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20 phase steps were used in the measurement. That is, the ruling is displaced in T/20 

intervals, which with the specified period comes to 10µm. It is stated that the weighted  

sums for C(x,y) and S(x,y) in synchronous phase detection techniques compensate for 

the non-sinusoidal shape of the intensity variation, so phase calculations equivalent to 

those of interferometry may be performed.  The experimental setup is shown in 

Fig.5.2.6. 

Fig.5.2.6: Experimental setup used in [Yatagai 1984] and [Omura 1988] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The same work is continued in [Omura 1988], where detailed expressions for 

the phase analysis of the ronchigram are presented. Based on the same diffractive 

approach of the Ronchi test that was described in Section 3.1 of this work, a wave 

theory of the Ronchi test is developed in order to obtain phase measurements. In order 

to retrieve the wavefront phase, the C(x,y) and S(x,y) measured values are related to 

the wavefront phase following the Taylor series 
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where s is the shear of the wavefront introduced by the Ronchi test and ω(x,y) is the 

wavefront shape. Terms of orders higher than ∂ω
∂
( , )x y
x

 are considered negligible, so 

the first derivative of the wavefront shape may then be measured and integrated 

following a least-squares method. In the experimental setup a 0.2mm period ruling is 

used, and 100 image frames are added up in order to reduce the statistical noise at 
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each step. The technique is applied to a 36.25mm diameter, 125.0mm focal length 

spherical lens, yielding a reported height measured range of 50µm, which may be 

varied by changing the period of the ruling. In this paper only 10 ruling displacements 

are used in order to provide phase shifts (with the ruling used, these displacements 

amount to 20µm each). The estimated phase measurement error, compared with a 

polynomial interpolation, comes to 0.39rad rms. In profile height measurements, this 

error is equal to 1.7µm rms for a maximum height below 50µm. 

 [Wan 1990] proposes an alternative scheme in order to perform phase 

measurements using the Ronchi test technique. Quick and simple phase 

measurements are said to be obtained if phase is considered a quantity proportional to 

the intensity of the ronchigram. The error incorporated by this linear approximation to a 

sinusoidal intensity profile can be reduced by averaging many interferograms with 

random initial phase. Two of these multiple averaged ronchigrams, with a π/2  phase 

shift between them, are then averaged again in order to remove most of the error 

introduced by the direct relation between phase and intensity. The obtained intensity is 

then normalized. In order to obtain fringe patterns with good fringe visibility, the system 

is illuminated with a tungsten lamp source converging on a small spot on the Ronchi 

ruling (Fig.5.2.7), which becomes a non-coherent extended source with its spatial 

coherence function ξ(x) given by the Van Cittert-Zernicke theorem, expressed in this 

case as 

ξ( )
.
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where a is the extension of the illuminated area along the X axis, T is the period of the 

ruling and ⊗ stands for convolution. By varying the a distance the coherence function 

of the source may be modified, yielding only interference between the non-diffracted 

order and the plus and minus first orders. The diffractive high order terms are thus 

eliminated through the variation of the degree of coherence of the source. 

 The technique was then applied to measuring a surface profile of an aspherical 

parabolic mirror with 54mm diameter and 97mm focal length, and to a spherical surface 

of 42mm diameter and 418.2mm radius of curvature. Rulings with a 0.254mm period 

are used for the aspherical mirror and with a 0.127mm period for the spherical surface, 

showing the ability of the technique to deal with both great and small amounts of 

aberration. In order to measure phase along the  X and Y directions of the surface, 

ronchigrams must be registered at orthogonal positions of the grating. Accuracy is 
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claimed to be better than ± T
30

.  As experiments were made with a 100lpi ruling, the 

precision claimed for the system is 8.5µm. 

 

Fig.5.2.7.- Experimental setup for [Wan 1990] and [Wan 1993] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same principle is followed in [Wan 1993] in order to study to what extent 

the period of the ruling influences the measurement. The use of a coherent source is 

also considered in this case, but in this paper the synchronous phase detection 

procedure proposed in [Yatagai 1984] and [Omura 1988] is adopted, instead of the 

linear conversion of intensity to phase previously proposed. When using a white light 

converging source a five step phase-shifting algorithm designed for use in 

interferometry is used, instead of the previously proposed direct conversion from 

intensity to phase. The experimental setup, however, remains the same in order to take 

advantage of the properties of the source’s coherence function.  

 Their main conclusions are the better visibility of the fringes when using non-

coherent sources (as they reduce high order diffractive effects), and how the quality of 

the measurement is severely degraded for large shear values, meaning high-frequency 

gratings. Lateral shears of 1/40 of an aperture with unit radius are proposed for the 
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particular surface under test. Measurements using 200lpi and 300lpi rulings (with 

0.127mm and 0.085mm period, respectively) are said to present accuracy problems in 

the final surface reconstruction, whereas when using a 1000lpi grating the diffractive 

effects in the ronchigram are so great that even fringe visibility is severely degraded. 

 In the latest approach we are aware of, a new setup was presented in order to 

reduce the high-order terms caused by diffraction in the Ronchi test [Hibino 1997]. It is 

shown how the high order diffractive terms are bound to appear in the recorded 

ronchigrams, either by the use of a square-wave transmittance ruling or by the high 

order terms present in any real-world sinusoidal transmittance ruling, which are called 

quasi-sinusoidal rulings. These unexpected terms are measured for a sinusoidal 

intensity pattern recorded by the authors using interferometric techniques. The 

experimental setup is quite similar to the one used by [Yatagai 1984], but a rotating 

ground glass diffuser is used as a screen, prior to recording the intensity pattern using 

a CCD detector (Fig.5.2.8). 

 
Fig.5.2.8.- Experimental setup for [Hibino 1997] 

 

 

 

 

 

 

 

 

 

where L1 is the test lens, G a quasi-sinusoidal grating, L2 an imaging lens and D a 

rotating ground glass diffuser. C is the CCD detector. 

Apart from the smoothing process caused by the speckle that appears after the 

light crosses the rotating diffuser, the high order non-sinusoidal terms are suppressed 

up to their n term by using a tailored phase-shifting algorithm with n+2 samples. Two 

ronchigrams recorded in perpendicular directions of the Ronchi ruling are needed in 

order to obtain a surface reconstruction by integration using the least squares fitting 

method. Spherical wavefronts of 9.9λ are claimed to be measured with errors of 

0.014λ. However, the application has not been tested on surfaces where a high 

amount of aberration was to be measured. 
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 To summarize the reported works on the application of phase-shifting 

techniques to the Ronchi test, we could therefore point out that: 

• The techniques presented tackle the presence of high order diffraction terms in the 

recorded intensity pattern in different ways. All the techniques tend to reduce the 

recorded intensity patterns to sinusoidal shapes through a) approximation; b) using 

the coherence properties of a non-monochromatic extended source; or c) using a 

rotating ground glass diffuser in order to smooth the recorded pattern combined 

with a tailored phase-shifting algorithm. 

• The technique used in [Yatagai 1984] and [Omura 1988] is based on the 

assumption of ideal rulings where no even order terms appear in the Fourier series 

development of the ruling transmittance. Furthermore, any higher order terms are 

neglected in front of the first derivative term. However, in an ideal binary grating the 

11th order harmonic signal is 9% of the fundamental frequency signal, which may 

be considered an important error source in some applications. The technique was 

applied to aspherical and spherical surfaces. 

• The technique put forward in [Wan 1990] and [Wan 1993] can measure both great 

and small amounts of aberration, meaning that it is capable of measuring both 

spherical and aspherical surfaces. However, its use of non-monochromatic 

extended sources with variable coherence degrades the fringe visibility to some 

extent, which causes an undesired increment in the random noise recorded.  

• The work by [Hibino 1997] is the most realistic when dealing with the presence of 

high-order terms. However, the tailored phase-shifting algorithm used (a seven-

sample algorithm) compensates for odd harmonic terms only up to the 5th 

harmonic of the frequency of the ruling. The additional smoothing introduced by the 

speckle appearing as the light travels through the rotating ground glass diffuser 

may account for the higher order diffraction terms in case of slightly deformed 

wavefronts like the one presented (10λ defocusing in a spherical wavefront), but no 

information is provided on what would happen when introducing important 

alterations in the curvature of the wavefront under test.  

• None of the techniques presented tackles the problem of measuring non-

rotationally symmetric surfaces, such as toroidal ones. Only the technique in [Wan 

1993] tests a related topic, when measuring the amount of astigmatism present in a 

wavefront, by fitting the reconstructed wavefront to Zernicke polynomials.  

• None of the techniques presented allows to us to foresee what would happen when 

applying them to toroidal surfaces, which have a very high inherent amount of non-



5 IMPROVEMENTS IN SURFACE MEASUREMENTS 

5.23 

rotationally symmetric wavefront aberration. Yatagai’s approximations are no longer 

valid in the presence of such amounts of aberration. The coherence function of the 

source used by Wan et al is optimized at a given spot area on the Ronchi ruling at 

which the fringes have a good contrast; this optimization occurs only at one shear 

position (s=λr/T, with r radius of curvature), which depends on the radius of the 

surface being measured, so a toroidal surface will cause serious problems in 

obtaining good contrast fringes in the whole field of view. Finally, in our opinion it is 

not ensured that the smoothing from the speckle of a rotating diffuser, together with 

a suited phase-stepping algorithm that removes only up to the 5th term, is enough to 

remove the diffractive high order terms from the signal when a toroidal surface is 

measured.  

• None of the techniques presented therefore proposes an experimental setup 

satisfactory enough to reduce the complex intensity patterns resulting from the 

Ronchi test to sinusoidal patterns to which phase stepping procedures apply, when 

measuring non-rotationally symmetric surfaces. 

 

5.2.2.2.- Application of phase-shifting techniques to non-sinusoidal, spatially 

stable intensity patterns 

 It has been shown that much of the research being carried out in the field is 

directed towards reducing the complex shapes of the recorded signals on the 

ronchigrams to sinusoidal shapes. However, the shape of the wavefront that will be 

measured when testing a toroidal surface is very likely to bring on great difficulties in 

reducing the complex signal from the shadow pattern to a sinusoidal signal, as this 

shape will depend on the difference of the two orthogonal radii of curvature that define 

the toroidal surface. In this section, a different approach will be discussed: instead of 

reducing the intensity patterns to sinusoidal ones in order to apply phase shifting 

procedures, a general method for developing phase shifting algorithms for non-

sinusoidal signals will be presented [Arasa 1997]. 

  Suppose that a general signal, with a form described by f(x), was obtained from 

the intensity pattern. Each single peak (corresponding to the intensity pattern of a 

bright line) may be described using a function fi(x), and assigned a null value at the 

points outside the peak. Thus, 

( )f x f xi
i

P
( ) =

=
∑

1
  (5.2.21) 
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in a signal where P peaks are present in the intensity pattern. Only one-dimensional 

signals are considered, as the transmittance of the Ronchi ruling is assumed to vary as 

a square wave along the X axis, and differences between consecutive pixels in the Y 

axis direction, i.e. along the ruling stripes, should be very small even in the event of 

large amounts of aberrations being present. This assumption will be seen to have little 

significance at the end of this section.  

  Each function fi(x) may be described as a Fourier series; not writing the 

dependence on x of Φ (x), this series would be 

( ) ( )f x
a

a k b ki k
k

k
k
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with ak and bk described as 
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 When a phase stepping procedure is applied, the j intensity pattern has a phase 

increment αj relative to the phase of the first measurement, so 
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 The measured intensity pattern, introducing the fringe modulation and the 

ground noise level, will thus be, at each pixel 
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 After some algebra, the expression may be written as  
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or, including the zero order inside the sum 

   ( ) ( )I k kj k j
k

k j
k

= +
=

∞

=

∞

∑ ∑µ α η αcos sen
0 1

   (5.2.29) 

provided that we define 

µ γ0 0 0
0
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a     (5.2.30) 

( )[ ]µ γk k kI a k b k= ⋅ +0 cos sen( )Φ Φ   (5.2.31) 

( )[ ]η γk k kI a k b k= ⋅ − +0 sen cos( )Φ Φ   (5.2.32) 

 A least squares technique will now be applied supposing that a number J of 

measuring steps are available in a given experimental setup. In order to apply the least 

squares technique a finite number of terms in each summation is required. If each sum 

was extended from 0 to N,  J>2N+1 would have to be accomplished. That is, extending 

the sums up to the fifth harmonic in the series would require a minimum of twelve 

experimental recordings at different phase shifts. Once this condition is satisfied, the 

function to minimize would be 
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With the assumed conditions, J=12 and N=5. Keeping N and J in the equations in order 

to make them more general, this yields a set of equations 
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which may be written using a matrix notation as 
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or, naming the matrices properly 

I A M= ⋅  (5.2.39) 

The phase information we are trying to retrieve from the signal is now only in 

matrix M; so, each of the µk and ηk values may be determined through 

M A I1= ⋅−  (5.2.40) 

and Φ (x) may be obtained from combinations between µk and ηk, such as 
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An example of the described procedure will be provided, from an experimental 

measurement carried out in the experimental setup described in Section 4.1. This 

example is presented to show the kind of results that the described procedure may 

produce. The surface tested was spherical and the test was carried out using a 25.4lpi 

ruling (1mm period). No physical interaction models on the signal need to be 

considered, as the model is based on the shape of the registered signal. Fig. 5.2.9 

shows the recorded intensity pattern for a 148mm radius of curvature concave surface 

of a spherical ophthalmic lens whose first convex surface was ground in order to make 

it optically inactive, as explained in Section 4.1. Four fringes were visible in the central 

region of the image, corresponding to the four peaks visible in Fig.5.2.9. These will be 

referred to as peaks 1, 2, 3 and 4, starting with the peak with its center at a lower pixel 

number (left to right in the figure).  

 
Fig.5.2.9: Measured intensity pattern in the Ronchi test setup applied to a spherical surface. The 

surface has a radius of curvature of 148mm and the Ronchi test has a period of 1mm. 

 

 A function for fi(x) must be considered at each peak. Prior to this procedure, 

each peak was normalized to the noise level, leaving a signal from zero to unity. In this 

case, the shape of the intensity pattern suggested that the difference of two Gaussian 

curves was well suited to the signal. The shape of the signal was given, for each peak, 

for the expression: 
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After dividing the intensity pattern in order to treat each peak alone, the peaks 

were normalized in both their horizontal and vertical dimensions. Each peak was then 

curve-fitted to the function in Eq.5.2.42 in order to obtain numerical values for 

coefficients from ai to gi. Table 5.2.1 presents the values obtained for each of the 

peaks, together with the correlation coefficient values (r2) and their standard deviation 

(σ2). This fitting provides us with a theoretical shape for the measured signal, and was 

carried out using commercially available software (TableCurve© 2D).  

 
Table 5.2.1: Coefficients and quality of the fit of Eq.5.2.42 to the peaks in Fig.5.2.9 

 ai bi ci di ei fi gi r2 σ2 

Peak#1 i=1 0.042 1.789 0.549 0.121 1.012 0.552 0.068 0.996 0.0243 

Peak#2 i=2 0.056 2.013 0.544 0.137 1.404 0.552 -0.081 0.991 0.0369 

Peak#3 I=3 0.066 6.443 0.532 0.111 5.870 0.534 -0.097 0.993 0.0304 

Peak#4 i=4 0.033 6.754 0.529 0.129 6.189 0.530 -0.112 0.993 0.0312 

 

 Once fi(x) is known at each peak, we will obtain its Fourier transform. The fitted 

signal is needed in order to avoid the inclusion of deviations from the expected shape 

in the Fourier spectrum of the signal as far as possible. As the procedure is identical for 

the four peaks present in Fig.5.2.9, only the results for peak #2 will be presented. Peak 

#2 was selected because of its particular shape, which yields interesting results in the 

measured phase of the signal. However, the procedure was applied to the whole 

signal, and complete phase results for the four peaks will be presented next.  

 The limit in the number of terms of the Fourier series was chosen as 11. This 

means that terms up to the fifth harmonic are considered, which yield suitable signal 

reconstructions, as may be seen in Fig. 5.2.10b.  In another trials, 21 terms (up to the 

tenth harmonic) were considered, showing a sum of the Fourier series resembling the 

original signal more closely, specially at the peak horizontal edges. However, the 

increase in calculation time (a 21X21 matrix appeared in the calculations), together 

with the need for 21 equivalent displacements in one single period of the ruling, made 
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us select just eleven terms in the series. Notice, however, that no fundamental 

limitation in the presented equations prevents from using more terms in the series. 

 As a least squares technique must be applied, we need a minimum of 12 

experimental measurements to account for our 11 unknowns. A phase increment of 

T/11 (91µm) was chosen, and 12 measurements will be made, so the first and last 

experimental measurements will be exactly one period apart. 

 
Fig. 5.2.10: Peak #2: (a) Normalized experimental measurement and (b) Fourier series 

reconstruction  of (a) with terms up to the fifth harmonic 

 Eq.5.2.31 and Eq.5.2.32 then apply to calculate the µκ and ηk values, from 

which values for the phase, and the modulation of the signal may be obtained. Such 

values are presented in Fig. 5.2.11 for peak #2. Notice how the deviations from the 

fitted shape of the signal cause major phase deviations from the linear theoretical value 

that would be expected under ideal conditions. Notice also how this deviation may even 

be appreciated in the modulation values, slightly different in the area where the 

measured signal deviates from the fitted one. 
 

Fig. 5.2.11: Peak #2: (a) Reconstructed phase of this peak; (b) Measured modulation 



5 IMPROVEMENTS IN SURFACE MEASUREMENTS 

5.30 

 Working on the three remaining peaks in the same way, a phase value may be 

obtained for each pixel considered. This lets us obtain the wrapped phase, which 

closely resembles the one obtained in Fig.5.2.2, obtained when developing an 

interferometric theoretical example. The wrapped and unwrapped phase values for all 

the peaks in Fig.5.2.9 are presented in Fig.5.2.12. Once the unwrapped phase is 

obtained, a wavefront reconstruction procedure together with a fitting to a set of 

Zernicke polynomials would yield the measured shape of the wavefront. 

 

Fig. 5.2.12: All peaks; (a) Wrapped phase; (b) Unwrapped phase for the signal in Fig. 5.2.9. 

 

 We are aware of the many possible drawbacks of the technique presented. In 

particular, a detailed study of the accuracies involved, and of how much information is 

lost either along the fitting step or when deciding the number of terms included in the 

Fourier sum would be very useful. However, there is an underlying assumption 

concealed throughout the development described: the signal presented must be 

spatially stable. That is, if we look at each independent pixel, and at the signal variation 

it experiences, all the pixels in one peak (at least) should undergo the same kind of 

variation along one period.  

 This signal variation depends very much on the shape of the incident wavefront. 

The local curvature of the incident wavefront when impinging on the edges of the 
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stripes of the Ronchi ruling plays a key role in the amount of diffractive effects that will 

be present in the analyzed signal. As a three-dimensional wavefront hits a plane ruling, 

the local curvature of the wavefront at each ruling line and along each of the ruling lines 

will change smoothly along the ronchigram even for perfect wavefronts. The change of 

the local curvature will yield alterations in the signal shape, so the signal will not be 

spatially stable, as it will vary smoothly. If the signal shape does not stay constant 

throughout one period of the ruling (that is, throughout the phase shifting of one single 

peak), procedures based on using this shape are obviously not reliable, as they would 

mean a priori knowledge of the shape of the wavefront being measured. These 

considerations led us to abandon phase shifting procedures in order to improve the 

measurements, and to adopt the microstepping procedure presented in Section 5.3.  

 However, before describing these microstepping procedures, which will yield 

the final approach to better measurements using the Ronchi test, Section 5.2.3 will use 

experimental ronchigrams to show how the shape of the registered signal is altered 

when the Ronchi ruling is moved during the different phase-shifting steps, ruling out the 

possibility of using phase-shifting schemes in the Ronchi test technique. 

 

5.2.3.- Validity of phase-shifting techniques applied to the Ronchi test 

 Up to this point, the treatment presented in Section 5.2.2.2 of the non-sinusoidal 

signals obtained using the Ronchi test technique would allow to obtain full phase 

reconstructions resembling those obtained in interferometry. The performance of such 

a treatment comes down to a problem involving the experimental ability to produce 

small displacements and the computing power and speed needed to perform the 

calculations. 

However, as pointed out above, an assumption has been made about the 

signal; as in the case of interferometry, the signal must remain the same throughout the 

phase-stepping procedure. That is, the value of the intensity pattern at each particular 

point may change, but the signal must continue to be described by the same function 

(a sine in interferometric measurements, or each of the fi(x) fitted at each of the 

intensity peaks in the Ronchi test). This means that each of the measured pixels should 

undergo the same kind of intensity variation throughout the phase stepping process 

(under experimental limits). That is, the signal must be spatially stable [Arasa 1997b]. 

A theoretical example will show this spatial stability of the signal when 

interferometric techniques are used. A general signal of the shape 

[ ]I x xi i( ) . cos( ( ) )= ⋅ + +0 5 1 Φ α   (5.2.43) 
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was calculated supposing a total phase variation of two fringes along 100 pixels. 

Eleven phase steps were performed, with a phase increment of ∆α = 2 11π  rad 

between them. This means that the received signal in the first measurement step would 

be the one presented in Fig.5.2.13, which has a variation of  two complete periods. 

 
Fig.5.2.13: Theoretical interferometric intensity signal in the first measuring step. 

 

 When the phase-stepping procedure is applied, with twelve displacements 

with ∆α = 2 11π  rad, each single pixel in the image will undergo intensity variations that 

will follow the signal variations. This means that each of the pixels in the image will 

undergo the same kind of variation, with the only difference that the signal will start at a 

different point at each pixel, because of their different initial value in the first intensity 

pattern. That is, each pixel has a different initial phase value. If we plotted the intensity 

variation at a given pixel as a function of the number of steps, instead of the intensity 

pattern for a given step at all pixels, we would see how its intensity had varied during 

the phase-shifting procedure. Fig. 5.2.14 shows these intensity variations over one of 

the theoretical interferometric peaks, at pixels numbers (a) 1; (b) 7; (c) 13; (d) 18; (e) 

24; (f) 30; (g) 36; (h) 42 ; and (i) 48 of Fig. 5.2.13 after a simulated phase-stepping 

procedure was performed. All Y axes represent intensity in arbitrary units, whereas all 

X axes represent the step number. Its shape is clearly that of a cosine, with different 
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starting points depending on the initial phase of the pixel. It must be stressed that only 

one period variation is observed, as the phase-shifting steps were carried out during a 

single period. 
 

Fig. 5.2.14: Intensity variations at fixed pixels when a phase stepping procedure over one period 

is applied. The pixels are numbers (a) 1; (b) 7; (c) 13; (d) 18; (e) 24; (f) 30; (g) 36; (h) 42 ; and (i) 

48 of Fig. 5.2.13. Y axes represent intensity in arbitrary units; X axes represent step numbers 

 

 A three-dimensional representation summarizing Fig. 5.2.13 and Fig. 5.2.14, 

and including all intensity measurements is also possible (Fig. 5.2.15). The pixel 

number was placed along the X axis, the step number along the Y axis and the 

intensity in arbitrary units along the Z axis. Both three-dimensional (Fig.5.2.15a) and 

two-dimensional grayscale plots (Fig.5.2.15b) are provided. 

 We will now look at what happens when the same analysis is performed on the 

shadow pattern obtained using the Ronchi test to sample the wavefront. We will apply 

the analysis carried out for interferometric measurements to the same four-peaked 

signal present in Fig.5.2.9. Measurements will be carried out with the experimental data 

used in Section 5.2.2.2. Peaks 3 and 4 of Fig.5.2.9 are arbitrarily selected for the 

analysis, as any part of the signal gives rise to comparable results. 
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Fig. 5.2.15: Intensity variations versus pixel number and step number for theoretical 

interferometric measurements. (a) Three-dimensional surface plot and (b)Two-dimensional 

grayscale plot. 
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Fig. 5.2.16: Intensity variations at fixed pixels in the fourth peak of Fig. 5.2.9 when a phase-

shifting procedure over one period is applied. The pixels are numbers (a) 332; (b) 337; (c) 342; 

(d) 347; (e) 352; (f) 357; (g) 362; (h) 367; and (i) 372. All Y axes represent intensity in arbitrary 

units;  all X axes represent step numbers. 

 

Fig.5.2.16 shows the intensity variations at each pixel of the signal 

corresponding to the fourth peak of Fig. 5.2.9 during the phase-stepping procedure. As 

in Fig. 5.2.14, all Y axes stand for intensity in arbitrary units, and X axes represent the 

number of phase increments carried out. The corresponding pixel numbers from Fig. 

5.2.9 are (a) 332; (b)337; (c) 342; (d) 347; (e) 352; (f) 357; (g) 362; (h) 367 ; and (i) 

372. The pixel spacing between the different subplots in the graph has been kept 

intentionally constant in order to show the variations in signal shape better. Only 

intensity values at eleven step increments are shown, as the 12th measured value 

coincides with the first measured value except for very small intensity fluctuations that 

will not affect the conclusions we reach. 

It is easily seen how the variations in signal shape do not only depend on the 

value of the pixel in the first measurement. The pixels in Fig. 5.2.16b and Fig. 5.2.16h, 

for instance, describe different intensity variations during the complete step cycle. It 

must be noticed here that no assumptions whatsoever have been made about the 

signal shape, as the graphs presented are obtained from experimental intensity 

variations within the phase stepping process.  
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In Fig. 5.2.17 the three-dimensional graph of intensity versus pixel number and 

step number shows the great irregularity present in the signal at the intensity maxima. 

In order to closely resemble the simulated interferometric measurement of Fig.5.2.15, 

now the intensity values of peak #3 and peak #4 in fig.5.2.9 have been represented 

against the pixel number and the number of steps performed. Deviations from the 

expected uniform behaviour as the phase-shifting steps are performed become evident 

in fig.5.2.17b, where the intensity maxima of the peaks may be seen to increasingly 

narrow. 

 These irregularities, as mentioned in the last paragraph of Section 5.2.2.2, are 

caused by variations in the diffractive behavior of the test introduced by the interaction 

between the wavefront and the Ronchi test stripes. Even at low frequencies such as 

the one presented (the shear value for the first diffracted order is in this case only 

15.9µm, which amounts to a shear-to-period ratio of .016, small enough to consider the 

diffractive and geometrical models of the Ronchi test as equivalent -see Sections 3.2.2 

or 5.1-), diffractive terms vary depending on the curvature of the incident wavefront, 

giving rise to such great alterations in the intensity pattern that the measured signal 

depends on the position of the ruling.  

 At this point, a fundamental difference from interferometric techniques may be 

pointed out, which comes forward as the reason for these alterations in the shape of 

the signal. In interferometric techniques the phase step is introduced through modifying 

the reference wavefront; the resulting wavefront is then accurately measured because 

of the amount of additional information obtained in the phase-stepping process. 

Incidentally, in the Ronchi test technique the wavefront to be measured is sampled 

through the Ronchi ruling; the ruling displacements may therefore be stepped in order 

to get more information on the measured wavefront. There is no reference wavefront to 

step. As the interaction of the ruling with the wavefront changes when the ruling is 

displaced, the measured signal is altered by small amounts at each step. This 

interaction depends on the shape of the wavefront being measured, so only 

configurations where the diffractive components may be neglected (with intelligent 

experimental setups [Hibino 1997] or through approximation [Omura 1988])) will permit 

the application of phase measurement techniques to the Ronchi test. These 

configurations, however, have their particular limitations, as pointed out in Section 

5.2.2.1. 
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Fig. 5.2.17: Intensity variations of peaks 3 and 4 versus pixel number and step number. (a) 

Three-dimensional surface plot and  (b) Two-dimensional grayscale plot. 

 



5 IMPROVEMENTS IN SURFACE MEASUREMENTS 

5.38 

Our conclusion is that, even at low frequencies, diffraction caused by the edges 

of the ruling alters the wavefront being measured. If this alteration were the same along 

the displacement of the ruling which introduces the phase steps, phase-stepping 

procedures might be applied, as explained in Section 5.2.2.2. However, these 

diffractive terms alter the shape of the signal in a way that depends on the positions of 

the stripes of the ruling, and on the local curvature of the incident wavefront impinging 

on each stripe. That is, the local shape of the wavefront being measured alters the 

registered signal, which in a phase-shifting procedure would be used in order to obtain 

the aforementioned shape. This means that phase-shifting techniques are not likely to 

be applied to the Ronchi technique unless diffractive effects are eliminated in some 

way. 

To sum up, in Section 5.2 it has been shown that although phase-shifting 

techniques appear to be a very good option for improving the Ronchi test accuracy 

without altering its very good dynamic range, fundamental limitations caused by the 

different diffractive behavior of the test depending on the local shape of the incident 

wavefront prevent them from being applied to the Ronchi test unless the diffractive 

terms in the signal are reduced or averaged to some extent. A method for performing 

phase measurements of spatially stable non-sinusoidal signals has also been proposed 

in Section 5.2.2.2. 

 

 

5.3  Microstepping 

 

  Up to now , our efforts to improve the measurements made with the Ronchi test 

technique have failed. The common cause of failure for both the technique of 

increasing the frequency of the ruling that samples the wavefront, proposed in Section 

5.1, and phase-shifting procedures, proposed in Section 5.2, was the presence of 

diffractive effects in the shadow pattern registered in the ronchigram. In this section a 

technique allowing an increase in the measured data points without the need for 

modifying the experimental setup described in Section 4 will be presented. 

 

5.3.1.- Increasing the number of registers 

 The methodology presented for measuring surface topographies in Section 4.2, 

whose performance we are trying to enhance, was based on geometrical optics 

principles, as the slope and position of the wavefront were measured at a number of 
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points on the Ronchi test plane.  These values were ray-traced to the tangent plane to 

the sample surface and yielded the value of the local normal at a set of its points given 

the position of the point light source was provided. Using this approach, only the 

position of the centers of the bright lines of the ronchigram is considered, and no 

information is needed from regions outside this center. This means that, if N different 

bright lines are found inside each of the orthogonal shadow patterns, a maximum of N2 

points on the surface may be measured. 

 The ideal solution for improving this technique would be one which preserved 

the geometrical interpretation of the Ronchi test, keeping the first order diffractive shear 

under the proposed threshold values (see Section 3.2.2), but which increased the 

number of registered fringe maxima, so the number of measured data points could be 

also increased. 

 Our proposal is to take advantage of the encoder motors present in our 

experimental setup, which nominally allow displacements of the Ronchi ruling with up 

to 0.1µm accuracy. If a ruling whose diffractive effects could be ignored is displaced 

along the X or Y axis a fraction of its period, we will obtain a new set of shadow 

patterns, where obviously diffractive effects can still be ignored, as the period of the 

ruling remains the same. This new shadow pattern will provide us with additional 

information about the surface, as a new set of position and slope pairs along X and Y 

directions will have been measured. 

As only the position of the center of the stripe shadows is to be considered, the 

set of points obtained at each of the displacements may be superimposed to yield a 

final composed image, where diffractive effects will not have been increased. By 

making k displacements in each direction with a Ronchi ruling with T period, we obtain 

the sampling of a ruling with T/k period without any disturbing increase of the diffractive 

effects caused by high frequency rulings. 

Because of its stepping nature, and of the values of typical displacements, 

which will be shown to be about 10µm, we called the technique Ronchi ruling 

microstepping. We must stress that the technique is completely independent of the 

surface (wavefront) being tested, and so both rotationally symmetrical and non-

symmetrical surface measurements can be enhanced in this way. 

Implementation of microstepping techniques within the data processing outline 

presented in Section 4.2 is straightforward, as each of the shadow patterns is 

independently eroded to a one pixel-wide line pattern. Once all the skeletons of a 

measurement series along both perpendicular directions have been obtained, these 
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are composed in a single image giving the total set of measured data points on the 

Ronchi plane, from superimposing each of the lines along the X direction with each line 

taking the Y direction. All intersection points between the lines yield the set of four 

values (xR, yR, u, and v) needed to carry out the ray-tracing process backwards to the 

tangent plane to the surface, and to measure at that surface point the local normal to 

the surface. The number of sampled points in the wavefront is exponentially increased 

as the number of steps rises. 

In a typical application, such as the ones presented in Sections 6 and 7 of this 

work, 50.8µm steps are applied to a Ronchi test with a 0.508mm period (50lpi). This 

yields ten measurement increments, i.e., nine additional lines of data points measured 

between each of the lines of the original shadow pattern. From our experience, typical 

Ronchi patterns with good fringe visibility have around 10 light and dark shadows. This 

means that from obtaining 102 measured points with a single capture along two 

perpendicular directions of the ruling (10x10lines), through microstepping techniques 

we will be obtaining 104 measured points from an array of 100x100 clear stripes in 

twenty ronchigrams. 

  

5.3.2.- Limits to the proposed technique  

 Microstepping has the advantage of increasing at will the number of data points 

measured on the surface with a given Ronchi ruling, no matter what the shape of the 

surface tested is. However, a set of different experimental conditionings will limit the 

performance of the technique. 

A first limitation lies in the displacement capability of the encoder motors. 

However, as stated above, micrometric displacements and repeatabilities are 

commonplace to modern encoders. This would allow 500 displacements within one 

single period of a ruling with 0.508mm period, which would yield a measured point at 

almost each of the 512x512 pixels of a typical image. The encoder resolution will thus 

pose hardly any problems. 

The main limitation to the technique, however, is the amount of measured 

information that may be treated. As the number of points increases exponentially, the 

amount of data obtained may be so high that it loses its usefulness because of the 

computing time needed to complete a full reconstruction of the surface. Table 5.3.1 

shows how the amount of information rises exponentially as the number of steps in the 

microstepping procedure is increased. A typical ronchigram with 10 bright lines in the 

shadow pattern along either the X or Y axis was considered as an example. The 
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amount of information handled in the process was considered in the following way: 

from each data point, four real values are obtained, to account for the position on the 

Ronchi plane (two values, xR and yR) and the slope of the wavefront in both directions 

(two values, u and v). Real numbers need four bytes each. So each data point needs 

16 bytes in order to be stored. The time intervals for the calculations are real values in 

the first four columns, and have been extrapolated from the former in the last two 

columns. 

 

Table 5.3.1: Increase in the number of measured line shadows, maximum number of valid data 

points and of amount of information of each case, as the number of steps in a microstepping 

procedure increases. Computing time values are estimated from typical measurements. 

Nº of Steps 1 5 10 20 50 100 

Nº of lines 10x10 50x50 100x100 200x200 500x500 103x103 

Data points 100 2.5 103 104 4 104 2.5 105 106 

Inform(Kb) 1.6 40 160 640 4 103 16 103 

Time (s) 10 120  103 2 104 2 105 3 106 

 

 The exponential increase in the amount of information obviously stems from the 

fact that each of the intersections of lines at every recording yields a valid data point 

value. If the number of bright lines in the shadow pattern were larger, the amount of 

information would be impractical.  

It must also be taken into account that in cases where the bright lines in the 

shadow patterns are very close to each other, it is hard to discern whether the line 

considered belongs to one register or another. Lines are not vertical or horizontal, as 

they deviate from the ideal shape following the wavefront aberrations, and too many 

lines will complicate assigning its correct position value to them. 

 Our experience is that microstepping procedures yielding around 104 measured 

values are the most suitable. This means ten steps in one period of a ronchigram with 

ten lines in the Ronchi pattern, which means that around 100 vertical and horizontal 

lines will be considered valid, and that about 400 of the vertical and horizontal 

remaining pixels will be considered not to contain any data value. This 1 to 4 ratio 

accounts for a reasonable separation between consecutive lines. Furthermore, the 

integration time remains acceptable (some minutes). However, some measurements 

were carried out with ten steps in a ronchigram with 20 bright lines, yielding 4 104 data 
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points. Although the results yielded the right values for the radius of curvature, the 

surface reconstruction time took some hours.  

 So, to summarize Section 5.3, microstepping has provided us with a tool that 

provides a substantial increase in our ability to measure surfaces through the Ronchi 

test technique. Obtaining an additional set of measured data values through lateral 

displacements of the Ronchi test allows us to improve the sampling of the surface as 

we wished, without increasing the amount of diffractive effects present in the 

observation plane. This kind of process is easily applied to the experimental setup 

presented in Section 4. 


