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Quan surts per fer el viatge cap a Ítaca, 

has de pregar que el camí sigui llarg, 

ple d'aventures, ple de coneixences. 

Has de pregar que el camí sigui llarg, 

que siguin moltes les matinades 

que entraràs en un port que els teus ulls ignoraven, 

i vagis a ciutats per aprendre dels que saben. 

Tingues sempre al cor la idea d'Itaca. 

Has d'arribar-hi, és el teu destí, 

però no forcis gens la travessia. 

És preferible que duri molts anys, 

que siguis vell quan fondegis l'illa, 

ric de tot el que hauràs guanyat fent el camí, 

sense esperar que et doni més riqueses. 

Ítaca t'ha donat el bell viatge, 

sense ella no hauries sortit. 

 

 

Lluís Llach, Ítaca, 1975 
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La sostenibilitat econòmica i ambiental de l’agricultura en regadiu requereix la millora 

dels sistemes de reg. L’optimització del reg en una parcel·la requereix proporcionar la 

dosi adequada d’aigua al moment adequat per a satisfer les necessitats del cultiu, que 

varien espacialment i amb el pas del temps. Un dels factors més importants a considerar 

és la humitat del sòl, que es pot mesurar de moltes maneres. Els sensors que es basen en 

la capacitància són dispositius interessants per a controlar i programar el reg. Aquests 

sensors són populars perquè proporcionen mesures contínues del contingut d’aigua del 

sòl, són robustos, de baix cost i requereixen poc manteniment. Tot i que les mesures 

d’aquests sensors tenen bona exactitud al laboratori, quan s’instal·len en plantacions amb 

reg per degoteig mostren grans diferències entre sensors. Això dificulta fer valoracions i 

prendre decisions. Per tant, és interessant conèixer i comprendre quines són les 

incerteses pràctiques d’aquestes mesures respecte a la variabilitat real del contingut 

d’aigua del sòl en una plantació regada per degoteig. El coneixement dels factors 

implicats permetrà optimitzar l’ús d’aquests sensors, quant a aspectes com el seu nombre 

i ubicació en el sòl, així com la seva interpretació i integració en el flux de treball de la 

programació automatitzada del reg. La tesi s’estructura en quatre capítols. Els resultats 

mostren que les diferències entre els sensors individuals en condicions de laboratori són 

insignificants i que un calibratge específic considerant el sòl local millora la precisió de 

les mesures. Independentment dels sensors, la dinàmica 3D de l’aigua del sòl en aquest 

tipus d’escenari es pot simular adequadament en tres dimensions mitjançant el model 

HYDRUS-3D, utilitzant paràmetres hidràulics determinats pel mètode HYPROP + WP4 

i específics per al sòl de cada parcel·la. Tanmateix, la dinàmica de l'aigua del sòl prevista 

per HYDRUS-3D només pot explicar una fracció de les diferències observades entre 

sensors. La variació addicional es podria explicar pels patrons més arbitraris i de grans 

contrastos que es donen en la superfície de sòl mullat pels emissors. Malgrat aquestes 

limitacions pràctiques, l’ús de sensors que es basen en la capacitància per a la 

programació automatitzada del reg per degoteig es demostra factible, sempre que es 

segueixin els enfocaments adequats quant a la ubicació dels sensors, la seva interpretació 

i el mètode de programació del reg. 

Paraules clau: Reg per degoteig, contingut d'aigua en sòl, sensor de capacitància, 

calibratge, HYDRUS-3D, IRRIX, automatització 
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La sostenibilidad económica y ambiental de la agricultura de regadío requiere la mejora 

de los sistemas de riego. La optimización del riego en una parcela debe proporcionar la 

dosis adecuada de agua en el momento adecuado para satisfacer las necesidades del 

cultivo, que varían espacialmente y con el paso del tiempo. Uno de los factores más 

importantes a considerar es la humedad del suelo, que se puede medir de diversas 

maneras. Los sensores de capacitancia son dispositivos interesantes para controlar y 

programar el riego. Estos sensores son populares porque proporcionan mediciones 

continuas del contenido de agua del suelo, son robustos, de bajo coste y requieren poco 

mantenimiento. Aunque las mediciones efectuadas por estos sensores tienen buena 

exactitud en el laboratorio, cuando se instalan en plantaciones con riego por goteo 

muestran grandes diferencias entre sensores. Esto dificulta establecer consignas y tomar 

decisiones. Por lo tanto, es interesante conocer y comprender cuáles son las 

incertidumbres prácticas de estas mediciones respecto a la variabilidad real del 

contenido de agua del suelo en una plantación regada por goteo. El conocimiento de los 

factores implicados permitirá optimizar el uso de estos sensores, en cuanto a aspectos 

como su número y ubicación en el suelo, así como su interpretación e integración en el 

flujo de trabajo de la programación automatizada del riego. La tesis se estructura en 

cuatro capítulos. Los resultados muestran que las diferencias entre los sensores 

individuales en condiciones de laboratorio son insignificantes y que un calibrado 

específico con el suelo local mejora la precisión de las mediciones. Independientemente 

de los sensores, la dinámica del agua del suelo en este tipo de escenario se puede simular 

adecuadamente en tres dimensiones mediante el modelo HYDRUS-3D, utilizando 

parámetros hidráulicos determinados por el método HYPROP + WP4 y específicos para 

el suelo de cada parcela. Sin embargo, la dinámica del agua del suelo prevista por 

HYDRUS-3D sólo puede explicar una fracción de las diferencias observadas entre 

sensores. La variación adicional se podría explicar por los patrones más arbitrarios y de 

grandes contrastes que se dan en la superficie de suelo mojado por los goteros. A pesar 

de estas limitaciones prácticas, el uso de sensores de capacitancia para la programación 

automatizada del riego por goteo se demuestra factible, siempre que se sigan los 

enfoques adecuados en cuanto a su instalación, interpretación y método de 

programación del riego. 

 

Palabras clave: Riego por goteo, contenido de agua en suelo, sensor de capacitancia, 

calibración, HYDRUS-3D, IRRIX, automatización 
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The economic and environmental sustainability of irrigation agriculture requires the 

improvement of irrigation systems. The optimization of irrigation on a plot of land 

requires providing the right dose of water at the right time to meet the water needs of 

the crop, which vary spatially and over time. One of the most important factors to 

consider is soil moisture, which can be measured in many ways. Capacitance soil 

moisture sensors are interesting devices for monitoring and scheduling irrigation. These 

sensors are popular because they provide continuous measurements of soil water 

content, are robust, low cost and require little maintenance. Although the measurements 

by these sensors are accurate in the laboratory, when they are installed in drip-irrigated 

orchards they show large sensor-to-sensor differences. This makes it difficult to establish 

guidelines and make decisions. Therefore, it is interesting to know and understand 

which are the practical uncertainties of such measurements with regard to the actual 

variability of soil water content in a drip-irrigated orchard. Knowledge of the factors 

involved will allow to optimize their use, regarding aspects such as the number and 

location of the sensors as well as their interpretation and integration in the workflow of 

automated irrigation scheduling. The thesis is structured in four chapters. The results 

show that the differences between individual sensors in laboratory conditions are 

negligible and that a site-specific calibration considering the local soil improves the 

accuracy of the measurements. Independently of the sensors, the 3D dynamics of soil 

water in a drip irrigated orchard can be simulated adequately by HYDRUS-3D model, 

using site-specific soil hydraulic parameters determined by the method of HYPROP + 

WP4. However, the soil water dynamics predicted by HYDRUS-3D can only explain a 

fraction of the observed sensor-to-sensor differences. Additional variations can be 

explained by the more arbitrary and sharply defined patterns of soil surface wetted by 

the drippers. Despite these practical limitations, the use of capacitance sensors for 

automated irrigation scheduling in orchards is proven feasible, provided that the 

adequate approaches are followed regarding sensor location, interpretation and 

irrigation scheduling method. 

 

Keywords: Drip irrigation, soil water content, capacitance sensor, calibration, HYDRUS-

3D, IRRIX, automation 
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Water as a resource 
Water is essential for socioeconomic development, energy and food production, 

healthy ecosystems and for the survival of humans (United Nations - Water, 2020). The 

most important uses of water are related to agriculture, industry and domestic 

consumption (Mateo-Sagasta and Burke, 2010). The increase in the world's population 

and the consequent increase in water consumption makes it necessary to manage water 

resources properly (Ashofteh et al., 2015). World agriculture consumes approximately 

70% of freshwater withdrawn per year (UNESCO, 2015) and approximately 17% of the 

world’s cropland is irrigated but produces 40% of the world’s food (FAO, 2002). This 

situation may be intensified by climate change, which will affect the availability of water 

resources for both rain-fed and irrigated agriculture.  Also, due to rising temperatures 

and extreme events such as drought and more intense and longer-lasting floods, causing 

fluctuations of food production and important effects on global food security (Parry et 

al., 1999; Stocker et al., 2013). In addition, in 2018, the United Nations asserted that 

people should seek to find a solution to overcome the water problems of the 21st century 

and efficiently address global challenges such as climate change, food and water security, 

disaster risk reduction and economic and social development (Boretti and Rosa, 2019). 

Traditionally, irrigation has been increased to augment agricultural production, , but 

currently, due to the decrease in water resources, the use of efficient irrigation systems 

is necessary (Hagin et al., 2003). 

 

Apple crop 
The Mediterranean basin has long been a site of temperate fruit and nut production 

(Tous and Ferguson, 1996). Among the fruit crops, the apple tree stands out. The apple 

(Malus domestica Mill.) is native to Central Asia. Most apple trees are grown in temperate 

zones due to their need for a minimum number of cold hours for proper bud break in 

the spring season. There are more than 7500 known varieties, which differ in fruit size, 

color, taste and final tree size, even when planted with the same rootstock (Steduto et al., 

2012). The apple, which grows in areas characterized by water scarcity is the fruit crop 

with the largest surface area in the world after grape (Girona et al., 2010), and in terms 

of production it ranks third after banana and grape. In 2018, total apple production was 

125.3 million tons, with a harvested area exceeding 6.9 million hectares and an average 

yield of 16.4 t/ha. In Spain, the harvested area was around 30000 hectares, production 

was 0.56 million tons and yield was 18.8 t/ha (FAO, 2020). The water requirements of the 

apple tree are determined by the evaporative demand of the atmosphere and the amount 

of energy intercepted by the canopy. Trees with low crop loads use less water than trees 

with commercial loads (Girona et al., 2011). 
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Crop water requirements 
The usual method for determining crop water requirements is based on the water 

balance (Doorenbos and Pruit, 1977, Allen et al., 1998). The most relevant component of 

the balance to determine irrigation is crop evapotranspiration (ETC), which is estimated 

from the evapotranspiration of a reference crop (ETO) and a crop coefficient (KC) 

according to: 

 

ETC = ETO × KC (Eq. 1) 

 

where ETO represents the demand imposed by meteorological conditions and KC 

integrates the physical and biophysical differences between the reference crop and the 

crop whose evapotranspiration is to be estimated. 

However, in fruit crops, this approach may be uncertain because different 

conditions vary and event occur from one plot to another within the same crop variety. 

For example, irrigation requirements can vary between plots due to differences in the 

planting pattern and row orientation (Intrieri et al., 1998), in the particular variety 

(Higgins et al., 1992), in the rootstock (Li et al., 2002) or the shape and size of the canopy, 

where a crop coefficient adjustment based on the soil cover fraction can be used (Fereres 

et al., 1981; Allen and Pereira, 2009). In addition, radiation interception by the crop is one 

of the processes with the greatest impact on water needs and production in crops with 

discontinuous canopies (Green et al. 2006; Lakso, 2008). The relationship between KC and 

radiation interception is not constant and varies between phenological stages of the crop 

(Girona et al., 2011; Auzmendi et al., 2011; Marsal et al. 2013). Therefore, in order to 

schedule irrigation, it is necessary to undertake differential management and provide 

different amounts of water in the different subzones according to their water 

requirements. In this sense, it is necessary consider the precision agriculture, which is 

the mechanism that controls the land productivity, maximizing the yield and 

minimizing the impact by automating the complete agriculture processes (Keswani et 

al., 2019). 

 

Drip irrigation 
In many agricultural scenarios, drip irrigation is preferred over other irrigation 

methods due to its high application efficiency, as it provides water to a limited volume 

of soil in the region where the greatest water extraction by plants occurs, reducing losses 

by surface evaporation and deep percolation (Naglic et al., 2014). 

 Surface drip irrigation is much more widespread than subsurface drip irrigation 

partly due to the more easily observable indicators of operation and performance, but 

mainly because growers think that subsurface drip irrigation has a higher economic risk, 

especially when managing large irrigated areas (Lamm et al., 2012). The distribution of 

moisture within a volume of wet soil is known as the wet bulb (Arraes et al., 2019). The 



Introduction 

 

29 

 

factors that affect wet bulb formation are soil physical properties (texture, bulk density, 

initial water content…), crop absorption by root system, soil surface evaporation and the 

intensity of the irrigation rate. These factors are in turn affected by, amongst many 

others, solar radiation, air temperature, air humidity and crop growing conditions 

(Lazarovitch et al., 2007; Hao et al., 2007; Kandelous et al., 2011). This wet soil volume is 

one of the most important factors that need to be taken into account in the design of drip 

irrigation systems, especially the wetted depth in the soil profile and the radius on the 

soil surface (Kilic, 2020). 

 

Soil water dynamics and simulation 
In irrigated crops, the wetting profile in the root zone is dynamic and is influenced 

by crop characteristics, the irrigation system and soil hydraulic properties (Soulis et al., 

2015). Drip irrigation is one of the technologies increasingly being used in modern 

irrigated agriculture, with a high potential for water use efficiency and good economic 

viability (Lei et al., 2003). Drip irrigation is an irrigation method that allows accurately 

controlled application of water, allowing water to drip slowly near the plant roots, 

generating wet bulbs (Moncef and Khemaies, 2016). Wetting patterns can be obtained 

either directly by field measurements or by simulation using suitable mathematical 

models. In most of these models, the Richards equation, which governs water flow under 

unsaturated flow conditions is used to simulate the soil water matric potential or soil 

water distribution (Elmaloglou et al., 2013; Berardi et al., 2016). Thanks to the simulations, 

the effect of the soil properties on the moisture pattern around the emitters can be seen. 

WetUP (Cook et al., 2003), FUSSIM (Heinen, 2001), or HYDRUS (Simunek et al., 2016) 

are some of the models used to simulate soil water dynamics. 

 

Soil moisture sensors 
Water content (also known as moisture content) is the quantity of water contained 

in a material, such as soil, called soil moisture. Water content can be expressed as a ratio, 

ranging from 0 (completely dry) to the value of the material’s porosity at saturation 

(Kumar et al., 2016). The volumetric water content (VWC) is a key parameter for the 

study of precision agriculture (Deng et al., 2019). Besides destructive gravimetric 

sampling, electromagnetic methods (EM) such as time domain reflectometry (TDR), time 

domain transmission (TDT) and capacitance sensors and impedance sensors are 

commonly used to measure the soil water content (SWC) at the point scale (Bogena et al., 

2017). Capacitance soil sensors, such as the 10HS and EC-5 sensors, are frequency 

domain reflectometry (FDR)-based electrical sensors, whose operating principle consists 

of measuring the dielectric constant or permittivity of the soil to calculate its moisture 

content (Lopez-Aldaba et al., 2018). Capacitance soil sensors are preferred because they 

are reasonably robust, precise, consume little energy, provide real-time SWC at a low 

cost and require low maintenance (Domínguez-Niño et al., 2019). However, although in 



Introduction 

 

30 

 

laboratory conditions the accuracy of these sensors is good (Spelman et al., 2013), when 

they are installed in drip-irrigated orchards they show large sensor-to-sensor variability. 

This variability may be due to the size, shape and alignment of the wet bulb to the 

dripper as well as factors such as texture, gravels, roots, bulk density, macropores, etc 

(Dane and Hopmans, 2002). For this reason, it is necessary to know and understand what 

sources of variability are involved in the soil water content measurements. This is 

additionally of interest because it allows identification of the positions and depths that 

show the most relevant information to support making decisions in irrigation scheduling.  

 

Moisture sensor irrigation 
A disadvantage of irrigation scheduling based only on the water balance method is 

that the balance estimate may not be representing the real situation for a particular case. 

Inaccuracy in the inputs or outputs of the water balance will produce a systematic error 

that will cumulate over the course of the crop cycle.  

Moisture sensor irrigation control is an alternative, which makes it possible to adjust 

irrigation to the precise needs of a particular plot and to the actual water availability of 

the plants, without relying on external reference values. The simplest versions of control 

with soil water sensors consist of triggering / inhibiting irrigation when measurements 

cross above or below pre-set threshold values (Muñoz-Carpena et al., 2005; Cáceres et 

al., 2007; Dukes et al., 2010). Other systems can modulate the daily irrigation intensity 

taking into account the effect observed in previous irrigation events (Singh et al., 1995). 

Water balance and control in response to sensors have complementary advantages and 

disadvantages, but their combination does allow the advantages of both to be exploited. 

One way of combining them is to periodically apply an irrigation whose dose is 

predetermined by an estimate of ETC, but with a system that turns off the irrigation when 

the soil moisture exceeds a certain threshold (Muñoz-Carpena et al, 2005). Another 

advanced way consists of combining a water balance based on the estimation of ETC, 

with the soil water status sensors’ measurements, which can be used to readjust the ETC 

estimation (Bacci et al., 2008, Casadesús et al., 2012). Capacitance-type moisture sensors 

are the most commonly used type to measure the soil water content due to their low cost 

and maintenance and their lower energy consumption compared to TDR sensors 

(Visconti et al., 2014; Domínguez-Niño et al., 2019). Capacitive sensors measure the 

dielectric permittivity of the soil, which depends mainly on the water content (Campbell, 

1990; Bogena et al., 2007; Kizito et al., 2008). The dielectric properties of water depend on 

temperature and electrical conductivity, so the accuracy of measurements is affected by 

these factors (Kizito et al, 2008; Kargas and Soulis, 2019). In localized irrigation, the 

difficulty in using soil moisture sensors is due to the complex spatial distribution that 

occurs in this type of irrigation. Drip irrigation is characterized by the formation of wet 

bulbs under the drippers while the rest of the soil may be only slightly affected or not at 

all by the irrigation (Millán et al., 2020). Therefore, it is necessary to consider where and 
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how to install the sensors and how to interpret the measurements given the spatial 

variability.  

The optimal location of the sensors within the frame of a dripper – regarding depth 

and position relative to the dripper- must not be confused with the optimal location of 

monitored spots within a plot -regarding their representativeness of the whole cropped 

area-. One problem that affects the efficient management of irrigation is the 

heterogeneity of the plots. One solution is to adjust the design of the irrigation sectors to 

make them homogeneous units (Poh-Kok, 1987). However, this approach has limitations 

and it is common to find in the same sector areas that behave differently in terms of 

water balance. These differences may be in the vegetation cover or variations in the depth 

or other properties of the soil. The location of the monitored spots for soil moisture -

typically several sensors- have to provide a representative view of the whole irrigation 

sector to be controlled. Therefore, the problem is to decide the ideal location and the 

optimal number of monitored spots to install (Soulis et al., 2015; Adeyemi et al., 2017). 

 

Automated irrigation with soil moisture sensors 
The most common use of these sensors in crops has been for the supervision of the 

irrigation through a human operator. However, there are also examples where it has 

been used to automatically adjust irrigation (Fernández et al., 2008; Casadesús et al., 

2012). The main limitations of manual irrigation with moisture sensors is the large 

amount of data that are generated, which, alternatively, can easily be processed by 

automated systems. These data must be filtered, analysed and interpreted to be useful. 

For the irrigator, all the information from the moisture sensors means additional work 

due to the analysis and time required. Consequently, it is necessary to automate 

irrigation through Information and Communication Technologies (ICTs). Regarding the 

scheduling algorithm, the approach of a water balance tuned by feedback from sensors 

combines the reliability and predictability of water balance with the spontaneous site-

specific adjustment by sensors (Casadesús et al., 2012; Casadesús et al., 2014). This 

approach allows applying more sophisticated interpretation mechanisms to the series of 

soil moisture data. For instance, it can apply fuzzy logic to interpret data from moisture 

sensors using a series of rules. 

In addition, it is important to consider how the position and accuracy of sensors can 

affect irrigation efficiency in soil moisture-based automated irrigation scheduling. This 

is especially true in drip irrigation where non-uniform water distribution patterns below 

drippers make the placement of moisture sensors in the soil a key factor in the 

performance of irrigation scheduling schemes (Coelho and Or, 1996).  

Overall, in numerous studies, capacitance-type moisture sensors have been used in 

laboratory conditions, as well as in field conditions, in scenarios where the spatial 

heterogeneity of soil moisture is low (rainfed and sprinkler or flood-irrigated crops). 

However, drip irrigated orchards show great interest for the application of smart 
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irrigation approaches. Then, given the heterogeneity in soil moisture in this type of 

orchards, it is necessary to know and understand the phenomena that originate 

variability in the sensor readings. In this context, this thesis focuses on the problems that 

affect the use of capacitance moisture sensors in the automation of irrigation in a drip-

irrigated orchard. 
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This PhD thesis considers the characterization and simulation of soil water 

dynamics for the purpose of automated irrigation scheduling in woody crops. The field 

work for this PhD thesis was carried out in an apple orchard with loamy soil. 

 

The PhD thesis consist of four chapters, which are summarized below (Fig. 1). 

 

Chapter I analyses the response of 10HS sensors to soil moisture in laboratory 

conditions and discusses the relevance of the two steps of a soil-specific calibration of 

the sensors. In the first step, the response of individual sensors is related to the dielectric 

permittivity around them, using well-known permittivity media. In the second step, the 

permittivity is related to the soil water content (SWC) of a specific soil of interest, using 

undisturbed soil samples and time domain reflectometry (TDR) measurements. The 

two-step calibration improves the accuracy of the measurements, at least in laboratory 

conditions. 

 

Chapter II characterizes the soil water dynamics in a drip-irrigated apple orchard 

and analyses the most appropriate HYDRUS-3D configuration to simulate the dynamics 

of water in the soil in a drip irrigated orchard. For this, the parameterization of the 

HYDRUS 3D model is studied, considering soil hydraulic parameters obtained with 

Rosetta and HYPROP + WP4C method from undisturbed soil samples. One of the 

hydraulic parameters is empirically calibrated from a subset of the soil water 

measurements by neutron probe. The simulations are finally validated at different 

positions around the dripper on a daily and hourly basis using neutron probe and 

tensiometers. 

 

Chapter III analyses the performance of capacitance-type moisture sensors installed 

at different soil locations relative to the drippers in a drip-irrigated orchard under semi-

arid conditions. The study compares the variability observed in the sensor 

measurements with the estimated potential perturbation by factors such as variability in 

the wetted area below the drippers, soil temperature, sensor calibration and patterns of 

SWC within a wet bulb expected by HYDRUS-3D simulations.  

 

Chapter IV demonstrates the use of capacitance soil moisture sensors as an input to 

automated scheduling of irrigation in a drip-irrigated orchard. The approach consists of 

empirical adjustment of the FAO water balance using soil moisture sensors through the 

IRRIX web application in an apple orchard with heterogeneous vigour. The automated 

system is compared with the evapotranspiration determined by a weighing lysimeter 

located in the same orchard and with the manual scheduling determined by an 

experienced irrigator using a classical water balance. 
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Figure 1. Representative diagram of the thesis. 
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The main objective of this thesis is: 

 

To understand the response of capacitance-type soil moisture sensors with regard 

to the soil water dynamics in a drip-irrigated orchard, in order to optimize the usage of 

these sensors in automated irrigation scheduling.  

 

To attain the main objective, the following sub-objectives were 

established: 

 

1. To test the degree of improvement of various sensor- and soil-specific calibration 

options compared to factory calibrations by taking the 10HS sensor as an example. 

 

2. To characterize and understand the soil water dynamics and configure the HYDRUS-

3D model in a drip-irrigated apple orchard, calibrating and validating the 

simulations with soil water measurements from neutron probe and tensiometers. 

 

3. To analyse why soil capacitance sensors in laboratory conditions provide accurate 

soil water content (SWC) measurements and why, when they are installed in drip-

irrigated orchards, their measurements show large sensor-to-sensor differences. 

 

4. To demonstrate the feasibility of using capacitance soil moisture sensors in 

automated scheduling irrigation in orchards, where these sensors can spontaneously 

provide site-specific adjustment, in this case to size and structure of the canopy. 
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This section will describe the methodology used during the elaboration of this thesis. 

Each chapter of the thesis will also explain in more detail some relevant aspects that will 

be of interest. 

 

Location and description of the treatments 
The study was carried out in an apple orchard (Malus domestica Borkh. cv ‘Golden 

Reinders’) located at the IRTA-Lleida Experimental Station in Mollerussa (41.6° N, 0.8° 

E, 260 m above sea level), Lleida, Spain. The orchard planted in 2011 was oriented 

north-south and spaced at 3.63 m x 1.2 m. In the plantation there were three 

experimental treatments (Fig. 1). 

 

1. Manual treatment: in which irrigation application was based on the FAO water 

balance (Allen et al., 1998), calculated on a weekly basis, by an experienced 

irrigator, using the ETO from the previous week recorded by a weather station 

located in the same farm and crop coefficients (KC) determined in previous years 

using a weighing lysimeter included in the same orchard. Manual treatment was 

addressed in Chapter IV. 

 

2. Automated treatment: in which soil moisture sensors were installed and the 

irrigation was automatically scheduled daily by the IRRIX web platform 

(Casadesús et al., 2012). IRRIX applied a daily irrigation dose calculated from ETOH 

× KX, where ETOH  is an estimate of the ETO calculated from the Hargreaves formula, 

and KX is an irrigation coefficient, similar to the crop coefficient, but automatically 

readjusted by IRRX in response to the sensors. Automated treatment was 

addressed in Chapter IV. 

 

3. Simulation treatment: in which apple trees were irrigated daily to meet crop water 

needs, with daily irrigation doses (DID) determined on a weekly basis according 

to the FAO water balance (Allen et al., 1998): DID = ETO × KC, where ETO was the 

reference evapotranspiration from the previous week recorded by a weather 

station located in the same farm and Kc was the crop coefficient determined in 

previous years using the weighing lysimeter included in the same orchard (Girona 

et al., 2004). However, alterations to this irrigation pattern were applied in order 

to challenge the simulations at reproducing some temporary imbalances in the soil 

water budget, typically consisting of interruptions of irrigation for a period around 

one week, followed by recovery of soil water content, as well as the application of 

arbitrary periods of overirrigation and drought. Simulation treatment was 

addressed in Chapters II and III. 
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Figure 1. Scheme of Mollerussa orchard and its different treatments and repetitions. 

 

Data collection 
1. Datalogger 

The different soil moisture measurements were collected by dataloggers, electronic 

devices capable of storing data from soil moisture sensors. The datalogger used in this 

thesis were the models CR1000 (Fig. 2) and CR800 (Campbell Scientific Inc., Logan, UT, 

USA). Their basic operation is based on reading the voltage difference between the 

terminals where the sensors are connected. The dataloggers required 12V DC power for 

their operation but were equipped with an internal lithium battery that prevented loss 

of memory data when the device had no power. The data stored by the datalogger was 

downloaded in situ through a cable connected to a computer or, if the installation had a 

modem, telematically. 

 

 
Figure 2. Datalogger CR1000 from Campbell Scientific Inc. 

 

2. Capacitance sensors 

The capacitance sensors used in this thesis were the 10HS sensors and EC-5 sensors. 

The 10HS sensor (Fig. 3) (METER Group Inc., Pullman, WA, USA) is an analog output 

sensor that uses the soil and water electrical properties to estimate the volumetric water 

content in the soil. The sensor requires an excitation of between 3 and 15 VDC and has a 
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theoretical exploring volume of about 1.3 L. The direct measurement of the sensor is the 

dielectric permittivity that arrives as a voltage difference to the datalogger. 

 

 
Figure 3. 10HS sensor from METER Group Inc. 

 

The EC-5 sensor (METER Group Inc., Pullman, WA, USA) (Fig. 4) as well as 10HS 

sensor is an analog output sensor that uses the soil and water electrical properties to 

estimate the volumetric water content in the soil. The sensor requires an excitation of 

between 2.5 and 3.6 VDC and has a theoretical exploring volume of about 0.3 L.  

 

 
Figure 4. EC-5 sensor from METER Group Inc. 

 

3. Tensiometers 

The type RSU-C tensiometer (Irrometer, Riverside, CA, USA) (Fig. 5) measures the 

tension exerted by the soil when the liquid inside it dries. It is in contact with the soil 

through a porous ceramic tip. When the soil dries, the soil matrix strains the liquid 

content of the tensiometer, and when the soil moisture increases the column is tightened. 

The tension was measured with a transducer. Tensiometers were located in different 

positions around the dripper as described in Chapter II. 

 

 
Figure 5. RSU-C tensiometer from Irrometer Group Inc. 
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4. Neutron probe  

The neutron probes access tubes were installed in the ground in different positions 

around the drippers to 180 cm depth. The neutron probe tubes used were PVC because 

this material has little effect on the reading of the measurements. To measure the soil 

moisture, a neutron probe (Hydroprobe 503DR, Campbell Pacific Nuclear Corp., 

Martinez, CA, USA) (Fig. 6) was employed which uses radioactive material and contains 

an electronic gauge, a connecting cable, and a source tube containing both nuclear source 

and detector tube. The source tube was lowered into the tube to the different 

measurement depths. Neutron probe was employed during growing season in Chapters 

II and III. 

 

 
Figure 6. Hydroprobe 503DR from Campbell Pacific Nuclear Corp. 

 

5. Weather station 

The weather data was obtained from a weather station (Fig. 7) located in the 

Experimental Station at Mollerussa and integrated into the Xarxa d’Estacions 

Meteorolològiques Automátiques (XEMA) operated by the Catalan Meteorological 

Service. The data obtained from the weather station were the rainfall and reference 

evapotranspiration (ETo).  

 

 
Figure 7. Weather station. 
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The measurement of solar radiation was obtained from a pyranometer (SKYE 

Instruments Ltd, Llandrindod Wells, Powys, UK) (Fig. 8) installed in the plot, which 

measures solar radiation with wavelengths between 350 nm and 1100 nm. 

 

 
Figure 8. Pyranometer from SKYE Instruments Ltd. 

 

6. Lysimeters 

The apple orchard had two weighing lysimeters (Fig. 9), which provide a continuous 

measurement of crop evapotranspiration (ETC). The lysimeters installed in the orchard 

consist of a steel tank containing four apple trees with their soil volume and supported 

by four load cells resting on a concrete support. The signal from the load cells was read 

and stored in a datalogger, where the ETC, its radiation interception and its drainage 

were continuously recorded (Girona et al., 2014). The lysimeters were used to provide 

the ETC used as input of HYDRUS-3D simulations of the Chapters II and III and to 

contrast the irrigation applied in Chapter IV. 

 

 
Figure 9. Weighing lysimeter located in Mollerussa Experimental Station. 
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Physiological and agronomical measurements 
1. Stem Water Potential (SWP) 

Stem water potential (SWP) was measured using a pressure chamber (3005-series 

portable plant water status console, Soil Moisture Equipment Corp., Santa Barbara, CA, 

USA) (Fig. 10) and following the protocol established by McCutchan and Shackel (1992). 

Measurements were made at solar noon on leaves located close to the main trunk. 

Previously, the leaves were covered with plastic sheathes with aluminium foil bags to 

minimize transpiration and maintain balance with the xylem of the tree. SWP was 

determined once a week in Chapter IV. 

 

 
Figure 10. 3005-series portable plant water status console from Soil Moisture Equipment Corp. 

 

2. Fraction of Intercepted Photosynthetically Active Radiation (FIPAR) 

The method used to measure the fraction of intercepted photosynthetically active 

radiation (FIPAR) was related to that for fisheye photography described by Wüsnsche et 

al. (1995) and consisted of taking hemispheric photographs from below the tree, 

following a pattern that covered the entire planting space. The photos were taken with 

a Nikon digital camera and a 10-17 mm AT-X Tokina fish-eye lens on a self-levelling 

support that held the camera 10 cm above the ground (Fig. 11). Later, the photographs 

were processed to calculate the daily solar path on each picture and analyse the fraction 

between treetop pixels and background at the different sun positions along the day. 

FIPAR was used to see the differences in tree vigour in Chapter IV  

 

 
Figure 11. Digital camera on a self-levelling support. 
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3. Extent and position of wetted area 

The extent and position of the area wetted by the drippers were measured using the 

Fieldscout TDR 300 (Spectrum Technologies Inc., Aurora, IL, USA) with 12 cm length 

rods (Fig. 12). The characterization of the extent of the wetted area consisted of 

measuring the soil water content (SWC) at intervals of 10 cm, parallel and perpendicular 

to the dripline. The position of the wetting pattern referred to the centering of the wet 

bulb relative to the dripper and was determined as the point with the highest soil water 

content between two drippers. To determine the variability in the extent and position of 

the wetted area, a “reference wetting pattern”, was defined as the wetting pattern most 

frequently observed during the measurements. Then, all transects included in the 

dataset were compared with this “reference wetting pattern”. The extent of the wetted 

pattern at the soil surface under the dripper was measured in Chapter II and III. 

 

 
Figure 12. Fieldscout TDR 300 from Spectrum Technologies Inc. 

 

4. Soil hydraulic characterization 

The characterization and description of the soil hydraulic properties is of 

fundamental importance for the application and optimization of the irrigation water. For 

this purpose, there are different methodologies in which measurements can be taken 

with disturbed or undisturbed samples, continuously or punctually, and in the 

laboratory or field. The bulk density (BD), field capacity (FC) and wilting point (WP) 

were determined in each position and depth where the moisture sensors were installed. 

To calculate BD, first undisturbed soil samples were taken using Kopecky rings 

(Eijkelkamp, Giesbeek, The Netherlands) of 5.1 cm length and 5.3 – 5.0 cm diameter (Fig. 

13). The cylinder was covered with two lids to avoid moisture losses and weighed in the 

laboratory. Later, the sample was dried in an oven (105 °C) for 24 h or until the sample 

reached a constant weight. Finally, the moisture was determined by dividing the dry 

weight by the volume of the cylinder. The cylinders were used to take undisturbed soil 

samples in Chapters I and II. 
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Figure 13. Kopecky rings from Eijkelkamp. 

 

Soil water content at -33 kPa (FC) and -1500 kPa (WP) were determined from dry 

and sieved samples using a porous ceramic pressure plate with compressed air (Soil 

Moisture Equipment Corp., Santa Barbara, CA, USA) (Fig. 14) (Dane and Hopmans, 

2002). Pressure plates allowed to obtain the FC and WP that were used in Chapter II.  

 

 
Figure 14. Pressure plates with compressed air from Soil Moisture Equipment Corp. 

 

In addition, the combination of the HYPROP (METER Group, Pullman, WA, USA) 

and WP4C (METER Group, Pullman, WA, USA) systems (Fig. 15) provide complete soil 

hydraulic characterization from undisturbed samples through continuous laboratory 

measurements. The fact that the soil sample is undisturbed adds quality to the 

measurements, making the characterization more representative. The soil hydraulic 

characterizations were used to estimate the FC and WP values and the soil hydraulic 

parameters (θr = residual water content; θs = saturated water content; Ks = saturated 

hydraulic conductivity; α, n and l are van Genuchten shape parameters), which were 

later used in the HYDRUS-3D simulation model. Data obtained from HYPROP and 

WP4C was used in Chapter II and III. 
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Figure 15. HYPROP (right) and WP4C (left) systems. 

 

Characterization of capacitance sensors and two-step calibration 
The factory calibration of the capacitance sensors is often criticized for its limited 

accuracy. To improve their precision a two-step calibration procedure can be used 

(Bogena et al., 2017; Seyfried and Murdock, 2004). In the first step (Fig. 16), media with 

well-known dielectric properties, such as air, glass beads, and 2-isopropoxyethanol are 

used. The advantages of using these reference media are: (a) the avoidance of air gaps 

and density variations, (b) the possibility to separate sensor- and soil-specific effects, and 

(c) the ability to quickly calibrate multiple sensors for a wide range of dielectric 

permittivity.  

 

 
Figure 16. Different known permittivity media where the capacitance sensor response was 

characterized.  

In the second step (Fig. 17), an appropriate relationship between permittivity and 

SWC needs to be established. One possibility is to use available empirical or semi-

empirical models that relate permittivity and SWC. To obtain more accurate SWC 

measurements, a site-specific calibration accounting for variations in key soil properties 

can also be established using a limited number of soil samples. Here, the use of TDR 

measurements was preferred because of its ability to directly provide dielectric 

permittivity and higher accuracy of the permittivity measurements. 
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Figure 17. Local relationship between SWC and permittivity using TDR sensor. 

 

HYDRUS-3D model  
The soil water distribution and root water uptake were modelled with Richards 

equation in 3 dimensions, which incorporated a sink term to contemplate the 

evapotranspiration. The simulations made in this PhD thesis were carried out using the 

HYDRUS-3D (Simunek et al., 2016) model, which is a software that simulates water flow 

and root water uptake (RWU) in homogeneous and isotropic soils. HYDRUS-3D solves 

Richards equation (Eq. 1) using the Galerkin finite element method from the initial and 

boundary conditions. 

  

∂θ

∂t
=

∂

∂x
[K(h)

∂h

∂x
] +

∂

∂y
[K(h)

∂h

∂y
] +

∂

∂z
[K(h) (

∂h

∂z
+ 1)] -S (Eq. 1) 

 

where θ is volumetric water content (L3L-3), t is the time (T), x and y the horizontal space 

coordinates, h is soil water pressure head (L), K is hydraulic conductivity, z is the vertical 

space coordinate, and S is the sink term (T-1).  

The HYDRUS model solves Richards equation using van Genuchten’s parametric 

function (1980), which relates moisture and soil potential using the following equation 

(Eq. 2): 

θ(h) = {
θr +

θs − θr

[1 + |α · h|n]m
             ℎ < 0

θs                                               ℎ ≥ 0

 (Eq. 2) 

 

where θs = saturated water content; θr = residual water content; and m, n and α are 

empirical values that affect the shape of the retention curve, and for the purposes of 

simplification it is assumed that m = 1 – (1/n) (Eq. 3) 
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Se =
θ − θr

θs − θr
, m = 1 − 1/n (Eq. 3) 

 

where Se is the dimensionless effective water content. 

The unsaturated hydraulic conductivity K(h) is determined by the following 

expression (Mualen, 1976) (Eq. 4)  

 

𝐾(ℎ) = 𝐾𝑠𝑆𝑒
𝑙 [1 − (1 − 𝑆𝑒

1/𝑚
)𝑚]

2
 (Eq. 4) 

  

where Ks is the saturated hydraulic conductivity of the soil and l is an empirical 

parameter related to the connectivity between the pores. 

The application of a three-dimensional model made it possible to simulate the 

evolution of soil water content in different positions and depths, including sensors, 

tensiometers and neutron probe access tubes.  

HYDRUS-3D simulations were validated with soil moisture measurements by 

neutron probe -at different dates on two irrigation seasons- and by tensiometers -on the 

course of several days-. The volumetric SWC at different depths on an array of access 

tubes was measured using a neutron probe (Hydroprobe 503DR, Campbell Pacific 

Nuclear Corp., Martinez, CA, USA) on specific days of the growing season. The 

tensiometers measured the soil water tension every 10 seconds and the average reading 

over 5 minutes was stored in a datalogger.  

 

Characterization of sensor performance in a real orchard 
In this thesis, as described in Chapter III, capacitance soil moisture sensors (10HS and 

EC-5) were located in two plots, with one sensor type in each plot. There repetitions of 9 

or 10 sensors were installed in each plot in different positions and depths around the 

dripper (Fig. 18). All repetitions were within the same tree row and separated by a 

distance of less than 5 m. The 10HS sensors of Plot II, which were deployed in equivalent 

positions and depths as EC-5 sensors in Plot I, additionally included position D at a 

depth of 30 cm. 
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Figure 18. Moisture sensors installed at three depths (15, 30 and 60 cm) in four positions relative 

to the dripper (Pos. A: centre of wet bulb, Pos. B: mid-point between two drippers (30 cm), Pos. 

C: perimeter of the wet area, Pos. D: outside the influence of the dripper. 

 

In this study, one concept of interest regarding the performance of sensors in real 

orchard conditions is the practical uncertainty of monitoring SWC with a setup of several 

sensors, each of which is reporting a different value. Here, uncertainty refers to the 

degree of precision with which a quantity is measured while variability refers to natural 

variation in some quantity (Van Belle, 2008). When comparing the output of several soil 

sensors, the observed differences between sensors can be caused by uncertainties in the 

measuring process, by actual variability in the physical property being measured, or by 

both. Since in a practical usage of the sensors we cannot distinguish between them, here 

we treat them all as practical uncertainties, expressed in terms of the root mean square 

error (RMSE). The conversion of uncertainties or variabilities to a common expression 

allows their comparison. 

 

IRRIX web platform 
In this thesis, the use of capacitive sensors for automated irrigation scheduling was 

conducted with IRRIX. IRRIX is an experimental web platform for automated irrigation 

monitoring and control, which implements automatic localised irrigation algorithms 

and methods for unmanned interpretation of capacitance sensors (Casadesús et al., 

2012).  

IRRIX is capable of creating predictions of irrigation needs and executing decisions 

autonomously. The system works by collecting data through different sensors installed 
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in the field, which are crossed with reference meteorological data and the water 

resources available in the plot. With this information, the platform designs the seasonal 

plan in an efficient and adjusted way in each case, without the need for intervention 

from the operators. With this information, the platform designs the seasonal plan in an 

efficient and adjusted way in each case, without the need for intervention from the 

operators. Every day, the system adjusts automatically according to the indications of 

the sensors, within the limits that the pre-established planning at the beginning of the 

seasonal plan allows.  

IRRIX is a complement to the irrigation controllers currently available on the market 

which offer the possibility of optimizing the scheduling on a daily basis without the need 

for user intervention, as well as supervising the correct operation of the irrigation system 

based on real observations from the sensors. The operation of IRRIX requires an 

irrigation controller, in which a water meter and two or more soil moisture sensors per 

irrigation sector can be remotely controlled and installed. The irrigator can interact with 

the system through any device connected to the Internet. 
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Abstract 

Soil water content (SWC) monitoring is often used to optimize agricultural irrigation. 

Commonly, capacitance sensors are used for this task. However, the factory calibrations 

have been often criticised for their limited accuracy. The aim of this paper is to test the 

degree of improvement of various sensor- and soil-specific calibration options compared 

to factory calibrations by taking the 10HS sensor as an example. To this end, a two-step 

sensor calibration was carried out. In the first step, the sensor response was related to 

dielectric permittivity using calibration in media with well-defined permittivity. The 

second step involved the establishment of a site-specific relationship between 

permittivity and soil water content using undisturbed soil samples and time domain 

reflectometry (TDR) measurements. Our results showed that a model, which considered 

the mean porosity and a fitted dielectric permittivity of the solid phase for each soil and 

depth, provided the best fit between bulk permittivity and SWC. Most importantly, it 

was found that the two-step calibration approach (RMSE: 1.03 vol.%) provided more 

accurate SWC estimates compared to the factory calibration (RMSE: 5.33 vol.%). Finally, 

we used these calibrations on data from drip-irrigated almond and apple orchards and 

compared the factory calibration with our two-step calibration approach.  

 

Keywords: Soil water content; 10HS sensor; calibration; sensor variability; specific 

calibration; CRIM model. 
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1. Introduction 

Efficient irrigation management is essential for reducing water consumption. To this 

end, real-time monitoring of soil water content (SWC) is essential to optimize the amount 

and timing of water irrigation (Nolz et al., 2013; Soulis et al., 2018). Electromagnetic (EM) 

methods, such as time domain reflectometry (TDR) (e.g. Robinson et al., 2003) and 

capacitance sensors (Kojima et al., 2016; Bogena et al., 2017), are most commonly used 

for soil water content measurements at the point scale. Capacitance sensors are often 

preferred over TDR sensors as they provide real-time SWC at a lower cost. In addition, 

they were shown to be reasonably robust and precise, and consume less energy 

compared to TDR sensors (Rosenbaum et al., 2010; Spelman et al., 2013; Visconti et al., 

2014). Both TDR and capacitance methods make use of the strong dependence of the soil 

dielectric permittivity on volumetric SWC. As the dielectric permittivity of liquid water 

is much higher than the dielectric permittivity of the other soil components, SWC is the 

principal factor governing the apparent soil permittivity (Topp et al., 2000). However, 

other soil properties such as salinity and texture may cause dielectric losses and disturb 

the SWC measurements with EM sensors (Jones et al., 2000). These dielectric losses 

depend on the frequency of the electric field generated by the sensors and are especially 

important for sensors that work at frequencies between 1 and 200 MHz (Hilhorst et al., 

1994). In addition, capacitance sensors can show substantial sensor-to-sensor variability, 

which affects the accuracy of the soil water content measurements if this is not 

considered (Sakaki et al., 2008; Rosenbaum et al., 2013). One solution to compensate for 

this effect would be to directly calibrate each sensor individually with soil samples (Vaz 

et al., 2013). However, this procedure is time consuming and thus often not viable in case 

of a high number of sensors (Rosenbaum et al., 2010; Bogena et al., 2017). Alternatively, 

a two-step calibration procedure can be used (Robinson et al., 1998; Seyfried et al., 2004; 

Jones et al., 2005; Bogena et al., 2007). In a first step, a calibration between sensor 

response and permittivity is established for each of the sensors. In this step, media with 

well-known dielectric properties (referred to as reference permittivity), such as air, glass 

beads (Kögler et al., 2013) and 2-isopropoxyethanol (Kaatze et al., 2016), are used. The 

advantages of using these reference media are: (i) the avoidance of air gaps and density 

variations, (ii) the possibility to separate sensor- and soil-specific effects, and (iii) the 

ability to quickly calibrate multiple sensors for a wide range of dielectric permittivity. In 

a second step, an appropriate relationship between permittivity and SWC needs to be 

established. One possibility is to use available empirical or semi-empirical models that 

relate permittivity and SWC (Topp et al., 1980; Roth et al., 1990). To obtain more accurate 

SWC measurements, a site-specific calibration accounting for variations in key soil 

properties can also be established using a limited number of soil samples. Here, the use 

of TDR measurements should be preferred because of its ability to directly provide 

dielectric permittivity and the higher accuracy of the permittivity measurements. 
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In this study, we focused on the low-cost capacitance SWC sensor 10HS (METER 

Group Inc., 2018). The main goal was to analyse whether it is worthwhile to perform 

sophisticated sensor- and soil-specific calibrations instead of using the factory 

calibration suggested by the manufacturer. To this end, we carried out sensor-specific 

calibrations with 10HS sensors using reference media with well-known dielectric 

properties and determined permittivity-SWC relationships using undisturbed soil 

samples and TDR measurements. The permittivity of the undisturbed samples was 

related to SWC taking into account different properties such as porosity and permittivity 

of the solid phase. We then compared the factory and the two-step calibration approach 

using i) packed sand samples with known SWC in a laboratory experiments and ii) SWC 

time series obtained at two test sites. 

 

2. Materials and Methods 

2.1. Sensor Technology 

In this study, we used the 10HS SWC sensor manufactured by METER Group Inc., 

USA. This sensor has a prong length of 10.0 cm and a distance between the prongs of 2.2 

cm (Figure 1). The 10HS sensor determines SWC using the capacitance method. 

According to the manufacturer, it has a probing volume of about 1 dm3, which is much 

larger than other low-cost SWC sensors like the EC-5 and EC-20, which have a volume 

of influence of 0.3 dm3 (Rosenbaum et al., 2011).  

 

 
Figure 1. The 10HS sensor from METER Group Inc., USA 

The 10HS sensor determines SWC by measuring the charge time of a capacitor (i.e. 

the soil-probe system), which is related to the permittivity of the soil surrounding the 

sensor (Bogena et al., 2007). The manufacturer provides a factory calibration to obtain 

SWC from the sensor response: 

SWC (vol.%) = (1.16 x 10-9 (RAW3) – 3.95 x 10-6 (RAW2) + 4.89 x 10-3 (RAW) – 1.92) x 100 (Eq. 1) 

where RAW is the raw sensor count. According to the manufacturer, this calibration 

equation is valid for SWC in the range between 0 and 57 vol.%. Like all ECH2O SWC 

sensors of the METER Group, the 10HS sensor uses an oscillation frequency of 70 MHz. 
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Therefore, the SWC measurements with the 10HS sensor may be affected by temperature 

and soil bulk electrical conductivity variations (Rosenbaum et al., 2011).  

 

2.2. Study area 

We used 16 10HS sensors to measure SWC in an almond and apple orchard located 

in Menàrguens and Mollerussa (Lleida, Spain), respectively. Both orchards were equipped 

with a drip irrigation system. The almond plants were planted in ridges of 200 cm width 

and 50 cm height on top of the original soil. The soil material used to create the ridges 

consisted of a mixture of local soil and an organic amendment. The irrigation system of 

the almond orchard was located on the top of the ridge and consisted of a double tube 

system separated by 40 cm with drippers spaced at 100 cm intervals. The sensors were 

installed in the middle of the ridge at depths of 20 and 50 cm. The apple orchard had a 

single tube system with drippers spaced every 60 cm and the sensors were located under 

and between the drippers at depths of 15 and 30 cm. The properties of the soils are 

summarized in Table 1. 

 

Table 1. Characteristics of the soils at different deeps in almond and apple crop. 

  Menàrguens  Mollerussa 

Depth (m) 
 0 - 0.5  

(Ridge) 

0.5 - 1 

(Under ridge) 
 0 - 0.2 0.2 - 0.4 

Silt (0.002 < d < 0.05 mm) %  37.2 37.0  40.7 40.6 

Clay (d < 0.002 mm) %  21.2 24.3  23.5 23.9 

Sand (0.05 < d < 2 mm) %  41.6 38.7  35.8 35.5 

USDA Soil Classification  Loam Loam  Loam Loam 

Bulk density (kg m-3)  1370 1700  1480 1500 

 

2.3. Laboratory experiments 

In this study, we relied on a two-step calibration approach to relate sensor response 

to SWC. In a first step, the relationship between sensor response and permittivity was 

established for each sensor (i.e. a sensor-specific calibration). In a second step, a site-

specific relationship between permittivity and soil water content was developed using a 

limited number of soil samples using the TDR method (soil-specific calibration). 

 

2.3.1. Sensor response – permittivity calibration for the 10HS sensor 

For the first calibration step, we used the approach of Bogena et al. (Bogena et al., 

2017) and calibrated 16 sensors. We used five calibration standards for sensor calibration 

(air, glass beads and three mixtures of 2-isopropoxyethanol (i-C3E1) and deionized water 

with a defined volume fraction of i-C3E1). The properties of these reference media are 

described in Table 2. We used soda lime glass beads (type: Silibeads 4501, Sigmund 

Lindner GmBH, Germany) with a grain size between 0.25 and 0.50 mm and a dielectric 

permittivity of 3.34 (Kögler et al., 2013). The sensor response for all reference media was 

measured at 25°C using the ProCheck device (Meter Group Inc., USA). The permittivity 
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range from 1.0 to 34.8 covers most of the dielectric permittivity values found in natural 

soils. Table 2 shows that there is a considerable gap between 4 and 32%. Initially, pure I-

C3E1 with an equivalent water content of 24% was also considered. However, pure I-C3E1 

is highly hydrophilic. Therefore, these measurements were unreliable and not stable 

during calibration. For this reason, we decided to discard this solution from the analysis. 

Future studies should investigate alternative reference liquids to fill this gap. 

Each of the 16 sensors was calibrated taking into account two immersions variants. In 

the first variant, only the sensor prongs were inserted in the reference media (i.e. 

incomplete immersion). In the second variant, the entire sensor including the sensor head 

with the electronics (see Figure 1) was fully immersed in the reference media. This second 

variant mimics a typical field installation where the sensor head is fully surrounded by 

soil, whereas the first variant represents a typical situation for crops planted in bags of 

growing media and laboratory SWC measurements. If the sensor electronics in the sensor 

head are not influenced by the permittivity of the surrounding media, both variants 

should provide the same sensor reading for a given dielectric permittivity. 

 

Table 2. Properties of the calibration media as well as the equivalent soil water content 

(SWC) calculated with the Topp equation (Topp et al., 1980). 

Calibration 

standard 
Medium 

Reference 

Permittivity 

Volume fraction 

i-C3E1 

Volume 

fraction water 

Equivalent 

SWC 

- - - vol. % 

M1 Air 1.00 - - - 

M2 Glass beads 3.34 - - 4.0 

M3 I-C3E1/water mixture 18.14 0.92 0.08 32.0 

M4 I-C3E1/water mixture 26.26 0.80 0.20 41.0 

M5 I-C3E1/water mixture 34.82 0.68 0.32 48.0 

 

Several precautions were considered to obtain precise calibrations. First, we used 

sufficiently large (6.4 dm3) polyethylene bottles (diameter of 19.5 cm, height of 23.0 cm) 

to fully include the sensing volume of the 10HS sensor (1 dm3). Second, the sensor was 

fixed and centrally immersed in the reference media to reduce the effects of sensor 

position on the measurements. Finally, possible degrading effects of the reference media 

on the plastic body of the sensor were minimized by carefully cleaning the sensor after 

each measurement and minimizing the contact time. The calibration station consisted of 

four plastic bottles containing the different dielectric reference media arranged on a 

workbench. The bottle with the glass beads was placed on a vibration machine in order 

to maintain the same packing density and not affect the calibration of the 10HS sensors. 

The other three bottles were placed on magnetic stirring devices to avoid demixing of 

the reference media. They were also covered with a lid to prevent evaporation. In 

addition, a bottle of water was used to clean the sensors after each measurement. Bogena 

et al. (2017) provided a more detailed description of the set-up of the calibration 

workbench. 
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The sensor response (ν) was related to the dielectric permittivity (Ka) using an 

empirical sensor response permittivity (SRP) model. In this study, the sensor response 

was related to the apparent dielectric permittivity using the following empirical model:  

 

Ka= γ + 1 / (α + β / ν) (Eq. 2) 

 

where ν was the sensor response (voltage, V) and α, β and γ were fitting parameters. 

The RMSE between the predicted Ka and the reference permittivity, εref, was used to 

express the accuracy of the SRP model. Empirical SRP models were already successfully 

applied to relate sensor readings of low-cost sensors to dielectric permittivity in several 

studies to account for sensor-to-sensor variability of various SWC sensors (Rosenbaum 

et al., 2010; Qu et al., 2013). In addition, we investigate the decrease in accuracy when 

using a universal SRP model that ignores sensor-to-sensor variability of the 10HS 

sensors. 

 

2.3.2. Permittivity-soil water content relationships 

To obtain soil-specific relationships between dielectric permittivity and SWC for the 

Menàrguens and Mollerussa test sites, we took 16 undisturbed samples using Kopecky 

rings with a length of 7.7 cm and a diameter of 5 cm. We took 4 samples at 20 cm depth 

and 4 samples at 50 cm depth from the Menàrguens test site and 4 samples at 15 cm and 

4 samples at 30 cm depth from the Mollerussa test site. In the laboratory, we saturated 

the samples with deionized water and let them evaporate at room temperature. The 

volumetric SWC was determined twice a day from the weight of the sample, the known 

sample volume and the dry weight of sample determined at the end of the experiment 

by oven drying (65°C, 48 h). The apparent dielectric permittivity of each sample was 

determined from measurements with a CS 640-L 3-rod TDR probe attached to a TDR-

100 device (Campbell Scientific Inc., Logan, UT). We used the internal TDR-100 

algorithm to analyse the TDR measurements. One sample had to be discarded because 

shrinkage caused a significant decrease in volume. Therefore, the final data set consisted 

of dielectric permittivity and SWC measurements for 15 soil samples with known bulk 

density and porosity as provided in Table 3. 

It should be noted that there is a difference in operating frequency between the 10HS 

sensor (70 MHz) and the effective frequency of TDR (100 to 500 MHz), although the latter 

is poorly defined and depends on the measurement set-up and TDR waveform analysis 

approach (Chung et al., 2008). For the low-salinity and loamy soils investigated here, it 

is assumed that the operating frequency of 70 MHz for the capacitance sensors is 

sufficiently high to avoid effects of low-frequency polarization losses (Kizito et al., 2008). 

Therefore, the difference in measured apparent permittivity between the capacitance 

sensors and TDR is expected to be low. The alternative approach where 10HS sensors 

are used for soil-specific calibration would overcome possible differences in frequency 
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but has the disadvantage that sensor- and soil-specific calibration are convoluted. 

Therefore, we prefer not to use this latter approach.  

 

Table 3. Properties of the samples for the topsoil and subsurface soil 

Menàrguens Mollerussa 

Sample 

name 

Depth Bulk density Porosity Sample 

name 

Depth Bulk density Porosity 

cm g cm-3 % cm g cm-3 % 

S1-Men 

~20 

1.40 47 S1-Moll 

~15 

1.56 41 

S2-Men 1.33 50 S2-Moll 1.41 47 

S3-Men 1.37 48 S3-Moll 1.41 47 

S4-Men 1.36 49 S4-Moll 1.50 43 

S5-Men 

~50 

1.72 35 S5-Moll 

~30 

1.57 41 

S6-Men 1.60 40 S6-Moll* 1.47 44 

S7-Men 1.75 34 S7-Moll 1.46 45 

S8-Men 1.70 36 S8-Moll 1.50 43 

*Sample was discarded due to shrinkage 

 

Five empirical and semi-theoretical model variants were evaluated using the root 

mean square error (RMSE) between measured and predicted SWC. The first model was 

the empirical Topp model (Topp et al., 1980): 

 

SWC (vol.%) = (-5.3 × 10-2 + 2.92 × 10-2× Ka - 5.5 × 10-4 × Ka
2 + 4.3 × 10-6× Ka

3) × 100 (Eq. 3) 

 

In addition, we used four different variants of the complex refractive index model 

(CRIM) (Bircharck et al., 1974): 

 

SWC (vol.%) = 100 × 
Ka

β
 −  (1 −  η) × Ks

β
 −  ηKair

β

Kw(T)β  −  Kair
β

  (Eq. 4) 

 

where Ka is the measured apparent dielectric sensor permittivity, Ks is the dielectric 

permittivity of the solid phase and  is the porosity. The value of the shape factor β was 

set to 0.5 (Pepin et al., 1995). The dielectric permittivity of air, Kair, was assumed to be 1 

and the temperature dependent dielectric permittivity of water, Kw, was assumed to be 

78.54 at 25 °C (Weast et al., 1986). In the first variant (CRIM-1), we used the averaged 

measured porosity for all samples ( = 43%) and assumed that the dielectric permittivity 

of the solid phase, Ks, was 4.4 based on the value for quartz (Robinson et al., 2004). In the 

second variant (CRIM-2), we again used the measured average porosity ( = 43%) but 

fitted Ks to the data. In the third variant (CRIM-3), we used the mean porosity per soil and 

depth (Menàrguens:  = 48% and 36% at 15 cm and 50 cm depth, respectively; Mollerussa: 

 = 44% and 43% at 15 cm and 30 cm depth, respectively) and fitted Ks again. In the fourth 

and final variant (CRIM-4), we again used the mean porosity per soil and depth and now 

fitted the dielectric permittivity of the solid phase for each soil and depth. 
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2.3.3. Sandbox experiment 

In order to compare the accuracy of the factory calibration provided by the 

manufacturer with the two-step calibration developed in this study, a sandbox 

experiment was performed. The experiment was carried out in a box (length: 36.8 cm, 

width: 26.7 cm, height: 17.2 cm) which was filled with 15 kg of quartz sand, with a grain 

size diameter between 0.1 and 0.4 mm (F32, Quartzwerke Frechen, Germany). To cover 

soil water contents between 0 and 35 vol. %, we added 0.5 dm3 of demineralized water 

in seven steps. Each time, the sand was thoroughly mixed with a blender before refilling 

into the box to achieve best possible soil homogeneity. During the refilling process, the 

soil material was carefully compacted to achieve similar soil density. The sand height 

and weight were measured to determine soil volume and soil density. Three 10HS 

sensors were installed in the central part of the box (see Figure 2) ensuring that the 

measurements were only affected by the sand inside the box. The ProCheck device 

(Meter Group Inc., USA) was used to determine the raw sensor response and the soil 

water content based on the factory calibration. For the two-step calibration, the universal 

SRP model determined using the reference media was used to convert the sensor 

response to permittivity, and the Topp equation (Topp et al., 1980) was used to 

determine SWC from permittivity. Additional corrections for the effect of electrical 

conductivity and temperature were not required here because of the use of 

demineralized water with low conductivity and the controlled temperature during the 

experiment. 

 

 
Figure 2. Top view of the sandbox experiment with three 10HS sensor connected to Decagon 

ProCheck device. 

 

3. Results and Discussion  

3.1. Sensor response – permittivity (SRP) calibration for the 10HS sensor 

The statistical results of the sensor response measurements in the different reference 

media for the two immersion variants are summarized in Table 4. It can be seen that 

Decagon ProCheck

Sandbox

10HS sensors
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mean sensor response increased with increasing permittivity and that the 10HS sensors 

showed considerable sensor-to-sensor variability as indicated by the average standard 

deviation and coefficient of variation of 13.8 mV and 1.41 %, respectively. This sensor-

to-sensor variability is the consequence of intrinsic factors, such as subtle variations in 

the electrical components and probe geometry affecting the electromagnetic wave 

propagation characteristics (Rosenbaum et al., 2010). It can also be seen that the sensor 

readings are affected by the immersion depth of the sensor into the reference media. Our 

experimental results indicate that with increasing permittivity, the 10HS sensor becomes 

increasingly affected by the depth of immersion. For the reference media M1-M3, only 

minor differences were found. However, significant differences were found for M4 and 

M5 with differences in mean sensor response of 0.02 V and 0.05 V, respectively. 

 

Table 4. Statistical result of the sensor response measurements using 10HS sensors in 

calibration media. 

Calibration 

Medium 

Incompletely immersed sensors in 

calibration medium 
 

Fully immersed sensors in 

calibration medium 

Mean 

Sensor 

Response  

Standard 

Deviation 

Coefficient 

of 

Variation 

 

Mean 

Sensor 

Response 

Standard 

Deviation 

Coefficient 

of 

Variation 

V V %  V V % 

M1 0.50 0.009 1.84  0.50 0.009 1.84 

M2 0.80 0.017 2.10  0.79 0.016 2.08 

M3 1.32 0.011 0.86  1.32 0.011 0.86 

M4 1.41 0.017 1.23  1.43 0.016 1.12 

M5 1.47 0.015 1.01  1.52 0.017 1.10 

 

Table 5. Fitting parameters and root mean square error (RMSE) between measured and 

predicted dielectric permittivity when the sensors are incompletely immersed and fully 

immersed in calibration media. 

 α β γ RMSE 

Equation (2) incompletely immersed -0.200 0.335 -1.227 0.518 

Equation (2) fully immersed -0.118 0.220 -2.456 0.412 

 

In order to test how the differences in sensor response of the two immersion variants 

affect the sensor calibration, we fitted the SRP model (Eq. 2) to both calibration data sets. 

The fitted SRP models are presented in Figure 3 and the fitting parameters and the 

associated RMSE are provided in Table 5. 

The difference between the two SRP models is clearly visible in Figure 3. In the case 

of incomplete immersion in the reference media, the slope is much steeper in wet soil. 

This has the following implications for the measurement accuracy of the 10HS sensor. 

First, the use of a calibration strategy based on incomplete immersion will overestimate 

permittivity in the range between 0.20-0.65 V and 1.35-160 V and will underestimate it 

in the range between 0.65-1.35 V ranges when the sensor is completely buried in the soil 

during the field experiments. Second, the sensor reading is less sensitive to changes SWC 
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in the range between 1.35-1.60 V due to the steeper slope. In our field experiment, the 

10HS sensors were completely buried in the soil. Therefore, we prefer the SRP model 

obtained from the fully immersed calibration data to describe sensor response-

permittivity relationship of the 10HS sensors in the following. 

   
Figure 3. The response of 16 10HS sensors in five reference media for the two cases 

“incompletely immersed” and “fully immersed” as well as the corresponding universal SRP 

models. 

 

3.2. Universal versus sensor-specific calibration  

The 10HS sensor exhibited considerable sensor-to-sensor variability (Figure 3). 

Therefore, we tested to which degree the 10HS sensors would benefit from a sensor-

specific calibration. The comparison between universal and sensor-specific calibration of 

each of 16 sensors is presented in Figure 4. The RMSE between the reference permittivity 

(Table 2) and the apparent dielectric permittivity estimated using the fitted SRP model 

(fully immersed case) was used to evaluate to what extent a sensor-specific calibration 

could improve the accuracy of the permittivity estimates (Table 6). To put the results 

into perspective, the permittivity was converted to equivalent SWC using the Topp 

model (Topp et al., 1980).  

 
Figure 4. Universal SRP model fitted to the whole data set of every sensor and sensor-specific 

SRP models fitted to the sensor response measurement of each 10HS sensor. 
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Table 6. RMSE between apparent dielectric permittivity (Ka) and reference permittivity for 

sensor-specific and universal calibration, as well as the corresponding equivalent SWC (eq) 

RMSE estimated using the Topp empirical permittivity-SWC relationship (Topp et al., 1980). 

Calibration Standard 
Sensor-Specific Calibration  Universal Calibration Function 

RMSE Ka RMSE eq (Vol. %)  RMSE Ka RMSE eq (Vol. %)  

M1 0.349 -  0.350 - 

M2 0.398 1.014  0.426 1.083 

M3 0.397 0.528  0.684 0.901 

M4 0.608 0.571  1.424 1.317 

M5 0.207 0.135  2.324 1.471 

Total 0.427 0.642  1.421 1.213 

 

In case a universal calibration function was used to relate sensor response to 

permittivity, the RMSE between estimated and reference permittivity increased 

considerably with increasing medium permittivity. The overall RMSE for Ka determined 

using a universal calibration function was 1.421 (eq: 1.213 vol. %). Rosenbaum et al. 

(2010) obtained similar RMSE values of 1.5 and 1.2 for the EC-5 and 5TE sensors (METER 

Group Inc., USA), respectively. Bogena et al. (2017) found lower errors (RMSE Ka: ~0.87, 

RMSE (eq: ~0.95 vol. %) for the low-cost SMT100 sensor (Truebner GmbH, Germany).  

The use of sensor-specific calibration decreased the overall RMSE of Ka to 0.427 (eq: 

~0.642 vol. %). Sakaki et al. (2008) obtained a similar accuracy for dry sand (±0.5 vol. %) 

and a lower accuracy for saturated sand (±2.8 vol. %) in case of the EC-5 sensor. 

Rosenbaum et al. (2010) also investigated the EC-5 sensor and found a lower accuracy 

for a sensor-specific calibration (~0.8, 1.4 vol. %). Finally, Qu et al. (2013) investigated 

sensor-specific calibration for the SPADE sensor (Sceme.de, Germany), and obtained a 

higher accuracy of 0.226 (0.4 vol. %). Given the standardised calibration process that 

reduced side effects such as variations in glass beads density as well as medium 

contamination to a minimum (Bogena et al., 2017), we attribute the observed differences 

mainly to sensor-to-sensor variability which has been often observed for this kind of 

low-cost SWC sensors (Rosenbaum et al., 2010). 

 

3.3. Permittivity-soil water content relationships 

The relationship between the apparent dielectric permittivity and SWC of 15 

undisturbed soil samples from Menàrguens (20 cm and 50 cm depth) and Mollerussa (15 

cm and 30 cm depth) is shown in Figure 5a. It can be observed that the data were slightly 

different depending on location and depth. 

In a first step, the accuracy of the relationship proposed by Topp et al. (1980) was 

evaluated. This empirical relationship resulted in a RMSE of 2.94 vol.% (Figure 5a, Table 

7), which indicates a reasonably good match considering that the Topp model 1980 is a 

“universal function” derived from experiments with limited variation in soil properties. 
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Table 7. RMSE between soil water content measured and predicted by different models. 

Model RMSE (vol. %) 

Topp  2.94 

Complex Refractive Index Model 1 (CRIM-1) 3.54 

Complex Refractive Index Model 2 (CRIM-2)  1.90 

Complex Refractive Index Model 3 (CRIM-3) 1.43 

Complex Refractive Index Model 4 (CRIM-4) 1.37 

 

The first variant of the CRIM model (CRIM-1) considered the average porosity for 

all samples (43%) and a literature value for Ks (4.40 for quartz (Robinson et al., 2004)). 

The fit to the data is shown in Figure 5b and the resulting RMSE was 3.54 vol. % (Table 

7). This indicates that the use of the CRIM-1 model based on measured average porosity 

and literature values for the permittivity of the solid phase resulted in a somewhat lower 

accuracy than the Topp model (Topp et al., 1980). In the next variant (CRIM-2), Ks was 

fitted. This resulted in a Ks value of 6.3 and a better fit to the data (Figure 5) with a RMSE 

of 1.90 vol. % (Table 7). The fitted Ks obtained with the CRIM-2 model is higher than that 

of the CRIM-1 model, which was based on the permittivity of quartz. Since most clay 

minerals have a higher permittivity than quartz (Robinson et al., 2004), this is not 

surprising considering the relatively high silt and clay fraction of the Menàrguens and 

Mollerussa test site (see Table 1). 

 

 
(a)  (b) 

Figure 5. Relationship between apparent dielectric permittivity (Ka) and soil water content for 

all samples from the Menàrguens (20 cm and 50 cm depth) and Mollerussa (15 cm and 30 cm 

depth) test sites and the fit of Topp model (20) (a) and the CRIM-1 and CRIM-2 models (b). 

 

In the next variant (CRIM-3), the variability in measured porosity was also 

considered. To this end, we averaged the porosity measurements per site and depth, 

resulting in a porosity of 48% and 36% for 20 and 50 cm depth, respectively, for the 

Menàrguens site and a porosity of 44% and 48% for 15 and 30 cm depth, respectively, 
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for the Mollerussa site. Again, a single value of Ks was fitted to the data, and this resulted 

in a Ks value of 6.3. The RMSE further decreased to 1.43 vol.%, indicating that porosity 

is an additional control of the apparent dielectric permittivity - soil water content 

relationship. Figure 6 shows the fit of the CRIM-3 model to the experimental data. For 

the Menàrguens site, the CRIM-3 model was significantly different for 20 and 50 cm 

depth due to the different porosity. At 50 cm depth, there was a zone of larger 

compaction due to the transition between the ridge and the original soil. Therefore, the 

undisturbed soil samples showed higher bulk density and lower porosity. For the 

Mollerussa site, the CRIM-3 model predictions were similar for 15 and 30 cm depth, since 

the bulk density and porosity of both depths were similar. 

 
(a)  (b) 

Figure 6. Apparent dielectric permittivity (Ka) - soil water content for all samples of the 

Menàrguens (20 cm and 50 cm depth) (a) and Mollerussa (15 cm and 30 cm depth) (b) test sites 

and the derived CRIM-3 model. 

For the final variant (CRIM-4), both the dielectric permittivity of the solid phase (Ks) 

and average porosity varied per depth and site (Figure 7). In this variant, the RMSE 

further improved to 1.37 vol.%, although the improvement was only subtle compared to 

the variant CRIM-3 with only a single value for Ks. The fitted values for Ks are given in 

Table 8, and varied in a small range only. In comparison to other studies, this fit is 

excellent. For instance, Robinson et al. (1998), who evaluated the performance of several 

capacitive sensors including the Wet2 (Delta-T Devices), 5TE and 10HS sensors in well-

characterized soils with variable texture, obtained accuracies that varied from 3.4 to 7.3 

vol.%. Similar applications of the CRIM model by Rosenbaum et al. (2012) and Qu et al. 

(2016) resulted in RMSE values of 2.9 vol.% and 2.2 - 2.8 vol.%, respectively. 

 

0

10

20

30

40

50

0 5 10 15 20 25 30


(v

o
l.

 %
)

Ka (-)

CRIM-3 20cm

CRIM-3 50cm

Measurements 20cm Menàrguens

Measurements 50cm Menàrguens

0

10

20

30

40

50

0 5 10 15 20 25 30


(v

o
l.

 %
)

Ka (-)

CRIM-3 15cm

CRIM-3 30cm

Measurements 15cm Mollerussa

Measurements 30cm Mollerussa



Chapter I 
 

78 

 

 
(a)  (b) 

Figure 7. Apparent dielectric permittivity (Ka) - soil water content for all samples of 

Menàrguens (20 cm and 50 cm depth) and Mollerussa (15 cm and 30 cm depth) test sites and the 

derived Ka-θ CRIM-4 model. 

 

Table 8. Parameters of the CRIM-4 model for Menàrguens and Mollerussa sites. 

 Menàrguens Mollerussa 

Depth 20cm  50cm 15cm 30cm 

Kwater 78.54 78.54 78.54 78.54 

Kair 1.00 1.00 1.00 1.00 

Ksolid 6.09 6.66 6.16 5.98 

 0.48 0.36 0.44 0.43 

 

3.4. Comparison of factory and two-step calibration approach 

In order to compare the two-step-calibration approach with the factory calibration, 

we combined both calibration steps (SRP and CRIM model) to obtain a sensor response 

- SWC relationship. In the following, we consider the calibration approach using the SRP 

model for a fully immersed sensor head and the CRIM-4 variant as the “reference” two-

step calibration. Figure 8 shows that there was a substantial difference between factory 

calibration and the “reference” two-step calibration as well as the calibration variant 

using a combination of the SRP model and the Topp equation (Topp et al., 1980). For 

almost the entire range of relevant sensor response, the SWC predicted by the factory 

calibration was considerably higher than the SWC predicted by our two-step calibration. 

Spelman et al. 2013 reported a similar difference between the factory calibration of the 

10HS sensor and soil-specific calibrations using agricultural soils. 
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Figure 8. Comparison of the factory calibration and calibration curves for 10HS sensors 

obtained using the reference two-step calibration for soils samples from the Menàrguens and 

Mollerussa test sites. A calibration using the universal SRP model combined with the Ka-θ Topp 

model (Topp et al., 1980) is also presented 

 

To further confirm this strong discrepancy, we conducted a sandbox experiment 

with three 10HS sensors. Figure 9 compares gravimetrically determined volumetric 

SWC with SWC determined with the 10HS sensors using the factory calibration and the 

universal SRP model combined with the Topp equation (Topp et al 1980). The factory 

calibration resulted in a relatively high RMSE of 5.33 vol. % (R2=0.92), whereas the two-

step calibration achieved a much better agreement (RMSE: 1.03 vol. %, R2: 0.99). Fares et 

al. (2016), who studied the effect of soil organic matter on SWC measurements with 10HS 

sensors, obtained a similar RMSE using the factory calibration (RMSE ranged between 

5.3-7.2 vol. %), but they obtained a somewhat lower accuracy for their soil-specific 

calibrations (RMSE ranged between 1.3-1.9 vol. %). Matula et al. 2016 found similar 

results for various ECH2O sensors (5TE, EC-5, EC-10 and EC-20) using two soil media 

with different bulk density (average RMSE of the factory calibration was 3.3 vol. %, while 

average of RMSE of the soil specific calibration was 1.3 vol. %). These results confirm the 

accuracy of the two-step calibration approach and highlight the limited accuracy of the 

factory calibration provided with the 10HS sensor. 
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(a) (b) 

Figure 9. Comparison of the gravimetric soil water content with those measured with three 

10HS sensors using either the factory calibration (a) or universal SRP model combined with Ka-

θ Topp model (Topp et al., 1980) (b). 

 

3.5. Analysis of field measurements 

In a final step, we applied the factory calibration and different variants of the two-

step calibration to the experimental field data used for irrigation scheduling in a period 

of intensive irrigation in July 2017 for both the Menàrguens and Mollerussa sites and the 

two measurements depths (Figure 10). The different SWC prediction variants based on 

the two-step calibration approach that were considered are: i) sensor-specific SRP 

models combined with the CRIM-4 model, ii) a universal SRP model combined with the 

CRIM-4 model, iii) a universal SRP model obtained with incompletely immersed sensor 

head combined with the CRIM-4 model, iv) and a universal SRP model combined with 

the Topp model (Topp et al., 1980). It should be noted that corrections for temperature 

and electrical conductivity were not yet considered here, and we only focus on 

differences in SWC predictions using different calibration strategies. 
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(a) (b) 

 
(c) (d) 

 
Figure 10. Soil water content measurements (vol. %) obtained from different calibration 

variants: (a) Menàrguens at 20 cm depth, (b) Menàrguens at 50 cm depth, (c) Mollerussa at 15 

cm depth and (d) Mollerussa at 30 cm depth. 

In the following, the sensor-specific SRP models combined with the CRIM-4 model 

were used as a reference because this combination provided the best results for the two-

step calibration approach (RMSE: 1.37 vol.%). To quantify the differences in terms of 

SWC predictions made with the sensor-specific SRP and the CRIM-4 model and other 

variants, the root mean square error (RMSE) and the mean difference were calculated 

(Table 9 and 10, respectively). The results show that the use of a universal instead of a 

sensor-specific SRP model in combination with the CRIM-4 model resulted in a small 

difference in SWC predictions with an RMSE of 0.25 vol.% and a mean difference of 0.24 
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vol.%. When the universal SRP model derived from calibration measurements with 

incompletely immersed sensor heads was used, the RMSE and the mean difference 

increased substantially to 1.53 vol.% and 1.31 vol.%, respectively. This increase in RMSE 

suggests that the effect of immersion depth is important for this particular case study. 

However, this is likely not generally the case since the differences between the two 

immersion variants varied considerably for different sensor response ranges (see Figure 

3). When the CRIM-4 model was replaced with the Topp model (Topp et al., 1980), the 

differences in SWC predictions resulted in a RMSE of 1.51 vol.% and a mean difference 

of 1.49 vol.%. Therefore, it can be concluded that the consideration of the correct 

immersion variant of the sensor response calibration and an accurate soil-specific 

calibration are more important than the use of a sensor-specific SRP model. Finally, the 

SWC predictions based on the factory calibration resulted in even larger differences with 

an RMSE of 5.18 vol.% and a mean difference of 5.16 vol.%. 

 

Table 9. Accuracy of the different calibration variants with respect to the reference calibration 

(sensor-specific SRP models combined with the CRIM-4 model). 

Calibration variant 

Menàrguens Mollerussa Mean 

RMSE 

(vol.%) 

20 cm 50 cm 15 cm 30 cm 

RMSE (vol.%) 

Universal SRP with CRIM-4 model. 0.17 0.32 0.50 0.02 0.25 

Universal SRP (incomplete immersion) with 

CRIM-4 model. 
1.84 2.79 0.79 0.70 1.53 

Universal SRP with Topp model. 0.30 3.57 1.54 0.65 1.51 

Factory calibration. 4.09 8.23 4.90 3.51 5.18 

 

Table 10. Mean difference (vol. %) between reference calibration (sensor-specific SRP models 

combined with the CRIM-4 model) and different calibration variants. 

Calibration variant 

Menàrguens Mollerussa Absolute 

Mean 

difference 

(vol.%) 

20 cm 50 cm 15 cm 30 cm 

Mean difference (vol. %) 

Universal SRP with CRIM-4 model. -0.17 -0.32 0.50 -0.01 0.25 

Universal SRP (incomplete immersion) 

with CRIM-4 model. 
-1.80 -2.73 -0.31 0.39 1.31 

Universal SRP with Topp model. 0.28 3.57 1.52 0.61 1.49 

Factory calibration. 4.07 8.21 4.87 3.49 5.16 

 

The results obtained in this study can be used to improve irrigation scheduling. At 

the Menàrguens and Mollerussa test sites, the SWC predictions obtained by the two-step 

calibration approach were always below the predictions based on the factory calibration. 

Therefore, the factory calibration would have resulted in an underestimation of 

irrigation amounts for both the Menàrguens and Mollerussa sites. Although two-step 

calibration requires more time, it was worthwhile in this particular study since it 

increased the accuracy of the SWC measurements and thus allows for a proper 

applications of irrigation that matches the crop needs.  
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4. Conclusions 

In this paper, we evaluated the sensor response of low-cost 10HS soil water content 

sensors using a two-step calibration procedure. First, we calibrated the sensor response 

of 10HS sensors to permittivity using a standard procedure based on five reference 

media with known dielectric permittivity. Here, the effect of immersion depth on the 

calibration results was also considered. Second, a site-specific relationship between 

permittivity and soil water content with soil samples from different sites and depths was 

established. It was found that the results of the calibration in reference media depended 

on the immersion depth of the sensor. Therefore, the calibration protocol should be 

adapted to the type of application of the 10HS sensor. For example, the sensor head is 

typically inserted into the soil in field applications. Therefore, the sensor should be 

calibrated with a fully immersed sensor head for this type of application. In addition, we 

compared the accuracy of the use of a universal calibration relationship between sensor 

response and permittivity with the accuracy of a sensor-specific calibration. Our results 

showed that the RMSE of the dielectric permittivity estimated decreased from 1.421 to 

0.427 when a sensor-specific calibration was considered. 

In a next step, undisturbed soil samples and time domain reflectometry (TDR) were 

used to establish a site-specific relationship between permittivity and soil water content. 

Five different model variants were used that relied on available data on porosity and 

fitting of the permittivity of the solid phase to a different extent. The model that 

considered both variations in porosity and solid-phase permittivity between sites and 

depths resulted in the highest accuracy (RMSE: 1.37 vol.%). However, a simplified model 

that considered a universal fitted value for the solid-phase permittivity and spatially 

variable porosity provided almost equal accuracy. Based on the two-step calibration, 

relationships between sensor response and soil water content were obtained that were 

compared to the factory calibration using measurements on sand with known water 

content. It was found that the relationship obtained using the two-step calibration 

approach provided much more accurate SWC predictions than the factory calibration 

provided with the 10HS sensor (RMSE: 5.33 vol.% versus 1.03 vol.%).  

Finally, we applied the factory calibration and different variants of the two-step 

calibration approach to field measurements made with 10HS sensors during a period of 

irrigation in almond and apple orchards in Menàrguens and Mollerussa, respectively. 

The results showed that the time-average absolute difference was 5.16 vol.% and the 

RMSE was 5.18 vol.% when the factory calibration was used instead of the most 

advanced model obtained with the two-step calibration approach. The use of a universal 

instead of a sensor-specific sensor response model only resulted in a small difference 

and RMSE, thus indicating that the use of a universal sensor response model would have 

been possible in this particular case study. The use of the empirical equation of Topp et 

al. (1980) instead of a soil-specific calibration resulted in a moderate increase in the mean 

difference and RMSE. Since the factory calibration significantly overestimated SWC, it is 



Chapter I 
 

84 

 

recommended to improve the accuracy of SWC measurements of the 10HS sensors using 

sensor- and soil-specific calibration in applications where accuracy is important. 
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Abstract 

Although surface drip irrigation allows an efficient use of water in agriculture, the 

heterogeneous distribution of soil water complicates its optimal usage. Mathematical 

models can be used to simulate the dynamics of water in the soil below a dripper and 

promote: a better understanding, and optimization, of the design of drip irrigation systems, 

their improved management and their monitoring with soil moisture sensors. The aim of 

this paper was to find the most appropriate configuration of HYDRUS-3D for simulating 

the soil water dynamics in a drip-irrigated orchard. Special emphasis was placed on the 

source of the soil hydraulic parameters. Simulations parameterized using the Rosetta 

approach were therefore compared with others parameterized using that of HYPROP + 

WP4C. The simulations were validated on a seasonal scale, against measurements made 

using a neutron probe, and on the time course of several days, against tensiometers. The 

results showed that the best agreement with soil moisture measurements was achieved with 

simulations parameterized from HYPROP + WP4C. It further improved when the shape 

parameter n was empirically calibrated from a subset of neutron probe measurements. The 

fit of the simulations with measurements was best at positions near the dripper and 

worsened at positions outside its wetting pattern and at depths of 80 cm or more. 

Keywords: HYDRUS-3D; simulation; soil water content; tensiometer; neutron probe; 

Rosetta; HYPROP; WP4C; soil wetting patterns. 
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1. Introduction  

Agriculture is one of the activities that consumes most fresh water in the world 

approximately 70% (FAO, 2019). As population increases, so does the need for food and, as 

a consequence, the demand for water (Raij et al., 2016; Orzolez, 2017). It is therefore 

necessary to develop methods to improve the efficiently of water management (Kisekka et 

al., 2019). Drip irrigation is one of the most effective systems, since it gives irrigators a great 

deal of control over the amount of water that they use and helps to optimize parameters 

such as: the frequency and duration of irrigation, the discharge rate of the emitter, and the 

positioning of the emitters. This, in turn, helps to reduce water loss due to evaporation, 

percolation and runoff (Skaggs et al., 2004; Gärdenäs et al., 2005; Roberts et a., 2009). 

Drip irrigation makes it possible to apply water at low rates and to match this, as closely 

as possible, to plant water uptake, thereby improving irrigation efficiency (Phogat et al., 

2013). However, in the case of localized irrigation, the spatial distribution of water in the soil 

over time is complex and does not usually produce stable wetting patterns with respect to 

soil depth (Lin et al., 2006). The factors which can affect the resulting wetting patterns 

include soil characteristics, such as crop water uptake by the root system, soil surface 

evaporation, and the irrigation rate (Hao et al., 2007).  

Wetting patterns can be studied using actual measurements taken in the field or 

simulations using mathematical models. Simulations allow us to analyze soil water 

dynamics both during and after irrigation and to provide relevant information about 

interacting processes. Models for estimating soil water distribution are tools for optimizing 

the design of irrigation systems. Once calibrated and validated, they make it possible to 

rapidly evaluate the spatial-temporal distribution of water, thereby saving time and money 

(Honari et al., 2017). The use of mathematical models also makes it possible to distinguish 

wet from dry soil (Arbat et al., 2013), describe the infiltration process, and provide an 

estimate of the water content of the wet pattern. In the latter case, it does this using the 

Richards equation, which describes the movement of water through unsaturated soils 

(Phogat et al., 2012; Elmaloglou et al., 2013). 

Various mathematical models have been used to simulate soil water dynamics in drip 

irrigation systems, but unfriendly interfaces tend to complicate their use in the design of 

complex irrigation systems (Arbat et al., 2003). HYDRUS is one of the most widely used 

simulation models and makes it possible to simulate the movement of water, heat and 

solutes in a variety of saturated soil conditions. These include irregular boundaries and 

horizontal and vertical texture heterogeneity, in one, two or three dimensions (Simunek et 

al., 2016; Lu et al., 2019).  

Given the stability of the HYDRUS model, this software can be used to investigate the 

distribution of soil water and its movement under the surface and subsurface of drip 

irrigation systems (Mailhol et al., 2011; Zhang et al., 2016; Lai et al., 2019; Sakaguchi et al., 
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2019). It can also be used to design and evaluate the management of different irrigation 

systems, soils and crops (Egea et al., 2016; Garcia-Morillo et al., 2017; Tao et al., 2017). To 

simulate an orchard, it is more interesting to use HYDRUS-3D than HYDRUS-2D because it 

simultaneously solves transport problems on all three axes and provides more realistic 

calculations of soil water distribution around the dripper. For instance, a 3D representation 

makes it possible to consider neighboring drippers distributed along an irrigation dripline 

and at larger distances from neighboring driplines. Furthermore, a good level of accuracy 

can be achieved if the model is correctly calibrated for the soil hydraulic parameters in 

question (Arbat et al., 2008). 

With an adequate soil characterization, it is possible to obtain results that are 

representative of reality. The soil hydraulic parameters that are required as inputs for the 

simulations can be obtained in different ways, such as applying the Rosetta method (Scaap 

et al., 2001), or a combination of the HYPROP (Schindler et al., 2016) and WP4C (Campbell 

et al., 2012) approaches. Rosetta is a model which uses pedotransfer functions (PTFs) to 

indirectly estimate the water retention parameters and the saturated and unsaturated 

hydraulic conductivity of a soil. It also estimates their probability distributions based on 

easily measured data such as soil texture and bulk density (Van Genuchten et al., 2003). On 

the other hand, combining HYPROP + WP4C offers a reliable experimental methodology 

that provides high resolution soil water retention (SWRC) and hydraulic conductivity (HCC) 

curves (Shokrana and Ghane, 2020). 

In situ assessments of soil moisture can also be obtained by applying field approaches 

incorporating neutron probes and tensiometers (Robock et al., 2000). Neutron probes that 

have been previously calibrated for a specific location, measure representative volumes of 

soil and allow moisture levels to be measured at several different depths in order to obtain 

a profile of the moisture distribution (Zazueta et al., 1994). Tensiometers directly measure 

soil suction, with a good level of accuracy in well-watered crops, without the need to 

calibrate them for a specific soil type. They do, however, need periodic maintenance and 

may even show false variations in the soil water potential due to loss of contact with the soil 

(Heng and Evett, 2008; Migliaccio et al., 2015). Given the accuracy of the soil moisture 

measurements obtained using a neutron probe and tensiometers, they can be used to make 

comparisons with simulations and to analyze, calibrate and validate the performance of 

models. 

The main goals of this study were to: (a) analyze and discuss the configuration of the 

HYDRUS-3D model for a drip irrigated apple orchard, especially regarding the sources of 

the soil hydraulic parameters; (b) analyze the sensitivity of the model to variations in the 

soil hydraulic parameters; and (c) obtain an adjusted model, which represents realistic soil 

water dynamics, and considers the three dimensions required to properly represent a drip-

irrigated orchard. To achieve this, simulations were performed using different 

parameterization approaches and comparisons were made with measurements taken by 
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neutron probes and tensiometers at different soil depths and positions relative to the 

drippers.  

2. Materials and Methods 

2.1. Field experiment 

The experiment was carried out at an apple orchard (Malus domestica Borkh. cv ‘Golden 

Reinders’), which was planted in 2011 and grafted onto M-9 rootstock, at the IRTA-Lleida 

Experimental Station (Mollerussa, Lleida, Spain), over two crop seasons (2017-2018). The 

planting pattern was 3.63 m between rows and 1.2 m between trees, with a north-south 

orientation. Irrigation was automatically supplied by a surface drip system, which consisted 

of a single dripline, with drippers spaced at 0.60 m intervals, whose flowrate was 3.5 L h-1. 

The climate in the area was semi-arid and characterized by hot, dry summers, and cool, wet 

winters, with annual rainfall and reference evapotranspiration (ETO) of 290 and 1093 mm, 

respectively, for 2017 and 506 and 1040 mm, respectively, for 2018. The horizontal axis in 

Figure 1 corresponds to the years 2017 and 2018, when irrigation, rainfall, evaporation and 

transpiration were measured on a daily basis. Crop evapotranspiration (ETC) was obtained 

by a weighing lysimeter located in the same orchard (Girona et al., 2004). The ETC was 

divided into potential transpiration (TP) and potential evaporation (EP). It was 

experimentally determined in the lysimeter according to FAO (Allen et al., 1998). TP was 

estimated as 90% of the ETC and EP was estimated as 10% of crop evapotranspiration, except 

on days following rain, when TP was estimated as 90% of the ETC and EP was estimated as 

ETO-TP. 

 

 
Figure 2. Irrigation, rainfall, evaporation and transpiration during the years 2017 and 2018 
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The orchard soil was classified as Typic Calcixerepts, coarse-loamy, mixed and thermic according to 

the Soil Survey Staff classification (Soil Survey Staff, 1999). Three soil layers were distinguished. The 

main difference between layers was due to the percentage of organic matter, which decreased with 

depth. Their physical properties are described in Table 1. 

 

Table 11. Physical soil properties at the IRTA orchard in Mollerussa, at three depths 

Depth (cm) 0 - 20 20 - 40 40 -60 

USDA Soil Classification Loamy Loamy Loamy 

Sand (%) 35.80 35.50 36.00 

Silt (%) 40.70 40.60 39.90 

Clay (%) 23.50 23.90 24.10 

Bulk density (g cm-3) 1.48 1.50 1.53 

Organic Matter (%) 1.99 1.57 1.34 

 

Throughout most of the study period, the apple trees were irrigated on a daily basis to 

meet crop water needs. This involved daily irrigation doses (DID) which were determined 

on a weekly basis, based on the FAO water balance (Allen et al., 1998): 

 

DID =  ETO  ×  KC (Eq. 1) 

 

where ETO was the reference evapotranspiration from the previous week, recorded by a 

weather station located on the same farm, and Kc was the crop coefficient determined in 

previous years by the weighing lysimeter in the same orchard (Girona et al., 2004). 

Modifications to this irrigation pattern were applied to challenge the simulations to 

reproduce some temporary unbalances in the soil water budget. This typically consisted of 

interrupting irrigation for a period of around a week. This was then followed by the 

recovery of the soil water content and also the application of arbitrary periods of 

overirrigation and drought. Irrigation was measured using digital water meters (model 

CZ3000 from Contazara, Zaragoza, Spain).  

The dataset recorded in 2018, which covered most of the crop cycle, was used to analyse 

and calibrate the HYDRUS-3D model, while the dataset covering the whole of 2017 was 

used for its validation. 

 

2.2. Measuring soil water content 

The experimental design was monitored with a neutron probe and tensiometers. Six 

neutron probe access tubes were located at different points around a dripper (Figure 2). The 

volumetric soil water content in these access tubes was then monitored from May to 

October, using a neutron probe (Hydroprobe 503DR, Campbell Pacific Nuclear Corp., 

Martinez, CA, USA) which had previously been calibrated for this site. Measurements were 

taken at depths of between 0.20 and 1.00 m, at 0.20 cm intervals. 

Six tensiometers (type RSU-C from Irrometer, Riverside, CA, USA) were installed at 

distances of less than 10 m from the access tubes. They were associated with equivalent 

trees, drippers and soil conditions and installed at depths of 30 cm and 60 cm. The locations 
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were at the mid-point position between two drippers (Figure 2- Tensiometer A) and placed 

15 cm from the vertical of the dripper and perpendicular to the dripline (Figure 2- 

Tensiometer C). The tensiometers consisted of tubes filled with distilled water and fitted 

with porous ceramic tips, vacuum gauges and transducers. They measured the soil water 

tension within the range of 0 - 94 kPa. Measurements were taken every 10 seconds and the 

average reading over 5 minutes was stored in a model CR800 datalogger (Campbell 

Scientific Inc., Logan, UT, USA), which used a multiplexer (AM16/32, from Campbell 

Scientific Inc.) to increase the number of channels. The pressure head measured by the 

tensiometers was transformed to the soil water content using the HYPROP + WP4C soil 

water retention curve for undisturbed field soil samples from the same plot.  

 

 
Figure 3. Relative positions and depths of the neutron probe access tubes and tensiometers. 

 

The extent of the wetting pattern at the soil surface under the dripper was also 

characterized after an irrigation cycle lasting from June to August 2018. This was done using 

a Fieldscout TDR 300 (Spectrum Technologies INC., Aurora, IL, USA) with 12 cm-long rods. 

Soil water content measurements were made at 10 cm intervals. These were taken both 

parallel and perpendicular to the dripline. The wetted area perpendicular to the dripline 

was determined based on how far the wet region reached; the wetted area parallel to the 

dripline was determined as the point with the lowest soil water content located between the 

two drippers. Once the limits had been established, the wetted area was determined. The 

average wetted area per dripper was 0.316 ± 0.086 m2 and included access tubes A, B, C and 

D. 
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2.3. Simulation with HYDRUS-3D 

2.3.1. Soil water modelling 

HYDRUS-3D (v. 2.05) is a three-dimensional, finite element model. It was used to 

simulate the soil water dynamics under a dripline (Simunek et al., 2016). The simulations 

with HYDRUS were carried during the irrigation seasons of the years 2017 and 2018. The 

soil water distribution was modelled using Richard’s equation (Equation 2) for variable-

saturated water flow. This includes a sink term (S) that represents root water uptake by 

plant roots. HYDRUS numerically solves Richard’s equation (Eq. 2) using the Galerkin finite 

element method. 

 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥
[𝐾(ℎ)

𝜕ℎ

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝐾(ℎ)

𝜕ℎ

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝐾(ℎ) (

𝜕ℎ

𝜕𝑧
+ 1)] -S (Eq. 2) 

 

where θ is the soil volumetric water content (cm3 cm-3), t is time (days), K is hydraulic 

conductivity (cm day-1), h is the soil water pressure head (cm), x and y are the horizontal 

space coordinates (cm), z is vertical space coordinate (cm), and S is the sink term (cm3 cm-3 

day-1).  

In this study, the simulations were carried out with HYDRUS-3D. This symmetry made 

it possible to appropriately represent the actual dripper frame in an orchard. Along the same 

dripline, the dripper was located close to a neighboring dripper and as far as possible from 

parallel dripline drippers.  

 

2.3.2. Flow domain, boundary and initial conditions. 

Following this approach, the domain was defined as a parallel pipe whose dimensions 

were 180 cm long, 200 cm high and 60 cm wide (Figure 3). The domain was defined by 21 

equally-spaced, horizontal planes and discretized using an unstructured, finite element 

mesh, with a total of 32,840 three-dimensional tetrahedral elements and 418,270 finite 

element nodes. Observation points, where measurements with neutron probe tubes and 

tensiometers were carried out, were located at depths of 20, 40, 60, 80 and 100 cm.  

In line with field observations, irrigation was assumed to be applied to a wet semi-

circular area with a radius of 30 cm. During the irrigation period, a variable flux condition 

(Eq. 3) was applied over an area of 1,399.92 cm2: this area corresponded to the total soil 

surface wetted by the dripper. However, this wetted area is larger than the waterlogged area 

during irrigation, which would better represent the water inlet area in the soil but was not 

experimentally measured in this work (Figure 3). The flux, q, was estimated as: 

 

q = 
Emitter discharge flow rate (cm3 h-1)

wetted surface area (cm2)
=

3500 cm3h-1

1399.92 cm2
= 2.5 cm h-1 (Eq. 3) 

 

Normal atmospheric conditions were imposed on the rest of the soil surface and the 

value of the minimum allowed pressure head at the soil surface was set at 10,000 cm. A no-
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flux boundary condition was established at both the right and left edges of the profile, and 

a free drainage boundary condition was assumed at the bottom of the soil profile (Figure 3). 

The water table at the site is below the depth of 2 m, except on occasions of heavy rainfall, 

which did not occur during the simulated period. The simulations were run on an hourly 

basis, throughout the different irrigation seasons. The initial conditions were selected 

considering the initial soil water contents, based on measurements at field capacity, 

obtained from laboratory measurements using the HYPROP + WP4C system (METER 

Group, Pullman, CA, USA).  

The use of the model required the sequencing of several simulations in which each one 

had different considerations: (i) simulations which considered three soil layers and whose 

soil hydraulic parameters were obtained from Rosetta using undisturbed soil samples in the 

field; (ii) simulations which considered two soil layers and whose soil hydraulic parameters 

were obtained from HYPROP + WP4C using undisturbed soil samples obtained in the field; 

(iii) simulations based on the soil hydraulic parameters obtained from HYPROP + WP4C, 

further adjusted by empirical calibration; and (iv) seasonal and hourly simulations, using 

the latter model for the period included in the validation dataset.  

 

 
Figure 3. Flow domain and boundary conditions used in the HYDRUS-3D simulations. 

 

2.3.3. Soil hydraulic parameters 

2.3.3.1. Soil hydraulic parameters obtained from Rosetta 

The Rosetta model (Schaap et al., 2001), which is integrated into the HYDRUS software, 

was used to obtain the soil hydraulic parameters in one group of simulations. Rosetta is a 

pedotransfer function software package that uses a neural network model to predict 

hydraulic parameters. In this study, four undisturbed soil samples were taken for each 

depth (20, 40 and 60 cm) using Kopecky rings (Eijkelkamp, Giesbeek, The Netherlands). 

z = 200cm

Atmospheric 
conditions

Variable flux

No flux

Free drainage



  Chapter II 
 

99 

 

These rings were 5.1 cm long and 5.3 cm (top ring) and 5.0 cm (base ring) in diameter. A 

total of 12 samples were obtained. Bulk density (BD) and soil water content at -33 kPa and -

1500 kPa were then determined using porous ceramic pressure plates with compressed air 

(Soil Moisture Equipment Corp., Santa Barbara, CA, USA) (Dane and Hopmans, 2002). The 

Rosetta inputs were soil texture, BD, soil water content at -33 kPa, and soil water content at 

-1500 kPa for each of the samples. Finally, the average soil hydraulic parameters obtained 

for each soil depth using Rosetta were used to carry out four simulations with HYDRUS-

3D. Table 2 shows the average and standard deviations for each soil hydraulic parameter 

and soil depth.  

 

Table 2. Soil hydraulic parameters obtained from Rosetta 

Depth (cm) θr (cm3cm-3) θs (cm3cm-3) α (cm-1) n (-) Ks (cm h-1) l (-) 

0-20 0.071 ± 0.003 0.454 ± 0.004 0.020 ± 0.004 1.303 ± 0.014 1.189 ± 0.091 0.500 ± 0.000 

20-40 0.070 ± 0.005 0.445 ± 0.004 0.022 ± 0.006 1.308 ± 0.019 1.037 ± 0.052 0.500 ± 0.000 

40-60 0.067 ± 0.003 0.446 ± 0.007 0.017 ± 0.004 1.319 ± 0.025 0.967 ± 0.112 0.500 ± 0.000 

r (cm3 cm-3) = residual water content; s (cm3 cm-3) = saturated water content; Ks (cm h-1) = saturated 

hydraulic conductivity;  (cm-1), n and l are Van Genuchten shape parameters. 

 

2.3.3.2. Soil Hydraulic Parameters Obtained from HYPROP and WP4C 

Four undisturbed soil samples were extracted from depths of 0-20 cm and 20-40 cm 

using 250 cm3 sampling rings. Soil hydraulic parameters such as r, s, , n, Ks and l were 

described with Van Genuchten-Mualem relationships using HYPROP and WP4C (METER 

Group, Pullman, CA, USA) and are presented in Table 3. The HYPROP system, which works 

at suctions of between 0 and -85 kPa, can be used to determine the water potential and water 

content of an undisturbed soil sample. This permitted the subsequent calculation of 

moisture retention and unsaturated hydraulic conductivity curves. Combining HYPROP 

with WP4C, which is a dew point hygrometer, made it possible to extend the range up to -

300 MPa. The equipment measured simultaneously the changes in weight and matric 

tension of a soil sample while it slowly dried at room conditions, thus producing a soil water 

retention curve. In addition, variations from -10% to +10% in each of these parameters were 

also considered in order to assess the uncertainty of the simulations. This variation range 

was considered appropriate in order to not alter the original parameter value too much.  

 

Table 3. Soil hydraulic parameters obtained with HYPROP + WP4C 

Depth (cm) θr (cm3cm-3) θs (cm3cm-3) α (cm-1) n (-) Ks (cm h-1) l (-) 

0-20 0.023 0.388 0.012 1.259 1.553 0.500 

20-40 0.029 0.400 0.019 1.275 1.444 0.500 

r (cm3 cm-3) = residual water content; s (cm3 cm-3) = saturated water content; Ks (cm h-1) = saturated 

hydraulic conductivity;  (cm-1), n and l are all Van Genuchten shape parameters. 
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2.3.4. Root distribution and water uptake. 

Vertical root distribution was defined according to the Vrugt model (Vrugt et al., 2001) 

(Eq.4)  

 

Ω(x,y,z)= (1-
x

Xm
) (1-

y

Ym
) (1-

z

Zm
) e

-(
Px
Xm

|x*-x|+
Py

Ym
|y*-y|+

Pz
Zm

|z*-z|)
 (Eq. 4) 

  

where Ω (x,y,z) is the three dimensional spatial distribution of root water uptake; xm, ym and 

zm are the maximum rooting lengths (cm) in directions x, y and z, respectively; x*, y* and z* 

describe the location of the maximum root water uptake in directions x, y and z, 

respectively, and px, py and pz are empirical coefficients. 

In this work, the distribution of roots in the simulated geometry was parameterized 

based on measurements of root water uptake in the year 2016. The raw data were the 

measurements of SWC by neutron probe at the different access tubes and depths before and 

after a period of one week without irrigation, with the soil covered with a plastic sheet to 

minimize evaporation from the soil surface. Then the root distribution functions available 

in HYDRUS-3D were parameterized to match the observed pattern of soil water extraction 

by roots characterized from those measurements. Based on these measurements, the root 

parameters for the simulations were set horizontally as xm = 180 cm and ym = 180 cm, and 

vertically as zm = 60 cm. The maximum horizontal and vertical root water uptakes were x* = 

60 cm, y* = 60 cm and z* = 50 cm, respectively. The plots presented no salinity problems and 

the eventual reduction in root water uptake was modelled as described Feddes et al. (Feddes 

et al., 1978), as described in equation 5, although there was no evidence of tree water stress 

in the simulated periods. 

 

S(h, z) = α(h)Smax(ℎ, 𝑧) (Eq. 5) 

 

where α is a dimensionless water stress reduction factor expressed as a function of pressure 

head h (cm), whose values were taken from Taylor and Ashcroft (1972) for deciduous fruit 

trees. Smax (cm3 cm-3 day-1) is the maximum possible root water extraction rate when soil 

water is not a limiting factor, and z is the soil depth (cm). 

 

2.4. Statistical analysis 

Statistical indicators were used for analysing the goodness-of-fit between predictions 

by HYDRUS-3D simulations and the soil water content measurements obtained using the 

neutron probe and the tensiometers. The indicators were the coefficient of determination 

(R2, Eq. (6)), Root Mean Square Error (RMSE, Eq. (7)) and the Nash-Sutcliffe model efficiency 

coefficient (NSE, Eq. (8)) (Nash and Sutcliffe, 1970).  
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R2 =
[∑ (Oi − O̅)(Si − S)̅N

i=1 ]
2

∑ (Oi − O̅)2 ·N
i=1  ∑ (Si − S̅)2N

i=1

 

 

(Eq. 6) 

RMSE = √
∑ (Oi − Si)

2N
i=1

N
 

 

(Eq. 7) 

NSE = 1 −
∑ (Si − Oi)

2N
i=1

∑ (Oi − O̅)2N
i=1

 (Eq. 8) 

 

Where N refers to the number of compared values, Oi the ith observation point, Si the ith 

simulation and Ō the observed mean value 

 

The R2 indicates the degree of linear correlation between observed and predicted values 

as it varies from 0 to 1. Values closer to 1 indicate better agreement with the model. The 

RMSE measures the amount of error between two data sets. Unlike R2, the error is expressed 

in the same units as the variable. Lower RMSE values indicate a better fit. The NSE is used 

to assess the predictive power of hydrological models. NSE ranges from -∞ to 1.0 (perfect 

fit).  

For seasonal comparisons, we based our analyses on the daily minimum soil water 

content, which was obtained as the driest value between two irrigation cycles. The daily 

minimum soil water content was considered because it is a practical indicator that is used 

for irrigation management. It summarizes the outcome of the daily cycle after irrigation, 

redistribution and uptake by the roots have taken place (Casadesus et al., 2012, Domínguez-

Niño et al., 2020). 

 

3. Results  

3.1. Seasonal soil water content comparisons between neutron probe measurements and 

HYDRUS-3D simulations, using soil hydraulic parameters obtained from Rosetta. 

HYDRUS-3D simulations configured with the soil hydraulic parameters obtained from 

Rosetta were compared with the dataset of soil water content measured in 2018 using 

neutron probes, for each access tube and depth. The level of agreement between the 

simulations and measurements by neutron probe are summarized in Table 4, which shows 

some indicators of the quality of the fit (R2, RMSE and NSE) and their variation (SD) for the 

study plot. The R2 varied between access tubes and depths and was, in general, higher than 

0.6, while the RMSE was greater than 0.044 cm3 cm-3 and the NSE was less than -1.8. Higher 

R2 were observed in access tubes near the dripper (access tubes A, B, C and D) and at depths 

of 40-60 cm. The best correlations were therefore observed in the subset of depths between 

40 and 60 cm, in access tubes A, B, C and D (R2 = 0.944). 
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Table 4. Summary of the fit between soil water content (cm3 cm-3) measured using neutron 

probes in 2018 and HYDRUS-3D simulations using soil hydraulic parameters obtained from 

Rosetta 

Subset of SWC Measurements R2 (-) RMSE (cm3cm-3) NSE (-) 

All access tubes and depths 0.631 ± 0.018 0.062 ± 0.004 -1.837 ± 0.376 

All access tubes at a depth of 20 cm 0.760 ± 0.039 0.044 ± 0.005 -1.894 ± 0.674 

All access tubes at depths of 40 and 60 cm 0.922 ± 0.016 0.059 ± 0.003 -2.643 ± 0.384 

All access tubes at depths of 80 and 100 cm 0.719 ± 0.029 0.072 ± 0.005 -1.835 ± 0.400 

Access tubes A, B, C and D at all depths 0.828 ± 0.015 0.059 ± 0.006 -4.778 ± 1.104 

Access tubes E and F at all depths 0.234 ± 0.033 0.067 ± 0.003 -1.846 ± 0.254 

Access tubes A, B, C and D at depths of 40 and 60 cm 0.944 ± 0.005 0.062 ± 0.004 -5.707 ± 0.939 

 

A comparison between the simulations and measurements (Figure 4) showed that, in 

general, the simulations followed a pattern that was related to the measured values, though 

these tended to be overestimated, except in the case of access tube F, which was located 

farthest from the dripper, in which some simulations underestimated the soil water content. 

 

 
Figure 4. Soil water content (SWC) simulated with HYDRUS-3D parameterized from Rosetta versus 

average measurements by neutron probe on 8 different dates in the 2018 irrigation season. Colors 

indicate access tubes (green = A, yellow = B, blue = C, orange = D, grey = E and red = F) and shapes 

indicate different depths (◯ = 20cm, ◇ = 40cm, ∆ = 60cm, ☐ = 80cm and ✕ = 100cm). 

 

3.2. Seasonal soil water content comparisons between neutron probe measurements and 

HYDRUS-3D simulations, using soil hydraulic parameters obtained from HYPROP + 

WP4C 

The quality of fit between simulations based on HYPROP + WP4C and measurements 

using neutron probes are summarized in Table 5. All the indicators: R2, RMSE and NSE, 

showed improvements compared with the simulations parameterized from Rosetta. The 

best agreement corresponded to the depth of 20 cm in almost all the access tubes. Overall, 

the R2 either remained stable or improved, with the highest R2 for the set of access tubes A, 
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B, C and D corresponding to depths of 40-60 cm (0.942). The worst agreements were at 

depths of 80 and 100 cm and in access tubes E and F, which were farthest from the dripper. 

The value of RMSE improved in all cases and, in contrast with to the results obtained with 

Rosetta, RMSE was acceptable when the whole set of access tubes and depths was 

considered (0.031 cm3 cm-3). Interestingly, RMSE also improved at depths of 80-100 cm (0.050 

cm3 cm-3) and for access tubes in positions E and F (0.046 cm3 cm-3). Finally, NSE showed 

overall improvement for various depths and access tubes, with the exception of access tubes 

E and F. For the whole set of access tubes located at a depth of 20 cm, NSE reached 0.885.  

 

Table 5. Summary of the fit between soil water content (cm3 cm-3) measured by neutron probe in 

2018 and HYDRUS-3D simulations using soil hydraulic parameters obtained from HYPROP + 

WP4C 

Subset of SWC Measurements R2 (-) RMSE (cm3cm-3) NSE (-) 

All access tubes and depths 0.692 0.031 0.277 

All access tubes at a depth of 20 cm 0.923 0.009 0.885 

All access tubes at depths of 40 and 60 cm 0.933 0.023 0.434 

All access tubes at depths of 80 and 100 cm 0.698 0.050 0.094 

Access tubes A, B, C and D at all depths 0.814 0.020 0.359 

Access tubes E and F at all depths 0.409 0.046 -0.374 

Access tubes A, B, C and D at depths of 40 and 60 cm 0.942 0.019 0.369 

 

The comparisons between simulations parameterized from HYPROP + WP4C and the 

neutron probe measurements for 2018 are illustrated in Figure 5. Overall, the reduction in 

scatter evident in Figure 5 compared with Figure 4 illustrates a better fit of the simulations 

when using soil hydraulic parameters obtained from HYPROP + WP4C.  

 

 
Figure 5. Soil water content (SWC) simulated with HYDRUS-3D parameterized from HYPROP + 

WP4 versus average measurements by neutron probe on 8 different dates in the 2018 irrigation 

season. Colors indicate access tubes (green = A, yellow = B, blue = C, orange = D, grey = E and red = 

F) and shapes indicate depths (◯ = 20cm, ◇ = 40cm, ∆ = 60cm, ☐ = 80cm and ✕ = 100cm). 

 

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.23 0.25 0.27 0.29 0.31 0.33 0.35

S
W

C
 (c

m
3

cm
-3

) 
H

Y
D

R
U

S
-3

D
-

H
Y

P
R

O
P

+W
P

4C

SWC (cm3 cm-3) measured by neutron probe



  Chapter II 
 

104 

 

Given the high R2, the low RMSE and the NSE values close to 1.0 for all the access tubes 

at a depth of 20 cm, the soil hydraulic parameters obtained from HYPROP + WP4C could be 

considered to provide an appropriate soil parameterization for the simulations. However, 

at all the other depths, a systematic overestimation of SWC was still appreciated (Figure 5), 

with RMSE and NSE values being respectively higher and lower than optimal (Table 5). This 

suggested that there was still room for improvement in the simulations. 

 

3.3. Seasonal soil water content comparison between neutron probe measurements and 

HYDRUS-3D simulations which consider variations in the soil hydraulic parameters 

obtained from HYPROP + WP4C 

A sensitivity analysis was performed as a basis for empirical calibration and in order to 

characterize how variations in the soil hydraulic parameters influenced the level of 

agreement of the simulations with the soil moisture determinations obtained with the 

neutron probes. For the sake of simplicity, these parameters were analyzed independently 

of each other. In each set of simulations, only one of the parameters was varied by between 

-10% and +10% around the value obtained from HYPROP + WP4C. A total of 40 simulations 

were carried out, with each including the whole season for the year 2018. 

Table 6 summarizes the sensitivity of the fit between the simulations and measurements 

regarding the variations in the soil hydraulic parameters. The table shows the best variation 

in each of the soil hydraulic parameters, which has been defined here as the value of that 

parameter which provided the highest NSE. Overall, the quality of the fit varied according 

to depth and the access tubes considered. For the whole set of depths and tubes, the R2 

increased from 0.692 to a range of between 0.700 and 0.773, depending on the parameter, 

with the best fit being for +8%n. RMSE improved from 0.031 to 0.020 cm3 cm-3 when s was 

reduced, or to 0.018 when n was increased, while NSE respectively improved from 0.277 to 

0.704 and 0.760 with these same variations. 

Sensitivity varied with soil depth. For all the access tubes at a depth of 20 cm, the 

original soil hydraulic parameters provided a sufficiently good level of agreement, with this 

only being slightly improved when s was modified by -10%. For the depths of 40 and 60 

cm, the R2 was also high, suggesting a good level of agreement in the pattern of seasonal 

variation of SWC. However, RMSE was larger, which suggested a systematic bias in the 

simulations, which improved with the variation in +6%n. The worst fit was at depths of 80 

and 100 cm, although this also improved when parameter n increased.  

Regarding differences between access tubes, those closest to the dripper (A, B, C and D) 

showed much better levels of agreement than those outside the influence of the irrigation 

wetting pattern (E and F). The simulations that considered the access tubes near the dripper 

(A, B, C and D) had a good level of agreement when a -6% θs or +6% n was applied and it 

produced an NSEs of up to 0.867 and 0.863 respectively. In both simulations and neutron 

probe measurements, Tubes E and F produced their own seasonal patterns, which received 

little, or even no, influence from the wetting pattern caused by irrigation. Nevertheless, the 
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degree of agreement was low in these positions, even when the best variations in s and n 

were applied whose respective NSE values were 0.410 and 0.561.  

For the subset focused at depths of 40 and 60 cm with access tubes A, B, C and D, the 

original R2 was already high, while the RMSE and NSE improved with a variation of +6%n, 

reaching values of 0.006 cm3 cm-3 and 0.931, respectively. 
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Table 6. Variations in the fit between simulations parameterized from HYPROP + WP4C and measurements of SWC (cm3 cm-3) by neutron probe, when each soil 

hydraulic parameter was varied between -10% to +10% around the original value. The average measurements were obtained on 8 different dates in the 2018 

irrigation season. 

   Subset of SWC Measurements      Original   Best Variation r  Best Variation s  Best Variation Ks  Best Variation   Best Variation n 

All access tubes and depths 

R2  0.692  0.700 

-10%r 

 0.736 

-8%s 

 0.697 

+10%Ks 

 0.7159 

+10% 

 0.773 

+8%n RMSE  0.031  0.030  0.020  0.029  0.030  0.018 

NSE  0.277  0.335  0.704  0.384  0.332  0.760 

All access tubes at a depth of 20cm 

R2  0.923  0.922 

+8%r 

 0.932 

-10%s 

 0.921 

+10%Ks 

 0.920 

-10% 

 0.914 

+4%n RMSE  0.009  0.008  0.008  0.008  0.008  0.009 

NSE  0.885  0.898  0.910  0.905  0.909  0.888 

All access tubes at depths of 40 and 60cm 

R2  0.933  0.933 

-10%r 

 0.928 

-6%s 

 0.925 

+10%Ks 

 0.932 

+10% α 

 0.941 

+6%n RMSE  0.023  0.022  0.009  0.020  0.022  0.008 

NSE  0.434  0.496  0.908  0.574  0.511  0.936 

All access tubes at depths of 80 and 100cm 

R2  0.698  0.696 

-10%r 

 0.685 

-8%s 

 0.693 

+10%Ks 

 0.703 

+10% 

 0.720 

+10%n RMSE  0.050  0.048  0.034  0.047  0.048  0.029 

NSE  0.094  0.154  0.578  0.190  0.156  0.696 

Access tubes A, B, C and D at all depths 

R2  0.814  0.821 

-10%r 

 0.875 

-6%s 

 0.826 

+10%Ks 

 0.801 

-10% 

 0.869 

+6%n RMSE  0.020  0.019  0.009  0.017  0.019  0.009 

NSE  0.359  0.431  0.867  0.526  0.430  0.863 

Access tubes E and F at all depths 

R2  0.409  0.423 

-10%r 

 0.550 

-8%s 

 0.416 

+10%Ks 

 0.452 

+10% 

 0.572 

+10%n RMSE  0.046  0.045  0.030  0.044  0.044  0.026 

NSE  -0.374  -0.280  0.410  -0.227  -0.257  0.561 

Access tubes A, B, C and D at depths of 40 and 

60cm  

R2  0.942  0.942 

-10%r 

 0.941 

-6%s 

 0.934 

+10%Ks 

 0.939 

+10% 

 0.940 

+6%n RMSE  0.019  0.018  0.007  0.016  0.018  0.006 

NSE  0.369  0.437  0.922  0.560  0.434  0.931 

Best variation of the soil hydraulic parameter     -   -10% r   -6% s   +10% Ks   +10% α   +6% n 
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The fit of the simulations was most sensitive to the hydraulic parameters s and n, 

whose variations were used to show improvements in RMSE and NSE, while variations 

in r, Ks and α had less effect and produced negligible improvements. More specifically, 

according to these indicators, the best fit was obtained by either a decrease in the 

saturated water content of 6% or by an increase in the n parameter of 6%. The saturated 

water content refers to the maximum amount of water that a soil can store, while n is a 

shape parameter that refers to the pore-size distribution index. 

Given the previously commented sensitivity, for the empirical calibration of the 

hydraulic parameters, we decided to keep the original parameters for the soil layer 

above a depth of 20 cm and to increase n by 6% for all other depths. Faced with the choice 

of adjusting either s or n, we opted to adjust parameter n. The original value of n was 

obtained from an indirect estimation based on the shape of the curve obtained by 

HYPROP + WP4C. The estimation of s, obtained from the same curve, was more 

straightforward. Table 7 shows the soil hydraulic parameters that were set after this 

empirical calibration. Some authors, including Singh et al. (2006); Marković et al. (2015); 

and Rai et al. (2019), also considered making adjustments to the shape parameters in 

simulations conducted with HYDRUS or other models. 

 
Table 7. Soil hydraulic parameters based on HYPROP+WP4C and further refined by empirical 

calibration of n. 

Depth (cm) θr (cm3cm-3) θs (cm3cm-3) α (cm-1) n (-) Ks (cm h-1) l (-) 

0-20 0.023 0.388 0.012 1.259 1.553 0.500 

20-60 0.029 0.400 0.019 1.351 1.444 0.500 

r = residual water content; s = saturated water content; Ks = saturated hydraulic conductivity; , 

n and l are Van Genuchten shape parameters. The data in italics refer to parameter n, which was 

empirically calibrated. 

 

A new set of simulations was then obtained using the soil hydraulic parameters 

from HYPROP + WP4C and further calibrated. In this parameterization, n was set at 

1.351 for all soil positions and depths below 20 cm (Table 7). The use of this calibrated 

parameter improved the fit between the simulations and measurements made using a 

neutron probe. R2 slightly increased across the whole set of access tubes and depths, 

while RMSE and NSE experienced significant improvements, especially for the access 

tubes which had most influence on the wetting pattern: access tubes A, B, C and D at 

depths of 40 and 60 cm (RMSE = 0.006 cm3 cm-3 and NSE = 0.931) (Table 8 and Figure 7). 
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Table 8. Summary of the fit between soil water content (cm3 cm-3) measured by neutron probe 

in 2018 and HYDRUS-3D simulations using soil hydraulic parameters obtained from HYPROP 

+ WP4C, with n empirically calibrated. 

Subset of SWC measurements 

R2  

(-) 
 

RMSE  

(cm3cm-3) 
 

NSE  

(-) 

Origin. Adj.  Origin. Adj.  Origin. Adj. 

All access tubes and depths 0.692 0.768  0.031 0.020  0.277 0.717 

All access tubes at a depth of 20 cm 0.923 0.909  0.009 0.009  0.885 0.884 

All access tubes at depths of 40 and 60 cm 0.933 0.941  0.023 0.008  0.434 0.936 

All access tubes at depths of 80 and 100 cm 0.698 0.710  0.050 0.035  0.094 0.562 

Access tubes A, B, C and D at all depths 0.814 0.869  0.020 0.009  0.359 0.863 

Access tubes E and F at all depths 0.409 0.542  0.046 0.031  -0.374 0.374 

Access tubes A, B, C and D at depths of 40 and 

60cm 
0.942 0.940  0.019 0.006  0.369 0.931 

Origin. Refers to simulations parameterized from HYPROP + WP4C (Table 3), while Adj. refers 

to simulations parameterized from HYPROP + WP4C, except for n, which was empirically 

calibrated (Table 7). 

 

Figure 6 shows a comparison between the simulations and measurements after the 

empirical calibration of parameter n was applied. Overall, agreement improved at all 

positions and for all depths with respect to Figure 5, which used the original soil 

hydraulic parameters from HYPROP + WP4C.  

 

 
Figure 6. Soil water content (SWC) simulated with HYDRUS-3D parameterized from HYPROP 

+ WP4 and further calibrated, versus average SWC measured by neutron probe on 8 different 

dates in the 2018 irrigation season. Colors indicate access tubes (green = A, yellow = B, blue = C, 

orange = D, grey = E and red = F) and shapes indicate depths (◯ = 20cm, ◇ = 40cm, ∆ = 60cm, ☐ 

= 80cm and ✕ = 100cm). 

 

Figure 7 shows the seasonal soil water dynamics at depths of 20, 40 and 60 cm for 

neutron probe access tubes A, B, C, D, E and F. At a depth of 20 cm, the parameter n was 

maintained at its original value, with the simulations only slightly noticing the effects of 

calibration at other depths. At a depth of 20 cm, the simulations already matched both 

the seasonal pattern and the absolute value of SWC prior to calibration. At depths of 40 
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and 60 cm, the simulations with the original soil hydraulic parameters followed the 

measured seasonal SWC pattern, but were biased to approximately 0.019 cm3 cm-3 based 

on the neutron probe measurements. This bias was removed with the calibration of 

shape parameter n. 

 

 
Figure 7. Soil water content (cm3 cm-3) simulated with HYDRUS-3D versus measurements by 

neutron probe in 2018 (dots) in different access tubes and at different depths. Continuous lines 
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are simulations using the hydraulic parameters obtained from HYPROP + WP4C. Dashed lines 

are simulations after the calibration of parameter n. 

 

3.4. Validation of seasonal HYDRUS-3D simulations by comparison with the dataset 

of neutron probe measurements in 2017 for different access tubes and depths  

The dataset of neutron probe measurements for 2017 (data not included in the 

previous sections) was compared with the HYDRUS-3D simulations using three 

different hydraulic parameterizations: a) that obtained from Rosetta (Table 2), b) that 

obtained from HYPROP + WP4C (Table 3) and c) that obtained from HYPROP + WP4C, 

except for the calibrated n value for depths below 20 cm (Table 7). All these simulations 

used the inputs for irrigation, rainfall, evaporation and transpiration registered in 2017 

(Figure 1). 

The quality of the agreements between the simulations and measurements obtained 

using neutron probes in the validation dataset is summarized in Table 9. In the case of 

the simulations parameterized from Rosetta, the fit with regard to general trends was 

acceptable. This was shown by their R2, particularly relating to the access tubes most 

influenced by irrigation (A, B, C and D) and to all the access tubes at depths of between 

20 and 60 cm. For the subset of access tubes A, B, C and D, at depths of 40 and 60 cm, the 

R2 was 0.91, the RMSE values were 0.07 cm3 cm-3, and the NSE had a value of less than -

17.00. On the other hand, when the parameterization was based on HYPROP + WP4C, 

the indicators of agreement between the simulation and the measurements improved 

substantially compared to that obtained from Rosetta. The R2 remained almost 

unchanged, but the other indicators improved, with RMSE reaching 0.02 cm3 cm-3 and 

the NSE producing values above -3.00. Using the shape parameter n as calibrated in the 

other dataset further improved the agreement. This improvement applied to all the 

access tubes and depths and it was especially noticeable for the access tubes located near 

the wetting pattern (A, B, C and D) and at depths of 40 and 60 cm.  

In general, with the use of the calibrated parameter n, the statistical analysis 

improved. The R2, remained similar or improved slightly, the RMSE halved its value and 

the NSE reached values greater than 0.80. The improvement occurred when access tubes 

A, B, C and D and depths of 40 and 60 cm were considered. The fit was particularly good 

for all access tubes at a depth of 20 cm. Despite maintaining the original soil hydraulic 

parameters at a depth of 20 cm, the adjustment of n at other depths resulted in a slight 

improvement, with the NSE rising to 0.411. At depths of 40 and 60 cm in all tubes, R2 

improved slightly to around 0.89, while RMSE improved notably: reaching 0.01 cm3 cm-

3, and the NSE was 0.83. For tubes A, B, C and D, the adjusted simulation improved the 

statistics at all depths. The statistical analyses obtained were: R2 = 0.781, RMSE = 0.011 

cm3 cm-3 and NSE = 0.612. These results were close to the soil water dynamics measured 

by the neutron probes. The combination of access tubes A, B, C and D and depths of 40 

and 60 cm produced the best fit with values of R2 = 0.92, RMSE = 0.01 cm3 cm-3 and NSE 

= 0.87. On the other hand, at the access tubes and at depths with little influence from the 
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wetting pattern (access tubes E and F, at depths greater than 60 cm), the RMSE improved 

to 0.02 cm3 cm-3, but R2 remained around 0.45 - 0.55 and NSE was negative: between -

0.32 and -0.03, indicating the low reliability of the model used to reproduce the 

measurements provided by the neutron probes. 

 

Table 9. Summary of the fit between soil water content (cm3 cm-3) measured by neutron probe 

in 2017 and HYDRUS-3D simulations using three different sets of soil hydraulic parameters: a) 

those estimated from Rosetta (Ros.); b) those estimated from HYPROP + WP4C (Orig.); and c) 

those estimated from HYPROP + WP4C, except for n, which was calibrated with the dataset for 

2018 (Adj.). 

Subset of SWC Measurements 
R2 (-)   RMSE (cm3cm-3)   NSE (-) 

Ros. Orig. Adj.  Ros. Orig. Adj.  Ros. Orig. Adj. 

All access tubes and depths 0.55 0.59 0.69  0.07 0.03 0.02  -10.64 -1.02 0.46 

All access tubes at a depth of 20 cm 0.74 0.73 0.72  0.05 0.02 0.01  -10.39 0.14 0.41 

All access tubes at a depth of 40 and 60 0.88 0.88 0.89  0.07 0.03 0.01  -11.39 -0.76 0.83 

All access tubes at depths of 80 and 100 

cm 
0.55 0.56 0.55  0.08 0.04 0.02  -14.02 -2.29 -0.03 

Access tubes A, B, C and D, at all depths 0.66 0.63 0.78  0.07 0.03 0.01  -15.01 -1.09 0.61 

Access tubes E and F, at all depths 0.17 0.33 0.45  0.07 0.04 0.02  -14.63 -2.86 -0.32 

Access tubes A, B, C and D at 40 and 60 

cm depth 
0.91 0.91 0.92   0.07 0.02 0.01   -17.31 -1.03 0.87 

 

Simulated soil water content, using calibrated parameterization, fitted reasonably 

well with measurements made by neutron probes in the validation dataset (Figure 8). In 

general, the level of agreement between the measured and simulated soil water contents 

was relevant at depths of 20, 40 and 60 cm, in the access tubes closest to the dripper (A, 

B, C and D). On the other hand, for access tubes located farther from the dripper (E and 

F), and at greater depths (80 and 100 cm), showed a worse fit with the measurements. 

This was probably because the HYDRUS-3D simulations overestimated the SWC 

measured by the neutron probes. 
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Figure 8. Soil water content (SWC) simulated with HYDRUS-3D parameterized from HYPROP 

+ WP4, except for n, which was calibrated with the dataset of 2018, versus average 

measurements by neutron probe on 8 different dates in the 2017 irrigation season. Colors 

indicate access tubes (green = A, yellow = B, blue = C, orange = D, grey = E and red = F) and 

shapes indicate depths (◯ = 20cm, ◇ = 40cm, ∆ = 60cm, ☐ = 80cm and ✕ = 100cm). 

 

Figure 9 represents the seasonal soil water content at depths of 20, 40 and 60 cm, for 

all the neutron probe access tubes (A, B, C, D, E and F). The original parameter n, which 

was obtained from HYPROP + WP4C, was maintained, at a depth of 20 cm and in all the 

access tubes. This showed a significant level of agreement between the measured and 

simulated SWC. This agreement improved slightly when the parameter n was increased 

by 6% at depths greater than 20 cm. At the depths of 40 and 60 cm, when the simulations 

considered the original parameter n, the SWC overestimated the neutron probe 

measurements by approximately 0.03 cm3 cm-3. When HYDRUS-3D used the adjusted 

parameter n +6%, the simulated SWC pattern shifted to lower values and its agreement 

with SWC measured by the neutron probes improved significantly. 
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Figure 9. Comparison between soil water dynamics in the validation dataset relating to 2017, 

simulated with HYDRUS-3D and measured using neutron probes. The simulations were based 

on HYPROP + WP4C parameterization. This was either unmodified or modified with parameter 

n empirically adjusted in line with the dataset for 2018. 

 

3.5. Validation of the soil water dynamics over the course of a day, simulated by 

HYDRUS-3D, as compared with measurements using tensiometers 

While the neutron probe method provided a reliable assessment of the seasonal 

dynamics of SWC, it was unsuitable for continuous measurements over the course of 

several days. Tensiometers offered a more practical alternative at this time scale. The 

evolution over the course of a day of SWC estimated from tensiometers over one month 

in 2017, was compared with HYDRUS-3D simulations for the same period. The 
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simulations were the same as those described in the previous sections, but they were 

now analyzed at a finer time resolution. Table 10 summarizes the quality of the fit 

between the HYDRUS-3D simulations and tensiometer measurements. When the 

empirically adjusted parameter n was used in the simulations, the fit improved for all 

depths and positions, providing coefficients of determination of above 0.980. A 

particularly good prediction was observed at the depth of 30 cm at positions A and C, 

where the adjusted simulation and tensiometer data matched very well, with an R2 of 

0.993 for both positions, RMSEs of 0.016 cm3 cm-3 and 0.013 cm3 cm-3, respectively, and 

NSEs of 0.438 and 0.578 for the two positions. At the depth of 60 cm depth, the fit also 

improved at position A, reaching R2 = 0.980, RMSE = 0.012 cm3 cm-3 and NSE = -0.038.  

 

Table 10. Summary of the fit between soil water content (cm3 cm-3) estimated from tensiometers during 

July 2017 and HYDRUS-3D simulations parameterized from HYPROP + WP4C (Orig.), and simulations 

parameterized from HYPROP + WP4C, with the exception of n, which was calibrated from the 2018 

dataset (Adj.). 

Subset of SWC Measurements 
R2 (-)  RMSE (cm3 cm-3)  NSE (-) 

Orig. Adj.  Orig. Adj.  Orig. Adj. 

Tensiometer A at a depth of 30 cm 0.646 0.993  0.024 0.016  -0.311 0.438 

Tensiometer A at a depth of 60 cm 0.702 0.980  0.017 0.012  -1.353 -0.038 

Tensiometer C at a depth of 30 cm 0.889 0.993  0.023 0.013  -0.393 0.578 

 

The graphical comparison of hourly values between the simulation and tensiometer 

measurements is shown in Figure 10. Overall, the simulations with the original 

parameters obtained from HYPROP + WP4C provided a slight overestimation of SWC. 

However, the estimations improved considerably when the adjusted parameter n, 

calibrated with neutron probe measurements for a different period, was used. This fit 

was also maintained in the scenario of a two-day interruption in irrigation. 
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Figure 10. Comparison between soil water dynamics over several days in July 2017, simulated 

with HYDRUS-3D and measured by tensiometers. The simulations were parameterized from 

HYPROP + WP4C. They were either unmodified, or run with parameter n empirically adjusted 

in line with the dataset for 2018. The soil water content (SWC) was calculated from tensiometers 

located at positions A and C, at depths of 30 and 60 cm. 

 

4. Discussion 
In general, this study configured the HYDRUS-3D software to simulate a 3D soil 

scenario corresponding to a drip-irrigated orchard. Measurements made using neutron 

probes and tensiometers, located at different positions relative to the dripper and at 

different depths, were used to calibrate and validate the system over two different 

growing seasons. The simulation inputs were irrigation, rainfall, evaporation, 

transpiration and soil hydraulic parameters, which were obtained either from Rosetta 

(Schaap et al., 2001) or from HYPROP + WP4C (METER Group, Pullman, CA, USA).  

Rosetta estimates soil hydraulic parameters from pedotransfer functions, based on 

soil textures, field capacity, wilting point and bulk density. One weakness of these 

estimations is that they do not consider the structure and mineralogy of the soil and, 

instead, assume that soils of similar textures have similar soil hydraulic properties 

(Carsel and Parrish, 1988, Wösten et al.,1999). When we used the Rosetta model, a porous 

ceramic pressure plate was required for the determination of the soil water content at 
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field capacity and at the wilting point. These data were used as input in the Rosetta 

model to estimate the soil hydraulic parameters necessary to carry out the simulation 

with HYDRUS-3D. In order to obtain these two inputs using porous ceramic pressure 

plates, the soil samples had to be sieved, which modified their structure. The soil water 

content readings at field capacity and at the wilting point obtained using porous ceramic 

pressure plates may therefore have differed from what would have been their actual 

values in the field. Furthermore, the reliability of the Rosetta databases cannot be 

guaranteed for the soil studied here, which was from a semi-arid region. Rosetta was 

designed and tested in soils from temperate regions, so it can only be used with 

confidence for a limited range of soils and climatic conditions (Bastet et al., 1999; Ottoni 

et al., 2019). Relationships between soil hydraulic properties and soil texture are 

therefore not easily transferable from one climatic zone to another (O'Connell et al., 

2002). In this work, we noted that the simulations that used soil hydraulic parameters 

obtained from Rosetta overestimated the soil water content measured by the neutron 

probes for all positions and depths. One particular soil hydraulic parameter which may 

have been responsible for the observed bias was the saturated hydraulic conductivity, 

Ks, which is a key parameter for the quantitative determination of soil water dynamics 

(Saunders et al., 1979). The hydraulic conductivity and the capacity to retain bound 

water is related to particle shape (Zieba, 2017). Particle shape determines the effective 

porosity, which is crucial for soil hydraulic conductivity (Brook and Corey, 1964; Robin 

et al., 2016). For this reason, when soil samples used in porous ceramic pressure plates 

are sieved, their structures are broken and their size and the space between their particles 

decreases, resulting in a reduction in their hydraulic conductivity (Sasal et al., 2006; Tran 

et al., 2006). Hence, when the HYDRUS-3D simulations used soil hydraulic parameters 

from Rosetta, they probably underestimated Ks, thereby predicting slower drainage and 

SWCs that were closer to saturation. This was in line with the observed overestimation 

of SWC in these simulations. 

Given the weaknesses of Rosetta, the HYPROP + WP4C method seemed a 

reasonable alternative for assessing the soil hydraulic properties, particularly as it is 

directly based on measurements of water-retention and conductivity pairs over a wide 

range of pressure head values in an undisturbed soil sample (Peters and Durner, 2008; 

Bezerra-Coelho et al., 2018). The combination of HYPROP + WP4C allowed us to 

determine soil hydraulic functions in the range between saturation and (close to) the 

wilting point (Schindler et al., 2015). The use of soil hydraulic parameters obtained from 

HYPROP + WP4C in HYDRUS-3D simulations produced a better fit with measurements 

obtained from the neutron probes and tensiometers. Nevertheless, to improve accuracy, 

it was decided to calibrate the model by modifying the soil hydraulic parameters. The 

best parameters to calibrate were α and/or n because they are empirical parameters that 

determine the shape of the water retention curve and they are usually estimated by 

fitting the experimental data. Some authors, such as Markovic et al. (2015), worked with 

HYDRUS-1D and estimated the initial values of α and n from measured water retention 
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data using RETC (Van Genuchten et al., 1991) and subsequently optimized them by 

inverse modelling, using the Van Genutchen-Mualem single-porosity model. Kanzari et 

al. (2018) used HYDRUS-1D to simulate soil water dynamics and assess environmental 

risks due to the salination process by adjusting the shape parameter α. Wang et  al. (2018) 

evaluated the performance of HYDRUS-1D and inversely calibrated the α and n 

parameters until the observed data were sufficiently well-fitted to the simulated values. 

Kadyampakeni et al. (2018), calibrated HYDRUS-2D in drip irrigation systems, 

modifying Ks and n, since they are the most sensitive soil hydraulic parameters for the 

prediction of water movement. Rai et al. (2019) used the HYDRUS-2D model to predict 

soil water and energy balance components under different conservation agriculture 

practices when working with pigeon pea and optimized them by inversely modelling 

the α and n parameters. Mashayekhi et al. (2016) worked with HYDRUS 2D/3D and 

optimized the α, n, and Ks parameters using the infiltration data and field capacity and 

demonstrated that the simulation error could be reduced by reducing the number of 

hydraulic parameters involved in the optimization process. She also showed that the 

adjustment of the shape parameters could be carried out in other models. Singh et al. 

(2006), who used the SWAP (soil-water-atmosphere-plant) model to analyze the 

productivity of irrigation water, simultaneously optimized both the α and n parameters, 

thereby obtaining a low coefficient of variation for the n parameter due to its greater 

sensitivity to soil water flow. Furthermore, in our simulations with HYDRUS-3D, a 

model capable of representing the soil water dynamics was obtained by simply 

calibrating the shape parameter n which was valid for different depths and positions in 

a drip-irrigated orchard. 

Overall, we obtained a satisfactory level of agreement between the SWC simulated 

with HYDRUS-3D which considered both the adjustment of parameter n and the SWC 

measured by the neutron probes. The simulations and measurements had notably better 

fits for depths and positions in the tree space that were close to the dripper. This is where 

the wet bulb develops and the root water uptake is greatest. Access tubes A, B, C and D, 

which were located near the wetting pattern, were therefore more affected by the 

irrigation dynamics and drying cycles and showed a better level of agreement than 

access tubes E and F, which were respectively located 60 and 120 cm from the dripper. 

Our results were consistent with Soulis et al. (2015), who observed that a distance of 11 

cm from the dripline was the most suitable position for representing the water dynamics 

of the wet bulb. Our results also agreed with Tawutchaisamongdee et al. (2018), who 

studied distribution patterns in sandy clay loam soils under drip irrigation and observed 

that the maximum soil moisture width was 30 cm, measured horizontally. Given the 

distance of the tubes E and F from the drippers, irrigation and absorption by the tree 

roots was not as relevant. One possible explanation for the worse fit for these tubes could 

have been the water uptake by weeds (Bravdo and Proebsting, 1993). The degree of 

uncertainty associated with these phenomena may have been large. The initial moisture 

conditions were also assumed to be at field capacity. Any departure in the actual 
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conditions from this assumption would have had a higher impact on these access tubes 

than on those near the dripper. The access tubes close to the dripline would have 

eventually been hydrated by irrigation.  

Regarding the effect of depth, we observed differences in the patterns of agreement 

between simulations and measurements at depths of 0-20 cm, although these did not 

require calibration. After calibration, the best degree of agreement was found at depths 

of 40 and 60 cm, while the level of agreement worsened at greater depths. The depth 

effect at 0-20 cm could be explained by the measurements by HYPROP + WP4C. At 

depths of 0-20 cm, the soil had lower s and higher Ks than at 20-40 cm. This resulted in 

soil saturation with a lower soil water content and in greater infiltration to the lower 

layers. In addition, the measurements made by the neutron probe at the depth of 20 cm, 

could have been affected by proximity to the soil surface. This could have been due to 

the area of sensitivity of the neutron probe. This sensitivity is presumed to be within a 

20 cm radius and to cover larger areas under drier soil conditions (Kramer and Boyer, 

1995). On the other hand, at depths greater than 60 cm, the soil hydraulic parameters 

used in the simulations may have been less representative of the actual soil than those 

taken a shallower depths, since the simulations assumed the same soil hydraulic 

characteristics that had been determined by HYPROP + WP4C for depths of 40 and 60 

cm. Furthermore, the results may have been influenced by the initial soil conditions at 

the beginning of the simulation. These were taken as being equivalent to field capacity, 

but this may not have been the case at that situation, as indicated in other studies 

(Márquez et al., 2017). Our results differed from those of Rizqui et al. (2019), who 

recommended that the best depth in a drip irrigation system is within 10 cm of the 

ground surface. Likewise, Soulis et al. (2015) indicated that the most suitable 

measurement position was 10 cm below the soil surface, although this position could 

vary according to the specific soil hydraulic properties, meteorological conditions, and 

configuration of the irrigation system. 

According to our results, the positions and depths most accurately simulated by 

HYDRUS-3D were located in the vicinity of the dripper and at depths of 40 - 60 cm. In 

this area, our results were: R2 > 0.92, RMSE < 0.01 cm3 cm-3 and NSE > 0.87. This finding 

is relevant because this is the part of the soil of greatest interest for drip irrigation, 

according to Soulis and Elmaloglou, (2018), who determined that the optimum sensor 

positions for drip irrigation in a layered soil were at a horizontal distance of 7 cm and a 

depth of 16 cm in the upper layer, and at a horizontal distance of 11 cm and 34 cm depth 

in the lower layer. 

Regarding to the hourly SWC measurements, HYDRUS-3D simulation reached a 

good agreement with the tensiometers, in particular when using parameterization 

calibrated with neutron probe, which reached R2 > 0.98. These results improved on the 

results obtained by the likes of Arbat et al. (2008), who reported R2 values of between 

0.520 and 0.825 when comparing soil water content simulated by an hourly adjusted 

HYDRUS model, using measurements obtained from granular matrix sensors. 
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5. Conclusions 
HYDRUS-3D was used with different parameterisation approaches to simulate soil 

water dynamics and the findings were compared with measurements made using 

neutron probes and tensiometers located at different positions relative to a dripper. The 

results obtained showed that soil hydraulic parameters estimated with the Rosetta 

model were useful for predicting general trends, but the simulations were not accurate 

enough to fit well with soil water contents measured using neutron probes at different 

points in the crop season. A site-specific determination of the soil hydraulic parameters 

conducted with HYPROP + WP4C provided better agreement with measurements taken 

by neutron probes at different soil positions in a drip-irrigated apple orchard. Further 

improvement was obtained following the empirical calibration of parameter n, based on 

neutron probe measurements. With such a configuration, the simulations produced a 

much finer fit with the measurements, both when comparing daily values at the seasonal 

scale, and also when comparing hourly values over the course of several days.  

The 3D domain represented in these simulations is common in tree orchards, where 

wet bulbs from consecutive drippers arranged in a line may partly overlap and are 

clearly separated from neighboring drip lines. This work shows that the 3D simulations 

agreed with measurements of seasonal dynamics in the planes following and running 

perpendicular to the dripline. The simulations with the three-dimensional version of 

HYDRUS provided a good level of explanation and prediction of the overall water 

balance of the dripper domain, including both the area within the influence of the 

wetting pattern and the soil beyond it. Nevertheless, the fit was better for the regions of 

the soil domain within the influence of the dripper. These coincided with the region of 

greatest interest for managing irrigation, whereas the fit worsened in deeper and more 

peripherical soil regions.  

Modelling water dynamics in localized irrigation with HYDRUS-3D, considering 

soil hydraulic properties, specific crop characteristics, and the irrigation system provide 

a useful base from which to improve the design of irrigation systems and to define 

efficient irrigation strategies to prevent water losses through percolation and leaching. 

In addition, these simulations allow a better understanding of the patterns of soil 

moisture that can be measured by sensors installed at different depths and in different 

positions relative to a dripper. This, in turn, provides valuable knowledge which helps 

to optimize the installation, processing and interpretation of soil moisture sensors. 
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Abstract 
Among the diverse techniques for monitoring soil moisture, capacitance-type soil 

moisture sensors are popular because of their low cost, low maintenance requirements 

and acceptable performance. However, although in laboratory conditions the accuracy 

of these sensors is good, when installed in the field they tend to show large sensor-to-

sensor differences, especially in drip irrigation. This complicates decisions on the 

design of sensor deployment and the interpretation of the recorded data. The aim of 

this paper is to study the variability involved in the measurement of soil moisture by 

capacitance sensors in a drip-irrigated orchard and, using this information, find ways 

to optimize their usage to manage irrigation. For this purpose, the study examines the 

uncertainties in the measurement process plus the natural variability in the actual soil 

water dynamics. Measurements were collected by 57 sensors, located at 10 

combinations of depth and position relative to the dripper. Our results showed large 

sensor-to-sensor differences, even when installed at equivalent depth and coordinates 

relative to the drippers. In contrast, differences among virtual sensors simulated using 

a HYDRUS-3D model at those soil locations were one order of magnitude smaller. Our 

results highlight as a possible cause for the sensor-to-sensor differences in the 

measurements by capacitance sensors the natural variability in size, shape, and 

centring of the wet area below the drippers, combined with the sharply defined 

variation in water content at the soil scale perceived by the sensors.  

 

Keywords: capacitance sensor; HYDRUS-3D; soil water content; soil wetting patterns; 

soil temperature; two-steps calibration. 
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1. Introduction 

The increase in the world's population and the consequent increase in water 

consumption necessitates the proper and efficient management of water resources 

(Ashofteh et al., 2015). In agriculture, drip irrigation is one of the most important 

solutions for the efficient use of limited water resources (Kilic, 2020). Drip irrigation 

provides water to a limited volume of soil in the region where the greatest water 

extraction by plants occurs, reducing losses by surface evaporation and deep percolation 

(Rajput and Neelam, 2006; Liao et al 2008; Naglic et al., 2014). The distribution of 

moisture within a volume of wet soil is known as the wet bulb (Arraes et al., 2019). Its 

formation is affected by a number of factors, including the physical properties of the soil 

(texture, bulk density, initial water content…), absorption of the crops by the root 

system, soil surface evaporation and the intensity of the irrigation rate (Hao et al., 2007; 

Kandelous et al., 2011).  

Real-time monitoring of soil moisture can provide useful information for optimizing 

the amount and timing of irrigation (Nolz et al., 2016; Soulis and Elmaloglou, 2018). Soil 

moisture can be measured using electromagnetic methods, such as time domain 

reflectometry (TDR) (Ledieu et al., 1986) and capacitance sensors (Zotarelli et al., 2011), 

or using electrical resistance blocks (Cummings and Chandler, 1941), neutron probes 

(Chanasyk and Naeth,  1996) or tensiometers (Muñoz-Carpena et al., 2005). Among the 

range of different soil water sensing technologies, capacitance-type soil moisture sensors 

(Kojima et al., 2016; Bogena et al., 2017) are the most popular because of their cost, 

reasonable robustness and precision, low power consumption and low maintenance 

requirements (Jones et al., 2005, Spelman et al., 2013, Visconti et al., 2014; Rosenbaum et 

al., 2011). While their adoption by farmers remains low, their use is increasing not only 

for the visual supervision of the dynamics of soil water content (SWC) with irrigation, 

but also as a potential way of providing input data for decision support systems (DSS) 

that help to determine when to irrigate and how much water to apply on a plot (Fares 

and Alva, 2000; Gallardo et al., 2020).  

However, although these sensors give good accuracy in laboratory conditions 

(Rosenbaum et al., 2010; Spelman et al., 2013; Bogena et al 2017), in field conditions they 

show large sensor-to-sensor variability, especially in drip irrigation (Nolz and 

Loiskandl, 2017). One explanation for this variability is that they only perceive a small 

volume of soil (in the order of 1 dm3 (Cobos, 2008; Sakaki et al., 2008)), which makes 

them very sensitive to local variations in, for example, gravel content, bulk density, soil 

salinity, the existence of macropores and shrinkage cracks, the proximity of plant roots 

and small-scale surface features (Waugh et al., 1996; Dane and Hopmans, 2002). Some of 

these factors vary little over time and, hence, once a sensor is installed their effect is 

permanent. In addition, there are other factors that influence sensor variability which 

are dynamic in nature. These include soil temperature (Adla et al., 2020) and soil 

apparent electrical conductivity (Scudeiro et al., 2012). The SWC pattern around a 
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dripper is also dynamic and its change over time can be simulated with mathematical 

models. In this respect, HYDRUS (Simunek et al., 2016) is a well-known software 

package for the simulation of water and solute movement in soils of one-, two- or three-

dimensions, for different combinations of initial and boundary conditions (Badni et al., 

2018; Fan et al., 2018). Some authors (Skaggs et al., 2004; Abou Lila et al., 2012; García et 

al., 2017; Domínguez-Niño et al., 2020) have used HYDRUS modelling to simulate 

surface drip irrigation. These and other works have demonstrated the ability of 

HYDRUS to simulate the space-time dynamics of soil water in drip irrigated crops. 

Simulations with HYDRUS can indicate whether the observed differences between 

sensors can be attributed to the expected dynamics of the wet bulbs or, alternatively, 

whether other factors need to be considered. 

Despite the difficulties described above, capacitance-type soil moisture sensors are 

successfully being used for irrigation management, including in scenarios of drip-

irrigated orchards (Millán et al., 2019; Domínguez-Niño et al., 2020). A better 

understanding of the uncertainty of these measurements and of the variability in the 

actual soil conditions should provide clues about how to improve their performance, 

their effectivity and, ultimately, their practical utility in real orchard conditions. 

The objective of this study is to analyse why capacitive sensors provide accurate 

measurements of SWC in laboratory conditions but, when installed in a real drip-

irrigated orchard, show large sensor-to-sensor differences. The study consisted of 

analysing the performance, during two consecutive irrigation seasons, of 57 capacitive-

type soil moisture sensors installed in 10 soil locations around the drippers of an apple 

orchard under semi-arid conditions. The effect was considered of potentially disturbing 

factors such as variability in the soil area wetted by the dripper and the influence of soil 

temperature and sensor calibration. In addition, virtual sensor readings, obtained from 

simulations of soil water dynamics with HYDRUS-3D, were used to assess how much of 

the observed differences can be explained by the expected soil moisture dynamics of an 

idealized wet bulb. 

 

2. Materials and Methods 

2.1. Experimental orchard 

The research was carried out in the irrigation seasons of 2017 and 2018 in two 

experimental plots (Plot I and Plot II) of an apple orchard (Malus domestica Borkh. cv 

‘Golden Reinders’) planted in 2011 and grafted on M-9 rootstock located at the IRTA-

Lleida Experimental Station (Mollerussa, Lleida, Spain). The planting pattern was 3.50 

m x 1.63 m with a north-to-south tree row orientation. The climate of the area is 

Mediterranean, with annual rainfall and evapotranspiration rates of 290 mm and 1093 

mm, respectively, for the year 2017, and 506 mm and 1040 mm, respectively for the year 

2018.  
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Irrigation water was supplied by a drip irrigation system (3.5 L h-1) with a 0.6 m 

separation between drippers. During the irrigation season, the water was applied at 8:00 

a.m., except in the months of August and September 2017 when variations in irrigation 

schedules were applied. In general, these plots were irrigated, on a daily basis, with a 

daily irrigation dose (DID) to meet crop water needs based on the FAO water balance 

(Allen et al., 1998) (Eq. 1). 

 

DID = ETO × KC (Eq. 1) 

 

where ETO is the reference evapotranspiration from the previous week, recorded by a 

weather station located on the same farm, and Kc is the crop coefficient determined in 

previous years in the same orchard using the weighing lysimeter method (Girona et al., 

2004). However, arbitrary irrigation doses were imposed in certain periods in order to 

test sensor response to soil water input/output imbalances. Furthermore, each plot was 

irrigated independently and, therefore, different doses of water were applied. Electrical 

conductivity of the irrigation water was 0.309 dS m-1, and NPK fertigation was applied 

(100 kg N, 30 kg P2O5 and 108 K2O) from May to June (90%) and in September (10%).  

The soil of the orchard was classified as Typic Calcixerepts, coarse-loamy, mixed and 

thermic according to the Soil Survey Staff classification (Soil Survey Staff, 1999). Soil 

samples were taken at different depths and their texture, bulk density and organic 

matter were determined. The results obtained are shown in Table 1. 

 

Table 112. Physical soil properties at three depths 

Depth (cm) 0 - 20 20 - 40 40 -60 
Sand (%) 35.80 35.50 36.00 
Silt (%) 40.70 40.60 39.90 
Clay (%) 23.50 23.90 24.10 

USDA soil classification loamy loamy loamy 
Bulk density (g cm-3) 1.48 1.50 1.53 
Organic matter (%) 1.99 1.57 1.34 

 

2.2. Soil water content measurements 

The soil moisture sensors used in this study, EC-5 and 10HS, are capacitance and 

frequency domain reflectometry (FDR)-type sensors (Meter Group Inc., Pullman, WA, 

USA). These sensors measure the dielectric constant or permittivity of the soil to 

calculate its moisture content. The EC-5 sensor is 5 cm long and has an approximate 

theoretical measurement volume of 0.3 L (Rosenbaum et al., 2011). The 10HS sensor is 

10 cm long and can measure 1 L of soil volume (Visconti et al., 2014). Both sensors 

measured the SWC every 10 seconds, and the average of 5 minutes was stored in the 

dataloggers CR800 and CR1000 (Campbell Scientific Inc., Logan, UT, USA), which used 

a multiplexer AM16/32 to increase the number of channels. The moisture sensors were 

deployed in two plots, with one sensor type in each plot. Three repetitions of 9 or 10 

sensors were installed in each plot in different positions and depths around the dripper 
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(Fig. 1). The experiment ended in September 2018 when the sensors were removed from 

the soil and taken to the laboratory for two-step calibration under specific conditions 

described in a previous study (Domínguez-Niño et al., 2019). 

 

 
Figure 1. EC-5 and 10HS moisture sensors installed at three depths (15, 30 and 60 cm) in four 

positions relative to the dripper (Pos. A: centre of wet bulb, Pos. B: mid-point between two 

drippers (30 cm), Pos. C: perimeter of the wet area, Pos. D: outside the influence of the dripper. 

 

The EC-5 sensors of Plot I were installed in 2013 and deployed in positions A, B and 

C at 15, 30 and 60 cm depths, with 3 repetitions each around a different dripper. All 

repetitions were within the same tree row and separated by a distance of less than 5 m. 

The 10HS sensors of Plot II, which were installed in 2016 and deployed in equivalent 

positions and depths as in Plot I, additionally included position D at a depth of 30 cm 

(Table 2). 

 

Table 2. Deployment of 10HS sensors in the study plot 

Position Distance to dripper (cm) Depth (cm) 
A: centre of wet bulb 5-15 15, 30 and 60 
B: mid-point between two drippers 25-35 15, 30 and 60 
C: wet area perimeter 25-35 15, 30 and 60 
D: outside the influence of the dripper 115-125 30 

 

A total of nine temperature probes (Omega HSTH-44000, 2252 Ohm) were also 

installed in 2013 in Plot I, at soil locations equivalent to those of the EC-5 sensors. Probe 

readings were recorded using the same datalogger as for the EC-5 sensors , through a 

dedicated multiplexer AM16/32 (Campbell Scientific Inc., Logan, UT, USA). Soil 
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temperature measurements ended in early 2016 when the multiplexer was damaged by 

a flood. The dataset of soil temperatures analysed in this work corresponds to the 2015 

season, when soil temperature and soil moisture were recorded simultaneously. Figure 

2 shows a temporal scheme that indicates the most relevant moments related to the 

installation of soil moisture and temperature sensors, calibration and simulation with 

HYDRUS-3D. 

 
Figure 4. Temporal sequence where the most relevant moments are indicated. Recording of 

soil temperature ended in early 2016 when the setup was damaged by flood. The SWC 

measurements analyzed in this paper focus on the irrigation seasons of 2017 and 2018, which 

were also simulated with HYDRUS. At the end of this period, all 10HS sensors were dismantled 

and calibrated in laboratory. 

 

The extent and position of the area wetted by drippers was characterized in this site 

in order to standardize the positions of the sensor in relationship to the wet bulbs. The 

measurements were done at the end of an irrigation pulse, in July-August 2018, using a 

portable Fieldscout TDR 300 soil moisture instrument (Spectrum Technologies INC., 

Aurora, IL, USA) with 12 cm-long rods (Fig. 3). The characterization of the extent of the 

wetted area consisted in measuring the SWC at intervals of 10 cm, parallel and 

perpendicular to the dripline. The position of the wetting pattern was referred to the 

centring of the wet bulb relative to the dripper and was determined as the point with the 

highest SWC between two drippers. To determine the variability in the extent and 

position of the wetted area, a “reference wetting pattern” was defined as the wetting 

pattern most frequently observed during the measurements. Then, all transects included 

in the dataset were compared with this “reference wetting pattern”. 
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Figure 3. Characterization of the wetting patterns around drippers using the Fieldscout TDR 

300. 

 

SWC at Plot I was measured periodically using a neutron. Twelve access tubes were 

installed in 2013 at positions A, B, C, D, relative to the drippers, and repeated in three 

drippers as described in Domínguez-Niño et al. (2020). The volumetric soil water content 

in these access tubes was measured using a neutron probe (Hydroprobe 503DR, 

Campbell Pacific Nuclear Corp., Martinez, CA, USA) which had previously been 

calibrated for this site. Measurements were taken at depths between 0.20 m and 1.00 m, 

at intervals of 20 cm depth, on a total of 15 days in the periods from May to October of 

2017 and 2018. 

 

2.3. HYDRUS-3D model 

The HYDRUS-3D model (v. 2.02) was used to simulate the soil water movement in 

a three-dimensional domain and hourly scale (Simunek et al., 2016). The water 

movement was simulated for 2017 and 2018. The Richards equation (Eq. 2) governs the 

movement of water flow in an unsaturated soil, with a sink term, S (cm3 cm-3 day-1), 

incorporated to consider water absorption by the root system. 

 
∂θ

∂t
=

∂

∂x
[K(h)

∂h

∂x
] +

∂

∂y
[K(h)

∂h

∂y
] +

∂

∂z
[K(h) (

∂h

∂z
+ 1)] -S (Eq. 2) 

 

where θ represents the volumetric water content (cm3 cm-3), h is soil water pressure head 

(cm), t is time (days), x and y are the horizontal space coordinates (cm), z is the vertical 

space coordinate (cm), and K is hydraulic conductivity (cm day-1). In HYDRUS, the S 

term represents the volume of water extracted by the roots in a soil volume unit per unit 

of time. It uses a complex function proposed by Feddes (Feddes et al., 1978) (Eq. 3). 
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S(h, z) = α(h)Smax(ℎ, 𝑧) (Eq. 3) 
 

where α is a dimensionless water stress reduction factor expressed as a function of 

pressure head h (cm), whose values were taken from Taylor and Ashcroft (Taylor and 

Ashcroft, 1972) for deciduous fruit trees. Smax (cm3 cm-3 day-1) is the maximum possible 

root water extraction rate when soil water is not a limiting factor, and z is the soil depth 

(cm). 

The HYDRUS model solves the Richards equation using van Genuchten’s 

parametric function (van Genuchten, 1980), which relates moisture and soil water 

potential through Eq. 4: 

 

θ(h) = {
θr +

θs − θr

[1 + |α · h|n]m
             ℎ < 0

θs                                               ℎ ≥ 0

 (Eq. 4) 

 

where θs (cm3 cm-3) is saturated water content, θr (cm3 cm-3) is residual water content, 

and m, n and α are empirical values that affect the shape of the retention curve (for 

purposes of simplification it is assumed that m = 1 – (1/n)). Unsaturated hydraulic 

conductivity, K(h) (cm day-1), is determined through Eq. 5 (Mualen, 1976). 

 

K(h) = KsSe
l [1 − (1 − Se

1/m
)m]

2
 (Eq. 5) 

 

where Se is the dimensionless effective water content, Ks is the saturated hydraulic 

conductivity of the soil and l is an empirical parameter related to the conductivity 

between the pores. 

The soil hydraulic parameters and root distribution used for the purposes of the 

present study were obtained from a previous work (Domínguez-Niño et al., 2020) in 

which the most appropriate HYDRUS-3D configuration was defined and the soil water 

dynamics in a drip irrigated orchard were simulated. However, in contrast with the 

previous work, here the initial conditions were established from the SWC measured by 

the capacitance sensors at the beginning of the year. We also assumed a semi-circular 

area with a radius of 10 cm, which was the waterlogged area during the irrigation. 

Accordingly, the flux, q (Eq. 6), was estimated as: 

 

q = 
Emitter discharge flow rate (cm3 h-1)

wetted  surface area (cm2)
=

3500 cm3h-1

157 cm2
= 22.29 cm h-1 

(Eq. 6) 

 

Virtual sensors were defined within the simulated geometry in order to monitor the 

soil water dynamics from equivalent locations to those where the capacitance-type soil 

moisture sensors had been installed in the field. Three virtual sensors were defined for 
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each of the 10 soil locations of interest, one centred at the position of interest and the 

other two displaced 10 cm closer to and further from the dripper, respectively. 

HYDRUS-3D model is characterized by simulating soil water dynamics in a 

homogeneous soil and root distribution where ideal, symmetric and centred wet bulbs 

develop around the dripper. However, HYDRUS-3D neither represent heterogeneous 

soil and root distributions, or macropores and soil irregularities among other 

phenomena that usually take place in a real soil where wet bulbs are generated. 

 

2.4. Analysis of sensor performance 

Sensor performance was analysed using quantitative indicators for several aspects 

of interest, which were calculated as follows: 

 

- Repeatability between sensors: refers to the variability between sensors installed at 

equivalent depth and position relative to the dripper. They were quantified as the root 

mean square error (RMSE) between those repetitions, using the dataset composed of 

the daily values of Plot I and Plot II in 2017 and 2018. In the case of the HYDRUS-3D 

simulations, the repetitions came from the 3 virtual sensors defined for each of the 10 

locations of interest. 

 

- Sensitivity to the soil water balance: refers to the dependence of the SWC at a given 

sensor location on the balance of water inputs/outputs to the soil. This indicator was 

quantified through a regression that modelled the sensor measurement of any given 

day as a function of the sensor measurement 7 days earlier, the balance that day and 

the aggregated balance of the previous 7 days. 

 

SWCdd =  𝐶𝑜𝑒𝑓0·SWCdd-7 +𝐶𝑜𝑒𝑓1 ·bald + 𝐶𝑜𝑒𝑓2·Σbald-7…d (Eq. 7) 

 

where: 

- SWCdd: the driest SWC measured by the sensor on day d, cm3 cm-3. 

- SWCdd-7: the driest SWC measured by the sensor 7 days earlier (d-7), cm3 cm-3. 

- bald: the balance of water inputs and outputs (DIDd + PPTd – ETd), mm. 

- DIDd: the daily irrigation dose on day d, mm. 

- PPTd: the daily rainfall dose on day d, mm. 

- ETd: the daily irrigation dose on day d, mm. 

- Σbald-7...d: the aggregated balance of water inputs and outputs in the previous 7 

days (Σ(DIDd + PPTd – ETd)), mm. 

- Coef0, Coef1 and Coef2: the regression coefficients. 

 

To focus on water balance variations related with irrigation, the analysis included 

only days in the irrigation season and excluded rainy days and the day following rain. 
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This linear regression model was analysed using the Python package statsmodels 

(Seabold, and Perktold, 2010). 

 

2.5. Statistical calculations. 

In order to facilitate their comparison, in this study both the uncertainties in the 

measurement process and the variability of the measured data were expressed in terms 

of Root Mean Square Error (RMSE). In accordance with their usage in diverse disciplines 

(Morgan and Henrion, 1990; Frey and Rubin, 1992; Huijbregts, 1998; Van Belle, 2008), 

here, uncertainty refers to the degree of precision with which a quantity is measured, 

while variability refers to the natural variation in some quantity. We use the term 

variability to refer to the measured data and, also, to refer to the presumed real quantity, 

since we have no way to distinguish between them. 

The coefficient of determination (R2) and the RMSE which were used for the 

statistical analysis were calculated as follows. 

The R2 (Eq. 8) value explains how much of the variability of a factor can be caused 

or explained by its relationship to another factor. It is computed as a value between 0 

and 1. Values close to 1 indicate a good agreement of the model. 

 

R2 =
[∑ (Oi − O̅)(Si − S)̅N

i=1 ]
2

∑ (Oi − O̅)2 ·N
i=1  ∑ (Si − S̅)2N

i=1

 

 

(Eq. 8) 

 

The RMSE (Eq. 9) measures how much error there is between two data sets. It 

compares a predicted value and an observed value. Values close to 0 indicate a better fit 

of the model. 

 

RMSE = √
∑ (Oi − Si)

2N
i=1

N
 (Eq. 9) 

 

where N refers to the number of compared values, Oi the ith observation point, Si the ith 

simulation and Ō the observed mean value. 

 

 

 

3. Results  

3.1. Variability in the soil conditions around a dripper 

3.1.1. Centring and extent of the wetted area 

The extent of the soil surface wetted by the drippers and the alignment of the centres 

of these areas with the drippers were studied in order to obtain a clue to the variability 

in a real orchard of the size, shape and centring of the wet bulbs. The measured SWC 

transects around drippers, following the dripline and perpendicular to it, are illustrated 
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in Figure 4. The width of the wetted area following the dripline was 64.5 ± 8.9 cm, which 

partly overlapped with the area wetted by the neighbouring dripper. In the axis 

perpendicular to the dripline, the width was 87.6 ± 13.7 cm. The centring of the wet bulb 

was displaced westwards by 13.6 ± 7.5 cm from the emitter, towards the centre of the 

tree line.  

Compared with this range of variabilities in the wetted area, the separation between 

sensor positions A-B and A-C was 30 cm. The volume of sensitivity of sensor EC-5 is 

around 0.3 L, which corresponds, approximately, to a horizontal cylinder of 5 cm 

diameter and 9 cm length. For sensor 10HS the volume of sensitivity is around 1 L, which 

corresponds, approximately, to a horizontal cylinder of 9 cm diameter and 21 cm length. 

These volumes of sensitivity suggest a fine spatial resolution which, for positions B and 

C, may fall in a soil region with variable inclusion within the wetted area. Based on the 

measurements of these wetted areas, the RMSE values of the SWC at positions A, B and 

C were 0.039, 0.075, and 0.095 cm3 cm-3, respectively. 

 

 
Figure 4. SWC measurements variability parallel and perpendicular to the dripline using the 

Fieldscout TDR 300. The different colours represent the repetitions. 

 

 

 

3.1.2. Pattern of temperature in a soil wet bulb 

Soil temperature at the locations where the studied moisture sensors were located 

varied following both a seasonal pattern and a daily pattern. Soil temperature 

measurements ended accidentally in early 2016. We considered that the simultaneous 

recording of soil temperature and soil moisture by EC-5 probes in 2015 was sufficient to 

assess the magnitude of the effect of temperature on the measurements of soil moisture 

and that this magnitude was also representative for 2017 and 2018. Over the irrigation 
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season, the daily mean soil temperature ranged between 19 and 27 °C, with 

instantaneous maximum and minimum values of 16 and 34 °C respectively. The 

amplitude of the daily pattern varied with position and depth, with location C15 

showing the widest daily amplitude of up to 6 °C (Fig. 5). Weather conditions were 

observed to affect temperature, with rainfall producing sudden drops in temperature at 

all positions and depths, of as much as 8 °C, and progressive recovery in the following 

days.  

 

  
Figure 5. Sample of daily fluctuations in soil temperature at the studied positions and depths in 

Plot I in July – August 2015. 

 

At the sensor locations with the widest fluctuations in soil temperature, the SWC 

readings were checked for signs of temperature effects (Fig. 6). EC5 sensors at C15 

showed a daily pattern with minimum and maximum values synchronized with 

minimum and maximum values of soil temperature. The relationship between 

measurements by those sensors during the night and simultaneous measurements of soil 

temperature showed a significant slope of up to 0.002 cm3 cm-3 per °C. On the other hand, 

measurements by 10HS sensors did not show such clear signs of being influenced by 

temperature, though some of the sensors recorded a nocturnal decrease in SWC, parallel 

to the decrease in soil temperature, with a slope that in all cases was lower than 0.001 

cm3 cm-3 per °C. Considering a range of fluctuation in soil temperature of up to 8 °C, 

caused either by weather or the diurnal cycle, a high estimate of its potential impact on 

SWC measurements would be a deviation smaller than 0.016 and 0.008 cm3 cm-3 for EC5 

and 10HS, respectively. This high estimate would correspond to position C15, with 

lower potential impacts in other sensor locations. 
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Figure 6. Comparison of daily fluctuations in soil temperature and SWC at position C, 15 cm 

depth in Plot I in July 2015. 

 

3.2. Overall response of the sensors 

The SWC data were recorded from 57 moisture sensors deployed in two plots 

during 20 consecutive months in 2017 and 2018. After this period, the sensors were 

recovered and characterized in the laboratory (Domínguez-Niño et al, 2019). Different 

patterns of sensor response were observed, both over the course of a day and at a 

seasonal scale, among the depth and positions where the sensors were located. 

Generally, over the course of a day (Fig. 7), in position A for each of the depths, the 

sensors were the most sensitive to irrigation and responded quickly to the irrigation 

cycles as well as to the lack of irrigation. In this location, the sensors showed high sensor-

to-sensor differences and a wide daily amplitude of SWC between the minimum before 

irrigation and the maximum following irrigation. In position B, the sensors followed a 

similar pattern to that of position A, but their response to irrigation was more delayed 

in time. The sensors installed in this position tended to show a smaller amplitude 

between SWC before and after irrigation, especially at the depth of 60 cm. In position C, 

some of the installed sensors followed a seasonal pattern with only a faint effect of the 

irrigation cycles. In position D, the sensors followed a seasonal pattern related with 

occasional rains and overall drying in the periods of high ETO, with no perceptible effects 

of the irrigation cycles.  
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Figure 7. Example of daily behaviour of humidity sensors located in position A at the depth of 

15 cm, B at the depth of 30 cm, and C at the depth of 60 cm in Plot II in July 2018. 

 

The amplitude of the daily oscillation of SWC between its minimum before an 

irrigation cycle and its maximum after an irrigation cycle was calculated both in 

capacitance sensors and in HYDRUS-3D during and outside the irrigation season (Fig. 

8).  
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According to the results, during the irrigation season the capacitance sensors at soil 

location A15 showed a wide oscillation during the irrigation cycle, with a median of 

0.027 cm3 cm-3 and an 80th percentile as high as 0.069 cm3 cm-3. These amplitudes were 

approximately halved at A30, B15 and B30 and were much further reduced at 60 cm 

depth. In position C, the median amplitude was in the order of 0.004 cm3 cm-3 or smaller 

but with a large variability, as shown by an 80th percentile of up to 0.029 cm3 cm-3 in C30. 

All amplitudes were much smaller outside the irrigation season, with all medians below 

0.003 cm3 cm-3 and the 80th percentiles at 0.01 cm3 cm-3 or smaller. 

For their part, the HYDRUS-3D simulations showed in Figure 8 a similar order of 

amplitude to that of the sensors for locations A30, A60, B30. However, the median 

amplitude at A15 simulated by HYDRUS-3D was only 0.0089 cm3 cm-3, one third of that 

observed by sensors, and also with less variability, with an 80th percentile of 0.0143 cm3 

cm-3. The wider oscillation with sensors at A15 consisted of a more intense drop of SWC 

before irrigation compared with simulation. At this position, after irrigation and 

redistribution, the simulation measurements tended to decrease less with water uptake 

by roots. At C15 and C30, the median amplitude simulated by HYDRUS-3D was three 

times higher than that observed by the sensors, but with less variability. Overall, at C 

positions most sensors only showed a faint oscillation with irrigation cycles, whereas the 

oscillations produced by irrigation were clearer and more intense in the simulations. 

Hence, the soil water dynamics reproduced in the HYDRUS-3D simulations may explain 

the patterns of daily amplitude observed in sensors at A30, A60 and B30, but do not 

explain either the large amplitude observed at A15 or the much more attenuated C 

position amplitudes. In this respect, it seems that the simulations considered a more even 

distribution of soil water and also of water uptake by roots among the different 

positions. Compared to the sensors, the simulations were less variable, underestimated 

uptake at A15, and overestimated the influx of irrigation water at positions C.  
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Figure 8. Daily amplitude of the measured and simulated soil water contents at different 

position and depth. 

 

The timing of irrigation affected the SWC pattern over the course of a day. Figure 9 

illustrates the dynamics of SWC when irrigation was in the morning, split between 

morning and afternoon, and in the afternoon, showing the sensor-recorded data at 

different locations in the soil together with the corresponding HYDRUS-3D simulation 

in the 2017 season. At position A15, irrigation in the morning produced a steep drop of 

SWC shortly after irrigation, with SWC during the night at the lower end of the daily 

range. At the other extreme, irrigation in the afternoon resulted in an attenuated drop 

after irrigation, with SWC remaining high, near field capacity, overnight, and dropping 

the following day before irrigation. With irrigation split in two pulses per day, SWC 

remained high for a longer period per day and, in this particular case, dropped to its 

daily minimum before the second pulse. The effect of the timing of irrigation on the SWC 

value at night justifies usage of the minimum daily SWC as a summary of the daily cycle, 

rather than the average daily SWC which would be much more affected by the timing of 

irrigation. The daily patterns described by the HYDRUS-3D simulations agreed with 

those described by the sensors at A15 in the rise of SWC during irrigation but differed 

in that, following irrigation, the relaxation of SWC was smoother and without a clear 

drop at the hours of higher ET. The patterns at other sensor locations in the soil were 

more attenuated both when measured by sensors and when simulated. 
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Figure 9. Relationship between the daily shape of the SWC curve and the moment of the day of 

irrigation in Plot II in 2017. In red are represented sensor moisture repetitions and in blue is 

represented the model. 

 

3.3. Variability between sensors at seasonal scale 

3.3.1. Repeatability between sensors 

Sensors installed at the same depth and position relative to the dripper tended to 

show synchronized patterns in terms of their response to irrigation cycles. However, the 

series of SWC measurements tended to fluctuate within a particular range for each 

individual sensor. In order to quantify sensor-to-sensor differences, we calculated the 

RMSE between measurements taken at the same time by sensors installed in equivalent 

locations with respect to depth and position relative to the dripper. This indicator was 

calculated from the daily values t including both plots and both irrigation seasons -i.e. 

excluding the periods of the year without irrigation-. The results are shown in Figure 10, 

together with the equivalent indicators calculated from the HYDRUS-3D simulations. 
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installed, ranging between 0.020 cm3 cm-3 and 0.050 cm3 cm-3. In general, the closer to the 

dripper, either in position or in depth, the higher the RMSE. Sensors located in position 

A had the lowest repeatability, in particular at the depth of 15 cm (0.050 cm3 cm-3), while 

repeatability improved at the depth of 60 cm (0.035 cm3 cm-3). Sensors located in position 

B showed greater repeatability than sensors located in position A. In particular, the 

depths of 15 cm and 30 cm showed greater repeatability (0.027 cm3 cm-3 and 0.037 cm3 

cm-3) than the depth of 60 cm (0.022 cm3 cm-3). In position C, sensors located at the depth 

of 15 cm had lower repeatability (0.047 cm3 cm-3) than the rest of the depths, while the 

sensors located at the depths of 30 and 60 cm showed greater repeatability than sensors 

located at the depth of 15 cm (0.024 cm3 cm-3 and 0.021 cm3 cm-3, respectively).  

 

 
Figure 10. Sensor-to-sensor differences in SWC measured by capacitance sensors and by 

HYDRUS-3D simulations at the same soil positions +- 10 cm in the direction to the dripper. 

 

In contrast with sensors, the RMSE between simulations where the horizontal 

position of the virtual sensor was displaced 10 cm to either side, was always below 0.020 

cm3 cm-3 in all locations and below 0.006 cm3 cm-3 in A and B positions at all depths. This 

would suggest that variability in the alignment between wet bulb and dripper, alone, 

cannot explain the observed variability between sensors. In addition, in position C, the 

simulated RMSE results for the depths of 30 and 60 cm were close to the RMSE of the 

sensors, with values of 0.016 cm3 cm-3 and 0.018 cm3 cm-3, respectively.  
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over-irrigation and more separated in periods with drier conditions. In periods of higher 

water deficit, variability between sensor locations increased. In Plot I under this 

situation, both the HYDRUS-3D and neutron probe SWC measurements were higher 

than those from the capacitance sensors.  

During the irrigation season, irrigation cycles affected capacitance sensor 

measurements in differing ways depending on sensor location. Compared with 

measurements by neutron probe, EC5 sensor measurements in Plot I underestimated 

SWC in all positions and depths. Despite this bias, irrigation cycles as well as the lack of 

irrigation produced an immediate response in sensor measurements, especially in 

positions A. In contrast, in the other positions the SWC decreased more slightly over 

time. At the depth of 30 cm, the seasonal variability was less pronounced. The positions 

closest to the dripper (position A) tended to respond quickly to irrigation cycles, 

evapotranspiration and consumption by the crop on the same day. The response at 

positions B and C tended to be slower and more progressive. At the depth of 60 cm, 

especially in positions away from the dripper, the sensors recorded less variation in 

response to the irrigation cycles. In position D, the sensors showed a slowly varying 

trend throughout the season, except for some peaks associated with rainfall. 
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Figure 11. Seasonal variations in soil water content (represented by the series of daily minimum 

values, cm3 cm-3) measured by EC-5 capacitance soil moisture sensors, neutron probes and 

HYDRUS-3D simulations in different positions and depths in the years 2017 and 2018 in Plot I. 

Irrigation, rainfall and ET measured by the weighing lysimeter is detailed at the top of the 

figure. 
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Figure 12. Seasonal soil water content (cm3 cm-3) measured by 10HS moisture sensors and 

HYDRUS-3D simulations in different positions and depths in the years 2017 and 2018 in Plot II. 

Irrigation, rainfall and ET measured by the weighing lysimeter is detailed at the top of the 

figure. 
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calibration (Domínguez-Niño et al., 2019) was performed. Overall, the R2 varied between 

sensor positions and depths regardless of the calibration used. In general, higher R2 were 

observed in the sensor locations that were deepest and farthest from the dripper. In 

general, the RMSE between measurements by capacitance sensors and neutron probe 

decreased with the two-step calibration, except for the depth of 15 cm, where it 

increased. 

Figure 13 shows the effect of calibration on the fit between measurements by 10HS 

sensors and simulations by HYDRUS-3D. The data shown corresponds to one 

measurement every 15 days for the whole studied period -both in and out of season- 

during 2017 and 2018. In general, with factory calibration the sensor-measured SWC was 

smaller than that of the simulations, except in the case of a few A, B and C positions at 

the depth of 15-30 cm. Overall, application of the soil-specific calibration did not reduce 

the scatter of the sensor measurements but did improve the adjustment of the whole 

cloud of sensor measurements to that of the simulations. 

 

 
Figure 13. Fit between soil water content (SWC) measured by capacitance sensors and estimates 

by HYDRUS-3D, comparing factory calibration of the sensors with soil-specific calibration. Data 

includes one measurement every 15 days during the whole studied period. Colours indicate 

sensor position relative to dripper (green = A, red = B, yellow = C, blue = D) and shapes indicate 

depths (◯ = 15cm, ☐= 30cm, ∆ = 60cm). 
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The dependence of sensor-measured SWC on the balance of water input/outputs is 

summarized in Table 3. The analysis consisted of checking how the SWC measured on a 

given day could be modelled as a function of the SWC measured a week earlier, the 

water balance of that day and the aggregated water balance of the previous week. The 

results show that this dependence varies according to the position and depth where the 

sensor is located. In all cases, the independent variable with the strongest effect was the 

measurement one week earlier, which highlights the relevance of the trends rather than 

the absolute values in the interpretation of SWC. As shown in the table, the response at 

positions A depended on the SWC measured the previous week and the water balance 

of the same day, especially at the depths of 15 cm and 30 cm. In this respect, sensors in 

position A responded as if they had no memory of the balance of the previous week. 

Meanwhile, the B positions depended on the SWC measured the previous week, the 

water balance of the same day (especially at depth of 30 cm) and the water balance of 

the whole week (especially at 30 cm). The C positions depended on the SWC measured 

the previous week, the water balance of the same day (in particular at the depths of 30 

cm and 60 cm) and the water balance of the whole week (especially at depths of 15 cm). 

The D positions depended on the SWC measured the previous week, the water balance 

of the same day and especially the water balance of the whole week. 

 

Table 3.  Summary of dependence of soil water content (SWC) measured by sensors on the 

measurement of a week before (coef_SWC7), the water input/output balance of the day 

(coef_bal) and on the water input/output balance of the whole previous week (coef_bal7). N 

corresponds to the number of SWC measurements. 

Position depth (cm) N R2_adj  coef_SWC7  coef_bal  coef_bal7 

A 15 514 0.994  1.0021 ***  0.0036 ***  0.0007 n.s 

A 30 514 0.998  0.9968 ***  0.0025 ***  0.0000 n.s 

A 60 514 0.999  0.9971 ***  0.0009 **  0.0003 n.s 

B 15 514 0.997  0.9876 ***  0.0016 ***  0.0021 *** 

B 30 514 0.982  0.9630 ***  0.0039 ***  0.0034 *** 

B 60 514 1.000  0.9973 ***  0.0004 *  0.0013 *** 

C 15 514 0.998  0.9808 ***  -0.0002 n.s  0.0034 *** 

C 30 514 0.998  0.9892 ***  0.0018 ***  0.0014 *** 

C 60 514 0.999  0.9963 ***  0.0013 ***  0.0009 ** 

D 30 260 1.000  0.9927 ***  -0.0005 **  0.0013 *** 

n.s, *, **, *** are statistically non-significant, and statistically significant at P<0.05, 0.01 or 0.001, 

respectively. 

 

Figure 14 illustrates an example of the distinct type of response to the soil water 

balance at different sensor locations. In this example, during several days in June 2018, 

in Plot II, the applied irrigation doses were reduced for experimental purposes. 

Measurements of SWC by capacitance sensors in the following days at locations A15, 

A30, B15 and B30 all revealed the occurrence of an irrigation deficit and, later on, the 

recovery of the soil moisture when irrigation doses were increased again. However, the 
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recovery of SWC at position A when irrigation doses were increased again may take 

place almost the same day (for instance sensor A30 in this example), as if the sensor had 

no memory of the preceding period of deficit. On the other hand, sensors at position B 

tended to have a longer period of response, thus aggregating the outcome of several 

irrigation cycles. Sensors at positions C and D were also affected by the deficit but took 

a much longer period to recover. Meanwhile, sensors at 60 cm depth showed a much 

fainter response to these changes in irrigation. 

 

 
Figure 14. Moisture sensor sensitivity to irrigation in Plot II in June 2018.  Sample of different 

types of sensor responses to the soil water balance, corresponding to different sensor locations 

in Plot II in June 2018. 

 

The analysis of sensitivity of different sensor locations to the soil water balance was 

also performed with the HYDRUS-3D simulations and the results are summarized in 

Table 4. In the case of simulations, the SWC at all depths and positions depended on the 

SWC measured in the previous week and the water balance of that day (especially at the 

depth of 30 cm). Also, in positions A and B at the depth of 60 cm, there was a highly 
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significant dependence of the SWC on the water balance of previous week. Interestingly, 

at sensor locations A15, A30, B15 and B30 the balance of the previous week was not 

significant, thus suggesting that the lack of memory of the preceding period is a sound 

and repetitive feature at these locations, well represented in the soil water dynamics by 

HYDRUS-3D. 

 

Table 4. Summary of dependence of soil water content (SWC) simulated by HYDRUS-3D on the 

simulation of a week before (coef_SWC7), the water input/output balance of the day (coef_bal) 

and on the water input/output balance of the whole previous week (coef_bal7). N corresponds 

to the number of SWC measurements. 

Position depth (cm) N R2_adj  coef_SWC7  coef_bal  coef_bal7 

A 15 514 0.999  0.9979 ***  0.0020 ***  0.0004 n.s 

A 30 514 0.996  0.9963 ***  0.0032 ***  0.0006 n.s 

A 60 514 0.997  0.9934 ***  0.0023 ***  0.0019 *** 

B 15 514 0.999  0.9974 ***  0.0021 ***  0.0003 n.s 

B 30 514 0.996  0.9951 ***  0.0031 ***  0.0007 n.s 

B 60 514 0.997  0.9929 ***  0.0022 ***  0.0021 *** 

C 15 514 0.999  0.9936 ***  0.0017 ***  0.0010 *** 

C 30 514 0.997  0.9892 ***  0.0024 ***  0.0019 *** 

C 60 514 0.998  0.9893 ***  0.0016 ***  0.0030 *** 

D 30 260 0.999  0.9756 ***  -0.0007 ***  0.0051 *** 

n.s, *, **, *** are statistically non-significant, and statistically significant at a P<0.05, 0.01 or 

0.001, respectively. 

 

3.7. Components of the variability in the measurements by capacitive-type soil sensors 

Regarding the performance of sensors in real orchard conditions, an issue of interest 

in this study was to compare the uncertainties in the measuring process with the 

observed variability in sensor data and with the natural variability in the soil 

environment. To this end, all them were expressed in the same terms, as RMSE. When 

comparing the output of several soil sensors, the observed differences between sensors 

can be caused by a combination of uncertainties in the measuring process and actual 

variability in the physical property being measured. In this study, the distinction 

between uncertainty in the process and variability in the data can offer clues in terms of 

directions for improvement in the usage of the sensors. However, in a practical 

application there may be no need to distinguish between them (Hofer, 1996) and the 

whole ensemble would contribute to the overall uncertainty of monitoring SWC in a 

drip-irrigated orchard. That is to say, when using a setup of several sensors, each of them 

reporting a different value of SWC, usage of these data for decision-making is faced with 

the uncertainty resulting from the combination of the measuring process and the natural 

variability in the actual values. The preceding sections described the observed variability 

in sensor measurements at different locations in the soil around a dripper. In order to 

better appraise its significance and gain clues as to its possible origin, the observed 
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variability can be compared with the uncertainties in different factors affecting the 

process of measuring SWC by capacitive-type sensors (Fig. 15). 

First, the accuracy of SWC measurement by capacitive-type sensors can be 

decomposed into two steps (Robinson et al., 1998; Jones et al., 2005). The first step 

converts the sensor response to permittivity, regardless of the media- where it has been 

measured. The second step converts permittivity to SWC for a specific soil. The 10HS 

sensors used were, at the end of the study, calibrated specifically for the soil of the 

orchard (Domínguez-Niño et al., 2019). Comparing the output of the different options 

for sensor calibrations, the range of uncertainty3 for the first and second steps, expressed 

as RMSE, were of 0.006 cm3 cm-3 and 0.014 cm3 cm-, respectively. Here, the first step 

includes the variability between individual sensors and the second step the specific 

relationship between permittivity and SWC for that soil. In addition, soil temperature 

varies with depth and with position relative to tree shade and fluctuates over the course 

of a day, with potential effects on 10HS sensor measurements which we estimated as an 

uncertainty up to 0.008 cm3 cm-3. 

Virtual sensors that monitored HYDRUS-3D simulations at the sensor locations +- 

10 cm in the direction to the dripper showed sensor-to-sensor differences of between 

0.003 cm3 cm-3 and 0.018 cm3 cm-3, depending on sensor location. In contrast, in this study, 

the observed differences between capacitive-type sensors in real drip-irrigated orchard 

conditions ranged between 0.021 cm3 cm-3 and 0.050 cm3 cm-3, depending on sensor 

location. In addition, the range of uncertainty between positions A, B and C showed a 

range of differences between 0.048 cm3 cm-3 and 0.091 cm3 cm-3. 

 

 
Figure 15. Ranges of uncertainty and variability in the measurement of soil water content 

(SWC) by capacitance sensors. Dark blue indicates least variability and light blue indicates 

maximum variability/uncertainty 

 

This comparative range of variability suggests the possibility of ranking the factors 

to consider for optimizing the monitoring of soil moisture with capacitive-type sensors 

in a drip-irrigated orchard. In particular, it highlights the uncertainty derived from the 

arbitrary movement of water at the soil surface, between the dripper and the entrance 
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into the soil. In contrast, there seems to be little margin of improvement in direct sensor 

response, as two-step calibration improves measurement accuracy but is minimal 

compared to other sources of uncertainty unless it manages to integrate a much larger 

soil volume. 

 

4. Discussion 

4.1. Variability in the soil conditions 

The performance of capacitance moisture sensors (EC-5 and 10HS) installed at 

different depths and positions relative to the dripper were evaluated for two years. In 

addition, it was evaluated the particular conditions of disturbance and the natural 

variability of soil water patterns in drip irrigation. In this type of scenario, the actual 

environment around a sensor can vary considerably, combining modellable and 

capricious patterns, and might, at least partly, cause the observed variability in sensor 

measurements. To some degree, sensor-to-sensor differences can be expected, given the 

small volume of influence of capacitance sensors and the highly heterogenous patterns 

of SWC expected in their vicinity. Virtual sensors were configured in the HYDRUS-3D 

model to monitor the simulated SWC at the locations where the real sensors were 

installed and, to check sensitivity to the precise position of the sensor, additional virtual 

sensors were displaced 10 cm from their original position in either direction relative to 

the dripper. Overall, the virtual sensors were much more repetitive and with slighter 

differences between soil locations compared to the real sensors. Our characterization of 

the soil area wetted by the drippers show that the size, shape and alignment of these 

areas have a large natural variability. Even at locations close to the vertical of the dripper 

(position A), measurements of SWC in the uppermost 12 cm show a large variability 

which suggests that the wet bulb is not always centred there. For locations presumably 

closer to the border of the wet bulb (positions B and C), SWC variability in the uppermost 

12 cm was still larger. These measurements of the wetted area, close to the wet surface, 

are not a direct measurement of the wet bulb, which develops deeper. However, the 

observed variability in the wetted area may be indicative of the variability of the wet 

bulb, though as observed with sensors, up to a point, variability tends to diminish with 

depth. 

Soil temperature in the wet bulb is also heterogeneous. First, it depends on depth, 

with shallower locations showing wider diurnal variations, with an amplitude in 

summer of up to 8 °C at 15 cm depth and 1 °C at 60 cm depth. Second, in our 

measurements it varied with the position relative to the dripper, with diurnal variation 

increasing with the distance from the dripline. This may be attributable to differences in 

shade (Aguiar et al., 2019). Differences in soil moisture might also imply thermal 

differences, either through soil evaporation or through the thermal conductivity of the 

soil, which is dependent on soil moisture (Evett et al., 2012). In our results, EC5 sensors 

showed clear signs of being affected by temperature, with a potential disturbance up to 
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+-0.02 cm3 cm-3. The effect of temperature on EC5 sensors has been described by other 

authors (Rosenbaum et al., 2011). There was less clear evidence of 10HS sensors being 

affected by temperature, though this cannot be discarded since temperature effects have 

been observed by other authors (Mittelbach et al., 2012). The dynamic behaviour of the 

two variables, soil temperature and SWC, in the context of a drip-irrigated orchard 

where they vary diurnally and in space within the dripper frame, can disguise their 

relationship. Laboratory characterization of 10HS sensors by other authors has shown 

that temperature effects depend on soil texture, with an increase of the measured SWC 

with temperature in soils with fine texture (Kargas and Soulis, 2012). Given the observed 

range of variability in soil temperature (between 1 and 25 °C through the year), the 

potential effect of soil temperature on the measurement of SWC at an annual scale can 

be as high as 0.028 cm3 cm-3 comparing different extreme conditions through the year. 

Also, in other moisture capacitance sensors such as the SMT100 model, it has been 

reported that temperature has a significant influence on sensor output (Bogena et al., 

2017). As stated above, this effect would be higher at shallow and sunlit positions and 

lower at deeper and shaded positions.  

Regarding the diurnal pattern of SWC, we observed the widest amplitude at 

position A15, near the area where irrigation water enters the soil. The diurnal amplitude 

displayed by sensors at this soil location is much wider and more variable than expected 

according to HYDRUS simulations (Fig. 7). This difference might be attributable to the 

more idealized and smooth conditions at the soil surface represented in the simulations. 

In real orchard conditions, the soil surface presents an arbitrary microrelief which 

determines preferential pathways at the soil surface to water from the dripper and may 

produce arbitrary patches of waterlogged soil during irrigation (De Lima and Abrantes, 

2014). This coexists with patches of differently shaded/sunlit soil spots, which in turn 

may determine heterogeneous patterns of evaporation at the soil surface. All this would 

determine a more arbitrary and sharply defined soil condition scenario compared with 

that represented in the simulations. Even so, the simulations coincided with sensors in 

terms of the ranges of diurnal amplitude at 30 cm depth in positions A and B, a region 

in the soil which is at the core of the daily cycles of hydration and water uptake by roots. 

The simulations also estimated a greater amplitude than observed by sensors at 60 cm 

depth, where they might overestimate root water uptake compared with sensor 

measurements, and at position C, where they might overestimate the arrival of water 

from the irrigation pulses. The range of diurnal fluctuations is much smaller offseason, 

where, except for rain events, the magnitude of the common water inputs and outputs 

to the soil are much smaller and, additionally, the wet bulbs disappear.  

As expected, the patterns of diurnal fluctuation in SWC were affected by the timing 

of irrigation, particularly in relation to the daily curve of ET. Irrigation in the early 

morning produces steeper changes as the result of saturation during irrigation followed 

by redistribution and immediate uptake by roots. In contrast, when irrigation is in the 

afternoon, SWC remains high at night and drops the following day. Irrigation split into 
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two pulses, one in the morning and the other in the afternoon produces a less severe 

pattern for a longer period of time. Given the effect of the timing of irrigation on SWC at 

night and this, in turn, on the daily average, the driest daily measurement appears as a 

practical and robust summary of the preceding cycle of irrigation, redistribution and 

uptake by roots. 

4.2. Repeatability between sensors 

The characterization of capacitance-type soil moisture sensors in laboratory 

conditions has produced highly repetitive readings among sensors (Rosenbaum et al., 

2010; Domínguez-Niño et al., 2019). Nevertheless, in field conditions, large differences 

in sensor measurements have been reported by many authors (Schmitz and Sourell, 

2000; Kizito et al., 2008; Sakaki et al., 2008; Bogena et al., 2010; Nagahage et al., 2019). 

Our results show a large sensor-to-sensor differences, even though repeated sensors 

were installed precisely at the same soil locations in terms of depth and position relative 

to the dripper. We quantified these differences as RMSE and observed that it depended 

on sensor location. Broadly speaking, the RMSE between equivalent sensors seems to 

vary with depth, from 0.05 cm3 cm-3 at 15 cm to 0.02 cm3 cm-3 at 60 cm depth. At 30 and 

60 cm depth, variability decreased from position A to positions B and C. A 

correspondence can be suggested between the positions with the largest diurnal 

amplitude and their sensor-to-sensor differences. In this sense, some sensor positions in 

the soil are more sensitive to the irrigation cycles, and any factor that may affect either 

hydration or water uptake at those locations would greatly contribute to sensor-to-

sensor differences.  

The HYDRUS-3D simulations were found to be much more repetitive, including 

between virtual sensors displaced 10 cm in either direction relative to the dripper. With 

the HYDRUS-3D simulations, an RMSE was calculated of around one order of 

magnitude smaller than that observed with the sensors in positions A and B, while it 

was similar to the sensor-based RMSE at position C at the 30 and 60 cm depths. That is, 

the simulations produced a more homogeneous SWC within the wet bulb than measured 

by sensors, and only in the periphery of the bulb were the simulations sensitive to the 

precise centring of the bulb. 

In our measurements, even though we ensured the equivalent depth and position 

of the repeated sensors, our results in terms of variability in soil wetting patterns and 

the existence of heterogeneous SWC and soil temperature patterns suggest that the 

spatial coordinates of the sensor do not guarantee that they will encounter repeat 

conditions in terms of irrigation cycle dynamics. The reported 10HS sensor volume of 

sensitivity is around 1 L (Cobos, 2008; Spelman et al., 2013) and, furthermore, sensitivity 

is not homogeneous within this volume. Therefore, any soil property that may vary at 

this spatial scale would cause the immediate vicinity of a particular sensor to depart 

from the idealized properties considered in simulations. For instance, sensors would be 

sensitive to the presence of macropores and stones (Rowland et al., 2011), 

microvariations in soil bulk density (Parvin and Degré, 2016), uneven distribution of 
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roots (Kang et al., 2019), uneven temperature due to contrasts between shaded and sunlit 

soil surface (Gónzalez-Teruel et al., 2019), etc. Moreover, there may be additional 

interaction between these factors. In contrast, HYDRUS-3D simulations do not allow the 

input of a dynamic root system (Bufon et al., 2012) and do not consider that the soil 

structure may contain macro-pores or pores with less tortuosity and higher continuity 

(Xu et al., 2017). In addition, the simulations could be improved by implementing the 

possibility of simulating the formation of the wetted surface and its evolution over time 

(Arbat et al., 2003).  

The two plots included in the study showed slightly different seasonal patterns. 

These would not necessarily be associated to the fact that the installed sensors 

corresponded to different models, since the two plots were managed separately and, at 

specific periods, received different irrigation doses. In Plot I, the sensors reported drier 

measurements, especially at 15 cm depth, than expected according to the HYDRUS-3D 

simulations. Neutron probe measurements supported the results of the simulations 

(Domínguez-Niño et al., 2020). A possible explanation for this divergence could be the 

thinner spatial resolution of sensors, together with a scenario of limited irrigation doses. 

In Plot II, the general agreement with the model was better but nonetheless the sensors 

still differed in terms of the precise response to all water input/output disruptions. To 

check the effect of specific soil calibration, the 10HS capacitive sensors installed in Plot 

II were specifically calibrated for this soil at the end of the study period (Domínguez-

Niño et al., 2019). When the measured data were recalculated according to the specific 

soil calibration, the overall set of calibrated measurements centred around those of the 

simulations, but the same scatter persisted. Noticeably, measurements at some specific 

locations systematically increased or decreased when the soil-specific calibration was 

applied. Compared with the simulations, the sensors tended to give drier measurements 

at A60 and wetter ones at B30 and C30. This could be because the root water uptake 

reached higher depths than assumed in the simulations.  

 

4.3. Sensor sensitivity at each location 

Despite the complexity involved in discriminating between relevant trends and the 

noise introduced by variability between sensors, there is no doubt that important 

information for irrigation control can be derived from sensor response to irrigation 

cycles. These responses vary with sensor position and depth and must be taken into 

account both when designing sensor deployment and later on when interpreting the 

recorded data. Among other things, the effect of sensor position varies according to the 

soil hydraulic properties, meteorological conditions and the irrigation configuration 

(Soulis et al., 2015). 

A feature of interest for the usage of soil moisture sensors is their ability to indicate 

the balance of water inputs and outputs to the soil. We observed that, depending on their 

location, they are more sensitive either to the recent balance of the last irrigation cycle or 

to the aggregated balance of several cycles. In particular, the sensors located in position 
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A responded to the water balance of the same day and were especially more sensitive at 

the depths of 15 cm and 30 cm. Importantly, the sensors installed in these positions were 

not sensitive to the water balance of the previous week. This suggests that, at these 

locations, sensors tend to respond to irrigation rapidly and intensely, with little memory 

of the soil water trends of a few days earlier. The sensors installed in position B at all 

depths were sensitive to both the water balance of that day and to that of the previous 

week, especially at the 30 cm depth. The sensitivity at this location, B30, can be explained 

in terms of the progressive effect of the water balance over the course of several days on 

the SWC at this point through the overlapping or recession of two neighbouring wet 

bulbs. The sensors located at C15 were sensitive to the balance of the previous week but 

not to that of the last day. Also, sensors located at the 30 cm depth and, to a lesser extent, 

sensors located at the 60 cm depth retained a memory of the water balance of that day 

and the previous week. This may be because the sensors in these positions were located 

on the perimeter of the wet area and were only affected by the dynamics of a single wet 

bulb. 

Overall, this different sensitivity, either to the last cycle or to the aggregated period, 

is also observed in the simulations. The difference is that the B15 and B30 sensors seem 

more sensitive to the aggregated balance than the simulations. Compared to the 

simulations, some sensor locations (B60, C15, D30) are less sensitive to the last irrigation 

cycle and more sensitive to the aggregated balance. This may be due to the actual noise 

of the irrigation cycles at these positions, while the effect of the accumulated balance is 

more straightforward.  

 

4.4. Contributions of different factors to sensor-to-sensor differences 

Measurements of SWC by capacitance-type soil sensors show a large difference 

between sensors. Factors such as the calibration applied, the effect of soil temperature 

and the variability in the area wetted by drippers can contribute individually and in an 

accumulative way to differences in the measured SWC values. Comparing the potential 

range of uncertainty by each of these contributory factors could provide clues as to the 

relative importance of each of them for ensuring the quality of the measurements.  

The calibration applied has a minor effect on the variability of the SWC measured 

by sensors. The potential effect of soil temperature, even if detectable in EC5 sensors, 

was also limited. The measurements of the virtual HYDRUS-3D sensors can be used to 

explain a small part of the differences between real sensors. A large part of the impaired 

repeatability of the sensors may be attributable to the variability observed in the wetted 

area. In the HYDRUS-3D simulations, this wetted area variability is even larger than that 

of the sensor measurements, which might be explained by the trend, observed in our 

data, of the variability increasing as the distance to the soil surface decreases. The results 

suggest that most of the variability observed in the sensor measurements is caused by 

the arbitrariness of the shape and the positioning of the wet bulbs. In other words, the 

variability in a drip-irrigated orchard may be caused by the co-occurrence of a sharply 
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defined nature of the actual distribution of soil water and a small volume perceived by 

each capacitance sensor. 

Sensor performance in laboratory conditions suggests that their lack of repeatability 

in the field is not a fault of the sensors but a consequence of the actual complexity of the 

soil environment in drip-irrigated orchards. Capacitance sensors perceive a smaller soil 

volume than desirable to compensate for small-scale soil variability, as these sensors are 

too sensitive to local variations in soil texture, and the presence of gravel, stones, roots, 

macropores or small compacted soil parts (Hignett and Evett, 2008). In addition, wet 

bulbs may coexist with patches of differently shaded/sunlit soil spots. Roots may be 

more clustered and unpredictable than in annual crops. At the same time, macropores 

and differences in soil bulk density may develop more easily than in arable crops.  

 

4.5. Recommended location for capacitance sensors in drip irrigation 

Despite the accuracy of capacitance-type soil moisture sensors in laboratory 

conditions, in actual drip-irrigated orchards their usage is complicated by both their low 

repeatability and the dependence of their performance on their location in the soil. The 

non-uniform distribution patterns make soil water sensor placement a key factor in 

automated irrigation scheduling (Coelho and Or, 1996). The plant root architecture 

around the drippers also complicates the decision as to where to place moisture sensors 

(Or, 1995). As a result, in drip-irrigated orchards, the approach when using these sensors 

cannot be the same as in scenarios of more homogeneous soil water distribution, such as 

in rainfed or sprinkler-irrigated field crops. In particular, any approach relying on an 

accurate assessment of the SWC or its projection to the volume of available water can be 

unreliable. Instead, an alternative is to use an approach which focuses more on the SWC 

trends by individual sensors (Casadesús et al., 2012).  

The optimal location of capacitance-type moisture sensors for SWC monitoring 

depends on the type of crop, soil texture, salinity and irrigation system, among other 

things. Various authors, including Soulis and Elmaloglou (Soulis and Elmaloglou, 2015) 

have investigated the effects of sensor position and accuracy on drip irrigation 

scheduling. These same authors (Soulis and Elmaloglou, 2016) introduced the time stable 

representative position (TSRP) concept and proposed general guidelines for sensor 

placement in soil moisture–based surface and subsurface drip irrigation scheduling 

systems (28 cm below the soil surface and 15 cm from the dripline). In a subsequent 

study (Soulis and Elmaloglou, 2018), they complemented their previous work by 

considering the representativity of SWC readings and the TSRP in two layered soil 

profiles. They determined that optimum sensor positions for drip irrigation in a layered 

soil were at a horizontal distance of 7 cm and a depth of 16 cm in the upper layer, and at 

a horizontal distance of 11 cm and 34 cm depth in the lower layer. 

Regarding the results of this study, attributes that are of interest for irrigation 

management include sensor-to-sensor repeatability, the extent to which sensor position 

represents the overall soil water availability to the crop, and the ability of the sensor 
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location to match applied irrigation doses and actual irrigation needs. Our results 

indicate each of these attributes has its own pattern of response at different sensor 

locations, and that probably there is no single location that best reflects these attributes. 

Moreover, the optimal trade-off between these attributes may depend on the precise 

purpose and type of usage of the sensors in the farm in question. In this respect, the 

criteria for sensor deployment intended for visual supervision of soil water may 

prioritize obtaining a wide and clear view of the whole soil, whereas sensor deployment 

intended for automated irrigation scheduling may prioritize robustness and sensitivity 

to changes in the soil water budget.  

Nevertheless, when used for irrigation control, the criteria for selecting sensor 

locations would also depend on the control algorithm used. In this respect, if the control 

algorithm is based on thresholds for activating/deactivating irrigation pulses (Muñoz-

Carpena et al., 2005; Dukes et al., 2010) the criteria may differ from when the algorithm 

is based on a water balance approach and tuned through sensor feedback (Casadesus et 

al., 2012; Domínguez-Niño et al., 2020). Therefore, the optimal choice of sensor location 

will depend on the intended usage. Some authors (Silva et al., 2018), in a study on banana 

crops, established that the optimal position of the sensors for irrigation scheduling 

purposes varied according to the crop growth stage. Other authors (Lea-Cox et al., 2010; 

Casadesús et al., 2012; Mittelbach et al., 2012) used two or more depths to monitor SWC. 

Alternatively, rather than combining different depths, for automated irrigation it makes 

sense to ensure measurement robustness by focussing on repetitive positions where 

there is more root activity (Hignett and Evett, 2008; Domínguez-Niño., 2020). Our study 

suggests that, to provide feedback to an irrigation scheduling algorithm based on water 

balance tuned by sensors (Domínguez-Niño., 2020), the combination of sensors close to 

the vertical of the dripper (location A30) with others in the middle between two 

neighbouring drippers (location B30) provide useful and complementary information. 

Moisture sensors aligned with the dripper provide an immediate response to the cycles 

of irrigation and water uptake by roots, while sensors between two drippers tend to 

display a slower dynamic which better represents the cumulative balance of the 

preceding period of several days. In our results, the best performing depth of 30 cm 

coincides with peak root activity. Other depths seem less favourable, with sensors at 15 

cm being the least repeatable and sensors at 60 cm the least responsive to the irrigation 

cycles. 

Our proposals for capacitive-sensor location for irrigation control are in line with 

other authors who used tensiometers on drip irrigated crops. Hodnett et al. (1990) 

recommended installing tensiometers along the dripline, below the root zone and inside 

the wet zone. Thompson et al. (2002), who considered the subsurface drip-irrigation of 

broccoli, suggested placing tensiometers midway between two plants located in the 

same row at a depth of 30 cm. However, Dabach et al. (2015), using HYDRUS 2D/3D to 

evaluate the optimum tensiometer location with ψ measurements in heterogeneous soil, 

determined that the optimal location was near the subsurface dripper. In addition, Nolz 
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et al. (2016), who monitored the soil water in a vineyard with Watermark sensors, 

determined that the representative measurement depth of water absorption by plants 

was 30 cm. 

 

5. Conclusions 

This study describes the variability in the measurements of SWC collected by 

capacitance-type soil moisture sensors in conditions of drip-irrigated orchards and 

analyses them in terms of uncertainty of the measurement process and possible 

variability of the actual quantities. The observed differences in sensor measurements 

were compared with the estimated potential perturbation as the result of factors such as 

the variability in the wetted area below the drippers, soil temperature, sensor calibration 

and the gradients of SWC within a wet bulb expected by simulations. The results 

obtained show that moisture sensors installed in the field experience more variability 

than the simulations. Our results suggest that the main source of uncertainty involved 

in these measurements is the exact positioning of the sensor within the actual wet bulbs, 

as these vary in size, shape and alignment with respect to the dripper in a magnitude 

that may explain the observed sensor-to-sensor differences. For its part, uncertainty in 

the measurements resulting from sensor calibration is only a fraction of the observed 

variability in data collected by sensors. This indicates that an increased accuracy in SWC 

measurements is considerably less relevant compared to the variability associated with 

the wetting pattern. The effect of temperature, with variation throughout the day and 

according to the position of the dripper, was especially notable in the EC5 sensors. The 

soil water dynamics represented by the HYDRUS-3D simulation could only explain a 

small part of the differences observed in the real sensors. These simulations probably 

correspond to an ideal wet bulb, symmetric and centred around the dripper with 

homogeneous soil characteristics and root distribution, in contrast with the arbitrary and 

sharply defined variations in these conditions that can occur in actual wet bulbs. 

According to the sensor response to irrigation, sensors closer to the dripper in 

position and depth (A15) respond quickly, have the highest amplitude and lowest 

repeatability and are sensitive to the water balance of the same day. For their part, the 

sensors positioned at greater depth and further away from the dripper (C60) respond 

slightly, have the lowest amplitude and highest repeatability and are sensitive to the 

water balance of the whole previous week.  

The analysis of the soil water dynamics allows the definition of candidate regions 

for monitoring. Positions and depths that provide more information for automated 

irrigation scheduling in a drip-irrigated orchard are also of interest to better understand 

the soil water dynamics. Given the variability of the system, it is convenient to locate 

sensors in repeat positions to make the interpretation more robust. In the context of 

automated irrigation scheduling based on the water balance tuned by soil moisture 

sensors , the recommended sensor locations could be a combination of sensors close to 
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the vertical of the dripper (position A) and other sensors midway between neighboring 

drippers (position B), both at 30 cm depth. 
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Abstract 

Automated software tools are required to undertake the routine tasks and decision-

making involved in scheduling irrigation. A key issue in this topic is how to integrate 

sensors in the scheduling approach. The objectives of this research were to test, in the 

context of drip-irrigated orchards: (a) the suitability of FAO’s water balance method, 

locally adjusted by sensors, as the basis for the scheduling algorithm, (b) the suitability 

of capacitance-type soil moisture sensors, and an approach for their automated 

interpretation, for providing feedback to the scheduling algorithm, and (c) the 

performance of these combined approaches in the autonomous scheduling of irrigation 

in an apple orchard with heterogeneous vigour. The trial consisted of applying for two 

years the proposed approaches using an experimental web application, IRRIX, which 

scheduled irrigation of two irrigation sectors, which differed in tree size. The automated 

system was compared with manual scheduling by a classical water balance and with the 

actual evapotranspiration determined by a weighing lysimeter located in the same 

orchard. Results show that the irrigation applied by the automated approach in the 

sector of larger trees agreed with the ET determined by the lysimeter and, overall, with 

the scheduling by an experienced irrigator using a classical water balance. Meanwhile, 

as a result of a different feedback from soil moisture sensors, the same system reduced 

irrigation in the sector of smaller trees by a similar amount to that expected from the 

differences between the two sectors in the fraction of photosynthetically active radiation. 

This study illustrates that the method of water balance complemented with capacitance-

type soil moisture sensors provides a sound basis for automated irrigation scheduling 

in orchards. 

 

Keywords: Irrigation control, drip irrigation, 10HS sensor, Internet of things, orchard 

automation, precision agriculture. 
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1. Introduction 

At the plot level, an appropriate irrigation scheduling promotes benefits such as 

saving water, decreasing environmental impacts and generating sustainable agriculture 

(Smith et al., 1996). In this context, the paradigm of precision irrigation emphasizes the 

variable-rate application of water according with the variability in weather, soil, crop 

properties and topography (Daccache et al., 2015). In practice, the variety of factors to 

take into account, together with the sequence of routine steps involved in scheduling 

irrigation, requires of farmers too much dedication, perseverance and expertise for 

conducting an optimized irrigation strategy. Consequently, digital tools are required to 

alleviate those requirements and enable commercial orchards apply precision irrigation 

with a feasible effort. 

As a basis for determining the irrigation schedules, the most common method for 

calculating irrigation requirements follows the approach of FAO’s soil water balance, 

where the water inputs in the soil-plant system are compared with the outputs 

(Doorenbos and Pruit, 1977). The major output is the evapotranspiration by the crop 

(ETC), which, under non-stress conditions, can be predicted from ETC = ETO × KC, where 

the evapotranspiration of a reference crop (ETO) is estimated by the Penman-Monteith 

method and KC is the crop coefficient characteristic of each crop (Allen et all., 1998). 

However, in horticultural crops, this approach can be quite uncertain since for a given 

crop species its KC may vary with factors such as spacing and orientation of the rows 

(Intrieri et al., 1998), the plant variety (Higgins et al., 1992), crop load (Wünsche et al., 

2000; Naor et al., 2008) and the size and shape of the canopy (Wünsche et al., 1995; Ayars 

et al., 2003; Girona et al., 2011; Marsal et al., 2014). In particular, the dependence of KC 

on the solar radiation intercepted by the canopy has previously being studied in apple 

orchards (Girona et al., 2011; Auzmendi et al., 2011; Marsal et al., 2013). Furthermore, 

automated dosing of irrigation proportional to the daily amount of solar radiation 

intercepted by the canopy has experimentally been tested in apple (Casadesús et al., 

2011). On the other hand, given the practical difficulties for a precise parameterization 

of the water balance, sensors can be used for an empirical site-specific adjustment. A 

simple approach is to set in the irrigation automata a general irrigation program, based 

on a conservative water balance and then, an automated system suppresses irrigation 

when the soil moisture exceeds a determined threshold (Muñoz-Carpena et al., 2005; 

Cáceres et al., 2008). A more elaborated approach is to determine irrigation doses by 

water balance but using the feedback from sensors for the empirical adjustment of Kc 

(Bacci et al., 2008; Casadesús et al., 2012). This combination of water balance and sensors 

sums up the ability to calculate irrigation volumes by water balance with the site-specific 

adaptive response to sensors. 

The choice of the sensing method for providing feedback must trade-off its 

reliability with the feasibility of its usage in farms. One of the most widely used types of 

sensors for irrigation management are soil water sensors of capacitance type (Kojima et 



Chapter IV 
 

175 

 

al., 2016; Bogena et al., 2017; Domínguez-Niño et al., 2019). Their functioning relies on 

the determination of the dielectric permittivity of the soil around the sensor, which 

mostly depends on the soil water content. Capacitance sensors have the advantage of 

being low cost and require little maintenance (Campbell, 1990; Kizito et al., 2008; Visconti 

et al., 2014). However, the response of these sensors varies with soil texture, presence of 

coarse elements, macropores, roots and soil compaction (Hignett and Evett, 2008). 

Furthermore, the dielectric permittivity is influenced by the temperature and by the 

electrical conductivity of the medium (Kizito et al., 2008; Kargas and Soulis, 2019). An 

additional complication in scenarios of localized irrigation is the heterogeneous 

distribution of soil water. In contrast with flood and sprinkler irrigation, where the water 

infiltrates on the most or all soil surface, in localized irrigation infiltration takes place 

directly in the area around the emitter (Cote et al., 2003; Irmak et al., 2016). This creates 

wet bulbs in the soil whose size and shape depend on many factors such as the soil 

hydraulic characteristics, the absorption by the roots, the evaporation from the soil 

surface, as well as the irrigation depth, relative position of the dripper, drip line sources 

spacing and quantity and frequency of the irrigation (Lazarovitch et al., 2007; Nafchi et 

al., 2011; Elmaloglou et al., 2013; Hao et al., 2016). All of these factors lead to one of the 

major difficulties in using capacitance sensors, which is the high variability between 

sensors even if installed at equivalent positions in the soil (Intrigliolo and Castel, 2004). 

Nevertheless, once a sensor has been installed, the effects associated with its exact 

position, including the properties of the soil around it, will be nearly constant (Rolston 

et al., 1991). Hence, one approach to deal with the variability between sensors is to field 

calibrate each individual sensor after installation (Evett et al., 2008; Evett et al., 2009; 

Mittelbach et al., 2012; Singh et al., 2018). A simplified field calibration approach for 

practical use in irrigation is to rescale the measurements by each sensor as relative to the 

measurements recorded by the same sensor under conditions of soil water at field 

capacity. In addition, to simplify dealing with the daily pattern of soil water content, the 

interpretation can focus in the driest measurement recorded each day (Casadesús et al., 

2012). The trend of this value, between consecutive days, has been proposed as an 

indicator of the resulting water balance in that period and has been used for tuning the 

water balance in an algorithm of automated irrigation scheduling (Casadesús et al., 2012). 

The overall goal of this research was to demonstrate the feasibility of automated 

scheduling irrigation in orchards, where, in practice, size and structure of the canopy 

can be a common source of variation. In particular, this study focused at testing: (a) the 

suitability of water balance locally tuned by sensors as the basis for irrigation scheduling 

in drip-irrigated orchards, (b) the unmanned interpretation of soil moisture measured 

by capacitance sensors as a source of feedback for the scheduling algorithm, and (c) the 

performance of these combined approaches in the autonomous scheduling of irrigation 

in an apple orchard with heterogeneous vigour. The study was conducted with an 

experimental web application, IRRIX, which implements the proposed algorithms and 

the methods for unmanned interpretation of capacitance sensors. On an apple orchard 
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with heterogeneous vigour, sectors with larger and smaller trees were scheduled during 

two seasons by the automated system using capacitance sensors. The trial looked at how 

the automated system behaved on sectors with different tree vigour and whether, with 

identical configuration, it was able to provide differential irrigation according to the 

differences in tree vigour. Additionally, the automated system was compared with 

manual scheduling by a classical water balance and with the actual evapotranspiration 

determined by a weighing lysimeter located in the same orchard. 

 

2. Materials and Methods 

2.1. Experimental design and irrigation treatments 

The apple orchard (Malus domestica Borkh. cv ‘Golden Reinders’) was located at the 

IRTA-Lleida Experimental Station in Mollerussa (41.6° N, 0.8° E, 260 m above sea level), 

Lleida, Spain, with a dry continental mediterranean climate. Apple trees had been 

planted in 2011, spaced at 3.63 m x 1.2 m oriented north-south. Irrigation was provided 

by means of a single pipe with drippers every 0.6 m, whose delivery rate was 3.5 dm3 h-

1. Some properties of the soil are shown in Table 1. One fraction of this plantation had 

been replanted after a previous apple plantation and, in this area, the trees were 

homogeneously smaller than in the rest of the orchard because of the apple tree replant 

disease (Laurent et al., 2010; Singh et al., 2017). The average Trunk Cross Sectional Area 

(TCSA) in the unaffected area was 40.55 cm2 while in the affected area it was 27.94 cm2. 

The trial consisted of the automated scheduling of two independent irrigation sectors, 

one in the area of larger trees (AUTO-L) and the other in an area with smaller trees 

(AUTO-S). These were compared with two sectors scheduled manually following a 

classical water balance, one with larger trees (MANUAL-L) and the other with smaller 

trees (MANUAL-S).  

Table 1. Soil properties sampled in the experimental site at two depths. 

Depth (m) 0 - 0.2  0.2 - 0.4  

Silt (0.002 < d < 0.05 mm) % 40.70 40.60 

Clay (d < 0.002 mm) % 23.50 23.90 

Sand (0.05 < d < 2mm) % 35.80 35.50 

USDA Soil Classification Loamy Loamy 

Soil Water content at field capacity (33 KPa) m3m-3 0.38 0.37 

Soil water content at wilting point (-1500 KPa) m3m-3 0.17 0.17 

Apparent density (Kg m-3) 1480 1500 

 

Manual irrigation scheduling consisted of the application of the FAO’s water 

balance (Allen et al., 1998), on a weekly basis, by an experienced irrigator, using ETO 

from the previous week recorded by a weather station located in the same farm and crop 

coefficients (KC) determined in previous years by the weighing lysimeter included in the 

same orchard. In these sectors, irrigation was controlled by solenoid valves operated by 

a commercial automata, Agronic 4000 (Sistemes Electrònics Progrés, Palau d’Anglesola, 

Lleida, Spain) which was programmed remotely, every Monday, through the desktop 
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application provided by the manufacturer. All irrigation sectors were equipped with the 

same model of water meter, CZ3000 (Contazara, Zaragoza, Spain), that were recorded at 

least twice per week, apart from the scheduling application. The manual scheduling 

made no distinction between MANUAL-L and MANUAL-S and applied a homogeneous 

irrigation program to the whole orchard, based on the estimated requirements of the 

larger trees, which mirrors the expected practice in a commercial farm. 

 

2.2. Deployment and management of the automated scheduling 

One datalogger, model CR800 (Campbell Scientific, INC., Logan, UT, USA) was 

used in the automated sectors for both recording sensors and commanding irrigation 

valves. The datalogger was equipped with a multiplexer AM16/32 (Campbell Scientific, 

INC., Logan, UT, USA), to increase the number of sensor channels, which were measured 

every 15 seconds and the average of 5 minutes was stored. A 3G modem MTX-3G-JAVA 

(MTX, Flexitron Group, Madrid, Spain), allowed remote communication through 

Internet Protocol. In addition, a four-channel latching relay LR4 (Campbell Scientific, 

INC., Logan, UT, USA) enabled the datalogger open and close the irrigation valves of the 

AUTO sectors, model ¾” AquaNet Plus (Netafim). The program in the datalogger, 

written in CR Basic (Campbell Scientific, INC., Logan, UT, USA), implemented the 

functionalities of an irrigation automata. Four times per day, the web application polled 

the datalogger for new sensor data and once per day, typically at 02:30 GMT, IRRIX sent 

to the datalogger the irrigation doses of each sector, in mm, for the new day. 

Communication between the IRRIX server and the datalogger used the API PackBus 

SDK (Campbell Scientific, INC., Logan, UT, USA). During the day, independently for 

each sector, at the appointed time, 8:00 AM, the datalogger started irrigation and ended 

it when it had measured the scheduled dose. 

Each automated sector was equipped with six capacitance-type soil moisture 

sensors, 10HS (METER Group, Pullman, WA, USA), which were recorded by the 

datalogger in units of soil water content (m3 m-3) using the general calibration for mineral 

soils proposed by the manufacturer. These sensors have one body with two 14.5 cm long 

prong, spaced 3.3 cm, which gives an apparent permittivity measurement volume of 

around 1 dm3 (Sakaki et al., 2008). All soil sensors were installed at 30 cm depth, three of 

them centered 15 cm from the vertical of the dripper, perpendicular to the irrigation pipe, 

and the other three at the mid-point between two drippers. Each automated sector was 

equipped with a water meter with a resolution of one pulse per litter, model Multijet 

M15 (Arad Group, Dalia, Israel), which were used by the datalogger for controlling the 

delivery of the appointed doses. In addition, a temperature sensor, model VP3 (METER 

Group, Pullman, WA, USA), provided a continuous measurement of air temperature that 

was used by IRRIX for the estimation of ETO using Hargreaves equation (Hargreaves 

and Samami, 1985). 

The settings of AUTO-L and AUTO-S in the automated scheduling application were 

exactly the same, while they were equipped with separate sets of soil moisture sensors 
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which would provide independent feedback to the scheduling algorithm. 

 

2.3. Web platform for irrigation control: IRRIX 

IRRIX is a custom-made software for research on sensor-based irrigation scheduling. 

It can operate autonomously during the whole irrigation season, with a daily routine 

that includes uploading sensor data from the field, analysing those data, updating the 

water balance, deciding the next irrigation doses at each plot and transmitting them to 

the automata in the field. The scheduling approach used by IRRIX consists of estimating 

the crop water requirements by the method of water balance (Allen et al., 1998) and use 

the feedback from sensors for adjusting empirically the irrigation doses of each sector 

(Casadesús et al., 2012). Basically, the daily irrigation doses (DID), in mm, were 

determined on a daily basis as:  

 

DID = ETO × KX (Eq. 1) 

  

Where ETO was the reference evapotranspiration estimated by the Hargreaves equation 

using as input the air temperature recorded by the datalogger. KX was initialized as a 

crop coefficient and, later on, independently for each sector, it was iteratively adjusted 

on a daily basis from feedback by the sensors. 

In order to provide a seasonal vision of irrigation, and to enable in other studies 

the application of certain types of irrigation strategies, IRRIX requires the definition of a 

seasonal plan. The seasonal plans of IRRIX specify, for every day of the irrigation season, 

the acceptable ranges for (a) the accumulated irrigation; (b) the weekly water unbalance; 

and (c) the range of crop’s water comfort in terms of the monitored Normalized Soil 

Water Content (NSWC). In the seasonal plan for this trial, the range of accumulated 

irrigation and the weekly balance were set sufficiently wide to avoid limiting the 

response to sensors (Figure 1). Sectors AUTO-L and AUTO-S were configured exactly 

with the same seasonal plan, which was also the same for 2017 and 2018. 
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Figure 1. Seasonal plan configured in IRRIX for AUTO-L and AUTO-S. The plan specifies (A) 

acceptable range of irrigation, (B) acceptable weekly water unbalance and (C) crop’s water 

comfort in terms of the NSWC recorded by sensors. 

 

Interpretation of the soil moisture sensors by IRRIX focused at the trend, between 

consecutive days, of the driest measurement of each day, SWCd. In order to manage the 

variability between sensors, IRRIX normalized those values between the measurable 

range of each individual sensor as defined by its actual reading at field capacity and the 

presumed wilting point for that soil textural class. Hence, the NSWC, dimensionless, 

was calculated as:  

 

NSWC = 
(SWCd  −  SWCWP) 

(SWCFC  −  SWCWP)
 (Eq. 2) 

 

Where SWCd was the driest soil water content measured by the sensor at given day (m3 

m-3), SWCFC was the highest daily minimum of the soil water content (SWCd) recorded 

by a sensor in a period of reference at the start of the season, under conditions near field 

capacity. In this context, the purpose of SWCFC is just to provide an empirical reference 

for that sensor near its high end of scale. Figure 2 shows an example of the empirical 

setting of SWCFC for one sensor. Since normal growing conditions were far from wilting 

point, SWCWP was not empirically based but set at the typical SWC at wilting point for 
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that soil textural class. Table 2 shows the references set to the different sensors involved 

in this study. 

 

 
Figure 2. Example of setting the reference of a sensor at field capacity, SWCFC. Following 

rainfall (33 mm) on March 24th, the daily driest measurement on March 28th was taken as the 

SWCFC for this sensor. Irrigation started in April 20th. The continuous line is the data recorded 

by the sensor. Dots are the driest measurement each day, SWCd. 

 

Table 2. References used by IRRIX for normalizing the daily driest measurements to the span 

between SWCWP and SWCFC for each sensor. The values of SWCFC were assigned empirically in 

March 2017 as shown in Figure 3. The values for SWCWP were set to the presumed soil water 

content at wilting point for this soil texture. 

sensor 
AUTO-L  AUTO-S 

SWCWP SWCFC  SWCWP SWCFC 

1A 0.15 0.363  0.15 0.356 

1B 0.15 0.364  0.15 0.347 

2A 0.15 0.368  0.15 0.318 

2B 0.15 0.360  0.15 0.338 

3A 0.15 0.392  0.15 0.324 

3B 0.15 0.384  0.15 0.345 

In order to enforce its tolerance to sensor failures, the daily analysis of sensor data 

by IRRIX included rating the reliability of each sensor. These automated ratings started 

assigning to each sensor a reliability of 1.0 and when IRRIX detected values out of range, 

noise or abnormal patterns, the reliability of the sensor was penalized, which could 

decrease its value down to 0.0. The advantage of this method is that, if a sensor is broken 

or disconnected for any reason, IRRIX can automatically detect this situation, assign it a 

reliability of 0.0 and keep the aggregated value safe from its influence. To obtain a single 

value to summarize the state of an irrigation sector, IRRIX aggregated the NSWC 

obtained by the six sensors installed on a sector through a weighted average. In this trial, 

the weight of each sensor was its current rating of reliability, updated with the same set 

of data being summarized.  

In order to provide feedback to the scheduling algorithm, IRRIX evaluates every day 

the state of an irrigation sector as either “to dry”, “to wet” or “fitted”. From the current 

value of aggregated NSWC and its trend in the last 3 days, it calculates the projected 

value after 3 days, NSWC+3d. If NSWC+3d is below the comfort zone specified in the 

seasonal plan, then the state of that sector is evaluated as “too dry” and the response of 
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IRRIX consists of increasing KX by the estimated amount to fill in three days the soil wet 

bulbs up to the water content corresponding to the midst of the comfort zone. If NSWC+3d 

is above the comfort zone, it is evaluated as “too wet” and the response aims at reaching 

the midst of the comfort zone at the wet bulbs in 7 days. In either case, the change in KX 

is conditioned to fulfil the conditions of accumulated irrigation and water unbalance 

specified in the seasonal plan. 

 

2.4. Measurement of ETC by weighing lysimeter 

The same orchard where this trial was conducted is equipped with two weighing 

lysimeters that provide a continuous measurement of crop evapotranspiration (Girona 

et al., 2004). These lysimeters contain four apple trees each, grown in equivalent 

conditions than the rest of the plantation. The ETO used in the lysimeter was the Penman-

Monteith evapotranspiration, determined by an automated meteorological station, 

located next to the orchard, operated by the Catalan Meteorological Service. Due to 

maintenance operations, in the period from March to July 2017 the lysimeters were not 

operative and the daily ET values for that period were estimated from the KC values 

determined in 2018 corrected by the ratio between KC measured in August of both years, 

as:  

 

ETd2017= ETod2017 × Kcd2018 × 
KcAugust2017

KcAugust2018
 (Eq. 3) 

 

2.5. Physiological and agronomical measurements. 

Stem water potential (SWP) was determined once a week using a pressure chamber 

(3005-series portable plant water status console, Soil Moisture Equipment Corp., Model 

3005, Santa Barbara, CA, USA) following the method described by McCutchan and 

Shakel (1992) procedure. Measurements were made at solar noon on shaded leaves 

located close to the main trunk. Previously, leaves were covered with plastic sheathes 

with aluminium foil bags to minimize transpiration and keep in balance with the xylem 

of the tree.  

The differences in vigour between the large and small trees were quantified in terms 

of fraction of photosynthetically active radiation intercepted by the canopies (FIPAR) 

along the whole day. The measurement method was similar to the Fisheye Photography 

described by Wünsche et al. (1995) and consisted on taking hemispheric photos from 

below the tree, following a pattern that covered the entire planting space. The 

photographs were taken with a digital camera Nikon D70 and a 10-17 mm AT-X Tokina 

fish-eye lens on a self-leveling support that held the camera 10 cm above ground. The 

photographs were processed to calculate the daily solar path on each picture and analyse 

the fraction between treetop pixels and background -i.e. blue sky- at the different sun 

positions along the day. 
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To determine yield and its components, the central five apple trees of each plot were 

individually harvested and the collected fruits counted and weighted to determine total 

yield (kg of fruits per tree) (Yield) and after passing the fruits for a grade, and removing 

fruits smaller than 70 mm, the remaining ones were used to determine Commercial Yield 

(kg·tree-1 and t·ha-1) (CY). Yield Index (YI) (kg of total yield·CTSA-1) (kg·cm-2) and 

Commercial Yield Index (CYI) (kg of commercial yield·CTSA-1) (kg·cm-2) were also 

determined to compare the effects of treatments in fruit production. Because of the 

location and distribution of the different plots within the orchard, each individual tree 

was used as a repetition resulting a strip plot design. Statistical analyses were carried 

out with SAS (SAS Institute, Cary, NC, USA, version 9.4).The effects of treatments were 

analysed by means of the general linear model (GLM) procedure, and differences among 

means were compared with the LSmeans followed by Tukey-Kramer adjustment, with 

the statistical significance established at P ≤ 0.05. 

 

3. Results and discussion 

3.1. IRRIX performance and interpretation of sensor data 

The trees in sectors AUTO-S and MANUAL-S had, through the duration of the trial, 

a visually lower vigour than those in the rest of the plot, including AUTO-L, MANUAL-

L and the lysimeter. The ratio between FIPARAUTO-S and FIPARAUTO-L was persistently 

around 0.88 during the whole period of study (Figure 3).  

 

 
Figure 3. Fraction of intercepted photosynthetically active radiation (FIPAR) in the irrigation 

sectors with large (L) and smaller (S) trees during the years 2017 and 2018. 

 

Interaction of the research team with the web application IRRIX concentrated in 2017 

before season, when the seasonal plan was established and the references for each sensor 

were set. During the irrigation seasons of 2017 and 2018 IRRIX operated autonomously 

and the participation of the research team consisted in supervising the normal 

development of the irrigation plan, by connecting once/twice per week to IRRIX and 

checking for common anomalies that would require a physical repair, such as 

malfunction of the irrigation system or the sensors.  

Data recorded by soil moisture sensors used to show clear responses to irrigation, 

rain and water uptake by the crop, as illustrated in Figure 4, which shows a period that 
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includes rain events and an interruption in water supply. As shown in Figure 4a, at the 

daily scale the timing of irrigation was programmed to concur with ETO. However, 

irrigation did not necessarily fluctuate between days with ETO, because the control 

algorithm may vary at any time the proportionality between irrigation and ETO. The soil 

water content recorded by sensors showed a clear daily pattern, with a peak during 

irrigation, followed by a decrease that may be attributed to the redistribution of water in 

soil plus uptake by roots. In days without irrigation, sensors showed a clear decrease in 

water content during transpiration hours and still values at night. Most rain events could 

be observed as a rise in soil water content unaligned with irrigation. 

 

 
Figure 4. Example of sensor data for the sector AUTO-S in an early part of the season of 2018. 

(A): irrigation, ETO and rainfall, and how they accumulate each day. Notice an interruption of 

irrigation for three days due to an external anomaly, marked in grey. (B): the original soil water 

content, SWC, recorded by the six soil moisture sensors installed in AUTO-S. On each line, a dot 

indicates the daily driest measurement, SWCd. (C): the SWCd of each sensor normalized to the 

span between its readings at wilting point and field capacity, NSWC. 

 

Despite the coherent responses of individual sensors to irrigation, rain and water 

uptake by the crop, a large variation was observed between sensors, which fluctuated 

with similar patterns but shifted at different positions in the scale of soil water content 

(SWC). As shown in Figure 4b, the scatter between sensors in SWC was twice as large as 

the typical fluctuation of a sensor in a daily cycle and, also, larger than the effect of 
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suppressing irrigation for several days. Sensor-to-sensor variability in the soil moisture 

recorded by capacitance-type sensors has frequently been reported (Intrigliolo and 

Castel 2004; Hignett and Evett, 2008; Kizito et al., 2008; Kargas and Soulis, 2011). Such 

variation could partially be explained by the small volume of soil perceived by a 

capacitance sensor, around 1 dm3 in sensor 10HS (Sakaki et al., 2008), whereas the soil 

electrical permittivity at that scale of observation may vary at different spots as affected 

by macropores, soil density or stones (Hignett and Evett, 2008). In addition, under 

conditions of localized irrigation wet bulbs develop below the emitters, determining a 

very heterogeneous pattern of soil moisture (Samadianfard et al., 2012). To cope with 

such variability, some authors recommend installing sensors at two or more depths or 

positions (Dursun and Ozden, 2011; Casadesús et al., 2012; Lea-Cox et al., 2013; Soulis et 

al., 2015; Domínguez-Niño et al., 2019).  

Regarding the interpretation of sensor data, an approach for handling the variability 

between sensors is to look at the dynamics rather than the absolute readings. IRRIX 

focuses on the trend of SWCd (Figure 4b), with the assumption that the driest situation 

after a cycle of irrigation, redistribution and uptake by roots summarizes the aggregate 

outcome of those processes. Moreover, the trends of SWCd in consecutive days may 

follow the soil water balance and be used for rating the fit between irrigation and the 

crop water requirements (Casadesús et al., 2012). Besides its dynamics, another 

informative trait of SWCd is its relative position within the particular span of 

measurements by that sensor, which can be specified by normalizing the value of SWCd 

between the readings of that sensor at wilting point and field capacity (Figure 4c). Hence, 

one normalized, the dataset including different sensors can offer a more straightforward 

view of the soil water dynamics than the original readings, whose overall pattern may 

be partly obscured by the variability in the baseline of each sensor. Additionally, as it 

can be observed in this example, variability between sensors was highest when the 

average soil moisture was lowest, and that the variability was reduced at higher soil 

moisture, specially following rain. This observation may endorse the interpretation that, 

under localized irrigation, short irrigation doses can cause larger variability because 

while some spots can still be wetted, the shrunk wet bulbs leave some spots outside the 

wetted volume. Swelled bulbs may re-include those spots and the sensors there and, 

hence, reduce their variability. Accordingly, aggregation of the different sensors once 

normalized may offer a sounder basis for decision making compared with the direct 

readings.  

 

3.2. Applied irrigation 

Overall, the seasonal amount of irrigation applied in AUTO-L was similar to that 

applied by an expert using water balance in the MANUAL treatment, and similar also 

to the ETC measured by the lysimeter, while AUTO-S applied 24 % less irrigation (Figure 

5). In 2017, AUTO-L applied a total irrigation volume of 666.0 mm, similar to MANUAL 

(only differed by a 1.0%), while in 2018, AUTO-L irrigated 724.7 mm, 4.9 % more than 
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MANUAL. In both years, AUTO-S applied lower doses than AUTO-L (23.7 % and 27.2 % 

less in 2017 and 2018, respectively) and MANUAL (24.5 % and 23.4 % less in the year 

2017 and 2018, respectively). The seasonal amount of irrigation applied in AUTO-L was 

in agreement with the ETC measured by the lysimeter (differences of 6.1 % and 0.9 % in 

the years 2017 and 2018 respectively), while the irrigation in AUTO-S was considerably 

lower than the ETC at the lysimeter (-18.7 % and -27.9 % for the year 2017 and 2018 

respectively). Figure 5 shows how those volumes accumulated along the season.  

 

 
Figure 5. Seasonal accumulated values of ETO, rain, ETC and irrigation in 2017 (A) and 2018 (B). 

 

3.3. Response of the automated irrigation scheduling 

With a greater detail, the functioning of the automated scheduling is illustrated in 

Figure 6. The span of time shown in the figure corresponds to the part of the season in 

2018 where the irrigation requirements were highest. In that period, the measured ETO 

fluctuated between 3.4 and 6.1 mm and ET measured by the lysimeter was slightly 

higher than ETO, with an average KC of 1.03. In both AUTO-L and AUTO-S, IRRIX tried 

to keep the soil moisture, here expressed as NSWC, within the comfort zone specified in 

the seasonal plan. However, the observed pattern of soil moisture response to irrigation 

by these two sectors was different, which caused that they required different 

adjustments to maintain the comfort zone. AUTO-L used to remain in the lower part of 

the comfort zone and several times it decreased below the lower limit of comfort. Hence, 

IRRIX often evaluated that the state of the soil, or its projection for the next days, was 

“too dry” and it adjusted the irrigation coefficient of AUTO-L upwards. On the other 

hand, AUTO-S used to remain easily in the upper part of the comfort zone and several 
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times its moisture level surpassed the upper limit of comfort. Consequently, in those 

occasions where IRRIX evaluated that the state of the soil, or its projection in the next 

days, were “too wet”, IRRIX adjusted the irrigation coefficient downwards. As a result, 

within that period, the average irrigation coefficient for AUTO-L was 0.97, and 47.2 % of 

the time it was above the presumed KC value. Meanwhile, the irrigation coefficient for 

AUTO-S was on average 0.75, and most of the time below 1.0, which was the presumed 

KC at the time of preparing the seasonal plan. All those adjustments of the irrigation 

coefficients produced different irrigation doses in the two automated sectors, with 

average daily doses of 5.6 mm and 4.4 mm in AUTO-L and AUTO-S, respectively, and 

73.6 % of the time AUTO-S with a lower irrigation dose than AUTO-L. 

Incidentally, within the period shown in Figure 6, a power cut following a small 

storm in July 20th produced an interruption of irrigation for two days, which triggered 

different responses in the two automated sectors. In AUTO-L, the lack of irrigation 

immediately produced a decrease in soil moisture, which stimulated the irrigation 

coefficient and helped in approaching the comfort zone after the incident. In contrast, in 

AUTO-S, the soil moisture was maintained probably because the rainfall could 

compensate the missing irrigation and, furthermore, the next irrigation after this event 

raised the soil moisture above the comfort zone, causing a decrease in the irrigation 

coefficient some days later.  

These results show how the control algorithm of IRRIX, without using information 

of tree vigour, applied a differential irrigation because the moisture sensors perceived 

that soil water was depleted faster in AUTO-L than in AUTO-S. Previous studies at the 

same site had looked at the effect of tree canopy on irrigation requirements. In particular, 

lysimeter data from a previous apple plantation showed a strong relationship between 

FIPAR and KC (Girona et al., 2011). Using the relationship described in Girona et al. (2011) 

with the FIPAR measured in this trial, we estimate that KC at AUTO-S would be 21% 

below the KC at AUTO-L. This value fits closely with the response of the automated 

algorithm in the present study, where the amount of irrigation applied to AUTO-S was 

23% lower than the amount applied to AUTO-L.  
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Figure 6. Example of the adaptive response of the automated irrigation scheduling during the 

period of highest irrigation demand in 2018. (A): ETO, rainfall and ETC by a weighing lysimeter 

with large trees. (B): soil moisture in the two automated sectors, normalized to sensor-specific 

references, with a grey band indicating the comfort zone configured in IRRIX. (C): response of 

IRRIX, modulating the irrigation coefficient KX in the automated sectors. (D): irrigation doses 

scheduled on each automated sector and by a manual water balance. In 21st and 22nd July the 

schedules were not applied because of a power cut in the farm. Labels L and S indicate large 

and small trees, respectively 

 

3.4. Physiological and agronomical results 

Measurements of stem water potential were aligned with the values obtained by 

Girona et al. (2010) (between -0.8 MPa and -1.3 MPa). The measured stem water potential 

showed slightly more negative values in the smaller trees, regardless of whether 

irrigation was scheduled automatically or manually (Figure 7). More precisely, during 
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the year 2017, in MANUAL-L and AUTO-L, the stem water potential remained between 

-1.3 MPa and -0.7 MPa and in MANUAL-S and AUTO-S they were between -1.5 MPa 

and -0.7 MPa. During the year 2018, in MANUAL-L and AUTO-L, the stem water 

potential remained between -1.2 MPa and -0.7 MPa and in MANUAL-S and AUTO-S 

they were between -1.3 MPa and -0.7 MPa. In the manual treatment, it can be noticed 

that, even though MANUAL-S received the same irrigation than MANUAL-L, their stem 

water potential used to be lower. This may be explained by the diagnosed cause of their 

smaller size, the apple replant disease. That disease affects the root system (Laurent et 

al., 2010; Singh et al., 2017) and the lower SWP may be a consequence of the limited 

hydraulic conductance of their root system. Therefore, taking into account the measured 

SWP and the effect of this disease, the data suggests that trees in AUTO-S were not water-

limited by irrigation.  

 
Figure 7. Stem water potential on the different irrigation sectors in 2017 and 2018. AUTO sectors 

were automated with IRRIX. MANUAL sectors were scheduled by classical water balance. 

Labels L and S indicate large and small trees, respectively. Error bars indicate the standard 

deviation. Grey band indicate the acceptable range of stem water potential in non-water limited 

conditions. 
 

The yield of this apple orchard (Table 3) showed a large variation between the two 

years of the study, mainly attributed to a poor fruit set in 2017, which was also clearly 

identified in the whole area. However, no statistical differences were found between 

treatments for the main productivity indicators when analysing the harvest data for the 

whole experimental period (Table 3). Because of the commercial thinning practices, no 
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differences were observed on yield between large and small tress, and more important 

no statistical significant differences were found on CYI (commercial yield index) and YI 

(yield index). Therefore, it can be stated that no negative effects of the automated 

management were observed on yield, either in the larger trees, which were irrigated a 

similar amount to classical water balance, or in smaller trees, where the automated 

algorithm saved 23 % of irrigation volume. 

 

Table 3. Analysis of Variance and Mean Separation summary for the orchard yield parameters 

whole experiment (two years). 

  Variables 

 df CY FL FFW YI CYI TCSA 

  Signification (Pr > F) 

Model 12 0.0386 0.0461 0.1388 0.0343 0.0856 0.0059 

Treatments 3 0.5544 0.0876 0.0077 0.6764 0.1537 0.0001 

REP 4 0.9400 0.9855 0.9446 0.5946 0.4044 0.2255 

Year 1 0.0001 0.0003 0.3956 0.0001 0.0018 - 

Rep * Year 4 0.9034 0.9029 0.4846 0.9889 0.9554 - 

  TRT Mean Separation 

MANUAL-L  41826 163 176.6 b 0.648 0.445 40.93 a 

AUTO-L  39771 105 213.3 a 0.560 0.435 40.17 a 

MANUAL-S  37496 112 177.4 a 0.692 0.588 28.50 b 

AUTO-S  34089 96 173.9 b 0.709 0.628 27.38 b 

  Year Mean Separation 

2017  28815 b 79 b 181.6 0.431 b 0.401 b - 

2018  47763 a 160 a 188.9 0.873 a 0.648 a - 

CY = Commercial yield (kg·ha-1); FL = Fruit Load (fruits·tree-1); FFW = Fruit Fresh Weight (kg); YI 

= Yield Index (Total production·CTSA-1)(kg·cm-2); CYI = Commercial Yield Index (YI·CTSA-1) 

(kg·cm-2); TCSA = Trunk Cross Sectional Area (cm2); df = degrees of freedom; Means within 

column (within treatments or years) followed by different letters were significantly different at P 

≤ 0.05 using Tukey-Kramer adjustment. 

 

3.5. Irrigation scheduling approach 

Overall, this study tested the performance of scheduling irrigation through an 

automated water balance approach tuned by capacitance-type soil moisture sensors. 

Here, we observed how the adaptive response allowed spontaneous adjustment to a 

component of the water balance, in this case the low ET associated to low vigour, that 

had not been considered in the original configuration of the water balance. This 

experience may exemplify the capacity of this approach to confront site-specific 

conditions that would be difficult to parameterize in a deterministic model. As another 

example, a previous version of the algorithm showed a spontaneous adaptation to the 

presence of groundwater (Casadesús et al., 2014), which would otherwise be omitted in 

the management of irrigation.  

Regarding the choice for a base scheduling method, the water balance approach 

provides an effective method for fitting irrigation to the encountered weather conditions 

(Allen et al., 1998). While irrigation controllers based on water balance are commercially 
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available for turfgrass (Davis and Dukes, 2014), their application to orchards would be 

more complicated because of the much larger uncertainty of crop coefficients. That 

uncertainty was solved here through feedback from sensors, which provided an 

empirical site-specific adjustment of the ratio of irrigation to ETO. Other alternative 

sensor-based approaches use predefined thresholds either to trigger irrigation when the 

soil is too dry (Dukes and Scholberg, 2005; Osroosh et al., 2016; Vera et al., 2019) and/or 

to bypass a timer-triggered irrigation when the soil is too wet (Smajstrla and Locascio, 

1996; Cáceres et al., 2007; Muñoz-Carpena et al., 2008). Some advantages of water balance 

tuned by sensors are that its response is smoother and more predictable than occasional 

switching on/off valves. Additionally, it allows modulating the daily irrigation depth of 

each sector without disturbing the hydraulic scheme for the whole farm, while irrigation 

triggered directly by sensors can switch valves on at arbitrary times, complicating the 

operation of the farm’s hydraulic system. 

 

4. Conclusions 

The results of this trial show the feasibility of automated sensor-based scheduling 

of irrigation in orchards. The algorithm, based on the approach of water balance and 

tuned locally through feedback from sensors, provided precise irrigation doses along the 

season, adapting itself to weather conditions and to the seasonal vegetation cycle of the 

crop.  

Capacitance sensors have successfully been used to provide automated feedback to 

the scheduling algorithm. In spite of the observed sensor-to-sensor variability – 

comparable with that reported by other authors – the approach followed here allows a 

consistent mechanism for their unmanned interpretation and integration with decision-

making. First, the summarization of the daily fluctuation of soil water content on the 

daily driest measurement focuses the analysis on a simple parameter whose day-to-day 

dynamics retains much of the information on the fit between irrigation and the crop 

water demand. Second, the sensor-specific normalization of those daily values reduces 

the scatter between sensors and brings a more intelligible dataset on which to base 

automate control. This trial shows how the irrigation doses determined by the algorithm 

are aligned with the ET measured on the same orchard by a weighing lysimeter. The 

irrigation doses applied by the automated approach are also comparable with those by 

a skilled irrigation technician though requiring less labour effort. Furthermore, the tested 

algorithm adapts itself to heterogeneous tree vigour, applying less irrigation to sectors 

with smaller trees in a proportion that fits previous lysimeter studies on the relationship 

between KC and FIPAR. Therefore, this indicates that the algorithm could be suitable for 

horticultural application, where adaptation to site-specific vigour are a common concern. 
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In the present PhD thesis the soil water dynamics in localized irrigation and the 

response of capacitance soil moisture sensors were characterized in order to understand 

and optimize the use of these sensors in irrigation scheduling. 

 

Chapter I evaluated the suitability of performing sensor and soil-specific 

calibrations instead of using the factory calibration. The two-step calibration approach 

allowed the soil water content measured by the 10HS capacitance sensors to be more 

accurate than the factory calibration.  

 

In the first calibration step, sensor response was related with dielectric permittivity 

using media with well-defined permittivity and an appropriate sensor response 

permittivity (SRP) model. When we used a universal SRP model, the overall RMSE for 

the apparent dielectric sensor permittivity, Ka, and equivalent soil water content, θeq, 

were 1.42 and 1.21 vol.% When we used a universal SRP model, the overall RMSE for 

the apparent dielectric sensor permittivity, Ka, and equivalent soil water content, he, were 

1.42 and 1.21 vol.% respectively. Rosenbaum et al. (2010) obtained a similar RMSE for Ka 

with values between 1.2 and 1.5 for 5TE and EC-5 capacitance sensors, respectively. 

However, Bogena et al. However, Begena et al. (2017), who used SMT-100 sensors, 

improved the results with an RMSE for Ka of 0.87 and an RMSE for θeq of 0.95 vol.%. 

When we used a specific calibration, the RMSE improved to respective values of 0.43 and 

0.64 vol.%. Other authors such as Sakaki et al. (2008), who used EC-5 sensors, found a 

similar accuracy for dry sand (RMSE = ± 0.5 vol.%) and a lower accuracy for saturated 

sand (RMSE = ± 2.8 vol.%), whereas Rosembaum et al. (2010) found a lower accuracy 

with an RMSE of 0.80 and 1.40 vol.%. However, Qu et al. (2013) managed to improve 

results to an RMSE of 0.23 and 0.40 vol.% when using SPADE sensors.  

 

In the second calibration step, the apparent dielectric permittivity and soil water 

content were related using undisturbed soil samples and TDR measurements. The Topp 

model (Topp et al., 1980) was used, which only considers the measured apparent 

dielectric permittivity (Ka), as well as different variants of the CRIM model (Birchak et 

al., 2014), which additionally considers the dielectric permittivity of solid phase (Ks), 

porosity (), the dielectric permittivity of the air (Kair) and the temperature dependent 

dielectric permittivity of water (Kw). The best option was the CRIM model variant which 

considers mean porosity per soil and depth and fits the Ks for each soil and depth, 

achieving an RMSE of 1.37 vol.%. These results improved the accuracy of the results 

obtained by Robinson et al. (1998), who evaluated Wet2, 5TE and 10HS sensors in soil 

with variable texture and obtained an RMSE between 3.4 and 7.3 vol.%. In addition, other 

authors who used the CRIM model such as Rosenbaum et al. (2012) and Qu et al. (2016) 

obtained higher RMSE values of 2.9 vol.% and 2.2-28 vol.%. After the two calibration 

steps had been carried out separately, they were combined (SRP model + CRIM model) 
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to obtain sensor response-SWC relationships and the results were then compared with 

those of factory calibration. As in Spelman et al. (2013), the predicted factory SWC was 

substantially higher than the SWC obtained using the two-step calibration. To confirm 

this difference, an experiment was conducted to compare the volumetric SWC 

determined gravimetrically with the SWC determined by 10HS sensors using factory 

calibration and the SRP model combined with the Topp equation (Topp et al., 1980). 

According to the results we obtained, the factory calibration RMSE was five times higher 

than that obtained by a two-step calibration (5.33 vol.% versus 1.03 vol.%). Fares et al. 

(2013), who studied the effect of organic matter on SWC by 10HS sensors, obtained 

factory calibration results (RMSE = 5.3 – 7.2 vol. %) in agreement with our results, 

although when they used the two-step calibration they obtained a lower accuracy than 

us (RMSE = 1.3-1.0 vol.%). Matula et al. (2016), who used soil media with different bulk 

density, also found similar results for various ECH2O sensors (RMSE factory calibration 

= 3.3 vol.% and RMSE two-step calibration = 1.3 vol.%). These comparisons confirmed 

the high accuracy of the two-step calibration method and the limited accuracy of factory 

calibration for 10HS sensors.  

 

The two-step sensor calibration produces repetitive readings between sensors 

(Domínguez-Niño et al., 2019, Rosenbaum et al., 2010) and improves SWC measurement 

accuracy. However, when the sensors are installed in a drip-irrigated orchard, even if 

arranged in equivalent positions, the improvement due to calibration is minimal because 

the SWC readings are affected by other factors of higher variability (Nagahage et al., 

2019). In our study, as indicated in Chapter III, measurements with the TDR Fieldscout 

300 were one of the factors that generated fluctuations in the SWC readings in a drip-

irrigated orchard of the wet area under the dripper, which had variability in its size, 

shape and alignment to the dripper (RMSE: 0.05 cm3 cm-3 at the depth of 15 cm and 0.02 

cm3 cm-3 at the depth of 60 cm). Soil temperature, both in depth and in relative distance 

to the dripper, also affected the sensor readings. This effect was higher at shallow and 

sunlit positions and lower at deeper and shaded positions. As Rosenbaum et al. (2011) 

also observed, in our work the temperature differences mainly affected the readings of 

the EC-5 sensors, whereas the effect on the 10HS sensors was less clear. In addition, with 

a sensitivity range of 10HS sensors of about 1 L, any spatial properties such as the 

presence of macropores and gravels (Rowland et al., 2011), microvariations in density 

(Parvin and Degré, 2016), uneven root distribution (Kang et al., 2019) or uneven soil 

temperature distribution (Gonzalez-Teruel et al., 2019) can cause variations in SWC 

measurements. 

 

 

In Chapter II, the HYDRUS 3D model was parametrised using soil hydraulic 

parameters obtained from Rosetta and HYPROP + WP4C models from undisturbed soil 
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samples. Firstly, the model was adjusted on a daily basis using neutron probes located 

in different positions around the dripper and, later, the simulations were validated on a 

daily and hourly basis using a neutron probe and tensiometers. 

 

The neutron probe SWC measurements in different moments of the year were 

compared with HYDRUS-3D simulations. First, the soil hydraulic parameters obtained 

from Rosetta were used and found to be valid for general trends, achieving good 

agreement especially in positions near the wetting pattern and at 40-60 cm depth (R2 = 

0.94). However, the simulations showed an overestimation of the SWC (RMSE = 0.62 cm3 

cm-3) and low prediction of the model. Overall, when HYDRUS-3D simulations used the 

soil hydraulic parameters from Rosetta, the Ks was underestimated and resulted in slow 

water drainage and SWC closer to saturation. One of Rosetta's limitations was the 

imprecision of the soil hydraulic parameters obtained as the model was designed for 

temperate zone soils (Bastet et al., 1999) and gave more importance to the texture of the 

soil than to its structure and mineralogy (Carsel and Parrish, 1988, Wösten et al., 1999). 

 

Secondly, the combination of the HYPROP + WP4 model was used to predict the 

soil hydraulic parameters. Even use of the uncalibrated model achieved high accuracy 

between the SWC measured by the neutron probe and predicted by HYDRUS-3D 

simulations. A high correlation was achieved in the wetting pattern zone influence at 40-

60 cm depth (R2 = 0.94), with a low RMSE = 0.02 cm3 cm-3 but a low predictive power of 

the model (NSE = 0.37). To improve the results, a sensitivity analysis of the different soil 

hydraulic parameters was carried out. In principle, the best parameters for adjustment 

were the θs and the shape parameter n. However, it was decided not to modify the soil 

hydraulic parameter θs as it is a particular characteristic of the soil, but to modify the n 

parameter as it is related with the pore-size distribution (Marković et al., 2015). This 

parameter was obtained by fitting the experimental data. The fit of the n parameter 

resulted in a model capable of representing the soil water dynamics, valid for different 

depths and positions in drip-irrigated orchards, achieving an acceptable agreement 

between the simulated HYDRUS-3D SWC and the neutron probe-measured SWC. The 

best fit took place in the area close to the drippers, where the wet bulbs were generated 

and there was more root activity. This is in line with the results obtained in Chapter III, 

in which sensor repeatability was analysed and it was found that the HYDRUS-3D 

simulations had acceptable RMSE values in the centre of the wet bulb and in the mid-

point between two drippers. This was due to HYDRUS-3D generating homogeneous 

SWC within the wet bulb and representing more idealized and smooth soil surface 

conditions. However, as we move away from the dripper, the fit between measured and 

simulated SWC values decreased. This may be due to other phenomena such as water 

uptake by weeds (Bravdo and Proebsting, 1993) or assuming the SWC to be at field 

capacity. As described in Chapters III and IV, the SWC measurements with capacitance 
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sensors at the beginning of the year indicated a lower SWC in these positions. With 

respect to the effect of depth, between 0 and 20 cm HYDRUS-3D calibration was not 

required due to the good agreement between the SWC values of the HYDRUS-3D 

simulations and the neutron probe measurements. However, calibration was applied 

between the 40-100 cm depths, with the best agreement obtained between 40 and 60 cm. 

Deeper than 60 cm the agreement was lower, since at these depths the soil hydraulic 

properties were considered to be those determined with the HYPROP+WP4C model at 

the depths of 40 and 60 cm. The positions and depths most accurately simulated by 

HYDRUS-3D were located close to the dripper at the depths of 40-60 cm (R2 > 0.92, RMSE 

< 0.01 cm3 cm-3 and NSE > 0.87). This finding was relevant because later, as discussed in 

Chapter IV, this will be the soil region of greatest interest for controlling drip irrigation.  

 

Chapter III described the variability in the measurements by capacitance soil water 

sensors installed at different depths and positions in an actual orchard irrigated with 

drippers. First, it analyses the uncertainties in the measurement process in relation with 

the natural variability of the soil water dynamics in this type of scenario. Second, the 

HYDRUS-3D model calibrated and validated in Chapter II is used as a reference for the 

expected patterns of soil-water distribution. However, characterization of the soil area 

wetted by drippers reveals large variability of SWC at the uppermost 12 cm of the soil 

which, departs from the idealized patterns. This chapter compares those uncertainties 

and variabilities looking for an explanation for the observed sensor-to-sensor differences. 

 

There was high variability in the SWC monitored with capacitance soil sensors. In 

contrast, the simulated wet bulbs are idealised as the model does not consider local 

variations including, amongst others, gravel content, macropores, shrinkage cracks or 

compacted soil fragments (Dane and Hopmans, 2002). However, the wet bulbs 

generated in the field are irregular. This was evidenced by the variability in the size, 

shape and alignment of the wetted areas. In addition, there was variability in the sensor 

measurements as a result of various factors such as sensor calibration, soil temperature 

and sensor location. Both sensors and simulations showed large SWC amplitude in the 

center of the wet bulb and at the mid-point position between two drippers at the depth 

of 30 cm. However, in the center of the wet bulb at the depth of 15 cm, the HYDRUS 

simulations results were one third of those recorded by the sensors, which had a more 

intense drop. In the perimeter of the wetted area most sensors showed a faint oscillation, 

whilst in the simulations the oscillations were more intense. In addition, the HYDRUS-

3D model and the capacitance-type moisture sensors were affected by the timing of 

irrigation, and their SWC patterns varied depending on the time of the day when the 

irrigation was applied (morning, evening or split in two pulses). 

 

The repeatability between sensors was high in laboratory conditions, whereas when 
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these sensors were installed in the field, the variability increased due to the factors 

mentioned above. In general, the HYDRUS simulations showed greater repeatability due 

to the homogeneous distribution of SWC in the wet bulb. Only the virtual sensors located 

in the perimeter of the wet bulb showed greater sensitivity. 

 

Sensor sensitivity at the location where they are installed depends on soil hydraulic 

properties, meteorological conditions and the irrigation configuration (Soulis et al., 2015). 

The sensors installed in the center of the wet bulb position, especially at the depth of 15 

and 30 cm, responded fast and intensively to the irrigation, with little memory of the soil 

water trends a few days earlier. These sensors responded to the water balance of the 

same day but were not sensitive to the water balance of the previous week. The sensors 

installed at the mid-point position between two drippers were sensitive to both the water 

balance of the day and that of the previous week, especially at the depth of 30 cm. This 

sensitivity may be explained by the effect of the water balance of several days or by the 

overlapping or recession of two neighboring wet bulbs. The sensors installed in the 

perimeter position of the wetted area at the depth of 15 cm were sensitive to the water 

balance of the previous week but not to that of the last day, while the sensors located at 

the depths of 30 and 60 cm retained a memory of the water balance of that day and the 

previous week. The sensors installed in the perimeter position of the wetted area at the 

depth of 15 cm were sensitive to the water balance of the previous week but not to that 

of the last day, while the sensors located at the depths of 30 and 60 cm retained a memory 

of the water balance of that day and the previous week. This situation may be 

attributable to the sensors in these positions being located on the periphery of the wetted 

area and only being affected by the dynamics of a single wet bulb. This difference in 

sensitivity was also observed in the HYDRUS-3D simulations. Actual sensor 

measurements at the mid-point position between two drippers at the depths of 15 and 

30 cm seem more sensitive to the aggregated balance than simulations. When compared 

to simulations, some sensor locations (mid-point position between two drippers at the 

depth of 60 cm, perimeter of the wet area at the depth of 15 cm and outside the influence 

at the depth of 30 cm) are less sensitive to the last irrigation and more sensitive to the 

aggregated balance. This may be due to the actual noise of the irrigation cycles at these 

spots, while the effect of the accumulated balance is more straightforward. 

 

In drip irrigation, the non-uniform distribution patterns make soil water sensor 

placement a key factor in automated irrigation scheduling (Coelho and Or, 1996). The 

plant root architecture around the drippers also complicates the decision about where to 

place moisture sensors (Or, 1995). Therefore, when installing capacitive-type moisture 

sensors, it is important to consider the following characteristics: sensor-to-sensor 

repeatability, the representativity of the overall soil water availability to the crop, and 

the ability of sensor location to match irrigation doses and actual irrigation needs. The 
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balance between these characteristics is dependent on the purpose and type of usage of 

these sensors in the orchard. In our particular case, as detailed in Chapter IV, the sensors 

were used for automated irrigation scheduling and, in this particular case, prioritization 

was given to robustness and sensitivity to changes in the soil water budget. In addition, 

when sensors are used for irrigation control, the criteria for sensor location also depends 

on the control algorithms. In this respect, if the control algorithm is based on thresholds 

for activating/deactivating irrigation pulses (Dukes et al., 2010; Muñoz-Carpena et al., 

2005) the criteria may differ from when the algorithm consists of a water balance tuned 

by sensors (Casadesus et al., 2012; Domínguez-Niño et al., 2020). Finally, our study 

suggests that, to provide feedback to an irrigation scheduling algorithm based on a water 

balance tuned by sensors (Domínguez-Niño., 2020), it is convenient to install one sensor 

close to the center of the wet bulb position at the depth of 30 cm and another at the mid-

point position between two neighboring drippers at the depth of 30 cm to provide useful 

and complementary information. The moisture sensors aligned with the dripper 

provided an immediate response to the cycles of irrigation and water uptake by roots, 

whereas the sensors between two drippers tended to display a slower dynamic which 

better represents the aggregated balance of the preceding period of several days. In our 

results, the best performing depth of 30 cm coincided with the peak root activity. Other 

depths seem less favorable, with sensors at 15 cm being the least repeatable and sensors 

at 60 cm depth the least responsive to the irrigation cycles. These sensor locations were 

then used in Chapter IV to automate irrigation scheduling. 

 

Chapter IV determined the feasibility of using capacitance soil sensors in automated 

irrigation scheduling in a drip-irrigated apple orchard. In this trial, the sensors were 

used as the only source of data for the spontaneous adjustment of a water balance model 

to the site-specific conditions of on orchard containing two plots that differed in tree 

vigour.  

 

The automated system recorded soil moisture and weather data from the field. Later, 

the web platform for irrigation (IRRIX), designed by Casadesús et al. (2012), 

automatically interpreted the capacitance sensor data and used the feedback from 

sensors to adjust the irrigation doses of each plot according to the previously established 

seasonal plan. Basically, the automated interpretation of sensor data focused on the 

trend of the daily minimum and its distance to field capacity. An upward trend was 

interpreted as a positive water balance and a downward trend as a negative water 

balance. The results showed that without using information about tree vigour, IRRIX 

applied differential irrigation to the plots and provided 23% more irrigation to the trees 

with higher vigour because the moisture sensors perceived that the soil water content 

decreased faster than in the trees with lower vigour. Furthermore, despite the difference 

in vigour between treatments, there were no differences in stem water potential values, 
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which were in agreement with values obtained by Girona et al. (2010). On the other hand, 

in classical procedures for determining the irrigation schedule, it is necessary to know 

the ETo and the Kc, which is quite uncertain. Previous studies carried out by Girona et 

al. (2011), Auzmendi et al. (2011) and Marsal et al. (2013) established a high relationship 

between the crop coefficient and solar radiation intercepted by the canopy in the same 

apple orchard. In addition, Casadesus et al. (2011) evaluated the automated application 

of irrigation according to the daily amount of solar radiation intercepted by the canopy. 

Using the approach of Girona et al. (2011), it was found that the Kc of the low vigour 

trees was 21% lower than the high vigour trees, a similar value than that applied by 

IRRIX to the low vigour trees plot of our study, based exclusively on its response to the 

soil moisture sensors. Furthermore, the IRRIX web platform was used by Millán et al. 

(2019) and Millán et al. (2020) in a Japanese plum crop and hedgerow olive orchard, and 

the amount of manually and automatically applied irrigation was similar. In addition, 

in the olive orchard IRRIX was able to establish an RDI strategy and induced moderate-

to-severe stress according to the vigour and apparent electrical conductivity (ECa) 

values, homogenizing the yield of plots and increasing production. The use of irrigation 

controllers based on the water balance is complex because of the uncertainty of the crop 

coefficients. Feedback with sensors can be used to solve this problem. Some authors, 

including Dukes and Scholberg (2005) Osroosh et al. (2016) and Vera et al. (2019), used 

the sensors to activate irrigation when the soil was too dry, while others, including 

Smajstrla and Locascio (1996), Cáceres et al. (2007) and Muñoz-Carpena et al. (2008), 

used them to avoid irrigation when the soil was too wet. Therefore, the water balance 

adjusted by moisture sensors allows modification of the daily irrigation of each plot and 

the maintenance of a coordinated hydraulic scheme for the whole orchard. 
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Based on the objectives proposed in this PhD thesis, the main conclusions drawn 

from its four chapters are the following: 

 

- The two-step capacitance moisture sensor calibration under laboratory 

conditions improves the accuracy of SWC measurements. The RMSE involved in 

the first step of the calibration, once converted to SWC, is in the order of 0.006 

cm3 cm-3, which includes the differences between individual 10HS sensors in how 

their electronics perceive the dielectric permittivity of the surrounding media. 

The RMSE involved in the second step is up to 0.014 cm3 cm-3, which refers to the 

conversion from dielectric permittivity to SWC for the specific soil used in this 

study. 

 

- HYDRUS-3D allows prediction of SWC dynamics at different soil positions in a 

drip irrigated orchard. Parameterization of HYDRUS-3D with the soil hydraulic 

parameters obtained from the laboratory method of HYPROP + WP4C provided 

a good fit between the simulations and measurements by neutron probe and 

tensiometers. Parameterization could further be improved by calibration of 

parameter n using a subset of the neutron probe measurements. 

 

- HYDRUS-3D simulations show that the expected soil water dynamics of the wet 

bulb can explain part of the difference in the SWC recorded by sensors located at 

equivalent depths and positions relative to the dripper. These differences are 

explained by the heterogeneous and fluctuating distribution of soil water 

produced by the dripper. According to the virtual sensors simulated by 

HYDRUS-3D, the estimated range of RMSE in the measurement of SWC 

explained by the predictable dynamics of the wet bulb is up to 0.02 cm3 cm-3. 

 

- In a real orchard, the soil surface wetted by individual drippers is irregular and 

varies in size, shape and centring relative to the dripper. In the vertical of the 

sensor installation positions, in the uppermost 12 cm of the soil, SWC is highly 

variable between individual drippers, with an RMSE of up to 0.085 cm3 cm-3. 

 

- The SWC recorded by capacitance soil moisture sensors installed in a drip-

irrigated orchard shows large differences between sensors installed in equivalent 

locations in terms of depth and position relative to the dripper, with an RMSE of 

between 0.02 and 0.07 cm3 cm-3, depending on the sensor location. This is much 

larger than the effect of sensor calibration and, thus, it reduces the practical 

significance of performing specific sensor calibration for their mainstream usage 

in commercial orchards. 

 

 



Conclusions 
 

214 

 

- The observed differences between sensors are larger than expected by HYDRUS-

3D simulations and smaller than measured between drippers in the uppermost 

12 cm of the soil. This suggests that the observed differences between sensors 

result from the summation of two coexisting processes: first, from the predictable 

heterogeneity and fluctuations in SWC determined by the dynamics of the wet 

bulb; and second, from the unpredictable differences in the dimensions, shape 

and exact position of the wet bulbs caused by the arbitrary path followed by the 

irrigation water at the soil surface, between the dripper and infiltration into the 

soil. 

 

- Rather than a fault of the measuring principle, the large sensor-to-sensor 

differences in the measurement of SWC by capacitive soil moisture sensors in 

drip-irrigated orchards is inherent to the actual soil water conditions there. Usage 

of the sensors in such scenario should be adapted to the practical limitations 

derived from a small volume of sensitivity on a sharply defined distribution of 

soil water. 

 

- The cycles of irrigation, water distribution in the soil and uptake by roots 

produce different patterns in the measured SWC dynamics depending on the 

sensor depth and position relative to the dripper. Overall, close to the dripper the 

effects of irrigation cycles are faster and more intense. On the other hand, at the 

mid-point position between drippers the response to irrigation tends to be more 

attenuated but can better reflect the aggregated balance of water inputs and 

outputs of the preceding several days and not only that of the same day. In this 

study, the patterns of SWC with greater interest regarding their response to 

irrigation cycles were recorded at 30 cm depth, coinciding with the maximum 

root activity. 

 

- Despite the described concerns with respect to the practical uncertainty in the 

SWC monitored by capacitive soil moisture sensors installed in drip-irrigated 

orchards, their usage for automated irrigation scheduling is feasible. Below are 

some recommendations for their usage in this kind of application: 

✓ Always locate the sensors in predefined positions relative to the dripper 

and use redundant sensors. 

✓ Sensor interpretation is based on the trend of the sequence of the daily 

driest measurements in the last few days. A positive slope is generally 

associated to positive soil water balance, and vice versa.  

✓ Irrigation prescriptions are based on an algorithm of water balance locally 

adjusted by feedback from the sensors. 
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As reported in the Introduction, numerous studies have been published in the 

literature on the laboratory characterization of capacitance-type soil water sensors as 

well as on their use in field conditions, especially in scenarios where soil water content 

heterogeneity is not very large, such as in rainfed and sprinkler or flood-irrigated crops. 

However, drip-irrigated orchards are among the scenarios of greatest interest for the 

application of smart irrigation approaches and the conditions there pose certain 

challenges to the use of these sensors which justifies the need to search for more 

sophisticated approaches. Previous experiences in this type of scenario do exist and they 

typically report on the difficulties encountered because of the differences between 

sensors. 

In this context, we believe that the main value of the present Thesis is that it focuses 

on the real problem that the conditions of such scenarios pose for attaining the 

opportunities of using soil-water sensors in irrigation control. Here, the sensors are not 

seen as a mere data source for some kind of soil monitoring purpose. Instead, they are 

analysed from the perspective of a precise role in the workflow of automated irrigation 

scheduling. This avoids an abstract evaluation, enables greater precision as to their 

relevant traits in terms of performance, and allows the conception of practical 

recommendations to compensate for their limitations. Chapter I quantifies the intrinsic 

uncertainties involved in the measuring principle. In the first step, where a given sensor 

model (Decagon’s 10HS) perceives the dielectric permittivity of its surrounding media. 

In the second step, where this dielectric permittivity is related to the SWC of a specific 

soil. Independently from the sensors, Chapter II demonstrates an approach for 

configuring the HYDRUS-3D model to accurately simulate the soil water dynamics of 

the scenario of interest. With this calibrated model, the expected patterns of soil water 

dynamics below a dripper were obtained and validated at a coarse spatial resolution by 

neutron probe measurements. In Chapter III the patterns of SWC recorded by 

capacitance sensors were observed to be more sharply defined, irregular and variable 

than those expected by the HYDRUS-3D model, presumably because of the irregular and 

arbitrary patterns for irrigation distribution at the soil surface below a dripper. It is 

concluded that, because of that, and to a certain degree, variability in SWC measurement 

is unavoidable and representative of the real soil environment in drip-irrigated orchards. 

Therefore, when sensors are used in these conditions there is a need to be aware of the 

uncertainties in the SWC data collected. Chapter IV demonstrates that, despite the 

limitations described above, these sensors can effectively be used for controlling drip 

irrigation in orchards. The chapter describes specific approaches followed to compensate 

for the sensor limitations. Among these, special emphasis is given to the use of a 

scheduling algorithm based on the soil water balance tuned by sensors. In this case, the 

water balance strengthens the predictability and reliability of the irrigation prescriptions, 

whilst the sensors allow site-specific, spontaneous adaptation of the water balance 

model. In addition, sensor data is interpreted in terms of the fit between the irrigation 

doses and the actual water consumption by the crop, by looking at the trend of the driest 
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daily SWC measured in consecutive days. Robustness is ensured by automated rating of 

sensor reliability and aggregation of the sensors considering these reliabilities in a 

weighted average. In that trial, capacitance soil moisture sensors were the only data 

source for site-specific spontaneous adaptation of the IRRIX algorithm, which managed 

to provide differential irrigation to tree plots of different vigour, coherent with their 

irrigation requirements determined by other methods. 

Overall, this Thesis concludes that the intrinsic performance of the sensors is 

adequate, though it could be improved if their volume of sensitivity was larger. However, 

the conclusions of this Thesis emphasize that, in drip-irrigated orchards, it is crucial to 

adapt the deployment of the sensors and the usage of their recorded data taking into 

account the practical limitations of the sensors. 

In addition to the four scientific papers that have been published in the literature, 

the results and conclusions of this Thesis are expected to have an impact on the practical 

use of soil moisture sensors in orchards. Recommendations can be derived for sensor 

end users, sensor integrators in irrigation-support platforms and sensor manufacturers.
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Despite the advances made in this PhD thesis towards the optimization of the use 

of capacitance-type moisture sensors in automated irrigation scheduling, the automation 

and simulation of irrigation continues to constitute an opportunity for future research in 

the field of agriculture. Of particular interest is the applicability of irrigation automation 

in a real large-scale scenario and an evaluate of its efficacy and efficiency. 

 

Based on the results obtained in this thesis, future lines of research can include: 

- The application of automated irrigation scheduling in other crops and irrigation 

systems. An example would be to apply it in an orchard where different IRRIX-

managed irrigation sectors were compared with different irrigation sectors 

managed by an expert irrigator based on meteorological data and crop 

coefficients. 

 

- The application of the HYDRUS-3D model to manage the soil salinity and 

nutrients of different crops. 
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