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7  Non-rotationally symmetrical surfaces:  

Toroidal surfaces  
 

 Now that the experimental setup has been tested and calibrated, and its 

measuring capability has been presented in Section 6, where the main features of the 

measurement technique were tested while developing spherical surface topographies, 

we are ready to start measuring radii of curvature and topographies of surfaces lacking 

the high degree of symmetry present in spherical surfaces. 

 Toroidal surfaces were chosen as examples of non-rotationally symmetrical 

surfaces. They have two circular sections (the so-called principal meridians) placed on 

the surface in orthogonal directions, so two different radii of curvature values will be 

measured. Incidentally, although the parametric equations that describe the toroidal 
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surface are well known, they are very hard to combine in practice in order to perform a 

three-dimensional fitting procedure. These procedures will be carried out using the 

spherocylindrical surface geometry, which is a very good approximation to the toroidal 

surface under our experimental conditions [Menchaca 1986]. Toroidal and 

spherocylindrical surfaces will be presented and compared in Section 7.1, where the 

toroidal surface samples which will be measured and the experimental procedures 

applied to them will also be described.  

 Section 7.2 will show a typical measurement process on one of the toroidal 

samples in a given position, as we did previously for spherical surfaces in Section 6.2. 

Due to the sample’s lack of rotational symmetry, in toroidal samples measurements will 

be performed at four different orientations of the sample, with a tilt increment of the 

surface of 30° around the Z axis. The information provided in this Section 7.2 has been 

kept to a minimum, presenting only the features characteristic of the toroidal surface 

which contain information not available in the typical measurement of a spherical 

surface (Section 6.2). 

 In Section 7.3 complete results and conclusions for the six measured toroidal 

samples will be presented, showing the Ronchi test’s ability to perform surface 

topographies and radius of curvature measurements of non-rotationally symmetrical 

surfaces. As in the case of spherical samples, combining the topographies performed 

using the Ronchi test with the numerical abilities of modern software packages will 

provide interesting residual plots when subtracting the best fitted spherocylindrical 

surface. 

 

 

7.1 Sample surfaces 

 

 Though these are commonplace surfaces in our everyday life (forms of toroidal 

surfaces can be seen in anything from doughnuts to beer barrels), the lack of rotational 

symmetry of toroidal surfaces makes their mathematical description more complex 

than the perfect one obtained for a sphere, with its rotational symmetry and its 

equivalence of X, Y and Z axes. 

 This complexity (especially when talking of a unique expression in Cartesian 

coordinates valid in all points in space, needed to perform three-dimensional fitting 
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procedures) will be shown in Section 7.1.1. In Section 7.1.2 an approach designed to 

avoid this complexity will be proposed in the form of the spherocylindrical surface, 

which will also be described and compared to the toroidal surface. Finally, in Section 

7.1.3 the toroidal samples which will be measured are presented following the pattern 

used in Section 6.1. 

 

7.1.1.- Toroidal surfaces. 

 A toroidal surface is obtained by rotating a circle, with radius of curvature b, 

around an axis of symmetry placed a distance a away from the center of the circle, with 

the axis of symmetry contained in the same plane as the circle. Under this geometry, 

two radii of curvature placed in orthogonal directions may be measured on the surface: 

one coincides with the radius of the circle and the second is the sum of the radius of the 

circle and the distance from the center of the circle to the rotation axis. Doughnut-

shaped toroidal surfaces are obtained if a>b; barrel shaped ones are obtained if a<b. 

a=b gives a spherical surface. 

 

Fig. 7.1.1.: Toroidal surface. 

 

 The main feature of a toroidal surface thus becomes the presence of two 

circular sections placed orthogonally and crossing at the vertex of the surface.  If we cut 

sections of the toroidal surface containing the vertex of the surface in all the 

intermediate positions between these circular sections, we would not obtain circular 

sections. That is, the transition between circular sections is accomplished through non-
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circular curves. Only two radii of curvature, placed orthogonally along the only two 

circular sections present on the surface, may be obtained.  

These two circular sections are called the principal meridians of the toroidal 

surface. The principal meridian with a flatter curvature is called the surface base curve, 

while the most curved one is called the cross curve of the toroidal surface. Obviously, 

the radius of curvature of the cross curve (RC) will be smaller than the radius of 

curvature of the base curve (RB) [Jalie 1980]. 

 Our aim now is to find an expression that is valid in the whole spatial domain to 

describe the toroidal geometry in order to perform three-dimensional curve-fitting 

procedures. From Fig.7.1.1, it seems that a cylindrical coordinate system would be the 

best suited for the description of the toroidal surface. A toroidal surface with its rotation 

axis placed along the Z axis would be 
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ϕ θ
ϕ θ
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   (7.1.1) 

using a cylindrical coordinate system where θ is the polar coordinate placed on the XY 

plane and ϕ the angular value shown in Fig.7.1.1. Parameters a and b were also 

defined in Fig. 7.1.1. 

 Incidentally, we would rather obtain an expression for the toroidal surface using 

Cartesian coordinates, which are better suited to the results obtained using the Ronchi 

test when placing its lines in orthogonal directions. The parametric nature of Eq. 7.1.1 is 

also not well suited to the curve-fitting procedures which gave such good results in 

Section 6, as the sign ambiguities caused by the trigonometric terms that appear in the 

process prevent direct conversion of Eq.7.1.1 to a z=f(x,y) function. 

 It can be shown [Malacara 1981] that a toroidal surface may be expressed in 

Cartesian coordinates as 

[ ] [ ]( ) ( )x a b y z a b a x a b y+ + + + + − = + + +2 2 2 2 2 2 2 2 24   (7.1.2) 

where a and b are the distances described in Fig. 7.1.1. However, this Cartesian 

expression contains a degree of ambiguity hidden in the double sign of the square roots 

that appear in the expression when trying to obtain a z=f(x,y) description. This ambiguity 

introduces different mathematical expressions in different regions of the spatial domain, 

which prevent this expression from being useful in curve-fitting procedures. It is recalled 

that in the case of spherical surfaces, the usual description using 



7 NON-ROTATIONALLY SYMMETRICAL SURFACES: TOROIDAL SURFACES 

7.5 

x y z R2 2 2 2+ + =   (7.1.3) 

was not used for this reason, being preferred instead 
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(Eq. 6.2.1 with x0=y0=0), which is defined at all points in space. We will thus be looking 

for a description of the toroidal surface in Cartesian coordinates valid for all regions in 

space, resembling Eq. 7.1.4. 

 An alternative description of the toroidal surface has still been found, and 

requires us to consider a geometry like that of Fig. 7.1.2 [Genii 1992]. This solution was 

obtained from the reference guide of an optical system design software (Gennesee++), 

where these surfaces were described in order to present the parameters needed in 

order to perform ray-tracing procedures through them. In this figure, however, it must be 

noted that the rotation axis of the toroidal surface is placed along the Y axis, and that the 

toroidal surface has been placed in the first spatial octant (the one with x>0, y>0 and 

z>0).  

 With the geometry of Fig.7.1.2, it may be shown that the toroidal surface is 

described through 
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which comes back to a parametric expression not useful in curve fitting procedures, as 

obtaining a z=f(x,y) expression from this set of equations is extremely difficult. CY and 

CZ stand for the curvatures along the two orthogonal sections of the toroidal surface. 

Even if this kind of expression was established, some sign ambiguity entailing division 

of the spatial domain would remain in the expression, as sinα and cosα should be 
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obtained from the known value of tgα. Once again, no z=f(x,y) expression for the 

toroidal surface which could be applied in the whole spatial domain was available. 

 

Fig. 7.1.2: Cartesian description of the toroidal surface placed in the first spatial octant [Genii 

1992] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To sum up, it was not possible to obtain a z=f(x,y) mathematical expression that 

was valid in the whole space for the toroidal surface. Our three-dimensional fitting 

procedures need such an expression to perform, so in order to provide three-

dimensional topographies and residuals comparable to those presented in Section 6, a 

different approach has to be taken. This approach will be the spherocylindrical surface. 

 

7.1.2.- Spherocylindrical surfaces. 

 Spherocylindrical surfaces were proposed as an alternative to toroidal surfaces, 

because of their simpler mathematical description and closeness to the toroidal shape 

near the surface vertex [Menchaca 1986]. They are also commonplace in many 

commercial lens design programs, as ray-tracing procedures through toroidal surfaces 

are quite complex to perform due to the mathematical description of the surface. 
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 Spherocylindrical surfaces are described by [Malacara 1992] 
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where again CX and CY stand for the curvatures along the two orthogonal sections of 

the spherocylindrical surface. This expression which is very well suited to our three-

dimensional curve fitting procedures, as it describes the surface in the whole spatial 

domain and is expressed in Cartesian coordinates. Spherocylindrical and toroidal 

surfaces with equivalent curvatures have coincident orthogonal circular sections, but 

make different transitions from one circular section to the other. 

 In order to estimate the amount of error introduced when approximating a 

toroidal surface using Eq. 7.1.6., both surfaces were calculated using parameters close 

to the ones obtained in our experimental setup. A spherocylindrical surface and a 

toroidal surface with two radii of curvature with values of 150mm for the cross curve 

and 200mm for the base curve were calculated in a 20x20mm section centered at the 

surface vertex. These radii of curvatures and sample areas are typical values of our 

experimental setup, as has already been shown in Section 6. Both surfaces were 

placed with their circular sections along the X and Y axes. 

 Fig.7.1.3 presents the deviation from the toroidal surface of a spherocylindrical 

surface. The contour labels are expressed in nm, so the contour steps were fixed at 

10nm. In this calculated area of 400mm2, the maximum deviation stays under the 

0.1µm range at the edges of the sampling area. This value may be neglected under our 

experimental conditions, as the height variations being measured remain around 

0.1mm, that is, a thousand times greater than the maximum deviation to be expected at 

the edge of the 20x20mm sample area. 

 In  order to provide further proof of the equivalence of using spherocylindrical and 

toroidal surfaces, the same theoretical toroidal and spherocylindrical surfaces of 

RB=200mm and RC=150mm were three-dimensionally curve fitted using the 

spherocylindrical surface description. The numerical results for the radii of curvature 

obtained are presented in Table 7.1.1, where values for the position of the vertex and 

the tilt of the surface happened to be null, as could be expected from a theoretical 

surface. The residuals of the fitting for both cases were plotted in Fig. 7.1.4. 
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Fig. 7.1.3: Deviations of the spherocylindrical surface from the toroidal surface. Contour label 

increment 10nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.1.1: Radius of curvature values for two theoretical spherocylindrical and toroidal surfaces 

fitted to a spherocylindrical surface. 

Surface RB(mm) RC(mm) r2 

Theoretical 200.00 150.00 1 

Spherocylindrical 199.85 150.02 0.99999980 

Toroidal 199.83 150.00 0.99999974 
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Fig. 7.1.4: Residual plots of the fit to a spherocylindrical surface: a)Theoretical spherocylindrical 

surface; b) Theoretical toroidal surface. 

 

 

 The fitted radius of curvature values may be considered equivalent, as may the 

correlation coefficients of the fit. A perfect correlation is not achieved even on these 

theoretical surfaces, because of the unavoidable rounding errors embedded in the 

software algorithms. These errors may be identified in the residual plots, which present 

a soft centered peak coincident with the lower values on X and Y axes. Both residual 

plots can be seen to be almost equivalent, the residual of the toroidal surface being 

slightly higher at the edges of the sampled area. The difference of the residual values 
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was plotted in Fig.7.1.5, showing that the maximum difference of the residuals amounts 

to 30nm in the measured area, and, once more, is only attained at its edges. However, 

in most of the considered area (at least in a 16x16mm area) the difference of the 

residuals remains under 10nm, a value which will allow us to consider spherocylindrical 

surfaces as being equivalent to toroidal ones under our experimental conditions. 

 

Fig. 7.1.5: Differences of the residuals in  Fig. 7.1.4. Contour label increment 5nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Spherocylindrical surfaces will thus allow us to obtain both radii of curvature of 

the surface with three-dimensional procedures, and calculate the topographies and 

residuals of toroidal surfaces following similar guidelines to the ones in Section 6. 

 

7.1.3.- Toroidal samples. 
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 The main difference found in toroidal samples when compared to spherical ones 

is their lack of rotational symmetry. This means that measurements are dependent on 

the position of the sample considered. In order to show how measurements are 

affected by the rotation of the sample, topographies were developed for four different 

orientations of the sample, which will be named G00, G30,G60 and G90. The base 

curve was placed along the X axis in the G00 orientation, and then tilted in 30° 

increments, leaving the cross curve along the Y axis in G90 orientation after the third tilt. 

This arrangement enables measurements to be performed in two orientations of the 

sample with their principal meridians placed in the same direction as the lines on the 

ruling (G00 and G90), and two orientations of the sample with its principal meridians 

tilted 30° and 60° from the lines on the ruling (G30 and G60). 

 As we will also be interested in studying the effect of translating the toroidal 

sample, topographies will be performed at three different distances of the sample from 

the Ronchi ruling, as we did previously when measuring spherical samples. This 

means twelve topographies per sample, with their corresponding residuals and fits, 

which is a vast amount of information. In order to keep the amount of information 

presented within reasonable limits, all non-microstepped measurements will not be 

presented, as the features of non-microstepped toroidal surface topographies are 

equivalent to the ones observed while developing spherical surface topographies. 

 As in Section 6, the samples will be obtained using the concave surface of 

ophthalmic lenses with their convex surface made optically inactive through grinding 

and painting. In this case lenses will obviously be toric and their concave surface will 

have a toroidal shape. Two different radii of curvature need now be measured at each 

sample.  

 As the surfaces are toroidal, the Möller-Wedel Combination V radioscope 

measurements will be provided only as an additional validation of the measured radius 

of curvature, because when measuring toroidal surfaces the instrument lacks the 

accuracy that it had for spherical surface measurements. The reference radii of 

curvature presented in Table 7.1.2 are assumed to have an uncertainty of ±1.0mm. 

 Samples will now be named after their spherocylindrical expression, which takes 

into account a combination of the two back vertex powers available in the toric lens. 

Three pairs of nominally identical lenses will be tested, as in the case of spherical 

samples, in order to present the technique’s potential for making high precision 
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measurements. The different dR distances from the sample to the Ronchi plane are 

presented in Table 7.1.2. 

 The range of dR distances involved in our experiments is even smaller than the 

one used when measuring spherical surfaces, as to obtain good quality topographic 

measurements we need a high enough number of bright lines in each acquired 

ronchigram. This number of lines depends on the dR distance and on the radius of 

curvature of each of the principal meridians. At a given dR distance, the number of bright 

lines visible in the ronchigram with the ruling lines placed along the X axis may be very 

different from the number of bright lines of the ronchigram with ruling lines placed along 

the Y axis, depending on the difference of radius of curvature of both principal meridians 

of the toroidal surface. This reduces the range of dR distances where ronchigrams may 

be acquired with enough bright lines in both orthogonal positions of the lines on the 

ruling. 

 

Table 7.1.2: Name, back vertex power of the base curve ([BVP]B) and the cross curve ([BVP]C), 

radii of curvature obtained using the Möller-Wedel radioscope (RB and RC) and distances to the 

Ronchi ruling (P1,P2 and P3) of the toroidal surfaces used as samples. 

Name [BVP]B 

 (D) 

[BVP]C  

(D) 

RB 

(mm) 

RC 

(mm) 

P1 

(mm) 

P2 

(mm) 

P3 

(mm) 

P30025A 3.00 3.25 172.0 159.7 186.7 192.2 193.4 

P30025B 3.00 3.25 172.6 160.6 186.8 192.3 193.4 

P30050A 3.00 3.50 170.9 148.8 180.1 182.6 188.4 

P30050B 3.00 3.50 169.7 147.7 180.0 182.6 188.4 

P45075A 4.50 5.25 201.4 159.8 211.3 215.3 220.6 

P45075B 4.50 5.25 202.7 158.0 211.3 215.3 220.6 

 

 

 

 

7.2 Typical measurement example 
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 Although the data processing steps and the experimental setup are exactly the 

same as the ones used for obtaining spherical surface topographies and the same 

procedures and algorithms are applied, in toroidal surfaces the lack of rotational 

symmetry of the samples involves significant differences from spherical surfaces in the 

measurement process. These differences will be presented in this Section 7.2, together 

with an error analysis of the results (Section 7.2.2) and a comparison of the radius of 

curvature values obtained with the reference values (Section 7.2.3) 

Only microstepped results will be presented, as non-microstepped 

measurements follow equivalent guidelines to the ones given in Section 6.2; that is,  the 

radius of curvature of the surface may be measured accurately in non-microstepped 

measurements, but the surface topographies obtained are quite poor when compared 

with the corresponding microstepped one. Also ten ronchigrams in each direction will 

be recorded for toroidal samples, providing a measurement process independent of the 

rotational symmetry of the surface. 

 

7.2.1.- Measurement of sample P30025A in position P1 

 As in the case of spherical surfaces, the sample P325A in position P1 

measurement was chosen arbitrarily as an example, since the features presented are 

fully equivalent to the ones observed in other samples, except for some numerical 

values and for the number of fringes that can be observed in the ronchigrams. 

 Obviously, the major difference from spherical samples will be the variation in 

the ronchigrams when the sample is tilted. As with the remaining samples and 

positions, four orientations were measured tilting the surface in 30° increments. At tilts 

G00 and G90 the principal meridians of the surface are placed along the X and Y axes, 

and subsequently placed in the same direction of the lines on the ruling. However, in the 

G30 and G60 intermediate tilts the principal meridians are not aligned with the lines on 

the ruling. For the first time, the lines on the ruling are not placed in the direction of any 

circular section of the sample surface. One tilt of each of the two groups was chosen in 

order to illustrate the measuring process of a toroidal surface: the G90 tilt will stand for 

the group of experiments with principal meridians placed in the same direction as the 

ruling lines, and the G60 tilt will stand for the group of ronchigrams with principal 

meridians not aligned with  X and Y axes. 



7 NON-ROTATIONALLY SYMMETRICAL SURFACES: TOROIDAL SURFACES 

7.14 

  In Fig. 7.2.1 the reference ronchigrams along both axes are presented for both 

tilts, while Fig. 7.2.2 shows the first pair of ronchigrams used as data. As previously 

explained, all presented results correspond to microstepped data, so this pair of 

ronchigrams is the first in a series of ten pairs in both tilts of the surface, with the ruling 

lines displaced T/10 along X and Y axes. 

 

Fig. 7.2.1: Reference ronchigrams a) Ruling lines along the X axis, G90 tilt; b) Ruling lines along 

the X axis, G60 tilt; c) Ruling lines along the Y axis, G90 tilt; d) Ruling lines along the Y axis, G60 

tilt. 
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Fig. 7.2.2: First pair of acquired ronchigrams a) Ruling lines along the X axis, G90 tilt; b) Ruling 

lines along the X axis, G60 tilt; c) Ruling lines along the Y axis, G90 tilt; d) Ruling lines along the 

Y axis, G60 tilt. 

 

Relevant differences from spherical surfaces can be easily observed in Fig. 

7.2.1 and Fig.7.2.2. While in spherical surfaces the number of bright lines present in the 

ronchigrams with ruling lines along X and Y axes were the same (with maximum 

differences of one fringe, depending on the position of the ruling), in toroidal surfaces a 

different number of bright lines in each ronchigram should be expected from the 

different curvatures present at each principal meridian. The effect becomes more 

evident in the ronchigrams corresponding to the G90 tilt, while in the G60 tilt the effect is 

slightly reduced as the principal meridians are not aligned with the directions of the lines 
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on the ruling. This difference in the number of bright lines will be greater as the 

difference between orthogonal radius of curvature values increases. This has been 

confirmed when performing measurements on samples P30050A, P30050B, P45075A 

and P45075B, which have a bigger difference in the radius of curvature of their principal 

meridians. 

 However, the most clearly visible novelty compared with spherical surfaces is 

the rotation of the shadows of the lines in the G60 tilt. We again point out that the 

Ronchi ruling lines were placed following X and Y axes, in the same way as in the G90 

tilt or in the spherical samples. However, the shadows of these orthogonal lines, 

recorded in the ronchigrams, are no longer orthogonal. This is a consequence of the 

lack of coincidence of the Ronchi ruling lines with the principal meridians, that is, the 

circular sections of the toroidal surface. The behavior of the G30 tilt is equivalent to G60 

(with different tilt angle of the lines in the ronchigrams), as the principal meridians do not 

follow X or Y axes, either. The G00 tilt behaves like the G90 tilt, with the number of bright 

fringes changed in the ronchigrams with ruling lines along X and Y axes, as should be 

expected from the ronchigrams of a surface which has been rotated 90°. 

 The set of twenty ronchigrams recorded for each of the G90 and G60 tilts are 

then processed in the same pattern, and with the same algorithms and software 

programs as were used for spherical surfaces. All ronchigrams are smoothed, 

binarized and eroded yielding results similar to the ones presented in Section 6.2. A final 

set of twenty one-pixel-wide line patterns are obtained. 

 Superposition of these line patterns will give the complete set of intersection 

points where the set of (xR,yR,u,v) data is measured. The superposition of eroded 

ronchigrams for both tilts of the sample are presented in Fig.7.2.3. Notice how, although 

the lines are not orthogonal in Fig.7.2.3b, microstepping procedures may be performed 

in the same way, as the ruling is displaced along the X or Y axis and the ronchigram 

lines will be displaced by the same amount, T/10 in our case, regardless of their 

orientation.  

 Once the wavefront has been sampled on the Ronchi ruling plane, it is possible 

to build the yR(xR), u(xR) and v(yR) plots for each of the tilts of the sample. These plots 

are presented in Fig. 7.2.4., and again display interesting differences when compared to 

those of spherical samples. 
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Fig. 7.2.3: Superposition of eroded ronchigrams (a) G90 tilt; (b) G60 tilt. 

 

 Both xR and yR axes were intentionally fixed at the same length (8mm) to allow 

direct comparisons between both coordinates at both angular tilts, although this means 

that data will not be centered in each graph. Subplots (a), (c) and (e) correspond to the 

G90 tilt, while (b), (d) and (f) belong to the G60 tilt measurement.  

 The yR(xR) plots in both positions confirm our previous comments on toroidal 

samples. The different number of lines along each direction in the ronchigrams makes 

the area sampled take a rectangular shape in Fig. 7.2.4a, instead of the quasi-square 

shapes typical of spherical surfaces. When the lines in the ronchigram do not follow the 

directions of the lines on the ruling, the sampled area has the diamond-like shape of 

Fig.7.2.4b. 

 However, the key difference when measuring with the ruling lines placed along 

the principal meridians of the surface (as in G90) or with the ruling lines placed along a 

section of the surface which is not circular may be seen in the u(xR) and v(yR) plots. In 

the G90 tilt we find sections of the surface close to the circular shape along the X and Y 

axis, so theoretical straight lines whose slope is the curvature of the wavefront may be 

expected, if a toroidal shape of the wavefront is assumed at the Ronchi ruling plane. 

However, if we are considering a section of the toroidal wavefront other than the 

principal meridians, the u(xR) and v(yR) plots should have noticeable variations from the 

linear shape.  
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Fig. 7.2.4c and 7.2.4e may be seen to be linear data plots, as expected, as they 

correspond to the G90 tilt. They can be seen to present different slope values, reflecting 

the different curvatures along the principal meridians placed on each axis. Fig 7.2.4d 

and 7.2.4f present a cloud of data points which cannot be regarded as a single line, 

showing how the sections of the toroidal wavefront placed along the X and Y axes are 

not circular ones. In Fig. 7.2.5 we present the sections of these measured data along 

the 60° and 150° directions, where the principal meridians of the surface are supposed 

to be placed. The plots may be seen to appropriately fit a linear shape, as we are now 

plotting slope against position along a circular section of the surface, and with different 

slopes, as the incident wavefront was assumed to be toroidal. In order to differentiate 

them from Fig. 7.2.4d and 7.2.4f, these plots will hereafter be named u60(xR
60) and 

v60(yR
60), as they were obtained through a 60° rotation of the experimental data in 

Fig.7.2.4. 

 

Table 7.2.1: Linear regression results for the curves corresponding to the G90 and G60 tilts, and to 

the circular sections of the G60 tilt measurement . A curve y =Cξ+K was fitted with ξ being either 

xR, yR, xR 
60 or yR

60. y may be either u, v, u60 or v60. C stands for curvature, K for angular 

misalignment, r2  for the correlation coefficient and R for the measured radius of curvature of the 

wavefront on the Ronchi ruling plane. 

Sample P30025A  C(mm-1) K(rad) r2 R(mm) 

u(xR) -3.3858 10-2 -0.0247 0.99975 29.54  

G90 v(yR) -2.0939 10-2 0.0422 0.99993 47.76 

u(xR) -2.7552 10-2 0.0226 0.94128 36.29  

G60 v(yR) -2.2445 10-2 -6.48 10-3 0.96791 44.55 

u60(xR
60) -3.4137 10-2 -0.0289 0.99984 29.29 G60 

rotated v60(yR
60) -2.0870 10-2 3.49 10-3 0.99984 47.91 

 

Two-dimensional fitting results are presented in Table 7.2.1. The shadowed 

rows are the poor quality fits corresponding to Fig.7.2.4d and Fig.7.2.4f, that is, to slope 

against position fits along directions of the surface other than its principal meridians. 

Their r2 coefficient is quite bad, and the curvature values obtained will not  
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Fig. 7.2.4: Measured data of the reflected wavefront at the Ronchi ruling; (a) yR(xR) for the G90 tilt; 

(b) yR(xR) for the G60 tilt; (c) u(xR) for the G90 tilt; (d) u(xR) for the G60 tilt; (e) v(yR) for the G90 tilt; 

(f) v(yR) for the G60 tilt. 

 


