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I 

 

Abstract 

 

Nowadays, Exascale computing has become the new milestone for 

supercomputing. Exascale systems will be strongly constrained by energy efficiency. 

Therefore, SIMD processing plays an important role in the development of the new 

Exascale systems. In that sense, the quest for extreme energy efficiency hardware has 

renewed interest in vector processors. 

Today, there are two main vector processors design trends. On the one hand, we 

have vector processors designed for long vectors lengths such as the SX-Aurora 

TSUBASA which implements vector lengths of 256 elements1 (16384-bits). On the other 

hand, we have vector processors designed for short vectors such as the Fujitsu A64FX 

that implements vector lengths of 8 elements (512-bit) ARM SVE. However, short vector 

designs are the most widely adopted in modern chips. This is because, to achieve high-

performance with a very high-efficiency, applications executed on long vector designs 

must feature abundant DLP, then limiting the range of applications. On the contrary, short 

vector designs are compatible with a larger range of applications. In fact, in the 

beginnings, long vector length implementations were focused on the HPC market, while 

short vector length implementations were conceived to improve performance in 

multimedia tasks. Furthermore, those short vector length extensions have evolved to 

better fit the needs of modern applications, including features taken from the old vector 

machines. For example, up until recently, short vector extensions did not offer the more 

sophisticated addressing modes of vector architectures, namely strided accesses and 

gather-scatter accesses. This feature, and others, enables these short vector designs to 

be exploited on scientific applications, engineering, financial analysis, physics 

simulations, etc. In that sense, we believe that this compatibility with a large range of 

applications featuring high, medium and low DLP is one of the main reasons behind the 

trend of building parallel machines with short vectors. Short vector designs are area 

efficient and are "compatible" with applications having long vectors; moreover, these 

short vector architectures are not as efficient as longer vector designs when executing 

high DLP code.  

In this thesis, we propose a novel vector architecture that combines the area and 

resource efficiency characterizing short vector processors with the ability to handle large 

                                                

1 From now on, one element corresponds to a 64-bit double-word. For example, a 

configuration with MVL= 8 elements represents a 512-bits implementation. 



   
 
 

II 

 

DLP applications, as allowed in long vector architectures. In this context, we present 

AVA, an Adaptable Vector Architecture designed for short vectors (MVL = 16 elements), 

capable of reconfiguring the MVL when executing applications with abundant DLP, 

achieving performance comparable to designs for long vectors. The design is based on 

three complementary concepts. First, a two-stage renaming unit based on a new type of 

registers termed as Virtual Vector Registers (VVRs), which are an intermediate mapping 

between the conventional logical and the physical and memory registers. In the first 

stage, logical registers are renamed to VVRs, while in the second stage, VVRs are 

renamed to physical registers. Second, a two-level VRF, that supports 64 VVRs whose 

MVL can be configured from 16 to 128 elements. The first level corresponds to the VVRs 

mapped in the physical registers held in the 8KB Physical Vector Register File (P-VRF), 

while the second level represents the VVRs mapped in memory registers held in the 

Memory Vector Register File (M-VRF). While the baseline configuration (MVL=16 

elements) holds all the VVRs in the P-VRF, larger MVL configurations hold a subset of 

the total VVRs in the P-VRF, and map the remaining part in the M-VRF. Third, we 

propose a novel two-stage vector issue unit. In the first stage, the second level of 

mapping between the VVRs and physical registers is performed, while issuing to execute 

is managed in the second stage. 

This thesis also presents a set of tools for designing and evaluating vector 

architectures. First, a parameterizable vector architecture model implemented on the 

gem5 simulator which helps to evaluate novel ideas on vector architectures. Second, a 

Vector Architecture model implemented on the McPAT framework to evaluate power and 

area metrics, with a target clock rate as a design constraint. Finally, the RiVEC 

benchmark suite, a collection of ten vectorized applications from different domains 

focusing on benchmarking vector microarchitectures. These tools are open for the 

computer architecture community. 

 

Keywords: Computer Architecture, Vector Architectures, Data-level Parallelism, 

Microarchitecture, RISC-V. 
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Chapter 1 

 

1 Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter first introduces a category of parallel hardware termed Single 

Instruction Multiple Data (SIMD) and covers two variations: Vector Architectures and 

Multimedia SIMD instruction set extensions. Since our proposal is based on the RISC-V 

ISA, a brief introduction of this ISA is given. Then, the motivation behind our work is 

discussed, followed by the objectives that are addressed in this thesis. Next, the 

contributions of this thesis are presented, and finally, the thesis organization is outlined. 

 

 

If you were plowing a field, which would you rather use: 
Two strong oxen or 1024 chickens? 

 

Seymour Cray, Father of the Supercomputer 

(arguing for two powerful vector processors 

versus many simple processors) 
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Parallelism at multiple levels is now the driving force of computer designs, where 

energy is one of the primary constraints. One effective way to achieve high-performance 

and efficiency is the exploitation of data-level parallelism (DLP). In this sense, parallel 

architectures can deliver good performance at a lower cost. One category of such parallel 

hardware organization is termed Single Instruction Multiple Data (SIMD) [1]. Two variants 

of SIMD are multimedia extensions and vector architectures [2]. Multimedia extensions 

allow executing a set of predefined operations over vector registers of a fixed length. In 

contrast, in a Vector Architecture, there is no single preferred vector length, just the 

Maximum Vector Length (MVL) is defined, and the application can use any vector length 

that does not exceed the MVL. Nowadays, most commodity CPUs implement 

architectures that feature SIMD instructions. Typical examples for Multimedia extensions 

include Intel x86’s MMX, SSE, AVX, AVX2, and AVX-512 [3], MIPS’s MDMX , and MSA 

[4], ARM’s NEON [5]. While classical vector extensions for NEC [6]  and CRAY [7] are 

well-known, "the return of the vectors'' include such contemporary vector architectures 

as ARM's SVE [8], SVE2 [9], and RISC-V V extension [10]. The following lines introduce 

Vector Architectures and Multimedia extensions. 

1.1 Vector Architectures  

An elegant interpretation of SIMD is called a Vector Architecture, which has been 

closely identified with supercomputers designed by Seymour Cray [11] [12]. A key 

element of these architectures is that arithmetic/logic and load/store instructions operate 

on sets of vectors instead of individual data items. Moreover, instead of having, for 

example, 32 Arithmetic Logic Units (ALU) to perform 32 operations simultaneously, 

vector architectures typically exploit long execution pipelines to obtain good performance 

at a lower cost. One of the main features of vector architectures is the Vector Register 

File (VRF), where each vector register can hold a large number of elements, and the 

maximum number of elements is represented by the MVL parameter, which can vary 

depending on the hardware implementation [2]. Additionally, Vector Architectures 

introduce the concept of Vector Length (VL), where each application can choose the 

most convenient VL that does not exceed the MVL. 

Figure 1.1 shows the basic structure of a Vector Architecture, highlighting the vector 

register file, where for this simple example, each vector register can hold 32 elements2 

(2048-bits). Also, it is possible to read eight elements of the first and second sources in 

only one cycle and allocate it in the source buffers, which are responsible for keeping 

                                                
2 From now on, one element corresponds to a 64-bit double-word. For example, a 

configuration with MVL= 8 elements represents a 512-bits implementation. 
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the functional unit busy. The functional unit writes one 64-bit result in every cycle in the 

destination buffer; once this buffer completes a vector register file line (8 elements), it 

proceeds to write back to the vector register file.  

 

Figure 1.1 Basic structure of a Vector Architecture 

Vector architectures that include multiple lanes can produce two or more results per 

clock cycle. Adding multiple vector processing lanes is a popular technique that leads to 

an advantage in performance and scalability, as shown by Asanovíc [13]. In a multi-lane 

vector architecture (See Figure 1.2), one lane operates with a register subset of the 

overall VRF, and a data path subset of the overall vector functional units data paths, 

where all the lanes work fully synchronized [14]. Inside each lane, the area can be 

dominated by the VRF, as reported in Ara [15]  and Hwacha [16]. Furthermore, multi-

lane vector architectures need extra hardware to control the synchronization between 

lanes, and also a lane-interconnection network to allow data movement between all the 

lanes. 

 

Figure 1.2 Basic structure of a multi-lane Vector Architecture 
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Vector architectures have been traditionally applied to the supercomputing domain 

(Cray, NEC, IBM) in the 1970s up to the 1990s. The Cray-1 [11] introduced in 1976, was 

a register-based machine, and the first supercomputer to successfully implement the 

vector processor design where arithmetic instructions operate on vector registers while 

separate vector load and store instructions move data between memory and vector 

registers. In the early eighties, the Japanese manufacturers (NEC, Fujitsu, and Hitachi) 

entered the vector supercomputer market, introducing lines of parallel vector computers 

[17]. In the early 90s, there was a radical change in the computer industry. The 

introduction of faster microprocessors substantially changed the supercomputing market 

mainly because the FLOPS/$ is substantially lower for commodity-based 

supercomputers, although vector supercomputers could achieve higher FLOPS. Thus, 

the idea of building parallel machines based on many out-of-order microprocessors 

offered an attractive alternative instead of vector supercomputers [17]. 

In the late 1990s, there were many academic research proposals on vector 

architectures. Asanović [13] proposed to build a vector microprocessor with the silicon 

CMOS fabrication technology of that time. He argued that the resulting vector 

microprocessor could be the fastest, cheapest, and most energy-efficient processor for 

many future applications. Espasa [18]  proposed using decoupling techniques in a vector 

processor. A first study proposes to split the instruction stream into three different 

streams through a set of queues: scalar computation instructions, vector computation 

instructions, and memory accessing instructions (both vector and scalar) and showed 

that the performance of vector programs could be significantly improved. In a second 

study, Espasa [19] demonstrated that dynamic scheduling commonly applied to the 

superscalar processors like register renaming and out-of-order execution could also be 

applied to the vector processors and obtain significant advantages. Applying dynamic 

scheduling, they reported a speedup of 1.24-1.72x for realistic memory latencies. Espasa 

et al. [20] developed Tarantula, a vector extension to the Alpha architecture which 

support vector operations of up to 128 elements. The studies with Tarantula showed that 

the vector paradigm could be fully exploited in a real microprocessor environment by 

integrating Tarantula to the Alpha virtual-memory cache-coherent system and provide 

good support for non-unit strides and gather/scatter instructions. 

Those academic ideas were studied by the processor manufacturers to conceive 

new designs. A clear example is the Cray X1 [21], launched in 2003, a distributed shared 

memory multiprocessor with a vector ISA (NV-1), capable of scaling to thousands of 

processors. The design features a VRF that holds 32 physical registers with an MVL of 

64 elements, where each element is 64-bit. The Cray X1 was the first industry product 

to implement a decoupled vector micro-architecture. Decoupling between the vector 
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memory unit and the vector execution unit facilitates the dynamic tolerance of memory 

latency. Moreover, decoupling between the vector and scalar execution units allows 

scalar execution to run ahead. The next Cray design launched in 2007 was called 

BlackWidow [22]. Like its predecessor, BlackWidow implements decoupling from the 

scalar core and improves scalar-vector synchronization primitives with a new vector ISA 

(NV-2). A large VRF was implemented that has 32 physical registers with MVL=128 

elements, each 64-bit wide. The design was organized as an eight-lane configuration, 

where each lane is associated with 16 elements of every vector register. 

One modern example of a vector architecture is the SX-Aurora TSUBASA [23]  

launched in 2018. SX-Aurora TSUBASA features eight vector cores in a single chip with 

a frequency of 1.6 GHz. Each vector core includes a scalar processor that provides the 

basic functionality as a processor (Fetch, decode, exception handling, etc.) and a 

decoupled Vector Processing Unit (VPU). The VPU includes renaming with 256 physical 

registers and Out-of-Order scheduling. The MVL is 256 elements each 64-bit wide, and 

it has 32 Vector Lanes with each lane featuring four pipelines (FMA0, FMA1, 

ALU0/FMA2, and ALU1/Store), executing up to three arithmetic operations plus one 

memory operation in parallel. 

1.2 SIMD Multimedia extensions 

Nowadays we can find vector instructions in all ISAs, including desktop or mobile 

processors, servers and in processors for supercomputing. However, the current era of 

SIMD processors grew up in the desktop computer market rather than the 

supercomputer market. In the 1990s, microprocessors became powerful enough to run 

multimedia processing tasks, and the demand grew for this particular type of computing. 

In response, microprocessors vendors turned to SIMD to meet the demand. 

Like vector instructions, a SIMD multimedia instruction specifies the same operation 

on vectors of data. Unlike vector machines with large register files which can hold large 

number of elements, SIMD multimedia instructions tend to specify fewer operands 

leading to much smaller register files. Figure 1.3 shows a general view of a 512-bit SIMD 

multimedia implementation where a complete vector register (512-bit) is read for each 

source, and send to the functional units to be computed in parallel. 

In 1994, Hewlett-Packard introduced the Multimedia Acceleration eXtension (MAX) 

[24] instructions into the PA-RISC ISA to accelerate MPEG decoding. Sun Microsystems 

introduced the Visual Instruction Set (VIS) [25] for the SPARC V9 microprocessors.  In 

1996, MIPS introduced the MIPS Digital Media eXtension (MDMX). However, the first 

widely deployed desktop SIMD was with Intel’s MMX [26] extensions in 1997 which was 

added to the x86 architecture in the Intel Pentium processors. MMX added only eight 
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new registers to the architecture (MM0-MM7), but the vector was small (64-bit), and it 

was only possible to execute a 1x64-bit operation or packed format of 2x32-bit, 4x16-bit, 

and 8x8-bit operations. Furthermore, MMX only provided integer operations. 

 

Figure 1.3 Basic structure of a 512-bit SIMD multimedia implementation. 

In 1999 the Streaming SIMD Extension (SSE) [27] was released and added to the 

x86 architecture and the Pentium III. The SSE instruction set added eight new 128-bit 

registers and support for floating-point operations. In all, SSE added 70 new instructions. 

SSE was subsequently expanded by intel to SSE2 (2001), SSE3 (2004), SSSE3 (2006), 

SSE4 (2006), and SSE5 (2007) [3]. 

The next Intel SIMD addition was the Advanced Vector Extensions (AVX) [28] in 

2008. The SSE registers were increased from 128 to 256 bits and renamed for AVX. The 

number of registers was increased from 8 to 16. AVX introduced a three-operand 

instruction format that allowed the preservation of the input registers. In the same year, 

ARM introduced NEON [5], a SIMD extension originally for the ARMv7 architecture. It 

combined 64-bit and 128-bit SIMD instructions that provide standardized acceleration for 

media and signal processing applications. 

Enhancements followed with AVX2 (2013) [28] which added integer 256-bit SIMD 

instructions, floating-point fused multiply-add, vector shifts and, gather support, enabling 

vector elements to be loaded from non-contiguous memory locations. 

The most recent addition to the Intel SIMD extension is AVX-512 [29]. With AVX-

512 the register length was expanded from 256 to 512 bits. The number of registers was 

expanded from 16 to 32. AVX-512 introduces gather with 512-bit registers and also a 

scatter instruction, which stores elements from a contiguous vector into non-adjacent 

memory locations.  
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All of these developments have been designed for vector lengths of between two 

and eight 64-bit elements or more for smaller data types. These new SIMD architectures 

need to be distinguished from older ones, the newer architectures are then considered 

“short-vector” architectures, as earlier SIMD and vector supercomputers had vector 

lengths from 64 up to 256 elements. 

One important aspect of SIMD Multimedia extensions is that they have fixed the 

number of data operands in the instruction opcode, which has led to the incorporation of 

hundreds of instructions in the MMX, SSE, and AVX extensions to the x86 architecture. 

On the contrary, Vector Architectures defines the MVL, which, combined with the Vector 

Length (VL) register that specifies the number of elements for the current operation, 

avoids using many opcodes. 

Additionally, technology advances have allowed increasing the vector width in every 

new incarnation of the SIMD multimedia extensions. This fact leads SIMD multimedia 

extensions to not only be considered for multimedia applications but also now are 

extensively used in scientific applications. Also, to better fit with modern scientific 

applications, features taken from the old vector machines are starting to be integrated 

on the new SIMD multimedia extensions, getting closer to those old vector machines. 

For example, up until recently, SIMD multimedia did not offer the more sophisticated 

addressing modes of vector architectures, namely strided accesses and gather-scatter 

accesses. AVX-512 is a clear example of this new trend. SIMD multimedia extensions 

did not offer the mask registers (predication registers) to support conditional execution 

of elements as in vector architectures. However, this can change in the future AVX 1024-

bit or 2048-bit implementations. Probably, in short time, the main differentiator will be 

either to implement the same number of functional units as number of elements hold in 

a vector register, or exploit the functional unit pipeline by executing a subset of the total 

operations every cycle. 

1.3 The RISC-V Vector Extension 

RISC-V [30] is a free and open-source hardware Instruction Set Architecture (ISA) 

that enables a new era of processor innovation through open standard collaboration. The 

project began in 2010 at the University of California, Berkeley, RISC-V ISA delivers a 

new level of free, extensible software and an open ISA. 

As of June 2019, version 2.2 of the user-space ISA and version 1.11 of the privileged 

ISA are frozen, permitting software and hardware development to proceed. Furthermore, 

a great effort has been made to propose a Vector Extension which four stable releases 
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(0.7, 0.8, 0.9, and 1.0-rc), being the v1.0-rc the candidate for the frozen spec for public 

review. 

In that sense, the RISC-V community has chosen relevant features from the long 

history of vector computing and has defined a standard ISA vector extension [10]. One 

of the main goals of this new vector extension is to make it an attractive alternative for 

different market segments. We next highlight three key features of this RISC-V vector 

extension: 

 The vector extension is a Vector Length Agnostic ISA. It means that the length of 

the vectors is not prescribed as in the common SIMD ISAs (i.e., Intel AVX, AVX2, 

and AVX-512), allowing the vendor to choose the vector register size while the 

binary code is portable between different hardware implementations.  

 The concept of Vector Length (VL), a feature taken from the classical vector 

architectures of the 70s, is introduced. Unlike SIMD ISAs where one instruction 

operates over the whole vector, in a vector architecture, just the Maximum VL 

(MVL) is defined, and the application can choose any VL that does not exceed 

the MVL.  

 Register Grouping (RG): RG's primary goal is to provide greater execution 

efficiency for those applications that present high DLP. RG allows that multiple 

vector registers can be grouped together so that a single vector instruction can 

operate on multiple vector registers as if it was a single “wider” register at the 

cost of having fewer available architectural registers 

New opportunities for academia and industry have been opened with the 

incorporation of this new vector extension. In fact, this vector extension has arrived just 

at the most convenient moment where the quest for extreme energy efficiency hardware 

has renewed interest in vector architectures. It has not been long since RISC-V 

announced the first stable release of the RISC-V vector extension, and there are already 

several open and commercial-based products.  Some examples are Ara [15] from ETH 

Zurich, Xuantie-910 [31] from the Chinese company Alibaba, and the Sifive Performance 

P270 core [32] from the American company Sifive, to name a few. 

1.4 Motivation 

Supercomputing has always been instrumental as an initial testing ground for 

innovative architectures. Today, the new milestone for supercomputing is Exascale. In 

the most basic sense, Exascale (1018 floating-point operations per second) will provide 

the capability to perform more realistic simulations about the processes involved in 
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precision medicine, regional climate, the unseen physics in materials discovery and 

design, the fundamental forces of the universe, and much more.  However, highly 

energy-efficient hardware substrates are needed to achieve Exascale performance 

levels within the 20 MW power envelope. Vector processors are a prime candidate for 

such substrates as they are typically highly energy-efficient, for example, by computing 

on operands composed of vectors instead of scalars, therefore requiring fewer 

instructions to fetch, or by processing multiple vector instructions simultaneously through 

techniques such as chaining. In that sense, recent Exascale projects have shown a 

renewed interest in Vector Architectures.  Some examples are the European Processor 

Initiative (EPI) [33] and the Japanese Post-K [34] projects. The EPI project proposed a 

RISC-V based design, aiming to develop power-efficient and high throughput 

accelerators. On the other hand, in the Post-K project context, Fujitsu put into operation 

the Fugaku supercomputer, which is currently number 1 in the list of TOP500 fastest 

supercomputers in the world [35]. Fugaku features the Fujitsu ARM A64FX vector 

processor, which adopts the ARM Scalable Vector Extension (SVE) [8] as an efficient 

way to achieve Exascale-class performance. 

Although both the ARM SVE and the RISC-V vector extensions took inspiration from 

the more traditional vector architectures, such as the Cray-1 [11], there is a remarkable 

difference between them. While ARM SVE allows implementations from 128-bits up to 

2048-bits, RISC-V does not limit the MVL, thereby allowing implementations not only 

with short and medium-size vectors but also long vector designs that are akin to classic 

vector supercomputers [11] [12] [21] and modern vector processors [23] [36]. For 

example, the Aurora vector processor from NEC [23] can multiply-accumulate two 256 

element double-precision floating-point vectors in a single instruction. 

The vector architectures designed for long vectors are limited to a specialized subset 

of applications, where relatively high DLP must be present to achieve excellent 

performance with high efficiency. However, scientific applications are getting more 

diverse, and the vector lengths in practical applications vary widely. For example, stencil 

and graph processing kernels usually feature shorter vectors, while high-performance 

computing, physics simulation and financial analysis kernels usually feature longer 

vectors [37]. We believe that this wide diversity is one of the main reasons behind the 

trend of building parallel machines with short vectors. Short vector designs are area 

efficient and are "compatible" with applications having long vectors; however, these short 

vector architectures are not efficient as longer vector designs when executing high DLP 

code.  
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To help to address this wide diversity of vector lengths in practical applications, new 

vector extensions such as RISC-V V-extension and ARM SVE adopt the VLA 

programming. In VLA, the length of the vectors is not prescribed as in the common 

Multimedia SIMD ISAs, allowing the vendor to choose the vector MVL while guaranteeing 

portability of the binary code between different hardware implementations. However, 

since hardware architectures are designed to target specific MVLs, designing for only 

short or long MVL leads to inefficiencies when leveraging different DLP patterns. In this 

work, we tackle this challenge by proposing a novel vector architecture that combines 

the area and resource efficiency characterizing short vector processors with the ability 

to handle large DLP applications, as allowed in long vector architectures. 

1.5 Thesis Objectives 

The main goal of this thesis is to propose a novel Vector Architecture able to adapt 

the microarchitecture according to the application characteristics to do an efficient use 

of the resources and improve performance. In order to achieve this goal, the tasks can 

be broken into individual objectives. 

The first objective is to study the behavior of a set of applications when executing 

on different Vector Architecture configurations. This is varying the vector length, number 

of lanes, lane-interconnection, memory hierarchy, etc. This objective can be broken into 

individual goals. 

 Since the RISC-V Vector extension ISA is still in development, there is no 

standard tool to evaluate this type of research, and a common practice among 

the researchers is to develop their own tools. This practice is a limitation both in 

the development of the research and in the analysis of the resultant data from 

the experiments. Beneath this necessity, the gem5 simulator is taken and 

extended with a parameterizable timing model of a Vector Processing Unit 

supporting the execution of the new RISC-V Vector instructions over several 

configurations.  

 The second goal is to develop a vectorized benchmark suite; a collection 

composed of data-parallel applications that can be classified according to the 

modules that are stressed in the vector architecture. One important requirement 

is to provide applications from different domains to explore different scenarios. 

 The third goal is to study the vectorized suite executed on the extended gem5 

simulator in order to see how they perform on the different VL, number of lanes, 

etc.  
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Based on the data collected from the initial study, the second objective of this work 

is to propose a reconfigurable Vector Architecture, which means that it can modify its 

own structures depending on application needs. This objective can be broken into 

individual goals. 

 Design and implement a reconfigurable Vector Architecture model on the 

previous extended gem5 simulator. 

 Evaluate performance with a set of applications taken from the vectorized 

benchmark suite. 

 Evaluate area, energy, achievable frequency. 

1.6 Thesis Contributions 

This thesis makes the following contributions: 

The main contribution of this thesis is a novel register file organization for vector 

processors that provides the ability to adapt the MVL depending on the application 

needs. Our design termed as AVA (Adaptable Vector Architecture) is a VPU designed 

for short vector lengths (16 elements), but with the ability to reconfigure the MVL, 

unlocking the benefits of having a longer vector (128 elements) microarchitecture when 

abundant DLP is present in the application. To enable this feature, AVA 

microarchitecture revolves around three complementary concepts:  First, a two-stage 

renaming unit based on a new type of registers termed as Virtual Vector Registers 

(VVRs). Second, a two-level vector register file that supports 64 VVRs with MVL from 16 

to up to 128 elements depending on the configuration. The first level corresponds to the 

VVRs mapped in the physical registers held in the 8KB Physical Vector Register File (P-

VRF), while the second level represents the VVRs mapped in memory registers held in 

the Memory Vector Register File (M-VRF). Third, a novel two-stage vector issue unit. In 

the first stage, the mapping between the VVRs and physical registers is supported by 

the Swap-Mechanism, while issuing to execute is managed in the second stage. Since 

the hardware is designed for short vector lengths, it is possible to keep the P-VRF modest 

in size (8KB for 64 16-elements vector registers), so it has the advantage of area 

efficiency of short vector designs. Our results demonstrate that by having a modest VPU 

designed for short vectors, plus our novel scheduling mechanism, it is possible to: (1) 

obtain competitive performance when comparing AVA with the equivalent long vector 

hardware (i.e., VPU with a MVL=128 elements, VRF=64KB); (2) save around 53% of the 

total VPU area compared with a long vector hardware (i.e., VPU with a MVL=128 

elements, VRF=64KB); (3) obtain energy savings when reconfiguring for longer vector 

lengths; and (4) achieve higher working frequencies.  
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The next contribution of this thesis is a complete framework for designing and 

evaluating vector architectures. The framework is composed of three tools:  

 First, a vector architecture model implemented on the gem5 simulator [38]. This 

model allows designers to evaluate different novel ideas on vector architectures. 

The model corresponds to a decoupled vector architecture, and several vector 

micro-architecture configurations can be evaluated since the number of physical 

vector registers, MVL, number of queue entries, issue scheme, number of lanes, 

the latency of the functional units, latency and topology of the lanes 

interconnection and number of memory ports are customizable. 

 Second, a parameterizable vector architecture model implemented on the 

McPAT [39]  framework to evaluate area and power metrics, with a target clock 

rate as a design constraint. The model can be configured by varying the MVL, 

the number of lanes, and the number of functional units. Also, since the vector 

register file is a critical element in a vector architecture, it is possible to model 

detailed internal organization such as defining the number of memory banks 

inside each lane, or the number of read and write ports. 

 Third, the RiVEC benchmark suite [40], a collection composed of ten data-parallel 

applications from different domains. All the applications (C and C++ programs) 

were extended by adding the RISC-V vectorized version. The implementations 

make use of intrinsics, and the code was written in a vector length agnostic 

fashion. The applications present different possible scenarios that may occur 

within different vector architecture designs that can operate from short to long 

vector lengths, taking into account the different modules that can be evaluated in 

a vector architecture such as the lanes, the interconnection between lanes and 

the memory management. 

Finally, the complete framework [38] [39] [40] is open for the computer architecture 

community. 

1.7 Thesis Organization 

The rest of the document is organized as follows:  

Chapter 2 presents a set of tools for designing and evaluating vector architectures. 

First, the gem5 simulator and the McPAT framework extended with a parameterizable 

vector architecture model are presented. Second, the RiVEC benchmark suite is 

described. And finally, an evaluation of the benchmark suite is highlighted.  
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Chapter 3 presents AVA, our novel proposal, which allows managing different DLP 

patterns in an efficient way. It describes the proposal, and present the evaluation for 

performance, area, and energy. 

Chapter 4, summarizes the contributions presented in this thesis and points to future 

research directions.  

Chapter 5 shows the publications related to this research. 
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This chapter presents the basic tools for initial research on RISC-V Vector 

Architectures. First, the gem5 simulator is extended to support the execution of RISC-V 

Vector instructions by adding a parameterizable Vector Architecture model for designers 

to evaluate different approaches according to the target they pursue. Second, to obtain 

area and power metrics, the McPAT framework is extended by modeling the main 

modules of a Vector Architecture. Third, a novel Vectorized Benchmark Suite is 

presented, a collection composed of ten data-parallel applications from different domains 

that can be classified according to the modules that are stressed in the vector 

architecture. Finally, a study of several VPU configurations is presented. 

We call these algorithms data-parallel algorithms 
because their parallelism comes from simultaneous 

operations across large sets of data rather than from 
multiple threads of control. 

 

W. Daniel Hillis and Guy L. Steele 

“Data parallel algorithms” Commun. ACM (1986) 
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One of the most used platforms for computer-system architecture research 

encompassing system-level architecture as well as processor microarchitecture is gem5 

[41] which can be used to test those novel ideas on vector architectures. For Multimedia 

extensions, gem5 supports Intel's MMX and SSE (64-bit and 128-bit extensions) 

instructions, which are implemented as part of the core microarchitecture. However, 

support for more recent extensions such as AVX2 and AVX-512 is missing. On the vector 

architecture side, there is full support for ARM SVE, where the MVL allowed by the 

architecture is 2048-bit (32 elements each 64-bit). However, despite the relevance of 

vector architectures, gem5 does not have a public distribution, which includes a vector 

architecture model that evaluates different implementations including short (around 512-

bit), medium (around 4096-bit), and large (around 16384-bit or more) vectors combined 

with a flexible and customizable model that fits with the research requirements. In 

consequence, researchers have to limit their explorations to the MVL allowed by the 

current models, decreasing the possible scenarios that could allow a flexible and 

customizable model without MVL limitation. In this sense, the incorporation of the new 

RISC-V vector extension will offer to the computer architecture community maximum 

freedom in the research and development of new acceleration technologies where the 

MVL can be chosen by the architect instead of being restricted by the architecture. 

On the benchmark suites side, as novel architecture designs have appeared, the 

need for new benchmark suites arises.  There are several suites to measure single-core 

performance over data-parallel applications, such as Parboil [42] and Polybench [43]. 

Also, there are several suites focused on parallel computing on general-purpose CPU 

architectures such as PARSEC [44] and HPC Challenge Benchmark Suite [45], as well 

as others for heterogeneous computing such as Rodinia [46], and Polybench/GPU [43], 

covering MPI, OpenMP, OpenCL, and CUDA programming models, while SIMD Suites 

are very limited such as ParVec [47]. It is well-known that many applications can benefit 

from vector execution achieving higher performance, higher energy efficiency, and 

greater resource utilization. Moreover, the effectiveness of the hardware depends not 

only on the hardware design but also on the compiler's ability to vectorize the code to be 

executed. However, there is a tremendous variation in how different compilers perform 

in vectorizing programs [48]. Supporting auto-vectorizing large codes is currently too 

limiting for the compilers. Achieving high percentage of vectorization as well as good 

quality vectorized code typically relies on the programmer´s effort. For example, rewriting 

the code to obtain well-structured control flow or vectorizing the code using intrinsics. 

This effort is one of the principal reasons for not having many vectorized benchmark 

suites. Despite this, suites to evaluate the different modules that compose a Vector 
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Architecture have received little attention from previous work on benchmark 

development. 

One contribution of this thesis is to provide a complete framework to evaluate 

performance, area, energy, and achievable frequency to enable researchers to test novel 

ideas on vector architectures. Our gem5-based simulator baseline model corresponds 

to a decoupled vector architecture, and different vector micro-architecture 

implementations can be evaluated since the number of physical vector registers, MVL, 

number of queue entries, issue scheme, number of lanes, the latency of the functional 

units, latency and topology of the lanes interconnection and number of memory ports are 

customizable. To help evaluate these architectures, a novel Vectorized Benchmark Suite 

was developed which covers the different possible scenarios that may occur within 

different vector architecture designs that can operate from short MVL to large MVL, 

taking into account the different modules that can be evaluated in a vector architecture 

such as the lanes, the interconnection between lanes and the memory management. 

This chapter is organized as follows. In Section 2.1, a detailed description of our 

vector architecture model implemented on gem5 is shown. Section 2.2 presents the 

vector architecture model implemented on the McPAT framework. Then, the RiVEC 

Benchmark Suite is presented in Section 2.3, describing how the vectorized versions 

were implemented and showing the degree of vectorization achieved. Once the tools are 

detailed in Section 2.4, a study of the scalability for each application executed on different 

configurations of the gem5-based vector architecture model is highlighted. Section 2.5 

focuses on the related work. Finally, Section 2.6 summarizes the key points of this 

chapter. 

2.1 gem5 Vector Architecture Model 

The gem5 simulator has been extended to model a decoupled vector architecture. 

The customization provided by the parameter-based model allows the designer to obtain 

a vector engine design capable of achieving a tradeoff between performance, energy 

efficiency and area. In that sense, it is possible to simulate a design that fits with the 

researcher's requirements. For example, a vector engine designed for HPC, by setting a 

design for large vectors (256 64-bit elements), composed of a renaming unit capable of 

supporting 64 physical registers, a vector arithmetic and a memory queue with sixteen 

entries; these features can be set-up to work with say, eight lanes. In contrast, the vector 

engine can also be targeted for the embedded market segment by setting a design for 

short vectors (8 64-bit elements), reducing the number of available physical registers, 

and with only one-lane configuration. The main goal of this work is to obtain the more 
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flexible and customizable vector engine for researchers; in that sense, several decisions 

were taken into account. 

Create a model based on RISC-V. The adoption of RISC-V is a key factor for 

having maximum freedom both in the research and development of the new 

technologies, without the limitation from hardware and software ecosystems. 

Furthermore, the new V extension includes a key feature which is unbounded MVL size, 

which, in combination with a flexible and customizable model, could lead to set designs 

that support very long vectors. 

Decoupled vector engine. A decoupled design provides several advantages. First, 

decoupling between the vector memory unit and the vector execution unit facilitates the 

dynamic tolerance of memory latency. Secondly, decoupling between the vector and 

scalar execution units allows scalar execution to run ahead. Implementing a vector 

engine as a pipeline tightly coupled to an aggressive out-of-order superscalar core is a 

typical implementation. In fact, most commodity CPUs that feature SIMD instructions 

work in this way. However, these designs are optimized for short vectors such as Intel's 

AVX-512, where the VRF size is around 2KB (32 vector registers each 512-bit wide), 

and the area overhead added to the superscalar core is acceptable without limiting the 

maximum frequency of the superscalar core. The case for vector engines designed for 

long vectors is a different story. In this case, the VRF size is around 64KB (32 vector 

registers each 16,384-bit wide) or more when implementing renaming, which could lead 

to a big area overhead and could limit the maximum frequency of the superscalar core. 

Contemporary vector architectures are implemented as decoupled engines running 

around 1.5GHz (e.g., Cray BlackWidow runs at 1.3 GHz, and SX-Aurora TSUBASA runs 

at 1.6 GHz), mainly limited by the big structures needed to hold long vectors. In contrast, 

superscalar cores run at higher frequencies. Furthermore, by having a decoupled design, 

it is possible to study different possibilities to get energy-efficient architectures. Examples 

include clock gating, turning off the clock of inactive modules to save energy and dynamic 

power, or applying dynamic voltage-frequency scaling when there are periods of low 

activity where there is no need to operate at the highest clock frequency and voltage. 

2.1.1 Scalar Core 

Different fully parameterizable CPU models are provided by gem5, such as the in-

order CPU and the out-of-order CPU, which allows micro-architectural simulations. In 

this work, extra support to the in-order CPU pipeline was added to recognize the vector 

instructions and perform different tasks before sending these instructions to the vector 

engine. The core runs concurrently with the vector engine, so most of the scalar 

operations are amortized underneath vector execution. The scalar core is responsible 
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for fetching and decoding the vector instructions and carrying them through the pipeline. 

Most of the vector instructions are treated as nop operations in the scalar core. 

Furthermore, if the vector instruction has a scalar operand as a source, it must read the 

scoreboard to check if the source operand is ready. Then, the vector instructions 

continue to the next stages until they reach the commit stage, where they are sent to the 

vector engine. With this, the vector instruction execution won't be interrupted by any 

possible control hazard, such as a miss branch prediction generated by older scalar 

instructions. 

Two different simulation modes are provided by gem5, Full System (FS) mode, and 

Syscall Emulation (SE) mode. The first provides the ability to simulate a full system. It 

can boot an operating system, handle interrupts, exceptions, and fault handlers. The 

second, the SE mode, focuses on the CPU and memory system and does not emulate 

the entire system, which implies that interrupts, exceptions, and fault handlers are 

trapped and managed by the host OS without running a handler routine to manage the 

event. The gem5 RISC-V implementation still does not have the support to run in FS 

mode. Consequently, the vector architecture model is available only to run in SE mode. 

Having said the above, once the vector instruction is sent to the vector engine, it can be 

retired from the scalar pipeline since any exception generated by a vector instruction, 

such as a page fault caused by a memory request, is trapped and managed by gem5. 

2.1.2 Vector Engine 

Once the vector instructions arrive at the vector engine, they are first renamed to 

remove false dependencies, increasing the amount of instruction-level parallelism (ILP) 

that can be exploited. Then, two operations are performed in parallel. The first is to assign 

one entry in the reorder buffer, and the second is to allocate the instruction in a temporal 

queue depending on the instruction type (arithmetic or memory). Once assigned in the 

corresponding queue, the instruction waits until it fulfills the requirements to be issued; 

its operands become ready, and the corresponding execution unit is available (the 

memory unit or the vector lane). Then, when the instruction completes execution, the 

commit is made by retiring the instruction and freeing up the hardware resources 

consumed. Our decoupled architecture design has some other unique features for 

efficiency. For example, as explained in Section 3.2.3, the vector lane architecture was 

carefully tuned to minimize pipeline bubbles due to structural hazards. The following 

subsections present a more detailed description of the components of the vector 

architecture model. 

Figure 2.1 shows the general view of the vector engine model. Some specific 

configurations are also included to explain the interaction between the internal modules. 
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The model presented corresponds to a multi-lane vector engine. By setting eight lanes, 

only one memory port could be enough to feed all the lanes, taking into account that the 

cache line size is set to 512-bit (8 elements each 64-bit), and with every cache line 

request, it is possible to send one element to each lane in an interleaved fashion. The 

MVL is set to 256 elements (16384-bits). The VRF line size is set to 8 elements(512-

bits). Also, a ring topology for lane interconnection is chosen. 

 

Figure 2.1 gem5 Vector Architecture Model. 

 

2.1.2.1 Vector Renaming. 

As part of the dynamic scheduling implemented in the design, register renaming is 

performed. The goal of the renaming is to remove false dependencies by changing the 

names of the source logical registers to its corresponding physical register that was 

mapped previously.  Additionally, the logical destination register is renamed to a new 

physical register. This is performed by reading a structure termed as the Free Register 

List (FRL), which contains all the available physical registers. This mapping is stored in 

another structure termed as the Register Alias Table (RAT), where the logical destination 

operates as the write address. At the same time, the logical sources and destination 
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registers read the RAT in order to obtain the corresponding physical source registers 

and the physical destination register that was mapped by a previous instruction, also 

known as old-destination.  Then, these structures are coupled with a dependency check 

logic to analyze the instruction and solve any write-after-write dependencies. The 

physical registers in-flight (old-destinations) that are no longer used are appended to the 

free register list at commit time. Detailed information about the commit process can be 

found in Section 3.2.2. Finally, the number of physical registers can be set by the 

designer. 

2.1.2.2 Reorder Buffer. 

The implemented vector architecture model permits choosing the issue scheme, 

which can be in-order or out-of-order; for that reason, a structure to preserve the program 

order is needed. A Reorder Buffer (ROB) is a structure that allows instructions to be 

committed in-order. Also, it holds important information about the instruction that can be 

useful during and at the end of its execution, such as the program counter, the physical 

old-destination, and a bit field termed as executed. The executed bit allows knowing if 

the instruction has been completed or not. The number of ROB entries can be set by the 

designer. 

When a new instruction arrives at the ROB, it is allocated in the next available entry 

signaled by the tail pointer (write pointer). At the same time, the address of the assigned 

entry is sent together with the instruction to the corresponding queue. In that way, the 

instructions know their locations in the ROB, and they can write to it when it is needed. 

The executed bit field associated with the corresponding ROB entry is set when an 

instruction finalizes its execution. It means that the instruction is ready to be committed. 

However, since the commit is performed in-order, the instruction must wait its turn to 

start this process. The head pointer defines the turn (read pointer). When the instruction 

pointed by the head pointer has the executed bit set, it means that it can commit. If this 

is the case, the physical old-destination is written back to the FRL structure, to be 

assigned later to a new instruction. Also, the head pointer advances to the next entry to 

evaluate a new instruction in the next cycles. 

2.1.2.3 Vector Issue Queues. 

As mentioned before, the design of the vector engine corresponds to a decoupled 

vector architecture, meaning that memory instructions and arithmetic instructions are 

buffered in different queues (arithmetic and memory queue) until fulfilling all the 

requirements to be issued. In this scheme, it is allowed to execute independent memory 

instructions ahead of arithmetic instructions and vice versa. This stage is called Issue, 
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and it is in charge of dispatching instructions to the vector lanes or to the vector memory 

unit. 

The issue stage is composed of two fundamental modules termed as Instruction 

Queue and the Issue Logic. The scheduling can be configured to use an in-order or out-

of-order issue scheme. In addition, the number of entries in the issue queues also can 

be configured. 

The instructions are issued as soon as they fulfill the requirements. First, the source 

operands must be ready; this is done by reading a structure called Valid-Bit (more 

detailed information about the Valid-bit structure can be found in Section 3.2.4). 

Secondly, the hardware resources needed for execution must be available. An important 

restriction is that the vector lanes only support the execution of one arithmetic instruction 

at a time. This means that for certain arithmetic instructions, all source operands can be 

ready. However, the issue queue must wait until the previous instruction finishes its 

execution. Note that it is possible to execute memory operations at the same time. 

In the special case of the memory queue, if an out-of-order issue scheme is selected, 

a dynamic memory disambiguation logic is enabled to check for possible memory 

hazards between load and stores held in the queue. Once the instruction arrives at the 

memory queue, the disambiguation process sets a bit called memory hazard. First, the 

load is disambiguated against all the stores in the queues. In this case, for every memory 

reference (load/store), there is a Vector Base Address (VBA), a Vector Length (VL), a 

Vector Stride (VS), and Standard Element Width (SEW) in bytes. The memory range 

accessed by a vector reference is defined as a set of memory locations located between 

VBA and VBA+(VL*VS*SEW) -1. Then, there is a memory hazard between a vector load 

and vector store if their corresponding memory ranges overlap at least one byte. 

Scatters/gathers operations (more detailed information about gather/scatter instructions 

can be found in Section 3.2.5) represent a special case where characterizing by a 

memory range implies more complex implementations. Then, these operations are 

executed in order. 

2.1.2.4 Vector Lanes. 

Figure 2.1 shows a simplified picture of the internal modules that comprise one 

vector lane. The vector engine can be configured with the required number of lanes. A 

key aspect is the VRF. In gem5, this is modeled as a simple memory, and it is possible 

to choose the number of read/write ports. However, the designer should take into 

account that in a hardware implementation, the number of ports would be highly 

constrained, especially in a large register file. This is because adding additional ports to 
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an SRAM memory could increase area and limit the maximum operating frequency or 

require more than one cycle to read/write in the VRF. 

One important source of overhead is the start-up time, which is the latency in clock 

cycles until the pipeline is full [48]. The start-up time is principally determined by the 

pipeline latency of the vector functional unit. Moreover, the number of read ports in the 

VRF also can influence the start-up time. For example, in a vector engine designed for 

low power, a one read/write port SRAM memory can be used. In that sense, when a 

vector multiply-add operation arrives at the lane, in a first cycle, it can read the source1, 

in a second cycle, it can read the source2, and finally, in the third cycle, it can read the 

source3. All these read operations take three cycles, which are added to the start-up 

time. On the contrary, if a VRF with three read ports and one write port is chosen, the 

read of the three operands can be made in only one cycle. It is a design decision that 

can be taken according to the final target. For long vector length implementations 

executing an arithmetic operation can take several cycles, then paying three cycles could 

be negligible. For a short vector length implementation where the full vector can be 

computed in less than a dozen cycles, paying three cycles in every instruction could lead 

to a severe performance loss. 

When multiple lanes are enabled, each lane operates with a register subset of the 

overall VRF. The elements of a vector register are interleaved across all the lanes. Figure 

2.2 shows a detailed example using the same configuration presented in Figure 2.1 

(eight-lane configuration with an MVL of 256 elements). Lane 0 is the owner of element 

0, lane 1 is the owner of element 1, lane 2 is the owner of element 2, and so on. 

 

Figure 2.2 VRF elements distribution for a MV=256 elements and eight-lane configuration. 

The designer can specify the VRF line size (512-bit in the example shown in Figure 

2.1). Then, every read operation to the register file will return a VRF line size; for that 

reason, it is necessary to perform operands buffering to store the elements read and to 

keep a constant stream of data to the functional unit, avoiding bubbles in the pipeline. 

As soon as the first result is computed, it is sent to a structure called Write-Back 

Buffer (WB). This structure holds the resultant data (one 64-bit element per cycle) from 

the functional units. Once the WB buffer gets the total elements corresponding to one 
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VRF line (512-bit in the example shown in Figure 2.1), the data can be written back in 

the VRF. 

Each lane has a 64-bit bus to communicate with the Vector Memory Unit. When a 

load operation is performed, the Vector Memory Unit receives a complete cache line 

(512-bit in the example shown in Figure 2.1) and sends it in parallel to each lane (one 

64-bit element). The Load Buffer (LB) is the structure in charge of collecting data from 

the Vector Memory Unit. Once the LB completes one VRF line (eight 64-bit elements), it 

proceeds to write back to the VRF. Figure 2.3 shows a more detailed example with the 

same configuration presented in Figure 2.1. On the vector memory unit side, there is a 

cache line with eight 64-bit elements. Those elements are sent in an interleaved fashion 

to each lane, meaning that Lane 0 is the owner of element 0, lane 1 is the owner of 

element 1, lane 2 is the owner of element 2, and so on. On the contrary, store operations 

read a complete line (512-bit) from the VRF and store it in the Store Buffer. This operation 

is performed at the same time in all lanes. Then, the store buffer sends one 64-bit 

element to the Vector Memory Unit each cycle. 

When an instruction completes execution, the corresponding physical destination 

must be marked as ready to issue new instructions that were waiting for it.  This is done 

in a structure called Valid-Bit, which for every physical register, one bit is added to the 

structure. For example, for a vector engine with 64 physical registers, a 64-bit Valid bit 

structure is implemented. 

 

Figure 2.3 Vector Load/Store buffer behavior 

2.1.2.5 Vector Memory Unit (VMU). 

VMU receives instructions (load/store) from the memory queue, and it cannot accept 

a new instruction until it finishes its current work. This module is in charge of managing 

the requests to memory. The VMU supports unit-stride, strided, and indexed 

(gather/scatter) addressing modes. Vector unit-stride operations access elements stored 

contiguously in memory, starting from the effective base address. Vector strided 

operations access the first memory element at the effective base address and then 

access subsequent elements at address increments given by the byte offset specified 

by a scalar source. Vector indexed operations add the contents of each element of the 
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vector offset operand specified by the second vector source operand to the effective 

base address to give the effective address of each element. 

Once it receives the memory instruction, as well as the memory address, the VL, 

and the stride (1 for unit-stride access), the VMU generates all the requested addresses 

and puts them in a FIFO. Then, the requests to memory are sent in-order in a pipeline 

fashion. However, the memory system can answer in a different order (hit under miss).  

Additionally, it is possible to set the number of Miss Status and Handling Registers 

(MSHRs), which for a long vector length implementation can be a relevant factor to 

consider. The MSHRs implement a queue that holds the list of outstanding memory 

requests. Each memory request is assigned to an MSHR object representing a particular 

memory block that has to be read or written to complete the command. When the 

memory request is sent, a unique order number is assigned to each read/write request 

as they appear on the slave port. 

The memory port can be connected directly to any level of the memory hierarchy. 

Once a request to the memory system is sent, the timing is managed by the gem5 

memory model. Several configurations can be used; for example, Figure 2.1.a shows a 

configuration connecting the vector memory port to L1 cache. In another configuration 

(Figure 2.1.b), it is possible to bypass the first-level cache to read/write from L2 cache. 

Vector architectures designed for long vector lengths are typically connected to L2 cache 

since a vector memory instruction can amortize long memory latency over many 

elements with a small performance degradation [49]. 

 

Figure 2.4 Two possible memory configurations. a) the VPU is connected to its own L1 cache. 

b) the VPU is connected to L2 cache. 

 

gem5 provides several cache coherence protocols based on bus snooping and directory, 

being the MOESI snooping protocol the default configuration. Inclusion is optional. All 
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the results presented in this thesis have the default configuration (MOESI snooping 

protocol with non-inclusive caches), however, researchers studying aspects of the 

memory subsystem have the opportunity of exploring different coherence protocols as 

well as modifying the cache inclusion policy. Request from the scalar core or VPU 

propagate toward main memory in the following fashion: An L1 cache miss is broadcast 

on the local L1/L2 bus, where it is snooped by the other L1s. If there is no response, the 

request is serviced by the L2. If the request misses in the L2, then after some delay 

(currently set equal to the L2 hit latency), the L2 will issue the request on its memory-

side bus, where depending on the configuration, it will possibly be snooped by other L2s 

and then be issued to an L3 or memory. In the case presented in Figure 2.4.b, the VPU 

does not include a L1 cache, however it is required to preserve the TLB to translate from 

virtual to physical addresses, and the coherent cache controller which is in charge of 

broadcast the request on the local L1/L2 bus. In the case of a vector store, the coherent 

cache controller will snoop each request to invalidate the other L1s blocks in case there 

is a copy, and then, write the corresponding data in L2.  

Finally, the latency of accessing to L2 can be amortized, because a single access is 

initiated for the entire vector rather than to a single word. The default value of a L1 hit 

latency is set to 4 cycles, while L2 hit latency is set to 12 cycles. The latency of each 

cache can be configured, as well as the size, block size, number of MSHRs, etc. One 

important consideration is that caches inherently deal with unit stride data, so that while 

increasing block size can help reduce miss rates for large scientific data sets with unit 

stride, increasing block size can have a negative effect for data that is accessed with 

non-unit stride. 

2.1.2.6 Lane Interconnection. 

The vector extension can be configured with different numbers of lanes, where the 

lanes work fully synchronized. However, there is a class of instructions that involves 

communication between different vector lanes, basically for moving and addressing data 

such as vector slides, vector reductions, and vector register gather instructions. The slide 

instructions move elements up and down a vector register. The vector reduction 

instruction takes a vector register group of elements and performs a reduction using 

some binary operator to produce a scalar result that is written in the element 0 of a vector 

register. The vector register gather instruction reads elements from a first source vector 

register group at locations given by a second source vector register group and writes it 

in a destination vector register. 

Therefore, an interconnection network is necessary to support this class of 

instructions. Two different interconnection networks (crossbar and ring network) are 
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modeled. In the example shown in Figure 2.1, the vector lanes include a ring node 

(router) to communicate with the neighboring node. This interconnection could limit the 

performance for those applications which make intensive use of the lane interconnection, 

but it is cheap in terms of area. On the contrary, the crossbar interconnection could 

achieve excellent performance, but it implies a considerable increase in area. 

2.1.2.7 Capabilities and limitations. 

Four versions (0.7, 0.8, 0.9, and 1.0-rc) have been released so far regarding the 

RISC-V vector extension. However, between the four different versions, the changes are 

small. For sure, there will be more updates before the specification is frozen as an official 

release, and it is believed that point is close. In that sense, this work has started to add 

vector extension support to gem5. However, the full specification is not implemented, 

leaving as future work the implementation of atomic operations, permutation operations, 

register grouping, and exception handling for the full system mode. 

2.1.2.8 Early Access. 

Progress is being made on integrating the Vector Architecture model on the official 

gem5 repository [50]. It is possible to get early access by cloning [51], a fork of the official 

gem5 repository that includes the Vector Architecture model. 
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2.2 The McPAT framework 

Designing a vector architecture can be a complex task. Choosing parameters such 

as the MVL, the number of physical registers, the number of lanes, the number of 

pipelines within the lane, the number of memory ports, are some of the main decisions 

that the architect must take in earlier steps. Additionally, all of these parameters must be 

considered not only taking into account performance metrics but also the different 

requirements/limitations of the project, such as area and power. In that sense, the gem5 

simulator extended with our parameterizable vector architecture model covers the 

performance metrics. However, a model is still missing that helps obtain a first 

approximation of the area and power cost that these choices can imply once 

implemented at RTL level, which will help the architect make accurate decisions in a 

shorter time. 

McPAT [52] is an architectural integrated power, area, and timing modeling 

framework, that focuses on power and area modeling, with a target operational frequency 

as a design constraint. McPAT supports comprehensive design space exploration for 

multicore and manycore processor configurations ranging from 90nm to 22nm. At the 

microarchitectural level, McPAT includes models for the fundamental components of a 

chip multiprocessor, including in-order and out-of-order cores, networks-on-chip, cache 

hierarchy, integrated memory controllers, and multiple-domain clocking. At the circuit 

and technology levels, McPAT supports critical-path timing modeling, area modeling, 

and dynamic, short-circuit, and leakage power modeling for bulk CMOS, SOI, and 

double-gate transistors. Additionally, McPAT has a flexible XML interface to facilitate its 

use with many performance simulators such as gem5.  

Combined with a performance simulator, McPAT enables architects to consistently 

quantify the cost of new ideas and assess the tradeoffs of different architectures. In that 

sense, in this research work we decided to extend the McPAT framework with a VPU 

model which can be configured via the XML interface. Then, the reports obtained from 

gem5 simulator can be ported to McPAT framework to evaluate the cost of the different 

VPU configurations. 

As mentioned before, McPAT includes models for the fundamental components 

such as integer and floating-point functional units or memory structures that are used for 

defining modules such as the scalar register file. These components are reused for the 

VPU model, and via the XML interface, we can setup their specific configuration. 

Then, our McPAT VPU model presented in Figure 2.5 can be configured with the 

following parameters: 
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Number of lanes. The model can be configured as a unique lane, with several 

functional units inside (SIMD Multimedia style), or a multilane design. 

Number of integer functional units per lane. The model can be configured with 

or without integer functional units. The value is for only one lane, and will be replicated 

in case a multilane design. 

Number of floating-point functional units per lane. The model can be configured 

with or without floating-point functional units. The value is for only one lane, and will be 

replicated in case a multilane design. 

Maximum Vector Length. The MVL in bits supported by the microarchitecture. 

Number of Vector Physical Registers. Number of vector physical registers 

implemented in the VRF. The VRF size in bits is calculated by multiplying the MVL by 

the Number of Vector Physical Registers. 

Number of banks per lane (VRF). In the case of multi-lane or single-lane 

configurations, each lane has a slide of the VRF. However, still it is possible to divide the 

VRF slice into multiple memory banks. This can be an important consideration when 

implementing a large VRF. Then by using smaller memory structures can be possible to 

achieve higher working frequencies. 

Number of VRF read ports. The number of read ports for every VRF slice. 

Number of VRF write ports. The number of write ports for every VRF slice. 

 

Figure 2.5 Vector architecture model implemented on the McPAT framework. 
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The previously described parameters allow modeling a wide diversity of VPU 

designs. For example, a traditional cray-style vector architecture for long vectors or a 

SIMD-Multimedia style design for short vectors. Additionally, since the VRF represents 

a key element inside a VPU model, it is important to allow to model different hardware 

configurations. For example, modeling multi-ported VRF is crucial, due to increasing the 

number of ports has a super-linear impact on the power/area results, as demonstrated 

by Arima et al. [53] and Zyuban et al. [54]. Furthermore, the McPAT model can infer 

multi-ported memory structures with more than two ports. However, those custom 

structures are usually not provided by the synthesis tools, where memory compilers 

usually offer a variety of memory structures varying between one and two access ports, 

targeting low density or high-performance implementations. In that sense, modeling 

techniques such as the LVT technique [55], which provides multi-ported designs at the 

cost of replicating and banking dual-port memories is also allowed by our model, allowing 

to get accurate results in case implementing at RTL level a similar technique. 
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2.3 The RiVEC Benchmark Suite 

The RiVEC Benchmark Suite is a collection composed of ten data-parallel 

applications from different domains. The suite focuses on benchmarking vector 

microarchitectures; nevertheless, it can also be used for Multimedia microarchitectures. 

Applications are Vector Length Agnostic; therefore, applications can be tested using 

short, medium, and large MVL implementations. 

When we say that the applications are data-parallel, it does not mean that all 

applications have high data-level parallelism. Data-level parallelism can be found at 

different levels (low/medium/high data-level parallelism). This property is essential in 

order to have different scenarios, which can be limited having only high data-parallel 

applications. 

The current implementation targets RISC-V Architectures; however, it can be easily 

ported to any Vector/SIMD ISA. It includes a wrapper library that maps vector intrinsics 

and math functions to the target architecture. 

In order to select the final applications, a study of different benchmarks suites was 
performed taking into account the following criteria: 
 

 Applications from different domains. Although the vector architectures have 

traditionally been applied to the supercomputing domain, this suite does not 

explore a single application domain, as was done by several benchmark suites.  

 Applications with different degree of data-level parallelism. Having different 

degree of data-level parallelism helps to have different scenarios. While some 

vector architectures designs can take advantage of high data-level parallelism 

found in the application, these architectures could poorly execute some kind of 

application that presents low data-level parallelism. This property is attractive 

because it allows us to find the weaknesses of some proposals/designs. 

 Cover most of the Vector ISA. Found applications that use almost all vector ISA 

is difficult. However, we tried to cover this by selecting applications with different 

instruction uses.  For example, we found applications in which most of the 

instructions are memory operations, or applications where arithmetic operations 

consume most of the execution time. Furthermore, in vector architectures, there 

are new instructions compared with scalar instructions, for example, the element 

manipulation instructions as the slide operations or operations with masks. We 

found some applications which are very intensive using these kinds of 

instructions.  
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The RiVEC Benchmark Suite is available to the computer architecture community to 

evaluate vector architecture designs. It is openly available at GitHub [40]. 

2.3.1 Study of existing Benchmark Suites 

In order to select the applications to be part of the RiVEC Benchmark Suite, a study 

of the existing benchmark suites for computer architecture was performed. As mentioned 

before, the initial goal was to find applications from different domains, with different 

degree of data-level parallelism, and cover most of the Vector ISA. The most significant 

benchmarks suites for this work are described below. 

PARSEC. The Princeton Application Repository for Shared-Memory Computers 

(PARSEC) [44] is a benchmark suite intended for research, and it is composed of 

multithreaded programs. The suite focuses on emerging workloads and was designed to 

be representative of next-generation shared-memory programs for chip-multiprocessor. 

This benchmark suite has diversity in its applications, and we believe that this property 

is ideal for our research since we wish to have different scenarios, in which we can test 

different microarchitectural ideas. This suite is originally focused on multithreaded 

architectures, mainly exploiting task-level parallelism. The current version (PARSEC 3.0) 

of the suite contains 13 programs from many different areas such as computer vision, 

video encoding, financial analytics, animation physics, and image processing.  

ParVec [47] [56] is a vectorized version of the PARSEC benchmark suite. ParVec 

can target SSE, AVX, and NEON SIMD architectures by means of custom vectorization 

and math libraries. The performance and energy efficiency improvements from 

vectorization depend greatly on the percentage of code that can be vectorized. The 

ParVec benchmark suite is available for the research community. 

Rodinia [46] is a benchmark suite for heterogeneous computing. It was developed 

to help architects to study emerging platforms. Rodinia includes applications and kernels 

which target multicore CPU and GPU platforms using OpenMP, OpenCL, and CUDA 

implementations. The choice of applications was inspired by Berkeley’s dwarf taxonomy. 

Polybench [43] is a high DLP benchmark suite composed by 30 numerical 

computations with static control flow, extracted from operations in various application 

domains (linear algebra computations, image processing, physics simulation, dynamic 

programming, statistics, etc.). 

It can be seen that there are many suites for parallel computing on general-purpose 

CPU architectures. Also, there are others for heterogeneous computing, covering MPI, 

OpenMP, OpenCL, and CUDA programming models. SIMD Suites are very limited. 

However, suites for vector architectures fall into a gap that is not covered by previous 
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benchmark development. The Vectorized Benchmark Suite is released to address this 

concern. 

The next sections describe the followed methodology to vectorize the programs. A 

short description of the code is shown for each vectorized program, also, an analysis 

before and after the vectorization, and finally, the obtained results after being executed 

on the implemented model of the RISC-V Vector Accelerator are presented. 

2.3.2 Methodology  

The methodology used in order to obtain a vectorized suite has the following steps: 

Profiling. Profiling is needed to identify the functions that are time-consuming inside 

an application. In order to do profiling, we used the Linux GCC profiling tool gprof. 

Kernel Analysis. We need to analyze the functions inside the application that 

consume most of the execution time, and if they are vectorizable. There are simple ways 

to see if a potential vectorizable function exists. For example, if the function contains 

loops, if there are dependencies inside the loop, the kind of memory request needed 

(strided, indexed), etc. Once the analysis ends, it is possible to identify those applications 

that can be improved after being vectorized. 

Kernel Vectorization. In order to write vector code, we use the available vector 

builtins reference from the compiler team in EPI project. We also develop a math library 

with the math functions needed by the suite, like exponential and logarithm functions. 

The written code is compatible with different VLs, by simply compiling with the flag -

DPARSEC_USE_$4, where $4 is the MVL.  

Simulator Verification. In this step, we compare the results given by the scalar 

code compiled for RISC-V architectures versus the vector implementation. This task is 

accomplished using the Spike ISA simulator. Spike is a RISC-V ISA simulator that 

implements a functional model of one or more RISC-V harts. Spike is fast due to being 

only functional, and it is enough to check if the vector implementation gives the same 

results as the scalar one. 

Performance Analysis. Once the applications are verified, it is time to analyze the 

timing results. This task must be done using the gem5 simulator, which provides a 

detailed timing model of a system, including a RISC-V vector extension and the scalar 

core. This task usually takes several hours for some small input datasets or days for 

some large input datasets. 
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2.3.3 Vectorized applications of the RiVEC Benchmark Suite 

This section presents ten vectorized applications. According to this first study, these 

benchmarks contain different degree (high, medium, or low) of data-level parallelism. 

Furthermore, the applications feature different characteristics allowing the evaluation of 

different modules in a vector architecture. 

Table 1 presents general information about the ten applications selected for the 

RiVEC Benchmark Suite. The RiVEC benchmark suite is composed by several 

application domains as well as different algorithmic models, covering several scenarios 

which can be found in modern applications. Additionally, applications can be categorized 

as having regular DLP, irregular DLP, or a mix of both. On the one hand, well-structured 

data access with regular and well-known address streams, including well-structured 

control flow corresponding to a regular DLP; and on the other hand, less-structured data 

access with dynamic and difficult to predict address streams, and less structured control 

flow representing irregular DLP [57]. 

Table 1. RiVEC Benchmark Suite. 

Application 
Application 

Domain 

Algorithmical 

Model 

DLP 

Pattern 
Benchmark Suite 

Axpy HPC BLAS Regular - 

Blackscholes Financial Analysis Dense Linear Algebra Regular PARSEC/PARVEC 

Canneal Engineering Unstructured Grids Irregular PARSEC/PARVEC 

LavaMD2 Molecular Dynamics N-Body Regular Rodinia 

Jacobi-2D Engineering Dense Linear Algebra Regular PolyBench 

Particle-Filter Medical Imaging Structured Grids Mix Rodinia 

Pathfinder Grid Traversal Dynamic Programming Regular Rodinia 

Somier Physics Simulation Dense Linear Algebra Regular - 

Streamcluster Data Mining Dense Linear Algebra Mix PARSEC/PARVEC 

Swaptions Financial Analysis MapReduce Regular PARSEC/PARVEC 

 

Table 2 presents detailed characteristics for every application, such as the 

supported VL and the memory access pattern; it is also indicated which applications 

stress the different vector microarchitecture modules such as the lane functional units or 

lane interconnection network; the final row shows if the application has intense 

communication with the scalar core, these applications feature a tight mixture of scalar 

and vector operations and accesses. 

All the applications (C and C++ programs) were extended by adding the RISC-V 

vectorized version. The implementations make use of intrinsics, and the code was written 

in a Vector Length Agnostic fashion, meaning that the same binary can be executed in 

different Vector Engine configurations with any modification.  
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Table 2. Application characteristics. 

Application Axpy Blackscholes Canneal Jacobi-2D  LavaMD2 

Vector Length  Short ✓ ✓ ✓ ✓ ✓ 

Medium ✓ ✓ ✓ ✓ ✓ 

Large ✓ ✓  ✓  

Memory  

Unit  

Unit-stride ✓ ✓  ✓ ✓ 

Strided     ✓ 

Indexed   ✓   

Vector 

Lane 

Arithmetic ✓ ✓ ✓ ✓ ✓ 

Mask  ✓    

Interconnection 

Network 

Slides    ✓  

Reductions   ✓  ✓ 

Intensive Comm. 

with the Scalar core 

  ✓   

Application Particle

- Filter 

Pathfinder Somier Streamcluster Swaptions 

Vector Length  Short ✓ ✓ ✓ ✓ ✓ 

Medium ✓ ✓ ✓ ✓ ✓ 

Large ✓ ✓ ✓  ✓ 

Memory  

Unit  

Unit-stride ✓ ✓ ✓ ✓ ✓ 

Strided      

Indexed ✓   ✓  

Vector 

Lane 

Arithmetic ✓ ✓ ✓ ✓ ✓ 

Mask ✓   ✓ ✓ 

Interconnection 

Network 

Slides  ✓ ✓   

Reductions ✓   ✓ ✓ 

Intensive Comm. 

with the Scalar core 
✓   ✓  

 

It is important to mention that several efforts are being made by the community to 

include the support for the new vector standard to the compiler. However, when we open 

source the first version of the benchmark suite to the community (September 2020), the 

support was at an initial stage, limiting use to assembly code or intrinsics at best. In that 

sense, at that point, it was not possible to use auto-vectorization to obtain a different set 

of instructions. Having said that, all the applications (C and C++ programs) were 

extended by adding the RISC-V vectorized version. The implementations make use of 

intrinsics, meaning that the compiler will substitute the intrinsic by a sequence of 

predefined vector instructions. In that sense, the vector compiler only takes the decision 

to insert spill code (vector load/store) when the number of vector registers is not 
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sufficient, and vector move instructions when a vector register is used as an argument 

in a function. Also, the code was written in a Vector Length Agnostic fashion, meaning 

that the same binary can be executed in different Vector Engine configurations with any 

modification. By August 2021, auto-vectorization is supported in the vector compiler, but 

still limited. Auto-vectorization was tested with all the applications. However, the results 

showed that still more work is needed to fully rely on the compiler, since our hand-

vectorized version achieve better percentages of vectorization in all the cases. 

For all the applications, five input sets are available: tiny, small, medium, large, and 

native. Tiny data sets allow fast explorations of new features which takes seconds to be 

completed. Most of the applications for this data set are compatible only with short 

vectors. Small data sets provide short simulations which take a few minutes to be 

completed. In this scenario, most of the applications provide the opportunity to explore 

short, medium, and long vector lengths implementations but with few iterations. Medium 

data sets provide simulations that can be completed in a few hours. Large data sets 

provide simulations that take between 8 hours up to 48 hours. Finally, native data sets 

represent huge data sets defined only to be used on native machines. 

An initial analysis of these programs shows that some of them present high data-

level parallelism together with a high percentage of vector arithmetic instructions (i.e. 

blackscholes), and for these programs, it is usual that vector processors achieve 

excellent computational throughput. However, other programs present limited data-level 

parallelism (i.e. canneal), and for these programs is normal that long vector length 

processors don’t fully utilize their big structures (i.e. vector register file). This kind of 

application is interesting because it is possible to study how to better exploit the 

microarchitecture to achieve better computational throughput for these programs. 

Furthermore, there are some other benchmarks that present high data-level parallelism 

together with data element manipulation vector instructions (i.e. pathfinder); this feature 

allows to evaluate different interconnection topologies (ring, crossbar, etc.) between 

multiple lanes in a vector architecture. And finally, applications that make intensive use 

of masked operations, also special operations with masks that send resultant data to the 

scalar core are interesting to evaluate (i.e. particlefilter). 

All results discussed in this document were performed using the large input sets. 

The next subsections describe how the vectorized versions were implemented. 

Furthermore, it is discussed the degree of the vectorization achieved and how it could 

lead us to get some initial insights about expected performance. 
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2.3.3.1 Axpy 

Axpy is a Basic Linear Algebra Subprogram (BLAS). This function implements the 

function Y = A * X + Y where X and Y are vectors, while A represents a scalar value. 

Then, computations are based on fused multiply-add operations, one for each element 

of the input vectors. Because of its low arithmetic intensity, Axpy is a typical memory-

bound kernel. Table 3 shows the five inputs sets available for Axpy. 

Table 3. Axpy input data sets 

Simulation size Value 

simtiny vector size in Kilo elements = 8 

simsmall vector size in Kilo elements = 128 

simmedium vector size in Kilo elements = 512 

simlarge vector size in Kilo elements = 2,048 

native vector size in Kilo elements = 65,536 

 

Degree of vectorization. Table 4 presents some statistics of the Axpy 

application for both the scalar and the vectorized implementations. The analysis for the 

Vectorized code takes into account six different MVL configurations: short-vectors 

(MVL=8 and 16 elements), medium-size vectors (MVL=32 and 64 elements), and long-

vectors (MVL=128 and 256 elements). Total Instructions represent the number of 

executed instructions (Scalar Instructions + Total Vector Instructions). Scalar Instructions 

represent only the instruction executed by the scalar core.  Vector Memory Inst 

represents the Vector Loads + Vector Stores. Vector Arithmetic Inst represents all the 

arithmetic instructions executed in the functional units, either integer or floating-point. 

Vector to Scalar Inst represents those instructions that move one element from a vector 

register to the scalar core. Vector Elem Manipulation Inst represents the Vector Slides + 

Vector Reductions. Total Vector Instructions represent the instructions executed by the 

vector engine (Vector Memory Inst + Vector Arithmetic Inst + Vector to Scalar Inst + 

Vector Elem Manipulation Inst). Vector Operations represents the number of operations 

performed by the vector instructions, while scalar instructions perform only one operation 

per instruction, vector instructions perform VL operations per vector instruction. % of 

vectorization is defined as the ratio of Vector Operations over the total number of 

operations (Scalar Instructions + Vector Operations). Thus, all previous data plus the 

Average VL give us an idea if most of the hardware resources will be used through the 

program execution. The same table structure is used for all applications in this study. 
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Table 4. Instruction Level Characterization of Axpy application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 134,217,738 25,165,839 12,582,927 6,291,471 

Scalar Instructions 134,217,738 16,777,231 8,388,623 4,194,319 

Vector Memory Inst 6,291,456 3,145,728 1,572,864 

Vector Loads 4,194,304 2,097,152 1,048,576 

Vector Stores 2,097,152 1,048,576 524,288 

Vector Arithmetic Inst 2,097,152 1,048,576 524,288 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 8,388,608 4,194,304 2,097,152 

Total Vector Operations 67,108,864 67,108,864 67,108,864 

% of Vectorization 80% 89% 94% 

Average VL (elements) 8 16 32 

SA-speedup 1.6000 1.7778 1.8824 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 3,145,743 1,572,879 786,447 

Scalar Instructions 2,097,167 1,048,591 524,303 

Vector Memory Inst 786,432 393,216 196,608 

Vector Loads 524,288 262,144 131,072 

Vector Stores 262,144 131,072 65,536 

Vector Arithmetic Inst 262,144 131,072 65,536 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 1,048,576 524,288 262,144 

Total Vector Operations 67,108,864 67,108,864 67,108,864 

% of Vectorization 97% 98% 99% 

Average VL (elements) 64 128 256 

SA-speedup 1.9394 1.9692 1.9845 

 

Axpy is composed of two main tasks. The first one is the initialization phase which 

has been omitted since we focus only on the axpy_ref function, which represents the 

region of interest (ROI). This function basically computes fused multiply-add operations. 

The vectorization of this function is straightforward since it presents a very regular DLP. 

The vectorized function is composed of two vector loads, one vector fused multiply-add, 

and finally, one vector store. 
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The Total Instructions drops considerably for the vectorized versions, achieving % 

of Vectorization from 80% for MVL=8 elements, up to 99% for MVL=256 elements. This 

is not only because one vector instruction represents many scalar operations of the same 

type (i.e., a vadd.v instruction for a configuration of VL=256 elements represents 256 64-

bit scalar add instructions), but also it removes many control instructions needed to 

execute the desired number of operations. All the scalar instructions needed to write the 

"for" loop, or the data movement from/to memory produced by the limited number of 

physical scalar registers are removed.  As the VL increases, the percentage of 

vectorization increases because of the ratio resulting from the number of Total Vector 

Operations, which remains equal, over the number of the total operations (Scalar 

Instructions + Total Vector Operations), which decreases as a result of the reduction of 

the number Scalar Instructions, as shown in Table 4. 

One important difference between the scalar and the vector execution is that the 

execution of the vector operations can be pipelined because all vector operations of one 

vector instruction are independent. So benefits from vectorization are two-fold: reduction 

in the total number of operations and faster execution of vector operations thanks to 

pipelining. Then, as the MVL is increased, it is possible to hide the latency of individual 

operations.  

From previous data, it is possible to get an initial insight about the expected 

performance when executing the program in the vector architecture model. For example, 

obtaining the ratio between the number of the Total instructions of the serial version 

divided by the total number of operations (Vector Operations + Scalar Instructions), 

obtains a Static Analysis speedup (SA-speedup) from 1.6x for MVL=8 elements up to 

1.98x for MVL=256 elements, showing that it is possible to achieve better performance 

by only increasing the MVL. 

Several factors can influence reducing or increasing this speedup. The execution of 

the remaining scalar instructions can be amortized underneath vector execution or the 

use of parallel lanes. In the case of the use of parallel lanes, Axpy could not be a factor 

in increasing performance since it is a memory-bound kernel. Then, as an initial 

conclusion, it can be said that for larger MVLs, it is possible to achieve higher speedups 

than 1.6X. As the number of lanes is increased, no speedup increase would be expected. 

2.3.3.2 Blackscholes 

The Blackscholes application calculates the prices for a portfolio of European 

options analytically with the Black-Scholes partial differential equation (PDE). This 

application represents the wide field of analytic PDE solvers in general and their 

application in computational finance in particular. This benchmark is an iterative data-
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parallel computation, and the performance is limited by the amount of floating-point 

operations that the processor can perform. This application was taken from PARSEC, 

and a detailed description can be found in [44]. 

The application starts reading the portfolio with a defined number of options 

(numOptions) from a text file which provides the initialization and the control reference 

values, and store it in a structure (OptionData). The inputs for Blackscholes are sized as 

shown in Table 5. 

Table 5. Blackscholes input data sets 

Simulation size Value 

simtiny 16 options 

simsmall 512 options 

simmedium 16,384 options 

simlarge 65,536 options 

native 10,000,000 options 

 

The function BlkSchlsEqEuroNoDiv computes basic floating-point operations, 

including fadd, fsub, fmul, fdiv, fsqrt, also logarithmic and exponential functions. Inside 

this function, the function CNDF (Cumulative Normal Distribution Function) is called a 

couple of times and finally, the output price (OptionPrice) is selected according to the 

type of option (otype) inside an "if" statement. Inside the function CNDF, basic floating-

point operations are performed, and one call to an exponential function. Also, there are 

some "if" statements in order to check for negatives values at the inputs and to select 

the output (OutputX) according to the sign. 

And finally, the program writes the prices for all options to the output file prices.txt. 

If error checking was enabled at compile-time it also compares the result with the 

reference price.  

The runtime profile of the original code (scalar code) shows that around 12% of the 

total runtime is used to read the portfolio and store it in the structure called OptionData. 

Around 85% of the runtime is used to compute the BlkSchlsEqEuroNoDiv function 

including CNDF, where most of the time is spent computing the logarithmic and 

exponential functions. 

Degree of vectorization 

Table 6 presents some statistics of the Blackscholes application for both the scalar 

and the vectorized implementations. Blackscholes is a regular DLP application where 

there are no dependencies between each price computation. The runtime profile of the 
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scalar code shows that around 12% of the total runtime is spent in the initialization phase, 

which is not vectorizable. This task executes 573,256,509 scalar instructions which are 

not taken into account in the results presented in Table 6 to present the % Vectorization 

only of the region of interest (ROI).  

Table 6. Instruction Level Characterization of the Blackscholes application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 3,180,479,876 139,264,913 69,632,913 34,816,913 

Scalar Instructions 3,180,479,876 54,477,713 27,239,313 13,620,113 

Vector Memory Inst 2,867,200 1,433,600 716,800 

Vector Loads 2,457,600 1,228,800 614,400 

Vector Stores 409,600 204,800 102,400 

Vector Arithmetic Inst 81,920,000 40,960,000 20,480,000 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 84,787,200 42,393,600 21,196,800 

Total Vector Operations 1,356,595,200 1,356,595,200 1,356,595,200 

% of Vectorization 96% 98% 99% 

Average VL (elements) 8 16 32 

SA-speedup 2.2539 2.2983 2.3212 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 17,408,913 8,704,913 4,352,913 

Scalar Instructions 6,810,513 3,405,713 1,703,313 

Vector Memory Inst 358,400 179,200 89,600 

Vector Loads 307,200 153,600 76,800 

Vector Stores 51,200 25,600 12,800 

Vector Arithmetic Inst 10,240,000 5,120,000 2,560,000 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 10,598,400 5,299,200 2,649,600 

Total Vector Operations 1,356,595,200 1,356,595,200 1,356,595,200 

% of Vectorization 99% 99% 99% 

Average VL (elements) 64 128 256 

SA-speedup 2.3327 2.3386 2.3415 

 

Around 85% of the runtime is used to compute the BlkSchlsEqEuroNoDiv and CNDF 

functions which correspond to the ROI. In this code section, basic floating-point 
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operations are computed, including fadd, fsub, fmul, fdiv, fsqrt, as well as logarithmic and 

exponential functions. The vectorization of these functions was straightforward since it 

presents a very regular DLP. Furthermore, logarithmic and exponential functions were 

also vectorized since most of the time is spent computing these functions. 

The total number of instructions drops considerably for the vectorized versions, 

achieving % of Vectorization from 96% for MVL=8 elements up to 99% for MVL=256 

elements. As the VL increases, the % of Vectorization increases because of the ratio 

resulting from the number of Total Vector Operations, which remains equal, over the 

number of the total operations (Scalar Instructions + Total Vector Operations), which 

decreases as a result of the reduction of the number Scalar Instructions, as shown in 

Table 6. 

From previous data, it is possible to get an initial insight about the expected 

performance. In this case, the ratio between the number of the Total instructions of the 

serial version divided by the total number of operations (Vector Operations + Scalar 

Instructions), obtains a SA-speedup from 2.25x for MVL=8 elements up to 2.34x for 

MVL=256 elements, showing that it is possible to achieve better performance by only 

increasing the MVL. 

Several factors can influence reducing or increasing this speedup. The execution of 

the remaining scalar instructions can be amortized underneath vector execution or the 

use of parallel lanes. Increasing the number of lanes, would be expected to obtain a 

linear speedup increase since it is a high DLP application. Then, as an initial conclusion, 

it can be said that for larger MVLs, it is possible to achieve higher speedups than 2.25X. 

Contrary to the Axpy application, Blackscholes represents a compute-bound application. 

Then, as the number of lanes increases, obtaining a linear speedup increase would be 

expected, especially for larger MVL configurations where the % of Vectorization is higher. 

Then, the SA-speedup presented in Table 6 can be multiplied by the number of lanes as 

a very initial insight. 

2.3.3.3 Canneal 

The Canneal application is focused on minimizing the routing cost of a chip design 

using cache-aware simulated annealing (SA). SA is a metaheuristic to approximate 

global optimization in a large search space for an optimization problem. This application 

is representative of engineering workloads and features fine-grained parallelism with 

lock-free synchronization and pseudo-random worst-case memory access pattern. As 

presented in Table 1, Canneal represents applications with irregular DLP because of its 

less-structured data accesses with dynamic and difficult to predict address streams, and 
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less structured control flow. This application was taken from PARSEC, and a detailed 

description can be found in [44]. 

The application starts creating an array of locations (location_t) of size given by the 

chip size parameter and initializes it with coordinates (location x, location y).  Then, the 

reading of the netlist is performed, and it is stored in an array of type netlist_elemt, which 

is the class that contains all information about the current element (name, inputs, outputs 

and a pointer to the present location). The locations are assigned in order, meaning that 

the first element has a pointer to the location “x=0, y=0”, next element to the location 

“x=0, y=1”, and so on until all the elements in the netlist are assigned. All this task 

consumes near of the 67% of the total execution time for simlarge input set, and 

decreases as the input size increase; i.e. for a native input set this task consumes near 

of the 15% of the total execution time. 

The annealing algorithm is implemented in the Run function of the annealer_thread 

class. There are four key tasks. The first one is to pick a pair of elements from the netlist 

using the Mersenne Twister pseudo-random number generator. The second one is to 

compute the difference of the routing cost (calculate_delta_routing_cost and swap_cost) 

for the two cases: the elements in the original location and the elements swapped. 

Swap_cost function consumes most of the kernel’s execution time. The third one is to 

evaluate the result in the function “accept_move”, if the result of the total routing cost is 

negative, it means that the routing cost is smaller and the function proceeds to swap the 

elements; otherwise, it evaluates the change in cost and the current temperature to 

decide whether the swap should be performed or not. And finally, the fourth one, 

accepted swaps are executed by calling “swap_locations” which swap the pointers of the 

locations. The application ends calling the function total_routing_cost which calculates 

the final routing cost of the entire chip using the Manhattan distance formula. In order to 

increase data reuse, the algorithm keeps one element of the previous iteration and 

choose randomly one new element, which reduces cache misses notably.  

The inputs for Canneal are sized as shown in Table 7. 

Degree of vectorization 

The candidate function to vectorize is swap_cost, which consumes most of the 

execution time without taking into account the initialization which takes 20.4%. This is 

potentially a very vectorizable function because it is composed of a couple of "for" loops 

in which three basic operations are performed: subtraction, absolute value, and addition. 

However, the data needed to perform these operations are the locations (coordinate x 

and y) of each input and output of the picked nodes; but these locations are not 
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contiguous data in memory. The consequence is the need to use vector indexed load 

instructions, which are very costly operations. Furthermore, to use the vector indexed 

load operations, it is necessary to create the vector of pointers to each input/output 

element to have access to the pointer of the current element location. Creating it in every 

iteration is not good for the performance. Therefore, the class netlist_elem was expanded 

with a new array of pointers called fan_locs that stores the pointers to all inputs and 

outputs of each element; it is created in the initialization phase.  

Table 7. Canneal input data sets 

Simulation size Value 

simtiny 100 swaps per temperature step, 300º start temperature, 100 netlist 

elements, 8 temperature steps 

simsmall 10,000 swaps per temperature step, 2000º start temperature, 100,000 

netlist elements, 32 temperature steps 

simmedium 15,000 swaps per temperature step, 2000º start temperature, 200,000 

netlist elements , 64 temperature steps 

simlarge 15,000 swaps per temperature step, 2000º start temperature, 400,000 

netlist elements, 128 temperature steps 

native 15,000 swaps per temperature step, 300º start temperature, 2,500,000 

netlist elements, 6000 temperature steps 

Once the new array of pointer is added to the original code, the function swap_cost 

can be vectorized easily, by first loading the the fan_locs arrays of the picked nodes, and 

then taking those loaded addresses to perform a couple of load indexed operations. 

Computing the routing cost is vectorized by using vector arithmetic instructions and 

reduction operations, sending the final result to the core to compute the final routing cost 

and deciding if it should be swapped or should not. 

Table 8 presents some statistics for the Canneal application. This application 

presents big differences with respect to the previous ones. As is shown, it presents a 

very low percentage of vectorization ranging from 62% for MVL=8 elements up to 93% 

for MVL=256 elements. While in the other applications the defined VL remained constant 

throughout the execution, in this case, the VL depends on the number of inputs and 

outputs for each pseudo-random picked element, varying from 0 to 22 connections in 

each element for the simlarge input set. Meaning that the larger VL in this application is 

44 32-bit elements (1408-bit) because there is a maximum of 22 connections per element 

and two coordinates per connection. Then, it is expected that for configurations with 

MVL=32 elements or bigger, the instruction count remains equal, as shown in Table 8.  

However, even that the instruction count is equal, configurations with MVL=64, 128, and 

256 elements show higher Average VL values which also impacts on the number of Total 

Vector Operations. This is because there are vector copy instructions introduced by the 

compiler to back up the content of some vector registers. Copying vector registers is a 
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common optimization introduced by the compiler when it is needed to save the content 

of a register before being modified since it can be used in the next iterations. However, 

the compiler typically copies the whole vector register (VL = MVL), although the effective 

VL is much less than the vector register width for applications with short vectors. This is 

done in this way since proving that elements past current VL will not be read is difficult 

for the compiler. In that sense, short vector applications which present this behavior can 

incur in performance overhead as well as wasting energy. 

Table 8. Instruction Level Characterization of the Canneal application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 1,244,087,460 831,224,337 772,912,250 772,478,954 

Scalar Instructions 1,244,087,460 741,393,809 710,664,805 710,395,893 

Vector Memory Inst 21,499,311 15,467,022 15,422,190 

Vector Loads 18,766,967 12,734,678 12,689,846 

Vector Stores 2,732,344 2,732,344 2,732,344 

Vector Arithmetic Inst 57,401,837 41,315,733 41,196,181 

Vector to Scalar Inst 5,464,690 5,464,690 5,464,690 

Vector Elem Manipulation Inst 5,464,690 5,464,690 5,464,690 

Vector Slides 0 0 0 

Vector Reductions 5,464,690 5,464,690 5,464,690 

Total Vector Instructions 89,830,528 67,712,135 67,547,751 

Total Vector Operations 1,235,169,760 1,576,423,143 2,144,641,094 

% of Vectorization 62% 69% 75% 

Average VL (elements) 6.87 11.64 15.87 

SA-speedup 0.6294 0.5453 0.4366 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 772,478,954 772,478,954 772,478,954 

Scalar Instructions 710,395,893 710,395,893 710,395,893 

Vector Memory Inst 15,422,190 15,422,190 15,422,190 

Vector Loads 12,689,846 12,689,846 12,689,846 

Vector Stores 2,732,344 2,732,344 2,732,344 

Vector Arithmetic Inst 41,196,181 41,196,181 41,196,181 

Vector to Scalar Inst 5,464,690 5,464,690 5,464,690 

Vector Elem Manipulation Inst 5,464,690 5,464,690 5,464,690 

Vector Slides 0 0 0 

Vector Reductions 5,464,690 5,464,690 5,464,690 

Total Vector Instructions 67,547,751 67,547,751 67,547,751 

Total Vector Operations 3,280,287,658 5,553,691,653 10,100,499,642 

% of Vectorization 82% 89% 93% 

Average VL (elements) 24.28 41.10 74.76 

SA-speedup 0.3122 0.1988 0.1151 
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The final performance can be highly affected by the previous behavior. At this 

moment, our vector compiler cannot take care of this special case. We cannot generalize 

this result as a bad quality code since if we execute the binary on a short vector 

implementation, this will not expose this behavior. However, executing in a long vector 

implementation will lead to executing more operations even than the scalar version. 

Then, from previous data, the initial insight about the expected performance is the 

following. The ratio between the number of the Total instructions of the serial version 

divided by the total number of operations (Vector Operations + Scalar Instructions), 

obtains a SA-speedup of 0.62x for MVL=8 elements and decreases up to 0.11x for 

MVL=256 elements. Finally, Increasing the number of lanes can increase performance 

since the percentage of arithmetic operations is high. However, we can anticipate that 

the best hardware could be a multilane design for short vectors. 

2.3.3.4 Jacobi-2D 

Jacobi-2D is an iterative algorithm for determining the solutions of a diagonally 

dominant system of linear equations. This solver is often used in computational science 

as part of scientific and engineering applications. This application was taken from 

PolyBench, and a detailed description can be found in [43]. 

The inputs for Jacobi-2D are sized as shown in Table 9. 

Table 9. Jacobi-2D input data sets 

Simulation size Value 

simtiny matrix size 32x32, 8 iterations 

simsmall matrix size 128x128, 64 iterations 

simmedium matrix size 256x256, 100 iterations 

simlarge matrix size 256x256, 2000 iterations 

native matrix size 1024x1024, 25,000 iterations 

 

Degree of vectorization 

The Jacobi solver is a very interesting application because it can be vectorized by 

using vector arithmetic operations, vector memory instructions, and vector element 

manipulation instructions. In that sense, not only the Lanes and the Vector Memory Unit 

are evaluated, but also the interconnection between the lanes. These vector element 

manipulation instructions are vslide1up.v and vslide1down.v, which move elements one 

position up and down a vector register. It is possible to load a fraction of one row and 

operate on it by applying vslide1up.v to obtain the left neighboring nodes and 

vslide1down.v to obtain the right neighboring nodes. Once the left and right neighboring 
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nodes are aligned, and top and bottom neighboring nodes are loaded, it is possible to 

operate on them in parallel. 

Table 10. Instruction Level Characterization of the Jacobi-2D application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 4,660,908,013 1,464,606,013 732,318,013 366,174,013 

Scalar Instructions 4,660,908,013 1,074,206,013 537,118,013 268,574,013 

Vector Memory Inst 65,280,000 32,640,000 16,320,000 

Vector Loads 32,768,000 16,384,000 8,192,000 

Vector Stores 32,512,000 16,256,000 8,128,000 

Vector Arithmetic Inst 260,096,000 130,048,000 65,024,000 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 65,024,000 32,512,000 16,256,000 

Vector Slides 65,024,000 32,512,000 16,256,000 

Vector Reductions 0 0 0 

Total Vector Instructions 390,400,000 195,200,000 97,600,000 

Total Vector Operations 3,104,900,000 3,104,900,000 3,104,900,000 

% of Vectorization 74% 85% 92% 

Average VL (elements) 7.95 15.90 31.81 

SA-speedup 1.1153 1.2798 1.3816 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 183,102,013 91,566,013 45,798,013 

Scalar Instructions 134,302,013 67,166,013 33,598,013 

Vector Memory Inst 8,160,000 4,080,000 2,040,000 

Vector Loads 4,096,000 2,048,000 1,024,000 

Vector Stores 4,064,000 2,032,000 1,016,000 

Vector Arithmetic Inst 32,512,000 16,256,000 8,128,000 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 8,128,000 4,064,000 2,032,000 

Vector Slides 8,128,000 4,064,000 2,032,000 

Vector Reductions 0 0 0 

Total Vector Instructions 48,800,000 24,400,000 12,200,000 

Total Vector Operations 3,104,900,000 3,104,900,000 3,104,900,000 

% of Vectorization 96% 98% 99% 

Average VL (elements) 63.62 127.25 254.5 

SA-speedup 1.4389 1.4694 1.4851 

 

Table 10 presents some statistics for the Jacobi-2D application. The total number of 

instructions drops considerably for the vectorized versions, achieving % of Vectorization 

from 74% for MVL=8 elements, up to 99% for MVL=256 elements. As the VL increases, 

the % of Vectorization increases because of the ratio resulting from the number of Total 
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Vector Operations, which remains equal, over the number of the total operations (Scalar 

Instructions + Total Vector Operations), which decreases as a result of the reduction of 

the number Scalar Instructions. 

As an initial insight based on the data presented in Table 10, it is possible to obtain 

a SA-speedup of 1.11X. Additionally, for larger MVLs it is possible to achieve higher 

speedups. As increasing the number of lanes a linear speedup increase would be 

expected, especially for larger MVL configurations where the % of Vectorization is higher. 

2.3.3.5 LavaMD2 

LavaMD2 is a memory-bound application that calculates the particle potential and 

relocation due to mutual forces between particles within a large 3D space.  This space 

is divided into cubes, or large boxes, that are allocated to individual cluster nodes. The 

large box at each node is further divided into cubes, called boxes. Twenty-six neighbor 

boxes surround each box (the home box). Home boxes at the boundaries of the particle 

space have fewer neighbors. Particles only interact with those other particles that are 

within a cutoff radius since ones at larger distances exert negligible forces. Thus the box 

sizes are chosen so that the cutoff radius does not span beyond any neighbor box for 

any particle in a home box, thus limiting the reference space to a finite number of 

boxes.  The application first emulates partitioning of the particle space into boxes. Then, 

for every particle in the home box, the nested loop processes interactions first with other 

particles in the home box and then with particles in all neighbor boxes. The processing 

of each particle consists of a single stage of calculation that is enclosed in the innermost 

loop. This application was taken from Rodinia, and a detailed description can be found 

in [46]. 

The inputs for LavaMD2 are sized as shown in Table 11. 

Table 11. LavaMD2 input data sets 

Simulation size Value 

simtiny 1 large box 

simsmall 4 large boxes 

simmedium 6 large boxes 

simlarge 10 large boxes 

native 100 large boxes 

 

Degree of vectorization 

Table 12 presents some statistics for the LavaMD2 application. The total number of 

instructions drops considerably for the vectorized versions, achieving % of Vectorization 
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from 97% for MVL=8 elements, up to 99% for MVL=256 elements. This application also 

shows similar behavior to Canneal where the Average VL does not remain constant 

throughout the execution. However, in this case, there are two main reasons because of 

this slight variation.  

Table 12. Instruction Level Characterization of the LavaMD2 application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 24,615,519,089 1,221,009,837 658,332,614 470,779,164 

Scalar Instructions 24,615,519,089 409,662,917 238,960,606 182,065,460 

Vector Memory Inst 71,651,328 40,040,448 29,503,488 

Vector Loads 63,221,760 31,610,880 21,073,920 

Vector Stores 8,429,568 8,429,568 8,429,568 

Vector Arithmetic Inst 739,695,592 379,331,560 259,210,216 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 811,346,920 419,372,008 288,713,704 

Total Vector Operations 12,804,068,581 13,092,269,875 14,372,529,077 

% of Vectorization 97% 98% 99% 

Average VL (elements) 7.89 15.60 24.89 

SA-speedup 1.8629 1.8465 1.6913 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 283,221,885 283,238,998 283,248,849 

Scalar Instructions 125,166,485 125,183,598 125,193,449 

Vector Memory Inst 18,966,528 18,966,528 18,966,528 

Vector Loads 10,536,960 10,536,960 10,536,960 

Vector Stores 8,429,568 8,429,568 8,429,568 

Vector Arithmetic Inst 139,088,872 139,088,872 139,088,872 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 158,055,400 158,055,400 158,055,400 

Total Vector Operations 14,506,522,181 15,854,932,313 18,551,752,575 

% of Vectorization 99% 99% 99% 

Average VL (elements) 45.89 50.15 58.68 

SA-speedup 1.6823 1.5404 1.3180 
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First, vector store instructions are similar for all the configurations. This is because 

once a full home box computation is done, the resultant forces (xfA_v, xfA_x, xfA_y, and 

xfA_z) are stored back to memory for the next computation, and this process is repeated 

the same number of times no matter the MVL. Also, this vector store instruction uses 

VL=1, contributing to reduce the Average VL to 7.89 for MVL=8 elements, 15.60 for 

MVL=16 elements, and so on.  

Second, the number of particles per box is 96 32-bit elements, leading to requiring 

up to 48 elements (3072-bits) in each vector register. Then, for the MVL=8, 16, 32, and 

64 elements configurations, the number of scalar and vector instructions is reduced in 

every configuration, while for larger configurations, the number of scalar and vector 

instructions remains equal. However, in the same way as Canneal, copying vector 

registers is performed, and is the cause of increasing the number of Total Vector 

Operations in every configuration. 

From previous data, the initial insight about the expected performance is the 

following. The ratio between the number of the Total instructions of the serial version 

divided by the total number of operations (Vector Operations + Scalar Instructions), 

obtains a SA-speedup of 1.86x for MVL=8 elements and decreases up to 1.31x for 

MVL=256 elements. Finally, Increasing the number of lanes can increase performance 

since the percentage of arithmetic operations is high. However, we can anticipate that 

the best hardware could be a multilane design for medium-size vectors. 

2.3.3.6 PathFinder 

PathFinder application uses of ghost zone optimization technique (dynamic 

programming) to find a path on a 2-D grid. The application starts creating an array of 

weights (wall) of size given by cols and rows parameters and initializes it with random 

numbers. The algorithm is implemented in the run function. The algorithm starts from the 

bottom row to the top row with the smallest accumulated weights, where each step of 

the path moves straight ahead or diagonally ahead. The algorithm iterates row by row 

where each node selects a neighboring node in the previous row that has the smallest 

accumulated weight and adds its own weight to the sum. The applications finalize by 

printing all the shortest paths and the consumed time to find them. This application was 

taken from Rodinia, and a detailed description can be found in [46]. 

The inputs for PathFinder are sized as shown in Table 13. 
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Table 13. Pathfinder input data sets 

Simulation size Value 

simtiny 256 columns, 8 rows 

simsmall 1024 columns, 128 rows 

simmedium 2048 columns, 256 rows 

simlarge 2048 columns, 1024 rows 

native 4096 columns, 4096 rows 

 

Degree of vectorization 

This application features a high percentage of vector element manipulation 

instructions. In this sense, it is possible for researchers to use this application in order to 

evaluate different interconnection topologies (ring, crossbar, etc.) between multiple lanes 

in a vector architecture.  

One interesting aspect of this application is that the algorithm implemented to find 

the shortest paths inside run function is composed of a nested loop. For each node, 

comparisons with its corresponding neighboring nodes are performed to find the smallest 

weight and add it to the current node weight. This task is easily implemented using the 

vector slide1up and slide1down operations to accommodate the neighboring nodes in 

the same position and operate on it to finally store the resultant data. Vector element 

manipulation instructions reported in Table 14 consumes 40% of the total vector 

instructions without take into account vector memory operations. 

The total number of instructions drops considerably for the vectorized versions, 

achieving % of Vectorization from 83% for MVL=8 elements, up to 99% for MVL=256 

elements. As the VL increases, the % of Vectorization increases, as shown in Table 14. 

From previous data, as an initial insight about the expected performance, it is 

obtained a SA-speedup from 2.7x for MVL=8 elements up to 3.21x for MVL=256 

elements, showing that it is possible to achieve better performance by only increasing 

the MVL. 

Several factors can influence reducing or increasing this speedup. The execution of 

the remaining scalar instructions can be amortized underneath vector execution or the 

use of parallel lanes. Then, as an initial conclusion, it can be said that for larger MVLs, it 

is possible to achieve higher speedups than 2.7X. Additionally, as the number of lanes 

is increased, obtaining a speedup increase would be expected, especially for larger MVL 

configurations where the % of Vectorization is higher. Then, the SA-speedup presented 

in Table 14 can be multiplied by the number of lanes as a very initial insight. 
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Table 14. Instruction Level Characterization of the Pathfinder application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 5,433,477,921 436,308,256 220,250,467 112,206,924 

Scalar Instructions 5,433,477,921 331,553,056 180,967,267 92,565,324 

Vector Memory Inst 39,283,200 19,641,600 9,820,800 

Vector Loads 26,188,800 13,094,400 6,547,200 

Vector Stores 13,094,400 6,547,200 3,273,600 

Vector Arithmetic Inst 39,283,200 19,641,600 9,820,800 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 26,188,800 13,094,400 6,547,200 

Vector Slides 26,188,800 13,094,400 6,547,200 

Vector Reductions 0 0 0 

Total Vector Instructions 104,755,200 39,283,200 19,641,600 

Total Vector Operations 1,676,083,200 1,676,083,200 1,676,083,200 

% of Vectorization 83% 91% 95% 

Average VL (elements) 8 16 32 

SA-speedup 2.7064 2.9466 3.0835 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 58,192,720 31,183,142 17,681,517 

Scalar Instructions 48,371,920 26,272,742 15,226,317 

Vector Memory Inst 4,910,400 2,455,200 1,227,600 

Vector Loads 3,273,600 1,636,800 818,400 

Vector Stores 1,636,800 818,400 409,200 

Vector Arithmetic Inst 4,910,400 2,455,200 1,227,600 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 3,273,600 1,636,800 818,400 

Vector Slides 3,273,600 1,636,800 818,400 

Vector Reductions 0 0 0 

Total Vector Instructions 9,820,800 4,910,400 2,455,200 

Total Vector Operations 1,676,083,200 1,676,083,200 1,676,083,200 

% of Vectorization 97% 99% 99% 

Average VL (elements) 64 128 256 

SA-speedup 3.1568 3.1948 3.2141 

 

2.3.3.7 Particle-Filter 

The Particle-Filter (PF) application is a statistical estimator of the location of a target 

object given noisy measurements of the state. In image analysis, the PF has a very large 

amount of applications. Feature tracking like surveillance from facial recognition to the 

following of vehicles in traffic are good examples. Also video compressing using PF is of 
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interest. This particular implementation is optimized for tracking cells, particularly 

leukocytes (white blood cells). The problem with most PF implementations is that the 

computational cost is prohibitive for real-time applications, so it is a good challenge for 

vector processors, which could provide enough speedup for this kind of application. This 

application uses special operations with masks, which send resultant data to the scalar 

core, and were not used in previous applications. These vector instructions are vfirst.m 

which finds the lowest-numbered active element of the source mask vector that has its 

least-significant bit set, and writes that element's index to a scalar register; and vpopc.m 

which counts the number of mask elements of the active elements of the vector source 

mask register that have their least-significant bit set, and writes the result to a scalar 

register. Also, this application uses complex operations such as logarithm, cosine, and 

square root. We consider that this instruction mixture needs to be evaluated. This 

application was taken from Rodinia, and a detailed description can be found in [46]. 

The application is divided into two main sections. The first one is in charge of 

generating a synthetic video sequence, which simulates the motion of a white blood cell 

with additive noise by picking a point in each frame, dilating that point, and then adding 

random Gaussian noise to the frame. This task is implemented in the videoSequence 

function, which receives as an input the video resolution of the screen (128x128) and the 

number of frames to generate. This task consumes 1% of the total execution time for a 

simlarge configuration. 

The second one is the PF which implemented in the particleFilter function. PF takes 

the video sequence as input, with a predefined motion model representing the stimated 

path that the object will follow, this task consumes 3% of the particleFilter function for 

one frame. For every frame in the provided video sequence, the algorithm begins 

tracking the target object by making a series of guesses about the current frame given 

what is already known from the previous frame. The PF then determines the likelihood 

of each of those guesses ocyrring using a predefined likelihood model, this task 

consumes 6% of the particleFilter function for one frame. Subsequently, the PF 

normalizes those guesses based on their likelihoods and then sums the normalized 

guesses to determine the current position of the object. Finally, the FP updates the 

guesses based on the current location of the object. This task consumes 91% % of the 

particleFilter function for one frame. The process is repeated for all remaining frames in 

the video. 

The inputs for Particle-Filter are sized as follows: 
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Table 15. Particlefilter input data sets 

Simulation size Value 

simtiny 128x128 resolution , 2 frames , 256 particles 

simsmall 128x128 resolution , 8 frames , 1024 particles 

simmedium 128x128 resolution , 16 frames , 4096 particles  

simlarge 128x128 resolution , 24 frames , 8192 particles  

native 128x128 resolution , 1440 frames , 16,384 particles 

 

Degree of vectorization 

The task in charge of applying a predefined motion model that represents the 

estimated path that the object will follow is a good candidate to be vectorized because 

the same operations are applied to all objects in the frame. Furthermore, to apply the 

motion model, it is necessary to generate a sequence of random numbers using the Box-

Muller transformation, which makes use of expensive operations such as logarithm, 

cosine, and square root. 

The task which consumes most of the execution time is the guesses updates based 

on the current location of the object. These new guesses are used by the following frame 

in the video to iterate again.  The task is implemented in a nested “for” loop, which 

performs a sequential search returning an index value to update the arrays arrayX and 

arrayY. This task can be implemented by first using a vector comparison instruction to 

obtain a mask representing the active elements for that iteration. Later, the vfirst.m 

instruction is used to know if there is at least one active element in the generated mask 

and its corresponding position. When the criteria are met, the position of each active 

element is obtained to finally use the vpopc.m instruction to check if all elements in the 

vector have been set, breaking the inner loop. Otherwise, the program continues with a 

new iteration until all elements get the updated position. 

Table 16 presents some statistics for the PF application. The total number of 

instructions drops considerably for the vectorized versions, achieving % of Vectorization 

from 72% for MVL=8 elements, up to 91% for MVL=256 elements. However, when 

mapping the sequential search in a vector fashion, the number of the Total Vector 

Operations increases and represents more individual operations than the scalar version.  

From previous data, it is possible to obtain an initial insight about the expected 

performance. Although the number of the Total Instructions decreases, the vectorized 

versions executes more individual operations which leads to obtain a SA-speedup from 

0.61x for MVL=8 elements up to 0.77x for MVL=256 elements, showing that taking into 

account only the instruction and operation counts it should not be possible to improve 
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performance versus the scalar version. However, increasing this speedup still would be 

possible for the following reasons: (1) The execution of the remaining scalar instructions 

can be amortized underneath vector execution. (2) The use of parallel lanes. And, (3) as 

longer MVLs, the amount of latency amortized per vector instruction can be maximized. 

Then, as an initial conclusion, it can be said that for larger MVLs, combined with a 

multilane vector architecture, it is possible to achieve higher speedups than 0.61X. 

Table 16. Instruction Level Characterization of the ParticleFilter application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 5,303,827,138 3,241,372,346 1,887,425,956 1,210,252,489 

Scalar Instructions 5,303,827,138 2,464,598,103 1,499,037,353 1,016,056,746 

Vector Memory Inst 238,592 119,296 59,648 

Vector Loads 164,864 82,432 41,216 

Vector Stores 73,728 36,864 18,432 

Vector Arithmetic Inst 583,573,451 291,787,837 145,895,000 

Vector to Scalar Inst 192,962,200 96,481,470 48,241,095 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 776,774,243 388,388,603 194,195,743 

Total Vector Operations 6,214,193,944 6,214,217,648 6,214,263,776 

% of Vectorization 72% 81% 86% 

Average VL (elements) 8 16 32 

SA-speedup 0.6111 0.6876 0.7336 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 871,737,448 702,501,558 617,873,199 

Scalar Instructions 774,638,133 653,950,467 593,596,220 

Vector Memory Inst 29,824 14,912 7,456 

Vector Loads 20,608 10,304 5,152 

Vector Stores 9,216 4,608 2,304 

Vector Arithmetic Inst 72,948,583 36,475,367 18,238,759 

Vector to Scalar Inst 24,120,908 12,060,812 6,030,764 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 97,099,315 48,551,091 24,276,979 

Total Vector Operations 6,214,356,160 6,214,539,648 6,214,906,624 

% of Vectorization 89% 90% 91% 

Average VL (elements) 64 128 256 

SA-speedup 0.7589 0.7722 0.7790 

 



Tools for Designing and Evaluating Vector Architectures 

55 

 

2.3.3.8 Somier 

Somier is an application from the physics Simulation domain. The program 

describes the trajectory of an object in a 3D-space. Given the mass M and applying a 

force F, the acceleration of the object is calculated. Then using the derivative with respect 

to time, the speed of the object is obtained. Finally, the derivative with respect to time is 

reapplied to obtain the object's position over time.  

The inputs for Particle-Filter are sized as follows: 

Table 17. Somier input data sets 

Simulation size Value 

simtiny Steps 2,  dim 64 

simsmall Steps 4,  dim 64 

simmedium Steps 2,  dim 128 

simlarge Steps 4,  dim 128 

native Steps 4,  dim 1024 

 

Degree of vectorization 

There are four main candidate functions to be vectorized: compute_forces, 

acceleration, velocities, and positions. The compute_forces represents the most 

challenging function to be vectorized since it is required to compute the force contribution 

of the neighboring nodes (X+1, X-1, Y+1, Y-1, Z+1, and Z-1) for each point. To do that, 

the force contribution is computed inside a three levels nested loop (X,Y, and Z). The 

acceleration function can be vectorized by simply dividing all the computed forces by the 

mass M. The velocities function can be vectorized by simply multiplying the acceleration 

by the derivative with respect time. Finally, the positions functions can be vectorized by 

simply multiplying the velocity by the derivative with respect time.  

Table 18 presents some statistics for the Somier application. The total number of 

instructions drops considerably for the MVL=8 elements vectorized version, achieving 

56% of Vectorization. However, as the MVL is increased, a few increases in the % of 

Vectorization are shown. This behavior is because when mapping the force_contribution 

function in a vector fashion, there is a section of scalar code not vectorized, which 

remains constant executing around 640,300,015 scalar instructions. 

From previous data, it is possible to obtain an initial insight about the expected 

performance. Although the number of the Total Instructions decreases when comparing 

with the scalar version, the vectorized versions executes almost the same number 

individual operations which leads to obtain a SA-speedup from 3.74 for MVL=8 elements 
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up to 3.95x for MVL=256 elements. However, increasing this speedup still would be 

possible for the following reasons:  

(1) The execution of the remaining scalar instructions can be amortized underneath 

vector execution. 

Table 18. Instruction Level Characterization of the Somier application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 6,254,373,928 850,576,201 742,767,817 688,863,625 

Scalar Instructions 6,254,373,928 731,605,321 683,282,377 659,120,905 

Vector Memory Inst 55,452,672 27,726,336 13,863,168 

Vector Loads 39,230,208 19,615,104 9,807,552 

Vector Stores 16,222,464 8,111,232 4,055,616 

Vector Arithmetic Inst 63,518,208 31,759,104 15,879,552 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 118,970,880 59,485,440 29,742,720 

Total Vector Operations 940,613,520 940,613,520 940,613,520 

% of Vectorization 56% 58% 59% 

Average VL (elements) 7.90 15.81 31.62 

SA-speedup 3.7402 3.8515 3.9096 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 661,911,529 648,435,481 647,304,985 

Scalar Instructions 647,040,169 640,999,801 640,188,793 

Vector Memory Inst 6,931,584 3,465,792 3,244,608 

Vector Loads 4,903,776 2,451,888 2,304,432 

Vector Stores 2,027,808 1,013,904 940,176 

Vector Arithmetic Inst 7,939,776 3,969,888 3,871,584 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 14,871,360 7,435,680 7,116,192 

Total Vector Operations 940,613,520 940,613,520 940,671,630 

% of Vectorization 59% 59% 60% 

Average VL (elements) 63.25 126.5 132.18 

SA-speedup 3.9394 3.9544 3.9563 
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(2) as longer MVLs, the amount of latency amortized per vector instruction can be 

maximized. However, in this case, the use of parallel lanes would not show a high-

performance increase since the number of Vector Memory Instructions is almost the 

same than the Vector Arithmetic Instructions. Then, as an initial conclusion, it can be 

said that for larger MVLs, it is possible to achieve higher speedups than 3.74X, and as 

the number of lanes is increased, only little improvement can be seen. 

2.3.3.9 Streamcluster 

The Streamcluster application solves the online clustering problem. For a stream of 

input points, it finds a predetermined number of medians so that each point is assigned 

to its nearest center. Streamcluster is a common operation where large amounts of 

continuously produced data have to be organized under real-time conditions, for 

example, network intrusion detection, pattern recognition, and data mining. This 

application was taken from PARSEC, and a detailed description can be found in [44]. 

The program is memory-bound for low-dimensional data and becomes increasingly 

computationally intensive as the dimensionality increases. 

The parallel gain computation is implemented in the function pgain. Given a 

preliminary solution, the function computes how much cost can be saved by opening a 

new center, this task spends 98.37% of the total execution time. Inside this function it is 

called the function dist, where the Euclidian distance squared between two points is 

calculated as the cumulative addition of the distances between each of the point’s 

dimensions. If the heuristic determines that the change would be advantageous, the 

results are committed. dist function consumes 95% of the total execution time, and it is 

composed by a “for” loop where are performed a couple of simple arithmetic operations.  

Finally, the program writes the computed results to an output file. 

The inputs of Streamcluster are defined as follows: 

Table 19. Streamcluster input data sets 

Simulation size Value 

simtiny 1024 input points, block size 1024 points, 16 point dimensions, 10-20 

centers, up to 1,000 intermediate centers allowed 

simsmall 2048 input points, block size 2048 points, 32 point dimensions, 10-20 

centers, up to 1,000 intermediate centers allowed 

simmedium 4096 input points, block size 4096 points, 64 point dimensions, 10-20 

centers, up to 1,000 intermediate centers allowed 

simlarge  8192 input points, block size 8192 points, 128 point dimensions, 10-20 

centers, up to 1,000 intermediate centers allowed 

native 1,000,000 input points, block size 200,000 points, 128 point dimensions, 10-

20 centers, up to 5000, intermediate centers allowed 



Tools for Designing and Evaluating Vector Architectures 

58 

 

Degree of vectorization 

The dist function is the candidate to be vectorized. This function is highly 

vectorizable, but the number of vector arithmetic operations is almost the same that the 

memory operations needed in each iteration, which means that a vector implementation 

could be limited by the memory subsystem. Then, it is implemented by using two vector 

loads and two vector arithmetic operations. Outside the inner “for” loop, a vector 

reduction is needed to get the cumulative addition.  The resultant scalar value of the 

reduction is sent immediately to the scalar core to compute the cost of opening a new 

center. This is done by using the vfirst.m instruction. Note that this last step could cause 

a huge impact on performance since before starting a new iteration, it is necessary to 

evaluate if the cost of opening a new center would be advantageous. This computation 

is made by the scalar core, meaning that for every iteration, the vector engine receives 

a block of instructions, computes them, and returns a scalar value. Later the vector 

engine will be idle while the scalar core evaluates the results. 

Table 20 presents some statistics Streamcluster application, for this application, the 

largest MVL is 64 elements, it is related to input parameter “dim”, which for simlarge 

configuration is set to 128 elements each 32-bits. The number of instructions for MVL=8 

elements is reduced by 7.12X, and as the MVL is increased, the number of instructions 

decreases up to 14.1X. On the other hand, the % of Vectorization increases from 82% 

for MVL=8 elements, up to 96% for MVL=256 elements. 

One interesting thing in this application is that the number of Total Vector Operations 

is not the same for different MVL configurations. As we increase the MVL, the number of 

vector operations also increases. This variation in the number of Vector Operations 

happens because of two different reasons. First, outside (before and after) the nested 

“for” loop, there are vector instructions that initialize a couple of vector registers and 

performs a reduction of the final result. Then, the number of Total Vector Operations are 

equal to the number of Total Vector Instructions multiplied by the Average VL parameter, 

meaning that the larger the VLs is, the more vector operations are executed outside the 

nested loop. Second, in the same way as Canneal and LavaMD2, copying vector 

registers is performed, then for MVL configurations bigger than 64 elements, copying 

operations start moving data elements that will be not used. 

As a preliminary observation, it can be said that it is an application that does not 

benefit much from larger MVLs because more vector operations are executed for this 

case compared with shorter MVLs. 
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Table 20. Instruction Level Characterization of the Streamcluster application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 16,386,167,611 2,298,533,650 1,649,001,354 1,324,235,250 

Scalar Instructions 16,386,167,611 1,797,915,148 1,378,425,545 1,161,914,809 

Vector Memory Inst 216,510,752 108,255,368 54,127,684 

Vector Loads 216,510,752 108,255,368 54,127,684 

Vector Stores 0 0 0 

Vector Arithmetic Inst 270,575,828 162,320,441 108,192,757 

Vector to Scalar Inst 13531922 13531921 13531921 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 500,618,502 270,575,809 162,320,441 

Total Vector Operations 8,009,896,032 8,658,425,888 10,388,508,224 

% of Vectorization 82% 86% 90% 

Average VL (elements) 8 16 32 

SA-speedup 1.6707 1.6326 1.4187 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 1,161,852,302 1,161,852,302 1,161,852,302 

Scalar Instructions 1,053,659,545 1,053,659,545 1,053,659,545 

Vector Memory Inst 27,063,842 27,063,842 27,063,842 

Vector Loads 27,063,842 27,063,842 27,063,842 

Vector Stores 0 0 0 

Vector Arithmetic Inst 81,128,915 81,128,915 81,128,915 

Vector to Scalar Inst 13531921 13531921 13531921 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 108,192,757 108,192,757 108,192,757 

Total Vector Operations 13,848,672,896 18,450,246,092 27,660,154,532 

% of Vectorization 93% 95% 96% 

Average VL (elements) 64 85.26 127.82 

SA-speedup 1.0996 0.8401 0.5707 

 

Based on the data presented in Table 20, it is possible to get an initial insight about 

the expected performance. A SA-speedup of 1.67x for MVL=8 elements and one lane 

configuration could be achieved.  As the MVL increases, it is not clear if speedup 

improvements could be expected since the number of Vector Operations also increases. 

The increase in the number of parallel lanes could give a slight speedup increase. As 

mentioned before, this application is memory-bound for the large input set. Then, the 
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speedup could be limited by the memory subsystem. This discussion continues in 

Section 2.4.1.9, showing the results of the application executed on different VPU 

configurations. 

2.3.3.10 Swaptions 

The swaptions application is an Intel RMS workload that uses the Heath-Jarrow-

Morton (HJM) framework to price a portfolio of swaptions based on Monte Carlo 

simulation to compute the prices. The HJM framework describes how interest rates 

evolve for risk management and asset-liability management for a class of models. Its 

central insight is that there is an explicit relationship between the drift and volatility 

parameters of the forward-rate dynamics in a no-arbitrage market. This application was 

taken from PARSEC, and a detailed description can be found in [44]. 

The program stores the portfolio in the swaptions array. Each entry corresponds to 

one derivative. The function HJM_Swaption_Blocking has the routines to compute 

various security prices. It invokes two main functions HJM_Sim-Path_Forward_Blocking 

which is responsible for 93.8% of the total execution time, and 

Discount_Factors_Blocking, which consumes 6.21% of the total execution time. Both 

functions are partially vectorizable. 

HJM_Sim-Path_Forward_Blocking computes and stores an HJM Path for given 

inputs, where all data structures are initialized and calls for the most time-consuming 

functions are performed (RanUnif,  serialB, CumNormalInv), also contains a couple of 

vectorizable for loops where are performed basic arithmetic operations. The first steps 

inside this function are memory assignment, and random initialization (RanUnif function). 

This initialization consumes nearly 10% of the total execution time. This function can be 

vectorized by defining MVL number of seeds instead of only one as in the scalar version. 

By vectorizing this function the output differs by a very small difference. It is because the 

following generated random numbers are calculated based on the new vector of seeds 

instead of only one. The final standard error is sometimes slightly smaller or slightly 

bigger. The next function is serialB which generates the cumulative normal distribution 

matrix necessary to calculate the HJM paths. It consumes 26% of the total execution 

time. This function is implemented using three nested “for” loops that iterate over: (1) the 

number of factors in the HJM framework (iFactors, set to 3), (2) the number of time-steps 

(iN, set to 11) and the block size (BLOCK_SIZE, set to 32). Inside this nested “for” loop 

the function CumNormalInv is called to compute the inverse of the cumulative normal 

distribution function. This function consumes 22.98% of the total execution time. This 

function has a regular DLP pattern and computes basic floating-point operations, 

including fadd, fsub, fmul, fdiv, and also logarithmic functions.  
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Table 21 shows the inputs data sets for Swaptions. Swaptions prints the resulting 

swaption prices to the console. 

Table 21. Swaptions input data sets 

Simulation size Value 

simtiny 8 swaptions, 512 simulations 

simsmall 8 swaptions, 4096 simulations 

simmedium 32 swaptions, 8192 simulations 

simlarge 64 swaptions, 16384 simulations 

native 128 swaptions, 1,000,000 simulations 

 

Degree of vectorization 

Table 22 presents some statistics Swaptions application. The number of instructions 

for MVL=8 elements is reduced by 5.13x, and as the MVL is increased, the number of 

instructions decreases up to 58x. On the other hand, the percentage of vectorization 

increases as the MVL is increased, achieving up to 98% of vectorization. Considering 

previous data, it is possible to achieve a SA-speedup from 1.38x for MVL=8 elements up 

to 1.62x for MVL=256 elements, showing that it is possible to achieve better performance 

by only increasing the MVL. This application presents a regular and high DLP pattern. 

For this reason, as the number of lanes increases, a linear speedup increase would be 

expected, especially for larger MVL configurations where the % of Vectorization is higher. 
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Table 22. Instruction Level Characterization of the Swaptions application. 

 Scalar 

Code 

Vectorized Code 

MVL=8 

elements 

MVL=16 

elements 

MVL=32 

elements 

Total Instructions 11,762,554,240 2,289,642,246 1,210,763,856 670,739,072 

Scalar Instructions 11,762,554,240 1,404,738,310 768,311,888 449,513,088 

Vector Memory Inst 112,023,552 56,011,776 28,005,888 

Vector Loads 62,595,072 31,297,536 15,648,768 

Vector Stores 49,428,480 24,714,240 12,357,120 

Vector Arithmetic Inst 772,880,384 386,440,192 193,220,096 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 884,903,936 442,451,968 221,225,984 

Total Vector Operations 7,079,231,488 7,079,231,488 7,079,231,488 

% of Vectorization 83% 90% 94% 

Average VL (elements) 8 16 32 

SA-speedup 1.3864 1.4989 1.5624 

  Vectorized Code 

MVL=64 

elements 

MVL=128 

elements 

MVL=256 

elements 

Total Instructions 401,357,791 266,323,210 200,489,352 

Scalar Instructions 290,744,799 211,016,714 172,836,104 

Vector Memory Inst 14,002,944 7,001,472 3,500,736 

Vector Loads 7,824,384 3,912,192 1,956,096 

Vector Stores 6,178,560 3,089,280 1,544,640 

Vector Arithmetic Inst 96,610,048 48,305,024 24,152,512 

Vector to Scalar Inst 0 0 0 

Vector Elem Manipulation Inst 0 0 0 

Vector Slides 0 0 0 

Vector Reductions 0 0 0 

Total Vector Instructions 110,612,992 55,306,496 27,653,248 

Total Vector Operations 7,079,231,488 7,079,231,488 7,079,231,488 

% of Vectorization 96% 97% 98% 

Average VL (elements) 64 128 256 

SA-speedup 1.5960 1.6135 1.6220 
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2.4 Evaluation  

The data and the analysis presented in this chapter have the goal of establishing a 

base model for research on vector architectures. Rather than presenting approaches for 

the best performance, a discussion is presented that evaluates the results obtained in 

the analysis presented in Section 2.3.3 and the results obtained when the vectorized 

benchmarks are executed in the previously presented gem5 simulator with several vector 

engine configurations. Additionally, area and energy results from the McPAT framework 

are obtained to present a discussion of the tradeoffs between performance, area, and 

energy metrics.  

2.4.1 Evaluation Environment 

Table 23. gem5 evaluation environment. 

Config. 1 to 4 Config. 5 to 8 Config. 9 to 12 Config. 13 to 16 Config. 17 to 20 Config. 21 to 24 

Scalar Core  

Clock Frequency - 2 GHz 

Dual-Issue 64-bit RISC-V superscalar in-order pipeline,  

Vector Engine  - Clock Frequency  - 1 GHz 

# Lanes # Lanes # Lanes # Lanes # Lanes # Lanes 

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 

MVL 8 

elements 

(512-bit) 

MVL 16 

elements 

(1024-bit) 

MVL 32 

elements 

(2048-bit) 

MVL 64 

elements 

(4096-bit) 

MVL 128 

elements 

(8192-bit) 

MVL 256 

elements 

(16384-bit) 

Renaming with 64 Physical Registers 

4R/2W VRF: 

4KB 

4R/2W VRF: 

8KB 

4R/2W VRF: 

16KB 

4R/2W VRF: 

32KB 

4R/2W VRF: 

64KB 

4R/2W VRF: 

128KB 

1 pipelined arithmetic unit / Lane 

Ring topology for Lane Interconnection 

VMU with 1 Memory Port connected to L2, 512-bit memory interface 

Memory System  

32KB L1I – hit latency 4 clock cycles – cache line 512-bit – 4 MSHRs 

32KB L1D – hit latency 4 clock cycles – cache line 512-bit – 4 MSHRs 

1MB L2 – hit latency 12 clock cycles – cache line 512-bit – 32 MSHRs 

2 GB DDR3-1600 Memory - DRAM memory access latency per DRAM burs 46.25ns 

 

The vector engine is attached to a superscalar in-order processor, with the system 

configurations shown in Table 23. Twenty-four configurations are evaluated for the vector 

engine. First, from one up to eight lanes are configured. By doing this and setting only 

one memory port, it could be enough to feed up to eight lanes. This is taking into account 

that the cache line size is set to 512-bit (8 elements each 64-bit), and with every cache 

line request it is possible to send one element to each lane in an interleaved fashion. 

The MVL allowed varies from 8 to 256 elements. All the configurations implement 

renaming with 64 physical registers, leading to VRF sizes from 4KB to 128KB for the 

different configurations. Issue queues with in-order issue logic are set. Each lane 

features only one pipelined arithmetic unit. Also, a ring topology for lane interconnection 
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is chosen. The designer is able to choose simpler or more aggressive configurations 

according to the research requirements. 

2.4.2 Area Evaluation 

Before discussing performance results, it is interesting to present the area cost for 

each of the configurations presented in Table 23. Figure 2.6 shows the McPAT area 

evaluation for the 24 configurations presented in Table 23. We configure McPAT for the 

22nm technology node. L2 Cache and the scalar core, including L1 instruction and data 

caches, are plotted separately from the VPU configurations to ease comparisons. 

For the VPU, only the main contributors are modeled. This is the multi-ported VRF 

and the FPUs. Each lane is equipped with one FPU. Then, as we increase the number 

of lanes, the area consumed by the FPUs doubles in every configuration from 0.12mm2 

for one lane configuration up to 0.94mm2 for eight-lane configuration.  

For the VRF, it has been considered the following configurations: 

For one-lane configuration means that the VRF is centralized in only one lane. 

The six configurations are listed below: 

 MVL=8 (VRF-4KB): eight 4R/2W 64-bit*64-entries memory macros. 

 MVL=16 (VRF-8KB):  eight 4R/2W 64-bit*128-entries memory macros. 

 MVL=32 (VRF-16KB):  eight 4R/2W 64-bit*256-entries memory macros. 

 MVL=64 (VRF-32KB):  eight 4R/2W 64-bit*512-entries memory macros. 

 MVL=128 (VRF-64KB):  eight 4R/2W 64-bit*1024-entries memory macros. 

 MVL=256 (VRF-128KB):  eight 4R/2W 64-bit*2048-entries memory macros. 

 Note that for MVL=8 it has been implemented as eight 4R/2W 64-bit*64-entries 

memory structures. With this, in every read operation, it is possible to read the eight 

memories in parallel and store the elements in the source buffers to eventually feed the 

functional units. We will keep a small size for the source buffers, then in all the 

configurations, no more than eight elements in parallel will be read from each lane. When 

MVL=16, it has been implemented as eight 4R/2W 64-bit*128-entries memory structures. 

It is basically doubling the size of each memory macro. Note that this increase does not 

double the overall size. This happens because internal circuitry such as the pre-charge 

logic and the sense amplifiers, which represent an important area overhead in the SRAM 

memory structure, is independent to the number of entries. Then, the size increase is 
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related to the increase in the memory cells by itself and some logic around such as the 

row decoders.  

For two lanes configuration means that each lane has held half of the overall VRF. 

The six configurations are listed below: 

 MVL=8 (VRF-4KB): eight 4R/2W 64-bit*64-entries memory macros. 

 MVL=16 (VRF-8KB):  sixteen 4R/2W 64-bit*64-entries memory macros. 

 MVL=32 (VRF-16KB):  sixteen 4R/2W 64-bit*128-entries memory macros. 

 MVL=64 (VRF-32KB):  sixteen 4R/2W 64-bit*256-entries memory macros. 

 MVL=128 (VRF-64KB):  sixteen 4R/2W 64-bit*512-entries memory macros. 

 MVL=256 (VRF-128KB):  sixteen 4R/2W 64-bit*1024-entries memory macros. 

 In this case, the size increase pattern is also present in every MVL configuration. 

However, differences can be seen when comparing with one-lane configuration. For 

example, for MVL=16 and one-lane configuration, eight 4R/2W 64-bit*128-entries 

memory structures are implemented in 0.18mm2. On the contrary, for two-lane 

configuration, eight 4R/2W 64-bit*64-entries memory structures are implemented per 

lane, leading to require 0.25mm2. While the first one has memory macros with 128 

entries, the second one implements memory macros with 64 entries but doubles the 

number of macros. Then, it is important to highlight that is a designer decision of how 

the VRF is implemented. Implementing several small memory macros implies more area, 

while implementing few big memory macros could lead to area savings. However, there 

are a couple of factors that also must be taking into account: first, each individual access 

(read/write operation) has a higher energy cost for bigger memory macros. Second, 

bigger memory macros have longer access time, which can influence on the final working 

frequency. The above considerations will be discussed in the next study.  

For four lanes configuration, each lane holds a quarter of the overall VRF and 

presents the same pattern explained before. The six configurations are listed below: 

 MVL=8 (VRF-4KB): eight 4R/2W 64-bit*64-entries memory macros. 

 MVL=16 (VRF-8KB):  sixteen 4R/2W 64-bit*64-entries memory macros. 

 MVL=32 (VRF-16KB):  thirty-two 4R/2W 64-bit*64-entries memory macros. 

 MVL=64 (VRF-32KB):  thirty-two 4R/2W 64-bit*128-entries memory macros. 

 MVL=128 (VRF-64KB):  thirty-two 4R/2W 64-bit*256-entries memory macros. 
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 MVL=256 (VRF-128KB):  thirty-two 4R/2W 64-bit*512-entries memory macros. 

Finally, for eight lanes configuration, each lane holds an eighth of the overall VRF 

and presents the same pattern explained before. The six configurations are listed below: 

 MVL=8 (VRF-4KB): eight 4R/2W 64-bit*64-entries memory macros. 

 MVL=16 (VRF-8KB):  sixteen 4R/2W 64-bit*64-entries memory macros. 

 MVL=32 (VRF-16KB):  thirty-two 4R/2W 64-bit*64-entries memory macros. 

 MVL=64 (VRF-32KB):  sixty-four 4R/2W 64-bit*64-entries memory macros. 

 MVL=128 (VRF-64KB):  sixty-four 4R/2W 64-bit*128-entries memory macros. 

 MVL=256 (VRF-128KB):  sixty-four 4R/2W 64-bit*256-entries memory macros. 

There are two interesting things to discuss in this configuration. First, from MVL=8 

to MVL=64, the area increase double in each MVL configuration because of all of these 

configurations implements the same size of memory macros, but duplicating the number 

in each configuration. However, for MVL=128 and MVL=256, we double the size of the 

memory macro instead of double the number of memory macros. This is because we are 

using up to 8 memory macros per lane. Second, note that in this case, the 128 KB VRF 

area is 2.65mm2, which is bigger than the 1MB L2 shared cache. This is because 

internally the L2 cache implements dual-port memory structures. When banking it, 

creates the illusion of having several memory ports but with the limitation that each port 

can address only a portion of the overall cache. On the contrary, the VRF implements 

4R/2W memory macros which are costlier, as the area numbers show. 

 

Figure 2.6 McPAT area evaluation. 
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2.4.3 Performance and Energy Evaluation 

2.4.3.1 Axpy  

Figure 2.7 shows the execution time (left axis) and speedup (right axis) obtained for 

the different configurations. Also, the SA-speedup (right axis) is shown to discuss these 

results. The obtained speedup for MVL=8 and one lane configuration is 1.21x, which is 

lower than the SA-speedup (1.60x). However, as the MVL is increased, speedup 

improvements are seen. This happens because many of the remaining scalar 

instructions are amortized underneath vector execution, and the amount of latency 

amortized per vector instruction is maximized. Regarding the use of parallel lanes, the 

expectations are accurate. Since Axpy is a memory-bound kernel, a marginal speed-up 

increase is obtained as the number of lanes is increased. 

 

Figure 2.7 Axpy runtime/speedup for different configurations. 

Figure 2.8 shows the performance/mm2 efficiency metric to discuss how good is the 

hardware configuration for the different benchmarks. In this case, the most efficient 

configuration corresponds to one lane with MVL=16 elements.  It is clear that having 

more than one lane is not beneficial in terms of performance/mm2. A stronger memory 

subsystem, maybe adding memory ports or prefetching is necessary to go faster in 

memory-bound applications like Axpy. 
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Figure 2.8 Axpy performance/mm2 efficiency. 

Figure 2.9 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) to discuss the tradeoff between the different configurations. 

We evaluate four main energy contributors: the scalar core, which includes both L1-I and 

L1-D caches, the VPU VRF, the VPU floating-point units, and the L2 cache. For all of 

them, we present dynamic and leakage energy.  

First, for the scalar core, we can see an important dynamic energy decrease from 

the scalar version to the vectorized versions. This is because the total number of 

instructions executed for the scalar version is 134,217,738, while for MVL=256, the 

instruction count is reduced to only 786,447. There is also an important leakage energy 

decrease, mainly because the execution of the vectorized versions is faster.  

Second, for the VPU VRF, there are interesting results for both dynamic and leakage 

energy. For one-lane configuration, dynamic energy increases as we increase the MVL 

configuration. This happens because as the MVL is increased, the size of the memory 

macro is increased. As mentioned before, individual read/write operations are costlier for 

bigger memory macros. Regarding the leakage energy, we can see that it is increased 

as the MVL is increased. This happens because longer MVL configurations lead to bigger 

VRFs. Also, it is interesting to compare with eight lanes configuration. Similar to one lane 

configuration, the leakage energy increases as the MVL increases. However, the 

leakage represents an important contributor in this new scenario since 64 memory 

macros are required for the bigger configurations. Also is interesting to see that for 

MVL=8, MVL=16, MVL=32, and MVL=64, the dynamic energy is the same. This happens 

because the four configurations implement 4R/2W 64-bit*64-entries memory macros and 

only double the number of memory macros in each configuration. However, for MVL=128 
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and MVL=256, the dynamic energy increases because now are implemented bigger 

memory macros. 

Third, for the VPU FPUs we can see that as we increase the number of lanes, the 

leakage energy increases as expected. Regarding dynamic energy, all the configurations 

consume the same energy because the total number of arithmetic operations is the same 

no matter the MVL or lane configuration. 

Fourth, for the 1MB L2 cache, we can see that leakage energy represents an 

important contributor because it is the biggest structure. As mentioned before, this is a 

memory-bound application. Dynamic energy is very close for all the configurations. 

Finally, normalized Energy Delay Product (EDP) efficiency metric is shown, where 

MVL=64 represents the most efficient configuration for 1,2 and 4 lane configurations, 

while MVL=128 represents the most efficient configuration for eight lanes configuration. 

 

Figure 2.9 Axpy energy consumption (left axis) and normalized Energy Delay Product (right 

axis)  for different configurations. 

2.4.3.2 Blackscholes 

Figure 2.10 shows the execution time (left axis) and speedup (right axis) obtained 

for the different configurations. Also, the SA-speedup (right axis) is shown to discuss 

these results. The obtained speedup for MVL=8 and one lane configuration is 2.86x, 

which is higher than the SA-speedup (2.25x). This happens because many of the 

remaining scalar instructions can be amortized underneath vector execution. As the MVL 

is increased, speedup improvements are seen, as discussed in Section 2.3.3.2. 

Regarding the expected linear increase as the number of lanes is increased, it is not 
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completely true for the different MVL configurations. Configurations with small and 

medium-size MVL do not benefit considerably from adding more lanes, unlike 

configurations that use large vectors. This is mainly because, in all configurations, the 

start-up time is incurred. For low MVL configurations, the start-up time is high compared 

to the total execution time of the instruction. In this case, the advantage for regular and 

high DLP applications for large MVL and the start-up time becomes minimal compared 

with the total execution time of the instruction. Then showing almost a linear speed-up 

increase for MVL=256 and the deferent lane configurations (4.83x, 8.97x, 15.67x, and 

24.92x). 

 

Figure 2.10 Blackscholes runtime/speedup for different configurations. 

 

Figure 2.11 shows the performance/mm2 efficiency metric for Blackscholes. In this 

case, the most efficient configuration corresponds to one lane with MVL=16 elements.  

In this new scenario with a compute-bound application which takes advantage of the 

parallel lanes. Note that the efficiency has a slight decrease for multi-lane configurations. 

This happens because even if the performance increases for multilane configurations, 

the VRF area for a specific MVL can increase as we increase the number of lanes 

depending on how the memory macros are organized. For example, a configuration with 

MVL=256 leads to a VRF of 128 KBs no matter the number of lanes. However, the 

organization is different for each multi-lane configuration. For one lane, it has been 

implemented as eight 4R/2W 64-bit*2048-entries memory structures. For two lanes, it 

has been implemented as eight 4R/2W 64-bit*1024-entries memory structures per lane. 

For four lanes, it has been implemented as eight 4R/2W 64-bit*512-entries memory 

structures per lane. Finally, for eight lanes, it has been implemented as eight 4R/2W 64-

bit*256-entries memory structures per lane. Note that in all the configurations we have 
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eight memory structures per lane in order to read in parallel all of them and allocate eight 

elements in the source buffers to feed the functional units. Then as we increase the 

number of lanes, the memory macros become smaller, but represents a higher number 

(from 8 memory macros for 1 lane to 64 memory macros for 8 lanes). However, there is 

an internal circuitry such as the pre-charge logic and the sense amplifiers, which 

represent an important area overhead in the SRAM memory structure, which is 

independent to the number of entries. Then as more memory macros are required, these 

internal circuitry is replicated for each macro. 

 

Figure 2.11 Blackscholes performance/mm2 efficiency. 

 

Figure 2.12 Blackscholes energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 
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Figure 2.12 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Blackscholes. Contrary to Axpy, Blackscholes is a 

compute bound application where for the vectorized versions most of the dynamic energy 

is consumed by the floating-point units. As the MVL is increased, the dynamic and 

leakage energy is reduced for the scalar core since Blackscholes features a very high 

percentage of vectorization. The overall instruction count is reduced from 3,180,479,876 

for the scalar version to 4,352,913 for the vectorized version with MVL=256. 

It is clear that for compute-bound applications such as Blackscholes, long vector 

length processors combined with several lanes (i.e., MVL=256 and 8 Lanes) not only 

provide the best performance but also energy savings when compared with short vector 

length processors, as shown by the EDP results in Figure 2.12.  

2.4.3.3 Canneal 

Contrary to Blackscholes, which benefited from any MVL because of its high DLP, 

Canneal can only exploit shorter vector lengths implementations. As presented in Table 

1, this is an irregular DLP application, which increases the complexity to improve the 

performance even for the vectorized version. Although the analysis presented in Section 

2.3.3.3 mentions that the largest VL for this application is 22 elements, the application 

was executed with all the configurations. This is done to show the behavior when 

applications with short vectors are executed in hardware for large vectors.   

As was pointed out in Section 2.3.3.3, the configuration with MVL=8 elements has 

a SA-speedup of 0.63x, and this speedup decreases as the MVL parameter is increased. 

Results presented in Figure 2.13 exhibit a behavior close to that expected. In this case, 

the configuration with an MVL=16 obtained the best performance, achieving 1.51x of 

speedup over the scalar version for the single lane configuration and 1.95x of speedup 

for the eight-lane configuration. As the MVL parameter was increased, the speedup 

started to decrease as expected. This difference with the SA-speedup suggests that 

about half of the remaining scalar instructions can be amortized beneath vector 

execution.  

In general, the low speedup is mainly because this application has an irregular DLP 

pattern, including intensive indexed memory accesses, which are very expensive in 

terms of latency.  Furthermore, performance is limited by the large number of scalar 

instructions executed, and as mentioned before, about half of scalar instructions cannot 

be amortized underneath vector execution. This is because the scalar core waits for the 

result from the vector engine to compute the final routing cost and decides if the current 

element should be swapped or not. For larger MVL configurations, the speedup starts to 

decrease as was expected. In fact, for MVL=128 and 256, the scalar version is faster 
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than the vectorized version since the number of Vector operations increases notably 

because of the complementary instructions added by the compiler and which uses the 

MVL allowed by the hardware.  

 

Figure 2.13 Canneal runtime/speedup for different configurations. 

 

Figure 2.14 Canneal performance/mm2 efficiency. 

 

Figure 2.14 shows the performance/mm2 efficiency metric for Canneal. In this case, 

the most efficient configuration corresponds to one lane with MVL=8 elements.  This 

application lets us visualize that the hardware is efficient only for MVL=8 configuration. 

Doubling the number of lanes from one to two gets a very close efficiency. However, 

when setting four or eight lanes configuration, the efficiency drops drastically. This 

happens because, for this short vector configuration, the start-up time is costly. Then, 
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having only one lane helps to start-up time represents a smaller percentage because 

arithmetic operations spend more time in execution. 

Figure 2.15 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Canneal. Contrary to Axpy and Blackscholes that are a 

very high DLP applications compatible with long vector lengths, Canneal features short 

vectors. As shown in the performance results, performance degradation is the result of 

executing this application on a long vector length hardware. Now, we are going to 

highlight some energy issues. 

First, it is clear that the most energy-efficient configuration for Canneal is MVL=16 

no matter the lane configuration. From MVL=32 to MVL=256, there is a considerable 

energy consumption increase, especially for configurations with few lanes. As mentioned 

before, complementary instructions are added by the compiler, using the MVL allowed 

by the hardware. One of these complementary instructions is to copy a complete vector 

register. Then, when MVL=256, the 256 elements are copied to the destination register 

no matter that only are required few of them. This behavior can be seen on the VRF 

dynamic energy, which increases for MVL equal or bigger than 32 because more 

read/write operations to the VRF are required for longer vector length implementations. 

FPU dynamic energy is the same for all the configurations since copy instructions do not 

require a functional unit to be executed. 

 

Figure 2.15 Canneal energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations 

Finally, scalar core dynamic energy is reduced when compared with the scalar 

version. However, vectorized versions achieve the best configuration at MVL=16, and 
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for bigger configurations, it remains constant since the same number of instructions are 

executed on the scalar pipeline. 

2.4.3.4 Jacobi-2D 

Results presented in Figure 2.16 show a speedup of 2.25x for MVL=8 and one-lane 

configuration, which is higher than the SA-speedup (1.12X). As the MVL increases, the 

speedup increases up to 3.54X, as was expected. This happens because most of the 

remaining scalar instructions can be amortized beneath vector execution, and the 

amount of latency amortized per vector instruction is maximized.  Regarding the increase 

in the number of lanes and the expected linear increase, it is not completely accurate. 

Configurations with small and medium-size MVL do not benefit considerably from adding 

more lanes, unlike configurations that use large vectors. Looking at the configurations 

with MVL=256, almost a linear speedup increase can be seen. As mentioned before, the 

speedup increase is strongly related to the start-up time. It is incurred in all 

configurations, but for larger MVL configurations, the start-up time becomes negligible. 

 

Figure 2.16 Jacobi-2D runtime/speedup for different configurations. 

Figure 2.17 shows the performance/mm2 efficiency metric for Jacobi-2D. This 

application presents similar results to Blackscholes. In this case, the most efficient 

configuration corresponds to one lane with MVL=16 elements.  In this scenario with a 

compute-bound application, having more lanes is worthy. Although the efficiency is 

slightly less for multi-lane configurations because of the area increase in the VRF 

explained before. However, the efficiency is very close. 

Figure 2.18 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Jacobi-2D. Similar to Blackscholes, Jacobi-2D is a 

compute-bound application where for the vectorized versions, most of the dynamic 
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energy is consumed by the floating-point units. As the MVL is increased, the dynamic 

and leakage energy is reduced for the scalar core since Jacobi-2D features a very high 

percentage of vectorization. The overall instruction count is reduced from 4,660,908,013 

for the scalar version to 45,798,013 for the vectorized version with MVL=256. Long vector 

length processors combined with several lanes (i.e., MVL=256 and 8 Lanes) provide not 

only the best performance but also energy savings when compared with short vector 

length processors, as shown by the EDP results in Figure 2.18.  

 

Figure 2.17 Jacobi-2D performance/mm2 efficiency. 

 

Figure 2.18 Jacobi-2D energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 
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2.4.3.5 LavaMD2 

Results presented in Figure 2.19 show a speedup of 2.78x for MVL=8 and one-lane 

configuration, which is higher than the SA-speedup (1.86x). As the MVL increases, a 

slight speedup increase (3.3x) can be seen for MVL=16. However, for the larger MVL 

configurations, there is a speed-up decrease as was expected. This is mainly caused by 

the increase in the number of Total Vector Operations.  Regarding the expected speed-

up increase for the multi-lane configuration, it is very close to the initial conclusions. 

Configurations with small MVL do not benefit considerably from adding more lanes, 

unlike configurations that use medium-size vectors.  On the contrary, configurations with 

long vectors show a performance decrease because the largest VL of the application is 

64 elements, then for MVL=128 and 256 elements, extra operations are executed.  

 

Figure 2.19 LavaMD2 runtime/speedup for different configurations. 

Figure 2.20 shows the performance/mm2 efficiency metric for LavaMD2. In this case, 

the most efficient configuration corresponds to one lane with MVL=8 elements.  It is clear 

that a compute-bound application benefits from multilane implementations. 

Figure 2.21 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for LavaMD2. LavaMD2 is a high DLP application compatible 

with short and medium-size vector lengths. LavaMD2 is a compute-bound application 

where most of the dynamic energy is consumed by the floating-point units for the 

vectorized versions. As the MVL is increased, the dynamic and leakage energy is 

reduced for the scalar core since Jacobi-2D features a very high percentage of 

vectorization. The overall instruction count is reduced from 24,615,519,089 for the scalar 

version to 283,248,849 for the vectorized version with MVL=256. 
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As shown in the performance results (Figure 2.19), performance degradation is the 

result of executing this application on a long vector length hardware (MVL=128 and 

MVL=256). This happens because the longer VL for this application is 48 elements, being 

MVL=64 the most efficient configuration for 2,4 and 8 lane configurations. Note that for 

MVL=64, there is a slight increase in the VRF dynamic energy compared with shorter 

MVL configurations; however, benefits can be seen since dynamic energy in the scalar 

core is reduced. From MVL=64 to MVL=256, there is an energy consumption increase, 

especially for configurations with few lanes. As mentioned before, complementary 

instructions are added by the compiler, using the MVL allowed by the hardware.  

 

Figure 2.20 LavaMD2 performance/mm2 efficiency. 
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Figure 2.21 LavaMD2 energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

2.4.3.6 Pathfinder 

As mentioned in Section 2.3.3.6, the Pathfinder application is interesting since it 

presents a high percentage of vector element manipulation instructions. Thus, it is 

possible to evaluate the implemented interconnection topology between lanes. In this 

case, the base model is using a ring interconnection, where in order to move one element 

to another lane, the cost in latency is the distance between the origin and the destination 

lanes. Several elements can be computed in parallel in multiple lanes. In this particular 

case, the algorithm makes use of slide1up and slide1down vector instructions, where the 

elements are displaced by only one position. In that sense, the ring interconnection is 

enough to get a good speedup for this application since it will require only one cycle to 

move one element from the current lane to the destination lane. Also, each lane can 

send one element to the ring interconnection in the same cycle, and one cycle later, and 

all the lanes will receive their corresponding data. It is clear that these operations can 

take advantage of the parallel lanes. 

The results presented in Figure 2.22, exhibit a behavior very close to the SA-

speedup (2.71X) for MVL=8 and one-lane configuration. As the MVL parameter 

increases, higher speedups can be achieved because scalar instructions can be 

amortized beneath vector execution, and the amount of latency amortized per vector 

instruction is maximized. For multi-lane configurations, configurations with small and 

medium-size MVL do not benefit considerably from adding more lanes, unlike 

configurations that use large vectors. As mentioned several times before, this is because, 



Tools for Designing and Evaluating Vector Architectures 

80 

 

in all configurations, the start-up time has to be paid, but for larger MVLs, the start-up 

time becomes negligible.  

 

Figure 2.22 Pathfinder runtime/speedup for different configurations. 

Figure 2.23 shows the performance/mm2 efficiency metric for Pathfinder. In this 

case, the most efficient configuration corresponds to one lane with MVL=16 elements.  

As the number of lanes increases, MVL=32 becomes the most efficient configuration. 

Although the efficiency decreases for multi-lane configurations, it is worth adding more 

lanes. 

 

Figure 2.23 Pathfinder performance/mm2 efficiency. 

Figure 2.24 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Pathfinder. As the MVL is increased, the dynamic and 
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leakage energy is reduced for the scalar core since Pathfinder features a very high 

percentage of vectorization. The overall instruction count is reduced from 5,433,477,921 

for the scalar version to 17,681,517 for the vectorized version with MVL=256. 

Vectorizing Pathfinder provides better performance levels and considerable energy 

savings even for short vector length processors. Energy savings are enhanced as we 

increase the MVL and the number of parallel lanes. For one-lane configuration, the most 

energy-efficient configuration corresponds to MVL=64. The most energy-efficient 

configuration for two lanes configuration corresponds to MVL=128. Finally, for four and 

eight-lane configurations, the most energy-efficient configuration corresponds to 

MVL=256, as shown by the EDP results presented in Figure 2.24. 

 

 

Figure 2.24 Pathfinder energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

 

2.4.3.7 Particle-Filter 

Particle-Filter (PF) is an interesting application to analyze because it combines the 

use of expensive operations like logarithm, cosine, and square root with special 

operations with masks. vfirst.m and vpopc.m vector mask instructions write the final 

results to a scalar register. In that sense, these operations cause the scalar core to stall 

because of the higher number of scalar dependencies. 
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Figure 2.25 Particle-Filter runtime/speedup for different configurations. 

According to the static code analysis presented in Section 2.3.3.7, the SA-speedup 

is 0.61x for MVL=8 and one-lane configuration. There is no speedup over the scalar 

version, as can be seen in Figure 2.25. In general, all the SA-speedups are higher than 

those already obtained for the different configurations. As previously suggested, the final 

speedup would be affected by a considerable number of stalls in the scalar core, which 

would not be removed until the vector engine finishes the computation of the current 

iteration. Based on the results, it can be concluded that for applications such as Particle-

Filter in which many of the remaining scalar instructions cannot be amortized beneath 

vector execution because of the generated scalar dependencies, there could be 

significant improvements by using an out-of-order superscalar core instead of a 

superscalar in-order core. For the out-of-order case, it would be possible to advance 

independent scalar instructions and also continue feeding the vector engine. 

Figure 2.26 shows the performance/mm2 efficiency metric for Particle-Filter. In this 

case, the most efficient configuration corresponds to one lane with MVL=8 elements.  As 

the number of lanes increases, MVL=32 becomes the most efficient configuration. 

Although the efficiency decreases for multi-lane configurations, it is worth adding more 

lanes. 
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Figure 2.26 Particle-Filter performance/mm2 efficiency. 

Figure 2.27 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Particle-Filter. This application presents an interesting 

behavior to analyze. First, as presented in the instruction-level characterization of the 

ParticleFilter application (Table 16), vectorizing this application incurs in executing more 

individual operations when compared with the scalar version. As explained before in the 

corresponding static analysis (Section 2.3.3.7), these extra operations are created when 

mapping the sequential search in a vector fashion.   

For one-lane configuration, performance is worse for all the MVL configurations 

mainly for the following reasons: First, since performance is worse, leakage energy 

increases in general for all the modules.  Second, the overall instruction count is reduced 

by vectorizing the application, however, it is not a dramatic reduction as in other high 

DLP applications such as Blackscholes or Pathfinder. For the scalar version we have 

5,433,477,921 instructions, while for the vectorized version there are 3,241,372,346 for 

MVL=8, and 617,873,199 for MVL=256. 

As we increase the number of lanes, performance improves, being better for longer 

MVL configurations. Then, energy savings can be seen, being the most efficient 

configuration of eight lanes with MVL=256, as shown by the EDP results presented in 

Figure 2.27. 
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Figure 2.27 Particle-Filter energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

 

2.4.3.8 Somier 

Somier results are presented in Figure 2.28. On the one hand, for one lane 

configuration and the different MVL configurations, the speedups are very close to the 

SA-speedups. As the MVL increases, slight improvements can be seen. On the other 

hand, the addition of parallel lanes provides a marginal speedup increase. As mentioned 

before, the speedup can be mainly limited by: (1) the memory subsystem since this 

application is memory bound, and (2) the high number of scalar instructions which cannot 

be amortized beneath vector execution. 
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Figure 2.28 Somier runtime/speedup for different configurations. 

 

Figure 2.29 Somier performance/mm2 efficiency. 

Figure 2.29 shows the performance/mm2 efficiency metric for Somier. In this case, 

the most efficient configuration corresponds to one lane with MVL=16 elements. 

Doubling the number of lanes causes the efficiency to drop drastically. This happens 

because Somier is a memory-bound application. Then increasing the number of 

functional units does not add incredible speedups for making the eight lanes 

configuration affordable. 

Figure 2.30 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Somier. This application presents an interesting behavior 

to analyze. First, as presented in the instruction-level characterization of the Somier 

application (Table 18), for the scalar version we have 6,254,373,928 instructions, while 
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for the vectorized version there are 850,576,201 for MVL=8, and 647,304,985 for 

MVL=256. Between both vectorized versions there is a small difference in the final 

instruction count. This behavior is because when mapping the force_contribution 

function in a vector fashion, there is a section of scalar code that cannot be vectorized, 

which remains constant executing around 640,300,015 scalar instructions. Therefore, 

the execution is serialized, and the vector processor cannot start to do the final 

computation before the scalar core finalizes execution. In that sense, this section of the 

code is not possible to hide beneath vector execution. In fact, note that the dynamic 

energy consumed by the scalar core represents an important contribution to the final 

energy consumption. 

In general, good energy savings can be seen by vectorizing Somier, but limited by 

the code that is not vectorizable. 

 

Figure 2.30 Somier energy consumption (left axis) and normalized Energy Delay Product (right 

axis)  for different configurations. 

2.4.3.9 Streamcluster 

Results are presented in Figure 2.31. For MVL=8 and one lane configuration, a 

speedup of 2.17x is obtained, which is very close to the SA-speedup (1.67). As the MVL 

slightly increases, improvements can be seen. However, from MVL=64 to MVL=256, the 

speedup starts decreasing. Several factors are causing this low speedup increase and 

the sudden decrease when MVL=64. First, for larger vector lengths, the number of vector 

operations increases notably, then, more time is needed to execute those vector 

operations. Secondly, there is a reduction operation after the "for" loop. This operation 

is executed only once regardless of the VL size. Then, for short vectors, this operation 
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has relatively less overhead; but for long vectors, this operation consumes more time. 

Finally, the resultant scalar value of the reduction is sent immediately to the scalar core 

to compute the cost of opening a new center. Thus, in this step, the core stalls until it 

receives this data, then computes the cost, and finally iterates again. 

The addition of parallel lanes helps to achieve better speedups, especially for long 

vector length configurations. As mentioned before, this application is memory-bound. In 

combination with intensive communication with the scalar core, the speedup is mainly 

limited by: (1) the memory subsystem, and (2) issue scheme in the scalar core. 

 

Figure 2.31 Streamcluster runtime/speedup for different configurations. 

Figure 2.32 shows the performance/mm2 efficiency metric for Streamcluster. For one 

lane configuration, the most efficient configuration corresponds to MVL=16. As we 

increase the number of lanes, efficiency starts raising. For eight lane configuration, the 

most efficient configuration corresponds to MVL=32. This is an expected result since 

Streamcluster is compatible only with short and medium-size vector lengths.  

Figure 2.33 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Streamcluster. As presented in the instruction-level 

characterization of the Streamcluster application (Table 20), this application is 

compatible with short and medium-size vector lengths. For MVL=64, MVL=128, and 

MVL=256, the instruction count remains equal. However, the number of vector 

operations increases as described before. This behavior leads consume more time to 

execute the application, and therefore, increase the overall leakage energy. Note that 

the dynamic energy consumed by the scalar core represents an important contribution 

to the final energy consumption.  



Tools for Designing and Evaluating Vector Architectures 

88 

 

 

Figure 2.32 Streamcluster performance/mm2 efficiency. 

 

Figure 2.33 Streamcluster energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

2.4.3.10 Swaptions 

For the scalar implementation, a block size of 32 elements presents the best 

performance. For a larger block size, the L1 cache miss rate increases.  For the 

vectorized version, it is a little bit different. The block size parameter (BLOCK_SIZE) is 

related to the MVL. Then, a block size of 256 elements gives better performance, 

achieving a 1.6x speedup over the scalar version regardless of the cache miss increase 

for a one-lane configuration. In [44] a miss rate study is presented for all programs in the 
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PARSEC benchmark suite, where for Swaptions, it is shown that for a cache size of 1MB, 

the miss rate is reduced notably when comparing versus smaller cache sizes. 

It is interesting to compare the obtained versus the expected results. The obtained 

speedup for MVL=8 and one lane configuration is 1.04X, which is lower than the SA-

speedup (1.39X).  Configurations with small and medium-size MVL do not benefit 

considerably from adding more lanes, unlike configurations that use large vectors. This 

is mainly because, in all configurations, the start-up time is incurred. Contrary, for 

MVL=256 and the different number of lanes almost a linear speedup increase can be 

seen. 

 

Figure 2.34 Swaptions speedup for different cache configurations. 

Figure 2.35 shows the performance/mm2 efficiency metric for Swaptions. In this 

case, the most efficient configuration corresponds to one lane with MVL=16 elements.  

This compute-bound application shows that having more lanes is worthy. Although the 

efficiency is slightly less for multi-lane configurations, the efficiency does not drop 

drastically as applications such as Canneal, Somier, and Streamcluster. 

Figure 2.36 shows energy consumption (left axis) and Energy Delay Product (EDP) 

efficiency metric (right axis) for Swaptions. Swaptions is a compute bound application 

where for the vectorized versions most of the dynamic energy is consumed by the 

floating-point units. As the MVL is increased, the dynamic and leakage energy is reduced 

for the scalar core since Swaptions features a very high percentage of vectorization. The 

overall instruction count is reduced from 11,762,554,240 for the scalar version to 

200,489,352 for the vectorized version with MVL=256. 
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It is clear that for compute-bound applications, long vector length processors 

combined with several lanes (i.e., MVL=256 and 8 Lanes) not only provide the best 

performance but also energy savings when compared with short vector length 

processors, as shown by the EDP results in Figure 2.36.  

 

Figure 2.35 Swaptions performance/mm2 efficiency. 

 

 

Figure 2.36 Swaptions energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 
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2.5 Related Work 

Stanic [58] presents a set of tools for rapid initial research on vector architectures. 

The first tool is called VALib, a library that enables hand-crafted vectorization of 

applications by adding calls which is similar to programming using intrinsics. VALib is not 

bound to any specific vector ISA. By using this tool, it is possible to collect data for 

detailed instruction-level characterization and to generate input traces for a second tool 

called SimpleVector. This second tool is a fast trace-driven simulator used to estimate 

the execution time of a vectorized application on a candidate vector micro-architecture. 

This simulator can be used for preliminary evaluation and early parameter exploration 

but does not provide the accuracy given by execution-driven simulators. 

Cebrian [47] [56] presents PARVEC, a vectorized version of the PARSEC 

benchmark suite. ParVec vectorized 8 of the 13 applications of the PARSEC suite for 

SSE, AVX and NEON ISA's. Some of them obtained high speed up over the scalar 

implementation (Blackscholes, Swaptions), others (Fluidanimate, Vips ) did not get any 

speed up improvement mainly because of the nature of the application (organization of 

the input, not related to size, etc.). The ParVec suite is available for the computer 

architecture community. The lack of a micro-architectural simulator for those ISA's 

doesn't allow the computer architecture community to test new ideas at the micro-

architectural level. Although the ISA's supported by PARVEC can be classified as 

Multimedia instruction set extensions, the similarities with the code for RISC-V Vector 

Extension ISA is extensive, mainly for arithmetic and covert operations. However, there 

are others like slide operations that usually are not presented in short vector ISA's. In 

this sense, PARVEC was a great tool for understanding how to vectorize some 

applications from the PARSEC Benchmark Suite. 

The ARM Architecture research team has been working on tools for the community 

to boost the use of ARM infrastructure in academia, and they have presented these tools 

in several talks about Vector Architecture for HPC based on Arm SVE [59] [60] [61]. The 

SVE tool-suite includes the Arm Compiler, the Arm Instruction Emulator, and the 

Research Enablement kit, which allows system modeling using gem5. The implemented 

gem5 models correspond to the Armv8-A based CPU timing model (HPI) with support 

for SVE. The toolkit also includes documentation about how to run the benchmarks, 

specifically the PARSEC benchmark suite. 
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2.6 Summary 

This chapter has presented three tools. First, an extended version of the gem5 

simulator that includes a RISC-V Vector Architecture model. This model can be 

configured with different parameters (MVL, number of physical registers, number of 

lanes, etc.), having a flexible and customizable model that fits different research 

requirements. Second, an extended version of the McPAT framework that includes a 

Vector Architecture model to obtain area and energy metrics. Third, the RiVEC 

Benchmark Suite, a collection composed of data-parallel applications from different 

domains that focuses on benchmarking vector microarchitectures. In addition, a study of 

every vectorized application and its corresponding execution in the gem5 vector engine 

model is given, highlighting the degree of vectorization achieved with the applications 

and the close relationship with the expected and obtained performance. Finally, area and 

energy metrics are presented for all the presented hardware configurations. 

From the previous study we can conclude two main ideas.  The vector architectures 

designed for long vectors are limited to a specialized subset of applications, where 

relatively high DLP must be present to achieve excellent performance with high 

efficiency. For example, Blackscholes, Jacobi-2D, and Swaptions, which present regular 

and high DLP patterns, exploit designs for long vectors. On the contrary, executing 

applications only compatible with short vectors such as Canneal in hardware for large 

vectors brings several disadvantages, as was shown in the study. On the other hand, 

vector architectures designed for short vectors are compatible with applications featuring 

short, medium, and long vectors. We believe that this wide diversity is one of the main 

reasons behind the trend of building parallel machines for short vectors. 

Therefore, finding a way to obtain a more general vector architecture able to handle 

different DLP patterns efficiently is a challenge in examination. A vector architecture with 

the ability to adapt its own structures depending on the application's needs could improve 

the performance and efficiency for those applications where most of the hardware 

remains unused.  
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Summary 

This chapter presents AVA, our Adaptable Vector Architecture that can reconfigure 

its MVL from short vector lengths (16 elements) to long vector lengths (128 elements). 

The hardware is designed for short MVL to keep its physical register file modest in size 

(8KB), so it has the advantage of area efficiency of short vectors. But, it can reconfigure 

to longer MVLs by mixing different techniques which allow to have an innovative VRF 

organization.  

 
 
 
 
 

The most efficient way to execute a vectorizable 
application is a vector processor 

 

Jim Smith, 
International Symposium on Computer Architecture 

(1994) 
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Today there are two main design trends for vector processors. First vector 

processors designed for long vectors such as the SX-Aurora TSUBASA [23] which 

implements vector lengths of 256 elements (16384-bits), and vector processors 

designed for short vectors such as the Fujitsu A64FX [34] which implements vector 

lengths of 8 elements (512-bit) ARM SVE. Being the second one the most widely adopted 

in modern chips. While long vector designs are limited to a specialized subset of 

applications, where high DLP must be present to achieve excellent performance with a 

very high efficiency. Short vector designs are compatible with a larger range of 

applications. In fact, the first long vector length implementations were focused on the 

HPC market, while short vector length implementations were conceived to improve 

performance in multimedia tasks. However, those short vector length extensions have 

evolved, and nowadays are also being exploited on scientific applications, engineering, 

financial analysis, physics simulations, etc. In that sense, we believe that this 

compatibility with different applications featuring high, medium and low DLP is one of the 

main reasons behind the trend of building parallel machines with short vectors. Short 

vector designs are area efficient and are "compatible" with applications having long 

vectors; however, these short vector architectures are not efficient as longer vector 

designs when executing high DLP code.  

This chapter is organized as follows. In Section 3.1, the background and motivation 

is presented. Then, in Section 3.2, presents a detailed description of AVA. Section 3.3 

shows the evaluation methodology used. The performance evaluation is shown in 

Section 3.4. Additionally, area and energy metrics are presented in Section 3.5 and 3.6. 

Section 3.7 focuses on related work. Finally, Section 3.8 summaries the key points of 

this chapter. 

3.1 Background and Motivation 

One conclusion from the study presented in Section 2.4, is that multi-lane vector 

processors designed for long vectors lengths achieve excellent computational 

throughput for programs with high DLP. However, applications lacking abundant DLP 

are unable to fully utilize the hardware resources in the vector lanes. However, when the 

Application Vector Length is notably smaller than the MVL, multiple inefficiencies arise: 

 Short vector applications cannot fully use each vector register width, as a 

portion of each vector register remains underutilized during the whole 

program execution.  

 When the number of architectural vector registers is not sufficient, the 

compiler generates spill code (vector load/store instructions) to backup the 

content of some vector register in memory. With this, it is possible to assign 
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the architectural vector register to new instructions. At compilation time, the 

compiler is not aware of the Application Vector Length. In that sense, the 

spill code includes load/store of vector registers with the MVL value, even 

though the application only needs a portion of them. This behavior could lead 

to a performance degradation as well as energy waste.  

 Copying vector registers is a common optimization introduced by the 

compiler when it is needed to save the content of a register before being 

modified since it can be used in the next iterations. However, the compiler 

typically copies the whole vector register (VL = MVL), although the effective 

VL is much less than the vector register width for applications with short 

vectors. This is because proving that elements past current VL will not be 

read is difficult for the compiler. In that sense, short vector applications which 

present this behavior incur in performance overhead as well as wasting 

energy. 

Long vectors bring several advantages such as maximizing the amount of latency 

amortized per vector instruction. In that sense, different ideas have been studied trying 

to preserve multi-lane vector processors designed for long vector lengths, while being 

able to exploit different DLP patterns in an efficient way by reconfiguring the available 

resources. A couple of the more representative examples for this related work are 

described below. 

Krashinsky et al. proposed the Vector Thread Architecture [62], a hybrid 

multithreaded vector architecture that provides a control processor and an array of slave 

virtual processors to the programmer. Virtual processors execute strings of vector 

instructions packaged into blocks termed as atomic instruction blocks. To execute high 

DLP code, the control processor can use vector-fetch commands to broadcast atomic 

instruction blocks to be executed in all virtual processors. For each vector instruction 

inside the atomic instruction block, each virtual processor executes a subset of the vector 

elements as in the traditional multi-lane designs. On the contrary, to execute thread-

parallel code, each virtual processor can use thread-fetches commands to direct its own 

control flow by fetching its own atomic instruction blocks as an efficient way to execute 

short vectors. However, in order to really exploit short vectors, the application must 

feature thread level parallelism, otherwise, several virtual processors would remain 

underutilized. Additionally, to support this hybrid paradigm and create a high-

performance vectorized code, the compiler modifications are considerable. 

Rivoire et al. proposed Vector Lane Threading [14], an architectural enhancement 

that allows idle vector lanes to run short-vector or scalar threads. When running low DLP 
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code, they assign the different lanes across several threads. Then, the combination of 

threads can saturate the available computational resources. In that sense, the 

microarchitecture allows the exploitation of data-level and thread-level parallelism to 

achieve higher performance. However, in order to run scalar threads there are required 

considerable modifications inside each lane to support fetch, decoding, exception 

handling, etc., making the intra-lane logic complex. Additionally, it is required an 

instruction cache for each lane. 

While the above approaches also feature some reconfigurability, their base vector 

processor design targets long vectors, which is costly in terms of area and resources. In 

contrast, AVA is centered around a design targeting short vectors, which is inherently 

area and resource-efficient. However, AVA reconfigurability enables this short vector 

design to perform as well as a vector processor designed for long vectors.  Additionally, 

featuring a small VRF offers several advantages, such as the opportunity to implement 

multi-ported memory structures, a feature that for large memory structures could be 

costly in terms of area and power, or sometimes prohibitive depending on the design 

requirements. 

MVL reconfigurability has also been proposed at ISA level. For example, the new 

RISC-V vector extension [10] includes a novel feature called Register Grouping (RG), 

whose main goal is to increase the execution efficiency for applications featuring high 

DLP. RG allows grouping multiple vector registers together, so that a single vector 

instruction can operate on multiple vector registers as if it was a single "wider" register 

at the cost of having fewer available architectural registers. The Vector Length Multiplier 

(LMUL) represents the default number of vector registers that are combined to form a 

vector register group. Specifically, LMUL supports four different configurations (i.e., 

1,2,4,8). For those values, the MVL can be increased by 1x, 2x, 4x and 8x while reducing 

the number of architectural registers from 32 defined by the vector ISA down to 16, 8 

and 4, respectively. It is worth noticing that when the application needs more architectural 

registers than the one available at that time, spill code is generated by the compiler. The 

bigger the LMUL configuration, the higher the probability of generating spill code. When 

implementing renaming, physical vector registers are also reduced by LMUL. This 

implies that for a renaming of 64 physical vector registers for the LMUL=8 configuration 

there are only 8 register groups available, 4 assigned initially in the Register Alias Table 

(RAT) and 4 in the Free Register List (FRL). This leads to accepting only four vector 

instructions before the FRL is empty, and a stall occurs in the scalar core.  

Similarly, AVA pursuits the same RG goal, which is to provide the capability to 

operate on longer vectors when applications exhibit abundant DLP. However, AVA 
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allows this reconfigurability completely at hardware level, preserving the 32 architectural 

vector registers defined by the vector ISA, regardless of the MVL configuration. 

Therefore, AVA can accept as many vector instructions as the number of free registers 

it has. Larger instruction windows allow exploiting ILP. Additionally, while RG is an 

exclusive feature of RISC-V, AVA can be implemented over different microarchitectures 

regardless of the target vector ISA.  

Vector architectures have been proposed for embedded systems [63] [64] [16] 

despite their popular association with high-area. In fact, vector processors are also 

suitable and even more efficient for power-constrained embedded systems, since vector 

execution provides energy-efficiency benefits of amortizing instruction supply energy 

(fetch, decode, and issue) across many operations. Furthermore, even though a larger 

VRF incurs higher access energy, longer VLs are still beneficial for embedded 

applications, as established by Gobieski et al. [64]. AVA perfectly matches with 

embedded systems, since one of the main ideas is to implement a small VRF, while able 

to continue executing long vectors. 

Maximizing the use of expensive hardware resources such as vector registers is an 

important goal in the computer architecture community, since energy-efficient hardware 

is required from the HPC market to achieve Exascale levels to the embedded market for 

ultra-low-power embedded systems.  

In this thesis, we tackle this challenge by proposing a novel vector architecture 

termed as AVA, that combines the area and resource efficiency characterizing short 

vector processors with the ability to handle large DLP applications, as allowed in long 

vector architectures.  

3.2 Adaptable Vector Architecture (AVA) 

AVA is initially designed targeting short vectors lengths (MVL = 16 elements). 

However, AVA has the ability of reconfiguring the MVL when executing applications with 

abundant DLP, achieving performance comparable to designs for long vectors. As Figure 

3.1 shows, the default configuration of the AVA microarchitecture supports 64 physical 

vector registers, having a MVL of 16 elements, and thus resulting in a Physical Vector 

Register File (P-VRF) of 8KB distributed between 8 lanes. However, the adaptability of 

the proposed architecture allows to scale the MVL ranging from 16 to 128 elements, 

while keeping the same P-VRF size and the same number of available registers for 

renaming termed as Virtual Vector Registers (VVRs). To enable this feature, the P-VRF 

is complemented by a Memory Vector Register File(M-VRF) that does not have direct 

access to the functional units. Specifically, when the MVL is equal to 16 elements, all the 

64 VVRs are held in the P-VRF and none in the M-VRF. Instead, when the MVL is greater 
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than 16 elements, the VVRs are distributed among the P-VRF and the M-VRF. For 

example, when the MVL is equal to 128, 8 VVRs are held in the P-VRF, while the 

remaining 56 are allocated in the M-VRF. The interaction between the P-VRF and the 

M-VRF is handled by the following components:  

1. A two-stage renaming unit, composed of a first stage that maps the 32 logical 

registers (ISA registers) to the 64 VVRs, and by a second stage, that maps the 

64 VVRs to the physical registers located in the P-VRF and/or to the memory 

registers located in the M-VRF. 

2. A two-stage vector issue unit, the first level of which determines which, if any, 

source VVR of the issuing instruction need to be moved from the M-VRF to the 

P-VRF. Also, if a new physical register is required, but there is not any free 

physical register, the content of a selected VVR need to be moved from the P-

VRF to the M-VRF, then, freeing up one physical register. We term these 

operations as swap operations. The second level manages the actual issue of 

the instruction to the execution units. 

 

Figure 3.1 AVA microarchitecture overview. The new hardware additions are highlighted in 

green, involving the second stage of the renaming unit (VRF-Mapping) and the first stage of the 

Vector Issue Unit (pre-issue queue and Swap-Mechanism). 

As a general example of how AVA modules interact, Figure 3.1 shows the life cycle 

of one vector instruction in AVA modules, denoted by steps from 1 to 4.  

In ❶ the instruction arrives to the renaming stage, where the instruction operands 

are renamed from logical registers to VVR.  In the next stage, the instruction payload is 

sent to the pre-issue stage. 
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 At ❷ the pre-issue stage is in charge of mapping the VVRs to physical registers. If 

the source operands are located in the M-VRF, a Swap-Mechanism moves the related 

VVRs from the M-VRF to the P-VRF. Additionally, one physical register is assigned in 

case the vector instruction requires one physical register to write-back the result. In case 

there are no available physical registers, the Swap-Mechanism selects and copies one 

VVR located in the P-VRF to the M-VRF, thus freeing a physical register for the 

instruction.  

Once the vector instruction operands have been renamed to physical registers, the 

vector instruction is sent to the second issue stage ❸, which consists of the arithmetic 

and memory queues.  

❹ Once the instruction is issued and executed, the Reorder Buffer marks it as 

executed, and waits for its turn to commit. 

The next subsections describe the three key components of AVA in more detail (two-

stage renaming unit, two-level vector register file and two-stage vector issue unit), 

followed by a detailed functional description of the overall design. 

3.2.1 Two-stage Renaming Unit: Virtual, Physical and Memory Registers 

AVA implements a two-stage renaming unit which is based on a new type of 

registers termed as VVRs, which are an intermediate mapping between the logical 

registers and the physical and memory registers. Main structures are shown in Figure 

3.2. 

 

Figure 3.2. Main structures of the two-stages renaming unit. 

In the first stage, logical registers are renamed to VVRs using the conventional 

structures: The RAT, a 6-bit x 32-entries structure in charge of keeping the mapping 
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between the logical registers and the VVRs, and the FRL which contains the available 

VVRs to be assigned as a virtual destination. 

Freeing up Virtual Vector Registers. Freeing up VVRs is performed when an 

instruction commits. Then, the corresponding old destination VVR is sent to the FRL. 

Additionally, the corresponding Register Access Counter (RAC) (see Section 3.2.3 for 

RAC details) is set to 0.  

In the second stage, the VRF-Mapping logic keeps track of which VVRs are either 

mapped to physical or memory registers. This logic is composed of three simple 

structures. The First structure is the Physical Register Mapping Table (PRMT), a 6-bit x 

64-entries structure in charge of keeping the correspondences between the VVRs and 

the physical registers. The second structure is the Vector Register Location Table 

(VRLT), a 1-bit x 64-entries structure that indicates if a given VVR is located in the 

physical or memory registers. Third, the Physical Free Register List (PFRL) is a structure 

that holds the available physical registers to be assigned. 

Freeing up Physical Registers. The freeing up of a physical register occurs in two 

distinct cases: 

1. AVA exploits the concept of aggressive register reclamation [65] to enable 

physical register usage to closely match the true lifetime of registers. In this 

sense, it is possible to claim and free a physical register that will not be longer 

used. The aggressive register reclamation is applied only when: (a) a RAC (see 

Section 3.2.3 for RAC details) counter reaches zero, meaning that a specific VVR 

has been renamed, that all the consumers have read the VVR, and that the VVR 

has become an old destination of a younger instruction, and (b) there are no older 

vector memory instructions in the pipeline. In this scenario, the corresponding 

physical register assigned to the VVR which has its count equal to zero can be 

pushed to the PFRL structure. Note that by updating the RAC counters at commit 

time we ensure that the freeing up will not create a conflict in case of a recovery 

event (branch miss prediction or exception in the scalar pipeline) arises. This is 

because we are ensuring that all the instructions that read that VVR have been 

committed. 

2. When a physical register for the new instruction is needed, but there is no RAC 

count with 0. In this case, based on the information provided by the RAC 

counters, the VVR mapped in the P-VRF which has the lowest count, and does 

not match with any of the instruction virtual source operands is selected. The 

selected VVR is sent to the M-VRF and free the corresponding physical register.  
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Figure 3.3 Base cases when renaming a vector instruction. 
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Figure 3.3 shows three base cases when renaming a vector instruction.  

The first example in Figure 3.3.a shows the simplest scenario.  The vector instruction 

VADD V7 V2 V4 arrives at the renaming unit's first stage, where the architectural vector 

source operands read the RAT to obtain the corresponding mapping to the source VVRs 

35 and 37, and the old destination VVR 42. In parallel, the VVR 44 is obtained from the 

FRL as the new VVR destination. Then, the renamed instruction corresponds to VADD 

V44 V35 V37. In the next cycle, the previously renamed instruction VADD V44 V35 V37 

arrives at the second stage of the renaming unit, where the VVR source operands read 

the PRMT and the VRLT to obtain the current mapping of those VVRs. First, by reading 

the VRLT we know that the VVRs 35 and 37 are located in the P-VRF. Therefore, the 

values read from the PRMT (physical vector register 2 and 1) represent a valid mapping 

in the P-VRF. In parallel, the physical vector register 6 is obtained from the PFRL as the 

new physical destination. With this, the renaming process finalizes successfully. 

The second example in Figure 3.3.b shows the scenario when one of the source 

VVRs is located in the M-VRF.  The vector instruction VADD V7 V2 V4 arrives at the 

renaming unit's first stage, where the architectural vector source operands read the RAT 

to obtain the corresponding mapping to the source VVRs 35 and 37, and the old 

destination VVR 42. In parallel, the VVR 44 is obtained from the FRL as the new VVR 

destination. Then, the renamed instruction corresponds to VADD V44 V35 V37. In the 

next cycle, the previously renamed instruction VADD V44 V35 V37 arrives to the second 

stage of the renaming unit, where the VVR source operands read the PRMT and the 

VRLT to obtain the current mapping of those VVRs. First, by reading the VRLT we know 

that the VVRs 35 is located in the P-VRF. Therefore, the value read from the PRMT 

(physical vector register 2) represents a valid mapping in the P-VRF. However, for the 

VVR 37 is different since we read “0” from the VRLT, meaning that the VVR 37 is located 

in the M-VRF. Therefore, the value read from the PRMT (physical vector register X) 

represents an invalid mapping in the P-VRF, and must not be considered. In parallel, the 

physical vector register 6 is obtained from the PFRL as the new physical destination. At 

this moment, the renaming process is not complete since the vector instruction (VADD 

V6 V2 VX) is not fully renamed to physical vector registers. To finalize the renaming 

process, the renaming unit is supported by the Swap-Mechanism, which is in charge of 

solving the problem. The renaming unit then finalizes the renaming phase. Later, Section 

3.2.3 describes how the Swap-Mechanism solves the problems, but for the moment, we 

only know that the problem will be solved. 

The second example in Figure 3.3.c shows the scenario when both of the source 

VVRs are located in the P-VRF, however, there are not a physical vector register 
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available in the PFRL to assign as a new physical destination.  The vector instruction 

VADD V7 V2 V4 arrives at the renaming unit's first stage, where the architectural vector 

source operands read the RAT to obtain the corresponding mapping to the source VVRs 

35 and 37, and the old destination VVR 42. In parallel, the VVR 44 is obtained from the 

FRL as the new VVR destination. Then, the renamed instruction corresponds to VADD 

V44 V35 V37. In the next cycle, the previously renamed instruction VADD V44 V35 V37 

arrives at the second stage of the renaming unit, where the VVR source operands read 

the PRMT and the VRLT to obtain the current mapping of those VVRs. First, by reading 

the VRLT we know that the VVRs 35 and 37 are located in the P-VRF. Therefore, the 

values read from the PRMT (physical vector register 2 and 1) represent a valid mapping 

in the P-VRF. In parallel, it is required one physical vector register to the PFRL to be 

used as the new physical destination. However, the PFRL is empty. To finalize the 

renaming process, the renaming unit notifies this problem to the Swap-Mechanism, 

which is in charge of solving it. The renaming unit then finalizes the renaming phase. 

In addition to the presented cases, it is possible to find a combination of those cases. 

For example, that both source VVRs are located in the M-VRF, and at the same time, 

there are no physical registers available in the PFRL. All these problems are notified to 

the Swap-Mechanism, who will take care of solving each one of them. 

Finally, contrary to the RISC-V RG proposal where the number of logical and 

physical registers is reduced by LMUL factor, our model allows preserving the same 

number of Logical and VVRs no matter if the MVL increases. 

3.2.2 Two-level Vector Register File 

The adaptability of AVA allows to reconfigure the MVL from 16 elements up to 128 

elements while keeping the same modest P-VRF size. It is achieved by backing the P-

VRF with a second level VRF termed as M-VRF. In this scheme, the VVRs that are being 

used or will soon be used are assigned to the first level (i.e., P-VRF) allowing them to 

have direct access to the functional units. On the other hand, the VVRs that are not being 

used or will not be used soon are assigned to the second level (i.e., M-VRF). Additionally, 

each VVR is associated with one entry of the valid-bit structure (1-bit x 64-entries) which 

indicates a valid data. When a VVR is assigned at renaming time, the associated Valid-

bit is set to 0. Once the vector instruction executes, the associated Valid-bit is set to 1. 

Since our baseline microarchitecture features an 8-Lane VPU, the P-VRF is 

implemented as eight 4R-2W 1-KB (64-bit words x 128 entries) SRAM memory 

structures distributed between the eight lanes. The P-VRF contains 64 physical registers 

where each register is 16 elements wide for the baseline configuration, as illustrated in 

Figure 3.1. Note that our model is restricted to execute one arithmetic operation plus one 
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memory operation in parallel. Accordingly, three read ports and one write port are 

assigned to the arithmetic pipeline, while one read port and one write port are assigned 

to the memory unit. Adding more arithmetic pipelines would increase the required VRF 

ports, which has a super-linear impact on the power/area results, as demonstrated by 

Arima et al. [53] and Zyuban et al. [54]. 

Table 24. Physical Vector Register File Configurations. 

Physical Regs 64 32 21 16 12 10 9 8 
MVL 16 32 48 64 80 96 112 128 

Furthermore, by setting a configuration register, it is possible to configure the VPU 

for longer MVLs at the cost of reducing the number of physical registers that can be held 

in the P-VRF. For example, we can configure from 64 physical vector registers (16 

elements each), down to 8 physical vector registers (128 elements each) in multiples of 

16 elements as summarized in Table 24. Note that supporting all the proposed 

configurations does not incur in additional routing overhead. Indeed, the read/write 

control logic iterates MVL/lanes times until it completes the read/write operation.  

When MVL is higher than 16 elements, we need to reserve memory to hold the M-

VRF. In our experiments, in each c++ application, we include a function called set_mvrf 

which performs three main tasks: (1) configures the MVL that best matches the 

application characteristics, (2) performs a malloc assignment for reserving memory to 

allocate the M-VRF, and (3) sends the base address of the M-VRF to the VPU. However, 

ideally, the OS takes care of reserving the memory space for each thread. 

int main (int argc, char **argv) { 

    FILE *file; 

    file = fopen(inputFile, "r");     //Read input data from file 

    rv = fscanf(file, "%i", &numOpt); 

    data = (float *)malloc(numOpt*sizeof(float)); 

    prices = (float*)malloc(numOpt*sizeof(float)); 

    for ( loopnum = 0; loopnum < numOpt; ++ loopnum ) { 

        rv = fscanf(file, "%f", &data[loopnum]); 

    } 

    rv = fclose(file); 

 

#ifdef USE_RVA 

   set_mvrf (numOpt,_epi_e32); 

#endif // USE_RVA 

 

unsigned long int gvl; 

for (i=0; i<numOpt; i += gvl)  { 

   gvl=__builtin_epi_vsetvl(numOpt-i,__epi_e32, __epi_m1); 

   BlkSchlsEqEuroNoDiv_vector (&(prices[i]), gvl …); 

} … 

void set_mvrf (int numOpt, int sew) { 

    unsigned long int gmvl; 

    unsigned int* virtual_vrf; 

                     

    gmvl =_builtin_epi_vsetmvl(numOpt,_sew); 

    virtual_vrf = (int*)malloc(gmvl*sizeof(int) * 64); 

    send_virtual_vrf_base_addr(virtual_vrf[0]); 

} 

Input file 

65,536 

42.00    0.20   0.50 C 0.00      4.759423036851750055 

42.00    0.20   0.50 P 0.00      0.808600016880314021 

100.00  0.15    1.00 P 0.00      3.714602051381290071 

100.00  0.15    1.00 C 0.00      8.591659601309890704 

60.00   0.30    0.25 C 0.00      2.133371966735750025 

100.00  0.10    0.10 C 0.00      10.895610714793999563 

100.00  0.10    0.50 C 0.00     14.421570828843300660 

100.00  0.10    1.00 C 0.00      18.630859120667498274 

... 

Figure 3.4 M-VRF definition. Gray box shows the main function, yellow box shows the M-VRF 

definition, and blue box shows the input dataset. 
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To exemplify how the function set_mvrf works, Figure 3.4 shows a reduced version 

of the Blackscholes application. In the gray box the Blackscholes’s main function is 

displayed. The first lines show the opening of a text file that contains the input dataset to 

be computed (the input dataset is presented in the blue box). As mentioned previously, 

different datasets are provided for each application. Then, the number of European 

options to be computed is read from the input file. For the large input dataset, this number 

corresponds to 65,536 European options (numOpt). Then, the 65,536 European options 

are copied to the data structure.  

After the initialization phase is finished and thus the size of the input dataset is 

known, we configure AVA through the set_mvrf function. The yellow box shows the 

implementation of the three main tasks in the set_mvrf function. 

1. First, a new configuration intrinsic termed as _builtin_epi_vsetmvl is defined, 

which requests and sets the MVL with value numOpt (65,536). The larger 

MVL supported by AVA for a 32-bit element width is 256 elements. Then, the 

intrinsic _builtin_epi_vsetmvl returns the granted MVL (gmvl) of 256 

elements. With this, the VPU is configured with 64 VVRs, each having 256 

elements. However, since the P-VRF is only 8KB, there is space to hold only 

8 VVRs. 

2. After setting the MVL, the next step is to define the M-VRF in memory. This 

is done by performing a malloc memory assignment of size gmvl x sizeof(int) 

x 64-VVRs, resulting in 64KB corresponding to the larger M-VRF supported 

for AVA. There are other applications such as Streamcluster that, as an 

input, receive streams of 128 elements, each 32-bits. Then, when 

configuring the MVL, this will be set to 128 elements, each 32-bits, and when 

reserving memory for the M-VRF will lead to only 32KB. Then, the size of the 

M-VRF depends on the MVL previously set.  

3. Finally, the intrinsic send_virtual_vrf_base_addr sends the base address of 

the M-VRF to the VPU in order to know the location in memory of each VVR.  

Finally, coming back to the gray box, the vectorized functions can be executed 

iterating over the granted vector length (gvl) value until completing numOpt operations. 

For this example, the gvl is always equal to the MVL. This means that vectors of 256 

elements are computed inside the BlkSchlsEqEuroNoDiv_vector function in every 

iteration. 
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3.2.3 Two-stages Vector Issue Unit 

The two-stages vector issue unit is composed of the pre-issue stage and the issue 

stage.  We now explain both stages in turn.  

Pre-issue stage: The first level of mapping from Logical Registers to VVF occurs in 

the renaming stage. Pre-issue stage performs the second level of mapping between the 

VVRs and physical registers. 

As mentioned before, when MVL>16, a subset of the VVRs is held in the P-VRF, 

while the remaining VVRs are allocated in the M-VRF. In case a new physical register is 

required, but there is not any free physical register, the content of a selected VVR is sent 

to the M-VRF to free one physical register, which is assigned to the new instruction. 

Eventually, VVRs previously moved to the M-VRF can be needed by a new vector 

instruction, which then requires to move the content back to the P-VRF. In consequence, 

AVA implements a Swap-Mechanism module which is composed of two main structures: 

the RAC and the Swap-Logic. We now describe the operation of both. 

1. The RAC is a 3-bit x 64-entry structure where each entry holds how many times 

a specific VVR is read. At the first stage of the renaming, the RAC counters are 

updated. First, the new destination and source VVRs increment the 

corresponding register count, while the old destination VVR decrements the 

corresponding count. At commit time, the counters are updated again. This time, 

the source VVRs decrement the corresponding counter. The RAC helps to take 

decisions based on the count of each individual VVR which are described in the 

next paragraphs. 

2. The Swap-Logic decides which VVRs should be swapped to the M-VRF, and 

creates memory operations termed as Swap-Stores. Swap-Logic also decides 

when it is required to move VVRs from the M-VRF to the P-VRF, and creates 

operations termed as Swap-Loads.  The Swap-Logic takes advantage of the 

information provided by the RAC counters to decide which VVR allocated in the 

P-VRF should be swapped to the M-VRF. The VVR mapped in the P-VRF which 

has the lowest count (1 is the lowest count for swaps, and 0 is the count for 

aggressive register reclamation) is selected for the swap, and selection logic 

also checks that the candidate VVR does not match with any of the instruction’s 

virtual source operands to avoid deadlock.  

Pre-issue stage implements an in-order issue scheme.  A vector instruction is ready 

to be issued to the second level only when it has been fully renamed from VVRs to 
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physical registers. However, renaming the instruction from VVRs to physical registers 

involves several steps evaluated in the following order:  

1. Source VVRs are mapped to the corresponding physical register by reading the 

PRMT and the VRLT structures indexed by the source VVRs. There are two 

possible scenarios for each source operand:  

a. If the value read from the VRLT is equal to "1", it indicates that the physical 

register obtained from the PRMT structure is valid and it is located in the 

P-VRF, and the corresponding source VVR can be mapped immediately.  

b. On the contrary, if the value read from the VRLT is equal to "0", the VVR 

is located in the M-VRF and is loaded to the P-VRF to be used. In this 

second scenario, it is required to notify the conflict to the Swap-

Mechanism.  A couple of tasks are performed by the Swap-Mechanism: 

First the swap mechanism verifies that there is at least one physical 

register available to load the values from the M-VRF. In case there are 

not free physical registers, a Swap-Store is created and sent to the 

memory queue to store the content of one VVR selected by the Swap-

Logic from the P-VRF to the M-VRF.  With this, the associated physical 

register can be freed and pushed to the PFRL. Following the above 

verification, the Swap-Mechanism creates a Swap-Load. This Swap-Load 

is sent to the memory queue to load the VVR from the M-VRF to the P-

VRF.  

2. If the vector instruction requires to write-back its result, a new physical register 

must be assigned. In case there are no free physical registers, the verification 

step must be repeated. Then, the new available physical register can be assigned 

as the physical destination. 

3. Finally, once the instruction has been renamed, it is issued to the second level 

only if there is availability in their corresponding queue. Otherwise, a stall is 

signaled until there is at least one free slot for the instruction. 

Issue stage is composed of the memory and arithmetic queues in charge of issuing 

the vector instruction. Individually each queue performs in-order issue. However, since 

the memory queue is decoupled from the arithmetic queue, there is a light out-of-order 

behavior.  
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The introduction of swap operations might lead to deadlock. To avoid deadlocks, 

AVA must guarantee that each issuing instruction in the arithmetic or memory queues 

must have its source VVRs mapped to the P-VRF. This is done by following two rules:   

1. Swap-Stores created to free one physical register must notify to the new owner 

of the physical register that it has executed, meaning that the VVR previously 

mapped in the physical register is now in the M-VRF. Only then and then it is 

possible to write-back new data to the physical register. 

2. Swap-Loads must wait until all the consumers of the previously VVR mapped in 

P-VRF have read the register. Since each queue operates in-order, issue stage 

only needs to check the consumers inside the arithmetic queue. 

Once the instruction is issued and executed, it will be marked in the reorder-buffer 

as executed, only waiting for its turn to commit. 

3.2.4 Recovering the microarchitectural state 

After some event such as a misprediction or memory exception, AVA can roll back 

and recover the correct microarchitectural state. The renaming tables (RAT and FRL 

pointers) and the Valid-bit are the only mandatory structures to be recovered. Therefore, 

AVA implements only one copy that is updated every time a vector instruction commits. 

Recovering the RAC counters is optional, since every time that a VVR is freed, the 

respective count is also set to zero. Thus, not recovering the state of the counters does 

not imply any correctness issue. 

3.2.5 AVA Functional Description 

 

 

Figure 3.5 Register Mapping example 
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Figure 3.5 illustrates the AVA functional behavior based on the execution of three 

instructions.  The selected MVL configuration is 128 elements, meaning that only 8 

physical registers are available. Also, to demonstrate how the Swap-Mechanism works, 

we assume that several vector instructions were executed previously, meaning that 

some physical registers were previously assigned to older instructions. 

Once the scalar core sends the first instruction to the decoupled VPU, it is received 

by the first stage of the renaming unit. In this stage, the logical registers are renamed to 

VVRs. Since the instruction is a vector load, only the destination logical register 4 reads 

the RAT to obtain the associated old destination VVR 37. The destination VVR 42 is 

obtained from the FRL. In parallel, the new destination VVR 42 increments the 

corresponding RAC entry, while the old destination VVR 37 decrements the 

corresponding RAC entry.  In the next cycle, the instruction advances to the pre-issue 

stage. Since it is a load, the only requirement is to obtain a physical register to be used 

as a destination. At this moment, the PFRL has the physical register 6 available, which 

is assigned as the physical destination. Then, this new mapping is written in the location 

42 of the PRMT. Additionally, the corresponding entry in the VRLT is set to 1, indicating 

that the VVR 42 is now mapped in the physical registers. After this, the instruction is sent 

to the memory queue in the second stage to wait for execution. 

As also the second instruction is a vector load, performing the same process in the 

renaming unit as the previous load, the VVR 43 is assigned as the virtual destination. In 

parallel, the new destination VVR 43 increments the corresponding RAC entry, while the 

old destination VVR 38 decrements the corresponding RAC entry. Note that after the 

decrement, the count reaches “0”, meaning that it is possible to reclaim physical register 

38 to be used for a new physical destination, since it is guaranteed that any younger 

instruction will never use the data stored in the VVR 38. Additionally, location 38 in the 

VRLT is set to “0”, indicating that the VVR 38 is no longer mapped in the physical 

registers. In the following cycle, the instruction advances to the pre-issue stage, where 

the PFRL points to physical register 3 as being available, which is assigned as a physical 

destination for the load. Then, the instruction is sent to the memory queue in second 

stage waiting to be executed. 

The last instruction corresponds to a vector addition. This time, the sources and 

destination logical registers read the RAT to obtain the associated source VVRs 42 and 

43, and old destination VVR 39 respectively.  The VVR 44 is assigned as the destination. 

In parallel, the source VVRs 42 and 43, and the new destination VVR 44 increments the 

corresponding RAC entry, while the old destination 39 decrements the corresponding 

RAC entry. After the decrement, the count reaches “1”, which means that this time it is 
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not possible to reclaim physical register 39. In the next cycle, the instruction advances 

to the pre-issue stage. In the pre-issue stage, the PFRL does not have any physical 

register available, and there are no VVR counters mapped in the physical registers that 

have reached “0”. This forces a swap operation. To do the swap, the RAC entry with the 

lowest count is selected, which corresponds to VVR 39, which will be sent to the memory 

registers. Subsequently, a Swap-Store operation is created and issued to the memory 

queue to send the content of VVR 39 to the memory registers. Finally, the physical 

register 7 is freed and pushed to the PFRL, to be assigned later as a physical destination 

for the vector addition. Then, the instruction is sent to the arithmetic queue in the second 

stage where it waits for being issued to execution. Once every instruction commits, all 

source VVRs will decrease the associated RAC entry by one. 

3.3 Evaluation Methodology 

To evaluate AVA, we use as a base platform the previously presented 

parameterizable decoupled vector architecture [18] based on the RISC-V Vector 

extension [37] [38] modeled on the gem5 simulator presented in Chapter 2. We added 

the necessary modifications to implement the AVA architecture, substantially modifying 

the issue stage which also includes the queues, the Swap-Mechanism, and the VRF 

read/write logic. 

Table 25. Vector Processing Unit Configurations 

BASELINE-X1  BASELINE -X2 BASELINE -X3 BASELINE -X4 BASELINE -X8 

Dual-Issue 64-bit RISC-V superscalar in-order pipeline 

Clock Frequency - 2 GHz 

Vector Processing Unit (VPU)  

8 Lanes (1 pipelined arithmetic unit / Lane) 

Clock Frequency  - 1 GHz 

MVL 16 elements 

(1024-bit) 

MVL 32 elements 

(2048-bit) 

MVL 48 elements 

(3072-bit) 

MVL 64 elements 

(4096-bit) 

MVL 128 elements 

(8192-bit) 

64 Physical Registers 

4R/2W VRF:  

8KB 

4R/2W VRF:  

16KB 

4R/2W VRF:  

24KB 

4R/2W VRF: 

32KB 

4R/2W VRF: 

64KB 

Vector Memory Queue - 32 entries - in-order Issue 

Vector Arithmetic Queue - 32 entries - in-order Issue 

Ring topology for Lane Interconnection 

VMU connected to L2 Bus, 512-bit memory interface 

Memory System 

32KB L1I – hit latency 4 clock cycles – cache line 512-bit – 4 MSHRs 

32KB L1D – hit latency 4 clock cycles – cache line 512-bit – 4 MSHRs 

1MB L2 – hit latency 12 clock cycles – cache line 512-bit – 32 MSHRs 

2 GB DDR3-1600 Memory - DRAM memory access latency per DRAM burs 46.25ns 
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Table 26. AVA and RG configurations and their corresponding equivalence with the five 

configurations in Table 25. 

BASELINE -X1  BASELINE -X2  BASELINE -X3 BASELINE -X4 BASELINE -X8 

AVA-X1 (64-

PREG) 

AVA-X2 (32-

PREG) 

AVA-X3 (21-

PREG) 

AVA-X4 (16-

PREG) 

 AVA-X8 (8-

PREG) 

RG-LMUL1 RG-LMUL2 NA RG-LMUL4 RG-LMUL8 

Table 25 presents five system configurations where a VPU is attached to a scalar 

core. The VPU configurations vary the MVL's. BASELINE-X configurations denote a 

vector architecture designed for a specific MVL and is the baseline to compare against.  

BASELINE-X1 corresponds to the baseline hardware with 64 physical registers with 

MVL=16 elements (1024-bits), leading to a VRF size of 8KB. The remaining 

configurations (from BASELINE-X2 to BASELINE-X8) represent a costly hardware 

implementation, increasing the MVL size in every configuration leading to VRF sizes 

from 16-KB up to 64-KB for the largest configuration.  

Table 26 shows five different AVA configurations. AVA-X1 represents the baseline 

model (64 physical registers with MVL=16 elements). AVA-X2 to AVA-X8 represents the 

AVA configurations that after reconfiguring AVA-X1 match the BASELINE-X2 to 

BASELINE-X8 configurations. Also, the number of physical registers available for each 

configuration is shown. In the same way, the equivalent configurations for RISC-V RG 

are listed (LMUL1, LMUL2, LMUL4, and LMUL8). It is important to emphasize that both 

AVA and RG proposals use the baseline configuration with an 8-KB VRF for all their 

configurations.  

Table 27. Applications from RiVEC Benchmark Suite 

Application Application 

Domain 

Algorithmic 

Model 

Architectural vector registers 

required by the compiler 

Axpy HPC BLAS 2 

Blackscholes Financial Analysis Dense Linear Algebra 23 

LavaMD2 Molecular Dynamics N-Body 15 

Particle-Filter Medical Imaging Structured Grids 13 

Somier Physics Simulation Dense Linear Algebra 13 

Swaptions Financial Analysis MapReduce 24 

 

Table 27 shows six applications from the RiVEC Benchmark Suite [37] [40] 

presented in Chapter 2. There are two main considerations for selecting only six 

applications: 

1. First, the applications must be compatible with longer vector lengths. 

Applications such as Canneal which are compatible only with short vector 

lengths would not add meaningful data to this study. Then, it was selected 

applications compatible with medium and long vector lengths. 
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2. When there are no swap operations, it is expected to have exactly the same 

performance as the BASELINE configurations. However, when swap operations 

appear, different behaviors can arise, and it is interesting to analyze them. 

Therefore, to expose this extra memory traffic, applications that impose high 

pressure in the use of vector architectural registers to the compiler are the best 

candidates. Table 27 shows the number of architectural registers required by the 

compiler for each application. 

For all the applications, we have compiled four versions. The first version is compiled 

using the flag for LMUL=1. The resulting binary is used to evaluate the baseline 

configuration (MVL=16), and all the AVA and BASELINE configurations. The following 

ones use the flags to compile for the LMUL2, LMUL4, and LMUL8 configurations 

respectively to evaluate RG. 

To obtain area and energy, we use the extended McPAT framework configured for 

the 22nm technology node. We model AVA, RG, and the five BASELINE configurations 

presented in Table 25. Finally, AVA was successfully implemented at RTL level on an 

in-house VPU. More details are shown in Section 3.6. 

3.4 Performance, Energy, and Area Evaluation 

To demonstrate that AVA improves performance, the execution time and speedup 

is presented for all the applications and all the VPU configurations including AVA, RG, 

and the five BASELINE configurations. 

To demonstrate that AVA is energy-efficient, the energy consumption for all the 

evaluated applications is obtained from the McPAT framework configured for 22nm 

technology. The application statistics introduced in the McPAT model corresponds to the 

gem5 outputs. Dynamic and leakage energy results are reported only for the main 

contributors: The L2 cache, the VRF, and the FPUs. The required AVA structures also 

are modeled; however, it represents only 0.4% of the overall VPU energy consumption 

for the AVA-X1 configuration. Since the number of issued instructions is reduced as the 

MVL value is increased, the energy consumed by the required AVA structures is also 

reduced for larger MVL configurations. We include the extra energy dissipation of AVA 

in the VRF Dynamic/Leakage bars for all the AVA configurations.  

To demonstrate that AVA is area-efficient, Figure 3.6 presents the area of AVA and 

the five BASELINE configurations from the McPAT framework configured for 22nm 

technology. Note that for all the configurations, a total of 8 lanes are set. Each lane is 

equipped with 1 FPU and a slice of the overall VRF. We pay special attention to the VRF. 

The VRF configuration for AVA and the five BASELINE configurations are listed below: 
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 AVA (VRF-8KB): eight 4R/2W 64-bit*128-entries memory macros. 

 BASELINE-X1 (VRF-8KB): eight 4R/2W 64-bit*128-entries memory macros. 

 BASELINE-X2 (VRF-16KB):  sixteen 4R/2W 64-bit*128-entries memory macros. 

 BASELINE-X3 (VRF-16KB):  twenty-four 4R/2W 64-bit*128-entries memory 

macros. 

 BASELINE-X4 (VRF-32KB):  thirty-two 4R/2W 64-bit*128-entries memory 

macros. 

 BASELINE-X8 (VRF-64KB):  sixty-four 4R/2W 64-bit*128-entries memory 

macros. 

Note that all of these configurations implement the same size of memory macros but 

duplicate the number in each configuration. The area estimate also includes the scalar 

core, the 32KB L1-I and L1-D caches, and the 1MB L2 cache.  

 

Figure 3.6 Area results for AVA and the different BASELINE configurations obtained from 

McPAT 

Note that BASELINE-X8 is almost the same size as the 1MB L2 cache. This is 

because the multi-ported 64KB VRF represents 59% of the overall VPU area for the 

BASELINE-X8 configuration. Also, the VRF occupies almost the same area as the scalar 

core, including L1 caches. When comparing BASELINE-X8 with AVA-X1 and 

BASELINE-X1, the 64KB VRF is 8x bigger than the smallest configurations. For the AVA 

configuration, the required AVA structures add a negligible 0.55% area overhead to the 

VPU, while reducing the total VPU area by 53% compared with the BASELINE-X8 

configuration.  

To demonstrate the AVA performance/mm2 efficiency, the performance obtained for 

each BASELINE and AVA configuration is divided between the area of their 
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corresponding configuration. Note that for AVA, the area is 1.122mm2 for all the 

configurations. 

3.4.1 Axpy 

Performance Evaluation. The first application is Axpy, which represents the ideal 

scenario for both RG and AVA where RG-LMUL8 and AVA-X8 obtain the same 

performance compared to a VPU designed for long vectors (BASELINE-X8), and 

achieving a speedup of 2x with respect to the baseline configuration (BASELINE-X1), as 

illustrated in Figure 3.7.c. Also, as shown in Figure 3.7.a, neither spill code from the 

compiler nor swap operations from the Swap-Logic are created since Axpy only uses two 

logical vector registers. Figure 3.7.b shows the percentage of vector arithmetic and 

memory instructions. For all the configurations, the vector memory instructions 

(Vmemory) represent 75%, and the vector arithmetic instructions (Varithmetic) represent 

25% of the total vector instructions. 

 

Figure 3.7 Axpy performance evaluation. a) Vector Memory Instruction count including spill 

operations generated by the compiler and swap operations generated by AVA. b) % of vector 

instruction, c) Execution-time and speedup compared to BASELINE-X1. 
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Energy Evaluation. Figure 3.8 shows energy consumption (left axis) and Energy 

Delay Product (EDP) efficiency metric (right axis) for Axpy. Axpy does not exhibit 

spill/swap operations. As the MVL is increased, less total energy is consumed. For the 

VPU, the Dynamic energy is constant since no spill/swap operations are added, while 

for the scalar core, dynamic energy is reduced since fewer instructions are fetched, 

decoded, and executed in the scalar pipeline.  Since larger configurations perform faster, 

leakage energy is reduced. Note that BASELINE-X2, BASELINE-X3, BASELINE-X4, 

and BASELINE-X8 configurations double the leakage in each configuration because 

they implement larger multi-ported VRF memories from 16KB up to 64KB. Then, both 

RG and AVA configurations consume less energy than the equivalent BASELINE 

configuration. When compared with the BASELINE-X1 configuration, AVA saves 46% of 

the overall energy consumption by reconfiguring for long vectors. Finally, EDP results 

show that the most efficient configurations are AVA-X8 and RG-LMUL8. 

 

Figure 3.8 Axpy energy consumption (left axis) and normalized Energy Delay Product (right 

axis)  for different configurations. 

 

Performance/mm2. Figure 3.9 shows the performance/mm2 efficiency achieved for 

AVA when comparing versus the BASELINE and LMUL configurations. When 

reconfiguring AVA for longer MVL configurations, it is clear that every square millimeter 

is better exploited. For example, reconfiguring for AVA-X8, the performance/mm2 

efficiency doubles AVA-X1. 
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Figure 3.9 Area results obtained from McPAT for 22nm technology node, and 

performance/mm2 for each configuration. 

3.4.2 Blackscholes 

Performance Evaluation. The second application is Blackscholes. This high DLP 

application is interesting to analyze since the vector compiler requires 23 architectural 

vector registers to obtain the final binary. At first glance, we can see that there is high 

pressure in the use of vector logical registers. For LMUL=2,4 and 8, the compiler can 

make use of only 16,8 and 4 architectural vector registers respectively, and for any of 

those configurations, spill code is added as shown in Figure 3.10.a. AVA presents a 

similar behavior. However, it is interesting to see that for AVA-X2 there are no swap 

operations. This is because the scheduling is done using 32 physical vector registers, 

meaning that we have enough vector registers to compute the application without 

generating swap operations. On the other hand, swap operations are generated starting 

from AVA-X4. Also, the number of swap operations is slightly less than the number of 

spill code operations generated by the compiler. This is because AVA performs the 

scheduling based on the available physical registers, which are always double compared 

to LMUL. Figure 3.10.c shows the performance results. For AVA-X2 there are no swap 

operations, thus a similar performance to BASELINE-X2 is achieved, and a speedup of 

1.58x over the baseline configuration. For AVA-X3, the percentage of memory operations 

represents 11.9% of the total vector instructions. AVA-X3 achieves a speedup of 1.72x 

over the baseline configuration, and slightly lower than the equivalent BASELINE-X3 

configuration. This implies that almost all the extra memory traffic generated by the swap 

operations can be hidden beneath vector arithmetic execution. Also, the swap operations 

that were not able to be hidden beneath vector arithmetic execution, cause a stall in the 

vector arithmetic pipeline because of a read after write dependency, decreasing the 

performance by only 3.3% compared with the equivalent BASELINE-X3 configuration. 

For AVA-X8, the percentage of memory operations represents 38% of the total vector 

instructions, causing that a larger percentage of swap operations cannot be hidden 

beneath vector arithmetic execution, leading to a performance degradation of 30.8% 
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compared with the equivalent BASELINE-X8 configuration. For all the configurations, 

AVA performs better than RG since less memory traffic is generated. 

 

 

Figure 3.10 Blackscholes performance evaluation. a) Vector Memory Instruction count including 

spill operations generated by the compiler and swap operations generated by AVA. b) % of 

vector instruction, c) Execution-time and speedup compared to BASELINE-X1. 

 

Energy Evaluation. Figure 3.11 shows energy consumption (left axis) and Energy 

Delay Product (EDP) efficiency metric (right axis) for Blackscholes. Blackscholes 

generates an important number of spill/swap operations for the RG-LMUL8 and AVA-X8, 

leading to extra energy dissipation which is wasted to support those operations, as 

shown by the L2 Dynamic value. However, Blackscholes features a very high percentage 

of vectorization, where the overall instruction count is reduced from 3,180,479,876 for 

the scalar version to 8,704,913 for the vectorized version with MVL=128. Then, even 

when there is an increase in the L2 Dynamic energy caused by the swap operations, 

reconfiguring for longer vector lengths leads to energy savings for AVA when compared 
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with BASELINE-X1. Finally, looking at the EDP results, the most efficient configurations 

for AVA are represented by AVA-X3 and AVA-X4, which are very close. 

Performance/mm2. Figure 3.12 shows the performance/mm2 achieved for AVA 

when comparing versus the BASELINE and LMUL configurations. When reconfiguring 

AVA for longer MVL configurations, AVA-X3 and AVA-X4 achieve the best 

performance/mm2 efficiency. This is because the swap operations hurt the final 

performance when reconfiguring for AVA-X8. 

 

 

Figure 3.11 Blackscholes energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

 

 

Figure 3.12 Area results obtained from McPAT for 22nm technology node, and average 

performance/mm2 for each configuration. 
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3.4.3 LavaMD2 

Performance Evaluation. For LavaMD2, the vector compiler uses 15 architectural 

vector registers to create the final binary, which implies that for RG-LMUL2, no spill code 

is necessary. However, for RG-LMUL4 and RG-LMUL8, spill code is generated, as 

shown in Figure 3.13.a, causing an increase in memory operations from 9% for RG-

LMUL1 configuration to up to 43% for RG-LMUL8 configuration, as shown in Figure 

3.13.b. For AVA, the swap operations are few compared with the equivalent spill code 

generated by the RG-LMUL configuration. Figure 3.13.c shows the performance results. 

First, this application makes use of a fixed vector size of 48 elements, meaning that for 

the configurations with a larger MVL than 48 elements, we cannot make full use of each 

vector register, and a portion of each vector register remains unused during all the 

program execution. For AVA the best configuration is AVA-X3. AVA-X3 not only executes 

the 48 elements with only one instruction, but also 21 physical registers are available for 

the computation, thereby avoiding swap operations, as shown in Figure 3.13.b. Also, it 

achieves a speedup of 1.67x, better than any of the RG- LMUL configurations and equal 

to the equivalent BASELINE configuration. Finally, another interesting result is for RG-

LMUL8, where the performance decreases notably. The reason is because for this 

configuration, the memory operations represent 43% of the overall vector instructions. 

Also, 81% of the memory operations are spill code. As described in Section 3.1, the spill 

code is always executed using the MVL. As a result, the memory operations become the 

bottleneck since all the arithmetic operations (57%) are executed with VL=48, while spill 

code is executed with VL=MVL=128.  

Energy Evaluation. Figure 3.14 shows energy consumption (left axis) and Energy 

Delay Product (EDP) efficiency metric (right axis) for LavaMD2. LavaMD2 has interesting 

results. Energy consumption increases notably for RG-LMUL8 and AVA-X8. This is 

because LavaMD2 features medium-size vectors, with MVL=48 providing the optimal 

energy. Spill/swap operations are always executed with the MVL value. For RG-LMUL8 

and AVA-X8 configurations, spill/swap operations are executed with an MVL=128, 

although elements past VL=48 are not used, leading to a drastic energy consumption 

increase. However, when running the application, AVA will select the optimal 

configuration (AVA-X3), avoiding wasting unnecessary energy. 

Performance/mm2. Figure 3.15 shows the performance/mm2 achieved for AVA 

when comparing versus the BASELINE configurations. When reconfiguring AVA for 

longer MVL configurations, AVA-X3 achieves the best performance/mm2 efficiency. On 

the contrary, when reconfiguring for AVA-X8, there is an efficiency loss. This is because 

LavaMD2 requires at most an MVL=48; larger configurations do not exploit the hardware 

resources. 
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Figure 3.13 LavaMD2 performance evaluation. a) Vector Memory Instruction count including 

spill operations generated by the compiler and swap operations generated by AVA. b) % of 

vector instruction, c) Execution-time and speedup compared to BASELINE-X1. 

 

Figure 3.14 LavaMD2 energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 
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Figure 3.15 Area results obtained from McPAT for 22nm technology node, and 

performance/mm2 for each configuration. 

 

3.4.4 Particle-Filter 

Performance Evaluation. For Particle-Filter, the compiler requires 13 architectural 

vector registers to generate the final binary, which implies that for RG-LMUL2, AVA-X2, 

and AVA-X3, no spill/swap operations are added. On the other hand, spill/swap 

operations are generated for RG-LMUL4, RG-LMUL8, and AVA-X8, as shown in Figure 

3.16.a. However, although there is an increase in the number of vector memory 

instructions (spill and swap operations), when comparing with the number of vector 

arithmetic instructions, the percentage is negligible, representing only 0.15% of vector 

memory instructions for the larger configuration. Then, those vector memory operations 

are perfectly hidden beneath vector arithmetic execution, achieving similar performance 

levels as the corresponding BASELINE configuration as shown in Figure 3.16.c.  

Energy Evaluation. Figure 3.17 shows energy consumption (left axis) and Energy 

Delay Product (EDP) efficiency metric (right axis) for Particle-Filter. For Particle-Filter, 

spill/swap operations are generated for RG-LMUL4, RG-LMUL8, and AVA-X8. However, 

these extra operations represent a negligible percentage compared to the overall vector 

instruction count. As a consequence, as the MVL is increased, less total energy is 

consumed. Dynamic energy is almost constant for the VPU, while there is a notable 

reduction in the scalar core because of the reduction in the instruction count.  Since 

larger configurations improve performance, leakage energy is reduced for AVA and RG. 

On the contrary, BASELINE-X2, BASELINE-X3, BASELINE-X4, and BASELINE-X8 

configurations double the leakage in each configuration because they are implementing 

larger multi-ported VRF memories from 16KB up to 64KB. Then, both RG and AVA 

configurations consume less energy than the equivalent BASELINE configuration. 

Compared with the BASELINE-X1 configuration, AVA saves 30% of the overall energy 
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consumption by reconfiguring for long vectors. Finally, looking at the EDP results, AVA-

X8 becomes the most efficient configuration for AVA. 

Performance/mm2. Figure 3.18 shows the performance/mm2 achieved for AVA 

when comparing versus the BASELINE configurations. When reconfiguring AVA for 

longer MVL configurations, AVA-X8 achieves the best performance/mm2 efficiency. 

Although swap operations are generated for AVA-X8, this does not impact on the final 

performance, achieving the same performance levels as BASELINE-X8. Therefore, with 

much less area, AVA is more performance/mm2 efficient. 

 

 

Figure 3.16 Particle-Filter performance evaluation. a) Vector Memory Instruction count including 

spill operations generated by the compiler and swap operations generated by AVA. b) % of 

vector instruction, c) Execution-time and speedup compared to BASELINE-X. 
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Figure 3.17 Particle-Filter energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

 

Figure 3.18 Area results obtained from McPAT for 22nm technology node, and 

performance/mm2 for each configuration. 

 

3.4.5 Somier 

Performance Evaluation. For Somier, the vector compiler uses 13 architectural 

vector registers to generate the final binary. Spill/swap operations are generated only for 

RG-LMUL8 and AVA-X8. For RG-LMUL8 there was an increase in the percentage of 

memory operations from 46% to 68%, as shown in Figure 3.19.b. For AVA-X8, few swap 

operations were generated. Figure 3.19.c shows the performance results. In this case, 

the BASELINE-X4, RG-LMUL4, and AVA-X4 achieve the best speedup with 1.43x. For 

AVA-X8 and RG-LMUL8 there was a small performance degradation because of the 

additional memory traffic.  

Energy Evaluation. Figure 3.20 shows energy consumption (left axis) and Energy 

Delay Product (EDP) efficiency metric (right axis) for Somier. Somier features a low 
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percentage of vectorization; therefore, dynamic energy in the scalar core represents the 

main energy contributor for all the configurations. VRF leakage for BASELINE-X8 also 

represents an important energy contributor. When comparing AVA-X8 with BASELINE-

X8, it is clear the advantage of having an 8KB VRF where leakage contribution does not 

cause a big impact on the overall energy consumption. Additionally, spill code and swap 

operations are generated only for AVA-X8 and RG-LMUL8, increasing the L2 dynamic 

energy, especially for RG. Finally, looking at the EDP results, AVA-X4 becomes the most 

efficient configuration. 

Performance/mm2. Figure 3.21 shows the performance/mm2 achieved for AVA 

when comparing versus the BASELINE configurations. When reconfiguring AVA for 

longer MVL configurations, AVA-X4 achieves the best performance/mm2 efficiency. For 

AVA-X8, there is a decrease in efficiency because of the performance degradation 

caused by the extra swap operations required. 

 

Figure 3.19 Somier performance evaluation. a) Vector Memory Instruction count including spill 

operations generated by the compiler and swap operations generated by AVA. b) % of vector 

instruction, c) Execution-time and speedup compared to BASELINE-X1. 
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Figure 3.20 Somier energy consumption (left axis) and normalized Energy Delay Product (right 

axis)  for different configurations. 

 

 

Figure 3.21 Area results obtained from McPAT for 22nm technology node, and 

performance/mm2 for each configuration. 

 

3.4.6 Swaptions 

Performance Evaluation. Finally, for Swaptions, the vector compiler uses 24 

architectural vector registers to generate the final binary, which implies that for RG-

LMUL2, RG-LMUL4, and RG-LMUL8, spill code is generated as shown in Figure 3.22.a, 

causing an increase in the percentage of memory operations from 12% in the 

BASELINE-X1 configuration up to 34% in the RG-LMUL8 configuration as shown in 

Figure 3.22.b. For AVA, the swap operations appear starting from AVA-X3, obtaining 

almost the same number as the compiler-generated spill code for RG. AVA-X8 achieves 

a speedup of 1.78x while the BASELINE-X8 configuration achieves 2.15x with respect 

to the BASELINE-X1 configuration.  
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Energy Evaluation. Figure 3.23 shows energy consumption (left axis) and Energy 

Delay Product (EDP) efficiency metric (right axis) for Swaptions. Swaptions generate an 

important number of spill/swap operations for the RG-LMUL8 and AVA-X8, leading to 

extra energy dissipation wasted to support those operations. However, even consuming 

extra energy on the swap operations, energy savings are obtained compared with the 

short vector configurations by reconfiguring to AVA-X8. 

 

 

Figure 3.22 Swaptions performance evaluation. a) Vector Memory Instruction count including 

spill operations generated by the compiler and swap operations generated by AVA. b) % of 

vector instruction, c) Execution-time and speedup compared to BASELINE-X1. 
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Figure 3.23 Swaptions energy consumption (left axis) and normalized Energy Delay Product 

(right axis)  for different configurations. 

 

Figure 3.24 Area results obtained from McPAT for 22nm technology node, and average 

performance/mm2 for each configuration. 

 

Performance/mm2. Figure 3.24 shows the performance/mm2 achieved for AVA 

when comparing versus the BASELINE configurations. When reconfiguring AVA for 

longer MVL configurations, AVA-X8 achieves the best performance/mm2 efficiency.  

Although for AVA-X3, AVA-X4, and AVA-X8 are generated swap operations, 

performance close to the BASELINE configurations is achieved. Therefore, with much 

less area, AVA is more performance/mm2 efficient. 

As shown above, AVA provides performance improvements for all the evaluated 

applications, being competitive with BASELINE designs for longer vectors.  Additionally, 

as demonstrated, although there is additional memory traffic, AVA provides energy 

savings by reconfiguring for longer MVLs. Finally, Ava offers a higher performance/mm2 

efficiency.  
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3.5 Synthesis and place-and-route 

Finally, we also perform experiments with design automation tools to get accurate 

results for the area and achievable frequency. Towards this goal, we added the required 

AVA support to an in-house VPU. We present the synthesis and place-and-route results 

for AVA and BASELINE-X8 configurations. To provide the 4R-2W VRF, we implemented 

the LVT technique [55] which provides multi-ported memories at the cost of replicating 

and banking dual-port memories. 

We obtain area, power, and achievable frequency using Cadence tools, Genus for 

synthesis, and Innovus for place-and-route. We selected the GLOBALFOUNDRIES 

22FDX 8T technology libraries, and we implemented the VRF slices using the Synopsys 

High-Performance Dual-Port SRAM cell-based Register File Memory Compiler (R2PH). 

The target frequency was 1GHz. 

Table 28. Post-place-and-route results 

 WNS (ns) Power  

(mW) 

Area (mm2) Density 

BASELINE-X8  -0.190 2290 3.90 61% 

     -VRF Macros 388 1.252  

AVA  +0.119 1732 1.98 61.8% 

    -AVA structures 5.266 0.0042 - 

    -VRF Macros 184 0.257  

 

Post-place-and-route results for the typical corner (TT 0.8V 25Cº) are summarized 

in Table 28, and the obtained layouts are shown in Figure 3.25, for both configurations. 

Regarding area results, for the AVA configuration, the required AVA hardware structures 

incur a negligible 0.21% area overhead. On the other hand, the total chip area is reduced 

by 50.7% compared with the BASELINE-X8 configuration, validating the McPAT results. 

Regarding the timing performance, target constraints are met only for AVA with a 

positive slack of 0.119ns. However, for BASELINE-X8 there is a negative slack of -

0.244ns, due to the critical paths stemming from the longer wires between the SRAMs 

and the lane logic. Based on our synthesis and place-and-route experiments, we can 

confirm that the small size required for AVA helps to achieve higher working frequencies 

due to a higher robustness against different physical floor planning options. 
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Figure 3.25 BASELINE-X8 design is on the top and AVA on the bottom. PnR results for 22 nm 

technology of two instances of the VPU with eight lanes, highlighting main internal blocks: A) 

lane 1; B) lane 2; C) lane 3; D) lane 4; E) lane 5; F) lane 6; G) lane 7; H) lane 8; I) Vector 

Memory Unit; J) ROB; K) Instruction queue; L) Remaining modules such as memory queue, 

renaming unit and ring lane interconnection; M) AVA structures. Circled area marks the added 

AVA structures. VRF memory macros can be identified on the corners. 
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3.6 Related Work 

AVA partially leverages different computer architecture techniques that were 

developed for out-of-order cores, VLIW processors, and GPUs. While the concepts might 

be familiar at high level, we adapt and substantially tailor these techniques for vector 

processors to propose the novel adaptable VRF design. The following lines briefly 

describe the related work. 

Different alternatives to exploit efficient use of physical registers was widely studied. 

González et al. [66] [67] proposed a dynamic register renaming approach where the key 

idea is to delay the allocation of the physical registers until write-back. To this end, a 

technique termed as Virtual-Physical Registers was proposed. Virtual-Physical Registers 

are not related to any storage location; they are merely tags to keep track of the 

dependencies and are therefore not related to AVA. Although AVA proposes a two-stage 

renaming unit, unlike the Virtual-Physical Registers concept, our VVRs are assigned at 

renaming time, while physical registers are assigned at issue time, and combined with 

the RAC counters, exploiting the use of the vector registers as soon as they can be 

reused.  

Based on the fact that a physical register can be reused when it is guaranteed that 

the value in it can never be used by any later instruction, several studies [65], [68], [69]    

associated a counter with each physical register, to keep track of the pending read 

operations. In these techniques, a physical register is freed whenever the associated 

counter is zero. Such aggressive register reclamation schemes enable physical register 

usage to closely match the true lifetime of registers. AVA exploits the concept of 

aggressive register reclamation to free a physical register that will not be longer used. 

Additionally, AVA extend the use of the associated counters to decide the best option to 

perform swaps between Physical and VVRs.  

The idea of using memory to provide a backing store to the register file has been 

has also been widely studied for out-of-order cores [70], VLIW processors [71], and 

GPUs [72] [73]. In this work, we apply it to vector processors as a key mechanism to 

offer a variety of MVL configurations. Additionally, we have unified the idea of a two-level 

VRF with the concept of VVRs and physical registers, which in combination with the 

Swap-Mechanism presents a balanced design which is able to efficiently handle different 

DLP patters. 

 



Adaptable Vector Architecture 

131 

 

3.7 Summary 

This chapter introduces AVA, an Adaptable Vector Architecture with the ability to 

reconfigure the MVL, unlocking the benefits of having a longer vector microarchitecture 

when abundant DLP is present. Our results demonstrate that by having a modest VPU 

designed for short vectors, plus our novel scheduling mechanism, it is possible to obtain 

a very competitive performance when comparing AVA with the equivalent BASELINE 

long vector configurations. As a first approximation, we obtain area and energy metrics 

from McPAT, demonstrating that AVA can save around 53% of the total VPU area 

compared with a configuration for long vectors. Additionally, we demonstrate that 

supporting long vectors not only improve performance, but also leads to energy savings 

for several workloads. Finally, we implemented AVA at RTL level, synthesized and place-

and-routed in 22nm technology, demonstrating that AVA not only provides an area-

efficient design, but also allows higher frequencies. 
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It would appear that we have reached the limits of what 
it is possible to achieve with computer technology, 

although one should be careful with such statements, 
as they tend to sound pretty silly in 5 years. 

 

John Von Neumann, 
 (1949) 
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This chapter presents the conclusions of the research done in this thesis work. 

Additionally, future research directions are highlighted.  

4.1 Conclusions 

Vector processors provide one effective way to achieve high performance and 

efficiency when applications contain abundant DLP. On the software side, modern 

scientific applications are getting more diverse, and the vector lengths in those 

applications vary widely. On the hardware side, today, there are two main design trends 

for vector processors: vector processors designed for long and short vectors lengths. 

Long vector designs are limited to a specialized subset of applications, where high DLP 

must be present to achieve excellent performance with very high efficiency. In contrast, 

Short vector designs are compatible with a more extensive range of applications. Short 

vector designs are area efficient and are "compatible" with applications having long 

vectors; however, these short vector architectures are not efficient as longer vector 

designs when executing high DLP code. To overcome this limitation imposed at the 

hardware level by the MVL design parameter, the main objective of this thesis is to 

propose a novel Vector Architecture able to adapt the microarchitecture according to the 

application characteristics to efficiently use the resources and improve performance and 

energy results. 

To fulfill the main objective, several steps were done to develop a complete environment 

to test our ideas, as shown in the thesis timeline in Figure 4.1. In that sense, the first 

contribution corresponds to a complete framework for designing and evaluating vector 

architectures: the gem5 simulator and the McPAT framework extended with a 

parameterizable vector architecture model, and the RiVEC benchmark suite. The 

primary goal of these tools was to serve as a base platform for this research. This primary 

goal was successfully accomplished by presenting a study of the applications when 

executed on the gem5 and McPAT vector architecture models (September 2019). 

Additionally, in Jun 2020, we open-source these tools trying to contribute to the computer 

architecture community, expecting to be used as the base for research on RISC-V Vector 

Architectures. Also, we invite the community to contribute to this effort by adding missing 

features to the gem5 model, or by adding new applications to the RiVEC benchmark 

Suite.  

After one year and a half that we open source the complete framework, we are glad 

to see that the tools have been well accepted by the community and are being used. In 

fact, adding missing support or updating to the latest specs is something the community 

and we are continually working on. For the same reason, as shown in Figure 4.1, gem5 

VPU model and RiVEC bars do not have an ending. Some simple metrics which allows  
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 Figure 4.1 Thesis timeline. 

us to know that people is using our tools are the GitHub repository insights. For example, 

the RiVEC benchmark suite was the most popular with around 2000 views and more 

than 350 Clones, 30 starts, and 21 forks from people working actively. Companies such 

as SiFive are also exploring our suite, extending and adapting it to their environment. 

People from the Chinese academy contribute to this effort by updating the RiVEC 
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benchmark suite from the RISC-V V extension version v0.71 to v1.0. The gem5 simulator 

also has been used by researchers.  Regarding metrics, it has around 1000 views and 

100 Clones, 9 starts, and 8 forks. Researchers have contributed by adding missing 

support such as 8-bit and 16-bit integer support, or reporting bugs that were successfully 

solved. 

Finally, the main contribution of this thesis is called AVA, an Adaptable Vector 

Architecture that combines the area and resource efficiency characterizing short vector 

processors with the ability to handle large DLP applications, as allowed in long vector 

architectures. AVA combines different computer architecture techniques such as a two-

stage renaming unit based on a new type of registers termed as Virtual Vector Registers 

(VVRs); a two-level VRF, that supports 64 VVRs whose MVL can be configured from 16 

to 128 elements; and a novel two-stage vector issue unit in charge of scheduling the 

execution of the vector instructions. We showed that by implementing the required AVA 

structures in a vector processor, it is possible to achieve higher performance, energy 

efficiency, and area efficiency levels. Additionally, AVA can be implemented over SIMD 

multimedia extensions or vector architectures regardless of the target vector ISA. For 

example, talking about fixed-length ISAs, we can implement our technique on the AVX 

extension (VL=128-bits) and be able to support the execution of AVX2(VL=256-bits) and 

AVX-512(VL=512-bits) instructions on the same hardware. This can be very interesting 

for ultra-low-power embedded systems that cannot afford an AVX-512. 

 

4.2 Future Work 

This thesis opens the door to further optimizations for AVA. In particular, some 

vector instructions, such as vector reductions, only update the first element of the 

destination vector registers, while other vector instructions replicate the same value over 

all the elements of a vector register. In the AVA microarchitecture, vector registers are 

an important resource. As the MVL is increased, fewer physical vector registers are 

available. In that sense, implementing an extension (64-bit x 8 entries) of the P-VRF for 

holding those scalar results alleviates the data movement between the two-level of the 

VRF. Initial results on this idea are very promising, encouraging us to continue exploring 

this new optimization. 

A second interesting optimization proposal devised by Francesco Minervini is the 

following. Vector register gather instructions read elements from a first source vector 

register at locations given by a second source vector register and writes those elements 

in a new vector register (vd[x] = vs2[vs1[x]]). Executing this operation is typically 

expensive in terms of total latency to be executed. For AVA, there are two possible 
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scenarios. In case the first source vector register that holds the elements is located in 

the M-VRF, the vector register gather instruction can be converted to something similar 

to a load indexed instruction, then loading the data in the order it is required to be written 

in the destination vector register. In a second scenario, if there is no free physical vector 

register to be assigned as the destination for the vector register gather instruction, 

instead of selecting one VVR to be sent to the M-VRF, this operation can be executed 

as a store indexed operation.  

Similar to the previous optimization proposal, there are several optimizations that 

can exploit the fact of having a two-level VRF. For example, combining the concept of 

in-cache computing with AVA. In this scheme, some computation can be performed 

inside the lanes using the P-VRF and the functional units, and other computations can 

be performed in the M-VRF. Also, slides or register gather operations do not need a 

functional unit to be computed. This can influence reducing data movement between the 

P-VRF and the M-VRF, and improve performance. 

We presented the base model, and evaluate it attaching the VPU to an in-order core.  

In that sense, one research direction of this work is to study the impact of attaching the 

VPU an out-of-order core. Applications like Particle-Filter which has intensive 

communication with the scalar core, suffers when attaching the VPU to an in-order core, 

because the scalar core stalls until the VPU finish the current computation of the vector 

instructions, to then, send back a scalar value to the scalar core. Using an out-of-order 

core, it would be possible to advance independent scalar instructions and also continue 

feeding the vector engine. However, this has several implications since an out-of-order 

core is a complex and costly design, which maybe for some systems is not affordable. 

Another possible direction would be investigating on multicore designs, then 

exploiting both DLP and TLP. AVA allows to execute vector lengths of up to 128 elements 

when high DLP is present. If we combine this feature with multi-core or many-core 

configurations, the results can be very promising. Then, allowing to execute long vectors 

on commodity CPUs at the same area cost of modern CPUs as the Fujitsu A64FX, and 

not restricting the design to a specific subset of applications such as Aurora Tsubasa 

vector engine. 
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If we knew what it was we were doing, it would not be called 
research, would it? 

Albert Einstein 
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