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Abstract 

One of the possible ways to address the constantly increasing amount of 
heterogeneous and variable internet traffic is the evolution of the current optical 
networks towards a more flexible, open, and disaggregated paradigm. In such 
scenarios, the role played by Optical Performance Monitoring (OPM) is 
fundamental. In fact, OPM balances performance and specification mismatches 
resulting from the disaggregation adoption and provides the control plane with 
the necessary feedback to grant the optical networks an adequate automation 
level. Therefore, new flexible and cost-effective OPM solutions are needed, as well 
as novel techniques to extract the desired information from the monitored data 
and process and apply them. 

In this dissertation, we focus on three aspects related to OPM. We first study a 
monitoring data plane scheme to acquire the high-resolution signal optical 
spectra in a nonintrusive way. In particular, we propose a coherent 
detection-based Optical Spectrum Analyzer (OSA) enhanced with specific Digital 
Signal Processing (DSP) to detect spectral slices of the considered optical signals. 

Then, we identify two main placement strategies for such monitoring solutions, 
enhancing them using two spectral processing techniques to estimate signal- and 
optical filter-related parameters. Specifically, we propose a way to estimate the 
Amplified Spontaneous Emission (ASE) noise or its related Optical Signal-to-
Noise (OSNR) using optical spectra acquired at the egress ports of the network 
nodes and the filter central frequency and 3/6 dB bandwidth, using spectra 
captured at the ingress ports of the network nodes. To do so, we leverage Machine 
Learning (ML) algorithms and the function fitting principle, according to the 
considered scenario. We validate both the monitoring strategies and their related 
processing techniques through simulations and experiments. The obtained 
results confirm the validity of the two proposed estimation approaches. In 
particular, we are able to estimate in-band the OSNR/ASE noise within an egress 
monitor placement scenario, with a Maximum Absolute Error (MAE) lower than 
0.4 dB. Moreover, we are able to estimate the filter central frequency and 3/6 dB 
bandwidth, within an ingress optical monitor placement scenario, with an MAE 
lower than 0.5 GHz and 0.98 GHz, respectively. Based on such evaluations, we 
also compare the two placement scenarios and provide guidelines on their 
implementation. According to the analysis of specific figures of merit, such as the 
estimation of the Signal-to-Noise Ratio (SNR) penalty introduced by an optical 
filter, we identify the ingress monitoring strategy as the most promising. In fact, 
when compared to scenarios where no monitoring strategy is adopted, the ingress 
one reduced the SNR penalty estimation by 92%. 
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Finally, we identify a potential application for the monitored information. 
Specifically, we propose a solution for the optimization of the subchannel spectral 
spacing in a superchannel. Leveraging convex optimization methods, we 
implement a closed control loop process for the dynamical reconfiguration of the 
subchannel central frequencies to optimize specific Quality of Transmission 
(QoT)-related metrics. Such a solution is based on the information monitored at 
the superchannel receiver side. In particular, to make all the subchannels 
feasible, we consider the maximization of the total superchannel capacity and the 
maximization of the minimum superchannel subchannel SNR value. We validate 
the proposed approach using simulations, assuming scenarios with different 
subchannel numbers, signal characteristics, and starting frequency values. The 
obtained results confirm the effectiveness of our solution. Specifically, compared 
with the equally spaced subchannel scenario, we are able to improve the total and 
the subchannel minimum SNR values of a four subchannel superchannel, of 
1.45 dB and 1.19 dB, respectively. 
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Chapter 1 
 

Introduction 

The work presented in this thesis was carried out in the context of the “Future 
Optical Network for Innovation Research and Experimentation (ONFIRE)” 
project. The ONFIRE project is a Marie Skłodowska-Curie Action as an 
Innovative Training Network (ITN) European Industrial Doctorate (EID) 
supported by the European Union Horizon 2020 Research and Innovation 
Programme. ONFIRE focuses on the study, design and experimental 
evaluation of cost-effective and flexible solutions for future automated and 
disaggregated optical networks. 

1.1 Motivation 

During the past few decades, optical networks continuously evolved to handle 
an ever-increasing traffic growth demand. Nowadays, such a trend is far from 
over. According to [1], nearly two-thirds of the global population will have 
Internet access by 2023, when 5.3 billion total Internet users are expected. In 
2018, this amount was more than 20% lower. In western Europe alone, 370 
million Internet users are expected by 2023, up from 345 million in 2018. In 
particular, Machine-to-Machine (M2M) will constitute half of the global 
connections by 2023, with connected home applications such as home 
automation and video surveillance expected to be the most popular M2M 
connection. Finding ways to address such an enormous amount of 
heterogeneous and variable data requests in a cost-effective but reliable 
manner is fundamental to sustain the expected traffic growth. The increase in 
transmitter data rates and the use of coherent-based receivers are certainly two 
viable solutions to address this evolution.  

Moreover, Space Division Multiplexing (SDM) represents a promising 
technology to raise the network capacity limits by employing multi-fiber links 
or multicore/multimode fibers [2]. In parallel, keeping the costs low is 
definitely the most difficult aspect to deal with. One of the possible ways to 
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tackle such a challenge is represented by the disaggregation approach, which 
in the past few years gained a foothold in data center environments and 
recently has become appealing also for optical network scenarios. In fact, 
telecommunication operators also started to consider disaggregating the 
different elements of the optical transport networks into off-the-shelf 
components [3]. According to the disaggregation paradigm, several elements 
of the network, including the software to manage them, are provided by 
different vendors. This enables a relatively free market, where the network 
operators can choose the best equipment from different providers overcoming 
the vendor lock-in and reducing their cost [4]. In order to cope with the 
network specification and performance mismatches introduced by elements 
provided by different vendors, appropriate advanced Optical Performance 
Monitoring (OPM) techniques are needed. 

Moreover, in disaggregated but also in traditional/aggregated optical 
networks, ensuring a suitable degree of automation is crucial [5]. This is 
necessary to guarantee an adequate answer to the always more demanding 
end-to-end Quality of Transmission (QoT) and Quality of Service (QoS) 
requests and mainly to improve the efficiency of the optical connections. 
Typically, following a set and forget strategy, optical connections are 
provisioned with high margins, which allow them to remain almost untouched 
until their end-of-life and rarely reconfigured. Instead, automation would 
enable dynamic adjustment and control of the margins of existing and future 
connections [6], allowing their reduction. Indeed, a reduction of the margins 
required to operate the networks translates to an increment of network 
efficiency and an erosion of the cost [7]. To cope with all these aspects, the 

 

FIGURE 1.1.  The role of OPM within the Observe-Decide-Act loop. OPM allows 
to close the control loop in which a central controller, based on the network 
monitored information, decides what actions to perform in order to optimize the 
considered ROADM-based optical network. 
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control plane constantly requires a certain amount of updated network-related 
information, based on which new decisions are taken. OPM again fulfills this 
role, delivering the feedback needed to close the so-called “observe-decide-act” 
loop and enabling the optical networks automation, as shown in FIGURE 1.1 
[6]. In particular, the role of OPM within such a loop is to assist the observation 
phase, constantly providing the required optical network information. Then, a 
central controller, which acts as a coordinating entity for the network, decides 
how to react to such monitored data. Finally, if one or more actions are 
required, the central controller interacts with the physical network, providing 
adequate adjustments and eventually operating it in a real-time manner in a 
closed control loop mode. 

Furthermore, during the past years, the classic Dense Wavelength Division 
Multiplexing (DWDM) paradigm evolved towards a new flexible approach, 
named flex-grid DWDM or simply flex-grid, which was defined in [8]. Thanks 
to such a new paradigm, frequency slots with different widths became 
available. Key elements of the deployed flex-grid channels are the 
Reconfigurable Optical Add/Drop Multiplexers (ROADMs), which allows 
individual wavelengths to pass through the various nodes of the network or to 
be added or dropped. To do so, the ROADM-based nodes, according to their 
architecture, include/adopt a certain number of optical filters. Therefore, 
along with all the benefits deriving from such flexibility, new challenges 
connected with the optical impairments introduced by the filters need to be 
faced. Accordingly, advanced OPM techniques able to constantly monitor filter 
and signal-related parameters need to be developed. Finally, since the flex-grid 
channels also allow the development of superchannels, in which several single 
channels are jointly transmitted and received, new ways to control and 
optimize the frequency allocation of the superchannel subchannels are 
necessary. OPM can embody the critical factor of such optimization, providing 
the feedback required by the algorithms to calculate the most suitable 
frequency configuration.  

Due to these reasons, OPM represents one of the most important elements of 
future optical networks [9]. Many physical parameters related to the 
transmitted signals and the components of an optical network can be 
estimated and acquired through OPM [9], [10]. Among the several available 
OPM techniques, this thesis mainly focuses on those that leverage optical 
spectral data to retrieve different network-related parameters. In addition, 
since one of the key requirements that future OPM techniques must comply 
with is cost-effectiveness, this work deals with developing new cost-efficient 
solutions to monitor the optical network parameters, identifying a suitable 
placement strategy and possible ways to process such information. In 
particular, an ideal candidate to support the data processing phase is Machine 
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Learning (ML), a flexible and highly adaptable instrument, which recently has 
been widely adopted in several scientific fields, also including optical 
communications [11], [12]. Finally, to demonstrate the advances that OPM and 
adequate processing can achieve, we also present a closed control loop process 
that uses OPM and monitoring to optimize the performance of optical 
superchannels.  

1.2 Objectives and Methodology 

The objective of this thesis is threefold and revolves around the use of OPM for 
the optimization of optical networks. Specifically, on one side, we aim to 
investigate a novel technique to acquire high-resolution optical spectral data. 
On another side, we seek to develop new solutions to process the spectral data 
collected with cheap monitoring devices and optimize their placement within 
the optical network. Finally, on the last side, we provide an example of how the 
parameters retrieved by using OPM can be applied to optimize some of the 
transmission elements. 

More in detail, in this thesis, we present the theoretical study of an agile 
optoelectronic coherent-based scheme for the acquisition of high-resolution 
optical spectral data. A detailed analysis of the requirements needed to 
eventually implement similar front-end solutions is also proposed. Then, we 
study how cheap and flexible optical monitors can be adopted within the 
optical network. In particular, we identify two possible scenarios for their 
placement and for each of them, we present a technique to process the related 
acquired spectral data. We propose an ML-based spectral processing 
technique to retrieve signal-related parameters from optical spectra acquired 
with monitoring devices placed at the egress ports of the network nodes. 
Moreover, we propose a spectral processing technique based on the function 
fitting principle to retrieve filter-related parameters from optical spectra 
acquired with monitoring devices placed at the ingress ports of the network 
nodes. A comparison between the two placement strategies and their related 
processing solutions is also presented. Finally, to optimize the transmission in 
superchannel configurations, we propose an approach based on a closed 
control loop process, to optimize the superchannel subchannel spectral 
spacing. Specifically, we implement an algorithm based on convex 
optimization methods that probes the physical layer and monitors the related 
outcomes to maximize specific figures of merit. 

In this dissertation, to support all the aforementioned solutions, a thorough 
review of the theoretical background and the state of the art of the considered 
topics is also presented. In fact, an initial in-depth analysis of the investigated 
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subjects is essential to detect potential gaps for new technological 
developments. More in detail, in the initial part of this work, we review the 
background concepts related to the two mathematical tools employed within 
this thesis, namely ML and convex optimization. Moreover, the state of the art 
of disaggregation paradigm applied to optical networks, signal- and filter-
related OPM, and spectral processing techniques are also reported. 

The methodology adopted to draft the works presented in this thesis always 
included an initial identification phase, where a new promising approach and 
its eventual feasibility were assessed. After such initial analysis, the conceived 
solution was evaluated using simulations. To do so, two main simulation 
environments were considered: MATLAB [13] and VPIphotonics [14]. The first 
one is a well-known numerical analysis tool useful for developing numerical 
models and the simulation of the system under investigation. Instead, VPI is a 
simulation software that allows the user to design and test almost all kinds of 
optical elements in the transmission layer in a fast and easy way. In most cases, 
after verifying the conceived solution through simulations, a final 
experimental validation was also carried out. To this extent, the facilities made 
available by the ONFIRE partners were exploited. In particular, the 
experimental data used in this thesis were collected in experiments carried out 
at CTTC Optical Networks and Systems lab and in Nokia Bell Labs Stuttgart 
optical lab. In particular, at CTTC optical lab, the ADRENALINE network 
testbed was used. ADRENALINE is a photonic mesh network composed of four 
(white box) nodes connected by five amplified bidirectional links for a total 
length equal to 600 km [15]. 

Regarding the adopted notation, in this thesis we will denote scalars with italic 
lower- and upper-cases (e.g., x, Y), vectors with bold lowercases (e.g., x, y), and 
matrices with bold uppercases (e.g., X, Y). 

1.3 Outline of the Thesis 

This section provides the list of chapters composing the thesis, along with a 
brief description of their content. In addition, for each chapter, the papers 
presenting the related obtained results are also referenced. In particular, 
Chapter 2 and Chapter 3 are introductory. They cover the theoretical 
background of the main topics addressed in this dissertation and the state of 
the art. Instead, Chapter 4, Chapter 5, and Chapter 6 include our contributions 
about the identified monitoring solution, the optical monitor placement within 
the network and the related spectral processing techniques, and the 
superchannel optimization, respectively. Finally, Chapter 7 concludes the 
thesis. 
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Chapter 2 – Mathematical Framework  

Chapter 2 provides a generic overview of the two main mathematical tools 
employed within this work. Specifically, we review the different existing ML 
solutions, with a particular focus on Support Vector Machine (SVM) and 
Gaussian Process Regression (GPR) models, which we employ in Chapter 5 to 
estimate from optical spectral data signal- and filter-related parameters. In 
addition, we introduce the convex optimization methods, particularly the 
gradient descent and the stochastic subgradient algorithms, which we adopt in 
Chapter 6 to optimize the transmission of a superchannel. 

Chapter 3 – State of the Art 

In Chapter 3, we present a thorough review of the state of the art of the topics 
addressed in this dissertation to support the technical solutions proposed in 
Chapters 4, 5, and 6. Specifically, this chapter introduces the concepts related 
to disaggregated optical networks, OPM, and superchannels. Regarding the 
disaggregated optical networks, we review the available operational models 
and the related network architectures. Concerning OPM, a particular focus is 
reserved to those techniques that allow monitoring the Optical Signal-to-Noise 
Ratio (OSNR) and the filter-related parameters. In addition, a specific analysis 
of the state of the art of those methods that leverage optical spectral data to 
estimate network-related parameters is also presented. Furthermore, 
concerning superchannels, we provide the motivations for their 
implementation and the challenges that still need to be addressed when such 
technology is considered. Finally, starting from the theoretical concepts 
introduced in this chapter, we identify the gaps that the methods we propose 
aim to fill, and we introduce the reference network scenario considered for the 
development of our solutions. 

Chapter 4 – Data Plane Architectures for High-Resolution Optical 
Spectrum Estimation 

In Chapter 4, a theoretical study of a nonintrusive, cost-effective, and coherent 
detection-based Optical Spectrum Analyzer (OSA) system to be deployed at the 
network nodes is presented. The proposed monitoring probe is agnostic to the 
modulation format, and it can provide an arbitrary spectral resolution. 

The work reported in this chapter was presented in the following paper: 

• J. M. Fàbrega, F. Locatelli, L. Nadal, K. Christodoulopoulos, M. Svaluto 
Moreolo, and S. Spadaro, Data Plane Elements for Optical 
Performance Monitoring Agnostic to the Modulation Format 
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for Disaggregated Optical Networks, in Proc. 2020 22nd 
International Conference on Transparent Optical Networks (ICTON), 
July 2020, Online Event, doi: 10.1109/ICTON51198.2020.9203369. 

Chapter 5 – Optical Monitor Placement Strategies and Assessment 

In Chapter 5, a detailed study about the placement of the optical monitors 
within the network is provided. In particular, the two main placement 
scenarios that have been identified are here described and analysed. Moreover, 
the solutions to estimate signal- and filter-related parameters associated with 
the considered scenario are presented in this chapter. Their assessment, 
performed with spectral data collected in simulations and experiments, is also 
reported. Finally, a comparison between the two proposed approaches is 
presented. 

The methods and the results reported in this chapter were presented in the 
following papers: 

• F. Locatelli, K. Christodoulopoulos, J. M. Fàbrega, M. Svaluto Moreolo, 
and S. Spadaro, Machine learning-based in-band OSNR 
estimation from optical spectra, IEEE Photonics Technology 
Letters (PTL), Volume 31, Issue 24, Pages 1929-1932, December 2019, 
doi: 10.1109/LPT.2019.2950058. 

• F. Locatelli, K. Christodoulopoulos, J. M. Fàbrega, M. Svaluto Moreolo, 
L. Nadal, and S. Spadaro, Experimental demonstration of a 
machine learning-based in-band ONSR estimator from 
optical spectra, in Proc. 2020 International Conference on Optical 
Network Design Modelling (ONDM), May 2020, Online Event, doi: 
10.23919/ONDM48393.2020.9133001. 

• F. Locatelli, K. Christodoulopoulos, J. M. Fàbrega, M. Svaluto Moreolo, 
L. Nadal, and S. Spadaro, Filter features extraction from optical 
spectra, in Proc. 2020 European Conference on Optical 
Communication (ECOC), December 2020, Online Event, doi: 
10.1109/ECOC48923.2020.9333342. 

• F. Locatelli, K. Christodoulopoulos, M. Svaluto Moreolo, J. M. Fàbrega, 
L. Nadal, and S. Spadaro, Spectral processing techniques for 
efficient monitoring in optical networks, IEEE/OSA Journal of 
Optical Communications and Networking (JOCN), Volume 13, 
Issue 07, Pages 158-168, July 2021, doi: 10.1364/JOCN.418800. 
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Chapter 6 – Frequency Optimization in Superchannels 

Chapter 6 describes a possible application for the data acquired through OPM. 
In particular, it focuses on the frequency optimization of the superchannel 
subchannels. We propose a solution based on a probe and monitor approach, 
in which specific figures of merit are maximized, leveraging monitoring 
information provided by the superchannel receivers. 

The work reported in this chapter was presented in the following paper: 

• F. Locatelli, K. Christodoulopoulos, M. Svaluto Moreolo, J. M. Fàbrega, 
L. Nadal, A. Mahajan, and S. Spadaro, Feedback-Based Channel 
Frequency Optimization in Superchannels, submitted to 
IEEE/OSA Journal of Optical Communications and Networking 
(JOCN), September 2021. 

Chapter 7 – Conclusions and Future Works 

This final chapter concludes the dissertation, summarizing the obtained 
results and outlining the perspective for future works. 
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Chapter 2 
 

Mathematical Framework 

In this chapter, we provide an overview of the mathematical framework 
adopted in this thesis. In particular, we describe two efficient and widely 
employed mathematical tools that ease the resolution of complex problems in 
many scientific areas, namely ML and mathematical convex optimization 
methods.  

This chapter is organized as follows. In Section 2.1, ML is introduced and its 
application to optical networks is motivated. In particular, special emphasis is 
put on SVM and on Gaussian Process (GP)-based algorithms. Section 2.2 
discusses the convex optimization problems, and the gradient descent and 
subgradient algorithms to solve them, with a special focus on the stochastic 
subgradient method. 

2.1 Machine Learning 

In this section, we provide a brief introduction on the available ML solutions 
and on their potential application in optical networks. In addition, we present 
an overview of the different ML-based algorithms, that were used in this thesis 
to estimate signal- and filter-related parameters. Specifically, in Section 5.2, 
ML is leveraged for the prediction of the OSNR/Amplified Spontaneous 
Emission (ASE) noise, a crucial parameter for the optimization of the physical 
layer performance. 

2.1.1 Introduction 

As per many technological scientific fields, also in the context of optical 
networks plenty of potential applications for ML have been proposed in the 
past few years. On the one hand, aspects such as the nonlinear signal 
propagation through the optical channel and the plethora of complex systems 
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and subsystems used to build the network (Transponders (TPs), fiber spans, 
amplifiers, and ROADM nodes) make the optical network modelling and its 
optimization a really challenging task. On the other hand, the high degree of 
flexibility enabled by the employment of technologies, such as the flex-grid 
channels and tuneable TPs, in wavelength switched optical networks, have 
increased the complexity of the resource allocation problem. When properly 
combined with features such as OPM, ML could represent a key element to fill 
these gaps. In fact, ML-based algorithms allow inferring features that 
otherwise could not be easily retrieved from the large amount of data 
monitored within the network [11], since they can solve problems in which the 
system is analytically intractable, or the solution space is too vast to be 
evaluated [12]. Tasks like QoT estimation, link and network capacity 
optimization, low-margin network design, optical network automation, and 
pattern recognition for failure identification and prediction from raw 
monitored optical data are just few examples of the many application fields 
that ML has within optical networks. Of course, to enable the adoption of ML 
in deployed optical networks, some aspects need to be further improved [11], 
[12], and [16]. These include the lack of available and optimized datasets for 
model training and testing and the necessity for ML-driven solutions to follow 
standardization processes. In addition, special care must be taken to trade off 
the complexity and computational effort with performance. Moreover, further 
research is required to explore the feasibility and performance of an ML-based 
unified control framework approach, in which the estimated parameters are 
taken into account when making new network-related decisions (e.g., where to 
route a new lightpath, or when to modify the parameters of the transmission). 
Finally, the development of visualization tools that allow the end-users to 
access and understand easily the ML algorithm outputs is also needed. 

2.1.2 Overview of Machine Learning Algorithms 

ML is a branch of Artificial Intelligence (AI), and according to [17], it can be 
defined as a computer program that learns from experience E with respect to 
some class of tasks T and performance measure P, whose performance at tasks 
T, as measured by P, improves with experience E. ML techniques can be 
particularly useful in scenarios where an explicit mathematical or physical 
problem description is too hard to be modelled with other classical approaches. 
Usually, as schematically represented in FIGURE 2.1, depending on the 
considered learning process, ML algorithms can be divided into three main 
categories: Supervised Learning (SL), Unsupervised Learning (UL), and 
Reinforcement Learning (RL) [18]. In addition, a second classification of the 
ML methods can be done based on the objectives of the learning task. Such 
objectives can be to assign a class to a set of new input data, or to estimate any 
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eventual relationship among given input data. The ML methods belonging to 
the first group are known as classification methods, while those related to the 
latter are known as regression methods. In the following paragraphs, we will 
briefly introduce each one of the three main ML categories, providing 
examples of their related algorithms and their most common applications 
within optical networks. 

Supervised Learning 
SL is a ML category in which the input data are labelled with their known 
corresponding output values. Therefore, relying on such labelled data, the ML 
models are trained to find proper generalized mapping functions that predict 
the output values, which correspond to new and unseen input data. Depending 
on the output data, the learning problem can be categorized as a regression or 
a classification problem. The former considers output variables, which are 
continuous values, whereas the latter deals with discrete output values. For 
example, the task of estimating the OSNR value of an optical channel from its 
optical spectrum falls under the regression problem category [19]. On the 
contrary, recognizing the modulation format of a connection from its eye-
diagram represents an example of a classification problem, since the values 

 

FIGURE 2.1.  Machine Learning categories, their main tasks, and some of their 
most representative algorithms. ANN: Artificial Neural Network, K-NN: K-
Nearest Neighbors, SVM: Support Vector Machine, GP: Gaussian Process, K-MC: 
K-Mean Clustering, PCA: Principal Component Analysis, GMM: Gaussian 
Mixture Model, S-OM: Self-Organizing Maps, Q-L: Q-Learning.  
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assumed by the output variables (the possible modulation formats in this case) 
are finite [20]. 

Depending upon the number of parameters to be used by the mapping 
function, two main models can be identified within the SL algorithm family: 
the parametric and the nonparametric ones. In parametric models, a fixed 
number of parameters, which is independent from the training data size, is 
considered. On the contrary, in nonparametric models, the number of 
parameters depends on the training data, resulting in most cases in more 
powerful and accurate predictions. However, this accuracy comes with certain 
drawbacks, such as the necessity of bigger data sets for the training phase or 
the time required to train the model. On the other hand, the parametric models 
are typically faster but less accurate. The most common SL parametric models 
are Artificial Neural Network (ANN) and Convolutional Neural Network. 
Regarding the nonparametric models, some of the most common are K-
Nearest Neighbors (K-NN), SVM, Gaussian Process Regression (GPR), and 
decision trees techniques, as also shown in FIGURE 2.1. Specifically, SVM and 
GPR algorithms will be discussed in detail in Sections 2.1.3 and 2.1.4 of this 
thesis, respectively. 

In addition to the already mentioned OSNR estimation and modulation format 
recognition [21], typical optical networks applications for supervised ML 
algorithms can include fault identification [22], traffic analysis [23], [24], QoT 
estimation [25] and the prediction of several other classical network 
performance parameters, such as symbol rate [26], Chromatic Dispersion (CD) 
[27], and Polarization Mode Dispersion (PMD) [28]. 

Unsupervised Learning 
In many cases, due to the complexity of the labelling operation, having a large 
labelled dataset is not a viable option. In such situations UL represents a better 
choice, since the algorithms directly search for patterns and structures in 
unlabelled input data. In other words, the UL models have to learn by 
themselves, without any external guidance. 

The most common task that UL algorithms can address is clustering, in which 
the data are grouped based on their intrinsic characteristics. Samples 
belonging to the same cluster will exhibit high similarities between them. 
Conversely, samples of different clusters will exhibit low degrees of similarity. 
In addition, UL algorithms can also be employed to determine the distribution 
of data within the input space, also known as density estimation. As also shown 
in FIGURE 2.1, representative UL algorithms are K-Mean Clustering (K-MC), 
Principal Component Analysis (PCA), Gaussian Mixture Model (GMM), and 
Self-Organizing Maps (S-OM). Representative applications of such models in 
optical networks include spectral slot identification [29], traffic prediction 
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[30], and nonlinearity mitigation [31]. Moreover, UL algorithms are also often 
employed as preprocessing tools before applying SL algorithms [12]. 

Reinforcement Learning 
In RL, a decision maker named agent directly interacts with the environment, 
receiving feedbacks that activate the learning process. The environment 
rewards or penalizes the agent according to the actions it has undertaken. 
Hence, the goal of the agent is to maximize the received rewards over time. To 
do so, the agent has to discover which actions yield rewards and which others 
not, following a trial-and-error process. Such process could take a long time to 
be completed and this is why RL should be avoided in those scenarios where 
error-free decisions are a crucial requirement. On the contrary, employing RL 
might be beneficial when searching for optimal solutions in constantly 
changing environments. 

Although RL is not a novel paradigm within ML, its application in the physical 
layer of optical communication systems has not yet been fully investigated. 
Mainly, RL algorithms are used in network self-configuration, more 
specifically for path computation [32] and service reconfiguration tasks [33]. 
The most common RL technique is Q-Learning (Q-L). 

2.1.3 Support Vector Machine 

SVM concepts were first identified by Vladimir Vapnik and his colleagues in 
1992 [34]. As mentioned in the previous section, SVM is a nonparametric SL 
approach that can be used to address both regression and classification 
problems, although it is best known for its application in the second 
category [18]. When applied to regression problems, SVM is also referred to as 
Support Vector Regression (SVR). The main advantage of employing SVM, 
both for classification or regression, is that only few of the training data are 
used to build the decision surfaces on which the predictions are based. Thus, 
once trained, the rest of the training data become irrelevant, making SVM and 
SVR very memory efficient and attractive approaches. In addition, as described 
in the next paragraphs, SVM and SVR represent a flexible solution to handle 
nonlinear problems, thanks to the possibilities guaranteed by the kernel 
functions. On the other hand, SVM and SVR are not suitable for handling very 
large or noisy datasets [35]. 

In this section, we will first introduce the SVM algorithm for classification and 
then we will generalize its description to cover also the regression aspect. The 
derivations proposed in this section are adapted from [18], [35], and [36]. 
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Support Vector Machine for Classification 
As per many other classification algorithms, the goal of SVM is also to define 
decision boundaries that separate the points belonging to different data 
classes. If we consider a space with more than two dimensions, such decision 
boundaries become surfaces, and they are generally referred to as hyperplanes. 
As one can imagine, many possible hyperplanes exist and can be identified 
when classifying the data points, as depicted in FIGURE 2.2(a). SVM achieves 
such classification by searching for those hyperplanes that maximize their 
distance to the borderline points of each class, keeping at the same time an 
equal margin between them, as shown in FIGURE 2.2(b). The borderline 
points of each class are known as support vectors, and in FIGURE 2.2(b) we 
represented them as solid dots. In particular, in the example of FIGURE 2.2(b), 
the blue data points class has two support vectors, while the orange one has 
only one. 

In SVM, the role assumed by the support vectors within the training set is 
crucial, since the hyperplane choice is only influenced by their position. 
Moreover, in order to ease the hyperplane identification, often the input data 
are first transformed into a higher-dimensional space, also known as feature 
space. This operation allows to classify data which eventually are nonlinearly 
separable. However, in case of large dataset, such transformation can take a 
very long time to be completed. Thus, to avoid this issue, the so-called kernel 
trick can be employed. Indeed, leveraging a kernel function, the algorithm can 
avoid to explicitly transform the data, which would be extremely 
computationally expensive, but can still exploit the benefits that would derive 

  

FIGURE 2.2.  (a) Hyperplane identification: many options are available for 
dividing the two classes of points. (b) Optimal hyperplane (red line) separating two 
data classes (blue and red circles). The solid circles represent the borderline points 
of each class, also known as support vectors. 
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from the transformation. The most common kernel functions adopted in SVM 
are the polynomial, the hyperbolic and the Gaussian one, which is also known 
as Radial Basis Function (RBF).  

In the following paragraphs, we will describe how SVM is trained and how it 
works, translating the basic concepts introduced above into mathematical 
formulas.  

Following the notation of FIGURE 2.2(b), a generic hyperplane of the feature 
space can be defined as 

𝐰𝐰T𝐱𝐱 + 𝑏𝑏 = 0 ,                                                     (2.1) 

where 𝐱𝐱 is the vector representing the input samples of the SVM, such that 𝐱𝐱 ∈
ℝ𝑛𝑛 with 𝑛𝑛 representing the dimension of the 𝐱𝐱 vector (e.g., in the example of 
FIGURE 2.2(b) 𝑛𝑛 = 2), 𝐰𝐰 is the weight vector representing the polynomial 
coefficients, 𝐰𝐰T is the transpose of 𝐰𝐰, and 𝑏𝑏 represents the so-called bias 
parameter. 𝐰𝐰 and 𝑏𝑏 are the SVM parameters to be learnt during the training 
phase. SVM goal is to find a hyperplane that maximizes the margin 𝑑𝑑 between 
the hyperplane itself and the support vectors. It can be demonstrated that such 
margin can be expressed as 

𝑑𝑑 =
1

‖𝐰𝐰‖
 ,                                                         (2.2) 

where ‖𝐰𝐰‖ = 𝐰𝐰T𝐰𝐰 represents the Euclidean norm of the weight vector 𝐰𝐰.  

Therefore, the research of the optimal hyperplane reduces to the research of 
its corresponding values 𝐰𝐰 and 𝑏𝑏 for which the distance 𝑑𝑑 is maximized, under 
the constraint that all the input data points are classified correctly. Such 
conditions can be mathematically derived as follows. Assuming to classify the 
samples belonging to the blue class with 1 and those belonging to the orange 
class with -1, one can write 

𝑦𝑦𝑙𝑙 = �−1, if   𝐰𝐰T𝐱𝐱𝑙𝑙 + 𝑏𝑏 ≤ −1                                     (2.3)
1, if   𝐰𝐰T𝐱𝐱𝑙𝑙 + 𝑏𝑏 ≥ 1    ,

 

where 𝑦𝑦𝑙𝑙 represents the class assigned by the SVM algorithm (i.e., the SVM 
output) to the 𝑙𝑙-th input 𝐱𝐱𝑙𝑙. Then, the condition of making only correct 
decisions for all the input data points can be written as 

𝑦𝑦𝑙𝑙(𝐰𝐰T𝐱𝐱𝑙𝑙 + 𝑏𝑏) ≥ 1, 𝑙𝑙 = 1,2, … , 𝐿𝐿 ,                                  (2.4) 

where 𝐿𝐿 represents the total length of the input data.  

Thus, the optimization problem related to the optimal hyperplane research 
becomes 

𝑚𝑚𝑚𝑚𝑚𝑚𝐰𝐰,𝑏𝑏  ‖𝐰𝐰‖                                                        (2.5) 
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                                   subject to     𝑦𝑦𝑙𝑙(𝐰𝐰T𝐱𝐱𝑙𝑙 + 𝑏𝑏) ≥ 1, 𝑙𝑙 = 1,2, … , 𝐿𝐿 . 

Equation 2.5 represents a quadratic optimization problem also known as hard-
margin SVM. As previously mentioned, in case of nonlinearly separable data a 
transformation to a higher dimensional feature space must be considered. For 
such purpose, a mapping function 𝜑𝜑(∙) has to be used and the optimization 
problem described in Equation 2.5 becomes 

𝑚𝑚𝑚𝑚𝑚𝑚𝐰𝐰,𝑏𝑏  ‖𝐰𝐰‖                                                        (2.6) 

                                subject to     𝑦𝑦𝑙𝑙(𝐰𝐰T𝜑𝜑(𝐱𝐱𝑙𝑙) + 𝑏𝑏) ≥ 1, 𝑙𝑙 = 1,2, … , 𝐿𝐿 . 

In addition, since there is the possibility that no such hyperplane exists, the 
constraints can be relaxed employing the so-called slack variables 𝜉𝜉. 
Considering that each 𝑙𝑙-th input sample needs its own slack variables, the 
optimization problem of Equation 2.6 becomes 

𝑚𝑚𝑚𝑚𝑚𝑚𝐰𝐰,𝑏𝑏     ‖𝐰𝐰‖ + 𝐶𝐶�𝜉𝜉𝑙𝑙

𝐿𝐿

𝑙𝑙=1

                                                        

subject to     𝑦𝑦𝑙𝑙(𝐰𝐰T𝜑𝜑(𝐱𝐱𝑙𝑙) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑙𝑙 , 𝑙𝑙 = 1,2, … , 𝐿𝐿               (2.7) 

                                               𝜉𝜉𝑙𝑙 ≥ 0,                                                𝑙𝑙 = 1,2, … , 𝐿𝐿 , 

where 𝐶𝐶, also known as penalty of the error term, is a hyperparameter 
representing the cost assigned to any misclassification (i.e., a higher 𝐶𝐶 will 
imply a more strict data separation). The quadratic optimization problem 
described by Equation 2.7 is also known as soft-margin SVM.  

As previously mentioned, often the data to be classified are nonlinear 
separable. Therefore, a shift towards a higher dimensional features space is 
required. In order to avoid computing the mapping function 𝜑𝜑(∙), the so-called 
kernel trick can be leveraged. To do so, the primal problem described by 
Equation 2.7 has to be transformed in a dual problem by means of the 
Lagrange dual formulation. This will allow the chosen nonlinear kernel 
function to be employed.  

The most common solutions available to solve the optimization problem 
described by Equation 2.7 are the CVXOPT Python package [37] for convex 
optimization and the Sequential Minimal Optimization (SMO) approach. In 
Section 2.2, we will also provide a brief overview of convex optimization 
problems. For a given input 𝑥𝑥𝑙𝑙, the output of the optimization problem will be 
a set of weights 𝐰𝐰, whose linear combination will correspond to the predicted 
class 𝑦𝑦𝑙𝑙. The analysis presented above is valid for binary classification 
problems only. To address multiclass classification problems, they simply need 
to be reduced in a series of binary ones. 
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Support Vector Machine for Regression 
As for the SVM for classification, SVR also reduces to an optimization problem. 
However, unlike the previous case, the minimization of 𝐰𝐰 is subject to the 
condition that the label 𝑦𝑦𝑙𝑙 (which now assumes continuous values) assigned to 
the 𝑙𝑙-th input 𝑥𝑥𝑙𝑙 deviates from the hyperplane within the accuracy boundary 𝜖𝜖, 
for all the samples 𝑙𝑙, as shown in FIGURE 2.3(a). In other words, as long as the 
prediction errors fall within the interval defined by 𝜖𝜖, the prediction will be 
considered accurate. Therefore, by tuning 𝜖𝜖, the exact accuracy level of the 
model can be chosen. Consequently, while in SVM for classification the 
hyperplane represented the optimal decision boundary, in SVR it represents 
the objective fitting function 𝑓𝑓(𝑥𝑥) to be identified. In addition, in order to 
minimize any possible deviation larger than 𝜖𝜖, slack variables can be also 
considered for those points lying outside the accuracy boundaries, as shown in 
FIGURE 2.3(b). Bearing in mind such assumptions, the optimization problem 
described by Equation 2.7 can be restated as 

𝑚𝑚𝑚𝑚𝑚𝑚𝐰𝐰,𝑏𝑏     ‖𝐰𝐰‖ + 𝐶𝐶�𝜉𝜉𝑙𝑙

𝐿𝐿

𝑙𝑙=1

 

subject to     |𝑦𝑦𝑙𝑙 − 𝑓𝑓(𝑥𝑥)| ≤ 𝜖𝜖 + 𝜉𝜉𝑙𝑙 , 𝑙𝑙 = 1,2, … , 𝐿𝐿                    (2.8) 

                                                       𝜉𝜉𝑙𝑙 ≥ 0,                                  𝑙𝑙 = 1,2, … , 𝐿𝐿 , 

where 𝜉𝜉𝑙𝑙 represents the slack variable associated to the 𝑙𝑙-th input point which 
falls outside the error margin defined by the hyperparameter 𝜖𝜖, 𝐶𝐶 is the 

  

FIGURE 2.3.  (a) SVMs for regression. Each circle represents an input point, the 
solid circles represent the support vectors, the red line represents the fitting 
function 𝑓𝑓(𝑥𝑥), and the dashed black lines represent the error margins defined by 𝜖𝜖. 
(b) The orange circles represent the input points falling outside the error margins 
𝜖𝜖, which are taken into account by slack variables 𝜉𝜉. 
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hyperparameter representing the tolerance for such points (i.e., a higher 𝐶𝐶 will 
imply a higher tolerance for points lying outside the error margin), and 
𝑓𝑓(𝑥𝑥) = (𝐰𝐰T𝜑𝜑(𝐱𝐱𝑙𝑙) + 𝑏𝑏) represents the line (or the hyperplane) fitting the input 
data. Again, as per the classification SVM, when dealing with nonlinear data a 
transformation into a higher dimensional space should be considered. To do 
so, the same kernel functions presented in the previous section can be 
employed. 

In this thesis, we leverage SVR to estimate the OSNR values of optical 
connections starting from their optical spectra. Such implementation will be 
detailed within an egress monitoring scenario in Section 5.2. 

2.1.4 Gaussian Process 

GPs can be leveraged to address both regression and classification problems 
[18]. In this section we mainly focus on the first application, which is also 
known as GPR, providing a description of its operation principles and listing 
the aspects that make it an interesting and attractive approach for regression 
purposes. In addition, a brief introduction about GP for classification is also 
presented. The derivations proposed in this section are adapted from [38]. 

A GP is a stochastic process, that is a collection of random variables such that 
every finite linear combination of them have a joint Gaussian distribution. A 
GP 𝑓𝑓(𝐱𝐱) can be defined as 

{𝑓𝑓(𝐱𝐱), 𝐱𝐱 ∈ ℝ𝑛𝑛} ,                                                     (2.9) 

where 𝐱𝐱 represents the feature vector, the symbol ℝ represents the set of all the 
real numbers, and 𝑛𝑛 is ℝ dimensional space. Given 𝐿𝐿 observations 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝐿𝐿, 
the joint distribution of the random variables 𝑓𝑓(𝐱𝐱1), 𝑓𝑓(𝐱𝐱2), … , 𝑓𝑓(𝐱𝐱𝐿𝐿) is 
Gaussian. Moreover, being a GP completely specified by its mean 𝑚𝑚(𝐱𝐱) and its 
covariance function 𝑘𝑘(𝐱𝐱, 𝐱𝐱′), it can be written as 

𝑓𝑓(𝐱𝐱) ∼ 𝐺𝐺𝐺𝐺�𝑚𝑚(𝐱𝐱), 𝑘𝑘(𝐱𝐱, 𝐱𝐱′)� .                                       (2.10) 

The covariance function 𝑘𝑘(𝐱𝐱, 𝐱𝐱′), which is also known as kernel function, 
specifies the statistical relationship between two input points of the input 
space. 

Gaussian Process for Regression 
Considering the GP described by Equation 2.10, a GPR model can be 
represented as 

ℎ(𝐱𝐱)T𝛃𝛃 + 𝑓𝑓(𝐱𝐱) ,                                                  (2.11) 
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where ℎ(𝐱𝐱) represents a set of basis functions whose role is to transform the 
original feature vector 𝐱𝐱 ∈ ℝ𝑛𝑛 into a new feature vector ∈ ℝ𝑝𝑝 (with 𝑝𝑝 being the 
dimension of the new feature space), such as ℎ ∶ ℝ𝑛𝑛 → ℝ𝑝𝑝, 𝛃𝛃 represents the 𝑝𝑝 ×
1 vector of the basis function coefficients, and 𝑓𝑓(𝐱𝐱) represents a set of random 
variables from 𝐺𝐺𝐺𝐺(0,𝑘𝑘(𝐱𝐱, 𝐱𝐱′)), which is a GP with zero mean and 𝑘𝑘(𝐱𝐱, 𝐱𝐱′) 
covariance function. 

Therefore, any instance 𝑙𝑙 of the GPR label set 𝑦𝑦, can be modelled as the 
following probability with Gaussian distribution 

𝑃𝑃(𝑦𝑦𝑙𝑙|𝑓𝑓(𝐱𝐱𝑙𝑙), 𝐱𝐱𝑙𝑙) ∼ 𝑁𝑁(𝑦𝑦𝑙𝑙|ℎ(𝐱𝐱𝑙𝑙)T𝛃𝛃 + 𝑓𝑓(𝐱𝐱𝑙𝑙),𝜎𝜎2) ,                      (2.12) 

where 𝑓𝑓(𝐱𝐱𝑙𝑙) represents a latent variable and 𝜎𝜎2 represents the variance of the 
Gaussian distribution. Since a latent variable 𝑓𝑓(𝐱𝐱𝑙𝑙) is introduced for each 
observation 𝐱𝐱𝑙𝑙, with 𝑙𝑙 = 1,2, … , 𝐿𝐿, the GPR is considered as a probabilistic 
nonparametric model. The fact of being a probabilistic model implies that, 
once the model is trained, from the standard deviations 𝜎𝜎 of the predicted 
responses a prediction interval can be computed. The prediction interval can 
be useful when dealing with noisy observations. In addition, as mentioned in 
Section 2.1.2, a model is defined as nonparametric when the number of its 
parameters is not fixed, but depends on the training dataset (like in this case, 
where the number of latent variables is directly correlated to the number of 
observations). 

The joint distribution of the latent variables 𝑓𝑓(𝐱𝐱1), 𝑓𝑓(𝐱𝐱2), … , 𝑓𝑓(𝐱𝐱𝐿𝐿) in the GPR 
model can be written in vector form as 

𝑃𝑃(𝑓𝑓|𝐗𝐗) ∼ 𝑁𝑁�𝑓𝑓�0,𝐊𝐊(𝐗𝐗,𝐗𝐗)� ,                                       (2.13) 

where 𝐗𝐗 is the matrix composed by the transpose of the 𝐿𝐿 observation vectors 
𝐱𝐱𝑙𝑙 and 𝐊𝐊(𝐗𝐗,𝐗𝐗) is the kernel matrix (i.e., the covariance matrix) composed by all 
the kernel functions (i.e., the covariance functions) 𝑘𝑘(𝐱𝐱, 𝐱𝐱′), such as 

𝐊𝐊(𝐗𝐗,𝐗𝐗) = �
𝑘𝑘(𝐱𝐱1, 𝐱𝐱1) ⋯ 𝑘𝑘(𝐱𝐱1, 𝐱𝐱𝐿𝐿)

⋮ ⋱ ⋮
𝑘𝑘(𝐱𝐱𝐿𝐿 , 𝐱𝐱1) ⋯ 𝑘𝑘(𝐱𝐱𝐿𝐿 , 𝐱𝐱𝐿𝐿)

�  .                           (2.14) 

Usually, the covariance function 𝑘𝑘(𝐱𝐱, 𝐱𝐱′) is parametrized using a set of 
hyperparameters 𝛉𝛉, also known as kernel parameters, such as 𝑘𝑘(𝐱𝐱, 𝐱𝐱′|𝛉𝛉). 

Therefore, fitting a GPR model requires, during the training phase, the 
estimation of three parameters from the data, which are the coefficients vector 
𝛃𝛃 of the basis functions, the variance 𝜎𝜎2, and the hyperparameters vector 𝛉𝛉 of 
the covariance functions 𝑘𝑘(𝐱𝐱, 𝐱𝐱′|𝛉𝛉). 

Several aspects of GPR make it an interesting solution for solving regression 
problems, among which we can mention the kernel parameters learning, which 
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happens directly from the data, and allows to shape the fitted function in many 
different ways, and the fact that, for each predicted value, it returns a 
distribution rather than just the single value. This last feature is particularly 
important, since it allows to have confidence intervals for the predictions. On 
the other hand, being a nonparametric model, GPR needs to take into account 
the whole training data every time it makes a prediction, therefore requiring 
an important computational cost which scales cubically with the number of 
training samples. 

As per the SVM, in this thesis we employed GPR to estimate the signal OSNR 
value starting from its optical spectrum. We will explain in detail GPR 
implementation within our work in Chapter 5. 

Gaussian Process for Classification 
Usually, in a probabilistic approach to classification, the posterior probabilities 
of the target variable for a new input vector assume values in the interval (0, 
1). However, the predictions made by a GP model can assume any value on the 
real axis. Therefore, to address classification problems with GPs, their outputs 
have first to be adapted using appropriate nonlinear activation functions, such 
as the logistic sigmoid one [18]. Once this transformation is performed, if a 
two-class classification problem is considered, the two probabilities to be 
predicted will be 

𝑝𝑝(𝑦𝑦𝐿𝐿+1 = 1|𝐲𝐲𝐿𝐿) ,                                                  (2.15) 

𝑝𝑝(𝑦𝑦𝐿𝐿+1 = 0|𝐲𝐲𝐿𝐿) = 1 − 𝑝𝑝(𝑦𝑦𝐿𝐿+1 = 1|𝐲𝐲𝐿𝐿) ,                             (2.16) 

where 𝐲𝐲𝐿𝐿 = (𝑦𝑦, 𝑦𝑦2, … ,𝑦𝑦𝐿𝐿)T is the vector representing the observed target 
variables related to the training set inputs 𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝐿𝐿 and 𝑦𝑦𝐿𝐿+1 represents the 
target variable related to a single test point 𝐱𝐱𝐿𝐿+1.  

As shown by Equation 2.16, 𝑝𝑝(𝑦𝑦𝐿𝐿+1 = 1|𝐲𝐲𝐿𝐿) can be simply derived by 
Equation 2.15, which thus becomes the only probability to be predicted. For a 
detailed explanation on how the prediction of such probability is assessed, the 
reader is referred to [18]. To extend such results to multi-class classifications, 
the simplest option is to use several binary one-versus-rest classifiers [39]. 

2.2 Convex Optimization 

In this section we provide a brief overview of convex optimization, a special 
class of mathematical optimization problems. Then, we define and formulate 
the main characteristics of gradient descent and subgradient methods, two of 
the most common approaches to address optimization problems. In Chapter 
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6, we adopt such kind of algorithms to optimize the spectral spacing within an 
optical superchannel. 

2.2.1 Introduction 

In general, an optimization problem assumes the following form [40]: 

minimize      𝑓𝑓0(𝑥𝑥)                                                                     (2.17) 
subject to     𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑏𝑏𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚 ,                                        

where 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) is the vector representing the optimization variable of the 
problem, 𝑓𝑓0 ∶ ℝ𝑛𝑛 → ℝ represents the objective, or cost, function, 𝑓𝑓𝑖𝑖 ∶ ℝ𝑛𝑛 → ℝ, 
with 𝑖𝑖 = 1, … ,𝑚𝑚, represent the (inequality) constraint functions, and 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 
are the limits, or bounds, for the constraints. If there are no constraints, the 
problem is defined as an unconstrained optimization problem. A vector 𝑥𝑥∗ is 
called optimal, or a solution of the optimization problem, if it has the smallest 
objective value among all vectors that satisfy the constraints: for any 𝑧𝑧 with 
𝑓𝑓1(𝑧𝑧) ≤ 𝑏𝑏1, … ,𝑓𝑓𝑚𝑚(𝑧𝑧) ≤ 𝑏𝑏𝑚𝑚, we have 𝑓𝑓0(𝑧𝑧) ≥ 𝑓𝑓0(𝑥𝑥∗). By convention, optimization 
problems are always represented as minimization problems. We can translate 
any maximization problem into a minimization one, simply by minimizing the 
negative of the cost function.  

In particular, if the objective and constraint functions 𝑓𝑓0, … , 𝑓𝑓𝑚𝑚 ∶ ℝ𝑛𝑛 → ℝ satisfy 
the following condition 

𝑓𝑓𝑖𝑖(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) = 𝛼𝛼𝑓𝑓𝑖𝑖(𝑥𝑥) + 𝛽𝛽𝑓𝑓𝑖𝑖(𝑦𝑦) ,                                  (2.18) 

for all 𝑥𝑥, with 𝑦𝑦 ∈ ℝ𝑛𝑛, and all the coefficients 𝛼𝛼 and 𝛽𝛽 ∈ ℝ, they are considered 
as linear functions, and the optimization problem described by Equation 2.17 
is called a linear program. On the contrary, if the problem is not linear, it is 
called a nonlinear program. 

In addition, if the objective and constraint functions 𝑓𝑓0, … , 𝑓𝑓𝑚𝑚 ∶ ℝ𝑛𝑛 → ℝ satisfy 
the following inequality 

𝑓𝑓𝑖𝑖(𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽) ≤ 𝛼𝛼𝑓𝑓𝑖𝑖(𝑥𝑥) + 𝛽𝛽𝑓𝑓𝑖𝑖(𝑦𝑦) ,                                  (2.19) 

for all 𝑥𝑥, with 𝑦𝑦 ∈ ℝ𝑛𝑛, and all the coefficients 𝛼𝛼 and 𝛽𝛽 ∈ ℝ, with 𝛼𝛼 + 𝛽𝛽 = 1, 𝛼𝛼 ≥
0, and 𝛽𝛽 ≥ 0, they are considered as convex functions, and the optimization 
problem described by Equation 2.17 is called a convex optimization problem. 
Geometrically, the inequality described by Equation 2.19 means that a function 
is convex if the line segment between (𝑥𝑥, 𝑓𝑓(𝑥𝑥)) and (𝑦𝑦, 𝑓𝑓(𝑦𝑦)), which represents 
the chord from 𝑥𝑥 to 𝑦𝑦, lies above the graph of 𝑓𝑓, as we depict in FIGURE 2.4. 
By contrast, a function 𝑓𝑓 is defined as concave if –𝑓𝑓 is convex. 
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Since convexity is more general than linearity, convex optimization is a 
generalization of linear programming, and therefore any linear program can 
be considered as a convex optimization problem. 

According to [40], we can interpret the optimization problem described by 
Equation 2.17 as an abstraction of the problem of choosing the best possible 
vector in ℝ𝑛𝑛, from a set of candidate choices. In turn, the variable 𝑥𝑥 represents 
the choice made, whereas the constraints 𝑓𝑓𝑖𝑖(𝑥𝑥) ≤ 𝑏𝑏𝑖𝑖 and the objective value 
𝑓𝑓0(𝑥𝑥) represent the specifications that limit the possible choices and the cost of 
choosing 𝑥𝑥, respectively. On the contrary, we can also think of −𝑓𝑓0(𝑥𝑥) as 
representing the value, or utility, of choosing 𝑥𝑥. Finally, we can think a solution 
𝑥𝑥∗ of the optimization problem, as the choice that has the minimum cost (or 
the maximum utility), among all the choices that meet the required 
specifications. 

An example of optimization problem is data fitting, in which the task is to find 
a model, from a family of potential models, that best fits some observed data 
and prior information [40]. In particular, here the variables are the parameters 
of the model, and the constraints can represent the prior information. We 
leverage data fitting in Section 5.3, in order to retrieve the optical filter 
Transfer Functions (TF) spectra. 

Unluckily, no analytical formulas are available to solve convex optimization 
problems. Nevertheless, several effective methods can help address such 
problems [40]. In general, if a problem can be formulated as a convex 
optimization one, then an efficient way to solve it exists. However, the 

 

FIGURE 2.4.  Example of a convex function. The chord between any two points of 
the graph lies above the graph itself. 
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challenging part is to recognize and formulate convex optimization problems, 
or those that can be transformed into such ones. 

2.2.2 Gradient Descent Method 

In case of unconstrained optimization problems, one of the most common 
method to solve them is known as gradient descent method. In the following 
paragraphs, we derive the gradient descent method formulation starting from 
the definition of an unconstrained optimization problem, and defining a 
general descent method. However, with small extensions, similar solutions can 
also be employed to address constrained problems. The following derivation is 
reported from [40]. 

Consider the following unconstrained optimization problem: 

minimize   𝑓𝑓(𝑥𝑥) ,                                                 (2.20) 

where 𝑓𝑓 ∶ ℝ𝑛𝑛 → ℝ represents a convex and twice continuously differentiable 
cost function, which means that the domain of 𝑓𝑓, 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓 (i.e., the subset of ℝ𝑛𝑛 
of points 𝑥𝑥 for which 𝑓𝑓(𝑥𝑥) is defined) is open. It can be demonstrated [40], that 
a necessary and sufficient condition for a point 𝑥𝑥∗ to be the optimal solution of 
the problem described by Equation 2.20 is 

∇𝑓𝑓(𝑥𝑥∗) = 0 ,                                                     (2.21) 

where ∇ represents the gradient of 𝑓𝑓. Therefore, solving the problem described 
by Equation 2.20 is equivalent to find a solution to the one described by 
Equation 2.21, which is a set of 𝑛𝑛 equations in the 𝑛𝑛 variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. Usually, 
such problems are solved using iterative algorithms, that are algorithms that 
compute a sequence of points 𝑥𝑥(0), 𝑥𝑥(1), … ∈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓 with 𝑓𝑓(𝑥𝑥(𝑘𝑘)) → 𝑝𝑝∗ as 𝑘𝑘 → ∞, 
where 𝑝𝑝∗ = 𝑓𝑓(𝑥𝑥∗) is the optimal value of 𝑓𝑓. This sequence of points is known as 
minimizing sequence. The iterative algorithm stops when 𝑓𝑓�𝑥𝑥(𝑘𝑘)� − 𝑝𝑝∗ ≤ 𝜖𝜖, 
where 𝜖𝜖 > 0 represents some specified tolerance. 

In addition, such iterative algorithms requires a suitable starting point 𝑥𝑥(0). In 
particular, the starting point must lie in 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓, and in addition the sublevel 
set 𝑆𝑆, defined as 

𝑆𝑆 = �𝑥𝑥 ∈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓�𝑓𝑓(𝑥𝑥) ≤ 𝑓𝑓�𝑥𝑥(0)�� ,                                (2.22) 

must be closed. Such condition is satisfied for all 𝑥𝑥(0) ∈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓 if 𝑓𝑓 is closed, 
which means that all its sublevel sets are closed. For instance, continuous 
functions with 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓 = ℝ𝑛𝑛 are closed, so if 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓 = ℝ𝑛𝑛, the initial sublevel 
set condition is satisfied by any 𝑥𝑥(0). 
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The iterative algorithms we consider produce a minimizing sequence of the 
form 𝑥𝑥(𝑘𝑘), 𝑘𝑘 = 1, … , where 

𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) + 𝑡𝑡(𝑘𝑘)∆𝑥𝑥(𝑘𝑘) ,                                        (2.23) 

and 𝑡𝑡(𝑘𝑘) > 0, except when 𝑥𝑥(𝑘𝑘) is optimal. In Equation 2.23, ∆𝑥𝑥 represents a 
vector in ℝ𝑛𝑛, which is known as the step or search direction, 𝑘𝑘 = 0,1, … denotes 
the iteration number, and the scalar 𝑡𝑡(𝑘𝑘) is called the step size or step length at 
iteration 𝑘𝑘. 

An iteration method is referred to as descent, if 

𝑓𝑓�𝑥𝑥(𝑘𝑘+1)� < 𝑓𝑓�𝑥𝑥(𝑘𝑘)� ,                                            (2.24) 

except when 𝑥𝑥(𝑘𝑘) is optimal. This implies that for all 𝑘𝑘 we have 𝑥𝑥(𝑘𝑘) ∈ 𝑆𝑆, where 
𝑆𝑆 is the initial sublevel set defined in Equation 2.22, and in particular we have 
𝑥𝑥(𝑘𝑘) ∈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓. It can be demonstrated [40], that the search direction in a 
descent method must satisfy the condition 

∇𝑓𝑓�𝑥𝑥(𝑘𝑘)�𝑇𝑇∆𝑥𝑥(𝑘𝑘) < 0 ,                                             (2.25) 

which means that the search direction must make an acute angle with the 
negative gradient. Such direction is defined as the descent direction. 

From [40], we report Algorithm 2.1, the outline of a general descent method, 
which alternates between two steps: determining a descent direction ∆𝑥𝑥, and 
selecting a proper step size 𝑡𝑡. 

Usually, the stopping criterion is of the form ‖∇𝑓𝑓(𝑥𝑥)‖ ≤ 𝜂𝜂, where 𝜂𝜂 represents 
a small and positive value, and often it is checked while, or immediately after, 
the descent direction ∆𝑥𝑥 is computed. 

Algorithm 2.1: General descent method. 

𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 a starting point 𝑥𝑥 ∈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓. 
𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫  
        1. Determine a descent direction ∆𝑥𝑥. 
        2. Line search. Choose a step size 𝑡𝑡 > 0   
        3. Update. 𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) + 𝑡𝑡(𝑘𝑘)∆𝑥𝑥(𝑘𝑘). 
𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 stopping criterion is satisfied.  
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If as search direction we select the negative gradient ∆𝑥𝑥 = −∇𝑓𝑓(𝑥𝑥), the 
resulting descent algorithm is known as the gradient descent method, which 
we report from [40] as Algorithm 2.2. 

In Algorithm 2.2, exact and backtracking line search represent two common 
line search methods [40]. As per the general descent method, also the stopping 
criterion for the gradient descent method is often checked after step 1. 

2.2.3 Subgradient Method 

In the minimization problem described by Equation 2.20, we assume the 
function 𝑓𝑓 to be convex and differentiable. To minimize a convex 
nondifferentiable function, we can employ the subgradient method, a simple 
algorithm originally developed by Shor in the 1970s [41]. Unlike the gradient 
method, the subgradient one is not a descent method, in fact the objective 
function can also increase, as we will show in Chapter 6 for an optimization 
problem applied to superchannels. Apart from this aspect, the main difference 
between gradient and subgradient methods is that the latter uses step lengths 
that are fixed in advance, instead of exact or approximate line searches as in 
Algorithm 2.2. In this section, we first recall the definition of subgradient and 
then we leverage it to describe the subgradient method, as done in [42]. 

The subgradient of a function 𝑓𝑓 ∶ ℝ𝑛𝑛 → ℝ (not necessarily convex) at 𝑥𝑥 can be 
defined as any vector 𝑔𝑔 ∈ ℝ𝑛𝑛 that satisfies, for all 𝑦𝑦, the inequality 

𝑓𝑓(𝑦𝑦) ≥ 𝑓𝑓(𝑥𝑥) + 𝑔𝑔𝑇𝑇(𝑦𝑦 − 𝑥𝑥) .                                       (2.26) 

Considering the same minimization problem described by Equation 2.20, but 
with the function 𝑓𝑓 being only convex, the subgradient method minimize 𝑓𝑓 
using the iteration 

𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) − 𝑡𝑡(𝑘𝑘)𝑔𝑔(𝑘𝑘) ,                                         (2.27) 

Algorithm 2.2: Gradient descent method. 

𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 a starting point 𝑥𝑥 ∈ 𝐝𝐝𝐝𝐝𝐝𝐝 𝑓𝑓. 
𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫  
       1. ∆𝑥𝑥(𝑘𝑘+1) = −∇𝑓𝑓(𝑥𝑥(𝑘𝑘)) 
       2. Line search. Choose step size 𝑡𝑡 via exact or backtracking line search.   
       3. Update. 𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) + 𝑡𝑡(𝑘𝑘)∆𝑥𝑥(𝑘𝑘). 
𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮 stopping criterion is satisfied.  
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where, similarly to the minimizing sequence described by Equation 2.23, 𝑥𝑥(𝑘𝑘) 
represents the 𝑘𝑘-th iteration, 𝑡𝑡(𝑘𝑘) > 0 is the 𝑘𝑘-th step size, and 𝑔𝑔(𝑘𝑘) represents 
any subgradient of 𝑓𝑓 at 𝑥𝑥(𝑘𝑘). What Equation 2.26 expresses is, that at each 
iteration of the subgradient method, we take a step in the direction of a 
negative subgradient. If 𝑓𝑓 is differentiable, the only possible choice for 𝑔𝑔(𝑘𝑘) 
would be ∇𝑓𝑓�𝑥𝑥(𝑘𝑘)�, and the subgradient method would then reduce to the 
gradient method presented in Section 2.2, apart for the step size choice. 

As we previously mentioned, the subgradient method is not a descent method. 
Hence, it is common to keep track of the best achieved points, which are those 
with the smallest function value. At each step, we set [42] 

𝑓𝑓best
(𝑘𝑘) = min�𝑓𝑓best

(𝑘𝑘−1),𝑓𝑓(𝑥𝑥(𝑘𝑘))� .                                     (2.28) 

And finally, we have 

𝑓𝑓best
(𝑘𝑘) = min�𝑓𝑓�𝑥𝑥(1)�, … ,𝑓𝑓(𝑥𝑥(𝑘𝑘))� ,                                 (2.29) 

where 𝑓𝑓best
(𝑘𝑘)  represents the best objective value found in 𝑘𝑘 iterations. 

Within the subgradient method, several types of step size can be chosen, 
among which two of the most common are the constant step size and the 
constant step length. In the former, 𝑡𝑡(𝑘𝑘) = ℎ, where ℎ is a constant independent 
from 𝑘𝑘. Instead, in the latter, 𝑡𝑡(𝑘𝑘) = ℎ �𝑔𝑔(𝑘𝑘)�⁄ , which translates into ℎ =
�𝑥𝑥(𝑘𝑘+1) − 𝑥𝑥(𝑘𝑘)�. 

For these two step size rules, it can be demonstrated [42], that the subgradient 
algorithm is guaranteed to converge within some range of the optimal value, 
which translates into: 

lim
𝑘𝑘→∞

𝑓𝑓best
(𝑘𝑘) −𝑓𝑓∗ < 𝜖𝜖 ,                                               (2.30) 

where the value 𝜖𝜖 is a function of the step size parameter ℎ, and decreases with 
it. 

2.2.4 Stochastic Subgradient Method 

The stochastic subgradient method is similar to the subgradient method, but 
it uses noisy subgradient and a more limited set of step size rules [43]. The 
noise can represent error in computing a true subgradient, or errors related to 
the measurement process. In this section, we first introduce a noisy 
subgradient, and then, following the steps proposed in [44], we use it to define 
the stochastic subgradient method. In Chapter 6, we apply such method to 
optimize the subchannels spectral spacing in a superchannel. 
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Considering the convex function 𝑓𝑓 ∶ ℝ𝑛𝑛 → ℝ, a random vector 𝑔𝑔� ∈ ℝ𝑛𝑛 is 
defined as a noisy subgradient of 𝑓𝑓 at 𝑥𝑥, if its expected value satisfy the 
following condition: 

𝑔𝑔 = 𝐄𝐄𝑔𝑔� ∈ 𝜕𝜕𝜕𝜕(𝑥𝑥) ,                                                (2.31) 

where 𝜕𝜕𝜕𝜕(𝑥𝑥) represent the subdifferential of 𝑓𝑓 at 𝑥𝑥, which is the set of all 
subgradients of 𝑓𝑓 at 𝑥𝑥. 

Rewriting Equation 2.26 considering Equation 2.31, the following condition 
about the noisy subgradient, which has to be valid for all 𝑦𝑦, can be stated 

𝑓𝑓(𝑦𝑦) ≥ 𝑓𝑓(𝑥𝑥) + (𝐄𝐄𝑔𝑔�)𝑇𝑇(𝑦𝑦 − 𝑥𝑥) .                                    (2.32) 

Therefore, 𝑔𝑔� is defined as a noisy unbiased subgradient of 𝑓𝑓 at 𝑥𝑥, if it can be 
written as 𝑔𝑔� = 𝑔𝑔 + 𝜐𝜐, where 𝑔𝑔 ∈ 𝜕𝜕𝜕𝜕(𝑥𝑥) and 𝜐𝜐, represents a zero mean noise. 

If 𝑥𝑥 is a random variable, then we say that 𝑔𝑔� is a noisy subgradient of 𝑓𝑓 at 𝑥𝑥, if 
for all 𝑦𝑦, the following condition holds almost surely (i.e., the set of possible 
exceptions may be nonempty, but has probability 0): 

𝑓𝑓(𝑦𝑦) ≥ 𝑓𝑓(𝑥𝑥) + 𝐄𝐄(𝑔𝑔�|𝑥𝑥)𝑇𝑇(𝑦𝑦 − 𝑥𝑥) .                                  (2.33) 

Similar to Equation 2.31, the condition expressed by Equation 2.33 can be 
written in a more compact way, as 

𝑔𝑔 = 𝐄𝐄(𝑔𝑔�|𝑥𝑥) ∈ 𝜕𝜕𝜕𝜕(𝑥𝑥) .                                            (2.34) 

Therefore, the stochastic subgradient method is defined as the subgradient 
method, but using noisy subgradients. The slow convergence of subgradient 
methods, which means high amounts of considered steps, averages out the 
statistical errors in the subgradients evaluations [44]. Considering the usual 
unconstrained minimization problem of a convex function 𝑓𝑓 ∶ ℝ𝑛𝑛 → ℝ, the 
stochastic subgradient method minimize 𝑓𝑓 using the iteration 

𝑥𝑥(𝑘𝑘+1) = 𝑥𝑥(𝑘𝑘) − 𝑡𝑡(𝑘𝑘)𝑔𝑔�(𝑘𝑘) ,                                         (2.35) 

where 𝑡𝑡(𝑘𝑘) > 0 is the 𝑘𝑘-th step size and 𝑔𝑔�(𝑘𝑘) is any noisy subgradient of 𝑓𝑓 at 𝑥𝑥(𝑘𝑘), 
such as 

𝐄𝐄�𝑔𝑔�(𝑘𝑘)�𝑥𝑥(𝑘𝑘)� = 𝑔𝑔(𝑘𝑘) ∈ 𝜕𝜕𝜕𝜕�𝑥𝑥(𝑘𝑘)� .                                  (2.36) 

As per the ordinary subgradient method, also in the stochastic subgradient 
one, the objective function can increase during the research for the minimum, 
so we again keep track of the best found points as 

𝑓𝑓best
(𝑘𝑘) = min�𝑓𝑓�𝑥𝑥(1)�, … ,𝑓𝑓(𝑥𝑥(𝑘𝑘))� ,                                 (2.37) 

where 𝑥𝑥(𝑘𝑘) and 𝑓𝑓best
(𝑘𝑘)  represent stochastic processes. 
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It can be demonstrated [44], that for 𝑘𝑘 → ∞, the expected 𝑓𝑓best
(𝑘𝑘)  value converges 

to the optimum as 

𝐄𝐄𝑓𝑓best
(𝑘𝑘) → 𝑓𝑓∗ .                                                     (2.38) 

In addition, convergence in probability can also be demonstrated [44], in fact, 
for any 𝜖𝜖 > 0, 

lim
𝑘𝑘→∞

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(𝑓𝑓best
(𝑘𝑘) ≥𝑓𝑓∗ + 𝜖𝜖) = 0 .                                   (2.39) 
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Chapter 3 
 

State of the Art 

In this chapter, we review the background concepts and the state of the art of 
those topics around which our technical proposals revolve. This chapter lays 
the foundation for Chapter 4, Chapter 5, and Chapter 6, in which the solutions 
we identified are presented. In particular, in this chapter, we review the 
literature on disaggregated optical networks, OPM techniques, with a special 
focus on OSNR, optical filter and spectral-based monitoring solutions, and 
superchannels. Building on those, we identify the open challenges and define 
the network scenario considered in the remainder of this dissertation. 

More in detail, this chapter is organized as follows. In Section 3.1, we present 
the disaggregation paradigm and its related operational models and network 
architectures. In Section 3.2, we review the main aspects of OPM, mainly 
focusing on those techniques that allow monitoring the OSNR and the filter-
related parameters, and those monitoring approaches that leverage optical 
spectral data. In Section 3.3, we review the superchannel technology, the 
advantages resulting from its adoption, and the challenges that it presents. 
Finally, relying on the literature reviewed in the previous sections, in 
Section 3.4, we present the open tasks that we identify as worthy of addressing, 
along with the considered network reference scenario. 

3.1 Disaggregated Optical Networks  

In this section, we present how the trend among telecommunication operators 
is evolving from aggregation to a disaggregation paradigm. We list the key 
enablers of such transformation and the benefits that it could bring and the 
challenges that still need to be faced. Moreover, we present a detailed 
description of the envisioned network disaggregation architecture, focusing on 
the white box concept. 
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3.1.1 Paradigm Evolution: From Aggregation to Disaggregation 

Aggregation, that is, taking functions that once resided in separate devices and 
combining them in a single system, has always been a trend for 
telecommunication operators [45]. Such approach allows saving both Capital 
Expenditure (CAPEX) and Operation Expenditure (OPEX). The former term 
describes the funds used by a company to buy or upgrade its fixed assets, while 
the latter is related to the money spent by the company to maintain its 
business. A cost reduction related to the optical aggregated network approach 
translates for instance into fewer boxes to be acquired (CAPEX reduction) or 
in a more simplified network management (OPEX reduction). 

Of course, as pointed out in [45], to guarantee the success of the aggregation 
approach (i.e., a significant cost reduction) an adequate unified 
element/network management system had to be developed. Historically, such 
unified control system has been provided by the equipment vendor itself and 
it has been used to manage all its network elements. However, this aspect 
represents the downside of the aggregation strategy, given the proprietary and 
therefore closed nature of the element/network management systems, which 
hinders the innovation process by reducing the competition. 

Nowadays, the arrival at an increased rate of new generations of coherent 
DWDM TPs, and the presence of new large-scale network operators, such as 
the Internet Content Providers (ICPs), is pushing the telecom industry to 
consider a complete opposite approach with respect to the past: the 
disaggregation paradigm [46]. In fact, the growing need for ICPs to optimize 
their network components requires a more dynamic and flexible scenario than 
the old aggregated one. In addition, the rise of Software-Defined Networking 
(SDN) and Network Functions Virtualization (NFV) has enabled a potential 
disaggregation of the control plane from the forwarding plane and of the 
network hardware from software functions. Similarly, when considering the 
WDM transport segment, a traditional integrated/aggregated WDM system 
can be separated into different functional blocks, like for instance the so-called 
Open Line System (OLS) and the TP/Muxponder (MP) platform [47]. In 
particular, the OLS refers to the fiber, the amplifiers, and the optical network 
nodes (ROADMs). Moreover, new generations of TPs are usually released 
faster than new generations of line systems, not to mention that their 
replacement cost and lifespan is also way lower [48]. Therefore, network 
operators would like to have the possibility to deploy TPs from multiple 
suppliers and belonging to multiple generations, over a single line system 
generation [46]. An example of the benefits coming from the OLS employment 
is reported in [49], where the authors compared the routing performance of 
OLS with respect to proprietary line systems. Their results demonstrated that 
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disaggregated systems can be very competitive, especially in multi-domain 
deployment scenarios. 

In general, the benefits of adopting the disaggregation approach within optical 
networks are several [45], [46], [47]. Among them, the most significant is 
certainly the possibility for the telecom operators to efficiently scale and size 
their infrastructure according to their needs. In fact, they can incrementally 
expand the network dimensions as traffic increases and more capacity is 
required, better matching the targeted requirements using appropriate 
components, which also allow to avoid any vendor lock-in issue. Furthermore, 
disaggregation allows to share functions across different hardware resources 
(e.g., using commodity servers).  Therefore, a more efficient use of the network 
capacity is envisioned, along with a reduction of the power consumption and 
footprint. All these aspects will translate in an OPEX and CAPEX 
reduction [50]. Finally, disaggregation guarantees a high level of flexibility, a 
fundamental requirement for the future optical transport networks. On the 
other hand, hardware suppliers and service providers still need to face some 
challenges before being able to fully embrace the disaggregation paradigm 
[45], [46]. The main one certainly is to maintain the network and services 
required performance/reliability, while migrating toward a disaggregated 
environment. In this regard, in [48], when asked about the primary market 
target for disaggregated systems, the service providers identified metro-access 
(i.e., <100 km) as the most likely application. In fact, according to the surveyed 
service providers, for long haul (i.e., >600 km) applications performance 
remains the key requirement to address, while in short-medium range 
scenarios interoperability and cost savings have relatively higher priority. 

In the past few years, several initiatives for the development of common 
specifications for the disaggregated optical equipment have been launched, 
among them we can cite OpenROADM [51], OpenConfig [52], and Telecom 
Infra Project (TIP) [53]. 

An experimental demonstration of a disaggregated network scenario adopting 
SDN-enabled Sliceable Bandwidth/Bitrate Variable Transceivers (S-BVTs) can 
be found in [54]. There, the authors implemented OpenConfig SDN agents, 
which are developed to reconfigure and program a disaggregated transceiver 
according to the network condition. 

According to the 2019 survey presented in [55], in which the authors 
interviewed several service providers over the evolution of their strategies to 
address the 5G arrival, the 66% of them were likely to consider disaggregated 
architectures for their future optical transport networks. The main advantages 
for justifying such choice were the possibility to reduce both CAPEX and OPEX 
and the deployment flexibility guaranteed by the disaggregation approach. 
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These results prove once more how the optical network disaggregation 
paradigm represents a possible key enabler for the upcoming Information and 
Communication Technologies (ICTs). 

3.1.2 The White Box Operational Model 

The disaggregation paradigm can be defined at different levels within the 
optical networks. At the optical layer, such approach involves an evolution 
from chassis-based (proprietary) network elements to commodity (off-the-
shelf) components, the so-called white boxes, where generic off-the-shelf 
hardware can be purchased from any vendor and customized with software 
from different sources [4]. 

More in detail, in [4], the authors identified 4 different operational models for 
the metro/regional WDM transport system. On one side, there is the bare 
metal operational model, in which the operators source their hardware directly 
from the Original Design Manufacturers (ODMs) adapting free and open 
source software to it. Instead, on the other side, we have the traditional 
aggregated model, also known as black box approach, where the single vendor 
closely aggregates both the hardware and software and assumes oversight of 
the hardware components. In between these two extremes, two other 
operational models are identified: an evolution of the bare metal model, known 
as the white box approach and a slightly different paradigm known as brite box 
or branded white box. In the former, the operating system and application 
software are disaggregated from the hardware. Nevertheless, the ODMs can 
provide devices to the operators with some preinstalled operating system on 
them along with a certain level of support. In the latter, as for white boxes, 
software and hardware are disaggregated, but some preinstalled third-party 
operating system is present and a tailored level of lifecycle support from the 
vendor is envisioned. All the above mentioned approaches imply a different 
level of involvement for the telecommunication operators and the equipment 
vendors. In particular, the bare metal and white box ones require the biggest 
commitment from the operators. 

Therefore, white boxes represent a key element for providing the required 
disaggregation between software and hardware, as well as to support 
autonomic optical networking architectures [56]. An example of white box is 
reported in [57], where the authors experimentally demonstrated the 
configuration and the dynamic reconfiguration of a fully disaggregated device 
in which the hardware was separated from the control/management plane. In 
that case, the white box was composed by two types of TPs, performance 
monitors, switches, add-drop multiplexers (MUXs), and an agent for 
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interfacing with the control/management plane. All the modules listed above 
were provided by different vendors. 

As pointed out in [56] and [57], performance monitors play a fundamental role 
in white box-based disaggregated optical networks. In fact, in order to take 
accurate decisions, updated monitoring data must be periodically conveyed 
from different points of the network to the controller. Therefore, proactive and 
reactive automation of optical disaggregated networks with white box switches 
represents another big challenge that needs to be addressed [58]. Such 
automation is based on processing real-time network monitoring parameters 
and learning from the effects of the decisions previously taken. Thus, a 
fundamental task to accomplish is the development of new optical monitoring 
techniques able to deliver the feedback needed for guaranteeing a particular 
end-to-end QoT and QoS. In this context, the monitoring probe scheme and 
the techniques described within this thesis represent an important starting 
point. 

Finally, to support white boxes control and management, standardized data 
models are required. One of the most common is Yet Another Next Generation 
(YANG) [59], a data modelling language that enables interfacing the hardware 
with the control and the management planes. YANG is supported by 
NETCONF, an emerging protocol standardized by the IETF [60]. 

3.1.3 Disaggregated Optical Networks Architectures 

The main elements of a metro/regional WDM transport system can be 
classified as: client to WDM adapters, which include TPs, MPs, and 
Switchponders (SPs), ROADMs, amplifiers, line terminals, i.e., MUXs and 
Demultiplexers (DEMUXs), a suitable interconnection for all these elements, 
and finally, a WDM transport controller/management software [4]. 

Telecommunication operators can be involved in several degrees of depth in 
the design, assembly, integration and testing of the whole WDM transport 
system. According to [4], based on such implication level, three main network 
visions can be defined. The first one refers to the classical aggregated scenario, 
where a fully aggregated optical network is considered, as shown in 
FIGURE 3.1(a), where a horizontal aggregated data plane structure is 
depicted. In this case, the optical system lifecycle management is responsibility 
of the system vendor that provides both the proprietary WDM transport 
controller and all the network elements, as foreseen by a pure black box 
approach. 

A second approach, defined as the partially disaggregated one, considers a 
hybrid scenario in which the terminal equipment (i.e., the TPs) is 
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disaggregated from the line system. In fact, as introduced in Section 3.1.1, 
within the WDM transport network the concept of disaggregation implies a 
separation between the TPs/MPs platform, which adapt the digital client 
signals to the analogical media channels, and the rest of the transport layer, 
also known as OLS. Thanks to such strategy, the TPs, whose technological 

 

 

 

FIGURE 3.1.  (a) The classical fully aggregated data plane: all the TPs and the OLS 
elements are provided by the same vendor (i.e., they all have the same colour). (b) 
Partially horizontally disaggregated data plane: while each TP is provided by a 
different vendor, all the OLS elements are provided by the same vendor. (c) Fully 
horizontally disaggregated data plane: all the TPs and all the OLS elements are 
provided by a different vendor. TP: transponder, MUX/DEMUX: 
multiplexer/demultiplexers, OA: optical amplifier, ROADM: reconfigurable 
optical add/drop multiplexer. 
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lifecycle is shorter than that of the line system components, can be 
independently upgraded [61]. In this hybrid approach, the guidelines defined 
by the black box paradigm presented in Section 3.1.2 are mainly adopted 
within the line system. A horizontal partially disaggregated data plane is 
depicted in FIGURE 3.1(b). 

Finally, the third approach envisions a fully disaggregated optical network. In 
such scenarios, each element of the network, including the TPs, is purchased 
from a different vendor and the control intelligence is moved to a vendor-
agnostic WDM controller, as foreseen by the white box operational model. A 
strong presence of the telecommunication operators in the WDM transport 
system lifecycle is also required. FIGURE 3.1(c) depicts an example of a fully 
disaggregated horizontal data plane. Potentially, further disaggregation levels 
can be reached decomposing each ROADM into set of ROADM degrees or even 
more elementary components, also according to the bare metal operational 
model presented in Section 3.1.2. 

All the elements composing the disaggregated optical network are seen by the 
control and management plane as a single management entity. Such task is 
accomplished through a suitable Open Application Programming Interface 
(OpenAPI), also named South Bound Interface (SBI). On the other hand, by 
means of a North Bound Interface (NBI), the management and control planes 
communicate with higher-level entities (e.g. the SDN controller) enabling 
enhanced network programmability [4]. 

3.2 Optical Performance Monitoring 

In this section, we introduce the concept of OPM along with the reasons that 
make it a potential game changer in the context of optical networks. In 
particular, we focus on OPM techniques that allow to monitor the OSNR and 
the filter-related parameters, such as the filter central frequency or the 3/6 dB 
filter bandwidth. Moreover, we describe those OPM techniques that allow to 
retrieve several network-related information, leveraging optical spectral data. 

3.2.1 An Introduction to Optical Performance Monitoring 

OPM plays a key role in the current optical network management [9]. In fact, 
it allows the network operators to quickly identify faults occurring in their 
networks, their locations, and the reasons that caused them. Indeed, some of 
the faults affecting an optical network are the so-called soft failures, which do 
not bring the whole system down, but rather result in noise-like conditions that 
deteriorate the communications [22]. Soft failures are caused by optical 
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impairments, such as for instance the frequency drift of the transmitter laser. 
On the other hand, the term hard failure refers to scenarios where 
“catastrophic” signal degradations occur. Usually, such situations can be easily 
identified simply by monitoring any abrupt loss of power occurring in the 
network. The ability to identify failures provided by OPM, allows the operators 
to develop more robust and stable optical networks [9]. 

Since an optical communication can be affected by several optical 
impairments, many parameters must be monitored within an optical network. 
Some of them can be retrieved directly from the monitored optical network 
information (e.g., the optical power of a signal), some others need raw data to 
undergo a certain degree of processing before they can be recovered (e.g., 
PMD). Optical physical layer impairments include the ASE noise (see 
Section 3.2.2), CD, PMD, Polarization-Dependent Loss (PDL), fiber 
nonlinearities, frequency chirp, and the distortions related to the optical filters 
(see Section 3.2.3) [9]. 

Focusing on OPM provided by the receivers of the connections, and depending 
on the kind of receiver available at the end of the considered communication 
link, the OPM techniques can be divided between noncoherent and coherent 
[10], [62]. The former set of techniques is applied in connections where the 
optical signals are directly detected (i.e., no local lasers are present at the OPM 
site). On the contrary, the latter refers to those connections in which digital 
coherent receivers are employed. In fact, in such scenarios, several OPM 
techniques became obsolete due to the tight channel spacing, the Nyquist pulse 
shaping, and the polarization multiplexing enabled by the coherent detection 
(e.g., the polarization-based OSNR monitoring techniques, see Section 3.2.2) 
[10]. Of course, this second solution guarantees more options in terms of 
monitored parameters and techniques. A vast amount of relevant techniques 
for monitoring many different parameters in both the above presented 
scenarios have been proposed [10]. Furthermore, monitoring can also be 
performed at the intermediate nodes of the network or even at the EDFA 
locations, by means of OSAs, coherent receiver-based solutions or leveraging 
flexible solutions, such as the front-end scheme presented in Chapter 4. The 
spectral data acquired with this kind of devices, can be enhanced using 
adequate spectral processing techniques, such as those presented in Chapter 
5. 

In Chapter 5 of this thesis, we will focus on monitoring the OSNR and the filter-
related parameters, including the filter central frequency and the 3/6 dB filter 
bandwidth. Several OPM techniques were proposed in the past to retrieve such 
parameters. In the following subsections, we will review the main ones along 
with their benefits and limitations. Moreover, in Chapter 6, we will exploit the 
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monitoring features of coherent receivers to optimize the channel frequencies 
of superchannels. 

3.2.2 Optical Signal-to-Noise Ratio Monitoring 

In 2016, the International Electrotechnical Commission (IEC), through the 
technical report IEC 61282-12, defined the spectrally integrated in-band 
OSNR, 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖, as the spectrally integrated ratio of time-averaged power 
spectral density of a signal to the power spectral density of the ASE noise, 
normalized to a chosen reference bandwidth [67]: 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 = 10 𝑙𝑙𝑙𝑙𝑙𝑙 �
1
𝐵𝐵𝑟𝑟
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𝑝𝑝(𝜆𝜆)

𝜆𝜆2

𝜆𝜆1
𝑑𝑑𝑑𝑑�  ,                                (3.1) 

where 𝐵𝐵𝑟𝑟 represents the reference bandwidth expressed in nm (usually 
0.1 nm), 𝜆𝜆1 and 𝜆𝜆2 represent the extremes of the integration range, in nm, 
which usually is chosen to include the total signal spectrum (e.g., 0.4 nm in the 
case of a 50 GHz grid), 𝑠𝑠(𝜆𝜆) represents the time-averaged signal spectral power 
density not including ASE, expressed in W/nm, 𝑝𝑝(𝜆𝜆) represents the ASE 
spectral power density, independent of polarization, also expressed in W/nm, 
and 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 is expressed in dB. 

Generally, the OSNR is considered one of the most critical parameters to be 
monitored within an optical network since it provides information about the 
quality of the network channels. In addition, the OSNR is transparent to both 
the bit rate and the modulation format of the optical signal, and it also 
contributes to the Bit Error Ratio (BER) calculation [10], [63]. Thus, the 
capability to monitor each WDM channel OSNR is a strong requirement in 

 

FIGURE 3.2.  Example of a signal with the noise ground and the integration range 
extremes. 

 

SIGNAL+NOISE 
POWER

λ1 λ2

NOISE POWER



 

40 
 

current optical networks. A schematic representation of a signal OSNR is 
shown in FIGURE 3.2. 

In practical terms, the OSNR quantifies the ASE noise added to the signal by 
the optical amplifiers during the amplification process. In optical networks, 
optical amplifiers have the crucial role of compensating for the losses 
introduced by the optical fiber. Therefore, an accurate analysis of their 
contribution in term of noise is needed. 

The OSA is a device that measures the power of each spectral component 
simply sweeping the central frequency of a narrowband optical filter. Then, 
relying on the measured power values, the OSA reconstructs the spectral shape 
of the considered spectral component [65].  

OSAs are the key enabler of one of the most common and used techniques to 
measure the OSNR, the so-called interpolation method [66]. In such 
technique, the ASE noise is estimated interpolating the noise levels measured 
at the sides of the considered signal. Therefore, the interpolation technique is 
by definition an out-of-band method, since it relies on values measured outside 
the signal bandwidth, as shown in FIGURE 3.3. Estimating the ASE noise from 
spectral points outside the channel bandwidth becomes challenging in 
wavelength switched optical networks employing DWDM or flex-grid 
channels [67]. Indeed, in DWDM configurations, the signals are spaced closer 
to increase the overall transmission capacity, making the ASE noise 
identification in between channels very challenging. In addition, according to 
the number of ROADM nodes it has traversed, each channel will exhibit a 
different level of noise. Therefore, unless very high-resolution OSA are 
employed, the real out-of-band noise level of each channel could be hard to 

 

FIGURE 3.3.  Graphical representation of the interpolation technique. The in-band 
noise level is found interpolating the left and right out-of-band noise levels. 
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recover. Finally, every time a signal crosses a ROADM node, according to the 
considered ROADM architecture (see Section 3.2.3), the signal traverses one 
or more optical filters [68]. The filters introduce sharp power drops in between 
the channels, especially when several nodes have been crossed and the Filter 
Cascade Effect (FCE) must also be considered [69]. All these factors make the 
OSNR interpolation technique unfeasible in a DWDM or flex-grid operating 
network. Thus, the estimation of the OSNR must be done in-band [67]. For 
this purpose, in Chapter 5, we will present an OSNR monitoring solution that 
leverages optical spectral data and ML techniques, to allow an in-band 
estimation of the OSNR in DWDM scenarios. 

Other common approaches to monitor the OSNR include the techniques based 
on polarization, interferometers, beat noise analysis, asynchronous amplitude 
histograms, and those relying on the DSP of digital coherent detectors. In the 
following paragraphs, we will briefly review their main characteristics along 
with the challenging aspects, which hinder their implementation. 

The polarization-based OSNR monitoring techniques represented a popular 
choice in the past, being transparent to data rates and modulation formats. 
They exploit the fact that the ASE noise is completely depolarized (i.e., it has 
an even power distribution for every polarization direction), whereas usually 
an optical signal contains the entire power in a precise state of polarization [9]. 
An example of a typical polarization-based method is the polarization-nulling 
technique, where the different polarization-related properties of signal and 
ASE noise are exploited to precisely differentiate the noise value from the 
signal one [70]. However, with the advent of coherent detection receivers, the 
demultiplexing process of Polarization Multiplexed (PM) signals became 
simpler with respect to direct detection, allowing Polarization-Division 
Multiplexing (PDM) to be widely employed in almost all the DSP-based 
coherent transmission systems [10]. Thus, this aspect severely limits the 
application range of polarization-based OSNR monitoring techniques, which 
cannot be employed in PM-based transmission systems. 

The interferometer-based technique uses Mach-Zehnder Delay 
Interferometers (MZDIs). This method exploits the high coherence of the 
optical signals and, on the contrary, the incoherence of the in-band noise, 
which therefore is insensitive to constructive and destructive interference [71]. 
However, considering WDM signals with high spectral density makes such 
approach unfeasible, due to the destructive MZDI bandwidth, which would 
reject not only the optical signal, but also the ASE noise [9]. 

The beat noise analysis techniques leverage the receiver electrical noise, which 
is mainly caused by the beating between the optical signal and the ASE noise 
[72]. However, when low-frequency noise analysis is considered, the signal is 
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supposed to be made by periodic bit patterns and therefore its spectrum is 
assumed to be composed by discrete spectral components. In reality, user 
traffic has random patterns rather than repetitve ones, and therefore an 
evolution of this scheme, which relied on high-frequency noise analysis, was 
also proposed [73]. 

Another group of OSNR monitoring techniques leverages the Asynchronous 
Amplitude Histograms (AAHs) [9]. Amplitude Histograms (AH) are plots 
created sampling the electrical signal generated by the photodetector at an 
arbitrary sampling rate. In particular, an AH is defined as asynchronous when 
the adopted sampling rate is much lower than the symbol rate. Such feature 
allows to avoid any clock recovery system. The key point of these techniques is 
that the shape of an AAH reflects the properties of the optical signal that 
generated it. For instance, the ASE noise maps on the AAHs reducing the 
amplitude of its peaks. Therefore, several factors that degrade an optical signal 
can be detected analyzing its related AAHs, among which the OSNR is certainly 
one of the most important [74]. The most straightforward approach is to 
compare the measured AAH with a reference one, obtained from the same 
signal during a calibration stage. Thus, the OSNR penalty between the two 
AAH can be derived simply determining the ASE noise needed for the two AAH 
to match [75]. The main limitations of this kind of technique are related to the 
sampling process, which introduces noise. In particular, because of the 
sampler finite aperture time, during the time in which the sampling operation 
captures a sample of the signal under analysis, the signal itself could vary, 
leading to sampling errors. Therefore, the sampling aperture time conditions 
the performed measurements by restricting the noise or distorting the signal 
under analysis [9]. 

Finally, following the trend of applying ML algorithms to solve optical 
network-related tasks,  several ML-based solutions have also been proposed 
for OPM (see Chapter 2), and in particular for OSNR monitoring. In general, 
the procedure to achieve ML-based OSNR monitoring requires three steps. 
First, the optical signal has to be converted into an electrical one and be 
sampled to build a dataset. Then, specific signal features have to be extracted 
from it, such as the AH, the Cumulative Distribution Function (CDF), the 
Asynchronous Delay-Tap Sampling (ADTS) plots, or the eye diagram statistics. 
Finally, the chosen ML model has to be trained offline. Once the offline 
training process is done, the ML model can be used for real-time monitoring 
in deployed optical networks [12]. In case the chosen ML algorithm is a SL 
approach, the training phase will consist of labelling the acquired features with 
their corresponding OSNR values. Otherwise, in case of UL approach, the 
training phase simply consists of providing the unlabelled data to the 
algorithm. 
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In both [76] and [77], the authors leveraged ANNs for OSNR monitoring. In 
those two works, the dataset included features retrieved from the signal eye-
diagrams. Instead, the authors of [28], applied an ANN algorithm to 
asynchronous sample signal amplitudes. A similar approach was employed in 
[78], where as a feature to train the ANN, the authors used AAH. An evolution 
of this technique was proposed in [79], where two dimensional histograms 
were provided as features to the ANN. The 2D histograms were obtained 
employing ADTS, a technique in which the signal amplitude is sampled using 
two clocks delayed by a delay time, which is also known as delay tap. Similarly, 
in [80], the 2D histograms retrieved with ADTS were used as features to train 
a CNN. Finally, an example of OSNR monitoring with UL techniques was 
proposed in [81], where PCA and statistical distance measurement-based 
pattern recognition were applied to ADTS plots. 

One of the goals of this dissertation is to deal with cost-effective and flexible 
OSNR monitoring schemes that can be implemented across the whole 
network, including intermediate nodes, such as that presented in Chapter 5. 
Thus, despite the availability of several OSNR monitoring techniques that 
leverage the DSP blocks within the digital coherent receivers located at the 
connection ends [10], we are not considering this kind of approach. For the 
same reason, we also do not consider any ML-based OSNR monitoring 
techniques that require features resulting from the coherent detection process. 
For more complete surveys on such methods, the reader can refer to [12] and 
[82]. It is worth noting that in Chapter 5, we will focus on OSA-based solutions 
for OSNR monitoring, whereas the solution that we will propose in Chapter 6 
exploits the coherent receiver monitoring features to retrieve the subchannel 
SNR values within a superchannel. 

3.2.3 Optical Filter-Related Parameters Monitoring 

As mentioned in Section 1.1, ROADMs are key enablers for the current DWDM-
based wavelength switched core and metro optical networks [83]. A ROADM 
allows individual channels to pass-through the optical nodes, or to be 
added/dropped. Such functionalities enable termination and entry of services, 
but also to transparently bypass the optical nodes, avoiding costly OEO 
conversions [84], [85]. In current-generation ROADMs, these features are 
implemented by means of Wavelength Selective Switches (WSSs). A WSS is a 
1 x N optical device that works in both directions. In the 1 x N direction, it 
allows any entering wavelength on its common input port to be switched to any 
of its N available output ports. When operated in the opposite direction, the 
WSS selects out of its N input ports the wavelengths to be forwarded on its 
common output port. These functionalities are enabled by the optical filters 
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included in the WSS. The number of WSSs (i.e., of optical filters) within a 
ROADM depends on the ROADM architecture. In fact, in the past few years, 
their architectures evolved from a “Broadcast and Select” (B&S) approach to a 
more flexible and better performing paradigm called “Route and Select” 
(R&S) [86]. In the B&S approach, a broadcasting power splitter and only a 
single WSS per degree (i.e., per direction) at the egress fiber are employed. 
Such configuration allows to employ a reduced number of filters, thus reducing 
the amount of filtering penalties and the final network cost [50]. Conversely, 
in the R&S paradigm, two independent WSSs per degree are considered, both 
at the ingress and egress fibers, yielding better connections isolation and lower 
insertion losses. Although R&S introduces some benefits from the 
performance point of view, it comes with the drawback of higher cost and a 
more critical passband narrowing effect. Therefore, when crossing a ROADM 
node, the channels/signals pass through one or more optical filters, which in 
addition to filtering them, slightly distorts their spectral shape and therefore 
their characteristics [69]. Thus, it is of primary importance to have a way for 
constantly monitor the features that characterize an optical filter, such as its 
central frequency and its 3 or 6 dB bandwidth. Of course, as also mentioned in 
Section 3.2.2, when a channel/signal crosses many optical nodes along its 
path, the distortions introduced by the node filters have a huge impact on the 
channel/signal characteristics. In fact, on the one hand, the chances of 
frequency misalignments between the signal and the filter cascade (but also 
between the cascaded filters) increase. On the other hand, the bandwidth 
tightening caused by the FCE has also to be taken into account [69], [87]. For 
these reasons, filter-related impairments are considered as one of the causes 
of soft failures (see also Section 3.2.1) [22]. Therefore, in such scenarios, 
monitoring the filter-related parameters assumes even more importance [88]. 
For this purpose, in Chapter 5, we will present a technique that allows to 
retrieve this kind of parameters, relying on optical spectral data and on the 
curve fitting principle. Currently, in order to handle a larger number of optical 
channels, N x M Add/Drop WSS solutions are also available. However, in [89], 
the filter-induced penalties associated with the use of such devices are studied, 
showing how far this technology still is from representing a reliable solution, 
due to the too smooth filtering functions that it implements. 

Although ROADM and filtering effects represent a real issue in today’s optical 
networks, in literature, not many works have been dedicated to retrieve filter-
related parameters at intermediate network nodes. In fact, most of the 
proposed solutions rely on the DSP modules of digital coherent receivers. For 
instance, in [90], leveraging the Q-factor metric retrieved at the coherent 
receiver, the authors studied the effects of the filters central frequencies shifts. 
In particular, the results of [90] indicated that the optical filtering penalties do 
not significantly change when variations of the filter Gaussian order between 
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3 and 4 are considered. Instead, such penalties mainly depend on the filter 
bandwidth. Similarly, in [91], the authors studied the performance 
degradation caused by frequency detuning between transmitter laser and in-
line filtering, analyzing the BER retrieved at the coherent receiver. The results 
showed that, to limit the impact of such misalignments, frequency control with 
granularity finer than 1.25 GHz is needed, at both the transmitter and the 
filters. Instead, in [92], the authors proposed an extended Signal-to-Noise 
Ratio (SNR)-OSNR relation to better study the coherent receiver behavior, in 
presence of strong filtering conditions. In fact, accurate performance 
predictions in such scenarios are needed to design and optimize optical 
networks with improved spectral efficiency. Often, the filter-related 
impairments are associated to soft failures, and therefore, some new 
approaches to monitor the filter parameters were proposed in order to identify 
and prevent these unwanted events. For instance, solutions leveraging ML 
were proposed in [93] and [94]. In particular, in [93], the authors monitored 
pre-Forward Error Correction (pre-FEC) BER, to study impairments such as 
signal overlaps, filter tightening, and gradual/cyclical drifts. Their solution 
used a finite state machine to detect suspicious pre-FEC BER fluctuations and 
reported them to a central controller, that in turns, leveraging ML techniques, 
identified the cause behind the degradation. Similarly, in [94], the authors 
experimentally demonstrated a ML-based solution for the detection and 
identification of soft-failures caused by filter misalignments and/or undesired 
amplifier-gain reductions. The method proposed in [94] envisioned a 
continuous pre-FEC BER monitoring performed at the coherent receiver, over 
long durations time (>20 minutes). More in detail, in their experimental setup, 
the authors adopted a Bandwidth Variable-WSS (BV-WSS) to introduce filter 
bandwidth tightening effects. On the contrary, a soft failure identification 
method, which leveraged an UL technique, was proposed in [95]. There, the 
authors used one-class SVM to classify optical network-related abnormalities, 
such as filter impairments, which they emulated reducing the bandwidth and 
detuning the central frequency of a WSS. 

In addition, some solutions to mitigate the filtering effects were also presented 
in the literature. Specifically, in [96], the authors proposed the employment of 
an optical WSS within every ROADM node, to spectrally shape the outgoing 
signals. Such configuration allowed them to transmit a 32 GBd signal through 
a cascade of 14 WSSs with average bandwidth equal to 33 GHz, ensuring the 
target performance. Similarly, in [97], the adoption of a duobinary shaping was 
proposed. Employing an alternative carrier modulation, more tolerant to 
narrow filtering, the authors demonstrated a 27% increment in the 
transmission distance reach. A similar approach to [96] was employed in [98] 
to reduce the filter-related penalties. In particular, the authors of [98] 
presented a method that uses only a single digital pre-equalization filter to 
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compensate filtering effects caused by multiple concatenated WSSs. In fact, in 
a real transmission system, signals may experience different degree of 
filtering-related penalties according not only to the cascade length, but also to 
the different filter shapes variations of the traversed WSSs. Finally, in [99], a 
different approach to mitigate the filter-related penalties was presented. 
There, the authors proposed and experimentally demonstrated a solution to 
address the detuning between signal and filter cascade, based on information 
monitored inside the coherent receiver. In particular, the signal-filter detuning 
was retrieved starting from the signal Power Spectral Density (PSD) estimated 
at the output of the Analog-to-Digital Converter (ADC) block. Then, such 
information was sent to a controller, where an algorithm calculated the 
corrections to be applied to the transmitter laser, in order to maximize the SNR 
and to close the control loop. In Chapter 6, we will present a similar approach, 
but applied to superchannels, in which we will leverage information acquired 
from the optical receivers to spectrally adjust the superchannel subchannels. 

3.2.4 Spectral-Based Optical Performance Monitoring 

A possible way to monitor signal and filter-related parameters also at the 
intermediate nodes and not only at the receiver side, relies on the processing 
of optical spectral data. From the optical spectra, one can retrieve information 
not only about the signal itself, but also indirectly, about the network 
conditions or the elements that compose it, like the optical amplifiers or the 
optical filters (i.e., monitoring any eventual soft failure). For instance, the 
interpolation method presented in Section 3.2.2, through which the OSNR of 
a channel is estimated starting from its optical spectrum, represents one of 
such OPM spectral-based solution. Apart from that, some spectral-based 
techniques have been proposed in the literature for monitoring purposes. In 
[100], an SDN-based QoT monitoring solution leveraging optical spectral data 
was experimentally demonstrated. In particular, the authors presented an 
experimental setup where the source and destination ROADM nodes were 
equipped with OSAs, which tapped at all their input and output ports. Once 
the controller detected a BER degradation, it requested spectral information 
from both transmitter and receiver. After the extraction of features like signal 
central frequency and 3 dB bandwidth from such spectra, the controller 
compared the transmitted and received values, deciding for eventual lasers 
reconfigurations. In [22], the authors proposed a set of ML-based solutions 
that exploited features retrieved from optical spectra to detect and identify soft 
failures. In particular, those soft failures resulting from transmitter laser drift, 
filter central frequency shift, and filter tightening. They considered a network-
wide infrastructure, which relied on an Optical Testing Channel (OTC) for 
active monitoring during the commissioning testing phase, and on OSA for 
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passive monitoring during an operative phase. More in detail, they considered 
OSAs placed at every network node outgoing link, resulting in a number of 
OSAs equal to the nodal degree. Similarly, in [101] and [102], the authors 
proposed a ML and optical spectra-based method to detect and identify filter-
related soft failures, such as filter shift/laser drift and filter tightening. 
However, unlike the approach proposed in [22], [101] and [102] presented a 
way to prevent misclassification of valid signals, whose bandwidth has 
narrowed due to FCE, from those whose bandwidth has narrowed due to 
failures. Such approaches relied on a series of frequency-power pairs, retrieved 
directly from the optical spectra captured with OSAs placed at the egress port 
of every node of the network. In [103], the authors compared the performance 
of four different ML algorithms (SVM, ANN, K-NN, and decision tree) for the 
estimation of parameters, such as central wavelength, OSNR, and signal 
bandwidth, from optical spectral data. However, they considered wide optical 
spectra, not available in deployed filtered networks. In fact, in realistic 
scenarios, we would have the spectrum of the considered signal/channel 
limited at its sides by the spectra of the adjacent signals/channels, as per the 
spectral grid standard. In [104], the authors applied optical spectral data 
analysis to filterless optical networks. Specifically, they proposed a method to 
monitor power fluctuations and TPs laser drifts, exploiting optical spectra 
collected by a single OSA per filterless segment. A solution based on 
monitoring information of existing connections to estimate filtering 
uncertainties and therefore improve the QoT estimation of future connections 
was proposed in [105]. In that paper, the authors leveraged a ML regression 
model and processed spectral data acquired with cheap and flexible monitors, 
to show in simulations an 80% reduction of the margins for new connections. 
In [106], an optical spectrum-based approach for joint linear and nonlinear 
noise monitoring was proposed and experimentally demonstrated. The 
authors leveraged the correlation between two slices of the signal spectrum. In 
particular, they considered the lower and the upper signal spectrum sidebands, 
which they collected using narrowband filters. Finally, optical spectra 
processing has also found an application for network security purposes, as 
shown in [107]. There, the authors implemented a ML-based approach able to 
detect unauthorized signals traveling in the network. Instead, a different kind 
of spectra were considered in [108], where the authors presented an ANN-
based OSNR monitoring method, which relied on Radio Frequency (RF) 
spectra. They proposed to directly detect a Polarization Multiplexed-
Quadrature Phase Shift Keying (PM-QPSK) signal, and to use the low-
frequency part of its RF spectrum to train an ANN model. 

Similarly to the approaches presented in this section, in Chapter 5, we will 
propose two solutions to retrieve signal- and filter-related parameters from 
optical spectra captured by optical monitors placed near the network nodes. 
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More in detail, to obtain the signal-related parameters, we will apply ML-based 
algorithms to spectral data collected at the node output ports, where, due to 
filtering effects and the proximity of adjacent channels, classic solutions such 
as the interpolation method cannot be employed. Regarding the filter-related 
parameters, the solutions reported in Chapter 5 always employed optical 
monitors at the node output ports, where the ASE noise effects are hidden by 
the filter. Instead, we will process the optical spectra acquired at the node input 
ports, and to overcome the presence of the ASE noise, we will leverage the 
curve fitting principle. 

3.3 Superchannels 

The flex-grid DWDM paradigm defined in [8] allows the implementation of 
frequency slots with different spectral widths [109]. Such standard envisioned 
for the spectral slots a central frequency and a width granularity of 6.25 and 
12.5 GHz, respectively. In addition, the slots can be combined to satisfy the 
different requirements that each connection can have, enabling the 
transmission of heterogeneous traffic (e.g., channels with mixed widths) over 
the same network.  

In Section 3.2.3, we analyzed the key role played by the ROADM nodes within 
the flex-grid optical network and the filtering issues introduced by the WSSs 
composing them. These aspects exacerbate even more when the 
aforementioned spectral densification is considered. A possible way to cope 
with such filtering-related penalties is represented by superchannels. A 
superchannel includes multiple channels (or, subchannels, which is the term 
used in the rest of this thesis) allocated into a continuous set of spectral slots 
with a limited guard band between them [110]. In FIGURE 3.4, we show a 

 

FIGURE 3.4.  Schematic representation of a N-subchannel superchannel. 
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schematic representation of a superchannel composed by a set of 𝑁𝑁 
subchannels. When the superchannel traverses the optical network nodes (i.e., 
when it crosses the ROADM-based nodes and the WSSs that constitute them), 
the set of subchannels that composes it behaves as a single entity [111]. So, the 
WSS filters within the ROADM nodes are configured to switch all the slots 
occupied by the superchannel. Such configuration assumed within the WSS is 
sometimes referred to as superfilter. It allows to reduce the inter-channel 
distances and to minimize those between the two outer channels and the filter, 
which are also referred to as guard bands, therefore improving the total 
spectral efficiency. 

Additionally, nowadays, SDM technology represents one of the most attracting 
solution for the telecommunication operators to meet the ever increasing 
capacity requests [2]. In fact, in SDM-based networks, either multi-fiber link 
or multicore/multimode fibers are considered. Hence, the single channel 
granularity of the ROADM-based networks will most likely evolve towards a 
multichannel approach. In this context, since superchannels are the next level 
of switching granularity, we can envision their wide employment in the near 
future [112]. 

A common metric to describe the superchannel spectral efficiency is to refer to 
their corresponding WDM class. In turn, the WDM classes are categorized 
according to the value assumed by the ratio between the distance of the 
subchannels and the symbol rate of the signal travelling within them [113]. In 
particular, if such ratio is between 1 and 1.2 (e.g., a 64 GBd PM-QPSK signal 
with a subchannel spacing of 75 GHz), then the WDM class is known as quasi-
Nyquist-WDM. On the contrary, if the distance between subchannels equals 
the symbol rate (i.e., a ratio equal to 1), the WDM class is known as Nyquist-
WDM. Finally, if the spacing is lower than the symbol rate (i.e., ratio less than 
1), the WDM class is known as super-Nyquist-WDM. It is important to note 
that this classification applies to equidistant and uniform superchannels. The 
former feature refers to superchannel with equally spaced subchannels, 
whereas the latter refers to superchannels, where all the subchannels 
composing them have the same symbol rate and roll-off factor. 

Although superchannels seem to represent an agile and performing solution, 
they also present some drawbacks. In particular, their main limitations are the 
interference occurring between their subchannels, due to the considered 
reduced inter-channel distances, and the penalties introduced by the filter, 
which affect the two external subchannels. The former impairment comes in 
two forms: i) Cross-Channel Nonlinear Interference (XCI), which although 
occurs among all channels mainly affects the close adjacent ones, and ii) linear 
crosstalk, which only occurs between adjacent ones and depends on the 
considered inter-channel distances and on the signal roll-off factors. Linear 
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crosstalk can be caused by uncontrolled drifts of the transmitter lasers, for 
instance as consequence of the network ageing, and translates into 
degradations of the received channels SNR values [114]. On the other hand, the 
filtering penalties mainly affect the two external superchannel subchannels 
(i.e., subchannels 1 and N in FIGURE 3.4). In fact, especially in presence of 
laser/filter cascade misalignment, the two outer subchannels SNR values could 
be strongly degraded by the filter effect. To compensate for such impairment, 
the superchannel can be operated at lower modulation formats and/or an 
additional spectral guardband between the subchannels can be adopted, 
degrading the spectral efficiency. Of course, the best solution would be to 
monitor and eventually correct any misalignment occurring between lasers 
and filters. 

Usually, the most common way to optimize the transmission of a superchannel 
is to employ and target to maintain an equidistant configuration [110]. 
However, such frequency spacing can be limited by the eventual imperfections 
of the subchannel transmitters and receivers and/or by their laser central 
frequency drifts, and by any wavelength dependent loss/performance 
variation. All these factors result in variations of the subchannel SNR and BER 
values, and make the equidistant configuration not the optimal solution. To 
address such issues, an approach that leverages the network feedback need to 
be considered, therefore taking into account its current conditions and act 
accordingly. To this aim, in Chapter 6, we will present a solution that uses a 
closed control loop to optimize the spectral spacing of the subchannels in a 
superchannel. 

3.4 Reference Optical Network Architecture 

Relying on the concepts introduced in the previous sections of this chapter, 
here we identify an optical network architecture to be used as a reference for 
the rest of this thesis. In particular, we consider such reference architecture to 
be constituted by a ROADM-based WDM optical network, widely equipped 
with spectral monitors and supervised by a central controller. We also assume 
that the links of the considered optical network are constituted by optical fiber 
spans and Erbium-Doped Fiber Amplifiers (EDFAs). Furthermore, we do not 
assume any specific aggregation/disaggregation scenario, but we define it 
individually in each considered case. Finally, we assume that within the central 
controller, the information is processed and leveraged for any eventual 
applications, for example, those related to optimization. In FIGURE 3.5, we 
depict a schematic view of the considered reference scenario. There, we also 
define each task addressed within this thesis.  
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In particular, task A corresponds to the definition and the study of a 
monitoring scheme for spectral data collection. We report about such work in 
Chapter 4. Then, task B is divided into two main subtasks: identifying adequate 
optical monitors placement scenarios and investigating processing techniques 
suitable for such considered placement scenarios. In particular, the spectral 
data collected through the optical monitors spread throughout the network are 
first transferred to the controller and then processed in that same framework. 
An alternative solution would be to process the acquired spectral data directly 
at the monitor locations and then transfer the extracted features to the network 
controller. The latter approach would reduce the transferred data / the 
management overhead but would require some processing power at the 
monitor locations and would lose some accuracy in solutions requiring the 
combination/correlation of information from various monitors. Comparing 
these two control/management scenarios could also represent a possible 
direction to extend further the work presented in this thesis. Tasks B1 and B2 
are addressed in Chapter 5. Finally, optimization algorithms can be 
implemented within the network controller framework to leverage the 
monitored data or the extracted features, corresponding to task C. In Chapter 
6, we will show an example of such optimization applied to superchannels. 

  

 

FIGURE 3.5.  Reference optical network architecture scenario along with the task 
addressed within the thesis. Task A: spectral monitoring; Task B1: optical monitors 
placement; Task B2: spectral processing technique; Task C: optimization done 
leveraging the monitored/processed data. 
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Chapter 4 
 

Data Plane Architectures for 
High-Resolution Optical 

Spectrum Estimation 

Based on the reference architecture proposed in Section 3.4, in this chapter we 
present a solution to address the spectral monitoring task, i.e., task A of 
FIGURE 3.5. In particular, in this chapter, we identify the data plane elements 
for modulation format-agnostic OPM [115]. 

More in detail, this chapter is organized as follows. In Section 4.1 we provide 
an overview of the main concepts and components of the proposed scheme. In 
Section 4.2 we present a theoretical study of such solution, corroborated by its 
mathematical description. In Section 4.3, we review the requirements and the 
potential benefits deriving from the implementation of the proposed solution, 
and we provide a list of commercially available devices that could be eventually 
employed for its experimental validation. Finally, in Section 4.4, we draw the 
conclusions. 

4.1 Introduction 

In [115], we proposed the theoretical study of an agile optoelectronic front-end 
scheme for nonintrusive monitoring, transparent to the modulation format 
and able to deliver arbitrary spectral resolution. The solution we proposed, 
which we schematically depicted in FIGURE 4.1, was composed by two main 
blocks:  

1. An OSA, whose main parts are an Optical-Electrical (OE) front-end, 
an ADC, and adequate DSP; 

2. A suitable monitoring agent, whose roles are: 
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a. Control of the OSA by means of an agreed API or, in case of a 
full custom design, by low-level commands interfacing the 
different devices composing the OSA; 

b. Extraction of the different parameters and figures of merit 
from the optical spectra provided by the OSA (e.g., signal power 
level, OSNR, etc.); 

c. Provision of a communication interface for the interaction of 
the physical device with the control plane. 

In particular, our solution leverages a custom OSA design which is based on 
coherent detection for the acquisition of different spectral slices of a Signal 
Under Test (SUT). Once detected, such slices are processed and merged 
together, enabling the reconstruction of the full original optical signal 
spectrum with a high spectral resolution that depends on the width of the 
spectral slices and on the phase noise. 

 

FIGURE 4.1.  Scheme of the proposed monitoring solution. O-E: Optical-
Electrical; ADC: Analog-to-Digital Converter; DSP: Digital Signal Processing. 
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FIGURE 4.2.  Block-diagram of the proposed coherent detection-based front-end. 
LO: Local Oscillator; ADC: Analog-to-Digital Converter; US: Up-Sampler; HPF: 
High-Pass Filter; HT: Hilbert Transform; DS: Down-Sampler; LPF: Low-Pass 
Filter; N-FFT: N-Fast Fourier Transform.   
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A block diagram of the proposed scheme is shown in FIGURE 4.2. Briefly, the 
first part of such solution consists mainly of a coherent detector featuring 
polarization diversity [116]. Here, the optical SUT is coupled with the signal of 
a local oscillator and their output is fed to a Polarization Beam Splitter (PBS). 
In particular, the role of the PBS is to separate the two polarization 
components. Then, in order to detect such two signal polarization components, 
we place two photodetectors in cascade to the PBS. After the digitalization 
stage, which we implement using two ADCs, the DSP part takes place. In 
particular, we store the two digitalized output currents in two N samples 
arrays, upsampling, upconverting and then filtering them, by means of a 
High-Pass Filter (HPF). Hence, in order to reconstruct the two complex 
signals, we apply the Hilbert Transform (HT) and again downconvert, 
downsample and low-pass filter the signals. Finally, applying the Fast Fourier 
Transform (FFT) we obtain the desired optical spectral slice of the SUT. In 
such proposed scheme, the SUT spectral slice width 𝐵𝐵𝑠𝑠 only depends on the 
frequency of the coherent detection laser 𝜔𝜔𝑙𝑙 and on the bandwidth 𝐵𝐵𝑝𝑝 of the 
two photodiodes, as shown in FIGURE 4.3. In the upcoming section we will 
formally describe all these stages. 

4.2 Optical front-end concept 

As mentioned in Section 4.1, the aim of the proposed solution is to detect 
different spectral slices of a SUT and to calculate their optical spectra. To do 
so, we first have to couple the SUT with the signal of a local laser, which  
oscillates at a frequency 𝜔𝜔𝑙𝑙, as shown in FIGURE 4.2. 

 

FIGURE 4.3.  Principle of the SUT slicing along with the relation between slice 
width and photodiode bandwidth. SUT: Signal Under Test; 𝐵𝐵𝑠𝑠: slice width; 𝐵𝐵𝑝𝑝: 
photodiode bandwidth. 
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Leveraging the corresponding Jones vectors, we represent the sliced SUT and 
the local oscillator signals with 𝐸𝐸𝑟𝑟(𝑡𝑡) and 𝐸𝐸𝑙𝑙(𝑡𝑡), respectively, such as 

𝐸𝐸𝑟𝑟(𝑡𝑡) = �
�𝑃𝑃𝑟𝑟(𝑡𝑡) cos𝜓𝜓𝑟𝑟 exp�𝑗𝑗ω𝑟𝑟𝑡𝑡 + 𝑗𝑗𝜙𝜙𝑟𝑟(𝑡𝑡)�

�𝑃𝑃𝑟𝑟(𝑡𝑡) sin𝜓𝜓𝑟𝑟 exp(𝑗𝑗ω𝑟𝑟𝑡𝑡 + 𝑗𝑗𝜙𝜙𝑟𝑟(𝑡𝑡) + 𝜃𝜃𝑟𝑟)
�  ,                   (4.1) 

𝐸𝐸𝑙𝑙(𝑡𝑡) = �
�𝑃𝑃𝑙𝑙(𝑡𝑡) cos𝜓𝜓𝑙𝑙 exp�𝑗𝑗ω𝑙𝑙𝑡𝑡 + 𝑗𝑗𝜙𝜙𝑙𝑙(𝑡𝑡)�

�𝑃𝑃𝑙𝑙(𝑡𝑡) sin𝜓𝜓𝑙𝑙 exp(𝑗𝑗ω𝑙𝑙𝑡𝑡 + 𝑗𝑗𝜙𝜙𝑙𝑙(𝑡𝑡) + 𝜃𝜃𝑙𝑙)
�  ,                    (4.2) 

where 𝑃𝑃𝑟𝑟(𝑡𝑡) and 𝑃𝑃𝑙𝑙(𝑡𝑡) represent the SUT slice power and the local oscillator 
signal power, ω𝑟𝑟 and ω𝑙𝑙 are the angular frequencies, 𝜙𝜙𝑟𝑟(𝑡𝑡) and 𝜙𝜙𝑙𝑙(𝑡𝑡) represent 
two generic phases accounting for phase noise and others, 𝜓𝜓𝑟𝑟 and 𝜓𝜓𝑙𝑙 are the 
azimuth of the states of polarization (SOPs), 𝜃𝜃𝑟𝑟 and 𝜃𝜃𝑙𝑙 are the polarization 
ellipticities, and 𝑡𝑡 represents the time. 

Considering the PBS as the SOP reference, we assume the SOP and the 
ellipticity of 𝐸𝐸𝑙𝑙(𝑡𝑡), to be 

 𝜓𝜓𝑙𝑙 = 45° ,                                                         (4.3) 

𝜃𝜃𝑙𝑙 ≃ 0 .                                                            (4.4) 

Hence, the Jones vector components of 𝐸𝐸𝑙𝑙(𝑡𝑡) become equal and Equation 4.2 
becomes 

𝐸𝐸𝑙𝑙(𝑡𝑡) ≅

⎣
⎢
⎢
⎢
⎢
⎡�𝑃𝑃𝑙𝑙

2
exp�𝑗𝑗ω𝑙𝑙𝑡𝑡 + 𝑗𝑗𝜙𝜙𝑙𝑙(𝑡𝑡)�

�𝑃𝑃𝑙𝑙
2

exp�𝑗𝑗ω𝑙𝑙𝑡𝑡 + 𝑗𝑗𝜙𝜙𝑙𝑙(𝑡𝑡)�
⎦
⎥
⎥
⎥
⎥
⎤

 .                                  (4.5) 

Then, the two polarization components of the coupled signal are detected by 
two photodiodes, whose output currents can be expressed as 

𝐼𝐼𝑟𝑟𝑟𝑟(𝑡𝑡) =
𝑅𝑅
2
�(1 − 𝛼𝛼)𝑃𝑃𝑟𝑟(𝑡𝑡)𝑐𝑐𝑐𝑐𝑠𝑠2𝜓𝜓𝑟𝑟 + 𝛼𝛼 𝑃𝑃𝑙𝑙 2⁄ �                                                            

+ 𝑅𝑅�
𝛼𝛼(1 − 𝛼𝛼)𝑃𝑃𝑟𝑟(𝑡𝑡)𝑃𝑃𝑙𝑙

2
cos𝜓𝜓𝑟𝑟 cos�Δωt + 𝜙𝜙𝑒𝑒(𝑡𝑡)�  ,                          (4.6) 

𝐼𝐼𝑟𝑟𝑟𝑟(𝑡𝑡) =
𝑅𝑅
2
�(1 − 𝛼𝛼)𝑃𝑃𝑟𝑟(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠2𝜓𝜓𝑟𝑟 + 𝛼𝛼 𝑃𝑃𝑙𝑙 2⁄ �                                                                       

+ 𝑅𝑅�
𝛼𝛼(1 − 𝛼𝛼)𝑃𝑃𝑟𝑟(𝑡𝑡)𝑃𝑃𝑙𝑙

2
sin𝜓𝜓𝑟𝑟 cos(Δωt + 𝜙𝜙𝑒𝑒(𝑡𝑡) + 𝜃𝜃𝑟𝑟) ,                 (4.7) 
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where 𝑅𝑅 represents the photodiode responsivity, 𝛼𝛼 represents the coupling 
ratio, Δω represents the difference between the frequency of the considered 
SUT slice and the frequency of the local oscillator, such as 

Δω = ω𝑟𝑟 − ω𝑙𝑙 ,                                                    (4.8) 

and 𝜙𝜙𝑒𝑒(𝑡𝑡) represents the difference between the phase of the considered SUT 
slice and the phase of the local oscillator, such as 

𝜙𝜙𝑒𝑒(𝑡𝑡) = 𝜙𝜙𝑟𝑟(𝑡𝑡) − 𝜙𝜙𝑙𝑙(𝑡𝑡) .                                             (4.9) 

Employing a 50:50 coupler (i.e. considering a coupling ratio 𝛼𝛼 = 1 2⁄ ) and 
assuming that in Equation 4.6 and 4.7 the terms related to the coherent 
detection (i.e., the second addends) are bigger than those representing the 
direct detection (i.e., the first addends), we can simplify them as 

𝐼𝐼𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑡𝑡)𝑃𝑃𝑙𝑙

8
cos𝜓𝜓𝑟𝑟 cos�Δωt + 𝜙𝜙𝑒𝑒(𝑡𝑡)� ,                     (4.10) 

𝐼𝐼𝑟𝑟𝑟𝑟(𝑡𝑡) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑡𝑡)𝑃𝑃𝑙𝑙

8
sin𝜓𝜓𝑟𝑟 cos(Δωt + 𝜙𝜙𝑒𝑒(𝑡𝑡) + 𝜃𝜃𝑟𝑟).                 (4.11) 

Observing Equations 4.10 and 4.11, it can be noticed that for both the currents, 
the only component left is the real one, along with the SOP information. In 
addition, their bandwidths are also limited by the photodiode bandwidth 𝐵𝐵𝑝𝑝. 

Thus, the two signals are digitized using the ADC and stored in arrays of 𝑁𝑁 
samples, becoming 

𝐼𝐼𝑟𝑟𝑟𝑟(𝑛𝑛) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑛𝑛𝑇𝑇𝑠𝑠)𝑃𝑃𝑙𝑙

8
cos𝜓𝜓𝑟𝑟 cos�Δωn𝑇𝑇𝑠𝑠 + 𝜙𝜙𝑒𝑒(𝑛𝑛𝑇𝑇𝑠𝑠)� ,              (4.12) 

𝐼𝐼𝑟𝑟𝑟𝑟(𝑛𝑛) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑛𝑛𝑇𝑇𝑠𝑠)𝑃𝑃𝑙𝑙

8
sin𝜓𝜓𝑟𝑟 cos(Δωn𝑇𝑇𝑠𝑠 + 𝜙𝜙𝑒𝑒(𝑛𝑛𝑇𝑇𝑠𝑠) + 𝜃𝜃𝑟𝑟),          (4.13) 

where 1 ≤ 𝑛𝑛 ≤ 𝑁𝑁 and 𝑇𝑇𝑠𝑠, which represents the sampling period, is defined as 

𝑇𝑇𝑠𝑠 =
1
𝑓𝑓𝑠𝑠

 ,                                                        (4.14) 

with 𝑓𝑓𝑠𝑠 representing the sampling frequency. 

Then, we upsample 𝐼𝐼𝑟𝑟𝑟𝑟 and 𝐼𝐼𝑟𝑟𝑟𝑟 to a frequency 𝑓𝑓𝑠𝑠2 ≫ 𝑓𝑓𝑠𝑠, upconvert them to an 
angular frequency 𝜔𝜔𝑐𝑐 ≫ 2𝜋𝜋𝐵𝐵𝑝𝑝, and finally high-pass filter them. The results of 
such operations lead to the following: 
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𝐼𝐼𝑢𝑢𝑢𝑢(𝑘𝑘) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑘𝑘𝑇𝑇𝑠𝑠2)𝑃𝑃𝑙𝑙

32
cos𝜓𝜓𝑟𝑟 cos�(Δω + 𝜔𝜔𝑐𝑐)k𝑇𝑇𝑠𝑠2 + 𝜙𝜙𝑒𝑒(𝑘𝑘𝑇𝑇𝑠𝑠2)� ,    (4.15) 

𝐼𝐼𝑢𝑢𝑢𝑢(𝑘𝑘) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑘𝑘𝑇𝑇𝑠𝑠2)𝑃𝑃𝑙𝑙

32
sin𝜓𝜓𝑟𝑟 cos�(Δω + 𝜔𝜔𝑐𝑐)k𝑇𝑇𝑠𝑠2 + 𝜙𝜙𝑒𝑒(𝑘𝑘𝑇𝑇𝑠𝑠2) + 𝜃𝜃𝑟𝑟� , (4.16) 

where 1 ≤ 𝑘𝑘 ≤ 𝑀𝑀 with 𝑀𝑀 representing the number of samples of the array, 
𝑀𝑀 𝑁𝑁⁄  is the upsampling ratio, and 𝑇𝑇𝑠𝑠2 represents the upsampling period, such 
as 

𝑇𝑇𝑠𝑠2 =
1
𝑓𝑓𝑠𝑠2

 .                                                      (4.17) 

To reconstruct the corresponding complex signals, we first need to retrieve the 
imaginary parts of each detected signal. To do so, we can use the Bedrosian 
theorem and apply the HT to 𝐼𝐼𝑢𝑢𝑢𝑢 and 𝐼𝐼𝑢𝑢𝑢𝑢 [117], obtaining 

𝑆𝑆𝑢𝑢𝑢𝑢(𝑘𝑘) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑘𝑘𝑇𝑇𝑠𝑠2)𝑃𝑃𝑙𝑙

32
cos𝜓𝜓𝑟𝑟 exp�𝑗𝑗(𝛥𝛥𝛥𝛥 + 𝜔𝜔𝑐𝑐)𝑘𝑘𝑇𝑇𝑠𝑠2 + 𝑗𝑗𝑗𝑗𝑒𝑒(𝑘𝑘𝑇𝑇𝑠𝑠2)� , (4.18) 

𝑆𝑆𝑢𝑢𝑢𝑢(𝑘𝑘) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑘𝑘𝑇𝑇𝑠𝑠2)𝑃𝑃𝑙𝑙

32
sin𝜓𝜓𝑟𝑟 exp(𝑗𝑗(𝛥𝛥𝛥𝛥 + 𝜔𝜔𝑐𝑐)𝑘𝑘𝑇𝑇𝑠𝑠2 + 𝑗𝑗𝑗𝑗𝑒𝑒(𝑘𝑘𝑇𝑇𝑠𝑠2) + 𝑗𝑗𝑗𝑗𝑟𝑟) . (4.19) 

Then, we downconvert, downsample and low-pass filter 𝑆𝑆𝑢𝑢𝑢𝑢(𝑘𝑘) and 𝑆𝑆𝑢𝑢𝑢𝑢(𝑘𝑘), 
obtaining 

𝑆𝑆𝑏𝑏𝑏𝑏(𝑛𝑛) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑛𝑛𝑇𝑇𝑠𝑠)𝑃𝑃𝑙𝑙

32
cos𝜓𝜓𝑟𝑟 exp�𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑇𝑇𝑠𝑠 + 𝑗𝑗𝑗𝑗𝑒𝑒(𝑛𝑛𝑇𝑇𝑠𝑠)� ,           (4.20) 

𝑆𝑆𝑏𝑏𝑏𝑏(𝑛𝑛) = 𝑅𝑅�
𝑃𝑃𝑟𝑟(𝑛𝑛𝑇𝑇𝑠𝑠)𝑃𝑃𝑙𝑙

32
sin𝜓𝜓𝑟𝑟 exp(𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑇𝑇𝑠𝑠 + 𝑗𝑗𝑗𝑗𝑒𝑒(𝑛𝑛𝑇𝑇𝑠𝑠) + 𝑗𝑗𝑗𝑗𝑟𝑟),       (4.21) 

where 𝑆𝑆𝑏𝑏𝑏𝑏 and 𝑆𝑆𝑏𝑏𝑏𝑏 are the baseband representation of the detected SUT slice. 
Such signals depend on the frequency and phase differences between local 
oscillator and SUT slice, respectively 𝛥𝛥𝛥𝛥 and 𝜙𝜙𝑒𝑒(𝑛𝑛𝑇𝑇𝑠𝑠). 

Finally, by applying the 𝑁𝑁-point FFT, the desired slice of the SUT optical 
spectrum can be obtained. 
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4.3 Requirements and Performance 

The proposed scheme comes with some requirements, a few of which already 
mentioned in the previous sections. For example, the slice frequency width 𝐵𝐵𝑠𝑠 
depends on the photodetectors bandwidth 𝐵𝐵𝑝𝑝. The relation between these two 
values is 

𝐵𝐵𝑠𝑠 = 𝜔𝜔𝑙𝑙±2𝜋𝜋𝜋𝜋𝑝𝑝 .                                                  (4.22) 

The main consequence of such relation is that 𝐵𝐵𝑝𝑝 limits the step width taken 
by the local oscillator to a maximum of 4𝜋𝜋𝐵𝐵𝑝𝑝, as shown in FIGURE 4.3. 
Therefore, in the case of very coarse central frequency tuning sensibility local 
lasers, photodiodes with very large bandwidth are needed. In addition, 𝐵𝐵𝑝𝑝 is 
also related to the ADC sampling frequency 𝑓𝑓𝑠𝑠. Hence, to avoid any aliasing 
effect, the following condition must be satisfied: 

𝑓𝑓𝑠𝑠 ≥ 2𝐵𝐵𝑝𝑝 .                                                       (4.23) 

In turn, 𝑓𝑓𝑠𝑠 limits the frequency resolution that can be obtained after the FFT to 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 ≤
𝑓𝑓𝑠𝑠
𝑁𝑁

 .                                                      (4.24) 

Another critical relation to consider is the one that binds the reconstructed 
signal slices 𝑆𝑆𝑏𝑏𝑏𝑏 and 𝑆𝑆𝑏𝑏𝑏𝑏 to the phase and frequency differences between the 
local oscillator and the original signal slice. In order to mitigate this 
dependency, phase and frequency estimation techniques should be applied.  

Finally, since the frequency range covered by the proposed technique is mainly 
limited by the local laser, a broadly tuneable laser is preferable.  

The main advantage of our proposed scheme is that there is no need for a 
continuous frequency sweep, as in the so-called Coherent Optical Spectrum 
Analyzer (COSA)-based techniques [118]. Furthermore, being the proposed 
front-end scheme transparent to the optical signal waveform (i.e., independent 
from the used modulation format and multiplexing scheme), it represents a 
valuable solution to provide high-resolution optical spectra, from which the 
most important figures of merit can be accurately estimated. Finally, since it is 
a modular approach, the presented DSP modules could also be enhanced by 
leveraging one of the ML algorithms described in Chapter 2. 

The solution we proposed constitutes a trade-off between cost and 
performance. Although a precise analysis might need detailed simulations and 
eventual experimentation, here we give hints of an actual implementation 
using commercially available devices. 
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The employed optical sources should be stable, broadly tuneable, and provide 
low linewidth. Ideally this is achieved with external cavity lasers, which can 
provide narrow linewidths down to 150 KHz. Also, they are slow-tuning and 
high-performant devices, and it would take around 1 s to be tuned at a precise 
wavelength with a ~1 pm resolution [119]. It is worth noting that these devices 
can cover different bands (e.g., S, C, and L). Also, low linewidth is needed to 
maintain high spectral resolution after the FFT. In case we can tolerate 
linewidths in the MHz range, we can approach a (fast) tuneable laser, able to 
be finely tuned in less than 3 ns [120]. Such devices can be stabilized using an 
appropriate wavelength locking circuit, with a resolution accuracy of ±64 MHz 
[121]. Therefore, with such resolution, the whole C-band (i.e., from 1530 to 
1565 nm) can be scanned within 100 µs approximately. 

Regarding the ADCs, we envision using common high-speed ADCs up to 
10 GSa/s [122]. However, such devices require low bandwidth photodetectors 
and finely tuneable lasers. In case high-performance ADCs are considered, a 
proposal could be to have 103 GSa/s ADCs [123], which represent a more 
expensive option, but less stringent in terms of laser tunability/stability. 
Considering the former solution, we could easily achieve high resolutions with 
small FFT sizes. For instance, a 128-point FFT would result in ~78 MHz 
spectral resolution, whereas 64-point would lead to ~156 MHz. On the 
contrary, adopting the high performance ADCs, in order to achieve ~100 MHz 
resolution, we would need a 1024-point FFT. 

Finally, a broad range of balanced photodetectors is commercially available, 
featuring bandwidths up to 100 GHz [124]. So, these components are found to 
be the less limiting of all. 

In the following, we propose two different implementation examples. 
Implementation #1 includes a fast tuneable laser with a 10G photodetector and 
a 10 GSa/s ADC. Instead, implementation #2 involves using an external cavity 
laser with a high-speed photodetector and a 103 GSa/s ADC. We report a 
summary of the performance of such proposed schemes in TABLE 4.1. 

TABLE 4.1.  Performance summary of the proposed implementation examples. 

 Implementation #1 Implementation #2 
ADC sampling rate 10 GSa/s 103 GSa/s 
FFT size 64 points 1024 points 
Resolution bandwidth 156 MHz 100 MHz 
Maximum power 20 dBm 20 dBm 
Sweeping speed 37.7 ns/nm 1.2 s/nm 
Wavelength Range 1530 nm – 1565 nm 1460 nm – 1565 nm 
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More in detail, in the first implementation, we found the maximum slice 
bandwidth to be 𝐵𝐵𝑠𝑠=10 GHz due to the ADC sample rate,. Hence, the step width 
adopted by the laser to cover the monitored spectral region is 10 GHz. In 
addition, in this implementation, the laser can cover only the C-band [120], 
whereas each point can be set within around 3 ns. Thus, it can sweep the entire 
spectrum within 1.32 µs (at a speed of around 37.7 ns/nm). Regarding the 
power range, we retrieved 𝑃𝑃𝑟𝑟 by comparing the direct and coherent detection 
terms of Equation 4.6. In particular, we assumed a local oscillator signal power 
𝑃𝑃𝑙𝑙=10 dBm, a photodiode responsivity 𝑅𝑅=0.9 [125], and a coupling ratio 𝛼𝛼=0.5. 
Such an equation resulted in a maximum power of 20 dBm. 

Concerning the second considered implementation scheme (i.e., 
implementation #2), we proposed to use a 103 GSa/s ADC, entailing a 
maximum slice bandwidth 𝐵𝐵𝑠𝑠=103 GHz. So, the external cavity laser is 
expected to cover the S, C, and L bands with steps of 103 GHz. Since setting to 
each point requires 1 s, it can take about two minutes (126 s) for the laser to 
cover the whole spectrum (S, C, and L bands) at a speed of 1.2 s/nm. As per 
implementation #1, we calculated the power range by comparing the direct and 
coherent detection terms of Equation 4.6. However, this time we considered a 
photodiode responsivity 𝑅𝑅=0.5 [124], which again resulted in a maximum 
power of 20 dBm. 

4.4 Conclusions 

In this chapter, we presented a method to estimate the signal optical spectra at 
high resolutions. Since the technique we presented relies on detecting spectral 
slices of the considered signal, it does not require a continuous frequency 
sweep. Along with the theoretical study of the proposed solution, we also 
presented the technical requirements and two possible examples of its 
implementation. 
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Chapter 5 
 

Optical Monitor Placement 
Strategies and Assessment 

In this chapter, we focus on the second major task addressed in this thesis, task 
B, which according to the definition introduced in Section 3.4 is composed of 
two subtasks, as shown in the scheme of FIGURE 3.5. The first one, subtask 
B1, refers to identifying adequate strategies for the placement of optical 
spectral monitors within the optical network. To this aim, in [126] and in [127], 
we defined an ingress and an egress placement scenario. The second subtask, 
B2, identifies two spectral-based solutions for signal and filter-related 
parameters estimation within the two previously identified placement 
scenarios. In particular, in [19], we proposed and experimentally validated an 
ML-based method for estimating the ASE noise relying on optical spectral data 
collected in the egress monitor placement scenario. We further experimentally 
verified such a solution under different circumstances in [128] and [127]. In 
[126], we proposed and experimentally validated a method to extract filter-
related parameters from optical spectral data acquired within the ingress 
placement scenario. We further validate such a solution in [127]. Finally, in 
[127], we compared the two identified placement scenarios and the accuracy of 
the related methods for the parameter estimation, providing some guidelines 
on their employment. In this chapter, when we mention the monitored spectral 
data, we refer to the monitored PSD; therefore, we will use these two terms 
interchangeably. 

More in detail, this chapter is organized as follows. In Section 5.1, we introduce 
the two identified optical monitor placement scenarios. Section 5.2 describes 
the proposed solution to estimate the ASE noise value from the optical spectral 
data acquired within the egress placement scenario. Along with the method 
principles, we also describe the implemented simulation and experimental 
setups for validating it. Section 5.3 reports about the filter feature extraction 
method, which relies on optical spectral data collected within the ingress 
placement scenario. In addition, we also describe the related simulation and 
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experimental setup that we implemented to validate the proposed solution. 
Then, in Section 5.4, we describe the simulation and experimental setups we 
implemented to jointly validate the two proposed solutions, reporting the 
obtained results. Furthermore, we compare the two methods, providing 
guidelines on their implementation and their impact on the SNR penalty 
reduction. Finally, in Section 5.5, conclusions are drawn. 

5.1 Introduction 

In an ideal scenario, an optical network would be equipped with high-spectral 
resolution and omnipresent optical spectral monitors. In general, to better 
monitor the relevant network parameters, the most appropriate position to 
place the spectral monitoring devices is close to the network ROADM nodes. 
Hence, such an ideal scenario would require optical spectral monitors placed 
before and after every node of the network, as shown in FIGURE 5.1. We 
assume this kind of solution to be expensive and impractical to be applied in 
real optical networks. Thus, more realistic configurations with a reduced 
number of spectral monitors are desirable. A possible way to do so is to limit 
or suitably select the placement of the monitoring devices within the optical 
network, as we proposed in [126] and [127]. 

In particular, we identified two main placement strategies, as we also show in 
FIGURE 5.2. The first one, which we defined as the egress placement scenario, 
envisioned the presence of spectral monitors after the egress ports of every 
network ROADM node, that is, after their egress WSSs. On the contrary, the 
second identified monitoring strategy, which we named as the ingress 
placement scenario, envisioned spectral monitors placed before the ingress 

 

FIGURE 5.1.  Ideal optical spectral monitors placement scenario. 
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ports of every network ROADM node, that is, before their ingress WSSs. In 
both scenarios, the spectral monitoring devices we considered were the Optical 
Channel Monitors (OCMs), cost-effective monitoring solutions available 
nowadays on the market, providing resolutions up to the sub-GHz order [129]. 

Depending on the chosen monitoring strategy, some parameters can be easily 
estimated from the optical spectral data, whereas others cannot. Thus, in order 
to retrieve the missing information of each monitoring scenario, new 
processing solutions are needed. To this aim, in the following sections, we will 
present two approaches to enhance the collected spectral data with proper data 
analytics and ML methods. It is worth mentioning that both the estimation 
methods we will report focused on different aspects of the transmission 
without considering the consequences of the Nonlinear Interference (NLI) 
caused by the Kerr effect. In fact, all the spectra we collected and processed 
referred to a single-channel configuration. An accurate study of the NLI impact 
on our estimation solutions is left for future investigations. 

5.2 OSNR Estimation in an Egress Monitoring Placement 
Scenario 

As introduced in Section 5.1, the egress monitoring scenario envisions the 
placement of the OCMs after the output ports of each network ROADM node, 
as represented in FIGURE 5.2 through the red boxes. Hence, in such scenarios, 
we monitor the signals just after being filtered by the WSSs placed within the 
ROADM nodes. Consequently, filter-related parameters such as the filter 
3/6 dB bandwidth and central frequency can be easily estimated from the 
collected spectral data. In fact, the filter directly affects the signal spectra 
traversing the node, as shown in FIGURE 5.3, where we depicted a signal 
spectrum before and after being filtered. On the other hand, signal-related 
information such as its 3/6 dB bandwidth and the associated ASE noise 

 

FIGURE 5.2.  Considered network architecture with the two proposed optical 
monitors placement strategies: ingress (blue boxes) and egress (red boxes). WSS: 
Wavelength Selective Switch; OCM: Optical Channel Monitor. 

NODE n

. . . 

NODE n+1

. . . 

W
S
S

W
S
S

W
S
S

W
S
S

OCMn,i OCMn+1,iOCMn,e OCMn+1,e

LINK
(n,n+1). . . 

. . . 

. . . 
. . . 

NODE n-1

. . . 

W
S
S

W
S
S

OCMn-1,i OCMn-1,e

LINK
(n-1,n). . . 

. . . 



 

66 
 

(directly mapped into the OSNR metric) cannot be directly measured from the 
acquired spectral data, as shown in FIGURE 5.3. A possible solution to 
overcome this limitation is represented by ML-based algorithms, which can 
infer such information with a certain accuracy even from filtered spectral data. 
To this aim, in [19], we proposed and validated using simulations and an 
experimental setup, a supervised ML-based method to estimate in-band the 
ASE noise/OSNR from optical spectral data collected in such egress optical 
monitor placement scenario. In addition, in [127] and in [128], we carried out 
further experimental demonstrations of such a solution under different 
circumstances. 

As a first step, our method requires the collection of different sets of optical 
spectra to be classified according to some particular signal parameters (e.g., 
roll-off factor, symbol rate, etc.) and labeled with their corresponding ASE 
noise/OSNR values. Then, leveraging the labeled data, we train separate ML 
regression models for the different considered classes of parameters and 
predict the OSNR of unlabeled spectral data. The following paragraph will 
formally present such an OSNR estimation solution, referring to the 
formulation we initially presented in [19] and [128]. 

We represent an optical spectrum instance acquired right after an optical filter, 
with a vector 𝐬𝐬 of length 𝑙𝑙, and its corresponding OSNR value with the scalar 𝑦𝑦. 
Our goal is to find the mapping 𝑓𝑓, between the spectrum 𝐬𝐬 and its OSNR value 
𝑦𝑦, that is 𝑦𝑦 = 𝑓𝑓(𝐬𝐬). In addition, we denote with 𝐒𝐒𝑐𝑐, the matrix of dimensions 
𝑙𝑙 × 𝑚𝑚 representing the set of 𝑚𝑚 collected optical spectra with the same group 
of parameters 𝑐𝑐, for which the model is valid. In particular, 𝑐𝑐 = (𝑟𝑟, 𝑏𝑏, 𝑞𝑞), with 𝑟𝑟 
being the spectral resolution of the optical monitor that captures the spectra, 

 

FIGURE 5.3.  Signal optical spectra acquired before (orange plot) and after (blue 
plot) the filtering process. The original signal bandwidth and its related ASE noise 
cannot be directly measured from the blue plot, whereas the orange plot clearly 
shows the filter characteristics.  
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𝑏𝑏 being the bandwidth of the optical filter that filtered the considered signals, 
and 𝑞𝑞 being the connection symbol rate. The length 𝑙𝑙 of the optical spectrum 
vector 𝐬𝐬 depends on 𝑟𝑟 and on 𝑏𝑏, so that 𝑙𝑙 = 𝑏𝑏/𝑟𝑟. We also denote with 𝐲𝐲𝑐𝑐 the 
vector of length 𝑚𝑚 containing the OSNR values corresponding to the 𝐒𝐒𝑐𝑐 spectra. 
In order to approximate the estimation function 𝑓𝑓, we implement a ML model 
𝑄𝑄𝑐𝑐 specific for the group of parameters 𝑐𝑐. We then train 𝑄𝑄𝑐𝑐 with the sets of 
monitored spectra and labeling OSNR values (𝐒𝐒𝑐𝑐 ,𝐲𝐲𝑐𝑐). Note that the parameter 
𝑐𝑐 mentioned above corresponds to nominal TP and filter values, so we can 
create a training set either during a lab calibration phase or directly in the field, 
right before commissioning a connection. Concerning the first option, we could 
implement different scenarios simply by tuning the available parameters (e.g., 
channel roll-off factor, modulation format, symbol rate, monitor spectral 
resolution, filter 3/6 dB bandwidth) and collecting the corresponding optical 
spectra (see the following sections). Instead, several limitations should be 
considered when operating in the field to avoid interfering with existing 
connections. In fact, parameters like those related to the node filters cannot be 
varied in operating networks, where such changes could influence the adjacent 
connections. Furthermore, if we denote the estimated OSNR values with the 
vector 𝐲𝐲�𝑐𝑐 = 𝑄𝑄𝑐𝑐(𝐒𝐒𝑐𝑐), then we can represent the estimation errors with the vector 
𝛆𝛆𝑐𝑐 = 𝐲𝐲�𝑐𝑐 − 𝐲𝐲𝑐𝑐. Hence, the goal of the training process will be to identify the 
model 𝑄𝑄𝑐𝑐, which minimizes some functions of 𝛆𝛆𝑐𝑐, such for example, the Mean 
Squared Error (MSE) function. Finally, once the ML algorithm is trained with 
the set of spectra 𝐒𝐒𝑐𝑐 and their reference OSNR values 𝐲𝐲𝑐𝑐, it will be able to 
estimate from the optical spectrum 𝐬𝐬𝑐𝑐ℎ, of an operating channel ℎ with 
parameters 𝑐𝑐, its OSNR value 𝑦𝑦�𝑐𝑐ℎ. 

5.2.1 OSNR Estimation Method Assessment 

First Experimental Setup 
We carried out the first experimental validation of the proposed solution in 
[19], where we leveraged high-resolution spectral data captured using a 
Brillouin Optical Spectrum Analyzer (BOSA) [130]. This monitoring device 
exploits the Stimulated Brillouin Scattering (SBS), a nonlinear optical effect 
that causes very narrow filtering, allowing the BOSA to achieve spectral 
resolutions up to 12.5 MHz (0.1 pm) and a dynamic range greater than 
80 dB [131]. We used the BOSA-collected spectral data to train two ML 
regression algorithms: a GPR and an SVR model. In addition, to evaluate the 
impact of the monitor spectral resolution on the OSNR estimation accuracy, 
we also employed lower-resolution spectral inputs obtained post-processing 
the collected optical spectra. The experimental setup we implemented is shown 
in FIGURE 5.4. We generated a 28 GBd PM-QPSK modulated signal with a 
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tuneable laser centered at 1550.918 nm (i.e., 193.3008 THz) and no 
pulse-shaping. We considered a Back-to-Back (B2B) scenario and, leveraging 
CTTC’s ADRENALINE testbed, transmitted the signal over four different 
distance paths: 35, 50, 150, and 200 km. In order to emulate a further cascade 
of fiber spans, at the testbed output, we placed a Variable Optical Attenuator 
(VOA) and then an EDFA operating in Automatic Power Control (APC) mode. 
Using the VOA, we obtained sixteen different OSNR levels. Finally, we 
acquired the optical spectra with the BOSA working at its highest spectral 
resolution, that was, 12.5 MHz. We retrieved the OSNR values to be used as 
references during the labeling phase from such high-resolution spectral data, 
employing the integral method. The integral method calculates the signal and 
noise integrals within two different bandwidths (usually 0.4 nm for the signal 
and 0.1 nm for the noise). After that, the noise integral value is subtracted from 
the signal one in the linear domain, and their result is again divided by the 
noise value. For this operation, we considered signal and noise bandwidths of 
50 and 12.5 GHz (i.e., 0.4 and 0.1 nm), respectively. In operating networks, we 
could have measured such values during the signal provisioning phase, that is, 
before the channel operates, adopting the On/Off method [67]. 

For each of the five distance scenarios, we collected a total of 160 high-
resolution optical spectra, specifically ten for each VOA level (five for each 
polarization state). We also excluded from the considered data set those optical 
spectra whose reference OSNR values were lower than 8 dB. We did such a 
separation to emulate a real network scenario, where low OSNR signals would 
not be kept in operation. It is worth noting, that every time the optical signals 
entered or left the ADRENALINE testbed, they also crossed an optical filter. In 
particular, the 35 and 50 km distance scenarios had an entry/exit optical filter 
with 100 GHz 3 dB bandwidth, whereas the 150 and 200 km distance scenarios 
had an entry filter with 100 GHz 3 dB bandwidth and an exit one with 50 GHz 
3 dB bandwidth. 

Hence, we post-processed the collected high-resolution optical spectra. First, 
we filtered the spectral data by multiplying their PSDs with the TF of a 50 GHz 

 

FIGURE 5.4.  Block diagram of the experimental setup we proposed in [19]. PM-
IQ-MOD: Polarization Multiplexed-IQ-Modulator; DAC: Digital-to-Analog 
Converter; VOA: Variable Optical Attenuator; BOSA: Brillouin Optical Spectrum 
Analyzer. 
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3 dB bandwidth optical filter, which we previously characterized. Such TF is 
shown in FIGURE 5.5(a). This operation was done to recreate a variety of 
possible realistic egress placement scenario conditions, such as filter central 
frequency shift/transmitter laser drift and filter bandwidth tightening. We 
emulated the first impairment by introducing a ±1 GHz misalignment between 
the filter TF and the signal central frequencies. Moreover, to emulate the 
bandwidth tightening, we reduced the filter 3 dB bandwidth to 46 GHz. We 
considered three bandwidth and central frequency shift variations for each 
spectrum. This operation caused a narrowing of the area in which the OSNR 
can be detected. In FIGURE 5.5(b), we show an example of experimentally 
collected optical spectra, in which the filtering effects are clearly visible. In 
particular, the ASE noise is easily measurable from the original pre-filtered 
signal optical spectrum, the blue plot in FIGURE 5.5(b). On the other hand, 
the ASE noise level cannot be identified from the filtered signal spectrum, 
which is the orange plot of FIGURE 5.5(b). This example again shows how the 
filters remove information at the channel sides, making the actual noise level 
identification often challenging. Once the filtering stage was completed, we cut 
the edges of the collected optical spectra to replicate a real DWDM spectral 
grid, where each channel is bounded by its adjacent (in this case, we considered 
50 GHz slots). To do so, we only considered the spectra within the ±25 GHz 
interval centered around the channel central frequency identified through the 
carrier peaks. 

Furthermore, to evaluate the proposed solution with spectral data at a lower 
spectral resolution, we processed the high-resolution collected optical spectra 
by averaging their samples in the linear domain. In this way, we obtained a 
reduced spectral resolution 𝑟𝑟1, proportional to the new optical spectra length 
𝑙𝑙1, as shown in the example of FIGURE 5.6. In particular, the original BOSA-

 

FIGURE 5.5.  (a) Transfer function of the considered optical filter with 50 GHz 
3 dB bandwidth. (b) Comparison of pre-filtered (blue plot) and filtered (orange 
plot) high-resolution optical spectra. 
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collected data had a spectral resolution of 12.5 MHz (0.1 pm) and a length 
equal to 4000 samples, whereas the processed spectral data had a spectral 
resolution of 1.25 GHz (0.01 nm) and a length of 40 samples. Finally, we time-
averaged the five different optical spectra we collected for each of the different 
case states of polarization. Time averaging is a typical method used to reduce 
the random noise affecting the measurements and is often applied directly 
within the OSA at the time of the spectral acquisition. 

The sets of parameters for which we trained our ML model were those related 
to the high and low-resolution optical spectra, 𝑐𝑐1 =  (12.5 MHz, 50 GHz, 
28 GBd) and 𝑐𝑐2 = (1.25 GHz, 50 GHz, 28 GBd), respectively. We used 85% of 
our data set for the training phase and the remaining 15% for the testing. The 
total amount of spectra we fed to the algorithm was 198: 169 were used to train 
it, whereas the remaining 29 were for testing it. In addition, to better evaluate 
the estimation accuracy of the models, we also randomly shuffled training and 

 

FIGURE 5.7.  Reference and predicted OSNR values as function of the VOA levels 
for the 50 km distance scenario, with (a) high-resolution and (b) low-resolution 
optical spectral data. 
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FIGURE 5.6.  (a) Original BOSA-collected high-resolution (i.e., 12.5 MHz) optical 
spectrum. (b) Post-processed low-resolution (i.e., 1.25 GHz) optical spectrum. 
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testing data sets 200 times, trained a different 𝑄𝑄𝑐𝑐 ML model each time, and 
tested it with the corresponding testing set. The estimation accuracy we 
obtained with the GPR method was higher than the one we obtained with SVR. 
Therefore, for this experimental validation, we report and discuss only the 
GPR-related results. In particular, in FIGURE 5.7, we show the comparison 
between the reference and the predicted OSNR values as a function of the VOA 
levels in the 50 km distance scenario for the original BOSA-collected 
high-resolution optical spectra (a) and the processed low-resolution ones (b). 
We obtained FIGURE 5.7 results, training the GPR model with a spectral data 
set comprising the optical spectra of all the five considered distance scenario 
and then plotting only the 50 km-related spectra of the testing set. It can be 
noted from FIGURE 5.7 that sometimes, the predicted OSNR values of a 
specific VOA configuration (e.g., 12 dB for the high-resolution spectrum 
results on the left) are different. The different spectral sets used in the training 
phase of the ML-based algorithm caused these prediction variations. We 
obtained an MSE and a Maximum (MAX) error equal to 0.007 and 1.142 dB, 
respectively, considering the high-resolution spectral data. Instead, we 
obtained an MSE and MAX error equal to 0.012 and 0.954 dB concerning the 
low-resolution optical spectra, respectively. In FIGURE 5.8, we plot the 
obtained OSNR estimation error Probability Density Functions (PDFs) for the 
two considered spectral resolutions for all the five distance scenarios. We 
expected higher ASE noise estimation accuracies employing high- resolution 
spectral data, but the results we obtained disproved such an assumption. In 
fact, the considered ML-based algorithm maintained the same performance 
even when we reduced the amount of input data through the averaging 
operation. Moreover, we did not observe any dependence of the estimation 
error with respect to the reference OSNR value in the range between 10 and 
30 dB of the experimentally acquired data. 

 

FIGURE 5.8.  PDFs of the OSNR estimation errors obtained training the GPR 
model with all the five distance scenarios, for (a) high and (b) low-resolution 
spectral data. The red circles highlight the maximum errors (MAXs). 
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Simulation Setup 
In addition to the experiment described in the previous paragraphs, in [19] we 
also implemented the VPI simulation setup depicted in FIGURE 5.9. The 
purpose of these further simulations was to verify if the post-processing we 
applied to the original high-resolution BOSA-collected optical spectra 
influenced in some ways the obtained results. We generated a 28 GBd 
PM-QPSK signal with roll-off factor equal to 1, yielding a 112 Gb/s connection. 
By placing a set OSNR module right after the transmitter, we adjusted the 
signal OSNR value increasing the related noise level. Then, in cascade, we 
placed a VOA and an EDFA, again considering sixteen different attenuation 
levels. In particular, we swept the VOA with 2 dB steps, within the interval 
between 0 and 30 dB, exactly as we did for the experimental case. Following 
the amplification stage, using an OSNR meter that employed the integral 
method described in the previous subsection, we measured the OSNR values 
used as references during the labeling phase. In addition, we also placed a 
tuneable optical filter with a second-order super-Gaussian TF and 37.5 GHz 
3 dB bandwidth. In order to emulate the two most common optical 
impairments, that are, filter central frequency shift and the filter bandwidth 
tightening, we shifted the filter central frequency of ±1 GHz and reduced its 
bandwidth up to 25 GHz. Finally, we collected the optical spectra employing 
an OSA module with two spectral resolutions, 12.5 MHz (0.1 pm) and 1.25 GHz 
(0.01 nm). We acquired a total of 96 optical spectra for each considered 
spectral resolution. Using the same VPI simulation setup, we also generated a 
224 Gb/s PM-16 Quadrature Amplitude Modulation (QAM) signal. We kept all 
the setup parameters as in the QPSK case and collected 128 optical spectra for 
each considered spectral resolution. Such acquisition process resulted in a 
total of four parameters sets 𝑐𝑐, one for each considered modulation format and 
spectral resolution. For all the four sets we only considered a B2B distance 
scenario. Again, we split the data set between training and testing sets 
maintaining the same ratio as before, that was, 85% of the data to train the 
algorithms and the remaining 15% to test it. In addition, we applied the same 
shuffling procedure of the experimental case. For the labeling phase, we 

 

FIGURE 5.9.  Diagram of the VPI implanted setup. TX: Transmitter; VOA: 
Variable Optical Attenuator; OBP: Optical Bandpass Filter; OSA: Optical 
Spectrum Analyzer. 
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associated each collected optical spectrum with its related OSNR value 
measured by the OSNR meter. We obtained excellent estimation accuracies for 
both the considered ML algorithms (i.e., GPR and SVR), spectral resolutions 
(i.e., 12.5 MHz and 1.25 GHZ), and modulation formats (i.e., PM-QPSK and 
PM-16 QAM). In particular, concerning the OSNR estimation with the GPR 
model, in all the four considered cases we obtained a MSE and a MAX error 
lower than 0.009 and 0.33 dB, respectively. In FIGURE 5.10, we report the 
PDFs of the OSNR estimation errors for the PM-16 QAM format related to the 
two considered spectral resolutions. The results we obtained proved that our 
solution is able to identify the OSNR values in different scenarios, 
independently of the considered spectral resolution. In particular, if we 
compare the results obtained with the simulation-acquired spectral data to 
those obtained using experimental optical spectra, we notice lower error 
margins. In our opinion, such better estimation accuracy is mainly due to the 
more accurate and less realistic spectral shapes of the VPI-related spectra. In 
fact, more symmetric and smoother optical spectra surely help the ML 
algorithm to identify specific matches between the spectral shapes and the 
reference OSNR values. 

Second Experimental Setup 
The experimental setup we previously presented in this section did not include 
any optical filtering stage right before the BOSA. In fact, we collected the 
optical spectra after the amplification stage, and only during the post-
processing we filtered them. To cope with such lack, in [128] we proposed a 
new experimental setup, also shown in FIGURE 5.11, which included a 
tuneable optical filter placed right before the OSA. In this way, we collected a 
new set of optical spectra, reproducing an egress placement scenario, and 
further tested our proposed ML-based solution under such conditions. In 

 

FIGURE 5.10.  PDFs of the OSNR estimation errors obtained training the GPR 
model with the PM-16 QAM spectral data at (a) high and (b) low spectral 
resolution. 
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particular, in [128] we only considered the GPR model, which in [19], between 
the ML methods we considered, was the one returning the best estimation 
accuracy. In this new experimental setup, leveraging a tuneable laser working 
at 1550.116 nm, we generated a 64 GBd PM-QPSK modulated signal with a 
roll-off factor equal to 0.1. After the transmitter, we cascaded a VOA and an 
EDFA operating in APC mode. With this configuration, we obtained nine 
different OSNR levels, which ranged between 13 dB and 28 dB. Right after the 
EDFA, we placed a first OSA with a spectral resolution of 12.5 GHz (0.1 nm). 
With such low-resolution spectral monitor, we acquired the signal ASE noise 
levels to be used as reference during the labeling phase. Then, we placed a 
75 GHz 3 dB bandwidth optical bandpass filter, aligned with the transmitter 
laser frequency. Note that, in a real network scenario, for the considered 
64 GBd signal the control plane would configure the filter bandwidth at 
75 GHz. By shifting the filter central frequency and tuning its bandwidth, we 
reproduced the two classic optical impairments that we also considered in the 
previous experiment, filter central frequency shift and filter bandwidth 
tightening, respectively. In particular, we narrowed the filter 3 dB bandwidth 
up to 63 GHz, with steps of 3 GHz, and for each of the five obtained bandwidth 
values we also shifted the filter central frequency of ±1 and ±2 GHz. Finally, by 
means of a second OSA configured at a higher spectral resolution, that was 
150 MHz (~1 pm), we acquired the optical spectra to be used as data set for the 
OSNR estimation. Since in this experimental setup we did not consider any 
fiber span, all the measurements we took referred to a B2B scenario. We 
acquired a total of 1125 optical spectra. In particular, we repeated each 
acquisition five times and finally averaged them during the post-processing 
phase. In addition, maintaining the whole setup unchanged, we also generated 
a 64 GBd PM-QPSK signal with 0.2 roll-off factor. For this second scenario we 
collected a total of 180 optical spectra, with filter 3 dB bandwidth set at 75 and 

 

FIGURE 5.11.  Schematic diagram of the second implemented experimental setup. 
TX: Transmitter; PM-IQ-MOD: Polarization Multiplexed-IQ-Modulator; DAC: 
Digital-to-Analog Converter; VOA: Variable Optical Attenuator; EDFA: Erbium-
Doped Fiber Amplifier; OBPF: Optical Bandpass Filter; OSA: Optical Spectrum 
Analyzer. 
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69 GHz and filter shift of ±2 GHz. Finally, we collected an additional 180 
optical spectra, which referred to a PM-16 QAM format with 0.1 roll-off factor 
and the same filter configurations as per the 0.2 roll-off factor scenario. 

As for the first experimental setup, we post-processed the acquired optical 
spectra to replicate some of the real network conditions that are difficult to 
reproduce in the lab. In particular, to emulate a WDM network scenario, we 
normalized all the collected optical spectra to align their peaks at 0 dBm. We 
show the results of such operation in FIGURE 5.12(a) and FIGURE 5.12(b). 
The former figure represents an example of nine normalized low-resolution 
optical spectra related to the nine different considered VOA levels, which we 
collected with the low-resolution OSA place at the ingress port of the filter. 
Instead, in FIGURE 5.12(b), we show the same nine normalized spectra, this 
time acquired at the egress filter port, with the high-resolution OSA. From 
FIGURE 5.12(b), we can observe a slight asymmetry in the optical spectra, 
which probably originated from the imperfect alignment between transmitter 
laser and filter central frequency. Such misalignment happened although we 
set both devices at the same frequency. These behaviors are quite typical in real 
networks, and further exacerbate when long paths including several cascaded 
filters are considered. Moreover, when collected with the egress OSA, the 
length 𝑙𝑙 of the spectral data was equal to 50000 samples. Therefore, in order 
to reduce their size and speed up the ML processing phase, we cut the optical 
spectra maintaining only the portions at their sides, that were, the rising and 
falling parts. Such operation resulted in a reduction of the optical spectra 
length up to 800 samples. 

Before feeding the spectral data to the GPR algorithm, we labeled them with 
their related OSNR values, which we measured using the spectra captured at 
the filter ingress port. As for the previous assessments, we used 85% of the 

 

FIGURE 5.12.  (a) The nine normalized low-resolution optical spectra collected 
with the OSA placed at the filter ingress port. (b) The nine normalized filtered 
optical spectra collected with OSA placed at the filter egress port and a 3 dB filter 
bandwidth equal to 75 GHz. 
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spectral data set to train the algorithm and the remaining 15% to test it. 
Furthermore, we randomly shuffled the training and testing set 200 times, 
each time training a different model and testing it with its corresponding test 
set. However, unlike the previous assessments, this time the parameters set 
that we considered also included the roll-off factor 𝑎𝑎, since the spectral data 
we acquired referred to two different roll-off factor. In addition, having 
spectral data related to two different modulation formats 𝑘𝑘, with the same 
symbol rate 𝑞𝑞, the set of parameters 𝑐𝑐 for which we trained the GPR model was 
𝑐𝑐 = (𝑟𝑟, 𝑞𝑞,𝑘𝑘,𝑎𝑎). In particular, we trained three different models, according to 
the three different data set we collected, that were, 𝑐𝑐1 = (150 MHz, 64 GBd, 
PM-QPSK, 0.1), 𝑐𝑐2 = (150 MHz, 64 GBd, PM-QPSK, 0.2), and 𝑐𝑐3 = (150 MHz, 
64 GBd, PM-16 QAM, 0.1). The results we obtained for these three models 
showed a MAX estimation error around 2.5 dB. We considered such 
performance degradation to be the result of a lack of a priori knowledge of the 
filter bandwidth values, which we believed to be a key parameter for the ASE 
noise estimation. Therefore, we retrained our models also taking into account 
the related 3 dB bandwidth values. Hence, our set of parameters became 𝑐𝑐 =
(𝑟𝑟, 𝑏𝑏, 𝑞𝑞, 𝑘𝑘,𝑎𝑎), with 𝑏𝑏 representing the considered filter 3 dB bandwidth. We 
summarize the results obtained with this new configuration, for the nine 
considered models, in TABLE 5.1. In particular, there, we report the MSE, the 
Minimum (MIN), and the MAX errors for each of the nine models. From such 
results, we observe how the Maximum Absolute Error (MAE) in all the 
considered cases, never exceeded 1.9 dB. As expected, the estimation errors for 
wider filter bandwidth values were lower, since in those cases the ASE noise 

TABLE 5.1.  Summary of the OSNR estimation results for the different trained ML 
models. 

Mod.  
format (k) 

Roll-off 
factor (a) 

Filter 3 dB 
bandwidth (b) MSE MIN 

[dB] 
MAX 
[dB] 

PM-QPSK 0.1 

63 GHz 0.427 -1.880 1.693 

66 GHz 0.187 -1.573 1.430 

69 GHz 0.115 -1.194 0.813 

72 GHz 0.055 -0.966 0.549 

75 GHz 0.029 -0.627 0.497 

PM-QPSK 0.2 
69 GHz 0.228 -1.167 1.207 

75 GHz 0.172 -0.992 0.868 

PM-16QAM 0.1 
69 GHz 0.139 -1.280 1.172 

75 GHz 0.030 -0.923 0.895 
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levels are less affected by the filtering effects, and traditional methods can also 
be employed. On the other hand, our ML-based technique could still retrieve 
the ASE noise with acceptable accuracy when narrower bandwidth values were 
considered, whereas traditional methods, such as the interpolation one, would 
struggle [66]. More in detail, considering only filter 3 dB bandwidth values 
equal or larger than 69 GHz, the obtained MAE reduced to 1.3 dB. In 
FIGURE 5.13, we report the PDF of the OSNR estimation error related to the 
69 GHz 3 dB bandwidth case of the PM-QPSK modulation format with 0.1 roll-
off factor. In the figure inset we also report MSE, MIN, and MAX errors values. 

5.3 Filter-Related Parameters Estimation in an Ingress 
Monitoring Placement Scenario 

In Section 5.1, we introduced the ingress optical monitor placement scenario, 
in which the OCMs are placed before the ingress WSS of each network ROADM 
node, as we showed in FIGURE 5.2 through the blue boxes. From spectral data 
collected within such a placement scenario, we can easily retrieve information 
related to the signal, such as the ASE noise accumulated in the adjacent link. 
On the other hand, when estimating the filter-related parameters, we cannot 
directly measure any such information from the optical spectra. This occurs 
because we are monitoring the signals before they undergo any filtering 
process within the ROADM node. Therefore, advanced processing techniques 
are required. For this purpose, in [126], we presented a solution to extract the 
filter-related features, such as the filter central frequency and the filter 
bandwidth, from optical spectral data acquired from OSMs placed before the 
ingress ROADM ports. There, we also validated this method leveraging 

 

FIGURE 5.13.  PDF of the OSNR estimation error for the 69 GHz 3 dB filter 
bandwidth case with PM-QPSK modulation format and roll-off factor equal to 0.1. 
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spectral data collected through VPI simulations and an experimental setup. In 
addition, in [127], we further enhanced this solution proposing an advanced 
way to identify the noise and again validating it with simulations and an 
experiment. In the following paragraphs, we will formally present our filter 
features extraction technique, relying on the formulation we initially presented 
in [126]. 

In FIGURE 5.2, we depicted an optical network with OCMs related to both the 
placement scenarios. As we saw in Section 5.1, a configuration where both the 
ingress and egress optical spectral monitors are present would be unfeasible 
because of its cost. We also know that to estimate any features of a ROADM 
node filter, as a first step, we should retrieve the spectrum of its TF. Thus, 
hypothetically, within such ideal scenario, to retrieve the filter TF of a node we 
would simply divide in the linear domain the PSD captured by the OCM at the 
node egress port, by that captured at the ingress one. Relying on the 
formulation presented in FIGURE 5.2 and assuming that no ASE noise is 
added when crossing the ROADM nodes, we can express the TF of a generic 
node 𝑛𝑛 in the ideal placement scenario, as 

TF𝑛𝑛,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛,𝑒𝑒

PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛,𝑖𝑖

 ,                                             (5.1) 

where PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛,𝑒𝑒 and PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛,𝑖𝑖 represent the PSDs acquired at the egress and 

at the ingress ports of node 𝑛𝑛, respectively. However, since the ingress 
monitoring placement scenario does not envision OCMs at the egress ports, we 
have to find another way to obtain the egress-related PSD. In order to cope 
with this lack, in [126], we proposed to replace it with the PSD monitored at 
the ingress port of the following node. The result of such operation represents 
not only node 𝑛𝑛 filter TF, but also the noise introduced by the link connecting 
𝑛𝑛 and 𝑛𝑛+1, which in FIGURE 5.2, we named as Link (𝑛𝑛,𝑛𝑛 + 1). Therefore, 
according to FIGURE 5.2 formulation, we can restate Equation 5.1 expressing 
the TF of a generic node 𝑛𝑛 in the ingress placement scenario, as 

TF𝑛𝑛,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛+1,𝑖𝑖 − ASE𝑛𝑛,𝑛𝑛+1

PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛,𝑖𝑖

 ,                               (5.2) 

where PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛+1,𝑖𝑖 represents the PSD acquired at the ingress port of the node 
𝑛𝑛 + 1, which is the one following node 𝑛𝑛, and ASE𝑛𝑛,𝑛𝑛+1 represents the ASE noise 
accumulated within Link (𝑛𝑛,𝑛𝑛 + 1). The operation described by Equation 5.2 
removes the effects accumulated by the connection over its path up to node 𝑛𝑛 
OCM, leaving as the only noise source Link (𝑛𝑛,𝑛𝑛 + 1).  Therefore, to reduce 
such unwanted contribution, we estimated from the optical spectra acquired 
at node 𝑛𝑛 + 1 ingress port, the ASE noise accumulated within Link (𝑛𝑛,𝑛𝑛 + 1), 
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and removed it, in the linear domain, from those same spectra acquired by 
OCM𝑛𝑛+1,𝑖𝑖. 

It is worth to note that, as we discussed in Section 3.2.3, depending on the 
considered ROADM architecture, the number of WSSs contained in the 
ROADM node can vary between one (B&S) and two (R&S) per degree. We 
treated both cases the same: if the node contained two filters, we modeled an 
equivalent filter for the specific ingress-egress direction. By doing so, 
Equation 5.2 would express the TF of the single filter, in case of a B&S 
configuration, or the TF equivalent to both the filter involved in the specific 
ingress-egress direction, for the R&S case. 

We show the spectra resulting from the operations described by Equation 5.2 
in FIGURE 5.14. There, we plot in blue the noisy filter TF spectrum and in 
orange the TF spectrum after the noise removal process, as described by 
Equation 5.2. Observing FIGURE 5.14, it is clear how, despite the above 
described operation, the filter TF spectrum sides still do not reach deep values, 
making the 6 dB bandwidth identification impossible. We observed this 
behavior in most of the cases we considered. It occurred, because at the spectra 
edges we processed the noise instead of the signal contained in the channel. 
Hence, in order to overcome this obstacle and be able to evaluate the filter 
bandwidth, we have to reconstruct the full filter TF. To do so, we proposed to 

 

FIGURE 5.14.  Example of an optical filter TF spectrum reconstruction. Original 
noisy portion of the filter TF spectrum (blue) and after the noise removal (orange). 
The yellow curve represents the filter TF spectrum after the fitting process. The 
fitting parameter values for this example were: 𝛼𝛼=5.4, 𝛽𝛽=73.51, 𝛾𝛾=-18.55, and 
𝛿𝛿=-0.04. 
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fit the available TF spectral portion with a function that corresponds to the 
ideal filter shape. Typically, optical filters are considered to have a high-order 
super-Gaussian shape. In [132], the authors, leveraging the error function 
erf (𝑥𝑥), proposed a model to characterize the optical field spectrum 𝑆𝑆(𝑓𝑓) of the 
bandpass filter created by a WSS. The function modelling an ideal symmetric 
filter centered at 0 Hz frequency, is 

𝑆𝑆(𝑓𝑓) =
1
2
𝛼𝛼√2𝜋𝜋 �erf�

𝛽𝛽 2⁄ − 𝑓𝑓
√2𝛼𝛼

� − erf�
−𝛽𝛽 2⁄ − 𝑓𝑓
√2𝛼𝛼

��  ,                (5.3) 

where 𝛼𝛼 is the parameter related to the steepness of the filter edges, 𝛽𝛽 
represents the 6 dB bandwidth of the filter, and 𝑓𝑓 represents the frequency. 

Because of filter/signal misalignments or power leveling issues, often the 
portions of filter TF spectra that we wanted to fit were not centered. Thus, to 
also take into account the shifts in both axis directions, we extended the model 
described by Equation 5.3 including two new parameters, such as 

𝑆𝑆(𝑓𝑓) =
1
2
𝛼𝛼√2𝜋𝜋 �erf�

𝛽𝛽 2⁄ − 𝑓𝑓 − 𝛿𝛿
√2𝛼𝛼

� − erf�
−𝛽𝛽 2⁄ − 𝑓𝑓 − 𝛿𝛿

√2𝛼𝛼
�� + 𝛾𝛾 ,     (5.4) 

where 𝛾𝛾 is a normalization factor for the y-axis shifts and 𝛿𝛿 is the parameter 
related to the filter central frequency shift. 

Finally, by tuning the parameters 𝛼𝛼, 𝛽𝛽, 𝛾𝛾, and 𝛿𝛿, we were able to fit the filter TF 
spectral portions with the logarithmic squared version of Equation 5.4, as also 
shown in FIGURE 5.14. In addition, in order to better fit the filter TF, we can 
also narrow down the range in which the parameters are tuned, simply relying 
on the filter specifications. Once the fitting process completed, the values 
assumed by 𝛽𝛽 and 𝛿𝛿 represented the estimated filter 6 dB bandwidth and the 
estimated filter central frequency shift, respectively. We focused our analysis 
on the two filter parameters that we considered as the most representative, but 
we retrieved the full filter TF shape, therefore making any other filter feature 
of interest available. 

5.3.1 Filter-Related Parameters Estimation Method Assessment 

Simulation Setup 
In [126], we carried out several simulations and implemented an experimental 
setup to validate the proposed solution. In particular, concerning the 
simulations, we implemented in VPI the setup depicted in FIGURE 5.15. We 
generated a 32 GBd PM-QPSK modulated signal, with a 0.1 roll-off factor, 
centered at 193.4 THz (1550.116 nm). In order to simulate the optical links, 
after the transmitter we cascaded a number of spans which included 80 km 
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length Standard Single-Mode Fibers (SSMFs) and EDFAs with 5 dB Noise 
Figure (NF). We set the output power of the transmitter to 0 dBm as well as 
the output power of all the EDFAs. The optimal launch power varies depending 
on several factors, such as the amount of ASE noise, the fiber attenuation, the 
amplifier NF, and the NLI. In particular, since we only considered a single-
channel configuration and the only marginal NLI contribution was that related 
to Self-Channel Interference (SCI), we set the launch power to 0 dBm. With no 
other channels that could contribute to the XCI, the reason behind the fiber 
span presence in the setup was to verify the role of fiber dispersion and SCI on 
the performance of the proposed solution. By varying the number of 
considered fiber spans and EDFAs, we simulated different ASE noise levels, 
and according, different OSNR values. Each link was followed by an optical 
node, which we implemented as a cascade of two optical filter with second-
order super-Gaussian TF. We considered three different 6 dB filter bandwidth 
values: 36.5, 37.5, and 38.5 GHz. Moreover, to emulate the laser drift/filter 
central frequency shift impairment, we shifted the central frequency of each 
filter of a value ranging in between -1 and +2 GHz. To simplify the considered 
cases, we assumed both the filters of each node to have the same 
characteristics. Finally, at each node input and output ports, we placed optical 
spectral monitors configured with 1 GHz spectral resolution. Although we 
focused on the ingress monitor placement scenario, in order to retrieve the 
ideal filter TF to be used as a reference within the estimation accuracy 
assessment phase, we also assumed egress placed optical monitors. In total, 
our setup included three nodes, four optical links, and seven OCMs. 

 

FIGURE 5.15.  Schematic diagram of the VPI-implemented simulation setup. TX: 
Transmitter; OCM: Optical Channel Monitor. 
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In TABLE 5.2, we summarized the sixteen configurations that we considered, 
listing the number of fiber spans and EDFAs per link, and each filter 6 dB 
bandwidth and central frequency shift. Through such 16 configurations and 
their related random filter central frequency shifts, we tried to cover as many 
combinations as possible. 

To assess the proposed filter parameter extraction solution with the spectral 
data related to the sixteen considered cases, we retrieved the noisy filter TFs 
corresponding to each setup node. Then, we identified the ASE noise amounts 
of each case by averaging the residual noise values at the signal sides. In fact, 
we collected the considered optical spectra before the signals entered the 
optical nodes, and therefore before the signals and their related ASE noise 
amounts were filtered. According to the steps presented in Section 5.3, after 
identifying the noise values, we removed them from the spectra and then fitted 
the resulting spectral portions with the logarithmic squared version of 
Equation 5.4. We estimated the filter 6 dB bandwidth and central frequency 
shift values by observing those assumed by Equation 5.4 parameters 𝛽𝛽 and 𝛿𝛿, 
respectively. Finally, we compared such values with those retrieved employing 
the OCM placed at the egress port of the nodes and calculated the estimation 
errors. In TABLE 5.3, we list the MSE, σ, and the MAE for the filter 6 dB 
bandwidth and central frequency shift estimations for the three nodes we 
considered. Theoretically, dividing in the linear domain the PSDs captured at 
two adjacent OCMs (i.e., at two adjacent nodes) should nullify the effect of the 
path up to the first of the two considered OCMs. For instance, in FIGURE 5.15 
setup, dividing the PSD acquired at OCM3,𝑖𝑖 by that acquired at OCM2,𝑖𝑖 should 
nullify the effect of the path up to OCM2,𝑖𝑖 location. Nevertheless, the estimation 
errors we summarize in TABLE 5.3 indicate a small residual effect of the 
cascade. In fact, the 6 dB bandwidth estimation error related to Node 3 is 
slightly higher than those corresponding to Node 1 and Node 2. In general, at 

TABLE 5.2.  The sixteen considered configurations for the simulation setup. 

Links (# of spans) Filters (6 dB bandwidth [GHz] + central freq. shift 
[GHz]) 

0-1 1-2 2-3 3-4 1 2 3 

5 2 2 3 37.5  
(+0, +1, +2, +2) 

37.5 
 (+2, +2, +1, -1) 

37.5  
(+1, +2, +0, +2) 

2 5 2 3 37.5  
(+0, +1, +2, +2) 

37.5 
 (+2, +2, +1, -1) 

37.5 
 (+1, +2, +0, +2) 

2 5 2 3 36.5  
(+0, +1, +2, +2) 

36.5 
 (+2, +2, +1, -1) 

36.5 
 (+1, +2, +0, +2) 

2 5 2 3 38.5  
(+0, +1, +2, +2) 

38.5 
 (+2, +2, +1, -1) 

38.5 
 (+1, +2, +0, +2) 
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the first two nodes, the spectra are almost not affected by the cascade, and the 
estimation errors are also very low. Hence, keeping such accuracy as the 
cascade increases, for instance, at Node 3, is quite challenging. 

Experimental Setup 
To further validate the proposed solution, we also implemented the 
experimental setup shown in FIGURE 5.16. By means of a tuneable laser 
working at 193.4 THz (1550.116 nm), we generated a 64 GBd PM-QPSK 
modulated signal with a roll-off factor equal to 0.1. We set the transmitter 
output power to -11 dBm. In addition, in order to simulate the optical 
impairments that could occur in a real network scenario, right after the 
transmitter we placed an optical filter and varied the values of its bandwidth 
and central frequency. Following this first filter, with the aim of emulating 
different fiber span lengths and therefore different ASE noise contributions, 
we cascaded a VOA and an EDFA operating in APC mode with an output power 
of 0 dBm and a NF of 5 dB. In FIGURE 5.16, we referred to these two 
components as Link (1, 2). As per the simulation case, we chose such output 
power considering the single channel configuration that we planned. After 

 

FIGURE 5.16.  Schematic diagram of the considered experimental setup. TX: 
Transmitter; VOA: Variable Optical Attenuator; OCM: Optical Channel Monitor.  
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TABLE 5.3.  Estimation errors for the filter-related features, considering the 
simulation-acquired optical spectra. 

Node Estimated Feature MSE σ [GHz] MAE [GHZ]  

1 
Centr. freq. shift  0.0019 0.0334 0.0655 

6 dB BW 0.0183 0.0807 0.1937 

2 
Centr. freq. shift 0.0008 0.0178 0.0454 

6 dB BW 0.0024 0.0479 0.1057 

3 
Centr. freq. shift 0.0026 0.0482 0.0997 

6 dB BW 0.0163 0.1247 0.2962 
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Link (1, 2), we placed a second optical filter, namely Filter 2, that was the 
device on which we actually tested our proposed technique. We implemented 
Filter 2 using a Finisar WaveShaper 4000S, a device able to emulate the flex-
grid capability of a WSS [133]. We set Filter 2 to have a high-order super-
Gaussian TF (i.e., “rectangular” in the Finisar software) and varied its 6 dB 
bandwidth and central frequency to obtain different optical impairment 
combinations. After Filter 2, we placed a second link, which we called 
Link (2, 3), cascading a VOA and an EDFA operating in APC mode, and varying 
the attenuation value. Finally, we tapped the ingress and the egress ports of 
Filter 2, and the output of Link (2, 3), with an OCM. In particular, we referred 
to the OCM placed at Filter 2 ingress and egress ports, with OCM2,𝑖𝑖 and OCM2,𝑒𝑒, 
respectively, whereas we named the last OCM placed after the second link, 
OCM3,𝑖𝑖, as shown in FIGURE 5.16. The optical monitor we used was the Finisar 
WaveAnalyzer 1550S, a high-resolution coherent OSA able to reach spectral 
resolutions down to 150 MHz [134]. However, to emulate the performance of 
an OCM, which generally operates at 1 GHz spectral resolution, we collected 
all the spectral data with such resolution. 

In total our experimental setup included two links, two optical nodes 
represented by two optical filters, and three monitoring locations. By varying 
the attenuation values introduced by the two VOAs and the characteristics of 
the two filters, that were, their central frequencies and their 6 dB bandwidths, 
we clustered the acquired spectral data in three cases. Each case corresponded 
to a different data set and consisted of nine subcases. We resume such three 
considered combinations in TABLE 5.4. 

As per the simulation scenarios, the first step to implement our filter extraction 
method was to calculate the filter TFs. In particular, leveraging OCM2,𝑒𝑒, we 
retrieved the ideal Filter 2 TFs to be used as references for the estimation 
accuracy evaluations. On the other hand, we retrieved the noisy Filter 2 TFs 

TABLE 5.4.  The three considered cases for the experimental setup. 

Case 
Filter 1 

6 dB BW 
(shift) [GHz] 

Link (1, 2) 
VOA1 [dB] 

Filter 2  
6 dB BW  

(shift) [GHz] 

Link (2, 3) 
VOA2 [dB] 

1 74 (-2) 0 
73, 75, 77  
(-1, 0, +1) 

10 

2 69 (-2) 10 
73, 75, 77  
(-1, 0, +1) 

10 

3 74 (-2) 0 
73, 75, 77  
(-1, 0, +1) 

20 
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considering the optical spectra acquired within the two ingress scenario-
related monitors. We estimated and removed the noise amounts from the 
identified TFs through the same procedure we described for the simulation 
setup. Then, we fitted the obtained spectral portions with the logarithmic 
squared version of the Equation 5.4 function. Finally, to obtain the new 
estimation accuracies, we compared the values assumed by the parameters 𝛽𝛽 
and 𝛿𝛿 with those assumed by the same two parameters within the 
corresponding reference scenarios. We summarize the results of such 
comparison in TABLE 5.5, where we report the MSE, σ, and the MAE, for the 
filter 6 dB bandwidth and central frequency shift estimations related to 
Filter 2, in the three considered cases. 

From the obtained results, we can notice how the accuracy related to the 6 dB 
bandwidth estimation tended to worsen as the filter bandwidth narrowed or 
the attenuation increased. In particular, case 2 emulated bigger FCE and 
higher attenuation (i.e., longer spans) in Filter 1 and Link (1, 2), respectively, 
whereas case 3 emulated higher attenuation in Link (2, 3). 

5.4 Estimation Methods Joint Assessment and 
Comparison 

Experimental Setup 
In order to compare the accuracies of the ASE noise/OSNR and the filter-
related parameters estimation solutions reported in Sections 5.2 and 5.3, 
respectively, in [127] we further assessed them under a unified experimental 
setup. In particular, we considered the same experimental setup described in 
Section 5.3.1 and depicted in FIGURE 5.16, with just the addition of an OCM 

TABLE 5.5.  Estimation errors for the Filter 2-related features, considering the 
experimental-acquired optical spectra. 

Case Estimated Feature MSE σ [GHz] MAE [GHz] 

1 
Centr. freq. shift  0.0228 0.1341 0.2433 

6 dB BW 0.0204 0.1433 0.3933 

2 
Centr. freq. shift 0.0597 0.2256 0.5054 

6 dB BW 0.1978 0.4508 0.6811 

3 
Centr. freq. shift 0.0133 0.1018 0.1863 

6 dB BW 0.1383 0.3470 0.7627 
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placed at the egress port of Filter 1, as shown in FIGURE 5.17. Moreover, we 
also proposed two ways to enhance the previously introduced estimation 
solutions, improving their accuracies. Thus, in this section, we will first 
describe such enhancements, report the joint assessment-related results, and 
finally compare the two approaches. 

Concerning the ASE noise/OSNR estimation method within an egress optical 
monitor placement scenario, we proposed to exploit the spectral knowledge at 
previous nodes, in order to neglect the effect of the network portion up to the 
considered OCM. We did this, in a similar manner to what we already 
implemented within the ingress placement scenario. Referring to the notation 
introduced in FIGURE 5.2, for the OSNR estimation, instead of the optical 
spectra captured at node 𝑛𝑛 egress port, i.e., using OCM𝑛𝑛,𝑒𝑒, we used the PSDs 
resulting from the division, in the linear domain, of the OCM𝑛𝑛,𝑒𝑒 captured 
spectra by those acquired with OCM𝑛𝑛−1,𝑒𝑒, such as 

𝐬𝐬 =
PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛,𝑒𝑒

PSD𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛−1,𝑒𝑒

 .                                                   (5.5) 

Leveraging also node 𝑛𝑛 − 1 egress OCM allowed us to neglect the effect of the 
link/node cascade up to the location of node 𝑛𝑛 − 1, and to focus only on what 
happened between the nodes 𝑛𝑛 − 1 and 𝑛𝑛. Assuming that no frequency drift 
affects the employed OCMs, the only requirement for such operation is the 
collection of both spectra at a single point, which would typically be the central 
controller. In this way, spectra resolution variations from different OCMs 
could be easily accounted with some simple spectral processing, e.g., 
upsampling the lowest resolution. Performing the above described divisions 
along an optical connection path, would allow to see the effect of each 
link/node on that path, nullifying those of the previous network elements 
along that same lightpath. 

On the other hand, to enhance the filter-related parameters estimation 
solution to be applied in ingress monitoring placement scenarios, we proposed 

 

FIGURE 5.17.  Schematic diagram of the unified experimental setup. TX: 
Transmitter; VOA; Variable Optical Attenuator; OCM: Optical Channel Monitor.  
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an improved way to identify the noise to be removed before fitting the TF 
spectra [127]. In fact, the approach we presented in Section 5.3, envisioned the 
measurement of such values from the sides of the spectra collected by the 
ingress OCMs. However, because of filtering and/or the OCM response, 
sometimes such estimations might not be precise. Hence, we implemented a 
function that searched within a set of noise values that we previously defined, 
based on the monitored spectra or from a basic knowledge of the link/span 
configurations and an accuracy correction factor. The function selected the 
noise amount that resulted in the lowest fitting error. In fact, removing a lower 
or higher amount of noise would return a wrong filter shape, yielding to a 
worse match with respect to the case where a correct noise amount is 
subtracted. Referring to FIGURE 5.2, the assumption behind such operation 
was that the filter at node 𝑛𝑛 suppressed the noise introduced by the 
amplifiers/links cascade up to that point, and therefore the noise at the sides 
of the OCM𝑛𝑛+1,𝑖𝑖 collected PSDs is mainly caused by Link (𝑛𝑛,𝑛𝑛 + 1) 
contributions. This noise identification process allowed us to better estimate 
the ASE noise with respect to the previous approach we presented (see 
Section 5.3), and thus to better estimate the final filter TF and its related 
parameters. 

As we previously mentioned, the setup we considered for the joint assessment 
of the two estimation methods was the same to that one we presented in 
Section 5.3.1, with the addition of a further OCM at Filter 1 egress port, namely 
OCM1,𝑒𝑒. We represent such experimental setup in FIGURE 5.17. In addition, 
we generated the 64 GBd PM-QPSK modulated signal with two different roll-
off factor values, that were, 0.1 and 0.2. Furthermore, in order to verify any 
dependence of our proposed estimation methods from the OSA spectral 
resolution, we acquired the spectra data at the four different monitoring 
locations, with 600 MHz and 1 GHz spectral resolutions. For each of the two 
roll-off values and resolutions, we collected a total of 252 optical spectra, 63 
for each of the four optical monitoring locations. TABLE 5.6 shows how we 
clustered the collected spectra into seven different cases, according to the 
attenuation values assumed by the VOAs and the parameters of the filters. In 
turn, each of the seven cases consisted of nine subcases. In particular, the 6 dB 
bandwidth and central frequency shift of Filter 2 always assumed the same 
values in every cluster, whereas the attenuation of the two links and the 
parameters related to Filter 1 varied in each case. It is worth noting that cases 
1, 2, and 4 of TABLE 5.6 correspond to the three cases which we already 
described in Section 5.3.1 and reported in TABLE 5.4. This time, we assumed 
case 1 to be the “default” situation, in which we set the 6 dB bandwidth of 
Filter 1 at 74 GHz, did not consider any additional attenuation for Link (1, 2), 
and considered 10 dB of attenuation for Link (2, 3). All the other remaining six 
cases represented a worsening of case 1, where at least one of the three varying 
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parameters (Filter 1 bandwidth and the two VOAs) assumed a value worse than 
in the default case. 

5.4.1 OSNR Estimation Method Joint Experiment Results 

To validate the improved OSNR estimation method within the unified 
experimental setup shown in FIGURE 5.17, we leveraged the optical spectra 
collected through the egress placed OCMs, namely, OCM1,𝑒𝑒 and OCM2,𝑒𝑒, with a 
spectral resolution of 600 MHz. In addition, we only considered the spectra 
related to the 0.1 roll-off factor scenario, and to the cases where Filter 1 6 dB 
bandwidth was equal to 74 GHz, that were, cases 1, 2, 3, 5, and 6 of TABLE 5.6. 
In order to implement the enhancement presented in Section 5.4, we divided 
the PSDs captured at OCM2,𝑒𝑒 by those captured at  OCM1,𝑒𝑒. Then, we labeled the 
resulting 45 optical spectra, with their corresponding reference ASE noise 
values, that we retrieved from the spectra captured with the Filter 2 ingress 
node OCM, namely OCM2,𝑖𝑖. Formulating the estimation as a regression 
problem enabled us to employ SVR as ML algorithm for the ASE noise 
prediction. In particular, we observed better estimation accuracies by training 

TABLE 5.6.  The seven considered experimental cases for the joint assessment of 
the two proposed methods. 

Case 
Filter 1 

6 dB BW 
(shift) [GHz] 

Link (1, 2) 
VOA1 [dB] 

Filter 2  
6 dB BW  

(shift) [GHz] 

Link (2, 3) 
VOA2 [dB] 

1 74 (-2) 0 
73, 75, 77  
(-1, 0, +1) 

10 

2 74 (-2) 0 
73, 75, 77  
(-1, 0, +1) 

20 

3 74 (-2) 10 
73, 75, 77  
(-1, 0, +1) 

10 

4 69 (-2) 10 
73, 75, 77  
(-1, 0, +1) 

10 

5 74 (-2) 5 
73, 75, 77  
(-1, 0, +1) 

10 

6 74 (-2) 2.5 
73, 75, 77  
(-1, 0, +1) 

15 

7 69 (-2) 7.5 
73, 75, 77  
(-1, 0, +1) 

20 
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the SVR model with a linear kernel function than with a Gaussian one. We used 
80% of the 45 total spectra to train the model, 10% to cross-validate it, and the 
remaining 10% to test it. Moreover, we used the cross-validation to tune the 
parameter 𝜖𝜖 of the SVR model. As we saw in Section 2.1.3, in SVM and SVR, 𝜖𝜖 
represents half the width of the insensitive band, which is that tolerance area 
where no penalty is assigned to the errors. In addition, to precisely assess the 
model estimation accuracy, we also randomly shuffled the training and the 
testing data sets 4000 times, trained a different model each time, and tested it 
with its corresponding testing set. Employing such configuration, we achieved 
a MSE equal to 0.0136 and a MAE lower than 0.4 dB. It is important to stress, 
that in the experimental setup depicted in FIGURE 5.17, we considered the 
filter 6 dB bandwidth, whereas in Section 5.2.1, we considered the 3 dB 
bandwidth of the filters. This resulted in filtering effects which affected way 
more severely the ASE noise with respect to the past, because of the narrower 
3 dB bandwidths we assumed. Nevertheless, comparing the current results 
with a similar case we reported in TABLE 5.1 of Section 5.2.1 (i.e., 64 GBd 
PM-QPSK signal with 0.1 roll-off and 72 GHz 3 dB bandwidth), we can notice 
how the accuracy improved. In fact, the MAE corresponding to the past case 
was almost equal to 1 dB, whereas the current one is lower than 0.4 dB. 
Another aspect worth to be observed, is that the results of Section 5.2.1 
referred to optical spectra collected with a spectral resolution of 150 MHz, 
while the current ones were collected with a spectral resolution of 600 MHz. 
This further reinforces the observation we previously made about the 
independence of our proposed OSNR/ASE noise estimation method from the 
spectral resolution of the employed optical spectra. 

5.4.2 Filter Features Estimation Method Joint Experiment Results 

As we previously showed in Section 5.3.1, the first step to identify bandwidth 
and central frequency of any optical filter is the identification of its TF. To do 
so, we considered the optical spectra acquired with the ingress-placed OCMs, 
which in the unified experimental setup depicted in FIGURE 5.17, we named 
as OCM2,𝑖𝑖 and OCM3,𝑖𝑖. In addition, we also employed OCM2,𝑒𝑒, in order to retrieve 
the ideal Filter 2 TFs to be used as reference for the accuracy evaluation of our 
method. Once we obtained the noisy TFs, from the optical spectra acquired 
with OCM3,𝑖𝑖 we estimated the noise amounts to be removed, according to the 
enhancement steps reported in Section 5.4. Finally, by fitting the resulting TF 
spectral portions, we estimated the 6 dB bandwidth and central frequency of 
each considered filter and compared them with the previously identified 
reference values. The estimation errors we obtained through such process, for 
the filter central frequency and 6 dB bandwidth, are graphically shown in 
FIGURE 5.18 and FIGURE 5.19 for roll-off factor of 0.1 and in FIGURE 5.20 
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and FIGURE 5.21 for roll-off factor of 0.2. To represent them we employed the 
box and whiskers plots, which graphically depict σ, the mean, the MIN, and 
the MAX errors for each of the seven considered cases. From such results, it is 
clear how the default case (i.e., case 1) showed the best performance, especially 
concerning the filter bandwidth estimation. On the other hand, when we 
considered the cases with narrower Filter 1 bandwidth (i.e., cases 4 and 7) or 
higher link attenuation values (i.e., cases 2 and 7), the estimation accuracy 
tended to degrade. In general, we obtained a lower accuracy for the filter 6 dB 
bandwidth estimation compared to the accuracy of the filter central frequency 
shift estimation for both the considered roll-off values. The results we report 
in this section referred to optical spectra acquired with a spectral resolution of 
600 MHz. We repeated the fitting/estimation process employing optical 

 

FIGURE 5.18.  Filter central frequency shift estimation errors for the seven 
experimental cases with roll-off factor = 0.1. 
 

 

FIGURE 5.19.  Filter 6 dB bandwidth estimation errors for the seven experimental 
cases with roll-off factor = 0.1. 
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spectra at 1 GHz resolution and did not observe any substantial difference in 
the estimation accuracy. 

5.4.3 Monitoring Placement Scenarios and Related Estimation 
Methods Comparison 

In the previous sections, we proposed two optical monitor placement scenarios 
enhanced by appropriate estimation methods to complement the monitoring 
parameters achieved in each scenario. This section aims to compare such two 
solutions and to select the one that brings more benefits. However, the 
parameters we estimated within the two placement scenarios have different 

 

FIGURE 5.20.  Filter central frequency shift estimation errors for the seven 
experimental cases with roll-off factor = 0.2. 
 

 

FIGURE 5.21.  Filter 6 dB bandwidth estimation errors for the seven experimental 
cases with roll-off factor = 0.2. 
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units of measurement. On the one hand, the OSNR/ASE noise estimation 
method for the egress placement scenario presented in Section 5.2 provides 
values in decibel. On the other hand, the filter-related parameters extraction 
method for the ingress placement scenario presented in Section 5.3 estimates 
quantities in Hertz. Hence, in order to compare the two solutions and their 
estimation accuracies, we converted the estimation errors obtained with the 
unified experimental setup presented in Section 5.4, into relative errors. To do 
so, we first transformed the estimation errors into percentages with respect to 
their nominal values, and then we translated the MAEs into relative errors. Of 
course, as a first step, we identified the values to be used as reference. 
Concerning the egress scenario, we obtained a reference for the OSNR/ASE 
noise estimation, evaluating the amplifier NF as follows. We considered the 
cascade of a number of fiber spans with EDFAs at the end of each of them. We 
assumed the EDFAs to have a NF equal to 5 dB, with fluctuations of ±0.5 dB 
[135], [136]. This assumption yielded a noise reference error with a 1 dB range. 
Instead, for the ingress scenario, we considered the datasheet of the Finisar 
filter that we employed in the unified experimental setup [133]. In particular, 
such reference reported a central frequency setting accuracy of ±2.5 GHz and 
a bandwidth setting accuracy of ±5 GHz. Nevertheless, we also considered that 
WSSs deployed in real networks could have better characteristics. Thus, we 
decided to adopt for both the filter-related parameters a reference accuracy 
equal to ±2 GHz [84], [99]. 

Relying on the filter- and signal-related parameter estimation errors reported 
in Sections 5.4.1 and 5.4.2, we identified the worst-case error ranges and 
calculated accordingly the relative errors with respect to the aforementioned 
reference values. We summarize the results of such calculations in TABLE 5.7. 
In particular, we found that the egress monitoring strategy improved the ASE 
noise estimation accuracy of 22%, with respect to the case in which no 
monitoring strategy was implemented. Likewise, for the ingress monitoring 
one, we observed an improvement in the filter central frequency estimation 

TABLE 5.7.  Error range and relative error comparisons for the two different 
considered scenarios. 

Scenario Parameter 
Roll-off 
factor 

Parameter  
error range 

Reference 
error range 

Relative 
error 

Egress ASE noise 0.1 0.78 dB 1 dB 78% 

Ingress 

Filter centr. 
freq. shift 

0.1 0.63 GHz 4 GHz 15.8% 

0.2 0.5 GHz 4 GHz 12.5% 

Filter 6 dB 
BW 

0.1 1 GHz 4 GHz 25% 

0.2 0.93 GHz 4 GHz 23.3% 
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greater than 84% for 0.1 roll-off factor, and greater than 87% for 0.2 roll-off 
factor. As per the egress case, these improvements were with respect to 
scenarios where no monitoring strategy was adopted, and the nominal 
parameters provided by the vendors/datasheet are considered. Moreover, 
considering the filter 6 dB bandwidth estimation, we were able to improve it 
by 75% for 0.1 roll-off factor and by a factor greater than 76% for 0.2 roll-off 
factor. 

It is worth mentioning that the relative error we considered is a valuable 
metric, but not perfectly suitable for eventually evaluating the impact of the 
network elements on the QoT of the connections (e.g., on the OSNR/SNR). 
Hence, to evaluate the QoT estimation related benefits, we further translated 
the obtained estimation errors into SNR estimation errors. Of course, 
concerning the egress scenario, there was no need for such a translation, since 
we evaluated the improvements in OSNR/noise estimation. In fact, our 
proposed egress monitoring placement strategy and its related 
processing/estimation method resulted in 0.22 dB improvement in OSNR 
estimation per link, as we also reported in TABLE 5.7. Unlike this case, to 
obtain a similar metric in the ingress placement strategy scenario, we 
simulated in VPI the transmission of a 64 GBd QPSK modulated signal, with 
roll-off factor equal to 0.1 and 0.2, which crossed a single optical filter. In 
particular, we implemented the filter with a 3.5-order super-Gaussian TF and 
75 GHz bandwidth and calculated the SNR penalty it introduced as a function 
of its central frequency shift and its bandwidth variation. To do so, we first 
measured the SNR values at the optical filter input and output when no central 
frequency shift and bandwidth tightening were present, thus retrieving the 
SNR penalty introduced by the filter in the ideal configuration. Then, sweeping 
the filter central frequency and bandwidth values with step sizes of 0.5 GHz 
and 1 GHz, respectively, we again measured the SNR at the filter output. 
Finally, by subtracting from the values obtained in these conditions those of 
the ideal configuration (i.e., no filter central frequency shift and no bandwidth 
tightening), we obtained the SNR penalties introduced by an optical filter as a 
function of its central frequency shift and its bandwidth variation. We plot the 
results of such simulations in FIGURE 5.22. Then, leveraging the obtained 
curves, we measured the improvement that our solutions brought on the SNR 
penalty estimation. Since the differences between the penalty variations of the 
two roll-off factor cases were negligible, we considered them as a unique case. 
In detail, the reference filter-related parameters error ranges, which were 
equal to ±2 GHz, translated into SNR penalty estimation of 0.12 dB for the 
filter central frequency shift and of 0.16 dB for the filter bandwidth. Instead, 
applying the proposed ingress monitoring strategy and the related processing 
solution, we reduced the error of the estimated filter-introduced SNR penalties 
down to 0.01 dB and 0.03 dB for the central frequency shift and the 6 dB 
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bandwidth parameters, respectively. Therefore, the total estimated SNR 
penalty reduction yielded by our solution was equal to 0.24 dB for the two 
considered parameters. 

5.5 Conclusions 

In this chapter, we studied different scenarios for the placement of optical 
spectral monitors within DWDM and flex-grid optical networks. In particular, 
we defined an egress and an ingress placement scenario, in which the optical 
spectral monitors are positioned after and before the network nodes, 
respectively. Our goal was to optimize the placement of the employed spectral 
monitoring devices in order to minimize their number. In addition, we 
developed two spectral processing techniques related to the two identified 
placement scenarios to enhance their monitoring features. We validated the 
proposed solutions leveraging spectral data generated through several 
simulation and experimental setups. Finally, we compared the two monitoring 
strategies and provided guidelines in terms of SNR penalty reduction for their 
adoption. It is worth noting that in our evaluations, we assumed the NLI not 
to impact the accuracy of the proposed solutions. Therefore, further 
investigations, which include the transmission of multiple channels, are 
needed. 

 

FIGURE 5.22.  SNR penalty introduced by a 3.5-order super-Gaussian filter as a 
function of its central frequency shift and its bandwidth variation for an input 
64 GBd QPSK signal with roll-off factor equal to 0.1 and 0.2. 
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From this analysis, we can draw the following conclusions. The obtained 
results always confirmed the validity of both the proposed techniques. In 
particular, using the spectral data acquired within the egress placement 
scenario, we were able to estimate in-band the OSNR/ASE noise of a signal 
with an MAE lower than 0.4 dB. Similarly, leveraging optical spectra collected 
within the ingress placement scenario, we were able to estimate filter-related 
features, such as the filter central frequency and the filter 3/6 dB bandwidth, 
with MAEs lower than 0.5 GHz and 0.98 GHz, respectively. In addition, 
comparing the two monitoring strategies, we identified the ingress one as the 
most promising solution. In fact, compared against scenarios where no 
monitoring strategies are adopted, the ingress one reduced the estimation of 
the SNR penalty introduced by an optical filter up to 92%. 
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Chapter 6 
 

Frequency Optimization in 
Superchannel 

We devote this chapter to address the third major task of this thesis, which 
consists in optimizing the network, leveraging the information directly 
monitored from it, or exploiting those resulting from processing methods. In 
Section 3.4, in which we defined the reference scenario, we named such an 
optimization task as task C, as depicted in FIGURE 3.5. With respect to 
Chapter 5, where we focused on OSNR monitoring using OSAs, in this chapter, 
we assume a slightly different monitoring approach that exploits SNR 
monitoring at the coherent receivers. In particular, the approach presented in 
this chapter, which we initially proposed in [137], deals with the frequency 
optimization of the subchannels in superchannel scenarios. To address such a 
problem, we implement a closed control loop employing an iterative 
optimization algorithm based on the stochastic subgradient method 
introduced in Section 2.2.4. 

More in detail, this chapter is organized as follows. In Section 6.1, we introduce 
the main aspects of our proposed solution, providing a context for the 
following sections. Then, in Section 6.2, we formulate the considered 
optimization problem, detailing its objectives and constraints. Section 6.3 
describes how we addressed the identified problem, leveraging the stochastic 
subgradient method. Then, Section 6.4 shows the integration of the developed 
optimization algorithm within the VPI simulation tool and the validation of the 
proposed solution based on such implementation. We present the obtained 
results in Section 6.5. Finally, in Section 6.6, we draw the conclusions.  
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6.1 Introduction 

In Section 3.2.3, we reported about [99], in which the authors presented a 
closed control loop approach to align a single optical channel to a cascade of 
optical filters to overcome filter-related impairments in a single channel 
scenario. Furthermore, in Section 1.1, we also reported about [5] and [6], in 
which a similar solution was leveraged in a field demonstration of an 
autonomic, self-reconfigurable network. In this chapter, we extend these 
works, presenting a method to optimize the subchannel central frequencies of 
a superchannel in order to minimize their interference. Note that similar 
strategies can also be adopted at a network level, where adjacent channels 
entering a ROADM-based node at the same ingress port are forwarded to the 
same egress port, therefore sharing a superfilter configuration, as we already 
explained in Section 3.3. In fact, any misalignment of the channels sharing 
such superfilter would result in an interference similar to that faced in 
superchannels. So, the method we propose can also be potentially extended to 
reduce this interference and align the whole network channels. 

In particular, we formulated the problem of optimizing the superchannel 
frequencies as a nonlinear optimization one. Our objective was to identify the 
set of subchannel frequencies that optimized a function of the subchannels 
QoT. To be more specific, we considered maximizing the superchannel total 
SNR value and the minimum SNR value between all the subchannels. The 
nonlinear behavior came from the dependence on the interference (with two 
components: XCI and linear crosstalk) and the filtering penalties affecting the 
two edge subchannels, as we explained in Section 3.3. As a subchannel moves 
closer to its adjacent ones or the filter edges, its SNR value decreases 
nonlinearly. To this aim, in Section 6.2.1, we report the results of simulations 
showing the channel SNR function to be concave around the typical operation 
point (equal distance). According to the definitions presented in Section 2.2.1, 
a concave function can be easily transformed to convex by taking its negative. 
Hence, convex optimization techniques can be applied to solve the considered 
optimization problem. However, due to several reasons, such as random noise, 
imperfections of transmitters and receivers, and monitoring errors, the convex 
function might not be completely smooth. Thus, the proposed method 
leveraged a stochastic subgradient, an algorithm able to solve convex problems 
with zero mean noise [43] and several other nonconvex problems [138], as we 
described in detail in Section 2.2.4. We chose the proposed algorithm to be 
robust and able to optimize under the uncertainties that are expected to appear 
in a real network. Relying on the stochastic subgradient algorithm, we 
proposed an iterative closed control loop process to optimize the superchannel 
frequencies. Specifically, the automatized optimization process we assumed 
used subchannel-related information (i.e., their SNR values monitored at their 
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corresponding coherent receivers). Then, the algorithm probed the 
superchannel with new frequencies, monitored the outcomes again, and 
moved to new frequencies towards the optimum (even though the stochastic 
subgradient might not move at each step towards the optimum). 

We evaluated the proposed solution integrating the considered optimization 
algorithm within the VPI simulation tool, which has the advantage of 
simulating the physical layer of an optical network in a more detailed and 
complex way with respect to analytical Physical Layer Models (PLMs), such as 
the well-known Gaussian Noise (GN) model [139]. To maximize the desired 
objective function, we fed the information monitored from VPI to our 
optimization algorithm. Then, relying on the algorithm outputs, we adjusted 
the subchannel frequencies accordingly and monitored the corresponding VPI 
outputs, passing them to the algorithm. In turn, a new algorithm iteration 
started, and the control loop was finally closed. We believe this approach to be 
universal and applicable in different contexts, regardless of the considered 
ROADM architecture (see Section 3.2.3), network disaggregation level (see 
Section 3.1.3) or its specific segment (e.g., metro, core, etc.). 

6.2 Problem Formulation 

To formulate the optimization problem, we assumed a superchannel with an 
allocated spectrum 𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆  centered around the frequency fSC and composed by 
a set of 𝑁𝑁 subchannels, as shown in FIGURE 6.1. In addition, we considered 
the spectral shaping of the subchannels to be defined by a square Root Raised 
Cosine (RRC) with a roll-off factor equal to 𝑎𝑎. If we assume a single channel 
with symbol rate 𝑅𝑅𝑆𝑆 and roll-off factor 𝑎𝑎 to pass through an optical filter with 

 

FIGURE 6.1.  Schematic representation of the considered 𝑁𝑁 subchannels 
superchannel. 
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bandwidth 𝐵𝐵𝐵𝐵, the minimum required filter bandwidth 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚, for the 
channel to not heavily suffer the filtering effects, would be 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑆𝑆(1 + 𝑎𝑎).                                                (6.1) 

For instance, considering a 32 GBd single channel with a 0.1 roll-off factor that 
crosses an optical filter, the minimum required filter bandwidth to avoid 
filtering-related penalties would be 35.2 GHz. Hence, according to the flex-
grid standard that considers filter 3 dB bandwidths equal to 37.5 GHz, such 
transmission would have enough spectral guardband space to avoid 
considerable filtering effects. 

Translating such a relation to the considered superchannel scenario, the 
subchannel minimum distance 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 to have crosstalk-free (or very low 
crosstalk) interactions with the adjacent subchannels is defined as 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑆𝑆(1 + 𝑎𝑎) .                                                    (6.2) 

For instance, in a superchannel with subchannels defined by a 32 GBd symbol 
rate and 0.1 roll-off factor, considering distances between subchannels larger 
than 35.2 GHz would result in a very low crosstalk effect. It is worth 
mentioning that such distance calculation assumes equidistant and uniform 
superchannels, but it can also be extended to cover nonequidistant and 
nonuniform configurations. Finally, we assumed the superchannel to be 
established in a DWDM/flex-grid optical network, crossing at least one filter 
with 3 dB bandwidth 𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆  and central frequency fSC (also referred to as 
superfilter). 

Extending the notation to cover nonequidistant superchannels, we denoted by 
𝐝𝐝 = [𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑁𝑁+1] the vector of length 𝑁𝑁 + 1, where 𝑑𝑑1 and 𝑑𝑑𝑁𝑁+1 represent 
the distances between the superchannel filter sides (3 dB) and the first and last 
superchannel subchannel central frequencies, 𝑓𝑓1 and 𝑓𝑓𝑁𝑁+1, respectively. 
Moreover, 𝑑𝑑𝑛𝑛, with 2 ≤ 𝑛𝑛 ≤ 𝑁𝑁, represents the generic distance between the 
(𝑛𝑛 − 1)-th and the 𝑛𝑛-th subchannel central frequencies, 𝑓𝑓𝑛𝑛−1 and 𝑓𝑓𝑛𝑛, 
respectively. 

We assumed the SNR values of the superchannel subchannels to be functions 
of the distances between their central frequencies. We denote the SNR value of 
the 𝑛𝑛-th subchannel as SNRn(𝐝𝐝). In particular, SNRn(𝐝𝐝) mainly depends on the 
distances 𝑑𝑑𝑛𝑛 and 𝑑𝑑𝑛𝑛+1, which are those separating subchannel 𝑛𝑛 from its two 
adjacent ones, 𝑛𝑛 − 1 and 𝑛𝑛 + 1, respectively. In fact, when their spectra 
overlap, (linear) crosstalk is created, and the highest XCI also occurs. 
Moreover, since a small contribution is also given by the XCI caused by all 
subchannels, SNRn also depends on all subchannel distances 𝐝𝐝. Bringing two 
subchannels closer would increase their crosstalk and interference, resulting 
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in a reduction of their SNR values with respect to their distance. On the other 
hand, such a shift would reduce their crosstalk and interference with their 
adjacent outer ones. Specifically, in Section 6.2.1, we will show the SNR 
function to be concave around the point corresponding to the equal distance 
of a subchannel from its adjacent ones. Hence, the optimization problem aims 
to identify the proper distance set 𝐝𝐝∗ that maximizes specific functions of the 
subchannel SNR values. 

In particular, for the problem at hand, we considered two optimization 
functions: the maximization of the superchannel total SNR value, which we 
named Obj#1, and the maximization of the subchannel minimum SNR value, 
which we named Obj#2. The former objective is directly correlated to 
maximizing the superchannel total capacity and is equivalent to the 
summation of all the subchannel SNR values. Instead, Obj#2 aims to make all 
the superchannel subchannels feasible with respect to a specific SNR threshold 
related to the considered modulation format.  

We formulated the optimization problem as follows: 

max�ℎ(𝐝𝐝)� ,                                                        (6.3) 

where 

𝑂𝑂𝑂𝑂𝑂𝑂#1                      ℎ(𝐝𝐝) = �𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛(𝐝𝐝)
𝑁𝑁

𝑛𝑛=1

,                                              (6.4) 

or 

𝑂𝑂𝑂𝑂𝑂𝑂#2                  ℎ(𝐝𝐝) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛�𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛(𝐝𝐝)� .                                          (6.5) 

Equations 6.4 and 6.5 correspond to Obj#1 and Obj#2, respectively. 

In addition, the following set of constraints applies: 

�𝑑𝑑𝑛𝑛

𝑁𝑁+1

𝑛𝑛=1

= 𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆       𝑛𝑛 = 1, … ,𝑁𝑁 ,                                      (6.6) 

𝑑𝑑𝑛𝑛 = �

𝑅𝑅𝑆𝑆
4

, 𝑛𝑛 = 1,𝑁𝑁 + 1
𝑅𝑅𝑆𝑆
2

, 1 < 𝑛𝑛 < 𝑁𝑁 + 1
 .                                    (6.7) 

Specifically, the constraint defined by Equation 6.6 keeps the subchannel 
distances within the filter bandwidth. Instead, the constraints defined by 
Equation 6.7 put a lower limit on the distances between adjacent subchannels 
and outer subchannels and filter sides, based on the subchannels symbol rates. 
Note that in the above relations, we assumed the SNR as the key metric, but 
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we can convert it to a corresponding SNR margin by considering the SNR 
threshold of the employed modulation format. It is also worth reminding that 
the above formulation applies to uniform superchannels, where all the 
subchannels have the same symbol rate, roll-off factor, and modulation 
format. However, this model and our proposed solution could also be extended 
to cover nonuniform superchannels. 

6.2.1 Channels Distance and SNR Function Properties 

To understand the relation between the subchannel distances and their SNR 
values, we implemented in VPI a simulation setup considering three channels 
with nonidentical Pseudo-Random Binary Sequences (PRBSs). We generated 
three 32 GBd QPSK modulated signals, pulse shaped with an RRC filter with 
0.1 roll-off factor. In FIGURE 6.2, we plot the SNR values of the second channel 
as a function of its distance 𝑑𝑑1 from the first channel. To do so, we kept the first 
and third channel central frequencies constant and shifted the second channel 
one. The obtained SNRs referred to a B2B scenario and a transmission over 
two and ten SSMF spans. In particular, we considered SSMF spans of 80 km 
length, with attenuation and dispersion coefficients equal to 0.2 dB/km and 
16.7 ps/nm/km, respectively. Moreover, each SSMF span was followed by an 
EDFA with an NF of 5.5 dB and gain that matched the previous span loss (i.e., 
Automatic Gain Control, AGC). 

From FIGURE 6.2, we observe that the SNR of the central channel (i.e., the 
second) is a concave function of 𝑑𝑑1 around the equidistant point (𝑑𝑑1 = 𝑑𝑑2 
±2 GHz). As so, the considered objective functions, which are combinations of 
such functions, are also concave. Varying the channel distance, the resulting 
change in the XCI is relatively small, so the dominant effect observed in 
FIGURE 6.2 is the linear crosstalk between adjacent channels. Therefore, the 

 

FIGURE 6.2.  Relation between the SNR value of the second channel and its 
distance from the first one, for a B2B, two and ten SSMF spans scenarios. The 
yellow box presents a zoomed view of the central part of the B2B SNR graph. 
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shape of the SNR function depends on the crosstalk, which in turn depends on 
the channels shaping. In particular, the crosstalk contribution from the 
adjacent channel is convex: as we move the second channel towards the first, 
the amount of area in which the signals overlap increases. The crosstalk is 
proportional to the overlapping area integral, and the integral of an increasing 
function is convex, as shown in FIGURE 6.3. Similar observations would still 
hold if we moved to the other side. The sum of two convex functions is convex, 
so the total crosstalk contribution is convex. Moreover, the SNR depends 
inversely on the crosstalk and thus is concave. 

So, based on the above, we expect a single or a continuous set of distances 𝑑𝑑1 
that exhibits the maximum SNR value (or almost reaches the maximum) for 
the second channel, making gradient-based methods suitable to solve the 
considered problem. Note that a similar shape appears when one of the 
channel sides faces the filter. Furthermore, we observed that transmitting the 
signal over an increasing number of SSMF spans reduced the reference SNR 
value and flattened the shape of the SNR curve. However, the concavity of the 
function is maintained, and the proposed optimization process can still be 
applied, as indicates by our results. The causes of the SNR function flattening 
are the noise generated by the EDFAs, which accumulates between the 
channels, and the widening of the channel spectra caused by the dispersion. 
Thus, the channel spectra are shallower and their sides less sharp, resulting in 
less crosstalk area when they overlap and in flatter SNR curves. 

To be more specific, although from the main plots of FIGURE 6.2 it might seem 
that there is a set of distances 𝑑𝑑1 for which the maximum SNR values flatten 
out, zooming in that area, we see minor SNR variations, as shown in 
FIGURE6.2 yellow box. Such fluctuations can be caused by random noise, 

   

FIGURE 6.3.  (a) Graphical representation of the interchannel interference 
convexity. (b) The integral of an increasing function is convex. 
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wavelength-dependent penalties, and other factors. In real systems, we would 
even have to consider additional effects coming from transmitter/receiver 
imperfections (as mentioned in Section 6.1, we assume to monitor the 
subchannel SNR values at the coherent receivers). Hence, in that area, there 
are several local maxima close to the global, which are hard to avoid when 
optimizing the subchannel distances, and that would even vary as a function of 
time. For these reasons, we decided to use the stochastic subgradient method 
with a fixed step length, which is robust, can optimize in the presence of noise 
and uncertainties, and works even with nonlinear and nonconcave (or 
nonconvex) problems.  

In our optimization, we target to reach the flat area and any local maxima close 
to the global one. In particular, using the proposed optimization method, the 
results we obtained consistently ranged within 0.2 dB from the optimum. 

In addition to the relation between the subchannel distances and their SNR 
values, we also need to consider that one between the two outer subchannels 
and the filter sides. To this aim, we implemented a VPI simulation setup 
similar to the previous one, with only two subchannels. In this setup, in 
addition, following each SSMF span and EDFA, we placed a 3.5th-order super-
Gaussian TF optical filter, symmetrically centered around the two signals, with 
92 GHz 3 dB bandwidth. We kept all the system parameters and the 
considered configurations (i.e., B2B, 2 and 10 fiber spans) as they were in the 
previous simulation. In FIGURE 6.4, we plot the SNR values of the left 
subchannel as a function of its distance 𝑑𝑑2 from the right one (please note that 
in this case 𝑑𝑑1 represents the distance between the left filter side and the left 
subchannel central frequency). Of course, filtering effect becomes stronger 
when longer filter cascades are considered, resulting in SNR degradations. 

 

FIGURE 6.4.  Relation between the SNR values of an outer subchannel and its 
distance from the adjacent one for a B2B, two and ten SSMF spans scenarios. 
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From FIGURE 6.4, we observe that the outer subchannel SNR is a concave 
function of the distance 𝑑𝑑2 between the two subchannels. As per the previous 
analysis, similar observations would still hold if we moved to the other side. As 
a result, also in this case, gradient-based methods are suitable to solve the 
considered optimizations problem.  

6.2.2 Dynamic Superchannel Optimization 

Typically, a superchannel would be designed with appropriate transmitter and 
receiver configuration and equal distances between subchannels [111]. 
However, imperfections such as those related to the subchannel transmitters 
and receivers, dynamic impairments, wavelength-dependent losses / 
performance variations (e.g., amplifier gain ripple), and ageing of the various 
network elements must also be considered. All such factors result in the 
subchannel QoT variations (e.g., their SNR values) and make equidistant 
superchannels suboptimal and unattainable during the network operation. In 
fact, the control plane would configure the superchannel as equidistant, but 
due to the above imperfections and laser/filter drifts, it would not actually be. 
For this reason, some margins in QoT or additional spectra between the 
subchannels are typically used. Note that such effects are unknown before the 
superchannel is established and operates, and they might also vary with time. 
For example, assuming a ±2 GHz drift for the second channel of FIGURE 6.2 
in the two spans case, we end up with a 0.7 dB lower SNR. To compensate for 
this, the same dB amount should be considered as a margin when selecting the 
feasible superchannel modulation format (actually, the margin should be 
higher because we should consider the worst case, in which the first and third 
channels also drift). 

To remove the margin or increase the efficiency of the superchannel, we need 
a feedback-based approach that dynamically interacts with the superchannel 
and the network, understands the current conditions, and corrects and 
compensates these effects. In the following section, we propose such an 
approach that dynamically optimizes the superchannel as the network 
operates. 

6.3 Closed Control Loop-Based Solution 

As introduced in Section 6.1, our solution envisions implementing a closed 
control loop leveraging an iterative optimization algorithm based on the 
stochastic subgradient method with a fixed step length. In particular, we 
assumed the optimization algorithm to reside in the central SDN controller. 
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Here, appropriate interfaces to configure the transmitter lasers and 
communicate with the coherent receivers are present to retrieve the 
subchannels SNR values. Our optimization algorithm employs a subroutine to 
specify the probes, which are those configurations applied to the network 
through the control plane. The outcomes of such applied probes, which are the 
monitored SNR values, are in turn delivered back to the optimization 
algorithm to provide it with the information it needs to perform the 
intermediate optimization steps. This process is repeated at each algorithm 
iteration. We also refer to this technique as optimization with monitoring 
probes. A representation of such a scheme is shown in FIGURE 6.5. 

In Section 6.2, we showed how the problem of maximizing the two considered 
objectives, namely Obj#1 and Obj#2, is concave with respect to the distances 
between subchannels. Hence, we can transform it into the minimization of a 
convex function simply by taking the negative of the SNR function. In fact, as 
we saw in Section 2.2.1, several known optimization techniques exist in the 
literature to address such convex problems. In particular, we chose to use a 
method based on a stochastic subgradient that can optimize a convex problem 
even in the presence of noise. Optimization algorithms such as (sub)gradient 

 

FIGURE 6.5.  Schematic representation of the implemented optimization loop with 
monitoring probes. 
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method, interior point, and trust-region-reflective are iterative, meaning that 
they need to calculate the first- or second-order partial derivatives at each 
iteration. For optimization problems involving the optical physical layer and 
the capability to probe the network (configure and monitor the outcome), a 
typical way to find the partial derivatives is by using a subroutine that 
implements the finite differences method [140]. 

To calculate the (sub)gradient of the objective function ℎ, which we defined 
with Equations 6.4 and 6.5, we need to configure new frequencies and monitor 
the related changes in the subchannels SNR values. Specifically, following the 
notation we previously introduced and referring to FIGURE 6.1, we assume a 
superchannel consisting of a set of 𝑁𝑁 subchannels separated by a set of 
distances 𝐝𝐝. We denote by 𝛅𝛅𝐝𝐝𝐧𝐧 the distance vector for which the central 
frequency of the 𝑛𝑛-th subchannel has increased by 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, which we refer to as 
the frequency probe step, and in the optimization process is considered to be a 
fixed step length. This implies that 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is subtracted from 𝑑𝑑𝑛𝑛−1 and added to 
𝑑𝑑𝑛𝑛. 

We denote the SNR value of the shifted subchannel 𝑛𝑛 with 𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛(𝛅𝛅𝐝𝐝𝐧𝐧), whereas 
the SNR of all subchannels with 𝐬𝐬𝐬𝐬𝐬𝐬𝐒𝐒𝐒𝐒(𝛅𝛅𝐝𝐝𝐧𝐧) = {𝑆𝑆𝑆𝑆𝑆𝑆1(𝛅𝛅𝐝𝐝𝐧𝐧), … , 𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁(𝛅𝛅𝐝𝐝𝐧𝐧)}. 
Note that the change in the central frequency of the single subchannel 𝑛𝑛 mainly 
affects the SNR values of the adjacent subchannels (𝑛𝑛 − 1 and 𝑛𝑛 + 1) through 
(linear) crosstalk, but more lightly also of all the other subchannels through 
XCI. Therefore, the partial derivative 𝑔𝑔𝑛𝑛 of the optimization function ℎ for the 
𝑛𝑛-th subchannel is given by 

𝑔𝑔𝑛𝑛 =
ℎ(𝐝𝐝) − ℎ(𝛅𝛅𝐝𝐝𝐧𝐧)

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 .                                              (6.8) 

Depending upon the chosen objective function ℎ, the partial derivative 
identification involves specific operations with the vectors 𝐬𝐬𝐬𝐬𝐬𝐬𝐒𝐒𝐒𝐒(𝐝𝐝) and 
𝐬𝐬𝐬𝐬𝐬𝐬𝐒𝐒𝐒𝐒(𝛅𝛅𝛅𝛅), as indicated in the two considered objectives equations, namely 
Equations 6.4 and 6.5. Thus, to calculate the (sub)gradient with the finite 
difference method, we need to probe with  𝛅𝛅𝐝𝐝𝐧𝐧 and monitor 𝐬𝐬𝐬𝐬𝐬𝐬𝐒𝐒𝐒𝐒(𝛅𝛅𝐝𝐝𝐧𝐧). We 
repeat this for the subchannels that are chosen (stochastically) for each 
algorithm iteration. 

The algorithm at each iteration calculates the subgradients of a set of randomly 
selected subchannels through the finite differences subroutine. Specifically, we 
use the minibatch option of the stochastic method, in which at each iteration, 
we randomly choose a set of 𝑀𝑀 subchannels to probe and monitor. In order to 
converge or approach the optimum, the stochastic subgradient method with a 
fixed step length 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and monitoring probes runs 𝐼𝐼 iterations, stopping when 
the objective improvement rate falls below a specified threshold. In particular, 
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if 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝜀𝜀/𝐺𝐺, where 𝐺𝐺 represents a bound on the gradient such as 
|ℎ(𝐝𝐝𝐮𝐮) − ℎ(𝐝𝐝𝐯𝐯)| < 𝐺𝐺‖𝐝𝐝𝐮𝐮 − 𝐝𝐝𝐯𝐯‖2, valid for any 𝐝𝐝𝐮𝐮 and 𝐝𝐝𝐯𝐯, then the subgradient 
method converges to the optimum within 𝜀𝜀. Specifically 

ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 − ℎ∗ ≤ 𝜀𝜀 ,                                                     (6.9) 

where, ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖  and ℎ∗ represent the objective functions related to the 𝑖𝑖-th 
iteration and the optimal solution, respectively. Therefore, the required 
number of steps to converge towards the optimum within 𝜀𝜀 is given by (𝑅𝑅𝑅𝑅 𝜀𝜀⁄ )2, 
where 𝑅𝑅 is the distance of the starting point from the optimum, such as 𝑅𝑅 ≥
�𝐝𝐝𝟏𝟏 − 𝐝𝐝∗�

2
. Note that the subgradient method discussed above is a batch 

method; it calculates the subgradients for all the functions summed in the 
objective (e.g., the SNR function of the different subchannels). The stochastic 
subgradient method that we adopt has a bound on the convergence rate given 
by 𝑂𝑂(𝑁𝑁2/𝜀𝜀2). When we use minibatches of size 𝑀𝑀, we have a bound on the 
convergence rate given by 𝑂𝑂(𝑁𝑁2/𝑀𝑀2𝜀𝜀2) [141]. So, the bound on the expected 
number of iterations of the stochastic subgradient method with minibatches is 
given by 

𝐼𝐼 = �
𝑁𝑁𝑁𝑁𝑁𝑁
𝑀𝑀𝜀𝜀 �

2

 ,                                                  (6.10) 

In turn, within each iteration, the (sub)gradient identification subroutine is 
called 𝑀𝑀 times, corresponding to the times the algorithm probes the network 
and monitors the SNR values. 

We denote by 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 the monitoring time needed to monitor all the 𝑁𝑁 
subchannels simultaneously. Monitoring, is typically done every 15 minutes in 
today networks, but the new generation of telemetry-based solutions can speed 
up this process to subsecond timescales [142]. However, the monitoring time 
here is constrained by other factors. Once a reconfiguration is decided and 
applied, the time needed by the transponders to adapt to such change and by 
the network to reach a stable state (e.g., for transient effects to settle) must also 
be considered. Moreover, monitoring the SNR is not instantaneous but 
requires to average over a specific period. For random Gaussian errors the 
monitoring accuracy increases with the monitoring time. If monitoring is fast 
and the error is high, the algorithm will have to perform more iterations. Thus, 
although we will have a small 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, we will pay that with a higher iteration 
number 𝐼𝐼. Note that the stochastic subgradient method finds the optimum in 
a polynomial number of iterations 𝐼𝐼. Based on the above, we expect that 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 
may range from tens of seconds to minutes, depending upon the network 
complexity, the monitoring plane, the targeted monitoring error, and other 
factors [142]. However, once the monitoring information is forwarded to the 
algorithm, the time 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 that it needs to calculate the (sub)gradients and the 
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following set of frequencies is relatively low (within seconds) compared to the 
monitoring time (i.e., 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ≫ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). So, with the proposed approach, under the 
assumption that the 𝑁𝑁 subchannels are monitored in parallel, the total 
optimization time 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is given by 

𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐼𝐼 ∙ (𝑀𝑀 ∙ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ≈ 𝐼𝐼 ∙ 𝑀𝑀 ∙ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 .                       (6.11) 

Returning to the optimization problem, the set of distances 𝐝𝐝 is defined by the 
central frequencies of the subchannel transmitter lasers. However, the lasers 
cannot be configured with infinite accuracy. Moreover, since we rely on 
feedback/physical layer monitoring information and because of physical layer 
variations (our optimization is mainly affected by short and medium terms) 
and monitoring errors, we are not able to observe fine differences in the 
monitored SNR values. For these reasons, as discussed above, we use for the 
gradient identification in both the optimization problems a frequency step 
equal to 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. For example, such a step can be equal to 0.25, 0.5 or 1 GHz. This 
value should be chosen according to the laser configuration capabilities (i.e., 
the laser frequency tuning resolution) and the uncertainties coming from 
variability and monitoring errors. In particular, smaller values tend to make 
the stochastic subgradient method slower but more precise. Moreover, laser 
stability represents a crucial factor when considering small amounts of 
frequency shift like those we employed in our evaluations (e.g., 0.25 GHz). 
However, fast drifts will be averaged in the monitoring process, whereas slower 
drifts/biases will be corrected through the proposed process. Moreover, 
consider that we based our solution on the stochastic subgradient method 
which is robust to noise and uncertainties.  

Compared to the optima found with a brute-force approach, our results 
indicated good convergence performance for frequency steps of 0.25 GHz and 
0.5 GHz, whereas, for 1 GHz steps, the performance tended to degrade slightly. 

Note that the monitoring probes used to identify the (sub)gradient are not a 
universal solution. A monitoring probe here refers to the configuration of new 
frequencies for one or more subchannel lasers and monitoring the subchannel 
SNR values at their receivers. Thus, each optimization problem requires a 
specific definition of monitoring probes. For some problems, monitoring 
probes might not be available, e.g. problems involving establishing or releasing 
connections. Moreover, the monitoring probes approach involves several 
interactions with the network, which might be time-consuming. Therefore, 
alternative methods can include the use of PLMs or QoT estimators [139]. It is 
also worth mentioning that our approach based on monitoring probes achieves 
the optimal performance as long as the problem has specific properties 
(convexity or unimodularity) and an appropriate algorithm is used. 
Nevertheless, such a solution might take a long time due to the delay 
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introduced by the monitoring process. On the other hand, PLM has the benefit 
of being much faster and without monitoring noise, but its inaccuracies might 
mislead the optimization. Such concepts are studied in [143] for another 
optimization problem and are left for future investigations concerning 
superchannel optimization. 

Regarding the optimization algorithm, we adapted the stochastic subgradient 
algorithm with minibatches. Given the subgradients of 𝑀𝑀 subchannels, 
specified with the monitoring probes / finite difference method mentioned 
above, the algorithm decides on the next move and identifies the new central 
frequencies of all the subchannels. Note that the algorithm might decide to 
make a more complex action (move several subchannels) than the simple 
movements performed in the gradient identification subroutine. The 
algorithm output is mapped to the network, and a new probing and monitoring 
phase starts. The stochastic subgradient algorithm converges to the optimum, 
with a specific accuracy, in a polynomial number of iterations [141]. However, 
although the algorithm selects/calculates new variable values to improve the 
objective at each step, when applied to the actual system they might not be 
effective because of the noise. So, the best result is memorized and reused as 
starting point in case the objective falls. Once the algorithm converges (no 
further improvement of the objective is calculated for a certain amount of 
iterations, with a defined accuracy set, for instance, to 0.2 dB), the process 
terminates. The configuration saved as the best one up to that point 
corresponds to the optimized frequency set for the superchannel subchannels. 

6.4 Optimization Algorithm and VPI Setup Integration 

To quantify the benefits of the proposed optimization solution, we carried out 
several simulations using both VPI and MATLAB. In particular, we co-
simulated the superchannel and its transmission in VPI, whereas the finite 
differences subroutine and the stochastic subgradient algorithm were 
developed in MATLAB. To be more specific, in MATLAB, we implemented the 
frequency optimization algorithm to maximize the two objective functions 
presented in Section 6.2, namely the sum of the SNR values of the 
superchannel subchannels (i.e., Obj#1) and the lowest subchannel SNR value 
(i.e., Obj#2).  

In the co-simulations, VPI takes as input the subchannel frequencies, performs 
the detailed transmission simulations and calculates the SNR values of the 
received subchannels. Instead, the MATLAB code implementing the finite 
differences subroutine first identifies which frequencies 𝛅𝛅𝛅𝛅 to probe to the 
superchannel, then passes them to VPI, as schematically represented in 
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FIGURE 6.5, and finally receives from VPI the corresponding monitored SNR 
values 𝐬𝐬𝐬𝐬𝐬𝐬𝐒𝐒𝐒𝐒(𝛅𝛅𝐝𝐝𝐧𝐧). After a specific number of such probes (in our simulations, 
we had a minibatch of 𝑀𝑀 = 2 subchannels), the optimization algorithm 
identifies their subgradients and uses them to calculate the following 
frequencies. This process is repeated until the optimization algorithm 
converges to the optimal solution, which without considering the monitoring 
stage, takes a time in the order of seconds. In addition, we kept track of the 
best-achieved solution and then stopped the algorithm once the estimated 
improvement was below a specific threshold. In particular, regarding the result 
presented below, we set an optimality tolerance of 0.2 dB. 

To simulate a four-subchannel superchannel, we implemented in 
VPIphotonics the setup depicted in FIGURE 6.6. We generated four 32 GBd 
QPSK modulated signals that formed four quasi-Nyquist-WDM subchannels 
symmetrically centered around 193.1 THz. For their pulse shaping, we 
employed an RRC filter with roll-off factors equal to 0.1 and 0.15. We set the 
launch power of each transmitter laser at 0 dBm, which is the optimized value 
to guarantee a good compromise between linear and nonlinear effects in our 
simulations. As starting condition, we always considered the four signals 
equally spaced by 34.5 GHz, resulting in a quasi-Nyquist-WDM transmission, 
according to the definition we presented in Section 6.1 (i.e., a ratio between 
inter-channel distance and symbol rate between 1 and 1.2). Note that in 
addition to the equally distanced configuration, we also considered ten further 
random starting frequencies set, which were ±2 GHz shifted from the equally 
distanced setting. This was done in order to emulate soft failure scenarios. 
Then, we multiplexed the four subchannels and transmitted them in a loop 
composed by the cascade of an 80 km length SSMF, with 0.2 dB/km 
attenuation coefficient and 16.7 ps/nm/km dispersion coefficient, an EDFA 
with NF of 5.5 dB and gain tilt set to 0 dB/Hz, and a tuneable optical filter with 

 

FIGURE 6.6.  Schematic diagram of the VPI-implemented superchannel 
simulation setup. TX: Transmitter; SSMF: Standard Single-Mode Fiber; EDFA: 
Erbium-Doped Fiber Amplifier; RX: Receiver. 
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3.5th-order super-Gaussian TF. We set the 3 dB bandwidth of the optical filter 
with values ranging between 137.5 GHz and 200 GHz. To study the 
performance of the proposed solution on higher-order signal modulation 
formats, we also considered a 16QAM format. In addition, by varying the 
number of loops, we simulated a different number of optical spans. In 
particular, to simulate a B2B scenario, we removed the loop maintaining only 
a single optical filter. Moreover, before receiving the signal, we placed a 
dispersion-compensating optical fiber of length equal to the loop fiber length 
to fully compensate for the chromatic dispersion effect. Then, at the receiver 
side, we detected each of the four subchannels by tuning the frequency of four 
coherent receiver local oscillators. In [111], the optimum value for the receiver 
low-pass electric filter 3 dB bandwidth was found to be equal to half of the 
symbol rate. Accordingly, we considered 3 dB bandwidth values for the 
receiver filters equal to 16 GHz. Once detected, we monitored the SNR of each 
subchannel and sent all of them to the optimization algorithm. To obtain the 
measurements needed to derive the gradient, the algorithm probed several 
times the VPI setup. Then, based on the calculated gradient, it identified a new 
set of frequencies and fed it to VPI, triggering a new simulation setup / iterative 
optimization process iteration. 

6.5 Results and Discussion 

For the four-subchannels scenario discussed above, we considered nine 
different transmission cases corresponding to different parameter 
configurations. We summarized these nine cases in TABLE 6.1. In particular, 
we considered case 1 of TABLE 6.1 as the default case, with BW𝑆𝑆𝑆𝑆  equal to 
137.5 GHz, roll-off factor 𝑎𝑎, for all the four transmitted signals, equal to 0.1, 

TABLE 6.1.  Simulation parameters of the nine considered cases. 

# Case Mod. Format Roll-off # Spans # Filter Bw [GHz] 

1 (Def.) QPSK 0.1 2 2 137.5 

2 16-QAM 0.1 2 2 137.5 

3 QPSK 0.1 2 2 150 

4 QPSK 0.15 2 2 137.5 

5 QPSK 0.1 10 5 137.5 

6 (B2B) QPSK 0.1 0 1 137.5 

7 (B2B) QPSK 0.1 0 1 200 

8 (B2B) QPSK 0.15 0 1 137.5 

9 (B2B) QPSK 0.15 0 1 200 
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and two loops (i.e. twice the cascade of an 80 km length SSMF, an EDFA, and 
a superchannel filter). In addition, for this default case, we assumed as a 
starting condition the subchannels to be equally spaced, i.e. 𝐝𝐝𝐞𝐞𝐞𝐞 𝐝𝐝𝐝𝐝𝐝𝐝=[17, 34.5, 
34.5, 34.5, 17] GHz. We depict a schematic representation of such default 
configuration in FIGURE 6.7(a), whereas, in FIGURE 6.7(b), we show the 
simulated superchannel spectrum acquired before the reception stage. 
Considering such default parameters, the received four subchannel SNR values 
were equal to 𝐬𝐬𝐬𝐬𝐬𝐬𝐒𝐒𝐒𝐒(𝐝𝐝𝐞𝐞𝐞𝐞 𝐝𝐝𝐝𝐝𝐝𝐝)=[13.55, 16.86, 16.91, 13.15] dB. This resulted in a 
superchannel total SNR value of 60.47 dB, with 13.15 dB being the minimum 
among the four subchannel SNR values. After the integration with the 
optimization algorithm presented in the previous sections, we found the 
optimized sets of distances 𝐝𝐝𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨∗  and 𝐝𝐝𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨∗  related to the two considered 
objective functions. In particular, the set 𝐝𝐝𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨∗ =[18.25, 33.25, 33.25, 

 

FIGURE 6.7.  (a) Schematic representation of the considered default superchannel 
configuration with four equally spaced subchannels. (b) VPI-generated 
superchannel optical spectrum for the default case. 

(a)

(b)
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33, 19.75] GHz corresponded to the solution that maximized the superchannel 
total SNR value, found with a step size of 0.25 GHz. The superchannel total 
SNR value associated with such configuration was 61.92 dB, yielding a 1.45 dB 
improvement with respect to the equally spaced initial configuration 
represented by 𝐝𝐝𝐞𝐞𝐞𝐞 𝐝𝐝𝐝𝐝𝐝𝐝. Regarding the maximization of the subchannel 
minimum SNR, again considering a step size of 0.25 GHz, we obtained the set 
of distances 𝐝𝐝𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨∗ =[19, 33, 31.75, 32.75, 21] GHz and its corresponding set of 
SNR values 𝐬𝐬𝐬𝐬𝐬𝐬𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨∗ (𝐝𝐝𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨∗ )=[14.34, 14.58, 14.37, 14.38] dB. We see that the 
algorithm flattened the SNR values of all the subchannels. This is expected in 
such an optimization objective, where the algorithm iteratively tries to improve 
the minimum, eventually bringing all the subchannels to the same level. In 
particular, the optimal minimum SNR value was 14.34 dB. Such a result 
translated in a 1.19 dB improvement with respect to equally spaced initial 
distances 𝐝𝐝𝐞𝐞𝐞𝐞 𝐝𝐝𝐝𝐝𝐝𝐝. The total number of algorithm iterations needed to obtain the 
previous solutions were 23 for Obj#1 and 9 concerning Obj#2. Note that the 
number of iterations is crucial because it affects (linearly) the number of 
probes and monitoring calls, as we showed in Section 6.3. 

The evolution of the two considered objectives as a function of the iteration 
number for the default case and equidistant subchannels as a starting point is 
shown in FIGURE 6.8. As introduced in Section 2.2.3, from FIGURE 6.8, we 
can observe that the stochastic subgradient method is not a descent method 
(like gradient descent), and therefore slight deteriorations of the objective 
function within the path towards the optimum are tolerated. Note that in this 
figure, we observe the negative of a convex/descent problem; we search for the 

 

FIGURE 6.8.  Evolution of the two considered objectives as a function of the 
iteration number. 
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maximum, so the objective ascends. Also, note that the number of iterations 
depends on the considered starting point. In FIGURE 6.9, we report the 
complete results related to the default case, graphically representing the SNR 
values of the four subchannels before and after the optimization process for 
two different frequency step sizes. Concerning the results represented in 
FIGURE 6.9 for Obj#2, it is worth noting that even though the curve 
representing the 0.5 GHz step size seems to reach a higher total SNR value 
than the 0.25 GHz one, in Obj#2, we focused on the maximization of the 
subchannel minimum SNR value, for which 0.25 GHz gave better results. 

The results related to the nine considered cases of TABLE 6.1 are summarized 
respectively in TABLE 6.2 for the maximization of Obj#1 and TABLE 6.3 for 
the maximization of Obj#2. With respect to the default case (case 1), in cases 2 
to 5, we considered variations of the: modulation format (case 2), 
superchannel filter bandwidth (case 3), roll-off factor (case 4), and span 
number (case 5). Regarding this last configuration, increasing the number of 
spans also implied the presence of NLI and other wavelength-dependent 
impairments, such as the gain ripple. In this case, employing the proposed 
algorithm, we improved Obj#1 and Obj#2 of 1.99 dB and 1.91 dB, respectively, 
with respect to the scenario with equally distanced subchannels. More in 
general, the obtained results reported in TABLE 6.2 and TABLE 6.3 show how, 
independently from the variation of the aforementioned parameters, the 

 

FIGURE 6.9.  SNR values of the four subchannels considering the default case 
parameters. The blue line represents the SNR values obtained with the equally 
spaced subchannels, whereas the brown and yellow lines represent those obtained 
after the optimization of Obj#1 and Obj#2, respectively. For both the objectives, 
the solid and dashed lines represent a frequency step size of 0.25 and 0.5 GHz, 
respectively. 
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proposed optimization solution was always able to improve the considered 
objectives. In addition, as per the default case, we ran simulations considering 
ten different random starting frequencies for cases 2, 3, 4, and 5. In all such 
cases, the algorithm always converged on the same optimal solution. 

TABLE 6.1 cases from 6 to 9 represent four different B2B scenarios. We 
considered them to understand the role played by the filtering and the 
crosstalk effects. As we showed in FIGURE 6.2, when the distances between 
subchannels ranged between 34.5 ±2 GHz, the crosstalk from the two adjacent 
subchannels is negligible. In particular, in cases 7 and 9, where we set a very 
broad filter 3 dB bandwidth (i.e., 200 GHz), almost no improvement was 
observed after the optimization with respect to the equidistant superchannel 
configuration. This happens because our starting conditions (i.e., 34.5 GHz 
distanced subchannels) already guaranteed an impairment-free transmission, 
and the optimization increases further all the distances, but with negligible 
improvement. As expected, higher roll-off factors (e.g., case 9) implied higher 
crosstalk effects between the signals. On the other hand, when considering B2B 
and tighter filter bandwidth (i.e., cases 6 and 8), crosstalk- and filter-related 
penalties appears, and therefore our solution can improve the considered 

TABLE 6.2.  Obj#1 optimization results for the four subchannels scenario. 

Case 

Total 
SNR  
start 
[dB] 

Step 
size 

[GHz] 

# 
Iter. 

Total 
SNR 

Obj#1 
[dB] 

Brute-force Save 
wrt 

worst 
[dB] 

Save 
wrt 
start 
[dB] 

Best 
[dB] 

Worst 
[dB] 

1 60.47 
0.25 23 61.92 

61.92 52.03 9.89 1.45 
0.50 7 61.77 

2 62.60 
0.25 17 64.52 

64.52 48.40 16.12 1.92 
0.50 10 64.24 

3 61.61 
0.25 43 64.59 

65.12 54.22 10.90 3.51 
0.50 24 65.12 

4 61.19 
0.25 9 61.92 

61.92 50.85 11.07 0.73 
0.50 12 61.83 

5 34.25 
0.25 24 36.24 

36.24 31.16 5.08 1.99 
0.50 22 36.23 

6 85.01 
0.25 31 86.46 

86.47 62.19 24.28 1.45 
0.50 16 85.31 

7 93.16 
0.25 36 93.30 

93.31 64.32 28.99 0.15 
0.50 19 93.31 

8 83.67 
0.25 47 83.94 

84.15 64.49 19.66 0.48 
0.50 21 84.15 

9 91.45 
0.25 43 91.31 

91.45 75.46 15.99 0.00 
0.50 21 91.25 
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objectives. As expected, case 8, where we considered a higher roll-off factor, 
has a lower initial (average) SNR value than case 6. However, its improvement 
with respect to the equidistant configuration is relatively lower since both 
crosstalk and filtering effects are strong, and not enough optimization space is 
present. 

As presented in Section 6.3, the proposed solution approaches the optimum 
within a specific accuracy interval. Hence, we might reach results closer to the 
global optimum using coarser frequency step sizes than finer ones, which, 
theoretically, should be more precise. In particular, this happened for Obj#2, 
in cases 3, 4, 7, and 9, as shown in TABLE 6.3. 

In order to provide a benchmark for the obtained results, in TABLE 6.2 and 
TABLE 6.3, we also report the best and the worst SNR values obtained 
employing a brute-force approach. In particular, we considered a ±2 GHz 
interval around the optimal solutions found by the algorithm (i.e., 𝐃𝐃𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨

∗  and 
𝐃𝐃𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨
∗ ) and collected the SNR values related to all the possible distance 

combinations in such interval, with a frequency step size of 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 = 1 GHz. For 
each considered case listed in TABLE 6.2 and TABLE 6.3, the total number of 

TABLE 6.3.  Obj#2 optimization results for the four subchannels scenario. 

Case 

Min 
SNR  
start 
[dB] 

Step 
size 

[GHz] 

# 
Iter. 

Min 
SNR 

Obj#2 
[dB] 

Brute-force Save 
wrt 

worst 
[dB] 

Save 
wrt 
start 
[dB] 

Best 
[dB] 

Worst 
[dB] 

1 13.15 
0.25 9 14.34 

14.34 10.61 3.73 1.19 
0.50 4 14.28 

2 13.63 
0.25 8 14.86 

14.86 10.03 4.83 1.23 
0.50 4 14.82 

3 13.74 
0.25 23 15.76 

15.78 10.61 5.17 2.04 
0.50 10 15.78 

4 13.21 
0.25 8 14.17 

14.18 10.50 3.68 0.97 
0.50 3 14.18 

5 6.19 
0.25 17 8.10 

8.10 6.60 1.50 1.91 
0.50 6 8.00 

6 18.97 
0.25 10 20.08 

20.08 12.84 7.24 1.11 
0.50 5 20.03 

7 23.04 
0.25 26 23.13 

23.19 15.89 7.30 0.15 
0.50 16 23.19 

8 18.68 
0.25 10 19.41 

19.41 13.58 5.83 0.73 
0.50 5 19.30 

9 22.55 
0.25 26 22.58 

22.66 18.64 4.02 0.11 
0.50 24 22.66 
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brute-force iterations was 5𝑁𝑁. A smaller step, e.g., 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 = 0.25 GHz, would 
result in a huge number of scenarios and prohibitive simulation time. In a real 
network scenario, the worst SNR value found in this frequency range could 
represent the result of a soft failure occurring while the network is operating 
(e.g., ±2 GHz drift of each laser). Usually, these situations are addressed 
foreseeing some margins for the SNR when planning the connection and 
selecting an adequate modulation format. Instead, with the proposed solution, 
we remove such need. In particular, regarding the default case, with respect to 
such a soft failure scenario, we achieved improvements of 9.89 dB and 3.73 dB 
for the two considered objectives, respectively. 

From TABLE 6.2 and TABLE 6.3, we can see that our proposed method 
reached almost always the optimal SNR values identified by the brute-force 
approach. However, in both cases where this did not happen (i.e., cases 6 and 
9 of TABLE 6.2), the optimal found solutions almost equalized the best ones. 
In particular, the solution related to case 6 missed the best one by 0.01 dB, 
whereas case 9 missed it by 0.14 dB. Note that such a brute-force approach is 
unsuitable to be used in a real network, mainly for two reasons. On the one 
hand, because it has an execution time that is exponential to the subchannel 
number. In fact, considering an explored spectrum range Δ𝐹𝐹 = 4 GHz (i.e., 
±2 GHz) and a 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵 = 1 GHz, we would have to configure and monitor the 
network [1 + (Δ𝐹𝐹 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐵𝐵⁄ )]𝑁𝑁 times. Assuming a monitoring time of 5 minutes, 
this would take more than two days to complete, even for four subchannels. 
This increases even further for finer granularity. On the other hand, because it 
operates blindly, that is, without considering the subchannel SNR values and 
thus potentially making unfeasible some of the connections. Comparing that 
with a few tens of monitoring calls (i.e., 𝐼𝐼𝐼𝐼, with 𝑀𝑀 = 2) used by the proposed 
solution gives a clear benefit of employing our approach instead of the brute-
force one. 

To further assess the effectiveness of the proposed method, we also integrated 
the optimization algorithm in simulations with six, eight, and ten subchannels. 
Apart from the number of transmitters and receivers, we kept the rest of the 
setup precisely as shown in FIGURE 6.6. For such subchannel scenarios (i.e., 
six, eight and ten subchannels), we considered only one transmission case, 
similar to the default one of the four subchannels configuration (i.e., case 1 in 
TABLE 6.1). In particular, for the scenario with six subchannels (𝑁𝑁=6), we 
transmitted six 32 GBd QPSK equally spaced signals, with roll-off factor equal 
to 0.1, in a loop of two spans, filter 3 dB bandwidth of 200 GHz, and a 
minibatch number 𝑀𝑀=3. Similarly, for the scenarios with eight and ten 
subchannels (i.e., 𝑁𝑁=8 and 𝑁𝑁=10, respectively), we assumed the same 
configuration as before, but a filter 3 dB bandwidth equal to 275 GHz and 
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340 GHz, respectively, and 𝑀𝑀 = 𝑁𝑁/2. Note that we used a frequency step size 
of 0.5 GHz for all the considered configurations and objectives. 

As per the scenario with four, also with six, eight, and ten subchannels, our 
achieved results showed an improvement of the considered figure of merit with 
respect to the starting conditions for both the objectives. In particular, with 
respect to the equally spaced scenario and concerning Obj#1, we improved the 
superchannel total SNR for the six, eight, and ten subchannels cases of 1.72 dB, 
1.44 dB, and 0.55 dB, respectively. In addition, regarding Obj#2, such 
improvements were equal to 1.67 dB, 1.33 dB, and 1.19 dB, respectively. We 
summarize the obtained results related to the two objectives in TABLE 6.4 and 
TABLE 6.5, respectively. There, for the sake of comparison, we also report the 
corresponding case with four subchannels. As per the previous results, also in 
this case, it is worth reminding that the number of iterations required to reach 
the optimal solution depends on the considered subchannel starting positions. 
For instance, referring to TABLE 6.4 results, we can see that the iterations 
needed to reach Obj#2 optimum in the case of six subchannels were lower than 
those of the eight subchannels scenario. Furthermore, from TABLE 6.4 results, 
we can also notice a reduction of the SNR improvements with respect to the 
equidistant superchannel, which grows with the number of considered 
subchannels 𝑁𝑁. We obtain SNR improvement with respect to the equidistant 

TABLE 6.4.  Obj#1 optimization results for the considered subchannel scenarios. 

Case 

Total 
SNR  
start 
[dB] 

Step 
size 

[GHz] 

# 
Iter. 

Total 
SNR 

Obj#2 
[dB] 

Brute-force Save 
wrt 

worst 
[dB] 

Save 
wrt 
start 
[dB] 

Best 
[dB] 

Worst 
[dB] 

4 subchs., 
137.5 GHz,  

2 spans,  
0.1 r.o. 

60.47 0.50 7 61.77 61.92 52.03 9.74 1.30 

6 subchs., 
200 GHz,  
2 spans,  
0.1 r.o. 

91.86 0.50 11 93.58 93.65 76.84 16.74 1.72 

8 subchs.,  
275 GHz,  
2 spans,  
0.1 r.o. 

126.93 0.50 14 128.37 128.54 107.54 20.83 1.44 

10 subchs., 
340 GHz,  
2 spans,  
0.1 r.o. 

159.29 0.50 10 159.84 159.84 141.67 18.17 0.55 
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configuration, by redistributing the spectral space initially placed between the 
subchannels to those between the outer subchannels and the filter sides, and 
vice versa. Therefore, as the number of subchannels increases, the effect of this 
optimization will become less significant. Note, however, that maintaining 
equidistant might be a challenging task due to laser drifts and filter detuning 
(i.e. soft failures), while the proposed method finds the optimum in an 
operating network under any such issue. Moreover, as shown in TABLE 6.4, it 
is worth underlining that the improvements with respect to a soft failure 
scenario remain stable for all the considered multi-subchannel scenarios, 
making our solution effective even in those cases. 

Given the high amount of considered subchannels 𝑁𝑁, we ran the brute-force 
approach around the optimal found solution only within an interval of ±1 GHz. 
This resulted in a total number of brute-force iterations equal to 3𝑁𝑁. Such 
reduction was deemed necessary to complete the simulations in a reasonable 
time (i.e., within hours). This is also a further indication of the infeasibility of 
the brute-force approach for real scenarios. As per the previous four 
subchannel scenario, even in these further cases, our optimal found solutions 
almost always corresponded to the brute-force found optima. In particular, 
when this did not happen, we had the following accuracies: in scenarios with 
six and eight subchannels, for Obj#1, our optimal solutions were 0.07 dB and 

TABLE 6.5.  Obj#2 optimization results for the considered subchannel scenarios. 

Case 

Min 
SNR  
start 
[dB] 

Step 
size 

[GHz] 

# 
Iter. 

Min 
SNR 

Obj#2 
[dB] 

Brute-force Save 
wrt 

worst 
[dB] 

Save 
wrt 
start 
[dB] 

Best 
[dB] 

Worst 
[dB] 

4 subchs., 
137.5 GHz,  

2 spans,  
0.1 r.o. 

13.15 0.50 4 14.28 14.34 10.61 3.67 1.13 

6 subchs., 
200 GHz,  
2 spans,  
0.1 r.o. 

11.90 0.50 16 13.57 13.57 9.53 4.04 1.67 

8 subchs.,  
275 GHz,  
2 spans,  
0.1 r.o. 

13.07 0.50 11 14.40 14.40 9.84 4.56 1.33 

10 subchs., 
340 GHz,  
2 spans,  
0.1 r.o. 

13.11 0.50 14 14.30 14.44 9.81 4.49 1.19 
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0.17 dB away from the brute-force found optima, respectively. Instead, in the 
ten subchannels scenario, for Obj#2, our solution was 0.14 dB far from the 
optimum found with the brute-force approach. 

Concerning real network scenarios (i.e., considering other WDM channels), we 
expect the SNR improvement amounts brought by our solution to be affected 
by the increased channel complexity and the growing NLIs. However, we 
believe this reduction to be of a specific amount, and therefore it could be 
modelled as a constant reduction in each SNR value, not affecting our process. 
Further investigations are needed to clarify such aspects more exhaustively. 

6.6 Conclusions 

In this chapter, we presented a closed control loop process to optimize the 
spectral distances of the superchannel subchannels. We observed that the 
problems of maximizing the values of the superchannel total SNR and the 
subchannel minimum SNR are concave around the operation point. We 
developed a solution that probes and monitors the network and then uses the 
stochastic subgradient method to optimize the chosen objectives. We elaborate 
such an approach as to be robust to monitoring errors and noise. To validate 
it, we implemented several co-simulations in VPI and MATLAB. 

The results we obtained showed excellent performance for all the considered 
configurations, independently from the number of subchannels, signal 
characteristics, superchannel filter bandwidth values, modulation format, or 
starting frequencies. In particular, we considered superchannels composed of 
four, six, eight, and ten subchannels, with uniform characteristics, such as 
symbol rate and roll-off values. We compared the optimal solutions found 
through our method with the optima retrieved using an exhaustive search 
approach. In all the assumed scenarios, we were able to approach such values, 
improving both the chosen objectives with respect to the case where equal 
distances between the superchannel subchannels were considered. In 
particular, for a uniform four-subchannel superchannel with a 32 GBd symbol 
rate, 0.1 roll-off factor, and a superfilter bandwidth of 137.5 GHz, we improved 
the superchannel total SNR and the subchannel minimum SNR values of 
1.45 dB and 1.19 dB, respectively. Furthermore, for a soft failure scenario in 
which a ±2 GHz subchannel frequency drift around the optimum was 
considered, we improved the two objectives of 9.89 dB and 3.73 dB, 
respectively. 
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Chapter 7 
 

Conclusions and Future Works 

In this final chapter, which conclude the thesis, we summarize the main 
contributions presented within this dissertation. In addition, we also provide 
possible directions for the development of additional future works. 

This chapter is organized as follows. In Section 7.1, we summarize the achieved 
results, whereas in Section 7.2, we identify possible future lines of 
investigation. 

7.1 Summary of the Results 

In this thesis, we addressed three main problems which revolve around the 
optimization of optical networks through the use of OPM. Firstly, we 
investigated a cost-effective method for the spectral acquisition of optical 
signals. Secondly, we proposed two strategies to optimize the placement of the 
monitoring solutions within the optical network and accordingly developed 
two spectral processing techniques to retrieve network-related parameters 
from the acquired optical spectra. Finally, we presented a potential application 
for the monitored network information, developing a solution for optimizing 
the superchannel transmission.  

More in detail, this thesis is composed of a preliminary part and a technical 
part. Excluding Chapter 1, where we provided objectives, methodology and the 
outline of this dissertation, the preliminary part includes Chapter 2 and 
Chapter 3. There, we introduced the mathematical foundations as well as the 
context of this work and presented a study of the state of the art literature for 
the investigations carried out in this thesis. Regarding the technical part, in the 
following, we provide a summary of each chapter contributions. 

In Chapter 4, we presented the theoretical study of a spectral monitoring 
method to estimate the optical signal high-resolution spectra in a simple and 
flexible manner. Such a proposed technique relies on detecting different 
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spectral slices of an optical signal spectrum by means of a coherent receiver 
enhanced with adequate DSP. Nevertheless, the proposed scheme comes with 
some requirements, among which is the need for a broadly tuneable laser, and 
it is mainly limited by the stability of the optical sources employed to detect 
the spectral slices. 

In Chapter 5, we proposed two monitoring placement scenarios, according to 
the position of the considered optical monitors. In particular, we identified 
egress and ingress monitoring scenarios. The former considers optical 
monitors placed after the egress ports of the optical nodes, whereas the latter 
envisions the monitors placed before the ingress ports of such optical nodes. 
Both the presented monitoring strategies allow retrieving directly from the 
acquired optical spectra specific network information. In particular, the filter 
parameters can be easily measured from the egress-related spectra, whereas 
those related to the signal, such as the ASE noise/OSNR value, cannot because 
of the filtering effect. On the contrary, from the spectral data acquired within 
the ingress placement scenario, the ASE noise/OSNR can be easily estimated, 
but the filter central frequency and the filter 3/6 dB bandwidth cannot. Hence, 
along with the two placement scenarios, we propose two spectral processing 
techniques to enhance the monitoring strategies retrieving the missing 
parameters. The first one, which applies in egress monitoring placement 
scenarios, leverages two ML regression algorithms, namely SVM and GPR, to 
estimate in-band the ASE noise values from the optical spectra. The second 
technique, which applies to the ingress monitoring placement scenarios, 
leverages the curve fitting principle to retrieve the filter TFs and the related 
filter parameters. We experimentally validated both the proposed methods 
and finally compared them in terms of estimation reduction of the SNR penalty 
introduced by an optical filter. We identify the ingress placement strategy and 
its related approach as the most promising solutions. 

Finally, in Chapter 6, we proposed a closed control loop-based process to 
optimize the frequency spacing of the superchannel subchannels. The solution 
we developed probes and monitors the network, and optimize specific chosen 
objectives leveraging the stochastic subgradient method. In particular, we aim 
to maximize the total superchannel SNR value and the minimum superchannel 
subchannel SNR value. The former goal is directly related to maximizing the 
total superchannel capacity, whereas the latter makes all the subchannels 
feasible within the considered superchannel. We validate the proposed 
solution by simulating the superchannel transmission in VPI and integrating 
it with the optimization algorithm developed in MATLAB. We assumed 
scenarios with different subchannel numbers, signal characteristics, and 
starting frequencies. Our optimization process shows an improvement of the 
two considered objectives for all the configurations mentioned above. 
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7.2 Future Works 

OPM and its role in optimizing future optical networks will certainly represent 
hot research topics for the upcoming years. During the investigations we 
carried out to develop the methods and the solutions presented within this 
dissertation, we identified several open issues that deserve further study. In 
the following, we list such potential lines of investigation. 

• Comparison of the centralized and distributed management 
architectures outlined in Section 3.4 (in terms of implementation and 
communication overhead and monitoring / feature extraction quality 
that can be achieved). 
 

• Simulation and experimental validation of the front-end optical 
spectrum estimation scheme presented and studied in Chapter 4 and 
investigation of novel ways to overcome the limitation introduced by the 
optical source stability. 
 

• The two monitoring placement strategies and the corresponding 
processing solutions presented in Chapter 5 could be further evaluated 
within the QoT estimation, considering NLI effects deriving from 
multiple channels transmission. 
 

• In addition to the two monitoring placement scenarios that we 
identified in Chapter 5, a third potential strategy is the sparse one. In 
such a scenario, some of the network nodes are equipped with monitors 
at their egress ports, some others with monitors at their ingress ports, 
and some others again are not monitored at all. According to this 
monitoring configuration, adequate spectral processing solutions 
should be developed and validated. 
 

• Extension of the solution proposed in Chapter 6 to optimize the 
superchannel subchannel frequencies to address nonuniform 
superchannels, i.e., superchannel transmitting signals with different 
characteristics, such as different modulation formats or roll-off factors. 
 

• Extension of the optimization method proposed in Chapter 6 to a 
network level to reduce the interference and align the channels of the 
whole network. 
 

• Development of a new superchannel optimization algorithm for 
scenarios where monitoring probes do not represent the best choice due 
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to the high overhead of configuring and monitoring the network that 
such approach requires and the issues related to the monitoring noise 
and the high probing time. A candidate solution to replace the 
monitoring probes strategy is represented by PLMs or QoT estimators. 
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