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3 Theoretical framework 

 

 After choosing the Ronchi deflectometry experimental technique and generally 

describing some of its main abilities and limitations, the theoretical fundamentals of the 

Ronchi test technique are going to be discussed, from the adequate theoretical model 

to be used in its description to the data which needs to be extracted from the recorded 

intensity pattern in order to achieve the topographic reconstruction of a sample surface. 

 Since the early days of the Ronchi test, geometrical and physical explanations 

have been used to establish the nature of the registered fringes [Ronchi 1964]. Section 

3.1 deals with the description of the physical model, which takes into account the 

effects of diffraction in the registered data and has been named diffractive theory of the 

Ronchi test.  Section 3.2 will discuss the geometrical optics approach to the Ronchi 

test. However, under certain experimental conditions that will be specified next, both 

models will be shown to be equivalent. This will allow us to interpret the fringes as a 
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shadow pattern of the lines on the ruling. Section 3.3 will describe how to measure the 

surface under test from the data obtained using the Ronchi test. 

3.1 Diffractive theory of the Ronchi test 

 

 As a grating consisting of series of parallel lines, the Ronchi test may be 

considered as being a (low frequency) diffraction grating. This means we must take into 

account how important these diffractive effects will be in the recorded intensity pattern. 

 

3.1.1.- The Ronchi test as a diffraction grating 

 We shall assume an experimental setup where a wavefront coming from a 

sample under test hits a Ronchi ruling, and the resulting intensity pattern is then 

recorded on the focal plane of a CCD camera with its objective pointing at infinity. We 

shall assume that under usual experimental conditions, the sample may be assumed to 

be very close to the plane tangent to the tested surface at its vertex. We shall define a 

set of coordinate systems as described in Fig.3.1.1, where the reference systems will 

be named XSYS at the plane tangent to the sample surface at its vertex; XRYR at the 

plane where the Ronchi ruling is placed (usually called the Ronchi plane); and XfYf at 

the focal plane of the lens. As the Ronchi ruling will not in general be placed at the 

center of curvature of the wavefront, the distance from the vertex of the surface to the 

Ronchi ruling is r+∆r, r being the radius of curvature of the ideal wavefront leaving the 

system under test, and ∆r the amount of defocus. A finite distance d is assumed from 

the Ronchi plane to the entrance pupil of the CCD camera objective, described by its f' 

focal length. The ruling has light and dark slits of equal size, T  being its period. That is, 

its transmitance has a square-wave profile. 

 The mathematical treatment we will describe will assume positive values for the 

defocus ∆r, as this will be the usual configuration in our experimental setup. This means 

that the intensity pattern resulting from the propagation of the wavefront from the 

tangent plane to the surface to the Ronchi plane cannot be calculated through classical 

propagation integrals, as the wavefront will be passing through a singular point at z=r (C 

point at Fig.3.1.1). The positive ∆r means that our setup involves placing the Ronchi 

ruling "out of focus" from the wavefront.  
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Fig. 3.1.1: Reference systems used to develop the diffractive theory of the Ronchi test 

 

 

 The classic mathematical treatment of the Ronchi test usually assumes 

negative or null values for ∆r (that is, "in focus" or "at focus" positions of the Ronchi 

test). This kind of treatment is used by some authors [Adachi 1963] [Cornejo 1992], 

giving very similar conclusions to those we will reach in our "out of focus" treatment. 

 As a starting point, we will use the complex amplitude incident on the Ronchi 

plane. We will use the propagation integral under the Fresnel approximation in order to 

obtain the complex amplitude distribution on the CCD array plane. We shall call the 

incident complex amplitude UR(xR,yR). The Ronchi ruling may be interpreted as a spatial 

filter placed on the XRYR plane. Let T(xR,yR) be its transmittance. The complex amplitude 

leaving the Ronchi plane will therefore be 

U x y U x y T x yR R R R R R R R
' ( , ) ( , ) ( , )= ⋅   (3.1.1) 

 It is a well known result of Fourier theory [Goodman 1968] that the complex 

amplitude distribution on the focal plane of a lens with an object placed a distance d in 

front of it can be written as 
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where the FT symbol stands for Fourier transform, XIMGYIMG is the reference system on 

the focal plane of the lens, and XOBJYOBJ  is the reference system on the object plane. 
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According to the defined reference systems of Fig.3.1.1, XIMGYIMG is coincident with 

XfYf.  

 

By applying this result to our development, and placing U'R(xR,yR) as the object 

plane complex amplitude, 
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 So through Eq. 3.1.1 
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 It may be shown that the transmittance of the Ronchi Ruling (a square wave 

profile, with light and dark strips of equal size), can be expressed in terms of the Fourier 

series 
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 Lines have been assumed to run parallel to the Y axis, as shown in Fig. 3.1.1. 

Including 3.1.5 in 3.1.4 yields 
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 So we might write 

U x y
e

i f
B u

f
x

n f
T

y
ff f f

i k
f

d
f

x y

n f f
f

n

f f

( , )
'

(
'
(

'
),

'
)

'
(

'
)( )

= ⋅ −

− +

=−∞

∞

∑
2

1 2 2

1
λ λ

λ
λ

  (3.1.7) 

where uf(xf,yf) stands for the Fourier transform of UR(xR,yR).  

 That is, the complex amplitude in the focal plane of the CCD camera is 

described as a phase term dependent on the coordinates of the observation point, that 

will be removed when making intensity measurements; a scaling factor on the total 

amplitude, dependent both on the wavelength and on the focal length of the objective 

being used; and a superposition of an infinity of sources with a distribution in the form of 

the Fourier transform of the complex amplitude incident on the Ronchi ruling, scaled 
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and sheared between them a distance n f
T
λ '  along the Xf axis. Each of these sources 

has different amplitude Bn, which decreases with n. 

 When working in "at focus" or "in focus" setups, direct information from the 

wavefront present at the plane tangent to the surface may be taken into account in the 

equations. The main difference with the "out of focus" approach presented here (except 

some constant phase and scaling terms) is the consideration of the propagation from 

the tangent plane to the surface to the Ronchi plane. This entails an additional 

propagation integral, which leaves Eq.(3.1.7) as a superposition of the complex 

amplitude distribution at the plane tangent to the surface sheared along XF the value 

T
'fnλ . This approach is common in the bibliography, but does not fit with the "out of 

focus" configuration usual in our experimental setup. 

 

3.1.2.- The Ronchi test as a lateral shearing interferometer 

 From Eq.3.1.7, it follows that the Ronchi test may be interpreted as a lateral 

shearing interferometer, as many laterally sheared images of the incident wavefront 

appear in the observation plane giving rise to a number of fringes.  

 In order to reduce the number of diffracted orders, some authors use a 

sinusoidal fringe pattern, which gives Bn=0 coefficients except for B-1,B0 and B1 

[Schwider 1981].  It must be noticed that the amount of shear introduced using 

common Ronchi ruling periods is very small (see Table 3.1.1) compared to the usual 

sizes of the exit pupil to the surface. The superimposed area is thus quite close to the 

full area of pupil being tested. A number of lateral shearing interferometers for 

metrological applications, based on Ronchi rulings, have been proposed [Schreiber 

1997][Hibino 1997]. 

 

Table 3.1.1: Amount of shear introduced between displaced images of the exit pupil of the surface 

being tested, for  typical periods of the ruling (λ=635nm, f'=50mm,n=1). 

Ruling period (mm) 0.508 0.254 0.127 0.085 

Shear λf'/T (mm) 0.063 0.125 0.250 0.375 
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3.1.3.- Incident spherical wave 

 Let’s continue our description of the Ronchi test assuming some kind of incident 

wavefront. We shall assume that a perfect diverging spherical wavefront of radius ∆r  is 

reaching the Ronchi test. That is, let 
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 By using the scaling property of the Fourier transform, combining Eq.(3.1.7) and 

Eq.(3.1.8) 
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 Defining R f
ro = '2

∆
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 So, except for the phase and amplitude factors common to all the diffracted 

orders that are being superimposed, the result of the incidence of a spherical wavefront 

on a Ronchi ruling is the superposition of an infinity of spherical waves with radius Ro , 

amplitude Bn and centered at x
n f
Tf = λ ' , yf=0. This result will be recalled in Section 3.2.3 

in order to justify the geometrical interpretation of the Ronchi test in our experimental 

setup.  It also shows that the detected fringes on the CCD array will not be sharp, as 

interference between many of the diffracted orders will blur them. 

 A further interpretation of this result [Malacara 1990] may be achieved by 

rewriting Eq. 3.1.9 developing the exponential term: 
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 Eq. 3.1.11 shows how each of the diffracted orders may be considered as a 

plane wave propagating in a direction α with the Z axis, with sin
n

T
r

f
α π= 2 ∆

'
, and a 

phase term dependent on n2 that equals the optical path difference (OPD) between two 



3 THEORETICAL FRAMEWORK 

3.7 

spherical wavefronts of radius  f
r

'2

∆
 with its centers sheared a distance n f

T
λ '  along Xf 

axis. 

 

3.1.4.- Talbot planes 

 As a consequence of Eq. (3.1.11) we may see that there are a set of positions 

along the Z axis where the OPD term equals 2mπ, namely 
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 So the condition for the OPD term of Eq. 3.1.11 to equal unity is 

∆r
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 At these positions along the Z axis, the optical path difference between the non-

diffracted wavefront and the nth term of the superposition differ an integer multiple of 2π, 

so the superposition of these orders will be equal to that of two tilted plane waves. The 

interference between these two components of the diffracted wavefront would give rise 

to well-defined, straight sinusoidal fringes.  

 This is the Talbot effect applied to Ronchi deflectometry. It occurs when one of 

the diffracted orders has a shift along Xf axis equivalent to the ruling spacing projected 

on the observation plane [Latimer 1992]. This effect has been theoretically simulated for 

the special case of the Ronchi test [Berry 1996], and widely used in measurement 

applications [Nakano 1985][Oreb 1994].  

 The Talbot effect, however, would be especially noticeable when the orders, 

shifted 2mπ radians, fulfill two conditions: they should carry as much energy as 

possible and they should interfere with contrast as high as possible. The contrast of the 

fringes will decrease as the amplitude difference between the interfering orders 

increases. Table 3.1.2 shows the contrast and energy values for the interference 

between some of the sheared diffracted orders, obtained from their amplitudes Bn and 

Bn'. Energy Io is obtained as the square root of the sum of the squared amplitudes. 

 It may now be seen that the term with highest contrast combined with highest 

energy will be the interference between the zero order and the first order. By placing 

n=1 in 3.1.13 we obtain the set of points on Z axis 

∆r m
T= 2

2

λ
   (3.1.14) 
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which is the set of distances from the center of curvature in which the sharpness of the 

Ronchi fringes obtained will be greatest. Another set of fringes with maximum 

sharpness may be obtained for values of the OPD term equal to mπ, that is 

∆r m
T= +( )2 1

2

λ
  (3.1.15) 

 In these positions, fringes will display a contrast reversal in respect of the fringes 

in positions described by Eq. (3.1.14). It may also be seen that at the set of positions 

∆r
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2

2

λ
  (3.1.16) 

the contrast of the fringes will be minimum, as the phase difference between the first 

and zero orders is (2m+1)π/2. 

 

Table 3.1.2: Relative energy (I0) and contrast  (C) of hypothetical interference between some pairs 

of diffracted orders. Values calculated from Bn coefficients, so even diffracted orders have no 

amplitude (See Eq. 3.1.5). 

n' 1 3 5 7 9 

C 90.6 40.6 25.1 18.0 14.1 

 

n=0 

Io 0.351 0.261 0.254 0.252 0.251 

n' 3 5 7 9 11 

C 60.0 38.5 28.0 21.9 18.0 

 

n=1 

Io 0.112 0.105 0.102 0.102 0.102 

n' 5 7 9 11 13 

C 88.2 72.4 60.0 50.8 43.8 

 

n=3 

Io 0.015 0.013 0.013 0.012 0.012 

 

 

 

3.2 Geometrical theory of the Ronchi test 

 

 The Ronchi test may be interpreted geometrically as well as by the diffractive 

theory developed until now. The geometrical approach is simpler, because it describes 

the fringe patterns obtained merely as projections of the Ronchi test bands, but it does 

not take into account the diffractive effects described in Section 3.1. 
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 Furthermore, the diffractive theory developed along the previous Section must 

be implemented starting at the focal point of the wavefront being considered, as this 

point is a singular one. Direct information from the surface may not then be obtained. 

The geometrical theory, as a ray propagation approach, will not be affected by this 

situation, allowing profilometry of reflective surfaces. 

 

3.2.1.- Geometrical theory of the Ronchi test 

 When no diffractive effects are taken into account, light may be assumed to 

travel along rays, the basis of the geometrical theory. We shall consider the setup and 

reference systems described in Fig.3.2.1, which are intentionally kept equivalent to the 

ones in Fig.3.1.1. Let the wavefront being measured be described for a function 

W(xS,yS), and let the reference system XSYS define the z=0 plane. The normal vectors 

to the wavefront leaving the surface will be 
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(3.2.1) 

 

Fig. 3.2.1: Reference systems used to develop the geometrical  theory of the Ronchi test. Names 

and positions have been kept  identical to those used in Section 3.1. 
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 For small apertures, the z component of the normal vector may be considered 

unity. This is the direction of the rays leaving the tangent plane to the surface. At each 

point (xS,yS) we may  thus find the ray equation 
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provided the component of the normal vector is equal to unity and the XSYS plane is 

placed at z=0. So on any given plane placed a distance z  away from the tangent plane 

to the surface, the rays leaving the surface will intersect at coordinates given by 
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 So, in particular, on the Ronchi plane XRYR 
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where the small angle approximation has been assumed. Under this approximation 

relationships between each of the reference systems may be found [Casas 1985] 
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where the small angle approximation has been taken into account. 

 So the intersection of each ray on the tangent plane to the surface with the CCD 

array will be given by 
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 The shape of the final shadow pattern may then be described and calculated for 

any incident wavefront. Each of the lines in the Ronchi test can be expressed by  

x mT

y y
R

R R

=

=
  (3.2.7) 

and through Eq.3.2.5, Eq. 3.2.6 and Eq. 3.2.7 
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 A full study of the shapes in the shadow pattern caused by each of the Seidel 

aberrations, or its combinations, may be performed using Eq.3.2.8 [Adachi 

1960a][Cornejo 1992], and the quantitative measurement of the aberrations present in a 

given wavefront is also possible [Adachi 1960b]. 

 Another common use of Eq.3.2.6 and eq.3.2.8 is the development of the so-

called "null tests". A null test is a Ronchi test where the straight lines have been 

replaced with curves that, for the particular wavefront being tested, should give straight 

shadows at the final plane. Possible deformations in the wavefront are then easier to 

detect [Cordero 1990][Malacara 1974].  

 

3.2.2.- Equivalence of geometrical and diffractive theories 

 So far the geometrical and diffractive theories of the Ronchi test have been 

presented. We will now show how both theories are equivalent under certain 

experimental conditions.  

 We shall recover Eq. 3.1.11, gathering the terms outside the sum in a complex 

constant C(xf,yf): 
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 Rewriting the exponential term, this equals 
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 Now we recall Eq. 3.1.5, the original Fourier series representing the unit 

amplitude square wave profile, to see that Eq. 3.2.10 is merely the expression of a sum 

of scaled square wave profiles, with a shear along the xf  plane. That is, on the focal 

plane of the objective we find a superposition of sheared projections of the original 

transmittance profile.  

 From the point of view of geometrical optics, a projected and scaled pattern of 

the original transmittance profile is what we would expect to obtain in the final intensity 

pattern. So the geometrical theory will be valid when the shear values are small enough, 

when compared with the size of the intensity profile.  
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 A condition may therefore be imposed on the amount of shear of the first 

diffracted order to establish a theoretical threshold for the validity of the geometrical 

approach. Our supposition has been assuming that 

λf
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T'
2 8

<   (3.2.11) 

 Assuming typical values in our experimental setup (λ=635nm, f'=50mm): 

T>0.356mm  (3.2.12) 

 For shorter periods diffractive effects need to be taken into account as they may 

affect the measurements. In frequency terms, this means that geometrical and 

diffractive theories may be considered equivalent when using ruling frequencies under 3 

lines per mm (70 lines per inch). A similar approach is presented in [Cornejo 1970]. 

 This equivalence may be further confirmed by comparing the results predicted 

for both theoretical models for the shadows of the ruling registered on the CCD array. 

The geometrical theory establishes a plane to plane relationship described in Eq. 3.2.5, 

which states 
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 So on the focal plane of the objective, one period of the Ronchi ruling sizes 
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 Using the diffractive theory with low frequency rulings allows us to write, from 

Eq.  3.2.10: 
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 The last expression is the Fourier series representing a square wave with period 

Teq. It follows that the period of the complex amplitude distribution at XfYf  is 

T
f
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  (3.2.16) 

 By looking at Eq. 3.2.14 it may be seen that, under the aforementioned 

frequency conditions, geometrical and diffractive theories give equivalent results.  
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3.3 Surface profile measurements 

 

 Both the geometrical and the diffractive theory of the Ronchi test have now been 

discussed. The first approach is simpler, because it describes the shadow patterns 

obtained simply as projections of the Ronchi test bands, but fails to take into account 

the diffractive effects, which may be significant in some cases. The physical diffractive 

theory is valid in a wider set of conditions, but it is rather awkward to work with.  

 In the following paragraphs experimental conditions allowing the equivalence of 

both theories are assumed (see Section 3.2.2), as these frequency values will be the 

usual in our experimental setup. Geometrical theory will consequently be used for the 

sake of simplicity. With this approach, the registered pattern on the CCD array will be 

called a "shadow pattern", as the diffractive behavior giving a "fringe pattern" has been 

shown to be negligible under these experimental conditions. 

 

3.3.1.- Ray aberration, wave aberration and surface measurements 

 Before applying our analysis to the measurement of a surface profile, a few 

remarks on wavefront aberration measurement and its relationship to surface 

measurements will be made. We will show how measurements of transverse ray 

aberration may be related to surface deformations. 

 The Ronchi test has been shown to be a direct way to measure the transverse 

ray aberration of a wavefront [Cornejo 1992], which is the departure from an ideal point 

of the image of the wavefront on a given plane, in our case the Ronchi plane. Ray 

aberration measurements may be translated into wave aberration values through the 

exact relations [Rayces 1964]  
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∂
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  (3.3.1) 

where W(xR,yR) is the wave aberration function, i.e, the departure of the wavefront from 

a reference sphere of known radius R at the Ronchi ruling plane. XRYR is the reference 

system on the Ronchi plane, as in previous Sections. 

 This wave aberration function is none other than the optical path difference 

(OPD) function from the reference surface on the plane where the transverse ray 

aberration was measured. If this wavefront is coming from a reflective surface, the 

wavefront deviation from the ideal shape will be twice the deviation existing on the 
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surface, as the path covered by the wavefront is twice the path covered along the 

surface (Fig.3.3.1). 

 

Fig.3.3.1: The optical path difference on the wavefront (OPD) is twice the height difference on the 

surface. 

 

 

3.3.2.- Surface reconstruction through the Ronchi test  

 The geometrical theory described will be used in order to measure the profile of 

a concave reflective surface. Given the shape of the wavefront impinging on the surface 

to be measured, local deformations on the reflected wavefront allow local information on 

the shape of the surface to be obtained. This local shape is found through indirect 

measurements of the local normal vector to the surface, as each of the rays of the 

incident wavefront will be reflected in an angle related to the normal at the incidence 

point. 

 The information required to obtain a full three-dimensional topographic surface 

profile will be the shadow pattern registered on a CCD array, and the relative positions 

of the light source and the surface relative to the Ronchi ruling. The setup assumed is 

presented in Fig.3.3.2. 

 We shall start from the shadow pattern present in the CCD array. As this has 

been placed on the focal plane of the objective lens pointing at infinity, each position in 

the CCD array may be related to a slope along both axes. This slope is the directive 

cosine of the ray incident on the objective (XoYo plane). The direction of the ray incident 

at (xf,yf) must be 
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if the small angle approximation is assumed to be valid. 

 If we had the (xR,yR) coordinates of the intersection of this ray with the plane 

z=r+∆r, the full equation for the ray would be known. Section 4 will describe in detail 

how these coordinates are obtained. For the time being we will simply point out that the 

position of the shadows on the pattern recorded at XfYf allows us to find the position 

where a ray with a given slope intersects the Ronchi plane. In the Fig.3.3.2 setup the xR 

coordinate would be obtained. By placing the ruling lines along XR, we would obtain yR. 

 

Fig.3.3.2: Measurement of the local normal vectors of a reflective surface using Ronchi 

deflectometry. 

 

 Once a point and the direction of the ray have been measured, the ray equation 

may be written as 
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 Remaining in the small angle approximation, the whole surface is assumed to 

be a plane placed at z=0, that is, the plane tangent to the surface at its vertex. By 

applying Eq.3.3.3 to the special case of (xS,yS,0), the intersection of the ray with the 

surface may be shown to be 

xS
xR xF

yS yR yF

C

d f'

Reflective
surface

Ronchi
plane

CCD
objective

CCD
array

xo

yo

N

Source

(xI,yI,z I)

r ∆r



3 THEORETICAL FRAMEWORK 

3.16 

fRs

fRs

y
'f

rr
yy

x
'f

rr
xx

∆+
−=

∆+
−=

    (3.3.4) 

 Now we may use the known coordinates of the source to calculate the directive 

cosines for the ray incident on the surface at that point. Given that the source is placed 

at (xI,yI,zI), the incident ray will have a direction 
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 As the directions of the incident and reflected ray are known, the components of 

the normal vector may be calculated using Eq.3.3.2 and Eq.3.3.5 as 
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 So the normal to the surface at a set of points may be obtained using the known 

source position (xI,yI,zI), and the measured values for (xR,yR) and (xf,yf).  

 The values of the local normal will so be obtained at a set of points over the 

sampled surface. Integration of the local normals will allow the topographic 

reconstruction of the measured area of the surface under test, from which it will be 

possible to measure the parameters which describe the surface (typically, its radius of 

curvature) through curve-fitting. Detailed account on the integration and the remaining 

data processing steps will be given along the following Section of this work. 


