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Table 6.2.1 presents the fitted values for the curvature of the wavefront, the 

angular misalignment, the quality of the fit (through the correlation coefficient r2), and the 

radius of curvature calculated from the curvature in this case. The quality of the linear 

regression fits shows that our previous assumption of the measured wavefront being 

spherical was close to reality. This same conclusion may be drawn from the linear 

shapes of Figures 6.2.8c to 6.2.8e. 

 

Table 6.2.1: Linear regression results for the X and Y directions of the non-microstepped and  

microstepped experiments, assuming a curve y=C·ξ +K, where ξ may be either xR or yR, and y 

either u or v. C is the curvature, K the angular misalignment (see text), r2  the correlation 

coefficient  and R the measured radius of curvature of the wavefront at the Ronchi ruling. 

Sample P175 A  C(mm-1) K(rad) r2
 R(mm) 

u(xR); non-µstepped -2.4690 10-2 2.8792 10-2 0.999935 40.50 

v(yR) ;non-µstepped -2.4819 10-2 1.3770 10-3 0.999963 40.29 

u(xR); µstepped -2.4654 10-2 2.8750 10-2 0.999905 40.56 

v(yR); µstepped -2.4807 10-2 1.3486 10-3 0.999964 40.31 

 

 Small differences (around 5%) may be appreciated in the values of curvature 

measured along the X and Y directions. These differences are a consequence of the 

different pixel angular size along both directions, as was described in Section 4.3.1. Any 

errors in the measurement of this parameter (which also includes the effects of the 

objective lens and the frame-grabber) have been shown to be quite influent in the 

measured value in the error analysis of the slope measurements (See Table 4.3.1).  

The misalignment term of the linear regression proves to be greater along the X 

axis than along the Y axis, confirming what can be seen in Fig. 6.2.8a and 6.2.8b. This 

error, associated with the misalignment or tilt of the sampled surface relative to the 

incident wavefront, may be seen to be quite large along the X axis in this sample. The 

quality of all linear regressions is depicted by its correlation coefficient, showing how 

experimental results very closely follow a line both in microstepped and non-

microstepped results. 

 At this stage it may already be seen how the difference between microstepped 

and non-microstepped measurements of curvature is very small. Microstepping was 

proposed in order to improve the sampling in the topographic reconstructions of the 
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surface, but the fitted curvature and origin values should only be slightly altered by the 

presence of a greater number of data points if the correlation coefficients are good. 

 These measured position and slope values of the wavefront at the Ronchi ruling 

plane are then ray-traced to the plane tangent to the surface at its vertex, yielding a set 

of (xS,yS,u,v) values, where (u,v) are still the measured slopes of the ray impinging on 

the Ronchi ruling, and (xS,yS) the position where that ray incides on the plane tangent to 

the surface. Table 6.2.2 gives the results of curvature and angular misalignment around 

each axis obtained when curve-fitting the corresponding slope and position values at the 

tangent plane to the sample surface. These measurements correspond to curvature 

and angular misalignment of the wavefront reflected at the sample surface, once again 

assuming the wavefront has a spherical shape, and linear shapes of the u(xS) and v(yS) 

curves may therefore be expected. The yS(xS), u(xS) and v(yS) curves are presented in 

Fig. 6.2.9. 

 

Table 6.2.2: Linear regression results for the X and Y directions of the non-microstepped and 

microstepped experiments at the tangent plane to the sample surface, assuming a y=C·ξ +k 

curve, where ξ may be either xS or yS, and y either u or v. C stands for curvature, K for angular 

misalignment, r2  for the correlation coefficient and R for the radius of curvature of the reflected 

wavefront. 

Sample P175 A  C(mm-1) K(rad) r2
 R(mm) 

u(xS) ; non-µstepped 6.6750 10-3 -4.4088 10-3 0.999998 149.81 

v(yS) ;non-µstepped 6.6679 10-3 -2.2104 10-4 0.999999 149.97 

u(xS); µstepped 6.6759 10-3 -4.4105 10-3 0.999997 149.79 

v(yS); µstepped 6.6684 10-3 -2.0511 10-4 0.999999 149.96 

 

 One of the most visible features when comparing Fig. 6.2.8 and Fig. 6.2.9 is the 

inversion of the slope of the respective slope against position curves. This inversion is a 

consequence of our experimental conditions, which work out of focus, that is, with a 

theoretical focusing point prior to the incidence of the light rays onto the Ronchi ruling. 

Another important difference between the two figures is the great increase in the 

sampled area as a consequence of the divergence of the light beam. The value 

obtained at this point is the final sampled area of the surface, which amounts to 

204mm2, while the area covered on the Ronchi ruling was just of 19.4mm2. 



6 ROTATIONALLY SYMMETRICAL SURFACES: SPHERICAL SURFACES 

6.17 

Fig. 6.2.9: Measured data of the reflected wavefront at the plane tangent to the sampled surface; 

(a) yS(xS) without microstepping; (b) yS(xS) with microstepping; (c) u(xS) without  microstepping; (d) 

u(xS) with microstepping; (e) v(yS) without microstepping; (f) v(yS) with microstepping. 
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 Table 6.2.2 shows how the value of the angular misalignment term of the 

reflected wavefront is one order of magnitude smaller at the plane tangent to the 

surface, together with an improvement of the quality of the fits, which are even closer to 

perfect lines than the ones obtained on the Ronchi ruling plane. The most remarkable 

feature to point out in Table 6.2.2, however, is the  measured curvature of the reflected 

wavefront at the surface. This value can still not properly be called the surface 

curvature, as this must be obtained from fitting the local normals to the surface to the 

corresponding position of the surface values, but this curvature of the reflected 

wavefront will be shown to be very close to the actual curvature of the surface.  

 Following Eq.4.2.4, the local normals to the surface can be obtained from the 

measured data on the tangent plane to the surface and from a set of known parameters 

of the experimental setup. Table 6.2.3 presents the final results obtained from the two-

dimensional fitting of the NX(xS) and NY(yS) curves, which are shown in Fig.6.2.10. The 

yS(xS) graphs for the microstepped and non-microstepped experiment are not 

presented as they have already been plotted in Fig.6.2.9a and Fig.6.2.9b.  

 

Table 6.2.3: Linear regression results for the X and Y directions of the non-microstepped and 

microstepped experiments, assuming a curve y=C·ξ +k, where ξ may be either xS or yS, and y 

either NX or NY. C is the curvature, K the angular misalignment, r2  the correlation coefficient and R 

the measured surface’s radius of curvature. 

Sample P175 A  C(mm-1) K(rad) r2
 R(mm) 

NX(xS); non-µstepped 6.6750 10-3 -4.4088 10-3 0.999998 149.81 

NY(yS) ;non-µstepped 6.6678 10-3 -2.2104 10-4 0.999999 149.97 

NX(xS); µstepped 6.6759 10-3 -4.4105 10-3 0.999997 149.79 

NY(yS); µstepped 6.6684 10-3 -2.0516 10-4 0.999999 149.96 

 

It may be seen that the NX(xS) and NY(yS) (Fig. 6.2.10c and Fig. 6.2.10d) curves, 

and the u(xS) and v(yS) curves (Fig. 6.2.9c and Fig. 6.2.9d) are very similar. In fact, very 

slight differences may only be seen in their fitted curvature and angular misalignment 

values; these differences are listed as absolute values in Table 6.2.4. The maximum 

differences in the curvature values fitted between the two pairs of data are as small as 

10-7mm-1, yielding minimum modifications in the measured radius of curvature values 

which stay beyond the experimental uncertainties of our setup. The differences obtained 

using the local normals to the surface instead of the slopes of the reflected wavefront 
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are very small, but were taken into account in the data processing on behalf of the 

physical suitability of a surface reconstruction from its measured local normals. The 

coincidence of the two graphs is, of course, a consequence of the closeness of the light 

source to the center of curvature of the spherical surface, which yields very small 

angular differences between incident rays, local normals and reflected rays.  

 

Fig. 6.2.10: Measured data of the sampled surface: (a) NX(xS) without microstepping; (b) NX(xS) 

with microstepping; (c) NY(yS) without microstepping; (d) NY(yS) with microstepping. 
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Table 6.2.4: Differences in the fitted values of the u(xS) and the NX(xS) curves, and of the 

v(yS) and the NY(yS) curves, negligible under our experimental accuracy. Differences are shown 

without their sign. 

Sample P175 A  ∆C(mm-1) ∆K(rad) ∆R(mm) 

u(xS)-NX(xS) non-µstep. 4 10-9 1 10-8 9 10-5 

v(yS)-NY(yS) non-µstep. 1 10-9 2 10-9 2 10-5 

u(xS)-NX(xS) µstepped 9 10-9 1 10-7 2 10-4 

v(yS)-NY(yS) µstepped 5 10-9 5 10-8 1 10-4 

 

No noticeable variations of the measured radius of curvature are thus observed 

with the accuracy involved in our setup, when comparing the fitted values obtained 

using the components of the local normal to the surface and the ones obtained using 

the slopes along both axes of the reflected wavefront. 

However, the angular error introduced when confusing the local normal and the 

slope of the wavefront should be greater under our experimental conditions with the light 

source close to the surface’s center of curvature than the error introduced when 

confusing the tangent plane to the surface at its vertex with the surface itself, as may be 

seen in Fig. 6.2.11. This tangent plane assumption was used in the ray-tracing step 

previously performed in order to simplify calculations by making plane to plane ray 

propagation. As the angular error of this approximation is less significant, the error in the 

measured curvature involved should also be expected to be smaller. 

In order to confirm this question, tests were made of iterative algorithms which, 

after the first topographic reconstruction, ray-traced again from the initial measured 

position and slope values on the Ronchi ruling plane to the best fit of the first 

reconstructed surface, yielding a second topographic reconstruction. However, the 

variation in the local normals and slopes obtained in both surface reconstruction 

procedures was so small that it did not affect the final measured curvature at all. These 

iterative algorithms were abandoned as they needed to assume the kind of surface 

being tested, involved a very large increase in computation time and did not improve the 

quality of the measurement in any way. 
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Fig. 6.2.11: The angular error introduced when confusing the normal to the surface with 

the direction of the reflected wavefront is much greater than the error introduced in the normal 

when propagating to the tangent plane instead of to the real surface 

 

 

Once the local normals to the surface were calculated, the last step consisted in 

performing the final topographic reconstruction through the surface integration 

procedures described in Section 4.2.5. The final data obtained provides us with a new 

method for measuring the radius of curvature of the sample, which has up to now only 

been measured through two-dimensional curve-fitting. A three-dimensional sphere 
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may be fitted to the reconstructed surface through three-dimensional curve-fitting 

software, giving the values for the radius of curvature and the positioning of the center of 

the surface listed in Table 6.2.5 for the microstepped and non-microstepped 

measurement. Notice how the angular misalignment term of the two-dimensional fitting 

procedures has turned into a position misalignment measurement in three-dimensional 

curve-fitting procedures, in the form of the (x0,y0) coordinates of the vertex of the 

surface. The position misalignment along the X axis is much greater than the one along 

the Y axis, as was already known from the results of two-dimensional fitting and from 
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the yR(xR) and the yS(xS) plots. The correlation coefficients are still highly satisfactory, 

and the results agree very well with the ones obtained through two-dimensional curve-

fitting procedures. 

 

Table 6.2.5: Result for the fitting of the reconstructed surface to Eq. 6.2.1. 

Sample P175 A  R(mm) x0(mm) y0(mm) r2 

Non-microstepped 149.78 0.66 0.03 0.999998 

Microstepped 149.78 0.66 0.03 0.999998 

 

 One highly relevant feature is the very small differences obtained in the 

measurement of the radius of curvature when comparing microstepped and non-

microstepped procedures, a result which was previously observed in two-dimensional 

fitting procedures. It may be affirmed that if our goal was just to obtain such radius of 

curvature measurements, the use of microstepping techniques would not yield any 

important improvement to the measured value. Thus, in the event of the technique being 

applied to the measurement of radius of curvature of surfaces, microstepping 

techniques would not improve the measurement and should not be applied because of 

the great increase in measurement and computation time they entail. 

 Fig. 6.2.12 presents a three-dimensional topographic reconstruction of the 

measured sphere, together with a plot of the residuals of the measured data relative to 

the best fit sphere. The latter is a plot of the measured deformations of the tested 

surface. Microstepped and non-microstepped measurements are also presented. It 

may be seen how both measurements display similar results, although an intensive 

sampling on the surface was performed in the microstepped experiment, which is 

revealed by the amount of data points plotted on the surface. In the case of 

microstepping, the shape of the resulting surface could be extracted without any 

surface interpolation from the large amount of sampling points available. Residual plots 

display a very interesting toroidal shape, with residuals of the sampling points under 

±5µm from the best fit sphere, which will be recalled in Section 6.2.3 and 6.3. The 

sampled surface area is 204mm2; and the measured height range amounts to 0.36mm. 

A complete error analysis with standard deviations and confidence intervals of the fitted 

values will be performed in Section 6.2.2. 
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Fig. 6.2.12: Three-dimensional surface plots of : (a) Best fit sphere, non-microstepped 

measurement; (b) Residuals from the best fit sphere, non-microstepped measurement; (c) Best fit 

sphere, microstepped measurement; (d) Residuals from the best fit  sphere, microstepped 

measurement.  

 

Fig. 6.2.13 contains a pseudocolor contour plot of the reconstructed topography 

of the surface, with contour levels increasing in 18µm steps in the non-microstepped 

experiment and 22µm steps in the microstepped one. The residuals from the best fit 

sphere are also plotted, with contour levels increasing in 11nm steps in the non-

microstepped and 36nm steps in the microstepped measurement. It should be noted 

that this nanometric accuracy is merely a numerical result of our interpolation 

procedures. The blue level presented in the residual plot equals the zero deviation from 

the best fit sphere. Each sampled point is an active pixel in a 256x256 pixel matrix in the 

microstepped experiment, with its color determined by its height value. In the non-

microstepped experiment, each pixel has been enlarged to a 5x5 pixel block in order to 

make them more visible. 
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Fig. 6.2.13: Pseudocolor plots of (a) Measured spherical surface, non-microstepped 

measurement; contour levels are plotted in 18µm steps; (b) Residuals from the best fit sphere, 

non-microstepped measurement; each contour step equals 11nm; (c) Measured spherical surface, 

microstepped measurement; each contour step equals 22µm (d) Residuals from the best fit 

sphere, microstepped measurement; each contour step equals 36nm. Each plotted point is a 

measured data point. Data points in the non-microstepped experiment have been enlarged. 
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Despite the fact that Fig.6.2.13 might be less visually appealing than Fig.6.2.12, 

we understand this sort of pseudocolor plots provide more detailed information than the 

three-dimensional plots previously presented, because the perspective effects 

associated with plotting a three-dimensional plot on two-dimensional paper are avoided. 

Another  obvious conclusion which can drawn from Fig. 6.2.13 is that,  although 
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microstepped and non-microstepped measurements may be nearly equivalent when 

measuring curvature values, the quality of the surface topographies and residuals 

obtained is very much improved when using microstepping techniques, as more 

information from the surface is available in the topographic reconstruction of the 

surface, and the data residuals from the best fit sphere allow the measurement of 

submicrometric surface features  

 Consequently, in order to reduce the amount of information and plots provided 

for each of the remaining samples, surface topographies in Section 6.3 will only be 

provided as pseudocolor plots, and only microstepped measurements and residuals 

from the best fit surface will be presented. None of the intermediate graphs presented in 

this typical measurement example will be provided, as other surface topographies will 

only differ from the one depicted in the present section in some numerical values, and 

they would not provide us with any additional information. For this reason each 

measurement process like the one presented here will be summarized in Section 6.3 

by means of a Table containing some experimental parameters together with the two-

dimensional and three-dimensional curve-fitting numerical results, and by the 

pseudocolor plots of the reconstructed topography and the residuals from the best fit 

sphere obtained in the microstepped experiment.  

 

6.2.2.- Error analysis 

 In Section 4.3 the accuracy of the measurement technique was analyzed from 

two points of view. In Section 4.3.1 the accuracy of each individual measurement was 

estimated, yielding a typical measured value of C= 8.61 10-3 ± 1.8 10-4 mm-1. The 

curvature values obtained in our measurement of sample P175A  (around  6.67 10-3 

mm-1, depending on the axis considered and on whether microstepping was applied, 

see Table 6.2.3) in fact stay close to this assumption.  

However, in Section 4.3.2, the overall accuracy in the measurement of curvature 

through curve fitting procedures was theoretically presented (Eq.4.3.7), though not 

calculated, as it was shown to be numerically dependent on the experimental data 

available. This Section provides complete numerical results for the experimental data 

obtained in the measurement of sample P175A in position P1, as part of the measuring 

process being carried out in Section 6.2. 

Numerical results for the error in the measurement of curvature values using 

two-dimensional curve-fitting are presented in Table 6.2.6, displaying values for the 
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standard deviation of the fitted curvature values, its relative importance for the curvature 

value, the confidence interval where the real curvature value of the surface may be 

found with a probability of 0.95 (eq.4.3.7), and the radius of curvature change within the 

interval of variation of C±σ. 

 

Table 6.2.6: Error analysis in two-dimensional curve-fitted curvature values for the X and Y 

directions of the non-microstepped and microstepped experiments. σ stands for the standard 

deviation of the data, %σ for its relative error, CMIN
95  and CMAX

95 for the limits of the confidence 

interval where the real curvature value is found within a probability of 0.95, R for the radius of 

curvature and ∆R for its variation in the interval of curvatures C±σ. 

Sample P175 A  C 

(mm-1) 

σ 

(mm-1) 

%σ CMIN
95   

(mm-1) 

CMAX
95  

(mm-1) 

R 

(mm) 

∆R 

(mm) 

NX(xS); non-µst. 6.6750 10-3 1.1 10-6 0.016 6.6728 10-3 6.6772 10-3 149.81 0.049 

NY(yS);non-µst. 6.6678 10-3 7.0 10-7 0.010 6.6665 10-3 6.6692 10-3 149.97 0.031 

NX(xS); µstepped 6.6759 10-3 1.2 10-7 0.002 6.6757 10-3 6.6761 10-3 149.79 0.005 

NY(yS); µstepped 6.6684 10-3 7.2 10-8 0.001 6.6682 10-3 6.6685 10-3 149.96 0.003 

 

 Standard deviation values may be seen to be very small, both in their relative 

and absolute values, which is a consequence of the very good correlation coefficients 

obtained in the linear regression(see Table 6.2.3). The confidence intervals are also 

very narrow, with the radius of curvature variations in the 0.95 probability interval being 

of only some micrometers. An advantage of microstepping procedures in measuring 

curvatures can be observed for the first time, as smaller standard deviations and 

confidence intervals are obtained. This is a direct effect of the higher number of data 

points, predicted from Eq.4.3.7, where the uncertainty in the determination of the 

coefficients in the linear regression was seen to depend on 1 N , N being the number 

of sampled points. By using microstepping procedures N has risen from 73 to 7583, 

providing the ten-fold reduction in standard deviation and confidence intervals obtained. 

Errors in the measurement of the angular misalignment of the surface can also 

be measured this way, and are presented in Table 6.2.7. Although their relative values 

are more important than for the curvatures measured, they are also much lower values. 

The same kind of effect of the number of data points on standard deviation may be 

observed when comparing microstepped and non-microstepped measurements. 
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Table 6.2.7: Errors in two-dimensional curve-fitted angular misalignment values for the X 

and Y directions of the non-microstepped and  microstepped experiments. σ stands for the 

standard deviation of the data, %σ for its value relative to the measured value, KMIN
95  and KMAX

95 for 

the limits of the interval where the real angular misalignment value is found within a 0.95 

probability. 

Sample P175 A  K(rad) σ(rad) %σ KMIN
95 (rad) KMIN

95 (rad) 

NX(xS) ; non-µstep. -4.4088 10-3 4.3 10-6 0.10 -4.4174 10-3 -4.4001 10-3 

NY(yS) ;non-µstep. -2.1046 10-4 3.0 10-6 1.43 -2.1645 10-4 -2.0447 10-4 

NX(xS); µstepped -4.4105 10-3 5.2 10-7 0.01 -4.4115 10-3 -4.4095 10-3 

NY(yS); µstepped 2.0516 10-4 3.1 10-7 0.15 -2.0576 10-4 -2.0456 10-4 

 

A complementary error analysis may be performed through three-dimensional 

curve fitting procedures. In this case, however, the parameters to obtain through curve-

fitting are the radius of curvature and the position of the vertex of the spherical surface 

considered. The standard deviations and confidence intervals for the measured 

parameters are now related to a full surface fitting, instead of being merely a linear 

regression fitting which involves independent curvatures along the X and Y axes. Error 

analysis for the three-dimensional radius of curvature fitting and the measured vertex 

position in non-microstepped and microstepped measurements are presented in Table 

6.2.8. 

 The conclusions that may be drawn from this table are similar to the ones 

obtained in the error analysis from two-dimensional fitting. Microstepped measurements 

yield a better standard deviation because of the higher number of data points involved, 

although the relative error of the non-microstepped measurement is only 0.018% (1 part 

in 56) of the measured value of the radius of curvature. Small errors may also be found 

in the measurement of the position of the surface vertex, with the relative error in the 

measurement of yo being slightly larger on account of its small measured value. 

From the results presented we may estimate the total uncertainty of the 

measurement technique, which has been shown to be mainly due to the uncertainties 

of the experimental setup in the measurement of a single slope value. The uncertainty in 

the fitting procedures is much smaller, meaning the measured data presents very little 

dispersion from the central values. That is, the global uncertainty of the measurements 

is the estimated value presented in Section 4.3.1, which has a relative value of ±2% of 
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the measured value (C=8.61 10-3 ± 1.8 10-4 mm-1). However, such a value should be 

considered to be an overestimate, as in following Sections  the experimental data 

obtained will be seen to be closer than a 2% to the reference values. 

 

Table 6.2.8: Error analysis for the radius of curvature and the vertex of the sample surface position 

from three-dimensional fitting. σ stands for standard deviation, %σ for its relative value and ξ for the 

variable considered in the corresponding row. 

Sample P175 A  Fit σ  %σ ξMIN
95  ξMAX

95  

Non-µstep. 149.78 27. 10-3 0.018 149.72 149.83       R 

   (mm) µstepped 149.78 2.4 10-3 0.002 149.78 149.79 

Non-µstep. 0.6608 4.6 10-4 0.070 0.6600 0.6618       x0 

   (mm) µstepped 0.6609 4.3 10-5 0.007 0.6608 0.6609 

Non-µstep. 0.0319  4.0 10-5 0.125 0.0311 0.0327       y0 

   (mm) µstepped 0.0307 3.3 10-6 0.011 0.0306 0.0307 

 

In order to go on reducing the vast amount of data available for each 

experimental measurement, in this Section it has been seen how the information 

provided for the error analysis in two-dimensional and three-dimensional fitting 

procedures gives similar information about the dispersion of the measured data. On 

account of this, in Section 6.3 two and three-dimensional fitted values for all spherical 

surfaces will be presented, but error analysis data will only be presented from three-

dimensional fitting procedures. This kind of procedures has been preferred for 

simultaneously taking into account the data values available along both axes, and not 

merely a z(x) or z(y) projection of the data along one or the other of the reference axes.  

 

6.2.3.- Validity of the measured value 

 Finally, a reference measurement will be presented in order to compare its 

result with the one obtained using the Ronchi test technique. A Möller-Wedel Measuring 

Combination V used in its high precision radioscope configuration was used in order to 

measure the radius of curvature of the P175A surface. The accuracy of the instrument 

is 0.1mm in the measurement of radius of curvature. 

 

 


