this work. The classifier and the synthesiser. The classifier is made up of the retrieve
and retain blocks and the re-use and revise blocks to make up the synthesis system.

Methods Brute force k-d tree [132] Ball tree [172]
Training time complexity O(1) O(dNlog(N)) O(dNlog(N))
Training space complexity O(1) O(dN) O(dN)
Prediction time complexity O(KNd) O(Klog(N)) O(Klog(N))
Prediction space complexity O(1) O(1) O(1)

Table 12.1: Table of the NN brute force’s, k-d tree’s, and Ball tree’s complexity method. Where d, is
the data dimensionality, N is the number of points in the training dataset and K is the algorithm’s
neighbours’ number

12.1.1 Related Work

This section summarises previous works in CBR, Quantum CBR and Quantum Machine Learning
(QML) algorithms.

CBR technique has been ingrained in society for several years in almost all sectors. For example
in a medical reasoning program that improves with experience [158], in the individual prognosis of
diabetes long-term risks[23], Case-based sequential ordering of songs for playlist recommendation [37]
or ranking order in financial distress prediction [151], for monitoring the elderly at home [158], in
software control[3], in the medical field[3], sequencing problems [190] etc. What we have done till now
is the Top-Down method. So let us analyse the benefits of using the CBR instead of the Top-Down
approach.

In the last two years, algorithms based on QML have increased considerably since the subject’s
introduction previous 2014 [212]. Advances in decoherence control [205, 221] and correction system
[203] are beginning to be seen to create efficient and intelligent quantum algorithms. Several quantum
server providers are also available in the cloud. And with the algorithms based on the variational
principle, they have opened the doors to quantum Machine Learning. The most famous is the Vari-
ational Quantum EigenSolver (VQE) [184] and the Quantum Approximate Optimization Algorithm
(QAOA) [92, 113, 250]. The most promising could be the Quantum Neural Network (QNN) [17, 213,
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40] Quantum Support Vector Machine (QSVM)[199, 116, 242], data loading system [181, 161] etc.
In this era of hybrid computing, which defines the potential of QML (combining quantum and

classical computing), algorithms such as [249], where a cognitive engine that uses CBR-QGA to adjust
and optimise the radio parameters, is presented. An initial quantum bit made up of the matching
case parameters is used to avoid blindness of the initial population search and speed up optimisation
of the quantum genetic algorithm. Papers [2, 19] were found that propose a new framework that
can be adopted in many applications that require Computational Intelligence (CI) solutions. The
framework is built under the concepts of Soft Computing (SC), where Fuzzy Logic (FL), Artificial
Neural Network (ANN) and Genetic Algorithm (GA) are exploited to perform reasoning tasks based
on soft cases. Also, Studies [165] focused on some vital blocks of the CBR were reviewed. It has
focused on the quantum version of the k-NN algorithm that allows us to understand the fundamentals
when transcribing classic machine learning algorithms into their quantum versions.

However, no quantum case-based reasoning was found to satisfy the abovementioned requirements.

12.2 Case-Based Reasoning

CBR [3] is a machine learning technique based on solving new problems using its experience, as
humans do. The ’experience’ is a case memory containing previously solved cases. The CBR cycle
can be summarised in four steps: (1) It retrieves the most similar cases, (2) It adapts them to propose
a new solution to the new environment, (3) It revises whether the solution is valid, and finally, (4) It
stores it following a learning policy. In the present work, the proposed qCBR modifies these phases
as follows (see Fig.(12.1) and (12.3)).

The CBR could be summarised in two large blocks with various functionalities: a classifier and a
synthesiser. One of the classical CBR advantages can be seen by its classifier’s simplicity. A k-nearest
neighbours algorithm (K-NN)[99, 101] classifier is used in many. This apparent advantage can lead
to collateral problems [154] at the memory level, at the level of slowness when the volume of data
grows considerably and at data synthesis. The synthesis block is in charge of adapting the experience
and saving to the new problem. Such adaptation and classification can be costly (Table 12.1) for
considerably high data volumes [5]. Where the need for a different approach to further empower this
technique.

The strategy to follow is summarised as making a CBR with a quantum classifier [218] instead of a
classical neural network, KNN[99, 101] or a Super Vector Machine (SVM) [175] that offers outstanding
accuracy and tolerates overlapping problems. And change the classical synthesis technique for the
Variational Quantum Eigensolver [183, 117, 111] with Initial point [241] illustrated in (12.2).

The Variational Quantum Circuit (VQC) [174, 59], consists of a quantum circuit that defines the
base structure similar to neural network architecture (Ansatz) while, the variational procedure can
optimise the types of gates (one or two-qubit parametric gates) and their free parameters. All this is
summarised in a few very identifiable steps. First, the Ansatz must be designed using a set of one- and
two-qubit parametric gates. Then, the Ansatz of this circuit can follow a particular path by exploiting
the problem’s characteristics. A critical block is measuring the quantum state resulting from the given
Ansatz. Since the VQC is a feedback system, these measurements evaluate a cost function CF (θ)(see
in the section 12.5.1) that encodes the problem. The classical optimiser has the role of optimising the
cost function to find the value of the parameters that minimise it.

12.3 Implementation

The work proposed is the implementation of a quantum case-based reasoning (qCBR) based on figure
(12.1). The following strategy replaces the classical classification: an Artificial Neural Network (ANN)
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Figure 12.2: VQE working principle based on the quantum variational circuit in Qiskit

or a Super Vector Machine (SVM) or the KNN with a quantum variational classifier that guarantees the
required accuracy. And for the quantum synthesis system, use the VQE with and without Initial point
together with a probabilistic decision tree. Figure (12.3) shows the changes that will be introduced
to obtain the qCBR, and figure (12.15) shows the detail of the functional blocks implemented with
the specific problem of social workers. Finally, the two VQE blocks and the Variational Quantum
Classifier are presented before detailing them.

12.4 Quantum classifiers

The variational quantum classifier belongs to the variational algorithms like VQE, where classically
tunable parameters of a unit circuit are used to minimise the expected value of an observable. The
great novelty resides in loading the data in the variational system.

As a universal quantum classifier of n qubits is pursued, a sub-base in the Hilbert vector space
of equitably dividing the hyperplane Z is described as follows. Let B = ({i, j, k, l,m, n, o, p}) be a
sub-base within the Hilbert vector space, for the space of the classes C2q , the coordinates of the target
classes are defined by expression (12.1) with q as the number of the qubits.

{i (1,0,0,0,0,0,0,0) ; j (0,1,0,0,0,0,0,0) ; k (0,0,1,0,0,0,0,0) ;

l (0,0,0,1,0,0,0,0) ;m (0,0,0,0,1,0,0,0) ;n (0,0,0,0,0,1,0,0) ;

o (0,0,0,0,0,0,1,0) ; p (0,0,0,0,0,0,0,1)}.

(12.1)

The Ansatz design and data loading (variables xi similar to neural networks)[181] are given by
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Figure 12.3: Quantum case-based system block diagram. In this scheme, to convert the classic CBR
into quantum one, it is proposed to change the retrieve and retain blocks for a quantum variational
classifier and the re-use and revise blocks for a synthesis system based on VQE with initial point.

equation (12.2), and its analysis is detailed in 12.5.1.

U = (θ, x) = Rx (θ1x+ θ2)Rz (θ3) . (12.2)

12.5 Variational Quantum Classifier

To date, two dominant categories allow designing quantum classifiers. Although almost all are inspired
by the classical classifiers (kernel or neural networks) [5], there is a new category of classifiers that
respond to the current era of quantum computing (NISQ); hybrid and variational classifiers.

12.5.1 The Ansatz

The basic idea that one pursues is to have an ansatz (Parameterised quantum circuits (PQC)) that,
formed by basic gates for quantum computing, is the most representative in the Hilbert vector space. In
other words, with the control or parameterisation of these parameters, the Ansatz, in particular, maps
the maximum number of points within the Bloch sphere (Fig. (12.4)). Another way to understand
the objective of the Ansatz is to find the state vector that best approximates all the points of the
Hilbert vector space. We must remember that the Hilbert vector space is the computational space
of quantum mechanics, therefore, quantum computing. The Ansatz design inherited from previous
works [29, 31] [218]. The way to load the data into the Ansatz is inspired by [181] where the data
(variable x) is entered using the weights and biases scheme. In this case, the single-qubit gate that
serves as the building block for all Ansatz is given by equation (12.3) similar to neural networks.

U = (θ, x) = Rx (θ1x+ θ2)Rz (θ3) . (12.3)
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Figure 12.4: Bloch sphere, where the infinite Hilbert vector space resides. It is worth remembering
that Hilbert space is the immense place where the states that describe a quantum system live. Let
N be the number of qubits and let 2N be the space dimension. Given the 65-qubit IBM processor, it
will be 3.689351019 dimensions. Many works of literature lead us to use or, at least, to think about
using the quantum computer in Machine Learning (ML). By definition, the Hilbert vector space has
defined these operations (internal and external products and mapping inputs in a large space) that a
quantum computer performs natively and very easily [130].

Being θ the vector of the parameters and Rx and Ry the unit gates of qubits used to create the
Ansatz. To complement the experimentation scenario, it would be necessary to add the CNOT gate
and the CRZ, which are the gates that help to achieve entanglement as seen in figures (12.5)(12.6)
and (12.7).

The variational quantum classifier structure, figure (12.8) and (12.9), is based on layers of trainable
circuit blocks L (i) =

∏
i,j U (i, j) and data coding, as shown in the equation (12.2) for 8 dimensional

or in (12.3) for 2 dimensional data size. Additionally, the entanglement can be achieved using the
CRZ or CNOT gates.

The number of parameters to optimize the classifier is given by the equation (12.4).

NumParam = (nL ∗ 2d ∗ L). (12.4)

In this case, with n the number of qubits, n = 3 , L the number of layers (blocks), in the experiment,
it is a variable data and d which is the dimension of the problem. In other words, d varies with the
choice of Ansatz and whether or not entanglement is applied. In the case of the entanglements in
figure (12.6), the d would be summed 1 (CRZ gate has one parameter), which equates to equation
(12.5).

NumParam = (nL ∗ 2(d+ 1) ∗ L). (12.5)

12.5.1.1 Fidelity cost function

The similarity function follows the same strategy as the re-uploading and path; the Ansatz is different.
It uses the definition of quantum fidelity with several qubits and maximizes said average fidelity
between the test state and the final state corresponding to its class. Equation (12.6) [180] defines the
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Figure 12.5: Ry and Rz Ansatzes without entanglament used in qCBR experimentation.

Figure 12.6: Ry and Rz Ansatzes with CRZ entanglement used in qCBR experimentation.

Figure 12.7: Ry and Rz Ansatzes with CNOT entanglement used in qCBR.
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Figure 12.8: Three-qubit quantum classifier circuit without entanglement.

Figure 12.9: Three-qubit quantum classifier circuit with entanglement by using CZ or CNOT gates

cost function used.
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)
= <ψc|ρq

(−→
θ ,−→ω,−→x

)
|ψc⟩. (12.7)

Where ρq is the reduced density matrix of the qubit to be measured, M is the total number of
training point, C is the total number of the classes, −→x µ are the training points and −→α = (α1, . . . , αC)

are introduced as class weights to be optimized together with
−→
θ , −→ω, are the parameters and Q the

numbers of the qubits. Counting on Yc (−→x µ) as the fidelity vector for a perfect classification. This
cost function (12.6) is weighted and averaged over all the qubit that form this classifier. To complete
the hybrid system, it is used for the classical part, the following minimisation methods above cited:
L-BFGS-B [62], COBYLA[227] and SPSA[63].
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12.6 Details of qCBR

The operation of the retrieve (prediction) block is given by a new case (schedule). In this experi-
mentation, the schedule that best adapts to the latest issue to be solved is recovered with the predict
method, which is executed at a time O(log(MN)). It is worth saying that, due to the SWP de-
scriptions, a possible schedule change, a stage of understanding or interpretation is necessary since
an adequate resolution of the new schedule cannot be carried out if it is not understood with some
completeness. This stage of understanding is a simple decision algorithm with minimal intelligence.

Once having the predicted solution, the synthesis block creates a new solution (proposed solu-
tion) by combining recovered solutions. To do this, the algorithm is divided into two main lines
(figure(12.15)). A line that determines an acceptable degree of error (after a probabilistic study) that
the predicted solution can be considered the proposed solution. The second branch is in charge of
improving the expected solution towards a better-proposed solution. To do this, the Initial point as-
sociated with the retrieved schedule is retrieved from the case memory, and the Variational Quantum
Eigensolver is executed with very few shots (k shots). The idea here is to refine the new schedule’s
similarity with the recovered one. Operating the VQE with Initial point provides the algorithm with
parameter values through the initial point as a starting point for searching for the minimum eigen-
value (similarity between the two times) when the new time’s solution point is believed to be close to
a matter of the recovered schedule. This is how the Re-use block works. These operations have a
complexity of O(klog(N) + log(NM)). Where N is the number of social workers, M is the number of
patients, and k is the number of shots.

The algorithm’s processes to review the proposed solution are seen below the Re-use block in
figure (12.15). It is essential to classify the best possible solution for the proposed prototype. The
best possible solution is calculated with the VQE with the maximum resolution and depth (for the
variational part). Once the solution is obtained, it is compared with the proposed solution and said
solution with its characteristics is added to the new schedule before storing it (see figures (12.12)
and (12.13)). The computational complexity of the Revise is determined by O(log(N) + ICA)). In
this work, access to data (states) is selected by O(log(MN)) due to the characteristics of the inner
products and superpositions.

One of the most critical blocks in this work is to Retain. This block is the heart of the CBR
because it is the classifier and because it is the block that allows us to conclude that it has been
learned from the previous cases. Unfortunately, not all instances (schedules) are saved in this job,
leading to the excessively slow classifier. Therefore, the best issues (timetables) that summarise all
the essential information are retained in this part of the algorithm.

Figure 12.10: Representation of the generation of the n weekly schedules of the SWP. The last plane,
the one to the right of everything, represents all the SWP classes. The overlapping effect generated
by the social workers’ problem’s characteristics and experimentation scenarios can be observed. This
experimentation leads us to use the ICA technique to have a resulting dataset regardless of the
schedules.
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Figure 12.11: Fundamental processes to apply ICA to SWP dataset. The first thing that is done
is to centre the data x by subtracting the mean, balancing the data x removing its variance, and
calculating the unmixing matrix of W. Then, the new value of w is calculated. Then w is normalised
before checking if, with the said value, the algorithm converges or not. If it does not converge, a
new w must be recalculated, and if it converges, calculate the scalar product of ⟨x, y⟩ to obtain the
independent weekly schedules.

The Retain process begins with the treatment of schedules, searching for the algorithm’s best
efficiency, which is a challenge to solve in this block. In the case of SWP, the patient visits hours
have a margin range of 30mn. Therefore, if one schedule starts at 9:00, the next could begin at 9:30,
leading to a dataset with overlap between plans if many programs have similar time ranges spread
over different days of the week. Suppose we add the non-linearity of the data to this issue. In that
case, an almost perfect classifier is needed with a mean accuracy greater than 80% or the treatment
and intelligence system classifier can be helped. Then, you can separate the overlapping components
of the cases.

In this work, we contemplate both scenarios. First, get an excellent classifier and apply data
processing techniques to help a poor classifier. Using the standard classifier, ICA [188] is applied
to the original data to reduce the effects of the degree of overlap (figure (12.10)) without losing the
fundamental characteristics of the data. Figure (12.11) summarises the processes and operations
applied to reduce the overlapping effect observed in the generation of SWP schedules. The complexity
of this operation is noted as O(ICA) . The PCA is then used to reduce the data dimension from 8 to
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2 and apply it to the designed variational classifier with the complexity equal to O(PCA). Once the
best time is determined, we retain the knowledge acquired at the case’s resolution.

12.6.1 Memory Structure

Next, some test benches based on the memory structure described in figure (12.12) and (12.13) are
defined to train the parameterised quantum circuit, and its performance is analysed in terms of the
circuit architecture. Finally, the results and discussions session will emphasise the classifier with or
without entanglement and a comparative study with different ansatzes.

Figure 12.12: qCBR’s Memory structure. The use the cross-validation technique helps to improve the
quality of the classifier training[59]

The memory structure of the qCBR’s retention system is given in figure (12.12). In addition, the
solution class (target) related to the different initial points associated with each of the samples that
make up the training dataset can be seen. This solution class is also associated with the result of the
VQE.

To fill out the data structure created in the classifier to train and test its predictions, the parameters
of the Initial point obtained by VQE are abstracted from the result. And it is composed of each class’s
coordinates with the following parameters: start time sT and end time eT of patient 1 to n, where n
is the maximum number of patients in the app. Figure (12.14) summarises the data’s representation
and description that make up the training dataset.

Each coordinate’s class corresponds to the VQE solution following the memory structure in figure
(12.12) where the class number of the classifier is given by equation (12.8) taking into account the
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Figure 12.13: Memory structure used for the Training System. A label identifies each class. And in
this case, A is one of the labels. For more detail, refer to the code [27].

Figure 12.14: The SWP is represented in vector form to take advantage of the Hilbert vector space’s
characteristics within quantum computing. It is seen that each patient represents a dimension, and
the points that make up the dataset are a dimension of 2n coordinates, n being the total number of
patients. In this figure, to simplify the understanding, we use two patients, therefore, two dimensions

conditions that every worker has a patient and that the workers are indistinguishable (that is, it
doesn’t matter whether the social worker m1 takes care of the patient n1 and m2 takes care of n2 or
vice versa).

NSOLSWP
=

1

m!

m−1∑
k=0

(−1)
k

(
m

m− k

)
(m− k)

n
. (12.8)

Let n be the number of patients and m the number of social workers and knowing that the
appearance orders patients in the schedule (from earliest to latest, let n1 be the patient with the
earliest plan and nk be the patient with the latest program).

In this work all the tests done are for n = 4 with the data structure equal to (sT1, eT1, sT2, eT2, sT3, eT3, sT4, eT4);
an 8-dimensional vector for each social worker visit the patient. In this case, the number of qubits
will be defined by q = log2 (NSOLSWP

) = 3. These qubits are used to instance the quantum classifier,
and it is worth to mention that the classifier must have NSOLSWP

classes.

The detail of the qCBR’s implementation and analysis is in section 12.6.
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Figure 12.15: Block diagram proposed for the resolution of qCBR, considering a real dataset with an
overlap problem between the data components. This block diagram contemplates the treatment of
the input data and the use of ICA[188] and PCA[248] before training and classifying the data. In
this version, a classifier based on the re-uploader has been designed to handle the classification tasks.
And for the synthesis tasks, a decision tree passed in the classifier predictions have been used together
with the VQE plus the Initial point

12.7 Results

Figures (12.16) to (12.17) show the implementation outcomes performed in Qibo[90] and Qiskit [164,
241] to identify the best model architecture and represent functions similar to qCBR.

Tables (12.2) to (12.4) show the global results of qCBR solving the SWP. With table (12.2), the
outcome of the different tested scenarios can be observed. Varying the number of patients, social
workers, and the quantum circuit’s depth to see the global hit number of the qCBR. In table (12.3),
we can observe the resolution of the SWP, taking into account five patients, four social workers and
setting the depth of the quantum circuit to eight. With this scenario, it can be observed how the
behaviour of the qCBR is a function of the number of cases. It is seen how the system, after a
threshold of 240 cases already resolved, begins to give very satisfactory results. Table (12.4) repeats
the steps of table (12.3) with the only change of the input data; the number of patients and social
workers. Tables (12.5) to (12.8) show the result of the implementation of the classical CBR leveraged
on ANN and KNN to solve the SWP.

Tables (12.3) and (12.4) show the best performance at the average accuracy level of qCBR for the
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Figure 12.16: Comparative graphs between different ansatzes, taking into account the classifier’s
accuracy as a function of depth. Represents the evolution of the ansatzes of dimension two and eight

qCBR solving the Social Workers’ Problem
#Patients #SW #Qubits #Layers #Cases Accuracy

3 2 6 2 580 82.5
4 3 12 3 580 82
5 2 20 4 580 82.5
5 3 20 5 580 87
5 4 20 8 580 92.8
5 4 20 10 580 100

Table 12.2: The result of the qCBR with a variational classifier and using the VQE and the Initial point
with some decision trees as a synthesizer (12.15). This table shows the different studies made as a
function of the quantum circuit’s depth (layer). number of the patients and the social workers. The
accuracy of the classifier is the maximum with the number of layers equal to 10. SW denotes Social
Workers.

classic (Table (12.5) and (12.6)). Table (12.8), (12.7) and (12.2) show the degree of scalability of the
qCBR as a function of the variation in the number of patients and social workers. It has also been
seen that qCBR is much better shared with overlapping as we wanted to demonstrate.

The experiment was also made of skipping the Principal Component Analysis (PCA) module
[248][226], Independent Component Analysis (ICA)[188] and creating a classifier of the same dimension
as the data (8 sizes). And the results obtained have been very satisfactory at the level of Ansatz’s
accuracy and depth. Still, the need to change the BFGS optimiser to the SPSA has become visible
due to its slow convergence for the number of data and high parameters. Figure (12.16) describes the
behaviour and compare the two scenarios.

Later the Re-use module was analysed using VQE with Initial point to synthesise the predicted
results. In the graph shown in figure (12.17), it is observed how the algorithm, without initial param-
eters, tends to use a high energy constant of variation to reach an approximation of the fundamental
state quickly. Which makes it have to progressively reduce said constant after several iterations, n,
to find the local minimum. On the other hand, when using an Initial point, the algorithm does not
need to start with a high variation to reach energy bands close to the ground state since it is much
closer to said energy, reducing the number of iterations necessary reach to the local minimum. We
can then see how qCBR can afford to run VQE with Initial point to refine the accuracy of its results
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qCBR solving the Social Workers’ Problem
For 5 patients and 4 socials workers

Layers #Cases Accuracy
20 -
50 12.5
100 72.5

8 240 92.1
340 95.5
480 97.2
500 98.7
580 99.1

Table 12.3: The result of the qCBR for many patients and social workers fixed at 5 and 4, respectively.
The better behaviour of qCBR can be observed for some cases greater than 240. To have a good
functioning of the qCBR, it must be iterated with the social workers’ dataset 239 times. And at the
case number of 240, we will have an accuracy of 92%. The ”accuracy” value is the percentage of the
number of correct solutions found by the qCBR. A hyphen (-) denotes no solution found within the
20 cases. These tests were done for the quantum circuit depth (layers) equal to 8.

qCBR solving the Social Workers’ Problem
For 4 patients and 3 socials workers

Layers #Cases Accuracy
20 -
50 11.5
100 73.1

8 240 91.1
340 91.9
480 96.6
500 98.1
580 99.0

Table 12.4: The result of the qCBR for many patients and social workers fixed at 4 and 3, respectively.
The better behaviour of qCBR can be observed for some cases greater than 240. To have a good
functioning of the qCBR, it must be iterated with the social workers’ dataset 239 times. And at the
case number of 240, we will have an accuracy of 91%. The ”accuracy” value is the percentage of the
number of correct solutions found by the qCBR. A hyphen (-) denotes no solution found within the
20 cases. These tests were done for the quantum circuit depth (layers) equal to 8.

since it requires fewer iterations to find the solution closest to the minimum, not assuming such a high
computational cost as it would be running VQE without initial parameters.

The qCBR complexity (Table (12.9)) is provided below, where it can be observed that the Retain
is the highest cost operation and has an exponential improvement compared to a Retain of a classic
CBR that is usually of the order of O(M2(M +N)) [199]

12.8 Discussions

The proposed qCBR works very well and meets the objectives set using quantum computing to create
efficient quantum case-based reasoning. One of the issues to comment on is the improvement observed
in (figure(12.16)) both two and height-dimensional classifiers. Due to the small number of depths,
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CBR with KNN solving the Social Workers’ Problem
For 5 patients and 4 socials workers

Layers #Cases Accuracy
20 -
50 42.9
100 46.5

1 240 52.6
340 55.3
480 56.8
500 60.7
580 63.1

Table 12.5: The classical CBR result on KNN classifier for many patients and social workers fixed at
5 and 4, respectively. The better behaviour of this CBR can be observed for some cases greater than
240. To have a good functioning of the CBR, it must be iterated with the social workers’ dataset 239
times. And at the case number of 240, we will have an accuracy of 52.6%. The ”accuracy” value is
the percentage of the number of correct solutions found by the CBR leveraged on KNN, applying a
10-KFold cross-validation process. A hyphen (-) denotes no solution found within the 20 cases. All
these tests were done for the layer equal to 1.

CBR with KNN solving the Social Workers’Problem
For 4 patients and 3 socials workers

Layers #Cases Accuracy
20 -
50 55.1
100 58.5

1 240 70.3
340 71.1
480 73.6
500 74.8
580 76,8

Table 12.6: The classical CBR result on KNN classifier for many patients and social workers fixed at
4 and 3, respectively. The better behaviour of this CBR can be observed for some cases greater than
100. To have a good functioning of the CBR, it must be iterated with the social workers’ dataset 239
times. And at the case number of 240, we will have an accuracy of 70.3%. The ”accuracy” value is
the percentage of the number of correct solutions found by the CBR leveraged on KNN, applying a
10-KFold cross-validation process. A hyphen (-) denotes no solution found within the 20 cases. All
these tests were done for the layer equal to 1.

CBR leveraged by CNN solving the Social Workers’ Problem
#Patients #SW #Layers #Cases Accuracy

3 2 2 580 65.4
4 3 2 580 43.3
5 2 2 580 37.3
5 3 2 580 26.3
5 4 2 580 45.2

Table 12.7: CBR with a neural network classifier and a backtracking algorithm as a synthesizer. SW
denotes Social Workers.
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CBR with KNN solving the Social Workers’ Problem
#Patients #SW #Layers #Cases Accuracy

3 2 1 580 95.6
4 3 1 580 77.8
5 2 1 580 47.8
5 3 1 580 44.7
5 4 1 580 63.1

Table 12.8: CBR with a KNN classifier and a backtracking algorithm as a synthesizer. SW denotes
Social Workers.

Figure 12.17: Energy comparison between VQE algorithm without using or not the initial point

Methods Complexity
Retrieve O(logNM)
Re-use O(Klog(N) + logNM)
Revise O(log(N)) + ICA)
Retain O(logNM) + PCA

Table 12.9: Table of the complexity of qCBR counting the PCA cases and the ICA complexity. In
this case, K, the number of shots of the VQE, is fixed to 50

but with many more parameters, the height-dimensional classifiers have an average of about 25%
of improvements over the two-dimensional ones. With this result, in the case of not wanting an
accuracy of around 95%, shallow depth could be used, and computation time saved, depending on the
problems. Despite all these improvements, it is essential to highlight some improvement aspects. For
example, in the intelligence system that allows deciding the proposed solution, now, the average of
the Initial point of each solution class samples’ Initial point is used. However, it could still be seen
based on the predicted solution, which Initial point is the most suitable for the answer to propose.
Thus, the cases to be re-used could be better classified.

Also, one of the improvements is to train the classifier with noisy data further so that the qCBR
can adapt to real past situations that adjust to the new position. Because, in practice, there is usually
no past case strictly the same as a new one.

The last improvement is generalising the qCBR to serve various problems (betting problem, finan-
cial, software maintenance, human reasoning, etc.). For this, It would be a success to focus on the
design in memory of cases so that different data sizes can be indexed and, above all, train the classifier
with several other data models.
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12.9 Conclusions and further work

We observed the outstanding performance of qCBR compared to its classical counterpart on the
average accuracy, scalability and tolerance to an overlapping dataset. Some of the standard and
classical CBR problems have been mitigated in this work. With the design that has been proposed
in this work, it has been possible to measure situations of difficult similarity between cases. Despite
the non-linear and overlapping attributes, the classifier has been endowed with characteristics that
arrive at two similar topics that may seem quite different by having different values in features, but
not very important. For example, in the VQE with Initial point, we can have different Initial point
associated with each training class sample with the same class. With the technique of the average
of the ”Initial point”, it is possible to solve this problem by providing the qCBR to distinguish the
similarity between cases. Another issue that qCBR mostly solves is the time required to classify a
new topic.

With the results of the two implementations (classical and quantum CBR), it is observed that
the classical CBR designed with the KNN behaves better for some determined cases (table (12.8)).
It is seen that the system has not finished learning thoroughly (table (12.5) and (12.6)) contrary to
the qCBR (table(12.3) and (12.4)). This is due to its classifier’s accuracy, without forgetting the
significant contribution of its synthesis system.

Another improvement that qCBR introduces is when retaining cases, implementing a retention
system that maintains model cases and that, together, synthesise the real and most important infor-
mation. One of the improvements to consider is the implementation of quantum ICA. In this way, the
classical ICA analysis’s complexity cost will be significantly reduced. Also, counting that the PCA
is saved since we have an 8-dimensional classifier, the complexity of the qCBR would be that of the
classifier plus some setup constants.

The other exciting line of the future is to design the memory of cases using the quantum technique
of random-access memory (qRAM) [50] to improve the memory of stored instances.

Now we will generalise the SWP into Batching and Picking problem by defining qRobot.
We will work on qRobot as a quantum computing approach in mobile robot order picking and

batching problem solver optimisation in the next session. We will change the social workers by robots
and the patient by item to pick and batch.

12.10 Summary

In this section, we have seen how to solve the SWP with a machine learning approach. We have seen
how a universal quantum classifier has been created from scratch, developed a formula for calculating
the number of solutions, and solved the issue of overfitting and overlapping that the SWP dataset
has. In the next chapter, we will see the generalisation of the SWP problem through qRobot.
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Chapter 13

The qRobot: generalizing the SWP

Following the journey of this thesis work, here, we propose and solve the Batching and Picking Problem
with the generalisation of the SWP called qRobot.

13.1 Introduction

From DHL, Gartner and others [22, 142, 208], we know that the first wave of automation using
smart robotics has reached the logistics industry. Driven by rapid technological advancements and
increased affordability, robotic solutions (software and hardware) are forcibly entering labour logistics,
supporting flawless processes and boosting productivity. Robots, especially mobile, will adopt more
roles in the supply chain, helping workers with storage, transportation and little by little, they will
expand their service. In fact, in some countries, there are already robotic delivery services [239].

We are already living an exponential increment of mail-order shopping, online shopping and supply
chain systems, requiring large-scale logistic centres. Almost everyone can order products remotely,
and the logistic centre increases its functionalities, including keeping and shipping products. While
there was a tendency to increase the adoption of automated systems based on robots powered by AI
to increase efficiency [234, 217, 11], COVID-19 introduced the concept of touch-less online shopping
that reduces the risk of infections. Smart Warehouses are the epicentre of the cost-efficiency of any
e-commerce company [228].

The emerging field of hybrid (quantum-classical) algorithms joins CPU and QPU [133] to speed
up specific calculations within a classical algorithm. This allows for shorter quantum runs that are
less susceptible to the cumulative effects of noise and work well in current devices.

Recently the scientific community are researching the real implementation of quantum computing
algorithms in mobile platforms because performances are not here yet [74].

In this work, we demonstrate that we can implement this system in well-known, widely used
robotics fields, computer systems like raspberry-pi exploring the performance of a quantum picking
and batching model. A hybrid system is proposed to effectively replace the current ones and open
the doors to quantum computing in robotics. In addition, we are analysing the results obtained with
different public access simulators on the market: IBMQ, Amazon Braket (Dwave), and Pennylane.
As far as the authors know, this is the first time this type of implementation has been done.
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13.2 Work Context

According to [69, 61, 139], supply chains, warehouses and distribution centres occupy a very important
position when storing and serving customer demand. Today, to be competitive within this sector,
Logistics 4.0 has been created, known as the set of artificial intelligence technologies and techniques
that seek the efficiency of the movements of materials and products in a factory or warehouse. In
addition, better time management helps logistics companies find and locate a material, reduce fatigue
and possible workplace accidents, and spend less time documenting items.

Many works of literature highlight these factors as the main ones where the loss of time and
resources in a process require an urgent solution, and precisely, it is technologies such as Artificial
Intelligence and the Internet of Things (IoT), which today allow us to optimise them[12, 68, 34].

Researchers have addressed the multiple order picking planning problems in the last decade. The
study of the efficiency of a Warehouse can be addressed based on numerous parameters. According
to [107], there are three key considerations: 1) Performance Measure (time, cost, productivity, and
service), 2) How we model the warehouse (Analytical model, Mathematical Model, or Simulation),
and the combination of factors (storage location assignment, routing, order batching, or other order
picking planning problems).

Based on data from [107], we can see the percentage of the relevance of the considered order picking
planning problems based on the percentage of papers that are related to such challenges:

Figure 13.1: Distribution of considered order picking problems based on the percentage of publications.

As we can see in Fig.13.1 Picking and Batching are the top priorities based on the research
contributions.

Order preparation (picking) is one of the most frequent and costly operations in labour [69, 61]
since it is responsible for recovering the items required by the orders of customer orders (could also be
supplied, but in this article, we focus exclusively on sales orders), and to create the batches, grouping
several orders of orders in a picking list to collect all the batch demands in a single warehouse tour.
In this last part of order preparation, our quantum algorithm comes into action to optimise the routes
travelled to achieve efficient picking.

There are many techniques and strategies for solving the picking problem. The most striking are
“The selected techniques for evaluation include A *”[86], “Potential Fields (PF)”, “Rapidly-Exploring
Random Trees * (RRT *)”[147, 146, 70] and ”Variations of the Fast-Marching Method (FMM)”[196].
Other strategies have been explored using the TSP and the VRP as algorithms to solve the picking
problem. In this case, if the number of order orders per lot is greater than two [102], picking becomes an
NP-Hard problem in which the number of possible lots and binary variables increases exponentially
with the number of purchase orders [102]. From there, several heuristic techniques, methods and
algorithms (for example, genetic) were created to relax these difficulties [75, 34, 69, 118, 139, 231].
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However, and as mentioned above, depending on the volume of data, the computational cost of the
algorithm becomes intractable for classical computing.

The latter leads us to explore new approaches to the large-scale picking problem, and one of the
approaches to consider to solve this task is quantum computing [6]. Quantum computing could help
us change the degree of complexity of the problem, enhanced by its high computing power. Among the
great fields where quantum computing is called to stand out is constraint satisfaction problems (CSP)
[232]. One of the useful algorithms in this field is Quadratic Unconstrained Binary Optimization
(QUBO) problems [140].

Amazon Braket[56] is a cloud-based (Fig.(13.2) and Fig.(13.3)), fully managed quantum com-
puting service that helps researchers and developers get started into quantum world technology to
accelerate research and discovery. Amazon Braket provides a development environment to explore,
create, test and run quantum algorithms, quantum circuit simulators, and different quantum hardware
technologies.

We will use all these related works to define an appropriate strategy for our proposal in this NISQ
era.

Figure 13.2: Technical Specifications of the Quantum Hardware Technologies (Gate-based supercon-
ducting qubits, Gate-based ion traps and Quantum annealing) available in Amazon Braket.

Figure 13.3: Technical Specifications of Quantum Simulators systems where we can see it state vector
simulator (34 qubits) and tensor network simulator (50 qubits).

Studying and comparing different optimisation methods of warehouse’s challenge, like picking and
batching, [107] proposes three options: analytical models, simulation experiments, and mathematical
programming. In our approach, we consider the latter. We use a set of mathematical expressions that
describe the problem, represented by an objective mathematical function and constraints within the
classical context and translate it to the quantum domain.
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Figure 13.4: We propose a robot that prepares batches and increases the efficiency of picking in
a warehouse, taking advantage of the classic Machine Learning experience and leveraging hybrid
computing (classical + quantum) in the cloud and distributed. This robot uses the Optimal routing
strategy to calculate the shortest route, regardless of the layout or location of the items.

While reviewing the state of the art research, this reference [245] was found. The integrated
order routing and the batch problem is modelled in such systems as an extended multi-tank vehicle
routing problem with network flow formulations of three indices and two commodities. Such a variable
neighbourhood search algorithm provides close to optimal solutions within a computational time
acceptable for classical but not quantum computing.

This article intends to bring quantum computing to robotics by proposing an approach that com-
bines the experience of classical robotics computing with the computation of complex and high-cost
processes by quantum computing. We suggest preparing an environment to execute the quantum algo-
rithms in the mobile and autonomous robot remotely and locally and designing a quantum algorithm
that helps the efficiency of the warehouse management.

From the variational principle in section(9.2), the following equation ⟨H⟩
ψ
(−→
θ
) ≥ λi can be reached

out. With λi as eigenvector and ⟨H⟩
ψ
(−→
θ
) as the expected value. By this way, the VQE finds (13.1)

such an optimal choice of parameters
−→
θ , that the expected value is minimized and that a lower

eigenvalue is located.
⟨H⟩ = ⟨ψ (θ) |H|ψ (θ)⟩. (13.1)

We will use the VQE (Fig. (13.5)) to find the minima of our objective function translated to the Ising
model.
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Figure 13.5: VQE working principle based on the quantum variational circuit.

13.3 Implementation

To carry out the implementation of our proof of concept (Fig.(13.4) and Fig.(14.2)), we must first
prepare the programming environment. Considering that the core of our robot will be the Raspberry
Pi 4[98], the first thing to do is prepare it so that it can execute quantum algorithms with the
guarantees required for the proposed application and especially for future operations on gradients. It
is necessary to install an ARM64 operating system[126, 129] with all the needed packages to run all
the required environments to carry out this project. We took advantage of the work for Raspberry
Pi Os Desktop (32-bit) on which the author describes how to install and run Qiskit - IBM’s open-
source quantum computing software framework[241]— on a Raspberry Pi to turn it into a quantum
computing simulator and use it to access real IBM quantum computers. In our case, we do need
ARM64 because we need to execute at least TensorFlow’s version 3.2.1. The tasks to convert the
Raspberry Pi 4 in our ”quantum computer” are described in the following reference [26].

After setting up the environment, we will focus on designing and experimenting with the announced
proof of concept.

13.3.1 The problem’s formulation

In this formulation, we will seek to optimise the collection of the products, and, later, we will make
the batches.

To carry it out, we will consider the following assumptions:

1. The strategy we will follow is the picking routing problem to retrieve each lot which the total
distance travelled to retrieve all the items in a lot will be calculated.

2. The warehouse configuration is given in figure(13.8).

3. For the orders of the storage positions, more than one picking robot can be used.
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4. Movements in height are not considered.

5. Each product is stored in a single storage position and only one product is stored in each storage
position.

6. Each picking route begins and ends at the Depot.

7. The load capacity for each order will not exceed the load capacity of the picking robot.

8. At the moment, the division of order orders is not contemplated. That is, only the batches of
closed orders can be prepared.

9. The concept testing will be done on all AWS-Braket, Pennylane, D-Wave and Qiskit environ-
ments. And we will stick with the scenario that best benefits our proof of concept.

10. We will use the docplex[120] to model our formulation.

Figure 13.6: Scenario 1, Independent lots. The robot receives the orders and calculates which order
is the most optimal according to the coordinates in which each product is found. In this example, lot
4 is the most optimal.

13.3.2 Picking and Batching formulation

The formulation is represented as follows. In this scenario, the travel load is described according to
the number of robots we have. Let’s imagine that we have several robots and that each of them makes
a single trip. It would be the same as saying that we have a single robot that makes n trips.

Let N0 be the origin node, let N1 . . . Nn be the nodes of the products, let W1 . . .Wn be the
weights in kg associated with for each product, let di,j be the distance from node i to j, let M be the
maximum load of the qRobots, let K be the number of qRobots available, let t be the instant, i the
node (product), p the robot and let xt,i,p be our binary variable (for example, for x2,3,2 = 1. It means
that at time 2, the qRobot 2 is at node 3). In our formulation, time really tells us the order, that is
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Figure 13.7: Scenario 2, Collecting products in the same route from different batches. The robot will
calculate a path that includes all the products to optimize their collection in a single journey. For
example, if the product from Lot 2 is next to one from Lot 1, the robot will pick it up and store it in
the basket from Lot 2.

to say t = 0 will be the origin t = 1 the moment in which it goes for the first batch. At t = 2 it will
be the moment of the second so on.

min
x

K∑
p=1

n+1∑
t=1

n∑
i=0

n∑
j=0

xtt−1,i,pxt,j,pdi,j , (13.2)

s.t.

K∑
p=1

x0,0,p = K,
(13.3)

K∑
p=1

xn+1,0,p = K, (13.4)

n+1∑
t=1

n∑
i=1

xt,i,pWi ≤M ∀p ∈ {1, ...,K}, (13.5)

n∑
i=1

xt,i,p = 1 ∀t ∈ {1, . . . , n+ 1}

∀p ∈ {1, ...,K},

(13.6)
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n+1∑
t=1

K∑
p=1

xt,i,p = 1 ∀i ∈ {1, . . . , n+ 1}, (13.7)

xt,i,p ∈ {0, 1} ∀t ∈ {0, . . . , n+ 1}

∀i ∈ {0, ..., n}

∀p ∈ {1, ...,K}.

(13.8)

The equation (13.2) is our new objective function. Here we minimise the total distance. We add the
distance of all the robots travelling simultaneously, and we will check the nodes’ distances. Restriction
(13.3) establishes that all the qRobots start from Depot. The restriction (13.4)) establishes that all
the qRobots end at Depot. The constraint (13.5) establishes any robot p can carry more load than
allowed. The constraint (13.6) declares that each robot can only be one node at any time. (13.7)
establish that throughout the entire route, the robots together pass each node only once and the
restriction (13.8) describes that xt,i,p are binary variables.

The number of the qubits to perform this algorithm is equal to K(n+ 1)(n+ 2) +K⌈log2M⌉. At
this point, we can only map our objective function in quantum and then solve it with a VQE.

13.3.3 Mapping the classical to quantum optimization

A common method for mapping classic optimization problems to quantum hardware is by coding it
into the Hamiltonian[91] of an Ising model [157].

HIsing =
∑
i<j

Ji,jσiσj +
∑
i

hiσi. (13.9)

Where σi is the product of n identity matrices I except a gate Z in the i-th position and σiσj
product of identities minus gates Z in positions i and j.

As we already can build our objective function as a QUBO in the form ⟨xT |Q|x⟩, now we can map
our QUBO to Ising Hamiltonian formulation leads to calculating the values of Jij and hi.

The transformation between QUBO and Ising Hamiltonian is zi = 2xi−1, where zi is a new variable
that can take the values −1 or 1. This means we will have the algorithm in Ising form by writing an
algorithm for QUBO with this single variable change. That is very useful to have the algorithm for
various platforms based on quantum gates (IBM Q and Pennylane) or quantum annealing (meanly
D-Wave) in case of going from the Hamiltonian form. we can now solve our Picking and Batching
Problem with VQE ⟨ψ(θ)|H|ψ(θ)⟩.
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Figure 13.8: Structure of our warehouse with pick locations. The warehouse has a rectangular layout
with no unused space. We use all the parallel corridors. This proof of concept contemplates a single
warehouse used to take the order and deliver it, and it is also divided into blocks, which contain slots
for storing products, and transverse aisles separate them. The cross aisles do not have any products
but allow the collector to navigate the warehouse. We base our picking strategy on minimising the
route and optimising batch preparation. We do not contemplate shelving of different levels.

13.4 qRobot Results

Before analysing all the results of our proof of concept in detail, it is of the utmost importance that we
validate its operation globally and affirm that qRobot meets our expectations and works as expected.
Let’s split the results of this proof of concept in two. 1, the configuration and conversion results of the
Raspberry Pi 4 in a quantum computing environment (Fig.(13.12) to Fig.(13.15)) and 2, the picking
and batching algorithm results represented by tables (13.1) to (13.3) on one side and Fig.(13.10) and
(13.11) on the other.

The block diagram (Fig.(13.9)) summarises the result of the implementation of the qRobot. The
first thing we did was determine the mathematical model of our problem. We then used the Docplex
to model our objective function and its constraints. For our proof of concept, we used the Docplex
library packages to move from Docplex to QUBO. We had two possible operations according to our
objectives from this point on. First, we modelled the problem for computers based on quantum gate
technology like IBMQ, and second, for annealing computers like D-Wave. Our experiments used the
Exact solver and VQE to test the Qiskit framework as samples based on quantum gates. But before
using the VQE, we needed to map the QUBO model to the Ising model. Then, when we used the D-
Wave computer, we only needed to reform the QUBO output list from Docplex to the QUBO format
of the D-Wave computer.

Table (13.1) shows the experimentation results by setting the number of qRobots as their capacities
(maximum load) at 1 and 45, respectively. We compared the execution time of our algorithm with
different public access simulators on the market during this experimentation, solving the problem of
picking and batching. We observed that, for issues of this nature, especially due to the number of
qubits required in each scenario, the behaviour of the D-Wave is the desired one at the temporal level,
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Figure 13.9: qRobot operation diagram. This diagram shows all the necessary blocks and processes
that allow modelling the picking-batching problem and its proper functioning on the Raspberry Pi 4.

comparing it with Gate based Quantum Computing. However, it should be taken into account that,
for experiments with numbers of qubits less than 20, the behaviour of these simulators is equated with
the D-Wave. This experimentation helps to have a clear vision about the feasibility of this proof of
concept.

Continuing with the analysis of the results, table (13.2) shows us the computational results of our
picking and batching algorithm considering 1 qRobot through AWS-Braket and on the real quantum
computer D-Wave Advantage system1[247]. The time value is an average and does not count latency
time, job creation, and job return time.

We also analyse the latency time when running the algorithm from the qRobot to the quantum
computer. The quantum computer was in Oregon (US) and our qRobot in Barcelona (Spain) and
Segovia (Spain) in the tests we had done. Out of all the tests we have run, we had an average latency
time of around 2 seconds plus all job management processes rising to roughly 8 seconds. For the
number of qubits greater than 30, it is very convenient to use AWS-Braket (Advantage system1.1)
instead of Qiskit or Pennylane for the number of qubits and the execution time; it is differentially
better. This scenario makes the use of quantum in robots very viable. For tests with a value of M
less than those in the table, the number of qubits is relaxed, and the execution time is improved.
This leads us to normalise the weights of the batches. Since the number of qubits follows the formula
K(n+ 1)(n+ 2) +K⌈log2M⌉, where the K⌈log2M⌉ qubits are needed as ancillaries qubits.

We also analyse the quantum real-time execution deeply through table (13.3). We have measured
the execution time without counting the latency time, creating jobs, and returning the work.

Fig.(13.10) offers us the algorithm results in different scenarios where we analyse some important
cases, which helped us determine viable strategies within our proof of concept. In addition, it is
important to note that our algorithm minimises the distance travelled and optimises the number of
qRobots. Finally, the Fig.(13.11) repeats almost the same scenario but now considering 7 items with
the same number of qRobots.
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The benchmark of the qRobot’s algorithm in different quantum simulators.
# items # qubits DWave - Time(s) IBMq - Time(s) Pennylane - Time(s)

2 18 1.92 1.89 1.94
3 26 3.2 737.46 656.93
4 36 4.88 - -
5 48 7.60 - -
6 62 11.16 - -
7 78 15.89 - -
8 96 21.72 - -
9 116 30.18 - -
10 138 43.29 - -
11 162 53.28 - -
12 188 63.45 - -

Table 13.1: In this experimentation, both the number of qRobots and their capacities (maximum
load) are fixed and are worth 1 and 45 respectively. We compare the execution time of our algorithm
in the different public access simulators in the market, solving the picking and batching problem. We
see that for issues of this nature, and especially for the number of qubits required in each scenario,
the behaviour of the D-Wave is the desired one at the temporal level, comparing it with technologies
based on quantum gates. However, it should be noted that for the experiments on numbers of qubits
less than 20, the behaviour of these simulators is equated with the D-Wave. This experimentation
helps to have a clear vision about the feasibility of this proof of concept.

13.5 Discussions

We have achieved that, given a warehouse with a single robot, a list of several products with their
respective loads and a list of batches, our system minimises the distance to collect all the products and
prepare the batches. Furthermore, this formulation solves the order in which the robot could manage
all the products and make the packs pass through the Depot. Another important achievement this
approach offers is that each robot makes a single trip. However, it is possible to band the code so
that if we find ourselves in a situation where there are many batches to create and only a few robots
to do the picking, these robots can be made to make the necessary trips if we have k qRobots that
make at most one trip (we will never need more with n batches). In this way, we will obtain all the
packages for trips we are interested in doing. A more understandable way of explaining it would be
that when the first qRobot has finished its journey, it should only be ordered to do the one that would
have made the qRobot k + 1, which does not exist and so on with all the qRobots k + 2, k + 3, k + 4
etc. until all scheduled batches are finished.

In addition to the processor, quantum computing simulation is closely related to memory. It takes
up memory to simulate a quantum computer, but the quantum computer does not need that memory,
so it is assumed that it will be better. In this proof of concept, we got the following results using
8GB of RAM on the Raspberry Pi 4. The algorithm of collection and generation of packages take
between 2 and 450 seconds to generate the batches and picking. If you want the qRobot to do all
these tasks, we must calculate the path before forming the packs. That said, we must remember that
if we want to recalculate new routes when the robot has already left, we must consider a lower latency
time but close to said interval. A possible solution would be to choose a Raspberry with more RAM
capacity. For example, if we had a 64GB Raspberry Pi, this time would be cut to 2/8, and it would
take approximately 56.25 seconds (less than a minute) to create the batches. However, in this era of
quantum computing, it is not representative to compare times. The computational differences will be
noticed when the problems begin to grow, not on the small scales we are currently dealing with.

Effective viability for today’s warehouses would consist of splitting the tasks of the robots and

CHAPTER 13. THE QROBOT: GENERALIZING THE SWP Page 205



Figure 13.10: In these graphs, we can observe the results of the algorithm in different scenarios. A
different colour represents each qRobots; qRobot number 1 is red, next is blue, and the third is yellow,
so on. While the depot is the 0 node in yellow color and the rest of the nodes are represented in blue.
The weights of each item (not normalized) in kg are w0 = 0, w1 = 8, w2 = 8, w3 = 3 and w4 = 3. The
maximum capacity of each qRobots is 45. In this case, we have 4 items and the possibility of using
up to 3 qRobots. Reading the images from left to right, we see that the nodes and their respective
distances are shown in the first image. The second image shows the result of the algorithm having
a qRobot. In the third and fourth images, we can see two different cases solved by two qRobots.
And finally, in the fifth and sixth images, we can see two other issues solved by three qRobots. It is
important to highlight that our algorithm in this proof of concept minimises the distance travelled
and optimises the number of qRobots necessary to solve the cases presented. If it judges that the task
can be performed with a single qRobot, it will not send 2 qRobots.

having a qRobot that centralises all the requests and passes them to the fleet of n qRobots so that
they collect the products belonging to each batch.

We also performed tests and developed a system to model the problem and run it on a Dwave.
Despite the optimisation of the algorithm, the number of necessary qubits (K(n+1)(n+2)+K⌈log2M⌉)
and the need for low latency make this code adapted to the Annealing model. For this reason, we
have prepared the Raspberry PI to run D’wave directly and under Amazon-braket-ocean-plugin. This
scenario could have a ”reasonable” latency for low data volume. Things that today, computers based
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Figure 13.11: In these graphs, we can observe the results of the algorithm in different scenarios. A
different color represents each qRobots; qRobot number 1 is red, the next is blue, the third is yellow,
and so on, while the depot is the 0 node in yellow color, and the rest of the nodes are represented
in blue. The weights of each item (not normalized) in kg are w0 = 0, w1 = 8, w2 = 8, w3 = 3, w4 =
3, w5 = 1, w6 = 2, and w7 = 4. The maximum capacity of each qRobots is 45. In this case, we have 7
items and the possibility of using up to 4 qRobots. Reading the images from left to right, we see that
the nodes and their respective distances are shown in the first image. The second image shows the
result of the algorithm having a qRobot. In the third and fourth images, we can see two different cases
solved by two qRobots. And, finally, in the fifth and sixth images, we can see two other issues solved
by three qRobots. It is important to highlight that our algorithm in this proof of concept minimises
the distance travelled and optimises the number of qRobots necessary to solve the cases presented. If
it judges that the task can be performed with a single qRobot, it will not send 2 qRobots.

on quantum gates cannot offer.

13.6 Conclusions and further work

As we have seen, the problem raised throughout this work offers us an efficient way of managing a series
of K qRobots to collect a set of orders, optimising the number of robots used. The provided approach
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AWS-Braket[57] IBMq[241] Pennylane[43]
# items Capacity # qubits Avg Time (s) Avg Time (s) Avg Time (s)

2 15 10 11.23 0.053 0.041
3 15 16 22.96 0.40 0.27
4 15 24 33.07 537.46 480
5 15 34 57.93 − −
6 15 46 118.41 − −
7 15 60 145.83 − −
8 15 76 296.81 − −
9 15 94 335.64 − −
10 25 115 427.36 − −
11 25 137 650.25 − −
12 25 161 908.71 − −

Table 13.2: Table of the computational results of our picking and batching algorithm on only 1
qRobot. The value of time is an average and includes the waiting time, queue, execution and return
of the solution. In the case of K is equal to 2 for 9 items with the qRobot capacity equal to 15, the
number of qubits is 188. The execution time is on AWS Braket and on the D-Wave Advantage system1
quantum computer. We can realize that there is a latency time in executing the algorithm from the
qRobot to the real quantum computer. In the tests we’ve done, the quantum computer is in the US
West (Oregon). Of all the tests that we have done, we have had an average latency time of about 2
plus all the work management processes that rises more or less to about 8 seconds. For the number
of qubits exceeding 30, it is very convenient to use AWS-Braket (Advantage system1.1)[247] instead
of Qiskit or Pennylane. By the number of qubits and the execution time, that is differentially better.
This scenario makes the use of quantum in robotics very viable. For the tests with a value of M
lower than those in the table, the number of qubits is relaxed, and the execution time is improved.
This leads us to normalize the weights of the batches. Since the number of qubits follows the formula
K(n+ 1)(n+ 2) +K⌈log2M⌉.

AWS-Braket[57] IBMq[241] Pennylane[43]
# items Capacity # qubits Avg Time (s) Avg Time (s) Avg Time (s)

2 15 10 0.13 0.053 0.041
3 15 16 0.31 0.40 0.27
4 15 24 1.69 537.46 480
5 15 34 7.93 − −
6 15 46 11.31 − −
7 15 60 22.30 − −
8 15 76 36.11 − −
9 15 94 54.01 − −
10 25 115 80.40 − −
11 25 137 139.67 − −
12 25 161 195.60 − −

Table 13.3: In this table, we only consider the running time of the quantum algorithm on the
real quantum computer from the qRobot (Advantage system1.1[247]), not counting latency time, job
creation, and job return time.

applies to a ”central computer” capable of carrying out all the calculations and giving each robot
orders. However, when we begin to deal with very large problems both in the number of products and
the number of robots, the number of qubits required will tend to grow too large. A possible solution
is to distribute the calculation of a central computer to each robot so that each one has to calculate
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Figure 13.12: This figure shows that we judge important environments to carry out quantum com-
puting to robotics and beyond. We can see the correct installation of TensorFlow 3.2.1 as required
for all gradient operations; see the installation of Pennylane version 14.1, the installation of the latest
version of Amazon Braket, and all the packages of the newest version of Qiskit 0.25 minus the qiskit-
machine-learning package.

Figure 13.13: In this figure, we can see the correct installation of the Jupyter package and the Jupyter
notebook that has been our environment of proof of concept. With this, everything is ready to import
or write code in the different frameworks mentioned above (IMBQ, AWS-Braket, Pennylane and D-
Wave).

its route given a list of products to be collected. In this case, the equations of the problem would not
change, just take K = 1 for each qRobot and apply the technique mentioned at the beginning of the
discussion. Although it may not be possible to reach the best solutions, this process of distribution
of the calculation would suppose a significant computational cost reduction despite the need to create
the batches beforehand. This search for batch creation will be studied in future projects. On the
other hand, it is important to note that the problem dealt with has a QUBO-type formulation, which
allows it to be executed in annealing-type quantum computers. This makes a big difference in today’s
era (NISQ) as we have managed to work with 200 qubits versus the 30 qubits that we would have
with a gate-based quantum computer. Finally, note that the defined problem minimises the total
distance the robots travel, making it worthwhile for not all the robots to come out. For future lines,
we will address the same problem. Still, We will continue to try to reduce the total times instead of
the distance travelled (as done in this previous work[30]) since this situation is also very important in
warehouse logistics.
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Figure 13.14: This figure shows the files window through the CyberDuck client SSH [122] viewer
with the directory and file structure. And on the left, you can see the terminal that gives access to
the qRobot. To access the qRobot by SSH, the username and password are required. Everything is
configurable [1].

13.7 Summary

In this section, we have seen how SWP has become widespread through qRobot. This generalisation
was carried out through a proof of concept on a Raspberry Pi 4 and used the D-Wave framework
(from AWS-Braket platform), Pennylane and Qiskit, to solve the formulation. This is how we wanted
to respond to the universality of the algorithm. In the next section, we will see an overview of
this thesis work’s results, discussions, and conclusion, which has led us to formulate a combinatorial
optimisation project with hard constraints, its resolution both Top-down and through QML well as
its generalisations through the qRobot. All this to answer the initial hypothesis.
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Figure 13.15:
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Chapter 14

Results

14.1 Introduction

In this section, we will present the results of this thesis.

Figure (10.1) helps us to understand the results of this thesis work. The results of this thesis work
have been broad and positive. In section (11.3), we can see the detailed results of the SWP in the
various scenarios designed.

One of the first results that we would like to highlight is the formulation ((11.11) with (11.9) and
(11.10)) of the SWP. After its implementation and testing with five different techniques.

We have tested our algorithm on VQE, QAOA, Numpy Minimum Eigensolver classical, GroverOp-
timizer, CplexOptimizer, Numpy Minimum Eigensolver for QUBOs, Backtracking and CP-SAT Solver
from google on the ibmq-16-melbourne v1.0.0, ibmq-qasm-simulator (up to 32 qubits) with COBYLA
and SLSQP as the classical optimizer. We can consider QAOA as a particular case of VQE. This is one
of the reasons we can apply the Hamiltonian of the Ising model of our proposed formulation directly
to QAOA almost without modify. The Figures (11.2) to (11.13) show the results of our algorithm
once we executed our algorithm under the IBMQ. The optimal visit considers the hours of visits to
form the optimal schedule. We have done several experiments with the QML defining different scenes
using shot configuration. With our quantum machine, we can configure the number of repetitions of
each circuit for sampling we need. With that, we will be doing machine learning on circuit design
for each shot. And when the loop ends, we will get to the ground state energy. Consequently, we
solved our problem by creating one quantum circuit for each shot, and the best circuit will be the one
that optimizes our Social Workers’ Problem. We also prepared the solution in QUBO form for the
annealing computing.

In section (12.7), we can see the detailed results of the qCBR of the different scenarios. These very
promising results lead us to consider our approach to this age of quantum computing. Nevertheless,
let us summarise the qCBR results here.

Figures (12.16) to (12.17) offer the implementation outcomes performed in Qibo[90] and Qiskit [164,
241] to identify the best model architecture and represent functions similar to qCBR.

Tables (12.2) to (12.4) present the global results of qCBR solving the SWP. With table (12.2),
the result of the different tested scenarios can be observed by varying the number of patients, social
workers, and the quantum circuit’s depth to see the global hit number of the qCBR. In table (12.3),
we can observe the resolution of the SWP, taking into account five patients, four social workers and
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setting the depth of the quantum circuit to eight. With this scenario, it can be observed how the
behaviour of the qCBR is a function of the number of cases. It is seen how the system, after a
threshold of 240 cases already resolved, begins to give very satisfactory results. Table (12.4) repeats
the steps of table (12.3) with the only change of the input data; the number of patients and social
workers. Tables (12.5) to (12.8) show the result of the implementation of the classical CBR leveraged
on ANN and KNN to solve the SWP.

Tables (12.3) and (12.4) show the best performance at the average accuracy level of qCBR for the
classic (Table (12.5) and (12.6)). Table (12.8), (12.7) and (12.2) show the degree of scalability of the
qCBR as a function of the variation in the number of patients and social workers. It has also been
seen that qCBR is much better shared with overlapping as we wanted to demonstrate.

One of the greatest achievements of this qCBR is the formula for calculating the number of solutions
to know the class number of our quantum classifier. This formula has been key for the optimal
functioning of our proposal.

NSOLSWP
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m!
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k=0

(−1)
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(
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m− k

)
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.

With n the number of patients and m the number of social workers and knowing that the appear-
ance orders patients in the schedule (from earliest to latest, n1 the patient with the earliest plan and
nk the patient with the newest program).

We have designed qRobot to generalize the SWP and complement our learning of the annealing
platform, in this case, D-Wave. Since to date, all our experimentation have been on quantum gate
based technology (IBM and Pennylane).

In section (13.4), we can also explore here[26], the results of the qRobot as a generalization of the
SWP. In this case, we can see in this reference the results to create the platform that has been used
to develop the proof of concept.

Let’s split the results of this proof of concept in two. 1, the configuration and conversion results of
the Raspberry Pi 4 in a quantum computing environment (Fig.(13.12) to Fig.(13.15)) and 2, the picking
and batching algorithm results represented by tables (13.1) to (13.3) on one side and Fig.(13.10) and
(13.11) on the other.

The block diagram (Fig.(13.9)) summarizes the result of the implementation of the qRobot. The
first thing we did was determine the mathematical model of our problem. We then used the Docplex
to model our objective function and its constraints. For our proof of concept, we used the Docplex
library packages to move from Docplex to QUBO. We had two possible operations according to our
objectives from this point on. First, we modelled the problem for computers based on quantum gate
technology like IBMQ, and second, for annealing computers like D-Wave. Our experiments used the
Exact solver and VQE to test the Qiskit framework as samples based on quantum gates. But before
using the VQE, we needed to map the QUBO model to the Ising model. Then, when we used the D-
Wave computer, we only needed to reform the QUBO output list from Docplex to the QUBO format
of the D-Wave computer.

Let us remember that for the qRobot, we created one universal quantum computer on a Raspberry
Pi 4. The main idea is to have a mobile robot for the batching and picking problem. The steps to
convert the Raspberry Pi 4 into a ”quantum computer” are in the [26].

Table (13.1) shows the experimentation results by setting the number of qRobots as their capacities
(maximum load) at 1 and 45, respectively. We compared the execution time of our algorithm with
different public access simulators on the market during this experimentation, solving the problem of
picking and batching. We observed that, for issues of this nature, especially due to the number of
qubits required in each scenario, the behaviour of the D-Wave is the desired one at the temporal level,
comparing it with Gate based Quantum Computing. However, it should be taken into account that,
for experiments with numbers of qubits less than 20, the behaviour of these simulators is equated with
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Figure 14.1: In this figure, we can observe a workflow of a quantum algorithm. First, let us remember
that a quantum computer or hardware only executes a quantum circuit. But we can use classical
algorithms to generate a description of our quantum circuit efficiently, so it would be smart to use it.
Our quantum algorithm is born to execute or answer problems/approaches very expensive for classical
computing. A good quantum algorithm would be the polynomial scale with qubits. This figure shows
that we can clarify it polynomially given a problem and follow these guidelines.

the D-Wave. This experimentation helps to have a clear vision about the feasibility of this proof of
concept.

Continuing with the analysis of the results, table (13.2) shows us the computational results of our
picking and batching algorithm considering 1 robot through AWS-Braket and on the real quantum
computer D-Wave Advantage system1[247]. Again, the time value is an average and does not count
latency time, job creation, and job return time.

One of the outstanding results of the qRobot is to have achieved a formulation that gives us the
minimum (most efficient) number of qubits to carry out the proposed task. K(n+1)(n+2)+K⌈log2M⌉,
where the K⌈log2M⌉ qubits are needed as ancillaries qubits. With M the maximum load of the
qRobots and K the number of qRobots available.

We made more experiments, and for more details, we invite the reader to reach them out at (13.4).
We see it as very important to highlight the importance of figure (14.1) as our algorithm’s work-

flow. We have concluded using classical algorithms to efficiently generate a description of our quantum
circuit because our quantum algorithm is designed to execute the very expensive approaches for clas-
sical computing.

This thesis work has led to two final master’s projects. One of the projects was for the computer
science master and the other for the mathematics master of the University of Valladolid. The result
can be seen in this reference [108]. The objective of the second project was to capture a real scenario
based on the VRP problem, in which we proposed a way to solve them based on quantum models.
Subsequently, we analyzed the advantages and disadvantages that quantum variational algorithms can
offer us compared to the most popular algorithms in classical computing. This master was with the
University of Ramon Llull.
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14.2 Discussion

In these sections (11.4), (12.8) and (13.5), we can see the different discussions made throughout this
thesis work. These discussions have motivated us to continue investigating the formulation of the
SWP, its implementation, experimentation, and the various comparisons to the generalization of the
SWP with the qRobot. In addition, our thesis hypothesis has motivated all these discussions (could
quantum computing solve efficiently Hard Constrained Optimization Problems?).

Let us summarise the discussion of this thesis. The first part of this section will be on the validation
of the SWP algorithm.

We can observe that, while Backtracking (Fig. (11.21)) and the CPLEX present an exponential
behaviour as the number of patients increases, the VQE, QAOA algorithm ((11.22)), without taking
into account the cost of evaluation and calibration of the algorithm, have a logarithmic growth. This,
as the number of patients grows, will offer more considerable advantages than a classic algorithm,
such as Backtracking, since its temporary cost will be much lower for more complex problems (11.21)
and (11.22).

We did several tests and comparisons to validate our formulation and benchmark with other opti-
mizers (quantum and classic) that are Backtracking, QAOA, OR Tool from google. Many comparisons
were also made to fine-tune the algorithm. The results are shown in table (11.5) and figures (11.5)
and (11.6).

Since we wanted to make a decent comparison, we mean like many qubit numbers, we had to change
the back-end from the statevector simulator to qasm simulator and the real quantum computer. We
made this change because the superposition calculations of the quantum states or complex amplitudes
that the simulator provides to keep track of the algorithm overthrow the computer. It must be said
that this has nothing to do with the efficiency of the quantum computer but is a tool that facilitates
Qiskit to learn the steps that the algorithm follows.

The results obtained with the qasm simulator are very similar to the results of the real quantum
computer, as seen in the figures (11.12) and (11.13).

We can observe (Fig. (11.19)) in this case that the Quantum exact solver gives the same result
as the Backtracking. So instead, the VQE provides a solution with but with a patient change. This
can be a problem if the patients will not change social workers daily. Another limitation can be the
learning process of the top-down approach. Another improvement is to reduce the computational cost
of the top-down algorithm.

The evaluation of the algorithm on an ibmq 16 melbourne v1.0.0 from IBM was fulfilled. With
any change in the input, variables are mapped proportionally to our cost variable with a time window.
We would like to add that the suggested formulation (11.50) and (11.51) is not only specific to the
proposed problem. It can be used to solve any family planning, scheduling and routing problem
related to a list of tasks, restrictions, allocation of resources on location and time. The test performed
and showed in Fig. (11.27) allows us to see the behaviour of our formulation with the variation of
the correction factor ε. We understand how our time window Tij = (τi−τj) adapts perfectly at the
extremes to the cost variable in the distance. This achievement is due to the chosen quadratic function
(11.51). We want it to be adapted so that our resultant function weights together the short distances
and time and the long distances and late times. Other functions can be studied to have a test bench to
compare the final results. QAOA, like VQE, takes a qubit operator from the Hamiltonian of the Ising
model. The only mapping that gets done is when QAOA builds a variational form based on the qubit
operator and what we figured was that does not change the original qubit operator input. Figure
(11.25) and (11.26) reveal the comparison work between VQE and QAOA algorithms for the same
configuration parameters. After several tests, we confirmed that our algorithm takes less execution
time with the QAOA than the VQE and requires fewer samples for optimal solutions. But in many
cases, we have to increase the seed value to get a reasonably stable result.

If the reader wants to see the graphs in detail and all the discussions, we invite him to section
(11.4).
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One of the first things we want to say about the qCBR is that it works very well and is a valid
method to solve the SWP through artificial intelligence. However, it must be noted that it is initially
required to execute the Top-Down algorithm a few times to have a set of initial cases. For more
details, we encourage the reader to refer to the (12.8) section.

One of the issues to comment on is the improvement observed in (figure(12.16)) both two and
eight-dimensional classifiers. Due to the small number of depths, but with many more parameters,
the 8-dimensional classifiers have an average of about 25% of improvements over the 2-dimensional
ones. With this result, in the case of not wanting an accuracy of around 95%, shallow depth could be
used, and computation time saved, depending on the problems. Despite all these improvements, it is
essential to highlight some improvement aspects. For example, in the intelligence system that allows
deciding the proposed solution, now, the average of the Initial point of each solution class samples’
Initial point is used. However, it could still be seen based on the predicted solution, which Initial point
is the most suitable for the answer to propose. Thus, the cases to be re-used could be better classified.

Also, one of the improvements is to train the classifier with noisy data further so that the qCBR
can adapt to real past situations that adjust to the new situation. Because, in practice, there is usually
no past case strictly the same as a new one.

The last improvement is to generalize the qCBR to serve various problems (betting, financial,
software maintenance, human reasoning, etc.). For this, it would be a success to focus on the design
in memory of cases so that different data sizes can be indexed and, above all, train the classifier with
several other data models.

In the qRobot’s discussions (13.5), we can see that this formulation solves the order in which the
robot could manage all the products and make the batches passing through the depot.

Another important achievement this approach offers is that each robot makes a single trip. How-
ever, it is possible to band the code so that if we find ourselves in a situation where there are many
batches to create and only a few robots to do the picking, these robots can be made to make the
necessary trips if we have k qRobots that make at most one trip (we will never need more with n
batches). In this way, we will obtain all the packages for trips we are interested in doing. A more
understandable way of explaining it would be that when the first qRobot has finished its journey, it
should only be ordered to do the one that would have made the qRobot k + 1, which does not exist
and so on with all the qRobots k + 2, k + 3, k + 4 etc. until all scheduled batches are finished.

One of the most important points to comment on here is that our formulation minimizes the
distance. But in the case of wanting to reduce the time, we should use a strategy facing the qRobots,
but make some small adjustments in the formulation.

We encourage the reader to review each discussion to get a broader idea of the work developed.

One topic of discussion is Quantum Error Correction also known as QEC. In this thesis work, we
focus on implementing our quantum algorithms that obey some transpiler of each framework. Thus,
leaving us with little margin in correcting errors. A future approach would be to see how we base
our algorithms on the design of all quantum circuits. So, we can control even more the issue of error
controls.

The formulations proposed for both the SWP and qRobot can be seen as an answer to a class of
generic problems written in the form of an objective function with some restrictions. This methodology
followed during this thesis can be encapsulated as a framework proposal to solve a large part of these
problems. But for this, it would be necessary to study the Lagrange multiplier and different forms of
penalty function in detail, inequalities constraints. The latter will be the future lines of this work.

Also, qCBR can be seen as a framework to solve any case-based optimization problem based on a
decision-making solver. I want to say that instead of the problem that we are solving here, we can use
the qCBR as proposed in this thesis to solve issues like Max-Cut, Max-Clique, etc. Only the classifier
should be well trained with the new data sample space.
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14.3 Conclusions and Further Work

14.3.1 Conclusions

Before describing the conclusion of this thesis summarised by Figure (10.1), I would like to highlight
my satisfaction with the positive results. From the hypothesis question to the SWP[29, 31, 30, 33,
178, 25, 9, 67, 10, 7, 8] and qRobot[32] proofs of concepts. The gold brush has been put in the search
for temporary efficiency with the work of EVA [15].

With this PhD work, we have responded to the initial hypothesis (could quantum computing
solves CSP?) carried this research work in the field where the scientific community is debating. Join
the ML with quantum computing to create more powerful QML tools. We have developed several
quantum algorithms for this NISQ era, hybrid algorithms that use the classical part’s potential, and
quantum mechanics’ power to solve combinatorial optimisation problems, such as the Social Workers’
Problem. We have seen that in addition to solving this problem in a Top-Down way, we have proposed
a methodology based on Artificial Intelligence to solve and offer the resolution of these problems with
our qCBR as human beings do.

A qRobot to generalise an SWP and as a quantum computing approach in mobile robot order
picking and batching problem solver optimisation is proposed and tested.

Let us dive deeply into the conclusion of this work. First, we recall that this thesis aims to study the
state of the art and design of a series of quantum algorithms on combinatorial optimisation problems.
To do this, we define and create a combinatorial optimisation problem with hard restrictions and solve
it in two different approaches. In a Top-Down approach, we formulate the problem mathematically,
both classical and quantum. Our proposed formulation allows us to design a strategy to take advantage
of this NISQ era (Few useful qubits, decoherence, limitations in quadratic techniques with inequality
constraints, etc.). Although it seems specific, Said formulation is later generalised to encompass
more generic applications. We also made a comparative analysis of 5 different implementations and
discussed them during this thesis work. Continuing under the Top-Down approach, we have thoroughly
analysed the Ising model and the QUBO model to solve quadratic problems. We have also studied
Cplex optimisation tools such as IBM’s docplex under their Qiskit framework. The Qiskit optimisation
tool included the generic quadratic programs that help to model any optimisation problems. Many
converters are also involved in mapping the problem to solve it in the correct input format. Converters
like Inequality to equality to map inequality constraints to equality constraints with additional slack
variables. The Integer To Binary converter is useful in the case of the need to convert integer variables
into binary variables and the corresponding coefficients. Linear Equality to Penalty helps to convert
equality constraints into additional terms of the SWP’s objective function. Finally, the Quadratic
QUBO converter is used as a container for all the above converters. We have thoroughly analysed the
Minimum Eigen Optimizer and the ADMM optimiser as alternatives to VQE and QAOA. We have
also developed some guidelines to make it easier for prospective PhD or graduate students to take
their first firm steps in quantum computing.

On the other hand, we have statistically solved the problem with the qCBR algorithm machine
learning technique.

To do this, we have developed the classical and quantum CBR and observed the outstanding per-
formance of qCBR compared to its classical counterpart in precision, scalability and average tolerance
to an overlapping dataset. We’ve mitigated some of the standard and classic CBR issues. With the
design that has been proposed, it has been possible to measure situations of difficult similarity between
cases. Despite the non-linear and overlapping attributes, the classifier has been endowed with char-
acteristics that arrive at two similar topics that may seem quite different because they have different
values in the features but are not very significant. For example, in the VQE with Initial point, we
can have different Initial point associated with each training class sample with the same class. With
the ”Initial point” averaging technique, it is possible to solve this problem by providing the qCBR
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to distinguish the similarity between cases. Another problem that qCBR mainly solves is the time
required to classify a new topic.

With the results of the two implementations (classical and quantum CBR), it is observed that the
classical CBR designed with the KNN behaves better for some determined cases (table (12.8)). It is
seen that the system has not finished learning thoroughly (table (12.5) and (12.6)) contrary to qCBR
(table (12.3) and (12.4)). This is due to the precision of its classifier, without forgetting the important
contribution of its synthesis system.

Another improvement that qCBR introduces is when it comes to retaining cases, implementing a
retention system that maintains case models and that, together, synthesise the real and most important
information. This would not be possible if a variational quantum classifier were not designed.

Following the thread of this thesis work, we generalise our formulation of the SWP to carry out
efficient management of robots by substituting robots for social workers and pick-up requests for
patients. We call this generalisation qRobot.

The problem raised throughout this work offers us an efficient way to manage a series of K
qRobots (instead of social workers) to collect a set of orders, optimising the number of robots used.
The approach provided is applied to a ”central computer” capable of doing all the calculations and
then giving the orders to each qRobot. However, when we start to deal with very big problems both
in the number of products and the number of robots, the number of required qubits will tend to grow
too large. One possible solution is to distribute the calculation from a central computer to each robot
so that each has to calculate its route given a list of products to collect. In this case, the equations in
the problem would not change, just take K = 1 for each qRobot and apply the technique mentioned
at the beginning of the discussion. Although it may not be possible to arrive at the best solutions,
this process of distributing the calculation would mean a significant reduction in computational cost
despite the need to create batches in advance. This search for batching will be explored in future
projects. On the other hand, it is important to point out that the problem dealt with has a QUBO-
type formulation, which allows its execution in annealing-type quantum computers. This makes a
huge difference in the current era (NISQ), as we have managed to work with 200 qubits versus
the 30 qubits we would have with a gate-based quantum computer. Finally, note that the defined
problem minimises the total distance the robots travel, making it worthwhile for not all robots to
exit. For future lines, we will tackle the same problem. Still, we will continue to try to reduce total
times instead of distance travelled (as was done in this previous job [30]) as this situation is also very
important in warehouse logistics.

We can also conclude that the scenario designed to answer our thesis question is adequate. It
is true that, with quantum computing, we can efficiently solve combinatorial optimisation problems
with hard constraints and the qRobot, as a generalisation of the SWP, as the Top-Down resolution
approach, and the qCBR as the resolution approach based on quantum machine learning has been
validated by the quantum scientific community.

To finish this thesis work, I would like to highlight part of my pedagogical contribution to my
research group (Data Science 4 Digital Society) and the quantum community as part of the objective
of this thesis. Also, how could you monetise this thesis work. Also, I would like to highlight all
that I have learned since one should not end any trip without knowing from it. Thank you, Elisabet
Golobardes i Ribé! Thank you, Xavier Vilasis Cardona!

14.3.2 Further Work

From a general point of view, we will continue investigating optimisation problems and creating
quantum algorithms to benefit society and our research group for the future line. Unfortunately, error
correction is expensive at the level of the number of qubits. So, there is a very large gap between
what is needed and what is currently available to build a useful quantum computer. One line of the
future that we set ourselves is to investigate more about Quantum Error Correction (QEC) and find
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more efficient codes.
Before diving into details into each part of our contribution in this work, one line of the future

that we find interesting is to develop all our libraries and tutorials for the Pennylane, Qiskit, Qibo
and AWS-Braket platforms and frameworks in the form of a license.

One of our future lines for the SWP is to take advantage of the improvements in the number of
qubits of quantum computers to validate, based on more tests, the computational complexity that we
achieved. This validation should confirm if we have achieved exponential improvement comparable to
the tests done with Backtracking shown from figure (11.22) and (11.21).

One of the qCBR future lines is when retaining cases, implementing a retention system that
maintains model cases and that, together, synthesise the real and most important information. One
of the improvements to consider is the implementation of quantum ICA. In this way, the classical ICA
analysis’s complexity cost will be significantly reduced. Also, counting that the PCA is saved since
we have an 8-dimensional classifier, the complexity of the qCBR would be that of the classifier plus
some setup constants. The other exciting line of the future is to design the memory of cases using
the quantum technique of random-access memory (qRAM) [50] to improve the memory of stored
instances.

One of the future lines for the qRobot is to adapt the formulation of the qRobot for optimisation
of time, not distance. This means minimising the time it takes for the robots to collect all the orders
or, what is equivalent, minimising the maximum of the lengths that each robot travels. Another line
of the future is to develop an algorithm Quantum Annealing, focusing on exposing the mathematics
that helps to understand how to perform good modelling. Another line of the future is to try to apply
all the improvements achieved in this work to the IBMQ Docplex tool [120] as a library.

A clear future line is to design a framework to encapsulate the methodology we defined here to
solve optimisation problems. But for this, it would be necessary to study the Lagrange multiplier and
different forms of penalty function in detail, inequalities constraints.

14.3.3 International contribution and talent pool

This section will detail our contributions to journals, conferences, and publications of the scientific
community and the group of talents we met to develop this project.

In the SWP, we have contributed with the formulation ((11.2.1), (11.2.3) and its first intent
of generalisation (11.2.10)) of the SWP mathematically, both classically and quantum, and made a
comparative study on the IBMQ quantum computer. In this paper, we have validated our formulation,
both for QUBO and Ising in the scientific community:

⋄ Atchade-Adelomou P., Golobardes Ribé E., Vilaśıs Cardona X. Formulation of the Social Work-
ers’ Problem in quadratic unconstrained binary optimisation form and solve it on a quantum com-
puter. Journal of Computer and Communications. 2020 Nov 5. DOI: 10.4236/jcc.2020.811004

Abstract The problem of social workers visiting their patients at home is a class of combinatorial
optimisation problems and belongs to the type of problems known as NP-Hard. These problems re-
quire heuristic techniques to provide an efficient solution in the best of cases. In this article, in addition
to providing a detailed resolution of the Social Workers’ Problem using the Quadratic Unconstrained
Binary Optimization Problems (QUBO) formulation, an approach to mapping the inequality con-
straints in the QUBO form is given. Finally, we map it in the Hamiltonian of the Ising model to
solve it with the Quantum Exact Solver and Variational Quantum Eigensolvers (VQE). The quantum
feasibility of the algorithm will be tested on IBMQ computers.

This paper uses the VQE to create a solution based on the machine learning technique. In addition,
we have participated in the international conference on Hybrid Artificial Intelligent Systems. Our most
relevant contributions in this work have been put in the following paper.
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⋄ Atchade-Adelomou P., Golobardes Ribé E., Vilaśıs Cardona X. (2020) Using the Variational-
Quantum-Eigensolver (VQE) to Create an Intelligent Social Workers Schedule Problem Solver.
In: de la Cal E.A., Villar Flecha J.R., Quintián H., Corchado E. (eds) Hybrid Artificial Intel-
ligent Systems. HAIS 2020. Lecture Notes in Computer Science, vol 12344. Springer, Cham.
https://doi.org/10.1007/978-3-030-61705-9 21

Abstract The scheduling problem of social workers is a class of combinatorial optimisation prob-
lems that can be solved in exponential time at best. Because it belongs to a class of the issues known
as NP-Hard, which have a huge impact on our society, nowadays, the focus on the quantum computer
should no longer be just for its enormous computing capacity but also for the use of its imperfection
(Noisy Intermediate-Scale Quantum (NISQ) era) to create a powerful machine learning device that
uses the variational principle to solve the optimisation problem by reducing their complexity’s class.
We propose a formulation of the Vehicle Rooting Problem (VRP) with time windows to efficiently solve
the social workers’ schedule problem using Variational Quantum Eigensolver (VQE). The quantum
feasibility of the algorithm will be modelled with docplex and tested on IBMQ computers.

In this work, we have worked with other techniques based on parameterised circuits to create an
Intelligent social workers’ schedule problem solver. The following paper has put our most relevant
contributions to this work.

⋄ Atchade-Adelomou P., Golobardes Ribé E., Vilaśıs Cardona X. Using the Parameterized Quan-
tum Circuit combined with Variational-Quantum-Eigensolver (VQE) to create an Intelligent
social workers’ schedule problem solver. arXiv preprint arXiv:2010.05863. 2020 Oct 12.

Abstract The social worker scheduling problem is a class of combinatorial optimisation problems
that combines scheduling with routing issues. These types of problems with classical computing can
only be solved, in the best of cases, in an approximate way and significantly when the input data does
not grow considerably. Today, the focus on the quantum computer should no longer be only on its
enormous computing power but also on the use of its imperfection for this era (Noisy Intermediate-
Scale Quantum (NISQ)) to create a powerful optimisation and learning device that uses variational
techniques. We had already proposed a formulation and solution of this problem using the capacity
of the quantum computer. In this article, we present some broad results of the experimentation tech-
niques. And above all, we propose an adaptive and intelligent solution that efficiently recalculates the
schedules of social workers—taking into account new restrictions and changes in the initial conditions,
using a case-based reasoning system and the variational quantum eigensolver based on a finite-depth
quantum circuit. That encodes the ground state of the Hamiltonian of social workers. The quantum
feasibility of the algorithm will be modelled with docplex and tested on IBMQ computers.

In the case of qCBR’s contributions, we have created a dataset (from the SWP formulation) with an
overfitting and overlapping problem creating a quantum classifier based on the universality theorem.
We had to perform a very efficient quantum multiclass classifier and synthesiser to do this. We have
also developed a formula for calculating the number of classes of the multiclass classifier. As a sum of
our contributions, we have proposed a quantum CBR (qCBR) to solve optimisation problems as we
usually solve them as human beings. The most relevant contributions have been put in the following
paper. Nevertheless, we can find details of the qCBR at reference (12.6).

⋄ Atchade-Adelomou P, Casado-Fauli D, Golobardes Ribé E, Vilaśıs Cardona X. quantum Case-
Based Reasoning (qCBR). arXiv preprint arXiv:2104.00409. 2021 Apr 1.

Abstract Case-Based Reasoning (CBR) is an artificial intelligence approach to problem-solving
with a good record of success. This article proposes using Quantum Computing to improve some of the
key processes of CBR defining so a Quantum Case-Based Reasoning (qCBR) paradigm. The focus is
on designing and implementing a qCBR based on the variational principle that improves its classical
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counterpart in terms of average accuracy, scalability and tolerance to overlapping. A comparative
study of the proposed qCBR with a classic CBR is performed for the case of the Social Workers’
Problem as a sample of a combinatorial optimisation problem with overlapping. The algorithm’s
quantum feasibility is modelled with docplex, tested on IBMQ computers, and experimented with the
Qibo framework.

In the case of qRobot, we have contributed both to the creation of a ”universal” platform to create
a quantum computer in a raspberry PI 4 and, on the other hand, to create an efficient formulation
for this quantum era that generalises the SWP and solves the problem of batching and picking within
from a warehouse. We are pleased to say that the paper, in addition to being published in MDPI
magazine, Algorithms was also on the cover. It is worth saying that these improvements could lead
to improvements over TSP and VRP. Our most relevant contributions over the qRobot have been put
in the following paper. Nevertheless, we can find details of our formulation at reference (13.3.1) and
we can also find how we have turned the Raspberry PI 4 into a universal computer.

The description step by step into how installing and running Pennylane, AWS-Braket, D-Wave-
Ocean, Qiskit, on a Raspberry Pi 4 under the ARM64[129] operating system turn it into a quan-
tum computing simulator and use it to access real quantum computers from IBMQ[241, 164], AWS-
Braket[57], D-Wave[77], and Regetti[215]. These frameworks and packages are required for the proof
of concept that we propose [26].

Figure 14.2: We have installed the following frameworks successfully (Qiskit, Pennylane, AWS-Braket)
on our Raspberry Pi 4 under the ARM64 operating system. More information about the qRobot
platform can be found at Ref. [26]

⋄ Atchade-Adelomou, Parfait, Guillermo Alonso-Linaje, Jordi Albo-Canals, and Daniel Casado-
Fauli. 2021. ”qRobot: A Quantum Computing Approach in Mobile Robot Order Picking and
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Batching Problem Solver Optimisation” Algorithms 14. https://doi.org/10.3390/a14070194

Abstract This article aims to bring quantum computing to robotics. A quantum algorithm
is developed to minimise the distance travelled in warehouses and distribution centres where order
picking is applied. For this, a proof of concept is proposed through a Raspberry Pi 4, generating
a quantum combinatorial optimisation algorithm that saves the distance travelled and the batch of
orders to be made. In case of computational need, the robot will be able to parallelise part of
the operations in hybrid computing (quantum + classical), accessing CPUs and QPUs distributed
in a public or private cloud. Before this, we must develop a stable environment (ARM64) inside
the robot (Raspberry) to run gradient operations and other quantum algorithms on IBMQ, Amazon
Braket, D’wave and Pennylane locally or remotely. The proof of concept will run in such quantum
environments above.

In the case of QFilter, we have contributed to quantum computing by proposing a method to,
on the one hand, bring quantum computing closer to the community of classical computing (machine
learning) and, on the other, a new approach to solving convolutional networks (CNN) by changing only
the classical scalar product by a quantum and keeping the rest of the classical code. This approach
and contribution have made us a finalist of about 2000 participants of the Xanadu Hackathon (with
the AWS-Braket contest, Google). The following paper has put our most relevant contributions over
the QFilter.

⋄ Atchade-Adelomou P., Alonso-Linaje G. Quantum Enhanced Filter: QFilter. arXiv preprint
arXiv:2104.03418. 2021 Apr 7.

Abstract Convolutional Neural Networks (CNN) are used mainly to treat problems with many
images characteristic of Deep Learning. This work proposes a hybrid image classification model to take
advantage of quantum and classical computing. The method will use the potential that convolutional
networks have shown in artificial intelligence by replacing classical filters with variational quantum
filters. Similarly, this work will compare other classification methods and the system’s execution
on different servers. Finally, the algorithm’s quantum feasibility is modelled and tested on Amazon
Braket Notebook instances and experimented on Pennylane’s philosophy and framework.

In the case of EVA, we have contributed to quantum computing by proposing a new method to
calculate the quantum expected value based on a single quantum circuit, compared to the VQE tech-
nique that divides a given Hamiltonian into several small ones of very shallow depth. The importance
of this contribution is enormous in this quantum age, but it will be even more so for the future since
we only make one call to the quantum computer. Also, it is worth saying that EVA is intended
for chemical applications. With EVA, we could efficiently calculate the energy of some molecules to
facilitate the discovery of new drugs. Our most relevant contributions over EVA have been put in the
following paper.

⋄ Alonso-Linaje G, Atchade-Adelomou P. EVA: a quantum Exponential Value Approximation al-
gorithm. arXiv preprint arXiv:2106.08731. 2021 Jun 16.

Abstract VQE is currently one of the most widely used algorithms for optimising quantum com-
puters’ problems. However, a necessary step in this algorithm is calculating the expectation value
given a state, which is calculated by decomposing the Hamiltonian into Pauli operators and obtaining
this value for each of them. We have designed an algorithm capable of figuring this value using a single
circuit in this work. In addition, a time cost study has been carried out, and it has been found that
in certain more complex Hamiltonians, it is possible to obtain a good performance over the current
methods.
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14.3.4 Schedule/Work plan

In this session, we will observe a series of tasks and time management that summarise this thesis work.
Like any project, this had needed a work plan, specific planning even though part of its tasks could
not be limited due to the subject’s demand and, above all, because of the little information found
when we started this journey in the centre of the quantum computing world. Table (14.1) shows this
PhD task development. Also, we can observe below the detail of the tasks that have been carried out.

Table 14.1: PhD Tasks development
month 0 3 6 9 12 15 18 21 24 27 30 33 36

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12

⋄ Task 1: This task took place during the first six months of the work. Studying the Strengths,
Weaknesses, Opportunities, and Threats (SWOT) was crucial for developing this work.

⋄ Task 2:This task took place during the first six months of the work. This task began with a
solid study of the existing CSP algorithms and models.

⋄ Task 3: This task took place during the first three months of the work. Study for better
comprehension of the linear, quadratic programming solver’s functioning.

⋄ Task 4: This task took place during the first one months of the work. Study TSP, JSP and
VRP. State of the art of Heuristic.

⋄ Task 5: This task took place during the first one months of the work. State of the art of
Systems and Hamiltonians concepts, Ising Hamiltonian Model, The Hamiltonian of a TSP, The
Hamiltonian of a JSP and VRP.

⋄ Task 6: This task took place during the first one months of the work. State of the art of the
complexity class and Quantum Complexity class.

⋄ Task 7: This task took place during the first six months of the work. Design and Model,
mathematically the Social Workers’ Problem (SWP) as CSP according to state of the art and
the ones proposed in the scope of the PhD work. Study the players involved in SWP, namely
quantum computing frameworks, quantum computers, and quantum research groups. Third,
study and Map the SWP in quantum.

⋄ Task 8: This task took place during the first six months of the work. First, developing and
implementing the SWP in this NISQ era. Solve the SWP with QML. This methodology will be
based on clustering and classification techniques, resulting in a rule base concerning the SWP.
An extensive set of simulation results will be used as the basis for applying the proposed QML
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method. Third, designing and implementing a quantum Case-Based Reasoning (qCBR) and
testing and validating the developed models and approaches.

⋄ Task 9: Writing at least two papers for top-level conferences and six articles for SCI journals.

⋄ Task 10: Development and implementation of the QFilter.

⋄ Task 11: Development and implementation of the qRobot Platform and the picking and batch-
ing formulation.

⋄ Task 12: Development and implementation EVA.

14.3.5 Pedagogical contribution

As a PhD work, one of the most important parts besides validating the hypothesis, writing the contri-
butions in scientific articles, is self-explanatory and can be reproduced; our job is self-consistent. That
is why we have made our contributions academic and catalysts to attract new talent in collaborations
from our group and team.

This section will highlight part of my pedagogical contribution to my research group.

⋄ Some guidelines and steps to solve combinatorial optimization problems in quantum.

⋄ A documentation of the state of the art and compilation and access to the main tutorials of
quantum frameworks

⋄ a GitHub with the codes and experimentation environments

⋄ Complete formulation of a real combinatorial optimization problem (SWP) with restrictions and
mapping it in quantum.

⋄ Step-by-step development of how to bring a classical to a quantum optimization problem (SWP)

⋄ Design, implementation and results of the SWP Top-down resolution and quantum Case-Based
Reasoning

⋄ Design, implementation and comparisons of a variational quantum classifier.

⋄ Design, implementation of a universal quantum platform using Raspberry PI.

⋄ Design, implementation and comparisons of picking and batching problem.

⋄ co-accompany a group of collaborators in quantum computing for DS4DS.

⋄ Co-direction of a TFGs in quantum computing.

14.3.6 Contribution to business vision

Today, we can already see a lot of movements in quantum computing companies. Several companies
are already using this technology to offer consulting tasks at the optimization level or training at the
introductory level. Our work goes a little further. However, the group could particularize one of my
formulations as a Fintech product and base it on the cloud. Developing a subscription/use business
model; Pay peruse.
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14.3.7 Lessons learned (Hard Skills)

Before ending this session, I would like to leave the evidence of what I learned at the cognitive level
and, above all, to record what I have acquired at the skill level. I feel very fortunate to write what I
have learned in this section.

⋄ Quantum mechanics applied to quantum computing

⋄ Qiskit, Qibo, Pennylane, AWS-Braket, D-Wave, etc. programming environments

⋄ Mathematical formulations of optimization problems

⋄ Mapping of classical combinatorial optimization problems in quantum

⋄ Design and implement classical and quantum classifiers

⋄ Understand quantum Machine Learning.

⋄ Write articles

⋄ Scientific rigour

⋄ Quantum computing.

⋄ The era in which quantum computing is found.

14.3.8 Consolidated skills (Soft Skills)

Quantum computing is not one of the most intuitive concepts and one of the easy ones, but behind
its complexity, I did during this 3-year journey to help me develop and consolidate the soft skills that
I list in this section.

⋄ Self-motivation

⋄ Overcome the obstacles

⋄ Find my life
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tion of the Social Workers’ Problem in Quadratic Unconstrained Binary Optimization Form
and Solve It on a Quantum Computer”. In: Journal of Computer and Communications 8.11
(2020), pp. 44–68.

[31] Parfait Atchade-Adelomou, Elisabet Golobardes-Ribé, and Xavier Vilasıs-cardona. “Using the
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