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Agradecimientos

How could you have a slogan like "freedom is slavery" when the concept of free-
dom has been abolished? The whole climate of thought will be different. In fact
there will be no thought, as we understand it now. Orthodoxy means not thinking
— not needing to think. Orthodoxy is unconsciousness.

One of these days, thought Winston with sudden deep conviction, Syme will be
vaporized. He is too intelligent. He sees too clearly and speaks too plainly. The
Party does not like such people. One day he will disappear. It is written in his face.
[...]

To keep them in control was not difficult. A few agents of the Thought Police
moved always among them, spreading false rumours and marking down and elim-
inating the few individuals who were judged capable of becoming dangerous; but
no attempt was made to indoctrinate them with the ideology of the Party. It was
not desirable that the proles should have strong political feelings. All that was
required of them was a primitive patriotism which could be appealed to whenever
it was necessary to make them accept longer working-hours or shorter rations.
And even when they became discontented, as they sometimes did, their discontent
led nowhere, because being without general ideas, they could only focus it on petty
specific grievances. The larger evils invariably escaped their notice. The great ma-
jority of proles did not even have telescreens in their homes. Even the civil police
interfered with them very little. There was a vast amount of criminality in London,
a whole world-within-a-world of thieves, bandits, prostitutes, drug-peddlers, and
racketeers of every description; but since it all happened among the proles them-
selves, it was of no importance. [...]

Freedom is the freedom to say that two plus two make four. If that is granted,
all else follows.

Nineteen Eighty-Four
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Resulta curioso ver como a mi alrededor ha habido más gente desencantada
con la ciencia, que ilusionada. Gente joven, con toda su vida por delante, que en-
tró con ilusión y ganas, y que año tras año se marchita, se desilusiona. Algunos
saldrán, pero otros, con su intento de no querer aceptar lo que vivieron buscarán
dubitativos un puesto posterior, aún dentro por temor a perder ese tren, poderoso,
que anula a muchos. ¿Cómo es posible que gente tan cualificada acabe aguan-
tando tanto? ¿Cómo es posible que lo que debería ser un sueño, después de tanto
esfuerzo, se convierta en sus cadenas? ¿Cómo es posible que malvivan temiendo
durante años? ¿En qué clase de sistema se ha convertido la ciencia en la actuali-
dad?

Habrá, porque también he conocido, gente que haya tenido suerte, o que en
su intento de no perder el tren lograron encontrar una mejor situación. No puedo
decir que haya tenido la misma suerte que éstos, y no será por falta de paciencia.
Mucho deberían de cambiar las cosas para que pudiese continuar, pero por mí, el
tren puede marchar. Porque no es sensato vivir con tantos títulos, pero con tanta
inseguridad en la vida. Tampoco lo es vivir con unas condiciones laborales tan
precarias, sea por sueldo o derechos. Y menos, tener que aguantar el trato que
muchos recibimos.

Algunos en este apartado dan las gracias por mera cortesía, porque deben,
aunque no quieran. No seré tampoco uno de ellos. Hay quienes se consideran
dioses en esta ciencia. Qué suerte no ser creyente.

Gracias a todos los que durante estos años habéis estado ahí, los de verdad,
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muchas difiera en cuanto al postureo. Lo siento, nunca fui modelo.
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Preface

This thesis presents my Ph.D. research in soft condensed matter physics, at the
University of Barcelona (UB) between October 2016 and November 2021 while
working in the Smart-Nanobiodevices group (IBEC) and Statistical physics group
(UB). It covers the interaction of Active Janus particles with liquid-liquid and
liquid-solid interfaces, not only from an experimental point of view but also from
a theoretical one. The structure of this thesis is composed of three parts.

The first issue I address in this thesis is the need to obtain methods and se-
tups for experimental analysis. This discussion is split into 3 different chapters.
In chapter 2, I show how to create active Janus particles, but also the creation of
new microfluidic setups needed for my thesis. After the setups are ready, it is
important to properly record videos for the different experiments to perform, and
to store them. However, these processes can be difficult depending on the char-
acteristic parameters of the system, and we can record large quantities of data.
Consequently, in chapter 3 I show how to record, store and compress the videos
acquired in the microscope. Finally, once the videos are recorded, we must track
the recorded particles. In chapter 4 I show how we can track these particles, from a
basic tracking system based on traditional techniques to more advanced techniques
based on neural networks.

The second issue I studied in this thesis addresses the interaction of these ac-
tive particles with liquid-liquid interfaces. To study the basics of the problem I
studied at a one particle level, or at most, a couple of particles. In chapter 5 I
account my studies from an experimental point of view. The necessity of a better
explanation of the experiments made me consider to develop a powerful model
based on a Lattice-Boltzmann algorithm, which I show in chapter 6. In any case
we learnt how active particles can be guided using these interfaces.

The third and last issue I studied explores how we can take use of the interac-
tion of active particles with interfaces to obtain an accumulation system based on a
complex geometry where the unit cells of the system do not break detailed balance.
Because active particles behaved similar next to liquid-liquid interfaces compared
to when they are next to solid-liquid interfaces, in chapter 7 I used solid-liquid
interfaces to create the complex geometry.
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Introduction

Divide et vinces.

Gaius Julius Caesar



1.1 | Active matter

In the last years, active matter, a new field in physics, has emerged with the
study of some active entities that create their own motion by transforming the
energy they can take from around them. The fact that these entities rely on non-
equilibrium systems has intrigued the scientific community and because their huge
implications they can have in our daily lives, it has been clipped as one of the main
studies in soft matter field. Because this thesis is based on active matter, in this
section I will revise which are these active entities, why are they so special and
why we should study them.

1.1.1 Surrounded by active matter

Motion. What is motion? Probably this question could seem trivial to any reader of
today, but in fact, it has not been so obvious in the history of the humanity. Since
millenniums ago, men have tried to answer to this question, no matter where they
were living. Old manuscripts from different regions of the Americas [1], Europe
[2] or Asia [3, 4] reveal different philosophies about motion along the history. Mo-
tion is a crucial question of man’s curiosity because it surrounds us. Since we wake
up, until we fall sleep, we can see motion. An incorrect answer to this question
and all the physics will tumble. For example, Europe lived with Aristotle (384-322
BC) motion philosophy until Galileo Galilei (1564-1642 AD) discovered he was
not so correct [5]. For Aristotle, motion was any kind of change, or the actuality of
a potentiality, and he even differentiated the matter that moves as expected (natural
movement) from that one that moves forced against its natural movement (violent
movement) [2]. For him, a rock would fall because it is its natural movement, and
it will fall faster than a feather because it possesses more "earth". Motion is es-
sentialist. Opposite to him, Galileo showed how motion is conditional, that there
is not such a distinction between natural and violent and that, if there is no air
friction, the leather and the rock with the same weight will fall at the same time,
dealing to a new era in the study of motion and physics [5]. Of course, since the
Renaissance, science have advanced notably, and we have changed more its signif-
icance. Rationalism and the comprehension of mathematics have allowed us to say
that, nowadays, any scientist could answer that motion is the change in the posi-
tion of an object over time. Compared with the previous definitions, this definition
is too mathematical. In some sense, it loses the idea of forces that push the objects.
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It is due to physics that we can join the previous definition with the use of
forces. As well as with motion, the concept of force has changed along history
but no matter which definition we use, we could see in a glimpse that some forces
are done over the objects, while others, are done by the own objects. Following
with the rock example, a rock will move because something is acting over it, but
it will never generate any force on its own. Opposite to it, there are objects that,
although can be moved by other forces, they are capable to create their own nec-
essary forces to move. Any object of this last group is what we can consider as
active matter. Active matter is nothing more than an object, also referred as an en-
tity, which transforms internal or ambient free energy into kinetic energy, and they
do it locally, without being dragged by any global field [6]. Thus, becoming this
entity as an active entity. Consequently, we can say that active matter is possible
due to an out-of-equilibrium process since it needs a net flux of energy to move the
entity. Following this description, we could think that many living organisms are
nothing more but active matter. In this way, the study of active matter is crucial to
understand us and our environment since we are surrounded by active matter.

1.1.2 Biomimicking

The history of men would have been totally different without these active entities.
Since the beginning of the days, man have evolved coordinately with the dangers
that surrounded him. Inventions such as flints, axes, weapons in general or the
domain of fire would not have been as important if the animal kingdom would not
have been as threatening to man. But animal kingdom is only the tip of iceberg.
Although we cannot see them every day, there is a lot of life around us. As Feyn-
man once said [7], there is plenty of room at the bottom. It is thought that 85%
of the living species in the Earth are things we cannot distinguish with a naked
eye, such as bacteria and protists [8]. It is true that it seems that these invisible
entities represent only 15% of the total biomass distribution on Earth, but still,
their biomass is around 1350 times the biomass that man represents on Earth [9].
With such amount of life, it is understandable that many processes we use to live
better, or to enjoy life, are supported by them. Any kind of product where fermen-
tation is involved, such as food, drinks, or other utilities, would not be possible
without these invisible organisms. Even our digestion would not be the same with-
out them. Of course, not everything they do is always good for man. In the Late
Middle Ages, the Great Plague, a pandemic caused by Y. pestis, killed between
30% to 60% of Europe’s population in that age [10] plunging the European Old
World into a psychosis of terror and poverty. Nowadays, Y. pestis is not anymore
important in our world but still, according to World Health Organization (WHO)
[11], one of the top ten global causes of deaths by today is still due directly a
bacterium, M. tuberculosis. Considering production and diseases, one could also
think about smaller entities like viruses, but even if we could answer the traditional
controversy of whether a virus is alive or not, we need to think that viruses cannot
generate motion on their own and thus, they are not active matter. Even though,
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we can still find smaller active entities such as the catalytic enzymes. Catalytic
enzymes are found inside the cells and can be considered as active matter given
that by their reaction they can self-propel [12]. Since their importance, if we want
to take the maximum profit from living organisms, we need to study further how
they behave.

Studying big animals can be very complex as they are strong and because their
size, but it is very possible that they share common patterns with smaller organisms
[13, 14, 15]. Thus, and because of how important they are, we will only focus on
that active matter that is below the millimetre scale. In this scenario, taking care of
them can be tough and weary and hence, if we can obtain what we want without
growing and feeding them, it would be wonderful. Furthermore, even if taking care
of them would be easy, they, as a system, are not. We cannot have a clear idea a
priori if what we see in their behaviour is just because the underlying physics (due
to hydrodynamics and phoretic fields) or there are some stimuli behind it. Luckily
for us, advances in nanotechnology have opened the doors to build things at their
scale and even replicate them [16, 17]. Of course, with the tools we have, we could
invent any kind of machine at their scale, but nature does nothing in vain. Aristotle
was wrong sometimes, but his idea of perfect nature was not so erroneous. If
something is present in nature is due to some reason. Otherwise, natural selection
would have erased something superfluous present in them. Since this process has
been carried for very long time, the best we can do if we want to mimic this life to
understand, improve and use differently the processes they do is to copy directly
from nature. In the last years we have seen plenty of works[18, 19, 20, 21, 22]
where many tiny artificial particles have been created to mimic this invisible life.
Since life at this scale is active matter, these particles also had to be active matter.
This is the reason why today, we can talk about artificial active matter, or artificial
active particles. From among all the inventions related to artificial active particles,
there are two properties in which the design has focused more: the shape of the
particle and the mechanism of its propulsion [18].

Shapes and sizes

When looking at unicellular organisms, one finds few geometries in nature. Cylin-
ders or spheres, this is what one mainly observes. Therefore, researchers focused
the synthesis of artificial active particles on these two geometries (See Fig. 1.1A).
Even though, we also did things differently. We have particles shaped as cylinders,
but we also emptied them to have tubes [19]. We did the same with spheres to ob-
tain empty spheres [20]. Even in the road to it, we did not removed everything
inside, but just made them porous [21]. Furthermore, the surface of the particle
can also be modified as reported widely. Many authors want to add either new
abilities to these systems or to biomimic their surface as in the case of particles
that biomimic virus capsids [22] (See Fig. 1.1B). Nonetheless, the capabilities
nanotechnology give us has pushed us to go further, and we have even made very
complex geometries such as ships[23].
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Life in this world spans a couple of orders of magnitude, from tens of microns
to hundreds of nanometres [18]. In the same way, many authors have conquered
all sizes, and even they have been inspired in virus to go smaller [22]. From the
world’s record smallest nanotube jet [24] till the spherical microparticles I will use
in this thesis. Remarkably, the size of the particle is very important to study the
motion of the particles, and thus choosing a correct size for experiments is crucial.
We will analyze this detail later, in section 1.4
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Figure 1.1: Shapes and mechanisms of propulsion. A) Artificial active mat-
ter looks like and behaves as bacteria. One could not distinguish from a glimpse
which are bacteria such as P. aeruginosa (rods)[25] and S. Aureus (spheres) or
artificial particles such as bimetallic Pt-Au rods[26] and enzymatic nanomotors
(spheres)[21]. B) Our technology allow us to do several modifications. For exam-
ple, we can void spheres[27] or rods[19] (emptiness images), creating holes along
the particles, but we can also work on the surface by attaching different chemicals
or modifying it as in the roughness pictures, where on top, a virus-like structure
is presented[22] and in the bottom, a porous sphere[21] is presented. C) To add
activity we can use different strategies, but many of them use the Janus-like struc-
ture as present in these images, except for the urea case. These mechanisms can
involve diffusophoresis such in the Pt-SiO2 particles (left) or enzymes such as ure-
ase to break urea. But also they can require light as in the Ti-Au particles[28] or
temperature as in the case of using a a binary mixture of H2O and propylene glycol
n-propyl ether (PnP)[29]. Particles presented in C) are around a few micrometer
size. Image authorship. S. Aureus: Janice Haney, provided by CDC/Matthew J. Arduino,
DRPH, 2001, public domain. Diffusophoretic particles: own images. Other images were
taken from the cited literature. Images were cropped or no modified.
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Mechanisms of propulsion

Given the limited geometries life has in this length scale and, more importantly,
due to the physics at this scale as we will refer in section 1.3.2, the number of
mechanisms of propulsion are also limited. The typical mechanisms that are ob-
served when prokaryote bacteria move inside a liquid are those found in ciliated
organisms and in flagellated ones [30]. While the former use a system of very tiny
hair-like structures called cilia that move in complex manners, the latter use bigger
hair-like structures that move in a planar and wave-like manner to self-propel. In
the case where the medium involves solid interfaces, we can also find a few ex-
tra mechanisms of motion including swarming[31], twitching[32] and gliding[33].
Swarming and twitching can occur on soft and moist surfaces. While in swarming
a collective movement of many bacteria is needed, in twitching the phenomena
occurs at a single bacterium level. Swarming occurs by the rotation of flagella of
many bacteria, that also usually generate surfactants to lower the tension between
the bacteria and the substrate. In contrast, twitching needs a special pili, the so-
called Type IV pili, which binds to the substrate as a hook and retracts it to move
towards where the pili is attached. In the case of the gliding motion, this motion
usually occurs with firmer surfaces and implies a broad spectrum of mechanisms
to work. Furthermore, an extra case is also typically found for eukaryotic cells
given that they usually move over surfaces by using a ramification of their own
body called pseudopodia. Eukaryotic cells are actively changing the pseudopodia
by modifying its actin cytoskeleton to drag themselves over the surfaces [34].

In the case of artificial active particles, authors have tried to copy nature, but
these mechanisms are difficult to replicate with the tools we have today, and sim-
pler ways are much more efficient. For instance, different groups have tried to
replicate the flagella motion. Dreyfus R. et Al. created a flagellum made of a
chain of magnetic beads linked between them via DNA and attached to a red cell
that move as a flagellum under the actuation of a magnetic field [35]. The addi-
tion of a magnetic field is not necessary to replicate flagella as Brian J. Williams
et Al. showed how a spermatozoon made of polydimethylsiloxane (PDMS) can
move by attaching cardiomyocytes that self-contract to it, reaching to speeds up
to 10 µm/s [36]. In any case, because of its complexity, artificial particles do not
typically base their motion in any kind of hair-like structures, neither on drag-
ging over surfaces by modifying their body. Instead, researchers have simplified
the level of complexity by using materials and alternatives to move that bacteria
could not use but are easier to artificially build. The key ingredient required is
to add an asymmetric motion mechanism to fulfil with conditions we will see in
section 1.3.2. For example, many propulsion mechanisms are based on catalytic
reactions, either by using metallic materials as Pt [37] or either using enzymes as
urease [21] or lipase [38]. Reduction-oxidation (redox) reactions are also used and
many times they require light to work [28]. Even there are particles which can
need sound waves to work[39], special solutions to separate[29] or electric fields
to work[40] (See Fig. 1.1C)). In all these cases, material usually remains constant
in the surface of the particle but there are some particles that can degrade itself
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to move [41]. In any case, it is common to see particles that have two areas: one
where there is the donor material for redox or where the catalytic reaction occurs,
and another one which is the acceptor material for redox reaction or simply, it is
inert. This kind of composition is also referred as Janus particle due to the Roman
God Janus [42], represented always as a biface head. Although the Janus structure
is common, we can also build artificial particles without this structure. Examples
of it are the new enzymatic particles where random clusters allow an asymmetry to
move [43]. Finally, motion can also be achieved by bubble propulsion commonly
seen with tubes. In this case, the use of surfactants is usually important to stabilize
the bubbles. [19]

Pt-SiO2 Janus particles are one of the most used ones among the different types
of synthesized particles, not only because its easy fabrication but because they are
easy to store, they last active for long times and given that they are Janus, one could
in principle observe the direction of propulsion. These Janus particles displace
due the catalysis performed by the Pt of the slow reaction of decomposition of
hydrogen peroxide (H2O2 → H2O + 1

2O2) but there is still controversy why this
reaction leads to the motion of these particles as discussed in section 1.4.3. The
disadvantages to use these types of particles are due mainly two reasons: they
are expensive to create since they need Pt and more important, the reaction of
catalysis generate O2, which is not well dissolved in water due to the low oxygen
solubility in water. The accumulation of O2 leads to the formation of bubbles in
the solution. This is the main reason why these particles cannot be used for bio-
compatible systems. However, none of the objectives of this thesis rely on the bio-
compatibility of the particles, and only the bubbles by themselves were a limiting
factor because they eventually burst, creating flows in the solution. Nontheless,
the setups I developed and present in chapter 2 could manage this limitation, and
hence I used this kind of particles.

1.1.3 Collective phenomena

One of the most exciting features that these active entities give rise is to emerge
new phenomena when multiple entities are together, a phenomenon that by looking
at each individual entity would not appear. This phenomenon is observed within
living organisms at multiple scales with different levels of biological organization.
At a microscopic level, cells of pluricellular organisms organize themselves to cre-
ate tissues[44]. These tissues offer new phenomena that cells, by themselves, could
not offer. For example, consider the epithelial and the muscular tissue. While in
the epithelial tissue cells join by tight junctions providing a barrier, in the case of
the muscular tissue, cells organize in a special distribution providing a mechanism
for contraction and retraction. But these phenomena also occur at larger scales.
At a macroscopic level, animals tend to move from one location to another one in
populations. Typical examples are school of fishes [45] or flocks of birds [46]. In-
terestingly, when they move there is always some that lead the group. This leading
is a behaviour that emerges from the collective.
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As shown in the previous biological examples, these collective phenomena re-
sult from the interaction and organization of the active entities. In the case of
artificial active particles these phenomena can also appear, and it is interesting to
see whether which new properties can emerge and if natural collective phenomena
behaviours can be reproduced without the proper life stimuli, but because of pure
physics coming from symmetries and conservation laws. Indeed, natural phenom-
ena at the macroscale such as bird flocking has been described by using a very
simple model such the Vicsek model [47], where an entity just needs to align with
their neighbours to emerge this phenomenon (See Fig. 1.2, first column). But
flocking is not the only natural process scientists have recreated. Processes seen at
the microscale such as quorum sensing and tissue wound healing have also been
reported.
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Figure 1.2: Collective phenomena is typical of active matter entities. This be-
haviour is found both in biological entities (upper row) and artificial entities (lower
row). Examples of it include the collective motion of birds, known as swarms,
and fishes, known as schooling, the closure of a tissue[48], or the development
of a biofilm by using the quorum sensing mechanism[49]. These phenomena can
also described with artificial entities as shown widely [47, 50, 51]. Image author-
ship. Swarm: Daniel Biber, Germany, Shortlist, Professional competition, Natural World
& Wildlife , 2018 Sony World Photography Awards. Schooling: Coral reef image bank,
The Ocean agency, 2021. Other images were taken from the cited literature. Images were
cropped or no modified.

Tissue wound healing is an important biological process done by living tissues
to self-repair themselves [48] since the loss of cells in a tissue can drag to the loss
of function of the tissue and must be repaired. If we imagine a tissue such as the
epithelia as a 2D lattice, in our synthetic world, if we control this process, we will
have 2D lattices of particles without any defects that compare to crystals, where
particles imitate the atoms. H. Massana et al. showed recently how by using para-
magnetic beads and employing a couple of magnetic fields, it is possible to heal
these lattices filling the defects with particles to obtain lattices without defects [50]
(See Fig. 1.2, second column).
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Quorum sensing is a communication mechanism present in microorganisms
that is used to regulate their gene expression depending on the cell population
density [52]. Typically, bacteria recognize products released by other bacteria and
when these products are over a threshold, different genetic pathways are regulated.
Thus, the size of the population will control the amount of product to overcome the
threshold. Recently, researchers have reproduced the typical quorum sensing by
using light activated active particles [51]. Since the chemical sensing is difficult to
reproduce, they decided to hide this process and just look at the population around
particles. These particles move actively depending on the radiation input given by
a laser, which considers the density of particles around each particle. By using
this interaction, T. Bäuerle et Al. have seen how active particles can self-organize
and create clusters depending on the neighbourhood density (See Fig. 1.2, third
column).

These examples help us to understand why the study of collective phenomena
within active matter has gained interested over the past years, and what we can
expect by studing a collection, instead of an individual entity. As Aristotle would
say, it will be truth that the whole is greater than the sum of its parts.

1.1.4 Wet and dry active matter

If motion is inherent to the concept of active matter, there will be always a main
concern surrounding every active entity: the medium that surrounds the active en-
tity. Any active entity we are used to is surrounded by a medium. When active
entities move inside a medium, the entities must move through the medium caus-
ing two consequences. On the one hand, since entities must displace part of the
medium, they will feel a drag that opposes to their own movement, causing them
to lose their kinetic energy since it is converted into heat. On the other hand, the
motion due to these entities can change the medium itself, easing them or not, the
motion through the medium. Thus, the presence of the medium is very important
to describe the motion of our entities.

Because of the previous fact, when one models active entities it could be a
must to model explicitly also the medium. In these scenarios, where we model the
medium, we say we work with a wet active matter model. But could is not always
a must. There are some scenarios where, even though its importance, the model of
the medium is not important, and the effects of the medium can be expressed into
our active entities as a simply drag in the equations of motion. In these last sce-
narios, we say we work with a dry active matter model. Since both scenarios can
be possible, one may be intrigued in which are the main differences between them
and when we should apply one of both possibilities. The key difference between
both models is related with the conservation of momentum. When hydrodynamic
interactions are important, fluids should be accounted for, and total momentum of
the system (active entities + fluid) is conserved. But hydrodynamic flows can be
neglected in general on length scales bigger than

√
η/γ [53], being η the viscosity
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of the medium and γ the drag1 that act over these entities because moving inside a
medium. In those cases, we can omit model the fluid and thus, the total momentum
of the system is not conserved.

Dry active matter models

Dry active matter models are usually used when the drag made by the medium
dominates and the effect made by the medium is just to provide friction. For
example, for systems where medium is porous, the active entities are constraint to
move next to a surface or in general, when length scales are bigger than

√
η/γ

and we can forget about hydrodynamic flows. There are dry models for a broad
range of length scales. For instance, the famous Vicsek model [47] describes big
crowds of birds flying together in the sky. But other models can also work for
the microscale. Synthetic active particles that move in a simple liquid confined
in 2D have been described using the famous Active Brownian Particle model or
ABP[54], which I will present in section 1.4.

Wet active matter models

Wet active matter models are usually used when the hydrodynamic interactions are
important, or the medium does something else than applying a simple drag (e.g.
flows due to phoretic currents in the presence of walls or Marangoni flows). These
type of models are usually found for the microscale environment, and a couple of
scenarios can involve either living organisms such as bacteria swimming [55] or
synthetic active particles such as the Pt-SiO2 I will use in my thesis interacting via
hydrodynamic and phoretically with solid walls [56]. For example, we can use the
Lattice-Boltzmann algorithm to describe these systems as I will present in section
1.3.3.

1Notice that this drag has units of force density/velocity.
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1.2 | Beyond simple fluids

In the previous section we have seen how active entities are surrounded by a
medium. The medium that surrounds these entities can be very simple, as water
or air, or much more complex, as a porous media or a gel. Typically, experiments
with active particles are carried out in water, and if particles have a similar density
to water, particles will move within the bulk of the system. But nature is more
than just water and can be very complex. For example, a simple way to create
complexity is to create boundaries, as I studied in this thesis. The introduction of
these systems is very interesting not only because they are present in nature, but
also because they give complexity to our system by introducing either solid-liquid
or liquid-liquid interfaces. Although making experiments with liquid-liquid inter-
faces is more difficult, lately they are gaining terrain in this field due to its rich
environment. Hence, I started studying these interfaces, to which I will present
results in chapters 5 and 6, but by the end of the thesis I also used the solid-liquid
as I will present in 7. In this section we will see why interfaces can introduce this
complexity and what these interfaces can bring us.

1.2.1 Introducing interfaces: Definitions and properties

Any substance present in our daily life is composed of atoms or molecules. The
interaction and the density of these atoms and molecules allow us to define regions
of space where, at larger scales, different physical properties are uniform. When
these properties are uniform, we say that the substance present in the region is in
the same phase. Moreover, since inside the phase properties are uniform, we know
that there will not be any exchange of energy or matter within it, and hence we can
also say that the phase is in thermodynamic equilibrium.

Although there exist many kinds of phases [57, 58], it is typically said that mat-
ter can only be in four phases, named as plasma, gas, liquid or solid. Interestingly,
from these four phases, plasma, gas and liquids are also encompassed under a same
category recalled as fluid, because any substance in any of these three phases will
deform or flow under an applied force [59].

In nature, phases can coexist together. When phases coexist, there are regions
of the system where they contact. To these regions we call them phase boundaries
or interfaces. Interfaces are very interesting because these are regions which do
not have either all the properties of one or the other phase, and can bring new
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phenomena to the system. For instance, at interfaces we can find a surface tension,
which will generate wetting and capillarity effects, mainly seen for liquid-solid
interfaces and marangoni flows, which born at liquid-liquid interfaces.

Surface tension

Due to the density and interactions2 in liquids, atoms, or molecules (which I will
refer to them as particles in general), have first order neighbouring, but without
a fixed position since they are constantly moving randomly in the medium. Even
though they are constantly moving, if we take a particular particle in the bulk
of the liquid, we can think that the sum of forces exerted by its neighbours over
time is zero on average, since there is isotropy in the medium: Everything is sur-
rounded by the same kind of particles, no matter at which direction you look at.
But isotropy is not found in all parts of the liquid. When one gets into the liquid
surface, things are different because on the other side of the surface, either there is
nothing (void) or either there are different particle species that interact differently3

with the particle you are considering.

In this window of space, where we deal with an interface, particles will have
an imbalance of forces and hence, they will inevitably feel a higher attraction to be
in one side, pushing other inner particles and generating with it an internal pres-
sure. Since the density of particles is not as high as in a solid, particles will have
enough space to accommodate and hence they will move towards the bulk of the
phase. But at the same time, since these particles push down, other particles inside
the fluid may go to the surface to let them space, and a dynamic flow is stablished.
At some moment, both fluxes will be balanced, and this will happen when par-
ticles at the surface are packed enough, originating two consequences. The first
consequence is that, to pack more, they need to get closer, and hence, surface will
be reduced. This is the reason why, for instance, water droplets in the space are
spherical. The second consequence is that if we look the horizontal forces for a
given particle in the surface, although the net force is zero on average, they have
created more chemical bonds with their neighbours since they have less particles
around. Thus, if we separate a bit any of these particles, they will want to return
to its equilibrium position stronger than other particles in bulk. Hence, there is
an inherent tension in the surface that is parallel to the surface that prevents other
particles from outside the surface to move into the bulk. This is the reason why, for
instance, if you put a steel clip on a surface it will not sink, and the same applies
for mosquitos that do not sink even they are sit on top of the water. In Fig. 1.3 we
can see a sketch of the process, and another example. We refer to this tension as
the surface tension, which may found written with the symbol γ.

2Consider cohesive interactions such as Van der Waals, sulphur bonds or, especially for water,
hydrogen bonds. In general, these forces are considered jointly with the Pauli exclusion principle as a
unique potential, the Lennard-Jones potential.

3Consider adhesive interactions.

12



interface
interface

Time

A)

B)

Figure 1.3: Surface tension is a consequence of spatial limits. A) At a molec-
ular level, water such the one presented in this beaker can be modelled by these
blue circles. Each circle represents a different water molecule. Water molecules
are moving and feeling interactions (yellow arrows). Inside the bulk, the average
interaction (red arrow) is zero, but in the frontier with the air, there is a net force
towards the bulk. This force pulls molecules from interface to inside, and there-
fore, molecules at surface gets closer. Moreover, molecules at the interface will
create more bounds between them since there are less particles around. This will
originate a horizontal tension, and these molecules will want to strongly recover
their equilibrium position to equilibrate forces after some hit. Thus, there is a sur-
face tension parallel to the interface. B) As an example, I present some frames of a
slow-motion video where a droplet of milk impacts water (blue area). Interface is
marked with yellow arrows. The surface tension can stop the motion of the droplet
and bounce it back as if it were an elastic membrane. Image authorship. Milk-water
frames: Obtained from [60]. Scheme: Own images.

From a thermodynamic point of view, the idea of this internal pressure is the
same as an excess of internal energy 4, which leads to an excess of free energy.
The more surface area, the more particles will be able to move, increasing their
speed, and hence this excess of energy will be higher. Therefore, we can define
the variation of this excess of the Heltzmoth free energy F with respect the change

4See Annex B.1.2 for a brief refresh on basic thermodynamic concepts.
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of surface A as the previous surface tension γ, which can be written for constant
temperature T , volume V and n particles as:

γ =

(
∂F

∂A

)
T,V,n

. (1.2.1)

Wetting

In the last example with water, we supposed that the interactions between water
molecules were stronger than the interactions between water molecules and air.
This hypothesis is appropiate because air is a gas, and thus air molecules will in-
teract less strongly with water molecules. But what if the other medium interacts
more with water, such with a solid? In this situation water molecules could interact
stronger with molecules of the other media rather than with other water molecules.
Therefore, depending on the repulsion or atraction of these interactions, water will
enlarge or reduce its volume. Hence, we will observe that the fluid spreads over the
solid or avoids contacting the solid. This phenomena is what is known as wetting
and is described by a meaning of an angle, the so called contact angle.

94º 138º70º31º

Wetting

θ

Figure 1.4: Wetting effect. The more spread is the fluid over a solid surface,
the higher the wetting is. Contact angle θ (in red) helps us to define the quantity
of wetting the system has. The contact angle is the angle between two surfaces.
The first is the surface between the droplet and the solid. The second, between
the droplet and the air surrounding the droplet, and must pass through the most
extreme point of the droplet contacting the solid. Image Authorship. Modified from
[61], licensed as CC BY 4.0.

To define the contact angle, we just need to consider a droplet of fluid in contact
with a solid. If we take a perpendicular plane to their interface, we will see that the
droplet will be spherical, but cut up to a fraction. The less strong the interaction
with the solid is, the more fraction of a sphere will be. A very simple manner to
define it is by drawing two surfaces and take the angle between them. The first
surface is the one between the solid and the droplet. The second is between the
droplet and the air surrounding the droplet. This surface must pass through the
outermost point of the droplet in contact with the solid (See Fig. 1.4 for a few
examples). There are deeper relations relating the contact angle as a function of
different free energies, but these are not needed for this thesis.

14



Capillarity

In Fig. 1.4 we already saw what happens if we have a droplet in contact with a
solid wall, but what if instead of a droplet we have much more liquid? And what
if is it constraint to a fixed space? For instance, imagine we have a tube, which we
put inside a glass full of water and parallel to gravity, as in Fig. 1.5. On the inner
surface of the tube, molecules of water will try to be in contact to the surface or
avoid it, depending on its wetting.

H20 Oil

Concave
 meniscus

Convex
 meniscus

Higher
 altitude

Lower
 altitude

Figure 1.5: Capillarity effect. Because of wetting, liquids in capillary will mould
their surface creating a meniscus. If the contact angle is acute, the meniscus will be
concave, and liquid will push upwards (left). If the contact angle is obtuse (right),
the meniscus will be convex, and the liquid will push downwards.

If the liquid wets the surface, molecules will try to contact the solid surface,
and since the liquid flows, more and more molecules will be in contact, pushing
the liquid to the top of the tube. If the tube is wide, only a little portion of the
liquid will go up, and we will see as if the liquid pretends to climb in the inner
surface. But if the tube is very narrow, e.g., we have a capillary, then this effect of
"climbing" is much more important, and we will see two consequences. First, we
will not have a flat surface of liquid inside the capillary. The surface is concave
and is what we refer as meniscus. Second, the liquid will start to push towards the
top of the capillary, until the gravity balances this force. This is typical for glass
capillary with water.

Opposite to it, if the liquid does not want to wet the surface, particles of the
liquid will try to avoid the surface of the inner capillary, and we will see not only
a convex meniscus, but also that the column of water inside the tube is below the
surface of water in the glass. For instance, you can see this if instead of water, you
use oil in the same capillary. To these set of physical phenomena where surface
tension and the wetting play a relevant role we call it as capillarity.

Marangoni flows

So far, I have explained phenomena that occur due to the surface properties, but at
all moment, we have considered that the surface energy is constant along the sur-
face. Although this is a good argument to start dealing with interfaces, there are
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systems in which this hypothesis does not fulfil. For example, solutes in liquid will
interact with molecules of the liquid, changing their surface energy and tension. If
the concentration of solutes is not uniform in the liquid, this will lead to a gradient
of surface energy. The same applies if, for example, other molecules which we re-
fer as surfactants are present in the liquid. Surfactants are just compounds which
will reduce the surface tension of an interface, such as detergents.

Marangoni Flow
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Figure 1.6: Marangoni flows are originated due to gradients of surface ten-
sion. A) Particles of liquid prefer to live in regions of higher surface tension, since
they are stronger interacting with their neighbours. If a region with lower surface
tension is present, particles will move to higher surface tension areas, creating a
Marangoni flow. B) Classical description of alcohol tears in a glass of wine. These
tears are a combination effect of capillarity forces and Marangoni flows. Alcohol
evaporated will be replaced by alcohol coming from bulk, but it will take more
time to diffuse from to the upper parts in contact with the glass, and thus these
regions will have a higher surface tension. This will create a gradient of surface
tension leading to a Marangoni flow. Image authorship. Own images. Wine image
based on [62].

When a gradient of surface tension appears, a new phenomenon also appears,
the so called Marangoni flows. Marangoni flows are flows that born at interfaces.
Since there are areas where the tension is lower, particles of liquid of these parts
will interact less with their neighbours than particles at higher surface tension. As
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a consequence, particles contacting higher surface tension areas will be tighter to
them than to lower surface tension areas and, little by little, a flow of liquid parti-
cles will be stablished from lower surface tension areas to higher surface tension
areas, which it receives the name of Marangoni flow (See Fig. 1.6A).

Sometimes, Marangoni flows relate to capillarity effects. For instance, Marangoni
flows are typically explained by looking at the alcohol tears that appear in a glass
of wine. Wine in a glass presents capillarity, since there is enough wetting to see
a concave meniscus. But wine can be sketched as water with alcohol. Alcohol
at interfaces will evaporate faster than water, and thus, the less alcohol, the more
interaction water molecules will have between them and the higher the surface
tension will be. At the flat interface, although alcohol is evaporated, there is a fast
incoming of alcohol from the bulk, but at the borders of the glass this income is
lower, and thus the surface tension is higher. This will lead to a gradient of surface
tension, letting the wine to climb more in a thin layer until gravity will oppose it
and eventually falls in the shape of droplets, which people refer as tears (See Fig.
1.6B).

1.2.2 From "simple" to smart interfaces: Mixing active particle with
interfaces

Creating an experimental setup where these active particles interact with solid sur-
faces is very easy since the active particles I will use sediment due to their density
mismatch with water. Therefore, they will be always confined on top of a solid
wall, moving in a 2D plane and hence, they will be always interacting with a solid-
liquid interface which we will consider as the bulk. When particles sediment, it is
easy to observe that without any fuel, they face with the Pt side towards the wall5,
and they remain still (See Fig. 1.7A) bulk, inactive). But when particles start mov-
ing, things change. Under an external flow, particles will roll, and we will see
from the top how the Pt side appears and disappears as if it were the phases of the
Moon [63]. But if we activate these particles by adding its fuel to the solution, the
configuration is totally different. Under activity, particles start to selfpropel but
interestingly, they always face with the same Moon phase and we can constantly
see both sides of the Janus particle (See Fig. 1.7A) bulk, active), even if a flow is
superposed to its own motion[64]. If we define the director vector n for the parti-
cle, which is normal to the plane that separates the inactive from the active side, it
will be almost parallel to the wall along the experiments. The angle quenches[63].

As we will see in section 1.4.3, the interaction of the solutes surrounding these
particles with themselves is the key point to understand their selfpropulsion when
they are at bulk, but this interaction also help us to explain why particles with fuel

5The Pt side has a 10 nm thick layer of Pt in addition to the SiO2, but both sides have the same
quantity of SiO2. Because of Pt density is much higher than the SiO2 one, this layer represents about
12.5% of the total mass of the SiO2 for 1 µm radii size or 5.0% for 2.5 µm radii size, which are the
sizes I used. This is enough for any fluctuation to flip particles to this configuration.
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have this configuration next to the walls. When the particle generates the solute,
this solute will be more concentrated next to the wall, and there will be more in the
active side rather in the inactive one. If we assume that the surface of the particle
interacts repulsively with the solutes, and more importantly, that the active side
does it stronger than the inactive, then this inhomogeneity in the solute concentra-
tion will lead to two consequences, both making the active side to leave the wall.
On the one hand, since the interaction is stronger with the active side, the particle
will feel a torque, placing the active side to the top. On the other hand, since on
top of the wall there is a gradient of solutes, this gradient will imply a chemios-
motic gradient that will uplift the particle. But as we said before, the active side is
heavier, and hence it will want to go closer to the wall by gravity. Thus, a coun-
terbalance is created, and the particle achieves this stable orientation. Notice that,
even we did not consider electrostatic interactions in this balance, they have been
experimentally discarted as the main cause of rotational quenching[63].

The strong phoretic interaction also allow these particles to interact with steps
they find (See Fig. 1.7A) interface and B)). Particles do not cross but stay for some
time next to steps if they are high enough. Thus, in small spaces, particles can
stay more time within this second solid-liquid surface rather than in the bulk, and
hence one can see the importance of the study of these particles next to interfaces.
For particles of R = 1 µm or bigger, this altitude is about 400 nm. If particles do
not cease their activity while they are next to the steps, they will continue moving
and therefore, one can use this property to guide them from point A to point B
(See Fig. 1.7C)) without the needing of an external field such a magnetic one,
which is always a complex structure [63, 56]. Just the shape of the step is enough.
Of course, if a simple step is constructed, particles will be able to go from A to
B or B to A, but we can also give a directionality to these steps as seen with the
ratchet structures Jaideep designed (See Fig. 1.7D)). This directionality was fur-
ther studied in chapter 7 by creating a special path that allowed us to reconstruct
a topological insulator where particles behave as electrons in a classic topological
insulator. This further step also helped us to understand how to create flows of
particles even if in principle, the structure should not show a net directionality, and
how the topology of the lattice where particles move can accumulate particles in
one side of the lattice. This work mixed two different fields, where we could show
phenomena of topological insulators using active particles, something that to my
knowledge I am not aware of other similar studies. As with the previous defini-
tions for interfaces, in the next section 1.2.3 I will explain a few details on what a
topological insulator is.

Although guiding the particles with a solid-liquid interface can be useful, not
all the interfaces in nature are solid-liquid interfaces as we could see with the ex-
ample of the oil-water mixture. In the case of having two fluids, the phenomena
are richer than the solid-liquid because the interface can be non static and different
phenomena such Marangoni flows can appear. Moreover, the description of the
entrapment of the particles at the interface is due to the accumulation of solutes
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Figure 1.7: Janus particles at the presence of solid-liquid interfaces. A) When
SiO2-Pt particles sediment (Bulk, on top of a surface), they show different con-
figurations depending on if they are active (Janus structure) or not (homogenous
colour). When they find an extra solid-liquid interface such a solid step (inter-
face), they move along them[56]. B) If the solid step is very small, particles will
jump over them, but for steps higher than 400 nm and particles of R = 1µm and
R = 2.5µm, they mostly do not cross them[56]. C) When particles find a step
that cannot cross, they turn and move along the step[56]. C.a) Experimental data
C.b) Simulated data showing the concentration of O2 produced by the particles.
D) By designing an intelligent shape for these interfaces, one can guide them as
necessary. Here I show the implementation of the ratchet structure where we can
guide particles to turn right (blue indicate clockwise motion) or left (red indicate
anticlockwise motion)[65]. Image authorship. All images were taken from the cited lit-
erature. Images were cropped or no modified.
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next to the surface. In the case of both fluids, one may think that there can be no
accumulation, since in both mediums the solute can diffuse. Thus, in principle
is not secure that the interactions of the particles with these interfaces will be the
same. Following this reasoning, I decided to study the behaviour of active parti-
cles next to liquid-liquid interfaces, where the solid step shown in Fig. 1.7C) is
now another liquid. Thus, my system had a solid-liquid-liquid interface. The ex-
perimental results will be shown in chapter 5.

This kind of system is a reasonable scenario for particles that sediment, but that
at the same time can encounter with a liquid-liquid interface because the particle is
in a channel and suddenly there is a clog by other fluid (e.g., lab on a chips) or sim-
ply, because there are colloidal droplets in the environment, such as oil droplets.
Moreover, notice how in this setup gravity is parallel to interface. Commonly,
studies with active particles at liquid-liquid interfaces are made at pure liquid-
liquid interfaces, and hence gravity is perpendicular to the interface. Although it
is true that in my case we have an interaction with the solid, in the case of a pure
liquid-liquid interface particles are trapped to the interface due to gravity. Hence,
effects of the interaction can be hidden by the gravity acting on the particles. For
example, X. Wang et Al.[66] studied a water-air interface perpendicular to gravity,
where Pt-SiO2 particles move. Their most important findings were an increase in
the speed of particles and a reduction of the rotational diffusion, making particles
to move in straighter trajectories compared with when they swim free in the media.
In a subsequent article, the same author [67] analysed for the same system what
happens when your particles actively rotate. Their findings were similar, with a
reduction of the rotational diffusion, except for fast actively rotators, where the
rotational diffusion increases. Recently, K. Dietrich et Al. [68] studied a similar
system where air was substituted by an oil. Opposite to them, their particles were
based on polystyrene (PS) instead of SiO2, and they found two kind of populations
that move differently (high and low speeds), which depend on how the Pt cap is
oriented, and gave two values of diffusivities. As Wang, they found a reduction in
the rotational diffusion due to contact-line pinning, and hence a large persistency
of particles motion as X. Wang obtained. Both authors agree that differences in
the surface of the particles may lead to deviations on the behaviour in the same
particles population.

To understand better the behaviour of active particles at liquid-liquid interfaces
we can model them. Several studies have placed a colloid at a liquid-liquid inter-
face, but the complexity of the fluid, the solute field generated by the particle and
the particle interactions are not always fully resolved. For example, P. Malgar-
etti et Al.[69] considered that the activity of particles does not affect the surface
tension, that this solute diffuses along the media without any preference to be at
the interface or in one of the both liquids, that the catalytic part is only on one
fluid, that the interface is flat and does not exert a force on the particle while mov-
ing neither a torque. Moreover, wetting of the particle is not considered. But A.
Dominguez et Al. also showed that Marangoni flows may play an important role
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on the motion of active particles near liquid-liquid interfaces[70]. Last year, T.
Peter et Al.[71] used a fully resolve fluid method such as Lattice-Boltzmann to
study these particles at fluid interfaces. However, this study lacks the possibility of
having the products generated by the catalysis of the colloid more concentrated in
one phase, and the control of the phoresis mechanism for the particle is not imple-
mented. Since there are still many open questions, I decided to model this problem
using a fully resolved fluid using Lattice-Boltzmann in coordination with a finite
elements method to solve the phoretic field generated by the product because of
the catalysis of the active particle, and to add as many elements on the colloids to
model better their behaviour. The results of this work are found in chapter 6.

1.2.3 Thinking deeper: Playing with global properties

Probably one of the immediate ideas that comes after directionality is the ability
to create and control flows. In the last chapter of this thesis, I analyze these ques-
tions by building a pattern composed of different ratchets. The interconnections
between ratchets can stimulate the conduction and accumulation of particles even
if the design would not allow us to think in a net flow. Thus, it is very interesting
to explore how the topological properties of the pattern can affect the conduction
and accumulation of particles. To explore these problems, we combined the fields
of soft matter with topological insulators, where people in this last field experi-
mentally work with electrons as their particles. Thus, with this study we were not
only studying the directionality and accumulation of active particles, but we also
were mimicking the behaviour of electrons in a topological insulator. To explain
better what a topological insulator is, I will introduce next some key fundamental
concepts.

Topological insulators

Among all the existing insulators in nature, there is a specific group which have
interesting properties. Since they are insulators, we expect no conduction. How-
ever, if we focus on the edges of the material, we will see conduction. Overall, the
conduction does not appear in the bulk, but appears at the edges of the material.
Interestingly, in these insulators this edge conduction is topologically protected.
Thus we refer to them as topological insulators.

Topology is a field of mathematics that studies how global properties of objects
are maintained under continuous deformation, such stretching or bending, but not
tearing or merging. For instance, if we take a sphere and a donut, both are topolog-
ically different because we cannot reshape a sphere into the donut without making
a hole, which is not a continuous deformation. Nonetheless, we can reshape a
donut into a mug, and a sphere into a cube. Thus, the cube will share a set of prop-
erties that are equal to the sphere, while the mug will share them with the donut.
To define which objects have the same topological properties, we can define a set
of numbers that we call topological invariants. For example, in the previous case,
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the genus is an integer topological invariant that describes how many holes the ob-
ject has (See Fig. 1.8A)).

In the same sense, a material could be stretched, or bent, but still, in a topolog-
ical insulator we would see the conduction at the edges. This is a consequence of
the topology applied on the band structure. Similar to how the donut is deformed
into a mug, but it cannot be deformed to a sphere, the band gap in an insulator can
be reshaped, but never transformed into a band gap of a topological insulator, or
vice versa, because smoothly deforming a trivial insulator into a topological insu-
lator requires closing the gap, which is analogous to make a hole in the sphere.
It is topologically restricted. Depending on the symmetry of the problem we can
use different invariants. However, a typical topological invariant that describes the
band is the Chern number, which can be fractional.

At the edges, we can imagine that electrons propagate in a wave-like manner.
Thus, in the edges they can escape from the full Valence band and reach a dif-
ferent energetic level as if there was no band gap. Consequently, we can describe
these propagative states as propagative edge states, or simply, edge states. Because
they connect the valence and conduction band, these edge states carry an electric
current. Their topological nature implies that the current is dissipationless with a
quantized conductance robust against disorder. Due to their utility, research aims
to discover new materials with these properties[72]. Researchers have discovered
analogues replacing electrons by light[73] or sound[74] for example. The experi-
ments carried out in chapter 7 want to find also an analogue using active particles,
which up to my knowledge has not reported in the literature6.

A first approximation to an edge state is to consider a 2D gas of electrons,
to which you apply a perpendicular magnetic field. From a classical perspective,
these electrons will start moving in circular orbits. However, at the edges, the
image of the orbit is broken, and they start to move along the edge in just one di-
rection7. From a quantum perspective, we recover the idea of energy quantization
because there are a discrete energy values available as if we were considering the
energetic bands. In the bulk there is no conduction, as in a material with a full
Valence band. However, at the edges we close this band gap. In this sense, we
could think that this system is like an insulator in the bulk, but conductor at the
edge, as the topological insulators. But electrons have a quantum property called
spin, that can be 1/2 or -1/2, and that interacts with a magnetic field. Hence, when
the magnetic field is applied in one sense, the spin of these electrons is defined as
one of these two values. However, imagine we record this experiment and then
we play it backwards. The first you will notice is that the magnetic field now goes
backwards. Consequently, electrons will have the opposite spin. This means that
if we play backwards the film, the electrons have changed their spin. Thus, this
experiment depends on if we go to the future or the past, which means that we

6A close work could be ref. [75] because they use colloids, but these are not active colloids.
7This is the Hall effect.
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Figure 1.8: Topology applied to crystals. A) Topology is a mathematical field
that differ objects by global properties. For example, the genus parameter identi-
fies the number of holes. Zero genus means zero holes, and hence this cow and the
sphere are in the same topological class, while the donut and the mug with one hole
have different properties since their genius are 1. B) We can apply topology to the
energy bands of a crystal. An insulator has a band gap and cannot conduct elec-
tricity within it (green blueish). In a 2D electron gas, if you apply a perpendicular
magnetic field, electrons will do closed circular trajectories, and no conduction is
found. But in the borders, it can conduct, with a spin (orange vertical arrows) de-
fined by the magnetic field. This is the Hall effect, a topological insulator without
time-reversal symmetry. To obtain a time-reversal symmetric topological insula-
tor, we can have two conduction paths at the borders, each for a different spin of
the electrons. The three cases are topologically different, as the genus in the previ-
ous example, here we have different paths to behave relative to the energy bands.
Image authorship. Mug and donut: Lucas Vieira, Wikimedia Commons, public domain.
Cow and sphere: Keenan Crane, Wikimedia Commons, CC BY-SA 4.0. Rest: own images.
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broke time reversibly. Consequently, this class of topological insulators does not
have time reversibly. Nonetheless, if instead of one edge state we have two, where
one state has 1/2 for the spin value of the electrons and the other -1/2, we would
see the same even if we play the film backwards, and therefore this would be a
different class of topological insulator which has time reversibly (See Fig. 1.8B)).

The Su-Schrieffer-Heeger (SSH) model

A

B

Topological phase I Topological phase II

�=0 �=1

Transition

��undefined

C

Figure 1.9: SSH model. A) The SSH model is a chain composed of N unit
cells, where electrons can be in sub-lattice A or B. Electrons can hop from one to
another one with a probability v, and to a different unit with probability w. B) In
the bulk, the model has no conductivity, since there is a gap between both bands.
However, when v = w both bands join (orange arrows). Thus, in this case we have
conduction. Although the energy bands seem symmetric for v > w and v < w,
this is not totally true. This symmetry appears at the level of the eigenvalues but
looking at the eigenvectors (d⃗) the problem is different. The solution is drawn as a
circle with radius w and shift to (v,0). In this plane, the conduction refers to point
(0,0). The winding number ν of this curve using this point gives the topological
phase. If the line crosses (0,0) we are in a phase transition. C) While in the
conduction we see electrons moving along all the chain (left), in a topological
scenario (ν = 1, right) we only see this conduction at the edges. Image authorship.
Modified from ref. [76] (A,B) and from ref. [77] (C).
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One of the simplest models to introduce topological insulators is the Su-Schrieffer-
Heeger (SSH) model8. This model describes fermions, such electrons, that hope
on a chain of N unit cells. Each unit cell is composed of two sites (A and B),
and hence we can also divide our problem into two sub-lattices (A and B). The
electrons can hope with a probability v inside each unit cell, and probability w
between different cells (See Fig. 1.9A)).

The inclusion of two sub-lattices introduces the two-band structure we already
have seen (Valence-Conduction band). But to describe the topological insulator
we need to consider several extra points. First, as in band theory, we will assume
that electrons move as a plane wave. Consequently, they will not interact among
them. Moreover, to solve the bulk behaviour we will select the same boundary
condition as in the band theory, the Born-von Karman. Finally, as in the topolog-
ical insulators behaviour, we will assume the spin is polarized, and hence we will
not include the spin in all the procedure. With these key-ingredients the model can
predict conduction in the bulk if v = w and insulating otherwise9 (See Fig. 1.9B)).
In fact, the conduction mode can also appear because of a topological transition.
We can see this transition using the winding number, which is a topological invari-
ant. The winding number is commonly used when one has a curve in a plane and a
singular point. If we centre in that point and then we start following the trajectory
of the curve until we reach the starting point, the winding number would indicate
how many times we have make a complete turn around the singular point. In this
case, each topological phase has a different winding number, while in the conduc-
tor (ν = ω) is undefined (See Fig. 1.9B)). To the phase with ν = 0 is called trivial,
while ν = 1 is called topological. The difference between both is the number of
edge states. In the topological phase (ν = 1) we can see electrons localizing at the
edges, while this is not observable in the trivial (ν = 0) case.

Skin effect and states of higher order

The SSH model is the simplest model to introduce topological insulators. How-
ever, it is not the only model that there exists. For example, the Hatano-Nelson
model is another famous model that can introduce different concepts. From a
mathematical perspective, the SSH model includes an Hermitian hamiltonian10,
while the Hatano-Nelson[78] includes a Non-herminitian hamiltonian. Non-hermiticity
is necessary to see dissipative effects[79], and hence, it will be useful when study-
ing our active particles.

As a consequence of non-hermiticity, different edge states will occur in the
system (see Fig. 1.10), known as the skin effect. The main difference between
hermitian and non-hermitian edge states is that non-hermitian modes are very sen-
sitive to the boundary conditions. If Ld is the size of the system, being d the

8See ref. [76] for a full mathematical description.
9This is the Peierls transition.

10A square matrix which is equal to its own conjugate transpose.

25



dimension, then the number of hermitian edge states will be Ld−1, but there can
be up to Ld skin states[80]. Moreover, when we increase the dimension of the
system we can look at states that live on a different dimension. For example, in
2D systems we could find states that live on edges, but also some that live at the
corners. In general, we will talk about states of order n, with n ≤ d, being d the
dimension of your system. We can find these n− th order states in both hermitian
and non-hermitian systems, but the difference in the number of states will remain.

Figure 1.10: Skin effect. Different edge states appear depending on the order
and if the Hamiltonian describing the model is hermitian or non-hermitian. Image
authorship. Taken from ref. [80]. No modifications were done.
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1.3 | Modeling the surrounding medium

Working with a wet active particle system imply the model of the surrounding
medium, which is a fluid. To model a fluid, probably, the naivest idea we can have
is to solve the equations of motion for each individual molecule that compose the
fluid. But even in the simplest scenario, where there is a single liquid (e.g., water),
this approach is not the more intelligent one and we should think whether if this
approach is correct. Thus, should we solve the equations of motion for molecules?
Which alternatives do we have?

In this section we will introduce different approaches to answer these ques-
tions. We will build a basic continuum approach where the fluid is a continuum
field, and we will adequate this model to the experimental scale. Then, we will find
a more complex but adequate model for modelling the experiments we perform,
introducing liquid-liquid and solid-liquid interfaces.

1.3.1 A continuum approach for the surrounding medium:
Navier-Stokes equations

At a microscopic level, fluids are composed by many particles. A simple under-
estimated calculus show how big is this amount: If we consider a low dense fluid
(e.g. an ideal gas) at Standard Conditions11, and we use the Avogadro number
NA

12 and the fact that 22.4L = 1 mol for an ideal gas at Standard Conditions,
then, for a similar volume as I will use in my experiments (10-100 µL) we have:

10µL
10−6 L

1 µL

1mol

22, 4 L

6.022 · 1023 molecules
1mol

= 2.7 · 1017 molecules. (1.3.1)

With such amount of molecules, if one aims to describe the fluid from the mo-
tion of these molecules will spectacularly fail because solving the equations of
motion for such amount is extremely costly, and because at long runs, the sys-
tem could have dynamical instabilities of phase-space due to small uncertainties
in the initial conditions13. Just think about the number of interparticle interac-
tions we should consider in such an enormous system. In fact, this approach is

11Temperature of 273.15 K and an absolute pressure of exactly 105 Pa.
12NA = 6.022 · 1023 constituent particles/mol
13If δ0 is an uncertainty in the initial momenta or position, the uncertainty will grow as δ(t) =

δ0eλt, where λ is the Lyapunov exponent. At times greater than λ−1, the uncertainty will grow
enough to prevent any deterministic prediction.
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what is known as molecular dynamics (MD) and nowadays is only applicable for
much smaller volumes and for very short timescales[81] compared with the work-
ing scales of this thesis (ms to s). To avoid these computational problems, we can
think our problem from a different point of view. For example, we could think that
the concept of molecules is not needed for our studying purposes. If we could con-
sider bigger constitutive particles for our system instead of molecules, we would
reduce the number of particles we have to simulate. This idea is nothing strange
but common in statistical physics, and it is called coarse graining. In fact, we
already considered it by assuming we had to model the fluid from molecules, be-
cause molecules are made up of atoms, and at the same time, atoms are composed
of subatomic particles such as electrons and quarks. The key point in this process is
to consider the right scale we need to describe our problem. Describing the quark
world will make even much more complex the molecular simulations but will ap-
port nothing to the fluid, because the typical interactions at that level occurs at
shorter time and length scales than what we will need to solve. For instance, while
strong interactions inside the atom occurs at a time-scale of ys (10−22 − 10−24 s)
and in a range of fm (10−15 m), weak interactions occurs at a time-scale of almost
ns-ps (10−7 − 10−13 s) and in a range of am (10−18 m)[82], which still it is much
lower than this thesis time (ms-s) and length (µm) scale.

In the case of the molecular level, interactions will occur at length-scales of
Åm (10−10 m) and typically at time-scales of µs-ns (10−6 − 10−9 s) that we will
neither solve[83]. Thus, we should consider a less complex level, where we can
describe the matter with bigger particles. Following this idea, physicists made the
assumption of the continuum fluid [84]. In this assumption, we consider that our
elementary particles in the system are a big packet of molecules of volume V. The
size of V can be arbitrary chosen, but it must verify two limits. On the one hand,
the size of the characteristic linear length for V (V

1
3 ), must be much larger than

the characteristic length present in the molecular system, which we will refer as
δ. For a simple liquid, such as water, we can take the typical interparticle distance
(δ = 3Å). By assuming this limit, every property of the new elementary particles
will be statistically a microscopical averaging. On the other hand, the size of V

1
3

cannot be bigger than the order of magnitude of the characteristic properties we
want to see in our system, which we will refer as L. For example, active particles
are around a few micrometres size and. Thus, to be conservative we could say that
L = 0.1 µm.

But things look different when one zooms out. If the elementary particles are
still very small, as we have, from a macroscopic point of view we can consider
that they uniformly fill the space and compound a continuum. Thus, any of these
particles can be treat as a mathematical point, for which different properties of
the system can be calculated. Therefore, we refer to this hypothesis as the hy-
pothesis of the continuum. A direct consequence of this hypothesis is that at a
macroscopic point of view, we can assume that the medium will flow with a mean
steady velocity field u with some fluctuations. Fluctuations arise by the fact of the
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stochasticity of the particles at the microscopic level and give the idea of its diffu-
sion14. Opposite to them, the u field describe the convection of the fluid. Hence,
since we can define a field, we can forget about the elemental particles and look at
this field, solving with this step the initial computational problem. This fact does
not mean, of course, that this calculus is not computational costly, but at least,
we can compute it in a reasonable time for large macroscopic sizes of fluid and
long-time scales. By applying conservation of different quantities such as mass
and linear momentum to each of these particles we can arrive to what is known
as the Navier-Stokes equations15, which model a fluid from this continuum point
of view. For the scenario of an incompressible Newtonian fluid under the gravity
acceleration g, these equations read as:

ρ

(
∂u
∂t

+ u · ∇u
)

= ρg −∇p+ µ∇2u,

∇ · u = 0,

(1.3.2)

where p is the pressure of the fluid at point r and time t, µ is the viscosity of
the fluid and ρ is the density of the fluid.

1.3.2 Reducing the scale to active particles scale: The Stokes
equation

One of the main concerns regarding the Navier-Stokes equation is the fact that
these are non-linear partial derivative equations (PDE) for which in general, there
are no exact analytic solutions known. Consequently, if one wants to tackle this
problem analytically, one may simplify the previous equations by looking over
the magnitudes that play an important role in the system. To deal with this fact,
the Navier-Stokes equation is often written dimensionless16. In this dimensionless
form, there appear a few dimensionless numbers that are the ratio of some impor-
tant variables of the problem. Hence, depending on the conditions, these variables
will be small enough to vanish and we will obtain a simpler equation. With the
correct dimensionless variables, Eq. 1.3.2 reads as follows:

∂u∗

∂t∗
+ (u∗ · ∇)u∗ =

L|g|
U2︸︷︷︸
1/Fr2

g∗ −∇∗p∗ +
ν

LU︸︷︷︸
1/Re

∇∗2u∗, (1.3.3)

where ∗ expresses the dimensionless variable. In this new expression we can
see two prefactors. The first one, associated with the gravity, is the so called Froude
number (Fr), which measures how important is inertia with respect the gravity
force. The second factor, associated with viscosity effects, is the Reynolds number
(Re), which measures how important is inertia with respect the viscous forces.

14Although these particles are not molecules, at the size scale of these particles we can still think
that our particles will move stochastically.

15See Appendix A.1 for a detailed derivation.
16See section A.1.1 for a detailed conversion
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In the microscopic world, active entities will move at speeds of µm/s and sizes
will be of µm order. In this sense, if we substitute these numbers in the dimen-
sionless numbers, we can see that:

• For Froude, the gravity force dominates and thus, it will be present.

U2

L|g|
=

O(10−12)m2/s2

O(10−6)m · 10m/s2
= 10−5 (1.3.4)

• For Reynolds, the viscous forces dominate over inertia.

LU

ν
=

O(10−6)m O(10−6)m/s

O(10−7)m2/s
= 10−5 (1.3.5)

Therefore, in the microscopic world both contributions must be present. But
at the same time, we said that both contributions dominate over inertia. Thus, in
this tiny world inertia will not play any important role and we can get rid of this
term. In Navier-Stokes the inertia is introduced by the term u · ∇u since it gives
idea of the advection of fluid to an element of fluid of volume V. Consequently, we
will remove this term17. Apart from dismissing the advection, the term ∂tu neither
appears in this tiny scale because we always consider that the fluid is in a steady
state. This is, for a given point r in our fluid, the change in velocity only depends
on the advection of fluid, but by itself, the speed of any point does not change with
time. Consequently, Navier-Stokes can be written as:

µ∇2u = ∇p− ρg,

∇ · u = 0,
(1.3.6)

which is also known as the Stokes equation.

The dimensionless of these equations imply that if the dimensionless ratios are
the same, we can scale the system as we want. For example, many aerodynamic
tests while manufacturing vehicles are done at smaller scales than the final product
will be[85]. Thus, if we want to imagine what this Stokes equation means, we
could put human daily orders of magnitude in Re number. If we want to have a
Re ≈ 10−5 for a human walking, this would mean to have O(1) m and O(1) m/s,
and therefore, we should have a kinematic viscosity of order O(105) m2/s, which
is really, really huge (See table 1.1 for the viscosities of different fluids). From the
values I found in the literature[86, 87], only pitch was of this order of magnitude18

(See Table 1.1).
17Note that this term can appear but linearized, which will end into an equation called the Oseen

equation. Oseen equation gives some corrections on the Stokes equation, which are essential to explain
the Stokes’ paradox. Stokes’ paradox says that, opposite to the scenario of a sphere that I will use in
this thesis, an infinitely cylinder in a fluid will not have a non-trivial steady-state solution for the Stokes
equations around it. The same applies for disks in two dimensions, where there cannot be stokes flows
around them.

18Regarding the viscosity of pitch, it may be interesting to see the pitch drop experiment, one of the
longest experiments ever run[88]. Since 1927, pitch in a controlled chamber is dropping, and due to its
huge viscosity, only 9 droplets have fallen since the beginning of the experiment.
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Fluid Temperature (ºC) µ (mPa·s) ν (mm2s)
Air 27 0.018 13.9

Water 25 0.894 0.894
Ethanol 25 1.074 1.36
Mercury 25 1.526 0.11
Honey 25 5000 3500
Pitch 25 (2.3±0.5) · 1011 (2.1±0.5) · 1011

Table 1.1: Some viscosity values for different fluids.

Translated to human scale, active entities that move in water is like for humans
swimming in a pool full of pitch, which it is almost impossible to be aware of
what this means. Just consider that honey, which is very viscous, is many orders
of magnitude below the pitch. Even though, if we try to imagine this situation, we
can understand that at the moment we would stop moving, we will stop immedi-
ately. Opposite to it, if we were swimming in a pool with water, at the moment
we stop swimming we would still move a bit in the direction we were swimming.
That scenario, which corresponds to high Re, is the one we are used to, opposite
to this low Re scenario (See Fig. 1.11 for a graphic comparison). Therefore, one
can see that the physics at this level will be different from what we are used to.

The first we must consider when looking at microscopic active entities is that
active entities will only move either because they are dragged by flow currents or
because they are actively creating their own motion. As us in a pool full of pitch,
at the moment they stop their activity, they will stop moving. Furthermore, from
Stokes equation we can see an interesting perspective regarding this motion. Since
fluid is steady, and the equation is linear with u, Stokes equation has time reversal
symmetry 19. This is, if the flow flows with speed u and suddenly we invert the
forces and reverse the direction of the flow, −u, we could reach to the same state
as we had at initial time. This fact is very important for the active entities to move
because if they have to move, they cannot move with reciprocal movements. This
condition is also known as the Scallop theorem, after the work from Purcell[91],
who stated that an animal with one degree of freedom in configuration space will
not be able to move since all their movements will be reciprocal, but could move
with two. He proposed a two hinge object, and to make clear his statement, he
put the example of a scallop, therefore the name of the theorem. Since then, a few
other works have also claimed new and very simple mechanisms to move, such as
Ali Najafi et Al. using three linked spheres [92], or have been inspired in nature
[93, 94, 95]. This is a very important fact since the evolution of life would have
not been the same without the ability to move. Nonetheless, it is also true that we
are only considering Newtonian fluids. In Non-Newtonian fluids, the viscous part
of the Stokes equation would be different and thus, reciprocal movements could
be valid as Tian Qiu et Al. show with their studies [96].

19See ref. [90] for a nice experimental demonstration of this phenomenon.
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Figure 1.11: High and Low Re. The Re compares the inertial forces to viscous
forces. If inertial forces are dominant, Re number is high. If viscous forces are
dominant, Re is low. A) Re regimes for different things we live within our daily
lives (in red our tiny world). At low Re, flows are laminar. Mixing of the com-
pounds is not important, and sheets of flow are not mixed. At high Re it appears
turbulence and everything gets mixed. B) At low Re one can recover the initial
state by inversing forces and u. Therefore, if the fluid is Newtonian, motion at this
scale cannot be due to reciprocal motions. Opposite to it, at high Re we do not
recover it, and hence we can move with reciprocal motion. At initial time t0, three
colourful droplets are unmixed. After rotating clockwise, droplets are mixed, and
so colours are. But if one rotates counterclockwise, droplets are recovered, and we
will recover each colour. Image authorship. A) Modified from ref. [89]. B) Frames taken
from ref. [90].

1.3.3 Redefining the continuum: The Lattice-Boltzmann equation

In the previous sections we saw how we can model a simple liquid by using the
Navier-Stokes equation or simply, the Stokes equation. With these equations we
have simplified the problem of having millions of molecules by introducing a con-
tinuum velocity field u that characterizes the fluid motion. However, nature is
not so simply, and these equations will need to present different terms and proper
boundary conditions that may be complicated to formulate. For example, in this
thesis I will work with active particles close to liquid-liquid interfaces and there-
fore, I will need to introduce these phenomena in the above equations. Moreover,
once introduced, these equations will be numerically solved and thus, a proper
discretization of the above should be correctly implemented. Furthermore, these
equations will need to be parallelized, since this is how computer power has in-
creased in the last years. Thus, if we could have a different algorithm that can
be easily parallelizable and that at the same time, could be also easy to introduce
different physical concepts, it would be very useful to model fluids.
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Luckily for us, this method exists, and it is based on a much more statistical
basis by solving the Boltzmann equation. The Boltzmann equation describes how
particles evolve in a system of N equal particles, interacting or not, by looking
at groups of particles instead of individual particles. The main parameter that it
calculates is the distribution function f(r,v, t), which expresses the number of
particles at position r, with speed v at time t. By looking at this parameter we can
describe systems that do not necessary are at equilibrium20. Hence, we can study
out of equilibrium, e.g., they have net fluxes of matter or energy. Of course, when
dealing with a physical equation in a computer model one needs to discretize the
space in a lattice, and therefore, it is understandable why this model has such an
imaginative name: The Lattice-Boltzmann (LB) model20.

In this new scenario, we need to imagine things differently from the idea how
we based Navier-Stokes. Instead of solving differential equations for the u field,
in LB we just play with a very naive system composed by N equal particles mov-
ing over the edges that connect the vertices of a lattice. These particles are not the
same as the ones used to describe the Boltzmann equation but are useful to build a
toy model that connects with the Boltzmann model. In fact, this kind of toy models
have been used for many years in other algorithms such as the Lattice Gas Cellular
Automata (LGCA).

In this toy model, for each time step particles move and collide, following
a streaming and a collision operation respectively (See Fig. 1.12). First, in the
streaming operation, every particle stays in its vertex or moves to a different one
through one of the available edges. Thus, not only space and time are discretized,
but speed is also discretized in a few i modes that depend on how the lattice is
discretized. After particles have moved, the collision operator applies momentum
and mass conservation for all particles at each vertex, which will decide the fol-
lowing streaming operation21. However, although in these models we use particles
to explain them, we do not track these particles. Instead, because each vertex will
have i different directions of motion, we store information of each direction for
each vertex, which defines a cell. In older versions of this toy model such as in
LGCA, each direction could be filled or not, being thus a binary value. Then, to
have macroscopic values of each cell one should average information over each
direction for different neighbours. However, LB goes a step forward, and instead
of storing binary data, it stores a float value. This float value for each cell matches
with the previous distribution function f(r,v, t) from the Boltzmann equation.
The following equation captures the overall process:

20See Appendix B.3 for a detailed derivation.
21Note how by splitting the evolution in these two steps, we can easily parallelize the problem.

Collision step does not require information from other nodes and can be calculated locally. Thus, we
can divide the problem into many individual problems that each processor will calculate. However,
the amount of processors will be also limited because the more processors, the more information you
will have to share during the streaming operation between nodes each time step, which can slower the
process more than what one extra processor can faster it.
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f∗i (r
∗ + v∗

i∆t
∗, t∗ +∆t∗)− f∗i (r

∗, t∗)︸ ︷︷ ︸
Streaming operation

= −f
∗
i (r

∗, t∗)− f∗0i (r∗, t∗)

τ∗︸ ︷︷ ︸
Collision operation

, (1.3.7)

where f∗i (r
∗, t∗) is the equivalent for the distribution function f(r,v, t), but since

we only have a limited amount of i speeds modes, we have a limited amount of f∗

functions and thus we can discretize them. In the streaming operation, we calculate
the difference of f∗ between time t∗ and time t∗+∆t∗, where ∆t∗ is the time past
between two-time steps. Since systems out of equilibrium tend to equilibrate, with

Collision

Streaming

A

LB

f*i=<ni>

D3Q19

B

C

Figure 1.12: Basic scheme to understand the Lattice Boltzmann (LB) model.
A) The model is based on the two-operation step: Collision-Streaming. During
collision, momentum and mass are conserved. After the collision, particles stream
towards different nodes using a discrete set of velocities. B) Landscape of these
particles moving along the lattice (in red the unit cell). In older algorithms such as
the Gas Automata, we can capture macroscopic values by averaging the occupation
number in each direction over the neighbours (purple square). However, in LB
these averages are directly the particles, which are equal to our f∗i . C) The actual
lattice is something closer to this lattice, where we use floats instead of boolean
properties. Depending on how the lattice is constructed, distributions will have
different number of directions. The overall picture here is in 2D, but each big
square can have more directions available as shown in the inset which is commonly
used in 3D scenarios. The available directions are written as DnQm, where n are
the number of dimensions and m the number of available speed modes. Image
authorship. Own image.
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each collision we will be closer to this equilibrium, and that is why the equilib-
rium distribution for the distribution function appears here as f∗0i . The decay into
equilibrium will be modulated by a characteristic dimensionless relaxation time,
τ∗. Finally, ∗ indications refer to a dimensionless form of each parameter.

Although this scheme seems quite simple, under correct lattice discretiza-
tion, one can derive the Navier-Stokes from the Lattice-Boltzmann equation22 and
hence, this is an equivalent to model fluids. The model presented in Eq. 1.3.7
is the simplest simplification of the LB model, but other complex expressions for
the collision operator exist as shown widely in the literature[97]. Nonetheless, this
was the model I followed during my thesis.

1.3.4 Liquid-Liquid interfaces in Lattice-Boltzmann: The
Cahn-Hilliard equation

As previously remarked, the Boltzmann equation is developed considering we have
N equal particles, and hence one chemical specie. However, if we want to model a
fluid composed of s species we can have s distributions that evolve independently
during the streaming, but interact in the collision step. Nontheless, in the case of
a binary mixture, a mixture composed of two chemical species, we can also intro-
duce the mixture using a Lattice-Boltzmann and a finite difference algorithm[98,
99], where the Lattice-Boltzmann develops the flow and the finite differences de-
fine the species present in the fluid.

The method chosen for the finite difference algorithm is based on the Cahn-
Hilliard equation, an equation named after John W. Cahn and John E. Hilliard,
who published a paper in 1958[100] with an interesting idea: the phase separation
of a fluid composed by two miscible liquids, A and B, into two phases can be
described by using a continuity equation such in Navier-Stokes23. The only key
ingredients to develop the Cahn-Hilliard equation are the use of the spinodal de-
composition of a binary system and the use of the free energy to define a system24.
The development of this equation is rather simple, as one can see in Appendix
B.2.3, and results in the following equation:

∂c

∂t
= ∇ ·

(
M(c)∇

(
Ac+ Bc3 + κ∇2c

))
−∇ · (uc) , (1.3.8)

where c is the difference of concentration between the relative concentration
of both liquids, M is a parameter known as mobility, A, B, and κ are different
real constants that describe the kind of mixture and u is the speed flow field cal-
culated using the Lattice-Boltzmann algorithm. If B > 0 and A < 0 the model
will describe the mixing of two immiscible liquids. In this case, κ will introduce

22See Appendix B.3.3 to find this derivation.
23See Appendix A.1.3 for a derivation of a continuity equation
24See Appendix B.1 and B.2 for a brief explanation of these concepts
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an energy cost for interface creation. But if B = 0 and A > 0, the system will not
be able to unmix and a homogenous phase will be seen25.

As I will show in chapter 6, the modification of the previous equation will be
very important to the development of the model I propose for my self-propelled
particles interacting with liquid-liquid interfaces.

1.3.5 Walls in Lattice-Boltzmann

Once the fluid itself is defined, we also need to define how this fluid will interact
with solid boundaries since particles are solid. To add solid nodes in LB we need
to consider that some cells of the lattice are not accessible. The method chosen for
this porpoise is known as bounce-back on links (BBL), and it was first proposed
by Ladd [101].

In this method, when there is a solid-liquid interface between node r and node
r + ci, we consider as if at both sides we would have liquid, but the distributions
are reflected during the collision step (See Fig. 1.13). If we denote with i′ the
opposite sense to direction i (ci = −ci′ ), then we have:

fi(r + ci, t+ 1) = fi′(r + ci, t
+) + 6tiρub · ci,

fi′(r, t+ 1) = fi(r, t
+)− 6tiρub · ci,

(1.3.9)

where ρ is the density of the fluid, ub is the velocity of the distribution node that
acts at the boundary of the solid-liquid interface and ti are some prefactors that
depend on ci. This last correction is only necessary if the solid nodes are mov-
ing[98]. In the case of the walls this is not important but will be when dealing with
particles since they move.

Figure 1.13: Bounce-back on links (BBL) method. In our model we can find
a solid (dark nodes) - liquid (gray nodes) interface. The BBL method reflect the
lattice-Boltzmann distributions on each side to model the solid wall. Dotted lines
represent some of the links between solid and liquid nodes present at the interface.
Image authorship. Taken from ref. [98]. No modifications were performed.

25In this case, kappa can be different from zero because there can be fluctuations and local varia-
tions, which can have an energetic cost.
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1.4 | Modeling the particles

Probably, one of the most anguish and terrifying moments I have lived while work-
ing in the lab during this thesis has been when particles do not move, because
without motion, no experimental thesis on this field can be done. To avoid these
situations, and to improve better the capabilities of these systems, we need to know
the propulsion mechanism of these particles.

As with the environment, there are several ways to model a particle, depending
on whether we are working with a dry or a wet active system. In dry active sys-
tems the particle is usually modelled as a point mass particle that feels the medium
by a drag and a noise term in its equations of motion, as in the Active Brownian
Particle (ABP) model. However, in wet systems we can treat the particles much
more realistic, with a much more improved interaction with the medium.

In this section we will see how we can model particles from different perspec-
tives. First, I will present inactive particles by introducing their diffusion theory.
Then, I will explain how we can model a dry model, following the well-known
Active Brownian Particle (ABP) model. Afterwards, I will introduce different
mechanisms of propulsion already known and I will show how we can introduce
self-diffusophoretic particles in a wet system such as in the Lattice-Boltzmann
framework.

1.4.1 Inactive particles

Almost two hundred years ago, the biologist and botanist Robert Brown observed
under the microscope that tiny particles being ejected from some pollen grains of
Clarkia pulchella were moving randomly[102]. At that moment he thought that
these particles could be alive, but soon afterwards he could confirm they were not,
since he observed the same motion in inclusions in quartz of millions of years old.
After that, he could not explain what was happening, but his discoveries were left
there, and were known as Brownian motion. It was not after around 80 years later
that Einstein, in his marvellous year could give a theoretical explanation to this
phenomenon in 1905[103]. A couple of years later, in 1909, the experimental-
ist Jean Perrin26 published his quantitative measurements after reading Einstein’s
discoveries in his book "Atoms"[104], confirming Einstein’s theory and obtaining

26He may be not as popular as Einstein, but he earned a Nobel Prize in Physics in 1926 because his
work on the discontinuous structure of matter, with special attention to his discovery of sedimentation
equilibrium.
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an accurate value for the Avogadro’s number. Today these discoveries could not
be so remarkable, but we must situate ourselves in that epoch. The kinetic theory
of gases was recently developed, and the atomistic model was coming back from
the Ancient times, but nobody knew anything about the size of these molecules
or atoms. Only ratios of number of atoms were known27. Therefore, it may be
possible that the size of molecules and atoms would not be relevant and may be as
a mathematical infinitesimal28. With the discoveries in the diffusion and Brownian
motion, there was an estimation of the sizes of these molecules and atoms, and the
kinetic theory of heat got a remarkable proof of validity. That is why, this theory
was of real importance at that time. Molecules and atoms became definitely ac-
cepted.

So, why do those tiny particles move randomly? The answer for that motion
is the fluid surrounding those particles. Although when we deal with fluids we
are used to work with the Navier-Stokes equation, and thus we work with the con-
tinuum, we must remember that this is a model where we hided the molecules
of the fluid. Not introducing the molecules into the equation does not mean that
they have stop existing. Of course, they do and in fact, they are the answer to the
random motion of what Brown discovered. Any object immersed into the fluid is
feeling the tiny collisions of these molecules. They are just as random weak sparks
that hit anybody. Thus, if the body is big, these interactions cannot be observed,
because they will not be able to move the object noticeable. But as soon as you
reduce your volume, the fraction of surface over volume increases, and the object
perceives much more these interactions.

To start dealing this problem29 we can start considering the grains of pollen as
enormous molecules of gas that are in thermal equilibrium with the water that sur-
rounds them. Given these grains, we can take one and just look at its motion over
one of its axes (e.g., the x direction). The grain, of mass m, is moving because of
numerous hits coming from the surrounding molecules. Therefore, we can intro-
duce a random force F from which we do not know anything a priori. Since the
grain is inside a fluid, it will feel a resistance to move. We can model this friction
with the drag we obtained in Eq. (1.4.2). Consequently, if one applies Newton’s
second law:

mẍ = −γẋ+ F, (1.4.1)

27For instance, the kinetic theory for the ideal gas law, PV = nRT , was shown in 1856-1857, but
this equation only records for n, which is the number of molecules divided per Avogadro constant, but
it has no information about their size.

28In that time, there was a philosophical current that considered energy as the fundamental physics
reality. For people who believed in this philosophy, atoms and molecules were just mathematical
fictions. As an example, Mach, the scientist under the dimensionless Mach number, was one of the
believers of that current.

29Einstein’s demonstration is based on osmotic pressure and kinetic theory of gases. The procedure
I will show here is not his approach but Langevin’s approach, who obtained the same results a couple
of years later but in a much simpler way[105].
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where ẋ indicates a time derivative (velocity), ẍ indicates a second time deriva-
tive (acceleration) and γ is the drag that the particle feels from the surrounding
medium, which for a sphere is30:

γ = 6πηR, (1.4.2)

where η is the viscosity of the medium andR is the radius of the particle. Now,
we can take Eq. 1.4.1 and multiply all the equation per x, and later substitute the
acceleration introducing: d(xẋ)dt = xẍ+ ẋ2. Thus, Eq. 1.4.1 reads as:

m

(
d (xẋ)

dt
− ẋ2

)
= −γẋx+ Fx. (1.4.3)

To clear the previous equation, we need to do several assumptions:

• The first one is about the F term. This random force was introduced to
give idea of the molecules hitting our grain of pollen. But if this process
is randomly performed, the number of hits coming from both sides should
be equal on average, since there is no a preferred direction. Therefore, in
average this term must be zero.

• The second assumption is about thermal equilibrium. Boltzmann showed
how two systems interacting reach the same temperature after enough time.
When both are at the same temperature, we say they are at thermal equi-
librium. Furthermore, in a system in thermal equilibrium, all its energy is
shared equally among all the degrees of freedom of the system, with a ki-
netic energy of 1/2kBT per direction of motion, where kB is the Boltzmann
constant and T is the temperature. Here, we suppose it has passed enough
time so the grain is in thermal equilibrium and we will consider it as one
more "molecule" of the whole system. Therefore, in average, the kinetic
value mẋ2 will be 1/2kBT .

Taking these considerations, averaging the previous equation, and making the
following change of variable y = xẋ, we can obtain:

m < ẏ >=
KBT

2
− 6πηR < y >, (1.4.4)

from which, by integrating and considering that the grain was at x = 0 at
t = 0, we can have:

2 < xẋ >=
d < x2 >

dt
=

kBT

6πηR

(
1− e−t/t0

)
, (1.4.5)

where t0 = m
6πηR is a characteristic time. We can integrate this expression

once again:

< x2 >=
kBT

6πηR

(
t+ t0

(
e−t/t0 − 1

))
, (1.4.6)

30See section A.1.2 for more details on the calculus of this drag.
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which for times much longer than this characteristic time gives us:

< x2 >=
kBT

6πηR
t. (1.4.7)

This is a characteristic relation between space and time for particles that move
randomly in a fluid as the grain of pollen Brown saw. The surprising result of this
equation is that the length that these grains travel is not x ∝ t, but x ∝

√
t. If

we pay attention to the units, we can see that this relation gives us the area that
the grain of pollen explores with time. But in fact, since the hits on the grain
are random, on average there is no preferred direction and hence < x > must be
zero. This is the typical behaviour of particles under Brownian motion and we
simply say that these particles diffuse. The relation we obtained is quite simple,
but showed the behaviour Brown saw, including the dependence on temperature,
viscosity, and size it was already known. Furthermore, when Perrin did the exper-
iments, he could see that the relation fitted really well, and hence the molecular
kinetic theory had to exist and with them, the molecules and atoms.

Usually, to the prefactor of this equation kBT
6πηR we call it as translational diffu-

sion constant Dt since defines how particles diffuse around one degree of freedom
for translation. Given that the pollen could have moved in two more directions,
the above equation is usually known as < r2 >= dDtt, where d is the number
of dimensions in your system. The above equation can also be computed for a
rotational degree of freedom. In this case, the result also give us an expression of
this kind, but with a prefactor that we call rotational diffusion constant DR, which
is DR = kBT

8πηR3 . In the case of the rotational diffusion constant, this constant has
units of frequency. Sometimes, DR is shown as the inverse, since it defines a char-
acteristic time τR that we call it as rotational diffusion time:

τr =
8πηR3

kBT
. (1.4.8)

Finally, a couple of remarks about Eq. 1.4.7:

• To obtain this expression I supposed I was working at times much longer
than the characteristic time, but what is the scale of this characteristic time?
Let us consider the particles I am using in my thesis. They can be of 2
sizes: R = 1 µm and R = 2.5 µm. Since they are spheres made of SiO2,
which has a density of 2650 kg/m3, we know that the mass per particle
will be 1.11 · 10−14 kg and 1.73 · 10−13 kg respectively. It is true that
half of the particles are covered by Pt, but this is just a thin layer of 10
nm, and hence we can neglect it. Experiments are done in water at room
temperature and therefore, T = 298 K and η = 8.9 · 10−4 Pa·s. These give
us a t0,R=1µm = 0.7µs and t0,R=2.5µm = 4.1µs. At a maximum, in my
experiments I see an image every 20 ms. Hence, at any moment I will see
that my inactive particles fulfil this relation.
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• The expressions given for bothDt andDR are also called as Einstein-Stokes
relation. The Einstein-Stokes relation is a case of the relation Einstein –
Smoluchowski, which relates fluctuations with dissipations. When the par-
ticle diffuses, it losses energy into the liquid because of the friction. The
friction is the term given in the denominator by the Stokes relation. But this
energy that is provided to the liquid will increase the temperature of the liq-
uid, which will increase the speed of the molecules of the liquid, and hence
molecules will hit stronger. Therefore, fluctuations given by the numerator
will be larger and the cycle will continue.

• For the particle sizes I have, at room temperature and in water, the above
relations give me the following numbers:

R (µm) Dt (µm2/s) DR (Hz) τR (s)
1.0 0.245 0.184 5.435
2.5 0.098 0.118 84.926

Table 1.2: Values for Dt, DR and τR for the size of particles I used in my experi-
ments considering working in water at 25 C.

1.4.2 Adding activity in a dry active matter system

Without any knowledge on the mechanism of propulsion, and without considering
all the hydrodynamic interactions, one could still have a model to mimic the mo-
tion of active particles. The most famous model for dry active matter is the Active
Brownian Particle (ABP) model. The ABP is the result of applying the Langevin
equation shown in Eq. 1.4.1 under overdamp regime and with a constant force that
is proportional to the constant speed of the particle given by its activity. As shown
in the previous section, the Langevin equation gives a relation between the space
explored by a particle and the time it took it to explore this space. In the case of
the ABP, this relation is also true but modified. This modification is useful since,
even we are not considering the hydrodynamics, it still can show us a way to proof
that our active particle has activity.

Therefore, I will start my explanation from the Langevin equation to get the
classical ABP equations and after, I will follow with the fitting analysis required
to verify this relation.

ABP model

We will suppose that our active particles move at a constant speed vp given by
their activity. Thus, we can start our derivation using Eq. 1.4.1, but adding a
new constant term which gives the constant speed produced by the activity of the
particle. Moreover, from the assumptions I did to obtain Eq. 1.4.7, we can directly
define the force as a Gaussian distribution ξ(t) with the following properties:
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• < ξ(t) >= 0.

• < ξi(t)ξj(t
′) >= 2γ2λδijδ(t − t′), where λ is Dt if the noise is for a

translational degree of freedom or DR if it is for a rotational one.

Adding the new term into the equation we have:

mr̈ = −γṙ +
√
2Dtγξ(t)+ γvp. (1.4.9)

But as I said, our particle will move mainly due to the speed given by the
activity and will have a constant speed. Also, consider that we are working at low
Re. Thus, we can say that the inertial term is zero and now:

ṙ =
√
2Dtξ(t)+ vp. (1.4.10)

If the particle is also diffusing in its rotational axis, we can also have a similar
equation but without any speed related to the activity, since our particles only
translate actively. For a 2D system this will read as:

ẋ(t) =
√
2Dtξ(t)x + vpcos(θ(t)),

ẏ(t) =
√
2Dtξ(t)y + vpsin(θ(t)),

θ̇(t) =
√
2DRξ(t)θ.

 (1.4.11)

Which is the classical ABP model. As with the pure Langevin equation, we
also calculate the average of the square of the distance, which we also call as mean
square displacement or MSD. The solution for the translational part in 2D reads
as:

MSD(t)active = 4Dtt+ 2v2pτ
2
r

(
t

τr
+ e−

t
τr − 1

)
, (1.4.12)

Fitting the MSD

The MSD can be understood as the mean area covered by a particle after a given
time. In the MSD it is important to have clear that t is the time lag, due to MSD
construction, because when we build the MSD, we are averaging the square of the
subtraction of particles position at different times. Time lag refers to these differ-
ences in time rather than an absolute time. If the biggest time lag you can build
is shorter enough compared with the rotational diffusion time τR of the particle,
MSD can be fitted to a parabolic equation[37], where the speed can be extracted
from the quadratic term following:

MSD(t)active = 4Dtt+ v2pt
2. (1.4.13)

If on the other side, we can get much more longer time lags compared with the
τR, the approximation will read[37]:

MSD(t)active = 4

(
Dt +

v2pτR

2

)
t = 4Deht, (1.4.14)
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where typically a new diffusive term is obtained, the enhanced diffusion Deh,
since it incorporates the effect of the activity over the normal diffusion of an in-
active particle. Thus, by analysing the MSD of our particles and fitting it to a
parabola or a lineal fit, we can obtain the Dt, the vp or an effective Deh of our
particles, and of course, we will know if our particles are really active.

But to have these approximations we need to play with the ratio of the rota-
tional diffusion time compared with the maximum time lag. The rotational diffu-
sion time depends cubically on the size of the particle as shown in section 1.4.1,
and thus, the size of the particle will mainly limit our maximum time lag. The
smaller this maximum, the less time a particle must be recorded. But at the same
time, if time is reduced, we will need more points per second to do good statis-
tics. Furthermore, because of how MSD is constructed, only the first points have
enough statistics to rely on. Typically, only the first 10% of the points in the MSD
are used for fitting it. Thus, the number of points we have per second will be a
very important parameter to play with. Although typically theoreticians suppose
that this is just an order of magnitude difference, experimentally sometimes it can
be difficult to reach. Moreover, some scientists may not understand totally how to
apply this approximation. Given the problems I saw in the literature and given that
I neither knew exactly which parameters to use in the beginning of this thesis, at
half of the trajectory of my thesis I decided to tackle this problem to give a better
approach. In chapter 3 I develop in more detail this problem, especially for the vp
and τr calculation.

1.4.3 Propelling particles: Methods of propulsion

The ABP model is a good method to have a minimum information regarding active
particles, but if we aim to know more about the mechanism of propulsion or we
need to model them in a much more realistic manner, we will need to know how
these particles move. In section 1.1.2 I briefly showed some examples of parti-
cles moving with supposedly different mechanisms, but few comments were given
about what was the true mechanism behind these particles. For many of those
particles, the main mechanisms for particle propulsion are related with phoresis.
The term phoresis comes from the Greek and, in fact, it was originally related to
the biology field to refer to the behaviour of some animals that attach over other
animals just to be displaced by them, without doing anything by themselves.

For inactive particles we could imagine that they are "attached" to the flow
when they flow within to move from one side to another, but this can be more
complex. A flow, in fact, can be a gradient of some field. For instance, if we have
a gradient of solutes, we can have diffusophoresis. For example, B. Abécassis
showed this effect with inactive SiO2 particles[106]. If instead we have a gradi-
ent of an electric field, we can have electrophoresis. Of course, active particles
are active not because there is a global gradient, but because they are producing
by themselves these gradients. Hence, we have particles that move due to a self-
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diffusophoretic mechanism and particles that move due to a self-electrophoresis
mechanism, among others.

In my case, the motion of the Pt-SiO2 particles I used during this thesis has
used to be explained by self-diffusophoretic models[107, 108, 109]31. However,
Aidan Brown and Wilson Poon also showed that the mechanism cannot be totally
due to self-diffusophoresis but might include self-electrophoresis[110] due the ef-
fects of salts on the motion of the particles. In the next pages I will explain the
basics of both mechanisms.

Self-Diffusophoresis

Self-diffusophoretic active particles are those that generate a non-uniform solute
concentration field around them providing a mechanism for motion. To generate
this field, particles speed up chemical reactions asymmetrically by using some
catalysers that are on some parts of their surfaces. Typical catalysers can be a
metal like platinum or an enzyme like urease. For example, these last catalysers
give the following reactions:

H2O2
Pt−−→ 1

2
O2 +H2O,

Urea
Urease−−−→ NH+

4 +HCO−
3 .

(1.4.15)

While the former reaction is one of the possible mechanisms to explain the mo-
tion of Pt-SiO2 particles, the latter is typically used for drug delivery systems.
Moreover, these examples are good to provide us an important fact. In some
diffusiophoretic particles, the products of the reactions are ionic species, while
in others are neutral. Therefore, we can distinguish between neutral and ionic
self-diffusophoresis. However, in this section I will mainly focus in the neutral
self-diffusophoresis given the fact that is the traditional mechanism to explain the
motion of Pt-SiO2 particles.

To develop a neutral self-diffusophoretic model, we assume that the catalytic
reaction only occurs at one region of the particle surface (e.g., like a Janus parti-
cle). Since the production is on the surface, on top of the surface there will be a
c0 concentration of products. However, as we move far from the surface, this con-
centration will dilute in the bulk, until a c∞ is achieved. Hence, in between both
values there is a gradient of products that spans for a distance that we will refer as
λ. We can assume that products inside this region will interact with the surface by
a potential U(r). But the distance λ will be only around a few molecules’ length,
which will be very small compared with the radius of the particle. Therefore, we
can zoom in into the surface and consider it as a flat surface rather than spherical.
From this perspective, we will consider that the y-direction is the same as increas-
ing r, while the x-direction would be the θ direction. Thus, we will consider the

31Some studies used polystyrene (PS) instead of SiO2, but both materials are insulators and should
act similar.
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potential U(r) as U(y). Consequently, we can assume that the concentration of
solutes c around the particle will be c = c(U(y)). In Fig. 1.14 we display the
schematics of the process.

vp

U(r)

|ux
|

Figure 1.14: Scheme to understand the self-diffusophoretic model. A Janus
particle move from the catalytic side towards the inactive side. In the medium there
are R molecules, which reacts in the catalytic surface to generate P molecules.
Next to the particle surface, these P molecules interact with the particle surface by
a U(r) potential that spans for a lenght λ. Because the anisotropy of the problem,
there is a gradient of these P molecules along the particles that generates a velocity
field us around the particle. The motion of the particle, with speed vp, will be
opposite to this velocity. Image authorship. Adapted from Ref. [111].

Since there is catalysis only in one side of the particle, we will have a gradient
of these solutes also along the surface of the particle. In this view, along the x-
direction. But the gradient in x-direction will take much larger distances than the
one in the y-direction. Hence, we can consider that the dependence on y-direction
will equilibrate very fast in comparison with the x-direction, and therefore we

45



can also assume that in the y-direction it will follow a Boltzmann distribution,
e.g. c(r) ∼ e−βU(y), where β = kbT being kb the Boltzmann’s constant and
T the temperature. But we also have a gradient on the x-direction, and hence
c = c(x, y). If we consider two points, x1 on the active surface, and x2 on the
inactive surface, we could think that the concentration at which it will equilibrate
next the surface will be different in point x1 and x2. Thus, we can consider that
c∞ = c∞(x) and that locally, the concentration can follow:

c(x, y) ∼ c∞(x)e−βU(y). (1.4.16)

Because the equilibration in the y-direction is fast, we do not expect to see a
net flow in the y-direction, but there will be a counterbalance between the fluid
pressure P and the force density due to the presence of the solute −c∂yU(y).
Hence, we can relate both terms by using Navier-Stokes, or simply, conservation
of momentum. At the same time, due to the gradient of solutes in the x-direction
we also expect to see a counterbalance. In this case though, since the equilibration
is much slower, we expect to see flow. In principle, no force is acting since the
only force is given by U(y) and we do not have inertia because we work at low
Re. Therefore, we have the following system:

∂P

∂y
= −c∂U

∂y
,

∂P

∂x
=

∂

∂y

(
η
∂ux
∂y

)
,

 (1.4.17)

where η is the viscosity of the fluid. To solve these partial derivatives we need
to know a couple of boundary conditions. It is evident that if U(y) is a short-range
potential that applies only for λ region, at y → ∞ must be U(y) = 0. Moreover,
in the bulk we also expect to see everything uniform. Hence, there will not be
velocity gradients and ∂yux = 0 for y → ∞. Finally, next to the surface we can
apply non-slip boundary conditions. Therefore, ux(y = 0) = 0. Introducing Eq.
1.4.16 into Eq. 1.4.17, when needed, and integrating as many times as required,
we have:

p(x, y) = p∞ +
c∞(x)

β

(
e−βU(y) − 1

)
,

ux = − 1

ηβ

∂c∞
∂x

∫ y

0

dY

∫ ∞

Y

dy′
(
e−βU(y′) − 1

)
.

 (1.4.18)

As we can see, the result of the speed depends on an integrand we could not
resolve. In fact, we can introduce a couple of terms and simplify to give a closer
form. Relative to the new terms, we can define:

• The distance in which the potential U(y) is acting over the solutes, λ, can be
expressed as a weighted length with the surface-interaction potential U(y)
as:

λ =

∫∞
0
ydy

(
e−βU(y) − 1

)∫∞
0
dy
(
e−βU(y) − 1

) . (1.4.19)
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• The normalization of the previous integral as κ, which can be seen as the
excess surface concentration normalized by the concentration at infinite or
an adsorption length. A simple way to understand κ is by looking at Fig.
1.14. If we take all the excess of solute (γ)next to the surface with respect
the one found in the bulk, and we divide it by the solute at the bulk, this
would be the module of κ. It would represent the width of a layer of the
bulk containing as many solute molecules per unit area as γ.

κ =
1

c∞

∫ ∞

0

dy (c(x, y)− c∞(x)) =

∫ ∞

0

dy
(
e−βU(y) − 1

)
. (1.4.20)

About the simplification, we see in these integrals that the limits are between
0 and infinite, but in Eq. 1.4.18 the first integral does not end in infinite. Even
though, since this integrand is over the y-direction, we know that from some dis-
tance (λ), the potential is not going to act and hence, the speed is going to be the
same at the infinite than at the end of λ. Therefore, we can say us = ux(y → ∞).
Considering g(Y ) =

∫ y
0
dY
∫∞
Y
dy′
(
e−βU(y′) − 1

)
and integrating by parts, we

have:

vdiffuso =
λκ

βη
∇c∞ (1.4.21)

where we have redefined us as vdiffuso. The reason to redefine it is because
essentially, to have this speed we need some interaction between the solute and
the surface, but the distance where this potential act is very small in comparison
with the radii of the particle. Therefore, from a length-scale of the particle, this is
just as if the particle would have a slip condition over its surface with this velocity.
Thus, this is the reason why a self-diffusophoretic particle can move. Over this
derivation, there can be other assumptions, including the extrapolation for ionic
self-diffusophoresis as seen in ref. [108].

Finally, two last facts about the expression 1.4.21. The first fact is about a
redefinition of 1.4.21. Although in the literature is possible to find a description of
the parameters preceding the ∇c∞, in the wet model I used during this thesis, the
constants are redefined as a new constant, which I will refer as a diffusophoretic
mobility µ. More details about this model will be presented in section 1.4.4. The
second fact is about the ∇c∞ itself. Experimentally, to see these particles moving
one just needs to addH2O2 into the water solution with the particles. Thus, exper-
imentally we do not work with ∇c∞, but [H2O2]. For instance, in Fig. ?? we can
see how the speed of these particles change depending on the [H2O2]. However,
the term ∇c∞ can be expressed as a function of [H2O2]. The details of the pro-
cess are explained in ref. [108], but briefly, one assumes that the diffusion of the
products follows Fick’s first law. Thus, the number of molecules N that diffuses
over time from the reactive surface of area a2 will be ∂tN = −|D∇c∞|a2. But
this term must equilibrate with the incoming reactive molecules. The units of the
previous term are the inverse of time units. Hence, we can define for the incoming
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as the inverse of a characteristic time τ . This time is connected via the speed of the
reaction to the [H2O2] and therefore, the speed can be written as a linear function
of [H2O2]. Depending how one defines the chemical reaction, and which is the
limiting step, there can be several equations for the speed.

Self-Electrophoresis

Self-electrophoretic active particles are those that generate non-uniform surface
charges over their surface. Consequently, around these particles there will be a
cloud of ions that counteract the surface charge and hence, an electric E field is
generated. Notice that this mechanism is different from ionic self-diffusophoresis
because the key point in these particles is to generate this asymmetrical surface
charge. The typical particles that produce this mechanism are those related with
reduction-oxidation (redox) reactions, where a metal gives electrons to another.
For instance, it is famous the bimetallic Au-Pt particles:

H2O2
Pt−−→ O2 + 2H+ + 2e−,

H2O2 + 2H+ + 2e−
Au−→ 2H2O.

 (1.4.22)

The layer of ions around the particles will extend for a typical length called
as the Debye length. Inside this region, one can calculate the electric potential
given the charge by the Poisson’s equation. From this potential we can derive the
electric force, which considers theE field, and hence counterbalance the fluid flow
as I showed with the diffusophoretic mechanism. Here, the E would replace the
∇c∞. Hence, the following result for the speed can be given:

velectro =
ϵϵ0ζ

η
E. (1.4.23)

where ϵ and ϵ0 are the permeabilities for the void and the material, η is the
viscosity of the fluid and ζ is the zeta potential, or potential at the surface. These
particles will move in the direction of −E, since the fluid slips in the direction of
E.

Finally, a last remark about these particles. Since these particles depend on the
cloud of ions also to move, they will be sensitive to the addition of salts into the
medium, since they can alter the cloud of ions.

1.4.4 Adding activity in a wet active matter system

The previous fundamental findings are very useful to improve the model of our
particles. For example, if we need to also model the fluid surrounding the particle,
this knowledge let us write alternative methods. For example, a more complex
model than the ABP model can be built with a Lattice-Boltzmann method. A.
Scagliarini and I. Pagonabarraga introduced a model of self-propelled particles
months before I started this thesis[112] using this knowledge and the results from
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what I explained in section 1.3.4. In the following subsections I will explain this
implementation, from inactive to active particles in Lattice-Boltzmann.

Adding inactive particles into Lattice-Boltzmann

The discretization of the LB method implies to use a lattice where nodes are cubes.
Consequently, the particles will be objects made of cubes, being impossible to
have a sphere. However, if we increase the radius of the particle, the surface of
our sphere will be softer, and we will have a better particle model. Typically, par-
ticles radius are about 3-4 unit cells to decrease this problem. In principle, we
could make them bigger, but we will have problems when parallelizing the simu-
lation. When we parallelize the simulation, our simulation box is cut in different
sub-boxes that run in different processors. But for each sub-box, we need at least a
sub-box size equal to a particle diameter plus the length at which particles interac-
tions will compute. Therefore, although increasing the particle size will improve
the surface, it will decrease our parallelization process32. In my simulations I
ended up working with particles of R = 4.5 lattice nodes.

m

A B

Figure 1.15: Particle implementation in LB method. A) LB discretization
implies we only have lattice nodes (black spheres) on the vertices of squares. When
a particle is set (blue line, black stripes, R = 2.5 nodes), the particle in this lattice
looks as the yellow area. At the boundary nodes (red squares, half path between
black solids), we calculate the Bounce-back on links (BBL) method, where we
used different velocities (orange arrows) that cut the boundary. B) To add activity
to the particle we divide them in two sides, each with a mobility constant µ which
describes how the node interacts with the phoretic field and an activity rate α.
The perpendicular vector to the surface that separates both sides determines the m
orientation vector. For each time step, we add α quantity to the phoretic field in
each boundary node. For example, each node in red will add a quantity α2, while
nodes in yellow will add a quantity α1. Image authorship. A) Taken from ref. [114].
Added colours. B) Own image.

Internally, the implementation of the particles follows the solid nodes idea from

32See Ref. [113] for more details on the parallelization
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section 1.3.5, applying Eq. 1.3.9 in the surface nodes (See Fig. 1.15A)). Here, ub

is:

ub = U +Ω×
(
r +

1

2
ci −R

)
, (1.4.24)

where U and Ω are the velocity and angular velocity respectively of a particle
with its center of mass at R. This equation arises because although we say we
have solid nodes, inside the particle we still have fluid nodes that do not exchange
the distribution functions with the exterior. Since the size of the particles is usu-
ally small, these distributions will relax fast and will give the rigid-body motion
behaviour[114]. Hence, the nodes of fluid in contact with the particle will have the
same local velocity as the solid nodes in contact with them33.

While performing these updates on the nodes, the total momentum of the par-
ticle and the fluid is conserved, although locally is exchanged. This local transfer
allows us to calculate the forces and torques on each node. Summing over all
the nodes of the particles we obtain the total force and torque applied to a parti-
cle[115], which we can sum to other forces we added to the system such as gravity
or a lubrication force. The lubrication force solves a problem appearing when two
particles are in contact. In this case, the fluid between the particles is squeezed out
of the gap between the particles, generating high pressures in the gap. Moreover,
two particles may share a same lattice node, causing a gain or loss of fluid from the
interior of the particle which do not allow the system to reach a steady state[115].

Adding activity into particles

To add activity, A. Scagliarini and I. Pagonabarraga introduced a scalar phoretic
field C such in section 1.3.4 with B = κ = 0 and A > 0. This field represents
the product generated by the active particles such with the O2 in the particles I use
experimentally. The particle is then divided in two areas (see Fig. 1.15B)), each
one with a couple of µ and α values. The constant µ represents the phoretic surface
mobility, which in equation 1.4.21 would be the prefactor λκ/βη and hence we can
introduce a slip velocity particle:

Us = µ(xs)(1− n̂× n̂) · ∇C, (1.4.25)

where xs is a point on the surface of the particle, n̂ is the normal to the
surface in xs and µ(xs) is the phoretic mobility at point xs which carries the
molecular details of the solute-colloid interaction. When phoretic mobility is uni-
form, µ(xs) = µ, particles gain a net propulsion velocity vp ∼ −µ∇C, i.e. if
µ0 < 0, we obtain a positive diffusiophoresis and they are "chemoattractive" col-
loids, while if µ0 > 0 we have a negative diffusiophoresis and "chemorepulsive"
colloids.

Because our particles generate their own product, they also create ϕ product,
an α(xs) quantity, at each step. Because we model our particles as Janus particles,

33These are called Stick boundary conditions.
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only half of its surface, the active side, will generate this product, while the inactive
will not produce. Moreover, in the active side the production is homogeneous and
therefore we have:

α(xs) =

{
α if m̂ · n̂ ≤ 0

0 if m̂ · n̂ > 0
, (1.4.26)

where α is the constant production rate and m̂ is the particle characteristic unit
vector (see the sketch in Fig.1.15B)). For an isolated free Janus particle with the
previous activity and uniform mobility we expect a motion with constant speed
vp = |µ|α/(4D) [116, 117, 118]. If we distinguish from an active and an inactive
side, we can have µA and µI being the surface mobilities for the active side and
the inactive side respectively.

Finally, to avoid accumulation of the order parameter over time, a proportional
quantity to the equilibrium value of the order parameter is removed every time step
per node in the lattice.

Interacting with liquid-liquid interfaces in Lattice-Boltzmann: Wetting

A last ingredient is needed when working with particles, liquid-liquid interfaces,
and LB: the wetting behaviour. To add the wetting, we must introduce a binary
mixture. Therefore, now equation 1.3.8 will have A < 0, B > 0 and κ > 0. But
this free energy defines what happens in the bulk. Since wetting is happening on
the surface of the particle, we will add an extra cost term fs to this equation, which
we will integrate over the surface of the particle. Hence the free energy will be:

F = Fbulk[ϕ] +

∫
fs(ϕs)dS (1.4.27)

The simplest relation for fs will be:

fs(ϕs) =
C

2
ϕ2s +Hϕs (1.4.28)

for simplicity, we can make C = 0. If H = 0, we will not add an extra cost
to be at the interface, and particles will be at interface (90º contact angle). But if
H ̸= 0, then we will have a different contact angle following[98]:

cos(θ) =
1

2

[
−(1− h)3/2 + (1 + h)3/2

]
, (1.4.29)

where h = H
√
1/(κB).
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liii

I
Methods and video analysis





The first part of this thesis is dedicated to all the side projects that paved the
way for the development of the following parts of my thesis. The part starts with
a chapter dedicated to the creation of experimental setups such as particles and
microfluidic devices. Next, a second chapter is dedicated to video recording. In
this second chapter I optimize different parameters for video recording to limit the
digital size of these videos while being able to correctly analyse particle param-
eters such as their enhanced diffusion constant, translational diffusion constant,
rotational diffusion time or speed. The chapter includes the equations needed to
extract these parameters and to differentiate when particles are drifting. This chap-
ter ends with a couple of tools to compress the videos. Finally, a last chapter is
included to process the recorded videos. This chapter includes tips and tools to
track particles using different algorithms. The chapter is especially dedicated to a
tracking system based on machine learning algorithms.
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2
Fabrication of

particles and

microfluidic

setup

"A designer knows he has achieved
perfection not when there is nothing left to add,

but when there is nothing left to take away."

Antoine de Saint-Exupry



None of the experiments carried out in this thesis would have been possible
without a proper setup, and of course, without particles. The particles I used for
this thesis are very simple to create, and the steps to produce them are widely
available in the literature. However, these particles are basic for the following ex-
periments, and therefore in this chapter I present the steps to create them.

The chapter follows with the creation process of several setups developed in
this thesis. The final setups I obtained are useful to work with these particles for
long-time experiments of one hour. This fact is an incredible evolution of my
working setups given the problems I had in the beginning of my thesis due to the
bubbles generated by the particles after 10 minutes.

The present chapter is based on the setups I developed for the experiments
carried out in chapters 5 and 7. I would like to especially thank Jaideep Katuri
for sharing with me his knowledge to create Janus particles, which I think by the
end of the thesis I improved. I would also like to especially thank Maria Guix
for her help during the use of the Inkredible+ 3D printer and the design of the
microfluidic designs for chapter 7. Finally, I would also like to thank the people
from MicroFabSpace and Microscopy Characterization Facility, Unit 7 of ICTS
“NANBIOSIS” from CIBER-BBN at IBEC, who carried the process of printing the
microfluidic design into a mould that I could later use.
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2.1 | Creating Janus particles

Pt-SiO2 Janus particles are SiO2 particles that we half cover with a thin layer of
Pt. SiO2 particles are easy to chemical synthetize them, but precisely because it is
easy and because they have many utilities, you can also find them commercially
available. In my case, a little bottle with 5 ml of an aqueous solution containing
SiO2 particles was sufficient for this thesis, and the cost of it was under 200C. We
purchased microparticles from Sigma-Aldrich, and we bought particles of 2 and 5
µm diameter size.

To build the Janus structure, there are different methods that we can follow,
but the easiest is to sputter deposit the platinum. Sputter deposition is a physical
process where ions are bombarded onto a layer of a material to free atoms of this
material. Subsequently, these atoms fly onto a substrate where they will deposit as
a layer of this material. Here, the ions bombarded are He+, the material is Pt and
the substrate is the SiO2 particles. Sputter deposition is completely made under
vacuum by using Leica EM ACE600 sputter machine. During this process, parti-
cles must be static and dried, and hence we need to attach them to someplace. I
attached the SiO2 particles to 25x25 mm2 squared glass cover slides (Deltalab). To
attach particles to the slides we can also use different strategies, but the simplest is
to drop casting the particles.

Drop casting is a technic where the solution containing the particles is de-
posited on top of a surface, and after waiting for liquid evaporation, particles get
attached by electrostatic forces to the surface. But to attach, the surface must be
cleaned and activated.

To clean the surface, which in this case is the glass slides, we sonicate them
with acetone for two minutes, following two minutes more with isopropanol. Ace-
tone will remove organics, if any present, while isopropanol will remove any left-
over of acetone. Then, we dry them using a compressed N2 or air gun.

To activate the surface, we do an O2 plasma for 10 minutes. Plasma will at-
tack the slides surface, breaking chemical bounds and leaving ions on the surface.
These ions can make better hydrogen bounds when water is present, which in turn
makes the slides more hydrophilic. If the slide is hydrophilic, water will flow eas-
ily on top of the slide, which is a critical step for us because we want particles
to get attached, but also, we want to have monolayers of particles. If liquid flows
better, we will be able to disperse better the particles and hence, to have more area
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with monolayers. If particles cannot flow easily, there will be several layers of
particles, one on top of each other. Hence, only particles on the outermost layer
will receive the Pt during the sputter process, and therefore, only particles of this
layer will be active particles. Particles on other layers will be inactive even the
sputter process. Initially, I used to do two minutes of plasma, but I found that if
you apply it for 10 minutes, water could flow easily, covering all the surface and
obtaining better monolayers.

Figure 2.1: Janus creation. A) Take 20-25 µl of the commercial particles and
place it on top of the slides as in B). Next move the slide with a tweezer as in C).
Alternatively, you can also flip the slide as in D). If during this process the slide
falls to the floor as in E), it is easy to clean it by pulling the slide with a sticky
tape (F). Let everything dry for an hour (G) and place them in the supporter for the
sputter (H). Make the Pt sputter (I) and storage closed and at room temperature.
Orange arrows in H) indicate an area with multilayers. Blue arrow in H) indicate
an area of a very dense monolayer. Blue lines in H) indicate where I usually cut
the slide before doing an experiment. Red zone is always discarded because it
contains many inactive particles.Image authorship. Own images.

After slides are cleaned and activated, we can pipette 20-25 µl of the com-
mercial aqueous particle solution per slide (See Fig. 2.1 A) and B))1. To spread
the liquid over all the slide, we can carefully move it with a tweezer softly in the
air during 10s, as if you were opening and closing a lock (See Fig. 2.1 C) and D).2.

1Pipette only on 3 slides and finish their spread process before pipetting 3 more. Otherwise, slides
will dry and we will not be able to do the spread process.

2It is easy that the slide falls to the ground at this moment. If so, lots of tiny pieces will be attached
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If the slide presents dried gaps after moving it, we can touch the liquid next to
these gaps with a clean pipette to let liquid in. Alternatively, we can put downside
the slide in the air. Because we have a few microliters on the slide and it is hy-
drophilic, liquid will not fall by gravity, but capillarity forces will maintain it.

Next, we can leave the slides with one edge supported on the case of a plastic
petri dish. Let it dry completely for an hour covered to protect from dust (See Fig.
2.1 G). After one hour, slides are introduced in the sputter (See Fig. 2.1 H) and
I) with a Pt target, and we start sputtering. The parameters used for the sputter
machine are the following:

• Vacuum: 1 purge cycle, with a pre-process vacuum of 2 · 10−5 mbar and a
sputter vacuum of 5 · 10−2 mbar.

• Geometry: Slides are supported on top of a stage inside the sputter machine
(The metallic cylinder in Fig. 2.1 H). This stage is at a distance from the Pt,
which is defined as the working distance, of 45.0 mm. To better adjust this
distance, the software from the sputter allows to introduce the sample height,
which we set to 0.2 mm. Stage can rotate, and we imposed 2 rotations. At
any moment, the stage will not be tilted.

• Current: set to 35 mA.

• Thickness: 10 nm. Until a thickness of 10 nm[119], the thicker the layer,
the faster particles will move. From 10 nm on, this effect is lost.

Finally, we store them closed at room temperature until we use them. At the
moment of usage, we take one slide and do a short Ar plasma treatment. This
process will clean the Pt surface, removing organic matter without oxidizing the
Pt, and thus increasing the particle mobility. Then, we cut3 the outer 3 mm of the
edge that was supporting the slides for drying with a diamond pen (red area in Fig.
2.1 H)). This edge is easily to differentiate from the others because it has a visible
white band (orange arrows in Fig. 2.1 H)). Within this area there can be multiple
layers of particles, and if we do not remove it, we will have lots of inactive particles
in the experiments. Other areas with the same white tone are also multi-layered,
and we should remove them too. However dense but a bit translucent areas are
perfect monolayer wide areas, do not cut them (blue arrows in Fig. 2.1 H)). After
cutting this edge, we can cut the slide in 3 equal pieces (blue lines in Fig. 2.1 H)
indicate where to cut the slide). Insert one piece in a 5 ml snap cap vial (VWR)
and add 1 mL of miliQ water. Sonicate for 3 seconds to detach particles from the
slide and place the dilution in an Eppendorf. You can play with the amount of slide
and water you sonicate, but these numbers were useful for my experiments.

to the floor by capillary forces due to the liquid. The easiest way to clean this mess-up is by attaching
sticky tape on the floor and pull it. Then, dry it with some paper. (See Fig. 2.1 E) and F)

3When you cut the slide it is possible to see a small aerosol against a backlight. SiO2 inhalation
can produce silicosis, a lung disease. Consider cutting the slide under a fume hood.
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2.2 | Creating wells for particles

To record particles under a microscope, we need to put them on a surface or in a
container. For example, the easiest procedure is to mix them with their fuel and put
a droplet of this solution on top of a cover glass slip. However, setups are usually
more complex than a droplet. First, because our particles generate oxygen as a
product of the chemical reaction on the Pt surface. Tiny imperfections on the sur-
face where particles move lead to oxygen nucleation, creating oxygen bubbles that
create inner flows and gaps of liquid. Eventually, these bubbles burst, and all parti-
cles will suddenly move. Second, because the droplet will evaporate easily, which
limits the time for recording. Moreover, if the droplet is reduced, phenomena oc-
curring at the borders such as coffee rings[120] will interact with our experiments.
Third, because a droplet is easily affected by current air flows, which can also add
drift to the system. And forth, because if the surface is hydrophilic, the droplet will
splash, and we will not be able to record anything. Hence, to sort these problems I
started by using some simple microfluidic channels, but finally I decided to build
my own wells where to introduce the particles solution.

In chapter 5 I used a microfluidic chip commercially available from IBIDI (µ-
Slide VI 0.4 ibiTreat) which consists in closed channels of size 75.5 x 25.5 x 0.4
mm3 opened at the borders (See Fig. 2.2 A)). These channels avoid problems of
evaporation and external flows, but because they are closed, after 10 minutes they
will be full of oxygen bubbles (See Fig. 2.2 B)). To overcome this problem, I de-
cided to have an open system, where I could also have enough liquid to avoid
evaporation and external flows too. The easiest approach was to build wells.

To build these wells, I decided to use Polydimethylsiloxane (PDMS) and a 3D
printer (Form 2) because it is easy, cheap, and fast. PDMS (Sylgard 184, Dow
Corning) is a silicone, and a polymer, consisting in two elements: a monomer and
a crosslinker. Commercially, PDMS comes in two separated bottles, each con-
taining the monomer and the crosslinker respectively in liquid form. After mixing
both solutions4 (See Fig. 2.2 C)), and heating it at 65ºC for 4-6h, the silicone gets
crosslinked, which you can notice because it is solid. Hence, we can build as many
wells as we want if we have a mould (See Fig. 2.2 D)). To build the mould we can
use SketchUp software. This mould will be the inverted object of the wells, a pool
with cylinders.

4The ratio between monomer and crosslinker defines the stiffness of the silicone after crosslinking.
During all the thesis I used the standard 90% monomer, 10% crosslinker. Consider doing 1h of vacuum
to the mixture before heating it to remove tiny air bubbles.
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Figure 2.2: Setups used for experiments. A) Ibidi microfluidic setup used for
the experiments carried out in chapter 5 Arrow: front of the liquid inside the
channel B). Because the system will have bubbles of oxygen, these will affect the
experiment creating visible bubbles and big gaps of liquid (arrows) C). Alterna-
tively, we can create a setup made by PDMS, a mixture of a crosslinker and a
monomer. D) We put this PDMS in a mould created with a 3D printer and we
heat it for 4-6 h at 65ºC. E) Then, we peel the PDMS from the mould and attach
to glass slides. Before attaching, we must do an O2 plasma cleaning for 30 s to
both the PDMS and the slides. F) We can also attach PDMS to the glass by 3D
printing it directly to the glass. 3D printer will need a more viscous PDMS than
the commonly used. G) PDMS is introduced in a cartridge, which is placed in the
3D printer (H). I) The 3D printer can directly print wells of PDMS by pneumatic
extrusion of the PDMS in the cartridge. J) As a result, we can obtain this glass
with 3 wells, which we finally cover with more PDMS around the wells to fix any
tiny hole. K) Inside these wells we can introduce topographic features, which are
present on top of a wafer (black disk). A spin coating of PDMS will make a thin
layer of PDMS. L) After 4-6 h at 65ºC, we obtain a thin layer of PDMS that we
can cut and transfer to our wells (M) after applying a 30 s O2 plasma cleaning on
both the slides and the PDMS. Image authorship. Own images.
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After the PDMS crosslinks, it is easy to detach from the mould and cut it in
pieces that I attach to 24 x 60 mm2 glass cover slips (Deltalab) (See Fig. 2.2 E)).
To attach them, it is important to previously apply an O2 plasma cleaning step to
both the slips and the wells. Moreover, the texture of the bottom layer of the wells
must be flat and smooth. Otherwise, the adhesion force between the glass and the
well will not be sufficient, and they will deattach or leak the containing liquid. For
example, after some time of using my mould it broke, and when I printed again it
had a strip texture due to software and ink changes. This texture was transfered
to the wells, and I could never recover the previous mould. Thus, I changed the
procedure.

To solve the PDMS attachment problem to the glass, I decided to directly print
the PDMS on top of the crystal with a 3D bioprinter (Inkredible+ 3D Bioprinter,
from Cellink). This printer can print PDMS while it is not crosslinked, but it uses
a much more viscous PDMS (SE 1700 Clear W/C, Dowsil. Compare Fig. 2.2 C)
with Fig. 2.2 F)). 5 After mixing the PDMS, it is inserted into the printer, which
extrudes it at a pressure of 200 kPa through a nozzle by pneumatic extrusion (See
Fig. 2.2 G) and Fig. 2.2 H)). Using the file instructions we made with the software
Slic3r, we were capable to print 3 circular wells of 2 mm height and 1.5 cm di-
ameter of PDMS on top of a 24 x 60 mm2 cover slip glass every 5 minutes (See
Fig. 2.2 I)). After printing them, we crosslinked the PDMS by heating them at 65ºC
for a couple of hours. Next, we added Sylgard 184 PDMS around the wells (See
Fig. 2.2 J)), to close any little hole that would leak the liquid inside and we heated
them at 65ºC for a couple of hours again to crosslink this PDMS. Glass slips with
PDMS are then stored at room temperature until use. Before we use these setups,
we apply an O2 plasma cleaning for 30 s to make hydrophilic the PDMS. Other-
wise, water inside the well would try to avoid contacting the walls.

These wells can contain around 120 µl, allowing us to record videos for long
times without appreciable effects of evaporation, air flows and bubbles explotion.
Because our particles sediment, the air flows in contact with the well will not be
appreciable at the bottom of the well, where our particles move. Moreover, be-
cause the well is wide and hydrophilic, any generated bubble will move towards
the walls of the well, where it can explote, far from the recording area. Thus, we
do not see drift from these events. As a consequence, I could record videos for an
hour without bubble problems as I did for chapter 7.

Furthermore, these wells are large enough to easily introduce other structures
inside. For instance, also in chapter 7, I needed particles to move within a mi-
crometric pattern. To build this pattern I used soft lithography. First, the design
is created with a computer-aided design (CAD) software (AutoCAD, Autodesk),
and then is transferred to a resist master (AZ 1512HS, Microchemicals GmbH)
of 1.5 µm thickness on a silicon wafer using the Direct writing laser lithography
(DWL 66FS, Heidelberg Instruments). The result of the process is a mould with

5For this PDMS we used a monomer-crosslinker ratio of 20:1.
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the 3D design on top of the wafer. Thus, we can make as many PDMS replica as
we want. But we need a replicas of 1 mm thick6. To create this layer, we need to
put the PDMS on top of the wafer and then do a spin coating for 10 s and 1000
rpm (See Fig. 2.2 K)). The spin coating will create a thin homogenous layer of
PDMS by spinning the wafer. Afterwards, we heat it at 65ºC for a couple of hours.
Next, by applying an O2 plasma cleaning to both the glass cover and the wafer
for 30 s, we can place the replica inside the wells (See Fig. 2.2 L)), obtaining the
desired open microchannel designs with the sub-micrometre step-like topographic
(See Fig. 2.2 M)).

6For reusability purposes, the master is sylanized with trichloro (1H,1H,2H,2H-
perfluorooctyl)sylane (Sigma-Aldrich) by vapor phase for one hour at room temperature. This
operation reduces the adhesion of PDMS to the substrate, making very easy to peel the PDMS layer
from the wafer, especially when it is very thin.
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3
Dealing with digital

videos: Limited by the

size of the video

"Measure what is measurable, and make
measurable what is not so."

Antoine-Augustin Cournot and Thomas-Henri
Martin



It has been more than a century ago that the conception of a video was in-
troduced in the men knowledge with Lumière brother’s films production, but the
foundations of what a video is are still hidden for part of the society, specially,
since the introduction of the digital video. Nowadays, almost everybody carries
a smartphone that can record videos. When somebody wants to record a video,
they just need to take their smartphone from their pocket and shot it. If any of
us record a video, probably this video will last for a few seconds and it will be
storage until we change our smartphone, we notice the memory is full or simply,
we lose it. Thus, most of the users do not think in the implications recording a
video has, neither how this process works. Since recording a video is simple and
we do not find any trouble when we usually do it, we have the perception that this
should be always easy, and that no problem associated to this process should be.
But when a scientist wants to record videos, this process can be tedious and show
unexpected problems for an average user. For instance, since experiments imply
the repetition of many conditions and/or samples, lots of videos will be recorded
and memory problems can appear. Moreover, even if this problem is affordable,
these videos can be big and if one wants to treat them, the computers will need to
process a lot of information, which in turn can make the post-analysis very slow.
And even if this problem is solved, no one ensures we are taking the correct time
scale. Thus, when one needs to record videos, a basic knowledge is needed when
mentally preparing an experimental setup.

In this chapter, I will show the problems I had during video recording and the
solutions I found to solve them. These solutions not only include the software I
coded, but also the analysis I did for extracting the speed and rotational diffusion
time of the particles.

The present chapter is based on the software I coded and an expansion of the
paper "Extraction of the propulsive speed of catalytic nano- and micro-motors
under different motion dynamics"[121], from which I am first co-author, and to
which I did the analysis and wrote the paper. At the same time, this paper is a
deeper analysis on the work I did in the paper "Fundamental Aspects of Enzyme-
Powered Micro-and Nanoswimmers"[122], where I am forth author. I would like
to special thank Rafael Mestre, with who I shared the analysis of both previous
papers.
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3.1 | Size matters: Understanding the size of

a digital video

A digital video is an electronic representation of a collection of images, also re-
ferred as frames, that are reproduced once and again and typically, jointly with the
reproduction of some audio, which can be transcript into subtitles. Since its elec-
tronic representation, videos must be stored in electronic devices, as happens with
any digital file. Nonetheless, videos can be very heavy files, and a proper manage-
ment should be carried out. To understand why they can be as heavy, one needs to
understand the data a video has. Since in this thesis I will only record mute videos
without subtitles, I will forget about these components and I will focus just on the
image part.

We already commented that videos are a succession of images or frames.
Therefore, the size of our videos will be the result of the size of one of these
frames per the number of frames our video has, which not only will depend on the
seconds we are recording, but on the time required to change a frame. The time
required to change from frame to frame depends on what one wants to see and
typically, one does not refer to it in seconds but rather in the inverse of seconds.
Although the inverse of seconds are the hertz, it is also typical to refer to them as
FPS or frames per second. The FPS are essential to have the sense of good motion
in a video. For example, if we want to see a smooth video without any problem and
be able to see a movie rather than pictures in motion, the FPS should be equal or
bigger to what is known as the flicker-fusion rate[123, 124], which is related with
eye cells and neuron speed activity. Even though, some visual tricks can allow to
see smoothness with smaller values and traditionally, films have taken advantage
of it and have reduced to 25 FPS.

If one records a video without any compression, the size of an image will be
the size of a raw image, which can be easily calculated. First, an image can be
visualized as a lattice, with i columns and j rows, which creates a total number of
cells or pixels. The size of each pixel will depend on the amount of information it
is capable to carry out itself. Typically, colour images are saved in RGB format,
and thus, each pixel has 3 values: one for red, one for blue and one for green. For
each colour, a total of 256 levels of colour are available. This number of levels
is chosen because is the maximum information one byte (8-bit) can have, and in
computational world is known as a char or byte. Nonetheless, we can have pixels
with a higher amount of information available. For example, some cameras record
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Figure 3.1: Size of a video. A) The size of a mute raw video is a function of
the number of frames per the size of each image. B) In this thesis we only work
with 16-bit black and white videos. Here we present an example of size for these
videos considering that the camera we have in the microscope can record up to
2048x2048 pixels (4.2 Mpx). Image authorship. Ewok: Ahooka’migurumi. No
license was present. No changes were performed.

with 2 bytes (16-bit, also known as short) colours, which make possible to record
up to 65.536 levels of colours. This is the case for example of the camera installed
in our microscope, where videos are only recorded in black and white, and thus
only one channel is recorded. To have a better idea of the size a video can have,
in Fig 3.1A) we can see a complete diagram for calculating the size of a video.
Moreover, in Fig 3.1B) we can see the size of the video for different conditions.
Usually, team members from my team record videos at 50 FPS for 30s. Thus, one
can imagine the size of the videos we are recording in the lab. If one does not
correctly choose the adequate parameters, tons of information will be saved, and
data storage problems will appear. Therefore, it is important to choose the correct
area to record, the number of frames one records and the duration of this video.
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3.2 | Choosing the correct frames per second

As we saw in Fig. 3.1B), the correct chose of the frames per second has a big
impact in the size of our videos. To correctly choose this parameter, in our ex-
periments we need to rely on the time scale of the physical processes we want to
study. Lower FPS will imply less video size and consequently, easily video man-
agement during post-analysis and less data storage. But lower FPS can also avoid
our proper analysis. Thus, the right choose of this parameter is essential for any
experiment we will do in this thesis.

3.2.1 Frames per second required for speed calculation

In the case of studying the individual behaviour of active particles, a good parame-
ter to obtain is their speed, since active particles, by definition, generate their own
motion. Obtaining a good value for the speed is essential to understand the fun-
damental mechanisms of particle propulsion since it can explain us fundamental
mechanisms of particle propulsion, i.e. salts can change its speed[119, 110, 125].
In section 1.4.2 we already commented a simple procedure to obtain the speed
by fitting the particle MSD. Splitting Eq. 3.5 in two regimes is always valid in-
dependently on other considerations, but as previously commented, the time lags
at which one can use one or another approximation will depend on the rotational
diffusion time τr, which will change depending on the radius of the particle and
the temperature and viscosity of the medium. Thus, τr will limit our experiments.

The easiest way to obtain the speed of the particle is to use the regime where
t ≪ τr. In this case, this condition implies that our FPS will be much higher than
the inverse of τr. At the same time, if our FPS depends on τr, we can immediately
deduce that any parameter that describe τr will modify the FPS we are taken. If
we dive into the theoretical value for τr (see Eq. 1.4.8), we notice that τr grows
cubically with the radius of the particle. Thus, the smaller the particle, the higher
FPS we will have to take. But τr also depends on properties of the medium such
as its temperature and its viscosity. Although these properties are also important,
typically, experiments are performed in water or water with low quantity of salts
at room temperature (T = 298 K), and little changes of these values will be neg-
ible for τr calculation. Thus, to define our FPS we will focus on the size of our
particles.
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If our particles are big enough, of R = 3µm or more, τr can be higher than
the typical observable times (τr = 149.29 s) and the enhanced diffusive regime
might be too far in time to be visible. Thus, the ballistic regime will be easily
observed. Following the regime approximation requirement, one can understand
that the limit t≪ τr refers up to a time where we record the video for τr/10 s, but
this does not mean we should record up to τr/10 s. In fact, we should record up to
τr s because not all the data from this trajectory is useful to fit the MSD to obtain
the speed. Usually, only the first 10% of the recorded trajectory is used due to the
increasing error in the MSD construction. Therefore, if we record up to τr s, we
will be able to select up to τr/10 s to fit Eq. 1.4.13. If we consider that within
this region, we will need at least 10 lag points for the MSD, we can approximate
the FPS needed to around 100/τr s−1. In the case of the R = 3µm, this approxi-
mation gives us the condition to record at a minimum of 0.7 FPS. Recording with
less than 0.7 FPS will give us inaccurate results. Of course, we can always take
more than 0.7 FPS, but the pros will not beat the cons, since we will not obtain
much more accuracy for the fitting, and the size of the video will grow unnecessary.

In the opposite scenario, if our particles are small, τr will be close to zero, and
the temporal resolution of the camera of our microscope will not be as small, in
general, to observe the ballistic regime. This will be the case for particles approx-
imately below R = 0.5µm, where τr = 0.69 s for water at room temperature. In
this case, if we apply the previous hint, we should record at 145 FPS, but to have
that high value one must has a very special high-speed camera, that is not usually
found in labs since average commercial cameras only record up to 30 FPS. In these
cases, we should only compare the diffusion values by linearly fitting the MSD.
Because the speed cannot be extracted from the MSD and the instantaneous speed
does not represent a real value, we should avoid using the speed of the particle to
characterize its motion. Therefore, in these cases, FPS is not a critical value, and
we just need to verify that the time within we record, particles are still active.

However, for particles of around R = [0.5, 3]µm of radius, τr can be within
the observable regime and hence, we could also obtain data for the ballistic regime,
although it may be difficult to capture the enough data points to fit our MSD due
to the temporal resolution of the camera. At this level, one can ask himself if
the safe recommendation we gave for the FPS can be better estimated and if in
fact, the error of considering that approximation is appropriate. For instance, we
obtained the previous recommendation as a factor of 2 orders of magnitude: one
to have enough points for the fitting and one to accomplish with the approximation
regime. For a parabolic fitting, we will assume that 10 points are good enough
to fit it. Then, we could verify what t ≪ τr means. To investigate this problem,
we find that expanding the MSD approximation to higher polynomial orders when
doing the Taylor expansion leads to more accurate and interpretable results. If we
expand the MSD equation for the active case (Eq. 3.5) up to fourth order:
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MSD(t) = 4Dtt+ v2pt
2︸ ︷︷ ︸

n=2

−
v2p
3τr

t3

︸ ︷︷ ︸
n=3

+
v2p

12τ2r
t4
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n=4

+O(t5), (3.2.1)

we obtain different expressions depending on the desired degree of accuracy.
In particular, we recover the already proposed expression for the second-degree
approximation n=2 of section 1.4.2, but we could expand up to higher orders,
theoretically infinite. Therefore, we might wonder what are the limits that we en-
counter when we apply this equation up to a specific term and what is the error
associated.

Cutting this approximation up to the n-th order will always give us an intrinsic
mathematical error, which decreases for higher orders but increases as we calculate
for a time lag far from 0 s, since the Taylor expansion is done around 0 s. If we do
the following change of variable, x = t/τr, expression inside parenthesis in Eq.
3.5 can be rewritten as m = −1 + x+ e−x. From this equation, we can know this
error depending on the n0 terms we included in the expansion:
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(3.2.2)

Although we know which is the error for each of our points we commit when
we cut the series at n0 order, we must remember that to extract the value of the
speed we are doing a fitting, which imply to take 10 points as we referred before.
This means that since the error of this expression grows with x, the further x from
0, the more error this point will have, but the total error of this fit will not coincide
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with the one we could extract from the residual of the Taylor expansion since the
fitting is adjusted to the 10 points, and the firsts points have less error than the lasts
ones. Since calculating this error can be complex, one could be tempted also to
increase the order of Taylor polynomial to reduce the error and forget to calculate
it, but this might not be appropriate. The main reason is that the prefactors of the
power series (Dt, vp, τr) are unknown and the equation is always fitted to exper-
imental data. Having too many terms to fit could create overfitting of the results.
Hence, the number of terms added to the equation should be kept as low as possi-
ble, while still allowing an accurate representation of the experimental MSD with
minimum error. Thus, in some cases can be useful to add one or, as a maximum,
two more terms. For instance, in the case of adding the third term (n=3) to this
expansion, the overfitting problems will not be important and new information be-
yond reducing the error is obtained, as we can indirectly obtain an experimental τr.
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Figure 3.2: Overview of the analysis performed to the simulations and exper-
iments.

In order to check the accuracy of these equations for different examples, and to
properly check the validity of Eq. 1.4.13 as a function of the FPS, we analogue the
optical microscopy tracking experiments by simulating them with a simple ABP
model (Eq. 1.4.11) (See Fig. 3.2). Then, we construct the MSD from the particles
simulated and we estimate the parameters fitting the MSD to Eq. 3.2.1. These pa-
rameters are compared to the actual values used in the simulations. Consequently,
we can obtain the relative error to them.
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To compare the parameters provided to the ABP model and the fitted ones,
we averaged the fitted parameters values of 10 full simulations. For each full
simulation, we obtain the fitted parameters by fitting the average MSD of 20 non-
interactive active particles which move with the same active speed vp and are sub-
ject to Brownian fluctuations.

To study the effect of the FPS, we repeated the previous calculation simulating
particle trajectories for different time steps dt, to which the inverse of the time step
is the simulated FPS. Moreover, we set that 10 points are enough to fit a parabolic
curve, and hence, for each simulation we will fit data up to 10 · dt s. If we divide
10 · dt per τr of the particle we will obtain a corresponding x value. The validity
t << τr corresponds to t/τr = x << 1, and thus we can also compare the valid-
ity of this expression for different meanings of what t << τr means. Nontheless,
the total time simulated will be 100 · dt s because we consider that we only fit the
first 10% datapoints of the MSD. This model does not include other sources of
error such as errors during the tracking of the particles. Thus, the errors associated
to the estimation of the parameters only come from over- or under-fitting of the
equations and by the Taylor expansion.

As a result, in Fig. 3.3 we present the errors calculated when compairing the
exact values to the fitted values. The addition of a third term in the equation lead to
a better estimation of the speed of the particle, with a fast convergence to the exact
value. For almost all the comparisons, the error for estimating the speed using the
MSD method is lower than 5%. However, if we use the second order approxima-
tion, the error can reach up to 15% or more. Moreover, Fig. 3.3 demonstrates the
meaning of t << τr. In fact, if we use t ∼ τr we could use the third order approx-
imation and still, obtain almost the exact value. For example, this could be useful
in the case of a small τr and being limited by camera limitations or, if one wants
to track these particles for longer times but still, be able to track its speed individ-
ually. Furthermore, Fig. 3.3 is useful for any beginner in the field that wants to
know which FPS and for how long it needs to record their videos to properly esti-
mate the speed of their particles, optimizing thus the amount of data to be recorded.

Interesting, particles smaller than R = 0.6 µm show high errors on calculat-
ing the speed using these approximations, breaking the behaviour of the rest of
particles simulated. Specially, if you use the third order approximation. Hence,
we need to be careful in this limit. To complete the information we can extract
from these simulations, in Fig. 3.4 we plot the Dt for these fittings. The results
for Dt are shocking since the large error obtained, except for particles smaller than
R = 1µm if third order approximation and x < 0.15 is used. For bigger particles,
the value obtained should be carefully used because of the large error it can con-
tain. Therefore, it is better to focus on the speed rather than on Dt value.

Although these results could be enough to conclude, I also worked experi-
mentally with these particles and hence, I checked the above data with Pt-SiO2 of
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R = 1µm for different fuel concentrations. In this simple experiment, I mixed a
suspension of particles in miliQ water with hydrogen peroxide to obtain different
solutions at different hydrogen peroxide concentrations (1%, 2%, 3%, 4%, 5%).
Then, for each solution I put 10 µL on top of a glass slide and recorded with a
microscope at 25 FPS for a few minutes. Each particle recorded is tracked, and
then analysed individually. Although I had data from different fuel concentrations,
I finally did not consider the fuel concentration to split data information but joined
all data together. I decided to join all the information because when dealing with a
batch of particles, particles can have a dispersion in its size, can have defects or its
surface can have a different condition to do the catalysis, thus affecting the speed
of particles as seen in experimental studies[68]. Therefore, I preferred to average
particles within the same speed range calculated rather than by its fuel concentra-
tion.

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

n=2 n=3

e
rr

o
r 

v
p
 <

 1
%

e
rr

o
r 

v
p
 <

 5
%

e
rr

o
r 

v
p
 <

 1
0
%

e
rr

o
r 

v
p
 <

 1
5
%

0

2

4

6

8

10

12

14

16

18

20

0.6 
0.8

1.0
1.2

1.4
1.6 1.8 2.0 2.2 2.4 2.6 2.8

20
18
16
14
12
10

8
6

4

2

sp
e
e
d
 (

m
/s)

t/
�

R ( m)

1.0

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.9

0.1

e
rr

o
r 

v
p
 %

Figure 3.3: Error in % of the estimated particles speed after fitting its MSD
to a Taylor expansion (Eq. 3.2.1) of n=2 terms or n=3 terms as a function of
the particle radius, speed and fitted region x = t/τr. We obtain the relative
error between the speed introduced in the ABP model and the speed obtained from
fitting the MSD of ABP simulations. First row shows all the simulations where the
fitted speed vp differs less than 1% to the values introduced in the ABP simulation.
The following rows shows data for <5%, <10% and <15%. Left column uses n=2
approximation, while right column uses n=3 approximation.
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To imitate the simulations with these experiments, I decided to fit the MSD
both for Taylor orders n = 2 and n = 3 up to different values of x. Originally,
movies were recorded at 25 FPS but to accomplish with the same structure as in
the simulations I removed data in between. Therefore, I treated movies as if they
were multiples of 25 FPS. Thus, for each FPS used I will have a different estima-
tion of the speed, obtaining a collection of different speeds v that I named after vx,
since each FPS is coupled to a specific value of x as calculated for simulations.
But of course, opposite to the simulations, we do not know a priori which of these
vx is the correct vp of the particle. Since with the simulations we saw that third
order approximation has lower error, I assumed vp will be closest to the real value
using this approximation. Moreover, to reduce the error of the MSD, I decided
to use the full data instead of using only 100 points as with every vx. Hence, the
higher available FPS (25 FPS) will give the maximum amount of data points, and
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Figure 3.4: Error in % of the estimated particles Dt after fitting its MSD to
a Taylor expansion (Eq. 3.2.1) of n=2 terms or n=3 terms as a function of the
particle radius, speed and fitted region x = t/τr. We obtain the relative error
between the Dt calculated theoretically and the Dt obtained from fitting the MSD
of ABP simulations. First row shows all the simulations where the fitted Dt differs
less than 10% to the values introduced in the ABP simulation. The following rows
shows data for <102%, <104% and <105%. Left column uses n=2 approximation,
while right column uses n=3 approximation.
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thus I considered this case as the one to obtain vp. Then, to have better statistics,
data was averaged over bins of 2 µm/s. Finally, we calculated the error of vx with
respect vp (See Fig. 3.2 for a complete overview of the process).

A                                B

Taylor n0=2 Taylor n0=3

Experiments    Simulations

Experiments    Simulations

Figure 3.5: Comparison between experimental and simulation data for the
error extracted from speed fitting using MSD at different Taylor expansions
and different x = t/τr. A) Taylor approximation to second order. B) Taylor
approximation to third order. Empty points correspond to simulations, while
full points are obtained from experiments.

In Fig. 3.5 we plot the estimated error obtained experimentally, and we overlap
the simulated series for these speeds, size and x. Experimental and computational
data agree, except for low-speed values since for this range the error associated to
the tracking is very important.

While the second order approximation is only good for low values of x, the
n = 3 order is also good for higher values of x. In the case of n = 2, the error
associated to speed calculation grows linearly with higher x, both experimentally
and theoretical. Moreover, experimental data presents a shift compared with simu-
lations. In contrast, the simulations for n = 3 order do not present these problems.
To explain this underestimation there could be different answers, yet there is a fun-
damental one we still have not considered. What if experimentally our particles do
not match the theoretical τr? In this case, the experimental line will be displaced,
and that could explain this underfitting. To better explain this problem, and since
τr is an important characteristic time, in the next subsection I also do a similar
calculus to properly calculate τr.
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3.2.2 Frames per second required for τr calculation

In the previous subsection we observed that the theoretical τr could be under- or
over-estimated experimentally. Therefore, a subsequent question arises: how can
we estimate τr without using the theoretical value?

Although from a theoretical point of view the calculus of τr is simple, experi-
mentally different questions arise. For example, there are different methods to use,
each of them with different errors implicated. Which one has less error? And how
can we calculate each of them? Furthermore, some of these methods rely on ob-
taining the particle orientation, but sometimes we cannot differentiate both parts
of the Janus, and hence defining the orientation is not directly possible. And of
course, as with the speed calculation, the fundamental question arises: how many
FPS do I need to use while recording my videos?

To answer all these questions, I analysed 3 different methods to calculate τr:

• Fitting the MSD with Eq. 3.2.1 with at least n = 3 or higher order.

• Fitting the MSAD instead of the MSD.

• Fitting the velocity autocorrelation.

Using the experiments and simulations already realized in the previous subsec-
tion, I also calculated τr using the above methods. In the next pages I will show
the results obtained for each method.

Fitting the MSD with Eq. 3.2.1 with n = 3 and n = 4

We present the results in Fig.3.6 for the estimated τr for simulations using the
MSD fitting to cubic and forth order. In general, the errors estimated for τr are
orders of magnitude higher than the ones calculated for the speed.

In the cubic approximation case, if we fit the MSD up to x < 0.1, we can
obtain the estimated τr with less than 10% error if we have particles bigger than
R > 1.9 µm. For smaller particles, this estimation can also be good enough
(less than 25%), but the more you reduce the size, the faster the particle must
move. However, as soon as we increase x, the error for τr increases, and we can
have up to 75% error on the estimation. Nonetheless, for particles smaller than
R < 1.2 µm, the x used for fitting is very important because we find a region for
low x where the estimated τr can have errors up to 1.2 · 105% the real value.

In the fourth approximation case, we can also obtain estimations with less than
10% error ifR < 1.2 µm, but only if the speed is high enough. Interesting, we can
explore more values of x to have this low error. Values for smaller speeds have a
similar trend with the cubic order, while values for bigger particles have an erratic
trend. Depending on the region of interest, it may better to use the cubic or the
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fourth order approximation. Thus, the size of the particle is very important if we
decide to estimate τr using this method. In the case of the particles I used for these
experiments (R = 1µm), the fourth approximation is better.

As in the study of the speed of the particles, we can also test this method directly
with experiments. However, the procedure for comparing experimental and the-
oretical errors of τr must be different. In the case of the speed, the estimation
obtained by fitting the simulated MSD had a relative error of less than 5% with
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Figure 3.6: Error in % of the estimated particles τr after fitting its MSD to
a Taylor expansion (Eq. 3.2.1) of n=3 terms or n=3 terms as a function of the
particle radius, speed and fitted region x = t/τr. We obtain the relative error
between the τr introduced in the ABP model and the τr obtained from fitting the
MSD of ABP simulations. First row shows all the simulations where the fitted
τr differs less than 10% to the values introduced in the ABP simulation. The
following rows shows data for <25%, <75% and <106%. Left column uses n=2
approximation, while right column uses n=3 approximation.
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the parameters introduced in the simulations, with independence of x. Hence, we
could assume that in the case of the experiments, we could have a reference value
for the speed if we use the same order approximation, the lowest x and the longest
MSD available. However, notice that in the case of extracting τr, we have an im-
portant dependence on the x parameter, which in turn depends on τr. Thus, in this
case we cannot proceed as before. Instead, I decided to directly estimate the value
of τr to compare with the results from simulations. But we started with the hy-
pothesis that the experimental value can be different to the theoretical one. Hence,
instead of comparing directly the experimental and simulated values, I compare
the variability in the data.
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Figure 3.7: Experimental results for τr. Top row: τr calculated by fitting the
MSD to Eq. n=4. Left: Experimental data. Right: Simulated data. Colormap for
simulated data is cut from 9000% error to 50% to present better regions with low
error. Simulated results are presented as the relative error to the real value of τr.
Bottom row: Experimental data from Uniform area. Left: Colormap limited to
the available range of data. Right: Axis t/τr recalculated using the average τr in
the Uniform area as the real τr (τr calculated = 4.50± 0.07s).

To start with the experimental data, I assume that the theoretical τr is the cor-
rect value. Hence, I can create a map using vp and x (See Fig. 3.7Top left)).
The values obtained present a high variability for low x, but high consistency for
higher values of x. If we compare this data to the extracted from simulations
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(See Fig. 3.7Top right)), we see that there is also a large variability for low x,
but the rest of values have an homogenous relative error of 5-15%. Thus, we can
consider that the homogeneous area in the experimental data will also have a low
relative error. When we zoom into this region (See Fig. 3.7Bottom left)), we
can assume this region contains the real value for τr. Therefore, if we average all
data points included in this region we can obtain an estimation of our τr, which
is τr experimental = 4.50± 0.07s. This value is incompatible with the theoretical
data (τr theoretical = 5.4s). If we use τr experimental for the calculus of x we can
rebuild the x axis (See Fig. 3.7Bottom right)). The new axis is still in the range
of the simulated area with homogenous error, and hence we can conclude that our
estimated value is the best estimation we can give with this method.

Fitting the MSAD

The next method to study is the calculus of the MSAD. To calculate the MSAD
we need to calculate the MSD but using the rotational components instead of the
translational components. In an ABP model the MSAD can be related with τr
given:

MSAD = 2dDrt+ ω2t2, (3.2.3)

where d is the number of rotational dimensions, Dr is the rotational diffusion
coefficient, which is the inverse of the rotational diffusion time τr, ω is the active
angular speed and t is the lag time. To have ω ̸= 0, we need chiral particles.
For example, we can obtain chiral particles modifying the body geometry of the
particles[126], fabricating them with non-uniform parameters[67], or by clustering
several active particles[127]. However, my active particles are not chiral and hence
ω = 0. Because in my system there is only one degree of freedom for rotation,
d = 1.

In the case of the simulations, I have the values for the angle already calcu-
lated, and hence I can use them directly. But in the case of the experiments, we
need to distinguish any asymmetry in the particles to draw their director vector.
Because Janus particles have two different sides, if we can distinguish them, we
will obtain the angle of the particle. But in the experiments I did, the magnification
was low to capture more area of motion, and hence I could not track their orienta-
tion by simply differentiating the active from the inactive side. Instead, I took the
angle from its instantaneous speed vector, and I assumed that this angle is the same
one I could obtain by distinguishing both Janus parts (See Fig. 3.8A)). Thus, to
better compare experiments with simulations, I will also present data for simula-
tions obtaining the angle from the instantaneous speed. However, if possible, it is
better not to use this method because it is very sensible to the FPS used. The in-
stantaneous speed includes a random component from Brownian motion (See Fig.
3.8B)), which we do not average and hence we introduce it in the calculus.
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Figure 3.8: A. Approaches to calculate the angle of a particle. The angle of
the particle (top) is obtained from the vector (red) perpendicular to the sepa-
ration between the inactive (white) and active (black) areas of the Janus. We
can measure this vector using image processing or alternatively, we can cal-
culate it from its instantaneous speed (bottom), tangent to its trajectory (green
olive). B. Components of the instantaneous speed. When we calculate the in-
stantaneous speed we are including not only the propulsive speed of the particle
(vp), but also we include a Brownian component (vb) arising from the random
Brownian force (Fb). Image authorship. Own image.

One question that also arises when we calculate τr is the method to average
over the collection of particles we have. Each particle has its own MSAD, which
we will fit to obtain its own τr. Thus, we can average over the population of τr
obtained. Nonetheless, we could also average the MSAD, and then fit once to ob-
tain the averaged τr. Both methods are equivalent, but maybe one produces less
error. Because errors when calculating τr can be very large, I decided to use both
approaches too.1.

In Fig. 3.9 I present the results for the simulations using the four options2.
First, these results confirm a difference between both averages. However, this dif-
ference is less than 10% relative error, being the errors bigger if we average over
τr instead of over the MSAD. Second, we observe a contained relative error for
the simulated parameters. Notice that when we calculated τr using the MSD we
obtained errors up to 105%, while in this case the maximum relative error is 100%.
Third, as we predicted, if possible we should avoid using the instantaneous speed.

1Indeed, when I did the approach for the speed, I averaged the MSD and then fit this value, but
when I was analysing the experimental data I was fitting each MSD and then averaging the different
speeds. However, the error obtained in the simulations was very small, as in the case of using the ABP
angle here, and hence I discarded that analysis

2Notice that the angle must be in radians, and not limited to be between 0 and 2π. In python, you
can extend the angles between 0 and 2π to increasing values using the method numpy.unwrap(angle)
from numpy library. Also, if one takes the angle from the instantaneous speed, there can be 0 values
because the speed at that moment is zero, but the previous and following steps are not. Thus, you could
have had a different value. Consider filling these zeros with the previous angle values.
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Figure 3.9: Relative error of the estimated τr after fitting its MSAD. Top
row. MSAD calculated using the angles obtained in the ABP model. Left: First
average the MSAD, then fit. Right: First fit, then average τr. Bottom row. MSAD
calculated using the angles obtained from the instantaneous speed. Left: First
average the MSAD, then fit. Right: First fit, then average τr.

When we use the angle from the correct source (e.g., optical angle tracking) the
error can be almost negligible, of 10% maximum, and we do not observe a depen-
dence on x, which can ease the calculus. However, if we use the instantaneous
speed, we will have errors of up to 100% for particle radii R < 1.0µm. Brownian
effects should be less noticeable if particles are bigger or move faster, and in fact
we note that the error shrinks as the particles are bigger or move faster. Moreover,
to calculate the vertical axis (x) we use 10 points. Thus, to increase x we enlarge
the time step, and hence the less noticeable should be the influence from Brownian
as we observe (See particle trajectory at Fig. 3.2).

We consider now the the experimental data, which we plot in Fig. 3.10. To
obtain these results I repeated the same process as when obtaining τr from the
MSD. We find a similar trend between simulated (left column) and experimental
data (Middle column), with an area of high error for smaller speeds and x ra-
tio. Therefore, we will exclude this data from the analysis. Although simulations
present an area with lower error (yellow region), obtaining the experimental value
for this area is difficult because it depends on the vertical axis (x), which includes
the term that we want to calculate (τr). Hence, I preferred to take the values for an
area (area inside orange dashed lines) further from the regions with high error. The
average of τr over this orange dashed lines area gives τr calculated = 3.26±0.10 s
if we average over MSAD and τr calculated = 4.20± 0.13 s if we average over τr.
These values are not compatible, which is surprising given we use the same data.
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Fitting the velocity autocorrelation

The last method to study uses the velocity autocorrelation. Velocity autocorrela-
tion is a measure that is implicitly calculated when we calculate the MSD, prior to
integrations present in the MSD. The velocity autocorrelation follows:

< v · v >=< cos2(θ) >= e−t/τr (3.2.4)

But to ease the fitting, we can also apply the log:

log(< v · v >) = log(< cos2(θ) >) = − t

τr
(3.2.5)

The calculus of the autocorrelation can lead to fitting problems because under
some circumstances, some points can be negative, and thus Not a Number (NaN)
when plotting the log. 3 Moreover, because we also use the angle, we will find the
same problems presented when calculating the MSAD.

In Fig. 3.11 we present the results using the simulated results. These results
are very similar to the ones we obtained for the MSAD, and hence, both methods
can be used undistinguished. If we can obtain the angles directly from the observa-
tion of the particles, the results are perfect, but if we need to use the instantaneous
speed we will obtain large errors for small speeds and particles.

3Nonetheless, this method was the one I used for the analysis present in chapter 5.
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Figure 3.11: Relative error of the estimated τr after fitting its velocity auto-
correlation. Top row. Velocity autocorrelation calculated using the angles ob-
tained in the ABP model. Left: First average the velocity autocorrelation, then fit.
Right: First fit, then average τr. Bottom row. Velocity autocorrelation calculated
using the angles obtained from the instantaneous speed. Left: First average the
velocity autocorrelation, then fit. Right: First fit, then average τr.
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In Fig. 3.12 we plot the results for the experiments, repeating the same pro-
cedure as in the previous studies. Experimental values for τr using the autocorre-
lation method are very close to the values using the MSAD method. In fact, the
calculated τr between both approaches are compatible. In this case, I obtained
a value of τr = 3.41 ± 0.07 s when first averaging the autocorrelation and then
fitting it and τr = 4.49± 0.14 s when averaging the calculated τr. Again, as in the
calculus of the MSAD we obtained two results, depending on the average, that are
not compatible.
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Updating the speed measures with the experimental τr

When we compared the computational and experimental results in Fig. 3.5 A),
we observed a gap between the experimental and computational values. However,
in this plot we used the theoretical τr but experimentally we obtained different
values. Thus, we can use these values to plot again that figure. The values already
obtained experimentally for τr are:

Average method MSD n = 4 MSAD Autocorrelation
Average first, then fit. - 3.26± 0.10 s 3.41± 0.07 s
Fit first, average then. 4.50± 0.07 s 4.20± 0.13 s 4.49± 0.14 s

We mainly obtained two different values for τr, depending on the average used.
Although the method can be different, the values are compatible if we use the same
average approach. Thus, we can average these values and obtain 4.4 ± 0.2 s for
when first fitting and then averaging, and 3.3± 0.1 s for when first averaging and
then fitting. In Fig. 3.13 we present an updated version of Fig. 3.5 A) considering
these two values for τr. Now, experimental and computational values match, and
hence we have a possible reasoning for the difference we previously found. The
best set is when we average first, and then we fit, as computationally we already
observed.

3.2.3 Conclusions

To summarize, choosing the FPS and the n-degree equation to fit the MSD is
clearly context-dependent, and the choice depends on the size of the particle, its
speed, and the fitting interval. In general, a reliable value for the FPS can be esti-
mated as FPS=100/τr, although we can set smaller FPS if needed.

For particles smaller than R = 0.5µm, we will usually obtain a linear MSD,
which is proportional to the enhanced diffusion constant (Deh). Therefore, the
best parameter to present is Deh.

Bigger particles will present a non-linear MSD. For these particles, a third-
degree approximation provides a great improvement with respect to a quadratic ap-
proximation for speed calculation, with estimated relative errors of less than 10%
as compared as to the real value. Nonetheless, translational diffusion constant and
rotational diffusion time provide estimations with large error. Translational diffu-
sion constant presents high error if we use bigger particles than R = 1µm, and if
their speeds are higher because Brownian fluctuations play a smaller role than the
active motion. To report diffusion, the linear part of the MSD, long after the rota-
tional diffusion time, should be fitted to a linear equation to extract the enhanced
diffusion coefficient.

If possible, we should analyse experimentally τr. When calculating τr, it is
better to directly use the tracked angle from the particle orientation, but if not, it
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can be calculated by using the angle obtained with the instantaneous speed. This
method will enlarge the error associated, but it can give good results. The best
method to calculate τr will depend on the values of particle and speed size, and
the FPS, but consider using the autocorrelation or the MSAD approach. Finally,
depending how we do the average over the different particles, the result can differ.
Hence, it is important to indicate which approach is used.

Following the guidelines in this section videos can have the adequate FPS and
duration, which in turn will solve the possible problems of data storage you could
have.

t/τR

τR Theoretical

τR = 4.4s

τR=3.3s

Experiments    Simulations

t/τR

t/τR

Figure 3.13: Comparison between experimental and simulated data for the
relative error extracted from speed fitting using MSD at Taylor expansion n =
2 and different x = t/τr. Left: Original data using theoretical τr. Right: We
used the experimental τr obtained by different averaging instead of the theoretical
value. Top: Fit first, average then. Bottom: Average first, then fit.
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3.3 | Choosing the correct size of your region

of interest

One of the challenges when recording a video is to fit the complete scene. The first
limitation to fit is the field of view or FOV of our microscope. If the FOV is not big
enough, it may happen that we observe the initial part of a process, but we cannot
observe the final. Thus, it can conditionate the experimental setups we can have.
For example, imagine we need a microstructure as we presented in chapter 2. The
size of this microstructure will be limited by the FOV. In the insets of Fig. 3.14
we can better understand this effect. To overcome this problem, one can analyse
the parameters the FOV depends on. For normal lenses (e.g., not fisheye lens),
the FOV can be estimated as FOV = 2arctan

(
Sensor size

2·focal length

)
[128], and thus,

to enlarge this area we can reduce the magnification of the objective, change the
kind of lens of the objective or buy a new camera with a bigger sensor if needed,
but this would cost much more. Although reducing the magnification can be a
good idea, one should be aware of the resolution the particles will have with such
objectives. For example, in the microscope I used (Sensor size = 2048x2048 px),
a R = 2.5 µm particle under a 10x objective fits in just 9x9 px. At this resolution,
checking visually the orientation of these particles is not possible, but one can its
position. Thus, depending on our aim, we can play with the magnification or not.

Figure 3.14: Example of different FOV (right image) defined with the diag-
onal or one side of the sensors size (left image) depending on the focal length
of the objective. In yellow: A 3:2 APS-C format sensor coupled with an objective
with 18 mm for focal length is equivalent to a 35 mm format sensor coupled with
an objective of 27 mm focal length and shows 48 degrees for the vertical FOV. Im-
age authorship: cmglee, chensiyuan, Wikimedia Commons. Used under Creative Commons
Attribution-Share Alike 4.0 International license. No changes were performed.
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In general, though, recording the complete FOV is not necessary. For exam-
ple, in the case of the microstructures I was commenting on, it may happen that
a higher magnification we cannot observe the complete structure, but at a lower,
there is more visible area than needed. In these cases, one should record only the
interesting region. To this area we refer as the region of interest or ROI. Thus, the
ROI will be an important constant parameter to define the size of each video. Of
course, if the ROI is not defined by the user, the computer will take the maximum
area available by our FOV as the ROI, but one should avoid this fact because it en-
larges video size. For instance, in Fig. 3.1B) we observed the difference between
choosing all the available space or just choosing a little area. For the microscope
I used, a ROI of 2048x2048 px would weight 64 times more than one of 256x256
px, which may be a problem if we need to record many videos, especially if they
have many frames. Therefore, as a general recommendation, before enlarging the
ROI it is preferable to reduce the magnification of the objective if what we want to
observe is still visible and trackable by reducing the magnification.

If we cannot reduce the magnification and we do not want to enlarge the ROI,
an alternative option is to develop some technique in which the platform of the mi-
croscope moves as the video is being recorded following a particle[129]. However,
this solution is not usually commercially available and requires a good know-how
to implement it. As a result, they are typically found in a few labs. For instance,
I could not have this setup during the development of my thesis. Nonetheless,
reducing the ROI if possible, it is a good idea, but it should never be extremely
reduced because some phenomena can be masked. For example, sometimes when
one wants to study the individual behaviour of active particles, a small ROI is se-
lected around a single particle. If the ROI is small enough, we could mask the
effect of drift, which is commonly observed under the microscope.

Drift is one of the main problems regarding motion analysis of active parti-
cles as the key point when analysing its motion is to distinguish whether if what
we have is active motion or its motion just comes from advection [130, 131]. To
have active motion means that the particles are producing their own motion, which
is not the case when they are being dragged by the currents of the surrounding
medium. For this reason, it should be checked if the overall population of particles
is moving in the same direction or in random directions as reflected in Fig 3.15A.
The first case would indicate that there is drift in the system, while the former will
be a sign that there is not. But if the ROI is small enough and only one particle
is observed, without proper analysis, a particle under drift could seem that is active.

To test if a recorded particle is moving under drift, we can analyse the MSD
since the MSD should follow the ABP model with a small variation:

ẋ(t) = vp cos(θ(t)) +
√
2Dtξx(t) + vd cos(θd),

ẏ(t) = vp sin(θ(t)) +
√
2Dtξy(t) + vd sin(θd),

θ̇(t) =
√
2DRξθ(t),

(3.3.1)
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where here vd refers to the speed of the particle due to drift and θd is its drifting
angle. Because of the drift, the new formula for the MSD is the same as in Eq. 3.5
but with the addition of an extra quadratic term:

MSD(t) = 4Dtt+ 2
v2

D2
R

(
DRt+ e−DRt − 1

)
+ v2dt

2 = MSDNo drift + v2dt
2.

(3.3.2)
The extra quadratic term that appears in Eq. 3.3.2 implies that, unlike in the

scenario without drifting, at times longer than the rotational diffusion time, the
MSD will look quadratic instead of linear with an enhanced diffusion. As an exam-
ple, we present in Fig. 3.15 experimental data of one inactive silica micro-particle
of R = 1µm where drift was induced. In Fig. 3.15B we observe that the direction
of this particle is constant in time. When the MSD is plotted (see Fig. 3.15C), its
curve fits very well with a parabolic function even at large times compared with its

Figure 3.15: Particles with drift. A) Particles that experiment drift move all in
the same direction (left) while particles not affected by drift experiment movement
in different directions (right). B) Trajectory of a recorded passive particle of R =
1µm undergoing drift. C) MSD plot of the particle recorded and presented in B)
(dashed and green lines) and the theoretical equation of an active particle (brown)
following Eq. 3.5 with the same speed as calculated with the drift case. D) Log-
log of C) plot. The log-log view can help us also distinguishing scenarios between
propulsive and Brownian easier.
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rotational diffusion time. However, comparing it with a simulated active particle of
the same size, vp = vd and vd = 0, we observe that after the rotational diffusion
time, the MSD of the simulated active particle stops being quadratic and grows
linearly, as the limits of Eq. 3.5 indicate. Following a quadratic tendency after the
rotational diffusion time can be a clear indication of a drifting-like behaviour in an
active particle system.

To check the effects of drifting in the motion of micro- and nano-motors, the
long-term behaviour of the MSD should be analysed as indicated in the previous
paragraph. An estimation of the rotational diffusion time, τr, should already be
known. Then, a trajectory much longer than this time should be obtained, and the
MSD calculated. By plotting the MSD in a double log-log scale, we should ob-
serve a change in slope at the rotational diffusion time, as in Fig. 3.15D. In this
figure, the simulated active particle follows a quadratic tendency during the first
seconds, before reaching the rotational diffusion time, and its slope decreases to 1
after a longer time. In general, doing a log-log plot is a good approach to evaluate
the presence of drift in the system, as well as to investigate different motion from
the MSD of micro- or nano-motors that move with sub- or super-diffusive dynam-
ics not collected in any of our previous examples [122, 132]. Moreover, it is also
important to notice that when a particle is showing drift-like behaviour, the error of
the MSD at large lags will be small, even at times compared to the actual trajectory
length. This is due to the high directionality of the motion, which is deterministic,
compared to when it is being dominated by Brownian fluctuations. In that case,
the full MSD should be smooth and highly parabolic at long times, meanwhile the
one of an active particle without drift would show non-uniform or sharp variations
in its shape.

Finding the drift by recording long videos could be an incorrect strategy be-
cause of the length and size of the final videos. Hence, it could be useful to record
only a couple of videos during the experiment where it is observable the regime
where t≫ τr. But even though, if you can record more than a particle in a ROI, it
will be better for your analysis, especially if there are the tracers to justify that one
does not have drift in the system. For instance, colloidal inactive particles that are
visually different from the active can actuate as tracers that visually help you to
understand if we have or not drift in the system without a long analysis afterwards.
Hence, consider adding them if possible.

Finally, as a last remark, the directionality of particles towards one point can
also be possible because of a chemotactic behaviour of the particles. However, the
chemotactic behaviour is a very specific scenario that would require an intelligent
particle creation, while drifting can be common when doing experiments. Thus,
one should think in drifting before chemotactic behaviours.
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3.4 | Saving bytes: From raw to compressed

data

In the previous sections I presented a methodology to adequate and reduce the
amount of data generated when recording videos. Although these solutions can
be helpful while performing the experiments and can reduce the amount of time
invested in the experiments, at the moment of analysis we need videos, and our
videos do not have to be in raw but can be compressed.

When one records with a digital camera, a raw video or picture is not usually
given. Typically, the image is post-processed to reduce the amount of data and
a compressed image is given. When the users use the ".tiff" format, normally a
lossless data compression is performed. This is, the size of the image is reduced
by different algorithms, but no detail is lost. However, this type of compression is
not usually used, since it barely drops the size of the file and because many times,
a soft lossy compression (or irreversible compression) can reduce the size of the
video without any visual important changes. Only fine details are lost, but these
are not commonly needed to see well the image. For example, we are well used
to see pictures in ".jpeg" format. The "JPEG" name born from the acronym of the
organization that defined the standard for compressing the images, the Joint Pho-
tographic Experts Group. It is not the porpoise of this thesis to show how these
algorithms work, but just to show an example, in Fig. 3.16 I present an image
taken by myself with a different jpeg compression ratio applied. Even that one can
reduce the size of an image importantly, this does not mean we will not distinguish
the objects we have in the video. If this effect is not noticeable for such a com-
plex image, imagine what we can do when working with a black and white picture
where we are only focussing on Janus particles.

It is true that the more complex is the algorithm to compress the image, the
more powerful a personal computer (PC) needs to be, but our daily PCs are power-
ful enough to run videos that are highly encoded. Moreover, having a big raw video
also needs a powerful PC with huge quantity of random-access memory (RAM)
since it needs to move more data. And the worst about all is that any modification
realized over the videos will imply that new videos of the same or bigger size will
be created. Consequently, the data storage will be more problematic. Due to this
reason, and because of the special format I had as an output from the microscope I
was using during the realization of this thesis, during the first stages of my thesis
I had to develop a software to convert the format and compress these videos. In-
deed, by the end of this thesis I finally developed a second more powerful software.
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Fidelity: 90% Size: 1.19 MB Fidelity: 50% Size: 347 KB Fidelity: 1% Size: 86 KBFidelity: 10% Size: 124 KB

JPEG Compression

Figure 3.16: An image of a butterfly is saved with the jpeg compressor
method at different fidelities. The lower the fidelity, the lower the quality and
the size of the image. Even though one can lose image quality, the difference be-
tween a 90% and 50% are not very appreciable when comparing them visually, but
the size of the image is reduced by a factor of 62%.Image authorship. Own images.

If any reader has tried to use the software I was using (LAS X, from Leica Mi-
crosystems [133]), probably knows very well its own proprietary file system. For
those readers that are not used to use this software, I must clarify that any picture
or video that one takes with the software does not create a picture or video itself.
Instead, a unique file per project is created as described in Fig. 3.17. This special
format is a container, where in the first bytes there is the metadata of the pictures
and videos recorded in an extensible markup language (XML) format followed by
all the pictures and videos in raw.

Nonetheless, we need to access to these videos and images, and therefore we
need to extract them from the container. At the moment I started the thesis, LASX
had a method for extracting the data, but the user had to extract videos and images
one per one and had to wait until the process ended to save the next one. Moreover,
while this was processed, a different user could not use the microscope and conse-
quently, many hours of recording videos could be lost by the team. Furthermore,
the extracting method from the software had problems when extracting big videos,
which was the kind of sizes we could have in our dataset.

To avoid these problems, and to compress data, I developed the tools Lif2Avi
and Lif2Mkv.
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Figure 3.17: Usage of my software. When a user records videos with the mi-
croscope, a .lif file which contains all the videos, pictures and metadata is created.
Data inside this file is saved in raw, but to export all files to videos or images
is tedious. Just opening them with my plug-in Lif2Avi for Fiji or my program
Lif2Mkv is enough for the user to have the data extracted from the lif file. Data is
compressed by reducing pixel depth to 8 bits and a lossy compression is applied.
Metadata for each video is also stored in a new XML file in the case of using
Lif2Avi or in each of the own videos in the case of using Lif2Mkv. If channels are
present in the videos/pictures, a new file will be created per channel.

3.4.1 Lif2Avi software

The first tool I created was a plug-in for the image software Fiji[134], which is
based on the software ImageJ[135]. The reason to do this plug-in was because
there was already a plug-in for Fiji called BioFormats[136] that could open im-
ages and videos from Leica’s files inside Fiji. I also asked support to Leica, to
whom I thank for sharing with me a minimal code to open their files, but the pro-
cess seemed to me shorter and easier by using the previous plug-in. Therefore, I
developed a plug-in for Fiji in Java since Fiji is developed in Java. In Fig. 3.18
I present the different sections of the plug-in developed. Since I was using Fiji,
and Fiji has many options, I decided to use in my plug-in some of the already im-
plemented options. For instance, the user can add a scale bar and stamp the time
in each frame for each video. Both options come as independent methods in Fiji
with its own properties, and therefore these properties could also be modified in
my plug-in. If a user always uses the same configuration, this configuration can
be saved and loaded from the main tab ("General") directly each time it opens the
plug-in. Since in the lab we could record many .lif files, instead of doing this ac-
tion per .lif file, I also added the bulk option to let users indicate to the software the
files they want to convert and do the process automatically one after another one.
Data needed as FPS, magnification or binning is selected individually per video
after reading its own metadata information, but user can establish a different one
if needed.

The action of saving is carried by the own Fiji software itself and videos com-
pressed in jpeg format are created with avi extension. Nevertheless, it is possi-
ble that an alternative tool must be used. This alternative tool is FFmpeg soft-
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ware[137], which is an open source software for video record, convert and do
streaming of video and audio. The main reason to use FFmpeg is because when
Fiji opens an image or video it has two modes for opening. On the one side, it can
open the data in a "virtual" mode. In this scenario, the user can open big files, but
it cannot modify the image or video. If anything is performed, the action will be
lost after changing from one frame to another one. Thus, if the options for adding
the time stamp or the scale bar are activated, they will not work. To use them, the
user must open the files in the non-virtual mode, which essentially, it loads all the
images or videos in the RAM. Thus, if the video is long enough, since it is a raw
video, it will consume a lot of memory and the user will not be able to extract the
video. Instead, what the software does is to load in virtual mode the video and
then, split the video in sub-videos and convert one of them from virtual to non-
virtual mode. Once it finishes to apply the extra options and saves this sub-video,
it will perform the same action for the rest of the sub-videos. Finally, when all
of them are converted, the software will call the FFmpeg software to fuse all the
sub-videos in just one final video. This action can be avoided if the user unchecks
the "Divide videos" option in the main tab, but it is checked by default.

As an example of its performance, this plug-in could extract data from a 29.6
GB .lif file in 15 min and reduce the total video size of all the videos present in the
.lif file to 321 MB. This is a 98.94% less of data storage. If you want to obtain and
install this software, please read appendix C.1.1.

Figure 3.18: Lif2Avi software. This little plug-in for Fiji/ImageJ lets the user
to extract all the videos and images from the .lif files. User can add scale bar and
stamp the time in each frame if needed.

98



3.4.2 Lif2Mkv software

Although the Lif2Avi software works well, there were some drawbacks that decide
me to create a second software, which I called Lif2Mkv. The first and main rea-
son to develop this new software was because for some .lif files, the videos were
blinking. I never understood totally why this problem was appearing, but the only
reason I could find is that the inner Fiji was performing a contrast adjust for each
individual frame. Thus, I tried to add an option called "Auto contrast" to perform
an auto contrast calibration for each frame, but the problem was still appearing.
Moreover, the time needed to extract the videos was long, and the metadata was
lost for each video, since it was all written in just a single XML file.

To avoid these problems, I decided to start a new application in Java since I
was still using Bioformat software. This time though, I created a Maven project
[138], where the source code from Bioformat and FFmpeg are embedded into the
project. Hence, the final user does not need to download these software programs
by itself and I can call the methods present in these libraries internally in my code.
In Fig. 3.19 I present this software. In this case, it is much easier for the user to
select the videos that wants to extract from the beginning, although I did not in-
clude the options for time and scale bar stamp because I lost these functionalities
not working with Fiji and because no one in the group was using them anymore.
In any case, it should not be very difficult to add them into the project.

Using this software, any user can see all the files from each .lif project, and se-
lect which wants to extract by clicking the checkbox associated with the video.
Furthermore, it can change the output route for all the project or individually.
When the user press “Extract videos”, the videos are extracted, and a progress
bar shows in blue the progress of the extraction. When all the video is extracted,
the progress bar will be full and green. Videos with different channels can also
be used with this software. The software will create individual videos per each
channel, which the user can change their name by clicking at the button "Chan-
nels...". Quality for compressing the videos or Z-stack images is easily to change
too introducing the proper number in the text fields.

The only final drawback for the user when using this software is that these
videos cannot be opened in Fiji, if needed, since Fiji cannot open videos in mp4
format. There is also a limitation for PowerPoint software, but I created a similar
software that changes the encoder of the videos to open them with PowerPoint.

Internally, the software works as follows. Bioformats opens each frame from
each video or image, and then the frame is transferred to an object from the FFm-
peg library. If we treat a video, the frame is written in a .mkv file using a mp4
encoder. If the image is from a Z-stack, it will be saved in a .tiff image. In the case
of the videos, I decided to use a .mkv extension because it is a container, where
it saves not only the video but other useful information. In my case it allowed to
save any kind of metadata, and thus, each video file contain the details of creation
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during the recording with LASX. For instance, details such as the objective or light
intensity are stored by video. In the case of the Z-files I was not able to add this
information, but an xml file is created with all this information.

The processing of the files is faster, no blinking effect is observed, and the
compression is better since I am using mp4 format for the videos. As an example
of its performance, this software could extract data from a 29.6 GB .lif file in 5
min and reduce the total video size of all the videos present in the .lif file to 67.2
MB. This is a 99.78% less of data storage. If you want to obtain and install this
software, please read appendix C.1.2.

Figure 3.19: Lif2Mkv software. This little software lets the user to extract all
the videos and images from the .lif files faster and with a better compression ratio
than with Lif2Avi software.
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3.5 | Conclusions

In this chapter we presented several useful tools when recording videos with a
microscope. Some of these tools are consequence of the recording software used
during my thesis, but others were born to improve the precision in the calculation
of some particle’s properties such as its active speed and rotational diffusion time.

First, the video basic knowledge and the programming of the couple of soft-
ware tools provided allows any user to decide if their videos should be compressed.
Moreover, if the user uses a LEICA microscope, they directly allow to compress
their videos. Nonetheless, for other users this information can caveat the path to
do an analogue of the present codes.

Second, this chapter advises any user on the ROI, length, and FPS to use when
analyse the velocity or rotational diffusion time of active particles. While setting
the ROI is important to avoid drifting, the lengths and FPS are important to obtain
a good value of particles properties. In any case, if the user cannot select a proper
ROI, this chapter have aid on how to notice if a particle has drifting, i.e., if the
MSD at longer times than the rotational diffusion time grows quadratically with
time.

At the same time, we gave indications to improve the results obtained using
equation . For particles smaller than R = 0.5µm, a linear fit gives Deh, which is
the value to look for. For bigger particles, we can obtain speed and Dt. Dt should
be avoided for particles bigger than 1 µm due to its large error when extracting it.
In any case, we obtain better results for both parameters if we use the third order
approximation n = 3.

The present analysis also presents three different methods to experimentally
calculate the rotational diffusion time τr. If possible, we should avoid using the
angle taken from its instantaneous speed to calculate τr, and indicate how the
average was done.
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If any of us ask a physicist what would analyse from a video full of particles,
probably, the first they will answer is their position, or at least, something that
needs to know the position of the particles. In our tiny world, the only option to
know where the particles are, is to detect and to track them from the videos we
have recorded. To detect a particle means that we know which is the centre of
mass of the specific particle in our setup. To track a particle means that for each
frame of the video, we are not only able to detect the same particle, but to give
the same identity and to do not lose this identity in the next frames. Although this
can be easy to say, the reality is that depending in your system it could be complex
to obtain a good result. There are plenty of software programs and methods that
brag about their good detection and tracking, but this problem is very specific for
what one wants to detect. Some rules can in general be followed, but there are
situations where these are not enough for the problems we have, and we need new
solutions. During the realization of this thesis, I could use from the begging a soft-
ware developed in the experimental group by Albert Miguel López. However, this
software was insufficient when I embraced new projects. For instance, in chapter 7
I could not analyse any of the videos I recorded properly because I could not track
these particles as I wanted. The results given in that chapter would not have been
possible if I would not invest my effort in building a new platform for tracking
particles. In this chapter I will show what I had for tracking particles, and what I
did to solve the drawbacks I was experiencing.

The present chapter is based on the software I coded for chapters 5 and 7.
I would like to special thank Albert Miguel, who provide me in my first stages
his software to track my experiments. I would also like to thank Xavier Arquè,
who provide me with the videos for MOF tracking. Finally, I would also thank
the GitHub users AlexeyAB and YashasSamaga. The first, because he provided
the YOLO package I used and answered me some questions related with it. The
second, because without his effort on time I could not speed up my software using
GPU processing for image detection using OpenCV library.
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4.1 | A traditional tracking

Tracking of objects is a research field with big interest since decades ago[139,
140]. There are different methods to track objects, but the basis of any tracking
system is to have a good detection system.

Traditionally, to detect objects one can play with changes in the images, or
with patterns. As we already explained, an image is a collection of pixels. From
the distance, one usually does not see these pixels, but sees a continuous image.
But when one zooms in, the continuous image starts to be discontinuous. Thus,
when from the distance one sees a change in colour in the image (e.g., due to dif-
ferent illumination, border of an object...), from the pixel world this change can be
very sharp. And since pixels are anything more than numbers, one can always use
different mathematical formulas to apply to these numbers. Hence, it is not sur-
prising to think that we can calculate derivatives in different directions, or average
pixel intensities.

These mathematical transformations can be realized directly to the pixels, but
it is also common to calculate the Fourier transform of the image, operate in the
transformed image and then do the inverse Fourier transform[141]. By apply-
ing intelligently these operations, one can detect objects in images. For instance,
it is well-known the Viola-Jones detector to detect faces[142], the Histogram of
Oriented Gradients (HOG) to detect pedestrians[143] or much simpler, the Circle
Hough Transform (CHT) to detect circles in the images[144].

These transformations have been used widely in the last years, and they have
evolved to detect every time better different objects. However, in all the cases,
these algorithms do not know what the images we are analysing are, neither what
we want to detect. Instead, they just use the parameters we feed them to any im-
age we want to process. Therefore, the detection of objects performed with these
algorithms are very user and parameter dependent.

Luckily, new advances in image recognition have changed this paradigm. There
are a new set of algorithms based on neural networks that can learn by themselves
what we have in images, what we want to detect, and which parameters are better
to use for each image we provide them. Thus, I will differentiate detectors into
traditional detectors, explained in this section, from detectors based in neural net-
work, explained in section 4.2.
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4.1.1 Particle position detection

In the case of the available tracking software implemented by Albert[145], the
particle detection is very simple, yet it works really well with circular particles
that are alone, and under no changes in contrast in the image. To detect particles,
he first transforms the image into a binarized image, this is, an image where pixels
can either be 0 (black) or 255 (white). To obtain the binarized image, he uses a
threshold: for each pixel, if its intensity is higher than the value, we will return
white, or black if it is below. Before this method is applied, there are a couple of
important filters he introduced that the user could use:

• Sobel filter. It calculates both vertical and horizontal derivatives to each
pixel by operating on the pixel itself and its neighbours. If two pixels have
similar information, the derivative will be zero. But if two pixels have dif-
ferent information (such in a border of an object) the derivative will be large.
Therefore, this filter returns an image where basically, only pixels that cre-
ates borders have high intensities and the rest are near zero.

• Background extraction filter. It subtracts a referenced imaged to the image
at frame t. The reference image can be built by averaging all the frames in
the video or taking the first frame of the video for example. Hence, areas
with no change in the image will be close to zero, while areas with high
dynamism will not. Thus, we remove constant backgrounds, and we only
have things under motion.

Without filters With Sobel filter
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Figure 4.1: Detection of 5.0 µm diameter Pt-SiO2 particles under at 20x
objective. We can detect particles by converting the images to a binarized image
and then calculate centre of mass of objects. This method can give problems since
of different contrast and hence we can apply previously other filters as the Sobel
filter. Nonetheless, for the same frame there can be other problems as appear in
the last column, which was taken from the same frame as the other pictures.
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Once binarized, he analyses the pixels in white and calculates the centre of
mass per each continuous white pixel area. The centre of mass will be the centre
of each of the objects detected. To better detect these areas, other filters such as a
gaussian filter which smooths the image can be used, and only areas in the range
of interest can be detected. These simple methods are enough to detect particles as
demonstrated with Fig. 4.1.

4.1.2 Particle orientation detection

Albert’s tracking code also allows us to calculate the particles orientation. In this
case, he tried different strategies, but only kept the one with the finest result. For
each time step and particle, his software draws a line of the size inputted by the
user, which should be of the optical size of the particle in the video analysed. This
line crosses along all the particle, and its centre is placed on the particle centre
already calculated by the centre of mass. Then, a standard deviation of the pixels’
values along the line is calculated. This process is repeated for 180º, using a line
per degree. If the line is not on the line separating both faces, the deviation will
be large, because some pixels will be black (0 intensity) and some will be white
(255 intensity). But if the line is on the line that separates both faces, then all the
intensity values should be close, and hence the deviation will be low.

The lowest value will define the best face-face separation and, therefore, a
perpendicular line to this line will define the director vector for our particles. Thus,
to correctly apply this method we need a good image of the Janus, which means
that the highest the size and magnification, the better results we will obtain. If the
particle size is not big, the lines we will draw will be small, and hence the standard
deviation method will not be valid any longer. In these cases, we can estimate the
angle from the instantaneous velocity vector, which his code can also calculate,
but that as we already commented in section 3.2.2, if possible we should avoid this
method to calculate the orientation of the particle due to low precision.

4.1.3 Particle orientation detection from a different frame of
reference

The previous method can detect the angle of a Janus particle, but it is always ref-
erenced from the same axis, e.g., 0º is parallel to each row of pixels in an image.
However, sometimes the frame of reference can be different, and we could want to
obtain different angles. For instance, in chapter 5 I needed to calculate a couple
of angles defined by particles and liquid-liquid interfaces. In that problem, each
video could have one interface, but they were randomly oriented. Hence, I needed
a method to define this frame.
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To calculate this reference per video, I coded a software using Java where the
user must introduce the recorded video files and the tracked positions and angles
after using Albert’s code (See Fig. 4.2A)). Then, for each video I marked with a
straight line the visible line that defines the interface between both liquids (See
Fig. 4.2B) red line). This line is easily defined by clicking twice at the interface
at different points. In this project, a straight line was sufficient to capture the ge-
ometry of the interface at the magnifications used since we did not observe any
curvature of the interface. Once we have this reference line, we can calculate the
orientation of the particles with respect the interface while they move along the
interface (See Fig. 4.2B) left, red arrow).

A second orientation I needed to calculate was the angle between particles
trajectories and the interface while they were approaching or leaving the interface.

A                          B

Figure 4.2: Tracking orientations from a different frame of reference. A)
The software needs a list of the videos (Videos tab) and the csv containing the
trajectories of the particles at these videos generated by Albert’s code (Data tab).
At Options tab, the user can modify a few parameters to calculate the areas where
different angles will be calculated. B) When the user presses the Run tab, a video
opens, and the user can click twice in the video. After the second click, a red line
is drawn. This line will be the new reference line we will use for our calculus. In
the case of the project at chapter 5, this line will match the liquid-liquid interface.
Once drawn, two lines (blue and green) are drawn parallel to the red line. We will
use data in between red and blue lines to calculate the average orientation of the
particle while moving along the interface with respect the interface (red arrow, left
image). We will use data in between blue and green lines to fit the trajectory of
the particle into a line since its trajectory is mainly linear as seen with the black
arrows (right image).
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Even though these particles move actively Brownian, we can define a characteristic
length at which particles move straight before turning due to rotational Brownian
motion. This length is defined as the persistent length Lp, and it is the product of
the particle propulsive speed vp and its rotational Brownian time τr:

Lp = vpτr. (4.1.1)

For particles with a diameter size of 2 µm and 5µm, and speeds between 1 and
15 µm/s, Lp is in the range of [5.4, 81.0] µm and [84.9, 1273.5] µm respectively
using the theoretical values for τr. However, we know from section 3.2.2 that τr
will be lower. Nonetheless, even if we consider a real τr of half the theoretical one,
these Lp extends at least for a region of a few particle radii. Thus, we can define a
rectangular ROI parallel to the interface contact line of 3-5 particle radii width. To
define this ROI, we click twice on the image, one per line drawn, and two parallel
lines to the interface contact line will appear (See Fig. 4.2B) blue and green lines).
The region inside these two lines is our ROI.

For each of the particles found in this ROI, a linear fit of its trajectory was
performed, and the director vector of each line was obtained, both for the incoming
and outgoing particle to/from the liquid-liquid interface. A simple scalar product
between these director vectors and the vector defining the interface line gave us
the angle of incoming/outgoing. Since particles move straight in these regions, we
can also compute an average velocity as a ratio of the displacement over the time
interval.

4.1.4 Tracking of particles

We can calculate some of the previous angles because we already tracked our par-
ticles. To track particles, you need to stablish a unique identity per each particle
detected, and do not lose it over time.

Albert’s code compare positions of particles between two consecutive frames.
For each particle in a frame, he finds the smallest distance to a particle in the pre-
vious frame and supposes that both particles are the same if this distance does not
exceed a threshold that the user can change. But a particle present in the previous
frame could be not detected in the next frame, even if it is present. Hence, he also
introduced the possibility to find particles that did not encounter any match yet
since frames ago. If particles are well detected, and do not cross over, this simple
rule can work well. But as soon as the detection is poor, even with this last addition
the tracking will not work, and we will lose the possibility to track.

Another problem that his tracking has is when particles contact. When contact-
ing, the software only detects one particle, and therefore we will lose the identity
of at least one. Consequently, we will need a better approach.
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4.1.5 Tracking of particles from a different frame of reference

Sometimes, we might want to track particles from a different frame of reference.
For example, as a step further of the research I did in chapter 5, I needed to track
the relative motion of active particles that were contacting moving oil droplets.

To solve this issue, I decided to track first the droplets, and then to track the
particles. But in between, I modified the videos to centre them at the droplet
frame of reference (See Fig. 4.3A)). To centre the videos we must do the following
transformation for each time step t and pixel (x, y):

(x, y) → (w/2+max{|w/2−xd| : xd ∈ X}), h/2+max{|h/2−yd| : yd ∈ Y }),
(4.1.2)

where w, h are the original width and height of the video, max is the maximum
value and X,Y are the collection of points that compose the droplet trajectory.
Then, we only need to track the particles with these new videos1.

Because the video is centred at the droplet, we can calculate extra parameters
for the particles such as the incoming and outgoing angle to/from the droplet and
calculate the travelled length and number of turns made by the particle around the
droplet and the total time for the particle contacting the droplet (See Fig. 4.3B)).

In section C.2.1 I share the code to shift the frames of the video.

1After the transformation, videos will have a different size: (w + 2max(|w/2 − x|), h +
2max(|h/2− y|)).

A B

Figure 4.3: Tracking particles from a different frame of reference. A) After
tracking oil droplets we can centre the video at the tracked trajectory. Each colour
line is a different tracked droplet. Small images refer to different frames of the
final video. B) Particles are tracked with the previous video (each colour line is a
different tracked particle). Red crosses are the points where particle contact and
leave the particle. Orange lines show the incoming/outgoing angle for particles as
I showed in section 4.1.3
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4.1.6 Tracking of particles from a different system of coordinates

When we track particles, we obtain its trajectory in the (x, y) pixel coordinates.
However, depending on the porpoise of the project we could need a different sys-
tem coordinate. For example, in chapter 7 I discarded using the (x,y) pixel coor-
dinates because to understand the physics of my problem, these coordinates only
added noise into my analysis. Instead, I needed to map the structure where the
particles were moving (See Figs. 4.4A) and E)) into different cells, and then trans-
form from the (x,y) coordinates into these cells coordinates, as if particles would
be moving on a chessboard.

A B

C D

E

F

Small device Large device

Figure 4.4: From Cartesian coordinates to Cell coordinates. A) First device
to build the cells. B) Final cells coordinates for device presented in A). C) and D)
alternative Cell coordinates for device presented in A). E) Second device to build
the cells. F) Final Cell coordinates for the device presented in E).

To transform these coordinates, we need to define the new coordinates in the
videos. All videos will have the same definition of cells, which will be constant
over time. However, videos can have the structure shift, rotated, or stretched.
Thus, after defining the cell structure we need to adapt the code for all the videos.
This might require adding to the code mouse and keyboard events. In the case of
the first design I used, the definition of the cells was a chessboard pattern, as seen
in Fig. 4.4B), which is very easy to implement. Nonetheless, we previously tried
different strategies such as the ones presented in Figs. 4.4C) and D). But cell struc-
tures can be more complex, as the one we defined for the second design presented
in Fig. 4.4F).
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To define these cells we need to know the vertexes of each cell. If we work with
Python, we can use the OPENCV library to open the videos and obtain these ver-
texes by clicking on the image and saving the position of the mouse when the user
clicked. Then, we can transform these vertexes into a Shapely polygon. Shapely
is a library for geometry manipulation. It let the user to define objects (polygons)
and check if a coordinate is inside the object or not. Thus, once we define the cells
as shapely objects, we can check to which object belongs each particle coordinate
and obtain the transformed trajectory.

In section C.2.2 I share the code to show how to do this step. The example
includes code to move a cell over the image using the keyboard. For example, if
you press "w" once, all the vertexes of the cell could move one pixel up, and hence
your cell has been displaced one pixel vertically. This edition can be implemented
by individual cells or also by rows and columns as I did when working in my
project.
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4.2 | Basics of neural networks

Under optimal conditions, the simple rules Albert applied can fit our necessities.
But when things start to be more complex or simply, they are not under optimal
conditions, the above methods can be insufficient and new tools are needed. For
example, in Fig. 4.1 we can observe that although the system is simple, particles
are detected at someplace, but the light conditions are not homogenous and fails to
detect correctly in other regions. If the user tries to track a particle, probably this
will not be a problem if the particle does not escape from the region where it is well
detected. But if the user wants to track many particles, it may be impossible to take
a set of values for the detection parameters to detect everything. Furthermore, this
problem increases if by default, the distinction of what a particle is rely on only
on a few pixels. As the user would understand, it is not the same to consider that a
square of 50x50 px2 is a particle, rather than a square of 2x2 px2. In the first case
you have more data, and you could distinguish the particle from the noise while in
the second, any grain of noise in the image will cause a detection or difficult the
ones you want to detect.

In the case of the videos I recorded for the experiments carried in chapter 7 I
had both problems. To fit all the microstructure, I had to reduce the magnification
of the objective, and particles became as small as 9x9 px2. Then, particles could
touch between them and the solid interfaces, and the light was not totally homoge-
nous. These conditions created me new identities over time for the same quantity
of particles, and do not allow me to track them. To track these particles, I decided
to start a new tracking software based on a different detection: neural networks.

Opposite to the algorithms described in the previous section, the major advan-
tage of using neural networks is that the algorithm learns what kind of object we
want to detect, even if the image conditions are different from the ideal condi-
tion. Thus, this kind of detection can improve a lot the image detection. However,
traditionally, this kind of algorithms have been considered as using a hammer to
crack a nut due to the high PC resources needed. But as time passes, hardware also
evolves and today there are many problems that in the past were impossible due to
PC lack of resources but today are not. Thus, detection of images by neural net-
works is something we should consider for the experiments of the future, since its
results can be surprising and can be really useful for the Active Matter community
[146][147].
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4.2.1 Silicon neurons and neural networks

In the last years, neural networks have been a new paradigm in computer science,
with many fields involved [148, 149, 150] but specially, in the field of image object
detection[151]. Its name come after the idea of the biological neuron networks.

Biological neurons are cells which frequently have a cell membrane depolar-
ization[152]. This depolarization can lead to the transmission of an electric po-
tential, which will activate the realising of some chemical molecules, called neu-
rotransmitters, at the end of some specific neuron ramifications, in what is known
as synaptic terminals. Neurotransmitters will attach to other close neurons at their
dendrites, another kind of neuron ramifications close to their nuclei, via the synap-
tic link. If these new neurons receive enough neurotransmitters from one or more
than one neuron, a new electric potential will be fired in this second neuron, and
the process will be repeated in this neuron, proceeding thus to the transmission
of the electric pulse, or directly, information. Therefore, biological neurons cre-
ate networks by their own nature. In the same sense, a silicon analogy can be
thought. For example, we can consider that the neuron is an abstract entity that
does a mathematical calculus. As in the biological neuron, the silicon neuron will
be connected to others, and their result will be transmitted. These results will be
used by the next neuron to do its own calculation, and hence, transmitting or not
information. Therefore, since we have connected silicon neurons, by analogy, we
call to these networks as neural networks.

Neural networks allow us to create better artificial intelligence which can solve
problems that up today were not possible. The key point of all neural network is
to find those mathematical calculus and connections to perform the desired action.
If we look at how biological neuron works, we can glimpse that the main idea is to
overpass a threshold to continue the transmission[152]. Thus, since their result is
binary (either there is transmission or not), mathematically they could be described
by a simple Heaviside function.

Commonly, these functions are nonlinear because we need to solve nontrivial
problems by using few neurons. Examples of nonlinear functions include the hy-
perbolic tangent, the sigmoid function, the Heaviside function, and the rectified
linear unit function (ReLU), which under a threshold the result is zero, but over
the threshold is linear. Since these functions are activating neurons, as in the bio-
logical neurons, we also call them as the activation functions. See Fig. 4.5 for a
graphical overview.

4.2.2 Layers, weights and learning

In a neural network, not all the neurons must have the same activation function.
Since they create a network, there can be a diversity of neurons using different ac-
tivation functions. Thus, the second important ingredient in neural networks is the
interconnection between them. As more than one biological neuron can be close
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Figure 4.5: Biological and silicon neurons. Biological neurons (Neuron nuclei
in purple) are connected to other neurons through their axons (lines in green). At
the end of the axons, in the synaptic terminals they can send molecules to the fol-
lowing neurons, the neurotransmitters. These transmitters can produce changes in
potential in their cellular membrane. If the change is over a threshold, they create
an electric signal, which is also known as the action potential. When a neuron
has an action potential, it will release their neurotransmitters to the next neuron.
Otherwise, it will not release them. Several neurons can communicate between
them creating a network of neurons. At the silicon level, a neuron (purple circle)
is a mathematical function, the activation function, which translates the idea of the
electric signal. There are different activation functions such as hyperbolic tangent
(tanh), Heaviside (Hev), Sigmoid (Sig) or rectified linear unit (ReLU) function.
The output of a silicon neuron will be one of the inputs of the following neuron
(green lines). Since several neurons can give information to one neuron, these
inputs will be modulated by a weight (the wider the green line, the higher the
weight). Neurons sharing the same connections create a layer. The first layer is
the input layer. The last, the output layer. Any layer in between is a hidden layer.
Image authority. Biological network: Laura Struzyna, Cullen Laboratory, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, NIH Image Gallery. Used under
Creative Commons Attribution-NonCommercial 2.0 Generic license, cropped. Biological
single level neuron: BruceBlaus, Wikimedia Commons. Used under Creative Commons At-
tribution 3.0 Unported without making any change. Action potential: Chris 73, Wikimedia
Commons. Used under Creative Commons Attribution-ShareAlike 3.0 Unported, without
making any change.
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between them, in silicon neurons many can connect between them. In fact, with
silicon neurons one might consider that they can have more connections than bio-
logical neurons since they do not occupy a physical space but are just mathematical
entities. However, not all neurons are connected between them. We usually group
different neurons that do not connect between them but connect to the same set in
what we call a layer. In all neural networks there is an input layer to which we
feed with the data we give to the network, and an output layer, which give us the
result of all the process performed by the neural network. Nonetheless, between
both layers there can be as many layers as we want. To these layers we call them
as hidden layers2.

Mathematically, the connection of each neuron is proposed as a weight. If we
consider a neuron, different neurons will transfer their outputs to this neuron, and
every input will be modulated by their own weight. As a result, we could think
that on each neuron we have:

output = f(b+
∑
i

wixi) (4.2.1)

where f() is the activation function, b is a bias we can introduce in each neu-
ron with a known value at a priori in the model and wi is the weight applied to the
input xi which is given by the i neuron feeding the neuron of interest. See Fig.
4.5 for a graphical overview.

As one can deduce, all parameters are set when one creates the scheme of the
neural network. However, there is still an important concept to learn. To explain
it, we could start considering that we want to detect a specific object, like a chair.
Biologically, when we are born none of us know what a chair is, but with time,
the plasticity associated to our neurons let us to create new connections that allows
us to say what is a chair, even if it is the first time we see a specific model. For
instance, if we enter in a furniture shop, any of us can distinguish what is a chair
even though it is the first time we see that model. The nice concept behind silicon
neural networks is that this plasticity process also happens. Initially, the network
will not detect what we want, because the connections between neurons are not
well stablished. But they can learn if we train them. In this case, we do not
create new connections, but we modulate the weights between connections. If all
the weights between connections are well estimated, the neural network will give
incredible results because it will be able to extract the intrinsic characteristics of
the object to detect. Thus, a neural network could detect if the photo we give to
it is mainly a chair. Once a neural network can differentiate objects, we can build
other algorithms to even present an image with many objects and locate, if present,
the object of interest in the picture.

2If the activation function would be linear, we could simplify all hidden layers to have a neural
network with only the input and output layers.
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4.2.3 Convolutional Neural Network (ConvNet or CNN)

The previous example of the chair can help us to understand the main idea behind
object detection with neural networks, but in fact, for a better comprehension of
the problem, apart from considering the training process, it is also important to
focus on the layered structure of the network. As I detailed, the output of a layer is
the input of the following layer. This means that in the network we are stablishing
a hierarchy, where each layer extracts some important features and the next one
processes these features to look for higher detail features.

This kind of structure can work because indeed, is how our visual system works
as we can see in Fig. 4.6. In 1959, Hubel and Wiesel[153] carried some exper-
iments with cats where they studied their visual primary cortex and saw that the
system is hierarchical, with different layers in between and that mainly, two kind
of neurons work on the system: ones that they called simple because they respond
directly to the stimulus, and another ones that they called complex, because it was
not clear how they respond to stimulus. A couple of years later, in 1979 Kunihiko
Fukushima took their conclusions and created the first neural network for image
recognition[154]. With his system, which he called the neocognitron, he could
recognise numbers and some patterns. He based his system also on a hierarchy,
combining different layers. Indeed, for him a layer was composed of two kinds of
cells, where he could combine the idea of the simple and complex neurons. First,
data would transfer to the simple cells, which have plasticity, and where each cell
works for a small area of the image. Later, this information would transfer to the
complex cells, which do not have plasticity but with the ability of extracting the
main features of the output from simple cells. In somehow, we could think that
these complex cells do a coarse graining of their input, and hence they remove the
sensitive to shift in position of the pattern that the simple cells considered. Thus,
the complex cells here simplify the connections of the network, allowing to have
less quantity of weights. If we have less weights, we will have less free parame-
ters in the system and hence, it will be more difficult to have overfitting problems,
which could return us a bad detector.

After Fukushima’s work, different works came, but there was one main draw-
back: the computational power was low. With the huge development of graphic
processing units (GPU) in this century, these algorithms gained again big interest.
Today, the scheme we follow is very similar to Fukushima’s work. In our neural
networks there are some layers that have plasticity and hence they are composed
of neurons, but there are others that just do the coarse graining, and there can be
several in between a neural layer as we can observe in Fig. 4.6. In these last layers
what we do is a mathematical convolution, and hence, since we include this calcu-
lus in the network, to this kind of neural networks we call them as convolutional
neural networks (CNN). Thus, if your aim is to detect objects in an image, you will
need a CNN.
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Figure 4.6: Copying the animal visual system. The visual system of animals is
a hierarchical system where the information that arrives to the eyes passes through
many neurons distributed in layers. In primates, for instance, the information
passes from the eyes to the lateral geniculate nucleus (LGN), which connects to
the first primary visual cortex (or V1). Information from this area will pass to dif-
ferent areas named after Vx, where x is the number of the area. V5 also receive the
name of middle temporal visual area or MT visual area. We can model this hier-
archy as a sequence of mathematical functions, where we start doing convolutions
and poolings. This information is prepared to feed the neural layers by the flat-
ten operation. After our neurons work, we will classify the information by some
function as a SoftMax. This model is what we name after Convolutional Neural
Network (CNN). Image authority. Brain: Miquel Perello Nieto, Wikimedia Commons.
Used under Creative Commons Attribution-ShareAlike 4.0 International, without making
any change. Visual cortexes: Markus Bongard, Webvision. Used under Creative Commons
Attribution-NonCommercial 4.0 International without making any change. Convolutions:
see Ref. [155].
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Mathematical convolutions give the amount of overlapping of one function
while it shifts along another function. In the case of images, a small picture com-
posed of a few pixels called kernel is shift along the picture that arrives into the
operation. Convolutions are often used as filters when performing a traditional
tracking, since as example, it can give us information of borders in the images as
with the Sobel filter or smooth images as with the Gaussian filter. When we apply
a convolution in a convolutional neural network, we also get similar information
for the first convolutions, but if we apply more and more, we might extract also
some higher-level features that allow the network to understand what the important
information in the object is as we do biologically.

Convolutional layers also allow us to modify the size of the image depending
on the padding and the stride we use for them. Adding a padding means to add a
border of blank pixels around the picture. Stride is the number of pixels we move
the kernel each time. No stride means we move one pixel, and hence, we calculate
the convolution on each pixel. Depending on the size of the padding, the stride
and the size of the kernel3, the image might get reduced. Reducing the image is
important because it allows us to reduce more the number of weights to calculate
and thus, the number of free parameters our system has. But at the same time, we
keep the main features. With the idea of reducing pixels, there is also a special
kind of convolution called pooling. Pooling uses a configuration for always reduc-
ing the size of the image. There are two kinds of pooling: the average pooling
and the max pooling. While the first average the values of the pixels in the kernel,
the second gives only the maximum value of the kernel. Pooling layers are often
calculated after a neural layer to keep the features but remove fine details. In fact,
the complex cells in Fukushima’s network were performing an average pooling.

Finally, in CNN we will probably see a flatten layer and a SoftMax layer. Flat-
ten layers restructures the image into a 1D array by adding each row of pixels after
another one, which is the format accepted by the neural layer to feed the neurons.
SoftMax layer is usually done at the end of the process to classify. SoftMax is an
activation function that transform the input into a number between 0 and 1, thus
giving the idea of a probability. For instance, the final output of our neural network
could be an array with as much elements as kind of objects we want to detect in
our CNN model. SoftMax will take this array and transform it into probabilities,
which allow us to interpret statistically which are the chances that we have detected
either one kind or another kind of object. Mathematically, SoftMax remembers to
statistical mechanics. The input would be as the energy of a state, and the SoftMax
is the probability of appearing this state given a Boltzmann’s distribution.

3See [155] for a visual understanding of these concepts.
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4.2.4 Region Based Convolutional Neural Networks (R-CNN), fast
R-CNN, faster R-CNN and You only look once (YOLO)

The result of a CNN allows us to classify images among the objects we trained it
for, but the classification is over all the image. Instead, my aim for using neural
networks is to detect objects inside images. Thus, we need an extra step. For ex-
ample, we could divide our image into areas, and give each area to the CNN. This
would give us a map for the entire image of where is probable to find the object
we want to detect and hence, to detect inside the image the objects we wanted.
But depending on the size of the areas chosen and the size of the image, this pro-
cess could be slow. Furthermore, our objects could have different ratio size, and
this would be an extra problem. To solve these problems, a few years ago it was
proposed the R-CNN algorithm[156], which is based on the selective search al-
gorithm[157]. The selective search algorithm solves the problem of the areas by
doing a high segmentation of the image following the method given by Felzen-
szwalb and Huttenlocher[158], where they find areas with similar pixel intensity
by using graphs. Once the image is segmented in many pieces, the selective search
tries to join areas with similar colours, textures, or sizes. All the possible collec-
tion of areas will be used as regions where to find objects.

The R-CNN algorithm uses around 2000 of these areas per image where to do
the detection. Once the areas are defined, it crops the image on those areas and
warps them to a fixed size that depends on the initial layer of the CNN. Then, it
performs the CNN per area and classify the areas per object detected. Finally, it
combines the different areas overlapping the same object and gives a unique ob-
ject per unified area. Although this algorithm could detect objects in images, it
was slow, and the selective search method cannot learn since it does not have neu-
rons. This means that the areas to use could not be as good as they could be. To
improve the speed of the algorithm, the same author created the fast R-CNN[159].
In the fast R-CNN, instead of doing the selective search on the original image, it
first does a CNN of all the image to create a feature map and then calculates the
selective search on this map. Then, it feeds these areas into a CNN composed of
a pooling and a neuron layer, which ends with a SoftMax layer. In this way, you
avoid repeating the convolutional process for all the areas and calculate it only
once. But fast R-CNN still uses the selective search algorithm. To avoid this slow
method, Shaoqing Ren et al. propose a change in fast R-CNN, creating the faster
R-CNN method[160]. In the faster R-CNN, they exchange the selective search per
a different neural network. Their idea is that this network can be trained to look for
better areas where to detect the objects. While their approach improves the results,
it also made faster R-CNN capable to do real-time object detection.

At the time faster R-CNN was published, I was in my first’s months of PhD,
without any knowledge on neural networks, neither thinking that I would use
something relative in my near future. At that time, it also appeared another model
to detect objects that was really fast on the object detection, more than faster R-
CNN. This algorithm evolved, and by the time I started with this tracking project,
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this algorithm was already in its third version. This model is named You only look
once (YOLO)[161]. Opposite to the previous methods, YOLO only gives the image
once to the neural network. YOLO divides the image in a lattice of n x n cells, and
for each cell it calculates the probability to contain an object and the probability
of this object to be of a specific kind. Moreover, by using a few predefined areas,
which we also know as anchors, it finally estimates the final area where the object
is, to which we refer as bounding box. Here the weights are estimated properly to
move from the anchors to the bounding boxes.

Figure 4.7: Different strategies to detect objects in images by using a CNN.
One of the famous algorithms is the R-CNN, which have had several evolutions
that improved its performance. In the case of this thesis, I decided to use YOLO,
which is a faster alternative to R-CNN algorithms without losing accuracy. YOLO
divides the image in n x n squared regions and then proposes up to 3 bounding
boxes per each cell. For each cell it decides which is the highest probability of
this cell to be an object and assign to this cell that object. Later, it composes the
detection by joining both layers. Image authority. R-CNN images are originally from
Ref. [156, 159, 160]. YOLO images are originally from Ref. [161].
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4.2.5 Training and variables that indicate a good training

To train a neural network we need to feed the network with images that contain the
objects to detect and, if possible, also with images without these objects to reduce
false positives during the training. Thus, technically we need to prepare a dataset
with images which the neural network will use to learn. Of course, initially the
network does not know what objects we want to detect. Therefore, complemen-
tary to this dataset we also need a dataset to explain to the neural network where
the objects are to detect in each image. To define each object, we need to draw a
polygon on top of each object to detect present in these images. We will refer to
this polygon as the ground truth bounding box. Then, we store the coordinates of
these polygons in plain text files, which we include in our dataset jointly with the
original images. The characteristics and format of these text files will depend on
the software we will use for our network.

With this dataset we can start training the network, which means that we are
correctly estimating our weights. Basically, the network will give a bounding box
per object detected, and will compare these boxes with the ones we fed. The more
boxes coincide, and the more they overlap, the better estimated will be our weights,
since that means that what the network is detecting is what we said there was in
the dataset. Thus, to help us with this decision it is very useful to introduce the
intersection over union (IOU) and the mean average precision (mAPs).

The IOU estimates the area of intersection between the bounding box and the
ground-truth bounding box with respect the union of both areas (See Fig. 4.8A)).
This ratio is confined between 0 and 1, and we can set a threshold to determine if
the bounding box is well estimated. IOU with higher values than the threshold will
be considered as a true positive, while lower would be a false positive. If we could
not detect anything but there was an object in the dataset, then this means we have
a false negative. If we did not detect anything and there was nothing there, we have
a true negative, but these are not used when training the data. From these values,
we can extract two new parameters, the precision and the recall. The precision
measures which fraction from among all the bounding boxes determined were in
fact real objects or simply, the accuracy of the predictions. Recall measures how
good the network found all the positives from among all the ground-truth bound-
ing boxes (See Fig. 4.8B)). This is:

precision =
True positive

True positive+ false positives

recall =
True positive

True positive+ false negatives

(4.2.2)

Both values are constrained to be in the region [0,1].

122



When the network is training, for a given step we will train the network us-
ing some images from the dataset. For each image, we will have the detections
calculated by the network, and the predicted confidence level (the output from the
SoftMax layer) for each object detected. We can order each image by the predicted
confidence level and draw the curve precision-recall line (See Fig. 4.8B)). The area
under this curve is what we call as average precision (AP). Usually, before calcu-
lating the area, the line is corrected. When recall improves, accuracy usually drops,
because false positives increase too, but it will increase later because true positives
will increase too. To avoid these drops, the precision is taken as the first maximum
decision towards higher recall values. If we average the AP using different thresh-
olds for IOU, we will have the mAP. The convention is to average using IOU from
0.05 to 0.95 with steps of 0.05. Higher mAP will indicate better object detection.

IOU =

Precision =
TP + FP

TP
+ FP

Recall =
TP 

TP
+ FN

A

B

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

AP

Figure 4.8: Different variables for training. A) IOU is the area of intersec-
tion between detection and real object, with respect the union of both areas. B)
Precision is the quantity of real positives from among all the positives detected,
while recall is the number of real positives detected from among all the objects.
Both parameters are used to calculate the precision-recall curve for each step. This
curve is made by ordering the detections by confidence (violet area), and then is
corrected (red area). This corrected area is the Average precision (AP), another
indicator for training images. Image authority. Own images. Image for AP curve is
originally from Ref. [162].

123



The software will train the network until we stop it, or it ends all the cycles in-
dicated to train the network. Training for longer times can give us a better output,
but it can also produce overfitting, which will make our detections worse. Hence,
if after sufficient cycles the results do not improve, it is better to stop training the
network. After training it, we will obtain an output file which include all the pa-
rameters fitted for the network. This file will be loaded afterwards by the network
to do the detection.

Notice that when training the network, we use a characteristic dataset. If we
want to detect an object under very different conditions, we should train again the
network adding images from these new conditions. Otherwise, the network will
probably still be detecting the object of interest, but its detection will be worse
than expected. The more the training dataset is close to the real images you want
to detect, the better will be the output. Thus, add to your dataset as many images
from as many possible conditions as you will have in your experiments.
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4.3 | Classifying data to train a neural

network

For this thesis, I decided to use YOLO at its third and fourth versions because
several reasons. First, this software is one of the best and faster detectors at the
moment I started with this project. Second, it has an active community working on
it. This fact implies that any new characteristic for convolutional neural networks
will be implemented, and any bug found will be debugged fast. But also, even
if new stable versions are not released, little changes in the schemes for neural
networks can be implemented by the community (e.g., by adding more layers or
changing their properties), and they are easy to modify by any user. Finally, the
software also carries with the corresponding methods for loading the data, calcu-
lating anchors from the dataset we feed the network and to do data augmentation
without needing to code anything. Data augmentation is the process of creating
new images from the dataset which we use to feed the network. Over the images
used, we can do different transformations such as shift, rotation, scaling, blurring,
or joining images into one image. These transformations multiply the original
dataset available and reduce the number of images needed to hundreds or thou-
sands.

After selecting the candidate software for object detection, we need to prepare
the dataset accordingly. On the Internet, there are some open-source projects that
work with images, but not videos, and that allow us to create bounding boxes with
many vertexes. But YOLO only needs rectangular bounding boxes and my data
will come from the videos I will record. Thus, I preferred to code a software for
easily creating the dataset.

The software I developed is based on Python and uses OpenCV library to ma-
nipulate the videos. The main idea of this software is to present different frames
per each video to the user. Then, the user can draw every bounding box with a
maximum of 3 clicks per object. Since a video is a collection of frames, we could
use just one video and extract many frames from it. But when training, the dataset
must include as much diversity as we can. Otherwise, the detection will be very
specific and will not work properly. Thus, if we have a collection of videos, the
best we can do is to select a few frames per video. Furthermore, since frames close
in time will have similar information, it is useless to analyse frames that are close
between them. Instead, it is better to skip many frames in between two frames
of the same video. Thus, my software needs the path of the folder where all the
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videos are and where the output will be, the number of frames to skip between
two frames to analyse and the number of different kinds of objects we want detect
because YOLO can detect different kinds of object while detecting. After these
parameters are set, the software starts loading a video, and shows the first frame
to the user. At that moment, the user can click with the mouse for every object
there is in the scene. Left click will add a coordinate for the bounding box. Right
click will define a new bounding box. After the third left click, a rectangle with
the minimum size but containing all the points is drawn. From the third click on,
the rectangle will be modified to continue enclosing all the points but using the
minimum space possible. Alternatively, if all the objects have the same size, it
is also possible to add a rectangle per each left click with the predefined sizes of
the rectangle. The software will use the coordinate of the click as the centre of
the rectangle. To change from mode to mode, the user just needs to press the "m"
key (See Fig. 4.9). After the user draws all the rectangles, by clicking a key the
software closes the frame, saves it as a new image and saves a text file with the
coordinates of all the bounding boxes accordingly to YOLO format in a plain text
file. Next, the code will skip the determined number of frames defined by the user
and will load another frame from the same video. The code will repeat this process
until it cannot load more frames from the same video, and it will load a new video
automatically.

Minimum 

selection

More points

Rectangle

   mode

Figure 4.9: Creating the dataset. Self developed software graphic interface
(left) and example of its use (right). Each green or blue square is a different object
that the user has signalled as an object.

During my thesis, I used the tracking algorithm on two different kinds of par-
ticles. The first kind of particles were my Janus particles at a small magnification
for the project in chapter 7. Later, I decided to use it on other projects running
in the experimental lab. For instance, I tried to detect amorphous particles that
generate too many bubbles and are not possible to detect by the traditional avail-
able tracking at the lab. Thus, I had to obtain two different datasets with different
characteristics. In the following subsections I will show a few remarks on how to
properly choose the dataset when you have similar problems.

In appendix C.3.3 I share this software, with a brief explanation to install it.
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4.3.1 Dataset for small and constant size objects

One of the biggest challenges to detect the particles in chapter 7 was the size of
these particles. Because of the size of the circuit where my particles had to move,
I had to record videos at a small magnification. This implied that particles became
very small, and thus, difficult to detect. Although there is always a small variabil-
ity in the size of the particles I had, on average, any particle could fit in a square of
9x9 px2. Detecting these particles with the traditional method was almost impossi-
ble due to the variable contrast of videos, the interfaces present there and because
interparticle contacts. Thus, neural networks were a perfect solution. But to detect
things as small using neural networks is neither easy. The third version of YOLO
improved the detection for small objects compared with previous versions, but
still, it is not easy. Furthermore, traditionally one expects to have a dataset where
there are one or two objects to detect per image, and hence it is recommended to
have hundreds of images. Instead, in my videos I have many particles. This means
that if in every frame I can easily have 80 particles, with a few frames I can achieve
thousands of particles, yet I will only have a few images to present to the network.
With as many particles per image, the process to obtain hundreds of frames can be
tedious and a better approach is needed.

In any case, since I could not find information about what happens if one has
many objects per image, I thought that maybe even I only had around 58 images,
this approach could work due to the number of particles per image. Although the
network learnt something, the results were not very good. At that moment, I tried
with the 3 schemes available4, from the simplest tiny scheme to the more complex
SPP scheme, passing through the complete scheme for version 3 (See Fig. 4.10).
But these trials were very useful because at the beginning I thought that by making
more complex the scheme of the network, the results would be better but instead,
it is not only about the complexity of the network but about how we present the
data to the network.

To improve these results, the first we need to know is that the neural network
starts its training by wrapping every image in the dataset to a fixed size, which is
a parameter we can change in every scheme. In my case, the frames of my videos
had a size of 1600x800 px2 approximately, but the biggest value by default to
wrap the images was 608x608 px2. Therefore, if the initial size to wrap the image
is smaller than the image present in the dataset, at the moment the network wraps
the image it will reduce more the size of the particles. Since my particles were 9x9
px2, this could make even worse the detection. Thus, a possible solution to detect
better my particles could be to increase the size at which the network wraps the
images from the dataset. Images will enlarge and hence particles will be bigger
and easier to detect too. However, this approach is only valid if one has unlimited
PC resources, which is not usually the case. The main reason is that the size of the
network scales with the initial wrapping size, and hence, the bigger is the size to

4I refer as a scheme to the amount, kind and order of layers in the convolutional neural network.
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Figure 4.10: Training the network. A) Training of Janus particles and metal-
organic framework (MOF) particles using different YOLO schemes. Using the tiny
v4 scheme is good enough to detect MOF (violet triangles). However, for Janus
particles (squares) I used the third version because the fourth was unavailable at
that moment. None of the schemes were good for training them, except when
using a modification of images and scheme. B) Images used for the dataset. Top:
Janus particles. Bottom: MOF. Red squares: Ground truth bounding box. Blue
arrows show particles to detect without the red squares for better visualization.
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wrap the image, the bigger will be the network. But when one trains the network,
the PC reserves as much memory in the random-access memory (RAM) as the size
of the network. Therefore, if we want to increase the initial wrapping size, we
need a considerable amount of RAM.

Although nowadays is not rare to have a PC with 32 or 64 GB, the truth is that
when training the network, we are much more limited. To train the network one
can use the Central Processing Unit (CPU), in which that case we would use the
main RAM of the PC, but these algorithms are very slow to apply using the CPU
and we could spend weeks to train the network using a CPU. Instead, one needs
to use the GPU, which it is at least an order of magnitude faster because the algo-
rithms used are very easy to parallelize, and hence the calculation is boosted. But
if we use the GPU we will have to use the RAM present within the GPU instead of
the main one the computer has. Increasing the RAM in the computer is easy, and
it is relative cheap. But one cannot modify the RAM within a GPU. Thus, when
applying these software’s it is very important to buy5 a good GPU for testing. Fur-
thermore, if we increase the size of the image, the detection will slow down, and
depending on what we want to do later, it can be impossible due to the speed of
the process.

Therefore, if increasing this size can be a problem, I decided to modify the
images I already had. Instead of presenting this dataset, I presented smaller im-
ages, which at the same time increased my dataset. This is easy to achieve by just
cutting the images in smaller pieces. I tried by just cutting them in 8 pieces, but
finally I decided to reduce even more the image. For that purpose, I coded a new
python software to cut the images with a small ROI around each particle. The size
of this ROI is of 3 diameters the size of my particles. Thus, I could present many
images to the network while increasing their size, but still allowing the network to
learn that there can be particles in contact. Notice that if all ROI are centred at the
centre of a particle, this will imply that all images have a particle at the centre of
the image. Although the network should be translational invariant, I simply cen-
tred the ROI at the centre of the particle plus a small random quantity just to avoid
any possible artifact. Moreover, I also implemented a function where, for each
small new image containing a particle, I try to take another small image without
containing any particle from the original image. This addition is very useful to
teach better the network what is not a particle. From 58 images, I finally obtained
8700 small images containing at least a particle and 8700 small images without
containing any particle, which I used to train the network (See Fig. 4.10)).

5Almost every year a new series of GPU is presented in the market. New GPU series often increase
the RAM available, but the more RAM, the more expensive they will be. For example, a GPU with
11GB can cost around 1000C (2020). If the user cannot afford these prices, maybe it would be useful
to rent a server with such GPUs for the number of hours needed. I will avoid any publicity here, but
it is easy to find them by searching on the net. It is also important to check the GPU needed for the
software one uses. For instance, there are different libraries to parallelize calculus using GPUs. Some
are opensource, and can be used with any GPU, but in this market, there is a preference for CUDA
libraries, which is a library one can only use with NVIDIA GPUs. Remember to check if all the
software and libraries you will use in your project can parallelize the work with the GPU you will use.
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Before training the network with this dataset, I also did a few modifications
on the scheme. First, one of the YOLO forks available in GitHub allow the user
to calculate the anchors given the dataset associated. Usually, when one presents
objects to the networks, they will have different sizes but in my case all particles
have the same size. Therefore, one can expect to have anchors very similar to final
bounding boxes. Anchors calculation is processed within a minute, and in my case
gave me two sizes which were almost equal, and around 25x25px 2. As I previ-
ously explained in section 4.2.4, YOLO divides the image in a lattice of nxn cells
but in fact, it does not only divide the original image once, but three times with
different n. For each division, there are 3 different anchors sizes. In the step with
a small n it will detect the larger objects, while in the bigger, the smaller objects
since increasing n means that you divide your image in more cells and these will
have a smaller size. For the bigger n, YOLO already have anchors of the size of the
ones I calculated. Therefore, any other cell division is useless here because of the
constant size of the particles. Hence, I removed those calculus and I changed the
anchors to the ones I had, removing also one since I only had two. Finally, I also
activated the different options for data augmentation, and I also changed colour
images to grayscale images. Grayscale images is important to reduce the amount
of RAM needed per each image. Since colourful images have three channels and
a grey image only one, by converting the image to grey scale you save 2/3 of the
amount of RAM needed to do the calculus. In my case, since the images are now
small, this is not an important step, but I was already doing it since in the past I
needed to save RAM. In any case, my videos are white and black, but when they
are stored, the algorithm store them in colour. Thus, the colour is not important,
and the benefits are bigger than the cons.

With these changes, I decided to use the simplest scheme available because for
improving the tracking I needed the fastest detection available. The results were
excellent, as after a short time I got a mAP-50 larger than 95%, in comparison
with the rest of cases where I only got around 40% (See Fig. 4.10). Moreover, this
modified scheme was faster than the other ones, which means that in the tracking
this process will be faster, something important when one can have lots of particles
in a single frame (See Table 4.1)

Scheme Images type mAP@50% Time
YOLOv3 Complete image 40% 10 h 1 min 17 s

YOLOv3 tiny Complete image 27% 4 h 13 min 18 s
YOLOv3 tiny Smallest image 27% 2 h 17 min 45 s

YOLOv3 tiny modified Smallest image 87% 0 h 3 min 38 s

Table 4.1: Training results and time spent using an NVIDIA GTX 2080 Ti graphic
card and an Intel Core i9 10940X after 5000 training steps.
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4.3.2 Dataset for large and different size objects

At the time I created this dataset, YOLO was in its fourth version, and hence the
scheme used was for the fourth version. In particular, I still used the tiny scheme
but for the fourth version. In this case particles are amorphous, bigger and present
different sizes (See Fig. 4.10B)). Hence, here the difficulty does not come from the
size. Instead, the main problem comes from their propulsion because they create a
lot of bubbles while moving and makes impossible to track them with the available
tracking in the experimental lab. In fact, the PhD who carried these experiments
had to track them manually.

To train the network with this kind of particles I measured the anchors, but I
did not remove any layer for calculus because of the different sizes they can have.
New anchors sizes were put on those layers with of the same range of anchors
sizes. I modified the scheme for grey images and to do data augmentation, but
I did not cut the images due to their big size. Furthermore, cutting images here
almost would not increase the number of images because almost all videos only
had one particle per video. To reduce the area of the bounding boxes I also im-
plemented a function to create rectangles that fit the particles and that their edges
do not have to be parallel to the borders of the images (see Fig. 4.9), but later I
noticed that YOLO needs a rectangle with their edges parallel to the borders of the
frame. Therefore, I discarded this output and saved the data with rectangles with
two of their axis parallel to the frame rows.

The results obtained were good enough to track particles. After 5000 training
steps I had a 75% mAP@50%, which took 45 min 47 s using the same machine as
the one used for training the detection of Janus particles.

4.3.3 Conclusions to choose a proper dataset

As a conclusion for any user that wants to detect their particles, here there is a list
of steps to check every time one creates a dataset:

• Use as many videos as possible, with different visual properties. They
should have a representation of what you will see in the rest of videos to
detect.

• Only use frames that are temporally separated among them.

• If particles are very tiny, cut the images. For example, create images of a
few times their characteristic length. Do not put a particle in the middle
of each image. If cutting the image is not possible, apply some stride in
the scheme as proposed in https://github.com/AlexeyAB/darknet/#how-to-
improve-object-detection

• Transform all images to grey images, if possible.

• Try first with a tiny scheme.
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• Modify the scheme to include only grey images and data augmentation.

• Calculate the anchors.

• Modify the anchors in the scheme with the ones the software proposed. If
YOLO has a layer with anchors that have a size totally different from the
ones proposed, remove that layer.

• Train the network. If the result is deficient, try with a better scheme.

To speed up this process and make it user friendly, I decided to implement all
these procedures in a new python software (see Fig. 4.11). See section C.3.3 for
the source code.

Figure 4.11: Preapering scheme and polishing the dataset. The user can
choose directly with this graphic interface different options to modify its dataset to
train the network and prepare the scheme to be used for YOLO. This software can
use different YOLO scheme versions (YOLOv3 and YOLOv4) with its full scheme
or simpler one (tiny). Then, the user can select the options for data augmentation
to make bigger their dataset at the runtime of the training. The dataset will also be
bigger if the user decides to cut the images in smaller images. If this option is not
0, the software will also find images without particles. Finally, the user can select
options for the training, such the number of images to be used for training/to test
the trained network, the number of images to train the network at each step (Batch
size) or the size of the images it will be feed to the network (Image size), if we will
convert the images to grayscale and other properties of the training.
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4.4 | Tracking of particles using the trained

network

YOLO software allows to do detection in images or videos using users own trained
network but is not capable yet of doing tracking. Therefore, we need to build an
alternative software to do the tracking. To solve this issue, I decided to build a
tracking software in python because I needed to implement it fast, and because
I already have experience on treating videos with the OPENCV library. Further-
more, OPENCV library also includes a module dedicated to neural networks that
is capable to read pretrained networks with YOLO 6 and do the detection process.
Therefore, we can do the tracking software easily with python and OPENCV.

To track particles, one needs first to detect and give an identity number to each
detected particle. If the network is well trained, almost all the objects of the scene
will be detected, but we can always have false positives and false negatives. For
instance, one of the problems I could see when detecting particles in a video us-
ing YOLO was that particles were not detected always at every frame, and it was
happening frequently for different particles. If particles are alone, this could not
be a problem if we implement some kind of memory as Albert did for his tracking,
but if we have many particles next each other, particles could exchange identities.
Thus, this conditioned my approach for doing the tracking algorithm.

The tracking software I created is easy to use, and any user can use it (See
Fig. 4.12A)). The only requirement for the user is to correctly train the network and
have particles that do not overlap each other. Once the network is trained, the user
must introduce the paths for both the output of the training and the neural scheme
used during the training. The user also needs to introduce the folder where videos
are. The software will load the first video to track, and once finishes tracking
that video, it will load the next video until the user tracks all the videos from the
selected folder. When the software loads a video, it will show the first frame to
the user and will do a detection of particles using all the frame. Since the size of
the dataset can be differently (e.g., if you cut the images to feed the network), to
improve this detection I let the user to change the size of this frame for a better
object detection. In any case, the user can avoid changing this parameter because
after the detection, the software will show all the bounding boxes on the frame and
the user can edit the position of the bounding boxes, remove them, or add news

6OPENCV is capable to read networks from different software as pytorch, cafe or tensorflow among
others. Check dnn module for more information.
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Figure 4.12: Tracking of particles. A) The user can choose directly with this
graphic interface different options to track particles. B) Example of a frame
tracked with particles of size 9x9 px2. Under the main image there is an exam-
ple of time evolution of the tracking with multiple particles colliding.

by doing a click with the mouse. After finishing, the user can press a key and the
software will load the next frame. From this new frame until the last frame, the
software will repeat the following process:

• For each particle and time step t, we crop a frame around particle’s position.
The size of this cropped window is selected by the user when initializes the
software, but I used 2 particle diameter.

• The software will resize the cropped image to improve the detection, and
then it will perfom the detection. To detect Janus particles I enlarged 8
times each axis of the image, but this is a parameter that the user can select
when initializing the software.
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• The number of detections do not have to match with the number of particles
in the cropped image. Thus, to select the best detection we calculate its
closest particle among all the particles in the main frame, not the cropped
frame. Because each particle has an identity (id), we will also keep the id
for the closest particle to each detection.

• We filter distances by id. We select the previous set of detection-distance-
particle id and filter per id. We only keep those distances where the id corre-
sponds to the particle id we want to track. Among these filtered detections,
we will assume that the new position of the particle is the closest detection.

• If there are not distances with the same id as the particle we are tracking, we
will take the detection with the shortest distance to the centre of the cropped
image.

• If there are not any detection, we will keep the centre of the cropped window
as the new position for the particle.

• We repeat this process for every known particle. Meanwhile this is pro-
cessed, the user can click on the frame to add a new particle to the collection,
which will be added in the next frame.

• Those particles that have been several frames in the borders of the video
without changes in their position are particles that left the ROI of the video.
Thus, we will stop counting them.

• Before accessing to the next step, we will update particles position for the
next frame with their speed to have a better detection. If the particle is
located at position rt at time t, we estimate that its location rt+1 at a time
t+ 1 is:

rt+1 = rt +
rt − rt−1

2
. (4.4.1)

This algorithm avoids particle exchange for particles that cannot overlap. If
particles hit between them or are next together, they will conserve their id without
exchanges (See Fig. 4.12B) small images). When more than 5-6 particles are in
contact, such in big clusters, this algorithm starts to fail. However, I discarded
exploring solutions to this problem because when I tracked videos for chapter 7 I
could notice that the code was already slow. For example, I could track 200 par-
ticles simultaniously for a total of 7200 frames every 15 minutes. However, for
videos with a couple of particles this software runs very fast.
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Improving the tracking software

The main drawback relative to this software resides in its linearity, but many parts
can be parallelized. For example, the software used to detect particles using the
CPU. Using the CPU for neural network processing is not recommended, but there
was not other option in OPENCV library. However, by October 2019 the commu-
nity started to implement the detection process with GPU processing and just by
changing a flag, I could improve the speed of the detection calculus by a factor of
10 times7. After I solved this issue, I started looking at different areas.

The next idea I had was to parallelize the main loop of the software. Instead
of detecting for a particle, calculate its distances and repeat for the next particle in
a loop, this process could be done simultaneously. In Python one can parallelize
code using the NUMBA library. However, this library requires numpy arrays along
the code. Although when coding numeric arrays in Python one usually uses numpy
arrays, I thought that simple lists could faster processes and therefore I had to adapt
the code to numpy arrays. Numpy arrays did not slow the software but improved
it. Specially because one of the steps required to convert a list into a numpy array,
which is a slow method. Because these couple of improvements made the software
faster and comfortable to use for my requirements, I stopped introducing NUMBA,
but any user can implement it. As a consequence of NUMBA, now arrays cannot
be dynamic, and hence the user must set the maximum number of particles to de-
tect when initializing the software.

The user can also improve the execution speed by improving the calculus for
distances, which is the slowest part when tracking each particle. To improve this
part, I tried to divide the image in pieces, and record which particles are in each
piece. Nonetheless, this process slowed more the process and I discarded it. In
fact, to solve this problem we need to parallelize the calculus of the distances us-
ing the GPU. Mainly, we need to solve a k-nearest neighbours algorithm . This is a
classic computer science problem, and therefore there must be solutions avalaible
for Python using GPUs.

Finally, in case the process is still slow, I added an option to run the movie
without tracking. In this mode the user must click once the first time they see a
particle. The next time the user opens the tracking software, the software will use
these positions at the frame clicked to start tracking particles. Therefore, the user
could run the tracking in a disregarded mode.

7At the time I wrote the software, the OPENCV installed from Ubuntu repository was compiled
for CPU only. If we want to use GPU, we need to compile it for CUDA. See appendix C.3 for the
instructions.
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4.5 | Conclusions

Image processing is a stepping stone to analyse better our experiments. In this
chapter I have explained several tricks and possibilities this processing allows us.
Moreover, I have provided with a collection of codes and software for this por-
poise.

Traditional tools such as mathematical convolutions can help us to smooth
images or detect borders, processes that can be useful when tracking. However, if
needed, there are more powerful tools to track objects such the case of CNN, where
convolutions are mixed with neural networks. A tracking system based on the neu-
ral network for image detection named YOLO is presented, and different hints to
improve image dataset and network training is provided. Then, a self-developed
tracking system based on YOLO detection is given. All the codes related with
neural networks are joined under a single software with a graphic user interface
and are available for any user to download and using it.

Sometimes image processing must be done after tracking. The addition of lines
or polygons in the images let us to do several transformations. For example, we
can change the frame of reference, the coordinates system or add different methods
to obtain new parameters. To proceed with this manipulation, we can code several
algorithms in a language such as Java, but python provides useful libraries such as
OPENCV and Shapely that makes faster the development of these algorithms.

I hope the codes shown here will be useful for the community.
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cxxxix

II
Active particles next to
liquid-liquid interfaces





After describing in the previous part methods and tools useful to create setups
and to record and analyse videos, in this second part I will demonstrate the be-
haviour of active particles when interacting with liquid-liquid interfaces.

This part contains two chapters. In the first chapter, I will analyse this issue
from an experimental overview. In this chapter particles are not only contacting
the liquid-liquid interface but also are on top of a solid interface. Hence, we work
on a liquid-liquid-solid interface. In the second, I will create a model to describe
the previous system. The model can also introduce the solid interface, but we
considered that for the community would be useful to answer first some questions
that are not easy to explain at pure liquid-liquid interfaces and later to introduce
the solid interface and continue the research. Moreover, both studies are realized
on the diluted regime, explicitly, at one single particle level. However, at the end
of the first chapter there are some experiments with more than a particle, and the
model can run with thousands of particles.
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5
Guidance of active

particles at liquid-

liquid interfaces

near surfaces

"The man who moves a mountain begins by
carrying away small stones."

Confucius



Artificial microswimmers have the potential for applications in many fields,
ranging from targeted cargo delivery and mobile sensing to environmental reme-
diation. In many of these applications, the artificial swimmers will operate in
complex media necessarily involving liquid-liquid interfaces. In this chapter, I ex-
perimentally study the motion of chemically powered phoretic active colloids close
to liquid-liquid interfaces while swimming next to a solid substrate. In a system in-
volving this complex geometry, we find that the active particles have an alignment
interaction with both the neighbouring solid and liquid interfaces, allowing for a
robust guiding mechanism along the liquid interface. We compare with minimal
active Brownian simulations to show that these phoretically active particles stay
along the interfaces for much longer times and lengths than expected for standard
active Brownian particles. We also track the propulsion speeds of these particles
and find a reduced speed close to the liquid-liquid interface. We report an inter-
esting non-linear dependence of this reduction on the particle’s bulk speed. The
analysis of this interaction will help us to understand not only the behaviour of
these particles when they move next to these interfaces but also, it will help us to
model this problem in the next chapter.

The present chapter is based on the paper "Guidance of active particles at
liquid–liquid interfaces near surfaces"[163], from which I am first author, and to
which I did the experiments and model, analysed and wrote the paper. I would like
to special thank Jaideep Katuri, who helped me with this project, which was the
first experimental I did. I also want to thank Marco De Corato for his discussions
on the ABP model, and to Lei Wang, who showed me how to create droplets of oil
for further research after the work of this paper.
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5.1 | Introduction

Biological microswimmers necessarily operate in complex media involving vis-
cosity changes and liquid-liquid interfaces[164]. At interfaces, their swimming
behaviour can change remarkably and exhibit new phenomena that are not ob-
served when they are swimming in the bulk. In section 1.1.2 I already explained
some examples, but we can even find more. For instance, bacterial trajectories can
change from run and tumble behaviour in the bulk to circular trajectories when
close to a solid interface[165]. At higher densities, bacteria can create biofilms
when an interface is present[166, 167, 168] but not in the bulk. These changes
in behaviour are very important not only as natural processes that offer an evo-
lutionary advantage[169, 170, 171], but also because of the numerous industrial
applications[172, 173, 174] that have been developed for several microswimmers
in the last few decades.

Recently, new advances in materials science have allowed us to create new
kinds of synthetic microswimmers that can mimic natural microswimmers such
as bacteria[18] in remarkable ways (see section 1.1.2 for examples). These syn-
thetic swimmers consume energy from their surroundings and engage in out-of-
equilibrium behavior such as self-propulsion, much like their biological counter-
parts. A prominent example of these synthetic microswimmers is that of self-
diffusiophoretic colloidal particles. These particles have an asymmetric coating of
a catalytic material on their surface and have the ability to locally generate chemi-
cal gradients, which leads to their self-propulsion (See section 1.4.3). In addition
to engaging in self-propulsion, these particles can also interact with each other and
their surroundings via hydrodynamic and phoretic fields[51]. Recent experiments
have shown that synthetic microswimmers tend to accumulate near surfaces[56,
65], similar to motile bacteria. While hydrodynamic interactions are thought to be
primarily responsible for the accumulation of bacteria near surfaces[175, 176], in
synthetic microswimmers, it is indeed a combination of both phoretic and hydro-
dynamic interactions[56, 66, 177].

A broad range of applications have been envisioned for synthetic microswim-
mers, from drug delivery[21] to water remediation[178]. In all these applica-
tions, the synthetic swimmers will inevitably interact with different complex flu-
ids and interfaces, making it of significant interest to understand their behaviour
in these conditions. To date, there are studies describing the interaction of these
microswimmers with liquid-solid[56, 65, 177] and liquid-liquid interfaces[66, 67,
179, 68, 180, 69, 181], both from an experimental and theoretical point of view.
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While liquid-solid interfaces introduce a strict boundary condition for hydrody-
namics and phoretic fields, liquid-liquid interfaces relax this boundary, leading to
different scenarios[69].

At liquid-liquid interfaces, effects such as capillarity or Marangoni flows (see
section 1.2.1) due to the difference in surface tension between the two liquids
can influence the particle swimming behaviour[70, 182]. The difference in vis-
cosity between the two liquids can also modify the velocity and orientation of the
particles close to these interfaces. And finally, since synthetic microswimmers
create phoretic fields around them which couple back to the particle motion, the
differential diffusion of the chemical product at the interface can give rise to an ad-
ditional contribution that is not observed for solid-liquid interfaces as we already
saw in section 1.2.2. For instance, in a system involving only a solid interface, we
have observed an active quenching of the particle’s Brownian rotation close to a
solid surface, leading to a stable orientation that is parallel to the adjacent surface,
effectively restricting the particle trajectory to a 2D plane. We have previously
elucidated the phenomenon of the angular attraction of self-phoretic particles to
this configuration close to confining boundaries[56]. Briefly, we could show that
a combination of gravitational and hydrodynamic torques tends to push the cat-
alytic cap of the particle towards the bottom wall, whereas the contributions from
phoretic interactions arising from the accumulation of the chemical product at the
solid substrate and the resultant wall slip have the opposite effect, leading to a
stable angle that is parallel to the bottom surface. But in the case of liquid-liquid
interfaces, we might see a different behaviour since the system is different.

Different experimental studies performed with active particles at pure liquid-
liquid interfaces[66, 68] have shown how pinning of the in plane angle plays a
prominent role in the resulting particle behaviour at the interface. The initial pin-
ning angle will determine the angle that the particles will have at interfaces and
hence their motion, allowing for a sub-population of particles to have an increased
characteristic rotational time and persistence length. As opposed to a pure liquid-
liquid interface, in this chapter we study a configuration in which active particles
can interact with fluid-fluid interfaces without needing to be in between them. Our
set up consists of a liquid-liquid interface that is perpendicular to a solid interface
created in a simple single channel geometry (Fig. 5.1). This configuration con-
tains both the solid substrate along which the particles accumulate and swim, and
a liquid-liquid interface that is perpendicular to it.

An active particle swimming on the solid substrate will eventually encounter
the liquid-liquid interface, at which point it is effectively interacting with a solid-
liquid-liquid interface. This is a very likely scenario in many application settings,
as most synthetic swimmers are density mismatched and quickly sediment close
to the bottom solid surface, along which they accumulate and explore the system.
As an example of an application involving these interfaces, it has already been
reported that chemically functionalized active particles can be used to clean oil
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Figure 5.1: Schematics of our experimental setup. A) A microfluidic channel
(Ibidi VI0.4) is filled with oil (yellow) and a solution of water, hydrogen peroxide
and Pt-SiO2 Janus particles (blue). Janus particles are propelled because of the O2

gradient that they create. When they touch the liquid-liquid interface, the particles
travel along this interface. B) Water-oil seen from the top. The water was differ-
entiated from the oil phase by addition of Rhodamine-B into the water. Top view
of the interface. C) Side projection of the reconstruction of the interface in 3D. In
red, water mixed with Rhodamine-B. Z = 0 µm is taken as the bottom glass layer.
Scale bars: 5 µm.

contaminants in water where a physical interaction between the active particle and
the oil droplet is necessary[38]. Another interesting avenue to be considered is that
of lab on a chip systems which are highly confined and the use of both immiscible
droplets and active particles is becoming increasingly common. At the liquid-
liquid interface, the chemical product from the catalytic reaction on the particle
surface can diffuse through the interface, and any local accumulation or depletion
is dependent on its solubility in both the liquids. It is a priori unclear what the net
effect will be on the particle swimming at the interfaces due to this partial diffusion
of the chemical product into the other medium, the difference in viscosity between
the two media and surface tension related effects such as Marangoni flows at the
liquid-liquid interface.

In this study, we aim to understand if the introduction of both a solid and liquid
interface presents similarities in behaviour with the previous studies performed at
purely solid interfaces and if we can find a simple effective model to capture our
experimental results.
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5.2 | Experimental setup and video analysis

We use self-diffusophoretic Pt-SiO2 Janus particles of 5 µm and 2 µm diameter
size as model synthetic microswimmers (See section 2.1 for particles synthesis).
When Pt-SiO2 particles are suspended in an aqueous solution of hydrogen per-
oxide, peroxide is decomposed into O2 and water on the catalytic Pt side. This
anisotropy of reaction products creates a gradient of oxygen across the particle
surface, resulting in a net flow along the particle surface and a resultant self-
propulsion velocity as described in section1.4.3.

Our experimental cell to build the surface adjacent liquid-liquid interface is
composed of a single microfluidic channel (Ibidi VI0.4) of dimensions l = 17.0, w
= 3.8, and h = 0.4 mm. To create the liquid-liquid interfaces, we first introduce
a droplet of oil in the center of this channel (18 µl). Then from either side of
the channel we introduce a droplet of a dilute suspension of Janus colloids mixed
in an aqueous solution of hydrogen peroxide (35 µl, concentration from 0.6% to
2.5% by volume1). This creates two oil-water interfaces in our cell where we can
observe the interactions of Janus colloids with these interfaces (Fig. 5.1). This
configuration also allow us to remove easily any excess of oxygen from the sys-
tem through the outlets on either side without interfering with the experimental
observations. Nontheless, we record our experiments using a contrast microscope
(Leica) with a 40x objective for an entire duration of 10 minutes when the interface
is stable. Over longer durations we have noticed that the interface can move due to
interference from the accumulated oxygen in the water phase, which can generate
bubbles of oxygen that stuck in the channel or burst.

The resulting videos from the observations were tracked using the tracking
software developed by Albert Miguel López (See section 4.1). Orientations were
obtained directly from the image in the case of 5 µm particles or by extracting them
from the velocity vector due to lack of resolution in the case of 2 µm particles. In
this last case, we had to skip data contained in every 4-6 frames to get a more
stable value of this director vector. Once the raw videos were processed to find the
Janus particle position and absolute orientation, the relative incidence, reflection
and orientation angles with respect to the oil-water interface were calculated using
the software referenced in section 4.1.3.

1To avoid decomposition of H2O2, H2O2 was stored at 4 °C.
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5.3 | Encounter of an active particle with an

oil-wall interface

As we are primarily interested in the behaviour of these particles at interfaces,
we set our microscopy region of interest (ROI) to an area containing the solid-
liquid-liquid interface, within a region of both oil and water phases (circled region
in Fig. 5.1). Initially, the particles approach the interface from random orienta-
tions. During this approach, we do not see any long range attractive or repulsive
interactions and the particle speed remains constant until it contacts the interface
(Fig. 5.2A; see also the ESI S1.mp4 in ref. [163]).

We track θ, the relative angle between the orientation vector m⃗ of the particle
and the interface (Fig. 5.2B), throughout the experiment. θ0 is the approach angle,
i.e., the particle angle at the point of contact. For all θ0, we find that the particle
eventually reorients until its orientation vector is parallel to the interface, θf ∼ 0°
(Fig. 5.2C), and the particle begins to move along the interface. The time that the
particle takes to reorient to reach θf is in fact dependent on the approach angle θ0
with particles approaching at higher angles requiring more time to reorient with
the interface (Fig. 5.2D), as expected. Plotting the probability distribution of θ as
the particle moves along the interface, we obtain a Gaussian spread with a mean
value of -6 ± 10°, indicating no clear preference for the particle to point into or
away from the oil phase (for individual fittings see Fig. 5.11 at Appendix 5.A).

In an effort to understand the role of the physical properties of the oil phase,
we also repeat these experiments for different oil viscosities (5, 50 and 500 cst),
but find no strong dependence on any of the parameters analysed, indicating the
robustness of the reorientation mechanism.
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Figure 5.2: Particle approaching the liquid-liquid-solid interface and angle
reorientation. A) Particles arriving at the liquid-liquid-solid interface reorient
when they contact the interface and follow the interface with a stable angle align-
ment with respect to the interface (dotted lines). Arrows: interface (red) and par-
ticle orientation (m⃗) (black). The particle is circled. Scale bar: 5 µm. (See ESI
S1.mp4 in ref. [163].) B) We captured the angle defined between the interface
and the particle orientation at the initial time (θ0) and when it stabilizes (θf ). C)
The particles’ orientation changes after they contact the interface. They obtain a
stable orientation angle that does not depend on the oil viscosity or initial angle.
D) The time they need for completing the reorientation increases with the initial
angle, showing us that the particles rotate with a constant angular velocity at the
interface.
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5.4 | Change in particle speed at the

interface

We next study the influence of the interface on the propulsion speed of the parti-
cles. We classify the particles based on their propulsion speeds into two categories
of 0 < vint < 5 µm/s and 5 < vint < 10 µm/s. We then compare the bulk speed
of the particles with their speed at the interface (Fig. 5.3). For both the categories
we observe a clear reduction in propulsion speed at the interface compared to their
bulk speed. However, this effect is more pronounced for the particles with lower
propulsion velocities 0 < vint < 5 µm/s as compared with the particles with
5 < vint < 10 µm/s. The ratio vbulk/vint for the former is 1.19 whereas for the
latter it is 1.04 (Fig. 5.3B). To further study this speed reduction at the interface
we plot the data with smaller bins of 2 µm/s and we see that the same trend is
retained with increasing vp (Fig. 5.3C; see also Fig. 5.11 at Appendix 5.B).

In general, the faster the velocity of the particles at the interface, the lower
the loss in speed as compared to the particle’s bulk velocity. This reduction in
speed at the interface originates from the fact that although the particle aligns with
the interface on average, the orientation angle of the particle is still subject to
Brownian fluctuations and occasionally the particle orients into the oil interface,
where a component of the propulsion velocity is lost (Fig. 5.3D). Since the effect
of Brownian fluctuations is more significant for slower particles, the reduction in
speed at the interface is more pronounced for these particles. Although in most
cases the particle recovers its orientation from facing into the oil interface to the
initial orientation in which it was propelling, we occasionally observe that the
particle can change its propulsion direction and start travelling in the opposite
direction as shown in Fig. 5.3E and in the (See ESI S2.mp4 in ref. [163]. This is
observed solely for the smaller r = 1 µm particles where the Brownian fluctuations
have a stronger effect. For these particles we also notice that occasionally (in
15% of the cases observed) the particles start scaling the interface in 3D and move
away from the bottom plane. Both of these effects were not seen in our previous
work[56]. We think that the less strong interaction between solid-liquid and liquid-
liquid interfaces could explain these phenomena.
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Figure 5.3: Speed reduction at the interface. We analysed the speeds indicated
in (A)). Particles that move with a speed at the interface between 0 and 5 µm/s
(B), orange) decrease their speed by around 19% with respect to their speed in the
bulk, but if particles move at the interface with a speed between 5 and 10 µm/s
B), green) their loss is around 4%. After fitting to a Gaussian, the mean values
are statistically different after comparing 2 SD. (C)) We separated the data more
accurately by using bins of 2 µm/s. There are no statistically significant differences
between the groups, but we clearly see a tendency. The faster the particle moves
close to the interface, the less speed is lost. (D)) We show one effect seen several
times that could explain our decrease of speed. Sometimes the particles reorient
with the silica cap looking towards the oil, giving extra time until they recover
their speed. (E)) The last effect can induce particles to reverse their direction of
motion. Scale bar (D) and E)): 2 µm. (See ESI S2.mp4 in ref. [163].) Time
between frames: 0.44 s (D)), 0.76 s (E)).
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5.5 | Alignment effect induced by the

interfaces

As stated previously, we occasionally observe that the smaller R = 1 µm particles
leave the interface. We calculate the retention time of the particles at the interface
for different propulsion velocities and compare it to the bulk rotational diffusion
time. Since the particles are on top of a glass slide with which there exists an ac-
tive alignment interaction, we do not use the theoretical formula for the rotational
diffusion time as we saw in section 3.2.2. Originally, in the article published, we
calculated it from the angular autocorrelation of the particles moving far from the
interface:

< m⃗(t) · m⃗(t+ dt) >∝ e−t/τr , (5.5.1)

where we obtained an average rotational diffusion time (τr) of 3.54 ± 0.06 s
and we noticed that τr does not depend on the propulsion speed of the particle,
consistent with previous observations for similar systems and as in section 3.2.2.
However, after the study present in section 3.2.2 we also obtained a different value
for τr. Nontheless, I will keep this value in the chapter as originally presented in
the paper, but I will also use the other value obtained and present the data in the
appendix.

When observing the particle trajectories at the interface, because we have a
limited ROI and a linear interface, we can only capture videos for a limited period
of their motion at the interface (in obtaining these data, we maximized our ROI in
the existing set up and recorded the videos for 120 s). Consequently, not all the
particles that we analysed include the incoming and the outgoing phases to/from
the interface. We only ascertain that we need to have captured both the incoming
and outgoing events if the particle stays at the interface for a time less than τr (see
Fig. 5.4).

Similarly to our previous analysis we classify our particles based on their
propulsion velocities, 0 < vp < 5 µm/s, 5 < vp < 10 µm/s and 10 < vp <
15 µm/s. Among these categories we see that there is no difference in the distribu-
tion of retention times at the interface. However, when compared to a scenario of
a purely active Brownian particle with no effective interactions with the interface,
this retention time distribution is markedly different. In order to perform this com-
parison, we simulate an active Brownian particle (ABP), represented by a point-
mass particles at a position (x, y) and orientation θ with respect to the normal as
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Figure 5.4: Effect of including only particles with incoming (I) and outgoing
(O) events travelling for shorter times than τr. If one tries to remove videos
from where we do not have these events, we make a big bias.

in section 1.4.2, but with reflective boundary conditions at the interface[183],i.e.,
when the active Brownian particle reaches the interface, it stays along the interface
until random fluctuations orient it away from the interface and it moves away into
the bulk. We also disregard translational diffusion because experimental results
show a clear directional movement close to the interface. We discretize the equa-
tions as in ref. [183].

To model our interface, we define a line at x = ±w where if a particle travels
beyond this point it is transferred to the nearest x = |w| point. We accept that a
particle has reached the interface if the particle position is |x| ≥ |w|. We also define
the line x = ±w0 as the nearest point to the wall that defines a region of interest
(ROI). We accept that particle has reached the interface once it has contacted it and
m⃗ points to the interface. We regard the particle to have left the interface when it
has left this ROI, which is at least 0.2 µm away from the interface to mimic the
experimental resolution.

We see from the plot in Fig. 5.5A that at t = τr, less than 20% of the self-
propelled particles have left the interface in our experiments, whereas nearly all
the particles have left the interface in the case of the simulated active Brownian
particles with reflective boundary conditions. We plot the distance travelled by
the particles at the interface with respect to the particle’s bulk persistence length
Lp = vpτr in Fig. 5.5B. In order to capture the longer retention times observed
in our experiments with simple Brownian simulations we can model the angular
reorientation due to the interface-particle interaction to follow the Hookean form:
Ωy = −k(θ− θ0)[63], where Ωy is the angular velocity, θ0 is the stationary angle
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of the interface, and k > 0 gives the effective restoring torque that stabilises the
particle angle along the interface. In fact, in our simulations we use the functional
form Ωy = ksin(2(θ − θ0)) in order to more accurately represent the physical
picture of the experiments. Specifically, we take θ0 = π/2, which ensures that
for a particle that approaches the interface either at a normal angle or that moves
parallel to it, the presence of the interface does not introduce any torques as the
system is axi-symmetric. To introduce this torque in our simulation we substitued
the θ̇ equation per:

θ̇ =
√
2Dr(t) + ksin

(
2
(
θ − π

2

))
H ((w0 − w)± x) , (5.5.2)

where H is the Heaviside function, for which the sign of x changes for the
lower (−w) and upper (+w) walls.
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Figure 5.5: Particles align with interfaces. Particles have a bigger residence
time associated with the Brownian rotational diffusion time at liquid-liquid inter-
faces than in the bulk. As a consequence, particles also have a bigger persistence
length at these interfaces compared with the intrinsic persistence length that they
have in the bulk. Squares: experimental data. Circles: ABP model. Triangles:
ABP model with extra torque (A)). Particles increase their rotational diffusion time
close to liquid-liquid interfaces, but this effect does not depend on their activity.
We try the simplest standard model for ABP (circles) but we cannot recover the ex-
perimental data. We also add an extra torque to align particles close to interfaces.
Modulating the constant associated with the torque, we can recover the experimen-
tal results. (B)) Particles have a bigger persistence length than expected in the bulk
with no difference in their activity. The ABP model with and without torque could
not approximate our experimental results.

As soon as the particle rotates, there is an effective restoring torque that aligns
the particle with the wall since this is a stable point while the perpendicular orien-
tation is unstable. When the particle begins to rotate towards the interface, a maxi-
mum magnitude will be found at θ−θ0 = 45°. With this condition at the interface,
for k = −360 rad/s, the distribution of particle retention times at the interface in
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our simulations closely represents the distribution obtained experimentally (green
squares in Fig. 5.5A; see also Fig. 5.12 at Appendix 5.C) although it does not in
terms of length travelled (Fig. 5.5B).

Effectively, we note that active particles tend to move along liquid-liquid in-
terfaces, similar to the previous observations made for solid-liquid interfaces, and
these interfaces can also be used as effective guiding mechanisms for chemically
active particles in microfluidic systems.
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5.6 | Conclusions

In conclusion, we have presented how liquid-liquid interfaces adjacent to a solid
surface can be used for effectively guiding active colloids. The particle in-plane
orientation is quenched when in contact with the water-oil interface, similar to
what was reported for solid-liquid interfaces. In this case, however, we do not find
a dependency of the retention time with particle speed.

In comparison with simple active Brownian simulations the particles in our
experiments have significantly longer retention times due to the active alignment
effect of the interface. This retention time can be modulated if one introduces an
interface-particle interaction, although we did not recover the experimental results
for the path travelled. While this alignment effect is likely due to a combination
of phoretic and hydrodynamic interactions as we have previously reported in our
study with solid interfaces, a further full study is required to understand the possi-
ble contributions from capillarity, Marangoni flows, partial diffusion of the chem-
ical product into the oil medium etc. In contrast to some previous studies of active
particles at pure fluid-fluid interfaces, where the particle speed was enhanced at
the interface, we find a speed reduction at interfaces adjacent to a solid surface[66,
68]. This reduction results from the tendency of the particle to be occasionally
oriented into the interface because of Brownian fluctuations.

Our understanding of the behaviour of active particles at liquid-liquid inter-
faces could pave the way for their application in various microfluid and lab-on-a-
chip applications.
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5.7 | Future perspectives

After publishing the previous results, I still worked experimentally with similar
systems. However, the experiments were not reproducible, and I finally stopped
working on these systems. Here I present two of the projects related and ideas for
future approaches.

5.7.1 Curvature effect

The experiments carried out in this chapter used linear liquid-liquid interfaces.
However, it would be interesting to repeat these experiments with curved inter-
faces. These experiments could help us to understand better the possible contri-
bution of each force present in the system. For instance, Desai N. et Al [184] and
Saverio E. et Al. [185] showed that hydrodynamics can retain or scatter particles at
circular interfaces depending on their curvature, and a characteristic radius for the
droplets define how particles will behave. But phoretic interactions could change
these interactions and hence, we could extract more information from the results
we already obtained. Simmchen J. et Al. [56] already studied these particles at
circular interfaces, but in their case these were solid-liquid, which their nature is
different from the liquid ones. Moreover, solid interfaces can have imperfections
not visible for us but that could help particles to escape from them. Hence, this
effect could interfere in the results obtained. But in the case of the liquid-liquid
interfaces, there are not imperfections, and therefore we would avoid this problem.

To build curved liquid-liquid interfaces I decided to make droplets of oil. How-
ever, natural, and artificial oils such the silicon oil already used for flat interfaces
are less dense than water, and they would move to the top of the setup due to
density mismatch with water. Instead, I created immiscible droplets by mixing
Tributyrin with water at a ratio 1/10 and shaking the solution by hand for a few
seconds [38]. These droplets are stable for long times and sediment. Hence, par-
ticles could interact with the droplets. In general, droplets were moving over the
surface as the particles were, but in this case, they moved due to external currents
and/or Brownian motion. Sometimes, these droplets could attach to the solid sur-
face, changing their appearance (See Fig. 5.6). However, this was a rare event to
see, and only occurred on a few occasions even the experimental process carried
out was the same always. To control better these events, I tried to modify the sur-
face by applying an O2 plasma for a few minutes or sylanizing the surface. These
processes can improve the fixation of the droplets, but the control was neither pos-
sible. For instance, these methods could make my droplets to splash more the
surface.

158



T
o
p
 v

ie
w

S
id

e
 v

ie
w

Less than a second

29.5 �m

Moving droplet Fixed droplet

Figure 5.6: Droplets under the microscope. In general, droplets are moving,
and present this black and white shade around them. In a few cases, droplets can
attach to the surface. In this moment, the shade disappears, and we can see the
droplet with a different contrast. This process is very fast and lasts for less than a
second. Because of the change in geometry, we could expect particles to behave
differently in contact with both cases. Particle at scale (R=1µm). Red dotted line:
Plane focused.

When I observed the particles interacting with these droplets, I could see two
completely different behaviours, that I related on the fact of the droplet being fixed
or not to the substrate surface (See Fig. 5.6). However, when I obtained more
samples with fixed droplets using the previous methods, this hypothesis failed. In-
stead, I could observe particles interacting with fixed droplets as if droplets were
moving too. Hence, I was not able to understand when these two scenarios can
happen, and what is the difference that makes them appear.

Particles trapped in oil droplets

The most interesting scenario happened with droplets fixed spontaneously, without
doing the plasma or sylanizing. In this case I could see that 2 µm diameter size
particles could move around the droplets for long times compared with their τr,
and the size of the droplet was not a problem for this behaviour. I could see par-
ticles moving around smaller, the same size and bigger droplets than themselves
for minutes. For instance, once I could record a particle moving in circles around
the droplet for 10 minutes, but at some moment I had to stop recording, even the
particle was still moving around the droplet. This time is two orders of magnitude
bigger than τr. Nonetheless, it is also true that some of these particles could have
something at their surface, since optically I could see something on a few of them
as if they would have had oil attached to their surface, but this was not always true
neither. Therefore, the surface modification of particles could have an influence
on the behaviour of the particles next to these interfaces.
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Figure 5.7: Particles contacting fixed droplets. A) Two particles contacting a
fixed droplet turn around it with opposite sense of motion. At time 30.8 s after
starting the video both particles contact. The slowest particle changes its sense
of motion and starts moving in the same sense as the other particle with the same
speed module as it had before the contact. While this particle is changing its
orientation, the speed of the pack of particles drops, but as soon as the particle
orients parallel to the interface, the package speeds up. Blue arrow: Gap between
both particles. B) If we add a second particle (booster) and there is not a change
of sense of motion, we can see that the addition of a second particle in the same
sense of motion to one of them speeds up the package made of 3 particles. Blue
arrow: particles leave the droplet. White arrows indicate the sense of motion of
particles. Scale bar: 2 µm.

When these particles move around fixed droplets, it is common to see multiple
particles moving around the same droplet (See Fig. 5.7). There are multiple phe-
nomena that we can observe in this situation. For example, particles can collide
if they are coming from different sense of motions (See Fig. 5.7A)). Depending
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on the strength of each particle, after collision, the system of particles will move
in one sense if one particle moves faster than the other one. But if both particles
have similar strengths, they will face with their silica face together and will bounce
slightly from an equilibrium point as if they were a spring. At this moment, a par-
ticle can change its orientation by 180º. During this process, both particles will
move at constant speed until the silica part from the particle changing its orienta-
tion is facing totally to the oil droplet. Just now, its resistance to move will decay,
and the other particle will push the system stronger in one sense of motion.

After the particle changes its orientation by 180º, the system will evolve at a
different speed. As seen in Fig. 5.7A), the package of particles do not necessary
move at the speed of the sum of the individual speeds, but with the speed of the
front particle. The reason that explains this phenomena is because particles are not
in solid contact, but there is a gap between them, caused by the products generated
in the cap of the particle as already recognized in the literature [65]. In this case,
both particles had similar speeds when they moved freely, and the gap prevents
the addition of speeds. However, there are other situations where speeds can sum,
and the package of particles can move faster if there are more particles. As seen
in Fig. 5.7B), we start the experiment with a similar configuration, where one par-
ticle moves faster than the other one and after collision the package moves in one
sense of motion. In this case, the particle does not reorient, and all the silica cap is
facing towards the other particle, creating the maximum possible of resistance. If
another particle comes in the same sense of motion of the package, and it is much
faster than the package of two particles, the particle coming from behind can push
the other two particles, increasing the speed of the package. This phenomenon is
also visible if particles in the front move much slower than the one pushing from
behind, no matter how they are oriented.

Additionally, when we have more than one particle, it is possible that the re-
orientation happens in a particle not in the borders of the package. These phenom-
ena often occurs if all the package moves around an equilibrium point because
the strengths towards both senses are similar. Particles next to the one changing
its orientation can feel the products generated by this particle, creating an extra
torque that can change their orientation and even leave the droplet as detected in
Fig. 5.7B).

Particles scattering oil droplets

The second and most general behaviour I could notice was specially found when
particles contact moving droplets (See Fig. 5.8A) for a scheme of the process).
Thus, the analysis of this experiment was not easy, and I had to develop the tools
presented in section 4.1.5. In this case, after particles contacting the droplets, they
made less than half a turn around the droplet and then escape. This second be-
haviour was tested with different droplet sizes, from particles size to 6-7 times their
size (See Fig. 5.8B)). Overall, once particles touch the droplet, they move along
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Figure 5.8: Particles contacting moving droplets. A) A particle contacting
a moving droplet turns around it for a specific angle, and then escapes from the
droplet. Crosses are the moment of contacting (green) and escaping (red). Particle
motion is always tracked from the droplet frame of reference. B) Relative fre-
quency of droplets sizes. Most droplets radius is between 2- and 7-times particles
radius. C) Average time of particles moving around droplets. In average, parti-
cles move for two second along the interfaces. Error is big enough to show time
̸∝ droplet size. D) Average number of turns that particles do around droplets. In
average, particles move for 0.35 turns, which are 130º, and neither depend on the
size of the droplet. E) Linear speed for particles while moving around the droplets.
ω is the angular speed for each particle (angle travelled divided by the time spent).
Ri is the radius for the droplet or particle. Particles moving around bigger droplets
move faster. F) The turns do neither depend on the particle speed, but the number
of particles for each case (in red) is very reduced, and the error high.
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the droplet for a couple of seconds (See Fig. 5.8C) to turn less than half the droplet
(See Fig. 5.8D)) before escaping from the droplet (about 130º in average2). These
measurements, time and turns, do not depend on the droplet size. If we measure
the angular speed of these particles (angle travelled divided per time) and extract
the linear speed (angular speed per the sum of the droplet and particle radius), we
see that for higher droplets size, particles move faster around the interface. This
behaviour is expected after seeing that particles do the same turn and stay for the
same time independently on the size of the droplet, but the physics underlying is
not clear3. To complete the view, I tried to divide the number of turns depending
on size of the droplet and the speed of the particle (See Fig. 5.8F)). However, here
the dataset is reduced (in red the number of samples taken for the mean), and the
data should be read carefully. In fact, here I only present data up to 12 µm/s, but
if we see at Fig. 5.8E) we can see that the population for droplet size/particle size
= 5 and 6 is over this limit. This data does not show a clear dependency of the
speed for the turns done by particles, but more data should be included since the
dispersity is elevated for all the data. In any case, almost all particles do less than
a turn around the droplet for a couple of seconds.

A B

Figure 5.9: Alternative setups to study droplets system. A) A microfluidic chip
can create droplets of oil, but it needs a surfactant to avoid all droplets to combine
after its creation. Arrows indicate direction of flow. Yellow: oil. Blue: Water with
surfactants. Red: Final output. Scale Bar: 60 µm. B) An array of holes can be
filled with oil, creating oil droplets of the same size. Scale bar: 5 µm.

To increase the dataset, we should create droplets of the same size per ex-
periment instead of random sizes every time. To create these droplets I tried
to create particles using a microfluidic chip (See Fig. 5.9A)). However, droplets
generated using this microchip needed a surfactant to avoid droplets combining

2Notice that in these experiments measurements are highly scattered.
3Notice that this speed is in the droplet frame of reference.
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between them. We should avoid using surfactants because they introduce more
physics, and particles move slower. Even they can stop [186]. Hence, I stopped
using these devices. A second approach was to create holes in an array following
a lithographic process and posterior PDMS moulding (See Fig. 5.9B)). With the
holes in the PDMS, we could spread oil, wash with water, and expect to have oil
in the holes. This second approach could be useful, but it was not possible to do
these experiments due to lack of time.

Given these results, more research in this line is needed. As a step forward,
it could be interesting to use the array of holes to see the collective behaviour of
these particles. For example, if some phenomena of synchronization could appear
between different droplets nearby.

5.7.2 Surface modification

The modification of Janus particles or interface surface can change the interaction
of active particles at interfaces. For instance, silica surface of the particles can
be modified by attaching different chemical groups, which can change its wetting
properties. Moreover, liquid-liquid interfaces can present chemical molecules at
the interface such as surfactants or other molecules that could stabilize the droplets
in water.

Consequently, one future project to explore could be the modification of either
particles or interfaces. From the interfaces side, we started making droplets using
BSA protein with gold nanoparticles to stabilize them, but we finally discarded
this technique because these droplets were stable enough by themselves without
the BSA and because particles in water were moving slower since of the BSA used
for the mixture. However, after adding the BSA to the droplets, particles could not
move around the droplets. In fact, when particles where at a particle diameter
from the droplet, it was very easy to see how they were being adsorbed by the
oil, making particles to stuck at the interface. Hence, these modifications could be
interesting to further study in next projects.

164



Appendix

5.A | Particle orientation next to interfaces

To analyse the orientation of particles next to interfaces we fit the data obtained at
section 5.3 with a Gaussian distribution. In the case of low oil viscosity, the data
seemed not symmetrically distributed, and hence we also fitted it with a skewed
normal distribution function. The skewed normal distribution includes the possi-
bility of having an asymmetrically (or skewed) distributed dataset. To determine if
the distribution is skewed, the distribution includes the shape parameter α. Positive
values for α indicate that the distribution has a longer tail towards higher values,
but lower values are more important, while negative values indicate the opposite.
A zero value means that the population is symmetric, and hence we obtain a simple
Gaussian distribution.

Figure 5.10: Particle orientation change after they contact the interface. Par-
ticles obtain a stable orientation angle no matter on the oil viscosity. We fit our
experimental data to Gaussian distributions. All of them are compatible with a
mean value of -6±10º indicating no clear preference for the particle to point into
or away from the oil phase. Since data for 5 cst could seem left-skewed, we also
fitted it to a skewed normal distribution. Value of the shape parameter is α = 0.25,
and therefore we do think that still is compatible with a normal distribution.



5.B | Speed distribution

We present in Fig. 5.11 the relative frequency for the ratio between particle speed
at the bulk (vbulk) and the interface (vint). We split the data in bins of particles
moving at the interface at different speeds. This data correspond to the averages
present in Fig. 5.3.

Figure 5.11: Speed distributions. We present speed distributions for each bin of
Fig. 5.3C.
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5.C | ABP with different spring constants

We present in Fig. 5.12 a comparison of different k spring constant to fit experi-
mental data in Fig. 5.5

1 10
0

20

40

60

80

100

P
a
rt

ic
le

s
 a

t 
in

te
rf

a
c
e
 (

%
)

L/L
p

1 10
0

20

40

60

80

100

P
a
rt

ic
le

s
 a

t 
in

te
rf

a
c
e
 (

%
)

t/τr

v = [10,15) µm/s

k = -0.02 rad/s

k = 0 rad/s

k = -40 rad/s

k = -80 rad/s

k = -120 rad/s

k = -160 rad/s

k = -200 rad/s

k = -240 rad/s

k = -280 rad/s

k = -320 rad/s

k = -360 rad/s

k = -400 rad/s

A                              B

Figure 5.12: Comparison for spring constant determination. We present how
our model fits for our experimental values with different k values. We compare
data only to experimental values for 10 < vp < 15 µm/s. A) We found a good
agreement for retention times using k = −360 rad/s. B) When we look for length
values, data for k = −360 rad/s was not the best fit, but k = −240 rad/s was.
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5.D | On the update of τr for the results

obtained in the paper

In section 3.2.2 we learnt that depending on the method to extract the τr we can ob-
tain two statistically different values. In the original paper I extracted this method
using the autocorrelation, which gave me the smallest value between both values
obtained. However, if we rebuild Fig. 5.5 using the larger value, we can still see
the same effect. Particles stay more time than expected and travel longer straight
trajectories than expected. Hence, we do not see that the update of the τr value can
change the results shown in the original paper.

r r

�r=3.5s �r=4.4s

Figure 5.13: Comparison for particle retention at the interface and length
travelled during the retention using both values for τr obtained in section
3.2.2. The lowest value was used in the original paper but results still are com-
patible: particles stay longer than expected at interfaces and travel in straighter
trajectories than expected while moving next to them.
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6
A lattice boltz-

mann model for self-

diffusiophoretic par-

ticles next to liquid-

liquid interfaces

"Sometimes the wheel turns slowly, but it
turns."

Lorne Michaels



The analysis of the interaction of active particles at liquid-liquid interfaces
requires of a powerful model capable of introducing interactions from active par-
ticles and from the medium. A very naive model was presented in the previous
chapter, and as a following step, in this chapter I model the motion of chemically
powered phoretic active colloids close to liquid-liquid interfaces by means of a
hybrid finite differences-Lattice-Boltzmann method. The study presented here in-
cludes a comparison between capillarity and diffusiophoretic forces for particles,
inactive or active, that are or approach to liquid-liquid interfaces. Moreover, this
model allows to accumulate differently the product generated by particles at both
sides of the interface.

For inactive particles trapped at the interface, diffusiophoretic forces are impor-
tant when the wetting is neutral, and its behaviour depends on the surface mobility
of the particle and the accumulation of solute in both sides of the interface. When
activity is added, particles align when they are close to the interface and can move
along interfaces as previously observed in the previous chapter. Thus, we recover
the torque we introduced in the previous simple model naturally.

The present chapter is based on the paper "A Lattice Boltzmann model for
self-diffusiophoretic particles next to liquid-liquid interfaces", from which I am
first author, and to which I developed the model, analysed and wrote the paper. I
would like to special thank Andrea Scagliarini, who helped me working with this
project.
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6.1 | Introduction

In the previous chapter we observed the behaviour of active particles interacting
with liquid-liquid interfaces. These experiments demonstrate that particles experi-
ment a torque when they contact the interface which quenches their director vector
almost parallel to the interface’s contact line. This new alignment makes particles
to move along the interface, although they move slower as compared as when they
swim in the bulk. To describe these effects, we based our theoretical comprehen-
sion on an ABP model with an ad hoc torque added. Even that this simple model
could reproduce the new alignment of particles and their increase in retention time
next to interfaces, it could not reproduce other effects such as the longer paths trav-
elled along the interface. Moreover, the model was very naive and did not include
any of the forces present at the interface. For example, our particles will experi-
ment a wetting and a phoretic force. While in the experiments the wetting property
was constant, the change in the wetting and phoretic attraction/repulsion can mod-
ify radically its behaviour at the interface. For example, the addition of BSA to
the surface of the particles attached them to the interfaces. On the other hand, a
change in phoretic activity can also change its behaviour next to interfaces. Slower
particles in the bulk were decreasing more their speed while travelling along the
interface than faster ones. These couple of examples demonstrate the importance
of having a model where these interactions are present, and where other forces
inherent with these interfaces such as Marangoni flows are also present.

To answer many of the questions that can arise from the interaction of these
particles with free liquid-liquid interfaces, here we implement a hybrid Lattice-
Boltzmann method to model active particles that move due to a self-diffusiophoretic
motion in a media with liquid-liquid interfaces. In our model, liquid-liquid inter-
faces are not static, and particles have a natural wetting. Furthermore, our particles
create solutes asymmetrically to move. The region of the particle that creates the
solutes is easy to change, and both the region that creates or not these solutes can
have different interaction with them. Furthermore, the solute created can accu-
mulate more in one phase of both liquids, which can be useful to study different
combinations of immiscible fluids as solutes can accumulate differently depending
on the combinations of fluids used. This last effect could not happen with a solid-
liquid interface and could modify the behaviour of active particles interacting with
liquid-liquid interfaces as compared with solid-liquid interfaces.

With this model we aim to study the importance of the capillarity forces arising
from the wetting in contrast with the active motion of our particles. Moreover, we
open the possibility to study this system under different regimes where the concen-
tration of the solute created by our particles accumulate differently in both sides of
the liquid phases. Although the current model has been tested only for one parti-
cle problems, the algorithm is fully implemented to run with as many particles as
computational power there is, and each particle can have different configurations.
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6.2 | Computational model

A suspension of active particles in presence of liquid-liquid interfaces consists
of a fluid phase (solvents + solute) and a solid phase (the active particles). To
model such a multiphase (and multicomponent) system we resort to a mesoscopic
approach, based on the lattice Boltzmann (LB) method [187, 188] in the phase
field formulation [189, 99].

6.2.1 Phase field model: the free energy functional

The fluid phase is a ternary mixture made of two immiscible liquids (say, water
and oil) and a solute, which is the product of the reaction occurring at the catalytic
site on the particle surface (the oxygen). We associate to the water-oil system
a scalar field ψ(r, t) standing for the local composition, that is ψ = ρW−ρO

ρW+ρO
,

where ρW and ρO are the density fields of water and oil, respectively. As in
the standard Cahn-Hilliard theory, the thermodynamics of the oil-water mixture
is controlled by a quartic in ψ double-well free energy density of Landau type,
fOW[ψ] =

A
4 ψ

4 + B
2 ψ

2 (with A > 0 and B < 0). This free energy has to be
extended to embrace the dynamics of the oxygen, that is, in principle, miscible
with each of the two other components; therefore we need to add a term charac-
terized by a single minimum that disregards the energetic cost associated to the
concentration gradients [112], such that, in the case of a single component solvent
(fOW = 0 identically), a diffusive equation for the solute is recovered. A simple
parabolic potential is appropriate to this aim (as we will show shortly), namely
fO2

[ϕ] = C
2 ϕ

2 (C > 0), having introduced the field ϕ(r, t). In actual systems,
though, the oxygen may display, in general, a greater affinity for one of the two
liquids (i.e. it can be more soluble in water than in oil, or vice versa). To account
for this preferential concentration an "interaction" term, coupling ϕ and ψ, has to
be included. We propose to do so by simply shifting the global minimum of f (0)O2

in ϕ = 0 to a ψ-dependent minimum, i.e.

f
(0)
O2

[ϕ] =
C

2
ϕ2 → fO2

[ϕ, ψ] =
C

2
(ϕ− ϕ0(ψ))

2
. (6.2.1)

For ϕ0(ψ) we choose the form ϕ0(ψ) = ϕb0+E tanh(ψ), where the parameter
E tunes the oxygen solubility and ϕb sets the average oxygen concentration. The
full free energy functional then reads:
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F [ψ, ϕ] =

∫
dr
[
A

4
ψ4 +

B

2
ψ2 +

κ

2
|∇ψ|2 + C

2
(ϕ− E tanh(ψ)− ϕb0)

2

]
.

(6.2.2)
Hereafter we set B = −A, such that the ψ minima, corresponding to the bulk
water and oil phases, are located in ψ = ±1. The minimization of the functional
(6.2.2) yields the chemical potentials µϕ = δF

δϕ and µψ = δF
δψ , i.e.

µϕ = C(ϕ− E tanh(ψ)− ϕb0)

µψ = A(ψ3 − ψ)− κ∇2ψ − C E
(ϕ− E tanh(ψ)− ϕb0)

cosh2(ψ)

 . (6.2.3)

The dynamics of the ternary mixture system is, then, described by the following
advection-diffusion-reaction equations:

∂tϕ+∇ · (uϕ) = Dϕ∇2 (ϕ− ϕ0(ψ)) +Dϕ − kd(ϕ− ϕ0(ψ))

∂tψ +∇ · (uψ) = Dψ∇2

(
ψ3 − ψ − κ

A
∇2ψ − E

ϕ− ϕ0(ψ)

cosh2(ψ)

) , (6.2.4)

where Dϕ = CMϕ and Dψ = AMψ are the diffusivities for the oxygen and the
water-oil mixture, respectively, and Mϕ and Mψ are the mobility constants for ϕ
and ψ. The source term, Dϕ, differs from zero only at the active site on the par-
ticles surfaces and accounts for the continuous generation of a product (e.g., the
oxygen) in the associated catalytic reaction. This production needs to be balanced
by a sink term, kd(ϕ − ϕ0(ψ)), in order to allow the attainment of a steady state.
Physically, the sink mimics the degradation of the production or its loss in the envi-
ronment [112]. Fig. 6.1A) displays the effect of changing the solubility parameter
from negative to positive values, by plotting the average oxygen concentration,
⟨ϕ⟩ψ in oil or water as a function of E, at equilibrium and in the absence of parti-
cles (hence of oxygen production). Since, by virtue of Eq. (6.2.3), the equilibrium
profile of ϕ is ϕ = E tanh(ψ) (the background value having been set to zero here,
ϕb0 = 0), the average is ⟨ϕ⟩ψ ≈ ±E tanh(1) (depending on whether the oil,
ψ > 0, or water, ψ < 0, phase are considered), which is reported in Fig. 6.1A)
with the solid lines and agrees well with the numerical data.

If the background value is not set to zero, ϕb0 ̸= 0, we recover the equilibrium
values only if ϕb is present in Eq. 6.2.2 (See Fig. 6.1B)). Moreover, the selection
of ϕb0 also modulates the asymmetric concentration of ϕ in both liquid phases.
For a given value of E, and if ϕb0 > 0, we can have a state where the equilibrium
value for ϕ is positive in one phase and negative in the other, or positive in both
phases.
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Figure 6.1: Equilibrium values for order parameters as a function of E or
ϕb0. A) When E changes, the equilibrium values for ϕ vary linearly, as expected.
Here we show the value for ϕ in water (blue crosses) and oil (orange square) bulk
phases. These values fit with the expected values from the thermodynamic model,
both for ϕ in water phase (yellow line) and for oil phase (violet line). Thus, by
modifying E we can have a greater affinity of ϕ for one of the two liquids (equi-
librium phases of ψ). In these simulations ϕb0 = 0. Changing ϕb0 at constant
E = −1/2 (B)) the system behaves as expected theoretically. Nonetheless, to fit
the values with the equilibrium values (blue and green lines), we need to add the
parameter ϕb0 in our free energy model. This inclusion is necessary to stabilize the
values of equilibrium for the binary mixture at ±1. Depending on the initial ϕb0
we distinguish two different areas: one with positive ϕ in both sides, and another
with a positive and negative value of ϕ, one for each phase. The higher is the E
parameter, the bigger will be this region.

6.2.2 Suspended Active Particles

Particles are modelled as solid spheres defined by a set of boundary "links" be-
tween inner and outer nodes. The fluid-solid coupling is realized by means of the
so called "bounce-back-on-links" algorithm that guarantees the proper momentum-
torque exchange between particles and solvent [101, 190, 191, 192]. Thus, we
modelled the particles as introduced in section 1.4.4. We also follow the descrip-
tion given at section 1.4.4 and introduced the colloidal phoresis by imposing at the
particle surface an effective slip velocity profile which depends on the local solute
concentration [193] as:

vs = µ(rs)(1− n̂× n̂) · ∇ϕ, (6.2.5)

where rs is a point on the surface of the particle, n̂ is the normal to the surface
in rs and µ(rs) is the phoretic mobility at rs, which carries the molecular de-
tails of the solute-colloid interaction[193]. As a consequence, in the presence of
concentration gradients, particles gain a net propulsion velocity Vp ∼ −µ∇ϕ (for
uniform phoretic mobility µ(rs) ≡ µ), i.e. if µ < 0 they are attracted by the
solute, else if µ > 0 they are repelled. To achieve self-propulsion, particles are,
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then, endowed with the property of generating solute [117]; this is done by simply
adding a production term that injects ϕ with a given rate at nodes neighbouring the
particles surfaces, thus modelling the catalytic activity of Pt-coated colloids. In
particular, the following Janus activity profile is chosen:

Π(rs) =

{
α if m̂ · n̂ ≤ 0

0 if m̂ · n̂ > 0
, (6.2.6)

where α is the constant production rate and m̂ is the particle characteristic unit
vector (see the sketch in Fig. 6.2A)). Notice that the superposition of such activ-
ities associated to the various particles is precisely what gives rise to the produc-
tion term Dϕ appearing in Eq. (6.2.4). Because of the sink term appearing also
in Eq. (6.2.4), this production term extends for a characteristic length L, which
depends on a degradation ratio κd and its diffusion constant Dϕ:

L =

√
Dϕ

kd
. (6.2.7)

If this length scale is larger than any other relevant scale in the system, the chemi-
cal degradation will have a minimal impact in the system dynamics.

Analogously, for the phoretic mobility µ(rs) we set:

µ(rs) =

{
µA if m̂ · n̂ ≤ 0

µI if m̂ · n̂ > 0
, (6.2.8)

where, with the subscripts ’A’ and ’I’ it is meant that the associated mobilities
correspond to the active and inactive hemispheres, respectively. For an isolated
Janus particle with the above activity and mobility profiles we expect a motion
with constant velocity of magnitude [116, 117, 118]

vp =
|(µA + µI)|α

8D
. (6.2.9)

In the presence of interfaces, a specific treatment of the interaction of the two
liquids with solid boundaries, which determines the particles wetting properties,
needs to be included. To this aim, we follow the description given at section 1.4.4
and added an extra boundary term to the free energy functional, such that:

Ftot[ϕ, ψ] = F [ϕ, ψ] +

∫
S

Hψ(rs)drs (6.2.10)

where the integral is over the solid surface. The parameter H controls the wetting
through the following boundary condition, that can be derived by minimization of
the surface term in (6.2.10),

H = κ|∇ψ · n̂| (6.2.11)
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and, therefore, it sets the particle contact angle θ, to which it is related by [98]

cos(θ) =
1

2

[
−(1− h)3/2 + (1 + h)3/2

]
(6.2.12)

where h = H
√

1/(κA).

A B

Hydrophile HydrophobeNeutral

water

oil

Figure 6.2: A) Sketch of a spherical self-diffusiophoretic particle. The particle is
characterized by a Janus profile of both the activity (it produces solute only over
one hemisphere) and the phoretic mobility, whose value is µA over the active cap
and µI otherwise. B) Active particle in the presence of an interface: depending
on the value of the contact angle, θ, it tends to stay preferentially in the bulk of
the water phase (θ > 90◦), of the oil phase (θ < 90◦) or absorbed at the interface
(θ = 90◦).

6.2.3 Numerical details

All simulations were calculated either by simulating none or one particle of ra-
dius R = 4.5 lattice spacing. The size of the particles is small compared by the
lattice size (323 lattice spacing for speed and degradation tests and 64x32x32 or
64x64x32 lattice spacing for the rest). Simulations run at least for 60.000 lattice
time steps. We study different regimes values, but some were constant. See table
6.1 for different values used in our simulations.

We first started our simulations by creating the liquid-liquid interfaces. Order
parameters were set to ϕ = 0 for the whole simulation box and ψ followed as 3
blocks of ψ = +1, ψ = −1 and ψ = +1, with a smooth transition between phases
given by an hyperbolic tangent. Next, we let the system to reach the equilibrium,
until we got the stable distribution for different values ofE parameter. These stable
configurations were used each time a simulation with a Janus was started, except
for the case of speed and degradation studies, where just one phase was introduced
with the corresponding ϕ at equilibrium value. Particles were initialized with zero
speed.
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Table 6.1: Parameters used for simulation

Parameter Symbol Value

Simulation box size Lx x Ly x Lz min: 32 x 32 x 32
max: 64 x 96 x 96

Time steps t 60.000 to 300.000

Fluid kinematic viscosity ν 0.167

Fluid density ρf 1.0

ϕ diffusive Mϕ 0.4 and 0.8

ψ diffusive Mψ 0.05 to 3.2

Parameters free energy A, A’ 0.0625

Parameters free energy κ, E 0.04, 0.0625, -1.0 to 1.0

Particle radius R 4.5

Surface activity α 0 to 0.01

Degradation rate kd 0.00001 to 0.01

Phoretic mobility inactive side µI 0.00 to 0.60

Phoretic mobility active side µA 0.00 to 0.60

Gravity force Fb 0.0
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6.3 | Results and discussion

6.3.1 Motion of a Janus particle in free media

For the sake of validation of the model, we first consider the motion of an isolated
Janus in the bulk of a single phase fluid.

The motion of Janus particles will depend on the media properties, character-
ized by the thermodynamic constants for the medium described in table 6.1 but
also, on several colloidal properties. These properties are the ratio of creation of
the product per node in one face of the particle, α, and the surface mobilities µA
and µI . The more product they create by time step, the fastest the product will
accumulate in the media. Hence, a degradation of ϕ is also introduced, where for
each time step and node its ϕ value is checked and a quantity proportional to its
distance from equilibrium (ϕ − ϕ0) is removed. This degradation is modulated
by a proportional constant kd. The presence of a linear degradation term implies
that the concentration field does not decay purely algebraically with the distance
from the source (the particle surface) but it is modulated by an exponential factor,
i.e. ϕ(r) ∼ e−r/ℓ/r, with screening length ℓ =

√
D/kd. In the remainder of the

chapter the value of the degradation rate is kept fixed to kd = 10−3, which gives
a screening length of approximately one particle diameter, ℓ ≈ 2R. Fig. 6.3A)
displays the change of the global average of ϕ when considering a Janus particle
in a single fluid phase, as a function of the activity and degradation rate.

The steady state values are used to identify reference parameters for the aver-
age ϕ and kd. Fig. 6.3B displays the modulation of the Janus particle speed when
modifying its surface interaction with the product. If both mobilities are zero, the
particle cannot interact with the product and hence their speed vanishes. However,
once the surface mobility is not zero, even if the mobility for the active side is zero,
the particle will interact with the product and will start to move. Because we focus
in the low Péclet number regime, the increase of these mobilities causes a linear
increase with the particle speed [116, 117, 112].
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Figure 6.3: Janus parameters explored. A) Since our Janus creates ϕ at a ratio
of α per each active node in its surface, we remove at each step a quantity of
ϕ proportional to kd for each time step. After a short period, the total ϕ in our
simulation is stable, and hence we can calculate the average ϕ in the box. We
subtract to this value the equilibrium ϕ0 value and plot as a function of α and kd
for a Janus particle moving at water regions (ψ = +1). We chose kd = 10−3

and α = 10−3 as our working values for the rest of the simulations. B) For the
previous couple of parameters, we plot the speed of particles in just water phase,
for different values of µA and µI .

6.3.2 Inactive Janus particles and liquid-liquid interfaces

The calibration of the particle motion is now exploited to analyse the interaction of
Janus particles with liquid-liquid interfaces. However, as a previous step, we anal-
yse how capillarity forces overcome diffusiophoretic forces. To this end, first the
study focuses on inactive Janus particles, with α = 0 and uniform diffusiophoretic
mobilities, µ = µA = µI , for simplicity’ sake (See Fig. 6.4).

To modulate the diffusiophoretic forces simulations are run as a function of µ
and E. Capillarity forces are modulated by changing the wetting of the particle.
We only study those wetting values that are extreme (totally hydrophobic, totally
hydrophilic, and neutral), and place the particle in the oil, water, or interface region
respectively. Because of the imbalance of capillary forces, particles will relax from
their initial position toward or away from the interface. Therefore, we observe at
which position particles move because of the previous forces. Figs. 6.4A and 6.4B
display the change in equilibrium position of the Janus particle as a function of E
and µ, respectively.
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Figure 6.4: Interaction of inactive particles with uniform diffusiophoretic mo-
bilities with liquid-liquid interfaces. Our particles interact with liquid-liquid in-
terfaces via capillarity and diffusiophoretic forces. We explore this mechanism by
introducing inactive particles with uniform diffusiophoretic mobility. We put these
particles either in the oil, water or at the interface with a wetting parameter to be
at each place. When particles are not at the interface, capillarity forces leave the
particles at their adequate region (Water or oil). However, if particles have neutral
capillarity, because of the difference of solute at each side of the liquid, particles
start to move due to diffusiophoretic forces. The stronger is the diffusiophoretic
mobility, the stronger is this force and hence particle move further from the in-
terface. If the diffusiophoretic force is zero, the particle will stay at the interface
because of the capillarity force. A) Constant µ. B) Constant E.

When particles are placed in the oil or water regions because their solute sur-
rounding is homogeneous, diffusiophoretic forces vanish, µ and E do not affect
the particle’s motion, and consequently wetting forces gain the competition, plac-
ing the particle away from the interface.

However, when particles are placed at the interface, they can be surrounded by
an inhomogeneous solute field, and diffusiophoretic forces will become relevant.
To create the inhomogeneous field, E is modulated. For E = 0, ψ is homoge-
neously distributed across the fluid phases homogenous solute field, implying that
wetting determines the motion and equilibrium location of the Janus particle at
the liquid interface. A non-vanishing E induces an asymmetric solute field, which
saturates to different values in the two coexisting liquid phases. The bigger is the
difference of solute in both phases (|E| is bigger) the stronger are these forces, and
the further they displace the particle from the interface. At the same time, these
forces will depend on the interaction of the particle with the solute, and hence a
stronger µ has the same effect as increasing |E|.

We next consider the impact that inhomogeneous diffusiophoretic mobilities,
µA ̸= µI , have when diffusiophoretic forces compete with capillarity, |E| > 0.
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Figure 6.5: Asymmetric inactive particles at liquid-liquid interfaces. We study
the neutral wetting problem introducing an asymmetric diffusiophoretic mobility
in the inactive particle. We record the final position of the particle A) and the final
angle B). Stronger mobilities move the particle further from the interface. How-
ever, the minimum mobility dominates. This a consequence of a torque appearing
in the particle, which faces the stronger diffusiophoretic mobility towards the liq-
uid phase with less solute concentration. This torque does not appear if particles
have the same mobility in both sides and is stronger if the difference in surface
mobilities between both sides is higher.

Since Janus are inactive, to avoid confusion, we will refer to the two sides of the
colloid as µup and µdown, instead of µA and µI . Although diffusiophoretic forces
also depend on the magnitude of E, because the larger the asymmetry in ψ the
stronger the effect, we focus on the impact that µ has on particle motion, and fix
E = −1/2 that leads to a larger concentration of the solute in the oil phase (see
Fig. 6.4).

Fig. 6.5A shows that the Janus particle, initially aligned with its director vec-
tor m̂ parallel to the interface, moves further away from the interface as the dif-
fusiophoretic mobilities increase their magnitude. Results show that the particle
saturate at a finite distance from the interface when the value of the mobility in
the leading side of the particle is larger than the one in the rear part, except for
µdown = 0. To better understand these results, Fig. 6.5 plots the saturation angle
the particle director makes with the liquid interface. Initially the Janus particles
are always facing the interface with larger mobility (more repulsive) toward the
water region (region with less solute). Therefore, a natural torque appears. The ro-
tation undergone by the particle is faster if the difference between both mobilities
is larger, as expected (See Fig. 6.5B)inset). Because particles orient fast with the
stronger diffusiophoretic mobility facing the water region, the side facing the oil
is the more important input to displace the particle from the interface. Hence, this
explains why in Fig. 6.5A) we reach a saturation when µup is stronger than µdown.
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6.3.3 Active Janus particles and liquid-liquid interfaces

Once the inherent behaviour of capillarity and wetting properties on passive Janus
colloids has been established, we analyse the behaviour of active Janus colloids,
α ̸= 0, with equal surface mobilities. Initially, we consider a neutrally-wetting
particle with homogeneous surface mobility at the interface, and compare their
motion for different surface mobilities (µ = 1/3 and µ = 1/2) and different ratios
of product concentrated at both sides of the interface (E = −1/2, E = −1/4 and
no difference, E = 0). We run simulations starting with different particle orien-
tations defined by θp, which is the angle between the particle characteristic vector
and the interface (See Fig. 6.6).

Figure 6.6: Evolution over time of the angle between the particle director vec-
tor m̂ and the interface (θp) as a function of E and µ for a trapped active
particle at the liquid-liquid interface with neutral wetting. The datasets corre-
spond to various initial θp, two different surface mobilities (µ = 1/3 and µ = 1/2)
and three different oxygen-oil/water affinities: E = −1/2 (left panel), E = −1/4
(middle panel) and E = 0 (right panel). The insets below the curves indicate the
progression of the particles along the interface for the case with initial θp = 60º
over 80.000 steps (lb units) simulated.

When the difference of product in both phases is strong (E = −1/2) Janus
particles move along the interface. Interestingly, if the simulations are initialized
with different θp, particles stabilizes at a unique angle, which depends on the sur-
face mobility of the particle. When the ratio of products in both phases is closer
to 1 (E = −1/4), particles continue their motion at interfaces, although they
are slower, and this unique angle starts to disappear. For some mobilities, as in
µ = 1/3, a single angle is observed, but for others, as in µ = 1/2 we observe the
appearance of competing attractors. Moreover, the asymptotic θp changed from
the previous case. Thus, both the asymmetric accumulation of the product in both
sides and the surface mobility of the particle change the torque the particle feels at
the interface and that stabilizes at a certain θp. Finally, in the last scenario where
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both phases are symmetric with respect to the solute solubility, E = 0, particles
move very slow along the interface, and additional attractors appear for θp. Conse-
quently, the asymmetric accumulation of product is also responsible for the speed
of particles at the interface.

We also analyze the impact of wetting in trapped particles when diffusio-
phoretic forces compete with capillarity forces. To quantify such a copetition,
particles are placed at a prescribed position and, as shown in Fig.6.7A), the posi-
tion at which they stabilize is displayed.

First, we consider inactive particles trapped at the interface with vanishing dif-
fusiophoretic forces, µ = 0, at different fields configuration by modulating E
(E = 0, red line and E = −1/2, orange line). Consequently, phoretic fields do
not affect particles, and both lines coincide. Furthermore, as previously found in
Figs. 6.4 and 6.5, the stronger the wetting , the further the particle displaces away
from the interface.

Figure 6.7: Motion of active particles next to liquid-liquid interfaces. A) Equi-
librium position of particles with respect the interface as a function of the wetting
of the particle and forces present. Red and orange lines are for inactive particles
without phoretic forces, while blue and violet have phoretic forces. Green and
grey lines are for active particles, with the difference of the initial angle condition
(θp = 60º for gray and θp = 30º for green). B) Trajectory (in a plane orthogonal to
the interface) of an active colloid initially placed in water and oriented towards the
interface (indicated with the dashed line); the initial orientation angle is θ = 30◦

and the colloid is either neutral (θc = 90◦, middle panel) or partially hydrophilic
(θ = 120◦, bottom panel). Three combinations of phoretic mobilities, (µI , µA),
are considered, namely: (0.5, 0.5) (red), (0.5, 0.3) (yellow) and (0.3, 0.5) (black).
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Second, we activate diffusiophoretic forces (µ = 1/2) and test at different E
fields (E = −1/2, blue line and E = 1/2, violet lines). Particles with repulsive
(positive) mobilities (blue line, E < 0) move towards low product concentra-
tion regions even if their wetting prefers regions of high product concentration
(θc < 90º) because diffusiophoretic forces overcome wetting forces. When both
forces have opposite directions (θc < 90º), particles can stabilize at the interface
instead of being in one side of the interface. But if forces have the same direction
(θc > 90º), particles leave the interface, and there is no dependence on the wetting
force. This effect also occurs in the opposite direction if we make attractive (neg-
ative) the mobility or if we maintain the repulsion of the particle, but we change
which phase concentrate more solute (violet line). In any case, the addition of
diffusiophoretic forces make the particles move away from the phase with higher
solute concentration (oil phase, yellow area).

Third, we make particles active (green and grey lines). Active particles cannot
enter into areas of high product concentration neither, even if particles move per-
pendicular to the interface. However, for hydrophilic particles (θc > 90º) activity
approaches them to the interface. To understand if the initial orientation θp has any
effect, simulations are repeated placing the colloid with θp = 60º (grey line) and
θp = 30º (green line). The absence of significant differennces indicates θp does
not impact the subsequent particle motion.

We finally place particles away from the interface, in the low solute con-
centration region (water, blue area), moving towards the interface, as displayed
in Fig.6.7B) and as experimentally demonstrated in the previous chapter (See
Fig.6.7B)). We consider both a partially hydrophilic (θc = 120º) and a neutral
particle (θc = 90º) with homogeneous diffusiophoretic (µ = µI = µA = 0.5,
red) and non-homogeneous surface mobilities (µI = 0.5, µA = 0.3 (black) and
µI = 0.3, µA = 0.5 (yellow)). In all cases particles get trapped next to the inter-
face, acquire a new angle and, in some cases, start moving along the interface. We
found the same results in the previous chapter too, although here we do not see
detachment of particles. However, this system does not introduce thermal fluctua-
tions, which can be responsible for the detachment.

Neutrally wetting particles display an opposite behavior to partially hydrophilic
ones. Neutrally wetting particles align to face the more repulsive side towards the
region with low solute concentration (water, blue area). Thus, particles with a
softer mobility in the front (yellow particle) face the front towards the region with
high solute concentration (oil, yellow area), while particles with softer mobility in
the rear (black particles) face the opposite. Because they align with their director
vector m̂ perpendicular to the interface, the activity cannot move particles along
the interface. Moreover, this force is not capable to move particles away from
the interface and hence particles get trapped. However, if particles present uni-
form diffusiophoretic mobilities (red particle), interfacial alignement is lacking,
and particles displace along the interface.
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Partially hydrophilic particles partially move further away from the interface.
Particles with non-uniform mobilities align to a new angle when they are close to
the interface and move along the interface. Particles with softer mobility in the
front (yellow) align more parallel to the interface’s contact line than particles with
softer mobility in the rear (black). Hence, particles with softer mobility in the
front move faster. Opposite to neutral wetting, here we see that uniform mobilities
causes the particle to face perpendicular to the interface and stop their motion. A
possible explanation to this fact is that since particle are less trapped than in neutral
wetting, particles do not feel the torque appearing in Fig. 6.5, and hence particles
with non-uniform mobilities are freer to change their orientation. The combination
of non-uniformity and activity aligns the particle to an angle that, without this
non-uniformity, would orient the particle perpendicular to the interface as in the
uniform case.
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6.4 | Conclusions

In this work we have introduced a new model based on Lattice-Boltzmann to study
the interaction of active particles with liquid-liquid interfaces. The model facili-
tates the study of the full hydrodynamics of the system, on the same footing as
diffusiophoretic and wetting forces suspended particles are subject to. The model
allows to switch on and off easily these forces, and to modify the particle prop-
erties such as wetting and the diffusiophoretic force, differentiating for this last
scenario two parts on the particle with its own activity and mobility. These con-
tributions are formulated locally, and can then be adapted to particles of arbitrary
shape, with a general inhomogeneous treatment of their surfaces. Moreover, the
liquid mixture can show asymmetric solubility to the chemicals produced by the
particles.

We have tested the interaction of inactive particles trapped at the interface un-
der different wetting angles θc (0º, 90º and 180º) and different particle surface
mobility. We have seen that while wetting dominates over diffusiophoretic forces,
when the wetting is neutral (90º), diffusiophoretic properties are important, and
inactive particles with homogeneous surface mobility displace from the interface.
This interaction is proportional to the surface mobility, and to the different of prod-
ucts between both phases. When the surface has an asymmetric mobility, particles
reorient to have its more repulsive face towards the liquid phase with less product,
and displace from the phase of high accumulation of product. The reorientation
depends on the strength of the mobility. The more repulsive, the fastest reorient.

Active particles at the interface with neutral wetting move along the interface.
The more asymmetry between product accumulation in both phases and the more
repulsive is their surface to products, the fastest particles move. Particles reorient
themselves to a specific angle, no matter the angle at which particles are placed.
However, if the asymmetry of products between both phases decays, particles find
different equilibrium positions depending on the initial angle. This effect is seen
for different surface mobilities. If wetting is changed, particles will stay closer
to the interface rather if they would not have the activity. If particles with high
wetting for the side of initial motion move towards the interface, they will contact
the interface, reorient, and move along the interface. Depending on the ratio of the
surface mobilities, particles can stop, or continue their motion.

Overall, the proposed model has huge capabilities to explain many phenomena
occurring at these interfaces, and that sets a new start line where to study these and
more complex systems.
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6.5 | Further perspectives

The study presented in this chapter is an initial step to study systems of active par-
ticle at liquid-liquid interfaces. In this study we have focused on the effect of the
wetting and diffusiophoretic forces for single particles. However, the code is ca-
pable to introduce as many particles as hardware capabilities we have. Moreover,
each particle is divided in two surface areas, that we can modify its proportion, and
have different surface mobility and activity for each side and particle. We can also
change their wetting individually, and we can start them at different positions, ve-
locities, and orientations. Thus, we can create lots of different initial distributions
to study these systems.

Moreover, all the study has been carried out with flat interfaces as I did with the
previous chapter. Nonetheless, while working in this chapter I also introduced an
initial distribution for the liquid-liquid interface in the shape of a cylinder, which
was stable along the simulation. Therefore, as I did in the previous chapter, we
could also study the effect of interface curvature to the motion of the particles.

Two more interesting studies may require attention with this code. On the one
hand, the code also allows us to introduce solid boundaries, either by flat walls
or by selecting the nodes we want to be solid. Because the code also allows to
introduce forces such as gravity, we could follow this work by studying the solid-
liquid-liquid interfaces as I did experimentally. On the other hand, this software
can add small fluctuations for the hydrodynamics and the phoretic fields, which we
can turn on/off individually and, particles can also have a direct kick that aligns
them every some steps. These methods introduce Brownian motion to the system,
and it would be interesting to study these systems with the inherent Brownian mo-
tion they should have.

Finally, these studies probably will need stronger tools to analyse the sys-
tem. This could be an opportunity to work and expand the tools I created while
analysing these simulations, and that can be found in section C.4.
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The third part of this thesis is related with the study of many active particles
next to interfaces. In this part we focus on the guidance of particles using interfaces
to obtain new phenomena such as spontaneous accumulation in a microfluidic de-
vice with a pattern that at a priori does not break detailed balance. Because of the
easy creation of solid-liquid interfaces, and the similarities we found with liquid-
liquid interfaces at an experimental level, we decided to do these experiments with
solid-liquid interfaces. This part is of considering beauty, because it connects two
fields that we could consider as far from each other as active matter and topology.
The results of this part do not only show the possibilities of collective phenomena
for active matter but also how we can use active matter to build a toy model to
explain further fields of physics.
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"We choose to go to the moon in this decade
and do the other things, not because they are easy,

but because they are hard."
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Collective guidance of out-of-equilibrium systems without using external fields
is a challenge of paramount importance in active matter, ranging from bacterial
colonies to swarms of self-propelled particles. Designing strategies to guide active
matter using microfabricated circuits will provide insights for applications from
sensing, drug delivery to water remediation [194, 195, 196]. However, achieving
directed motion without breaking detailed balance, for example by asymmetric
topographical patterning, is challenging. Here we engineer a two-dimensional pe-
riodic topographical design with detailed balance in its unit cell where we observe
spontaneous particle edge guidance and corner accumulation of self-propelled par-
ticles. This emergent behaviour is guaranteed by a second-order [197, 198, 199,
200, 201, 202] non-Hermitian skin effect [203, 204, 205, 206, 207, 208], a topo-
logically robust non-equilibrium phenomenon, that we use to dynamically break
detailed balance. Our stochastic circuit model predicts, without fitting parameters,
how guidance and accumulation can be controlled and enhanced by design: a de-
vice guides particles more efficiently if the topological invariant characterizing it
is non-zero. Our work establishes a fruitful bridge between active and topological
matter, and our design principles offer a blueprint to design devices that display
spontaneous, robust, and predictable guided motion and accumulation, guaranteed
by out-of-equilibrium topology.

The present chapter is based on the paper "Guided accumulation of active par-
ticles by topological design of a second-order skin effect"[209], from which I am
first author, and to which I did the experiments and analysed the data, including
the software development as the tracking system shown in section 4.4. I would like
to special thank Adolfo Grushin who had the idea of this project and supervised it
with many inputs to develop the work. I also want to thank Serguei Tchoumakov,
who helped me with the analysis, and that finally developed a better analysis than
the one I was doing. Finally, I also want to thank Maria Guix, Jaideep Katuri
and the MicroFabSpace and Microscopy Characterization Facility, Unit 7 of ICTS
“NANBIOSIS” from CIBER-BBN at IBEC. Without their inputs and help, the de-
sign of the setup used would have not been possible.
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7.1 | Introduction

In the previous chapters we studied individual, or a couple of, particles interacting
with liquid-liquid interfaces. However, as described in section 1.1.3, new phenom-
ena can emerge in active matter when we work with many active entities. Hence,
as a step further for the development of this thesis, we started new studies on the in-
teractions of hundreds of these particles with the same interfaces. For example, we
could address this problem by studying the possible synchronization of particles
moving around droplets that conform a square lattice as proposed in section 5.7.
Nonetheless, these experiments could arise some experimental problems, such of
reproducibility or stability of the interface for long times. Furthermore, they will
also require a simple interface pattern, because building liquid-liquid interfaces
with the desired complex geometry is not trivial. However, a complex geometry
could be useful to exploit the guidance of particles at these interfaces, and obtain
new phenomena from the guidance. To make a complex geometry we could use
solid-liquid interfaces, since they are very easy to build. Because solid-liquid in-
terfaces also guide particles (See section 1.2.2) we could think that, even if the
underlying physics can be different, ultimately particles had a similar behaviour at
a single level. Thus, we could expect to see similar collective behaviour. Hence
I decided to start this project using solid-liquid interfaces, with the aim of guid-
ing and accumulating these particles. These processes will be useful not only to
study the physics, but for the development of new devices such as lab-on-a-chip
for screening test, where a preconcentration of an analyte, that particles could take,
would be necessary prior its detection, and hence accumulation of particles with
the analyte could work as a concentration method.

To aid this accumulation problem, we decided to explore new fields such as
topology. Specially, because the last decades of research in condensed matter
physics have revealed that exceptionally robust electronic motion occurs at the
boundaries of a class of insulators known as topological insulators [210, 211],
which I introduced in section 1.2.3. These ideas extend beyond solid-state physics,
and predict guided boundary motion in systems including photonic [212], acoustic
and mechanical systems [213]. Therefore, they could be useful for us too, espe-
cially after the recent discovery that topological properties emerge in the class of
out-of-equilibrium systems described by non-Hermitian matrices, which includes
active matter systems [214]. Hence, these studies have opened the possibility to
engineer new robust behaviour out of equilibrium [215, 216].
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Interesting, non-Hermitian matrices introduce some new phenomena in these
systems. While in equilibrium topological boundary states are predicted by a
non-zero bulk topological invariant, a feature known as the bulk-boundary corre-
spondence, in non-Hermitian systems, this correspondence is broken by the skin-
effect [203, 204, 205, 203, 207, 208]. For example, in a one-dimensional (1D)
chain of hopping particles, the first-order non-Hermitian skin effect arises from
the asymmetry between left and right hopping probabilities, which results in an
accumulation of a macroscopic number of modes, of the order of the system size,
on one side of the system. This 1D effect occurs in systems without an inversion
centre, and has been observed in photon dynamics [217], mechanical metamate-
rials [218, 219, 220], optical fibers [221] and topoelectrical circuits [222, 223].
In 1D, the skin-effect occurs if a topological invariant, the integer associated to
the winding of the complex spectrum of the normal modes, is non-zero [224, 225,
226].

Higher-dimensional versions of the skin effect can display a considerably richer
and subtle phenomenology [227, 228, 229, 230, 231, 232, 197, 202, 198, 199, 200,
201, 233]. For instance, it has been predicted only in out-of-equilibrium systems
in two dimensions (2D) [197, 202, 198, 199, 200, 201] the second-order non-
Hermitian skin effect appears. It differs from the first-order skin effect because:

• (i) it can occur in inversion symmetric systems, accumulating modes at op-
posing corners rather than edges [223, 234]

• (ii) the number of accumulated modes is of order of the system boundary L,
rather than its area L2.

While the first-order non-Hermitian skin effect requires inversion to be broken,
e.g. due to an applied field, the emergence of the second-order non-Hermitian skin
effect is guaranteed by the presence of certain symmetries [199, 200]. However,
predicting the second-order non-Hermitian skin effect is challenging in general,
and it remains unobserved. Dissipation, which drives a system out of equilibrium,
is hard to control experimentally in quantum electronic devices, therefore calling
for other platforms to realize the second-order non-Hermitian skin effect.

Active matter systems [194] are a natural platform to explore non-Hermitian
topological physics, since these systems absorb and dissipate energy [214]. Often,
the hydrodynamic equations that describe their flow can be mapped to a topologi-
cal Hamiltonian. This strategy predicts topologically protected motion of topologi-
cal waves in active-liquid metamaterials [235, 236, 237], skin-modes in active elas-
tic media [234], and emergent chiral behaviour for periodic arrays of defects [238].
Non-Hermitian topology in active matter has been demonstrated experimentally in
active nematic cells [239], and robotic [219] and piezoelectric metamaterials [220].
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Overall, 2D systems showing the second-order non-Hermitian skin effect can
be a solution to accumulate particles. As a consequence, we designed microfab-
ricated devices that display a controllable second-order non-Hermitian skin effect
by creating two designs, the trivial and the topological, where we see a large dif-
ference over the trivial scenario. These devices are designed to satisfy detailed bal-
ance on their unit cell, such that the flow of particles through a unit cell vanishes.
The non-Hermitian skin effect dynamically breaks this detailed balance on the top
and bottom edges, and we use it to guide and accumulate self-propelled Janus par-
ticles. In contrast to hydrodynamic descriptions, the topological particle dynamics
in our devices is quantitatively described by a stochastic circuit model [240] with-
out fitting parameters. It establishes that topological circuits, where a topological
invariant ν = 1, display the second-order non-Hermitian skin effect that guides
and accumulates particles more efficiently than the topologically trivial circuits,
with ν = 0. This phenomenon occurs without external stimuli, e.g. electrical or
magnetic fields, a useful feature for active matter applications [194, 195, 196], and
to extend our design principles to metamaterial platforms [212, 213, 241].
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7.2 | Design and stochastic model

7.2.1 Coupled-wire device design

Our design realizes the coupled-wire construction, a theoretical tool to construct
topological phases [242]. This is possible by the precise engineering of microchan-
nel devices (see section 2.2 and 1.2.2). Each device contains two types of horizon-
tal microchannels, the wires, which are coupled vertically, forming a 2D mask
(see Fig. 7.1A), B)). The horizontal microchannels are consecutive left or right
oriented hearth-shaped ratchets, that favour a unidirectional motion towards their
tip as seen in section 1.2.2. Their left-right orientation alternates vertically. These
horizontal microchannels are coupled by vertical microchannels that are straight,
designed to imprint a symmetric vertical motion to the nanoparticles. The vertical
microchannels alternate in width, with successive narrow and wide channels. Wide
channels are more likely to be followed by the active particles than narrow chan-
nels. Using these principles, we design two types of devices that we coin trivial
and topological, depicted in Figs. 7.1A) and B), respectively. They only differ in
that the narrow and wide channels exchange their roles along the vertical direction
(see central inset of Figs. 7.1A) and B)). Both trivial and topological designs have
the same number of left and right oriented ratchets, so they satisfy global balance.

Active particles are injected within the device and move along the microchan-
nels walls, see Figs. 7.1C) and D). We study devices built out of (Lx, Ly) = (12, 6)
and (Lx, Ly) = (13, 14) unit-cells in the horizontal (x) and vertical (y) directions,
with either a small or a large density of injected active particles, to compare how
the density of active particles qualitatively affects our experiment. Indeed, a larger
density of particles enhances the Brownian motion, due to the many collisions,
but also decreases the velocity of particles and leads to more clusters. The two
densities are obtained by injecting particles in either one of the two solutions:

1. High density. We dilute 17.5 µL of the solution of Janus particles prepared
as detailed in section 2.1 with 35 µL of H2O2 at 2% per volume and 47.5 µL
of miliQ water.

2. Low density. We do the same dilution as high density, but we previously
dilute the solution of Janus particles prepared as detailed in section 2.1 in
miliQ water (3/10).

This way we expect a ratio of concentrations of a third to a half between high
and low densities of active particles.
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Figure 7.1: Experimental designs. A) and B) show the trivial and the topological
devices respectively, with (Lx, Ly) = (13, 14) unit cells. The insets depict the unit
cells which are the same for both devices except the vertical wide and narrow
channels are reversed, as shown in the zoomed central inset and emphasized with
orange and purple lines. The topological device displays chiral edge modes at the
top and bottom, sketched in blue and red respectively, and which are related to a
non-vanishing Hermitian topological invariant,wH. These topological edge modes
have a non-vanishing non-Hermitian winding number, wnH, responsible for the
accumulation of active particles at the corners. This accumulation at the corners is
expected to vanish for the trivial device (see the uniform density in green) because
the topological invariant ν = wHwnH vanishes. C) and D) show a schematic of
the experimental set up, where Pt-coated SiO2 Janus particles self-propel when
hydrogen peroxide is added, following the topographic features of each design. E)
shows a portion of the device to illustrate the tracking of particles by using a neural
network, where each particle is uniquely identified within our algorithm. We locate
particles within the cells outlined by the dashed lines. F)-H) show the probability
distribution data, P, of particles on the lattice when trajectories are tracked and
synchronized to start at the same initial time F), post-selected to start at opposing
corners G), or post-selected to have an initial uniform distribution H). The particle
distributions in G) and H) are shown three minutes after synchronization.
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We then track the particles from recorded videos using the neural tracking sys-
tem presented in section 4.4. We locate the particles within a grid of regularly
spaced cells (dashed lines in Fig. 7.1E)) by using the methods explained in section
4.1.6 to eliminate any intrinsic motion of a particle within a cell and thus to reduce
noise. In Fig. 7.1 F) we can see the initial distribution of particles obtained from
the experiments. We observe more particles at the borders than in the bulk because
of the particle flux from outside the device. Since this flux cannot be controlled, we
cannot directly choose the initial particle distribution. We can overcome this lim-
itation in order to study the average particle motion by post-selecting trajectories,
which is a differentiating aspect between active particle and electronic systems.
For the next analysis we either post-select particles from the corner or uniformly:

• Post-selection corner. We select particles starting from the top left and bot-
tom right corners (see Fig. 7.1G)) in two steps. We first select trajectories
that go through one of the two corners. Then, among the selected trajecto-
ries, we remove all frames before the one where the particles first enter one
of the two corners.

• Post-selected uniform. We select particles uniformly scattered over the sam-
ple based on simulated annealing. We focus on the probability distribution
Pσij(t = 0) of all trajectories on their first frame. We scan trajectories from
the longest to the shortest and remove the first frames of a trajectory until
the newly generated distribution of particles P ′

σij(t = 0) is more uniform
than the one, Pσij(t = 0), at the previous step. We consider the distribution
is more uniform when:

C(P ′) =

√∑
σij

(
P ′
σij(t = 0)− 1/(LxLy)

)2
< C(P ). (7.2.1)

During this procedure, we remove trajectories that have less than 6 minutes
of video to remove noise in the first frames.

In Fig. 7.1G) and H) we can see the result of doing these post-selections compared
with the original data in Fig. 7.1F). In the main text, we focus on the larger device,
with (Lx, Ly) = (13, 14), see Fig. 7.1. All other devices and the corresponding
results are shown in the Supplementary Information 7.C.

7.2.2 Stochastic model

Because of the irregular microchannel walls and the collisions between particles,
we model the collective motion of active particles as a Brownian motion in a
stochastic network with transition probabilities between the cells introduced in
Fig. 7.1E). In our model, these cells are represented by nodes as we can see in
Fig. 7.2. Hence, within each device we describe the motion of active particles as a
random walk described by the continuous-time Markov master equations:
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Figure 7.2: Stochastic model. Illustration of the stochastic network in Eq. (7.2.2)
for our trivial device A) and our topological device B). We superimpose the unit
cell of the experimental device (see Figs. 7.1 A), B)). Each dot corresponds to
a cell of the device and each link represents one of the transition probabilities
(t1, t2, t+, t−) to move in each cardinal direction. The unit cell of this lattice is
the rectangle in gray, which contains black and gray nodes that are labelled by
the sub-cell indexes A,B, respectively, introduced in Eq. (7.2.2). The orange and
green areas in A), B) represent the starting points for particle motion, following
our post-selection corner method in our experiments.



τ
dPA,ij
dt

= t1(PB,i,j+1 − PA,ij)

+ t2(PB,ij − PA,ij) + t+PA,i−1,j

− t−PA,ij + t−PA,i+1,j − t+PA,ij ,

τ
dPB,ij
dt

= t1(PA,i,j−1 − PB,ij)

+ t2(PA,ij − PB,ij) + t+PB,i+1,j

− t−PB,ij + t−PB,i−1,j − t+PB,ij ,

(7.2.2)

where we subdivide the lattice on two sublattices, A and B, which include the
idea of same hearth direction. The lattice also has its natural discrete coordinates,
(i, j), which describe the column and row, respectively, of the cell in the system.
Including the three variables, we construct the probability distribution to observe
a particle, Pσ,ij , with σ ∈ (A,B) and (i, j) ∈ N2. We also insert four transi-
tion probabilities (t±, t1 and t2) for the motion of the particles. t± is the transition
probability for the motion along or against the ratchet-like microchannels, while t1
and t2 are the transition probability for the motion along the wide and narrow mi-
crochannels, respectively. Finally, we introduce a timescale for a particle to move
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between adjacent sites, which we describe as τ . The time scale τ and the con-
ditional probabilities are extracted from our experimental data in Supplementary
Information 7.A. We found that these values depend on the device and density, but
in any case, they always fulfil the same behaviour: a large ratio t+/t− and t2/t1.
The large ratio t+/t− shows the motion is unidirectional on the horizontal axis
and t2/t1 ≈ 1.5 ̸= 1 confirms that we can explore the difference between trivial
and topological devices. However, notice that as we wrote the model, we have
neglected correlations between particles (e.g., jamming). This can be a problem
for experiments at high densities, as we will see in the next analysis.

Eq. (7.2.2) is also balanced to ensure probability conservation,
∑
σij Pσ,ij = 1,

and also, since the equation is irreducible, it has a unique stationary probabil-
ity distribution with dPst./dt = 0 [243]. Moreover, it also has the form of the
Schrödinger equation with a non-Hermitian Hamiltonian. Finally, it is convenient
to introduce the transition matrix Ŵ such that:

τ
dP

dt
= ŴP, (7.2.3)

where (P)σij = Pσ,ij .
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7.3 | Topological chiral edge motion

We first use the corner post-selection technique to explore the edge dynamics of
an ensemble of trajectories synchronized to start either at the top left or the bot-
tom right corners (see Fig. 7.1G)). We select 281 trajectories of about 17 minutes
each, for the trivial device, and 327 trajectories, of about 16 minutes each, for the
topological case. In Figs. 7.3A) and D) we show the density of active particles as
a function of time for trivial (A), B)) and topological (D),E)) devices.
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Figure 7.3: Propagation of particles starting from corners. We show both the
experimental (first column) and theoretical (second column) behaviour for (Lx,
Ly) = (13, 14) using the trivial A), B) and the topological D), E) device. The solid
lines in A), B), D), E) follow the average position of the particles starting from top
left and bottom right corners. C) Average position and F) standard deviation in
units of the cell index of a set of trajectories starting from either top left or bottom
right corners of the device, which we compare with our model. The active particles
of a topological device propagate faster than in a trivial device.

Qualitatively, the particle distribution propagates unidirectionally along the
edge, faster in the topological device than in the trivial one. Quantitatively, the
time-dependent average displacement ⟨x⟩ and spread ∆x ≡

√
⟨(x− ⟨x⟩)2⟩ con-

firms this behaviour (See Figs. 7.3C) and F)). We observe that active particles in
the topological device are ahead of the trivial one, by one unit cell after 3 minutes.
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Next, we compare these experimental results with our theoretical model. We
initialize Eq. (7.2.3) with a probability distribution localized at the top left and
bottom right corner. We compare the experimental results with theoretical predic-
tions in Figs. 7.3B), C), E), F), using the parameters t1, t2, t+, t− and τ set by our
statistical analysis of the experimental data.

The theoretical curves qualitatively reproduce the experimental trends without
any fitting parameter, for both topological and trivial devices. The above observa-
tions are reproduced for smaller devices and larger densities of actives particles,
see Supplementary Information 7.C. We find that for larger densities, the parti-
cles are slower than theory predicts, an effect we attribute to particle jamming,
neglected in our model. A lower density of particles prevents jamming, in which
case the motion compares better with our model.

To explain the difference shown in our model, we need to refer to the edge
states appearing in both devices. The motion of active particles is understood
decomposing Eq. (7.2.3) into the normal modes, Pk, defined by:

Ŵ ·Pk = λkPk, (7.3.1)

where λk is a complex scalar which depends on wavevector k = (kx, ky) for
periodic lattices. The real part of λk sets the lifetime of the normal mode, and
its curvature ∂2kRe(λk) at k = 0 sets its diffusion coefficient. The slope of the
imaginary part ∂kIm(λk) at k = 0 sets the velocity of the normal mode (see Sup-
plementary Information 7.B).

For open boundaries along y and periodic along x, the spectrum λk can be
represented as a function of kx. The boundary condition is such that the prob-
ability distribution vanishes outside the lattice. The resulting spectrum is shown
in Figs. 7.4 A), B) for the topological device and C), D) for the trivial one. The
spectrum is colored according to the localization of the normal modes, where red
and blue colours denote states at the top and bottom edges, respectively. These
edge modes have a chiral group velocity, shown by the slope of the imaginary
part of the spectrum at kx = 0 in Fig. 7.4B), and are absent for the trivial device
(see Figs. 7.4C),D)). If in addition to enforcing a vanishing probability distribution
outside the lattice we impose that detailed balance is preserved at the boundary, an
additional edge potential partially hybridizes the edge modes with bulk modes, but
does not remove them (see Supplementary Information 7.B).

The existence of edge modes is guaranteed by a bulk Hermitian topological
invariant. In the vertical direction the couplings, t1 and t2, alternate between weak
and strong (see Fig. 7.1B)). This is the stochastic equivalent of the Su-Schrieffer-
Heeger model of the polyacetylene chain (see section 1.2.3), which is characterized
by a winding number wH in the y direction (see Supplementary Information 7.B).
wH = 1 and wH = 0 for the topological and trivial device models, respectively.
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Figure 7.4: Stochastic chiral edge states. Real A),C) and B),D) imaginary part
of the normal modes of the rate matrix Ŵ for open boundary conditions in the y
direction, for the A),B) topological and C),D) trivial devices. The colour denotes
the average ⟨y⟩ position of a normal mode. Modes in green are delocalized and
correspond to bulk states. Modes in blue and red correspond are strongly localized
on the top or bottom edges, respectively. The arrows in C),D) highlight the pres-
ence or absence of topological edge modes close to k = 0, where their lifetime
Re(λ) is largest.

This implies that they respectively have, or not, topological edge modes for a
boundary in the y direction, indicated by black arrows in Figs. 7.4B), D). Thus,
this demonstrates that the displacement in the topological device is larger because
of the topological edge modes.
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7.4 | Corner accumulation

The detailed balance of the unit cell implies that Ŵ has no strong topological
invariant [244] (see Supplementary Information 7.B). Moreover, Ŵ has inver-
sion symmetry, implying that the first-order skin-effect vanishes. However, our
model has a second-order skin effect. To derive the second-order skin effect of
Ŵ we consider the topological edge modes, Ps,χ, at the top (χ = +) and bottom
(χ = −) described by a 1D equation τ∂tPs,± = Hs,±Ps,± (see Supplemen-
tary Information 7.B). These modes locate on either A (for χ = +) or B (for
χ = −) sub-lattice, have a ballistic propagation ⟨x⟩± = ±(t+ − t−)t/τ , and
diffuse by an amount ∆x =

√
(t+ + t−)t/τ after a time t (see Supplementary

Information 7.B). The real part of Hs,± is finite and indicates that the contribu-
tion of the topological edge modes to the total probability decays over a timescale
τd = τ/(t1 + t2), where τd sets how far the particles propagate due to the topo-
logical edge modes. The edge modes Hs,± have a finite 1D winding number
wnH = ±1 that implies a 1D non-Hermitian skin effect [224, 225, 226]. Since
the edge modes are spatially separated, active particles can accumulate at the top
and bottom corners.

We detect the accumulation of active particles experimentally by post-selecting
trajectories that start from a uniform configuration (see Fig. 7.1 H)). We observe
an accumulation of active particles at the corners which is larger in the topological
device (Figs. 7.5 A), C)) and that qualitatively compares with our model (Fig. 7.5
B), D)). This observation can be made quantitative using the Shannon entropy of
the particle distribution S = −

∑
ijσ Pijσ ln (Pijσ). The entropy is maximal for

a uniform distribution of particles, S < Suniform = ln(LxLy), and it decreases if
particles localize. We average out other sources of particle localization unrelated to
the non-Hermitian skin-effect by averaging the probability distribution over neigh-
bouring cells (see Supplementary Information 7.C).

The experimental and theoretical entropies are depicted in Fig. 7.5 H). Both
figures show a smaller entropy in the topological device than in the trivial one.
They depart from each other at the same rate, yet the absolute values of the exper-
imental entropies are a factor 13 smaller than theory. Our model thus captures the
difference between trivial and topological devices but underestimates the accumu-
lation that occurs in the experiment. A potential reason is that, in the experiment, a
local increase in the number of active particles leads to particle jamming, neglected
in our model. When we decrease the density of particles to reduce jamming, the
entropy still drops but is similar for topological and trivial devices. This suggests
that there is a critical density of particles to observe corner accumulation.
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Figure 7.5: Second-order non-Hermitian skin effect of the active particles. A),
B), C), D) We compare the distribution of particles in the trivial A),B) and topo-
logical C),D) devices with (Lx, Ly) = (13, 14), observed experimentally A),C)
and predicted theoretically B),D). We observe that more particles locate on the
top right and bottom left corners. E),F) Parametric representation of the real and
imaginary parts of the spectrum of normal modes for the model of the trivial E)
and topological F) devices with (Lx, Ly) = (L,L) = (70, 70), coloured with the
participation ratio of each normal mode

∑
σij |Pσij |4, which is small for a delo-

calized mode. The gap in the periodic band structure is within the dashed circle
(see Supplementary Information 7.B). The number of localized modes within the
point gap is proportional to the size of the device, L, and are localized at the cor-
ners as shown in G). H) Shannon entropy of the particle distribution over time.
The smaller entropy in the topological device is associated to an accumulation
of particles at the corners, signalling the second-order non-Hermitian skin effect.
The theoretical figures match the experimental curves when multiplied by a factor
×13, suggesting that particle jamming, that occurs frequently for higher densities
of active particles, contributes to enhance the accumulation.

The corner accumulation we observe is a consequence of the chiral motion
of topological edge modes, that accumulate at the corners for long times. In the
topological device the chiral edge motion occurs because wH ̸= 0, and the corner
accumulation occurs because wnH ̸= 0 for Hs,±. The two devices thus have a
different topological invariant:

ν = wHwnH, (7.4.1)

which equals one or zero for the topological and trivial devices, respectively.
In the Supplementary Information 7.B we show that this invariant is equivalent to
that in Ref. [199], and that it signals a second-order skin-effect as follows. First, Ŵ
has inversion symmetry, and a point gap spectrum in which corner modes appear
only for open-boundary conditions in both directions (Figs. 7.5 F), G)). Second,
the number of corner modes scales as the edge length L, rather than the system
size L2, a defining characteristic of the second-order the skin-effect [200].
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7.5 | Conclusions

Overall, our work establishes a strategy to design circuits that spontaneously break
detailed balance to guide and accumulate active matter, enforced by robust out-of-
equilibrium topological phenomena.

We have demonstrated these results both experimentally, and theoretically, via
a stochastic model that is able to describe the underlying physics. Both exper-
iments and theory match extraordinary well considering we have not used any
fitting parameters. This match allows us to prove that these results are a conse-
quence of extra edge states in the topological device with respect the trivial one
and have made also possible to observe a second-order non-Hermitian skin effect,
a topologically robust non-equilibrium phenomenon unobserved so far. However,
our model also has its own limitations, as we have not introduced other effects as
jamming occurring in the system at high densities. This could be a reason why the
model can differ quantitatively, but not quantitatively, when high concentrations of
particles are used. Nonetheless, the experiments have been carried with different
system sizes and particles density, and still we can observe the topological effects
over all the cases analysed.

As a final remark, this work has shown how topological matter can be con-
nected with soft matter, and vice versa, and how both fields can teach each other
to improve the global knowledge of both fields.
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7.6 | Future perspectives

The results presented in this chapter should be considered as a starting point for
the development of future structures to accumulate particles and to obtain more
experimental proofs of topological insulators theory. During the development of
the experiments, we considered using other devices, which we finally did not in-
clude in the final analysis because the material we already had was sufficient to
demonstrate the hypothesis.

However, we also proposed the existence of broken rows. Since the topologi-
cal properties should not be removed by stretching the mask, these changes in the
mask should not affect the results. In Figs. 7.6 B), C) and D) I show the possi-
ble editions we considered for the trivial scenario and large device (Fig. 7.6 A)).
We also had the same designs for the topological device. For the small device,
we only had the analogue to design B). These designs could be useful to develop
more complex patterns. We also included the possibility of adding a flower shape
surrounding the designs to maintain a more constant density of particles. The idea
of the flower is to act as a wall, and hence, there will not be a flow of particles
between the inner and the outer part of the flower, avoiding the introduction of
particles with time to our device. In our designs, we had up to 6 patterns per mi-
crofluidic well (see section 2.2, Fig. 2.2), and hence we considered at first to draw
each flower around each 6 patterns. Finally, we thought it was a better idea to
consider them at the individual level because of a better control of particles, even
that this design would reduce the number of patterns to have per microfluidic well.

As a step further, we have considered the idea of building these microchannels
using a 3D printer instead of a lithographic system. This setup would require using
a 3D printer able to print at the resolution level of the micrometres, but we think
it could be technically possible, if not now, in the near future. This could allow us
not only to further move and accumulate the particles, which could take analytes
from the solution, in 3D but also, to study topological properties of 3D systems,
something which is at a higher level of complexity.
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C D

E

Figure 7.6: Next designs to be studied. A) Original trivial design. B), C), D)
designs with removed unit cells at the borders of the device. E) Designs to have
constant density of particle.
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Appendix

7.A | Experimental values

We fix the values of the parameters in Eq. (7.2.2) by counting the number of times
we see a particle moving along the four types of bulk links in the experiment.
We have performed the experiment for two device sizes, (Lx, Ly) = (12, 6) and
(Lx, Ly) = (13, 14) (see Figs. 7.10 A), B), C), D)) and, for a low and a high
density of active particles (see section 7.2.1). For each situation we obtain the fol-
lowing transition probabilities:

1. For our largest device and a low density of active particles:

• (t1, t2, t+, t−) = (0.154, 0.212, 0.512, 0.122) for the trivial device.

• (t1, t2, t+, t−) = (0.214, 0.128, 0.545, 0.112) for the topological de-
vice.

These are the values we use to compare our experiment with the model in
Figs. 7.4 C), D).

2. For our largest device and a high density of active particles:

• (t1, t2, t+, t−) = (0.126, 0.206, 0.461, 0.207) for the trivial device,

• (t1, t2, t+, t−) = (0.203, 0.119, 0.466, 0.212) for the topological de-
vice.

These are the values we use to compare our experiment with the model in
Figs. 7.5 E).



3. For our smallest device and a low density of active particles:

• (t1, t2, t+, t−) = (0.150, 0.199, 0.519, 0.132) for the trivial device,

• (t1, t2, t+, t−) = (0.179, 0.123, 0.579, 0.119) for the topological de-
vice.

4. For our smallest device and a high density of active particles:

• (t1, t2, t+, t−) = (0.143, 0.191, 0.514, 0.152) for the trivial device,

• (t1, t2, t+, t−) = (0.215, 0.125, 0.541, 0.120) for the topological de-
vice.

We observe an asymmetry between vertical and horizontal motions since t1+t2 =
0.33 < 0.67 = t+ + t−; the motion along the horizontal axis is easier because the
ratchets are aligned while vertical micro-channels are not. This asymmetry in the
design is a consequence of the spatial constraints during device fabrication and it
also helps to distinguish better topological and trivial devices in the experiment.
Indeed, the contribution of topological edge modes to the displacement of particles
is largest for an asymmetric network with t1 + t2 < t+ + t−, because it increases
the decay time τd = τ/(t1 + t2) of the edge modes. This condition is satisfied
in the present experiment because the ratchets favour the horizontal motion of the
Janus particles. Also, one can expect to observe a ballistic regime after a time

τb = (t+ + t−)τ/(t+ − t−)
2, (7.A.1)

after which ⟨x⟩ > ∆x. Since in our experiment τb/τd = 1.3 > 1, it allows us to
observe the ballistic regime.

Another parameter that enters our model is the typical time, τ , for a particle
to move from one cell to another. We evaluate this time separately for each active
particle by dividing the total time of its trajectory by the number of times it goes
from one cell to another. This time is different for each active particle for a variety
of reasons, for example because of the differences in particle sizes or local chem-
ical environment. We evaluate the probability distribution of τ , P(τ), for each
initial configuration we pick up (see Fig 7.7). When we compare our model with
the experiment, we average all the quantities over the probability distribution of τ .
For example, for the average position we compute:

⟨⟨x⟩⟩ =
∑
τ

⟨x⟩P(τ), (7.A.2)

where the average position ⟨x⟩ =
∑
σij xσijPσij is evaluated with the probability

distribution of our model, in Eq. (7.2.2), for a given value of τ . In the text we omit
the double bracket notation, but this averaging procedure is always performed.
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Figure 7.7: Distribution of characteristic times for each selection of particles for
the devices with (Lx, Ly) = (13, 14) and a small density of active particles, for
both topological and trivial devices. The timescale τ corresponds to the average
time for a particle to go from one cell to the next. The timescale T corresponds to
the total length of a trajectory.
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7.B | Developing the model

7.B.1 Bulk solution

In the situation of a infinite or periodic lattice, we can decompose the solution over
the basis of Bloch solutions such that Pσij =

∑
kx,ky

Pσ(k)e
i(kxi+kyj) where

{kx, ky} = {nπa/L,mπa/L} with a the lattice spacing, L the lattice size and
{n,m} ∈ N2. In this basis Eq. (7.2.2) can be written for each k independently,
τdPk/dt = ŴkPk, with:

τ
d

dt

(
PA(k, t)
PB(k, t)

)
=

(
−1 + t+e

−ikx + t−e
ikx t1e

iky + t2
t1e

−iky + t2 −1 + t+e
ikx + t−e

−ikx

)(
PA(k, t)
PB(k, t)

)
,

(7.B.1)

which we can diagonalize to write:

τ∂tPη(k, t) = λη(k)Pη(k, t), (7.B.2)

where η = ± denotes the two eigensolutions with normal mode Pη and eigen-
value λη . The eigenvalues are:

λη = −1 + (t+ + t−) cos(kx)±
√

(t2 + t1 cos(ky))2 + t21 sin
2(ky)− (t− − t+)2 sin

2(kx).

(7.B.3)

The time evolution of the normal modes is then Pη(k, t) = Pη(k)e
ληkt, so if we

define the distribution at t = 0 by:

P (x, t = 0) =
∑
k

∑
η

cη(k)Pη(k)e
i(kxx+kyy), (7.B.4)

then the probability distribution at a time t is:

P (x, t) =
∑
k

∑
η

cη(k)Pη(k)e
ληkt+i(kxx+kyy). (7.B.5)

Since Re(ληk) ≤ 0, with a maximum at k = 0 with Re(ληk) = 0, the infinite or
periodic lattice tends towards the uniform distribution in space at long times.
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Figure 7.8: Parametric representation of the real and imaginary part of the spec-
trum of the normal modes for the trivial A), B), C) and topological D), E), F)
devices, for (Lx,Ly)=(L,L) = (70,70) lattice sites. A), D) Spectrum for periodic
boundary conditions in both directions (in blue) superimposed with that for open
boundary conditions in x (in red). The two spectra coincide and indicate no edge
mode. B), E) Spectrum for open boundary conditions in y. The points are coloured
with respect to the average position ⟨y⟩ of the normal mode. The topological edge
modes (7.B.22) partly hybridize with bulk modes, this is seen as a gap opening for
larger values of Re[λ]. C), F) Spectrum for open boundary conditions in x and y.
The points are coloured with respect to the participation ratio

∑
σij |Pσij |4 of the

normal mode, a quantity which is small for delocalized modes. As shown in the
main text, the modes in the inner dashed circle are localized at the top right and
bottom left corners and are related to the second order non-Hermitian skin-effect.

7.B.2 Real and imaginary eigenvalues

The imaginary and real parts of the eigenvalues λn determine the average position
and variance of the active particles. Indeed, for an initial probability distribution
that is uniform and that we decompose over the eigensolution, P (x, t = 0) =∑

k

∑
η cη(k)Pη(k)e

i(kxx+kyy), we have:

⟨ri⟩t =
∑
x

riP (r, t) = −
∑
η=±

cη(k = 0)∂kiIm [λη(k = 0)] t, (7.B.6)

∆tr
2
i = ⟨r2i − ⟨ri⟩2t ⟩t = −

∑
η=±

cη(k = 0)∂2kiRe [λη(k = 0)] t, (7.B.7)

where r = (x, y) is the position over cells (see Fig. 7.1 E)). These two relations
show that for an initially uniform distribution, only the eigenvalues at k = 0 mat-
ter. As explained in the main text, the slope of the imaginary part is related to the
ballistic motion and the curvature of the real part is related to diffusion.
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7.B.3 Edge modes

In this section we derive the spectrum of edge modes for open boundary condi-
tions in the y direction, and periodic in x. Because the lattice is periodic in the
x direction, we can still apply the procedure in Sec. 7.B.1 for the horizontal (x)
direction. This leads to the equation:

τ
d

dt

(
PA,j(kx, t)
PB,j(kx, t)

)
= t1

(
PB,j+1(kx, t)
PA,j−1(kx, t)

)
+(

−1 + t+e
−ikx + t−e

ikx t2
t2 −1 + t+e

ikx + t−e
−ikx

)(
PA,j(kx, t)
PB,j(kx, t)

)
,

(7.B.8)

where j labels the lattice site in the vertical (y) direction. Since the bulk spec-
trum (7.B.3) is invariant by the transformation ky → −ky , the solutions for open
boundaries can be expanded as:

PA,j = a+e
ikyj + a−e

−ikyj = A1 cos(kyj) +A2 sin(kyj), (7.B.9)

PB,j = b+e
ikyj + b−e

−ikyj = B1 cos(kyj) +B2 sin(kyj). (7.B.10)

The value of ky is not necessarily real and is set by the boundary condition. Also,
if we write ky = χ+ iµ, we have that:

cos(kyj) = cos(ξj) cosh(µj)− i sin(ξj) sinh(µj), (7.B.11)
sin(kyj) = sin(ξj) cosh(µj) + i cos(ξj) sinh(µj), (7.B.12)

and when replacing these expressions in Eq. (7.B.3) we have to check that the real
part of λn is negative, so the solutions stay normalized. We consider two types
of open boundary conditions in y: (1) one that preserves chiral symmetry and, (2)
one that preserves detailed balance.

As we show next, the boundary condition (1) is a useful approximation; its
chiral symmetry allows us to show in a simple way why the edge states have a
non-Hermitian skin-effect in the next section. The price to pay is that we do not
recover the exact numerical edge spectrum, but only an approximation to it. The
boundary condition (2) is more involved analytically but recovers the exact numer-
ical edge spectrum with the same topological information, which is discussed in
the next section.
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(1) Boundary condition with chiral symmetry

A way to describe open boundary conditions is to solve Eq. (7.2.2) with the con-
straints PB,Ly+1 = 0 and PA,0 = 0. These constraints prevent a particle from
moving away from the region y ∈ [1, Ly]. The constraint PB,Ly+1 = 0 implies
that:

PB,j = B1
sin(ky(Ly + 1− j))

sin(ky(Ly + 1))
. (7.B.13)

This is input in the equation for PA,0 in Eq. (7.B.8) to give the consistency relation:

t1
t2

= − sin(ky(Ly + 1))

sin(kyLy)

ky=π+iµ−−−−−−→
Ly→∞

eµ. (7.B.14)

This transcendental equation has Ly real solutions for ky ∈ [0, π) if only t2/t1 <
1, this corresponds to the trivial device which has no edge mode. If t1/t2 > 1, as in
the topological device, this equation has only Ly−1 real solutions for ky ∈ [0, π).
The missing real solution is that at ky = π. Note that it would be missing at
ky = 0 if t1/t2 < −1, but this does not occur since conditional probabilities are
positive. This missing mode is actually substituted by an evanescent mode, with
ky = π+ iµ, solution to Eq. (7.B.14). In the limit where Ly is large, the first term
in the square-root in Eq. (7.B.3) vanishes and the eigenvalues are:

λχ=± = −1 + (t+ + t−) cos(kx) + χi(t− − t+) sin(kx). (7.B.15)

They correspond to the top (χ = +) and bottom (χ = −) interface, respectively.
Compared to Eq.(7.B.15) the numerical edge modes seen in Fig. 7.8E) are shifted
by a constant. To obtain the exact spectrum we discuss the second type of bound-
ary conditions, that preserve detailed balance.

(2) Boundary condition with detailed balance

The previous boundary condition does not respect detailed balance because it re-
moves the hopping term to outside the lattice without tuning-off the associated
on-site sink. This on-site sink is the −1 = −(t1 + t2 + t+ + t−) term in (7.B.1).
Imposing detailed balance at the boundary leads to the following condition at the
j = Ly boundary,

λPA,Ly
= (−1 + t1 + t+e

−ikx + t−e
ikx)PA,Ly

+ t2PB,Ly
. (7.B.16)

This equation looks similar to the previous one, where we impose PB,Ly+1 = 0,
but with an additional t1PA,Ly

contribution. This boundary condition can be
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worked out with (7.2.2) and (7.B.3) to give:

2 cos(ky)− t2
λ− (−1 + t1 + t+e−ikx + t−eikx)︸ ︷︷ ︸

≡z

PB,Ly = PB,Ly−1.

(7.B.17)

The second term in the bracket would be zero in the boundary condition (1). We
combine (7.B.17) with Eq (7.B.9) and get:

PB,j = B1

(
cos(kj)− cos(k(Ly + 1))− z cos(kLy)

sin(k(Ly + 1))− z sin(kLy)
sin(kj)

)
. (7.B.18)

We can then insert this in the equation for the j = 1 boundary, leading to:

λPB,1 = (−1 + t1 + t+e
ikx + t−e

−ikx)PB,1 + t2PA,1, (7.B.19)

and that can be transformed to:

1

z
= 2 cos(ky)−

PB,2
PB1

=
sin(ky(Ly + 1))− z sin(kLy)

sin(kyLy)− z sin(k(Ly − 1)

ky=π+iµ−−−−−−→
Ly→∞

−eµ.

(7.B.20)

This transcendental equation is similar to Eq. (7.B.14) and depending on the value
of z, now also a function of λ and kx, we lose a real-valued solution for ky at
ky ≈ π. This solution is replaced by an evanescent solution with ky = π+ iµ and
in the limit of Ly → ∞, we obtain:

eµ = −1/z = −λ− (−1 + t1 + t+e
−ikx + t−e

ikx)

t2
. (7.B.21)

Then replacing cos(k) →k→π+iµ − cosh(µ) = 1
2 (z + 1/z) in the equation for

λ (7.B.3), we find the two solutions:

λχ=± = h0 + t1 + χ
√
h2z + t22, (7.B.22)

where h0(kx) = −1+(t++ t−) cos(kx) and hz(kx) = i(t−− t+) sin(kx). These
solutions coincide with the numerical spectrum in Fig. 7.8e. The edge mode dis-
persion, λ± is close to that in Eq. (7.B.15) but with a spectrum shifted by t1.
For some values of kx the spectrum of edge modes (7.B.22) hybridize with bulk
modes. Compared to the boundary condition (1), this can be traced back to impos-
ing detailed balance, which adds the t1 term in (7.B.16), the sink potential.
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7.B.4 Topological properties

The probability distribution of active particles is determined by the non-Hermitian
matrix Wk in Eq. (7.B.1). Non-Hermitian operators are classified according to
their symmetries, to the gap structure of their complex energy spectra and to their
dimension [244]. Depending on the discrete symmetries of the system, and ex-
cluding crystal symmetries, the model falls in one of the 38 distinct topological
classes that define strong topological insulators. The gaps are or three types: real
or imaginary line gaps or point gaps. If the class is topologically non-trivial for
the given gap type and dimension, then a topological invariant exists to classify
the possible topological phases of the system in that class. In our case, the ma-
trix Ŵ is non-Hermitian with time-reversal symmetry, W ∗

k =W−k, and inversion
symmetry, σ̂xŴkσ̂x = Ŵ−k. It falls in the real Altland-Zirnbauer (AZ) symmetry
class AI. Since Ŵ has a point gap (see Fig 7.8) and describes a two-dimensional
system, this class is trivial and has no strong topological invariant [244].
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Figure 7.9: Number of skin modes for open boundary conditions in both x and
y directions for the topological device, as a function of system size L where
(Lx, Ly) = (L,L). This number corresponds to the number of states for open
boundary conditions within the point gap found with periodic boundary conditions
(i.e. within the inner circle in Fig. 7.8F)). The number of skin modes increases lin-
early with the perimeter, which is characteristic of a second-order non-Hermitian
skin effect [200].

Our model can instead be better understood by analogy to weak topological
insulators. Weak topological insulators in d dimensions can be constructed by
coupling d − 1 strong topological insulators. Following this principle Ŵ is con-
structed by coupling strong one-dimensional topological insulators defined in the
y direction with non-reciprocal hoppings along the x direction. In this way Ŵ in
a direct sum of two terms Ŵk = Ŵx + Ŵy with:

Ŵx = (−1 + (t+ + t−) cos(kx)) σ̂0 + i(t− − t+) sin(kx)σ̂z, (7.B.23)

Ŵy = (t2 + t1 cos(ky)) σ̂x − t1 sin(ky)σ̂y. (7.B.24)
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In these equations, Ŵy describes a strong hermitian topological insulator in the y
direction. It is the Su, Schrieffer and Heeger model [245]. Ŵy has chiral symmetry,
represented by σ̂z satisfying {Ŵy, σ̂z} = 0, and it is time-reversal symmetric, rep-
resented by complex conjugation. Therefore, Ŵy belongs to the real AZ symmetry
class BDI. Since Ŵy is one-dimensional and has a real line gap (it is Hermitian),
it can be classified by a strong topological invariant [246], the total Berry phase
on the Brillouin zone. It can be calculated for each sub-band η = ± in (7.B.2)
as [247]:

γyη =
1

2

(
γLRyη + γRLyη

)
=

1

2π

∫ π

−π
dky ∂kyϕ, (7.B.25)

where we have introduced the Berry phase on the left (PLη ) and right (PRη ) normal
modes of Ŵ :

γαβyη =
i

2π

∮
C
dky P

α∗
η (k)∂kyP

β
η (k). (7.B.26)

In this last expression, the normal modes of Ŵ are:

Pαη =
1√

1 + e2iαθ

(
1

ηei(ϕ+αθ)

)
, (7.B.27)

with α = +1 for right- and α = −1 for left-eigenstates and:

ϕ = arg (t2 + t1 cos(ky) + it1 sin(ky)) , (7.B.28)

θ = arg

(
−
∑
i

ti + (t+ + t−) cos(kx) + i(t− − t+) sin(kx)

)
. (7.B.29)

The topological phase occurs when t1 > t2 because γy± = 1, and the system
is trivial otherwise, with γy± = 0. This winding number is independent on Ŵx

in (7.B.24), it is the same for both Ŵ and Ŵy . Since the winding number γyη
defined in Eq. (7.B.25) is the winding number of the Hermitian operator Ŵy , we
call it the Hermitian winding number, wH = γy .

The non-Hermitian matrix Ŵx in Eq. (7.B.24) couples each copy of Ŵy in the
x direction. Because Ŵx is time-reversal symmetric and has no chiral symmetry, it
can be classified in the real AZ symmetry class AI. Also, since it describes a one-
dimensional system with an imaginary line gap, it can be classified by a topological
invariant. As we now show, both the winding of the spectrum in the complex plane
and the total Berry phase vanish for Ŵx, which is thus always trivial [247]. The
reason the winding numbers of Ŵx vanish can be derived from the fact that Ŵx is
composed of two independent copies, one for each eigenvalue χ = ± of σ̂z ,

Hs,χ(kx) = −1 + (t+ + t−) cos(kx) + χi(t− − t+) sin(kx). (7.B.30)
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These two copies are non-Hermitian matrices with the same symmetries than Ŵx

and each with opposite winding numbers of their spectrum in the complex plane [225,
247, 243]:

wnH,± =
1

2πi

∫ π

−π
dkx

d log (Hs,±(kx)− E)

dkx
= −wnH,∓. (7.B.31)

These winding number are wnH,χ = χ(= ±1) for modes within an ellipse in the
complex plane, centred at λC = −1 and with radii t+ + t− on the real axis and
|t+ − t−| on the imaginary axis (the outer dashed black line in Fig. 7.5F)). In gen-
eral, these two winding numbers cancel out in Ŵ since the two independent modes
of Ŵx are coupled by Ŵy in the y direction. As a consequence, the spectrum for
periodic and open boundary conditions in the x direction are similar to each other,
so the non-Hermitian skin effect is absent (see Figs. 7.8 B),D)).

As derived in Sec. 7.B.3, in the topological device a y boundary that preserves
chirality has two chiral edge modes, described by the two copies (7.B.30) on the
top (χ = +) and bottom (χ = −) edges, since the chirality of Ŵy is repre-
sented by σ̂z . In this case, each edge displays a one-dimensional first-order non-
Hermitian skin effect because of their non-zero wnH, resulting in a second-order
non-Hermitian skin effect of the two-dimensional system.

Although the boundary condition that preserves chiral symmetry is a useful
approximation, it is necessary to impose detailed balance at the top and bottom
edge to obtain exactly the edge theory that we obtain numerically, as discussed in
Sec. 7.B.3. The main change between these two boundary conditions is that the
spectrum of the edge modes shifts along the real axis, and as a result some of the
edge modes partially hybridize with bulk modes (7.B.22), see Fig. 7.8E). This ef-
fect can be interpreted as an edge potential on the topological edge states, which,
despite breaking chiral symmetry, is not expected to change their skin-effect, for
moderate parameter values. We confirm this expectation numerically, using the
conditional probability parameters relevant for our experiments in Fig. 7.8F).

With the above, our analysis implies that, if chiral edge modes exist with open
boundary conditions in the y direction (i.e. when t1/t2 > 1), these display a non-
Hermitian skin effect with open boundary conditions in the x direction, resulting
in an accumulation of active particles at the corners. This effect is a second-order
non-Hermitian skin-effect [197, 198, 199, 200, 201], which exists when the topo-
logical number:

ν = wHwnH, (7.B.32)

is non-zero. This is the case for our topological devices, but ν = 0 for our trivial
devices. The Hermitian topology of Ŵy when wH ̸= 0 spatially separates the
topological non-Hermitian modes of Ŵx with opposite and non-vanishing wnH,
realizing a second-order skin effect.
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7.B.5 Topological invariant of the second-order non-Hermitian
skin-effect: connection to Hermitian topology

By following Ref. [199] it is possible to understand the second-order non-Hermitian
skin effect by connecting with topological Hermitian systems as follows. First we
construct an Hermitian matrix from Ŵ as:

Heff =

(
0 Ŵ − λC

Ŵ † − λC 0

)
, (7.B.33)

where λC is a base energy defined by the centre of the point gap. This is in general
a complex number, but, as can be seen from Fig. 7.8, in our case λC = −1. When
λC is real, as in our case, it is instructive to perform a unitary transformation of
Heff as H̃eff = UHeffU

† by using the unitary matrix:

U =


0 0 0 −1
1 0 0 0
0 −1 0 0
0 0 1 0

 , (7.B.34)

such that:

H̃eff = H̃x ⊗ τ0 + σ0 ⊗ H̃y (7.B.35)

H̃x = (−1− λC + (t+ + t−) cos(kx)) σ̂x − (t− − t+) sin(kx)σ̂y, (7.B.36)

H̃y = (−t2 − t1 cos(ky)) τ̂x − t1 sin(ky)τ̂y. (7.B.37)

Both H̃x and H̃y have chiral symmetry represented by σ̂z and τ̂z , respectively.
Each symmetry is associated to the winding numbers ω̃x,y . Consequently, H̃eff

has the symmetry Γ̃ = σ̂z ⊗ τ̂z . Additionally it displays inversion symmetry given
by Ĩ = σ̂x ⊗ τ̂x. Note that Γ̃ commutes with Ĩ .

As discussed in Sec 7.B.4, the present model has trivial non-Hermitian topol-
ogy in the bulk but non-trivial on the edges. In the nomenclature of Ref. [199] its
second-order non-Hermitian skin effect is thus extrinsic, since chirality and inver-
sion symmetries commute and the non-Hermitian topology is only characterized
by chiral symmetry Γ̃. The corresponding Hermitian winding numbers of H̃x and
H̃y are non-trivial and can be computed from (7.B.25). We have that:

1. the normal modes of H̃x are:

Pη=± =
1√
2

(
1

ηeiϕx

)
, (7.B.38)

where ϕx = arg [−(1 + λC) + (t+ + t−) cos(kx) + i(t+ − t−) sin(kx)].
So the winding number wx is

wx =
1

2π

∫ π

−π
dkx∂kxϕx. (7.B.39)
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wx = 1 for λC ∈ −1± (t+ + t−) and it vanishes otherwise.

2. the normal modes of H̃y are:

Pη=± =
1√
2

(
1

ηeiϕy

)
, (7.B.40)

where ϕy = arg [−(t2 + t1 cos(ky))− it1 sin(ky)]. So the winding number
wy is:

wy =
1

2π

∫ π

−π
dky∂kxϕy. (7.B.41)

wy = 1 for t1/t2 > 1, which defines the topological device, and it vanishes
in the trivial device.

Comparing to our discussion in the previous section, we see here that the Hermi-
tian winding number, wH, of Ŵ coincides with the total Berry phase wy of H̃y .
Moreover, the non-Hermitian winding number,wnH, coincides with the total Berry
phasewx of H̃x for eigenvalues λC on the real axis, as in our case. The topological
invariant we introduced in the main text Eq. (7.4.1) (Eq. (7.B.32) in this Supple-
mentary Material) thus coincides with the one proposed in Ref. [199]:

ν = w2D ≡ wxwy, (7.B.42)

for λC ∈ R. Note that if we had considered λC ∈ C, then there would be an
additional chirality-breaking contribution −Im[λC ]σ̂2 ⊗ τ̂3 that enters (7.B.24),
that would have prevented this topological classification [199].

7.B.6 Discussion on the topological invariant ν

In Sections 7.B.4 and 7.B.5 we computed the same topological invariant, ν, from
two different arguments. One may wonder if this invariant is truly a 2D invariant.
First, we note that ν is closer to invariants that characterize weak topological in-
sulators, as it is defined by a combination of lower dimensional (in our case 1D)
topological invariants. In this sense, the topological invariant describing our sys-
tem is not a bulk 2D topological invariant. Rather, the present higher-order topo-
logical behaviour emerges fromthe superposition of Hermitian and non-Hermitian
1D topologies in transverse directions, that combined lead to a second-order non-
Hermitian skin-effect.

We note as well that ν is not strictly a 1D invariant either since a first order
non-Hermitian skin-effect cannot occur in the presence of inversion. As discussed
in the main text, in our experiments we enforce detailed balance over the unit
cell, so the lattice does not break inversion symmetry, and thus does not strictly
allow a first-order skin-effect. Each edge independently may break 1D inversion
symmetry, and cause the accumulation. The parameters for which our 2D model
allows this to happen are captured by ν
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7.C | Comparisons between devices with

different dimensions and densities

In this section we review all our results for the trivial and topological devices, in
small ( (Lx, Ly) = (12, 6) ) and large ( (Lx, Ly) = (13, 14), main text) devices
(see Fig. 7.10 A), B), C), D)) and for low and high density of active particles (see
section 7.2.1).

7.C.1 Topological chiral edge motion

We initiate each device with particles on the top left corner and compare our ex-
perimental data with our model in Fig. 7.10E). In order to decrease the statistical
uncertainty, we use the symmetry between opposite corners to include trajectories
from the bottom right corner in the figures.

At long times, fewer particles contribute to the average because some have
shorter trajectories than others. The agreement between model and theory is gen-
erally better for shorter times because the experimental average then includes more
particles, from 150 to 300 particles.

7.C.2 Non-Hermitian topology : corner localization

We initiate each device with a uniform density of particles on every cell. The time
evolution of the density resembles that in Figs. 7.5 A), B), drawn for the large de-
vice with a large density of active particles, resulting in an accumulation of active
particles at the corners. This increase in the density of particles at the corners is
compared quantitatively using the Shannon entropy, in Fig. 7.10G).

Because the entropy is sensitive to the noise in the density of particles, we re-
duce it by averaging the density over adjacent cells. The range for this averaging
is estimated by a Fourier transform, to determine how much the distribution of
particles spreads away from uniformity. We obtain the spread ∆k from which we
deduce the range of fluctuations ∆r = 1/(2∆k). We then perform the averaging
procedure over 3∆r ≈ 3 cells for the small devices, and ≈ 2 cells for the large de-
vices. We perform this averaging procedure on both experimental and theoretical
data.
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The entropy we compute from our model is usually larger than what is ob-
served experimentally. This can be caused by the residual noise from the fluctu-
ations in the number of particles or by correlations between particles, that tend
obstruct the motion of each other and lead to jamming. Also, we see a difference
between the entropies of the topological and trivial devices when the density of
active particles is large. In this case the larger number of particles per cell enables
the use of the entropy as a probe of the non-Hermitian skin effect.
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Figure 7.10: A),B),C),D) Depiction of the microfluidic devices used in our exper-
iments. The trivial A) and topological B) small, (Lx, Ly) = (12, 6), designs, and
the trivial C) and topological D) large, (Lx, Ly) = (13, 14), designs. In the main
text we focus on the results obtained for the designs C) and D). We consider four
experimental situations with small (Lx, Ly) = (12, 6) and large (Lx, Ly) = (13, 14)
microfluidic devices, and with low and large density of active particles. A larger
density of particles enhances the Brownian motion, but also decreases the veloc-
ity of particles and leads to more clusters. E),F) Complementing Figs. ??C), F),
we show the the time evolution of the average position and spread for all devices,
when tracking particles initially at the top left corner (see Section 7.2.1). We com-
pare these quantities for the trivial and topological devices between experiments
and theory. The model parameters are assigned separately for each case, using the
experimental data (see Section 7.A), and there are no fitting parameters. G) Com-
plementing Figs. 7.5 E), we show the time evolution of the entropy when tracking
particles initially spread uniformly over the device (see Section 7.2.1).
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Conclusions





The results presented in this thesis demonstrate how active particles behave
next to liquid-liquid interfaces and how can we generate collective behaviour by
introducing interfaces in the system. These results were only possible after build-
ing a set of different tools for carrying out the simulations and experiments needed.
These tools will be useful for other researchers too.

In the first part I create different setups for the following experiments, which
I will have to record and analyse. To analyse these experiments, it is necessary to
obtain different particle parameters, which can include their position, angle, speed,
translational diffusion constant, enhanced diffusion constant and rotational diffu-
sion time. Therefore, I also explore which video parameters are appropriate to
correctly obtain these parameters, and I create the necessary tools to obtain them.
These tools include software to manage digital space and to track particles and the
appropriate equations to use. In particular, in this part I demonstrate that:

• 3D printing systems are a great technology for creating reproducible setups
easily, quickly, and economically. These systems allow the user to create
setups for active particles for long-term experiments even if they generate
oxygen.

• When recording a video, its length must be adequate to avoid digital space
problems. First, we need to adjust the ROI, time length and FPS of the
video accordingly to the characteristic scales of our system. ROI should
be limited, but if we cannot select very small ROI because we could mask
effects such drifting. Afterwards, we can compress the digital videos using
a mp4 format. This conversion might need a specific software depending
on the video capture software, as the one developed during this thesis for
LeicaX software.

• To analyse particles in videos we need to track their positions. Simple meth-
ods can work and can be sufficient under some conditions. However, if we
cannot detect particles correctly, we can use a more advanced method to
detect particles such a neural network. Neural networks allow us to detect
and track particles even if they are complex or difficult to detect by tradi-
tional algorithms. The code here provided is an example that can use any
researcher.

• To use neural networks we must adequate the dataset and the scheme. Con-
sider adding as many different cases as possible to the dataset, as well as
images with no objects to detect to improve network results. If needed, cut
the images to a different ROI. Schemes should be as simple as possible: al-
ways adapt the anchors and remove layers if possible. Activate always data
augmentation.

• After particles are tracked, we can use different algorithms to transform co-
ordinates appropriately such changing the frame of reference or drawing
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new cell coordinates visually. A simple solution can be based in python +
OPENCV API.

• Once we obtain the position, we can obtain other particle parameters such as
its characteristic translational diffusion constant Dt, its enhanced diffusion
constant Deh, the speed originated by its activity (vp), or its rotational dif-
fusion time (τr). To obtain these parameters we can fit its MSD to different
equations, but before we need to analyse its size. The size of the particle
defines its theoretical rotational diffusion time, which determines the proper
equation to use. Moreover, to correctly fit this equation we will need to ad-
just the length and the FPS of the recorded video. For common microscope
cameras we have:

– If particles are smaller than R=0.5 µm, the MSD of the trajectories will
adjust to a linear fit, MSD(∆t) = 4Deh∆t, where ∆t is the time lag.
The enhanced diffusion is the correct parameter to give at this scale.

– If particles are bigger than R=1.50 µm, the MSD of the trajectories
will adjust to a parabolic fit: MSD(∆t) = 4Dt∆t+ v2(∆t)2. At this
scale vp is the correct parameter to give. Although we could present the
translational diffusion constant, we should avoid for particles bigger
than R = 1µm because when calculating, the value obtained can be
several orders of magnitude bigger than its real value.

– For particles with sizes between R=0.5 µm and R=3.0 µm, the general
expression to fit the MSD can be approximated to a third or fourth or-
der as presented in Eq.3.2.1. As in the previous case, we should avoid
using Dt due to its large error when calculating it, at least for particles
bigger than R=0.5 µm. In any case, it is better to use the fourth-degree
MSD approximation to obtain Dt because it reduces the error of its cal-
culation. Instead of using Dt, it is better to obtain the speed vp of these
particles. To calculate their speed, it is enough to use a third order
approximation because the low error when calculating this parameter.
Even if we fit data up to the rotational diffusion time, the third order
approximation gives accurate results. We can also obtain an experi-
mental rotational diffusion time by adjusting the MSD to the fourth
order, adjusting the MSAD or the log of the speed autocorrelation to
a linear fit. If possible, both last methods are better, and especially if
we can optically track the angles of the particles. The experimental
value of the rotational diffusion time can be statistically incompatible
with the theoretical value for a free particle, and hence it should be
calculated if particles move next to a plane or in complex media.

The conclusions obtained in the first part are used widely for the experiments
present in the following parts, but also were used by other colleagues to ease their
work.
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In the second part I demonstrate the behaviour of active particles next to liquid-
liquid interfaces. First, I verify experimentally these systems. To understand better
the experimental results, I model them with a simple ABP model, but this model
is not powerful enough to explain the results and I create a complex model based
on the Lattice-Boltzmann algorithm. As a conclusion:

• When active particles adjacent to a solid surface contact these interfaces,
they acquire a common in-plane orientation of -6±10º deviated from the
interface, facing more its inert side towards the oil, and follow the interface’s
contact line.

• While moving along the interface we find a particle speed reduction. This
reduction increases if particle swim slower in the bulk. Hence, we hypothe-
size this speed reduction is a consequence of Brownian fluctuations reorien-
tations.

• The retention time of particles next to liquid-liquid interfaces is longer than
expected, as they stay for longer times compared to the rotational diffusion
time. We hypothesize this is a consequence of the active alignment effect of
particles next to interfaces. Moreover, the time they stay does not depend on
the speed of the particle.

• Particles next to liquid-liquid interfaces move for longer straight trajectories
as compared as when they swim in the bulk, but the ratio between both
lengths does not depend on the speed of the particle.

• An ABP model with an extra torque applying when particles are near the
interface can capture the increase in residence time obtained experimentally.
However, if we recover the residence time, we cannot recover the length
travelled experimentally with the same model parameters.

• To improve the physical knowledge of these systems we use a Lattice-Boltzmann
model. This model allows us to parametrize several forces such as capillarity
forces and phoretic forces of the particle, but also to concentrate asymmet-
rically the product generated by particles in both sides of the interface.

• The modulation of these parameters prove that capillarity forces overcome
phoretic forces when an inactive particle is totally hydrophobic (contact an-
gle is 0º) or hydrophilic (contact angle is 180º). However, for a neutral
wetting the phoretic forces can move away particles from the expected posi-
tion set by its wetting. The stronger this force, the further the particle from
the expected position will be. This effect is even seen if particles have asym-
metric phoretic mobilities. At the same time, the more product generated by
the particle is accumulated in one of the liquid phases, the stronger is this
phoretic effect.

• When inactive particles with asymmetric phoretic mobilities are set with
neutral wetting, particles will orient with the stronger repulsive phoretic
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mobility in contact with the liquid phase with less product. The stronger
the mobilities, the less time takes for particles to achieve this orientation.

• When activity is added, particles at the interface change their orientation
to a stable orientation, which depends on the initial orientation and surface
mobility of the particle and the concentration of particle product in both
liquid phases. If the asymmetrical concentration of product in both phases
is strong enough, particles with the same surface mobility will rotate to the
same final angle independently of its initial orientation. However, if the
asymmetry decays, different stable orientations are reached depending on
the initial orientation. Once they reach this final angle they may move along
the interface. The more parallel is their director vector to the interface’s
contact line, the faster particles move along the interface. If the asymmetry
of product in both phases is higher, particles will also move faster.

• If active particles with asymmetric surface mobilities collide with a liquid-
liquid interface, we observe that after contacting the interface, they change
their orientation, stay at the interface and depending on the wetting and sur-
face mobilities they move along the interface or stop at the interface. Thus,
with our Lattice-Boltzmann method we recover the artificial torque intro-
duced manually in the previous ABP model.

After studying the interaction of active particles next to liquid-liquid interfaces
we conclude that these interfaces can guide active particles. Guidance is a step cru-
cial for many applications such as microfluidic systems. However, in the second
part we only study the behaviour of single particles. But nature is more complex,
and we expect to find more than one particle. If we work with multiple particles,
we can obtain new phenomena. For instance, with the previous example of the
microfluidic device it could be interesting to accumulate particles. Because we
obtain guidance either with solid-liquid or liquid-liquid interfaces, and it is easier
to build complex structures with solid-liquid interfaces, in the third part I change
the interfaces to solid-liquid interfaces to exploit collective phenomena appearing
because of the guidance. The experiments in the third part let me conclude that:

• We can obtain accumulation of particles in a microfluidic setup composed
of channels even if we start with a pattern that at a priori should not have a
net preference for moving particles towards any point of the structure.

• Such system can be composed of units cells with detailed balance, but glob-
ally we spontaneously break detailed balance to accumulate active matter.
This effect depends on global properties of the setup, and hence we can use
topology theory to explain these experiments. Consequently, we can build
different structures such as the topological and trivial ones we built.

• When a stochastic model is built, this model can match the experiments
extraordinal well considering that we have not used fitting parameters. This
model proves that the experimental results are a consequence of extra edge

234



states in the topological device with respect the trivial one. However, this
model also has its own limitations as we did not introduce jamming effects.

• The accumulation of particles is possible as a consequence of a second-
order non-Hermitian skin effect, a topologically robust non-equilibrium phe-
nomenon unobserved so far.

• The experiments realized connect Topological matter to soft matter, and vice
versa.

As a result, with this thesis we have had an experimental and theoretical view
of autocatalytic colloids interacting with interfaces.

"For everything there is a season and a time for every
purpose under heaven."

Ecclesiastes
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La tesis que actualmente estás leyendo es la culminación de un trabajo que se
ha prolongado a lo largo de mis últimos 5 años de vida. Durante estos 5 años me
he enfocado en el estudio de la materia activa, un campo de la física en el que se
estudia todo aquel ente que es capaz de generar su propio movimiento. Para ello,
estos entes utilizan o bien su energía interna o bien capturan energía del exterior,
y la convierten en energía cinética. Aunque dicho así pueda sonar algo exótico, en
realidad lo que acabas de leer es algo que vemos cada día. De hecho, no sólo lo
vemos, pues lo hacemos. Todos los seres vivos en este planeta consumen energía
para vivir, y algunos usan parte de esta energía para poderse mover, con lo que
estos seres vivos son ejemplos de estos entes que estudia la materia activa. Y no
solamente me refiero a los que vemos a nuestro alrededor, o nosotros mismos, sino
también de toda esa colección de vida microscópica de la que estamos rodeados
y que comúnmente no tenemos presente en el pensamiento, pese a ser el sustento
de nuestra vida. Y es precisamente en esta escala microscópica, con entes mi-
croscópicos artificiales, en la que me centro en esta tesis.

Seguramente el hecho de que este campo de la física esté tan interconectado
con la vida es algo que hizo que acabara decidiéndome por estudiarlo. De algún
modo, mi interés a lo largo de mi vida académica no solamente se ha centrado en la
física, sino también en la biología. Los conceptos aprendidos durante mis estudios
de Biotecnología me han dado un bagaje de fondo que han complementado a los
aprendidos en Física. Quizás sea por ello por lo que, cuando entré en el doctorado,
no quería hacer algo meramente teórico, sino que quería toquetear, hacer cosas que
pudiese ver, que fuesen reales. No digo ni mucho menos que la teoría sea irreal,
pero, al fin y al cabo, el lápiz y el papel es un espejo que sirve para describir la
realidad, realidad que en algún momento tienes que mirar. Ahora bien, mi parte de
física me decía que también se pueden abstraer los conceptos que ves y describir-
los con un modelo. Por eso, cuando empecé esta tesis decidí hacer algo mixto.
Haría experimentos, sí, pero no me alejaría tampoco de una fuerte abstracción.
En consecuencia, la tesis que leerás a continuación tiene algo de ambos mundos.
Así, mientras el capítulo 5 versa sobre experimentos, el capítulo 6 lo hace sobre
un modelo teórico de lo visto experimentalmente en el anterior capítulo. Dada la
complejidad que tuvo hacer dicho modelo, preferí seguir una línea más experimen-
tal, y de ahí que el último capítulo lo acabase cerrando con experimentos de nuevo.

En estos tres capítulos me centro en lo que considero la piedra fundamental de
mis estudios de doctorado: el estudio de estos entes microscópicos en presencia
de interfases. Aunque estos entes podrían haber sido microorganismos, cultivar-
los es esclavizarse al laboratorio. Por ello, cuando supe que podía describir estos
organismos con entes artificiales me interesó. Es así como para esta tesis acabé
trabajando con unas micropartículas esféricas, de 2 y 5 µm de diámetro, de sílice y
medio recubiertas por una fina capa de 10 nm de platino (Pt). Cuando estas partícu-
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las están en presencia de agua oxigenada, el platino lo descompone rápidamente
a agua y oxígeno, y el campo de oxígeno que se crea alrededor de la partícula es
responsable de propulsar estas partículas mediante un proceso que llamamos auto
difusoforesis. Por supuesto hay muchos más tipos de partículas, pero estas son
ideales como modelo teórica como experimentalmente, pues su geometría es sim-
ple, funcionan bien, son fáciles de hacer y se conservan bien. Así pues, se resta
dificultad en el proceso de creación y me permitía estudiar un sistema más com-
plejo que incluye las interacciones con interfases.

¿Por qué interfases? Pues porque la naturaleza está repleta de ellas. A ve-
ces, por simplificar los estudios, los experimentos se realizan en un medio libre de
cualquier interacción buscando demostrar que has encontrado una partícula artifi-
cial que se mueve mejor, o diferente. Estos estudios son necesarios como primer
paso, pero para reflejar la totalidad del movimiento de estas partículas hay que
incluir su interacción con interfases. Al menos, sus análogos vivos continuamente
interaccionan con ellas. Así pues, empecé mi tesis estudiando sus interacciones
en interfases. Como estas partículas se mueven en un medio líquido, una de las
dos fases que forma la interfase debe ser un líquido. Cuando entré en el labo-
ratorio había un estudiante que centraba su tesis en la interacción de interfases
líquido-solido, por lo que se decidió que yo seguiría su estudio con interfases
líquido-líquido, experimentos que describo en el capítulo 5. En presencia de in-
terfases líquido-líquido, estas partículas se comportaban de manera similar que en
presencia de interfases líquido-solida, a pesar de la diferente naturaleza de estas
interfases. Al tiempo que realizaba estos experimentos empecé a desarrollar un
modelo computacional que pudiese explicar lo que estaba viendo, que concluyó
con lo expuesto en el capítulo 6. Con este modelo intentábamos capturar todos los
efectos hidrodinámicos y foréticos que hubiese en nuestro problema, pese a que
con ello tuve que descubrir lo que significan dos palabras: Lattice-Boltzmann.

Una de las conclusiones más evidentes que pudimos obtener es que las in-
terfases pueden ser útiles para guiar partículas, pues al llegar a las interfases se
acumulan y se mueven a lo largo de ellas por un tiempo mayor al predicho. Este
hecho puede ser muy interesante tanto para explotarlo a nivel de aplicaciones com-
erciales como para estudiar interacciones de múltiples partículas de los que se
pueden obtener diversos efectos colectivos. En el primer caso, una utilidad prác-
tica pudiera ser el uso de estas partículas en canales microfluídicos, necesarios por
ejemplo para lab-on-a-chips que pudiesen detectar analitos contaminantes de líqui-
dos o enfermedades a partir del análisis de muestras biológicas. En cuanto a los
efectos colectivos, dado que los análisis de los capítulos 5 y 6 los realicé a nivel de
partículas individuales, creía conveniente dar un paso más allá y buscar algún re-
sultado colectivo. Sin embargo, construir estas interfases con una geometría algo
más compleja a lo que había usado resultaba difícil a nivel experimental, por lo
que pensé en retomar las interfases sólido-líquidas.

En consecuencia, en el capítulo 7 doy un vuelco y uso interfases líquido-sólidas
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en presencia de muchas partículas. Por el camino tuve la suerte de poder colaborar
con un grupo externo localizado en Grenoble con el que, a pesar de la distancia,
pude trabajar desde Barcelona con ellos y realizar los experimentos que consider-
aban necesarios para dar respuesta a su teoría. En realidad, aunque con este último
capítulo me centré en la parte experimental, no puedo negar que me sirvió tam-
bién a nivel teórico, pues aprendí sobre topología y aislantes topológicos, de los
cuales desconocía. Con este último trabajo pudimos ver como el uso de las inter-
acciones de estas partículas con interfases nos permite estudiar con materia activa
otros campos de la física tan alejados como el de la topología, y como es posible
conseguir ver efectos predichos en la teoría de aislantes topológicos experimental-
mente con un modelo de "juguete" basado en partículas activas.

Aunque estos tres capítulos centran el grueso de mis estudios, por el camino
ha habido otros proyectos fructíferos, y otros que por desgracia no dieron ningún
resultado. Por ejemplo, una vía de avanzar en estas interacciones era con el uso
de líquidos no newtonianos, pero continuamente veía que las partículas eran ar-
rastradas por el medio y no podía hacer un estudio de su interacción propiamente.
La línea de investigación con más de una partícula en interfase líquido-líquido tam-
bién la intenté usando gotas de lípidos en agua, pero por una parte tuve problemas
para crear el dispositivo, y por otra tenía un sistema que no era capaz de hacerlo
reproducible. Más adelante ideé otra idea, pero ya consideré que era tarde para
seguir con esta investigación dado el año en el que estaba y debido a la COVID-
19. Estos últimos intentos sin embargo están recogidos al final del capítulo 5.

El estudio con microcanales también tuvo sus problemas. Por ejemplo, en
un principio pensé en estudiar fenómenos de embotellamiento en microcanales,
tanto a nivel experimental como con el modelo computacional, lo cual es algo
muy interesante a tener en cuenta a la hora de tener un dispositivo experimental.
Una de las cosas que me frenaron fue la acumulación de oxígeno que podría dar
problemas de deriva con el uso de estas partículas. Como alternativa intenté usar
partículas de sílice con estreptavidina en superficie a las que enganchar de forma
muy sencilla ureasa biotinilada (por unión biotina-estreptavidina), lo cual podría
ser también muy útil para enganchar otras cosas como mRNA biotinilado con fluo-
róforos, útiles para detectar analitos en suspensión, pero las partículas caían por su
peso y se adherían a la superficie en lugar de moverse. Otro tipo de partículas que
intenté usar fueron las basadas en dióxido de titanio, pero nunca logré una muestra
que fuese capaz de moverse.

A nivel más teórico, también intenté estudiar las interacciones foréticas de es-
tas partículas entre sí con pocillos en los que colocar partículas de forma individ-
ual, pero también tuve que detenerlo debido a la COVID y estar ya en mis últimas
etapas de mi doctorado.

Además de estos intentos, el camino hacia la resolución de los 3 capítulos
principales también ha llevado hacia otros caminos inesperados que finalmente
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han dado éxito. Prueba de ello queda reflejado en los capítulos 2, 3, 4 y el anexo
C, que aunque no sigan la temática por la que empecé el doctorado, han sido traba-
jos paralelos consecuencia de los anteriores. Cuando empecé mis investigaciones
del capítulo 5 uno de los problemas encontrados fue la grabación de vídeos por
el tamaño que tenían. Problema recurrente entre los demás usuarios del equipo
de grabación del microscopio. Todos los vídeos tomados los graba en un único
fichero en formato RAW. A consecuencia de ello, y dado que me gusta programar,
acabé haciendo dos programas con los que convertir estos vídeos de RAW a for-
mato comprimido y ahorrar más del 98% de espacio en memoria. Así mismo, a fin
de grabar sólo lo necesario, y dado que podíamos optimizar los parámetros a usar
para estudiar el movimiento de partículas activas (tiempo de grabación, imágenes
por segundo y tiempo de análisis) empecé a investigar en cómo podían afectar
estos parámetros al estudio de la velocidad y el tiempo rotacional de las partícu-
las. El estudio a nivel de velocidad no era algo que me afectase tanto a mí, pero
mientras estuve trabajando en el capítulo 5 tuve dudas en como calcular, el tiempo
rotacional de mis partículas, y aunque tarde, pensé que esto podría ser interesante
para otras personas que se enfrenten al mismo problema. Todos estos resultados
los enseño en el capítulo 3.

Por otra parte, una de las cosas que observé en el capítulo 5 era la problemática
de la acumulación de partículas por el oxígeno que producían, y por tanto traba-
jar con muchas como hice en el capítulo 7 sería complicado. Sin embargo, pude
mejorar los dispositivos experimentales de los que partía y solucionar este prob-
lema como presento en el capítulo 2.

En cuanto al capítulo 6, en ocasiones tuve problemas con la representación
tridimensional de lo que veía y en como graficarlo. Ninguna de las soluciones que
encontré me fueron adecuadas y finalmente acabé desarrollando una herramienta
de visualización en 3D que puede ser útil para la comunidad que usa el mismo
software de Lattice-Boltzmann que yo usé. A fin de cuentas, acabé introducién-
dome en la programación de OPENGL, algo que siempre había querido tratar.

Curiosamente, algo en lo que también había querido trabajar desde que lo de-
scubrí hace años era la detección de objetos con inteligencia artificial. Este tema
siempre me resultó difícil para ser autodidacta, pero ante los problemas del capí-
tulo 7 me representaba, no me quedó otra alternativa que intentar volver a in-
vestigar en este ámbito. Aunque disponía de un programa con el que hacer el
seguimiento de las partículas de mis vídeos, los vídeos del capítulo 7 eran im-
posibles de analizar, y acabé programando desde cero un programa de detección
y seguimiento de objetos usando inteligencia artificial. Quizás cuando supe de
esta tecnología era algo demasiado novedoso. A fin de cuentas, me he apoyado en
proyectos e investigaciones de hace 3 o 4 años. El cómo se llega a este código,
junto a otras manipulaciones de seguimiento que tuve que hacer a lo largo del doc-
torado, es algo que muestro en el capítulo 4 y en el anexo C.
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En consecuencia de todo lo anteriormente expuesto, he considerado dividir
esta tesis en 3 partes, precedidas por una introducción general algo extensa y final-
izan por unos anexos algo extensos también. Aunque extensos, debido a todos los
conceptos presentes en esta tesis es positivo explicar todo con claridad, en especial
para otras generaciones a las que le pudiera ser útil la síntesis que he hecho en
mi camino. En cuanto a las partes, en la primera doy idea de cómo hacer partícu-
las y dispositivos, los mejores parámetros para grabar, cómo reducir el espacio de
memoria y consejos y un sistema avanzado de seguimiento de partículas. En la
segunda parte me centro en el estudio de las interfases líquido-líquido a nivel de
partícula individual. Y finalmente en la última parte muestro un proyecto a nivel
de muchas partículas en el que uso interfase líquido-sólidas.

Espero que seáis capaces de apreciar el esfuerzo depositado, y en especial, que
disfrutéis su contenido.
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ccxlv

Summary in
English





The thesis you are currently reading is the culmination of a work that has lasted
throughout the last 5 years of my life. During these 5 years I have focused on the
study of active matter, a field of physics in which any entity that is capable of
generating its own movement is studied. To do this, these entities use either their
internal energy or they capture energy from the outside, and convert it into kinetic
energy. Although said like that it may sound something exotic, in reality what you
have just read is something we see every day. In fact, we not only see it, we do.
All living beings on this planet consume energy to live, and some use part of this
energy to be able to move, so these living beings are examples of these entities that
study active matter. And I am not only referring to those that we see around us, or
ourselves, but also of all that collection of microscopic life that we are surrounded
by and that we do not usually have in our minds, despite being the sustenance of
our life. And it is precisely on this microscopic scale, with artificial microscopic
entities, that I focus on in this thesis.

Surely the fact that this field of physics is so interconnected with life is some-
thing that made me decide to study it. Somehow, my interest throughout my aca-
demic life has not only been in physics, but also in biology. The concepts learned
during my Biotechnology studies have given me a background knowledge that has
complemented those learned in Physics. Perhaps that is why, when I entered my
doctorate, I did not want to do something merely theoretical, but rather wanted to
fiddle around, do things that I could see, that were real. I am not saying by any
means that the theory is unreal, but, after all, the pencil and paper is a mirror that
serves to describe reality, a reality that at some point you have to look at. But my
physics part also told me that one can also abstract the concepts one sees and de-
scribe them with a model. So when I started this thesis I decided to do something
mixed. I would do experiments, yes, but I would not distance myself from a strong
abstraction either. Consequently, the thesis that you will read next has something
of both worlds. Thus, while the chapter 5 deals with experiments, the chapter 6
deals with a theoretical model of what was seen experimentally in the previous
chapter. Given the complexity of making this model, I preferred to follow a more
experimental line, and that is why the last chapter ended up closing it with experi-
ments again.

In these three chapters I focus on what I consider to be the cornerstone of my
doctoral studies: the study of these microscopic entities in the presence of inter-
faces. Although these entities could have been microorganisms, cultivating them is
enslaving the laboratory. Therefore, when I learned that I could describe these or-
ganisms with artificial entities, I was interested. This is how, for this thesis, I ended
up working with spherical microparticles, 2 and 5 µ in diameter, made of silica and
a medium coated by a thin 10 nm layer of platinum (Pt). When these particles are
in the presence of hydrogen peroxide, platinum quickly breaks it down to water
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and oxygen, and the oxygen field that is created around the particle is responsible
for propelling these particles through a process we call self-diffusiophoresis. Of
course there are many more types of particles, but these are ideal as a theoretical
and experimental model, since their geometry is simple, they work well, they are
easy to make and they are well preserved. Thus, the difficulty in the creation pro-
cess was reduced and it allowed me to study a more complex system that includes
interactions with interfaces.

Why interfaces? Because nature is full of them. Sometimes, to simplify the
studies, the experiments are carried out in a medium free of any interaction, seek-
ing to show that you have found an artificial particle that moves better, or different.
These studies are necessary as a first step, but to reflect the totality of the move-
ment of these particles it is necessary to include their interaction with interfaces.
At least their living analogs continually interact with them. So, I started my thesis
by studying their interactions at interfaces. Since these particles move in a liquid
medium, one of the two phases that forms the interface must be a liquid. When
I entered the laboratory there was a student who focused his thesis on the inter-
action of liquid-solid interfaces, so it was decided that I would continue his study
with liquid-liquid interfaces, experiments that I describe in the chapter 5. In the
presence of liquid-liquid interfaces, these particles behaved in a similar way as in
the presence of liquid-solid interfases, despite the different nature of these inter-
faces. While conducting these experiments, I began to develop a computational
model that could explain what I was seeing, which concluded with the discussion
in chapter 6. With this model we were trying to capture all the hydrodynamic and
pheric effects that were in our problem, although with this I had to discover what
two words mean: Lattice-Boltzmann.

One of the most obvious conclusions that we were able to obtain is that inter-
faces can be useful to guide particles, since when they reach the interfaces they
accumulate and move along them for a longer time than predicted. This fact can
be very interesting both to exploit it at the level of commercial applications and to
study interactions of multiple particles from which various collective effects can
be obtained. In the first case, a practical utility could be the use of these particles in
microfluidic channels, necessary for example for lab-on-a-chips that could detect
analytes contaminating liquids or diseases from the analysis of biological samples.
As for the collective effects, given that the analyzes of the chapters 5 and 6 were
carried out at the level of individual particles, I thought it appropriate to go a step
further and look for some collective result. However, building these interfaces
with a somewhat more complex geometry than what I had used was difficult at an
experimental level, so I thought about going back to the solid-liquid interfaces.

Consequently, in chapter 7 I flip and use liquid-solid interfaces in the presence
of many particles. Along the way I was lucky enough to be able to collaborate
with an external group located in Grenoble with which, despite the distance, I was
able to work with them from Barcelona and carry out the experiments they consid-
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ered necessary to answer their theory. Actually, although with this last chapter I
focused on the experimental part, I cannot deny that it also served me on a theoret-
ical level, since I learned about topology and topological insulators, of which I was
unaware. With this last work we were able to see how the use of the interactions
of these particles with interfaces allows us to study with active matter other fields
of physics as far away as topology, and how it is possible to see predicted effects
in the theory of topological insulators. experimentally with a toy model based on
active particles.

Although these three chapters focus the bulk of my studies, there have been
other fruitful projects along the way, and others that unfortunately did not yield
any results. For example, one way to advance in these interactions was with the use
of non-Newtonian liquids, but he continually saw that the particles were dragged
through the medium and he could not make a study of their interaction properly. I
also tried the line of research with more than one particle in liquid-liquid interface
using droplets of lipids in water, but on the one hand I had problems creating the
device, and on the other I had a system that was not capable of making it repro-
ducible. Later I came up with another idea, but I already considered that it was too
late to continue with this investigation given the year I was in and due to COVID-
19. These last attempts, however, are listed at the end of chapter 5.

The microchannel study also had its problems. For example, at first I thought
of studying bottleneck phenomena in microchannels, both at an experimental level
and with the computational model, which is something very interesting to take into
account when having an experimental device. One of the things that slowed me
down was the accumulation of oxygen that could cause drift problems with the use
of these particles. As an alternative I tried to use silica particles with streptavidin
on the surface to which to bind very easily biotinylated urease (by binding biotin-
streptavidin), which could also be very useful to bind other things like biotinylated
mRNA with fluorophores, useful for detecting analytes in suspension, but the par-
ticles fell under their weight and clung to the surface instead of moving. Another
type of particle I tried to use were those based on titanium dioxide, but I never got
a sample that was able to move.

On a more theoretical level, I also tried to study the phoretic interactions of
these particles with each other with wells in which to place particles individually,
but I also had to stop it due to COVID-19 and be already in my last stages of my
PhD.

In addition to these attempts, the road to solving the 3 main chapters has also
led to other unexpected paths that have finally been successful. Proof of this re-
mains refllisted in the chapters 2, 3, 4 and the annex C, that although they do not
follow the theme for which I started my doctorate, they have been parallel works
consequence of the previous ones. When I started my research on chapter 5 one of
the problems encountered was recording videos because of their size. Recurring
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problem among other users of the microscope recording equipment. All the videos
taken are recorded in a single file in RAW format. As a result, and since I like pro-
gramming, I ended up making two programs with which to convert these videos
from RAW to compressed format and save more than 98 % of memory space. Like-
wise, in order to record only what is necessary, and since we could optimize the
parameters to be used to study the movement of active particles (recording time,
images per second and analysis time), I began to investigate how these parameters
could affect the study of the speed and rotational time of the particles. The study
at the speed level was not something that affected me so much, but while I was
working on the chapter 5 I had doubts about how to calculate the rotational time
of my particles, and although it was late, I thought that this It could be interesting
for other people who are facing the same problem. All these results are shown in
the chapter 3.

On the other hand, one of the things that I observed in the chapter 5 was the
problem of the accumulation of particles due to the oxygen they produce, and
therefore work with many as I did in chapter 7 would be tricky. However, I was
able to improve the experimental devices from which I started and solve this prob-
lem as presented in the chapter 2.

Regarding the chapter 6, sometimes I had problems with the three-dimensional
representation of what I saw and how to graph it. None of the solutions I found
were suitable for me and I eventually ended up developing a 3D visualization tool
that can be useful to the community that uses the same Lattice-Boltzmann software
that I used. Ultimately, I ended up getting introduced to OPENGL programming,
something I had always wanted to try.

Interestingly, something I had also wanted to work on since I discovered it
years ago was object detection with artificial intelligence. This topic was always
difficult for me to be self-taught, but given the problems of the chapter 7 repre-
sented me, I had no alternative but to try to investigate again in this area. Although
I had a program with which to track the particles in my videos, the videos in the
chapter 7 were impossible to analyze, and I ended up programming a program to
detect and track objects using artificial intelligence from scratch . Perhaps when I
learned about this technology it was something too novel. After all, I have relied
on projects and research from 3 or 4 years ago. How to get to this code, along
with other follow-up manipulations that I had to do throughout the doctorate, is
something that I show in the chapter 4 and in the annex C.

As a result of all the above, I have considered dividing this thesis into 3 parts,
preceded by a somewhat extensive general introduction and ending with somewhat
extensive annexes as well. Although extensive, due to all the concepts present in
this thesis, it is positive to explain everything clearly, especially for other genera-
tions to whom the synthesis that I have made on my way could be useful. As for
the parts, in the first one I give an idea of how to make particles and devices, the
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best parameters to record, how to reduce memory space and tips and an advanced
particle tracking system. In the second part I focus on the study of liquid-liquid
interfaces at the individual particle level. And finally, in the last part, I show a
project at the level of many particles in which I use the liquid-solid interface.

I hope you are able to appreciate the effort put into it, and especially that you
enjoy its content.
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Appendices





A
Fluid mechanics

"The real problem is not whether machines think,
but whether men do."

B. F. Skinner



A.1 | The Continuum approach:

Navier-Stokes equation

To start with Navier-Stokes equations derivation we will consider the pseudo parti-
cles I described in section 1.3. These pseudo particles are a big packet of molecules
of volume V that verifies two limits. First, the size of the characteristic linear
length for V (V

1
3 ), must be much larger than the characteristic length present in

our molecular system, which we will refer as δ. For a simple liquid, such as water,
we can take the typical interparticle distance (δ = 3Å). By assuming this limit, ev-
ery property of our new elementary particles will be statistically a microscopical
averaging. On the other hand, the size of V

1
3 cannot be bigger than the order of

magnitude of the characteristic properties we want to see in the system, which we
will refer as L. For example, particles size in this thesis is around a few microme-
tres. Thus, to be conservative we could set L = 0.1 µm.

Once the elementary particles are defined, we have two approaches to proceed.
The better physical interpretation of the fluid would imply to use some conser-
vation equations to these particles under the framework recalled as Lagrangian.
Even though, and because how computers solve the fluid, we can also derive a
mathematical equivalent by looking at fixed regions of space, under the framework
recalled as Eulerian. Since it is also easier to derive from the Eulerian perspective,
in this thesis I will present shortly the derivation in this framework1, but I will
change to the Lagrangian perspective to give a better idea when necessary. In the
Eulerian framework, because we work under the continuum hypothesis, we can
divide the space where the fluid is into tiny fixed regions of space of volume V’.
In all these regions, conservation of different quantities is applied. To start with
this methodology, we need to derive what is known as the continuity equation.
This equation expresses the accumulation of a quantity inside any fixed region as
a function of the quantity that enters or leaves the region and if the quantity is con-
served or not.

If we refer to the quantity we want to study as ϕ, one can understand that since
the fluid is moving at speed u, there will be a net flux of ϕ flowing with speed u
through a unit of area per unit of time over all the surface S’ of the fixed region.
To this flux we will refer as j. Therefore, j = ϕu. Because of the flux j, inside
the fixed region V’ there will be a change of ϕ over time. Furthermore, it can

1See ref. [84] for the alternative derivation in the Lagrangian framework.
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Figure A.1: Model of a fluid. A) A fluid is composed of an incredible number
of molecules. In the case of water, water molecules are moving randomly. These
molecules can feel other molecules by different potentials such as the hydrogen
bonds. B) To avoid modelling such number of molecules, we can define it as a
continuum and divide the box into a lattice. A great example of this procedure is
by solving the Navier-stokes, where the fluid is defined by a vector field u which
defines the speed of the fluid. C) To solve the Navier-Stokes equation, one needs to
apply the continuity equation, which relates the variability of a quantity in one of
the discretized cells of the lattice as a factor of the advection (flow coming/leaving
from/to other cells) and the creation/annihilation of this substance inside the cell.
Image authorship. Own images.
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be possible that inside V’, ϕ is being created or destroyed at a ratio σ per unit of
volume and time. If σ > 0 we say V’ is a source, while if σ < 0 it is called
a sink. In the case that σ = 0, the quantity ϕ is conserved. Summing all these
components, we have:∫

V ′

∂ϕ

∂t
dV +

∫
S′

j · ndS =

∫
V ′
σdV, (A.1.1)

where n is a perpendicular vector to the surface S’ of the fixed region of space
with volume V’ and ∂/∂t is the partial temporal derivative. Equation A.1.1 can be
rewritten using the divergence theorem [248] as:∫

V ′

[
∂ϕ

∂t
+∇ · j − σ

]
dV = 0. (A.1.2)

Since V’ is arbitrary chosen, the previous equation can only be satisfied always if
the integrand is 0. Therefore, we have derived the continuity equation:

∂ϕ

∂t
+∇ · j = σ. (A.1.3)

Now, by using the continuity equation we can apply the conservation of mass
and the conservation of the momentum to obtain the well-known Navier-Stokes
equation, which models the u field and thus, the fluid.

Conservation of mass

We will assume that mass is neither created neither destroyed in the fluid, and thus
σ = 0. Because V’ is infinitesimal small due to continuum approach, if we apply
this conservation to every region of volume V’, we can directly take the density of
the fluid instead of the mass. Thus, here ϕ = ρ. Applying both conditions to Eq.
A.1.3 we obtain:

∂ρ

∂t
+∇ · ρu = 0. (A.1.4)

Although we may use Eq. A.1.4 as it is, it is usually simplified. Density is a
property of systems that is usually related with pressure (p) and temperature (T )
by means of an equation of state. When one uses systems where the fluid rest at the
same temperature, the relation ρ = ρ(p, T ) becomes ρ = ρ(p). But now, consider
we have a box filled with a fluid inside where we apply a uniform force perpendic-
ularly into each of the walls of the box from outside into inside. In other words,
consider we are applying a pressure into the box. If the fluid is a gas, by applying
pressure into the box the volume of the box can be reduced because interparticle
space between molecules of gas is large, and thus, molecules can get closer each
other. Consequently, density is increased. If we stop applying these forces, the
volume of the box will be restored, and hence, density will decrease. Thus, gases
can be compressed or uncompressed and therefore, they are compressible. But for
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liquids, the space between molecules is not as high as for gases, and they are usu-
ally not very compressible2. Thus, when dealing with liquids we can approximate
that ρ ̸= ρ(p), or that ∂pρ ≈ 0. Under this scenario we will have that density is
almost constant in time and therefore:

∇ · u = 0. (A.1.5)

This is the reason why for many fluids, when Eq. A.1.5 is true, we say that the
fluid is incompressible.

Conservation of momentum

Newton’s second law affirms that the change in linear momentum is equal to the
forces applied to the body. We can also apply Newton’s second law to the fluid.
The proper derivation should be applied to every elemental particle, but one can
also apply it using the continuity equation in the Eulearian framework since both
scenarios are equivalent. To introduce the linear momentum, we can consider that
it can be described as ρu since we refer always to density instead of mass as already
explained. In this case, σ is not strictly 0, because forces are elements of sink and
sources. For example, we will always have the gravity force ρg. Furthermore, if
we imagine that the fluid is a continuum full of boxes, these boxes will have a
normal force between them. This force considers the microscopically diffusion of
particles over boxes. Typically, this last term is described as a tensor called Stress
tensor 3 and it is written as T. Thus, applying Eq. A.1.3 we have:

∂ρu
∂t

+∇ · (ρu · u) = ρg +∇ · T. (A.1.6)

It is important to note that the Stress tensor gives more unknown quantities than
relations we have in the previous equation. To reduce this number of unknown
quantities, we can also apply conservation of angular momentum. By applying
this conservation, we can find that T is a symmetric tensor. This will be always
true except in the cases where there is a body couple per unit mass such in the case
of ferrofluids. Nevertheless, we will have more unknown quantities than relations.
To have more relations, we need to apply the conservation of energy to obtain what
is known as the constitutive equations, but I will not introduce them since they are
not needed to obtain the Navier-Stokes equation.

In general, T is decomposed in a general pressure p acting over each cartesian
axis of the volume4 plus another component called the deviatoric stress τ , which

2Mostly, liquids moving at speeds much lower than the speed of sound in the fluid are incompress-
ible. This condition is often characterized by what is known as Mach number (M), a dimensionless
number which is the ratio between the speed of the fluid (|u|) and the speed of sound in the fluid
(usound): M ≡ |u|

usound
3See ref. [84] for a good derivation of the Stress tensor.
4It is a diagonal 3x3 tensor
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takes into account different sources of pressure that apply to the volume in any
direction5. Thus, we can write:

T = −pI + τ , (A.1.7)

where I is the unitary matrix. Although τ can be very complex, it is often
described as a linear function of another tensor called the rate-of-strain tensor or
E. To understand E, we need to think that when we apply forces to the walls of the
volume V, this volume may deform, and this deformation can be different in each
axis. From a Lagragian perspective, the reasoning is more intuitive. In the Lagra-
gian perspective, the fluid is defined by material volumes and material points. A
material point is a point that moves with the local continuum u. These material
points are enclosed into regions of space from where they cannot escape, but these
regions can deform with time, and are called as material volumes. The ratio at how
this deformation occurs is explained by this tensor E, and mathematically, it is also
defined as the symmetric part of ∇u6. For some fluids, the rate of deformation in
each direction is proportional to the force applied in that direction. In those cases,
we say that the fluid is Newtonian and the constant that relates them, which can be
seen as a resistance of a volume to be deformed, is called shear viscosity and it is
written as µ. Thus, the concept of viscosity of fluids is introduced by the volume
deformations that the volume can have because of different forces acting over the
surfaces of the volume. In these cases, where also the fluids are incompressible, T
is written as:

T = −pI + 2µE, (A.1.8)

where in this case, p is the thermodynamic pressure of the fluid. For instance,
simple fluids, such as water, are Newtonian fluids, and will follow this relation, but
others, such as a blood and in general, colloidal systems, are Non-Newtonian and
Eq. A.1.8 will be more complex.

Combining mass and linear momentum: The Navier-Stokes equation

When one uses the previous equations (A.1.4 and A.1.6) we say we work with the
Navier-Stokes equation, which are the typical equations a physicist would think to
model any fluid. In the particular scenario of an incompressible Newtonian fluid,
these equations read as:

ρ

(
∂u
∂t

+ u · ∇u
)

= ρg −∇p+ µ∇2u,

∇ · u = 0.

(A.1.9)

Sometimes, the kinematic viscosity ν is placed in Eq. A.1.9. This constant rep-
resents the contribution to acceleration of the fluid element due to viscous stresses
and is defined as ν = µ/ρ. Also notice that in some texts, µ is written as η.

5It is a 3x3 tensor
6The antisymmetric part of ∇u is defined as the vorticity tensor Ω, and represents the local rigid-

body rotation of two adjacent material points.
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A.1.1 Dimensionless Navier-Stokes equation

To obtain a dimensionless Navier-Stokes equation we need to change all variables
by dimensionless variables. The typical dimensionless variables are:

• For length, r∗ = r
L and ∇∗ = L∇, where r∗ is the dimensionless spatial

flow vector, r is the spatial flow vector, L is the characteristic length of
our system, ∇∗ is the dimensionless gradient operator and ∇ is the gradient
operator.

• For flow velocity, u∗ = u
U , where u∗ is the dimensionless flow velocity vec-

tor, u is the flow velocity vector and U is the modulus of the characteristic
speed of our system.

• For time, t∗ = t
L/U , where t∗ is the dimensionless time and t is the non-

dimensionless time.

• For pressure, p∗ = p
ρU2 , where p∗ is the dimensionless pressure, p is the

non-dimensionless pressure and ρ is the density of the fluid.

• For forces, f∗ = f
f0

, where f∗ is the dimensionless force, f is the force
and f0 is the modulus of a characteristic force associated with our force in
our system. In the case of the gravity, we would have g∗ = g

|g|

Introducing these new variables we obtain the dimensionless Navier-Stokes
equation:

∂u∗

∂t∗
+ (u∗ · ∇)u∗ =

L|g|
U2︸︷︷︸
1/Fr2

g∗ −∇∗p∗ +
ν

LU︸︷︷︸
1/Re

∇∗2u∗, (A.1.10)

A.1.2 Drag of a sphere moving at constant speed in a flow

Particles at the scale of µm are orders of magnitud bigger than water molecules
that surround them7. Thus, if we want to analyse how these molecules affect as a
drag to the microparticles, it is intelligent to tackle this problem from the contin-
uum point of view of Navier-Stokes, since it is the simplest approach we can use.
However, if we look at eq. (1.3.2) we will not be able to see anything related to a
particle. Despite of their appearance, the inclusion of an inactive particle is already
implicit there. The reason is because this equation gives you an expression for the
flow field u. Obviously, if there is an impediment that does not allow the fluid to
flow, the flow field will have this information. In our case, the inactive particle will
act as this impediment, and hence, by introducing the proper boundary conditions
we will be able to capture the consequences that introducing an inactive particle
has over the flow.

7They are at Å scale
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If the fluid is flowing, a particle settled in the fluid will flow within it. In such
conditions, one could think that there is not much to say about the particle, but
for instance, we know that particles do not always have the same density as the
fluid has. Hence, the gravity and buoyancy force will act over the particle and it
could move with a non-zero speed relative to the fluid, just as active particles will
do. Thus, in this scenario, the particle will feel a drag, which can be estimated
from the flow field u by calculating the stress of the fluid around the particle. The
calculus of this problem was first introduced by Stokes in 1850[249]. To obtain
the drag we will consider a few assumptions:

• We will set the reference point of view in the particle of radius R, which
is moving at a constant speed V relative to the fluid. Hence, far from the
sphere the speed we will see is this V , but on the walls the speed will be
zero.

• Since we deal with a sphere, the problem is symmetric along the ψ coordi-
nate, and both Vψ and the derivates along this direction will be zero.

• We will suppose that the flow is steady and that we are working at low Re.
Thus, we will start by using 1.3.6 without any external forces. The viscous
term can be expanded following some mathematical algebra to: ∇2u =
∇(∇ · 0︸ ︷︷ ︸

=0

)−∇× (∇× u)

• We will start from the divergence of the speed and the previous rotational.
Once we have an equation for u, we will obtain the pressure from Stokes
equation.

• Finally, we will obtain the stress and we integrate over the surface of the
sphere to obtain the force.

After performing this procedure, we obtain that the drag over the sphere is:

γ = 6πηR. (A.1.11)

This result will yield valid in case of a particle moving at constant speed and
at low Reynolds, which is the condition considered in this thesis. Because the
Janus particles used in this thesis move at a constant speed, no matter which is the
mechanism of motion behind them, we can freely use this result. If we consider
that the relative constant speed is the one due to the activity, we can reuse this
drag every time we need to insert a drag force to work with the active particles.
Therefore, this drag will appear along this thesis.
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B
Thermodynamics

"Everything here appears calculated to inspire
kind and happy feelings, for everything is delicate

and beautiful."

Washington Irving



B.1 | Macroscopic thermodynamics

The basis of thermodynamics was developed along the XIX century. Before this
century, concepts such as free energy or thermodynamic potentials were undefined,
and thus it would be impossible to find anything related with them under these
names. Today it may be something fundamental that any student can learn in his
bachelor but still, although fundamental, the clear concept itself may be forgotten
with time if not used. Therefore, here I present a reminder of the basic concepts I
considered useful to fully understand this thesis.

B.1.1 Equation of state, state variables and state functions

From a thermodynamic point of view, all the properties of a system can be defined
at a specific time by obtaining the value of some measurable variables. These vari-
ables are what we know as state variables and experimentally, it is observed that
one can express a state variable as a function of other state variables. In this sense,
we could say that these variables can be state functions. Moreover, we can also
construct a function which defines the state of the system to which we refer as
equation of state.

For fluid systems, the typical variables set are the temperature T , the pressure
P and the volume V or the volume per mass v = 1/ρ, where ρ is the density. As
an example of state function we could refer to P = P (T, v) and for equation of
state we can refer to the ideal gas law pV = nRT , where R is the gas constant1

and n is the number of moles of the substance.

Nonetheless, state variables, state functions and the equation of state describe
the system in equilibrium, this is, the system does not have net fluxes of matter or
energy, and they do not depend on the path followed by the system to achieve the
equilibrium. When a property or a function depends on the path, we say they are
process quantities and process functions, respectively. For example, heat and work
are process quantities. To avoid confusions, when recalling infinitesimal quanti-
ties, we note state variables with d, while process variables are marked with δ.
E.g., work would be δW , but pressure is dP .

18.314 JK−1mol−1
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B.1.2 Thermodynamic potentials and free energy functionals

There are a few state functions that we refer to them as thermodynamic potentials.
These state functions are not usually considered as observables but can be con-
structed from observables as a state function.

The discussion of these potentials started by the work of Thomson in 1855[250],
and soon was extended by Massieu in 1869[251]. In fact, there are different ther-
modynamic potentials, but all of them are connected following Legendre trans-
formations, which transform independent variables into dependent and vice versa.
Depending on the problem we look for, different conditions are given, and hence
different natural variables are used. Therefore, will decide which thermodynamic
potential to use depending on these conditions. The common thermodynamic po-
tentials are:

• The internal energy U

• The Gibbs free energy G

• The Helmholtz free energy F or A2

• The enthalpy H

We usually look for the difference of these potentials between two thermody-
namic states because they give us relevant information for the system.

Internal energy

Suppose we have a glass full of water, that we put on a table. Apparently, the total
energy of this glass is zero, because it is not moving and hence, its kinetic energy
is zero. Moreover, if we choose the zero reference for the gravitational potential
at the level of the table, the glass neither has potential energy. But the glass with
the water is full of molecules that are moving randomly and interacting each other.
And each molecule has its own translational, rotational, and vibrational kinetic en-
ergy. Plus, each molecule has its own potential energy coming from intermolecular
forces. In fact, the glass is full of energy!

To refer to this energy, that apparently one could not see from the macroscopic
point of view, we use the term internal energy or U. The amount of internal energy
of a system is very important because limits other properties of the system. For
instance, the energy one needs to increase one degree of temperature a substance,
also known as the heat capacity, depends on U . If one compares water, which has
higher potential energy from its interactions, and copper, which has less, one can
see that the specific heat capacity3 for water is 10 times more than for copper[252].

2From the German Arbeit , which means work.
3Heat capacity of a sample divided by its mass.
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Alternatively, one could also imagine that the internal energy is the total en-
ergy needed to create a specific system, without changing temperature or volume.

Free energy: Gibbs and Helmholtz potentials

Traditionally, two definitions to define the term free energy exist, depending on the
working conditions of the system:

• The Gibbs free energy , represented byG, gives the amount of non-expansionary
work a system can do, this is, the work that can do not related with pressure-
volume work, at a constant temperature and pressure. For example, if in a
reaction the system changes its volume, this free energy will not consider
the work done for expanding/compressing the system. Mathematically:

G = U − TS + pV, (B.1.1)

where T is the temperature, S the entropy, p the pressure and V the volume.

• The Helmholtz free energy , represented by F , or sometimes A4, gives the
amount of non-expansionary work a system can do, this is, at constant tem-
perature and volume. Mathematically:

F = U − TS. (B.1.2)

B.1.3 Chemical potential

In the previous subsections I already used the term potential energy because it is
common in physics, but I did not define it. However, to understand well the con-
cept of chemical potential this concept should be clear. The concept of potential
energy was born just a few years before the Gibb’s energy was defined, around
1850 by W. Rankine[253], but in its essence, one even could see Aristotle’s phi-
losophy. Aristotle used to use the concept of potentially as what a body can be
in the future, but it is not now, and soon you will understand why both terms are
related.

In nature, bodies can interact with forces over long ranges. Hence, they can
be displaced by these forces, and consequently, a total energy in concept of work
will be done. But the work caused by some of these forces only depends on the
initial and final positions of the bodies. When we have such a kind of forces, we
say they are conservative, and the energy used as work to displace these objects
relative to each other is a potential energy. This potential energy is an intensive
property of the system, since is an energy divided per unit of matter. For example,
gravitational and electric forces are conservatives, and we can define both gravita-
tional and electric potentials, which uses the mass and the charge respectively as

4Because of the German Arbeit , which means work .
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unit of matter. Thus, if we increase the size of the system, these properties will not
change. In somehow, one could think that this energy is stored in the system, and
it will be used at some moment. For example, if we hit slightly a rock in a cliff, it
will suddenly acquire a large kinetic energy, which comes from the stored gravita-
tional potential energy. The gravitational potential had the potential of becoming
a kinetic energy. We can observe two interesting facts about potential energy from
the previous example. The first is that the potential energy depends on the relative
distance between bodies (e.g., Earth-rock). The second is that in those systems
where potentials can be defined, there can be regions of different potentials levels.
The potential energy on top of the cliff was bigger than when it fell. When there
are gradients of potential, bodies move from regions of high potentials to low po-
tentials.

As we can define a potential for gravity, in thermodynamics it can be defined
a potential for the Gibbs free energy, which can be also redefined as a chemical
energy. This potential defines what the chemical compounds of the system can be,
and it is called chemical potential or µ. Here, the unit of matter is theN molecules
in the system. For example, molecules in a system can react and become new
species. Thus, the chemical potential expresses the potentially of having a chem-
ical reaction, but also, since mathematically µN = G = U − TS + pV , it is
often expressed as the necessary energy to introduce a molecule in the system un-
der constant pressure and temperature. Therefore, by construction, one can see
that the chemical potential is the derivative of Gibbs free energy when changing
the number of molecules under constant T, p. But one can also define it for T, V
constants by using the Helmholtz free energy.

Although one can always define a mean value of the chemical potential for
a system, this value will always come from the individual chemical potentials
present in the system. Each different molecular specie will have its own chem-
ical potential. When a system reaches the equilibrium, the different molecular
species necessarily will equal their chemical potentials since the net chemical re-
action must be zero.
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B.2 | Phase transitions

B.2.1 Spinodal decomposition of a binary mixture

In section 1.2.1 I already introduced the concept of a phase and that we can move
from one phase to another phase. In fact, the last is what is known as a phase
transition. From among all kinds of different phase transition we can have, we can
distinguish two types:

• First phase order transition. In these transitions we will see a discontinuity
in some macro thermodynamical quantities. During these transitions, the
process evolves in a transition period where both phases coexist. In this pe-
riod, temperature is constant, and a quantity of heat is absorbed or released.
To this heat we refer as latent heat .

• Second order phase transition. In these transitions we will not see disconti-
nuities and they will happen at a specific configuration of the thermodynam-
ics quantities, which we refer as the critical point. At the critical point we
will see an infinite correlation length, a power law decay of correlations and
a susceptibility will diverge. No latent heat is seen.

As an example of the previous transitions, we can take a system where its
state can be defined by the pressure, volume, and temperature. These kinds of
systems are the ones we use to refer to common substances that change between
gas-liquid-solid states. In these systems, it is typical to draw a scheme of temper-
ature vs pressure, where different areas referring to different phases can be drawn,
as seen in Fig. B.1A). The separation of these regions defines a curve, the phase
diagram curve, in which first order transitions occur. In the case of the gas-liquid
states, the diagram curve is not infinite, but ends at a point. This point is the criti-
cal point, which changes from first to second order transition, and after it we will
never see a phase transition5, since there is only a unique phase, the supercritical
fluid.

5The necessity of an infinite curve can be seen as a matter of symmetries. When two phases lie in
the same symmetry group, it is not necessary to have a phase transition to move from one to another
phase, but when they are not, it is necessary. Because of atomic arrangement, solids have symmetries,
which liquids and gases do not have. Therefore the liquid-solid curve is infinite, but not the liquid-gas.
This is the Landau symmetry principle.
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Figure B.1: Phase diagrams for phase transition. A) Typical diagram for a
gas/liquid/solid system. Solid/gas transition will happen if we cross the red line.
Solid/liquid transition will happen if we cross the green line. Liquid/gas transi-
tion will happen if we cross the blue line. In water, the less temperature the more
pressure you need to make the transition (solid green line), but usually it is the
opposite (dashed green line). The point where all lines crosses is the triple point.
These transitions are first order, but there is a point, the critical point, which is a
second order phase transition. Notice that these lines are the binodal. As an ex-
ample, I draw the spinodal for the liquid/gas transition. A system in between the
two spinodal may be in the opposite phase as expected. B) When dealing with
binary mixtures, it is often presented a temperature-composition plot, where com-
position is the normalized percentage of one element from the two of the mixture.
The same idea as in A) applies here. LCST is the lower critical solution temper-
ature, while UCST is the upper critical solution temperature. Image authorship. A)
Matthieumarechal, Wikimedia Commons, used under CC BY-SA 3.0 license. Adapted. B)
Locke9k, Martin Strand, Wikimedia Commons, used under CC BY-SA 3.0 license. Adapted.

However, there a couple of things that usually are not explained about this
diagram, or little is said when these plots are shown. The phase diagram curve
is in fact what is known as the binodal line, where the transition between phases
should start occurring. But to start, you need a nucleation point. If no point is
found, the phase can still survive even if you would not expect it. For example,
have you even seen any video where a bottle with liquid water inside is hit, and
suddenly the water becomes ice? Well, this is the reason. Liquid water at atmo-
spheric pressure and a bit under 0ºC should have been ice, because in the phase
diagram is in the ice region, but it is still in the metastable area. When you hit it,
suddenly the metastable state looks for the stable state, which is the one of the ice.
To this liquid water is what you refer as supercooled water. If instead of being
at the solid phase would have been in the gas coming from the liquid, you would
have had superheated water . But these metastable regions end at some moment.
As with the case of the binodal line, you could also draw a new line. We call
to this line the spinodal line, and it is the line that separates the metastable region
from the unstable one. Any fluctuation entering the spinodal will change the phase.
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Another thing that is usually not commented is about the possibility of having
critical points in between other phases. Maybe, because these kind of diagrams
are usually shown just for a simple substance, but not for a mixture of different
species (See Fig. B.1B)). For instance, we could have a critical point in between
two liquid phases[254, 255]. For a simple substance it could be weird to think
that we can have two different liquid phases, but even they can exist. In the case
of having a mixture between two liquids that are miscible, one of the possibilities
that may happen is that, as with the water can be converted from liquid to ice, both
liquids unmix. For example, imagine we mix liquid A with liquid B. There will
be a set of thermodynamical variables that will unmix the solution into a solution
where both liquids are not mixed. When one works with these kinds of systems, it
is usually painted a plot of molar fraction of one of the components vs temperature.
In these plots, it is also possible to draw both the spinodal and the binodal curves.
Where both curves coincide, we have a critical point, and since the nature of a
critical point is different, no metastable gap is seen. Thus, around the critical point
we can unmix the mixing without metastable regions. In any case, the area inside
the binodal curve is called the miscibility gap, because we can have both phases
unmixed. Technically, to represent these plots we would need to paint the Gibbs
free energy vs the molar ratio. In this plot, for the miscibility gap we would see
two minima, corresponding to both phases of liquid A and liquid B unmixed. But
outside this region, the Gibbs free energy would look like a single minimum, and
thus we can only have a unique phase, the mixed phase.

B.2.2 Landau free energy functional

Typically, the Gibbs and the Helmholtz are the two free energies defined in clas-
sical thermodynamics, but just a year after the starting of the Spanish Civil War,
Lev Landau introduced his own free energy[256], which has units of energy as
well, but lacks the complete significance of the previous free energies. Landau
saw that around a critical point, the phenomena could be described by a power
law for many thermodynamic variables, which give you some characteristics ex-
ponents depending on the system. Different systems can share same exponents,
and hence, same physics, arising to the concept of universality. He took this idea
in mind and decided to develop a function, which is expressed as a power law se-
ries also, but taking into account a parameter that is characteristic of the system,
the order parameter, which we will refer for now as ϕ. The order parameter can be
whatever, not necessary a scalar or a vector, but it must differentiate two phases.
One, the disordered phase, will have order parameter zero, and the other one, the
ordered phase, will have non-zero. With this parameter, Landau postulates that
one can build the Landau free energy or Landau functional F , where the state of
the system is described by the global minimum of the functional with respect the
order parameter. There are a few remarks F must obey:
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• The symmetries of F must be consistent with the ones from the system.

• Around the critical point, defined by the critical temperature Tc, F is ex-
pandable in a power series. Moreover, in a uniform spatially system of vol-
ume V , it can be written also the Landau free energy density as:

f =
F
V

=
∞∑
n=0

anϕ
n, (B.2.1)

where an are different prefactors for each power of ϕ.

• If the system is inhomogeneous, e.g. being r the spatial position vector,
ϕ = ϕ(r), f is a local function. In such cases, f will only depend, as a
maximum, on ϕ(r) and a finite number of derivatives.

• Around Tc, ϕ is zero in the disordered phase and non-zero in the ordered
phase, but in the last, it is a very small number. Hence, depending on the
dimensions of our system and the codimension of the critical point, f can
be truncated. For a homogenous system, it is usually enough to develop the
power series up to the forth power:

f =
F
V

=
4∑

n=0

anϕ
n. (B.2.2)

B.2.3 The Cahn-Hilliard equation

Using the ideas of the spinodal decomposition of a binary system and the Landau
free energy, we can develop a simple model for the phase separation of a fluid
composed by two miscible liquids, A and B, into two phases. The original devel-
opment of this model[100], which is called as the Cahn-Hilliard equation, starts
by using the mole fraction of one of the two liquids, but for our interpretation we
will use the difference instead. If in our system we have nA molecules of liquid
A and nB molecules of liquid B, then their molar fraction at position r and time t
will be

cA(r, t) =
nA

nA + nB
,

and
cB(r, t) =

nB
nA + nB

,

respectively. Of course, cA(r, t) + cB(r, t) = 1. Here, we will consider that
the important parameter is the difference between both concentrations c(r, t) =
cA(r, t) − cB(r, t). Thus, for any r at any time t, if no A is present, c = −1. If
no B is present, c = 1. If both are at the same quantity (mixed), c = 0. Therefore,
c is a perfect candidate for being an order parameter as we will see. If mass is
conserved, we can write:

∂c(r, t)

∂t
= −∇ · j. (B.2.3)
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But, what is the flux j here? In section A.1 we can see that the flux is some-
thing the fluid is transporting. This is an advection term, but in the Cahn-Hilliard
equation we do not consider, in principle, that there is an advection of c due to
a liquid. This means that if we imagine c as solutes in a liquid, the solutes are
moving inside it by themselves, diffusing, but not because the liquid is transport-
ing the solutes itself. These are two different mechanisms. When liquids have
regions of different solute concentrations, the solutes diffuse from regions of high
concentration to lower concentration. One can say that phenomenological, the flux
that transport these solutes are proportional to their concentration gradient6. Thus,
j = −D∇c, whereD is a constant we call it as diffusion constant. But if there is a
gradient of solutes is because there is a force acting over them. If the driving force
that is acting is small enough, we can consider that this force is linearly related
with the gradient. In our case, what leads to this change of concentration is the dif-
ference of chemical potential. As with the gravity force which can be derived from
the gravitational potential, the chemical potential can also derive a force, which in
our case is this driving force. Thus, we can write:

∂c

∂t
= −∇ · (M(c)∇µ) , (B.2.4)

where M(c) is a new parameter we know as the mobility and can depend on
c. Hence, if we can obtain the chemical potential, we will be able to describe
our system. The chemical potential can be derived from a free energy as already
explained, and in the case of considering the critical point, we can develop the
Landau free energy. Thus, we can develop a Landau free energy for this system
using c(r, t) as the order parameter and we will assume that locally, the free en-
ergy will depend on both the direct local environment and the local concentration.
Therefore, the free energy will be a series of power of ∇c and c. By introducing a
few symmetries in the system we can simplify this series. For an isotropic medium
or a cubic lattice, as the authors of the equation looked for, we need a rotational
symmetry about a fourfold axis (ri → rj) and a reflection symmetry (ri → −ri),
being ri,j the components of r. After adding these symmetries, the free energy
function has a shape of:

F = Nv

∫
V

dV
(
f0(c) + κ1∇2c+ κ2 (∇c)2

)
= Nv

∫
V

dV
(
f0(c) + κ (∇c)2

)
.

(B.2.5)

Here, Nv are the number of molecules per volume unit cell and f0(c) is the
free energy density per molecule of a system with uniform composition c, which
will depend on a power series of c. This power series should be reduced to the
minimum, and by symmetry, we should ask for a solution of the shape7 f0(c) =
Ac2+Bc4. The fact of neglecting odds powers here is because we do not want that
one phase has more or less energy than the other one. Both states are identically

6This is also known as the Fick’s first law.
7The original work defined f0 differently, but this alternative is simpler.
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energetical and probable. On the other hand, the fourth term is the lowest that let
to have two minima, regarding each to each phase, but only if B > 0 and A < 0.
If f0 expresses the homogenous part then, the derivative must be interpreted as the
inhomogeneities of the system. This association is straightforward since gradients
are only non-zero terms if the system is not homogenous, such as in the presence
of interfaces. Hence, this term will include the role of surface tension into our free
energy. Finally, the second step follows after applying the divergence theorem and
choosing a boundary of integration in such a manner that ∇c · n is zero, being n
a normal vector to the surface of element. This boundary selection can be done
because we do not care about effects on the external surface. Therefore, Eq. B.2.5
is often written as:

F =

∫
V

dV

(
A

2
c2 +

B

4
c4 +

κ

2
|∇c|2

)
, (B.2.6)

where the parameters A,B, κ must be properly chosen as already discussed.
The prefactors in the denominator in Eq. B.2.6 are chosen to simplify later deriva-
tives of the free energy density. The gradient is often written in terms of the mod-
ulus, which is mathematically equal8 to the previous term.

Once we obtained a free energy function, we can derive the chemical potential
as if it were the Gibb’s free energy from the free energy density f (µ = ∂cf ) and
hence, we developed the Cahn-Hilliard equation:

∂c

∂t
= ∇ ·

(
M(c)∇

(
Ac+Bc3 + κ∇2c

))
. (B.2.7)

Finally, a last comment about the previous equation. For simplicity, it is often
usedB = −A. This is because the values of equilibrium for c are those that makes
the derivative of f zero, or directly, the chemical potential equal 0. The solutions

then read as c∗ = ±
√

−A
B , where c∗ are the values of equilibrium. Thus, if

B = −A, c∗ = ±1.

Connecting the Cahn-Hilliard equation with Lattice-Boltzmann

In the development of the previous subsection I already discussed that c diffuses.
But we know our fluid is not static, and that it transports this c. Thus, to connect
both the fluid and c we just need to add one thing into Eq. B.2.7: an advection
term. If u is the velocity of the fluid we can calculate from the Lattice-Boltzmann
algorithm, then we will solve:

∂c

∂t
= ∇ ·

(
M(c)∇

(
Ac+Bc3 + κ∇2c

))
−∇ · (uc) . (B.2.8)

The discretization of this equation does not have anything special, as with the
Lattice-Boltzmann, but just that the cells where it will be discretized will be the
same to be used for the fluid.

8(∇c)2 = (∇c) · (∇c) =
(

dc
dx

)2
+

(
dc
dy

)2
+

(
dc
dz

)2
= |∇c|2
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B.3 | Microscopic thermodynamics: Kinetic

theory

The concept of atoms and molecules has not ever been important along human
history[257]. The firsts from which is typically said to think about indivisible
particles are the followers of Leucippus and his pupil Democritus, from the old
Greece about the 5th century BC, although the idea was also in other territories
such as India before them. In fact, the word atom still comes from the Greek
ἄτομον, which means that it cannot be cut. In the Medieval era, the influence of
Aristotle, who was against this idea, hide the atomist current. In the renaissance,
the idea came back, and intellectuals such as Galileo Galilei, René Descartes and
Isaac Newton started supporting similar ideas. In the 19th century, the idea ex-
panded until was definitely stablished in the first years of the 20th century, with
the work of Einstein and Jean Perrin for the Brownian motion. Some years before
their discoveries, while the atoms were supposed to exist, a new important theory
was developed: The Kinetic theory, developed by Maxwell, but specially Ludwig
Boltzmann. They explained thermodynamics using the idea of atoms with this the-
ory. Their theory was further developed, and today we can simulate fluids using
the kinetic theory. In this section I will show how it is possible.

B.3.1 The phase-space

When any object moves, it is easy to think about its trajectory over the Rn space
where it is moving since we live in a R3 world, and to imagine n dimensions
of the space it is very easy if 1 ≤ n ≤ 3. By just fixing an axis of n coordi-
nates in this Rn space, one can draw as many trajectories for as many objects as
one wants. Although this naive idea for drawing trajectories can work, sometimes
these coordinates are not the best to deal with a problem and it is better to use other
alternatives. For example, the Hamiltonian mechanics shows us the possibilities
of the phase-space, which is what Boltzmann used during its reasoning for obtain-
ing the Boltzmann Equation. Under Hamiltonian mechanics, the particles of the
system will follow the Hamiltonian, which for a system composed of N particles
each of them with mass m under the action of an external force F = −∇V and a
two-body interaction between particles U(ri − rj) will be written as:

H =
1

2m

N∑
i=1

p2
i +

N∑
i=1

V (ri) +
∑
i<j

U(ri − rj), (B.3.1)
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where ri is the position of the i-th particle and pi is the momentum of the i-th
particle. We assume U is a short-range potential, which for a distance between
particles much higher than the atomic distance scale, the potential U is zero. Since
this equation only depends on r and p, and explicitly could also depend on t as
well, it is common to work in a space composed of the r and p coordinates, which
is what we call as the phase-space. Thus, the phase-space is a space of 2nN di-
mensions, where the 2 is because for each particle we add the axis related with its
momentum p and its position r. Consequently, the typical idea of a gas composed
by N molecules in a R3 world will lead to a space of 6N dimensions. To imag-
ine such a huge number of dimensions can be of course difficult, and indeed, we
cannot draw it, but one can get used to it because its advantage to deal with big
number of particles. In this phase-space, it is very important to understand that a
point and a trajectory is not anymore, the position of a particle and its trajectory.
Instead, a point in this phase-space is a microstate of the system. To explain what
a microstate is, it is easier to think from the R3 world perspective. For any given
time, any particle of our gas of particles will have a position and a momentum. If
we take a photo of the system at a given time, all the positions and momentums
pairs of the whole system will be a microstate of the system. Thus, all the infor-
mation related with momenta and positions of all particles will collapse as a single
point in this phase-space as shown in Fig. B.2. If the particles are distinguishable,
each point will be a microstate. If particles are not distinguishable, then there will
be N! points that will refer to the same microstate since we cannot differentiate
from the exchange of particles.
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Figure B.2: In the phase-space description, a point is a microstate of the wholeN
particle system, which is different from the point in the Real space, where a point
is the position of a single particle. Tiny changes in the Real space will lead to close
microstates with same macrostate values. Thus, the phase-space can be treated as
a continuum with a density of microstates, which can be treat as mathematical
points in this new space.
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At a macroscopic perspective, each microstate will define macroscopic values
such as the temperature. But of course, changes in position and momentum of
particles with such number of particles can lead at the end with a microstate for
which its macroscopic values cannot be distinguished from the one coming from
a different microstate. These microstates in fact, will be points that are close in
the phase-space, and thus, for a given macroscopic value, we can have plenty of
points close together in this phase-space creating a cloud of points. Therefore, a
system of N particles such a gas should be thought as a cloud of points instead of
just one point, because it is not possible to know all the initial conditions of every
single particle, but we know the averaged properties. When the system evolves,
the system will move towards a new microstate and thus, by connecting different
microstates with a line in this phase-space you can draw the evolution of the sys-
tem. This is what a trajectory means in this phase-space.

B.3.2 The Boltzmann equation

The Boltzmann equation was developed by Ludwig Boltzmann in 1872[258] to
deal with systems composed by millions of particles, such as gases, under non-
equilibrium processes that will move towards equilibrium. His idea is based on
trying to understand the system by looking at a special set of probabilities that can
occur in the system. In his mind, the principal problem of these systems was to
understand which is the probability of finding a particle with momentum p around
position r at time t. Thus, instead of working on the real space, he worked on the
phase-space.

To start with the Boltzmann equation explanation, we need first to discretize
our space in infinitesimal cubes of 6N dimensions and size

∏N
i=1 dpidri. Now,

once the space is discretized, in principle we can always build a probability density
function f(r1, .., rN ,p1, ..,pN , t) which is the probability of finding the system
around the point (r,p) for a given time. Of course, if you integrate this probability
density function over all the space it must be 1:

∫
f(r1, .., rN ,p1, ..,pN , t)

N∏
i=1

dpidri = 1. (B.3.2)

But we will not work directly with f(r1, .., rN ,p1, ..,pN , t) since working
with this probability density function means to work with a 6N dimensional space
system. To avoid such number of dimensions, we can work with less dimensions
by introducing the n-th particle distribution function:

fn(r1, .., rn,p1, ..,pn, t) =
N !

(N − n)!

∫ N∏
i=n+1

dpidrif(r1, .., rN ,p1, ..,pN , t),

(B.3.3)
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where we have supposed that in this system, particles are indistinguishable and
therefore, we cannot differentiate one particle from another one. That is the reason
why we have the factorial prefactor, since in fact we have N particles and there is
a total of different N !

(N−n)! different combinations we could have. Associated with
this n-th distribution function, we can also define the n-th particle Hamiltonian as:

Hn =
n∑
i=1

(
p2
i

2m
+ V (ri)

)
+
∑
i<j≤n

U(ri − rj), (B.3.4)

which is the Hamiltonian given by Eq. B.3.1 associated with up to n parti-
cles. Once we have defined these equations, we can proceed in the search for the
Boltzmann equation. What Boltzmann saw is that in fact, to deal with a gas of
N particle system, even if it is out-of-equilibrium, it is enough to work with the
1-particle distribution function:

f1(r,p, t) ≡ f(r1,p1, t) = N

∫
f(r1, .., rN ,p, ..,pN , t)

N∏
i=2

dpidri, (B.3.5)

where of course, if we integrate f1(r,p, t) over all the space we should have
N, since we have N particles. The reason to work with just the one particle prob-
ability density function is because it is the only probability density function we
will need to describe the system as a consequence of a strong assumption we will
do afterwards, the molecular chaos hypothesis. To see this fact, we can see how
f1(r,p, t) evolves with time:

∂f1
∂t

= N

∫ N∏
i=2

dpidri
∂f

∂t
= N

∫ N∏
i=2

dpidri{H, f}, (B.3.6)

where here, we have introduced the Hamiltonian given in Eq. B.3.1, the Pois-
son bracket {A,B} ≡ ∂A

∂ri
· ∂B
∂pi

− ∂A
∂pi

· ∂B∂ri
and we have used the Liouville

theorem9. If we insert the complete Hamiltonian (Eq. B.3.1) we will find:

∂f1
∂t

= N

∫ N∏
i=2

dpidri

[
−

N∑
j=1

pj

m
· ∂f

∂rj
+

N∑
j=1

∂V

∂rj
· ∂f

∂pj
+

N∑
j=1

∑
k<l

∂U(rk − rl)

∂rj
· ∂f

∂pj

]
.

(B.3.7)

9As I previously explained, a gas of N particles will be seen as a cloud of microstates given the
uncertainty of the initial conditions and given that many will give the same macrostate. With this
perspective, this cloud of packed dots could be treated as a continuous and therefore, treat it as if it
were a fluid following Eq. A.1.3. Consequently, it can be seen that the "fluid" is incompressible
and hence, under Hamiltonian evolution, if you follow some region of the phase space, it will have
constant volume

(
df
dt

= ∂f
∂t

+ ∂f
∂ri

· ṙi + ∂f
∂pi

· ṗi = 0
)

). This is known as the Liouville theorem.
Furthermore, since the density is conserved, from this theorem we can see two consequences. The first
is that because Noether’s theorem, there is a symmetry under time translations, being the Hamiltonian
of the system the generator of the symmetry. The second is that for a fN under equilibrium, the
∂tf = 0, and hence {H, f} = 0, which means that f(H), as in the case of equilibrium where
f ≈ e−βH .
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We can remove the sums for j = 2, ..., N by integrating per parts. Some elements
will depend on the moment, but the derivatives will depend on the position, or
vice versa, and hence will be zero. Other terms will need to evaluate f at infinity,
and because is a probability distribution, to be normalizable it must be zero at the
infinity. Hence, we have:

∂f1
∂t

= N

∫ N∏
i=2

dpidri

[
− p

m
· ∂f
∂r

+
∂V

∂r
· ∂f
∂p

+
∑
k=2

∂U(r − rk)

∂r
· ∂f
∂p

]
,

(B.3.8)
where we adopted r1 ≡ r and p1 ≡ p. If we use Eq. B.3.4 for one particle,

we can define the one-particle Hamiltonian as:

H1 =
p2

2m
+ V (r), (B.3.9)

which simplifies more Eq. B.3.8:

∂f1
∂t

= {H1, f1}+
(
∂f1
∂t

)
coll

. (B.3.10)

In the last equation, we call to the first term the streaming term and, to the
last the collision term. Since the one-particle Hamiltonian does not include the
2-body interaction potential U , we can clearly see that the streaming term refers
to how particles move in the absence of collisions between particles. Opposite to
the streaming, the collision term is the term which includes this potential and thus,
gives information about these collisions. Because all particles are indistinguish-
able, the collision term can be written as:

(
∂f1
∂t

)
coll

= N(N − 1)

∫
d3r2d

3p2
∂U(r − r2)

∂r
·

∂

∂p

∫ N∏
i=3

∆pi∆rif(r1, .., rN ,p1, ..,pN , t) =

N(N − 1)

∫
d3r2d

3p2
∂U(r − r2)

∂r

∂f2
∂p

,

(B.3.11)

where f2 is the two-particle distribution function following Eq. B.3.3. As we
can see, we were looking for how 1-particle distribution evolves, and we reached
to an equation where this evolution depends on the 2-particles distribution. In fact,
one can always repeat the previous process reaching to an equation where:

∂fn
∂t

= {Hn, fn}+
n∑
i=1

∫
d3rn+1d

3pn+1
∂U(ri − rn+1)

∂ri

∂fn+1

∂pi
. (B.3.12)
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Eq. B.3.12 is also known as the BBGKY hierarchy10. As we can see, this
hierarchy is a sum of n elements. This means that, if we find that from one of these
elements all are negligible, then we can truncate the series at that element. Boltz-
mann saw that the simplest truncation, where only f1 is important, is enough. To
affirm this, we need first, to admit a few assumptions before doing the reasoning:

1. Collisions are punctual in time. The total time that a collision lasts (τcoll)
is much lower than the time needed to occur a collision (τst), which is also
known as the relaxation time or scattering time. Thus, τst ≫ τcoll.

2. Collisions are local in space. Both particles are at the same point when they
collide.

3. If particles are affected by an external potential V (r) as the global Hamil-
tonian in Eq. B.3.1 reflects, this potential only changes in a macroscopic
length scale.

Under these assumptions, we can treat the problem of the collision as the typi-
cal problem that one would solve in a classical mechanics lecture: we must apply
conservation of momenta and energy:

p1 + p2 = p′
1 + p′

2

p21 + p22 = p′21 + p′22
(B.3.13)

where p1 and p2 are the momenta of both particles before the collision and p′
1

and p′
2 is their respective momenta after the collision. From the previous equation

we can see that there is going to be a probability for the particles to go from the
state (p1,p2) towards the state (p′

1,p
′
2), or simply (p1,p2|p′

1,p
′
2). But at the

same time, other particles can also evolve following (p′
1,p

′
2|p1,p2). For both

scenarios we can define a scattering function ω. We can rewrite the collision term
as a function of this scattering function[259]:

(
∂f1
∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 [ω(p1,p2|p′

1,p
′
2)f2(r, r,p

′
1,p

′
2, t)

−ω(p′
1,p

′
2|p1,p2)f2(r, r,p1,p2, t)] =∫

d3p2d
3p′1d

3p′2 ω(p1,p2|p′
1,p

′
2)·

[f2(r, r,p
′
1,p

′
2, t)− f2(r, r,p1,p2, t)]

(B.3.14)

where we have considered that the scattering is parity invariant and time rever-
sal invariant:

ω(p1,p2|p′
1,p

′
2) = ω(−p1,−p2| − p′

1,−p′
2)

ω(p1,p2|p′
1,p

′
2) = ω(−p′

1,−p′
2| − p1,−p2)

(B.3.15)

10The name of the hierarchy comes from the initials of several people who worked dealing this n-
particle distributions and kinetic theory. In particular: Bogoliubov, Born, Green, Kirkwood and Yvon.
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Now, it is the moment to break the series and introduce the concept Boltzmann
thought: we will assume the molecular chaos hypothesis or Stosszahlansatz. When
two particles, A and B, collide, their momenta get correlated. Therefore, the next
time they will collide both together, their momenta should be also correlated before
the new collision. But the time between a new collision, the relaxation time τst,
is large and whenever a new collision occurs, this new collision probably will be
between rather A or B with a different particle C, so momenta of these two particles
do not have to be correlated in principle. In this sense, we can say that before the
collision, the momenta are uncorrelated. This is what is known as the molecular
chaos hypothesis and mathematically means that:

f2(r, r,p1,p2) = f1(r,p1)f1(r,p2) (B.3.16)

Therefore, the collision term has the shape:

(
∂f1
∂t

)
coll

=

∫
d3p2d

3p′1d
3p′2 ω(p1,p2|p′

1,p
′
2)·

[f1(r,p
′
1)f1(r,p

′
2)− f1(r,p1)f1(r,p2)]

(B.3.17)

and with this new result, we can close all our problem by just using f1 instead
of the fN . The Boltzmann equation is nothing more than Eq. B.3.10 given the
collision term expressed as in Eq. B.3.17. Finally, it is worth it to say that by ac-
cepting the molecular chaos hypothesis, we have introduced an arrow of time. This
assumption breaks the reversibility one could think when dealing with particles at
molecular level and brings the irreversibility seen in the macroscopic view (e.g. if
you have a closed box with a lot of molecules in one corner, and you release them,
they will always fill uniformly the box, but they will never go back all of them to
the point from where you left them).

B.3.3 The Lattice-Boltzmann equation

We will start the development of the Lattice-Boltzmann equation by expanding the
terms in the Boltzmann equation:

∂f(r,p, t)

∂t
+

p

m
∇rf(r,p, t) + F∇pf(r,p, t) =

(
∂f

∂t

)
coll

(B.3.18)

where f is the one particle distribution or f1, which is the probability of find-
ing a particle of mass m around position r with momentum p at time t, F is any
force applied to this particle and ∇r and ∇p are the ∇ operator applied only to r
and p respectively. Terms on the left side of the equation are the so-called stream
because they represent how one particle moves without interacting with other par-
ticles, and the term on the right side is the collision operator because represents
how a particle interact with other particles in the system.
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Before starting with the derivation, we will simplify the collision part since in
the form we obtained in Eq. B.3.18 it is complex to discretize it. To simplify it,
we can assume that with each collision, the system tends towards the equilibrium
as thermodynamics shows us. Therefore, we could think that with each collision
we are an amount proportional to the feq closer, which is the f at equilibrium. In
average, this process will last for a characteristic time giving us a relaxation time
towards the equilibrium τ . In this sense, the collision term can be replaced, and
the Boltzmann equation has the shape of:

∂f(r,p, t)

∂t
+

p

m
∇rf(r,p, t) + F∇pf(r,p, t) =

feq(r,p, t)− f(r,p, t)

τ
(B.3.19)

This approximation is known as the BGK model[260]. There are other simpli-
fications of this collision term that take more than one relaxation time[97], but this
is the simplest simplification and I did not work with those during my thesis. Now
that we have simplified the equation, we can also dimensionless as we did with
Navier-Stokes at section 1.3.2. The set of dimensionless parameters are the same
as with Navier-Stokes, but writing the force in capital letters, the p now means the
momentum and introducing a few new changes:

• A reduced form of the relaxation time τ , which is τ∗ = τ
τst

, where τst is the
time between collisions.

• A reduced form of fi, which is f∗i = fi
nr

, where nr is a reference density.

• A dimensionless parameter ϵ that arises from the dimensionless form as the
Re was in the case of Navier-Stokes. This parameter is ϵ = τstU/L and can
be interpreted as the dimensionless Knudsen number, which is the ratio of
mean free path to the characteristic length or the ratio of collision time to
flow time.

With these modifications, we have:

∂f∗

∂t
+ v∗∇∗

rf
∗ +

F0L

p0U

F ∗

m∗∇v∗f∗ =
feq∗ − f∗

ϵτ∗
(B.3.20)

Now we may start the discretization of this equation to be computed. Notice
that, opposite to the common discretizations we usually do when dealing with
equations where only space and time are discretized, here the p is part of the axis.
This means that p, or the velocity v, must also be discretized by itself. That is
why, when one discretizes this equation, the first that is shown is that we start
discretizing the velocities in a set of i velocities. Therefore, we could in principle
associate each vi to a different distribution function f so now we will have a set
of i distribution functions f∗i (r

∗, t∗), each of them verifying equation B.3.20.
Usually, when this discretization is performed, the force term is neglected. If later
one needs to add any force, some terms can be introduced in an intelligent manner.
With all these changes, we can discretize the equation by applying an implicit
upwind scheme[261], which uses a backward difference in space and a backward
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implicit Euler method in time. Consequently, the derivative over time is calculated
at position r∗, but the derivative over r∗ is calculated at time t∗ +∆t∗. Different
schemes could be used, but by using this scheme, the equation can be simplified if
we choose a ∆r∗

∆t∗ = v∗
i . Moreover, if ∆t∗ = τ∗st the Knudsen number disappears,

and we get:

f∗i (r
∗+v∗

i∆t
∗, t∗+∆t∗)−f∗i (r∗, t∗) = −f

∗
i (r

∗, t∗)− feq∗i (r∗, t∗)

τ∗
(B.3.21)

Thus, for each velocity we will do a local collision event and only one stream
operation. Eq. B.3.21 is what is known as the Lattice-Boltzmann equation.

About the speed discretization in the Lattice-Boltzmann equation

In the expansion of the Lattice-Boltzmann I did there was something shady: the
velocity discretization. Because if the velocity can span over orders of magnitude,
how many equations of the style B.3.21 will we have to solve?

In fact, the key point here is that the number of velocities we discretize this
space is limited. And by limited I refer to less than 30, since are enough to recover
the hydrodynamics of Navier-stokes. To understand this, we need to know that
the Lattice-Boltzmann equation is seen as an upgrade over the Lattice Gas Cellu-
lar Automata (LGCA) model. The LGCA model is a model that evolve from an
older model, the Cellular Automata (CA), and that got famous because although
its simplicity, it could recover the dynamics of the Navier-Stokes equation[262].
In this model, one looks for the position of N indistinguishable particles of mass
m = 1 that can only live in the nodes of a lattice. Although these particles can
only live in the nodes, at each time step they are moving along the i edges that
connect these nodes. But of course, since they can only live in the nodes, each
time they move they do with a velocity within a set of available velocities. If one
chooses ∆t = 1 and sets that the distance between all nodes is |∆ri| = 1, then the
velocities must be ci = ∆ri/∆t. Therefore, depending how you build the lattice
given these constraints you will be able to have more or less velocities, but they
will always be a very reduced number of velocities because of geometry construc-
tion. When particles in this model move to a new node (see Fig. B.3A), you say
you are doing a streaming operation. But when particles arrive to the new node,
another operation is done: the collision operation, because only one particle can
sit in each node, introducing then a kind of exclusion principle (see Fig. B.3A).
This principle reminds to the idea of Pauli principle, and hence is not weird to see
that the equilibrium distribution you recover in the model is of Fermi-Dirac type.
During the collision step, one introduces the conservation of mass and momentum,
which are the key ingredients in the development of Navier-Stokes equation and,
surprisingly, if the lattice has a proper symmetry11 the dynamics of Navier-Stokes

11To recover Navier-Stokes dynamics you need rotational invariance. For example, in 2D this implies
that a square lattice, such the HPP LGCA model, is not valid. A hexagonal lattice, such the FHP LGCA
model, is enough to recover this symmetry.
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are recovered. The only you need to have the macroscopic values is to average
over many neighbors the amount of particles with different velocities ci (See Fig.
B.3B).

Collision

Streaming

A

LB

f*i=<ni>

D3Q19

B

C

Figure B.3: Basic scheme to understand the Lattice Boltzmann (LB) model.
A) The model is based on the two-operation step: Collision-Streaming. During
collision, momentum and mass are conserved. After the collision, particles stream
towards different nodes using a discrete set of velocities. B) Landscape of these
particles moving along the lattice (in red the unit cell). Macroscopic values are
captured by averaging the occupation number in each direction over the neigh-
bours (purple square). In LB these averages are directly the particles, which are
equal to our f∗i . C) The actual lattice is something closer to this lattice, where we
use floats instead of boolean properties, and we will use only the fi from each unit
cell to obtain the macroscopic values of that cell. Depending on how the lattice
is constructed, distributions will have different number of directions. The overall
picture here is in 2D, but each big square can have more directions available as
shown in the inset which is commonly used in 3D scenarios. The available di-
rections are written as DnQm, where n are the number of dimensions and m the
number of available speed modes. Image authorship. Own image.

In the LGCA model, the only you need to save is the state of occupation of each
node. Since there can come up to i particles to each node per time step, you only
need a binary number of lengths i to know if a particle from each direction arrived
or not. Thus, for each node you have a value for nk ≡ |n1, n2, ..., nj , ..., ni >,
where nk is the state of occupation of node k and nj is a boolean that indicates if
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there is a particle or not in the direction j. Essentially, the rule that governs this
model is an equation such Eq. B.3.21 but with a different collision term. Hence, it
is understandable why Lattice-Boltzmann is seen as an upgrade of the LGCA and
now, which speeds we must take. For instance, the 3D model of the lattice I will
use limits the number of velocities to 19 (See Fig. B.3C)12.

The main difference between LGCA and the firsts models of Lattice-Boltzmann
is that in LGCA, to have the macroscopic values at some cell, you need to average
the occupation state over many neighbours. Instead, in the Lattice-Boltzmann you
consider that your particles are directly these averages and consequently, the struc-
ture of the model is not based in boolean values but in float values. Now, the floats
represent the distribution f , and macroscopic values are recuperated by operating
in each cell without averaging over neighbour cells. This fact solved one of the
main troubles in LGCA: the reduction of noise.

From Lattice-Boltzmann equation to Navier-Stokes

Up to now, I have showed the Lattice-Boltzmann equation but, I have not linked
yet with Navier-Stokes equation mathematically. To show this transition, one
needs to bring the Chapman-Enskog (CE) expansion[263]. This expansion is basi-
cally applying the mathematical perturbation theory upto order two to the Lattice-
Boltzmann equation. If we expand the elements in equation B.3.21:

fi(r, t) =
∞∑
n=0

ϵnf
(n)
i (r, t),

∂t =

∞∑
n=0

ϵn∂tn ,

fi(r + vi∆t, t+∆t) =
∞∑
n=0

ϵn

m!
Dm
t fi(r, t),

(B.3.22)

where we have applied the perturbative method on fi and its derivatives using
a very small parameter ϵ, we have used Taylor series to expand the forward step in
the streaming operator with Dm

t = ∂t + ci · ∇ being the material derivative and
assuming ∆t ∼ ϵ, and we have omitted the ∗ to simplify the notation. We will
further remove (r, t) in the following lines to simplify more our notation since all
the f work with the same set of parameters now. After inserting these expansions
and cutting to ϵ order two, we obtain:

12In this field it is common to describe the lattice as DnQc, where n refers to the dimension of the
system and c to the total amount of different velocities you have for your particles. In my case I use
D3Q19.
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ϵ0 : f
(0)
i = feqi ,

ϵ1 : Dt0f
(0)
i = (∂t0 + ci · ∇)f

(0)
i = −∆t

τ
f
(1)
i ,

ϵ2 : ∂t1f
(0)
i + (∂t0 + ci · ∇)f

(1)
i +

1

2
(∂t0 + ci · ∇)2f

(0)
i +

∆t

τ
f
(2)
i = 0.

(B.3.23)

Combining orders first and zero, reordering the Del operator, and multiplying
by the speeds, we obtain the following two equations:
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Now, if we sum over the i directions, we see that:
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If we remember the concept of f , we said that it was the probability of finding
a particle with such position and velocity at time t. If we sum over all the directions
of a node, then what we find is the total mass per node, or the total density ρ. If
the sum of fi is the density, the sum of fici will be the momentum ρu, being u
the velocity of the fluid at that node. As a constraint, we will impose that all the
non-equilibrium term of fi, this is all f (n)i but f (0)i , will be zero. Therefore, we
have:

∂t0ρ+∇ · ρu = 0,

∂t0(ρu) +∇ ·Π(0)
m,n = 0,

(B.3.26)

where we expressed the second term as the tensor Π(0)
m,n. We can do the same

for the second order in ϵ. Before but, we can obtain a new equation combining all
the equations in B.3.23, which if we multiply again per the velocity we obtain a
new couple of equations:
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summing again these expressions we will obtain:

∂t1ρ = 0,

∂t1(ρu) +
2τ −∆t

2τ
∇ ·Π(1)

m,n = 0,
(B.3.28)

where we expressed again a term as a tensor Π(1)
m,n. Now, if we sum the first

equation for each couple of expressions at B.3.26 and B.3.28, and considering how
we expanded ∂t at Eq. B.3.22, we obtain the conservation of mass (Eq. A.1.4),
which is the first requirement to obtain Navier-Stokes:

∂tρ+∇ · ρu = 0. (B.3.29)

The same can be done with the second equation of both B.3.26 and B.3.28,
which gives an equivalent of conservation of momentum (Eq. A.1.6), which is the
second requirement to obtain Navier-Stokes:

∂tρu+∇ ·Π = 0, (B.3.30)

where Π = Π(0) + 2τ−∆t
2τ Π(1). The specific sums of ci depend on the scheme

that you use for LB13. Finally, the expression of feqi also depend on some param-
eters that depend on your discretization. However, in all cases it is written as a
Taylor expansion of u/cs, being cs the Mach number. Consequently, the tradi-
tional LB only works with fluids at low Mach numbers, although there some LB
built for high Mach numbers[265].

13As an example, for D2Q9 you can see [264]. There, Παβ in Eq. (20) is equal to Π in my Eq.
B.3.30.

286



B.4 | Colloidal systems

Typically it is said that matter can be found as a plasma, gas, liquid or solid. Al-
though it is true that plasma is also encompassed as a fluid, I will omit this state in
the present thesis since the presence of it is reduced to areas far from the topic of
this thesis (mainly, naturally found in cosmos and atmospheric phenomena [266]).

For the rest of the three phases (see Fig. B.4), we can clearly differentiate
them:

• Gas. Atoms or molecules are very far from each other, and the interactions
between them are almost negligible. Consequently, there is no spatial or-
der, and they will expand among all the available space they have. We can
imagine gases as balls in a billiard: each ball moves in a different random
direction, and the interactions are limited to direct hits between them.

• Liquid. Atoms or molecules are closer than in a gas. Because they are
closer, they can have a first neighbour order, but not longer. Hence, there are
more interactions, but they are weak. Liquids will adapt to the shape of their
container but will have a fixed volume. From a global perspective, we still
have the billiard image, but now we need to add longer distance interactions.

• Solid. Atoms or molecules are highly dense and interact strongly. They
have a long neighbour order and thus, they will not adapt to the shape of the
container.

Clearly, in nature we see these phases every day. And even we can see changes
from one phase to another one as when ice melts. Although these definitions are
very clear, there are substances that are not easy to classify among these phases.
For example, consider the foam you could find in your cold beer. In which cat-
egory will you fit it? Foam can adapt to the shape of its container, but no one
will consider it as a liquid. Foam is full of air, but neither is a gas, because it is
much denser than a gas. But still, there is something that reminds you to a fluid.
Of course, is nothing like a solid. Why is so difficult to classify the foam? The
truth behind it is that foam is not a simply fluid where atoms or molecules of the
same or different species are simply well mixed and are miscible, but it is a much
more complex fluid. Strictly, it is what is known as a colloidal system, a system
where a microscopically sized substance, also refereed as a colloid, is suspended
throughout another major substance. In the case of the foam of your cold beer, a
gas is dispersed into a liquid, but we can have different combinations of phases
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Figure B.4: Common states of nature. Gases are low dense systems, while
liquids are denser, and solids are compact. States are easily to differentiate by
looking at the atomic pair distribution functions g(r), where peaks inform about
the relative order of atoms or molecules (described as a solid sphere) between
themselves and their neighbours. Images authorship. Own image, inspired on [59].

too as shown in Fig. B.5. Depending on the phases we combine, colloidal systems
will have different properties. For example, gels present networks giving them
non-Newtonian properties while solid foams can be very light and elastic14.

If we attend to the definition of these colloidal systems, we can see how our
active particles will also be a colloidal system, where the major substance is the
liquid where they move and the minor is a solid, themselves. Since life is intrinsi-
cally related with water, and we are biomimicking nature, most of our motors will
move in a water-based system and thus, the major substance will be water. The
fluid composed of the water and the particles will be a complex fluid, but in this
thesis I did not look from the macroscale, but the microscale. Hence, if we zoom
at the size of the particles, the environment is not complex at all. To add more
complexity one can think about the spatial limits of motion of these particles, and
the interactions they can have with them or other colloids present in the system.
The spatial limits of motion for these particles are those surfaces where two phases
are in contact. To these regions we call them phase boundaries or interfaces. In-
terfaces are very interesting because these are regions which do not have either
all the properties of one or the other phase, and can bring new phenomena to the
system. Furthermore, if we want one day to use these particles in some real appli-
cation, our systems will be full of interfaces since they are common in nature. For
example, there are two applications where active particles are promising. One is
for environmental applications, and the other one for drug delivery.

14For instance, the metallic microlattice[267] is compound of 99.99% air and if you only consider
the solid part, its density is just of 0.9 mg/cm3 at room temperature (air density is 1.18 mg/cm3). If
you compressed it to half of its original height, it will recover up to the 98% of its original height.
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Figure B.5: Types of colloidal systems. We can create colloidal systems mix-
ing substances within the same or different phase, arising to different material
properties. The only exception is for the gas-gas colloidal system, to which no
colloids are known, although helium and xenon can be immiscible under some
conditions[268]. Image authorship. Own images.

Environmental applications are related with water cleaning since water is es-
sential for life and we pollute it every day. For instance, some studies show how
active particles can remove heavy metals such as lead from water[19], but also
to remove organic pollutants[269]. Both of them can really damage the environ-
ment and our health[270, 271], and hence it is very important to remove them.
These substances are usually found as industrial and agricultural waste, and spe-
cific wastewater treatment is made, but companies do not always fulfil good en-
vironmental policies. Hence, this research can be useful for future wastewater
treatment. In the same line, something that common wastewater treatment for do-
mestic water usually treat first is for oil removal from water[272]. Thus, imagine
how important must be this process. Although the removal of oil may work for
wastewater treatments, sometimes it is not possible to use a wastewater treatment.
As with the heavy metals or organic pollutants, there can be spills. Hence, there
will appear a large quantity of oil-water interfaces. As an extreme case, imagine
we would need to clean an oil spill, as the one that happened a decade ago in the
Gulf of Mexico, where between 500-800 million of litres of oil were released[273].
Can you imagine how many oil droplets could be there? Of course, we are far to
use these particles in such disasters, but we have just started removing oil with
them[38].
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On the other hand, drug delivery systems also seem suitable for using these
particles, but in our bodies, everything is surrounded by an interface. Blood ves-
sels are just like a tube, but the tube can be porous or straight and hence we can
have different topology of interfaces[274]. Moreover, inside the channels, there
can be many things, such as fat molecules, which can join the walls of the tube
creating a different interface and of course, arteriosclerosis[275], which can led
into a coronary artery disease. If instead of using the blood vessels, we inject these
particles in other regions, then we will probably find more complex media, since
the body is full of a viscoelastic media or gels. Between our cells there is a rich
mixture we refer as the extra cellular matrix (ECM), which provide biochemical
and structural support to the cells[274]. This ECM is full of fibers, proteins and
minerals, but it may be different depending on the cells that create them. In any
case, it is a gel where our particles would move differently and will stack with
many things. Thus, we will find many interfaces around the body.

These have been just a couple of examples, but as the comprehension and
production of these systems will develop, the number of relevant applications will
increase fast.
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C
Software

"The wisest men follow their own direction."

Euripides



C.1 | Compressing videos

C.1.1 Lif2Avi software

This software is available at https://github.com/Scolymus/Lif2Avi. To use it, sim-
ply import the git project in Eclipse software https://www.eclipse.org/downloads/
following the instructions that there are in the repository link. In principle, this is a
plugin for Fiji, and one could extract the plugin to install it in any personal version.

C.1.2 Lif2Mkv software

This software is available at https://github.com/Scolymus/Lif2Mkv. To use it, sim-
ply import the git project in Eclipse software https://www.eclipse.org/downloads/
following the instructions that there are in the repository link.
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C.2 | Transforming particles coordinates

C.2.1 Moving the frame of reference

The code used for my thesis was adapted to the output from the Albert’s tracking
code used. Hence, since every user could have a different output, I decided to clean
the code and avoid the sections for reading the csv files where the data is stored.
A clean version of these codes are found at https://github.com/Scolymus/Droplets.
There are a few videos examples in the same folder.

First, track the droplet in your video. Once we obtain the coordinates for a
droplet, we can use "droplet_centering.py" code. This file reads all the videos in
a folder, and then for each one will move each frame to have all frames centred
at the position of the (x,y) coordinates of your droplet. As an example, the code
shows how to do this for a folder, where each video has one droplet to centre, but
each video could have many droplets. Just introduce a new loop to do a new video
per droplet if needed. Once finished, track the particles in the videos created by
this code.

Next, use "droplet_particles_contact.py". This file will use the videos from the
last output. It needs to feed the positions of the particles tracked before. As an
example, here I just considered one video, but many particles for each video. The
software will output a video showing the direction of incoming/outgoing to the
droplet and the positions where it entered and left the droplet. For each video we
need to introduce manually how many turns did each particle as a function of half
turns. For example, if the particle did less than half turn, we will have to introduce
0. If it did more than half but less than 1, 0.5. If it did more than 1 but less than
1.5, 1. If it did more than 1.5 but less than 2, 1.5, and so on. The exact angle will
be then calculated by the software and added to this number. At the end of the
code, we will see how we can print different important variables calculated by the
software.
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C.2.2 From Cartesian coordinates to Cell coordinates

To change from (x,y) coordinates to cell coordinates we need to create the cell
boxes. We can implement the geometry desired, but the basics are shown in
https://github.com/Scolymus/Change_coordinates_shapely. This project includes
a simplified version of the code I used during the thesis.

Cell boxes are created by creating Shapely Polygon objects. These objects are
stored in an array, which later is used to check the position of the particle. For
example, in function "draw_box" we have the code to draw boxes as a chessboard.
Then, in function "trajectories_with_indexes" we transform the (x,y) coordinates
to cell coordinates using the previous boxes created.

To edit properly later the boxes position we can also manage a keyboard call
as shown in the "keyboard_control_boxes" function, where only the motion of the
selected box to the left is shown.
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C.3 | Tracking using neural networks

This software was coded in Python 3 under Ubuntu 18.04. Because the required
software to run this tracking code is also avalaible for Microsoft Windows, it
should also run under this operative system, but I never tried. The following sec-
tions are an instructions manual to install the tracking software for an Ubuntu
system. Notice that when copying the instructions from the pdf, some lines may
be cut.

C.3.1 How to compile OPENCV with CUDA enabled

The tracking software detects particles using the OPENCV library. To boost this
process, OPENCV must be compiled with CUDA and cuDNN, but this step is
only avalaible if we use a NVIDIA GPU. CUDA is a library to run code in paral-
lel, while cuDNN is a library to calculate faster algorithms for neuronal networks.

However, not all NVIDIA GPUs can boost OPENCV for our requirements.
Each NVIDIA GPU has a Compute capability number. This number informs the
user what can do the GPU to parallelize calculus, and depends on the hardware of
the graphic card. Thus, if we need a higher capability we need to buy a new GPU.
The minimum version for our porpoises is 5.3. Given the name of the graphic
card, we can check at https://developer.nvidia.com/cuda-gpus#compute which is
the compute capability. To know the GPU model one can run in the terminal:

Check NVIDIA Compute capability

nvidia-smi

If the Compute capability is 5.3 or higher, we can install CUDA and cuDNN.
Instructions to install both software are well explained at:

• CUDA. Download CUDA from https://developer.nvidia.com/cuda-downloads
and the installation instructions from https://docs.nvidia.com/cuda/ cuda-
installation-guide-linux/index.html.

• cuDNN. Download cuDNN from https://developer.nvidia.com/cuDNN and
the installation instructions from https://docs.nvidia.com/deeplearning/ cudnn/install-
guide/index.html
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After installing NVIDIA’s software, we need to install a few libraries to com-
pile OPENCV:

Installing packages necessary to compile OPENCV

sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev

pkg-config libavcodec-dev libavformat-dev
libswscale-dev python-dev python3-dev
python-numpy python3-numpy libtbb2 libtbb-dev
libjpeg-dev libpng-dev libtiff-dev
libjasper-dev libdc1394-22-dev

Next, we will obtain the OPENCV source code and the OPENCV contrib
source code, which contains some modules we will need for our OPENCV com-
pilation:

Downloading OPENCV source code

cd ~/
mkdir OPENCV
cd OPENCV
wget

https://github.com/opencv/opencv/archive/master.zip
unzip master.zip
rm master.zip
wget

https://github.com/opencv/opencv_contrib/archive/
master.zip

unzip master.zip
rm master.zip
mv opencv-master opencv
mv opencv_contrib-master opencv_contrib
cd opencv
mkdir build
cd build

Now we can run make. Change the number at CUDA_ARCH_BIN with your
compute capability. Also, we might need to change the 8 at make − j8. This
8 is the number of CPU cores to use during compilation. This step is very slow;
therefore, it would be useful to change the number by the maximum number of
cores the CPU has.
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Compile OPENCV

cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D INSTALL_C_EXAMPLES=OFF \
-D OPENCV_ENABLE_NONFREE=ON \
-D WITH_CUDA=ON \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D CUDA_ARCH_BIN=7.0 \
-D WITH_CUBLAS=1 \
-D

OPENCV_EXTRA_MODULES_PATH=~/OPENCV/opencv_contrib
/modules \

-D HAVE_opencv_python3=ON \
-D

PYTHON_EXECUTABLE=~/.virtualenvs/opencv_cuda/bin/
python \

-D BUILD_EXAMPLES=ON -D
OPENCV_GENERATE_PKGCONFIG=YES ..

make -j8
sudo make install

Now we should have OPENCV installed correctly. If we find any problem,
before compiling again, please remove the build folder and make it again.

C.3.2 How to install YOLO to train networks

First, we will download YOLO:

Downloading YOLO source code

cd ~/
mkdir YOLO
cd YOLO
wget https://github.com/AlexeyAB/darknet/archive/

master.zip
unzip master.zip
rm master.zip
cd darknet-master

Now, we need to modify the file Makefile with a text editor. Change the 0 at
the first lines to 1 to activate these components during the compiling:
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Changing parameters for compilation

GPU=1
CUDNN=1
CUDNN_HALF=1
OPENCV=1
AVX=1
OPENMP=1

Notice that not all GPU support CUDNN_HALF. If the GPU does not support
it, it should be 0. The GPU will support it if it has tensor cores. After these
lines, depending on the YOLO version there might appear some commented line
(they have a # at the beginning) that start by "ARCH". If we can find the GPU
architecture, remove the # before the ARCH for your architecture. Finally, we just
need to compile it:

Compiling YOLO

make

If at this moment you receive an error about nvcc, please open the file at
/home/yourusername/.bashrc and add the following lines at the end of the
file. Do change XYZ by the version of your CUDA, eg.: cuda-XYZ -> cuda-11.3.

Solving nvcc error

export CUDA_HOME=/usr/local/cuda-XYZ
export LD_LIBRARY_PATH=${CUDA_HOME}/lib64

PATH=${CUDA_HOME}/bin:${PATH}
export PATH

C.3.3 Software to create the training dataset, train YOLO with
your dataset and track

By the end of this thesis, I decided to package all the tracking codes under a single
python software. This software is available at https://github.com/Scolymus/Yolo_Tracking.

There might be some libraries that we should install such as numpy, urllib3,
cmapy, lxml, shapely, scipy or ctypes before we can run the code. Depending on
the python installation, an error will indicate which library we will need to install.
To install a python3 library use:
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Installing python3 libraries

sudo apt-get install python3-pip
pip3 install package-names

where package-names are the libraries we want to install.

To run the software enter:

Running the software

python3 ./run.py

Once running, we will see a window as in Fig. C.1. This window allows to
access the different windows present in sections 4.3 and 4.4. Follow from left to
right the buttons to create the dataset, prepare it, train the network, and track the
particles.

Figure C.1: Complete software to train and track particles. Main window that
allows the user to choose between different python scripts.
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C.4 | Visualizing Ludwig output

The complexity of the calculus performed with Ludwig software made the de-
velopers to focus on the simulation process. Hence, it is understandable that the
software runs without any visual interaction with the user. Only after a simulation
is performed, the user can process the results to visualize them.

The output given by Ludwig consists of several binary files, each containing its
own structure, for each time that the user selected to print a file. Therefore, after
the simulation we need to process these files to obtain the interested data. There
are some .c utility files coming with Ludwig that allow the user to extract binary
data into plain text files, but sometimes even with this readable data is difficult to
visualize them using other software such as Gnuplot. One of these util files in-
clude an extraction to use the data with Paraview software, but I only found it after
some years of using Ludwig, and it was neither easy nor adaptable to my porpoises.

Consequently, as part of my PhD I had to develop different tools to understand
Ludwig output. Some of the files were based on these .c utilities, and hence I do
not find them necessary to show, but there were a couple of tricks that were very
useful for me. Some imply an advance usage of Gnuplot, but I also developed a
complete software for visualizing the results in 3D, while interacting with them.

C.4.1 Gnuplot script for movie creation

One of the main problems while introducing a new free energy was to see the evo-
lution in time of the simulating box, especially for the order parameters evolution.
To see easier the evolution of the order parameters I decided to visualize a plane
of the simulating box and record it for all the simulated time.

However, when plotting with Gnuplot software, one usually plots series, where
the axis of a series can be the time evolution. Here what I needed to plot was a
surface, but a surface moving in time. To achieve this effect, we can plot a sur-
face with "w image" command, and then repeat this process for every file using a
loop inside the Gnuplot script. Once we have the pictures, we can call an external
software such as ffmpeg to join all the pictures into a single .mp4 movie. ffmpeg
allows to join pictures with the same name of the file but differing by a successive
number, e.g., picture1.png, picture2.png, ..., pictureN.png, where N is the number
of pictures you have.
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In https://github.com/Scolymus/Ludwig_gnuplots/ there are the scripts I used.
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Figure C.2: Example of plane visualization. All lattice cells are represented
with squares, where each square has as a colour representing the quantity of order
parameter in that lattice cell. The particle is represented by a circle. Because of
its orientation, the particle is a perfect Janus seen from this direction and can be
drawn as half circle with lines (active side) and half circle without (inactive side).
Cells inside these regions are also shown for mainly computational reasons, but
order parameter for cells inside do not have a physical meaning. Velocity of the
particle centre of mass is represented with an orange arrow.

C.4.2 3D Visualizer

At some moment of the thesis, it was necessary to see the configuration of the
whole box and how the particle orients in 3D. Although one can print in a plot
the orientation of the particle by plotting its spherical coordinates, sometimes it is
not easy to understand what is happening, even more if there are many particles
in the system. To avoid any misinterpretation, I created a software in Java using
Open Graphics Library (OPENGL). OPENGL is a programming interface (API)
for rendering 2D and 3D vectors graphics, usually used for computer-aided de-
sign (CAD), game development, virtual reality and in general, anything related to
rendering 2D and 3D graphics. It is a cross-language, cross-platform, and open-
source project. For this porpoise, I used the last major version 4, launched in 2010.

With this software, one can represent from Ludwig output:

• All the particles in 3D. It is prepared to draw half-half of the Janus particles
in different colours (not necessary if you do not want).

• All the walls in the simulation box if you need them.

• All the lattice nodes as a coloured points. The colour represents the quantity
of the order parameter to see how oxygen or liquid/liquid is distributed. All
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points can be coloured with the same opacity or increasing opacity for those
around the particles for a better visualization.

The software will read all the files of your output and will run the results as an
interactive movie because while playing the results, the user can move inside the
movie in 3D, as if it were a character in a game. We can move the camera with
the keyboard (up, down, left, right keys) and the mouse to point the direction (left
click while moving the mouse).

To use it, simply install Eclipse software https://www.eclipse.org/downloads/
following the instructions available in the repository link. Then, import the git
project present at https://github.com/Scolymus/Ludwig_visualization/ and follow
the instructions present in the repository.

A B

Figure C.3: Example of 3D visualizer software. All lattice cells are represented
with points, where each point has as a colour representing the quantity of order
parameter in that lattice cell. After the lattice cells we can see a black rectangle
representing a solid wall. Inside the lattice cells there is a Janus particle. A) All
points have the same transparency. B) Only those surrounding the particle are
opaque.
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Navier-Stokes equation, dimensionless

form, 29
Neural network layer, 116

PDMS, 62
Phase, 11
Phoresis, 43
Pixel, 69
Plasma O2, 59
Precision, 122

Recall, 122
Region of interest, ROI, 92
Reynolds number, 29

Scallop theorem, 31



Short, 70
Silicon neuron, 114
Skin effect, 25
Sputter deposit, 59
Stokes equation, 30
Surface tension, 12

Thermodynamic equilibrium, 11
Topological insulator, 21
Topological invariant, 21
Tracking, 104

Velocity autocorrelation, 86

Wet active matter, 9
Wetting, 14
Winding number, 25

You only look once, YOLO, 121
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