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Abstract

In the modern and ever-evolving society, the presence of noise has become a daily threat to a
worrying amount of the population. Being overexposed to high levels of noise may interfere
with day-to-day activities and, thus, could potentially bring severe side-effects in terms of
health such as annoyance, cognitive impairment in children or cardiovascular diseases. Some
studies point out that it is not only the level of noise that matters but also the type of sound
that the citizens are exposed to. That is, not all the acoustic events have the same impact on
the population.

With current technologies used to track noise levels, for both private and public
administrations, it is hard to automatically identify which sounds are more present in most
polluted areas. Actually, to assess citizen complaints, technicians are typically sent to the
area to be surveyed to evaluate if the complaint is relevant. Due to the high number of
complaints that are generated every day (specially in highly populated areas), the development
of Wireless Acoustic Sensor Networks (WASN) that would automatically monitor the noise
pollution of a certain area have become a research trend. Currently, most of the networks
that are deployed in cities measure only the equivalent noise level by means of expensive but
highly accurate hardware but cannot identify the noise sources that are present in each spot.
Given the elevated price of these sensors, nodes are typically placed in specific locations, but

do not monitor wide areas.

The purpose of this thesis is to address an important challenge still latent in this field:
to acoustically monitor large-scale areas in real-time and in a scalable and cost efficient
way. In this regard, the city centre of Barcelona has been selected as a reference use-case
scenario to conduct this research. First, this dissertation starts with an accurate analysis of
an annotated dataset of 6 hours corresponding to the soundscape of a specific area of the city
(I’Eizample). Next, a scalable distributed architecture using low-cost computing devices to
recognize acoustic events is presented. To validate the feasibility of this approach, a deep
learning algorithm running on top of this architecture has been implemented to classify 10
different acoustic categories. As the sensing nodes of the proposed system are arranged in
such a way that it is possible to take advantage of physical redundancy (that is, more than
one node may hear the same acoustic event), data has been gathered in four spots of the
city centre of Barcelona respecting the sensors topology. Finally, as real-world events tend to
occur simultaneously, the deep learning algorithm has been enhanced to support multilabel
(i.e., polyphonic) classification. Results show that, with the proposed system architecture, it
is possible to classify acoustic events in real-time. Overall, the contributions of this research
are the following: (1) the design of a low-cost, scalable WASN able to monitor large-scale
areas and (2) the development of a real-time classification algorithm able to run over the

designed sensing nodes.



Abstract

Keywords: Acoustic Event Detection, Urban Noise, Wireless Acoustic Sensor Network,

Real-time Classification, Polyphonic Event Classification.

Ester Vidana Vila
Barcelona, February 2022

Vi



Resumen

En la sociedad moderna y en constante evolucion, la presencia de ruido se ha convertido en
una amenaza diaria para una cantidad preocupante de la poblacién. Estar sobreexpuesto
a altos niveles de ruido puede interferir en las actividades cotidianas y, por tanto, podria
acarrear graves efectos secundarios en términos de salud como mal humor, deterioro cognitivo
en ninos o enfermedades cardiovasculares. Hay estudios que senalan que no solo afecta el nivel
de ruido al que estan expuestos los ciudadanos, sino que también es importante el tipo de
sonido. Es decir, no todos los eventos actisticos tienen el mismo impacto en la poblacion.

Con las tecnologias que se utilizan actualmente para la monitorizacion de la contaminacion
acustica, es dificil identificar automaticamente qué sonidos estan més presentes en las zonas
mas contaminadas. De hecho, para evaluar las quejas de los ciudadanos, normalmente se
envian técnicos a la zona donde se ha realizado la queja para evaluar si ésta es relevante.
Debido al elevado niimero de quejas que se generan a diario (especialmente en zonas muy
pobladas), el desarrollo de Redes de Sensores Actsticos Inaldmbricos (WASN) que monitoricen
automaticamente la contaminacion acistica de una determinada zona se ha convertido en
una tendencia de investigacién. En la actualidad, la mayoria de las redes desplegadas en
entornos urbanos solo miden el nivel de ruido equivalente mediante un equipos caros pero
muy precisos, pero no son capaces de identificar las fuentes de ruido presentes en cada lugar.
Dado el elevado precio de estos sensores, los nodos suelen colocarse en lugares estratégicos,
pero no monitorizan zonas amplias.

El objetivo de esta tesis es abordar un importante reto aun latente en este campo:
monitorizar actsticamente zonas de gran tamano en tiempo real y de forma escalable y
econ6mica. En este sentido, se ha seleccionado el centro de la ciudad de Barcelona como
caso de uso de referencia para llevar a cabo esta investigacién. En primer lugar, esta tesis
parte de un andlisis preciso de un conjunto de 6 horas de datos anotados correspondientes al
paisaje sonoro de una zona concreta de la ciudad (I’Eizample). A continuacion, se presenta
una arquitectura distribuida escalable que utiliza dispositivos de bajo coste para reconocer
eventos acusticos. Para validar la viabilidad de este enfoque, se ha implementado un algoritmo
de aprendizaje profundo que se ejecuta sobre esta arquitectura para clasificar 10 categorias
acusticas diferentes. Como los nodos del sistema propuesto estan dispuestos en una topologia
con redundancia fisica (es decir, mas de un nodo puede escuchar el mismo evento actstico a la
vez), se han recogido datos en cuatro puntos del centro de la ciudad de Barcelona respetando
la arquitectura de los sensores. Por ultimo, dado que los eventos del mundo real tienden a
producirse de forma simultanea, se ha mejorado el algoritmo de aprendizaje profundo para
que soporte la clasificacién multietiqueta (es decir, polifénica). Los resultados muestran que,
con la arquitectura del sistema propuesto, es posible clasificar eventos actusticos en tiempo

real. En general, las contribuciones de esta investigacién son las siguientes (1) el disefio de una
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WASN de bajo coste y escalable, capaz de monitorizar dreas a gran escala y (2) el desarrollo de
un algoritmo de clasificacién en tiempo real ejecutado sobre los nodos de deteccién disenados.
Palabras clave: Deteccién de Eventos Acusticos, Ruido Urbano, Red de Sensores

Acusticos Inalambricos, Clasificacién en Tiempo Real, Clasificacién de Eventos Polifénicos.

Ester Vidana Vila
Barcelona, February 2022
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Resum

En la societat moderna i en constant evolucié, la preséncia de soroll s’ha convertit en un perill
diari per a una quantitat preocupant de la poblacié. Estar sobreexposats a alts nivells de
soroll pot interferir en activitats quotidianes i, per tant, podria causar greus efectes secundaris
en termes de salut com mal humor, deteriorament cognitiu en nens o malalties cardiovasculars.
Hi ha estudis que assenyalen que no només afecta el nivell de soroll al qual estan exposats els
ciutadans, sind que també és important el tipus de so. Es a dir, no tots els esdeveniments
acustics tenen el mateix impacte en la poblaci6.

Amb les tecnologies que es fan servir actualment per a monitorar la contaminacié
acustica, és dificil identificar automaticament quins sorolls estan més presents en les zones
més contaminades. De fet, per avaluar les queixes dels ciutadans, normalment s’envien
técnics a la zona on s’hi ha produit la queixa per avaluar si aquesta és rellevant. A
causa de l’elevat nombre de queixes que es generen diariament (especialment en zones
molt poblades), el desenvolupament de Xarxes de Sensors Acustics Sense Fils (WASN) que
monitorin automaticament la contaminacié actstica d’una determinada zona s’ha convertit en
una tendencia d’investigacié. En l'actualitat, la majoria de les xarxes desplegades en entorns
urbans només mesuren el nivell de soroll equivalent fent servir equipaments cars, pero molt
precisos, pero no permeten d’identificar les fonts de soroll presents a cada lloc. Donat 1’elevat
cost d’aquests sensors, els nodes solen col - locar-se en llocs estrategics, pero no monitoren
zones amplies.

L’objectiu d’aquesta tesi és abordar un important repte que encara esta latent en aquest
camp: monitorar acusticament zones de gran envergadura en temps real i de forma escalable i
economica. En aquest sentit, s’ha seleccionat el centre de la ciutat de Barcelona com a cas d’is
de referéncia per a dur a terme aquesta investigacié. En primer lloc, aquesta tesi parteix d’una
analisi precis d'un conjunt de 6 hores de dades anotades corresponents al paisatge sonor d’una
zona concreta de la ciutat (I’Eizample). A continuacio, es presenta una arquitectura distribuida
escalable que fa servir dispositius de baix cost per a reconeixer esdeveniments actstics. Per
a validar la viabilitat d’aquest enfocament, s’ha implementat un algorisme d’aprenentatge
profund que s’executa sobre aquesta arquitectura per a classificar 10 categories actstiques
diferents. Com que els nodes del sistema proposats estan disposats en una topologia amb
redundancia fisica (és a dir, que més d’un node pot escoltar el mateix esdeveniment acustic
simultaniament), s’han recollit dades en quatre punts del centre de la ciutat de Barcelona
respectant I’arquitectura dels sensors. Per ultim, donat que els esdeveniments del mén real
tendeixen a produir-se de forma simultania, s’ha millorat I’algorisme d’aprenentatge profund
perqueé suporti la classificacié multietiqueta (és a dir, polifonica). Els resultats mostren
que, amb l'arquitectura del sistema proposat, és possible classificat esdeveniments actstic

en temps real. En general, les contribucions d’aquesta investigacié sén les segiients: (1) el
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disseny d’'una WASN de baix cost i escalable, que pugui monitorar arees a gran escala i (2) el
desenvolupament d’un algorisme de classificacié en temps real executat sobre els nodes de
detecci6 dissenyats.

Paraules clau: Deteccié d’Esdeveniments Acustics, Xarxa de Sensors Acustics Sense Fils,

Classificacié en Temps Real, Classificacié d’Esdeveniments Polifonics.

Ester Vidaha Vila
Barcelona, February 2022



Acnowledgements

M’agradaria agrair profundament a totes les persones brillants que m’han ajudat i guiat
durant aquest viatge. En primer lloc, mai tindré prou paraules de gratitud cap als meus pares,
que sempre m’ho han donat tot i han sigut el millor model a seguir que podria haver tingut.
Evidentment, també mereixen tota la meva gratitud la resta de la meva familia, el meu germa
Alex, els meus avis (en especial els que ja no hi sén, pero, d’alguna manera, encara estan amb
nosaltres), i tots els meus tiets i cosins.

M’agradaria continuar agraint al Joan tot el suport, ’ajuda i la paciencia que ha tingut
amb mi durant tots aquests anys, tan personal com professionalment. Sense tu, res d’aixo
hauria estat possible. Literalment. Recordo com si fos ahir mateix quan, sis anys enrere, ens
vas convocar a la Rosa i a mi a una saleta de reunions i em vaig iniciar en el mén de la recerca.

Rosa, no has sigut només la meva directora, has sigut molt més que aixo. Moltes gracies
per totes les oportunitats que m’has donat, els teus consells i la teva ajuda 365/24/7. Ha
sigut un honor poder treballar sota el teu lideratge.

A continuacié, m’agradaria agrair a tots els companys de departament, que fan que
I’ambient de treball sigui increible. Gracies a tots els membres del GTM, en especial al Xuti
per acollir-me al grup des del primer moment. I gracies als membres del meu (quasi) segon
grup: el GRITS. Gracias Agustin por estar siempre abierto a compartir vuestra infraestrutura
cuando la he necesitado. I als companys que m’heu donat consells de valor incalculable per
poder acabar la tesi: Selene, Gerard, Marc, Oriol, Xavi Sevillano, Roger, Leticia, Cris... 1
molts més!

També, gracies als companys de docencia, que heu fet que donar classe sigui infinitament
més divertit. Gracies Carme, Nacho, Alejandro, Gongal, Xavi Solé, i tots els equips de
monitors de practiques que hem tingut aquests ultims anys. Gracias Lisa por todas tus
correcciones, por tu paciencia y por no tener nunca un no por respuesta. I agrair també al
grup d’aventures de divendres nit que van fer que el confinament fos (una miqueta) més lleu:
Edus, Pol, Victor, Adria, Alan i Marta.

Finally, big thanks to Dan Stowell and his mini-group from QMUL. Thank you for letting

me join the group and for all your help. It has been a pleasure to work under your superivision.

Xi






Curriculum Vitae

Education

e PhD in Communication and Information Technologies and their Application
to Management, Architecture and Geophysics. 2018-present. La Salle, Universitat

Ramon Llull. Research visits:

— Queen Mary University, Centre for Digital Music (C4DM) research group, under
the supervision of Dr. Dan Stowell (June - July 2020).

— Tilburg University, Department of Cognitive Science and Artificial Intelligence,

under the supervision of Dr. Dan Stowell (June - July 2021).

Dissertation title: “Acoustic event detection and classification in urban environments

using low-cost devices”. Supervised by Dr. Rosa Ma Alsina-Pages.

o Masters Degree in Telecommunications. 2017-2018. La Salle, Universitat Ramon
Llull. Thesis title: “Scalable system for real-time acoustic monitoring of partially
dependent people in distributed environments”. (A with Honors). Supervised by Dr.

Rosa Ma Alsina-Pages and Dr. Joan Navarro.

e Telecommunications Engineering Degree, majoring in Audiovisual Systems.
2012-2017. La Salle, Universitat Ramon Llull. Thesis title: “An authomatic audio
classifier for Picidae bird species”. (A with Honors). Supervised by Dr. Rosa Ma

Alsina-Pages and Dr. Joan Navarro.

Participation in research projects
e Researcher in the Cow-talk Pro project. Public reference number: SNEO-20211301.
Internal reference number: D-PROJ-52710. (2021-present).

e Researcher in the Andorra Eco Urban Lab project. Internal reference number:
D-PROJ-52709. (2021-present).

e Researcher in the Sons de Sabadell project. Internal reference number: D-PROJ-52707.
(2021-present).

o Researcher in the EMMA (Environmental Monitoring and Measurement Application)
project. Public reference number: ACE014/20/000044. Internal reference number:
D-PROJ-52704. (2021-present).

Xiii



Curriculum Vitae

Researcher in the Sons a P’aeroport project, spin-off of the Sons al balc6 project.
Internal reference number: D-PROJ-52103. (2021-2021).

Researcher in the SUARAMAP project. Public reference number: IDI-20200768.
Internal reference number: D-PROJ-52703. (2020—present).

Researcher in the DLANED project. Internal reference number: 2020-URL-Proj-053.
(2020-2021).

Intern in the DYNAMAP (Dynamic Acoustic Mapping). Public reference number:
LIFE13 ENV/IT/001254. (2017-2018).

Researcher in the HomeSound Project. (2017-2018).

Intern in the LSMaker Project (2016-2018).

Work experience

» Associate lecturer at La Salle, Universitat Ramon Llull (2017 — present).

e Member of the Grup de Recerca in Media Technologies (GTM) at La Salle, Universitat

Ramon Llull (2018 — present).

Publications

Journals

Xiv

Vidana-Vila, E., Navarro, J., Stowell,D., Alsina-Pages, R.M. Multilabel Acoustic Event
Classification Using Real-World Urban Data and Physical Redundancy of Sensors.
Sensors 2021, (Q1) (JCR IF = 3.576 2020). Citations in SCOPUS (December 2021): 0
Citations in JCR (December 2021): 0.

Vidana-Vila, E., Navarro, J., Borda-Fortuny, et al. Low-Cost Distributed Acoustic
Sensor Network for Real-Time Urban Sound Monitoring. Electronics 2020, (Q3) (JCR IF
= 2.397 2020). Citations in SCOPUS (December 2021): 5 Citations in JCR (December
2021): 3.

Vidana-Vila, E., Navarro, J., Alsina-Pages, R.M, Ramirez, A. A two-stage approach to
automatically detect and classify woodpecker (Fam. Picidae) sounds, Applied Acoustics
2020, (Q2) (JCR IF = 2,639 2020) Citations in SCOPUS (December 2021): 5 Citations
in JCR (December 2021): 4.

Vidana-Vila, E., Luboc, L., Alsina-Pages, R.M, et al. BCNDataset: Description and
Analysis of an Annotated Night Urban Leisure Sound Dataset, Sustainability 2020,
(Q2) (JCR IF = 3.251) Citations in SCOPUS (December 2021): 4 Citations in JCR
(December 2021): 3.



Publications

e Navarro, J., Vidana-Vila E., Alsina-Pages R.M., Hervds M. Real-Time Distributed
Architecture for Remote Acoustic Elderly Monitoring in Residential-Scale Ambient
Assisted Living Scenarios. Sensors 2018, 18, 2492.(Q1) (JCR IF = 3.031). Citations in
SCOPUS (December 2021): 16 Citations in JCR (December 2021): 14.

e Vidana-Vila, E.; Navarro, J.; Alsina-Pages, R.M. Towards Automatic Bird Detection:
An Annotated and Segmented Acoustic Dataset of Seven Picidae Species. Data 2017, 2,
18. Citations in SCOPUS (December 2021): 5 Citations in JCR (December 2021): 5.

Conferences

e Vidana-Vila, E., Navarro, J., Stowell,D., Alsina-Pages, R.M. Multilabel acoustic event
classification for urban sound monitoring at a traffic intersection, Poster presented in:

Deep Learning Barcelona Symposium 2021.

e Blanch, J., Vidana-Vila, E., Alsina-Pages, R.M. Analysis of the Noise Impact of the
Airport of Barcelona to the Llobregat Delta Natural Environment during the 2021

Lockdown period, 8th Electronic Conference on Sensors and Applications.

e Vidana-Vila, E., Alsina-Pages, R.M, Navarro, J. Improving classification accuracy of
acoustic real-world urban data using sensors physical redundancy, IEEE International
Workshop on Distributed and Intelligent Systems DistInSys 2021.

e Vidana-Vila, E., Alsina-Pages, R.M, Navarro, J. Prototyping a low-cost wireless acoustic
sensor network with physical redundancy to automatically classify acoustic events in

urban environments, UrbanSound Symposium 2021.

e Ginovart, G., Vidana-Vila, E., Caro S., et al. Low-Cost WASN for Real-Time Soundmap

Generation. Proceedings of the 8th International Symposium on Sensor Science 2021.

e Vidana-Vila, E., Navarro, J., La evaluacién como refuerzo positivo en una flipped
classroom. TV Simposi sobre innovacié docent i noves tecnologies 2019. ISBN: 978-84-
946960-2-3.

e Navarro J., Amo D., Canaleta X., Vidana-Vila E., Martinez C. Utilizando Analitica del
Aprendizaje en una Clase Invertida: Experiencia de Uso en la Asignatura de Sistemas
Digitales y Microprocesadores. I1I Simposi sobre innovacié pedagogica i noves tecnologies
2018, ISBN: 978-84-946969-3-0

e Hervas M., Alsina-Pages R.M., Vidana-Vila E.; et al. LSMaker 2.0: An improved
Educational Robot based on previous academic experiences. Jornada d’intercanvi
d’experiencies didactiques 2017, ISBN: 978-84-697-4182-5.

o Navarro, J., Amo, D., Canaleta, X., Vidana-Vila, E., Martinez, C. (2018). Utilizando
analitica del aprendizaje en una clase invertida: Experiencia de uso en la asignatura
de Sistemas Digitales y Microprocesadores. Actas De Las Jornadas Sobre Ensenanza

Universitaria De La Informaética, 3.

XV






index / Contents

Abstract v
Resumen vii
Resum ix
Acnowledgements xi
Curriculum Vitae xiii
Education . . . . . . . .. xiii
Participation in research projects . . . . . . . . .. ..o o oL xiii
Work experience . . . . .. ..o Xiv
Publications . . . . . . .. Xiv
Index / Contents xvii
Llistat de Figures / List of Figures xxi
Llistat de Taules / List of Tables XXV
Llistat d’acronims / List of Abbreviations xxvii
1 Introduccio 1
1.1 Context i Motivacid . . . . . . . . . . . . . 1
1.2 Baiz-cost i Temps-real en Xarxes de Sensors Acustics sense Fils. . . . . . 3
1.3 Escenari . . . . . . .. 4
1.4 Preguntes de recerca i objectius de la Tesi . . . . . . .. ... ... ... 6
1.5 Contribucions de la Tesi . . . . . . . . . .. ... .. ... ... ..., 9
1.6 Organitzaci6 de la memoria de Tesi . . . . . . . . . ... ... ... ... 16
Referencies . . . . . . . . .. 18
1 Introduction 19
1.1 Context and Motivation . . . . . ... ... ... ... ... ....... 19
1.2 Low-cost and Real-time in Wireless Acoustic Sensor Networks . . . . . . 21
1.3 Use-case scenario . . . . . . . . . e e e 22
1.4 Research question and thesis objectives . . . . . . .. .. ... ... ... 25
1.5 Thesis contributions . . . . . . . . . ... L 26
1.6 Dissertation roadmap . . . . . . . . ... oL 33
References . . . . . . . . 35

XVii



index / Contents

11

XViii

Estat de ’art

2.1 Metodologia . . . . . . . . ..
2.2 Criteris d’'inclusié i d’exclusio . . . . . . .. ..o
2.3 Consultes . . . . . . . e
2.4 Procés de seleccid . . . . . ..o
2.5 Analisi dels resultats i estat de Part . . . . . . .. ... ... ...
Referencies . . . . . . . ..

State of the art
21 Methodology . . . . . . . . ..

2.2 Inclusion and exclusion criteria . . . . . . . . . . . ... ...

2.3 Queries

2.4 Selection process . . . . . . . .. e
2.5 Analysis of the results and state of theart . . . . . ... ... ... ...
References . . . . . . .

Articles del compendi

Papers of the compendium

BCNDataset: Description and Analysis of an Annotated Night Urban
Leisure Sound Dataset

1.1 Introduction . . . . . . . ..
1.2 Related Work . . . . . . . oo
1.3 Location Selection . . . . . . . . . ...
1.4 Recording campaign . . . . . . ... ..o L oo
L5 Data Labeling . . . . . . . . .. .
1.6 Dataset Analysis. . . . . . . . . .. Lo
1.7 Materials . . . . . . . .
1.8 Conclusions . . . . . . . . e
References . . . . . . . .

Low-Cost Distributed Acoustic Sensor Network for Real-Time Urban

Sound Monitoring

111 Introduction . . . . . . . ..o
1.2 Related Work . . . . . . . oo
I1.3 System Architecture . . . . . . . ... L
1.4 Experimental Evaluation . . . .. ... ... ... 0 000
I1.5 Discussion . . . . . ...
1.6 Conclusions and Future Work . . . . . .. .. ... ... ... ......
References . . . . . . .

75

77

79
79
81
83
84
86
89
98
98
101



index / Contents

ITI

Iv

Multilabel acoustic event classification using real-world urban data

and physical redundancy of sensors

1.1 Introduction . . . . . . . . . .. .
II1.2  Related Work . . . . . . . . . o
II1.3  Collection and Annotation of a Real-World Dataset . . . . . .. .. ...
I1.4  Two-Stage Multilabel Classifier . . . . . . ... ... ... ... .....
II1.5  Experimental Evaluation . . . . .. .. .. .. ... ... .. .......
III.6  Discussion . . . . . . . . . . .
II1.7  Conclusions . . . . . . . . . . e
References . . . . . . .
Conclusions

4.1 Resum . . . . . . .
4.2 Conclusions . . . . . .. . e
4.3 Linies de futur . . . . . . . ... oo
Conclusions

4.1 SUMMATY . . . v v ot et i e e e e e
4.2 Conclusions . . . . . . . ..
4.3 Future work . . . . . . ..

Articles complementaris al compendi

Complementary papers to the compendium

Low-Cost WASN for Real-Time Soundmap Generation

IV.1  Imtroduction . . . . . . . . . ..
IV.2  Requirements . . . . . . . . .. ...
IV.3 Hardware Design . . . . . . . . .. . .
IV.4  Design Process and Evaluation . . . . . . ... ... ... ... ... ..
IV.5  Conclusions . . . . . . . . L
References . . . . . . . . .

Improving classification accuracy of acoustic real-world urban data

using sensors physical redundancy

V.1 Introduction . . . . . . ..o
V.2 Data Collection Scheme . . . . . . . ... ... ... .. L.
V.3  Description of the Classification Algorithm . . . . . ... .. ... ... .
V.4 Experimental Evaluation . . . . .. ... ... ... ... ... ... ..
V.5 Discussion and Conclusions . . . . . . . .. .. ... oL
References . . . . . . .

169
169
169
174

179
179
179
184

189

191



index / Contents

VI

VII

Prototyping a low-cost Wireless Acoustic Sensor Network with
physical redundancy to automatically classify acoustic events in urban

environments 209

Multilabel acoustic event classification for urban sound monitoring at

a traffic intersection 211

VIII A Two-Stage Approach To Automatically Detect and Classify Wood-

IX

XX

pecker (Fam. Picidae) Sounds 213
VIIL.1 Introduction . . . . . . .. . . . 213
VIIL.2 Preliminary Work and State of the Art . . . . . . .. ... ... .. ... 215
VIIL.3 Acoustic corpus of Woodpecker species . . . . . . ... ... ... .... 219
VIIIL.4 Acoustic Feature Selection for Bird Species . . . . . ... ... ... ... 222
VIIL.5 System architecture . . . . . . . . . . . . .. ... ... .. ... ... 223
VIIL.6 System evaluation . . . . . .. .. ... ... ... .. ... 226
VIIL.7 Conclusions and further work . . . . . ... ... ... .. ........ 229
References . . . . . . . 231

Analysis of the Noise Impact of the Airport of Barcelona to the
Llobregat Delta Natural Environment during the 2021 Lockdown period 237

IX.1 Introduction . . . . . . . . . . . ... 237
IX.2  Airport Recording Campaign . . . . . . . ... . ... ... 238
IX.3 Dataanalysis . . . . . . . . . 239
IX.4 Classification algorithm . . . . . . . .. .. .. .. 000 240
IX.5 Conclusions . . . . . . . . . . . e 242
References . . . . . . . 244



Llistat de Figures / List of Figures

1.1 Mapa topografic el - laborat per Ildefons Cerda el 1855. . . . . . . . . ... ..
1.2 Pla original de la ciutat dissenyat per Idelfons Cerda el 1859. . . . . . . . . ..
1.3 Barris de 'Eixample de Barcelona. . . . . . . . . ... ... o oL,

1.4 Sensor i PCB mostrant com un so de gos és classificat correctament. . . . . . .

1.1 Topographic map elaborated by Ildefons Cerda in 1855. . . . . . . . ... ...
1.2 Original plan of the city designed by Ildefons Cerda in 1859. . . . . .. .. ..
1.3 Neighbourhoods of the Eixample district of Barcelona. . . . . . . . . ... ...
1.4 Sensing node and PCB showing how a dog barking sound is classified. . . . . .

2.1 Diagrama de flux del procés de seleccié d’articles seguint la metodologia PRISMA.

2.2 Fluxos de treball tipics per a I'aprenentatge automatic i 'aprenentatge profund .
p1cs p p g

2.1 Flow diagram of the articles selection process following the PRSIMA methodology.

2.2 Typical workflows for machine learning and deep learning problems. . . . . . .

1.1 Studied area in Eixample, Barcelona, with numbers 1 to 4 representing the
positions of acoustic sensors in these streets. Source: Google Maps (last access
26/07/2020). . . . ..

1.2 Photos from the studied streets in Eixample, Barcelona, with numbers 1-4
representing the views of the streets close to the acoustic sensors. Picture 1 is
Balmes street, picture 2 is Enric Granados street, picture 3 is Aribau street,
and picture 4 is Muntaner street. Source: Google StreetView. . . ... .. ..

L3 Photos of the recording device and its relation to the street level. (a) Shows
the Zoom recorder on a first-floor balcony, while (b) shows the view of the
street from this balcony. . . . . . . . ... ..o o

1.4 Screenshot of the Audacity program showing a labeled audio fragment.

1.5 Boxplot of the durations (in seconds) of the labeled events for each of the

classes of the dataset. . . . . . . . . .

1.6 Boxplot of the signal-to-noise ratio (SNR; in dB) of the labeled events for each

of the classes of the dataset. . . . . . . . . . . . ... ...

1.7 Spectrogram of a door event indicating which samples were used as signal or

noise for the SNR calculation. . . . . . . . . . . .. ... ...

1.8 Analysis of the impacts of the audio events. . . . . . . . ... ... .. .....

ot

13

23
24
24
31

39
42

86

87

88

90

91



Llistat de Figures / List of Figures

1.9

1.10

II.1

I1.2

11.3

114

IL.5

I1.6

11.7

II.8

11.9

11.10
I1.11

1111
II1.2

II1.3

II1.4

II1.5

XXii

Distribution of the labeled events of each audio file in time. Each subplot stands for
the results of an audio file. The x-axis is the time in minutes and the y-axis represents
the different labeled categories that can be found in the dataset. Fach dot corresponds
to an event of the y-axis type starting at the moment indicated in the x-axis. The color
of a dot represents the SNR of that concrete event and the size of the dot represents
the duration of that event. . . . . . . . . . . . ... 0oL
Intermittency Ratio of the three audio files presented in the dataset calculated
with windows of 10 minutes. The y-axis represents the IR of each audio file
and the x-axis represents the time evolution (in minutes) of the audio file that

is being evaluated. . . . . . . .. ..

Aerial view of the urban grid structure of the city of Barcelona. . . .. .. ..
Raspberry Pi Model 2B with USB microphone. . . . . . .. .. ... ... ...
Proposed Planar Crossed Dipoles for isotropic radiation. . . . . . .. ... ..

Parametric study of the reflection coefficient S1;. Top left: changing the A.
Top right: changing the branch length (Lb) . Bottom: changing the branch
width (Wpa2). . . . o oo
Radiation patterns of the Planar Crossed Dipoles for isotropic radiation in 3D
(right) and the combination for Theta=0 exciting each dipole at a time (left). .
Performance results of the proposed Planar Crossed Dipoles. Reflection
coefficient for isotropic radiation on the left. Realized Gain over frequency on
the right. . . . . . . . o
Logical organization of nodes. . . . . . . . . ... ... L ..
Spectrograms of the ten types of sounds of the UrbanSound8K dataset. . . . .
Deep network architecture for the local data processing. . . . . . . ... .. ..
Training and validation accuracy and loss of the selected model. . . . . . . ..

Diagram of the network of sensors (nodes) in the building blocks of the city of
Barcelona. The green and white icons represent the sensor devices and the red

dot represents an acousticevent. . . . . . .. ...

Recording campaign and Zoom recorder. . . . . . .. . ... ... ... .. ..
Screenshot of the developed python script. The screen on the background
(left) records the keystrokes. The screen on the foreground (right) shows
the information of the current window and a legend with the correspondences
between keys and labels. . . . . . . ... Lo o

Duration and temporal splitting of the Train, Validation, and Test sets of the

Example of mixup data augmentation using two random 4-second fragments
containing several acoustic events. . . . . . . ... .. Lo o oL
Architecture of the MobileNet v2 deep neural network used at the first stage of

the classification process. . . . . . . . . . . . ...

116

117



Llistat de Figures / List of Figures

I11.6

1117

4.1

4.1

V.1

V.1
V.2

IX.1
IX.2
1X.3

Proposed system architecture with two classification stages. The first deep
neural network of the first level outputs a 21-component vector that is later
concatenated with the vectors from neighboring nodes. The resulting 84-
component vector is examined by the second classification stage to obtain the
final classification result. This scheme is replicated on each of the sensors of
the system. . . . . . . . e 155
Example of a possible future location of sensors. Green dots indicate the
location used for the experiments conducted in this paper. Red dots indicate

the new proposed locations. . . . . . .. .. ... ... ... ... 160

Posicions potencials per als sensors. Els punts vermells indiquen la posicié
actual dels sensors en la topologia proposada, els quadrats grocs i els triangles
verds indiquen les ubicacions potencials que podrien ser estudiades en un futur
treball. . . . . L e 177

Potential positions for the sensors. Red dots indicate the current position of the
sensors in the proposed topology, yellow squares and green triangles indicate

potential locations that could be studied in a future work. . . . . ... .. .. 187
Hardware description for each node of the network. . . . . ... ... ... .. 195

Aerial view from Google Maps of the crossroad where the recording was conducted. 201
Spectrogram of a 4-second sample manually labelled as horn that the system
has been unable to classify (left). Spectrogram of two consecutive 4-seconds

samples each manually labelled as horn that the system has classified correctly

(Fght). .« © oo 205
Locations of the three recordings in Delta del Llobregat. . . . . ... .. ... 239
Boxplot of average duration time of events per category. . . . . . . . . ... .. 240
Confusion matrix of the SVM algorithm. . . . ... ... ... .. ... .. .. 242

XXiii






Llistat de Taules / List of Tables

2.1 Consultes i nombre de resultats fetes al WOS per obtenir informacié. . . . . .
2.1 Queries and number of results formulated in WOS to gather information. . . .
1.1 Summary of the main characteristics around the sensors in the area of interest.
1.2 Event types considered for the dataset and their respective descriptions and

categories (leisure/traffic). . . . .. ... ... ..o

1.3 Number of events labeled on each audio file and their durations in seconds. . .

II.1 Values of the Optimized design parameters for the antenna geometry. . . . . .
1.2 Number of FLOPs, model size and accuracy on the testing fold for different
network architectures. . . . . . . .. L oL
I1.3  Confusion matrix considering the classification of the modified audio files in a
single Sensor. . .. .. L. e e
1.4  Confusion matrix considering the classification of the modified audio files in a

network of four nodes. . . . . ...

III.1  Number of events annotated on the dataset. . . . .. ... ... ... .....
III.2  Number of events on the Train, Validation, and Test set. . . . . . ... .. ..
III.3  Macro and micro average F-1 scores for the experimental evaluation obtained
at the first classification stage. . . . . . . . . ... ... L.
II1.4  Experiment results obtained at the second classification stage. . . . . . .. ..
III.5  Time that it takes for the system to classify a 4-second audio fragment using
three different sensor models. Results are shown in seconds after 100 runs.
II1.6  Evaluation metrics of the system when combining the outputs of 4 local nodes

by using the XGBoost algorithm. . . . . .. ... ... ... ... ... ...
IV.1  Main features and components of the nodes of the network. . . . . ... ...
V.1 System performance using physical redundancy. . . . . .. .. ... ... ...

IX.1  Number of events for each of the categories of the labelled dataset. . . . . . . .
IX.2  Accuracy value for the tested algorithms. . . . . . . .. ... ... ... ....

XXV






Llistat d’acronims / List of
Abbreviations

ADC Analogue-to-Digital Converter o Convertidor Analogic-Digital. 171, 181
ANN Artificial Neural Network o Xarxa Neuronal Artificial. 43, 44, 62, 63

ASC Acoustic Scene Classification o Classificacié d’Escena Acustica. 44, 62, 63

CNN Convolutional Neural Network o Xarxa Neuronal Convolucional. 41, 44-46, 59, 63, 64,
170, 180, 181

CPU Central Processing Unit o Unitat de Processament Central. 46, 64

DALYs Disability-Adjusted Life Years o Anys de Vida Ajustats per Discapacitats. 1, 2, 19, 20
dBA Decibels with A-weighting o Decibels amb Ponderacié A. 1, 19

DCASE Detection and Classification of Acoustic Scenes and Events o Deteccié i Classificaci

d’Escenes i Esdeveniments Actustics. 49, 67

DL Deep Learning o Aprenentatge Profund. 7, 11, 14, 17, 25, 29, 33, 35, 40, 41, 44, 45, 48,
58, 59, 62-64, 67, 169, 170, 173, 174, 179, 180, 183, 184

DNN Deep Neural Network o Xarxa Neuronal Profunda. 14, 16, 32, 35, 44, 46, 63, 64, 171,
173, 181, 184

DT Decision Tree o Arbre de Decisi6. 43, 62

EBD Estimated Burden of Disease o Carrega Estimada de les Malalties. 1, 2, 19, 20
CE1 Criteris d’Exclusié 1. 38, 56
CE2 Criteris d’Exclusié 2. 38, 56
CE3 Criteris d’Exclusié 3. 38, 56

CE4 Criteris d’Exclusié 4. 38, 56
FBC Frequency Bank Coefficients o Coeficients de Bancs de Freqiiéncies. 42, 60

GAN Generative Adversarial Network o Xarxa Generativa Antagonica. 175, 186

XXVil



Llistat d’acronims / List of Abbreviations

GMM Gaussian Model Mixture. 40, 43, 58, 61
GPU Graphics Processing Unit o Unitat de Processament de Grafics. 11, 30, 41, 59

GTCC GammaTone Cepstral Coefficients o Coeficients Cepstrals de Tons Gamma. 43, 61
HMM Hidden Markov Models o0 Models Ocults de Markov. 40, 42, 58, 61

IC1 Inclusion Criteria 1 o Criteris d’Inclusi6 1. 38, 56
IC2 Inclusion Criteria 2 o Criteris d’Inclusié 2. 38, 56
IC3 Inclusion Criteria 3 o Criteris d’Inclusi6 3. 38, 56
IC4 Inclusion Criteria 4 o Criteris d’Inclusié 4. 38, 56
IoT Internet of Things o Internet de les Coses. 45, 63

IR Intermittency Ratio o Ratio d’Intermitencia. 15, 34
KNN K-Nearest Neighbors o K-Veins Propers. 42, 60

LPCC Linear Prediction Cepstrum Coefficients o Coeficients Cepstrals de Prediccié Lineal.
42, 60

MEMS Micro Electro Mechanical System o Micro Electret Sistema Mecanic. 47, 48, 65, 66,
171, 176, 181, 186

MFCC Mel Frequency Cepstral Coefficients o Coeficients Cepstrals de Freqiiencia Mel. 42-46,
59-63, 65

ML Machine Learning o Aprenentatge Automatic. 7, 14, 25, 33, 40-44, 48, 58, 59, 61, 62, 67,
169, 171, 179, 181

MSC Mel-Spectral Coeflicients o Coefficients Espectrals Mel. 42, 60
NB Naive Bayes. 43, 62
OS Operating System o Sistema Operatiu. 171, 181

PCA Principal Component Analysis o Analisi de Components Principals. 44, 63
PCB Printed Circuit Board o Placa de Circuit Impres. 12, 30

PCEN Per-Channel Energy Normalization o Normalitzacié d’Energia Per Canal. 45, 64, 170,
180

PICOC Population, Intervention, Comparison, Outcome, Context o Poblacié, Intervencio,

Comparacid, Resultats, Context. 37, 55

XXViii



Llistat d’acronims / List of Abbreviations

RF Random Forest o Bosc Aleatori. 43, 62
RQ1 Research Question 1 o Pregunta de Recerca 1. 7, 8, 25, 26, 37, 55, 173, 183
RQ2 Research Question 2 o Pregunta de Recerca 2. 7, 25, 37, 55, 173, 184

RQ3 Research Question 3 o Pregunta de Recerca 3. 7, 8, 25, 26, 37, 55, 174, 184

SMO Sequential Minimal Optimization o Optimitzacié Minima Seqiiencial. 43, 61

SVM Support Vector Machine o Maquina de Vectors de Suport. 40, 42, 43, 58, 60, 61

TO1 Thesis Objective 1 o Objectiu de Tesi 1. 7, 9, 11, 25, 27, 29, 170, 180

TO2 Thesis Objective 2 o Objectiu de Tesi 2. 7, 14, 25, 33, 171, 181

TO3 Thesis Objective 3 o Objectiu de Tesi 3. 8, 9, 14, 26, 27, 33, 171, 172, 181, 182
TO4 Thesis Objective 4 o Objectiu de Tesi 4. 8, 11, 14, 26, 29, 33, 172-174, 182-184

TRL Technology Readiness Level o Nivell de Maduresa Tecnologica. 8, 26
VAE Variational AutoEncoder o AutoCodificador Variacional. 175, 186

WASN Wireless Acoustic Sensor Network o Xarxa de Sensors Acustics sense Fils. 2, 7, 12,
20, 24, 30, 40, 43, 46, 47, 58, 61, 64-66, 169, 171, 174, 177, 179, 181, 184, 187, 189, 191

WHO World Health Organization o Organitzacié Mundial de la Salut. 1, 19

WOS Web Of Science. xxv, 37, 38, 55, 56

ZCR Zero Crossing Rate o Taxa de Creuament per Zero. 42, 60

XXiX






Capitol 1

Introduccio

1.1 Context i Motivacio

La primera entrada de soroll al diccionari, el defineix com “un so, especialment un so alt i
desagradable” (University 2021). A la societat moderna i en constant evolucié en la que vivim,
la presencia de soroll s’ha convertit en una amenaga diaria per a una quantitat preocupant de
la poblacié (WHO 2011). No obstant aixo, no sén només els humans els que es veuen afectats
pel soroll: alguns estudis han demostrat que estar exposats al soroll causat pels humans té un
impacte negatiu en la vida animal, causant migracions no naturals, problemes reproductius i,
fins i tot, amenaces de supervivencia de I'especie a llarg termini (Radle 2007).

En el cas concret de la poblacié humana, un conjunt d’estudis (WHO 2011) duts a terme
per la World Health Organization o Organitzacié Mundial de la Salut (WHO) confirmen que
estar exposat a nivells excessius de soroll interfereix negativament amb les activitats del dia
a dia, com ara treballar, assistir a l’escola o descansar durant el temps lliure. A més, els
mateixos estudis calculen el Estimated Burden of Disease o Carrega Estimada de les Malalties
(EBD) de la poblacié causada pel soroll ambiental segmentat en el soroll de transit, el soroll
dels avions i el soroll ferroviari. Aquesta estimacié té com a objectiu quantificar els anys
potencials de vida que una persona pot perdre per una mort prematura, a més dels anys de
vida saludable perduts per males condicions sanitaries o discapacitats. Aquesta estimacié es
mesura en unitats de Disability-Adjusted Life Years o Anys de Vida Ajustats per Discapacitats

(DALYs). Els principals efectes secundaris de la sobreexposicié al soroll son:

» Risc cardiovascular: El risc de patir una afeccié cardiaca (fins i tot una cardiopatia
isquémica) s’incrementa al estar sobreexposat tant al soroll de transit com al soroll dels
avions. A més, aquests dos tipus de sorolls estan correlacionats amb un increment del
risc de patir una alta pressié arterial anomala. Concretament, s’estima que 'EBD per a

malalties cardiovasculars en paisos europeus d’alta renda és de 61 000 anys.

o Deficiéncia cognitiva en joves: S’ha analitzat mitjanant estudis experimentals i
epidemiologics. Aquest deteriorament es produeix mentre els nens estan exposats al
soroll i persisteix durant algun temps després que el soroll acabi. Concretament, per dur
a terme els estudis, es va observar que, mentre que tots els nens que estaven exposats a
un nivell de 95 Decibels with A-weighting o Decibels amb Ponderacié A (dBA) es van
veure afectats cognitivament, cap nen es va veure afectat a un nivell de 59 dBA. La

EBD per als paisos europeus és de 45 000 anys per als joves d’entre 7 i 19 anys.

¢ Pertorbacions del son: Per calcular el EBD causat per la pertorbacié del son en
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la poblacid, es van tenir en compte dos tipus d’estudis. En primer lloc, mesures
electrofisiologiques. En segon lloc, autoinformes realitzats mitjangant enquestes en
diferents estudis. La EBD per als ciutadans europeus que viuen en ciutats amb una
poblacié superior a 50 000 habitants és de 903 000 DALYs perduts a causa de la

pertorbacié del son causada pel soroll.

Tinnitus: Tinnitus es pot definir com la sensacié d’escoltar un so concret quan aquest
S0 no esta passant realment (per exemple, un clic o brunzit). Aquest efecte pot derivar
en altres patologies com la pertorbacio del son, la frustracié o 'ansietat. L’ EBD per
a ciutadans europeus adults és de 22 000 anys a causa de Tinnitus causat per estar

sobreexposat al soroll.

Annoyance o Molésties: Per mesurar la molestia causada per entorns sorollosos,
s’utilitzen qiiestionaris personals. L’ EBD per als ciutadans que viuen en ciutats amb
una poblacié superior a 50 000 habitants és de 587 000 DALYs perduts a causa de

molesties causades pel soroll.

A més, a part de tots aquests efectes secundaris, s’ha estudiat que el que importa no és
només el nivell de soroll, siné també el tipus de so al qual estan exposats els ciutadans. Es a
dir, no tots els esdeveniments actstics tenen el mateix impacte en la poblacié (Abbaspour et
al. 2015). No obstant aixd, quan les administracions pibliques o privades intenten identificar
quines sén les arees més contaminades de les ciutats, el parametre que poden quantificar i tenir
en compte és normalment el nivell de so conjuntament amb un seguit d’indicadors actstics o
psico-actstics (com el the Traffic Noise Index, el Noise Pollution Level o Intermittency Ratio),
pero no la font especifica que esta generant el so. En realitat, el procediment principal per

saber quins sén els entorns més contaminats sén (Bello et al. 2019):

1. Analitzar les queixes dels ciutadans relacionades amb el soroll. Aix0 requereix recursos

humans experts que han de traslladar-se a la zona concreta per a estudiar I’entorn i
prendre mesures acustiques utilitzant equips especifics. No obstant aixo, a causa de
I’elevat nombre de reclamacions que pot rebre una administracié publica, no és possible
que els experts atenguin aquestes reclamacions en temps real anat a fer les mesures in
situ. A més, a causa de les caracteristiques intrinseques volatils del so (només succeeix
quan la font de so és present), en algunes ocasions, quan els experts mesuren l’entorn,

la font ja no hi és o ha parat de fer soroll.

. Estudiar una area concreta de la ciutat utilitzant una Wireless Acoustic Sensor Network

o Xarxa de Sensors Actstics sense Fils (WASN). En aquest cas, els sensors acustics es

despleguen a la ciutat i normalment mesuren el nivell de soroll equivalent.

. Mapes de soroll fets a partir de mesures en llocs especifics de la ciutat, d’acord amb

la normativa 2002/49/EC (Parliament 2002). Actualment, aquests mapes usualment
consideren només les categories de soroll de transit, soroll de tren, soroll d’avions i soroll

industrial, perd no mostren totes les fonts acistiques que estan sonant a temps real.



Baix-cost i Temps-real en Xarxes de Sensors Acustics sense Fils.

A causa de les respostes amb retard obtingudes pel primer métode i la novetat del segon,
lobtencié d’un sistema (1) de baix cost en termes de maquinari, (2) fiable en termes de
precisié i (3) amb temps de resposta baix ha sorgit com un repte de recerca modern.

Per aquesta rad, aquesta dissertacié té com a objectiu fer un pas més en la investigacié
d’aquest camp cap a una implementacio real d’un sistema classificador que compleixi les tres
caracteristiques abans esmentades. A causa de la complexitat del problema, I’abast d’aquesta
tesi es limita a la creacié d’un prototipus hardware capag de classificar els esdeveniments
actstics (fins 1 tot si es produeixen simultaniament) i mostrar el resultat de la classificacié en

temps real en un escenari concret.

1.2 Baix-cost i Temps-real en Xarxes de Sensors Acustics
sense Fils.

El titol d’aquesta dissertacié engloba dos termes que poden ser ambigus per a diferents lectors.

Aquesta subseccié té com a objectiu debatre i definir-les per a aquesta dissertacié.

1.2.1 Baix-cost

Hi ha dos enfocaments arquitectonics principals en el disseny d’una xarxa de sensors distribuida.
El primer, anomenat jerarquic, té com a objectiu utilitzar un dispositiu de gamma alta (car)
que es comporta com un lider (també conegut com a mestre) de tots els altres dispositius
de gamma baixa anomenats seguidors. El segon enfocament, anomenat homogeni, té com
a objectiu alleujar les tasques de computacié del dispositiu mestre mitjangant I’eliminacié
d’aquest paper del sistema i permetre que tots els dispositius interactuin a voluntat. Per
descomptat, en termes de cost, tots dos enfocaments pateixen la mateixa qiiestio: el cost de
la xarxa de sensors creix linealment amb el nombre de dispositius. Aquest creixement és a
un ritme més baix en els sistemes jerarquics (és a dir, els dispositius de seguiment sén més
barats) que en els sistemes homogenis. No obstant aixo, per als sistemes jerarquics hi ha un
punt en el qual el maquinari del dispositiu lider ja no es pot actualitzar i no pot coordinar
amb exit tots els seguidors, resultant en una degradacié del rendiment a causa de 'efecte
de coll d’ampolla. A més, els sistemes jerarquics porten altres reptes (per exemple, un sol
punt de fracas o tolerancia a les particions de xarxa) que poden fer-los inadequats per a
gran escala. Per tant, en aquesta recerca s’ha seleccionat I'enfocament homogeni. Val la
pena assenyalar que, per a arquitectures distribuides homogenies com la que es proposa en
aquesta tesi, minimitzar el cost global de la proposta és equivalent a minimitzar el cost d’un
sol dispositiu. Per tant, considerem que el cost d’un sol dispositiu de deteccié ha de ser un

ordre de magnitud inferior a qualsevol mesurador de nivell de so de classe 1.

1.2.2 Temps-real

Temps-real (o real-time en angles) és un terme estretament connectat al domini d’aplicacié en

el qual s’esta utilitzant. Fins i tot en el mateix domini, diferents concepcions de temps real
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poden coexistir per a diferents serveis. Tipicament, quan es processen els fluxos de dades, les
dades del flux sén serialitzats i emmarcats en una finestra (també coneguda com a chunk)
d’una mida predefinida per tal de ser processades. Quan el processament de dades triga
sistematicament més que omplir una finestra, es requereix una cua infinita per emmagatzemar
totes les finestres que cal processar. En aquest context, s’assumeix que el comportament en
temps real es produeix quan les dades es processen més rapid que el temps que triga a omplir
una finestra. Es a dir, no hi ha finestres a la cua. Per aquesta dissertacio, ja que la mida de
la finestra seleccionada és de 4 segons, ’abast del temps real es limita a proporcionar una

sortida del sistema en menys d’aquesta quantitat de temps.

1.3 Escenari

El centre de la ciutat de Barcelona ha estat seleccionat com a escenari de treball ates que
és una de les ciutats més sorolloses d’Europa. De fet, Barcelona ha estat classificada com
la setena ciutat més sorollosa del mén (Worldwide Hearing Indexr 2017), sent una de les
dues ciutats europees classificades en el top-10 de ciutats més sorolloses. El ranquing esta
encapgalat per Guangzhou (Xina), seguit per Nova Delhi (India), El Caire (Egipte), Bombai
(India), Istanbul (Turquia), Pequin (Xina), Barcelona (Espanya), Ciutat de Méxic (Mexic),
Paris (Franga) i Buenos Aires (Argentina).

Donada 'extensié de la ciutat, s’ha seleccionat una area en concret: L’Eixample de la
ciutat, que és el districte d’expansié que ocupa una amplia area de la ciutat. Concretament,
segons ajuntament (El districte i els seus barris 2021), aquest districte ocupa 747.60 ha i
alberga 266 754 habitants. Per tant, la densitat de poblaci6 és de 356 inhab./ha.

1.3.1 Pla Cerda

Aquest districte va ser dissenyat per lenginyer Ildefons Cerda el 1860 (Permanyer 2008).
Concretament, el projecte d’expansié de la ciutat va ser anomenat Pla Cerda, i 'enginyer
va crear i va seguir 'eslogan Urbanizar el campo y ruralizar la ciudad (Urbanitzar el camp i
ruralitzar la ciutat en catala). Per sobre de tot, Cerda tenia com a objectiu construir una
ciutat pensant en el futur mitjancant 'analisi de les necessitats socials i politiques de la
poblacié.

En el seu pla original, Cerda va proposar construir una cruilla cada 113.3 metres, amb
I’objectiu de construir un districte en el qual tots els carrers serien camins rapids. D’aquesta
manera, ja que tots els carrers tindrien longituds i amplades similars, el transit estaria
equilibrat i, per tant, el soroll estaria més o menys distribuit per igual.

L’al¢ maxima de cada bloc seria de 16 metres, i la superficie total del districte podria
albergar 800 000 habitants. L’expansié maxima del districte seria de 7 500 metres, i hi
hauria una carretera per creuar tota la ciutat anomenada Diagonal. Tots els carrers serien
perpendiculars entre ells, i tindrien una amplada d’almenys 20 metres: 10 metres per als
vianants (5 metres a cada costat) i 10 per als vehicles. D’aquesta manera, des d’un punt de

vista aeri, la ciutat semblaria una xarxa gairebé perfecta de blocs d’edificis i carrers. D’altra
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banda, els blocs d’edificis tindrien les cantonades retallades en forma de xamfra per millorar
la visibilitat dels vehicles en les interseccions de transit, la qual cosa faria més segurs els
encreuaments dels vianants.

Considerant 'amplada de 20 metres dels carrers i ’algada de 16 metres dels blocs d’edificis,
tots els veins tindrien llum solar directa en algun moment del dia i els blocs veins no projectarien
ombres entre ells.

La Figura 1.1 mostra un mapa topografic elaborat per Ildefons Cerda el 1855, abans de
I'expansio de la ciutat. En aquella epoca, el centre de la ciutat estava envoltat de muralles,
que van ser demolides abans de 'expansio de la ciutat.

Per altra banda, la Figura 1.2 mostra el pla original després del seu disseny. Aquest segon
mapa il - lustra la idea original de ’Eixample de Barcelona, i il - lustra perfectament la idea

que Cerda tenia per construir la ciutat amb blocs de dimensions idéntiques.

1.3.2 Eixample de Barcelona a I’actualitat

Més de 160 anys després del disseny original del pla, el centre de la ciutat segueix els patrons
originals. No obstant aixo, el districte no és tan gran com Cerda planejava originalment. A
més, l'algada dels blocs s’ha incrementat de 16 a 20 metres. Actualment, aquesta zona esta

dividida en els 7 barris que es poden veure a la Figura 1.3:

e FEl Fort Pienc

Figura 1.1: Mapa topografic el - laborat per Ildefons Cerda el 1855.
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e La Sagrada Familia

e La Dreta de I’Fizample

e L’Antiga Esquerra de I’Fizample
e La Nova FEsquerra de I’Fixample
o Sant Antoni

Com es pot observar, la simetria dels blocs facilita la tasca de dissenyar una WASN
altament escalable i, per tant, és ideal per al proposit d’aquesta tesi.

Després d’analitzar els diferents barris de la ciutat i juntament amb el Departament de
Qualitat Ambiental de ’Ajuntament, L’ Antiga Esquerra de I’Eizample s’ha definit com D'area
d’interes d’aquesta tesi, ja que és la zona que concentra més queixes relacionades amb el
soroll. La raé principal d’aquestes queixes sén els locals d’oci que ocupen la zona. Es a dir,

restaurants, bars o llocs de miusica (la majoria d’ells amb terrasses).

1.4 Preguntes de recerca i objectius de la Tesi

Aquesta subseccié exposa les preguntes de recerca i descriu I'abast dels objectius de la tesi

d’aquesta dissertacié tenint en compte el context i la motivacid exposats a la seccidé anterior.

Figura 1.2: Pla original de la ciutat dissenyat per Idelfons Cerda el 1859.



Preguntes de recerca i objectius de la Tesi

e Research Question 1 o Pregunta de Recerca 1 (RQ1): Podem detectar i identificar
esdeveniments actstics en un univers predefinit usant informacié espectral i temporal

encara que els esdeveniments es produeixin simultaniament?

e Research Question 2 o Pregunta de Recerca 2 (RQ2): Es possible encabir un algorisme
classificador d’audio en un dispositiu de baix cost per tal que la classificacié doni resultats

en temps real?

o Research Question 3 o Pregunta de Recerca 3 (RQ3): Fins a quin punt la redundancia
fisica dels sensors pot ajudar a millorar un algorisme classificador d’esdeveniments

acustics?

Aquestes qiiestions de recerca deriven en els segiients objectius de tesi:

o Thesis Objective 1 o Objectiu de Tesi 1 (TOI1): Desenvolupar un sistema
classificador automatic capag¢ de detectar esdeveniments actstics en ambients

urbans utilitzant informacié espectral i temporal.

Aquest primer objectiu pretén donar una resposta a la pregunta RQ1. El proposit
és concebre un algorisme software capa¢ de classificar aquells esdeveniments que
poden océrrer en un entorn urba. L’abast d’aquest objectiu es limita a classificar
10 categories diferents de sons. La idea és utilitzar algorismes de Machine Learning
o Aprenentatge Automatic (ML) o Deep Learning o Aprenentatge Profund (DL) per

realitzar la classificacié.

o Thesis Objective 2 o Objectiu de Tesi 2 (TO2): Dissenyar una plataforma de
maquinari de baix cost capag¢ de classificar esdeveniments actstics en temps

real.

Aquest segon objectiu pretén donar una resposta preliminar a la pregunta RQ2. La
idea és dissenyar i prototipar una arquitectura de maquinari capag d’acollir el sistema

classificador desenvolupat a l'objectiu TO1. A més, la plataforma hauria de poder

Figura 1.3: Barris de ’Eixample de Barcelona (£l districte i els seus barris 2021).
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generar un resultat de classificacié en temps real. Com que el temps real pot tenir
diferents interpretacions en funcié del lector, per aquesta dissertaci6 es considerara que
un sistema genera un resultat en temps real si és capag de proporcionar els resultats en
un periode de temps més curt que una finestra de classificacié predefinida. Concretament,
en aquesta tesi, el temps de finestra predefinit sera de 4 segons. Més detalls sobre la

seleccid de finestres s’explicaran més endavant a I’Article I1.

Thesis Objective 3 o Objectiu de Tesi 3 (TO3): Utilitzar dades del mén real per
entrenar i avaluar la plataforma de classificacié (programari i maquinari) per

estudiar la viabilitat d’un desplegament en el moén real.

Aquest tercer objectiu té com a objectiu avaluar el rendiment del sistema utilitzant
dades del mén real recopilades en un entorn urba de cas d’ts. Per tant, com que en
ambients urbans els sons solen océrrer simultaniament, aquest objectiu donara una

resposta final a RQ1.

Abans del desenvolupament de I’algorisme de classificacid, sera necessari estudiar la
ciutat seleccionada per a realitzar una analisi exhaustiva dels sons que es produeixen al
centre de la ciutat. Per limitar I’abast d’aquest objectiu, i a causa de les restriccions
de recursos humans per recopilar i anotar dades del moén real, només s’utilitzaran un

nombre limitat d’hores d’enregistraments.

Thesis Objective 4 o Objectiu de Tesi 4 (TO4): Quantificar fins a quin punt la

redundancia fisica dels sensors millora la precisié del classificador.

En general, i a causa de I'elevat preu dels sensors acustics d’alta qualitat, per estudiar
una amplia area urbana només es poden prendre mesures en alguns punts concrets de
la ciutat. L’objectiu final és comprovar si una (sobre)poblacié de sensors acustics de
baix cost pot millorar els resultats de la classificacié per respondre RQ3. En el context
d’aquesta tesi, la redundancia fisica dels sensors fa referéncia a utilitzar els sensors en
una certa topologia, de manera que el mateix esdeveniment actistic pugui ser escoltat
per miltiples nodes simultaniament. Concretament, 'abast d’aquest objectiu es limita

a comprovar una Unica i concreta topologia de sensors.

D’aquests objectius, s’espera obtenir un prototip com a prova de concepte a Technology
Readiness Level o Nivell de Maduresa Tecnologica (TRL) 6. Aixo vol dir que s’espera que
"El model representatiu o sistema prototipus, situat molt més enlla de TRIL 5, és testejat
en un entorn rellevant. Representa un aveng important en la demostracié de la maduresa
tecnologica. Exemples inclouen testar un prototip en un entorn de laboratori d’alta fidelitat o
en un entorn operacional simulat."(DoD 2011). En aquest sentit, les dades captades al mén
real es faran servir com a un entorn d’alta fidelitat. Tanmateix, el prototip encara no estara
llest per ser desplegat a qualsevol part o ciutat del mén, per a fer-ho caldria arribar a un

nivell de TRL més elevat fent més proves i ajustos amb més dades.
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1.5 Contribucions de la Tesi

Aquesta subseccié té com a objectiu oferir una visié general de les contribucions presentades
en aquesta dissertacié juntament amb una explicacié del flux de treball utilitzat per a la
investigacié per aconseguir els objectius de la tesi i respondre a les preguntes de la investigacio.

D’acord amb I’actual Reglament del Doctoral de la Universitat Ramon Llull, aquesta tesi
es presenta en forma de compendi de publicacions. S’utilitzen tres articles per al compendi:
Article I, Article II i Article III.

No obstant aix0, com a material de suport o complementari, al final d’aquesta dissertacié
s’adjunten quatre articles i dos posters (Article IV, Article VI, Article VII, Article VIII i
Article IX), ja que han estat passos complementaris per obtenir les tres contribucions principals
i poden ajudar al lector a entendre el flux de treball de la tesi. En concret, mentre que els dos
primers articles complementaris estan directament relacionats amb el firmware i el software
desenvolupat per aconseguir els objectius de la tesi i els dos articles intermedis sén posters
presentats en simposis per a proposits de difusid, els dos tltims articles exploren la deteccid
acustica d’esdeveniments i la classificacié en un entorn natural, utilitzant una taxonomia de
sons radicalment diferent de les que es poden trobar en arees urbanes.

A continuaci6 s’explica el flux de treball de la dissertacié i la relacié de cada article amb

les qiiestions de recerca i objectius de la tesi.

1.5.1 Analisi i definicié de taxonomia del paisatge sonor

Com que el tema principal d’aquesta tesi és la deteccié d’esdeveniments actistics i la classificacié
en entorns urbans centrats en I’escenari de cas d’us del centre de la ciutat de Barcelona, la
primera investigacié realitzada durant aquesta tesi va ser un estudi i analisi del paisatge sonor
de la ciutat i el seu impacte en la poblacié. Un dels problemes que es van trobar en aquesta
fase va ser la falta de disponibilitat de dades acustiques d’alta qualitat, d’accés obert i amb
una etiquetacié exacta i precisa captada en 'area d’estudi (centre de la ciutat de Barcelona).
Per a aquest proposit, es va anotar i analitzar manualment un conjunt de dades de 6 hores de
duracié gravades en un balcé d’'un carrer situat a [’ Esquerra de I’Eizample. Les campanyes
d’enregistrament van ser dutes a terme per altres investigadors de la universitat en el marc
d’un Treball de Final de Master, pero 'autora de la dissertacié va dur a terme les etapes
d’anotacié i analisi. Una de les dificultats trobades quan es realitzava la part d’etiquetatge era
que, en algunes ocasions, es podien escoltar multiples esdeveniments simultaniament —incloent
tant sorolls de transit com de lleure. En aquesta primera etapa, aquests esdeveniments es van
considerar esdeveniments rars o estranys i no es van fer distincions entre ells.

La ubicaci6é exacta per a la recopilacié de les dades va ser escollida en un carrer envoltat
tant per sons de transit com d’oci, i els enregistraments es van dur a terme a la nit (entre les
22:00 i les 03:00) i en dissabte per maximitzar la preséncia de persones en els establiments
d’oci. D’aquesta manera, 1’analisi comprén els dos tipus d’activitats (trafic i oci) i permet
quantificar quines activitats poden impactar més a la poblacié veina (considerant la intensitat

dels sons i també la seva durada) i la distribuci6 de temps dels esdeveniments (és a dir, en el
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moment en que va océrrer cada esdeveniment).

Aquesta analisi va permetre tenir una visié general de la taxonomia de l’area d’estudi (el
centre de la ciutat de Barcelona), que va constituir el primer pas per aconseguir els objectius
de la tesi TO1 i TO3.

Cal destacar que aquesta primera analisi del paisatge sonor només inclou parametres
objectius: és a dir, no es van dur a terme proves perceptives o subjectives als veins de la
ciutat, excepte a la propietaria del balco en el qual va tenir lloc la campanya de gravacié, que
es va queixar de que la zona era massa sorollosa per dormir a la nit. Una analisi perceptiva
exhaustiva de la percepcio dels veins que viuen a I’Eixample esta fora de ’abast d’aquesta
dissertaci6. També s’ha de destacar que aquest primer treball avalua el paisatge sonor de
I’escenari d’as de la tesi amb 'objectiu de definir una taxonomia que ens permeti comengar
a definir 'algorisme de classificacié de la tesi. Un estudi complet i exhaustiu del paisatge
sonor de la ciutat sencera esta fora de ’abast d’aquesta tesi, ja que fer-lo comportaria fer més
campanyes de gravacié distribuides per tota la ciutat i en diferents horaris.

Com a contribucié a la comunitat cientifica, els resultats d’aquesta analisi, juntament amb
el conjunt de dades anotades (que va rebre el nom BCNDataset), es van publicar a 1’Article I
en la modalitat d’accés obert.

Per tant, I’Article I constitueix el primer article del compendi d’aquesta dissertacié. La
contribucié de I’autora de la tesi en aquest primer treball de compendi va consistir en ’anotacio
i analisi (calculs de metriques i definicié de taxonomia) del conjunt de dades i I'escriptura de

I'article. Els altres autors de I’article van dur a terme les campanyes d’enregistrament.

1.5.2 Disseny de la WASN i desenvolupament d’un algorisme de classificacio
single-class

Un cop es va acabar d’analitzar 'area geografica a estudiar i es va definir la primera taxonomia,
el segiient pas va consistir en dissenyar una plataforma distribuida de baix cost capag de
reconeixer esdeveniments acustics. Els detalls concrets sobre els nodes de detecci6 seleccionats
s’expliquen a Article IV. Els principals criteris de seleccié per als nodes de deteccié seguien

les segiients premisses:

e Les unitats de computacié haurien de poder realitzar la classificacié en temps real.

o Kl cost total dels sensors hauria de ser inferior a 100€ cadascun per ser classificat com a

sensors de baix cost.

e La resposta en freqiiencia dels microfons ha de ser el més plana possible, mantenint la

premissa de baix cost.

o La premissa de baix cost és més important que la precisié en les mesures (és a dir, els

nodes no necessiten ser classificats com a sensors de classe A).

e Fer servir una unitat de computacié genérica de baix cost que suporti les llibreries de

software utilitzades per programar un sistema classificador facilitara la tasca de desplegar
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els algoritmes. A més, si la unitat de computacié generica té una gran comunitat de

suport en linia, sera més facil resoldre problemes potencials.

Després d’una analisi exhaustiva i diferents proves, la Raspberry Pi va ser seleccionada
com a unitat de computacié per a cadascun dels sensors. A més, en quant a microfonia, es va
escollir fer servir un microfon USB plug-and-play.

Una vegada seleccionades les unitats de computacio, la segona contribucié principal de la
tesi, que utilitza els mateixos nodes de deteccié de Article IV, s’explica a I’Article 11. Més
concretament, en aquesta segona contribucid, es va proposar una arquitectura de computacio
distribuida i es va provar utilitzant un conjunt de dades descarregades d’un repositori en linia.
En l'arquitectura de computaci6 distribuida, els nodes de deteccid es van organitzar en una
topologia que permet aprofitar la redundancia fisica. Aprofitar la redundancia fisica significa
que un esdeveniment acustic pot ser escoltat per diferents sensors. Aquest treball té com a
objectiu avaluar si la redundancia fisica és util per al classificador, i, per tant, és el primer
pas cap a la consecucié del TO4. Un problema que es va trobar a 'intentar avaluar aquesta
idea va ser que, normalment, en conjunts de dades en linia, les dades s’han recopilat en un sol
lloc. De fet, autora de la tesi creu que no existeix cap conjunt de dades acustiques en linia
recopilades en llocs simultanis propers a Barcelona que permetin avaluar la hipotesi i validar
la topologia proposada. Per aquesta rad, en aquest treball, una vegada que el sensor va ser
dissenyat, es va entrenar un algorisme de DL per classificar 10 categories diferents de sons
urbans. Més concretament, els 10 sons que es van avaluar van ser els presents en el conjunt
de dades d’UrbanSound8K (Salamon et al. 2014): aire condicionat, claxon de cotxe, nens
jugant, gos bordant, so de taladre, so de motor de cotxe, dispar de pistola, martell pneumatica,
sirena i musica de carrer. Aquest conjunt de dades en linia és considerat per la comunitat
una base per a la classificacié de sons urbans. A més, aquest conjunt de dades (UrbanSound)
subministra els arxius d’audio en finestres de fins a 4 segons. Aixo significa que, quan hom
es descarrega el conjunt de dades, hi ha uns 8 000 fitxers .wav, i la durada de cada fitxer és
igual (o inferior) a 4 segons.

En el context d’aquesta tesi, després d’algunes proves de concepte en les quals la mida
de la finestra va ser variada duent a terme una recerca sistematica (que va des d’uns 100
mil - lisegons a 4-segons), 4-segons és la mida de les finestres que va resultar en millors resultats
de classificacié tenint en compte el compromis entre la precisié dels resultats i la velocitat de
classificacio. Per tant, 4 segons és la mida de la finestra utilitzada en els experiments fets en
aquesta tesi.

Aquest algorisme de classificacié vol satisfer I'objectiu TO1. No obstant aixo, com que
el conjunt de dades UrbanSound consisteix només en dades sintetiques d’un tnic sensor i
no conté el soroll de transit de fons tipic que es pot escoltar a les ciutats, una vegada que
el sistema classificador va ser avaluat en un unic sensor, es va dur a terme una emulacid
d’un entorn real mitjangant la mescla dels arxius d’audios del conjunt de dades UrbanSound
amb dades urbanes de transit del mén real. Especificament, el soroll de transit seleccionat
va ser el de la categoria road traffic noise, que principalment consisteix en soroll de cotxes

en marxa. Per al procediment de mescla, i per poder avaluar si la redundancia fisica de la
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topologia proposada millora els resultats de la classificacié, els audios es van barrejar imitant
la propagacié del so d’un esdeveniment acustic a quatre sensors veins propers d’acord amb
I’arquitectura de sensors dissenyada en la dissertacié. Per dur a terme el procés d’imitacio, es
va considerar inicament la distancia entre els esdeveniments actstics i els punts de mesura.
L’autora de la tesi és conscient que hi ha altres factors —a més a més de la distancia— que
poden afectar la propagacié del so, tal com poden ser les reflexions en edificis o objectes
dinamics del paisatge com vehicles, arbres, o inclis vianants caminant. Tanmateix, a causa de
les dificultats que es van trobar en plantejar fer una caracteritzacié de la resposta impulsional
del carrer (per exemple, soroll de fons constant, dificultats a I’hora d’estar a peu dret en el lloc
on se suposa que ocorren els esdeveniments acustics a causa del pas de vehicles, I’esdeveniment
transitori que s’hauria de generar hauria de tenir un nivell de so molt alt, etc.), aquestes
variables es van ometre. Per a garantir un nivell alt de fidelitat en els sons imitats, pero, el

conjunt de dades modificat es va escoltar atentament de forma manual.

Per assegurar que ’algorisme seleccionat funcionaria en els nodes hardware seleccionats,
tot i que 'entrenament dels sensors es va dur a terme en un ordinador amb una GPU
potent, els experiments es van cérrer en el sensor seguint la estructura que seguirien si
s’haguessin de desplegar al carrer: adquisicié de dades, processament de dades, transformacio
d’espectrogrames i classificacié. A més, per a la comunicacié entre sensors, es va proposar 1'is

d’una antena ad hoc de tipus bespoke a cada node de computacio.

La contribucié de 'autora de la tesi en aquest segon treball del compendi va consistir
principalment en el disseny dels nodes de deteccié de baix cost fet a partir de materials
comercials (és a dir, Raspberry Pi i microfon USB) aixi com el desenvolupament i I’avaluaci6
del software de classificacio. La idea del protocol distribuit per enviar bytes entre sensors i el
disseny de 'antena bespoke personalitzada presentada en el treball va ser duta a terme pel
altres autors. De fet, 'antena bespoke no s’ha implementat a la vida real, només s’ha simulat.
La implementaci6 fisica de I'antena esta fora de I'abast d’aquesta dissertacié. La comunicacio

entre nodes d’aquesta tesi s’ha dut a terme a través d’'Internet (Ethernet o Wi-Fi).

Per comprovar visualment si la classificacié estava passant en temps real sobre els nodes
de deteccid, es va dissenyar una Printed Circuit Board o Placa de Circuit Impres (PCB)
que contenia 10 LEDs (un per categoria) més una capa serigrafica amb el nom de cada
esdeveniment acustic i una petita pantalla LCD. Cada vegada que un sensor detecta un
esdeveniment actstic, el LED amb l'etiqueta que coincideix amb la sortida de la classificacid
s’activa. A més, la pantalla LCD mostra la probabilitat que aquest esdeveniment sigui cert.
Per tant, si a la pantalla es mostra un alt valor de probabilitat, el classificador esta bastant
segur sobre la seva prediccié. Per contra, un valor de baixa probabilitat indica que 1’algorisme
no esta segur sobre la seva decisié. Per provar el sistema general, vam reproduir diversos
sons ambientals de categories especifiques com ara sirenes, claxons de cotxes o sorolls d’obres
procedents de videos. La imatge de la Figura 1.4 mostra un sensor amb la PCB dissenyada.
A https://youtu.be/NQiwXDrfyUc es pot veure un video de demostracié del funcionament de

I'un sensor de la WASN classificant esdeveniments a temps real.
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Figura 1.4: Sensor i PCB mostrant com un so de gos és classificat correctament.

1.5.3 Dades del mon real i classificacio polifonica

Després de la primera avaluacié de l'arquitectura proposada utilitzant el conjunt de dades en
linia de 10 categories i després de validar que la topologia proposada ens permet comprovar si
la redundancia fisica millora la precisié de la classificacid, el segiient pas de la dissertacié va
consistir a recollir enregistraments d’audio del mén real en I'escenari seleccionat. Per a aquest
proposit, es van dur a terme dues campanyes d’enregistrament en quatre localitats simultanies
amb redundancia fisica als carrers de L’ Antiga Esquerra de I’Eixample. Les quatre ubicacions
simultanies compleixen amb els requisits establerts en la topologia proposada: cada node és

una cantonada d’un edifici en una interseccié de transit.

La rad per dur a terme dues campanyes d’enregistrament en lloc d’una va ser que, durant la
primera campanya d’enregistrament, hi havia restriccions de mobilitat a causa de la pandémia
COVID-19 que podrien esbiaixar els esdeveniments actstics que ocorren als carrers (es permetia
a la gent moure’s per raons justificades com ara anar a treballar si el teletreball no era possible,
pero no hi havia persones al carrer amb finalitats d’oci). La segona campanya d’enregistrament
va tenir lloc uns mesos després. Durant la segona campanya d’enregistrament, les restriccions
es van suavitzar. L’hora del dia i la estaci6é de I'any de les dues campanyes d’enregistrament
també van ser diferents, perseguint una varietat més rica de paisatge sonor al carrer (I'estaci6
tardorenca a la tarda i la temporada primaveral al mat{). En total, es van obtenir unes 20

hores de dades actustiques (5 hores per sensor). Actualment, aquest conjunt de dades s’esta
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processant i analitzant amb 1'objectiu de ser publicat i compartit amb la comunitat cientifica.
No obstant aixo, com que aquest treball encara no ha acabat, 'analisi profund del conjunt de

dades no forma part d’aquesta tesi.

Com a primera fase de prova, després de la primera campanya d’enregistrament, pero
abans de realitzar la segona, 1 hora d’una ubicacié dels arxius d’audio recollits es va avaluar
utilitzant el sistema de classificacié automatic de I’Article II sense fer cap modificacié. Aixo
significa que I'algorisme divideix I’audio en finestres de 4 segons de longitud i assigna a cada
finestra una etiqueta provisional que consisteix en 1 de les 10 categories del conjunt de dades
UrbanSound8K. Aquesta etiqueta va ser revisada manualment per I'autora de la tesi. Després,
es van obtenir les metriques de classificacié de 'algorisme i es van presentar en l'article de
conferéncia complementari Article V. El procés també es va il - lustrar en el poster presentat
al” Article VI. La ra6 de fer aquesta prova abans d’operar amb totes les dades disponibles era
comprovar si el treball realitzat amb dades sintetiques podia ser extrapolat a dades del mén
real de I'escenari d’is. No obstant aixo, els resultats d’aquest estudi van indicar que hi havia
diversos esdeveniments actstics que no pertanyien a cap de les 10 categories predefinides, i
també que la majoria dels fragments d’audio contenen més d’'un esdeveniment acustic. Aixo
va fer que la recerca de ’autora conclogués que seria convenient utilitzar un classificador

polifonic o multietiqueta en lloc del que s’utilitzava fins a aquest moment.

De nou, trobar dades en linia que coincideixin amb les caracteristiques desitjades va
ser un problema. L’autora va haver d’etiquetar manualment els arxius d’audio de les dues
campanyes d’enregistrament utilitzant un enfocament multietiqueta (és a dir, etiquetar tots
els esdeveniments acustics que es poden escoltar en cadascun dels fragments, encara que es
produeixin simultaniament). Com que ’etiquetatge manual d’arxius d’audio és una tasca
exhaustiva, que consumeix molt de temps i que sensible a errors, es va dissenyar i implementar
un procés d’anotacié mitjangant un script de Python. La idea era minimitzar la quantitat de
temps dedicat a la tasca minimitzant les interaccions de 1'usuari amb el ratoli i/o el teclat de
Iordinador. A més, es van utilitzar etiquetes febles en lloc d’etiquetes fortes amb ’objectiu
de reduir el temps dedicat a la tasca. Es a dir, en un fragment donat de 4 segons (que
seria 'entrada de l’algorisme), totes les etiquetes van ser etiquetades, independentment de
la segmentacié exacta de I'esdeveniment acustic. Aixo significa que si un esdeveniment curt
només durava uns pocs mil - lisegons, I'etiqueta s’assignaria al fragment complet de 4 segons
de totes maneres. La logica subjacent a aquesta idea és que, encara que es perd precisié en
I'etiquetatge, el sistema generaria un resultat de classificacié per cada fragment de 4 segons.
Aixi doncs, sabent quins esdeveniments ocorren en una finestra de temps és suficient, no
es necessita tenir la informacié exacta de on comenga i acaba ’esdeveniment. Cal tenir en
compte que la mida de la finestra es va mantenir a partir de l'article anterior (és a dir, 4

segons).

Una vegada que el conjunt de dades va ser etiquetat, el classificador polifonic es va
implementar utilitzant una DNN en cadascun dels sensors. Aquest classificador va ser
dissenyat perque pogués classificar tots els esdeveniments etiquetats del conjunt de dades (i

no només les 10 categories del conjunt de dades UrbanSound). Un problema notable que es
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va trobar quan es va entrenar el classificador basat en DL va ser que les dades del moén real
presenten un alt desequilibri de classe (és a dir, no tots els esdeveniments apareixen la mateixa
quantitat de vegades en el conjunt de dades). Alguns esdeveniments es repeteixen gairebé
constantment, mentre que altres apareixen només en unes poques ocasions. Aixo va fer que el
classificador tingués problemes en avaluar la classificacié de les dades mal representades en el
conjunt de dades. Per mitigar aquest problema, es van aplicar técniques d’augmentacié de
dades. La tecnica especifica que es va seleccionar va ser miz-up augmentation, que consisteix
en barrejar (per mitja d’'una suma ponderada) diferents fragments d’audio i després combinar
les seves etiquetes també. Aquest procés de mescla es va fer utilitzant el BCNDataset, (dataset
analitzat i publicat a I’Article T), i el conjunt de dades UrbanSound8k. Els resultats obtinguts

en aquest procés s’exposen al poster presentat a I’Article VII.

Una vegada que el sistema polifonic estava corrent en cadascun dels sensors, per avaluar
la redundancia fisica dels sensors, es va afegir una capa intel - ligent basada en ML al sistema.
Aquesta capa recull els resultats de la classificacié de la xarxa neuronal que s’executa en cada
node vei i dona una sortida de classificacié final. Es van calcular diverses métriques sobre els
resultats de la classificacié per poder discutir si s’aconsegueixen els objectius TO3 i TO4. A
més, el sistema es va provar en tres unitats de computacié diferents (models de Raspberry Pi
diferents) per validar també si el sistema és capag de proporcionar un resultat en temps real
i, per tant, si també s’aconsegueix 'objectiu TO2. Tot aquest sistema polifonic, juntament
amb el sistema intel - ligent basat en ML, es detalla en la tercera contribucié del compendi:
I’Article III.

La contribuci6é de 'autora de la tesi en aquest tercer treball del compendi ha consistit
principalment en el desenvolupament del software de classificacié multietiqueta i les proves
sobre els sensors fisics. A més, 'autora ha organitzat les campanyes de recopilacié de dades i

ha dut a terme 'anotacié de dades.

1.5.4 Treball complementari en bioacustica

Independentment dels tres articles principals que componen el compendi, durant la tesi s’han

dut a terme dos articles més relacionats amb la bioacustica.

En primer lloc, Article VIII explora i proposa un sistema software que distingeix les
vocalitzacions i sons dels ocells picots (woodpeckers) que habiten a la Peninsula Ibeérica. La
contribucié de ’autora de la tesi per a aquest treball ha estat el disseny d’un sistema de

classificador de dues capes, 'extraccié de caracteristiques i la programacié del classificador.

En segon lloc, Article IX explora el paisatge sonor d’un entorn natural proper a I’Aeroport
de Barcelona i té com a objectiu proposar un sistema de classificacié dels sons detectats. En
aquest treball, ’autora de la tesi ha contribuit en la campanya de recopilacié de dades, el
disseny d’avaluacié experimental i 'escriptura de ’article. Un altre autor ha dut a terme la

programacio del software.
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1.6 Organitzacié de la memoria de Tesi

La dissertacié s’organitza en els segiients capitols:

Capitol 2 : Explora l'estat de I'art en el camp de la deteccié actstica d’esdeveniments i la

classificacié en entorns urbans mitjancant una revisio sistematica de la literatura. Les
publicacions més rellevants s’estudien per saber qué han desenvolupat els investigadors

de tot el mén en els tultims anys.

Capitol 3 : Inclou els tres articles principals del compendi de la tesi:

Article | : ‘BCNDataset: Description and Analysis of an Annotated Night Urban Leisure

Sound Dataset’, exposa el treball realitzat per concebre i analitzar un conjunt de dades
de 6 hores d’enregistraments obtinguts en una area del centre de la ciutat de Barcelona.
L’analisi inclou la durada dels esdeveniments detectats en el conjunt de dades, la relacié
senyal-soroll, el nombre d’ocurréncies, 'impacte de cada ocurrencia en el soroll de fons
L.Aeq, i I’ Intermittency Ratio o Ratio d’Intermitencia (IR) de les dades, que sén

metriques que poden estar correlacionades amb els efectes del soroll en la poblacio.

Article Il : ‘Low-Cost Distributed Acoustic Sensor Network for Real-Time Urban Sound

Monitoring’, presenta una arquitectura distribuida de baix cost altament escalable que
compta amb una xarxa de sensors acustics per controlar els sons urbans. Per validar
analiticament la viabilitat de I'arquitectura hardware proposada, els experiments de
classificacio es duen a terme utilitzant un conjunt de dades que conté 10 categories
d’audio diferents. D’altra banda, per comprovar si la redundancia fisica millora els
resultats de la classificacio, els arxius d’audio estan adaptats sintéticament per imitar la

propagaci6 del so en un cert emplagament al centre de la ciutat de Barcelona.

Article Il : ‘Multilabel acoustic event classification using real-world urban data and physical

redundancy of sensors’. Fent servir dades enregistrades i annotades recollides en quatre
punts simultanis en una ubicacié concreta del centre de la ciutat de Barcelona, aquest
treball avalua I'arquitectura del sistema proposada a I’ Article I utilitzant un classificador
multietiqueta de dues etapes. Mostra com les tecniques d’augment de dades ajuden al
sistema a obtenir una major metrica de classificacié i la quantitat de temps que triga al
sistema a classificar una mostra quan s’utilitzen tres unitats de computacié diferents. A
més, aquest article explica una nova metodologia d’etiquetatge per a accelerar el procés

d’anotacié.

Capitol 4 : Finalitza la tesi ¢) resumint les principals contribucions d’aquesta recerca, i)

discutint els resultats obtinguts i #i¢) proposant possibles linies de futur. A més, relaciona
els resultats obtinguts amb els objectius de la tesi i respon a les preguntes de recerca

que s’han proposat a la Seccid 1.4.

Capitol 5 : Inclou alguns articles complementaris al compendi de la tesi:
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Article IV : ‘Low-Cost WASN for Real-Time Soundmap Generation’, presenta una arqui-
tectura hardware de baix cost concebuda per recollir dades actstiques per construir
un mapa de so en temps real 24/7. Cada node de la xarxa es compon d’un microfon
omnidireccional i una unitat de computacié (Raspberry Pi), que processa informacié
acustica localment per obtenir dades no sensibles (és a dir, nivells de soroll equivalents
o etiquetes d’esdeveniments acustics) que més tard s’envien a un servidor al nuvol.
L’objectiu final del sistema és permetre les segiients funcions: 7) mesurar I’ L¢g o altres
parametres similars en temps real en una finestra predefinida, i) identificar patrons
canviants en les mesures anteriors de manera que es puguin detectar situacions anomales

i 4ii) per prevenir i assistir a possibles situacions irregulars.

Article V : ‘Improving classification accuracy of acoustic real-world urban data using sensors
physical redundancy’; avalua el rendiment de la xarxa de sensors actstics de baix cost
que s’aprofita de la redundancia fisica presentada a I’Article II. Per fer-ho, el treball
avalua més d’1 hora de dades actistiques del moén real recollides al centre de la ciutat
de Barcelona. L’article vol avaluar si la redundancia fisica ajuda a obtenir resultats de
classificacié més robustos. El sistema avaluat incorpora una xarxa neuronal profunda
que funciona en cada node i un protocol de consens distribuit que implementa un
conjunt d’heuristiques per beneficiar-se dels resultats de la classificacié dels nodes veins

desplegats a la mateixa area (és a dir, la redundancia fisica).

Article VI : ‘Prototyping a low-cost Wireless Acoustic Sensor Network with physical
redundancy to automatically classify acoustic events in urban environments’, mostra un
poster presentat en un simposi internacional sobre sons urbans. Aquest treball va ser el
pas intermedi a nivell de software entre els treballs Article 11 1 Article I11. Analitzant
una hora d’enregistraments del mon real, es va provar la DNN de I’Article I1 i es van

analitzar les seves febleses.

Article VII : ‘Multilabel acoustic event classification for urban sound monitoring at a traffic
intersection’, mostra un poster presentat en un simposi local a Barcelona sobre el tema
de DL. Aquest poster resumeix els resultats de la primera capa de classificacié obtinguda

a I’Article 111 per a proposits de difusié i promocio.

Article VIII : ‘A Two-Stage Approach To Automatically Detect and Classify Woodpecker
(Fam. Picidae) Sounds’, proposa un sistema de classificador de dues capes per classificar
els sons dels ocells picot que habiten a la peninsula Iberica. Més especificament,
I’arquitectura proposada compta amb un sistema de classificacié d’aprenentatge de dues
etapes que utilitza i) Coeficients de Cepstral de Freqiiéncia Mel i Taxa de Creuament
Zero per detectar sons d’ocells sobre soroll ambiental, i i7) Coeficients Predictius lineals
Perceptuals i Coeficients Cepstrals de Frequiencia Mel per identificar les especies d’ocells
i el tipus de so (és a dir, sons vocals o sons fets a les branques dels arbres amb el bec)

associat.
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Article IX : ‘Analysis of the Noise Impact of the Airport of Barcelona to the Llobregat
Delta Natural Environment during the 2021 Lockdown period’, explora el paisatge
sonor acustic d’un parc natural prop de 'aeroport de Barcelona i aplica técniques
d’aprenentatge automatic per classificar els esdeveniments actstics produits tant per
l'activitat aeroportuaria com per la vida salvatge. Per a l'analisi, s’utilitzen dades
registrades en tres punts simultanis d’interes biologic (segons els comissaris del parc)
prop de 'aeroport. Els enregistraments i I’analisi posterior es van fer el 5 de marg de
2021, quan l'activitat aeroportuaria encara es veia molt minvada per les restriccions de

mobilitat.
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Chapter 1

Introduction

1.1 Context and Motivation

The first entry of noise in the dictionary defines it as “a sound, especially a loud, unpleasant
sound” (University 2021). In the modern and ever-evolving society, the presence of noise has
become a daily threat to a worrying amount of the population (WHO 2011). However, it is
not only humans who are affected by noise: some studies have proved that being exposed to
noise caused by humans has a negative impact on wildlife, causing non-natural migrations,
reproductive problems and even long-term survival threats (Radle 2007).

In the concrete case of human population, a set of studies (WHO 2011) carried out by
the World Health Organization o Organitzacié Mundial de la Salut (WHO) confirm that
being exposed to excessive noise levels interferes with day to day activities such as working,
attending to school or resting during leisure time. Moreover, the same studies calculate the
Estimated Burden of Disease o Carrega Estimada de les Malalties (EBD) of the population
caused by environmental noise segmented in road traffic noise, aircraft noise and railway
noise. This estimation aims to quantify the potential years of life that a person may lose by a
premature death plus the years of healthy life lost by poor health conditions or disabilities.
This estimation is measured in units of Disability-Adjusted Life Years o Anys de Vida Ajustats

per Discapacitats (DALYs). The main side effects of being over-exposed to noise are:

o Cardiovascular diseases: The risk of suffering from ischaemic heart disease (even
myocardial infraction) is increased by being overexposed to both road traffic noise and
aircraft noise. Also, these two types of noises are correlated with an increment of the
risk of suffering from anomalous high blood pressure. Concretely, it is estimated that
the EBD for cardiovascular diseases in high-income European countries is of 61 000

years.

e Cognitive impairment in children: It has been studied by means of experimental
and epidemiological studies. This impairment occurs while children are exposed to noise
and persists for some time after the noise finishes. Concretely, to carry out the studies,
it was observed that while all the children that were exposed to a level of 95 Decibels
with A-weighting o Decibels amb Ponderacié A (dBA) were cognitively affected, no
children were affected at a level of 59 dBA. The EBD for European countries is of 45

000 years from children ranging from 7 to 19 years old.

e Sleep disturbance: To calculate the EBD caused by sleep disturbance on the

population, two types of studies were taken into account. First of all, electro-physiological
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measurements. Secondly, by means of self-reports made with surveys in different studies.
The EBD for European citizens living in towns with a population greater than 50 000
inhabitants is of 903 000 DALYs lost due to sleep disturbance caused by noise.

e Tinnitus: Tinnitus can be defined as the sensation of hearing a concrete sound when
that sound is not actually happening (i.e., a ringing, clicking or buzzing sound). This
affection may derive in other patologies such as sleep disturbance, annoyance, frustration
or anxiety. The EBD for adult European citizens is of 22 000 years due to tinnitus

caused by being overexposed to noise.

¢ Annoyance: To measure annoyance caused by noisy environments, personal question-
naires are used. The EBD for citizens living in towns with a population greater than 50
000 inhabitants is of 587 000 DALYs lost due to annoyance caused by noise.

Also, apart from all these side effects, it has been studied that it is not only the level of
noise that matters but also the type of sound that the citizens are exposed to. That is, not all
the acoustic events have the same impact on population (Abbaspour et al. 2015). However,
when public or private administrations try to identify which are the most polluted areas of
the cities, the parameter that they can quantify and take into consideration is usually the
sound level of a certain area together with a set of acoustic indicators (such as the Traffic
Noise Index, Noise Pollution Level, Intermittency Ratio), but not the specific source that is
generating the sound. Actually, the main procedure to know which are the more polluted

environments are (Bello et al. 2019):

1. Analysing the complaints from the citizens related to noise. This requires expert human
resources that have to move to the concrete area to be studied and take acoustic
measurements using specific equipment. However, due to the high amount of complaints
that a public administration may receive, it is not possible for the experts to be present in
real-time and make the measurements. Also, due to the intrinsic volatile characteristics
of sound (it happens only when the sound source is present), in some of the occasions,

when the experts measure the environment the noise source has already finished.

2. Surveying a concrete area of the city using a Wireless Acoustic Sensor Network o Xarxa
de Sensors Actustics sense Fils (WASN). In this case, acoustic sensors are deployed on

the city and they typically measure the equivalent noise level.

3. Noise mapping developed by means of measurements in specific spots of the city,
according to the regulations of the Directive 2002/49/EC (Parliament 2002). Currently,
these maps usually consider only the categories of road traffic, railway noise, aircraft
noise and industrial noise, but they do not find all the acoustic sources occurring in

real-time.

Due to the delayed responses obtained by the first method and the novelty of the second
one, obtaining a (1) low-cost in terms of hardware, (2) reliable in terms of accuracy and (3)

responsive system has emerged as a modern research challenge.
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For this reason, this dissertation aims to give a step further in the research of this field
towards a real-operation implementation of a classifier system that accomplishes the three
aforementioned features. Due to the complexity of the problem, the scope of this thesis is
limited to prototyping a hardware system capable of classifying acoustic events (even if they
occur simultaneously) and output the classification results in real-time in a concrete use-case

scenario.

1.2 Low-cost and Real-time in Wireless Acoustic Sensor
Networks

The title of this dissertation englobes two terms that may be ambiguous to different reader.

This subsection aims at discussing and defining them for this dissertation.

1.2.1 Low-cost

There are two main architectural approaches when designing a distributed sensor network.
The first one, named hierarchical, aims to use a high-end device (i.e., expensive) which behaves
as a leader (also referred to as master) of all the other low-end devices referred to as followers.
The second approach, named homogeneous, aims to alleviate the computing tasks of the
master device by erasing this role from the system and enable all the devices to interact at
will. Certainly, in terms of cost, both approaches suffer from the same issue: the cost of
the sensor network grows linearly with the number of devices. This growth is at a lower
rate in hierarchical systems (i.e., follower devices are cheaper) than in homogeneous systems.
However, for hierarchical systems there is a point in which the hardware of the leader device
cannot be upgraded anymore and fails to successfully coordinate all the followers, resulting in
a performance degradation due to the bottle-neck effect. Additionally, hierarchical systems
bring other challenges (e.g., single point of failure or tolerance to network partitions) that may
make them unsuitable for large-scale WASN. Therefore, in this research the homogeneous
approach has been selected. It is worth noting that, for homogeneous distributed architectures
like the one herein proposed, minimizing the overall cost of the proposed WASN is equivalent
to minimize the cost of a single device. Therefore, we consider that low-cost is achieved when
the cost of a single sensing device is an order of magnitude lower than any of-the-shelf Class 1

sound level meter.

1.2.2 Real-time

Real-time is a term tightly connected to the application domain in which it is being used.
Even in the same domain, different conceptions of real-time may coexist for different services.
Typically, when processing data streams, data from the stream are serialized and framed into
a window (i.e., also referred to as chunk) of a predefined size in order to be processed. When
the data processing systematically takes longer than filling a window, an infinite queue is

required to store all the windows that need to be processed. In this context, real-time behavior
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is assumed to happen when data are processed faster than the time that it takes to fill a
window. That is, no windows are queued. For the sake of this dissertation, as the selected
window size is 4 seconds, the scope of real-time is limited to providing a system output in less

than this amount of time.

1.3 Use-case scenario

The city centre of Barcelona has been selected as a use-case scenario given that it is one of the
noisiest cities Europe. Actually, Barcelona has been categorized as the seventh noisiest city
in the world ( Worldwide Hearing Index 2017), being one of the two European cities ranked
in the top-10 noisiest cities ranking. The ranking is leaded by Guangzhou (China), followed
by New Delhi (India), Cairo (Egypt), Bombay (India), Istanbul (Turkey), Beijing (China),
Barcelona (Spain), Mexico City (Mexico), Paris (France) and Buenos Aires (Argentina).

Given the extension of the city, a concrete area has been selected: the “Eixample” of
the city, which is the expansion district that occupies a wide area of the city. Concretely,
according to the city hall (El districte i els seus barris 2021), this district occupies 747.60 ha
and hosts 266 754 inhabitants. Hence, the population density is of 356 inhab./ha.

1.3.1 Pla Cerda

This district was designed by the engineer Ildefons Cerda in 1860 (Permanyer 2008). Concretely,
the project of expanding the city was named Pla Cerda (Cerda plan in English), and the
engineer created and followed the slogan Urbanizar el campo y ruralizar la ciudad (Urbanize
the countryside and ruralize the city in English). Among all, Cerda aimed at building a city
thinking in the future by means of analysing the social and political needs of the population.

On his original plan, Cerda proposed to build a crossroad each 113.3 meters, aiming to
build a district in which all the streets were fast paths. This way, as all the streets would
have similar lengths and widths, the traffic would be balanced and, hence, the noise would be
more or less equally distributed.

The maximum height of each block would be of 16 meters, and the total area of the district
would be able to host 800 000 inhabitants. The maximum expansion of the district would
take 7 500 meters, and there would be a road to cross all the city named Diagonal. All the
streets would be perpendicular between them, and had a width of, at least, 20 meters: 10
meters for pedestrians (5 meters on each side) and 10 for vehicles. This way, in an aerial view,
the city would look like an almost perfect grid of building blocks and streets. Moreover, the
building blocks would have chamfered corners to improve the visibility of vehicles at traffic
intersections, which would make the crossing of pedestrians safer.

Considering the width of 20 meters of the streets and the height of 16 meters of the
building blocks, all the neighbours would have direct sun light at some moment of the day
and the neighbouring blocks would not project shadows between them.

Figure 1.1 shows a topographic map elaborated by the same Ildefons Cerda in 1855 before

the expansion of the city. By that time, the city centre was surrounded by walls, that were
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demolished before the expansion of the city started.
On the contrary, Figure 1.2 shows the original map plan after its design. This second map
illustrated the original idea of the Eixample of Barcelona, and perfectly illustrated the idea

that Cerda had for constructing the city with blocks of identical dimensions.

1.3.2 Eixample of Barcelona nowadays

More than 160 years after the original design of the plan, the center of the city still follows
the original patterns. However, the district is not as big as Cerda originally planned. Also,
the height of the blocks has been increased from 16 meters to 20 meters. Nowadays, this zone

is divided in the 7 neighbourhoods that can be seen in Figure 1.3:

e FEl Fort Pienc

e La Sagrada Familia

e La Dreta de I’Eixample

e L’Antiga Esquerra de I’Eizample
e La Nova Esquerra de I’Eizample

o Sant Antons

Figure 1.1: Topographic map elaborated by Ildefons Cerda in 1855.
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Figure 1.2: Original plan of the city designed by Ildefons Cerda in 1859.

Figure 1.3: Neighbourhoods of the Eixample district of Barcelona (El districte i els seus barris
2021).
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As it can be observed, the symmetry of the blocks eases the task of designing a highly
scalable WASN, and hence it is ideal for the purpose of this thesis.

After analysing the different neighbourhoods of the city and together with the
Environmental Quality Department of the City Council, L’Antiga Esquerra de I’Eizample has
been defined as the area of interest for this thesis, as it is the zone that concentrates more
noise-related complaints. The main reason for those complaints are the leisure locals occupying

the area such as restaurants, bars or music venues (most of them containing terraces).

1.4 Research question and thesis objectives

This subsection exposes the research questions of the thesis and describes the scope of the
thesis objectives of this dissertation considering the context and motivation exposed in the

previous section.

e Research Question 1 o Pregunta de Recerca 1 (RQ1): Can we detect and identify
acoustic events in a predefined universe using spectral and temporal information even if

they occur simultaneously?

e Research Question 2 o Pregunta de Recerca 2 (RQ2): Is it possible to fit an audio

classifier algorithm in a low-cost device so it outputs the classification results in real-time?

e Research Question 3 o Pregunta de Recerca 3 (RQ3): Up to what extent physical

redundancy of sensors can help improving an acoustic classifier algorithm?

These research questions derive in the following thesis objectives:

e Thesis Objective 1 o Objectiu de Tesi 1 (TO1): Develop an automatic classifier
system capable of detecting acoustic events occurring in urban environments

using spectral and temporal information.

This first objective aims to give an answer to RQ)1. The purpose is to conceive a software
algorithm capable of classifying those events that may typically occur in a urban
environment. The scope of this objective is limited to classifying 10 different categories
of sounds. The idea is to use Machine Learning o Aprenentatge Automatic (ML) or

Deep Learning o Aprenentatge Profund (DL) algorithms to perform the classification.

o Thesis Objective 2 0 Objectiu de Tesi 2 (TO2): Design a low-cost hardware platform

capable of classifying acoustic events in real-time.

This second objective aims to give a preliminary answer to RQ2. The idea is to design
and prototype a hardware architecture capable of hosting the classifier system developed
in TO1. Also, the platform should be able to output a classification result in real-time.
As real-time may have different interpretations depending on the reader, for the sake of

this dissertation it will be considered that a system outputs a result in real-time if it is
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able to supply the results in a period of time shorter than a predefined classification
window. Concretely, in this thesis, the predefined window time will be 4-seconds. More

details regarding the window selection will be further explained in Paper II.

o Thesis Objective 3 o Objectiu de Tesi 3 (TO3): Use real-world data to train and
evaluate the classification platform (hardware and software) in order to study

the feasibility of a real-world deployment.

This third objective aims to evaluate the performance of the system using real-world
data gathered in a use-case urban environment. Hence, as in urban environments the

sounds typically occur simultaneously, this objective will give a final answer to RQ1.

Prior to the development of the classification algorithm, it will be necessary to study
the selected city be means of performing an exhaustive analysis to the sounds that occur
in the city centre. To limit the scope of this objective, and due to human resources
restrictions for gathering and annotating real-world data, only a few limited number of

hour recordings will be used.

o Thesis Objective 4 0 Objectiu de Tesi 4 (TO4): Quantify up to what extent physical

redundancy of sensors improves the accuracy of the classifier.

Usually, and due to the elevated price of high-quality acoustic sensors, to survey a
wide urban area only a few acoustic points can be measured. This forth objective aims
to check whether an (over)population of low-cost acoustic sensors may improve the
classification results to answer RQ)3. For this thesis, physical redundancy of sensors
stands for using the sensors in a certain topology so the same acoustic event can be
heard by multiple sensing nodes. Concretely, the scope of this objective is limited to

check physical redundancy in a single and concrete set-up topology of sensors.

From these objective, it is expected to obtain a functional prototype as a proof of concept
at Technology Readiness Level o Nivell de Maduresa Tecnologica (TRL) 6. That is, a
"Representative model or prototype system, which is well beyond that of TRL 5, is tested in a
relevant environment. Represents a major step up in a technology’s demonstrated readiness.
Examples include testing a prototype in a high-fidelity" (DoD 2011). In this sense, the
real-world data gathered in the street will be used as a relevant environment. However, the
prototype will still not be ready to be deployed in any part of the world, as to do so a higher

level of TRL should be achieved by means of more tests using more data.

1.5 Thesis contributions

This subsection aims at giving an overview to the contributions presented in this dissertation
together with an explanation of the workflow used for researching to accomplish the thesis
objectives and answer the research questions.

According to the current Doctoral Regulations of the Ramon Llull University Doctoral
program, this thesis is presented in the form of a compendium of publications. Three papers

are used for the compendium: Paper I, Paper I and Paper I11.

26



Thesis contributions

However, as supporting or complementary material, at the end of this dissertation four
papers and two posters (Paper IV, Paper V, Paper VI, Paper VII, Paper VIII and Paper IX)
are attached as well as they have been complementary steps for obtaining the three main
contributions and may help the reader understanding the work-flow of the dissertation.
Specifically, while the two first complementary papers are directly related to the firmware
and software developed to achieve the thesis objectives and the two intermediate papers are
posters presented at symposiums for dissemination purposes, the two last papers explore
acoustic event detection and classification in a natural environments, using a taxonomy of
sounds radically different to the ones that can be found in urban areas.

The work-flow of the dissertation and the relation of each paper to the research questions

and objectives of the thesis is explained below.

1.5.1 Soundscape analysis and taxonomy definition

As the main topic of this thesis is acoustic event detection and classification in urban
environments focused in the use-case scenario of the city centre of Barcelona, the first research
carried out during this thesis was a study and analysis of the soundscape of the city and
its impact to the population. One problem found at this stage was the unavailability of
high-quality, open access and accurately labelled acoustic data on the area of study (city
centre of Barcelona). For this purpose, a 6-hours length dataset gathered in a balcony of a
street located in [’ Antiga Esquerra de I’Eizample was manually annotated and analysed. The
recording campaigns were carried out by other researchers of university in the frame of a
Master’s Degree Final Project, but the author of the dissertation conducted the annotation
and analysis stages. One difficulty encountered when performing the tagging part was that, in
some occasions, multiple events —including both traffic and leisure sounds— could be heard
simultaneously. At this first stage, those events were considered as rare or strange events and
distinctions were not made between them.

The exact location for gathering the data was chosen in a street surrounded by both traffic
and leisure sounds, and the recordings were carried out at night time (between 22:00 and
03:00) and on Saturday to maximize the presence of people in the leisure establishments.
This way, the analysis comprises both types of activities (traffic and leisure) and enables to
quantify which activities may impact the most to the neighbouring population (considering
the intensity of the sounds and also their duration) and the time distribution of the events
(that is, at what moment did each event occur).

This analysis enabled to have an overview of the taxonomy of the area of study (the
city centre of Barcelona), which constituted the first step towards accomplishing the thesis
objectives TO1 and TO3.

It must be highlighted that this first analysis of the soundscape includes only objective
parameters: that is, no perceptual or subjective tests were carried out to the neighbors of
the city except for the owner of the balcony in which the recording campaign took place,
who complained about the area being too noisy for proper sleep at night. An exhaustive

perceptual analysis of perception of neighbors living in the Eixample is out of the scope of
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this dissertation. It must also be considered that this first work that evaluates the soundscape
of the use-case scenario serves for the purpose of defining a taxonomy that enable us to start
defining the classification algorithm of this thesis. A complete and exhaustive study of the
soundscape of the full city of Barcelona is out of the scope of this dissertation, as doing
so would require more hours of recordings, gathered in distributed spots of the city and in
different schedules.

As a contribution to the scientific community, the results of this analysis, together with
the annotated dataset (that was given the name BCNDataset), were published in Paper I in
open-access modality. Hence, Paper I constitutes the first paper of the compendium of this
dissertation. The thesis author contribution in this first compendium work consisted in the
annotation and analysis (metrics calculations and taxonomy definition) of the dataset and the

writing of the paper. The recording campaigns were carried out by other authors of the paper.

1.5.2 Design of the WASN and development of a single-class algorithm

Once the geographic area to be surveyed was analyzed and the first taxonomy was defined, the
next step consisted on designing a low-cost distributed platform capable of recognizing acoustic
events. Concrete details regarding the selected sensing nodes are explained in Paper V. The

main selection criteria for the sensing nodes consisted on the following premises:
e Computing units should be able to perform real-time classification.

e The total cost of the sensors should be under 100€ each to be categorized as low-cost

SEensors.

o The frequency response of the microphones should be as flat as possible while maintaining

the low-cost premise.

o The low-cost premise is more important than the precision in the measurements (that

is, the sensing nodes do not need to be categorized as class A sensors).

o Using a low-cost comercial generic computing unit that supports the software libraries
used to program a classifier system eases the task of deploying the algorithms for
inference. Also, if the generic computing unit has big a supporting online community,

troubleshooting for potential problems will be easier.

After an exhaustive analysis and different test, Raspberry Pi was selected as the computing
unit of each of the sensors, and a plug-and-play USB was connected to it to gather acoustic
information in real-time.

Once the computing units were selected, the second main contribution of the thesis, that
further develops and uses the same sensing nodes of Paper 1V, is explained in Paper II. More
concretely, in this second contribution, a distributed computing architecture was proposed
and tested using an online dataset. In the distributed computing architecture, the sensing
nodes were arranged in a topology that allows to take advantage of physical redundancy. Take

advantage of physical redundancy means that an acoustic event may be heard from different
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sensors. This work aims at evaluating if physical redundancy is helpful for the classifier, and,
hence, is the first step towards achieving TO4. One problem found when trying to evaluate
this idea was that, usually, in online datasets, data has been gathered in a single spot. In
fact, to the best of the author thesis knowledge, there exists no acoustic dataset gathered in
close simultaneous spots that enables to evaluate the hypothesis and validate the proposed
topology. For this reason, for this work, once the sensor was designed, a DL algorithm was
trained to classify 10 different categories for urban sounds. More concretely, the 10 sounds
that were evaluated were the ones present in the UrbanSound8K dataset (Salamon et al.
2014): air conditioner, car horn, children playing, dog bark, drilling, engine idling, gun shot,
jackhammer, siren and street music. This online dataset is considered a baseline for urban
sound classification. Also, this dataset (UrbanSound) supplies the audio files in windows of up
to 4-seconds. This means that, when the dataset is downloaded, there are about 8 000 .wav

files, and the duration of each file is equal (and in some audio files smaller) than 4-seconds.

In the context of this thesis, after some evaluation tests in which the window size was
varied conducting a grid search (ranging from about 100 milliseconds to 4-seconds), 4-seconds
is the windows size that resulted in better classification results taking into account a trade-off
between accuracy and classification speed. Hence, 4-seconds is the window size used in further

experiments on this thesis.

The classification algorithm aims at accomplishing TO1. However, as the dataset consists
only on single sensor data from a synthetic environment and does not contain the typical
background traffic noise that can be heard in cities, once the classifier system was evaluated
in a single sensor, an emulation of a real environment was carried out by means of mixing the
clean audio files from the dataset with real-world traffic urban data . Specifically, the selected
traffic noise belonged to the category road traffic noise, which mainly consists on the by-pass
of cars. For the mixing procedure, and to be able to evaluate if the physical redundancy of
the proposed topology improves the classification results, audios were mixed by imitating the
sound propagation of an acoustic event to four close neighbor sensors according to the sensors
architecture designed in the dissertation. For the imitation, we took into consideration only
the distance between the acoustic event and the measuring point. The author of the thesis is
aware that other factors—besides from the distance— may affect the propagation of the sound,
such as the reflections in buildings or moving objects from the soundscape such as vehicles,
trees or even pedestrians passing by. However, due to difficulties when trying to characterize
the impulse response in the street (such as background noise occurring constantly, difficulties
in trying to stand in the site in which the event would occur due to vehicles passing by, the
transitory event that we would have to generate would be very loud, etc.), these variables
were omitted. Nonetheless, to guarantee high fidelity of the sounds, the modified dataset was

carefully listened.

To make sure that the selected algorithm would work in the selected hardware nodes,
even though the training of the sensors was carried out in a computer with a powerful
GPU, the testing was evaluated in the sensor and using all the pipeline of data acquisition,

data processing, spectrogram transformation and classification. Also, for the communication
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between sensors, a custom bespoke antenna was proposed to be attached to each computing
node.

The thesis author contribution in this second compendium work has mainly consisted
in the design of low-cost sensing nodes composed of commercial materials (i.e., Raspberry
Pi and USB microphone) and the development and testing of the classifier software. The
idea of the distributed protocol to send bytes between sensors and the design of the custom
bespoke antenna presented on the work were carried out by other authors. Actually, the
custom bespoke antenna has not been implemented in real-life, it has just been simulated.
The physical implementation of the antenna is out of the scope of this dissertation. The
communication between nodes in this thesis has been carried out via Internet (Ethernet or
Wi-Fi).

To visually check if the classification was happening in real-time over the sensing nodes, a
Printed Circuit Board o Placa de Circuit Impres (PCB) to be plugged on top of the Raspberry
Pi was designed containing 10 LEDs (one per category) plus a silk-screen layer with the name
of an acoustic event and a tiny LCD display. Each time that a sensor detects an acoustic
event, the LED with the label matching the classification output turns on. Moreover, the
LCD display shows the probability of that event being true. Hence, a high probability value
shown on the screen indicates that the classifier is pretty confident about its prediction. On
the contrary, a low probability value indicates that the algorithm is unsure about its decision.
To test the overall system, we provided several environmental sounds from specific categories
such as sirens, car horns or drilling sounds coming from videos. A picture of the sensing node
with the PCB is shown in Figure 1.4. To see a demo video of a node of the WASN classifying
events in real-time, please check https://youtu.be/NQiwXDrfyUc .

1.5.3 Real-world data and polyphonic classification

After the first evaluation of the proposed architecture using the 10-categories online dataset and
after validating that the proposed topology enables us to check whether physical redundancy
improves the classification accuracy, the next step of the dissertation consisted of collecting
real-world audio recordings in the selected use-case scenario. For this purpose, two recording
campaigns were carried out in four simultaneous locations with physical redundancy in the
streets of L’Antiga Fsquerra de I’Fizample. The four simultaneous locations match the
requirements stablished in the proposed topology: each node is a corner of a building in a
traffic intersection.

The reason for conducting two recording campaigns instead of one was that, during the
first recording campaign, there were mobility restriction due to COVID-19 pandemic that may
bias the acoustic events happening in the streets (people were allowed to move for justified
reasons such as going to work if telework was not possible, but they were not in the street for
leisure purposes). The second recording campaign took place a few months after. During the
second recording campaign, the restrictions were softened. The daytime and season of the
two recording campaigns were also different, pursuing a richer variety of soundscape in the

street (Autumn season in the afternoon and Spring season in the morning). In total, about 20
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Figure 1.4: Sensing node and PCB showing how a dog barking sound is classified.

hours of acoustic data were obtained (5 hours per sensor). Currently, this dataset is being
processed and further analyzed with the aim of being published for the sake of the scientific
community. However, as this work is not yet finished, the deep analysis of the dataset is not

part of this thesis dissertation.

As a first testing stage, after the first recording campaign but before conducting the second
one, 1 hour of one location of the collected audio files was evaluated using the automatic
classifier system of Paper Il without doing any modification. This means that the algorithm
splits the audio in windows of 4-seconds length and assigns to each window a provisional
label consisting on 1 of the 10 categories of the UrbanSound8K dataset. This label was
manually revised by the thesis author and classification metrics were obtained and presented
in the complementary conference paper Paper V. The process was also illustrated in the
poster presented at Paper VI. The reason of doing this test before operating with all the
available data was to check if the work conducted with synthetic data could be extrapolated
to real-world data from the use-case scenario. However, results of that study indicated that
there were several acoustic events that did not belong to any of the 10 predefined categories,
and also mostly all the audio fragments contained more than one acoustic event. This made
the author thesis conclude that it would be convenient to use a polyphonic or multilabel

classifier instead of the one used until that moment.

Again, finding online data matching the desired characteristics was a problem. The author
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had to manually label the audio files from the two recording campaigns using a multilabel
approach (that is, labelling all the acoustic events that can be heard in each of the fragments,
even if they occur simultaneously). As manually labelling audio files is an exhaustive, time
consuming and error prompt task, a newly designed annotation process was implemented by
means of a Python script. The idea was to minimize the amount of time spent on the task by
minimizing the user interactions with the mouse or the keypad of the computer. Also, weak
labels were used instead of strong labels aiming to reduce the time spent in the task. That is,
in a given 4-seconds fragment (that would be the input of the algorithm), all the labels were
tagged, independently of the exact segmentation of the acoustic event. This means that if a
short event lasted a few milliseconds only, the label would be assigned to the full 4-seconds
fragment anyway. The logic behind this idea is that, even though labelling precision is lost,
as the system would output a classification result for each 4-seconds fragment, knowing the
events occurring in that window of time would be enough. Note that the window size was

maintained from the previous work (i.e., 4-seconds).

Once the dataset was labelled, the polyphonic classifier was implemented using a DNN on
each of the sensors. This classifier was designed so it could classify all the events labelled from
the dataset (and not only the 10 categories from the UrbanSound dataset). A remarkable
problem found when training the DI-based classifier was that real-world data presents a
high class-imbalance (i.e., not all the events appear the same amount of times in the dataset.
Some events are repeated almost constantly, while some others appear only in a very few
occasions). This caused the classifier to struggle when assessing the classification of data
poorly represented in the dataset. To mitigate this problem, data augmentation techniques
were evaluated and applied. The specific technique that was selected was mix-up augmentation,
which consists on mixing (by means of a weighted sum) different audio fragments and then
combining their labels as well. This mix-up process was done using the BCNDataset, which
is the one analyzed and published in Paper I, and the UrbanSound8k dataset. The results

obtained in this process are exposed in the poster presented in Paper VII.

Once the polyphonic system was working on each of the sensors, to assess physical
redundancy of sensors, an intelligent MI-based layer was added to the system. This layer
gathers the classification results of the neural network running on each neighboring node and
gives a final classification output. Several metrics were calculated over the classification results
to be able to discuss if TO3 and TO4 are achieved. Also, the system was tested on three
different computation units (different Raspberry Pi models) to validate also if the system is
able to supply a result in real-time and, hence, if TO2 is achieved as well. All this polyphonic
system, together with the MI-based intelligent system, is detailed in the third contribution of

the compendium, which is Paper III.

The thesis author contribution in this third compendium work has mainly consisted in
the development of the multilabel classifier software and the tests over physical sensors. Also,

the author has organized the data gathering campaigns and carried out the data annotation.
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1.5.4 Complementary work in bioacoustics

Independently from the three main works that compose the compendium, during the thesis,
two works related to bioacoustic monitoring have been carried out.

First, Paper VIII explores and proposes a software system that distinguishes vocalizations
and sounds from woodpeckers inhabiting Iberian Peninsula. The thesis author contribution
for this work has been the design of a two-layers classifier system, the feature engineering and
feature extraction and the programming of the classifier.

Second, Paper IX explores the soundscape of a natural environment close to Barcelona
Airport and aims at proposing a classifier system from the detected sounds. In this work, the
thesis author has contributed in the data gathering campaign, the experimental evaluation
design and the paper writing. The software programming has been carried out by another

author.

1.6 Dissertation roadmap

The dissertation is arranged in the following chapters:

Chapter 2 : explores the state of the art in the field of acoustic event detection and
classification for urban environments by means of a systematic literature review. The
most relevant publications are studied to know what have the researchers around the

world developed in the same field in the latest years.
Chapter 3 : includes the three main papers of the thesis compendium:

Paper | : ‘BCNDataset: Description and Analysis of an Annotated Night Urban Leisure
Sound Dataset’, reports on the work conducted to conceive and analyse a 6 hours of
recordings dataset obtained in a lively area of Barcelona city center. The analysis
includes the duration of the events detected on the dataset, the signal-to-noise ratio, the
number of occurrences, the impact of each occurrence on the background noise L 4¢q,
and the Intermittency Ratio o Ratio d’Intermitencia (IR) of the entire data samples,

which are metrics that can be correlated to health effects of noise in population.

Paper Il : ‘Low-Cost Distributed Acoustic Sensor Network for Real-Time Urban Sound
Monitoring’, presents a highly scalable low-cost distributed infrastructure that features
an ubiquitous acoustic sensor network to monitor urban sounds. To analytically validate
the feasibility of the proposed hardware architecture, classification experiments are
conducted using a dataset containing 10 different audio categories. Moreover, to check
up to what extend physical redundancy may help to improve the classification results,
the audio files are synthetically adapted to imitate the sound propagation in a certain

location on the city center of Barcelona.

Paper lll : ‘Multilabel acoustic event classification using real-world urban data and physical

redundancy of sensors’. Using real-world recorded and manually labelled urban data
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gathered in four simultaneous spots in a concrete location of the city centre of Barcelona,
this work tests the system architecture proposed on [Paper I1] using a two-stage multilabel
classifier. It shows how data augmentation techniques help the system obtaining higher
classification metrics and the amount of time that it takes to the system to test one
sample when using three different computation units. Moreover, this paper explains a

new labelling methodology to speed up the annotation process.

Chapter 4 : concludes the dissertation of the thesis by 7) summarizing the main contributions
of the work, i) discussing on the achieved results and 4ii) explaining the potential
future research directions. Also, it links the obtained results to the thesis objectives and

answers the research questions that have been proposed in Section 1.4.
Chapter 5 : includes some complementary papers to the thesis compendium:

Paper IV : ‘Low-Cost WASN for Real-Time Soundmap Generation’, presents a low-cost
hardware architecture conceived to gather acoustic data to build a 24/7 real-time
soundmap. Each node of the network is composed of an omnidirectional microphone
and a computation unit (Raspberry Pi), which processes acoustic information locally to
obtain non-sensitive data (i.e., equivalent continuous loudness levels or acoustic event
labels) that are later sent to a cloud server. The ultimate goal of the system is to enable
the following functions: 7) to measure the L., or other similar parameters in real-time
in a predefined window, ii) to identify changing patterns in the previous measurements
so that anomalous situations can be detected and 4ii) to prevent and attend potential

irregular situations.

Paper V : ‘Improving classification accuracy of acoustic real-world urban data using sensors
physical redundancy’, assesses the performance of the approach composed of a low-cost
acoustic wireless sensor network that takes advantage of physical redundancy presented
in Paper II. To do it, the work evaluates over 1-hour of real-world acoustic data gathered
in the city centre of Barcelona if physical redundancy helps obtaining more robust
classification results. The evaluated system incorporates a deep neural network running
in each sensor node and a distributed consensus protocol that implements a set of
heuristics to benefit from the classification results of neighboring nodes surveying the

same area (i.e., physical redundancy).

Paper VI : ‘Prototyping a low-cost Wireless Acoustic Sensor Network with physical
redundancy to automatically classify acoustic events in urban environments’, depicts a
poster presented at an international symposium with the topic of urban sounds. This
work was the intermediate software step between Paper I1 and Paper I11. Analyzing one
hour of real-world recordings, the DNN of Paper Il was tested and their weaknesses

were analyzed.

Paper VIl : ‘Multilabel acoustic event classification for urban sound monitoring at a traffic

intersection’, shows a poster presented at a local symposium in Barcelona with the topic
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of DL. This poster summarizes the results of the first classification layer obtained in

Paper 111 for dissemination and promotion purposes.

Paper VIII : ‘A Two-Stage Approach To Automatically Detect and Classify Woodpecker
(Fam. Picidae) Sounds’, proposes a two-layers classifier system to classify sounds
from woodpeckers inhabiting the Iberian Peninsula. More specifically, the proposed
architecture features a two-stage Learning Classifier System that uses i) Mel Frequency
Cepstral Coefficients and Zero Crossing Rate to detect bird sounds over environmental
noise, and 7i) Linear Predictive Cepstral Coefficients, Perceptual Linear Predictive
Coefficients and Mel Frequency Cepstral Coefficients to identify the bird species and
sound type (i.e., vocal sounds such as advertising calls, excitement calls, call notes and

drumming events) associated to that bird sound.

Paper IX : ‘Analysis of the Noise Impact of the Airport of Barcelona to the Llobregat
Delta Natural Environment during the 2021 Lockdown period’, explores the acoustic
soundscape of a natural park near the airport from Barcelona and applies machine
learning techniques to classify the acoustic events produced by both airport activity
and wildlife. For the analysis, data recorded in three simultaneous spots of biological
interest (according to the park’s curators) near the airport is used. The recordings and
posterior analysis were made on March 5, 2021, when airport activity was still greatly

diminished by the mobility restrictions.
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Capitol 2
Estat de 'art

Per dur a terme un estat de 'art complert en el camp de la deteccié d’esdeveniments actustics
en entorns urbans, s’ha dut a terme una revisié sistematica de la literatura. El proposit
principal d’una revisié sistematica de la literatura és recollir les proves i les troballes més
rellevants d’un tema de recerca concret a través d’un procés sistematic (Amo Filva et al. 2020).
Per tant, el treball que es duu a terme en aquest capitol té com a objectiu fer una investigacio
exhaustiva sobre el tema que s’esta debatent en aquesta dissertacié (és a dir, la classificaci6

d’esdeveniments actustics en entorns urbans).

2.1 Metodologia

Per realitzar una revisié sistematica de la literatura satisfactoria, el primer pas és seleccionar
una estrategia que permeti escollir les publicacions i la informacié en linia més rellevants del
camp d’estudi (és a dir, per a aquest treball, deteccié i classificaci6 d’esdeveniments actstics).
Per a aquest proposit, s’ha seguit la metodologia explicada a (Khan et al. 2003), que consisteix

en cinc passos:

1. Escollir les preguntes per a la revisié: En aquest sentit, les preguntes que s’han de
resoldre son les preguntes d’investigacié que s’indiquen al Capitol 1 d’aquest document:
RQI1, RQ2 i RQ3. A partir d’aquestes qiiestions de recerca s’han definit els criteris

d’inclusio i exclusié per a seleccionar les obres més rellevants.

2. Identificar treballs rellevants: Per aquest proposit, la base de dades principal que
s’ha escollit per cercar informacié és el Web Of Science (WOS). El procés de trobar
treballs rellevants es duu a terme de manera iterativa, i els criteris d’inclusié i exclusio
s’apliquen per seleccionar només les obres adequades per a la revisié. A més, aquesta
etapa considera els criteris de Population, Intervention, Comparison, Outcome, Context o
Poblacié, Intervenci6, Comparacié, Resultats, Context (PICOC) per donar una resposta

apropiada a les preguntes de recerca, limitant I’abast de la revisio.

3. Avaluacié de la qualitat dels estudis: Per fer-ho, s’ha tingut en compte el nombre de
cites i mitjans en els quals es va publicar la informacié. Concretament, s’han considerat
fonts de dades fiables les conferencies revisades per parells, les revistes i els informes

teécnics.

4. Resumir les evidencies: Obtenir un resum de la metodologia i les conclusions

principals de cada treball.
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5. Interpretar els resultats: S’ha de comprovar ’heterogeneitat de les dades i decidir si

es poden confiar en els resultats obtinguts a partir del resum de les obres.

2.2 Criteris d’inclusio i d’exclusio

Els criteris d’inclusié concrets que s’han seguit per a incloure articles a la revisié son:

Inclusion Criteria 1 o Criteris d'Inclusio 1 (IC1): Les obres recollides estan dins del camp
de la deteccié d’esdeveniments actistics AND

Inclusion Criteria 2 o Criteris d'Inclusié 2 (IC2): Les obres recollides contenen informacié
sobre el processament de senyals actstics en temps real OR informacié sobre arquitectures de
xarxes de sensors acustics sense fils de baix cost AND

Inclusion Criteria 3 o Criteris d’Inclusié 3 (IC3): Les obres estan escrites en angles AND

Inclusion Criteria 4 o Criteris d’Inclusi6 4 (IC4): Les obres estan publicades en conferéncies
revisades per parells, revistes o informes técnics.

I els criteris d’exclusié concrets que s’han escollit per incloure articles a la revisié soén:

Criteris d’Exclusié 1 (CEL): Les obres recollides no estan dins del camp de la deteccié
d’esdeveniments actstics OR

Criteris d’Exclusio 2 (CE2): Les obres recollides no contenen informacié sobre el
processament de senyals actstics en temps real OR informacié sobre arquitectures de xarxes
de sensors acustics sense fils de baix cost OR

Criteris d’Exclusio 3 (CE3): Les obres no estan escrites en angles OR

Criteris d’Exclusié 4 (CE4): Les obres no estan publicades en conferéncies revisades per

parells, revistes o informes teécnics.

2.3 Consultes

Per cercar la informacid, es van formular diverses consultes en el WOS, que van proporcionar

els resultats mostrats a la Taula 2.1:

Consultes Nombre de resultats
T'S=(acoustic classification AND urban) 299
TS=(low cost device* AND acoustic event classification) 22
TS=(real-time classification AND acoustic events AND urban) 9
T'S=(urban sound AND acoustic dataset) 51
T'S=(multilabel classification AND acoustic event) 16
TS=(event classification AND urban soundscape) 12

Taula 2.1: Consultes i nombre de resultats fetes al WOS per obtenir informacié.

Aixo significa que, en total, les cerques van resultar en 409 resultats en el WOS. Les
consultes es van executar a la data de desembre de 2021, per la qual cosa les obres publicades
més tard no s’han inclos. No obstant aix0, aquests resultats es van haver de filtrar abans del
seu processament, ja que alguns resultats contenien treballs duplicats de diferents consultes o

no complien amb els criteris d’inclusié i exclusié descrits anteriorment.
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Procés de seleccio

# of records is identified
through database searching
in Web of Science
until December 2021
(n = 409)

Identification

# of records after
duplicates removed

(n = 356)

Screening

Eligibility

Included

# of articles selected after
Title/Keywords screen
(n=97)

# of articles excluded after
Title/Keywords screen
(n = 259)

# of articles included
after full-text screen
(n = 63)

# of articles excluded
after full-text screen
(n = 34)

Figura 2.1: Diagrama de flux del procés de seleccié d’articles seguint la metodologia PRISMA.

2.4 Procés de seleccio

Dels 409 resultats, 53 obres van ser eliminades a causa que eren resultats duplicats obtinguts
en diferents consultes. Després d’aixo, els criteris d’inclusio i exclusié es van aplicar llegint
manualment el titol i les paraules clau de cada article. Aixo va donar lloc a 97 obres
seleccionades. D’aquestes obres, se’'n van analitzar els seus resums per confirmar que eren
adequades per a aquest estat de I’art. Després de la lectura dels resums, 34 obres van ser
descartades, cosa que significa que 63 obres van ser finalment seleccionades per a una analisi
completa. D’aquestes 63 obres, 19 sén publicacions a conferéncies i 44 sén publicacions a
revistes. La Figura 2.1 mostra un diagrama de flux segons la metodologia PRISMA que
il - lustra el nombre d’articles que s’han tingut en consideracié per a construir aquest estat de

Part.
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Els articles seleccionats van ser categoritzats per tema per facilitar el procés de revisio.

Concretament, es van considerar les segilients categories:

e Obres que fan servir tecniques de DL per a la classificacié actstica: sobre un 45%.

o Obres que fan servir tecniques de ML per a la classificacié actstica: sobre un 27%.

o Obres que fan servir classificacié multi-etiqueta (polifonica): 8%

o Obres que estudien paisatges sonors urbans o la percepcié de so: sobre un 20%.

o Obres que executen els seus algoritmes en WASN o en proposen el seu us: sobre un 17%.

Tingueu en compte que I'addicié de tots els percentatges no és del 100% perque algunes

de les obres van ser assignades a més d’una categoria.

2.5 Analisi dels resultats i estat de I'art

Aquesta subseccié presenta una analisi de les obres que han estat seleccionades, avaluades i
classificades com a estat de 'art de la tesi.

El pipeline tipic d’un sistema classificador automatic d’esdeveniments actstics conté els
moduls i aplica les tecniques de classificacié detallades en el treball de Mesaros et al. publicat
a (Mesaros et al. 2021). La manera més comuna d’aproximar-se a un problema de classificacié
o de deteccié d’esdeveniments sonors és aplicar aprenentatge supervisat (Mesaros et al. 2021),
que té com a objectiu classificar els esdeveniments actstics mitjancant la creacié d’un model
a partir de mostres acustiques anotades. L’etapa de classificacié es pot dur a terme mitjancgt
tecniques tradicionals ML (com ara Gaussian Model Mixture (GMM), Hidden Markov Models
o Models Ocults de Markov (HMM) o Support Vector Machine o Maquina de Vectors de
Suport (SVM)) o mitjancant tecniques de DL.

2.5.1 Historia del Deep Learning

Els origens de DL es remunten als anys 1940 i 1950, quan el perceptré va ser introduit
per primera vegada per Frank Rosenblatt el 1958 (Rosenblatt 1957) partint del treball de
Warren McCulloch i Walter Pitts (Fitch 1944). No obstant aixo, un temps més tard, aquest
algoritme va ser criticat: Marvin Minsky i Seymour Papert van publicar el 1969 un llibre
explicant les limitacions del perceptré titulat "Perceptrons: una introduccié a la geometria
computacional"(Minsky i Papert 2017). Un dels temes més debatuts que els autors van
presentar en el llibre va ser la dificultat que una xarxa neuronal tindria per calcular una
simple operacié XOR (OR-exclusiva). Van afirmar que utilitzant 1’algorisme de Rosenblatt,
I'operaci6 no es podia resoldre, ja que requeriria multiples capes de perceptrons.

El 1974, Paul Werbos va estudiar en el seu doctorat l’aplicacié de ’algorisme de
retropropagacié en les xarxes neuronals (Werbos 1974), fent possible la creacié de xarxes

neuronals multicapa. Aquesta técnica no va guanyar popularitat fins al 1986, quan David
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Rumelhart, Geoffrey Hinton i Ronald Williams van publicar una obra descrivint la metodologia
de l'algorisme i abordant els problemes debatuts per I'obra de Minsky (Rumelhart et al. 1986;
Rumelhart et al. 1985).

Una vegada que la clau de com entrenar les xarxes neuronals multicapa es va fer publica,
les primeres aplicacions d’aprenentatge profund van comencar a apareéixer. Una de les
contribucions més rellevants d’aquell temps es va produir el 1989, quan Yann LeCun et. va
aplicar una Convolutional Neural Network o Xarxa Neuronal Convolucional (CNN) per a la
classificaci6 de digits escrits a ma (LeCun et al. 1989). En aquella época, tot i que no eren
tan populars, altres aplicacions van comencgar a utilitzar tecniques de DL. Per exemple, el
1988, investigadors com Lewis (Lewis 1988) i Todd (Todd 1988) van proposar 1'is de xarxes
neuronals per a la composicié automatica de musica. El principal inconvenient del DI en
aquell moment era la quantitat de temps que es trigava a 'hora d’entrenar els models, ja que
la tecnologia que estava disponible tenia grans limitacions —en comparacié amb la capacitat
de computacié de les Graphics Processing Unit o Unitat de Processament de Grafics (GPU)
que hi ha disponibles actualment. Com que la tecnologia ha evolucionat molt en els tltims
anys, avui en dia, i malgrat els inconvenients que pot tenir el DL (requereix grans quantitats
de dades i capacitats de computacid), aquest s’ha convertit en una tendéncia popular a la

investigacié a causa dels resultats excepcionals de taxa d’encert que aconsegueix.

2.5.2 Baseline per a la classificacio acustica

En general, els fluxos de treball més comuns per abordar un problema de ML o DL en qualsevol
camp (no necessariament en el domini d’audio) sén els que es mostren a la Figura 2.2. Com es
pot observar, mentre que els treballs de ML requereixen un gran esfor¢ en el procés de feature
engineering (és a dir, seleccionar les caracteristiques més convenients per a cada problema
en particular), els treballs de DL ténen com a objectiu saltar-se aquesta part i utilitzar les
dades en cru com a entrada del model, esperant que aquest extregui automaticament les
caracteristiques més convenients per a ’aprenentatge de la xarxa neuronal. Tanmateix, aquest
no és necessariament el cas (o, almenys, encara) en el domini de ’audio. En l'estat de l'art
de l'actualitat, una gran quantitat de problemes de deteccié i classificacié d’audio es resolen
mitjangant 'is d’una xarxa neuronal que pren com a entrada els espectrogrames de 1’audio.
D’aquesta manera, en alguns problemes de classificacié del domini de I'audio, el DL encara
pot requerir d’un procés de seleccié de caracteristiques per entrenar xarxes neuronals. Els
detalls sobre com es duu a terme aquest procés i algunes contribucions rellevants en el camp

s’expliquen a laSeccié 2.5.3 i la Seccio 2.5.4.

2.5.3 Machine learning per a la classificacio acustica

Un procés adequat de seleccié de caracteristiques és crucial quan s’utilitzen algoritmes
tradicionals ML. Aquestes caracteristiques poden contenir informacié sobre el contingut en
freqiiencia dels fitxers d’audio, la seva evolucié temporal o una barreja entre ambdés.

Les caracteristiques basiques o més comunament utilitzades en aquest tipus de problemes

sén els Mel Frequency Cepstral Coefficients o Coeficients Cepstrals de Freqiiencia Mel (MFCC),
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Input raw data | .| Feature extractor Features ML algorithm Output

Typical traditional machine learning flow

Deep learning

Input raw data .
algorithm

Output

Typical deep learning machine learning flow

Figura 2.2: Fluxos de treball tipics per a 'aprenentatge automatic i 'aprenentatge profund
. Inspirat en la presentacié de Vivek Kumar titulada Artificial Intelligence in Audio Event
(https://www.youtube.com/watch?v=388AZ2ujM9w&t=208s, accessed on 29 December 2021).

que ténen com a objectiu caracteritzar els arxius d’audio emulant la percepcié auditiva humana.
Normalment, aquestes caracteristiques es combinen amb altres com Linear Prediction Cepstrum
Coefficients o Coeficients Cepstrals de Prediccié Lineal (LPCC) o el Zero Crossing Rate o
Taxa de Creuament per Zero (ZCR) entre altres (Dave 2013; Ito i Donaldson 1971).

Per exemple, a (Giannakopoulos et al. 2015), els autors presenten un sistema que pren
com a objectiu estimar la qualitat del paisatge sonor (tant en entorns naturals com urbans)
mitjancant ’analisi de ’audio. Concretament, per dur a terme ’estimacié de la qualitat del
paisatge sonor, el sistema utilitza 68 caracteristiques per cada fragment de 15 segons d’audio.
Aquestes caracteristiques inclouen les features abans citades (MFCC i ZCR) combinades
amb l'energia a curt termini del fragment, ’entropia de ’energia, el centroide espectral,
I’entropia espectral, el flux i roll-off i les caracteristiques de la crominancia. Una vegada que
les caracteristiques es calculen, quatre regressors SVM diferents estimen tres nivells de context

i el nivell de qualitat del paisatge sonor.

De la mateixa manera, a (Noviyanti et al. 2019), els autors pretenen predir el paisatge
sonor urba fent servir un conjunt de caracteristiques actstiques. Especificament, la prediccio es
duu a terme utilitzant coeficients MFCC juntament amb parametres d’ecologia actistica. Amb
tots aquests parametres, el treball prediu la percepcié de relaxacié, dinamica i comunicacié en
un paisatge sonor donat. Els autors conclouen dels resultats obtinguts que els MFCC sén
millors caracteristiques que la métrica d’ecologia actistica per a la interpretacié del seu model,

que es basa en un regressor logistic binari.

Es poden trobar altres exemples a (Tsalera et al. 2020) o a (Lojka et al. 2014). En el
primer cas, els autors també combinen caracteristiques per a la classificaci6. Utilitzen 8
caracteristiques temporals (incloent-hi ZCR, 11 caracteristiques espectrals i 4 caracteristiques
perceptives com els MFCC). En aquest cas, 1'algorisme de classificaci6 seleccionat és un simple
K-Nearest Neighbors o K-Veins Propers (KKNN), i els resultats es discuteixen quan s’utilitzen
diferents nombres de veins (1 a 3) i diferents metriques de distancia (Euclidea, Chebyshev
i Cosinus). L’objectiu d’aquest treball és classificar esdeveniments de 9 categories diferents

que es produeixen en entorns urbans. FEn el segon cas, les caracteristiques utilitzades sén
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MFCC juntament amb Frequency Bank Coefficients o Coeficients de Bancs de Freqiiencies
(FBC) i Mel-Spectral Coefficients o Coefficients Espectrals Mel (MSC). Per a la classificacid,
utilitzen un procés de descodificacié Viterbi modificat juntament amb Weighted Finite-State
Transducers (WFST) i un HMM.

Les técniques de clustering també s’utilitzen ampliament en el domini d’audio. Per exemple,
a (Pita et al. 2021), els autors utilitzen un algorisme ML no supervisat (és a dir, no requereix
dades etiquetades per entrenar el model) per a crear clusters de la ciutat de Barcelona i, aixi,
detectar zones properes a carreteres urbanes, arees residencials i arees d’oci. Tot i que aquest
treball no realitza la classificacié d’esdeveniments actiistics, mostra una metodologia interessant
per segmentar la ciutat segons els nivells de soroll presents en cada area. FEn aquest cas, només
s’utilitzen com a caracteristiques els nivells equivalents de soroll. L’algorisme d’agrupacié ML

utilitzat en l'obra és el K-means.

Un altre treball que utilitza el nivell de soroll (processat en diverses caracteristiques) com
a entrada per a un model per avaluar un cert paisatge sonor és el presentat a (Torija et al.
2014). En aquest treball, els algoritmes utilitzats per fer 'avaluacié del paisatge sonor sén
una SVM i un Sequential Minimal Optimization o Optimitzacié Minima Seqiiencial (SMO).
Els resultats mostren que SMO supera a SVM quan es realitza la tasca de la classificacio de

paissatge sonor.

Com es pot veure, I'estudi dels paisatges sonors per mitja de técniques de ML es pot veure
des de diferents punts de vista: agrupant diferents arees d’una ciutat depenent dels seus nivells
de soroll, correlacionant diferents esdeveniments de soroll amb la percepcié de la poblacié, o
detectant automaticament esdeveniments actustics que ocorren en un entorn urba per saber
quines son les arees més contaminades actsticament. Un gran projecte que va considerar
diversos punts de vista en dues arees diferents (una area urbana i una zona suburbana) va
ser el projecte LIFE+ DYNAMAP. Concretament, en aquest projecte, els investigadors van
desenvolupar una WASN de baix cost per supervisar dues arees a gran escala a les ciutats
de Mila i Roma utilitzant un mapa actstic dinamic actualitzat en temps real. Durant el
projecte, una vegada que es va desplegar la WASN, es va dur a terme una llarga campanya
d’enregistrament que va permetre una recopilacié massiva de dades (Alsina-Pages et al. 2019).
Algunes d’aquestes dades van ser posteriorment etiquetades manualment per experts, que van
permetre (1) estudiar 'impacte dels diferents esdeveniments acistics a la poblacié (Alias et al.
2020) i (2) el desenvolupament d'un algorisme que detecta i diferencia esdeveniments actstics
anomals respecte al soroll de transit de carretera (Socoré et al. 2017; Alias et al. 2018). Per
a la classificacio, els autors utilitzen MEFCC com a caracteristiques i GMM com a model de

classificacié.

Una altra técnica que s’ha utilitzat en el camp és la baf-of-features (Grzeszick et al. 2017).
Per exemple, a (Grzeszick et al. 2017), els autors utilitzen MFCC i GammaTone Cepstral
Coefficients o Coeficients Cepstrals de Tons Gamma (GTCC) com a conjunt subjacent de
caracteristiques i els quantifiquen respecte a un determinat codebook per generar una baf-of-
features. La obra també mostra com es pot millorar la robustesa dels models fusionant dades

acustiques de multiples canals. Un avantatge d’aquest enfocament és que no requereix altes
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capacitats computacionals, cosa que significa que I'algorisme pot cérrer sobre maquinari de
baix cost (en termes de computacié) o sobre entorns en linia.

En algunes altres obres, les tecniques de ML es barregen amb tecniques de processament de
senyals i la classificacié d’esdeveniments actistics es divideix en diferents capes de classificacié.
Per exemple, a (Luitel et al. 2016), els autors conceben un classificador de dues capes per
categoritzar els esdeveniments urbans procedents principalment de vehicles (per exemple,
motor d’autobis, claxon d’autobis, claxon d’automobil i xiulet). Una primera capa divideix
els esdeveniments acistics en dues classes amb técniques de processament de senyals (mirant
Pespectre de freqiiencies i filtrant a les freqiiéncies desitjades) i una segona capa finalment
classifica I’esdeveniment actstic. De nou, el classificador utilitza les caracteristiques de base
MECC com a entrades per als models. També avalien diversos classificadors, per exemple
una Artificial Neural Network o Xarxa Neuronal Artificial (ANN), un Naive Bayes (NB), un
Decision Tree o Arbre de Decisié (DT) i un Random Forest o Bosc Aleatori (RF). Els seus
resultats mostren que 1'is de dues capes millora els resultats de la classificacié respecte a un
sistema basic d’una capa.

No obstant aix0, no tots els problemes de classificacié fan servir les caracteristiques MEFCC
per a la classificacié. A (Salamon i Juan Pablo Bello 2015a) i (Salamon i Juan Pablo Bello
2015b), els autors demostren que és possible obtenir millors resultats de classificacié (només
en termes de taxa d’encert) quan s’utilitza un aprenentatge de funcions no supervisades a
partir d’espectrogrames-mel 2D i una técnica de dispersié. L’aplicacié d’una transformada
de dispersi6é permet caracteritzar la dinamica temporal a curt termini capturada per trossos
d’espectrogrames 2D amb 'avantatga afegida de ser invariant en quant a fase. Aixo és un
avantatge, ja que son capagos de caracteritzar senyals que varien en el temps sobre les finestres
relativament llargues en comparacié amb altres meétodes com el calcul de MFCC.

De la mateixa manera, a (Waldekar i Saha 2020), els autors proposen 1'is de la transformada
wavelet, ates que pot variar en longitud i, per tant, és convenient a ’hora d’extreure les
caracteristiques d’audio ambiental. Com que el soroll ambiental pot tenir contingut de
freqiiencia superposat i també un rang de freqiiéncia més ampli (en comparacié amb altres
camps com el reconeixement de la parla), la transformada wavelet a escala mel presentada en
el treball supera un sistema de classificacié basat en els classics MFCC.

En resum, en l'estat de 'art de la deteccié d’esdeveniments acustics i I’avaluacio del
paissatge sonor s’han utilitzat ampliament diferents tecniques de ML. A més, quan s’utilitzen
aquests algorismes, els MFCC sén les caracteristiques classiques, perd normalment es combinen

amb altres parametres acustics per aconseguir millors resultats de classificacio.

2.5.4 Deep learning per a la classificacié acustica

En els darrers anys, i a causa del rapid desenvolupament de la tecnologia, el DL ha guanyat
popularitat en el camp de la classificacié d’esdeveniments acustics. En la seva majoria, les
grans xarxes de DL han estat entrenades per classificar esdeveniments aciistics en maquines
amb altes capacitats de computacié. Tanmateix, aquest no és el cas de tots els problemes de

classificacio de DL. Algunes xarxes petites han estat concebudes per classificar esdeveniments
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acustics fins i tot en dispositius de baix cost (en termes de capacitats computacionals) com

per exemple telefons mobils de manera eficient (Stowell 2021).

A més a més, en comptes de classificar els esdeveniments acustics, algunes obres se centren
en classificar les escenes actustiques (Acoustic Scene Classification o Classificacié d’Escena
Acustica (ASC)). La diferencia entre la deteccié actstica d’esdeveniments i la classificacié
acustica d’escenes és que, mentre que la primera se centra en l’assignacié d’una etiqueta
semantica a un esdeveniment acistic concret procedent d’'una font de soroll, la segona assigna
una etiqueta que es refereix a ’entorn en el qual es va enregistrar un audio. En aquest camp,
és molt comu utilitzar també Deep Neural Network o Xarxa Neuronal Profunda (DNN).
Tanmateix, no només les CNN s6n populars en aquest camp. Per exemple, a I'obra de (Singh
et al. 2021), els autors utilitzen una xarxa neuronal prototipica per obtenir un embedding
space per a la tasca d” ASC. La hipotesi darrere de les xarxes prototipices és que existeix un
embedding space en el qual els punts s’agrupen al voltant d’un tinic prototip de representacio
per a cada classe (Snell et al. 2017). No obstant aixo, tot i que la hipotesi és prometedora,
aquest tipus de xarxes normalment obtenen valors moderats de taxa d’encert i haurien de ser

estudiades i més desenvolupades en el futur.

A continuacié, s’expliquen alguns projectes de 'estat d’art sobre classificacié d’esdeveni-

ments acustics per a diferents aplicacions amb DL.

En el treball (Genaro et al. 2010), els autors utilitzen 25 caracteristiques per entrenar una
ANN per predir el nivell de soroll en un entorn urba. En el seu estudi, els autors comparen
els resultats predits per la ANN i els resultats obtinguts quan s’aplica Principal Component
Analysis o Analisi de Components Principals (PCA) amb I'objectiu de simplificar el model. Tot
i que els resultats sén pitjors després d’aplicar PCA | els autors afirmen que sén acceptables.

Una obra notable és la publicada a (Lopez-Ballester et al. 2019; Lopez-Ballester et al. 2020).
La seva aplicacié se centra en 'avaluacié de la molestia que produeixen els sons utilitzant
DL. Concretament, fan servir una CNN que és capag de predir la molestia psicoactstica
utilitzant com a entrades senyals d’audio crues. Les conclusions dels resultats que obtenen
sén que la seva xarxa és capa¢ de predir més rapid que els sistemes convencionals la molestia
psicoacustica, tot 1 mantenint una alta precisié. Aixi, el desplegament de la seva xarxa és

adequat per a dispositius [oT.

Les CNNs també s’han utilitzat ampliament per classificar esdeveniments actistics per
monitoritzar o supervisar l’estat de la biodiversitat. Per exemple, a (Morgan i Braasch 2021),
s’han recopilat, analitzat i classificat dades de I'estat de Nova York (Estats Units) per calcular
la riquesa i distribuci6 de les espécies a partir d’algunes pseudoespecies. Les entrades de
la xarxa neuronal sén els espectrogrames dels senyals d’audio. A més, el treball estudia la
correlacié entre els esdeveniments acustics i altres parametres abiotics com la temperatura
o les condicions meteorologiques. Un altre exemple es pot trobar a (Nanni et al. 2021). En
aquest cas, els autors utilitzen un conjunt de CNNs per classificar esdeveniments acustics de
diferents conjunts de dades (vocalitzacions d’ocells, sons de gat o sons ambientals). Els autors
afirmen que el seu conjunt de classificadors es pot entrenar amb diferents conjunts de dades i

arribar a les taxes d’encert de ’estat de D'art.
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Al treball (Mushtaq i Su 2020), els autors també utilitzen CNNs per a la classificacié
acustica, en aquest cas per a la classificaciéo de so ambiental. Com a caracteristiques, els
autors utilitzen ’espectrograma mel juntament amb els parametres MFCC. En aquest treball,
els autors destaquen la importancia d’utilitzar tecniques d’augment de dades per millorar
els resultats de classificaci6. L’augment de dades, en aquest context, es refereix a 1'is de
tecniques per augmentar la mida de les dades d’entrenament, afegint més mostres generades o
bé modificant les dades del conjunt de dades o bé creant noves dades a partir de les mostres

existents.

La importancia de la seleccio de les dades d’entrada a la CNN s’ha avaluat en algunes obres
del camp. Per exemple, a (Zhou et al. 2017). Els seus experiments conclouen que la millor
classificaci6 dels sons urbans s’aconsegueix normalment quan els espectrogrames d’entrada
tenen una resolucié de temps moderada. A més, la normalitzacio de les dades d’entrada quan
s’utilitzen espectrogrames és un tema que encara esta obert a discussié. Per exemple, al
treball (Ick i McFee 2021), els autors exploren els diferents parametres de Per-Channel Energy
Normalization o Normalitzacié d’Energia Per Canal (PCEN) (que és un procediment adaptatiu
que s’ha demostrat que és 1til en alguns problemes de classificacié d’audio (Lostanlen et al.

2018)) i proposen un enfocament multi-rate PCEN per millorar els resultats de la classificacié.

A causa de la gran quantitat de dades necessaries per entrenar els models DI, 'augment de
dades s’ha utilitzat en la majoria de les obres DL en el camp. A part del treball de (Mushtaq
i Su 2020), aquesta teécnica ha estat ampliament utilitzada per la comunitat en els tltims anys
(Davis i Suresh 2018; Shah et al. 2019; Shen et al. 2020; Nanni et al. 2021; Dinkel et al. 2021).

Es poden trobar més obres que apliquen la classificacié d’audio utilitzant CNNs a (Sang et
al. 2018; AbeBer et al. 2018; Bai et al. 2019; Phan et al. 2019; Fairbrass et al. 2019; Cao et al.
2019; Shen et al. 2020; Ciaburro 2020; Ciaburro i ITannace 2020). Mentre que algunes de les
obres utilitzen els espectrogrames (o una fusié entre espectrogrames i altres caracteristiques

acustiques) com a entrades per a les seves xarxes, les altres utilitzen dades crues d’audio.

A més, mentre que la majoria dels models DL sén massa grans per ser desplegats en
dispositius de baix cost, s’han fet alguns esforgos en el camp per estudiar estratégies de
desplegament de models sobre aquest tipus de dispositius. Aquest és el cas, per exemple, del
projecte presentat en (Arce et al. 2021). L’obra presenta una WASN que supervisa arees
urbanes i reconeix un grup concret d’esdeveniments actustics. Els nodes de la xarxa estan
formats per una Rasperry Pi com a unitat de computacié, i I’algorisme de classificacié és
una CNN juntament amb una fase de predeteccié que és capag de diferir tres esdeveniments
rellevants de transit i activa la CNN només quan es produeix un dels tres esdeveniments
rellevants. D’aquesta manera, utilitzant ’etapa de predeteccid, els autors sén capagos de
reduir I"ds de la Central Processing Unit o Unitat de Processament Central (CPU) del seu
dispositiu de computacié per un factor de 6.

Finalment, cal tenir en compte que, en ambients urbans, és comu trobar esdeveniments
acustics que ocorren simultaniament (també coneguts com a esdeveniments polifonics).
Reconeixe’ls és una tasca dificil, ja que alguns esdeveniments tenen un nivell actstic més alt

que els altres, i a més a més tenen una durada i estructura diferents. Diverses obres del camp
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tenen com a objectiu reconeixer diversos esdeveniments al mateix temps. Normalment, aquesta
tasca es fa aplicant un llindar manual a I'iltima capa de la DNN per decidir si ’esdeveniment
esta present en el fragment actstic que s’esta classificant o no. No obstant aixo, hi ha obres
que elaboren diferents estratégies per aconseguir la classificacié multietiqueta. Per exemple,
en (Xia et al. 2018), els autors utilitzen un model de regressié multivariable i donen un nivell
de confianga a cada segment d’audio. Els seus resultats mostren que, d’aquesta manera, la
taxa d’encert de classificiacié és més alta.

En una obra diferent (Pankajakshan et al. 2019), els autors proposen un model que té
com a objectiu millorar la localitzacié temporal dels esdeveniments sonors utilitzant una
combinacié de dos models. El primer model prediu quins esdeveniments de so sén presents
en cada fotograma, i el segon prediu si un esdeveniment de so és present o no en un marc
acustic. Els models conjunts donen lloc a taxes d’encert de classificacié més altes que una
implementacié separada de cadascun d’ells.

Un altre treball que gestiona les dades multi-etiqueta és el presentat a (He et al. 2020).
Per avaluar el procés de classificacié multi-etiqueta, els autors utilitzen una estructura de
multi-activacié sigmoide-sparsemax.

Altres estudis que tracten les dades polifoniques o multi-etiqueta es poden trobar a
(Xia et al. 2020; Gontier et al. 2021; Luo et al. 2021). En el primer treball (Xia et al.
2020), els autors utilitzen la posicié de 'esdeveniment dins d’un segment d’audio complet
(tasca 1) i la posici6 d'un fragment concret dins d’un esdeveniment d’audio (tasca 2) per
al desenvolupament d’'un enfocament d’aprenentatge multitasca. Els resultats d’'un conjunt
de dades monofoniques i un conjunt de dades polifoniques confirmen que el seu enfocament
aconsegueix millors resultats de classificacié en comparacié amb el baseline d’aquests conjunts
de dades respectius. En el segon treball (Gontier et al. 2021), els autors utilitzen la sintesi de
conjunts d’entrenament polifonics per millorar els resultats de classificacié en comparacié amb
un metode d’aprenentatge autosupervisat. La sintesi de conjunts d’entrenament polifonics
consisteix en anotar un petit corpus d’esdeveniments actstics d’interes, que després es barregen
automaticament a I'atzar per formar un corpus més gran d’escenes polifoniques. En el treball,
els autors afirmen que l'origen geografic dels esdeveniments actstics en la sintesi de conjunts
d’entrenament té un gran impacte en els resultats de la classificacié. Finalment, a (Luo et al.
2021), els autors utilitzen un model que combina una xarxa neuronal de capsula (CapsNet) i
una xarxa neuronal recurrent. Com a entrades al seu model, els autors utilitzen un metode
d’agregacié de caracteristiques incloent-hi MFCC i les caracteristiques log-mel. També han
implementat un sistema al mén real capag de detectar els esdeveniments aciistics en ambients

urbans.

2.5.5 Xarxes de Sensors Acustics Sense Fils desplegades en la societat
moderna

Aquesta subsecci ofereix una visié general d’algunes WASN que actualment estan desplegades
en diferents entorns: arees urbanes o suburbanes. A part del ja esmentat projecte DYNAMAP,

(Alsina-Pages et al. 2019), durant el qual es van desplegar sensors actstics en diferents arees
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de Roma i Mila, altres obres de tot el mén han dut a terme enfocaments similars.

Per exemple, al Regne Unit, el projecte DREAMsys (Distributed Remote Environmental
Array & Monitoring System) (Barham et al. 2010) ha desenvolupat un sistema basat en fer
mesures de soroll per a ’estudi del paissatge sonor i realitzar mapes acustics utilitzant sensors
distribuits. El maquinari dels seus sensors inclou un microfon MEMS protegit amb una capa
impermeable, una unitat de computacié que calcula el nivell equivalent de soroll, un modem

GSM, bateries que poden durar fins a 15 dies i un tripode que permet la mobilitat dels sensors.

A Ttalia, en un projecte a curt termini anomenat SENSEable (Nencini et al. 2012) va
desplegar una WASN a la ciutat de Pisa per mesurar els nivells de soroll en temps real en

diferents llocs de la ciutat.

En Pescenari d’is d’aquesta Tesi, Barcelona, també s’han desplegat diversos nodes de
deteccié d’alta qualitat (classe I) (Farrés 2015). L’objectiu de la WASN desplegada a Barcelona
és avaluar els nivells de soroll en zones sorolloses, quantificar la reduccié del soroll quan
s’apliquen determinats plans d’accid, (3) actualitzar un mapa de soroll en temps real i (4)
identificar fonts de soroll i avaluar-les. No obstant aixo, aquesta avaluacié encara es fa
manualment, no s’ha desplegat cap sistema de classificacié automatic. Els nivells de soroll
es poden veure en temps real a la plataforma SENTILO, que subministra informaci6 sobre
la situacié actstica de la ciutat, pero també mostra valors recollits per diferents tipus de
sensors (per exemple, mostra informacié meteorologica). El mapa en temps real es pot
veure a https://connecta.bcn.cat/connecta-catalog-web/component/map (tltim accés el 30 de
desembre de 2021).

Una altra WASN es pot trobar al Canada, en el marc del projecte UrbanSense (Rainham
2016). En aquest cas, la xarxa no és només responsable de controlar les dades actstiques
(LAeq), siné que també té en compte altres parametres d’intereés com la quantitat de dioxid de
carboni o monoxid de carboni a ’aire, velocitat i direccié del vent, la temperatura, la humitat
relativa i els nivells de les precipitacions.

A Paris (Franga), 'organitzaci6 BUITPARIF ha dut a terme un projecte que ha donat lloc
al disseny i la patent d’un dispositiu de control de soroll anomenat MEDUSA (C. Mietlicki i
F. Mietlicki 2018), que combina quatre microfons i un sistema optic, de manera que és possible
representar nivells de soroll en 360°. Aquestes dades es projecten sobre un mapa geografic
que crea hexagons de colors que permeten veure els nivells de soroll de la zona.

El projecte LIFE Monza (Bartalucci et al. 2018), un projecte LIFE que va durar fins
a 2020, va desenvolupar un meétode per a la identificacié i la gestié de les zona de baixes
emissions de soroll de la ciutat, que sén zones urbanes subjectes a restriccions de transit per
mitigar 'impacte del soroll a la poblacié. Concretament, el projecte va desplegar una prova
pilot a la ciutat de Monza (al nord d’Italia). La implementacié fisica del projecte incloia 1'is
de sensors de baix cost i una interficie mitjang una pagina web.

Fora d’Europa, el control del soroll també es considera una qiiestié important que ha de
tenir-se en compte. Per exemple, el projecte SONYC (Sound Of New York City) (Juan P Bello
et al. 2019), ha desplegat 55 sensors acustics de baix cost a la ciutat de Nova York. Cada

sensor esta compost per un nucli de sensor (Raspberri Pi + antena WiFi) i un modul de
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deteccié actustica (basat en un microfon MEMS i un microcontrolador) (Mydlarz et al. 2019).
A més de controlar el nivell de soroll, aquests sensors sén capagos de classificar esdeveniments
en temps real dins d’una taxonomia limitada.

Finalment, a Espanya, a més de la xarxa ja esmentada desplegada a Barcelona, diversos
projectes en diferents ciutats han abordat el repte del control del soroll mitjangant sensors
acustics. Per exemple, a Malaga (Lépez et al. 2020), per avaluar la qualitat de vida dels
ciutadans, i com en algunes arees el soroll d’oci excedeix els limits permesos per les regulacions
actuals, es va desplegar un sub-conjunt de 8 sensors actstics com a part d’una subxarxa.
Aquests sensors tenen com a objectiu obtenir diversos (86) parametres actstics en temps real
per controlar el nivell de soroll en arees problematiques. Per altra banda, a la capital del pais,
Madrid, s’han instal - lat 31 sonometres premium (Briiel & Kjaer, classe 1) amb un microfon
que permet desplegaments a ’aire lliure (Asensio et al. 2020). Per garantir resultats fiables,
els sensors es calibren cada any d’acord amb la normativa. Aquests sensors s’instal - len en el
sostre de les cabines de mesures de condicions ambientals, i s’encarreguen de controlar els

nivells de soroll de les ubicacions seleccionades.

2.5.6 Oportunitats de recerca i comunitat

Per concloure aquest capitol, aquesta seccié ofereix una visié general dels reptes actuals en el
camp de la classificacié d’esdeveniments acustics i els esforgos que esta fent la comunitat per
aconseguir-los.

Com es pot veure en aquest estat de l'art, els investigadors de tot el mén han estat
esforgant-se per aconseguir millors resultats any rere any mitjancant I’as de nous algoritmes
ML, algorismes d’extraccié de caracteristiques, o una combinacié d’ambdoés. No obstant aixo,
la majoria d’aquestes obres es centren en aconseguir la millor taxa de classificacié possible,
sense preocupar-se per la mida dels seus models o el maquinari necessari per realitzar la
classificacié. En realitat, en diferents treballs, és comid veure investigadors preocupats pel
temps d’entrenament dels seus models, subestimant el temps d’inferéencia. Aixo es deu a les
grans capacitats computacionals necessaries per a ’entrenament de models ML o, especialment,
I’entrenament de models DL, que pot requerir fins i tot de mesos d’entrenament per obtenir
un estat estable (depenent del maquinari que s’utilitza per a l’entrenament, la mida dels
models i la quantitat de dades disponibles). No obstant aixo, per a les aplicacions del mén
real, el temps d’inferéncia és més important que el temps d’entrenament si I’objectiu final és
proporcionar els resultats de classificacié en temps real. Per aquesta rad, aquesta dissertacio
té com a objectiu contribuir a aquesta oportunitat de recerca en lloc de construir un model
que aconsegueixi la millor taxa de classificacié possible. En aquest sentit, aquesta dissertacio
equilibrara el temps i la memoria d’inferencia en el maquinari de baix cost proposat i les taxes
d’encert de classificacié.

En quant a la comunitat, per a impulsar l'estat de l'art, cada any s’organitza una
competicié d’investigacié en la qual es proposen diversos reptes (generalment 5 o 6 tasques)
que aborden diferents ambits de la classificacié actstica d’esdeveniments. La competicié

s’anomena Detection and Classification of Acoustic Scenes and Events o Deteccio i Classificacio
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d’Escenes i Esdeveniments Actstics (DCASE) (http://dcase.community, accedit el 29 de
desembre de 2021) i té com a objectiu promoure diversos conjunts de dades i sistemes de
classificacid, animant als investigadors a aplicar noves tecniques de classificacié per guanyar la
competicio. Les diferents tasques poden incloure dades actstiques de diferents dominis com

ara esdeveniments urbans, vocalitzacions d’animals o classificacié d’escenes acuistiques.
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Chapter 2
State of the art

To conduct a complete state of the art for acoustic event detection in urban environments, a
systematic literature review has been carried out. The main purpose of a systematic literature
review is to gather the evidences and most relevance findings of a concrete research topic
through a systematic process (Amo Filva et al. 2020). Hence, the work that is carried out in
this chapter aims for an exhaustive research on the topic being discussed in this dissertation

(that is, acoustic event classification in urban environments).

2.1 Methodology

To perform a successful systematic literature review, the first step is to come up with a
strategy that allows to select the most relevant publications and online information from the
field to be studied (i.e., for this work, acoustic event detection and classification). For this
purpose, the methodology explained in (Khan et al. 2003), that consists of five steps, has

been followed.

1. Framing questions for a review: In this sense, the questions to be solved are the
research questions stated in Capitol 1 from this document: RQ1, RQ2 and RQ3. From
these research questions, the inclusion and exclusion criteria to select the most relevant

works have been defined.

2. Identifying relevant work: For this purpose, the main database used to search
information is the Web Of Science (WOS). This process is carried out in an iterative way,
and the inclusion and exclusion criteria are applied to select only the appropriate works
for the review. Also, this stage considers the Population, Intervention, Comparison,
Outcome, Context o Poblacid, Intervencié, Comparacié, Resultats, Context (PICOC)
criteria to give an appropriate answer to the research questions by limiting the scope of

the review.

3. Assessing the quality of studies: To do so, the number of citations and media in
which the information was published have been taken into account. Concretely, peer
reviewed conferences, journals and technical reports have been considered as reliable

data sources.

4. Summarizing the evidence: Obtaining a summary of the methodology and the key

main conclusions from the work.

5. Interpreting the findings: Checking the hetereogenity of data and decide whether

the summaries obtained can be trusted.
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2.2 Inclusion and exclusion criteria

The concrete inclusion criteria that have been followed to include works to the review are:

Inclusion Criteria 1 o Criteris d’Inclusié 1 (IC1): The gathered works are applied to the
field of acoustic event detection AND

Inclusion Criteria 2 o Criteris d’Inclusio 2 (IC2): The gathered works contain information
about real-time acoustic signal processing OR low-cost acoustic wireless sensor network
architectures AND

Inclusion Criteria 3 o Criteris d’Inclusié 3 (IC3): The works are written in English language
AND

Inclusion Criteria 4 o Criteris d’Inclusi6 4 (IC4): The works are published in peer reviewed
conferences, journals or technical reports.

And the concrete exclusion criteria that have been followed to exclude works to the review
are:

Criteris d’Exclusié 1 (CEL): The gathered works are not applied to the field of acoustic
event detection OR

Criteris d’Exclusi6 2 (CE2): The gathered works do not contain information about real-
time acoustic signal processing OR low-cost acoustic wireless sensor network architectures
OR

Criteris d’Exclusié 3 (CE3): The works are not written in English language OR

Criteris d’Exclusié 4 (CE4): The works are not published in peer reviewed conferences,

journals or technical reports.

2.3 Queries

To search the information, several queries were formulated on the WOS, which provided the

results shown in Taula 2.1:

Queries Number of results
T'S=(acoustic classification AND urban) 299
TS=(low cost device® AND acoustic event classification) 22
TS=(real-time classification AND acoustic events AND urban) 9
TS=(urban sound AND acoustic dataset) 51
T'S=(multilabel classification AND acoustic event) 16
TS=(event classification AND urban soundscape) 12

Table 2.1: Queries and number of results formulated in WOS to gather information.

This means that, in total, the searching queries resulted in 409 results in the WOS. The
research queries were executed at date of December 2021, hence works published later have
not been included. However, these results had to be filtered before their processing, as they
might contain duplicated results from different queries or they might not satisfy the inclusion

and exclusion criteria described above.

58



Selection process
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) (n=97) (n = 259)
5
'g # of articles included # of articles excluded
'g after full-text screen after full-text screen
= (n = 63) (n = 34)

Figure 2.1: Flow diagram of the articles selection process following the PRSIMA methodology.

2.4 Selection process

From the 409 results, 53 works were removed due to that they were repeated results outputted
from different queries. After that, the inclusion and exclusion criteria were applied by manually
reading the title and keywords. This resulted in 97 selected works. From those works, the
abstracts were fully analysed to confirm that they were suitable for this state of the art.
After the abstract reading, 34 works were discarded, which means that 63 works were finally
selected for a full analysis. From those 63 works, 19 are publications from conferences and 44
are publications from journals. Figura 2.1 shows a flow-diagram according to the PRISMA
methodology that illustrates the amount of articles that have been taken into consideration

to develop the state of the art.

The selected articles were later classified by topic to ease the reviewing process considering
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the following categories:
o Works that use DL techniques for acoustic classification: about 45%.
o Works that use classical ML techniques for acoustic classification: about 27%.
o Works that consider multilabel (also known as polyphonic) classification: 8%
o Works that study urban soundscapes or sound perception: about 20%.
o Works that run their algorithms or propose the usage of WASN: about 17%.

Note that the addition of all the percentages is not 100% because some of the works were

assigned to more than one category.

2.5 Analysis of the results and state of the art

This subsection presents an analysis of the works that have been selected, evaluated and
classified as a state of the art of the dissertation.

The typical pipeline of an automatic classifier system for acoustic events contains the
modules and applies the classification techniques detailed in the work by Mesaros et al.
published in (Mesaros et al. 2021). The most common way of approaching a classification
problem of sound event detection is to apply supervised learning (Mesaros et al. 2021), which
aims at classifying acoustic events by creating a model from annotated acoustic samples. The
classification stage can be carried out by traditional ML techniques (such as Gaussian Model
Mixture (GMM), Hidden Markov Models o Models Ocults de Markov (HMM) or Support
Vector Machine o Maquina de Vectors de Suport (SVM)) or, lately, by DL models.

2.5.1 History of Deep Learning

The origins of DL date back to 1940’s and 1950’s, when the perceptron was first introduced by
Frank Rosenblatt in 1958 (Rosenblatt 1957) over the work of Warren McCulloch and Walter
Pitts (Fitch 1944). However, this algorithm was later criticised. For instance, Marvin Minsky
and Seymour Papert published in 1969 a book explaining the limitations of the perceptron
in a book entitled "Perceptrons: an introduction to computational geometry" (Minsky and
Papert 2017). One of the most discussed issues that the authors presented in the book is
the difficulty that a neural network would have to compute a simple XOR (exclusive OR)
operation. They claimed that using Rosenblatt’s algorithm, the operation could not be solved,
as it would require multiple layers of perceptrons.

In 1974, Paul Werbos studied on his PhD the application of the backpropagation algorithm
in neural networks (Werbos 1974), making the training of multi-layer neural networks possible.
This technique did not gain popularity until 1986, when David Rumelhart, Geoffrey Hinton,
and Ronald Williams published their outstanding work describing the methodology and
addressing the problems discussed by Minsky’s work(Rumelhart et al. 1986; Rumelhart et al.
1985).
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Input raw data | .| Feature extractor Features ML algorithm Output

Typical traditional machine learning flow

Deep learning

Input raw data .
algorithm

Output

Typical deep learning machine learning flow

Figure 2.2: Typical workflows for machine learning and deep learning problems. Inspired
by the presentation of Vivek Kumar entitled Artificial Intelligence in Audio Event (https:
/lwww.youtube.com/watch?v=388AZ2ujM9w&t=208s, accessed on 29 December 2021).

Once the key of how to train multi-layer neural networks was made publicly available, the
first deep learning applications started to appear. One of the most relevant contributions of
that time occurred in 1989, when Yann LeCun et. al. applied a Convolutional Neural Network
o Xarxa Neuronal Convolucional (CNN) for the classification of handwritten digits (LeCun
et al. 1989). At that time, even though they were not so popular, other applications started
using DL techniques. For example, in 1988, researchers such as Lewis (Lewis 1988) and Todd
(Todd 1988) proposed the use of neural networks for automatic composition of music. The
main drawback of DL at that time was the amount of time that it took to train the models
as the technology that was available had major limitations (in comparison of the Graphics
Processing Unit o Unitat de Processament de Grafics (GPU)’s that are available nowadays.
As technology has greatly evolved in recent years, nowadays, and despite of the drawbacks
that it may have (requires big amounts of data and computation capabilities), DL has become

a popular research trend due to the exceptional accuracy results it achieves.

2.5.2 Audio classification baseline

Usually, the most common workflows followed when assessing a ML or DL problem in any field
(not necessarily in the audio domain) are the ones shown on Figura 2.2. As it can be observed,
whereas ML requires a big effort in the process of feature engineering (i.e., selecting the most
convenient features for each particular problem), DL aims at skipping this part and using
the raw input data as the input of the model, expecting it to automatically extract the most
convenient features for the learning of the neural network. However, this is not necessarily
the case (or, at least, yet) in the audio domain. In the current state of the art, a big amount
of audio detection and classification problems are solved by means of using a neural network
with spectrograms as inputs. This way, in the audio domain, in some problems, DL, may still
require a feature selection and tuning process for training neural networks. The detail on
how this process is carried out and some relevant contributions in the field are explained in

Seccié 2.5.3 and Seccid 2.5.4.
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2.5.3 Machine learning in acoustic classification

An appropriate feature selection process becomes crucial when using traditional ML algorithms.
This features can either contain information about the frequency content of the audio files,
their temporal evolution or a mix between them.

The baseline or most commonly used features in this type of problems are the Mel
Frequency Cepstral Coefficients o Coeficients Cepstrals de Freqiiencia Mel (MFCC), which aim
at characterizing the audio files emulating human auditory perception. Usually, this features
are combined with others such as Linear Prediction Cepstrum Coefficients o Coeficients
Cepstrals de Predicci6 Lineal (LPCC) or Zero Crossing Rate o Taxa de Creuament per Zero
(ZCR) among others (Dave 2013; Ito and Donaldson 1971).

For example, in (Giannakopoulos et al. 2015), authors present a system that aims at
estimating the soundscape quality (in both natural and urban environments) by means of
audio analysis. Concretely, to carry out the estimation of the soundscape quality, the system
uses 68 feature statistics per each 15-second fragment of audio. These features include
the aforementioned MFCC and ZCR features combined with the short term energy of the
fragment, the entropy of the energy, the spectral centroid and spread, the spectral entropy,
flux and roll-off and the chroma features. Once the features are calculated, four different SVM
regressors are trained to estimate three context levels and the soundscape quality level.

Similarly, in (Noviyanti et al. 2019), authors aim at predicting the urban soundscape from
a set of acoustic features. Specifically, the prediction is carried out using MFCC coefficients
together with “acoustic ecology” parameters. With all these parameters, the work predicts
the perception of relaxation, dynamic and communication in a given soundscape. Authors
conclude from the results that MEFCC are better features than the acoustic ecology metrics
for their model’s performance, that is based on a binary logistic regressor.

Other examples can be found in (Tsalera et al. 2020) or in (Lojka et al. 2014). In the
first case, authors also combine features for classification. They use 8 temporal features
(including ZCR), 11 spectral features and 4 perceptual features (including MFCC). In this
case, the selected classification algorithm is a simple K-Nearest Neighbors o K-Veins Propers
(KNN), and the results are discussed when using different numbers of neighbors (1 to 3) and
different distance metrics (Euclidean, Chebyshev and Cosine). The target of this work is to
classify events occurring in urban environments from 9 different categories. In the second
case, the used features are MFCC together with Frequency Bank Coefficients o Coeficients
de Bancs de Freqiiencies (FBC) and Mel-Spectral Coefficients o Coefficients Espectrals Mel
(MSC). For classification, they use a modified Viterbi decoding process together with Weighted
Finite-State Transducers (WFSTs) and a HMM.

Clustering techniques are also widely used in the audio domain. For instance, in (Pita et al.
2021), authors use an unsupervised (i.e., it does not require labelled data to train the model)
ML algorithm to cluster data from the city of Barcelona to detect clusters that are close to
urban roads, residential areas and leisure areas. Despite this work does not perform acoustic
event classification, it shows an interesting methodology to segment the city according to the

noise levels presents in each area. In this case, only the equivalent levels of noise are used as
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features. The ML clustering algorithm used in the work is K-means.

Another work that uses the noise level (processed in several features) as an input to a
model to evaluate a certain soundscape is the one presented in (Torija et al. 2014). In that
work, the algorithms used to assess the soundscape evaluation are a SVM and a Sequential
Minimal Optimization o Optimitzacié Minima Seqtiencial (SMO). Results show that SMO
outperforms SVM when performing the task of soundscape classification.

As it can be seen, studying a given soundscape by means of ML techniques can be seen
from different points of view: since clustering different areas of a city depending on their noise
levels or correlate different noise events with the perception of the population, to automatically
detecting acoustic events happening on a urban environment to know which are the most
polluted noise areas. One big project that considered several points of view of two different
areas (urban area and suburban area) was the LIFE4+ DYNAMAP project. Concretely, in
that project, researchers developed a low-cost WASN to monitor two large-scale areas in the
cities of Milan and Rome using a dynamic acoustic map updated at real-time. During the
project, once the WASN was deployed, long recording campaign took place and allowed a
massive data gathering (Alsina-Pages et al. 2019). Some of those data were later manually
labelled by experts, which allowed (1) to study the impact of the different acoustic events to
the population (Alias et al. 2020) and (2) the development of an algorithm that detects and
differentiates anomalous acoustic events from road traffic noise (Socord et al. 2017; Alias et al.

2018). For classification, authors use MFCC as features and GMM as classification model.

Another technique that has been used in the field is using a bag-of-features approach
(Grzeszick et al. 2017). For example, in (Grzeszick et al. 2017), authors use MFCC and
GammaTone Cepstral Coefficients o Coeficients Cepstrals de Tons Gamma (GTCC) as an
underlying set of features that are later quantized with respect to a certain codebook to
generate a bag-of-features. The works also shows how can robustness of models be improved
by fusing acoustic data from multiple channels. One advantage of this approach is that it
does not require high computational capabilities, which means that the algorithm can run

over low-cost (in terms of computation) hardware or on on-line environments.

In some other works, ML techniques are mixed with signal processing techniques and
the classification of acoustic events is split in different classification layers. For example, in
(Luitel et al. 2016), authors conceive a two-layers classifier to categorize urban events coming
mainly from vehicles (i.e., bus engine, bus horn, car horn and whistle). A first layer divides
the acoustic events in two classes with signal processing techniques (looking at the frequency
spectrum and filtering to the desired frequencies) and a second layer finally classifies the
acoustic event. Again, the classifier uses the baseline MFCC features as inputs for the models.
Several classifiers are tested, for instance an Artificial Neural Network o Xarxa Neuronal
Artificial (ANN), a Naive Bayes (NB) classifier, a Decision Tree o Arbre de Decisié (DT) and
a Random Forest o Bosc Aleatori (RF). Their results show that using two layers improves the

classification results with respect to a one-layer baseline system.

However, not all the classification problems rely on the MFCC features for classification.
In (Salamon and Juan Pablo Bello 2015a) and (Salamon and Juan Pablo Bello 2015b), authors
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prove that it is possible to achieve better classification results (in terms of accuracy only) when
using unsupervised feature learning from 2D mel-spectrograms and a scattering technique.
The application of a scattering transform allows to characterize the short-term temporal
dynamics captured by 2D mel spectrogram patches with the added advantage of being phase
invariant. This is an advantage given that they are able to characterize signals that vary in
time over (relative) long windows in comparison to other methods such as MFCC computation.

Similarly, in (Waldekar and Saha 2020), authors propose the usage of wavelet transform
given that it performs good when extracting characteristics information from environmental
audio as it can vary in length. As environmental noise may have overlapping frequency content
and also a wider frequency range (compared to other fields such as speech recognition), the
mel-scaled wavelet transform presented in the work outperforms a baseline MFCC-based
classification system.

To sum up, different ML techniques have been widely used in the state of the art of acoustic
event detection and acoustic soundscape evaluation. Also, when using those algorithms, MFCC
are the baseline features, but they are usually combined with other acoustic parameters to

achieve better classification results.

2.5.4 Deep learning in acoustic event classification

In the later years, and due to the rapid development of technology, DL has gained popularity
in the field of acoustic event classification. Mostly, big DL networks have been trained to
classify acoustic events in machines with high-computation capabilities. However, this is not
the case of all the DL classification problems. Some small networks have been conceived to
classify acoustic events even in low-cost (in terms of computational capabilities) devices such
as mobile phones (Stowell 2021) efficiently.

Rather than classifying acoustic events, some works focus on classifying acoustic scenes
(Acoustic Scene Classification o Classificacié d’Escena Actstica (ASC)). The difference between
acoustic event detection and acoustic scene classification is that, whereas the first one focuses
on assigning a semantic label to a concrete acoustic event coming from a concrete noise source,
the second one assigns a label referring to the environment in which an acoustic stream was
recorded. In this field, it is very common to use also Deep Neural Network o Xarxa Neuronal
Profunda (DNN). However, not only CNN are popular in the field. For example, in (Singh
et al. 2021), authors use a prototypical neural network to obtain an embedding space for the
task of ASC. The hypothesis behind prototypical networks is that there exists an embedding
space in which points cluster around a single prototype representation for each class (Snell
et al. 2017). However, even though the hypothesis is promising, this type of networks typically
obtain moderate accuracy values and must be further studied.

Some remarkable state of the art projects involving acoustic event classification for different
applications with DL are explained below.

In (Genaro et al. 2010), authors use 25 features to train an ANN to predict the noise
level in a urban environment. In their study, authors compare the results predicted by the

ANN and the results obtained when applying Principal Component Analysis o Analisi de
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Components Principals (PCA) from the model aiming for model simplification. Even though

the results are worse after applying PCA, authors claim that they are still acceptable.

One noticeable work is the one published in (Lopez-Ballester et al. 2019; Lopez-Ballester
et al. 2020). Their application focuses on evaluating the annoyance of audio sounds using
DL. Concretely, they use a CNN that is capable of predicting psycho-acoustic annoyance
using as inputs raw audio signals. The conclusions of their result is that their network is able
to predict faster than conventional calculations for psycho-acoustic annoyance maintaining

high-precision, making the deployment of their network suitable for [oT" devices.

CNNs have been also widely used to classify acoustic events to monitor the biodiversity
status. For instance, in (Morgan and Braasch 2021), data from the state of New York (United
States) have been collected, analysed and classified to calculate the species richness and
distribution from some pseudo-species. The inputs of the neural network are the spectrograms
of the audio signals. Also, the work studies the correlation between the acoustic events and
other abiotic parameters such as the temperature or weather conditions. Another example
can be found in (Nanni et al. 2021). In this case, authors use an ensemble of CNN to
classify acoustic events from different datasets (bird vocalizations, cat sounds or environmental
sounds). Authors claim that their off-the-self ensemble can be trained on different datasets

and reach state of the art performances (in terms of accuracy).

In (Mushtaq and Su 2020), authors also use CNN for acoustic classification, in this case
for environmental sound classification. As features, authors use the mel-spectrogram together
with the MEFCC parameters. Actually, in this work, authors highlight the importance of using
data augmentation techniques to boost the classification results. Data augmentation, in this
context, refers to using techniques to increase the size of the training data set by adding more
samples generated by modifying the data from the dataset or creating new data from existing

samples.

The importance of the input selection to the CNN has been evaluated by some works of the
field. For instance, in (Zhou et al. 2017). Their experiments conclude that the best classification
performance on urban sounds is normally achieved when the input spectrograms have moderate
time resolution. Also, the normalization of the input data when using spectrograms is a
topic that is still open for discussion. For example, in (Ick and McFee 2021), authors explore
the different parameters of Per-Channel Energy Normalization o Normalitzacio d’Energia
Per Canal (PCEN) (which is an adaptative procedure that has been proved to be useful in
some audio classification problems (Lostanlen et al. 2018)) and propose a multi-rate PCEN

approach to improve classification results.

Due to the large amount of data required to train DL models, data augmentation has
been used in most of the DL works in the field. Apart from the work by (Mushtaq and Su
2020), this technique has been widely used by the community in the later years (Davis and
Suresh 2018; Shah et al. 2019; Shen et al. 2020; Nanni et al. 2021; Dinkel et al. 2021).

More works applying audio classification using CNNs can be found in (Sang et al. 2018;
AbeBer et al. 2018; Bai et al. 2019; Phan et al. 2019; Fairbrass et al. 2019; Cao et al. 2019;
Shen et al. 2020; Ciaburro 2020; Ciaburro and Tannace 2020). Whereas some of the works use
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the spectrograms (or a fusion between the spectrograms an other acoustic features) as inputs

for their networks, the other ones use raw audio data.

Also, whereas most DL models are too large to be deployed in low-cost devices, some effort
has been made in the field to study deployment strategies. This is the case, for example, of
the project presented in (Arce et al. 2021). The work presents a WASN that monitors urban
areas and recognizes a group of acoustic events. The nodes of the network are composed of a
Rasperry Pi as a computing unit, and the classification algorithm is a CNN together with a
pre-detection stage that is able to differ three relevant events from traffic and activates the
CNN only when one of the three relevant events occurs. This way, using the pre-detection
stage, authors are able to reduce the Central Processing Unit o Unitat de Processament

Central (CPU) usage of their computing device by a factor of 6.

Finally, it must be taken into account that, in urban environments, it is common to
find acoustic events occurring simultaneously (also known as polyphonic events). This is a
challenging task as some events have more acoustic level than others and they have different
duration and structure. Several works from the field aim at recognizing multiple events at the
same time. Usually, this task is done by applying a manual threshold on the last layer of the
DNN to decide if the event is present in the acoustic fragment of the input or not. However,
there are works that elaborate different strategies to achieve multi-label classification. For
example, in (Xia et al. 2018), authors use a multi-variable regression approach and give a
confidence to each audio segments. Their results show that, this way, the classification scores

are higher.

On a different work (Pankajakshan et al. 2019), authors propose a model that aims at
improving the temporal localization of sound events using a combination of two models. The
first model predicts which sound events are present at each time frame, and the second one
predicts if a sound event is present or not in an acoustic frame. The joint models result in

higher classification scores than a separate implementation of each of the models.

Another work that handles multi-label data is the one presented in (He et al. 2020). To
assess the multi-label classification process, authors use a a sigmoid-sparsemax multi-activation

structure.

Other studies that deal with polyphonic or multi-label data can be found at (Xia et al.
2020; Gontier et al. 2021; Luo et al. 2021). In the first work (Xia et al. 2020), authors
use both the event position within a whole audio segment (task 1) and the frame position
inside an audio event (task 2) for the development of a multi-task learning approach. Results
on a monophonic dataset and a polyphonic dataset confirm that their approach achieves
improved classification results compared to the baseline of that respective datasets. In the
second work (Gontier et al. 2021), authors use polyphonic training set synthesis to improve
classification results compared to a self-supervised learning method. Polyphonic training set
synthesis consists in annotating a small corpus of acoustic events of interest, which are then
automatically mixed at random to form a larger corpus of polyphonic scenes. In the work,
authors claim that the geographical origin of the acoustic events in the training set synthesis

has a great impact on the classification results. Finally, in (Luo et al. 2021), authors use a
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combination model of a capsule neural network (CapsNet) and a recurrent neural network.
As inputs to their model, authors use a feature aggregation method including MFCC and
log-mel features. Also, they have implemented a real-world system capable of detecting the

acoustic events in urban environments.

2.5.5 Wireless Acoustic Sensor Networks deployed in the modern society

This subsection gives an overview of some WASN that are currently deployed in different
environments: either urban environments or suburban areas. Apart from the already mentioned
DYNAMAP project, (Alsina-Pages et al. 2019), that deployed acoustic sensors in different
areas of Rome and Milan, other works around the world have carried out similar approaches.

For example, in the United Kingdom, the DREAMsys (Distributed Remote Environmental
Array & Monitoring System) (Barham et al. 2010) project has developed a measurement-
based approach to survey environmental noise and perform acoustic mapping using novel
distributed sensors. The hardware of their sensors includes a MEMS microphone protected
with a waterproof and windproof shield, a computing unit that calculates the equivalent level
of noise, a GSM modem and batteries that can last up to 15 days and a tripod that allows
the mobility of sensors.

In Italy, in a short-term project named SENSEable (Nencini et al. 2012) deployed a WASN
in the city of Pisa to measure the noise levels in real-time in different locations of the city.

In the use-case scenario, Barcelona, several high-quality (class I) sensing nodes have
been deployed as well (Farrés 2015). The aim of the WASN deployed in Barcelona is to (1)
evaluate the noise levels in noisy areas, (2) quantify the noise reduction when action plans are
implemented, (3) update a real-time noise map and (4) identify noise sources and evaluate
them. However, this evaluation is still made manually, no automatic classification systems
have been deployed. The real-time sensing values can be seen in the SENTILO platform,
which supplies information regarding the acoustic situation of the city but also shows values
gathered by different types of sensors (for example, it shows meteorological information). The
real-time map can be seen at https:/connecta.bcn.cat/connecta-catalog-web/component/map
(accessed on 30 December 2021).

Another WASN can be found in Canada, in the framework of the project UrbanSense
(Rainham 2016). In this case, the network is not only responsible of monitoring acoustic
data (LAeq), it also takes into account other parameters of interest such as the amount of
carbon dioxide, carbon monoxide, wind speed and direction, temperature, relative humidity
and precipitation.

In Paris (France), the BUITPARIF organization has carried out a project which has
resulted in the design and patent of a noise-monitoring device called MEDUSA (C. Mietlicki
and F. Mietlicki 2018), that combines four microphones and one optical system so it is possible
to represent noise levels in 360°. Then, the noise levels are projected over a geographic map
creating coloured hexagons that allow to see the noise levels of the area.

The LIFE Monza project (Bartalucci et al. 2018), a LIFE project that lasted until 2020,

developed a method for the identification and the management of the Noise Low Emission
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Zone, which is an urban zone subject to traffic restrictions to mitigate the impact of noise to
the population. Concretely, the project deployed a pilot test in the city of Monza (northern
Italy). The physical implementation of the project involved the usage of low-cost sensors and
a web-page interface.

Outside Europe, noise monitoring is also considered an important issue to be taken into
account. For instance, the SONYC (Sound Of New York City) project (Juan P Bello et al.
2019), has deployed 55 low-cost acoustic sensors in the city of New York. Each sensor is
composed of a sensor core (Raspberri Pi + WiFi antenna) and an acoustic sensing module
(based on a MEMS microphone and a microcontroller) (Mydlarz et al. 2019). Besides
monitoring the noise level, those sensors are capable of classifying some event occurring in
real-time.

Finally, in Spain, besides the already mentioned network deployed in Barcelona, several
projects in different cities have addressed the challenge of noise monitoring using acoustic
sensors. For example, in Méalaga (Lopez et al. 2020), to assess the quality of life of the citizens,
and as in some areas the amount of leisure noise may exceed the limits permitted by the
current regulations, a sub-set of 8 acoustic sensors were deployed as part of a sub-network.
Those sensors aim to obtain several (86) acoustic parameters in real-time to monitor the
noise level in problematic areas. In the capital of the country, Madrid, there have been
installed 31 premium sound level meters (Briiel & Kjaer, class 1) with a microphone that
allows outdoor deployments (Asensio et al. 2020). To guarantee reliable results, the sensors
are calibrated each year according to the regulations. Those sensors are installed on the roof
of environmental conditions measurement booths, and are in charge of monitoring the noise

levels of the selected locations.

2.5.6 Research gaps and community

To conclude this chapter, this section gives an overview of the current challenges in the field of
acoustic event classification and what efforts are being made by the community to fill them.

As seen in this state of the art, worldwide researchers have been putting efforts to achieve
year by year better results by means of using new ML algorithms, feature extraction algorithms,
or a combination of both. However, most of those works are focused on achieving the best
classification accuracy, without worrying about footprint of their models or the required
hardware to perform classification. Actually, in different works, it is very common to see
researchers worried only about the training time of their models, and they tend to sub-estimate
the inference time. This is due to the big computational capabilities required for ML or,
specially, DL training, which may require even months to obtain a stable state (this depends on
the hardware being used for training, the size of the models and the amount of data available).
However, for real world applications, inference time is more important than training time
if the final objective is to supply a classification result in real-time. For this reason, this
dissertation aims to contribute to this research gap rather than building a model that would
obtain the best classification accuracy possible. In this sense, this dissertation will balance the

inference computing time and memory on the proposed low-cost hardware and the accuracy
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scores.

To push the state of the art forward, a research competition is organized every year
proposing several challenges (usually 5 or 6 tasks) to be addressed in different domains of
acoustic event classification. The competition is called Detection and Classification of Acoustic
Scenes and Events o Detecci6 i Classificacié d’Escenes i Esdeveniments Acustics (DCASE)
(http://dcase.community, accessed on 29 December 2021) and aims at promoting several
datasets and classification systems while encouraging researchers to apply new classification
techniques to win the competition. The different tasks may include acoustic data from different

domains such as urban events, animal vocalizations or acoustic scene classification.
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Abstract

Acoustic pollution has been associated with adverse effects on the health and life expectancy
of people, especially when noise exposure happens during the nighttime. With over half of
the world population living in urban areas, acoustic pollution is an important concern for
city administrators, especially those focused on transportation and leisure noise. Advances
in sensor and network technologies made the deployment of Wireless Acoustic Sensor
Networks (WASN) possible in cities, which, combined with artificial intelligence (AT),
can enable smart services for their citizens. However, the creation of such services often
requires structured environmental audio databases to train Al algorithms. This paper
reports on an environmental audio dataset of 363 min and 53 s created in a lively area of
the Barcelona city center, which targeted traffic and leisure events. This dataset, which is
free and publicly available, can provide researchers with real-world acoustic data to help

the development and testing of sound monitoring solutions for urban environments.

.1 Introduction

More than four billion people (55% of the world population) live in urban areas, and the
projection is that by 2050, this number will increase to seven billion, or two-thirds of the
world population (Ritchie and Roser 2020). Barcelona, for example, has a population of over
1.6 million inhabitants (https://www.idescat.cat/ (Population: 2019)) and receives nine million
tourists every year (Turisme a Barcelona - ciutat i regié 2019). Big cities like Barcelona
combine a large range of industrial, business, and leisure activities, which can cause several
environmental problems. Among these, acoustic pollution has gained increased attention over
the last few years, as research has related the urban noise with adverse effects on the life

expectancy and health of people (European Environment Agency, 2020 n.d.; Cik et al. 2016;
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W 1991). In particular, the exposure to nocturnal noise was found to have a greater negative
impact than daytime noise on long-term cardiovascular health, probably due to the repeated
autonomic arousal during sleep (Jarup et al. 2008; Basner et al. 2011). Many of such studies
focus on the negative health effects of traffic noise (Dratva et al. 2012; Hofman et al. 1995).
However, leisure noise is being increasingly recognized as an important challenge in cities
with a high number of tourist and cultural offers, where the needs of residents and visitors
need to be balanced (Ottoz et al. 2018; Easteal et al. 2014), to the extent that the World
Health Organization (WHO) has included recommendations on leisure noise in its recent
Environmental Noise Guidelines for the European Region (World Health Organization, 2018
n.d.).

In order to address these problems, the European Commission has created the
Environmental Noise Directive 2002/49/EC (END) (Cox and Palou 2002) and the Common
Noise Assessment Methods in Europe (CNOSSOS-EU) (European Commission, Joint Research
Centre—Institute for Health and Consumer Protection 2012). The former requires from
Member States the development of separate strategic noise maps and noise management plans
every five years for major roads, airports, railways, and agglomerations of more than 100,000
inhabitants. The latter provides common methods that Member States are expected to use
for such purposes. Historically, such maps have been manually built to ensure this separation

of noise sources, which is a laborious and slow process that requires human intervention.

With the advances in sensor and network technologies, many cities have now deployed
Wireless Acoustic Sensor Networks (WASNs). These networks have the potential to represent
a paradigm change for city managers and the population alike. WASNs can enable the
automatic and real-time generation of strategic noise maps and, consequently, the creation
of more efficient policies and technical solutions for managing urban noise pollution and for

designing sustainable urban and suburban soundscapes.

Such technical solutions often use machine learning (ML) algorithms for the automatic
identification of noise sources (Socor6 et al. 2017; Alias and Alsina-Pages 2019), many of
which require supervised training. That is, they use structured environmental audio datasets
to train these ML algorithms. However, the creation of reliable environmental audio datasets
normally involves the manual tagging of many hours of audio data, which is very labor-
and time-consuming. In order to avoid this work, several ML solutions are being developed
using datasets created by artificially mixing sounds from online digital repositories, such
as FreeSound (http://www.freesound.org), Soundcloud (http://www.soundcloud.com), and
AudioHero (http://www.audiohero.com). While these datasets allow algorithms to be trained
with very large amounts of data, most of them gather sounds collected from several places
and devices, which could make training more difficult. A real-life dataset recorded under
controlled conditions and devices is closer to real operation conditions of the nodes of the
WASN and allows for data augmentation when the classification algorithm requires a larger
dataset (Nakajima et al. 2016; Salamon and J. P. Bello 2017). Therefore, developers of sound
solutions based on machine learning can benefit from free and publicly available real-world

environmental audio datasets.
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Related Work

In this paper, we report on an environmental audio dataset created from 6 h of recording
in a lively area of Barcelona city center, recorded as a joint collaboration with the Barcelona
City Council. The recordings took place in a selected neighborhood that had produced a high
number of complaints from residents. In particular, given the impact of nocturnal traffic and
leisure noise on people’s health, the spot chosen for the recording is well known for having
both types of noise during the night.

Therefore, the contribution of this work is a precisely labeled night urban traffic and
leisure sound dataset and its analysis, which is open and freely available to researchers and
technicians. The analysis includes the duration of the events, the signal-to-noise ratio, the
number of occurrences, the impact of each occurrence on the background noise L 4.4, and the
intermittency ratio (IR) of the entire data sample (Brambilla et al. 2019; Wunderli et al. 2016),
which are metrics that have been related to healthy effects in different studies (Wunderli
et al. 2016). We envision this dataset being used, extended, and combined with others for
different purposes, such as the development of noise identification and monitoring solutions,
the creation of guidelines for designing sustainable urban and suburban soundscapes, and the

comparison with other datasets for health impact studies.

.2 Related Work

The environmental acoustic databases described in the literature, which are used by the
machine listening research community to train and test different types of algorithms,
are normally generated by artificially mixing sounds or from real-life recordings. The
former allows the control of the signal-to-noise ratio (SNR) of the synthetic mixtures
(Alias and Socord 2017), also dealing with data scarcity by means of data augmentation
(Nakajima et al. 2016; Salamon and J. P. Bello 2017). Nevertheless, for this contribution,
data augmentation techniques are not a key issue because the goal is to obtain and analyze
a dataset exclusively from real operation data. We next review the literature on datasets

recorded in real operation environments.

Valero (Valero and Alias 2012) presents an automatic approach for the classification of road
vehicles by means of their pass-by signatures. The team recorded a dataset with six categories
(light vehicles, heavy vehicles, motorcycles, aircrafts, trains, and industrial noise), resulting
in 90 sound samples for each category, with a duration of 4 s each. Heittola (Heittola et al.
2013) published a 1,133 min audio dataset that includes 10 different acoustic environments
from indoor and outdoor recordings. Their goal is to detail how contextual information can
be used in automatic sound event detection. The work attempts to simulate human behavior
when detecting and identifying sound events by means of a two-stage process that includes
the automatic recognition of the context and the subsequent detection of the sound event.
Despite the presence of the temporal component in this analysis, their work does not refer
to the dynamics and the location of the sound. Instead, it uses the surrounding events to
improve its classification results. Foggia (Pasquale Foggia et al. 2015) presents a large dataset

of audio events for a surveillance application using acoustic event detection. The dataset
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includes both long and short sounds and presents pieces of background noise with a significant
noise level. The training dataset contains about 20 h, while the test set has around 9 h. In
this sense, the goal of the dataset generation is completeness in terms of events coexisting
with diverse background noise. Moreover, the same research laboratory developed a smaller
dataset of about 1 h—also for surveillance purposes—focused on road acoustic events, which

contains sound events from tire skidding and car crashes (P. Foggia et al. 2016).

Alias (Alfas and Socor6 2017) presents a 9 h and 8 min real-life acoustic database collected
from the urban and suburban environments of the pilot areas of the LIFE+ DYNAMAP
project (Sevillano et al. 2016). This expert-based recording was carried out for discriminating
Road-Traffic Noise (RTN) from Anomalous Noise Events (ANEs) through the Anomalous
Noise Event Detection (ANED) algorithm running on low-cost acoustic sensors (Socoré et al.
2017; Alsina-Pages et al. 2018). The ANEs, which correspond to 7.5% of the labeled data,
were classified into 19 different subcategories after expert annotation, and the SNR levels were
evaluated, taking as a reference the background noise. The SNR results ranged from —10 to
+15 dB, also showing a wide heterogeneity of intermediate SNR, levels. It is worth mentioning
that the recordings in the urban area were conducted at the street level at pre-selected
locations within District 9 of Milan (Zambon et al. 2017), while the recordings in the suburban
area were conducted on the A90 ring-road portals surrounding Rome (see (Bellucci et al. 2017)
for further details). In the final stage of the LIFE+ DYNAMAP project, in (Alsina-Pages
et al. 2019), the same authors presented the production and analysis of a real-operation
environmental audio database collected through the 19-node WASN of a suburban area of
Rome. As aresult, 156 h and 20 min of labeled audio data were obtained, differentiating among
RTN and ANEs (classified in 16 subcategories). The preliminary suburban expert-based
dataset contained 3.2% of the ANEs of the total recorded time, whereas this new dataset
contains only 1.8%. A possible explanation to these differences is that the expert-based
dataset recording was centered in daytime, and this WASN-based dataset was recorded day
and night, where night shows low presence of ANEs with respect to the day. A complementary
analysis to these works can be found in (Alfas et al. 2020), which is focused on evaluating the
aggregate impact of the ANEs occurring in the acoustic environments where the sensors of
WASNSs are installed.

Another WASN-based project that has collected real operation acoustic samples is the
SONYC (Sounds of New York) project (Juan P. Bello et al. 2019). Bello provides a simplified
taxonomy of the sounds of the city by means of a two-level hierarchy, dividing them into
eight coarse categories and 23 fine labels (Cartwright et al. 2019). The generated dataset is
composed of 2351 recordings in the train split and 443 in the validation split, making a total
of 2794 audio samples of 10 s each. The full taxonomy and details of the SONYC project
dataset can be found in a previous work from the same authors (Salamon et al. 2014). The
most innovative proposal of the SONYC project is that by means of the deployed network,
the researchers can locate the distribution of the outdoor noise complaints and identify
whether there have been, e.g., after-hours construction noise (Juan P. Bello et al. 2019). This

identification can be done by means of the occurrence time of the group of annoying events,
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also allowing the retrieval and visualization of the data streams obtained for each complaint
location. Nevertheless, their use of deep learning models requires a large amount of labeled
data, which are unavailable for environmental sound; for this reason, the data necessary for the
training of the model are obtained by means of an audio data augmentation, which deforms
the data using audio transformations (Juan P. Bello et al. 2019). The final dataset used to
train and test the network contains both real-life audio pieces and other synthetically mixed
samples.

Mesaros (Mesaros et al. 2019) details an acoustic dataset recorded in multiple cities in
Europe, which is an extension of the TUT 2018 Urban Acoustic Scenes dataset (Mesaros
et al. 2016). The original dataset contains recordings from Barcelona, Helsinki, London, Paris,
Stockholm, and Vienna, and TAU 2019 adds Lisbon, Amsterdam, Lyon, Madrid, Milan, and
Prague. The recordings were conducted with four devices simultaneously: (i) Soundman OKM
IT Klassik /studio A3 electret binaural microphone, (ii) Samsung Galaxy S7, (iii) IPhone SE, and
(iv) GoPro Herob Session. Taking into account this variety of recording devices, the scenes were
manually labeled to enable training and testing of machine learning algorithms. The dataset
was used in one of the DCASE 2019 Challenges (http://dcase.community/challenge2019/),
which included data from different recorded acoustic scenes and where the acoustic raw pieces

were used together despite their different locations and origins.

.3 Location Selection

Since our focus is the noise pollution caused by traffic and leisure activities, we chose to
study large streets with large influxes of vehicles and with nighttime leisure activities. Our
contacts in the Environmental Quality Department from the Barcelona City Council provided
us with maps of the most problematic places in the district of Eixample based on the noise-
related complaints from neighbors. The maps, which cannot be published for confidentiality
reasons, contrast the areas with the greatest numbers of noise-related complaints about bars,
restaurants, and music venues, many of which have terraces. After an analysis of the maps
with the Department of Environmental Quality, we chose to focus our study in the following
four parallel streets: Muntaner, Aribau, Enrique Granados, and Balmes, between the streets
of Consell de Cent and Mallorca. All these streets have acoustic sensors or sound level meters
located in light posts at around 4 m from the ground in places that were of interest for the
Barcelona city council, as shown by the numbered circles in Figure [.1. We next summarize

the analysis we conducted around these sensors:

1. Sensor 1 is a TA120 from CESVA with protection against external agents (such as birds,
wind, rain, insects, etc.), which is a Class 1 precision sensor with programmable noise
measurement integration time ranging from 1 s to 60 min, and is connected via optic
fiber with the city council. It is located at Balmes street close to the corner with Consell
de Cent street. Balmes is a street with a heavy traffic flow, but few leisure activities. The

street has a sidewalk of two meters and four lanes dedicated to vehicles that circulate
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downwards, from the mountain to the sea. This is an important street to access the city
center. Consell de Cent street, on the other hand, connects the city from west to east.
Even with three lanes intended for traffic, it not a busy street. Since this area does not
have many leisure venues, such as bars or nightclubs, in the street, most noise will be
generated by vehicles, which also tend to be fewer than in upward streets. See picture 1

in Figure 1.2 for a photo of this street near the sensor.

Sound Level Meter 2 is TA025 from CESVA with an outdoor cabinet AR054 and an SC420
sound level meter, and is connected to the city council via 3G. It is located in Enric
Granados, between the streets of Mallorca and Valencia. Enric Granados Street is one
of the few pedestrian streets in the area, where the movement of vehicles is limited to
only one lane and is at a reduced speed. It is also a street with many entertainment
venues. These leisure activities are basically concentrated in bars and restaurants that
have a closing time between 0:00 and 2:00 am. See picture 2 in Figure [.2 for a photo of

this street near the sensor.

Sound Level Meter 3 is TA025 from CESVA with an outdoor cabinet AR054 and a SC420
sound level meter, and is connected to the city council via 3G. It is located in Aribau,
between Valencia and Mallorca. This street connects the city center with the northern
part of Barcelona and has three lanes dedicated to vehicles. Furthermore, traffic circulates
uphill (from the sea to the mountain), which increases the noise from vehicles, which
have to use more engine power to get around. This street also has a very active night
life, with many bars and restaurants that close between 2:00 and 3:00 am. As such, the

noise in this street is caused both by heavy traffic and by leisure activities.

Sound Level Meter 4 is a TA024 from CESVA with an outdoor cabinet AR054 and
a SC310 sound level meter, and is connected to the city council via 3G. It is located in
Muntaner close to the corner of Consell de Cent. While the latter is not a busy street,
Muntaner has a very high density of vehicles. However, as in Balmes, its traffic runs
downhill, meaning that it generates less road traffic noise than in Aribau. On the other
hand, around this corner, there is an important concentration of nightlife venues and,
hence, noise generated from leisure activity. See picture 4 in Figure [.2 for a photo of

this street near the sensor location.

Table .1 summarizes the main characteristics of the streets considered in this study. Since

our aim was to create a dataset for distinguishing between traffic and leisure noise, we chose

to carry out our recording campaign in Aribau street.

.4 Recording campaign

The recording campaign took place in two stages between March and June 2018. Since our

goal was to create a dataset to collect raw acoustic data to distinguish between traffic and

leisure noise and traffic is constant in the chosen location, we chose to carry out the study

during the peak of the leisure activity hours; that is, on Saturdays between 22:00 and 03:00.
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Table I.1: Summary of the main characteristics around the sensors in the area of interest.

Sensor Direction Traffic Leisure Venues

1 Downhill Heavy Few

2 Downhill  Light Many
3 Uphill Heavy Many
4 Downhill Heavy Many

Figure I.1: Studied area in Eixample, Barcelona, with numbers 1 to 4 representing the
positions of acoustic sensors in these streets. Source: Google Maps (last access 26/07/2020).

Therefore, the first campaign was carried out on the day 17 of March of 2018, and resulted
in two audio files. The first audio file has a duration of 124 minutes and 13 seconds and
the second audio file has a duration of 115 minutes and 27 seconds. The second campaign
took place on the 9 of June of 2018 and resulted in a single audio file of 124 minutes and 13
seconds just like in the first campaign. Hence, the presented dataset has a total duration of

363 minutes and 53 seconds.

Despite having acoustic sensors in all the locations mentioned above, these had technical
limitations. They were unable to make recordings for long periods of time (just for a few
seconds) and could only store the sound level and frequency, as well as the time when a noise

event went over a particular dB level. For this reason, we chose to use a ZOOM H5 (H5
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Figure 1.2: Photos from the studied streets in Eixample, Barcelona, with numbers 1-4
representing the views of the streets close to the acoustic sensors. Picture 1 is Balmes street,
picture 2 is Enric Granados street, picture 3 is Aribau street, and picture 4 is Muntaner
street. Source: Google StreetView.

Handy Recorder - Operation Manual 2014) recorder with an attached microphone working
at 44100 Hz with a microphone sensitivity of -45dB/Pa that saved the recordings in . WAV
format instead, as shown in Figure [.3.a. The recorder was placed close to the location of the
acoustic sensor 3, in a first floor balcony at 4.5 meters above the street level (see Figure 1.3.b)
This also allowed us to record the sound without intervening in the street and altering people
or car’s behavior for placing the equipment at the sidewalk. Finally, two technicians, standing
in the street under the recorder, observed the area and took independent notes about the
noises and activities throughout the recording campaign in order to facilitate data labelling

and analysis.

1.5 Data Labeling

In order to create a dataset that could be used to train artificial intelligence (AI) algorithms,
we labeled each audio event using the Audacity program. This is an audio recording
and editing software that allows one to name sections of sound (i.e., noise events) and
associate a text label to them, as shown in Figure [.4. The result for each of the audio files
recorded was a text file (.txt) containing the beginning and end of each section as well as
their corresponding labels, with the following structure: “starting_time_event(seconds)
ending_time_event(seconds) label” The seconds are always referenced to the beginning

(second 0) of each individual audio file.
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Figure 1.3: Photos of the recording device and its relation to the street level. (a) Shows
the Zoom recorder on a first-floor balcony, while (b) shows the view of the street from this
balcony.

The labeling process was independently carried out by two technicians. Careful and
consistent labeling is very important to ensure an effective training of Al algorithms. For this
reason, fragments of the labeled audio were cross-checked by experts of the LIFE+ DYNAMAP
project (Sevillano et al. 2016), who have extensive experience in labeling similar recordings.
The labeling process was repeated up to three times, until experts confirmed that the labels
from the different fragments were consistent. The resulting dataset is composed of the events
and their respective labels, which are shown in Table I.2.

Since the main goal for which this dataset was created was to study the distinction between
leisure and traffic in the city of Barcelona, the third column in Table 1.2 also shows how each
event was classified between the leisure and traffic categories. We have classified as leisure all
sounds related to people, blinds (bars and restaurants), and music. The traffic category, on
the other hand, contains sound events related to vehicles. The authors would like to highlight
that the rtn event represents the road traffic noise produced by different vehicles. The sound
of vehicles could be considered background noise in cities instead of an acoustic event, as
it does not have a clear start and stop time and it is more or less stationary. However, as
the purpose of this dataset is to compare the impact of traffic noise and leisure noise in the

city center of Barcelona, only the road traffic noise that presented a noise level high enough
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to mask any other events occurring simultaneously has been tagged as rtn. This will be

compared to the rest of the acoustic events in future analyses in Section 1.6.

Figure I.4: Screenshot of the Audacity program showing a labeled audio fragment.

It is also worth mentioning the rare noise event, which does not belong to any of the
aforementioned categories. Such events are sounds not easily recognized by a human—their
source was not possible to determine, even after consulting the notes taken by the observers
during the recording campaigns—or a mix of sound events that cannot be classified in a single
category, such as two events occurring at the same time (e.g., high-level rtn and high-level

peop events occurring at the same time).

Table 1.2: Event types considered for the dataset and their respective descriptions and
categories (leisure/traffic).

Label Event Category

bkmu A mix of background city noise and music

blin  The opening and closing of blinds

coug Person coughing

door  Door or knock noise (house, car, or object)

musi  Music in a car or in the street Leisure
peop People talking

troll  Sound of wheels of suitcases (trolley)

whtl ~ Whistle

brak  Noise of brake or car’s timing belt
busd  Opening of a bus or tramway door

. . Traffic
horn  Horns of vehicles (cars, motorbikes, or trucks)
rtn High-intensity road traffic noise
sire Sirens of ambulances or police cars
rare  Unrecognizable noise None
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.6 Dataset Analysis

After recording and labeling the audio files, a detailed analysis was performed in the dataset
to determine the main features of the sounds. Table 1.3 shows the numbers of events detected
on each of the audio files of the recording campaigns. As can be observed, the class that
presents the most events is—by far—peop, followed by rtn, brak, door, and rare. As peop and
door are categorized as leisure sounds, we can deduct that the zone where the audio files were
recorded contains mostly leisure-time noises. In order to be able to confirm this deduction,

deeper analyses were carried out.

Table I1.3: Number of events labeled on each audio file and their durations in seconds.

Event File #1 File #2 File #3 Total

bkmu 11 events, 49.65 s 0 events, 0 s 7 events, 25.61 s 18 events, 75.27 s
blin 1 event, 2.66 s 10 events, 6.34 s 9 events, 29.41 s 20 events, 38.42 s
brak 520 events, 428.51 s 134 events, 144.68 s 156 events, 239.57 s 810 events, 812.77 s
busd 15 events, 8.62 s 36 events, 14.22 s 12 events, 9.42 s 63 events, 32.27 s
coug 15 events, 5.50 s 0 events, 0 s 5 events, 4.14 s 20 events, 9.65 s
door 455 events, 108.85 s 138 events, 52.69 s 138 events, 95.46 s 731 events, 257.01 s
horn 36 events, 29.17 s 21 events, 22.46 s 36 events, 37.54 s 93 events, 89.19 s
musi 12 events, 51.88 s 2 events, 7.95 s 2 events, 9.15 s 16 events, 68.95 s

peop 810 events, 578.93 s 1068 events, 803.82 s 578 events, 2383.50 s 2456 events, 3765.86 s
rare 404 events, 787.65 s 135 events, 319.68 s 132 events, 474.50 s 671 events, 1581.84 s
rtn 574 events, 2132.89 s 343 events, 3789.41 s 233 events, 1968.52 s 1150 events, 7889.90 s

sire 4 events, 36.25 s 2 events, 16.41 s 3 events, 23.74 s 9 events, 76.42 s
troll 8 events, 25.38 s 1 event, 0.56 s 2 events, 8.35 s 11 events, 34.30 s
whtl 2 events, 0.91 s 0 events, 0 s 6 events, 7.13 s 8 events, 8.05 s

Total 2867 events, 4245.81 s 1890 events, 5178.34 s 1319 events, 5316.11 s 6076 events, 14,739.95 s

Apart from the number of occurrences of each type of sound, the duration of each of
the events is important when considering the noise impact of each class. Hence, a boxplot
displaying the duration of each labeled situation is presented in Figure 1.5. As can be observed
in the figure, on average, the class that presents the greatest duration is sire, but considering
that there are only nine samples of this type of sound, this event type may not be as relevant
as other classes with greater numbers of occurrences. However, it is worth noting that the
class that contains more events (i.e., peop) is usually short in time (less than 1 s on average)
in comparison to other events that also appear several times, such as rtn. The higher number
of occurrences of the peop class and the short duration of each of the occurrences are balanced
with the fewer number of occurrences of the rtn class and the longer duration of each of the
occurrences of this class. This fact is explained by the characteristics of each noise source: peop
is labeled each time anybody speaks, as a conversation is mainly not considered a continuous
event; rtn is usually considered a continuous event, despite that it contains several passes or

other vehicles.
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Figure 1.5: Boxplot of the durations (in seconds) of the labeled events for each of the classes
of the dataset.

1.6.1 Signal-to-Noise Ratio Calculation

In fact, calculating the duration of an audio event is meaningless without considering the level
of noise that it produces. Indeed, short events with a high level of noise (impulse noises) are
usually perceived as more annoying by neighbors in comparison to long events with low noise
level (Jarup et al. 2005). Hence, two important parameters to be taken into account are the
SNR (signal-to-noise ratio) and the impacts of the different events. For this reason, and to be
able to compare the traffic noise against the leisure noise, a boxplot of the SNR is shown in
Figure 1.6.

To calculate the SNR, and as the background noise of the different labeled events is not
stationary, we applied the methodology detailed in (Orga et al. 2017). That is, we first
calculated the power of the spectrum of the labeled event (considering that the event is the
“Signal”), and then obtained the power of the background noise by getting samples from before
and after the event. After that, we divided the power of the signal and the power of the noise
to obtain the final value of the SNR in dB. This means that the obtained value is always
relative to the sounds that happen right before and right after the event. In the case that an
event is followed by signal with more power, the SNR would have a negative value, indicating
that the event is less noisy than its environmental noise before and after the event.

As an example, Figure 1.7 depicts the spectrogram of an event labeled as door. In the
figure, samples used as “Signal” or “Noise” have been marked with arrows. The N central

samples (labeled as door) were the ones used to calculate the power of the signal, and the %
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samples before and after the event were used to calculate the power of the noise. This means

that the SNR was computed as:

1. Power of the event:
Ef\il Signal sample?

PS = N

2. Power of the background noise around the event, considering the

after the event depicted in Figure 1.7:

e / Noise 1 sample? + Z Noz'se 2 sample?

(L1)

% samples before and

PN = 1.2
x (12)
3. Finally, the ratio is calculated and converted to dB:
PS
8 . .
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Figure 1.6: Boxplot of the signal-to-noise ratio (SNR; in dB) of the labeled events for each of

the classes of the dataset.

From this analysis, we can conclude that the “traffic” events have, on average, a higher

value of SNR. Concretely, the events that have, on average, the highest SNR values are sire,

horn, and rtn (classes included in the traffic category). Considering together the durations and

SNRs of these events, we can see that, whereas road traffic noise and siren sounds typically

present a duration of few seconds and a high value of SNR, the horn event is almost an

impulse noise (very short in time and with a high level of SNR). However, we can see in

the boxplot that a few occurrences of ritn and sire events have SNR values of around 20 dB,

91



I. BCNDataset: Description and Analysis of an Annotated Night Urban Leisure Sound
Dataset

meaning that independently of their duration, they present an extremely high noise level in

comparison to their surrounding environment.

Regarding the door events, we can see that, whereas some occurrences have a high SNR
(reaching a maximum of about 30 dB), some other occurrences present negative values. The
main reason behind this phenomenon is that the dataset contains two main door types tagged
with the same label. On the one hand, the closing of car doors has been labeled as doors.
Because of the materials of the car, and as they are very heavy, when people close these types
of doors, they make an impulse sound (very short in time and with a lot of energy). One
example of this type of door event is shown in Figure [.7. On the other hand, doors related to
leisure places, such as such as bars, have also been tagged as doors. These doors are lighter

and typically present lower levels of energy.

Another interesting observation is that all the musical events (musi and bkmu) present SNR
values smaller than 0 dB on average, meaning that they are less noisy than their surrounding
environmental noise. However, something that must be taken into account is that, when
labeling the recorded audio files, the authors noticed that all the musical sounds originated
from cars passing by with their windows opened, so they were all surrounded by rtn. Hence,
as musical sounds are always surrounded by an event that typically presents a positive SNR

by itself, they are partially masked in the recordings.

Finally, analyzing the most common event in the dataset, peop, we can see that some
occurrences present a positive SNR and some other occurrences present a negative value. The
main reason for this is that, during the recording campaign, there were two types of people in
the street. On the one side, there were people walking by the street and talking normally
to each other. On some occasions, these occurrences were masked by other events or could
not be distinguished from background noise, so they present negative values of SNR. On the
other side, there were people standing in the street and having loud conversations—that even
included a few shouts—close to the recording sensor. These are the occurrences that present
high SNR values.

N/2 samples N samples N/2 samples

Figure 1.7: Spectrogram of a door event indicating which samples were used as signal or noise
for the SNR calculation.
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.6.2 Event Impact Analysis

Apart from the SNR calculation, we also calculated the impact of each event. The impact
measures the contribution of the labeled event over the equivalent level of a certain period of
time after applying the A-weighting filter (St Pierre Jr and Maguire 2004). This indicator
was calculated following the methodology explained in (Orga et al. 2017). As in the cited
work, the impact is relative to the 5 min of L 4., measured surrounding the event. To obtain
the final impact value, the L 4., of the signal is obtained by first applying the A-weight filter
and then obtaining the equivalent level. Then, the labeled event is removed from the audio
file and replaced by an interpolated value of the background noise to maintain a continuous
energy of the signal. Finally, the impact is measured as the subtraction between the initial
L peq and the L e, without the labeled event. For more details about this procedure, the
reader is referred to (Orga et al. 2017).

The value of impact of an event is highly related to the type of event that is being measured.
If it is an event that presents a high value of SNR or its duration is long, the impact will
have a high value. If both conditions are met (the SNR is high and the duration is long), the
impact will be extremely high. As there are some events that usually have similar durations
(e.g., a door event is not likely to last more than 1 s, while a sire event will often last for several
seconds), the impacts of the events from the same class may have similar values. Impact
values can be deduced by looking at the boxplots presented in Figures 1.5 and 1.6. Events
that present smaller boxes in the boxplots (such as the busd, cough, or door will typically
have similar values of impact. However, events that present bigger boxes, such as the rtn or
sire, will have a wider range of impact values, as the duration and SNR can be very different

when comparing events belonging to the same class.

Figure 1.8 shows the impact of all the labeled events divided among the three recording
campaigns. As expected, the Figure suggests that the events that have longer durations also
present the highest impact values. It can also be observed that both the traffic sounds and
the leisure sounds have similar values of impact (the circles presented in the Figure have
similar sizes). Actually, on the one hand, only a few events present an increase of L 4., greater
than 0.01, which means that all the events have similar contributions to the noisiness of the
environment. On the other hand, there are several events—which usually have a duration
close to milliseconds—that present a negative impact, which means that their noisiness is
lower than the average background noise. The results observed are highly correlated with the
two previous boxplots (Figures [.5 and 1.6). More precisely, the most remarkable event is the
rtn, which, apart from being the class that presents occurrences with the highest durations,
also presents the biggest circle, meaning that the impact is more notable.

Figure 1.8 is also useful to see the duration, SNR, and impact of the events for each
individual audio recording, as there are several notorious differences between the features
of the events of the different classes. Whereas in the first and second files, the peop class
typically has a duration smaller than 10 s (with only two exceptions in audio file #1), the
third audio file presents several samples of peop talking in the street with longer duration.

Given that the recording campaigns took place on different days (audio files #1 and #2 were
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recorded one day and audio file #3 was recorded on a another day), it is normal that the

number of people in the street standing close to the sensor is slightly different.
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Figure 1.8: Analysis of the impacts of the audio events.

1.6.3 Analysis of the Time—Event Distribution

Figure 1.9 depicts the occurrence of the events in time. The figure shows three sub-plots, each
one representing one of the audio files used to generate the dataset. The x-axis of each sub-plot
represents the time of the audio file in minutes, and the y-axis contains the 14 different possible
categories of the labels shown in Table 1.2. To display each event’s occurrence, a colored dot
has been drawn at its starting second in the x-axis and at the height of its label. For example,
if a whtl event happened at minute 0 in the third audio file, a dot would be drawn around the
top-left corner of the last sub-plot.

The color of the dot represents the SNR value of that event, calculated as explained in
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Figure 1.9: Distribution of the labeled events of each audio file in time. Each subplot stands for
the results of an audio file. The x-axis is the time in minutes and the y-axis represents the different
labeled categories that can be found in the dataset. Each dot corresponds to an event of the y-axis
type starting at the moment indicated in the x-axis. The color of a dot represents the SNR of that
concrete event and the size of the dot represents the duration of that event.
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Figure 1.10: Intermittency Ratio of the three audio files presented in the dataset calculated
with windows of 10 minutes. The y-axis represents the IR of each audio file and the x-axis
represents the time evolution (in minutes) of the audio file that is being evaluated.

Section 1.6.1. The red, purple, and blue dots represent the events that have a positive SNR,
and the rest of dots represent the events that have a negative SNR. As shown in the plots,
typically, the events that present higher SNR in the three audio files are rtn and sire, as well
as some brak and door events. Whereas peop is the category that has more occurrences, there
are just a few events with SNR values greater than 10 dB. The size of each dot represents the
duration of the event. Longer events are associated to bigger dots, whereas the events shorter

than 1 s are represented with the smallest dots.

Regarding the time distribution of the events, we can see that there is not an accurate
pattern for the occurrences of events of different classes or among the different audio files.
Both traffic and leisure noises happen all along the audio files in a uniform distribution. The
events that are more stable in the dataset are peop and rtn; they are present during all the
audio files (we can see there are dots over all the horizontal axis, creating almost a constant
line for these two categories). Then, audio files number 1 and 3 present higher occurrences of
door and brak events, and they are also distributed across the audio files. In the second audio
file, however, the events of those types are present mainly at the beginning, and there are
just a few occurrences at the end. A remarkable fact is that, concretely, the few door events
happening at the end of the second audio file (from minute 90 to minute 110), are the ones

that present higher SNR values in that category.

Looking at the sizes of the dots, we can observe that even though the number of occurrences
of peop and rtn seems to be constant, there is a considerable difference regarding the duration
of these two events. In the three audio files, the rtn category has more occurrences of long
events, and the SNR value is greater, too. This is consistent with the results previously

observed in Figure [.8.
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1.6.4 Analysis of the Intermittency Ratio

As a final analysis, the intermittency ratio (IR) has been calculated and is presented in
Figure 1.10. The intermittency ratio is a metric that was first introduced by Wunderli et al.
in (Wunderli et al. 2016) and measures the “eventfulness” of a traffic environment. Concretely,
it reflects the contributions of events that surpass a certain threshold to the total amount of
energy in a certain period of time, measuring the impact on the total L 4., of all the individual
loud events. Concerning the focus of the contribution of this work, with a standard metric,
the IR supports the idea that the events detected and labeled (e.g., rtn) present a clear impact
on the global value of the equivalent level measured in the street.

The procedure to calculate the ratio is as follows (Wunderli et al. 2016; Brambilla et al.
2019): First, the equivalent level of energy of a window of size 1" is calculated as Leg 7,40t This
is the amount of energy contained inside the window. For this study, we chose a window of 10
min, following the fact that the L 4., is mainly stationary, and we intend to define the impacts
of the events with the shortest window frames possible to evaluate the differences in the axes
of the time series. This trade-off time window allows us to have 12 IR values for each audio
file (except in the case of Audio File #2, where we only have 11 values because the audio file
is shorter). Then, the equivalent level of energy of each 1-s fragment inside the window was
also calculated. In order to follow the methodology of the previous works (Wunderli et al.
2016; Brambilla et al. 2019) and to be able to obtain comparable results, those 1-s fragments
presenting a L, greater than Ley 70t + 3 dB were considered as “events”, independently of
their labels in the dataset. Then, considering all the 1-s windows that surpassed the +3 dB
threshold, the Heaviside step function was applied to remove the non-event sounds inside the
10-min window, and a new Leg 7 events Was calculated to obtain the energy of only those 1-s
fragments presenting a L., level greater than L., 1 t0:+ 3 dB. Finally, the ratio was calculated
by dividing the Leg 7 cvents DY Leq T tot-

Summarizing, we used the next three equations to obtain the IR of each 10-min window
of the three audio files of the dataset:

Leg 110t = 10log;q <E7]1V:3VXW> [dB], (1.4)
where X[n] are the samples of the audio file and N is the number of samples of a window (in

our case, 10 min times the sampling frequency of the audio file).

(L5)

N
Le%T,events = 101Oglo (Zn—o H[X[n] — K]X[n]2> [dB]a

N

where H[X[n] — K] is the Heaviside step function and K is the Leq 740+ plus the threshold—in
our case, set to 3 dB, as in (Brambilla et al. 2019).

100~1Leq,T,events
IR = (S (L6)

To interpret the results of this ratio, we have to consider that, on the one hand, a ratio

higher than 0.5 indicates that more than half of the energy of the signal is due to events
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(understanding events as parts of the signal with L., greater than K'). This situation occurs
when the events clearly stand out from the parts of the signal that are not considered as
events (i.e., background noise), meaning that the ratio is high when the amount of energy
of the events is significantly higher than the background noise. On the other hand, a small
ratio value means that the amount of energy of the events is considerably low compared to
the background noise. This situation occurs when the noise level of the events is close to the
threshold. Hence, a small ratio in a street does not mean that the general noise level is lower
than the noise level in a street with a higher ratio, but that the noise level of the events is
similar to the background noise.

Evaluating the results in Figure 1.10, we can conclude that the three audio files presented in
the dataset have an IR ranging from 0.24 (minute 90 from the Audio File #3) to 0.69 (minute
110 from Audio File #1). The relatively low values of IR (comparing them, for example,
with the ones obtained from measurements in a local street in the work of Brambilla et al. in
(Brambilla et al. 2019)), together with the impact values and number of events analyzed in
previous sections (Figures 1.3 and 1.8), suggest that the street where the recordings took place
is pretty noisy in terms of background noise, and the energy contribution is balanced between
background noise and events. Nevertheless, there are several IR evaluations over 50%, so, at
certain moments, mainly passes of rtn and other events related to leisure (e.g., peop shouting

and others) can have a relevant contribution to the value of L 4¢ total of the acoustic file.

.7 Materials

The labeled dataset can be downloaded from https://doi.org/10.5281/zenodo.3956503.
The dataset is structured in six files: three audio files (.wav) and three label files (.txt).
The two audio files recorded in the first campaign have been named File-1.wav and File-2.wav,
and the audio file recorded in the second campaign has been named File-3.wav. The names
of the label files belonging to each of the audio files follow the same naming scheme, adding
a _ labels at the end of the name (e.g., File-1 labels.txt).

.8 Conclusions

This work has presented the creation and the analysis of a real-life environmental audio
dataset in the district of Eixample, Barcelona. The dataset is composed of six hours of audio,
was recorded on two Saturdays between 22:00 and 03:00, and contains 14 types of events, with
a total of 6076 event occurrences. These events were classified into two categories: leisure and
traffic, with the exception of the rare events, whose sources were not possible to determine
or were a mix of sounds. The most common type of noise event is people, followed by road
traffic noise, brakes, doors, and rare events. The fact that people and door events are among
the most common indicates that the area and time chosen for the recording campaigns are
suitable to measure the impact of leisure activities.

An SNR analysis comparing traffic noise with leisure noises revealed that traffic events

have, on average, a higher value of SNR; siren, horn, and road traffic noise have the highest
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ones. An impact analysis suggested that the events with longer durations also had the highest
impact. Both traffic and leisure had similar values of impact, but only a few had an increase
in Lyeq of greater than 0.01, meaning that they, in fact, contribute in a similar way to the

noisiness of the environment.

The time event distribution indicates that the noises of people and traffic are constant
during the recording, with the traffic noises being longer and confirming the greater SNR
values observed previously. Finally, an analysis of the intermittency ratio shows that the
recordings present low values of IR compared to other studies, which, together with the impact
values and the number of events, indicates a noisy street with a balanced contribution of
energy background noise and events over 3 dB, with some punctual exceptions, including loud

peop or rtn street noise.

The dataset described in this paper is open and freely available to the community and may
be used for different purposes. It can also be extended by means of further recordings or data
augmentation, and also combined and compared with other datasets. A greater understanding
of leisure and traffic events at night could help policymakers to regulate the noise produced
in leisure locales, such as restaurants, bars, or discotheques. In particular, if an automatic
sensor-based system is implemented to reliably distinguish and measure leisure activities, city
councils would be able to continuously measure such noises, both in specific places in the
city and during local festivities. Such information could inform urban planners and provide
evidence to change the design of certain places in the city to improve the soundscape perceived

by the neighbors.

Our future work is centered on validating the completeness of the dataset published. For
this purpose, we plan to record another pair of days close to the locations of the other sensors
in Figure 1.2, as pointed out by our colleagues from the Barcelona City Council. If more leisure
events are detected in the new recordings, we would complete this corpus before proceeding
to the event detection. Having more data points would also allow us to correlate the types
of noises identified with the numbers of complaints in each area, which might give us some
pointers for the types of noises that are most annoying to neighbors. In addition, given that
the analysis focused on commonly used metrics in well-being- and health-related studies, we
might be able to compare the characteristics of the noises observed with similar studies in
other cities (Dratva et al. 2012; Hofman et al. 1995; Wunderli et al. 2016; Ottoz et al. 2018;
Easteal et al. 2014).

Furthermore, a deeper analysis of the impact of the labeled sounds will be conducted
with a wider comparison between events belonging to the same category in order to determine
differences between the impacts of each event, with special focus on the surrounding
environmental noise, which is a key issue for the evaluation of SNR and impact. Once
these analyses are conducted, the rare category has to be vertically analyzed in order to
determine which types of events usually correspond to that fuzzy label; they cannot be
classified inside any of the other categories, but maybe we can make more acoustic information
about all the rare events available. Finally, we plan to train an ML system (similar to (Socor6

et al. 2017)) in order to automatically classify noise events at night, taking into account at
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least leisure and traffic.

Author’s contributions

All authors have significantly contributed to this work. E.V.-V. contributed to the tagging of
the recordings and writing and carried out the data analyses. L.D. was involved in the project
conceptualization and coordination, as well as writing. R.M.A.-P. participated in the tagging
and writing, and also offered conceptual and technical support. F.P. and H.V. carried out
the recording campaigns, participated in the tagging, and carried out some preliminary data

analyses. All authors have read and agreed to the published version of the manuscript.

Funding

The research leading to these results has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Sklodowska-Curie grant agreement
No. 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of
the Government of Catalonia. The authors thank the Secretaria d’Universitats i Recerca del
Departament d’Economia i Coneixement (Generalitat de Catalunya) under grant 2017 SGR
966 and the Ramon Llull University (ref. 2020.URL-Proj-053).

Acknowledgements

The authors would like to thank our colleagues from the Environmental Department of
Barcelona City Council for the guidance in this work, especially to Julia Camps.

Conflict of interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANEs Anomalous Noise Events

ANED Anomalous Noise Event Detector

Al Artificial Intelligence

CNOSSOS-EU Common Noise Assessment Methods in Europe
END Environmental Noise Directive 2002/49 /EC

IR Intermittency Ratio

SNR Signal-to-Noise Ratio

WASN Wireless Acoustic Sensor Networks

100



References

References

Alfas, Francesc and Alsina-Pages, Rosa Ma (2019). ‘Review of Wireless Acoustic Sensor
Networks for Environmental Noise Monitoring in Smart Cities’. In: Sensors vol. 2019,
p- 13.

Alias, Francesc, Orga, Ferran, Alsina-Pages, Rosa Ma and Socor6, Joan Claudi (2020).
‘Aggregate Impact of Anomalous Noise Events on the WASN-Based Computation of Road
Traffic Noise Levels in Urban and Suburban Environments’. In: Sensors vol. 20, no. 3,
p. 609.

Alias, Francesc and Socor6, Joan Claudi (2017). ‘Description of anomalous noise events for
reliable dynamic traffic noise mapping in real-life urban and suburban soundscapes’. In:
Applied Sciences vol. 7, no. 2, p. 146.

Alsina-Pages, Rosa Ma, Alfas, Francesc, Socord, Joan Claudi and Orga, Ferran (2018).
‘Detection of Anomalous Noise Events on Low-Capacity Acoustic Nodes for Dynamic Road
Traffic Noise Mapping within an Hybrid WASN’. In: Sensors vol. 18, no. 4, p. 1272.

Alsina-Pages, Rosa Ma, Orga, Ferran, Alias, Francesc and Socord, Joan Claudi (2019). ‘A
WASN-Based Suburban Dataset for Anomalous Noise Event Detection on Dynamic Road-
Traffic Noise Mapping’. In: Sensors vol. 19, no. 11, p. 2480.

Basner, Mathias, Miiller, Uwe and Elmenhorst, Eva-Maria (Jan. 2011). ‘Single and Combined
Effects of Air, Road, and Rail Traffic Noise on Sleep and Recuperation’. In: Sleep vol. 34,
pp. 11-23.

Bello, Juan P., Silva, Claudio, Nov, Oded, Dubois, R. Luke, Arora, Anish, Salamon, Justin,
Mydlarz, Charles and Doraiswamy, Harish (2019). ‘SONYC: A System for Monitoring,
Analyzing, and Mitigating Urban Noise Pollution’. In: Communications of the ACM vol. 62,
no. 2, pp. 68-77.

Bellucci, Patrizia, Peruzzi, Laura and Zambon, Giovanni (2017). ‘LIFE DYNAMAP project:
The case study of Rome’. In: Applied Acoustics vol. 117, pp. 193-206.

Brambilla, Giovanni, Confalonieri, Chiara and Benocci, Roberto (2019). ‘Application of the
intermittency ratio metric for the classification of urban sites based on road traffic noise
events’. In: Sensors vol. 19, no. 23, p. 5136.

Cartwright, Mark, Mendez, Ana Elisa Mendez, Cramer, Jason, Lostanlen, Vincent, Dove,
Graham, Wu, Ho-Hsiang, Salamon, Justin, Nov, Oded and Bello, Juan (2019). ‘Sonyc
urban sound tagging (sonyc-ust): a multilabel dataset from an urban acoustic sensor
network’. In.

Cik, Michael, Lienhart, Manuel and Lercher, Peter (2016). ‘Analysis of Psychoacoustic and
Vibration-Related Parameters to Track the Reasons for Health Complaints after the
Introduction of New Tramways’. In: Applied Sciences vol. 6, no. 12, p. 398.

Cox, P and Palou, J (2002). ‘Directive 2002/49/EC of the European Parliament and of the
Council of 25 June 2002 Relating to the Assessment and Management of Environmental
Noise-Declaration by the Commission in the Conciliation Committee on the Directive
Relating to the Assessment and Management of Environmental Noise (END)’. In: Annex
I, OJ vol. 189, no. 18.7, p. 2002.

101



|. BCNDataset: Description and Analysis of an Annotated Night Urban Leisure Sound
Dataset

Dratva, Julia et al. (2012). ‘Transportation Noise and Blood Pressure in a Population-Based
Sample of Adults’. eng. In: Environmental health perspectives vol. 120, no. 1, pp. 50-55.

Easteal, Matthew, Bannister, Simon, Kang, Jian, Aletta, Francesco, Lavia, Lisa and Witchel,
Harry (Sept. 2014). ‘Urban Sound Planning in Brighton and Hove’. In.

FEuropean Commission, Joint Research Centre—Institute for Health and Consumer Protection
(2012). Common Noise Assessment Methods in Europe (CNOSSOS-EU) for strategic noise
mapping following Environmental Noise Directive 2002/49/EC.

European Environment Agency, 2020 (n.d.). The European environment — state and outlook
2020. https://www.eea.europa.eu/soer/2020 (accessed on 01 April 2020).

Foggia, P., Petkov, N., Saggese, A., Strisciuglio, N. and Vento, M. (Jan. 2016). ‘Audio
Surveillance of Roads: A System for Detecting Anomalous Sounds’. In: IEEE Transactions
on Intelligent Transportation Systems vol. 17, no. 1, pp. 279-288.

Foggia, Pasquale, Petkov, Nicolai, Saggese, Alessia, Strisciuglio, Nicola and Vento, Mario
(2015). ‘Reliable detection of audio events in highly noisy environments’. In: Pattern
Recognition Letters vol. 65, pp. 22-28.

H5 Handy Recorder - Operation Manual (2014). Zoom Corporation.

Heittola, Toni, Mesaros, Annamaria, Eronen, Antti and Virtanen, Tuomas (2013). ‘Context-
dependent sound event detection’. In: FURASIP Journal on Audio, Speech, and Music
Processing vol. 2013, no. 1, pp. 1-13.

Hofman, W.F.; Kumar, A. and Tulen, J.H.M. (1995). ‘Cardiac reactivity to traffic noise during
sleep in man’. In: Journal of Sound and Vibration vol. 179, no. 4, pp. 577-589.

Jarup, Lars et al. (2005). ‘Hypertension and exposure to noise near airports (HYENA): study
design and noise exposure assessment’. In: Environmental health perspectives vol. 113,
no. 11, pp. 1473-1478.

Jarup, Lars et al. (2008). ‘Hypertension and Exposure to Noise Near Airports: the HYENA
Study’. eng. In: Environmental health perspectives vol. 116, no. 3, pp. 329-333.

Mesaros, Annamaria, Heittola, Toni and Virtanen, Tuomas (Aug. 2016). ‘TUT database for
acoustic scene classification and sound event detection’. In: 24th Furopean Signal Processing
Conference (EUSIPCO 2016). Vol. 2016. Budapest, Hungary: IEEE, pp. 1128-1132.

Mesaros, Annamaria, Heittola, Toni and Virtanen, Tuomas (2019). ‘Acoustic scene classification
in DCASE 2019 challenge: closed and open set classification and data mismatch setups’.
In.

Nakajima, Yasutaka, Sunohara, Masahiro, Naito, Taisuke, Sunago, Norihito, Ohshima, Toshiya
and Ono, Nobutaka (Aug. 2016). ‘DNN-based Environmental Sound Recognition with
Real-recorded and Artificially-mixed Training Data’. In: Proc. 45th International Congress
and Ezposition on Noise Control Engineering (InterNoise 2016). Hamburg, Germany:
German Acoustical Society (DEGA), pp. 3164-3173.

Orga, Ferran, Alias, Francesc and Alsina-Pages, Rosa (Dec. 2017). ‘On the Impact of Anomalous
Noise Events on Road Traffic Noise Mapping in Urban and Suburban Environments’. In:

International Journal of Environmental Research and Public Health vol. 15, p. 13.

102


https://www.eea.europa.eu/soer/2020

References

Ottoz, Elisabetta, Rizzi, Lorenzo and Nastasi, Francesco (Apr. 2018). ‘Recreational noise:
Impact and costs for annoyed residents in Milan and Turin’. In: Applied Acoustics vol. 133,
pp. 173-181.

Ritchie, Hannah and Roser, Max (2020). ‘Urbanization’. In: Our World in Data. ht-
tps://ourworldindata.org/urbanization.

Salamon, J. and Bello, J. P. (Mar. 2017). ‘Deep Convolutional Neural Networks and Data
Augmentation for Environmental Sound Classification’. In: IEEE Signal Processing Letters
vol. 24, no. 3, pp. 279-283.

Salamon, J., Jacoby, C. and Bello., J. P. (Nov. 2014). ‘A dataset and taxonomy for urban
sound research’. In: Proc. of 22nd ACM International Conference on Multimedia. Orlando,
Florida, USA: ACM, pp. 1041-1044.

Sevillano, Xavier et al. (May 2016). ‘DYNAMAP — Development of low cost sensors networks
for real time noise mapping’. In: Noise Mapping vol. 3 (1), pp. 172-189.

Socoré, Joan Claudi, Alias, Francesc and Alsina-Pages, Rosa Ma (2017). ‘An Anomalous
Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and
Suburban Environments’. In: Sensors vol. 17, no. 10, p. 2323.

St Pierre Jr, Richard L and Maguire, Daniel J (2004). ‘The impact of A-weighting sound
pressure level measurements during the evaluation of noise exposure’. In: Noise-Con 04.
The 2004 National Conference on Noise Control Engineeringlnstitute of Noise Control
Engineering Transportation Research Board.

Turisme a Barcelona - ciutat i regi6, Observatori del (2019). Informe de I’Actividad Turistica
2019 - Capsula 1.

Valero, Xavier and Alfas, Francesc (2012). ‘Hierarchical classification of environmental noise
sources considering the acoustic signature of vehicle pass-bys’. In: Archives of Acoustics
vol. 37, pp. 423—-434.

W, Clark W (1991). ‘Noise exposure from leisure activities: a review’. In: Journal Acoustic
Soc Am, pp. 175-181.

World Health Organization, 2018 (n.d.). Environmental Noise Guidelines for the European
Region. URL: https://www.euro.who.int/__data/assets/pdf_file/0008/383921/noise-
guidelines-eng.pdf. (accessed on 31 July 2020).

Wunderli, Jean Marc, Pieren, Reto, Habermacher, Manuel, Vienneau, Danielle, Cajochen,
Christian, Probst-Hensch, Nicole, R66sli, Martin and Brink, Mark (2016). ‘Intermittency
ratio: A metric reflecting short-term temporal variations of transportation noise exposure’.
In: and environmental epidemiology vol. 26, no. 6, pp. 575-585.

Zambon, Giovanni, Benocci, Roberto, Bisceglie, Alessandro, Roman, H. Eduardo and Bellucci,
Patrizia (2017). ‘The LIFE DYNAMAP project: Towards a procedure for dynamic noise
mapping in urban areas’. In: Applied Acoustics vol. 124, pp. 52-60.

Authors’ addresses

Ester Vidaha-Vila GTM — Grup de Recerca en Tecnologies Media, La Salle Campus

Barcelona - Universitat Ramon Llull Quatre Camins, 30, 08022 Barcelona, Spain

103


https://www.euro.who.int/__data/assets/pdf_file/0008/383921/noise-guidelines-eng.pdf
https://www.euro.who.int/__data/assets/pdf_file/0008/383921/noise-guidelines-eng.pdf

I. BCNDataset: Description and Analysis of an Annotated Night Urban Leisure Sound
Dataset

ester.vidana@salle.url.edu

104


mailto:ester.vidana@salle.url.edu

Paper |l

Low-Cost Distributed Acoustic
Sensor Network for Real-Time Urban
Sound Monitoring

Ester Vidana-Vila, Joan Navarro, Cristina Borda-Fortuny, Dan
Stowell, Rosa Ma Alsina-Pages

Published in Electronics, December 2020, volume 9, issue 12, pp. 2119. DOI: 10.3390/elec-
tronics9122119.

Abstract

Continuous exposure to urban noise has been found to be one of the major threats to
citizens’ health. In this regard, several organizations are devoting huge efforts to designing
new in-field systems to identify the acoustic sources of these threats to protect those
citizens at risk. Typically, these prototype systems are composed of expensive components
that limit their large-scale deployment and thus reduce the scope of their measurements.
This paper aims to present a highly scalable low-cost distributed infrastructure that
features a ubiquitous acoustic sensor network to monitor urban sounds. It takes advantage
of (1) low-cost microphones deployed in a redundant topology to improve their individual
performance when identifying the sound source, (2) a deep-learning algorithm for sound
recognition, (3) a distributed data-processing middleware to reach consensus on the sound
identification, and (4) a custom planar antenna with an almost isotropic radiation pattern
for the proper node communication. This enables practitioners to acoustically populate
urban spaces and provide a reliable view of noises occurring in real time. The city
of Barcelona (Spain) and the UrbanSound8K dataset have been selected to analytically
validate the proposed approach. Results obtained in laboratory tests endorse the feasibility

of this proposal.

II.1 Introduction

Research dating back to the last century (Alexander 1968) has acknowledged that continuous
exposure to high levels of noise is harmful for human beings, as recently highlighted by the
World Health Organization (WHO) (WHO/Europe | Noise - Data and statistics n.d.). For
instance, noise can negatively affect sleep quality (Test et al. 2011), induce chronic effects

on the nervous sympathetic system (Su-bei 2007), or even cause psycho-physiological effects
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such as annoyance, reduced performance or aggressive behavior (Moudon 2009). In this
context, noise is often defined as a type of unwanted and/or harmful sound that disturbs
communication between individuals (Moudon 2009; Juan P Bello et al. 2019), i.e., the overall
acoustic energy measured in Sound Pressure Levels (SPLs) exceeds a predefined limit (Flindell
and Walker 2004).

Accordingly, several agencies and public departments (e.g., NSW Environment Protection
Agency, NYC Department of Environmental Protection, European Commission) have defined
regulations (Flindell and Walker 2004) to limit the amount of noise (i.e., equivalent averaged
level LAeq) that the population can be exposed to. For instance, the WHO recommends
that noise must be below 35 dBA in classrooms to enable good teaching and learning
conditions, or below 30 dBA in bedrooms to enable good quality sleep (Hurtley 2009). Most of
these regulations define the maximum level of noise allowed in a specific scenario (e.g., home
buildings, factories, schools) and a specific acoustic source (e.g., motor vehicles, air conditioners,
machinery, water heaters, etc.) (Office 2017). However, such a standard way of defining and
regulating noise faces two important challenges when applied and enforced in the real world
(Flindell and Walker 2004): acoustic source isolation and identification and practical on-field

noise measurement for automatic acoustic surveillance:

1. It is very difficult to isolate and identify a specific noise source from the overall acoustic
landscape since the aforementioned SPL measurements aggregate the energy level from
all the acoustic sources at the same time (Juan P Bello et al. 2019). Indeed, in a
real-world environment, several different acoustic sources may emerge over time and,
thus, the definition of a fixed SPL threshold for a given area is not always appropriate
(Mun and Geem 2009), i.e., the acoustic threshold should be dynamic according to the
sound (noise) that is currently occurring. Unfortunately, the SPL value per se does not
provide enough practical information to facilitate the identification of the sound (noise)
source(s) (Mun and Geem 2009), which complicates the task of verifying whether an

acoustic landscape meets the local regulations or not.

2. Also, effectively measuring the amount of noise in large-scale environments (e.g.,
urban areas) requires a considerable number of resources in terms of highly qualified
professionals—it has been reported that the NYC Department of Environmental
Protection has up to 50 professionals designated to dealing with noise complaints
in the city of New York (despite this, their average response time is still about 5 days)
(Juan P Bello et al. 2019)—and expensive equipment (Juan P Bello et al. 2019). Indeed,
this equipment can range from $1500 up to $20,000 depending on the type, measurement
range, and capability of the microphone to produce noise spectral data (Mydlarz et al.
2017). Therefore, conducting scalable, long-term (i.e., conducting measurements 24 h a
day 365 days a year) noise surveillance tasks in wide span areas has emerged as a hot

research topic in recent years.

Over the last decade, Ubiquitous Sensor Networks (USNs) (13 2008) have emerged as

a powerful alternative to address the challenges of scalable and cost-effective (Ferrandez-
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Pastor et al. 2016) sensing in large-scale areas (Murty et al. 2008). The benefits of USNs
have been exploited in several domains, ranging from water pollution monitoring (Shin et
al. 2007) to smart agriculture (Ferrandez-Pastor et al. 2016), including Wireless Acoustic
Sensor Networks (WASNs) for Ambient Assisted Living (Navarro et al. 2018). Indeed, USNs
provide a design reference to conceive versatile architectures able to interconnect a high
number of devices—typically with limited capabilities in terms of storage, computation and
communications—while providing fault tolerance and robustness with the aim of increasing
the performance of individual sensors (Shin et al. 2007; Bagula et al. 2012; Koucheryavy et al.
2015). Indeed, the idea of using an interconnected set of inexpensive commodity hardware
to beat the performance of individual high-end devices is well known in the literature of
distributed systems and has been massively exploited— the Google File System (Ghemawat
et al. 2003) being one of its most representative examples.

This work aims to extrapolate this idea to the field of urban sound monitoring, i.e., the
use of a set of low-cost microphones deployed in a redundant topology—Dbeing the sensing
layer (13 2008) of an ubiquitous sensor network that will later provide them with additional
storage and computing features—to listen to events from large-scale areas in a cost-effective
way while obtaining a reasonable accuracy. Hence, the modest performance of the low-cost
microphones can be compensated by the robustness of the computing algorithms running on
top of the ubiquitous sensor network (Piper et al. 2017). Therefore, the purpose of this paper
is to propose a low-cost cost distributed acoustic sensor network for real-time urban sound
monitoring in large-scale scenarios. More specifically, the proposed approach aims to present a
network composed of inexpensive hardware (i.e., Raspberry Pi Model 2B (RP1i) (Raspberry Pi
Official web site n.d.)) in which each node is conceived to (1) process a real-time audio stream
from a directly connected low-cost microphone, (2) locally identify the occurring events in
this audio stream by means of a deep neural network, (3) communicate the identified events
to the neighboring nodes of the network by means of a custom planar antenna with almost
isotropic radiation, and (4) globally validate these locally discovered events by means of a
distributed consensus protocol.

To sum up, the main contributions of this work are:

e A deep-learning algorithm for urban sound identification in real time to be deployed in

low-cost devices with modest computing and storage capabilities.

e A custom planar antenna with almost isotropic radiation pattern for robust and low-

energy consumption communications between nodes.

o A distributed consensus protocol to compare the detection results of each individual

node with its neighboring nodes.

To further validate the proposed approach, we evaluated automatic recognition against
the UrbanSound8K dataset (J. Salamon et al. 2014) as a source of typical urban audio events
and selected the city of Barcelona (Spain) as a reference model to deploy the proposed system.

Indeed, Barcelona was designed following a particular square block grid (see Figure I1.1) that
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makes it an ideal scenario to deploy urban ubiquitous sensor networks. However, current
noise surveillance initiatives in Barcelona only focus on sound pressure levels and span an
average area of 1 square kilometer per sensor. This work aims to enrich the measurements
by identifying the sound source and providing a fine-grained analysis of their location. The
evaluation of the proposed system has been done as follows: (1) the communication antenna
has been validated by means of simulation, and (2) the acoustic recognition together with
the distributed consensus protocol have been validated by means of laboratory testing rather
than full real-world deployment, planned for future work. The regularly defined urban grid of

Barcelona greatly facilitates this aspect of spatial modelling.

Figure I1.1: Aerial view of the urban grid structure of the city of Barcelona (Wikipedia
contributors 2020).

The remainder of this paper is organized as follows. Section 1.2 reviews the related
work on acoustic sensor networks for environmental noise monitoring. Section [1.3 details
the proposed system architecture and details its three layers: data processing, distributed
consensus, and communications. Section I1.4 presents the conducted experimental evaluation.
Section 1.5 discusses the obtained results. Finally, Section I1.6 concludes the paper and

proposes some future work directions.

II.2 Related Work

In this section, we describe related works to the main WASN-based approaches developed in
recent years to monitor environmental noise. The main goal of these networks is to collect
the L eq levels alone or together with extra information obtained in each node. In some
situations, this extra information gathered in each node corresponds to data about the sound

source measured in each sensor.
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11.2.1 WASNSs to Monitor the Noise Levels

Most of the WASNS in this first category use commercial sound level meters as sensor nodes.
These devices are usually connected to a central server of the WASN, which collects all the
L peq information collected by the nodes. Projects such as Telos (Polastre et al. 2005), which
correspond to one of the first experiences in this WASN design by means of an ultra-low
power wireless sensor module designed by the University of California (Berkeley). Some years
after that experience, Santini et al. in (Santini and Vitaletti 2007; Santini et al. 2008) showed
how a WASN can be used in a wide variety of environmental monitoring applications, with a
special focus on urban noise.

More recent projects include the deployment of a network to monitor the traffic noise
in Xiamen City (China) for environmental purposes (Wang et al. 2013). The project covers
35 roads in 9 green spaces in the city, and the scientists use the data from the monitoring
stations to model the traffic of 100 other roads in the city. The deployment included noise
level meters, with ZigBee and GPRS communications.

The FI-Sonic Project is focused on continuous noise monitoring surveillance (Paulo et al.
2015); the main goal is to develop the technology required to process urban sounds by means
of artificial intelligence, enabling the generation of noise maps but also the identification and
location of groups of sound events (Paulo et al. 2016). It is based on a FIWARE platform
(https://www.fiware.org/). Finally, the RUMEUR project (Urban Network of Measurement
of the sound Environment of Regional Use) is based on a hybrid wireless sensor network
deployed by BruitParif (F. Mietlicki et al. 2015) in Paris and its surroundings. The network
has high accuracy on monitoring critical places (for example, airports) but also uses other less
precise measuring equipment, whose final goal is to evaluate the equivalent noise level of the
environment. The RUMEUR project has evolved to Medusa (C. Mietlicki and F. Mietlicki
2018), a system that combines four microphones and two optical systems so that noise levels
can be represented on a 360° image of the environment, by means of the identification of the
source location. Its computational load is high, and it cannot be resolved by most of the
low-cost acoustic sensor systems.

The Barcelona Noise Monitoring Network (NMN) was described in (Camps-Farrés 2015)
and reviewed in (Camps-Farrés and Casado-Novas 2018). The network is designed to reduce
the impact of urban infrastructures on the environment in the city of Barcelona. The results
of the analysis carried out in (Camps-Farrés and Casado-Novas 2018) suggest that both the
costs and the number of manual tasks carried out by technicians should be reduced. In
Barcelona, several other initiatives to empower the citizens of critical urban areas, such as
Plaza del Sol (Coulson et al. 2018), have also been developed, but so far they have been only
able to complement the measurements conducted by the calibrated sensors deployed by the

City Council.

I.2.2 WASNs Based on Ad-Hoc Designed Nodes

To satisfy the increasing demand of an automatic monitoring of noise levels in urban areas, as

described in (Basten and Wessels 2014), several WASN-based projects are being developed in
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different countries and designed, then deployed ad-hoc for their application; some of these

projects include other environmental measurements used to determine other aspects of citizens

quality of life besides noise pollution.

The CENSE project (Characterization of urban sound environments) focuses on the design
of noise maps in France (Cense - Characterization of urban sound environments n.d.). It
integrates both simulated and measured data by means of a wide network of low-cost sensors.
The project includes environmental acoustics, statistics, Graphical Information System (GIS)
to plot the results, as well as network sensor design, signal processing and the proposal of the
production of perceptive noise maps. The IDEA project (Intelligent Distributed Environmental
Assessment) (Botteldooren et al. 2011) focuses on noise and air quality pollution in several
urban areas of Belgium. It integrates a sensor network based on a cloud platform, and it
measures noise and air quality (Dominguez et al. 2014). The MESSAGE project (Mobile
Environmental Sensing System Across Grid Environments) (Bell and Galatioto 2013) not
only monitors noise, carbon monoxide, nitrogen dioxide, temperature, but also humidity
and traffic occupancy, and it gives real-time noise data information in the United Kingdom.
The UrbanSense project (Rainham 2016) and the MONZA project (Bartalucci et al. 2018)
follow both the idea of monitoring urban noise real-time together with other air pollutants;
UrbanSense in Canada and MONZA in the Italian city of Monza.

The urban acoustic environment of New York City is monitored using a low-cost static
acoustic sensor network in the framework of a project named SONYC project (Sounds of
New York City) (Mydlarz et al. 2017). The goal of this project is to describe the acoustic
environment while monitoring noise pollution. It collects longitudinal urban acoustic data, to
process them and have generous sampling to work with acoustic event detection (Juan P Bello
et al. 2019).

Another interesting approach of the monitoring network projects is the hybrid approach of
crossing the acoustic information with subjective perception surveys, to consider the typology
of the events in relationship with sleep quality (De Coensel and Botteldooren 2014). A sound
recognition system is applied to provide information about the detected sounds and establish
a relationship between the perception surveys and the identified events related to road traffic
noise (Brown and Coensel 2018). However, this project is only aimed at the identification of

the acoustic events and their perception, it has no impact on any noise maps generation.

The DYNAMAP project (Sevillano et al. 2016) achieves a good trade-off between cost
and accuracy in the design of a WASN. The project deployed two pilot areas in Italy, located
in Rome (Bellucci et al. 2017) and Milan (Zambon et al. 2017), so as to evaluate the noise
impact of road infrastructures in suburban and urban areas, respectively. The two WASNs
monitor road traffic noise reliably collecting data at 44.1kHz to remove specific audio events,
which are unrelated to road traffic (Socord et al. 2017; Rosa Ma Alsina-Pages et al. 2018) for
the noise map computation (Bellucci and Cruciani 2016). Based on their experience in this
project and particularly the time and effort spent transforming the original prototyping code
into real operable language, the team developed a low-cost flexible acoustic sensor for rapid

real-time algorithm development and testing (Rosa Maria Alsina-Pages et al. 2020).
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I.3 System Architecture

This section details the proposed system architecture and further elaborates on the rationales
to implement the ubiquitous acoustic sensor network for urban sound identification. The main
constraints (Murty et al. 2008) and design guidelines that have driven the conception of this

distributed system are the following;:

Cost affordability. The system must be conceived to cover large-scale areas (i.e., hundreds of
km?) in a redundant topology (Piper et al. 2017) (i.e., at least 4 nodes per city block
(As a matter of reference, in Barcelona city (Spain) the sides of the blocks measure
around 110 m on average). Therefore, the individual cost of each of the nodes that
articulate the ubiquitous sensor network must be kept as low as possible. This prevents
us from using expensive high performance computing devices (e.g., GPUs (Navarro et al.
2018)) and leads us to consider alternative solutions with more modest computing and

storage features.

Physical distance between neighboring nodes. As individual nodes must be composed of
inexpensive hardware—in terms of both acoustics and computing— they need to take
advantage of each other to provide robust answers and good performance (Piper et al.
2017). In this regard, each node will need to constantly communicate with its neighbors
to check, compare, and validate the identified acoustic events. Therefore, there is a
trade-off on the physical distance between nodes: one the one hand it must be kept low
so that an event can be heard by more than one node, and on the other hand, the larger

distance, the more area will be covered.

Real-world deployment. The system must be deployed in urban spaces, which makes it
vulnerable to extreme weather conditions (e.g., heat, cold, wind, rain), vandalism, or
theft (Murty et al. 2008). Therefore, the nodes that compose the proposed USN must
be as small as possible so they can be installed in existing street furniture (e.g., traffic
lights (Ji et al. 2020b)). Also, the power consumption of each node must be low to
facilitate its integration. This means that the proposed approach will need to be efficient
both in terms of communications (i.e., exchanging little data among nodes) and of
computing (i.e., using as low computing resources as possible to obtain the maximum

event identification accuracy).

Fault tolerance and recovery. Since the nodes of the system will be exposed to harsh
environmental conditions and given the difficulty of physically accessing them to conduct
maintenance and reparation duties (e.g., reboot), the nodes must be self-managed, i.e.,

a node must keep operating even in case of failure of their neighboring nodes.

Acoustic quality. The nodes must be capable of acquiring and processing data at a minimum
sample rate of 22,050 samples per second (to be able to analyze frequency information

ranging from 0 to 11,025 Hz) and a depth of 16 bits per sample. Before deployment, the
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microphones must be calibrated, and the gain must be adjusted so all the microphones

of the USN capture similar signal levels when exposed to the same sounds.

To meet all these requirements, we propose the use of a Raspberry Pi device augmented
with acoustic and communications capability. We select the Raspberry Pi Model 2B (Raspberry
Pi Official web site n.d.) that has a 900 MHz quad-core ARM Cortex-A7 processor, 1 GiB
RAM, and an average power consumption of 200 mA. An external USB microphone for
acoustic data processing and a custom communications antenna for data exchanging among
nodes must be plugged to the RPi (see Figure 11.2). The remainder of this section (1)
describes the proposed acoustic data-processing framework to locally identify acoustic events
in urban areas, (2) details and justifies the design of a communications module (modem and
custom antenna) to enable data communications among nodes, and (3) presents a distributed
consensus protocol aimed at comparing the locally identified acoustic events to obtain robust

and global-scope acoustic findings.

Figure I1.2: Raspberry Pi Model 2B with USB microphone.

1.3.1 Data Processing

For data acquisition and processing, a low-cost omnidirectional electret USB microphone is
used. The reference number for the microphone is OUT-AMLO-0872 and it is manufactured
by Seacue. The frequency response is almost flat for the frequency range where the events are
taking place (50 Hz—10 KHz), meaning that it does not generate colorations (i.e., alterations
or distortions) on that frequencies. The price is as low as 12 EUR and it is plug-and-play,
meaning that there is no need for an external Analog-to-Digital converter (ADC). Once
one window (audio fragment of a certain duration) of audio is captured, the spectrogram
is calculated and fed to the neural network. Using spectrograms as input features for the
network is a technique that has been proven to be effective for sound classification tasks
(Huzaifah 2017), since they provide information about acoustic energy in both frequency and
time. The selected network architecture is a Convolutional Neural Network (CNN). The
reason behind using a CNN lies in the fact that they typically require storing fewer parameters

than traditional deep neural networks, which reduces the model size (Goodfellow et al. 2016).
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Moreover, CNNs have been extensively validated for sound event detection (Mesaros et al.
2017).

The output result of this data-processing layer is an events vector with as many components
as acoustic event types (i.e., classes), where each component is a value between 0 and 1
representing the probability of the event belonging to that class. For instance, in the case of
UrbanSound8K dataset being used in this work, there are 10 event types.

This resulting vector will be sent to the neighboring nodes using the communications

antenna and the distributed consensus protocol that is detailed in the following sections.

11.3.2 Communications

For inter-communication between neighboring nodes, a custom bespoke antenna has been
designed to achieve higher specifications with the limited physical space available on the
RPi. The performance of the whole communications system is calculated using the Friis
Transmission Equation (Pozar 2011). This equation states that the signal received by the
communications module (i.e., antenna plus transceiver) is calculated and compared to the
noise level, giving a Signal-to-Noise Ratio (SNR). If the SNR is high enough, the signal will
be successfully decoded. The Friis Transmission Equation shows that losses increase with
frequency, and higher power is lost at higher frequencies. Therefore, the very first design
constraint to be addressed is the operating frequency.

The 2.4 GHz band (UN-51) (Ministerio de Energia n.d.; CNAF n.d.[c]; CNAF n.d.[b])
(i.e., Wi-Fi) is a convenient choice for communications in USNs (Murty et al. 2008). However,
this band is often absorbed by structural elements, such as walls and floors or ceilings and it
also coincides with the resonant frequency of water, which makes it inappropriate for urban
spaces. In addition, such a high frequency limits the communication range of each node
(Pozar 2011). Alternatively, the 433 MHz band (UN-30) is slightly better than the 2.4 GHz
band for the range—as it operates at a lower frequency—but it does not guarantee a secure
data transmission, due to a lot of interference in this specific frequency band, such as remote
controls and parking remote controls which can produce high levels of interference. The
frequency band of 868 MHz is an ISM band designated by the UN-39 in Spain (Ministerio
de Energia n.d.; CNAF n.d.[c]; CNAF n.d.[b]) that offers a better range than the 2.4 GHz
band, increased by 2-3 times, and is less populated than the 433 MHz band. This frequency
band is used by LoRa, Zigbee and Sigfox in ITU region 1 (Europe) (CNAF n.d.[a]). In case
of the system being used in other regions, such as the US, the ITU-RR-5.150 specifies a band
in 915 MHz in the ITU region 2. In this case, the communication system would need to
be accordingly updated and fine-tuned with the new requirements to radiate at the specific
frequency band for the new region.

To summarize, transmission in the 868 MHz band is (1) able to penetrate obstructions in
the line-of-sight and (2) suitable for connecting medium and long-distance remote monitoring
systems. However, it presents limited maximum data rates compared to other bands. As in
the proposed large-scale urban sound monitoring use-case, low data rates (a few kbps) for

medium range are enough to transmit the vector with the classification results (see Section
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I1.3.1), there is no need to use a higher frequency band.

After selecting the 868 MHz operating band, a transceiver for this frequency to be attached
to the RPi is required. There are many off-the-shelf communication modules available in
the market for RPi—which is in fact one of the advantages of using this device. For a very
low price there are numerous modules to radiate at the frequency band of 868 MHz, some
with a short range and others with medium range. For example, the ENOCEAN PI 868,
RTX-868-FSK and SX1272 (Gonzdilez et al. 2016; Links 2016). The SX1272 module for
RPi operates at 868 MHz but uses a simple monopole antenna. The monopole antenna is
troublesome as it could lead to null communication in certain directions. An isotropic antenna
would best fit the requirements for this project. The design of a custom bespoke antenna to
be connected to the SX1272 module is presented below.

As shown in Figure 1.3, the antenna is designed with two planar crossed dipoles in a
low-cost FR-4 substrate to present an isotropic pattern. Consequently, the same signal will
be received at the receiver due to its isotropic properties, regardless of the orientation of the
antenna. Therefore, there is no risk that communication will be lost when the sensor is in
certain orientations. The selected design is based on an isotropic Crossed Dipoles designed for
a higher frequency band (Pan et al. 2012). The proposed design must be optimized to operate
at the 868 MHz frequency band and to fit the RPi case. The planar crossed dipoles placed on
top of a low-cost FR-4 substrate with 1 mm thickness and relative permittivity of 4.4, are a
low-cost solution to fit in the RPi Shield and provide isotropic radiation. The crossed dipoles

are fed at a 90° phase shift to achieve isotropic radiation (Pan et al. 2012).

Figure 11.3: Proposed Planar Crossed Dipoles for isotropic radiation.

To optimize the antenna parameters and achieve the aforementioned requirements of the
communication system (operating frequency, isotropic radiation and size constraints), CST

Microwave Studio has been used to conduct the parametric studies depicted in Figure I1.4:

1. Delta (A) is the variation between the length of the horizontal dipole and the length of
the vertical dipole. By varying the parameter A, the current of the two crossed dipoles
can be excited at the same magnitude and 90 degrees phase shift, which is only in this

conditions that isotropic radiation can be achieved (Pan et al. 2012). The top left plot

114



System Architecture

511 (dB) 511 (dB)
2
o
-6
0 A
VI A N
» EWAWA
L
» N
22 } U } } } 22 } } } } }
0.8 0.82 0.84 0.86 0.88 0.9 0.7 0.75 0.8 0.85 0.9 0.95 1
Frequency (GHz) Frequency (GHz)
= A=53 ==A=-54 ==A=55 ==A=56 == Lb=51 == Lh=55 == Lh=615 == Lb=638
= A=57 ==A=60 =—=A=65 =—A=70 = Lh=745 == Lb=81
511 (dB)
_—\
-2
N7 I
% N
o
-10
il 'Ul;/
-14 17
-18 t t t t t
07 0.75 0.8 0.85 09 0.95 1
Frequency (GIHz)
—_—Wp=1 — Wpy =15 — Wp, =2 —_— Wp, =25
& — ngzs — W%:B,S &

Figure 11.4: Parametric study of the reflection coefficient S7;. Top left: changing the A. Top
right: changing the branch length (Lb) . Bottom: changing the branch width (Wps2).

in Figure I1.4 shows that when the 90 degrees phase shift between dipoles is achieved

the operating frequency is better matched and, thus, S1; parameter becomes lower.

A A of 7.0° is selected because it better matches the input impedance of the antenna

and it presents isotropic radiation.

Once isotropic radiation is achieved, the input impedance can be matched at the

operating frequency by varying the dipole length and width as shown in the next steps.

2. The length of each dipole branch is a crucial parameter to match the antenna at 868 MHz
frequency band. The branch length (Lb) is the length at the end which will be longer
for lower frequencies or shorter if the antenna needs to operate at higher frequencies.
Lb is added to the design to match the input impedance of the antenna at the desired
operating frequency of 868 MHz, considering the size of the RPi cannot accommodate
long-enough dipoles to be resonant at this frequency. Otherwise, antenna efficiency
would be reduced at the required operating frequency band. By making the dipole
branches longer a lower frequency can be matched. As expected, the resonant frequency
decreases as the length of the dipole increases. Therefore, the desired operating frequency

can be achieved by varying this parameter.

Lb is the same for both dipoles, as the only difference in length comes from the parameter
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A, mentioned before. A is used to achieve isotropic radiation, Lb adjusts the matched

input impedance so that the antenna operates at the required operating band.

The top right plot in Figure 11.4 shows the effect of varying the Lb parameter in the

reflection coefficient of the antenna (S1; parameter).

3. Finally, the length of the 2 dipole branches is determined, although the width will also
impact the operating frequency of the antenna, as shown in Figure 11.4 (bottom). A
parametric study of the Wp2 is used to fine-tune the value of this parameter and match

the antenna at exactly 868 MHz with a value of 1.5 mm.

Combining the results of these studies, the optimized parameters of the proposed antenna

are presented in Table I1.1:

Table II.1: Values of the Optimized design parameters for the antenna geometry.

Ls (mm) Lp (mm) Lb (mm) Lf (mm) Po (mm) Wp (mm) Wpy (mm) o A
60 25.8 5.1 3.18 3 1.7 1.5 78.6° 7°

With this configuration, a matching of —22 dB can be achieved at the 868 MHz band.
As a result, Figure [1.5 presents the simulated radiation pattern obtained from exciting each
dipole at a time. It can be observed that the combination of the planar crossed dipoles is
essentially isotropic.

As shown in Figure 1.6, the antenna is matched at the 868 MHz frequency band and has
a good rejection rate of other bands. Also, it presents the higher gain at the frequency that
is matched (868 MHz). Outside this band the gain severely declines. The gain obtained at
the frequency of interest is 1.41 dBi which is close to the isotropic gain radiation expected for
the proposed antenna. Recall that the antenna gain needs to be low to produce isotropic
radiation, so that the physical orientation of the node will not affect the communication link

in deployment.

Figure I1.5: Radiation patterns of the Planar Crossed Dipoles for isotropic radiation in 3D
(right) and the combination for Theta=0 exciting each dipole at a time (left).
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Figure 11.6: Performance results of the proposed Planar Crossed Dipoles. Reflection coefficient
for isotropic radiation on the left. Realized Gain over frequency on the right.

11.3.3 Distributed Consensus

Designers of USNs typically select cloud or edge computing architectures (Armbrust et al.
2010) to outsource the heavy computation tasks associated with data streams processing
(Navarro et al. 2018). This alleviates the requirements in terms of storage and computing
of USN nodes but requires a reliable communications infrastructure able to transfer a large
amount of data traffic to (and from) the cloud. However, in the specific scenario of large-scale
urban sound monitoring, streaming the sensed acoustic data to a central entity (or cloud)
would increase the complexity (in terms of codecs and connectivity to the Internet), the delay,
the power consumption (Ji et al. 2020a) and the overall cost of the nodes (Pham and Cousin
2013). Therefore, the proposed USN has been designed to be autonomous (i.e., it can reliably
identify acoustic events without the aid of powerful cloud devices) and self-managed. In this
regard, a custom distributed consensus layer that enables synchronous communications among
nodes has been implemented.

This layer is committed to increasing the robustness of the local acoustic event identification
by comparing the identified local events at a single node with the events detected by neighboring
nodes with the aim to emulate an ensemble decision system (Nanni et al. 2020). For instance,
if a node detects a car horn but none of the surrounding nodes have detected this event, the
system may decide to discard such event.

As shown in Figure I1.7, nodes are organized following a token ring topology. To keep
the size of the ring small—recall that the purpose of the proposed USN is to take advantage
of physical redundancy to enable more than one node listen the same event—and minimize
the delay, all the nodes that keep a close physical distance are assigned to the same ring.
Therefore, to cover a large-scale physical area the same node can belong to more than one
ring, which results in a multiring topology (Aiello et al. 2001).

The behavior of each node from the ring is as follows:
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Figure I1.7: Logical organization of nodes.

. Run the local data processing (i.e., CNN classification algorithm) and wait for the

classifier to populate the events vector (see Section I1.3.1).

. Next, increment a local token number, which will give a notion of virtual synchrony

among the nodes, i.e., a natural number indicating the logical time in which the

classification has been conducted.

. If the node has the lowest identifier among all the nodes of the ring, it sends a message

to the next neighbor in the ring containing the local token number and the obtained

events vector. The remaining nodes will wait to receive their associated message.

. When a node receives the vector with a token number matching its local token number

for the first time, it will make a component-wise addition between its own events vector
and the vector contained in the message. Next, it will forward the resulting vector and

the token number to the subsequent node.

. When a node receives the vector with a token number matching its local token number

for the second time, it means that all the nodes of the ring have contributed to the
events vector contained in the message. At that moment, the node will apply a set of

heuristic rules to determine the final label of the event. Specifically:

o If the node locally classifies an event whose Leq is typically low (i.e., air conditioner,
children playing, dog bark and engine idling) with a probability of more than 90%,
the results obtained from the rest of the nodes (i.e., events vector from the message)
of the ring will be ignored. In this case, the local events vector will be examined
and the component with the highest value will be considered the winning label.
The rationale behind this decision is that it is not likely than in a noisy street
these sounds can be heard by different sensors of the ring, as background noise will

probably mask them.
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o However, for the rest of the events (that typically have higher Leq such as horns
or sirens), or if the network was not completely sure of whether one of the other
events had actually occurred, the events vector from the message will be examined

and the component with the highest value will be considered the winning label.

6. Increment the local token and go back to the first step. Please note that thanks to the
local token, the system can associate the events vector with a logical time frame, which

would be very useful in the case of faults (e.g., node crash, or communication fading).

Figure I1.7 shows an example of the proposed approach with a ring of 4 nodes. It can
be seen that the most probable event detected at Nodes 0, 1, and 3 is Fy; however, Node 2
believes that the most probable event is Fy. However, after sharing the events vector with all
the nodes of the ring, it will correct the local classification and agree with its neighboring

nodes that the most probable event is Ej.

.4 Experimental Evaluation

This section aims to validate the feasibility of the proposed approach by means of two
experiments. In the first experiment, authors evaluate several deep network architectures.
Using the original UrbanSound8K dataset (J. Salamon et al. 2014), audio files are tested in a
RPi to find out which classification algorithm offers the best trade-off between classification
accuracy and memory/computing requirements. The aim of this experiment is to find an
algorithm capable of classifying acoustic data in real-time with the resources provided by a
single low-cost device. The results obtained in this first experiment will give a best-case scenario
accuracy values that will be used as a baseline to compare the results of the second experiment.

The second experiment aims to evaluate how different neighboring nodes connected as
described in Section 11.3 would behave in an emulated (i.e., laboratory) real-world operation.
For this purpose, the audio files from the dataset are modified emulating the air channel and
physical topology of the streets of Barcelona. Moreover, road traffic noise recorded in the city
of Barcelona (Vidana-Vila et al. 2020) has been randomly added to each of the audio files
so each sensor perceives the event partially masked by traffic noise. This experiment shows
how a ubiquitous sensor network can improve the classification results over individual sensors

when perceiving the same acoustic data from different locations and masked with traffic noise.

I.4.1 Experiment 1: Event Detection in Each Individual Sensor

UrbanSound8K is an online free dataset containing 8732 labelled sound events of 4 s or less
from 10 different urban categories: air conditioner, car horn, children playing, dog bark,
drilling, engine idling, gun shot, jackhammer, siren, and street music. The dataset has a
total duration of 31,500 s and is preorganized in 10 different folds that must not be mixed
according to (J. Salamon et al. 2014). For this work, we have used folds 1,2,3,4,6,7 and 8
as training folds, fold 5 as validation fold and fold 10 as testing fold. Figure I1.8 shows a

spectrogram example of each of the classes of the dataset.
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Each sensor will be constantly running a deep-learning pre-trained network to be able to
classify events in real time. For the experiment, we have obtained a 4-s window spectrogram
of each of the audio files of the dataset. For those audio files on the UrbanSound8K dataset
with a duration shorter than 4 s, we have applied the same methodology as Singh et al. in
(Singh et al. 2019), which consists of replicating the same audio file until it reaches the uniform
length of 4 s.

Table I1.2 details the different deep networks that were evaluated to find which classifier
offers the best trade-off between accuracy, the number of floating-point operations (FLOPs)
(He et al. 2016; Huang et al. 2016; Zhang et al. 2017; Sandler et al. 2018; Ma et al. 2018),
and the size of the model after training and storing it into disk. For this experiment, all the
networks were first trained using ImageNet (Deng et al. 2009), and we then applied transfer
learning to fine-tune them so they could classify the spectrograms of the selected dataset. As
the expected inputs of the network are RGB images such as the ones contained in ImageNet,
each 4-s gray-scale spectrogram has been normalized in the range of [0, 1], then replicated
three times (one per each RGB channel), and then normalized again with the mean and

standard deviation of the ImageNet dataset.

Figure I1.8: Spectrograms of the ten types of sounds of the UrbanSound8K dataset.

The training of the network was carried out following standard good practice in deep
learning, as follows. We used a batch size of 16 spectrograms per batch. The learning rate

was initially set to 0.01, and a scheduler was programmed to decrease it by a factor of 0.1
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Table II.2: Number of FLOPs, model size and accuracy on the testing fold for different
network architectures.

Network Architecture FLOPs Accuracy Model Size

ResNet 152 11.3 x 10  79.71% 223 MB
DenseNet 121 6 x 10° 77.31% 28 MB
AlexNet 0.725 x 10°  77.31% 218 MB
MobileNet v2 0.3 x10° 78.75% 8.8 MB
ShuffleNet v2 0.591 x 10° 51.74% 5 MB
ResNet 18 1.8 x10°  77.19% 43 MB
VGG 16 15.3 x 10°  77.91% 513 MB
SqueezeNet 18 0.833 x 10° 80.19% 2.9 MB

with a patience of 3, using an SGD optimizer. Moreover, an early stopping criterion was used
to obtain the optimal network configuration by using the validation fold.

As shown in Table I1.2, several network architectures obtain considerable high accuracy
values compared to the baseline system that Salamon and Bello presented in (Justin Salamon
and Juan Pablo Bello 2015), which obtained an accuracy of 68%. Concretely, the network
architecture that provides the best results is SqueezeNet 18 (Iandola et al. 2016), followed by
Resnet 152 (He et al. 2016). Comparing the size of both networks in terms of numbers of
operations, Squeezenet 18 is clearly a smaller network, with only 0.833 GFLOPs compared
to the 11.3 GFLOPs of ResNet 152. As SqueezeNet 18 fits into the purposed architecture
(i.e., RPi) and can perform the classification in less than one window time (i.e., 4 s), it has
been selected—adapting the last layer with a 2D Convolutional layer with 10 outputs—to be
the network installed in every node of the USN. Figure 1.9 depicts a diagram of the final
architecture of the classifier system, and Figure 11.10 depicts the accuracy and loss when
training and validating the selected model.

The acoustic processing and classification of a single 4 s window in the RPi (Quad-Core
Cortex A7 at 900 MHz and 1 GiB of RAM), using the aforementioned deep network, was
carried out in 2 s. This time includes (1) taking the 4 s audio data acquired by the microphone,
(2) calculating the spectrogram of a 4 s audio file of the UrbanSound dataset, (3) processing
the spectrograms as explained above, and (4) passing the audio file through the deep net
to obtain a local classification result. Hence, we can conclude that the proposed hardware
platform is able to classify in real time—considering real-time as getting a classification result
in less time than one window—in a 4 s basis, which is considerably faster than existing

solutions that provide minute by minute data (Bell and Galatioto 2013).

I.4.2 Experiment 2: Network of Sensors

The second experiment is aimed to assess how physical redundancy can increase the accuracy
of the proposed system. To emulate the acoustic characteristics of a real-world scenario, the
attributes of the Barcelona city center have been taken as a reference. According to Pla Cerda
(Aibar and Bijker 1997), the physical sizes of the building blocks and streets from Barcelona
are depicted in Figure I1.11: blocks size of 113.3 m x 113.3 m with a separation of 20 m
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Figure 11.9: Deep network architecture for the local data processing.

between each block (horizontally and vertically). Please note that in Figure I1.11, white and
green icons represent the acoustic sensors (microphone, antenna, and RPi), and the red dot
represents an acoustic event that would be detected on nodes A, B, C and D. To deploy the

proposed system, the following laboratory environment has been configured:
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Figure I1.10: Training and validation accuracy and loss of the selected model.

1. The trained model from the deep neural network used in Experiment 1 has been deployed
in four different nodes (i.e., RPis). This aims to emulate the placement of the sensors in

a street intersection (see Figure I1.11).
2. The distributed consensus protocol has been installed at each node.

3. A sound source has been placed in the scenario (i.e., red dot in Figure I1.11). To assess
the advantages of the physical redundancy, a position located at different, yet reachable,
distances from the four nodes was considered to be of interest (otherwise, more than one
node could hear the same identical signal and, thus, the effect of physical redundancy
could not be perceived). For this experiment, the selected distances between the sound
source and nodes A, B, C, and D are 23.91 m, 57.95 m, 55.76 m, and 33.50 m respectively.

This aims to emulate the location of the sound source just before the street crosswalk.

4. A synthetic acoustic test set has been generated for each node to later perform the event
classification emulating how each sound would be perceived by each node. To obtain
comparable results with the previous experiment, the test set has been derived from the

same test fold as Experiment 1 and modified as follows:

e The amplitude and phase of all the audio files from the testing fold have been
changed according to the distance between the sound source (i.e., red dot in Figure
I1.11) and the sensors A, B, C and D, respectively. Hence, the same audio file has
been modified as many times as neighbor nodes have been considered (four, in this
case). The modifications of phase and amplitude of the samples have been carried
out following the work of Bergada et al. (Bergada and Rosa Ma Alsina-Pages 2019)

in which, essentially, they propose the following equation:
y(n) = x(n —7)ae’™, (IL.1)

where x is the original signal, 7 is the delay on the direct path considering the speed
of sound and a is the absorption coefficient times the distance between the audio
source and the sensor. Please note that the absorption coefficient is dependent

on the frequency, temperature and humidity. For this experiment, the average
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values in the Barcelona city center have been taken: temperature of 20°C and 70%

relative humidity.

e Last, but not least, urban recordings of road traffic noise recorded on the city
center of Barcelona (Vidana-Vila et al. 2020) have been added (i.e., weighted sum)
to each audio sample to further emulate a real-world environment. This is aimed
to assess what happens when the background noise partially masks the acoustic
event of interest. After conducting a grid search on which realistic combinations
of weights better explain the effects of physical redundancy to improve detection
accuracy, the following configuration for the attenuation factors of road traffic noise
has been selected: 0.9 for node A, 0.88 for node B, 0.7 for node C, 0.68 for node
D. This configuration ensures that the events to be detected are not completely
masked. Also, this makes an uneven distribution of road traffic noise over the
nodes—note that if all the nodes were exposed to the same amount of road traffic
noise the individual output would be the same at all of them and, thus, physical
redundancy would not improve accuracy. This configuration can be best seen as
emulating the presence of traffic going from South to North in the street between

nodes C and D of Figure I1.11 being the traffic noise closer to sensors D and C.

With this configuration, each node will later classify, at the same time, the same root
acoustic sample with differences on its amplitude and phase and slightly different values

of background noise.

5. Each node takes the acoustic sample from its test set, runs the local deep neural network,
shares the classification vector to the neighboring nodes, and applies the consensus

protocol to obtain the final result.

Table 11.3 depicts the confusion matrix obtained by averaging the results of the modified
audio files on the four nodes. The local accuracy of the classifier with the modified dataset
is: 68.19% on node A, 62.67% on node B, 59.94% on node C and 60.42% on node D. Hence,
adding the road traffic noise to the audio files has made accuracy decrease by a ~20% on
average (recall that in Section 11.4.1, the accuracy obtained using the unaltered audio files
was 80.19%). The reason behind this phenomenon is that the network has not been retrained
with the modified audios. We have chosen not to retrain it for this experiment because we
aim to emulate a real-world generic deployment where the background noise would be, a
priori, unknown. Therefore, when deploying the system in a real-world urban environment
with background traffic noise, we would expect to have the same accuracy drop.

However, after applying the distributed consensus protocol described in Section I1.3.3 and
considering the neighboring event vectors obtained from nodes A, B, C and D; the accuracy
values obtained in each of the four nodes are: 64.47% in node A, 64.35% in node B, 62.6% in
node C and 64.42% in node D, which is, on average, higher than the accuracy obtained by a

single node as shown below:
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Figure II.11: Diagram of the network of sensors (nodes) in the building blocks of the city of

Barcelona. The green and white icons represent the sensor devices and the red dot represents
an acoustic event.

Node A Node B Node C Node D

Local accuracy 68.19%  62.67%  59.94%  60.42%
After consensus accuracy 64.47%  64.35%  62.60%  64.42%
Improvement —3.72% +1.68% +2.66% +4.00%

Table 11.4 shows the average confusion matrix after applying the consensus algorithm.
Observing both confusion matrices, we can see that the network tends to classify events
from other categories as Engine idling (specially Air conditioner), probably because of
the similarities between the spectral distribution of the Road traffic noise class from the
BCNDataset and the Air conditioner and Engine idling classes of the UrbanSound8K dataset.
The similarity between these two last events, which can be seen in Figure 11.8, is further
emphasized when adding Road traffic noise to the audio files to be classified, as it contains

noises from passing cars and motorbikes that can contain fragments of engines idling.

Comparing the accuracy values obtained before and after applying the distributed consensus
protocol, we can conclude that the multi-sensor approach has improved the classification
results in all the sensors except for node A. As node A is the node that is closer to the acoustic
event and it is the sensor where less background noise has been added, the consensus protocol
has slightly decreased the accuracy of the classifier. However, this loss is compensated by the

improvement in neighboring nodes.
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Table I1.3: Confusion matrix considering the classification of the modified audio files in a
single sensor.

Predicted Class

Air conditioner
Car horn
Children playing
Dog bark
Drilling

Engine idling
Gunshot
Jackhammer
Siren

Street music

Air conditioner 30% 0% 6% 0% 0% 50% 0% 0% 1% 13%
Car horn 3% 8% 3% 0% 0% 3% 0% 0% 3% 3%
Children playing 0% 0% 84% 6% 0% 3% 0% 0% 1% 6%
Dog bark 0% 0% 8% 82% 2% 2% 0% 0% 0% 6%
Drilling 5% 3% 3% 0% 36% 9% 1% 24% 2% 1%

Engine idling 0% 0% 17% 0% 0% 72% 0% 0% 4% ™%
Gunshot 6% 0% 15% 15% 0% 44% 17% 0% 0% 3%
Jackhammer 0% 3% 0% 0% 2% 29% 0% 56% 0% 11%
Siren 2% 0% % 29% 0% 1% 0% 0% 60% 1%

Street music 0% 1% 23% 0% 0% 2% 0% 0% 0% 74%

AcTtUuAaL CLASS

II.5 Discussion

So far, we have shown the potential of taking advantage of the physical redundancy to increase
the classification accuracy and robustness of an individual node. Alternative approaches such
as the WASNSs deployed in the cities of Rome and Milan on the DYNAMAP project (Sevillano
et al. 2016) aim to deploy several sensors distributed in an area to enable noise map generation
by interpolation, without taking into account physical redundancy. Our proposed system
takes advantage of physical redundancy as the same physical space is heard by more than one
sensor concurrently (four, in this case). According to (Mydlarz et al. 2017), the main factors
that drive scalability, accuracy, adaptability, and autonomy in urban sensor networks are the

following;:

Monitoring sound pressure levels accurately. In our case, the proposed approach is
aimed at classifying acoustic events, but as the microphone is small enough to fit a
standard acoustic calibrator, the modification of the RPi software to measure sound

pressure levels would be relatively straightforward.

Providing intelligent, in situ signal processing, and wireless raw audio data
transmission capabilities. In our case, although the raw audio data transmission
would be feasible, we have reduced the amount of data to be transmitted by taking
advantage of the edge computing paradigm. In this way, the amount of data (i.e.,
event labels) to be transmitted among nodes is lower, which avoids bottlenecks in the

communication network and, thus, shall improve the overall scalability.
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Table I1.4: Confusion matrix considering the classification of the modified audio files in a
network of four nodes.

Predicted Class

Air conditioner
Car horn
Children playing
Dog bark
Drilling

Engine idling
Gunshot
Jackhammer
Siren

Street music

Air conditioner 31% 0% 5% 0% 0% 46% 0% 0% 1% 1%
Car horn 0% 97% 0% 0% 0% 3% 0% 0% 0% 0%
Children playing 0% 0% 82% ™% 1% 3% 0% 0% 0% ™%
Dog bark 0% 0% 6% 84% 2% 2% 0% 0% 0% 6%
Drilling 3% 3% 2% 1% 51% 3% 1% 21% 3% 12%

Engine idling 0% 0% 21% 0% 0% 71% 0% 0% 2% 6%
Gunshot 3% 0% 22% 25% 0% 19% 25% 0% 0% 6%
Jackhammer 0% 3% 0% 0% 1% 24% 0% 58% 0% 14%
Siren 2% 0% 5% 33% 0% 0% 0% 0% 59% 1%

Street music 0% 1% 1% 0% 0% 1% 0% 0% 0% 81%

AcTtuAaL CLASS

As it is autonomous in its operation. In our case, the proposed system has been conceived
considering fault tolerance by design. Therefore, if one node fails, the distributed protocol

will be able to reconfigure itself to continue operating.

Having a price per node lower than or close to 100 USD. In our case, all the
components of the proposed system have been conceived with low-cost devices to meet

this requirement.

After demonstrating the feasibility of our proposal for urban sound monitoring in the
proof-of-concept described in the previous section, we would like to share some lessons and
experiences learnt during the design and development stages of the platform that might

contribute to improving future versions.

I.L5.1 Alternative Requirements for the Communications Antenna

The chosen operating band is 868 MHz (UN-39) because it presents advantages compared to
other bands, such as robustness against absorption and higher data rates, and is not affected
by a high number of other devices using this band (for example, remote controls). The
antenna is designed for the UN-39 band in the ITU region 1. If the system were going to be
used in another I'TU region, the antenna design would need to be tuned to match the new
frequency. The changes would affect the length of the crossed dipoles (Lp and Lb, in Table
I1.1). Accordingly, the size of the support for the antenna may also increase to accommodate
the longer arms.

The isotropic radiation pattern is a good option to eliminate arrangement issues with the

sensors. The current bespoke antenna design is prepared to radiate in all directions so that
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the position of the sensor will not affect the communication link. This is an advantage of
the current setup, with a medium range of 200 m maximum. For a longer range, the gain of
the antenna may need to increase, losing the isotropic radiation property. In this case, by
increasing the A in Table I1.1, the antenna will increase its gain, which will compensate for
losses for the longer path—as shown in Friis Transmission Equation (Pozar 2011). Still, this

new configuration will lose the ability to be unaltered by the sensor positions.

11.5.2 Fault Tolerance

As discussed in Section 1.3, the proposed USN must tolerate a certain degree of faults. This
means that the system must keep operating in case of failure in a node or communication
link. The system is designed to support a fail-stop failures in a limited number of nodes or
communication links.

For fail-stop failures in the nodes or the communication links, the system behaves as
follows. When a node detects that the last time it received the token of the distributed
consensus protocol is higher than a predefined threshold, it will try to reach the following
node of the ring. If the communication is successful the ring will be reconfigured. If the
communication is not successful, the node will change the token direction (i.e., clockwise or
counterclockwise) and the system will adopt a token bus behavior instead of a token ring.

Additionally, each node should incorporate self-reboot policies (e.g., every 48 h, and/or
when connection with neighbors is lost for more than 1 min) to avoid the nodes being frozen

forever.

1.5.3 Real-World Deployment of the Proposed System

So far, the proposed system (i.e., deep network, communications antenna, and consensus
protocol) has been assessed under laboratory conditions as shown in Section I1.4. Method-
ologically, this has enabled us to individually validate each component of the system and
its end-to-end performance under a controlled environment. The lessons learnt during this
process have let us consider the following points when deploying the system in a real-world

scenario:

e The location of the nodes should be selected according to the architectonic profile of
the scenario to enable physical redundancy. Please note that the proposed approach
tolerates the addition or the removal of nodes at will. Also, if larger communication
distances—while ensuring that several nodes can hear the same high Leq acoustic
event—were required due to the scenario characteristics, alternative strategies such as

simultaneous wireless information and power transfer could be explored (Ji et al. 2020b).

e In the case of microphones different from the OUT-AMLO-0872 being selected
(e.g., MEMS), the most important requirements during deployment would be (1)
omnidirectional pattern so they are able to pick up signal equally from all directions—to

facilitate the installation of each node—(2) flat frequency response in the frequency
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range of, at least, 50 Hz—10 KHz (i.e., where acoustic events are taking place), and (3)

16 bits resolution per sample.

e As the same way as the microphone, the communications antenna has been designed
to radiate following an isotropic pattern to facilitate its real-world deployment (i.e., no
matter how the node is oriented). Although the electromagnetic interferences that may
degrade the performance of the proposed antenna have not been considered in this work,
it is worth mentioning that the Transport Control Protocol (TCP/IP) can be used to
detect when the frames between nodes are lost or corrupted. If that happened, the

consensus protocol would reconfigure the ring accordingly as described above.

o Experiments conducted over the RPi platform using the UrbanSound8K dataset suggest
that the proposed system architecture would be capable of detecting acoustic events
in real time using a deep convolutional neural network. However, when deploying the
system in a real-world scenario, the classifier might struggle to distinguish anomalous
acoustic events in noisy environments (i.e., locations with traffic background noise
partially masking the acoustic events). Hence, the Squeezenet model should be retrained
using data collected on the location where the nodes would be located. If, in the future,
other types of events (not included in the UrbanSound8K) were to be detected, the

following modifications should be made to the system:

1. Add as many neurons as new event types to the last CONV2D layer of the deep
network. In this case, the network should be retrained to be able to classify the

new categories.
2. Increase the size of the events vector sent to the neighbor nodes.

3. Adapt the heuristic rules of the distributed consensus protocol to decide whether

the new class contains noises that typically have a low value of L., or not.

Therefore, the proposed acoustic USN could be easily adapted to potential classification

of new event types.

1.6 Conclusions and Future Work

This research presents a low-cost acoustic sensor network to monitor urban sounds in large-scale
areas. The proposed approach uses a pipeline composed of the following stages: (1) acoustic
data acquisition and spectrogram computation, (2) local classification using a convolutional
neural network (SqueezeNet architecture), (3) a custom bespoke antenna with isotropic
radiation to share the local predictions with neighboring nodes, and (4) a distributed consensus
protocol and a set of heuristic rules to unify the local predictions conducted at each node.
To validate this proposal, the urban environment of the city of Barcelona has been selected.
The proposed system detects the most probable events occurred on an acoustic sample taking
advantage of the physical redundancy of the nodes. Regarding the physical redundancy, there

are several reasons to consider four nodes per street intersection. The first of them is that
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the authors have chosen the Eixample district of Barcelona to conduct these experiments
due to its symmetric structure. All the street intersections are of the same size and distance,
which facilitates the design of a symmetric network. This leads us to the second reason. The
number of nodes per street is probably too redundant, and possibly two nodes would have
been sufficient to detect the noise events occurring around the intersections. However, the
goal of the design is to have lots of low-cost nodes, collecting the same type of data at the
same time for a large number of locations simultaneously. This data redundancy is based on
the concept that a low-cost node can appear as a commodity for the project, and it is the only
way of gathering a huge amount of data to, not only by reliably detecting the acoustic events
occurring, but also by having enough available information for other future applications such
as drawing a precise map of the noise levels and their noise source.

A further potential application of this system is to automatically test whether a specific
urban area meets certain acoustic regulations: for instance, when a specific event (e.g., air
conditioner) is detected, it could be straightforward to decide whether the L 4., is below
its associated threshold. Indeed, the obtained results of the proposed system encourage
researchers to continue working on this direction, which in later stages will go through its
implementation in a real-world and real-operation environment. This will enable practitioners
to (1) evaluate the validity of the training carried out using UrbanSound8K and BCNDataset,
and (2) verify the completeness of the model used for acoustic propagation, assuming that in
a real-world situation the additive noise from the street will be more relevant.

Actually, in a real-world environment multiple events may occur simultaneously in the
same acoustic sample. To maintain the excellent results in single-event-detection obtained
in this validation test, the proposed deep network should move into a multi-label acoustic
samples training, hence assuming that multiple events will occur simultaneously (Cartwright
et al. 2019). In this future stage, the consensus function of the distributed protocol should be

adapted to tolerate the identification of multiple events.
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Abstract

Many people living in urban environments nowadays are overexposed to noise, which
results in adverse effects on their health. Thus, urban sound monitoring has emerged
as a powerful tool that might enable public administrations to automatically identify
and quantify noise pollution. Therefore, identifying multiple and simultaneous acoustic
sources in these environments in a reliable and cost-effective way has emerged as a hot
research topic. The purpose of this paper is to propose a two-stage classifier able to
identify, in real time, a set of up to 21 urban acoustic events that may occur simultaneously
(i.e., multilabel), taking advantage of physical redundancy in acoustic sensors from a
wireless acoustic sensors network. The first stage of the proposed system consists of a
multilabel deep neural network that makes a classification for each 4-second window. The
second stage intelligently aggregates the classification results from the first stage of four
neighboring nodes to determine the final classification result. Conducted experiments with
real-world data and up to three different computing devices show that the system is able
to provide classification results in less than 1 s and that it has good performance when
classifying the most common events from the dataset. The results of this research may
help civic organisations to obtain actionable noise monitoring information from automatic

systems.

lIl.1 Introduction

Acoustic noise (or noise pollution) can be defined as any sound that is loud or unpleasant

enough that causes some kind of disturbance (Moudon 2009). Noise pollution is one of
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the major concerns for the European population, especially for citizens living in urban
environments (Hurtley 2009), which is materialized in an ever-rising number of complaints
to public administrations (Organization et al. 2019). This issue is further stressed on those
residential areas located close to aggressive noise pollutants such as airports, railways, or
highways (WHO 2011). In fact, according to the World Health Organization (WHO) (Hurtley
2009; WHO 2011), there is a worrying portion of the European population that is systematically
exposed to harmful levels of noise pollution. Concretely, it is estimated that from all the
citizens living in the European Union (EU), about 40% are exposed to road traffic noise levels
above 55 dB(A), about 20% are exposed to levels above 65 dB(A) in daytime, and over 30%
are exposed to noise levels exceeding 55 dB(A) at nighttime (Data and statistics n.d.).

Continuous exposure to environmental noise pollution may result in adverse effects on
health, ranging from moderate disturbances such as difficulties in understanding a voice
message to chronic illnesses such as cardiovascular diseases (e.g., myocardial infarction),
cognitive impairment in children, psychological disorders derived from lack of rest or sleep,
or tinnitus (Test et al. 2011; WHO 2011). In fact, according to the European Environment
Agency (EEA), it is estimated that, only in Europe, 12,000 premature deaths are associated
with long-term noise exposure each year. Moreover, in their latest report (Noise n.d.), it is
estimated that more than 28 million people suffer from the aforementioned health effects
derived from overexposure to noise.

In order to overcome this situation, a set of recommendations have been established
(e.g., Environmental Noise Directive 2002/49/EC (Directive 2002/49/EC of the European
Parliament and of the Council of 25 June 2002 n.d.) from the European Commission or
the Environmental Noise Guidelines for the European Region from the WHO (Guski et al.
2017)) to define the thresholds on the maximum amount of noise that should be perceived
by citizens. For instance, the WHO distinguishes up to five different types of noise sources
(i.e., road traffic noise, railway noise, aircraft noise, wind turbine noise, and leisure noise)
and recommends different noise thresholds for each source depending on the time of the
day (i.e., day, night) (Organization et al. 2018). From these recommendations, it can be
inferred that not all sound sources have the same impact on human disturbance. In fact,
the sound level is not the only parameter that indicates the extent and intensity of noise
pollution (Abbaspour et al. 2015). Therefore, identifying the sources of those potentially
harmful sounds has emerged as a hot research topic nowadays.

So far, several efforts have been made by private and public entities on identifying
acoustically polluted environments in urban areas (Bello et al. 2019). Typically, this is done by
either analyzing the distribution of noise-related complaints in a certain area or by deploying
a Wireless Acoustic Sensor Network (WASN) to automatically monitor the soundscape (Bello

et al. 2019). Both approaches entail the same main underlying challenges:

1. Identifying multiple concurrent noise sources that populate a given soundscape. Typically,
in real-world environments, several sounds occur simultaneously. This complicates the

task of building a reliable automatic sound classifier system specialized in identifying a
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predefined set of acoustic events (Fonseca et al. 2019).

2. Monitoring large-scale urban areas in a cost-effective way. Populating (with either
automatic devices or human resources) extensive urban environments requires a
considerable amount of resources. For instance, it has been reported (Bello et al.
2019) that the Department of Environmental Protection from New York City employs
about 50 highly qualified sound inspectors. In addition, the starting price of autonomous
nodes to continuously monitoring sound is usually around EUR 1000 (Mejvald and
Konopa 2019).

3. Real-time processing. Although continuous exposure to noise is harmful, short-term
exposure to sporadic noise shall not be neglected. In fact, sometimes noise violations are
sporadic (i.e., they last a few minutes or hours at most). Therefore, human-based noise
complaint assessment systems result in being ineffective due to the fact that technicians
may arrive way after the disturbance has finished (Bello et al. 2019). Furthermore, the
large amount of data to be processed by autonomous acoustic sensors may make this

kind of approach challenging.

The purpose of this paper is to present an automatic classification system for acoustic
events in urban environments able to address the aforementioned challenges. The proposed
approach combines and improves (1) the advances of our previous work in the conception
of a WASN architecture for single-label classification using physical redundancy of low-cost
sensors and synthetically generated audio files (Vidana-Vila et al. 2020c¢), and (2) the outlined
automatic multilabel classification system for acoustic events that the authors presented
in (Vidana-Vila et al. 2021). The resulting system presented in this work features a two-stage
classifier that analyzes real-world acoustic frames in real time to distinguish all the events that
appear in them—mnot only on the foreground soundscape but also on the background. It is
understood that events in the foreground are those with more saliency than the average noise.
Similarly, events in the background are those events with similar saliency to the average noise.

The first stage is composed of a deep neural network that has been trained to identify
different events that may occur concurrently (also referred to as a multilabel classification).
The second layer is aimed at aggregating the first-stage classification results from neighboring
nodes (i.e., exploiting physical redundancy) to increase the classification reliability of individual
sensors. Additionally, the whole system has been designed so it can meet the computing
constraints typically found in the potential application domain of this system (i.e., low-cost
WASN (Vidana-Vila et al. 2020¢)). In order to assess the classification performance of the
presented approach, real-world data have been collected simultaneously at four corners of a
traffic intersection in Barcelona.

Overall, the contributions of this paper are the following:

o A new real-world 5 h length dataset (containing concurrent events) recorded simultan-
eously at four spots from a street intersection. This results in 4 x 5 h of acoustic data.
A total of 5 h of audio data corresponding to 1 spot have been manually annotated. To

the best of our knowledge, this is the first dataset with these characteristics.
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o A software-assisted strategy to reduce the number of user interactions when labelling

acoustic data to reduce the amount of time spent on this task.

o A two-stage acoustic classifier aimed at increasing the local classification robustness by
taking into consideration the classification results of neighboring nodes (i.e., exploiting

the nodes’ physical redundancy).

Conducted experiments over different low-cost architectures (Raspberry Pi 2B, 3B+, and
4) endorse the feasibility of our approach and encourage practitioners to extend this work in a
large-scale real-world deployment.

The remainder of this paper is organized as follows. Section I11.2 reviews the related work
on the identification of acoustic events in urban environments. Section I11.3 describes the
real-world data collection and annotation processes that have led to the training and test sets
used to assess the classification performance. Section I11.4 details the proposed two-stage
multilabel classifier system. Section II1.5 evaluates the proposed approach. Section I11.6
discusses the main findings of this work. Finally, Section [I1.7 concludes the paper and

proposes potential future work directions.

1.2 Related Work

There is an increasing demand for automatic monitoring of noise levels in urban areas,
especially if this monitoring can give information about the noise source of the measured
levels (Guski et al. 2017; Organization et al. 2018). In this sense, several WASN-based projects
are being developed in several parts of the world, mainly adapted to their requirements, some
of them identifying types of noise source and others giving equivalent levels L z¢,. Following
this idea, some projects have to develop their own sensors to meet the requirements of the
measurements, and others operate in the real world with commercial sensors. Additionally,
there are some projects that do not only concentrate on noise monitoring but also on air

pollution.

l1.2.1 Commercial Sensor Networks

Commercial sound level meters or sensor networks are usually connected to a central server,
which collects all the L 4.4 values gathered by the nodes. One of the first projects developed for
this purpose is the Telos project (Polastre et al. 2005), which was one of the first experiences
in this WASN design by means of an ultra-low-power wireless sensor module designed by the
University of California (Berkeley). Some years later, a WASN was used in a large variety of
environmental monitoring applications, with a central focus on urban sound, as we can find
in (Santini and Vitaletti 2007; Santini et al. 2008).

In Xiamen City (China), authors deployed a traffic noise monitoring network covering 35
roads and 9 green spaces in the city (C. Wang et al. 2013). Data from the environmental
monitoring stations were used to model the traffic of more than 100 roads in the city. Similarly,

the FI-Sonic Project is focused on noise monitoring in a surveillance mode (Paulo et al. 2015).

142



Related Work

Its main goal is to develop the artificial intelligence algorithms required to identify the location
of sound events (Paulo et al. 2016) based on a FIWARE platform. The RUMEUR project,
standing for Urban Network of Measurement of the sound Environment of Regional Use, is a
hybrid wireless sensor network deployed by BruitPaif (F. Mietlicki et al. 2015) in Paris and
its surrounding cities. It has been designed to have high accuracy in critical places, such
as airports, where the WHO directive has defined stringent thresholds (Data and statistics
n.d.), while other locations have less precise measurements. Years after, the RUMEUR project
has evolved to Medusa (C. Mietlicki and F. Mietlicki 2018), a new network combining four
microphones and two optical systems with the goal of identifying the sound source location.
Its computational load is high, and therefore it cannot be resolved by most of the low-cost

acoustic sensor systems.

lll.2.2 Ad Hoc Developed Acoustic Sensor Networks

Other projects have the goal of developing a custom WASN in order to meet the requirements
of specific applications, mainly of particular analysis over the acoustic data. The IDEA project
(Intelligent Distributed Environmental Assessment) (Botteldooren et al. 2011) seeks to analyze
air and noise pollutants in several urban areas of Belgium. It integrates a sensor network
based on a cloud platform, and it measures noise and air quality (Dominguez et al. 2014). The
CENSE project, which stands for characterization of urban sound environments, is committed
to conceiving noise maps in France (Cense - Characterization of urban sound environments
n.d.), integrating both simulated and measured data collected from a cost-affordable WASN.
The MESSAGE project, which stands for Mobile Environmental Sensing System Across Grid
Environments, (Bell and Galatioto 2013) not only monitors noise, carbon monoxide, nitrogen
dioxide, and temperature, but also goes further and gathers real-time humidity and traffic
occupancy in the United Kingdom. Moreover, the MONZA project (Bartalucci et al. 2018;
Bartalucci et al. 2020) follows both the idea of monitoring urban noise real-time together with
other air pollutants in the Italian city of Monza.

A more recent approach when working with WASN and noise sources is the hybrid
approach of combining the acoustic information with subjective perception surveys that are
specially focused on the typology of events affecting everyday life activities, such as sleeping
or studying (De Coensel and Botteldooren 2014). A noise identification system is applied
to provide information about the detected sounds and establish a relationship between the
perception surveys and the identified events related to road traffic noise (Brown and Coensel
2018).

One of the projects that faces the challenge of urban sound classification is Sounds of New
York City Project (SONYC), which monitors the city using a low-cost static acoustic sensor
network (Mydlarz et al. 2017). The goal of this project is to monitor noise pollution in real
time by identifying the different noise sources that populate an acoustic environment. In this
regard, it uses acoustic event detection (Bello et al. 2019; A. Cramer et al. 2021) over all the
collected (and annotated) urban acoustic data (Cartwright et al. 2020).

Another project with a similar conceptual background is the DYNAMAP project (Sevillano
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et al. 2016), which deployed two pilot areas in Italy, located in Rome (Bellucci et al. 2017)
and Milan (Zambon et al. 2017), with the idea of computing and comparing the noise impact
of road infrastructures in suburban and urban areas, respectively. The two WASNs monitored
road traffic noise by reliably collecting data at a frequency of 44,100 Hz, managing to remove
specific non-traffic audio events (Socoré et al. 2017; Alsina-Pages et al. 2018) in order to build
a more accurate road traffic noise map (Bellucci and Cruciani 2016).

Deep learning has been applied to urban audio datasets, obtaining encouraging
results (Vidana-Vila et al. 2020c; Gontier et al. 2021). However, many research studies
are limited to datasets that are unrealistic because they are curated from audio libraries
rather than real-world urban monitoring, and/or are single-label annotated, neglecting the
simultaneous occurrence of sounds (Salamon et al. 2014). Recent work suggests that using
multilabel data can enable practitioners to obtain more realistic results (Gontier et al. 2021).
In this regard, edge intelligence is envisaged as a powerful alternative to address the typical

computation overhead associated with multilabel classification systems (Srivastava et al. 2021).

ll.2.3 Sensor Deployment Strategies

In addition to the sensors, an important design parameter for wireless (acoustic) sensor
networks is the physical topology in which sensing units are deployed in a specific scenario.
This section reviews the impact of the sensor deployment strategy on (1) the maximum size
of the area of interest to be covered, (2) the power consumption of each node, and (3) the
communication robustness.

As far as the area of interest is concerned, in (Biagioni and Sasaki 2003), the authors
study different node placements for a wireless sensor network able to sense environmental
parameters (e.g., sunlight, temperature, humidity, rainfall, or images) that are delivered to
different base stations by means of ad hoc wireless communication links. Concretely, the
authors propose an analytical model to come up with the optimal position of nodes according
to the desired node arrangement (e.g., ring, star, triangle, square, and hexagon). Alternative
sensor location strategies have been studied for Underwater Acoustic Sensor Networks (UASN)
applications as well. For instance, in (Han et al. 2014), the authors study and compare
the impacts of node deployment strategies in a 3-D environment. Their results show that a
regular tetrahedron deployment scheme outperforms other topologies such as a random or
cube topology. Concretely, the metrics that they use to compare the different schemes are the
reduction of localization error and the optimization of localization ratio while maintaining the
average number of neighbouring anchor nodes and network connectivity. Similarly, in (Murad
et al. 2015), the effects of deploying UASNs together with the most well-known research
projects in this field are reviewed.

Another way of extending the area size consists of using mobile nodes (e.g., robotic
vehicles). For instance, in (Kim et al. 2016), the authors consider a dynamic topology in
which nodes are constantly moving and study the best way to optimize power consumption.

Finally, in (Ding et al. 2017), the authors propose an advanced strategy for sensor placement

that aims to maximize the connectivity robustness of the nodes for sparse networks. Concretely,
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they explore an analytical topology composed of hexagonal clusters and develop an algorithm

for geometric distance optimization to improve the overall robustness of the system.

1.3 Collection and Annotation of a Real-World Dataset

To evaluate the results of a multilabel classifier, the first step is to have available a dataset
with multilabel data. This section (1) describes the procedure that we followed to collect
these data from a real-world environment, (2) details how data were labeled, and (3) exhibits

the number of events for each class that were identified in the dataset.

ll.3.1 Recording Campaign

In order to obtain a suitable real-world dataset to validate the proposed approach (i.e.,
multilabel classification of urban sounds taking advantage of physical redundancy in sensor
nodes), two recording campaigns were conducted in the metropolitan area of the center
of Barcelona (Spain). To have a wider variety of data, the two recording campaigns took
place in different seasons of the year. The first one was conducted during autumn 2020
(17 November 2020) and the second one was conducted during spring 2021 (31 May 2021).
Another substantial difference is that the first recording campaign was conducted under
mobility restrictions (Bonet-Sola et al. 2021) due to the COVID-19 pandemic, while during
the second recording campaign, those restrictions were significantly softer. To have even
more diversity in data, the hours in which the recording campaigns took place were different:
whereas the autumn campaign was recorded from 12:00 to 14:30, the spring campaign was
recorded from 15:30 to 18:00.

The location where the recording campaign was conducted is a specific crossroad in the
Barcelona city center: the crossroad between Villarroel Street and Diputacié Street (plus
code 95M5+H9). This place is located in the Eixample area of Barcelona, which is the wide
expansion district of the city. This place was chosen in order to validate the architecture
proposed in (Vidana-Vila et al. 2020c), as its shape follows strictly regular symmetry. From
now on, these recordings will be referred to as Eixample Dataset.

Four Zoom H5 recorders (H5 Handy Recorder - Operation Manual 2014) (see Figure I11.1)
were used to record data, with one placed on the middle of each corner of the street intersection.
Concretely, the devices stood over tripods at a distance of at least 4 m from the closest wall
and 1.5 m from the floor to avoid undesired sound reflections. Furthermore, the inclination
of the device with respect to the floor was 45°. This will enable us to have simultaneous
audio recordings in order to assess with real-world data whether physical redundancy helps
increase the robustness of the classification results of the end-to-end architecture proposed
in (Vidana-Vila et al. 2020c¢), as in that work we used synthetically generated audio files.

The two recording campaigns resulted in about 2 h and 30 min of acoustic data per sensor
per campaign. Due to technical problems with the batteries of the recorders during the second
campaign, the files were fragmented into two audio files. The time dedicated to changing the

batteries was of about 5 min, in which we were not able to record data.

145



IIl. Multilabel acoustic event classification using real-world urban data and physical
redundancy of sensors

Figure III.1: Recording campaign and Zoom recorder.

ll.3.2 Data Labeling

Existing approaches to automatically label acoustic data (Fonseca et al. 2019) inspired by
semi-supervised learning techniques shall not provide the necessary high level of accuracy and
precision to train and test a reliable model to be considered as ground truth in order to assess
our proposed approach. Therefore, data collected from the recording campaign have to undergo
the manual labeling process described below.

Our previous experiences on (manually) labeling real-world acoustic datasets (Vidana-Vila
et al. 2020a; Vidana-Vila et al. 2020b; Vidana-Vila et al. 2017) taught us that assigning a tag
to an acoustic sample is a time-consuming process: contrary to other types of datasets (e.g.,
images) in which a label can be assigned as soon as the sample is shown, in acoustic data
labeling one has to wait for the whole acoustic record to be reproduced before assigning it a
label. Typically, this is done with off-the-shelf software alternatives such as Audacity (Audacity
2014) that provide end-users with a spectrogram of the full audio record; thus, it becomes
easier to visually identify those time frames in which something anomalous (i.e., potential
events of interest) might be happening. However, as the purpose of this work is to identify
multiple events (i.e., classes) that occur concurrently not only in the foreground but also in
the background, and thus potentially overlap in a given acoustic sample, all of the collected
acoustic samples—coming from the aforementioned two 2.5 h length campaigns—must be
systematically heard and labeled.

In this situation, off-the-shelf software alternatives come at little ease due to the fact that
they require, from the user point of view, several sequential and time-consuming interactions
with the mouse (e.g., dragging and selecting the desired part of the spectrogram, clicking to
add the label) and keyboard (e.g., typing the labels for the selected area). Additionally, as far
as keyboard interactions are concerned, we have found that it is very common to make typos
when writing the labels (e.g., typing rnt instead of rtn), which often require an additional
review stage before feeding the labels to the machine learning system. Obviously, all these
interactions add a significant delay on the overall data labeling process.

To address these shortcomings, we decided to develop a simple, yet custom, python script
aimed to ease the manual acoustic data labeling process. The behavior of the script is

described in the following points:
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Figure II1.2: Screenshot of the developed python script. The screen on the background (left)
records the keystrokes. The screen on the foreground (right) shows the information of the
current window and a legend with the correspondences between keys and labels.

e Input. The script reads the .wav files coming raw from the Zoom H5 recorders. This
done with the module AudioSegment of the pydub library. This module loads the whole
audio is input into a vector, which results in a very convenient solution when windowing

it.

o Configuration file. Moreover, the script reads a configuration JSON file specifying (1)
the window size in which the .wav file will be split, (2) all the possible labels that may
appear in the recording, and (3) a key (one letter long) associated with each possible
label.

o User interaction. As shown in Figure I11.2, the script (1) displays a screen with the
spectrogram—using the pyplot module of the matplotlib library—of the current
window together with its start and finish times, (2) continuously reproduces the audio
associated to the current window using the pyaudio library, and (3) shows the possible
labels together with their associated keys in another screen. Then, each time the user
presses a key corresponding to a label, the label is aggregated to the vector of labels
associated with the current window. If the same key was pressed again, that event
would be removed from the vector. Furthermore, the user can go to the following or
previous acoustic window by using the arrow keys. Note that in this way, the user has a

single interaction device (i.e., keyboard) and typos in labels are not possible.
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o Output. The script writes a .csv file with (1) the start time of the window, (2) the
finish time of the window, and (3) all the tags that have been selected for that window.

For instance, a line in this .csv file would appear as follows:

276.000000 280.000000 bike+dog+troll
280.000000 284.000000 bike+glass
284.000000 288.000000 dog+peop+drill

As a result, each line of the labels file derived from a recording contains the starting
and ending time of the window and the different labels assigned to (i.e., appearing) that

fragment.

Thanks to this software, we experienced that roughly, on average, the labeling process took
us 30% less time than what it took in other works where we used off-the-shelf alternatives.

As far as the data labeling process is concerned, we labeled the acoustic data (i.e., two 2.5
h length recordings) from one of the four corners of the recording campaign. Concretely, it
took about 12 h to annotate all these acoustic data using the aforementioned method. These
data were then used as a reliable ground truth for the experimental evaluation. The other
audio files were not manually labeled as they were only used as a complement to the selected
sensor to check if the accuracy improves when joining together the classification results from
neighboring nodes. In order to use a classification algorithm based on a deep neural network
able to classify the spectral information of acoustic data (Vidana-Vila et al. 2020c¢), we decided
to directly label the audio files in windows of 4 seconds to keep compatibility with previous
experiments (Vidana-Vila et al. 2020c). Hence, as it can be seen in the spectrogram depicted

in Figure I11.2, the script sequentially split audio files in windows of 4-second length.

111.3.3 Obtained Dataset

The manual labeling task led the team to this taxonomy, with the number of classes and the

number of labeled events shown in Table I11.1.

l.3.4 Train/Validation/Test Split

As can be seen in the last column of Table I11.1, the dataset is highly imbalanced: whereas the
top events of the table are present in both recording campaigns with a considerable number of
samples, there are some sounds that are poorly represented in the dataset. Actually, there are
acoustic events that are only present in one of the two recording campaigns. For example, the
drill sound is present only in the second campaign. Moreover, as the events were labeled in
4-second windows, the fact that there are 14 events labeled with the drill tag does not mean
that there are 14 independent drilling sounds, as a long drilling sound lasting (for example) 8
seconds would be counted as two different windows. This phenomenon would happen with all
the acoustic events that last more than the 4-second window (presumably, categories such as
sire, must, eng, or motorc among others). We are took this into account when splitting the
dataset in Train/Validation and Test sets (see Section I11.3.4).
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Table II1.1: Number of events annotated on the dataset.

Number of Occurrences
Label Description 1st . 2nd. Total
Campaign | Campaign
rtn Background traffic noise 2177 2118 4295
peop Sounds or noises produced by people 300 612 912
brak Car brakes 489 424 913
bird Bird vocalizations 357 960 1317
motorc Motorcycles 769 565 1334
eng Engine idling 203 913 1116
cdoor Car door 133 161 294
impls Undefined impulsional noises 445 170 615
cmplz | Complex noises that the labeler could not identify 85 73 158
troll Trolley 162 152 314
wind Wind 8 23 31
horn Car or motorbike horn 43 33 76
sire Sirens from ambulances, the police, etc. 18 57 75
must Music 8 30 38
bike Non-motorized bikes 51 24 75
hdoor House door 25 60 85
bell Bells from a church 24 27 51
glass People throwing glass in the recycling bin 17 32 49
beep Beeps from trucks during reversing 31 0 31
dog Dogs barking 3 25 28
drill Drilling 0 14 14

ll.4 Two-Stage Multilabel Classifier

After obtaining the labeled dataset, this section details the whole classification procedure.
First, it discusses the feature extraction process of the acoustic data. Next, it shows how
the dataset is split into Train, Validation, and Test sets. Then, it describes how the problem
of class imbalance has been addressed by using data augmentation. Finally, it details the

two-stage classification process.

ll.4.1 Feature Extraction

As features, and to maintain compatibility with (Vidana-Vila et al. 2020c), a spectrogram was
obtained from each 4-second window of the dataset. Audio files were originally recorded at a
sampling rate of 44,100 Hz. First, we considered down-sampling the audio files to 22,050 Hz,
but after analyzing the labeled events, we realized that the brak event had all its frequential
information at the band of ~17,000 Hz. Considering the Nyquist theorem, if the brak event
is aimed to be detected, a sampling rate of 22,050 Hz is not high enough. Hence, we finally

decided to keep the original 44,100 Hz frequency, even if it required more computational

resources.

Each spectrogram was generated with a Fast Fourier Transform (FFT) (Cooley and Tukey

1965) window of 1024 points and using the librosa python library (McFee et al. 2015). Next,
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each spectrogram was individually normalized to have a minimum value of 0 and a maximum
value of 1 for compatibility with the input format of the neural network.

The audio files obtained on the recording campaign had to be divided into Train, Validation,
and Test subsets. As soundscapes have temporal continuity, and so to evaluate the machine
learning algorithm correctly, it is important to make sure these three data subsets are taken
from different moments of the day, so that one single event is not split into different groups.
Therefore, we tried to avoid or mitigate the fact that different audio samples with similar

background noise were placed, for example, on both the Training and Testing sets.

Figure I11.3: Duration and temporal splitting of the Train, Validation, and Test sets of the
dataset.

Concretely, the division was done as shown in Figure [11.3: with divisions into contiguous
regions ranging from 5 to 71 min length.

This division left the dataset with 209 min for Training, 40 min for Validating, and 48
min for Testing. Note that the division of the two datasets was not exactly even due to the
distribution of the events. We tried to maximize the variety of the events on each of the
datasets while keeping their temporal evolution.

As can be appreciated in Table [11.2, the three sets are highly unbalanced. Note that due
to the lack of drilling events during the recording campaigns (only 14 consecutive events), we
were unable to test that category properly. We discarded the option of splitting the 14 events
into the Train and Test sets as they belonged to the same drilling machine recorded in the
same location, which may have generated biased results. Moreover, we decided to remove the
cmplx sounds from the dataset. As we could not identify the specific source of those sounds

when labeling them, we arrived at the conclusion that they may confuse the system.

ll.4.2 Data Augmentation

To mitigate the potential effects of class imbalance while training, we decided to add more
training data and to apply data augmentation techniques to obtain more samples on the
poorer classes. Additional data were obtained from the BCNDataset (Vidana-Vila et al.
2020a), which is a dataset containing real-word urban and leisure events recorded at night
in Barcelona. As the BCNDataset was labeled differently than the Eixample Dataset, labels

from both datasets were unified.
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Table II1.2: Number of events on the Train, Validation, and Test set.

Label

rtn
peop
brak
bird
motorc
eng
cdoor
impls
cmplx
troll
wind
horn
sire
must
bike
hdoor
bell
glass
beep
dog
drill

Dataset
Train Validation Test
3029 583 683
954 100 181
627 137 149
913 196 208
954 183 197
864 73 179
190 51 53
457 67 91
128 16 14
229 53 32
19 4 8
49 17 10
69 0 6
34 0 4
55 8 12
65 12 8
34 4 13
40 6 3
9 13 9
23 4 1
14 0 0

More concretely, per each of the acoustic events, on the BCNDataset the labels are provided

as:

start_second end_second label

rtn + motorc +
troll

rtn + sire

rtn + motorc +
troll + sire

Figure I11.4: Example of mixup data augmentation using two random 4-second fragments

containing several acoustic events.

Note that in BCNDataset, the difference between the starting time and the ending time of

each acoustic label is variable (not as in Eixample Dataset, where the ending time is always 4

s later than the starting time), and only one label is provided per each row of the text file.

However, the format of the file is the same as the one presented in Section I11.3.2, which eased
the merging process of both datasets. To merge both datasets, the labels of the BCNDataset

were fragmented and grouped in windows of 4 seconds. This way, we were able to obtain

one-hot encoded multilabel labels.
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The concrete data augmentation technique used in this work consisted of audio mixing,
sometimes known as mixup (Stowell et al. 2019). As shown in Figure I11.4, two spectrograms
(one belonging to the Eixample Dataset and the other belonging to BCNDataset) were added
and then divided by two to maintain 0-to-1 normalization values. As the newly generated
sample would contain information of all the events tagged in both spectrograms, the labels file
was generated by aggregating the one-hot encoding values as well. This process was carried

out using pseudo-random spectrogram selection until all the classes had about 500 samples on

the Training set.
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Figure IIL.5: Architecture of the MobileNet v2 (Howard et al. 2017) deep neural network used
at the first stage of the classification process.
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11.4.3 Multilabel Classification

The classification process consists of two layers:

1. The first layer (Section I11.4.3.1) is a Deep Neural Network (DNN) that classifies 4-second

fragments in a single node.

2. The second layer (Section I11.4.3.2) aggregates the classification results of the deep
neural networks running on the four corners of the intersection and makes a final decision
on what events are actually happening on each corner by means of an ensemble of

classifiers.

ll.4.3.1 First Stage: Classification in One Node

The classification of the events on each of the nodes was carried out using a deep neural
network with a MobileNet v2 architecture (Howard et al. 2017) with a size of 8.8 MB—which
should fit on a low-cost computing node for a WASN. As shown in Figure [11.5, the last layer
of the neural network was replaced by a fully connected layer with one neuron per class and a
Sigmoid activation function on each of them to allow multilabel classification. As a result,
for each input datum, the output neurons showed the probability of that class being present
on the input spectrogram. Once the probabilities were obtained, to evaluate whether the
deep neural network was able to classify correctly without taking into account the decisions
made by neighboring nodes, custom thresholds for each class were applied to determine if
the event was actually present on the 4-second fragment. The thresholds were obtained by
maximizing the Fl-measure of each class on the validation set. As hyperparameters, an
ADAM optimizer (Kingma and Ba 2017) was used with a learning rate of 1 x 107% and a

weight decay regularization of 1 x 1075,

ll.4.3.2 Second Stage: Classification Using Physical Redundancy

The aim of the second classification stage is to increase the robustness of the classification
conducted at the previous stage by exploiting the physical redundancy of the nodes (i.e., nodes
are physically deployed in such a way that the same event can be listened to by more than
one node). Robustness in this context refers to the ability of the classifier to perform correctly
when the output probabilities of the deep neural network for a given class are low but the
event is actually happening. In this regard, our proposed system takes into consideration the
classification results of neighboring nodes in order to strengthen (or weaken) its own results.
For instance, if in the same frame Node A classified a bell with probability 0.3 and nodes
B, C, and D classified bell with probability 0.8, then Node A should infer that a bell event
actually happened. As manually defining these thresholds (or rules) might disregard some of
the internal dynamics of the system, we propose to use a classifier to automatically generate
them.

The process followed to train the automatic second stage classifier is detailed in what

follows:
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1.

Once the deep neural network was trained, we used it to obtain a 21-component
classification vector per each of the 4-second fragments of the original Eixample Dataset
(see Section I11.3). Each component of the vector indicated the likelihood of an acoustic
event being present on the fragment. The labels from the dataset associated with each

fragment were kept as ground truth.

. The previous stage was done with the simultaneous audio of the remaining three

neighboring locations. Therefore, for each 4-second fragment of the FEixample Dataset,

we obtained four 21-component vectors together with the ground-truth labels.

. The four vectors were concatenated horizontally, thus obtaining a single 84-component

vector.

. The 84-component vector and ground truth labels were used to fit a machine learning

model that would output the final classification results.

For more clarification, this procedure is illustrated in Figure [11.6.

.5 Experimental Evaluation

To assess the classification performance of the proposed system, each one of both classification

stages was evaluated.

lll.5.1 Classification Performance at the First Stage

We evaluated the effect of training data on classification performance of the deep neural

network. Concretely, four experiments were conducted, differing only in the datasets used for

training:

o« Experiment 0: We used the Training set of the Eixample Dataset and the entire
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BCNDataset without using data augmentation techniques.

Experiment 1: We used the Training set of the Eixample Dataset and the entire
BCNDataset using the data augmentation techniques detailed in Section I11.4.2 to have

around 500 samples for each class.

Experiment 2: We used the same data as in Experiment 1 and we also added data
from the UrbanSound 8K dataset (Salamon et al. 2014). The sampling frequency of
most of the audio files of the UrbanSound dataset is lower than the one used on the
recording campaign (i.e., 44,100 Hz). In order to avoid having half of the spectrogram
empty for the UrbanSound samples, each audio file was combined with an audio file
from Experiment 1 using mix-up aggregation (that is, two spectrograms are aggregated,
each of them having a different weight on the final image). Concretely, the audio files
from the UrbanSound 8K dataset were only assigned between a random 10% to 30% on

the final weight of the spectrogram.
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Figure I11.6: Proposed system architecture with two classification stages. The first deep neural
network of the first level outputs a 21-component vector that is later concatenated with the
vectors from neighboring nodes. The resulting 84-component vector is examined by the second
classification stage to obtain the final classification result. This scheme is replicated on each
of the sensors of the system.

e Experiment 3: We used the same data as in Experiment 2, but on this occasion, each
audio file from the UrbanSound dataset was used 10 times to combine it with a different
audio file randomly selected from the BCNDataset or the Eixample dataset. This way,

we increased the size of the Training data.

Table I11.3: Macro and micro average F-1 scores for the experimental evaluation obtained at
the first classification stage.

Dataset Used | F1- Macro Average |F1- Micro Average

Experiment 0 12% 46%
Experiment 1 39% 70%
Experiment 2 36% 75%
Experiment 3 33% 67%

The metrics that we used to compare the results are the Macro and Micro average F1-

scores (Mesaros et al. 2016). Whereas the first metric gives an overall classification result
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without taking into account the number of samples of each class (i.e., all the classes have
the same importance), the second one considers the number of samples of each class of the
dataset (i.e., those classes that have a greater number of samples on the Test set have more
importance). We present both results because, on the one hand, the macro average could be
biased because of the limitations of the Test set in some classes (e.g., there is only one dog
event, which means that the Fl-measure for that class will be binary); on the other hand,
the micro average could be biased as well as the rtn class is present in almost all the audio
samples. Hence, whereas the first metric is mostly affected by the performance of the smaller
classes of the dataset, the second one is mostly affected by the performance of the larger
classes of the dataset. Table [11.3 shows the classification results for each of the experiments.
To compute the classification metrics, the drilling class was not taken into consideration as

there are no events from that class on the Test set.

As can be seen in Table [11.3, using the imbalanced data from the BCNDataset and
the Eixample dataset without using any data augmentation techniques (i.e., Experiment 0)
results in poor classification results. Concretely, the 12% on the Macro average F1 score
tells us that the algorithm has problems in classifying most of the categories. In addition,
having a Micro average F1 score higher than the Macro average F1 score tells us that the
system performs better when classifying those categories with more samples than when
classifying those categories with few instances. This phenomenon can be appreciated in all

the experiments.

Generally speaking, as shown in Table I11.3, the data augmentation techniques that have
been used in this work (i.e., Experiments 1, 2, and 3) have helped build a more robust system.
However, we think that using the UrbanSound samples has not actually helped to improve the
performance of the overall system at all due to the following reasons. First, even if UrbanSound
is a balanced dataset, it has fewer categories than the Eixample dataset. In addition, the
difference between the original sampling rate of the Eixample dataset or the BCNDataset
and the audio files from the UrbanSound dataset resulted in less realistic audio files than if
we used two real-world datasets recorded with similar conditions (as we did in Experiment
1). Actually, comparing the classification metrics from Experiment 2 and Experiment 3, we
can see that Experiment 2 has a better performance. We think that this is because when
doing data augmentation, only a random 10% to 30% of data belong to the UrbanSound
dataset, which means that most of the information belongs to the spectrograms from the
other two datasets. As we are augmenting data 10 times using the same base spectrograms,
the deterioration of the classification results may indicate that we are biasing the deep neural

network with mild overfitting towards these base spectrograms when training.

To sum up, we propose that the data used in Experiment 1 offer the fairest trade-off
between the performance of the system on large and small classes. Hence, from now on, for
the experiments performed on Stage 2, we will use the model trained with Experiment 1
data.
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Table III.4: Experiment results obtained at the second classification stage.

Algorithm Used | Micro Precision Micro Recall Micro F1 Macro Fl‘

DT 71.6% 69.5% 70.5% 30.6 %
RF 81.8% 68.1% 74.3% 26.7 %
LR 77.3% 2% 74.6 % 37.8%
XGB 78.5% 70.2 % 74.1 % 39.3 %

lll.5.2 Classification Performance at the Second Stage

As in this work the only labeled data that we had available were the ones recorded on one
specific sensor, the experiments were conducted over that reference sensor. To discover the
most suitable machine learning algorithm for the second classification stage, four different

classification algorithms were evaluated:
1. Decision Tree (DT): The size of the model after training was 617 KB.
2. Random Forest (RF): The size of the model after training was 121 MB.
3. Logistic Regressor (LR): The size of the model after training was 20 KB.
4. XGBoost (XGB): The size of the model after training was 2.3 MB.

It is worth noting that the lighter classification algorithms from a computing point of
view (i.e., the ones that require less RAM) are the DT and the LR, followed by XGB and,
finally, the RF. In this case, to build the models, the only data that we could use were the
ones belonging to the Eixample dataset, as this is the only one that has four simultaneous
recordings. The algorithms resulted in the classification results shown in Table I11.4. As
classification metrics, apart from the metrics shown in Section 111.4.3.1 (i.e., Micro F1 average
and Macro F1 average), the Micro precision and Micro recall of the system are shown as
well (Mesaros et al. 2016).

As can be seen in Table [11.4, all the algorithms tend to have slightly higher values of
Micro precision than Micro recall, which are emphasized in some of the classifiers (i.e., RF and
XGB). Whereas the first metric illustrates what proportion of detected events were actually
correct, the second one shows what proportion of actual events were correctly classified. The
Macro F1 measure gives the same importance to both metrics.

Whereas the highest Micro precision result is achieved by using the RF algorithm (81.8%),
the highest Micro recall result is obtained using the LR (72%). However, we believe that for
the current context of this work (i.e., classification of urban sounds), we should also consider
the F1 scores. In this sense, for the Micro F1 score, three classification algorithms present
similar results (the RF, LR, and XGB with 74.3%, 74.6%, and 74.1%, respectively). However,
when checking the Macro F1 average, XGB outperforms the other classification algorithms,
obtaining a final score of 39.3%. Therefore, we believe that the algorithm that presents the
fairest trade-off between all the classification metrics is XGB.

When comparing the classification results obtained at the first stage to the classification

results obtained at the second stage, we can see that using physical redundancy allowed
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for increasing the F1 Macro average from 70% to 74.1% (+4.1%). Regarding the F1 Micro
average, the results change from 39% to 39.3% (40.3%). These increments suggest that the
second stage helps to improve classification results mainly on the classes that have more
instances.

As this system is to be deployed in a low-cost device such as the one presented in (Vidana-
Vila et al. 2020c¢), it is not only the accuracy that matters but also the capability of the
system in making real-time classifications within the 4-second selected window. Moreover,
to make the classification process smoother, it would be desirable to use a sliding 4-second
window with hops as small as possible (i.e., obtaining as many classification results as possible
by sliding the 4-second window with overlap). The amount of overlap that can be used in the
system depends on the classification speed of the system to output new data.

For this reason, to check the amount of time that it would take to the system to output a
new classification result, experimental tests were carried out using three different computation
units (i.e., Raspberry Pi Model 2B, Raspberry Pi Model 3B+, and Raspberry Pi Model 4)
and a plug-and-play USB microphone.

The main hardware differences among these three models relevant to the research presented
in this work are their computation capabilities (central processing unit and operating frequency)

and their amount of RAM memory:

o Raspberry Pi Model 2B: Broadcom BCM2836 SoC (ARMv7), Quad-core ARM Cortex-
A7, @ 900 MHz, 1GB LPDDR2 of RAM.

o Raspberry Pi model 3B+: Broadcom BCM2837B0 SoC (ARMvS), Cortex-A53, 64-bit
@ 1.4GHz, 1GB LPDDR2 SDRAM.

« Raspberry Pi model 4: Broadcom BCM2711 SoC (ARMvS), Quad-core Cortex-A72
64-bit @ 1.5GHz, 4GB LPDDR4-3200 SDRAM.

For each experiment, we evaluated the timing performance of the processing units by
making 100 test runs on each device. The obtained results can be seen in Table I11.5. The
times on the table start counting since a 4-second fragment is acquired by the microphone,
and they include (1) the spectrogram computation, (2) the first stage classification (DNN),
and (3) the second stage classification. As can be observed in the table, the device in which
the experiments are conducted greatly affects the timing results.

Even though all the Raspberry Pi models are able to obtain a classification result within 4
seconds and would hence be suitable for a real-world deployment of the system, Raspberry Pi
Model 2B offers a timing response that is at least about 1 s slower than its superior models.
It can also be observed that Raspberry Pi Model 4B is, in general, about 0.5 s faster than
Raspberry Pi Model 3B+. Concretely, when using Raspberry Pi Model 4B, the average
response time of the system to perform a complete classification ranges from 0.66 s (when
using the DNN + DT) to 0.78 s (when using the DNN + RF). Concretely, when using the
aforementioned DNN + XGB algorithm, the classification would take on average 0.77 s. In this

case, the system could use a 4-second length sliding window and a hop of 1 s (i.e., maximum
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Table II1.5: Time that it takes for the system to classify a 4-second audio fragment using
three different sensor models. Results are shown in seconds after 100 runs.

. . Max. Time|Min. Time | Avg. Time
Algorithms | RPi Model (seconds) | (seconds) | (seconds)
DNN + DT 2.3 2.0 2.2
DNN + RF 2.9 24 2.6
DNN + Lr | Model 2B 2.4 2.0 2.2
DNN + XGB 2.8 24 2.5
DNN + DT 1.3 0.9 1.1
DNN + RF 1.5 1.2 1.3
DNN 4 LR | Model 3B+ 1.3 11 1.2
DNN + XGB 14 1.3 1.5
DNN + DT 0.7 0.6 0.6
DNN + RF 0.8 0.7 0.7
DNN 4+ Lr | Model 4B 0.8 0.6 0.6

DNN + XGB 1.0 0.7 0.7

classification time for DNN + XGB in Model 4B) and thus output a classification result in

the next second.

Table I11.6: Evaluation metrics of the system when combining the outputs of 4 local nodes by
using the XGBoost algorithm.

’ Label "I‘rue Negative | False Positive | False Negative | True Positive | F1-Score

rtn 0 37 11 672 0.97
peop 495 44 96 85 0.55
brak 513 58 80 69 0.50
bird 485 27 59 149 0.78
motorc 469 54 79 100 0.60
eng 502 39 41 138 0.78
cdoor 652 15 40 13 0.32
impls 598 31 61 30 0.39
troll 670 18 18 14 0.44
wind 709 3 5 3 0.43
horn 709 1 7 3 0.43
sire 701 13 5 1 0.10
must 714 2 4 0 0
bike 707 1 12 0 0
hdoor 705 7 8 0 0
bell 707 0 6 7 0.70
glass 707 0 2 1 0.50
beep 711 0 9 0 0
dog 718 1 1 0 0

Finally, to observe with detail the classification results obtained when using the selected
parameters, Table I11.6 shows the individual classification metrics per each class of the dataset
based on the results obtained in Experiment 1 on Section I11.4.3.1 and using the XGBoost
classifier. As can be seen, the system has a good performance when classifying events with
more than 100 instances on the Validation and Test set (values highlighted in Table I11.6).
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However, it behaves poorly when classifying those classes with few instances except for the bell
event. This may be due to the fact that in the recording location, the saliency of the recorded
bells was higher than the background noise, so all the recorded bells are foreground events.
On the contrary, events such as sirens or music were occasionally mixed with background
noise depending on the distance between the noise source, the sensor, and the simultaneous

acoustic events happening at the same time.

Figure II1.7: Example of a possible future location of sensors. Green dots indicate the location
used for the experiments conducted in this paper. Red dots indicate the new proposed
locations.

1.6 Discussion

From our point of view, we believe that the obtained results in this research are encouraging
in terms of covering the expected results. In fact, the proposed system has been shown to
properly operate in a real-world environment. That is, the proposed system has been exposed
to the real-operation conditions (in terms of audio) typically found in urban environments:
appearance of sounds not previously recorded, various events happening simultaneously, etc.
Using inexpensive commodity hardware (i.e., less than EUR 100 Raspberry Pi Model 4B), it

has been able to produce classification outputs with reasonable accuracy in 1 s.

l.L6.1 Location Perspective

The intrinsic Eixample topology makes the deployment of the sensors straightforward for this
specific scenario. As all streets are totally symmetrical in this part of Barcelona, it is possible
to deploy one sensor in each corner of the crossroads. If the proposed system were extended
to the whole city, the symmetry for this low-cost sensor network would be still guaranteed for

all places in the city center. However, up to now, we thought we should analyze, or at least
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test, the results with other distributions, also taking advantage of the symmetry of the streets.
As we have found that the most relevant sounds are detected in most of the four sensors in a
crossroad, it might be interesting to discover what would happen if the location is slightly
farther or if the sensor deployment strategy is different. In the latter case, we envisage a
design trade-off between the advantages of physical redundancy in terms of accuracy, the cost
of the WASN (i.e., number of sensors), power consumption, robustness, and size of the area
under interest.

In Figure I11.7, we show a possible future location deployment of the sensors with a wider
distance between them, which despite reducing the effects of physical redundancy, may make
the nodes more aware of what happens in the streets, instead of focusing on the crossroads.
This could open further research on discovering the optimal distance between sensors according
to the symmetry of the streets and balancing accuracy with the number of sensors to be
deployed. A further step in this analysis would be to study the deployment of the proposed
system in other parts of Barcelona without the Eixample symmetry: narrower streets, irregular
crossroads, small squares, and other urban layouts that may make distribution of sensors
difficult, in order to cover all the events happening on the street.

An accurate identification of sounds in an urban acoustic soundscape taking advantage
of physical redundancy in the nodes could help to locate the sound source. While this
might not be relevant in some cases/applications, it could be really helpful when assessing
noise complaints (neighbors, dogs, etc.). In fact, this could help local authorities to identify
those places (buildings, shops, bars, discos, etc.) where the noise is generated and conduct
appropriate corrective measures. Additionally, this could provide crucial support to model
the noise behavior in any city if the proposed system is deployed for long periods of time (i.e.,
months or years). In this case, it would be possible to discover recurrent patterns as certain
types of noise would come always from the same places (e.g. ambulances, trucks, motorbikes,

etc). Hence, a city noise model could be designed using the outputs of the proposed system.

l.L6.2 Accuracy and Sample Availability

According to the conducted experiments, we have observed that the F1-Micro average score
is consistently higher than the F1-Macro average. This means that the system has better
performance on those classes that have a significant number of instances for train and test. For
instance, while the bird class has 913 instances for train and 208 instances for test, obtaining
an F'l-score of 0.78, the bike class only has 55 instances for train and 12 instances for test,
obtaining an F1l-score of 0. To fight this situation, we believe that the individual detection
may be improved by balancing and obtaining more data from recording campaigns in the
same location or in other locations in Barcelona.

However, the number of instances is not the only relevant factor here: as it can be seen
in Table I11.6, the peop class has 954 instances for train and 181 instances for test, but only
obtains an F1-score of 0.55. This drives us to think that the saliency of each event should be
considered as well. In fact, we have observed that those events with low saliency are easily

masked by other events occurring concurrently with higher saliency. This situation makes the
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system obtain a higher number of false negatives than false positives for those specific events.
Further experimentation with alternative features and/or distinguishing between foreground

and background events at the annotation stage would be needed to validate this hypothesis.

lI.7 Conclusions

In this work, progress has been made in the Training, Testing, and Validation of a two-stage
classifier composed of a deep neural network and an XGBoost classifier with a very relevant
focus on the use of real-world data. In our experiment, real-world data gathered at the city
center of Barcelona have been used to validate the feasibility of a real-operation deployment
of the algorithm. The data gathering process has been carried out in four simultaneous spots
at a traffic intersection in order to assess up to what extent physical redundancy increases the
robustness of the classifier. Furthermore, a new data labeling procedure aimed to reduce the
amount of time spent on the task of manually labeling acoustic samples has been described. We
have also shown which strategies we used to enrich the gathered data (i.e., data augmentation)
to balance the corpus and thus improve the performance of the classifier.

From the experiments conducted, we can conclude that applying data augmentation
techniques has helped the classifier to identify better those categories with few instances on
the dataset. Moreover, physical redundancy of sensors has helped increasing the Micro and
Macro Fl-metrics. However, the improvement is mostly noticeable in those classes of the
dataset that have more sample instances.

A real-world deployment of a WASN capable of detecting multiple acoustic events occurring
simultaneously such as the one proposed in this paper would enable public administrations to
have more information available about the types of sounds present in each area of the city
in real time. This information may be helpful to assess neighbor complaints or detect the
most acoustically polluted areas as well as to design policies to improve the quality of life of
citizens of the more acoustically polluted areas.

As future work, we foresee that adding a memory layer to the system may increase the
classifier performance (e.g. if there is a siren sound in a 4-second fragment, then it is likely
that the next 4-second frame contains a siren sound as well). That is, we believe that knowing
the probability of certain events in certain cases may help. Thus, this hypothesis will be
further evaluated in future works. In addition, as it has been detected that the class imbalance
of the dataset deteriorates the performance of the system on the poor classes, new training
and testing data should be acquired. Finally, as the type of acoustic events present in urban
environments are volatile, may vary day by day, and in some cases, only a few instances of
each class might occur, it would be interesting to study the potential application of techniques

that explicitly allow for new categories, such as few-shot learning or active learning.
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Capitol 4

Conclusions

4.1 Resum

Aquesta tesi ha investigat la classificacié d’esdeveniments acuistics en entorns urbans fent servir
dispositius de baix cost. Concretament, s’han abordat dos reptes moderns. El primer repte
ha estat el disseny d’'una WASN escalable i de baix cost, creada a partir de sensors comercials
programables i capacitats de computaci6 limitades. A més, WASN és capag de supervisar
arees a gran escala. El segon repte ha estat el desenvolupament d’un algorisme de classificacio
en temps real capag de correr sobre els nodes de deteccié que s’han dissenyat. D’aquesta
manera, aquesta tesi ha completat el cicle d’'un projecte tipic de ML o DL juntament amb
el disseny d’una topologia i arquitectura capag de realitzar la classificacié. Aquest cicle ha
inclos la seleccié d’un escenari d’is, 'estudi i 'analisi dels sons ambientals de la ubicacid
seleccionada, una definicié de taxonomia per a tots els sons que s’han escoltat, una fase de
prototipatge (amb dades en-linia) d’un algorisme de classificacié juntament amb un estudi
sobre quines sén les caracteristiques més convenients per parametritzar els senyals actstics,
una millora d’aquest algorisme utilitzant dades del mén real per donar suport a la polifonia
(esdeveniments actstics multiples que ocorren simultaniament), i la prova d’aquest algorisme
sobre els sensors fisics. A més, la tesi ha estudiat la possibilitat de desplegar els sensors amb
redundancia fisica per comprovar si aixo millora els resultats de classificacié.

El proposit d’aquest capitol és (1) resumir el treball analitzant si s’han complert els
objectius de la tesi, (2) destacar les conclusions obtingudes en cadascuna de les etapes o
processos de la dissertacié i (3) proposa algunes linies de futur que es podrien considerar a la

llum dels resultats obtinguts en aquesta dissertacio.

4.2 Conclusions

En els ultims anys, tant les organitzacions publiques com les privades han fet un esforg
per controlar actsticament certs entorns urbans amb 'objectiu d’identificar les zones més
contaminades d’una zona determinada. Aquest interes sorgeix a causa dels efectes secundaris
que el soroll pot tenir sobre els éssers humans. No obstant aixo, alguns estudis revelen que no
nomeés el nivell de soroll és important per a la salut, siné també el tipus de sons als quals estan
exposats els ciutadans. Per aquesta rad, i veient que la majoria de les tecnologies actuals
només permeten comprovar el nivell de soroll en una determinada ubicacié en lloc d’identificar
també la font de soroll (en la majoria dels casos, els tecnics han d’anar fisicament al lloc on es
genera el soroll per veure quina és la font que causa I’esdeveniment actstic), aquesta tesi s’ha
dut a terme com un petit pas cap a la deteccié automatica de fonts sonores en entorns urbans

utilitzant dispositius de baix cost i redundancia fisica de sensors.
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4. Conclusions

Una implementacié en el mén real del sistema proposat permetria monitorar quines sén

les arees més contaminades de certs entorns urbans. A més, el sistema podria dir quins sén els

esdeveniments acustics que estan ocorrent en aquelles arees i permetria tenir una visié global

dels diferents soundscapes que hi ha a les diferents parts de la ciutat. Aixi doncs, el sistema

es podria fer servir com una eina perque les entitats publiques proposassin mesures per a

mitigar situacions que sén perjudicials per a la salut de la poblaci6 (per exemple, redirigint el

transit de diferents carrers o aplicant mesures restrictives relacionades amb el soroll).

Els dos reptes principals que s’han abordat en aquesta tesi son:

1.

Dissenyar sensors de baix cost utilitzant maquinari comercial de manera que es puguin
desplegar en arees de monitoritzacié de gran extensi6é. S’entén que un sensor de baix

cost és un node amb un preu comercial inferior a 100€.

Desenvolupar un algorisme de classificacié utilitzant tecniques DI que permeti realitzar
la classificacié automatica d’esdeveniments acustics utilitzant els nodes de deteccid
dissenyats. A més, aquest algorisme de classificacié ha de ser capag de classificar
esdeveniments que es produeixen simultaniament, ja que la polifonia és un fenomen molt

comu en entorns urbans.

A partir d’aquests dos reptes, es van definir tres qliestions de recerca i quatre objectius de

tesi. La segiient subsecci6 explica en primer lloc si s’han aconseguit els objectius de la tesi i, a

continuacié, la segiient subsecci6 respon a les preguntes de recerca.

4.2.1 Acomplicio dels objectius de la Tesi

Thesis Objective 1 o Objectiu de Tesi 1 (TO1): Desenvolupar un sistema classificador
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automatic capag¢ de detectar esdeveniments acustics en ambients urbans

utilitzant informacié espectral i temporal.

Aquest primer objectiu de la tesi requeria fer s d’informacié espectral i temporal per a la
classificacié automatica d’esdeveniments acustics. Per aconseguir aquest objectiu, es van
analitzar diverses caracteristiques acustiques per comprovar quines eren més convenients
per a les dades acustiques donades. Al final, es van escollir com a caracteristiques els
espectrogrames, als quals se’ls va aplicar diversos calculs i técniques sobre com ara la
normalitzacié de 'espectrograma, l'estandarditzacié, utilitzar espectrogrames log-mel o
espectrogrames regulars o tecniques de processament com PCEN per comprovar quina

representacié s’adaptava millor a les dades a caracteritzar.

A més, es van analitzar diferents mides de finestra per comprovar quina era la mida més
convenient per a les dades. Com que ’algorisme de classificacié era una CNN, es va
observar que la millor finestra era la que contenia prou informaci6é per veure patrons
dels esdeveniments acuistics definits en la taxonomia. Per exemple, les sirenes tenen un

clar patr6 en el temps que és util per al classificador.

A més, aquest sistema automatic havia de ser prou lleuger (en termes de requisits de

carrega computacional) per poder cérrer sobre un sensor de baix cost. Per aquesta rao,
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es van provar diferents arquitectures CNN. Al final, la arquitectura que es va seleccionar

permetia fer la classificacié en les unitats de computacié proposades.

Podem concloure que, després dels experiments realitzats, aquest primer objectiu s’ha

aconseguit amb eéxit.

Thesis Objective 2 o Objectiu de Tesi 2 (T0O2): Dissenyar una plataforma de maquinari

de baix cost capag de classificar esdeveniments actustics en temps real.

Aquest segon objectiu s’aconsegueix per mitja de dissenyar i provar uns WASN de baix
cost. Especificament, els nodes de deteccié conténen una Raspberry Pi i un microfon
USB.

La Raspberry Pi va ser seleccionada com a plataforma de computacié donat el seu balang
entre cost i caracteristiques. A més, la plataforma té una amplia comunitat de suport
que pot ser util per resoldre problemes. Es van provar diferents models de Raspberry
P1i, pero el model Raspberry Pi 4B va obtenir els millors resultats de classificacio, sent
capag de completar el cicle de 'adquisicié de dades, el seu processament i la classificacié
(incloent una DNN i un sistema intel - ligent ML que té en compte les sortides de diferents
nodes veins) en aproximadament 0,6 segons. Els altres models de Raspberry Pi avaluats
(Model 2B i 3B+) van trigar uns 1,3 o 2,5 segons respectivament. També cal tenir en
compte que els preus dels models de Raspberry Pi 2 i 3B+ sén inferiors al preu del
model de Raspberry Pi 4. Per tant, depenent dels requisits de diferents aplicacions
particulars, els models Raspberry Pi 2 o 3B+ ja podien satisfer els adequades per certs

problemes. El OS que s’executa als Raspberries és el Raspbian Lite.

En quant als microfons, es va seleccionar el microfon USB ja que no necessitava cap
maquinari addicional per poder adquirir dades actistiques amb un Raspberry Pi. No
s’ha dut a terme una analisi completa del microfon seleccionat o una comparacié
entre diferents microfons USB en aquesta dissertacio, s’ha suposat que l’escollit té una
resposta en freqliencia aproximadament plana en les freqiiencies d’interes tal i com
indica el seu fabricant. S’han descartat altres tipus de microfon (com ara Micro Electro
Mechanical System o Micro Electret Sistema Mecanic (MEMS)) ja que no tenen una
resposta de freqiiéncia plana o requereixen d’un convertidor extern Analogue-to-Digital
Converter o Convertidor Analogic-Digital (ADC), cosa que els fa menys adequats per a

un desplegament a gran escala.

Els nodes finals, disposats en una topologia distribuida, sén capagos de recopilar dades
acustiques a un ritme de 44 100 Hz i processar-les localment utilitzant el paradigma de
computacié de edge computing, assegurant la privadesa dels ciutadans i evitant enviar
fluxos de dades crues a un node centralitzat. Per tant, es pot confirmar que 1’objectiu

TO2 també s’ha complert.

Thesis Objective 3 o Objectiu de Tesi 3 (TO3): Utilitzar dades del mén real per
entrenar i avaluar la plataforma de classificacié (programari i maquinari) per

estudiar la viabilitat d’un desplegament en el mén real.
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Per estudiar la viabilitat d'un desplegament en el mén real, es van dur a terme diferents
campanyes de gravacié a ’escenari d’us seleccionat (una cruilla al centre del L’ Antiga
Esquerra de I’Eizample de Barcelona). Una primera campanya d’enregistrament va
permetre analitzar el paisatge sonor del barri i definir una taxonomia, i dues campanyes
d’enregistrament més van permetre recopilar dades en una topologia amb redundancia

fisica.

A causa de les troballes de I’analisi de la primera campanya de gravacid, es va poder
observar que la zona incloia sons tant de transit com d’oci. Aquest paisatge sonor va
canviar durant la pandémia de COVID-19 (especialment durant les restriccions més
estrictes de marg de 2020), pero el treball va servir com a base per seleccionar una
taxonomia i veure que els esdeveniments aciistics estaven ocorrent constantment i, més
important, simultaniament. Per aquesta rad, es va implementar un classificador polifonic

(és a dir, multietiqueta).

En la segona i tercera campanya d’enregistrament (les que composen el Fizample dataset),
tots els esdeveniments acustics van ser etiquetats: tant els que es senten en primer pla
i destaquen per sobre el soroll de fons com els de menys nivell actstic que es podrien
considerar com a soroll de fons. La hipotesi inicial que voliem confirmar era que, si
un huma és capag d’escoltar el soroll de fons, un classificador automatic també pot ser
capag de classificar-lo. No obstant aixo, a causa dels diferents sons que se superposen
en primer pla i fons, la hipotesi es va validar parcialment, ja que el classificador tenia

problemes a l'intentar classificar el soroll de fons.

El problema principal que es va trobar quan es van fer servir dades del moén real per a
la classificaci va ser el desequilibri de classes del conjunt de dades. Aquest fenomen de
desequilibri de dades és normal donada la naturalesa dels esdeveniments (esdeveniments
que estan ocorrent en un carrer concorregut de la ciutat), en els quals el soroll de transit,
incloent el pas de cotxes o motocicletes, tendeix a estar més present que, per exemple,
altres sons com sirenes d’ambulancies o sons produits per persones que caminen. Per
mitigar aquest problema, es van provar diferents tecniques d’augment de dades, utilitzant
principalment miz-up augmentation i combinant tant dades del mén real de Barcelona
com dades en linia (UrbanSound dataset). En la versi6 final del classificador, el sistema

encara classifica millor les classes més comunes que les que tenen menys instancies.

En aquest sentit, tot i no ser el rendiment més ideal (idealment, ens agradaria tenir
un sistema que pogués classificar per igual els sons que es produeixen en el fons i en
primer pla i que, a més, pogués fins i tot classificar els esdeveniments més inesperats),
I’algorisme proposat és capag de detectar amb una precisié raonable (comparada amb els
resultats de la classificacié que es poden trobar en la literatura) alguns esdeveniments
que ocorren simultaniament si tenen prou energia acustica. Per tant, podem concloure

que 'objectiu TO3 s’ha complert.

Thesis Objective 4 o Objectiu de Tesi 4 (TO4): Quantificar fins a quin punt la

redundancia fisica dels sensors millora la precisié del classificador.
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Per investigar i quantificar si la redundancia fisica dels sensors millora els resultats d’un
classificador automatic d’esdeveniments actstics, es van dur a terme dues campanyes
d’enregistrament tenint en compte una topologia de sensors especifica i utilitzant quatre
gravadors diferents Zoom H5 simultaniament (el conjunt de dades Fizample dataset).
Concretament, la topologia seleccionada va considerar quatre sensors, cada sensor es
col - locat en una cantonada d’una interseccio de transit al mig del Fizample de Barcelona.
La ubicaci6 escollida va ser la cruilla entre el carrer Villarroel i el carrer Diputacié (codi
95M5+H9). Cada campanya d’enregistrament contenia unes 2 hores i 30 minuts de
dades acustiques captades a cada sensor, amb diferents esdeveniments actstics depenent

de la naturalesa del soroll generat al carrer en el moment de les gravacions.

La redundancia fisica dels sensors es va tenir en compte quan s’executava una capa
intel - ligent sobre els resultats de la classificaci6 inicial de cada node. Més concretament,
es van avaluar quatre algoritmes diferents (un Arbre de Decisié, un Bosc Aleatori, un
Regressor i un XGBoost). No obstant aixo, i com va passar igualment quan s’utilitzava
un algorisme de classificacié basat en DL en cada sensor, el sistema va tenir problemes
en classificar els esdeveniments que estaven mal representats en el conjunt de dades a
causa del desequilibri de classes. Aix0 va resultar en una mitjana F1-Micro més alta

que la mitjana F1-Macro.

No obstant aixo, els experiments realitzats han permes quantificar fins a quin punt
la redundancia fisica pot ajudar a millorar les metriques de classificacié. En el cas
del conjunt de dades utilitzat (el conjunt de dades Fixample dataset amb técniques
d’augment de dades per a 'entrenament), la segona capa intel - ligent ha permes passar
d’una mitjana de F1-Micro del 70% a un 74,1%, el que significa que un 4,1% més de
mostres es van classificar correctament. En termes de micro-mitjana, la redundancia
fisica ha permes passar d’'un 39% a un 39,3%. Aquesta metrica indica que la redundancia
fisica només ha estat 1til en aquells casos en que el conjunt d’entrenament contenia una
quantitat substancial de mostres de la categoria que s’esta avaluant. Per aquesta rao,

podem concloure que I"T'O4 s’ha complert.

4.2.2 Respostes a les preguntes de recerca

Research Question 1 o Pregunta de Recerca 1 (RQ1): Podem detectar i identificar
esdeveniments acustics en un univers predefinit usant informacié espectral i

temporal encara que els esdeveniments es produeixin simultaniament?

Després de ’analisi dels resultats obtinguts en aquesta dissertacid, es pot confirmar que,
quan s’utilitzen caracteristiques espectro-temporals com els espectrogrames, és possible
detectar i classificar esdeveniments acustics (almenys, en I'univers predefinit de I’entorn
urba analitzat) sempre que aquests esdeveniments es produeixin prou a prop del sensor
que els monitoritza. En aquest sentit, prou a prop significa que ’esdeveniment destaca

per sobre del soroll de fons en el sensor.
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En els experiments realitzats, aquells esdeveniments que estaven emmascarats per
esdeveniments més forts eren més dificils d’identificar, i el mateix va océrrer amb aquells
esdeveniments que no van océrrer molt sovint en 'entorn predefinit (les classes que

estaven mal representades en el conjunt de dades).

Research Question 2 o Pregunta de Recerca 2 (RQ2): Es possible encabir un algorisme
classificador d’audio en un dispositiu de baix cost per tal que la classificaci6

doni resultats en temps real?

Els experiments realitzats en aquesta tesi han confirmat que és possible encabir en un
sistema de classificacié actstic en un dispositiu de baix cost, fins i tot si el classificador
esta format per una DNN, que normalment es considera com un algorisme pesat.
Diferents proves realitzades en certes unitats de computacié determinades (models de
Raspberry Pi) han demostrat que es poden obtenir resultats en menys de 4 segons.
Com que la finestra seleccionada utilitzada en aquest treball és de 4 segons, és un
requisit obligatori que el sistema classificador doni un resultat de classificacié en menys
d’aquesta quantitat de temps, per permetre un sistema fluid en temps real. En realitat,
utilitzant el dispositiu més potent —tot i que encara es considera de baix cost— (és a
dir, Raspberry Pi Model 4), el sistema va ser capa¢ de generar un resultat en menys d’1

segon (mitjana de 0,6 segons).

Research Question 3 o Pregunta de Recerca 3 (RQ3): Fins a quin punt la redun-
dancia fisica dels sensors pot ajudar a millorar un algorisme classificador

d’esdeveniments acustics?

D’acord amb les conclusions obtingudes per a l'objectiu TO4, la redundancia fisica
de sensors pot ajudar a classificar aquelles categories que es representen amb un gran
nombre d’instancies en el conjunt de dades i també pot ajudar a classificar aquells

esdeveniments que no estan completament emmascarats per altres sons en tots els nodes.

En resum, les contribucions d’aquesta tesi validen la viabilitat d’un desplegament en el
moén real d’'una Wireless Acoustic Sensor Network o Xarxa de Sensors Actstics sense Fils
composada per nodes de detecci6 de baix cost que generarien —en temps real— un resultat de
classificacié. Aquest resultat de classificacié especificaria quins esdeveniments actistics estan
ocorrent en un entorn urba. No obstant aixo, una cosa que s’ha de tenir en compte és que
I’equilibri de classes esdevé crucial quan s’entrena un classificador basat en Deep Learning o
Aprenentatge Profund. Una altra qiiestiéo que ha de tenir-se en compte és que, quan s’utilitzen
espectrogrames com a entrades, els esdeveniments que estan emmascarats pel soroll de fons

no sén detectats o classificats adequadament.

4.3 Linies de futur

Aquest treball abasta diversos temes en el cicle de vida d’un sistema de classificacié
d’esdeveniments actstics. Per a cada tema, s’han identificat algunes qiiestions obertes que

podrien requerir de recerca addicional per millorar les idees presentades en aquesta dissertacio.
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Definicié de taxonomia: En aquesta dissertacid, la taxonomia s’ha definit d’acord amb
les dades que s’han recopilat en diferents dies en llocs concrets del centre de la ciutat
de Barcelona. No obstant aix0, aquestes dades poden estar esbiaixades per les hores o
el moment de 'any de les campanyes de gravacio i els punts de gravacio seleccionats.
Per tenir una major varietat d’esdeveniments i, per tant, poder parametritzar millor el
paisatge sonor de la ciutat, es podrien dur a terme més campanyes d’enregistrament. Es
suggereix que, en lloc de campanyes de gravacié llargues (de més d’1 hora cadascuna)
com les realitzades en aquesta tesi, es gravéssin campanyes més curtes i en diferents llocs
de la ciutat (com carrers amb alta densitat de transit, parcs, hospitals, escoles, etc.).
D’aquesta manera, seria possible validar si les campanyes d’enregistrament realitzades
en aquesta tesi (és a dir, el BCNDatset i el conjunt de dades d’Eixample) representen
plenament el paisatge sonor de la ciutat. A més, els resultats obtinguts en aquesta tesi
poden estar esbiaixats també a causa del canvi del paisatge sonor en diferents condicions
(com la pandémia COVID-19 i les seves conseqiiéncies intrinseques com les restriccions
de mobilitat; estacions de 'any diferents o, senzillament, hores diferents al llarg del
dia). Per aquesta rad, seria convenient tenir en compte tots aquests parametres per a
les diferents campanyes d’enregistrament i realitzar un estudi profund per a comprovar

com es relacionen amb el paisatge sonor i explorar si la taxonomia hauria d’ampliar-se.

Millora de ’algorisme de classificacié: Actualment, els algoritmes desenvolupats només
tenen en compte quins esdeveniments s’estan produint en un moment determinat i en
una ubicacié determinada. En aquest sentit, I’algorisme és capag de determinar quins
esdeveniments actstics s’estan produint, pero no el seu nivell de soroll equivalent o si
els sorolls compleixen les normes actuals a la zona. En aquest sentit, un treball que es
podria duur a terme en el futur consistiria a afegir una capa superior a ’algorisme de
classificacié que tindria en compte: (1) les caracteristiques de la zona que es monitoritza
(per exemple, si és una area residencial), (2) el nivell de soroll equivalent que perceb el
sensor, (3) el tipus de so que es produeix en temps real i (4) 'hora del dia en queé es
produeixen els sons. D’aquesta manera, aquesta capa superior seria capag de detectar si
el soroll compleix les normes acustiques de la zona i facilitaria la tasca dels técnics o

experts que gestionen les queixes relacionades amb el soroll a les ciutats.

Afegir memoria al sistema: Una altra manera de millorar el sistema de classificacio
consistiria a afegir una capa de memoria al sistema. Es a dir, afegir una capa de
programari que tindria en compte els esdeveniments acustics que van ocorrer en
fotogrames passats per predir o validar els esdeveniments que estan ocorrent en el
present o en un futur proxim. Aquesta capa de memoria hauria de tenir en compte
la naturalesa intrinseca dels esdeveniments actstics de la taxonomia, ja que hi ha
esdeveniments amb més probabilitats de repetir-se que altres. Per exemple, si en els
ultims 4 segons una sirena d’una ambulancia estava present en el paisatge sonor, és molt

probable que la sirena encara estigui present en el segiient fragment de 4 segons. Aixo
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es deu a la naturalesa de ’esdeveniment de sirena, que sol ser llarg en el temps. No
obstant aix0, aquesta naturalesa no es comparteix amb altres esdeveniments com ara
claxons de cotxes, que poden océrrer independentment i que solen ser més curtes en el
temps que els sons de sirenes. Una futura direccié de treball consistiria en avaluar quins
esdeveniments sén més propensos a persistir en el temps i comprovar si una capa de

memoria en el sistema permetria aconseguir millors resultats de classificacié.

Avaluar més técniques d’augment de dades: En aquest treball, la técnica principal

d’augment de dades que s’ha utilitzat és 'augment de la mescla (miz-up augmentation),
que consisteix en combinar dos senyals d’audio en un per tenir una varietat més amplia
d’esdeveniments (es combinen diferents esdeveniments per tal de balancejar les classes).
Concretament, les dades de tres conjunts de dades diferents —dos conjunts de dades del
moén real i un conjunt de dades en linia— s’han combinat, i s’ha seguit una estrategia
per fer coincidir totes les etiquetes. Es van trobar problemes quan s’utilitzava el conjunt
de dades en linia, ja que les dades d’aquell conjunt es van enregistrar a un ritme de
mostreig més baix i no tenien el soroll de fons tipic que es podia escoltar a les ciutats,

la qual cosa el feia menys realista.

Com a futura linia de treball, seria cientificament interessant desenvolupar un sistema
que generi mostres acustiques realistes per enriquir el conjunt de dades d’entrenament.
La generacié d’audio es podria aconseguir mitjancant un Variational AutoEncoder o
AutoCodificador Variacional (VAE) o una Generative Adversarial Network o Xarxa

Generativa Antagonica (GAN).

Avaluar el hardware seleccionat: Per a aquest projecte, el maquinari dels nodes de la

xarxa s’ha triat d’acord amb les decisions adoptades en llegir les especificacions de les
unitats de computacié i microfons comercials, pero no s’ha dut a terme cap prova en el
mon real amb altres models. Una futura linia de treball seria provar diferents unitats de
computaci6 d’altres marques comercials (com Banana Pi, Jaguar One o Hummingboard)

per poder fer una comparacié objectiva amb els algorismes ja desenvolupats.

En aquesta linia d’investigacid, també seria interessant avaluar el sistema amb diferents
tipus de microfons, utilitzant o bé microfons USB de diferents marques, o bé MEMS
o microfons d’alta precisi6. La idea seria caracteritzar-los fisicament i veure els punts

forts i febles de cada model.

Provar altres topologies de sensors: La topologia seleccionada per a aquest projecte

176

implicava tenir un sensor situat en cada una de les cantonades d’una interseccié de
transit, tenint anells de 4 sensors en cada cruilla. Tenir aquests quatre nodes prou
propers han permes estudiar 1’efecte de la redundancia fisica dels sensors al carrer.
Tanmateix, altres configuracions podrien ser estudiades en un futur treball d’investigacio.
Per exemple, els nodes es podien col - locar al mig de cada bloc de la ciutat en lloc de a
la cantonada, canviant radicalment la topologia. Aquesta ubicacié potencial §’il - lustra a

Figura 4.1 (triangles verds). Una altra ubicaci6 potencial seria col - locar el sensor al mig
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Figura 4.1: Posicions potencials per als sensors. Els punts vermells indiquen la posicié actual
dels sensors en la topologia proposada, els quadrats grocs i els triangles verds indiquen les
ubicacions potencials que podrien ser estudiades en un futur treball.

de la cruilla (quadrats grocs). D’aquesta manera, només es necessitaria un sensor per
carrer, reduint el preu de la xarxa. Tanmateix, aixo també reduiria la redundancia fisica,
de manera que molt pocs esdeveniments (només els que tenen el volum més alt) serien
percebuts o detectats per diferents sensors. Aixo tindria un efecte clar en els resultats
de la classificacié, que hauria d’analitzar-se. Qualsevol canvi en la topologia implicaria
un canvi en la configuracié dels anells de la xarxa, pero en termes de programari aixo

no seria un gran inconvenient.

Una altra linia d’investigacié futura podria ser 'estudi de 1’efecte de 'algada en els
nodes. Ara mateix, tots els estudis s’han dut a terme utilitzant els sensors a ’algada
d’1,5 metres i una inclinacié de 45 metres respecte al terra. Posicionar els sensors,
per exemple, més a prop de les facanes de I’edifici o a ’algada d’un semafor, els faria
capturar informaci6 acustica diferent. Es podria estudiar 'efecte de canviar la posicid

dels nodes en el sistema de classificacio.

Desplegar el sistema en diferents escenaris d’ds: Finalment, un estudi interessant
seria replicar els experiments que s’han realitzat en aquesta tesi en ciutats diferents de
Barcelona. Malgrat ser escollida per les seves caracteristiques interessants (una de les
ciutats més sorolloses del mén i amb arquitectura simetrica), Barcelona no és 'inica
ciutat en la qual es podria desplegar la WASN. Kl sistema proposat podria adaptar-se a
qualsevol ciutat moderna del moén, amb 1'inica diferéncia que la topologia hauria de
modificar-se lleugerament. Es podrien mantenir els anells de fitxes, tot i que la distancia
entre els sensors probablement canviaria. Com a linia futura, es suggereix provar el

sistema en altres escenaris d’is amb diferents caracteristiques (per exemple, Girona, que
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és una ciutat més petita, Madrid, Paris, etc.).

A més, el comportament del sistema en el temps també s’ha d’estudiar. Fins ara, tots els
experiments s’han provat en periodes curts de temps. Seria d’interes cientific desplegar
el sistema i deixar-lo connectat durant uns mesos, o fins i tot anys, per estudiar les
febleses del maquinari com ara les derivacions potencials de la resposta de freqiiencia
del microfon o els problemes de sincronitzacié entre les diferents unitats de computacio,

aixi com la possibilitat de mesurar els canvis estacionals en I’entorn acustic de la ciutat.

Per acabar, una vegada el sistema hagués estat desplegat durant llargs periodes de
temps, es podria estudiar fins a quin punt aquest podria ser utilitzat com a eina per a
millorar la salut de la poblacié a forga d’intentar modificar el soundscape de les arees
més contaminades acusticament. S’ha de tenir en compte, pero, que aquesta ultima linia
de futur és molt ambiciosa, ja que implicaria (1) tenir un acord amb els ajuntaments de
les ciutats en les quals s’hagués desplegat el sistema i (2) desenvolupar una interficie
d’usuari amigable per a que els treballadors dels departaments de qualitat de soroll el

poguessin fer servir.



Chapter 4

Conclusions

4.1 Summary

This thesis has investigated acoustic event classification in urban environments using low-cost
devices. Specifically, two modern challenges have been addressed: (1) the design of a low-cost,
scalable WASN based on programmable commercial sensors and limited computing capabilities
able to monitor large-scale areas and (2) the development of a real-time classification algorithm
able to run over the designed sensing nodes. This way, this thesis has completed the full cycle
of a typical ML or DL project together with the design of a topology and architecture able to
perform classification. This cycle has included the selection of a use-case scenario, the study
and analysis of the environmental sounds of the selected location, a taxonomy definition for
all the sounds that have been heard, a prototyping stage (with online data) of a classification
algorithm together with a study on which are the most convenient features to parametrize the
acoustic signals, an enhancement of that algorithm using real-world data to support polyphony
(multiple acoustic events occurring simultaneously), and the testing of that algorithm over
physical sensors. Moreover, the thesis has studied the possibility of deploying the sensors with
physical redundancy to check whether this improves the classification results. The purpose of
this chapter is to (1) summarize the work by analyzing whether the thesis objectives have
been accomplished, (2) highlight the obtained conclusions on each of the stages or processes
of the dissertation and (3) provide some future work directions that could be considered in

light of the outcomes provided by this dissertation.

4.2 Conclusions

Over the last years, both public and private organizations have put an effort on acoustically
monitoring urban environments with the aim of identifying the most polluted zones of a given
area due to the side health effects that noise may have on human beings. However, some
studies reveal that it is not only the level of noise that matters but also the type of sounds
the citizens are exposed to. For this reason, and seeing that most of current technologies just
allow to check what is the noise level in a given spot instead of detecting the noise source as
well (in most cases, technicians have to go to the place in which noise is generated to check
what source is causing the acoustic event), this thesis has been conducted as a small step
towards automatic noise source detection in urban environments using low-cost devices and
physical redundancy of sensors.

A real-world implementation of the proposed system would allow to monitor which are
the most polluted zones in a certain urban environment. Moreover, the system would tell

which are the acoustic events that are occurring in that area and would allow to have a global
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picture of the different soundscapes of different parts of the city. Hence, the proposed system

could be used as a tool for public entities to propose measures to mitigate situations that are

perjudicial to the health of the population (e.g. redirecting the traffic of different streets or

applying noise-related restrictions).

The two main challenges that have been addressed in this dissertation are:

1. Designing low-cost sensors using commercial hardware so they can be deployed over

wide areas to be surveyed. It is understood that a low-cost sensor is a sensing node with

a commercial price lower than 100€.

. Developing a classification algorithm using DL techniques that allows to perform

automatic acoustic event classification using the designed sensing nodes. Also, this
classification algorithm must be capable of classifying events that occur simultaneously,

as polyphony is a very common phenomenum on urban environments.

From these two challenges, three research questions and four thesis objectives were defined.

The next subsection will first explain whether the thesis objectives have been achieved, and

then, the following subsection will answer the research questions.

4.2.1

Achievement of the thesis objectives

Thesis Objective 1 o Objectiu de Tesi 1 (TO1): Develop an automatic classifier system
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capable of detecting acoustic events occurring in urban environments using

spectral and temporal information.

This first thesis objective aimed at using both spectral and temporal information for
automatic acoustic event classification. To achieve this objective, several acoustic
features were analyzed to check which ones were more convenient for the given acoustic
data. At the end, spectrograms were chosen, and several spectrograms calculations and
techniques (such as spectrogram normalization, standardization, log-mel spectrograms
vs. regular spectrograms or processing techniques such as PCEN) were applied to check

which representation suited best the data to be characterized.

Also, different window sizes were analyzed by means of a grid search to check which
was the most convenient size for the data. As the classification algorithm was a CNN,
it was observed that the best window was the one containing enough information to
see patterns of the acoustic events defined in the taxonomy. For example, sirens have a

clear pattern on time that is useful for the classifier.

Also, this automatic system had to be light enough (in terms of computational load
requirements) to be able to run over a low-cost sensor. For this reason, different CNN
architectures were tested. At the end, the one that was selected could fit in the proposed

computing units.

We can conclude that, after the conducted experiments, this first objective was

successfully accomplished.
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Thesis Objective 2 o Objectiu de Tesi 2 (TO2): Design a low-cost hardware platform

capable of classifying acoustic events in real-time.

This second objective is achieved by means of designing and testing a low-cost WASN.
Specifically, the sensing nodes have been chosen to be Raspberry Pi computing units

and USB plug-and- play microphones.

Raspberry Pi was selected as the computing platform given its fair trade-off between
cost and features. Moreover, the platform has a wide support community that may be
useful for troubleshooting. Different models of Raspberry Pi were tested, but Raspberry
Pi model 4B obtained the best classification results, being able to complete the cycle of
data acquisition, data processing and classification (including a DNN and an intelligent
ML system that takes into account the outputs of different neighboring nodes) in about
0.6 seconds. The other models of Raspberry Pi evaluated (Model 2B and 3B+) took
about 1.3 or 2.5 seconds respectively. It must also be taken into account that the prices
of Raspberry Pi models 2 and 3B+ are lower than the price of Raspberry Pi model 4.
Hence, depending on the requirements of particular applications, Raspberry Pi models
2 or 3B+ could already satisfy the requirements. The OS running on the Raspberries is
Raspbian Lite.

Regarding the microphones, the USB plug-and-play microphone was selected as it did
not need any additional hardware to be able to acquire acoustic data with a Raspberry
Pi. A complete analysis of the selected microphone or a comparison between different
USB microphones has not been carried out in this dissertation, it has been assumed to
have a flat frequency response in the frequencies of interest. Other microphone types
(such as Micro Electro Mechanical System o Micro Electret Sistema Mecanic (MEMS))
that do not have a flat frequency response or require from an external Analogue-to-
Digital Converter o Convertidor Analogic-Digital (ADC) converter, which make them

less suitable for a wide deployment, have been discarded.

The final nodes, arranged in a distributed topology, are able to collect acoustic data at a
rate of 44 100 Hz and process them locally using the edge computing paradigm, ensuring
citizens’ privacy and avoiding to send raw data streams to a centralized node.Thus, it

can be confirmed that TO2 has successfully been achieved.

Thesis Objective 3 o Objectiu de Tesi 3 (TO3): Use real-world data to train and
evaluate the classification platform (hardware and software) in order to

study the feasibility of a real-world deployment.

To study the feasibility of a real-world deployment, different recording campaigns took
place in the selected use-case scenario (a cross-road in the center of the L’Antiga
Esquerra de I’Fizample of Barcelona). A first recording campaign enabled to analyze the
soundscape of the neighborhood and define a taxonomy, and then two more recording

campaigns enabled to gather data in a physical redundancy topology.

Due to the findings of the analysis of the first recording campaign, it could be observed

that the zone included both traffic and leisure sounds. This soundscape had for sure
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changed during the COVID-19 pandemic (specially during the most strict lockdown of
March 2020), but the work served as a baseline to select a taxonomy and see that the
acoustic events were happening constantly and, more important, simultaneously. For

this reason, a polyphonic (i.e., multi-label) classifier was implemented.

In the second and third recording campaigns (the ones that compose the Eizample
dataset), all the acoustic events were labelled: both the ones on the foreground standing
over the background noise and the ones with less acoustic level that could be considered
as background noise. The initial hypothesis that we wanted to confirm was that, if
a human is able to hear the background noise, an automatic classifier may be able
to classify it as well. However, due to different sounds overlapping in foreground and
background, the hypothesis was just partially validated as the classifier struggled when
trying to classify the sounds in the background.

The main problem encountered when using real-world data for classification purposes was
the high class imbalance encountered in the dataset. This data imbalance phenomenum
is normal given the nature of the events (events that are happening in a crowded street
of the city), in which traffic noise including the by-pass of cars or motorcycles tends to be
more present than, for example, other sounds such as siren sounds from ambulances or
sounds produced by people walking. To mitigate this issue, different data augmentation
techniques were tested, using mainly mix-up augmentation combining both real-world
from Barcelona and online data. In the final version of the classifier, the system still

classifies better the most common classes than the ones that have less instances.

In this sense, despite not being the most ideal performance (a system that could classify
equally the sounds that occur in background and in foreground and a system that can
even classify the events that are least likely to occur), the proposed algorithm is able
to detect with a reasonable accuracy (compared to the classification results that can
be found in the literature) some events occurring simultaneously if they have enough

acoustic energy. Hence, we can conclude that TO3 has been accomplished.

Thesis Objective 4 o Objectiu de Tesi 4 (TO4): Quantify up to what extent physical
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redundancy of sensors improves the accuracy of the classifier.

To investigate and quantify wether physical redundancy of sensors improves the results
of an automatic acoustic event classifier, two recording campaigns were carried out
taking into consideration a specific sensors topology and using four different Zoom H5
recorders simultaneously (the Eizample dataset). Specifically, the selected topology
considered four sensors, each sensor being placed in a corner of a traffic intersection
in the middle of the Eizample of Barcelona. The location was the crossroad between
Villarroel Street and Diputaci6 Street (plus code 95M5+H9). Each recording campaign
contained about 2 hours and 30 minutes of acoustic data, with different acoustic events

depending on the nature of the noise generated in the street at that time.

The physical redundancy of sensors was taken into consideration when running an

intelligent layer over the initial classification results of each sensing node. More concretely,
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four different algorithms were evaluated (a Decision Tree, a Random Forest, a Learning
Regressor and an XGBoost). However, and as it equally happened when using a single
DL-based classification algorithm in each sensor, t he system struggled when classifying
events that were poorly represented in the dataset due to class imbalance. This resulted

in a F1-Micro average higher than the F1-Macro average.

However, conducted experiments have enabled to quantify up to what extend physical
redundancy could help to improve the classification m etrics. In t he case of t he used
dataset (the Eizample dataset with data augmentation techniques for training), the
second intelligent layer has allowed to pass from a 70% F1-Micro Average metric to
a 74.1%, meaning that a 4.1% more of samples were correctly classified. In t erms of
Micro-averaging, physical redundancy has enabled to pass from a 39% to a 39.3% of
accuracy. These metrics indicate that physical redundancy has been helpful only
in those cases in which the training set contained a substantial amount of samples
from the category being evaluated. For this reason, we can conclude that TO4 has

been accomplished.

4.2.2 Answers to the research questions

Research Question 1 o Pregunta de Recerca 1 (RQ1): Can we detect and identify acoustic
events in a predefined universe using spectral and temporal information even

if they occur simultaneously?

After the analysis of the results obtained in this thesis, it can be confirmed that, when
using spectro-temporal features such as spectrograms, it is possible to detect and classify
acoustic events (at least, in the predefined universe of the analyzed urban environment)
as long as those events are occurring close enough to the sensor that is monitoring them.
In this sense, close enough means that the event stands out of the background noise in

the sensor.

In the conducted experiments, those events that were masked by louder events were
more difficult to identify, and the same occurred with those events that did not happen
very often in the predefined environment (those classes that were poorly represented in
the dataset).

Research Question 2 o Pregunta de Recerca 2 (RQ2): Is it possible to fit an audio
classifier algorithm in a low-cost device so it outputs the classification results

in real-time?

The experiments carried out in this thesis have confirmed that it is possible to fit an
acoustic classifier system in a low-cost device, even if the classifier is composed of a
DNN, which is usually thought to be a heavy algorithm. Different tests conducted over
a few computation units (Raspberry Pi models) have proved to be able to output a
result in less than 4-seconds. As the selected window used in this work is 4 seconds, it

is a compulsory requirement that the classifier system outputs a classification result in
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less than that amount of time, to allow a fluent real-time system. Actually, using the
most powerful —and yet, low-cost— device (i.e., Raspberry Pi Model 4), the system

was able to output a result in less than 1 second (average of 0.6 seconds).

Research Question 3 o Pregunta de Recerca 3 (RQ3): Up to what extent physical

redundancy of sensors can help improving an acoustic classifier algorithm?

According to the conclusions obtained for T'O4, physical redundancy of sensors can help
when classifying those categories that are represented with a large number of instances
in the dataset and also for those events that are not completely masked by other sounds

in all of the sensing nodes.

To sum up, the contributions of this thesis validate the feasibility of a real-world deployment
of a Wireless Acoustic Sensor Network o Xarxa de Sensors Acustics sense Fils composed
of low-cost sensing nodes that would output —in real-time— a classification result. This
classification result would specify which acoustic events are happening in a urban environment
event if they were occurring simultaneously. Something that must be taken into account,
though, is that class balancing becomes crucial when training a Deep Learning o Aprenentatge
Profund-based classifier. Another issue that must be taken into account is that, when using
spectrograms as inputs, those events that are masked by the background acoustic noise may

not be properly detected or classified.

4.3 Future work

This work embraces several topics in the life cycle of an acoustic event classification system.
For each topic, there have been identified some open issues that could require additional

research to improve the ideas presented in this dissertation.

Taxonomy definition: In this dissertation, the taxonomy has been defined according to
the data that has been gathered in different days in concrete locations of the city centre
of Barcelona. However, this data may be biased by the selected hours or moment of
the year of the recording campaigns and the selected recording spots. To have a wider
variety of events and, hence, be able to better parametrize the soundscape of the city,
more recording campaigns could be carried out. It is suggested that, instead of long
recording campaigns (of more than 1-hour each) as the ones conducted in this thesis,
shorter recordings are captured in different locations of the city (such as streets with
high density of traffic, parks, hospitals, schools, etc.). This way, it would be possible
to validate if the recording campaigns carried out in this thesis (i.e., the BCNDatset
and the Eixample dataset) do fully represent the soundscape of the city. Moreover, the
results may be biased as well due to the change of the soundscape in different conditions
(such as COVID-19 pandemic and its intrinsic consequences such as mobility restrictions,
different seasons or different hours). For this reason, it would be convenient to take

into account all these parameters for different recording campaigns and conduct a deep
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study to check how they relate to the soundscape and explore if the taxonomy should

be widened.

Classification algorithm enhancement: Currently, the developed algorithms take into
account only which events are occurring in a determined moment and at a determined
location. In this sense, the algorithm is just capable of determining what acoustic events
are occurring, but not their equivalent level or if the noises are meeting the current
regulations in the zone. In this sense, a potential future work would consist on adding
a superior layer to the classification algorithm that would take into account: (1) the
characteristics of the zone being monitored (e.g., residential area), (2) the equivalent
noise level being perceived by the sensor, (3) the type of sound occurring at real-time
and (4) the hour of the day at which the sounds are occurring. This way, this superior
layer would be able to detect if the noise is exceeding the acoustic regulations of the
zone and would facilitate the task of the technicians or experts that handle noise-related

complaints in cities.

Add memory to the system: Another way of improving the classification system would
consist on adding a memory layer to the system. That is, add a software layer that
would take into account the acoustic events that occurred in past frames to predict or
validate the events that are occurring in the present or in a near future. This memory
layer would have to take into account the intrinsic nature of the acoustic events of the
taxonomy, as not all the acoustic events are likely to be repeated if they occurred in the
past. For example, if on the last 4-seconds a siren of an ambulance was present in the
soundscape, it is very likely that the siren is still present in the next 4-seconds fragment.
This is due to the nature of the siren event, that is typically long in time. However, this
nature is not shared with other events such as car horns, that may happen independently
and are usually shorter in time than siren sounds. A future work direction would consist
on evaluating which events are more likely to persist in time and checking wether a

memory layer in the system would allow to achieve better classification results.

Testing more data augmentation techniques: In this work, the main data augmentation
technique that has been used is mix-up augmentation, which consists on combining
two audio signals in one to have a wider variety of events (combination of simultaneous
events in a single frame and class balancing). Concretely, data from three different
datasets—two real-world dataset and one online dataset— have been combined, and a
strategy has been followed to make all the labels match. Problems were encountered
when using the online dataset, given that it was recorded at a lower sampling rate and
it did not have the typical background noise that can be heard in cities, which made it

less realistic.

As a future working line, it would be scientifically interesting to develop a system
that generates realistic—yet synthetic— urban acoustic samples to enrich the training

dataset. The audio generation could be achieved by means of a Variational AutoEncoder
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o AutoCodificador Variacional (VAE) or a Generative Adversarial Network o Xarxa

Generativa Antagonica (GAN).

Hardware selection testing: For this project, the hardware of the computing nodes has

been chosen according to decisions taken when reading literature and specifications
of commercial computing units and microphones, but no real-world testing has been
carried out. A future line of work would be to try different computing units from other
commercial brands (such as Banana Pi, Jaguar One or Hummingboard) in order to be

able to objectively make a comparison with the already developed algorithms.

In this research line, it would be interesting too to evaluate the system with different
microphone types, using either USB plug-and-play microphones from different brands,
MEMS or high-precision microphones. The idea would be to physically characterize

them and see the strengths and weaknesses of each model.

Sensors topology checking: The selected topology for this project involved having one

sensor placed in a corner of a traffic intersection, allowing rings of 4 sensors on each
crossroad. Having this four nodes close enough has enabled to study the effect of physical
redundancy of sensors in the streets. However, other configurations could be studied
in a future research work. For example, nodes could be positioned in the middle of
each city block instead of in the corner, radically changing the topology. This potential
location is illustrated in Figura 4.1 (green triangles). Another potential location would
be to place the sensor in the middle of the crossroad (yellow squares). This way, only
one sensor per cross-road would be required, reducing the price of the network. However,
this would reduce the physical redundancy as well, so very few events (only the ones
that have a louder volume) would be perceived or detected by different sensors. This
would have a clear effect on the classification results, that should be analyzed. Any
change in the topology would implicate a change in the configuration of the token rings,

but in terms of software this would not be a major inconvenient.

Another future research work could be the study of the effect of height in the sensing
nodes. Right now, all the studies have been carried out using a sensors height of 1.5
meters and a 45° inclination from the floor. Positioning the sensors, for instance, closer
to the building facades or at the height of a traffic light would make them capture
different acoustic information. The effect of changing the position of the nodes in the

classifier system could be studied.

Deploying the system in different use-case scenarios: Finally, an interesting study
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would be to replicate the conducted experiments in cities different than Barcelona.
Despite being chosen for its interesting characteristics (one of the noisiest cities in the
world and with symmetric architecture), Barcelona is not the only city in which the
proposed WASN could be deployed. The proposed system could be adapted to any
modern city in the world, with the only difference that the topology would have to

be adapted. The token rings could be maintained, even though the distance between
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Figure 4.1: Potential positions for the sensors. Red dots indicate the current position of
the sensors in the proposed topology, yellow squares and green triangles indicate potential
locations that could be studied in a future work.

sensors would probably change. As a future line, it is suggested to try the system in
other use-case scenarios with different characteristics (e.g., Girona, which is a smaller
city, Madrid, Paris, etc.).

Moreover, the behavior of the system in time should be studied as well. Until now, all
the experiments have been tested in shorts periods of time. It would be of scientific
interest to deploy the system and leave it connected for a few months—or even years—to
study the hardware weaknesses such as potential derives of the frequency response of
the microphone or synchronization problems between different computing units, as well
as the possibility of measuring the seasonal changes in the acoustic environment of the
city.

Also, once the system was deployed in several areas and for long periods of time, it should
be studied up to what extent the system could be used as a tool to improve the health
of the population by changing the soundscape of the most acoustically polluted areas. It
must be considered, though, that this last future work direction is very ambitious as it
would imply to (1) set-up an agreement to the city councils of the city in which it was
deployed and (2) develop a friendly user-interface so the workers of the noise control

department could use it.

Now this is not the end.

It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.
— Winston Churchill
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Capitol 5

Articles complementaris al compendi

Article IV

Gerardo José Ginovart-Panisello, Ester Vidana-Vila, Selene Caro-Via, Carme Martinez-Suquia,
Marc Freixes, Rosa Ma Alsina-Pages. ‘Low-Cost WASN for Real-Time Soundmap Generation’.
Presentat a: 8th International Symposium on Sensor Science and published in Engineering
Proceedings. Vol. 6, no. 1 (2021), pp. 57. DOI: 10.3390/1352021Dresden-10162.

Aquest primer article complementari té com a objectiu donar al lector més informacio
sobre la plataforma de firmware utilitzada per a la classificacié. Tot i que la WASN descrita
en l'article té com a objectiu generar mapes de so, els sensors son molt similars als utilitzats
en aquesta tesi per classificar esdeveniments acustics. En aquest sentit, aquest article mostra
tots els components necessaris per configurar una unitat de computacié d’un sol node de

deteccié juntament amb el microfon USB seleccionat i el procés de disseny i avaluacio.

Article V

Ester Vidana-Vila, Rosa Ma Alsina-Pages, Joan Navarro. ‘lmproving classification accuracy
of acoustic real-world urban data using sensors physical redundancy’. Presentat a: 26th IEEE
Symposium on Computers and Communications (ISCC). (2021), Athens, Greece. pp. 1-4.
DOI: 10.1109/ISCC53001.2021.9631402

Aquest segon article complementari serveix com un pas intermedi entre el treball publicat
en els dos ultims articles del compendi. En aquest cas, s’analitza una hora d’enregistraments
d’audio del mén real per avaluar si la redundancia fisica és significativa quan s’utilitzen dades
reals en llocs propers. En aquest article, només s’utilitzen 10 categories d’esdeveniments
acustics, ometent els altres, i no s’aplica la classificacié multietiqueta. El proposit d’incloure
el treball en aquesta dissertacié és mostrar com transicionar d’un conjunt de dades net i

controlat cap a la classificacié de dades del mén real.

Article VI

Ester Vidana-Vila, Rosa Ma Alsina-Pages, Joan Navarro. ‘Prototyping a low-cost Wireless
Acoustic Sensor Network with physical redundancy to automatically classify acoustic events
in urban environments’. Poster presentat a: UrbanSound Symposium 2021 and abstract
published in Engineering Proceedings, Vol. 72, (2021), DOI: 10.3390/proceedings2021072004

Aquest tercer treball complementari il - lustra com sintetitzar les idees de I’article presentat

anteriorment d’una manera resumida per a proposits de difusié.
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5. Articles complementaris al compendi

Article VII

Ester Vidana-Vila, Dan Stowell, Joan Navarro, Rosa Ma Alsina-Pages. ‘Multilabel acoustic
event classification for urban sound monitoring at a traffic intersection’. Poster presentat a:
Deep Learning Barcelona Symposium 2021.

Aquesta cuarta obra complementaria mostra un altre poster presentat en el transcurs
del doctorat, i resumeix un treball que analitza com diferents configuracions experimentals
que fan servir diferents tecniques d’augment de dades ajuden a millorar els resultats de la

classificacio.

Article VIII

Ester Vidafia-Vila, Joan Navarro, Rosa Ma Alsina-Pages, Alvaro Ramirez. ‘A Two-Stage
Approach To Automatically Detect and Classify Woodpecker (Fam. Picidae) Sounds’. Publicat
a: Applied Acoustics. Vol. 166, (2020), pp. 107312. DOI: 10.1016/j.apacoust.2020.107312.
Aquest cinque article complementari exposa la investigacié duta a terme en un camp
diferent (bioacustica) utilitzant diferents tipus de caracteristiques. Els ocells picots que habiten
a la peninsula Ibérica han estat seleccionades com a espécies a classificar, ja que sén d’interes

per al seguiment dels entorns naturals.

Article IX

Julia Blanch, Ester Vidana-Vila, Rosa Ma Alsina-Pages. ‘Analysis of the Noise Impact of the
Airport of Barcelona to the Llobregat Delta Natural Environment during the 2021 Lockdown
period’. Presentat a: 8th Electronic Conference on Sensors and Applications. (2021), DOIL:
doi:10.3390/ecsa-8-11267.

Aquest sise treball complementari fusiona el camp del paper anterior (bioacustica) i
Pescenari d’aquesta tesi (entorns urbans). Concretament, es dissenya un detector automatic
d’esdeveniments actstics per a dades captades en un parc natural prop d’una ciutat i I’aeroport,

i per tant té en compte sons naturals i urbans.
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Chapter 5

Complementary papers to the
compendium

Paper IV

Gerardo José Ginovart-Panisello, Ester Vidana-Vila, Selene Caro-Via, Carme Martinez-Suquia,
Marc Freixes, Rosa Ma Alsina-Pages. ‘Low-Cost WASN for Real-Time Soundmap Generation’.
Presented in: 8th International Symposium on Sensor Science and published in Engineering
Proceedings. Vol. 6, no. 1 (2021), pp. 57. DOI: 10.3390 /1352021 Dresden-10162.

This first complementary paper aims at giving the reader more information about the
firmware platform used for classification. Even though the WASN described in the paper aims
at generating sound maps, the sensing nodes are very similar to the ones used on this thesis
to classify acoustic events. In this sense, this paper depicts all the necessary components to
set-up a computing unit of a single sensing node together with the selected USB microphone

and the design process and evaluation.

Paper V

Ester Vidana-Vila, Rosa Ma Alsina-Pages, Joan Navarro. ‘Improving classification accuracy of
acoustic real-world urban data using sensors physical redundancy’. Presented in: 26th IEEE
Symposium on Computers and Communications (ISCC). (2021), Athens, Greece. pp. 1-4.
DOI: 10.1109/ISCC53001.2021.9631402

This second complementary paper serves as an intermediate step between the work
published in the two last papers of the compendium. In this case, 1 hour of real-world audio
recordings are analyzed to evaluate if physical redundancy is significant when using real-world
data in close spots. In this paper, only 10 categories of acoustic events were used, omitting
the others, and multi-label classification is not applied. The purpose of including the work in
this dissertation is to show how to start moving from a controlled, clean dataset towards the

classification of real-world data.

Paper VI

Ester Vidana-Vila, Rosa Ma Alsina-Pages, Joan Navarro. ‘Prototyping a low-cost Wireless
Acoustic Sensor Network with physical redundancy to automatically classify acoustic events
in urban environments’. Poster presented in: UrbanSound Symposium 2021 and abstract
published in Engineering Proceedings, Vol. 72, (2021), DOI: 10.3390/proceedings2021072004

191


https://doi.org/10.3390/I3S2021Dresden-10162
https://doi.org/10.1109/ISCC53001.2021.9631402
https://doi.org/10.3390/proceedings2021072004

5. Complementary papers to the compendium

This third complementary work illustrates how to synthesize the ideas of the paper

presented above in a summarized way for dissemination purposes.

Paper VII

Ester Vidana-Vila, Dan Stowell, Joan Navarro, Rosa Ma Alsina-Pages. ‘Multilabel acoustic
event classification for urban sound monitoring at a traffic intersection’. Poster presented in:
Deep Learning Barcelona Symposium 2021.

This forth complementary work shows another poster presented in the course of the PhD,
and summarizes a work that analyzes how different experimental set-ups using different data

augmentation techniques help improving classification results.

Paper VI

Ester Vidana-Vila, Joan Navarro, Rosa Ma Alsina-Pages, Alvaro Ramirez. ‘A Two-
Stage Approach To Automatically Detect and Classify Woodpecker (Fam. Picidae)
Sounds’  Published in: Applied Acoustics. ~ Vol. 166, (2020), pp. 107312. DOL
10.1016/j.apacoust.2020.107312.

This fifth complementary paper exposes the research carried out in a different field (i.e.,
bioacoustics) using different types of features. Woodpecker birds inhabiting the Iberian
peninsula have been selected as the species to be classified, as they are of interest for the

monitoring of natural environments.

Paper IX

Julia Blanch, Ester Vidana-Vila, Rosa Ma Alsina-Pages. ‘Analysis of the Noise Impact of the
Airport of Barcelona to the Llobregat Delta Natural Environment during the 2021 Lockdown
period’. Presented in: 8th Electronic Conference on Sensors and Applications. (2021), DOI:
d0i:10.3390/ecsa-8-11267.

This sixth complementary work merges the field of the paper above (bioacoustics) and the
topic of this thesis (urban environments). Concretely, an automatic acoustic event detector is
used in a natural park near a city and the airport, and hence takes into consideration both

natural and urban sounds.
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Via, Carme Martinez-Suquia, Marc Freixes, Rosa Ma Alsina-Pages

Presented in 8th International Symposium on Sensor Science, Published in Engineering
Proceedings, May 2021, volume 6, issue 1, pp. 57. DOI: 10.3390/1352021Dresden-10162

Abstract

Recent advances in technology have enabled the development of affordable low-cost
acoustic monitoring systems, as a response of several fields of application that require
a close acoustic analysis in real-time: road traffic noise in crowded cities, biodiversity
conservation in natural parks, behavioural tracking in the elderly living alone and even
surveillance in public places for safety reasons. This paper presents a low-cost wireless
acoustic sensor network developed to gather acoustic data to build a 24/7 real-time
soundmap. Each node of the network comprises an omnidirectional microphone and a
computation unit, which processes acoustic information locally to obtain non-sensitive
data (i.e., equivalent continuous loudness levels or acoustic event labels) that are sent to a
cloud server. Moreover, it has also been studied the placement of the acoustic sensors
in a real scenario, following acoustics criteria. The ultimate goal of the deployed system
is to enable the following functions: ¢) to measure the L., in real-time in a predefined
window, 77) to identify changing patterns in the previous measurements so that anomalous
situations can be detected and i) to prevent and attend potential irregular situations.
The proposed network aims to encourage the use of real-time non-invasive devices to

obtain behavioural and environmental information, in order to take decisions in real-time.

IV.1 Introduction

In recent years, the advances in technology have led WASNs (Wireless Acoustic Sensor
Networks) emerge as a powerful tool to survey from the acoustic health of the population
living on urban areas (Basten and Wessels 2014) to the biodiversity conservation in forests
(Vidana-Vila et al. 2020). In parallel, the development on smart-homes has allowed to include
similar networks on indoor environments aiming to promote independence and well-being
among the active elder population living on their own homes (Navarro et al. 2018). The

advantage of WASNs compared to other monitoring systems (e.g., video surveillance systems

193



https://doi.org/10.3390/I3S2021Dresden-10162

IV. Low-Cost WASN for Real-Time Soundmap Generation

or networks composed of wearable devices) is that they are perceived as less intrusive by users
(Sun et al. 2011), specially when data is processed locally on the node and, hence, private
information of the user (i.e., raw audio data) is not shared to a central node or neighboring

nodes.

For this reason, several research projects have developed networks composed of multiple
sensing nodes with different features and capabilities. For example, in the context of the IDEA
project (Botteldooren et al. 2011), Dominguez et al. (Dominguez et al. 2013) propose the
usage of low-cost nodes (cost of around 50 €) to monitor outdoor environments that actively
auto-check the frequency response of the microphone of each node by embedding a low-cost
speaker that generates a periodical frequency sweep. This way, they are able to detect failures
in the nodes. Another example of an outdoor acoustic sensor network is the one explained
in (Bell and Galatioto 2013), that is centered on the framework of the MESSAGE project.
In their work, Bell and Galatioto present the results obtained on a WASN of 50 nodes in
which, apart from a noise detector module, each node incorporates traffic and chemical sensor
modules. As computational unit, they use a microcontroller with low processing capabilities.
Regarding indoor WASNSs, the homeSound project (Alsina-Pages et al. 2017) proposes a
network architecture with several sensing nodes that send their information to a concentrator

node composed of a GPU with parallel computing capabilities.

This work presents a proof of concept of a sensor and a generic WASN aimed to acoustically
monitor indoor or outdoor environments to generate a 24/7 real-time soundmap. The paper
is organized as follows: Section V.2 details the requirements that must be satisfied when
deploying the sensing nodes, Section V.3 describes the design of the proposed sensor and the
network in terms of hardware, Section V.4 explains the evaluation carried out in the design
in order to validate the feasibility of the proposal and, finally, Section I'V.5 discusses the main

conclusions of the work.

IV.2 Requirements

Regarding the sensors location, the following requirements must be satisfied according to
the ISO 1996-2 (ISO 1996-2 : 2007 2007). For outdoor measurements, microphones must
be located at a height of 4.0+0.5 meters from the floor in high building areas, and 1.240.1
meters in residential areas. The distance between the microphones and reflecting surfaces
should be from 0.5 to 2 m. Regarding indoor measurements, microphones should be placed
0.5 meters apart from walls and 1 meter apart from significant sound-transmission elements.
Distance between sensors should be greater than 0.7 m. Furthermore, before deployment,
sensors should be calibrated to get reliable measurements in all nodes. All sensors should
be tested with 94 dB level at 1 kHz at 1 m distance in a controlled environment such as an

anechoic chamber, by means of a calibrator.
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IV.3 Hardware Design

All units of the WASN are identical to simplify the scalability in number of nodes. Concretely,
each node contains a Raspberry Pi 3B+ (Foundation n.d.) (RP1i) as its computational unit.
Since the system has been designed to be steadily active, the node may reach high temperatures.
To avoid heating problems, a heat sink has been placed to cool it down. It is important to
highlight that the heat sink should not include a fan, as it would generate noise, thereby
affecting the measurements conducted by the microphone.

The selected computation unit (i.e., RPi) has four USB ports and a 40-pins GPIO header
to connect different peripherals and a WIFI modem to transmit data. As a low-cost alternative
of an acoustic sensor, a plug-and-play USB Microphone with an external ADC integrated
in the serial bus has been chosen. The sensor has an omnidirectional acoustic pattern that
allows to capture all possible sound sources from any direction at a maximum sampling rate
of 48 KHz at 16 bits (GYVAZLA n.d.). This electret condenser microphone is USB powered.
Thus, it increases the electrical power consumption of the unit. To ensure a correct full
functionality, the node requires a 5 V 3 A power supply. Figure V.1 shows the elements
that compose each node of the network. In order to make the nodes suitable for a real-world
deployment, all the elements are integrated in a small 3D printed rectangle box designed with
SketchUp (Sketchup n.d.) with holes for the power wire, the microphone capsule and heat
dissipation. The box integrates all the parts into a single node element minimizing the size to

the maximum and protects the node.

Figure IV.1: Hardware description for each node of the network.

IV.4 Design Process and Evaluation

The sensor design has to balance a low component price and a good performance to obtain an
accurate and reliable WASN. The microphone features will limit the accuracy and sensitivity
of the measurements. For this reason, different microphone models were compared in order
to ensure that the microphone used in the setup is economical and has a frequency response
as flat as possible. Concretely, authors compared the following models: 7) Micro Electro
Mechanical System (MEMS) were discarded as the frequency response of the microphone
was not flat enough; i) a high-precision measuring microphone (Behringer ECM8000) was
discarded as well as it is too big for the purpose of the project (it doubles the size of the
RPi) and requires and external ADC; i) the KY-038 microphone was discarded too as its
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Table IV.1: Main features and components of the nodes of the network.

’ Component Model Main features ‘Price‘
Lavelier USB
Microphone LYMO00002 16 bits/sample 11€
48KHz
SDRAM 1 GB

Computational unit | Raspberry Pi Model 3B+ |64 bits CPU at 1.4 GHz| 37€
WiF'i connection

Power supply UGREEN CD122 18W/5V/3A 12€
USB wire USB to microUSB 3€
] Total \ \ | 63€ |

output is analog, therefore requiring an external ADC; v) a USB plug-and-play Microphone
(LYMO00002) has a flat frequency response, enough sensibility and incorporates an ADC. Hence,
the USB microphone specifications together with its reduced price make this microphone ideal

for the project.

Regarding to the selection of the CPU module, another comparison was done to ensure that
the nodes are capable of locally processing data to avoid sending raw data streams to another
node. Models such as Jaguar One or Banana Pi were discarded as their support community
is not as big as the one offered by Raspberry. Those CPUs offering extra characteristics
not needed for this project (e.g., Hummingboard, Cubieboard5) were discarded too. Finally,
models lacking of a WiFi module (PcDuino4, ODROID-C2, Beaglebone Black) were discarded
as well. Raspberry pi model 3B+ offers good computer capabilities at a reasonably low-cost

and a wide support community.

To test the capabilities of the acoustic sensors, each node has been programmed to process
an audio stream sampled at 22.05 kHz, with a bit depth of 16 bits and in 4 seconds windows.
Specifically, the sensors calculate continuous acoustic descriptors such as the equivalent
loudness level each 4 sec. As the audio streams are processed locally, sensitive information
(i.e., raw audio data) is kept in the node and only non-private data is sent through the
network. The nodes of this work run OS Raspian Lite, and conducted test have shown that
the system uses the 100 % of CPU and 20 % of RAM when running the software test, which is
continuously 7) acquiring 4-second windows of raw audio data, i) processing the audio streams
to obtain acoustic descriptors such as the equivalent level, and i) storing the data descriptors

in the node’s memory and sending them to a cloud server together with a time-stamp.

To synchronize the different nodes of the network, the Network Time Protocol (NTP) has
been chosen. To validate the correct functioning of the synchronization, a test software was
programmed to be executed automatically in the nodes after booting the system. In this
test software, the node waits until a specific minute to start recording a *.wav file. Once
the recording started, some acoustic impulses were generated at the same distance of two
microphones and, later on, the two *.wav files were manually analysed. Results on the analysis

validate that the delay between both files impulses was about 1 ms.
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IV.5 Conclusions

A low-cost WASN has been designed for acoustic indoor and outdoor monitoring. Each node
of the WASN includes a Raspberry Pi 3B+ which processes in real-time the audio captured
by an USB microphone, to evaluate several acoustic features, which afterwards are sent to
the cloud. The minimum requirements to draw a soundmap of the environment using the
data sent by the nodes have been also analysed depending on the environment. Conducted
tests ensure the synchronisation between the nodes, thus avoiding the need of a hub. The
decentralised design together with the use of non-sensitive features, allow us to envisage the
application of the proposed WASN in surveillance of active elderly in their own homes or
in the street for noise monitoring solutions. Moreover, the proposal has taken into account
scalability, so a more complex signal processing could be done in the nodes in the future.
The authors set as future lines the detection of acoustic events of interest, which could be

implemented in the nodes, and predefined alarms could be triggered accordingly.
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Abstract

Latest advances in modern society together with the increase of the population living
in urban areas have transformed these environments into noisy spaces. Current
regulations limit the amount of noise-per-source that can impact the population. Hence,
automatically identifying acoustic events in urban environments is of great interest for
public administrations to preserve citizens’ health. Therefore, alternatives that are typically
composed of expensive sensing devices committed to individually survey a specific area
have been researched. The purpose of this paper is to assess the performance of an
alternative approach composed of a low-cost acoustic wireless sensor network that takes
advantage of physical redundancy. Specifically, the evaluated system incorporates a deep
neural network running in each sensor node and a distributed consensus protocol that
implements a set of heuristics to benefit from the classification results of neighboring nodes
surveying the same area (i.e., physical redundancy). To evaluate this system, real-world
acoustic data were collected simultaneously from four different spots of the same crossroad
in the centre of Barcelona and further processed by the system. Obtained results suggest
that physical redundancy of sensors improves the classifier’s confidence and increases the

classification accuracy.

V.1 Introduction

Unwanted sounds that disturb individuals and their communication are commonly referred to
as noise (Bello et al. 2019). Prolonged exposure to high levels of noise is harmful for human
beings (Office 2017). Noise affects several everyday life activities (Test et al. 2011), may be
the cause of chronic injuries on the sympathetic nervous system (Su-bei 2007), and could

contribute to originate psychological disorders such as severe annoyance (Guski et al. 2017).
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In this regard, the World Health Organization recommends the maximum noise levels
(typically using L z¢q metrics) under different conditions to ensure acoustic health in populated
environments (e.g., teaching facilities, residential areas) (Hurtley 2009). Similarly, the
European Commission has established a set of regulations (Flindell and Walker 2004) to limit
the amount of noise that the population is exposed to. These regulations limit the maximum
L 4¢q noise levels for specific noise sources such as road traffic noise, railway noise or airport

noise among others (Office 2017).

The rising interest on protecting citizens from harmful noises has motivated the research
on monitoring the acoustic activity in urban spaces (Bello et al. 2019; Sevillano et al. 2016).
Traditionally, this is done by deploying a set of interconnected acoustic sensors, coined as
Wireless Acoustic Sensor Network (WASN), in a given area to automatically listen to the
events—and their equivalent L 4., levels—that happen throughout the day (Vidana-Vila et al.
2020b) and, thus, conduct noise surveillance tasks. One of the main design challenges in
this type of distributed systems is to keep scalability while maintaining cost-effectiveness
(Pham and Cousin 2013). That is, being able to acoustically cover a large-scale area with a
budget-constrained equipment. Typically, this limits the scope of the measurements and areas
to be monitored, which results in very few acoustic sensors per squared kilometer (Mydlarz
et al. 2019).

In this regard, in a previous work (Vidana-Vila et al. 2020b), authors proposed an
alternative WASN inspired by the concept of physical redundancy (Piper et al. 2017) that
was committed to (over)populate a urban space with several low-cost acoustic sensor devices
composed of inexpensive hardware (i.e., Raspberry Pi Model 2B (RPi) and USB microphone
OUT-AMLO-0872).

This system used a preliminary distributed intelligence layer running on top of each
acoustic sensor node together with a deep neural network. This layer was committed to
analyze in real-time the acoustic samples from all the neighboring sensors that are physically
close (i.e., less than 100 m) and reach a consensus on which was the most probable event that
happened over a fixed set of 10 possible classes. In (Vidana-Vila et al. 2020b), this approach
was evaluated using with the UrbanSound 8k dataset (Salamon et al. 2014) under laboratory
conditions mimicking (Bergada and Alsina-Pages 2019) a specific corner of the Eixample of
the city of Barcelona. However, no real-world evaluation of this system was conducted so far.
That is, assessing the system performance using real-operation data (with class imbalance,
sounds belonging to event classes out of the training data set, multiple events happening

concurrently, acoustic events masked by background noise, etc.).

Therefore, the work presented on this paper aims to assess the performance of this system
when exposed under realistic real-world circumstances and detail which minor enhancements
have been made to it in order to operate appropriately. Specifically, the purpose of this
paper is manifold: (1) detail the specific heuristic rules carried on the distributed intelligence
layer to improve the system performance, (2) to further evaluate the approach presented
in (Vidana-Vila et al. 2020b) under real-operation conditions, (3) assess up to what extent

acoustic physical redundancy contributes to improve the classification accuracy, and (4)
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Figure V.1: Aerial view from Google Maps of the crossroad where the recording was conducted.

describe the faced difficulties on migrating from laboratory conditions toward real-operation.

V.2 Data Collection Scheme

In order to evaluate the performance of the algorithm (Vidana-Vila et al. 2020b) in a real-
operation scenario, authors organized a recording campaign that took place on 17 Nov. 2020
at 13:00h to collect a real-world dataset containing four simultaneous recordings located in
pre-determined measuring points in a crossroad of Eixample in Barcelona. For this purpose,
authors used four Zoom Hb5 recorders in the intersection between Villarroel street and Diputacid
street on the city centre of Barcelona. Each recorder was deployed on one of the four corners
of the intersection, as it can be seen in Fig. V.1. During the campaign, recorders were
placed over tripods, accomplishing the conditions of a minimum distance of 4 m from the
nearest wall, 1.5 m from the floor and with an inclination of 45° from the floor. The recorders

synchronization was as follows:

1. All the recorders were set up at a sampling frequency of 44,100 Hz and with the same
gain value (minimum gain, because the city centre of Barcelona presents high values of

noise) and mounted them over the tripods at the same height (1.5 m).

2. After that, they were placed very close in space in one of the corners, the rec button was
activated and authors generated three impulses (hands clapping). These impulses were
used to later synchronize the audio recordings, as not all the rec buttons were pressed

simultaneously.
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3. Next, each recorder was deployed on a different corner of the crossroad and, and
then, three more impulses (hand claps) that would be locally heard by the recorder
were generated. This second set of impulses indicated that from that moment all the
information being recorded was no longer interfered by the set-up process. Hence, the
simultaneous valid data started with the last clapping of the last recorder that was

positioned (see Fig. V.1).

4. To finish the recording campaign, authors generated three impulses to indicate that
the recorder was going to be moved (and hence, the data collection ended) and joined
again all the recorders in a single corner to generate three final impulses, to ensure the

synchronisation also at the end of the test.

After synchronising the four recording sources, the dataset was ready to be classified using
the algorithm detailed in (Vidana-Vila et al. 2020b).

V.3 Description of the Classification Algorithm

Each one of the four acoustic nodes is committed to run a distributed intelligence algorithm to
increase its individual event classification performance (Vidana-Vila et al. 2020b). The same
piece of software is running in all nodes. The algorithm consists of two layers: the first layer,
coined as local classifier, implements a SqueezeNet (Iandola et al. 2016) deep neural network
that classifies in real-time the acoustic events occurring. The output of this layer (i.e., a vector
containing the probability of the event belonging to each one of the possible classes) is supplied
to the second layer. The second layer, coined as consolidation, features a distributed consensus
protocol that (1) shares the local classification results with the neighboring nodes, and (2)
takes into account the classification results from the neighbouring sensors—including the
local predictions—to give a final classification label. The precise specifications regarding the
communication between sensors and their network topology are wider detailed in (Vidana-Vila
et al. 2020b). Further details on each layer and how they have been upgraded to adapt
themselves to real-operation conditions are provided in the following paragraphs.

Regarding the deep neural network, the SqueezeNet network takes as input the
spectrograms of 4-seconds windows of audio data. In our previous work (Vidana-Vila et al.
2020Db), the network was trained using the UrbanSound 8K dataset (Salamon et al. 2014), which
contains acoustic data from 10 types of different sounds from New York City: air conditioner,
car horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren,
and street music. To obtain reliable results from the classifier system in the real-operation
environment, the training dataset has been enriched using real-world urban acoustic data from
other sources (see Section V.4.1). This enables us to train the system using a larger number
of samples focused in the noises produced by traffic and people in the centre of Barcelona.

Regarding the distributed consensus protocol, it consists on a heuristic set of rules to be
applied on each node (i.e., acoustic sensor). These rules take into account the probability of
occurrence of the different events (i.e., the Softmax output of the neural network) on each of

the sensors. The heuristic rules that have been specifically defined for this work are:
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Rule 1: If the output of the local neural network classifies an event with a confidence (i.e.,
probability value provided by the last Softmax layer of the deep network) smaller than 80 %,
the protocol assigns a provisional label of unknown to that 4-seconds fragment. Note that this
label may change according to the probability values of the labels assigned by neighboring
nodes. This rule aims to identify those events that the deep network may have assigned a
wrong label.

Rule 2: If the previous condition is not met (i.e., the classification confidence is greater
than 80 %) and the local neural network detects an event whose equivalent level L, is
typically low (i.e., dog or people), then the outputs of the neighbour sensors are ignored and
that fragment is labelled with the classification result of the local neural network. This rule
aims to empower the local classifications on those events that, probably, would not be heard
by neighboring nodes.

Rule 3: If the output of the local neural network classifies an event whose equivalent
level L, is typically high (such as traffic, horn or siren) or the event was provisionally tagged
as unknown by Rule 1, then the assigned label is calculated depending on the probability
values among the four different neighbouring nodes. Specifically, the final assigned label will
be the one that presents the highest probability value—among all the nodes—in a category
that typically has high L.,.

For instance, if the local neural network (1) assigned a label with a probability smaller
than 80%—hence the event would be provisionally classified as unknown by Rule 1—and
(2) the highest probability of the classification results from the neighbouring nodes belonged
to a category with high L., then the local node would update the unknown label to the
label assigned by its neighbours. On the contrary, if the class was unknown but the highest

probability belonged to an event with low L., then the final label would still remain unknown.

V.4 Experimental Evaluation

To validate the effectiveness of taking advantage of physical redundancy of sensors, we propose
to use the classification algorithm (i.e., deep neural network and distributed consensus protocol)
described above to classify acoustic events from a real-operation urban environment. In this

regard, we have used the aforesaid data collected simultaneously in 4 close spots.

V.4.1 Experiment set up

In (Vidana-Vila et al. 2020b), authors used exclusively the UrbanSound 8k (Salamon et al.
2014) dataset to evaluate the system under laboratory conditions. However, as the purpose
of the dataset is to capture the sounds of New York, it lacks from the predominant class in
the city centre of Barcelona (road traffic noise). To address this issue and enrich the training

dataset, data from 3 datasets were used:

1. UrbanSound 8k (Salamon et al. 2014): This was the base dataset containing samples
of acoustic events different from traffic noise. Authors decided to remove the classes

atr conditioner and street music as using these two classes considerably degraded the
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Table V.1: System performance using physical redundancy.

Non-unknown events | Classification accuracy
(Experiment 1) (Experiment 2)
Before consensus 585 events 66.84 %
After consensus 846 events 91.16 %
’Improvement \ +261 events ‘ +24.32 % ‘

performance of the local classifier in the real-world scenario which is something that will

be analyzed in the future to improve the generalization of the algorithm and the system.

2. BCNDataset (Vidana-Vila et al. 2020a): Even though this dataset contains information
from 14 categories, only the audio fragments labelled as road traffic noise, brakes, horns,

sirens, and people were used to train the model.

3. Andorra Dataset (Alsina-Pages et al. 2019): It was used to increase the number of horn
and siren samples. No traffic noise was added from this dataset in order to avoid class

imbalance.

Data from these three datasets was used to train the local classifier of each node. Hence the
system was trained to classify the following categories: traffic, dog, people, gun, jackhammer,
drilling, horn and siren. Note that there is also a class called unknown that is assigned to
those events that the neural network is not able to classify (see Section V.3).

Finally, to test the classifier, one hour of manually annotated audio data from the recording
campaign detailed in Section V.2 was used. Note that none of these real-world data (containing
events not previously seen by the classifier such as bells, birds or wind, which will obviously
degrade the system performance) was used in training. More precisely, when manually labelling
the collected data, authors detected that only 769 audio fragments (out of 900 fragments) of
4 seconds contained information belonging to any of the classes of the training set. These

fragments were used to build the known dataset.

V.4.2 Experimental Evaluation

The experimental evaluation is twofold. On the one hand, it first assesses up to what extent
the distributed consensus protocol boosts the confidence of individual nodes. On the other
hand, it later measures the advantages of using physical redundancy in terms of classification
accuracy.

Experiment 1. A local analysis on the behaviour of the deep neural network (without
taking advantage of physical redundancy of sensors) showed that only the 585 out of the 900
fragments of the dataset were given a label different from unknown, which means that in a
35 % of the samples, none of the classes showed a confidence greater than 0.8 (see Heuristic
Rule 1 in Section V.3). However, as a result of applying the distributed consensus protocol (i,e.,

considering the labels and class probabilities of the four simultaneous recordings), the number
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Figure V.2: Spectrogram of a 4-second sample manually labelled as horn that the system
has been unable to classify (left). Spectrogram of two consecutive 4-seconds samples each
manually labelled as horn that the system has classified correctly (right).

of non-unknown detected events rocketed to 846. Therefore, using physical redundancy
enables individual nodes to benefit from the decisions suggested by their neighbours.

Experiment 2. To test the capability of the system on identifying the events belonging
to any of the categories of the training set, the 769 audio fragments of the known dataset
were selected. For these known events, the accuracy before applying the distributed consensus
protocol was 66.84 %, and raised up to 91.16 % after it. Hence, it can be seen that using audio
data from different close measuring points contributes to increase the overall classification
accuracy of the proposed system. A summary of these results is shown in Table V.1.

It must be considered that most of the test data belongs to the traffic category, which is
the predominant noise in the chosen place of the city of Barcelona. The classifier system is
unable to recognise some of the events.

To find out the logic behind this behaviour, authors carefully listened to the raw audio
data and observed their spectrograms. For instance, it was observed that those events that
were miscategorized as traffic (i.e., people, horn, siren) actually contained traffic noise masking
the labelled event. Fig. V.2 shows two horn events: one that was misclassified (left) and one
that was properly classified (right). The wrongly labelled event is hard to identify by sight
even for humans, as its salience is comparable to the rest of the acoustic events happening
simultaneously. Actually, the horn event happens on the first second of the window, and when
listening to it, the perception is that the noise source is far, probably in another street. We
believe that this event would be successfully detected in another node when extending this

system to a grid of sensors.

V.5 Discussion and Conclusions

This work presents a preliminary performance evaluation of a low-cost WASN with physical
redundancy when classifying urban events from the crossroad of two crowded streets in the
city centre of Barcelona. Three different corpora have been used to train the deep neural
network running at each node, a set of classification heuristics to exploit physical redundancy
has been defined, and four simultaneous recordings have been used to test the system in a
real-operation environment.

Obtained results suggest that the distributed consensus protocol—aimed to take

into consideration the classification results from neighboring nodes—increases the overall
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classification confidence by reducing the number of non-unknown detected events. Also,
physical redundancy may contribute to increase the classification accuracy for all the acoustic
classes that exist in the training set. It is worth noting that, given the intrinsic real-world
nature of the test data set, the obtained results may suffer the consequences of class imbalance.
That is, not all the events had the same probability to occur. For instance, gun shots are
highly unlikely in Barcelona. Indeed, when looking at the absolute accuracy results, it must
be taken into account that most of the test data belongs to traffic category, which clearly
unbalances the test corpora and makes the accuracy results to (over)shine. Rather, this
work aims to consider the benefits of using the heuristics implemented on the distributed
intelligence layer in order to improve the classification confidence (i.e., identifying known
events).

After conducting an in-depth manual analysis, the system fails to properly classify some
of the events because the same audio fragment contains multiple types of noise (e.g. traffic,
which is mainly present in most of the samples).

The future work aims to extend the training dataset to avoid missing several types of
events present in the city centre of Barcelona. Also, the system should be tested with acoustic
samples from other hours of the day to glimpse all the variations in the soundscape of the
city centre of Barcelona. To address the issue of classifying acoustic samples with several

concurrent events, a multiclass classifier shall be considered.
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Objectives

Conceive a system able to detect and

classify, in real-time, a predefined set

of urban acoustic events that may

occur simultaneously by means of:

o Training a multi-label
deep-learning-based algorithm.

® Testing the system with
real-world collected data.

© Running the system over a
Wireless Acoustic Sensors
Network.

Context

It is estimated than 20% of European
Union (EU) population might be ex-
posed to levels of noise pollution that
are above the limits of current regula-
tions. Indeed, citizen concerns regard-
ing environmental health and noise pol-
lution have been consistently rising in
the recent years. Acoustic noise (or
pollution) can be defined as any sound
that is loud or unpleasant enough that
cal some kind of disturbance. Such
disturbance may range from difficulties
in understanding a voice message to
some serious adverse health effects such
as heart diseases or psychological disor-
ders derived from lack of rest or sleep.
Not all sound sources have the same
impact on human disturbance as the
sound level is not the only parameter
that indicates the extent and intensity
of noise pollution. Therefore, identi-
fying the sources of those potentially
harmful sounds has emerged as a hot
research topic nowadays.

Moreover, Barcelona is one of the nois-
iest cities Europe. Actually, Barcelona
has been categorized as the seventh
noisiest city in the world. For this rea-
son, it has been sc d as the use-case
scenario for this project.

212

Data gathering

To be able to evaluate the system with
real-world data, two recording cam-
paigns were carried out:

o Autumn campaign: was recorded on
the 17 November 2020 from 12:00 to
14:30 when there were COVID-19
mobility restrictions.

 Spring campaign: was recorded on
the 31 May 2021 from 15:30 to 18:00
(Mobility restrictions were softened).

Data were manually labelled in frames
of 4-seconds of duration taking into
account events occurring simultane-
ously (i.e., polyphonic labelling). Once
it was labelled, it was divided into
Train/Validation/Test splits. ~ Con-
cretely, the division was done into
contiguous regions of 5—71 minutes
length.

Feature extraction

As features, spectrograms were used.
More concretely, each 4-second dura-
tion audio fragment was transformed
into a spectrogram to train a Deep Neu-
ral Network (MobileNet).

Labelled data

Figure 1: Example of mix-up data augmentation using two random 4-second fragments containing

several acoustic events.

Experimental evaluation

Four experiments were carried out us-
ing data augmentation techniques with
different datasets: BCNDataset, Ur-
banSound 8K dataset.

Experiment 0: No data augmenta-
tion.

Experiment 1: Data augmentation
using data from BCNDataset to bal-
ance the classes.

Experiment 2: Data augmentation
using BCNDataset + UrbanSound 8k
dataset.

Experiment 3: Same as experiment
2 but using more instances of aug-
mented data.

In all the experiments, the data aug-
mentation technique used was audio
mixing (mix-up augmentation).

All the spectrograms of the dataset
were normalized.

Table 1: Number of events manually annotated on the dataset.
Label 1st 2nd TOTAL
Campaign Campaign
rtn 2177 2118 4295
peop 300 612 912
brak 489 424 913
bird 357 960 1317
motore| 769 565 1334
eng 203 913 1116
cdoor 133 161 294
impls 445 170 615
cmplx 85 73 158
troll 162 152 314
wind 8 23 31
horn 43 33 76
sire 18 57 i)
musi 8 30 38
bike 51 24 5
hdoor 25 60 85
bell 24 27 51
glass 17 32 49
beep 31 0 31
dog 3 25 28
drill 0 14 14

Results

Table 2: Macro and micro average F-1 scores.

Experiment|F1- Macro Average
Experiment 0 12%

Experiment 1 39%
Experiment 2 36%
Experiment 3 33%

Experiment|F1- Micro Average

Experiment 0 46%
Experiment 1 0%
Experiment 2 5%
Experiment 3 67%

Whereas in F1- Macro Average all the
classes have the same importance, in
F1- Micro Average the most populated
classes have more importance.

We think that the data used on Ex-
periment 1 offers the fairest trade-off
between the performance of the system
on large and small classes.

Conclusions

In this work, progress has been made in
the training, testing and validation of
deep neural networks algorithms with a
very relevant focus on the use of poly-
phonic real-world data.

The system has a good performance
when classifying events with more than
100 instances on the Validation and
Test set. However, it behaves poorly
when classifying those classes with few
instances except for the bell event.

Acknowledgements
We would like to thank Gerard Gino-

vart for his valuable assistance on the
recording campaign in both seasons.

o Email: ester.vidana@salle.url.edu
* Web:
https://www.salleurl.edu/es/signal;

proces




Paper VI

A Two-Stage Approach To
Automatically Detect and Classify
Woodpecker (Fam. Picidae) Sounds

Ester Vidana-Vila, Joan Navarro, Rosa Ma Alsina-Pages, Alvaro
Ramirez

Published in Applied Acoustics, 2020, volume 166, pp. 107312. DOI:
10.1016/j.apacoust.2020.107312.

Abstract

Inventorying and monitoring which bird species inhabit a specific area give rich and reliable
information regarding its conservation status and other meaningful biological parameters.
Typically, this surveying process is carried out manually by ornithologists and birdwatchers
who spend long periods of time in the areas of interest trying to identify which species
occur. Such methodology is based on the experts’ own knowledge, experience, visualization
and hearing skills, which results in an expensive, subjective and error prone process. The
purpose of this paper is to present a computing friendly system able to automatically
detect and classify woodpecker acoustic signals from a real-world environment. More
specifically, the proposed architecture features a two-stage Learning Classifier System that
uses (1) Mel Frequency Cepstral Coefficients and Zero Crossing Rate to detect bird sounds
over environmental noise, and (2) Linear Predictive Cepstral Coefficients, Perceptual
Linear Predictive Coefficients and Mel Frequency Cepstral Coefficients to identify the bird
species and sound type (i.e., vocal sounds such as advertising calls, excitement calls, call
notes and drumming events) associated to that bird sound. Conducted experiments over
a data set of the known woodpeckers species belonging to the Picidae family that live in
the Iberian peninsula have resulted in an overall accuracy of 94,02%, which endorses the

feasibility of this proposal and encourage practitioners to work toward this direction.
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Abstract

The noise caused by airports and its impact on human health, together with train, road
traffic, leisure and wind nose has been widely analyzed, even in the reports published in
2019 by the WHO. Noise effect has also been studied in the literature on other species,
such as birds and amphibians. In this work, we focus on a natural environment of special
singularity due to its location: the natural space of the Delta del Llobregat, next to the
city of Barcelona. Placed in an area close to the Port of Barcelona, and right on the way
out of the planes taking off at Barcelona airport. In this paper, we present a first analysis
of the typology of the sounds found in the natural environment of the Delta del Llobregat
after conducting a simultaneous recording campaign at three separate spots of biological
interest, determined by the park’s curators. We identify the interfering sounds, as well
as the amount of wildlife sounds in relation to the noises caused by the airport activity.
The recordings and posterior analysis were made on March 5, 2021, when airport activity
was still greatly diminished by the mobility restrictions. Also, we apply machine learning
techniques to classify the acoustic events produced by both airport activity and wildlife
aiming to build an automatic system that would allow to gather labelled data in future

works.

IX.1 Introduction

The effect of aircraft noise on humans, among other noise polluters, has been widely studied
and analyzed over the last few decades (Hurtley 2009). Fewer studies have also analyzed the
impact of those sounds on wildlife (e.g. birds or amphibians), and despite the well-known

consequences that noise can have on animals such as reproductive or long-term survival
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problems, there are still natural parks over-exposed to sounds produced by humans (Radle
2007). In this work, we aim to collect audio files and analyze the soundscape of the Delta
del Llobregat natural park, which is a Protected Area (PA) located next to the city center of
Barcelona. Concretely, the selected location is surrounded by the Port of Barcelona and the
Josep Tarradelles Barcelona-El Prat airport in Spain. Using acoustic data gathered at three
spots of biological interest inside the natural park, we aim to train a machine learning model
able to classify real-world acoustic events that would allow researchers to easily obtain more
data to find patterns in the behaviour of wildlife in the selected areas.

Similar works have been conducted in other natural parks located close to noisy areas such
as airports. For example, in (Alquezar and Macedo 2019), the overlap between natural areas
and Brazilian airports is studied. Moreover, the legislation of different countries regarding the
location of airports near protected areas are analyzed, and measures to mitigate the impact
of aircrafts to wildlife are proposed. Another example can be found on (Radle 2007). In
that work, A.L. Radle focuses on the impact of noise to wildlife on different ecosystems (e.g.
terrestrial wildlife, marine wildlife or noise in national parks). Similarly, in (Iglesias-Merchan
et al. 2015), C. Iglesias-Merchan et al. evaluate the impact of aircraft noise in a protected
area in the Central Mountains of Spain. Finally, on (Alquezar et al. 2020), mist-nets and
sound automatic recording units are used to classify bird species near natural areas close to
different Brazilian airports. They evaluate several biodiversity indexes and identify airport
avoider bird species and airport adapter bird species. Results show that, in quieter locations,
the abundance of different bird species is, indeed, richer.

The work presented in this paper exposes the results of a manually labelled recording
campaign carried out in the Delta del Llobregat protected area. Concretely, three simultaneous
recordings of 2 hours of duration have resulted in acoustic events from 14 different categories:
some of them produced by humans and some others produced by the environment wildlife.
Then, the classification results of three different machine learning algorithms trained and tested
over the collected dataset are compared. The reason to apply machine learning techniques
over the recorded data comes from the idea that automatically classifying the acoustic events
present on the soundscape of the selected location would allow to automatically have more
data that could be used to analyze over time the impact of the airport sound over the bird
species inhabiting the protected area.

The remainder of this paper is organized as follows: first, Section [X.2 explains the
methodology carried out to gather data in three different spots. Section [X.3 details the
analysis conducted to the designed dataset after labelling it. Then, Section [X.4 reports the
classification algorithms trained with our data and compares their results. Finally, Section

1X.5 closes the paper and proposes some future work.

IX.2 Airport Recording Campaign

Once the recording points were decided, and having requested prior permission from the

consortium for protection and management of the natural spaces of the Delta del Llobregat,
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we planned a recording campaign for 5" of March 2021. At that date, due to the COVID-19
pandemic, take-offs and landings of flights were happening more or less with a frequency of a

flight every 15 or 20 minutes.

The recording equipment required was: i) tripod, i) Zoom H5 Recorder, 4ii) pen and
writing support and iv) data collection sheet (see Figure IX.1). The three recorders were
synchronized with 3 hand claps. Later on, the three recorders were separated and placed
at their final designed locations, and after finishing the recording setup, all the technicians
started the annotations in the data collection sheets. At the end of the recordings, another
synchronization was conducted, to be able to adjust the data stamp if the three clocks were
not precisely synchronous. The three recordings lasted for 2 hours, starting at 16:20 in the

afternoon. The distance between the three chosen locations was around 500m.

Figure IX.1: Locations of the three recordings in Delta del Llobregat.

IX.3 Data analysis

After the recording campaign, an exhaustive analysis was conducted over the data. Firstly, a
manual labelling process was carried out using Audacity (open-source software for audio and
recordings treatment that can be downloaded for free at https://www.audacityteam.org/). The

volume of the acoustic events detected is the one represented in Table 1X.1.

Regarding the feature extraction process, the following parameters were obtained for each
of the acoustic events: (1) Mel Frequency Cepstral Coefficients (MFCC), which represent the
short-term power spectrum of a sound (Mermelstein 1976), (2) the Spectral Centroid, used in
digital signal processing to characterise a spectrum, (3) the Spectral Roll-Off, and (4) the

Zero Crossing Rate.

As shown on Figure [X.2, not all the categories have the same duration. Therefore, the
average length of all the categories was used to split the events into windows of the same
duration (0.94 seconds). Considering those divisions, the dataset was created in a way that
all the audio slices belonging to the same acoustic event (e.g. an aircraft passing by), were
placed only on the training set or the testing set. Finally, the 80% of the audio fragments

were used for training and the remaining 20% were used for testing.
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Category description Number of events
1 - airp Airplanes taking off or landing 33
2 - alarm  Alarms from the airport or surrounding states 81
3 - animals Sounds produced by animals 188
4 - bicy Bicycles 6
5 - bird Single bird vocalizations 5726
6 - birds Multiple bird vocalizations 1493
7 - complex Unidentified sounds 79
8 - duck Duck vocalizations 1437
9 - flutter Ducks moving their wings 2
10 - nature Leaves from trees moved by the wind 19
11 - peop People talking 91
12 - rtn Road traffic noise 32
13 - water Water sound 13
14 - wind Wind sound 2

Table IX.1: Number of events for each of the categories of the labelled dataset.

Figure 1X.2: Boxplot of average duration time of events per category.

IX.4 Classification algorithm

Several machine learning algorithms have been tested to automate the acoustical detection of

events. The accuracy given for each model is evidenced on Table [X.2.

IX.4.1 k-Nearest Neighbor

k-NN has given efficient results for acoustic event detection in other fields (Hoyos-Barcel6
et al. 2017; Liu et al. 2010). A grid search was performed to check what number of neighbors
results in the best accuracy value. Finally, the best result (accuracy value of 53,5%) was
obtained when using a value of k = 6.

Usually, the sounds produced by airplanes (airp category) are confused with complex
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Algorithms Accuracy
k-NN 53,5%
Decision Tree 51,3%

Random Forest + Bagging  68,8%
SVM (kernel: polynomial)  38,6%
SVM (kernel: sigmoid) 15,0%
SVM (kernel: RBF) 83,2%

Table IX.2: Accuracy value for the tested algorithms.

sounds. As the complex category contains acoustic information that we could not identify
in the labelling process, it is possible that some of the windows from that category contain
fragments of airplane sounds. Also, some alarm events are confused with the rtn category.
Since transit sound is continuous in background on almost all of the recordings, some events
catalogued as alarm could contain also rtn background noise. Finally, the algorithm tends
to confuse the categories bird and birds, which means that it is unable to differentiate the

number of birds present on a concrete window.

1X.4.2 Decision Tree

The model created with a decision tree is designed with a maximum profundity (largest way
from the root node to the leaf node) of 6, since it is the one that results in a higher accuracy
(of 51,3%). Again, maximum profundity was chosen after conducting a grid search.

In this case, the decision tree model shows that categories airp and peop have clear patterns,
and hence there is no confusion identified on these events. Alternatively, all the categories
related to animals (animals , bird, birds, duck) are often confused. Also, the fragments
belonging to categories with the poorest samples (alarm, bicy, complez, flutter, nature, transit,

water or wind) are the ones that result in the worst classification results.

IX.4.3 Random Forest

Random Forest has already been used in other research projects of acoustic events detection
and classification (Phan et al. 2014). To design our concrete model, we have conducted a
grid search varying the maximum depths parameter. We found that the best performance of
the model was achieved for max_depth = 48, with an accuracy of 68,6%. Then, Bagging,
Boosting and Voting methods were applied to try to increase the accuracy of the model, and
after applying Bagging the accuracy raised to 68,8%.

The accuracy obtained in this algorithm is the best one so far, but it is also important to
study the weaknesses of the model by means of analyzing the events that it confuses the most.
With this classifier, the algorithm confuses sporadic events of all the categories. However,
some patterns can be identified again. The algorithm tends to confuse the rtn and airp
categories, and the bird with birds, which proves that it is not able to identify the number
of birds vocalizing simultaneously. Something remarkable that has not happened on other

algorithms is that some birds events are confused with the peop category, showing that it
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confuses bird vocalizations with human voice. The reason behind this confusion may be that
there are some similarities between bird vocalizations and human sounds, as stated in some
studies (Doupe and Kuhl 1999).

IX.4.4 Support Vector Machine

One of the most widely used methods for the classification of sound events is the Support
Vector Machine (SVM). In this work, the Radial Basis Function (RBF') kernel (Vavrek et al.
2010) has proven to be the one that obtains the best classification results out of 4 (linear,
sigmoid, polynomial and RBF). The linear kernel never converged and therefore, there are no
results to present. When using the sigmoid kernel, the classifier was able to identify correctly
only the following categories: animals, bird and duck, and obtained poor results for the other
ones. With the polynomial kernel, the classifier tended to classify events from other categories
as bird. Finally, RBF kernel obtained the best results among all the classifiers presented in
this work. The obtained confusion matrix of the algorithm when using the RBF kernel can be
seen on Figure IX.3. This kernel results in an accuracy of 83,2%. On the confusion matrix, it
can be seen how the system is able to classify the categories: airp, animals, bird, birds, and

duck, respectively.

Figure IX.3: Confusion matrix of the SVM algorithm.

IX.5 Conclusions

After analyzing the machine learning results, it has been detected that, in general, all of

the implemented algorithms have confusion patterns over different classes. The main reason
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for it might be the lack of data from some of the categories in the training set. The most
common confusion happens between the bird and birds categories, which may be caused by
the splitting of different windows of the same acoustic event in different fragments, and due
to the similarity of the spectrum of both signals. As the window is usually shorter than the
duration of the birds event, it may have happened that some of the windows of the labelled
event contained only information of a single vocalization. This fact was not considered when
dataset was created.

To improve the current results, in future work, a wider recording campaign should be done.
This would probably allow the algorithms to create more accurate patterns for detection,

hence resulting in a more efficient model with better classification results.
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