
 

 

 

 

 

 

 

 

 

 

 

 

 

PARTE III: 
Compendio de publicaciones. 

 
 





 

 

 

 

 

 

 

 

 

 

 

LISTA DE PUBLICACIONES 
 

 
 

ARTÍCULOS  
(revistas arbitradas incluidas en el JCR) 

 
 
Millán, M. S., Valencia, E., Corbalán, M., "3CCD Camera's capability for measuring color 
differences: experiment in the nearly neutral region", App. Opt. 43(36), 6523-6535 (2004). 
 
Valencia, E., Millán, M. S., "Small color differences in the very pale and dark grayish regions 
measured by camera", J. Imaging Sci. Technol. 49(6), 605-619 (2005). 
 
Millán, M. S., Valencia, E., "Color image sharpening inspired by human vision models", App. Opt. 
45(29), 7684-7697 (2006). 
 
 
 
 

ARTÍCULOS  
(revistas arbitradas no incluidas en el JCR y otras de divulgación tecnológica) 

 
 
Valencia, E., Millán, M. S., "Diferencias de color entre dos ejemplares del atlas de color Munsell", 
Opt. Pura y Apl. 38(2), 57-65 (2005). 
 
Millán, M. S., Pérez-Cabré, E., Abril, H., Valencia, E., "Evaluación objetiva de la hiperemia de la 
conjuntiva tarsal superior mediante análisis de imagen. Ensayo preliminar", Revista Española de 
Contactología 12, 9-15 (2005). 
 
 
 
 



Procesado de Imagen Dígital en Color: Adquisición, Análisis Colorimétrico y Realce 

 

202 

ACTAS EN CONGRESOS  
(publicados como capítulos de libros de amplia difusión que alcanzan círculos comerciales) 

 
 
Millán, M. S., Valencia, E., Corbalán, M. "Evaluation of color differences in nearly neutral Munsell 
chips by a 3CCD color camera" en Electronic Imaging (Science and Technology) - Color Imaging IX, 
Proc. SPIE - IS&T 5293, ISBN: 0-8194-5196-7, 169-179, San José de California, USA, 2004. 
 
Millán, M. S., Valencia, E. "Camera´s performance in measuring small colour differences in the 
nearly neutral region" en Proc. IS&T, CGIV 2004, the 2nd European Conference on Colour in 
Graphics, Imaging, and Vision, ISBN: 0-89208-250-X, 469-474, Aachen, Germany, 2004. 
 
Valencia, E., Millán, M. S. "Measuring small color differences in the nearly neutral region by 3CCD 
camera" en The Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, 
and Their Applications RIAO-OPTILAS 2004, Proc. SPIE 5622, ISBN: 0-8194-5575-X, Marcano O., 
A., Paz, J. L. ed., 1253-1258, Isla Margarita, Venezuela, 2004. 
 
Millán, M. S., Valencia, E. "Laplacian filter based on color difference for image enhancement" en The 
Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their 
Applications RIAO-OPTILAS 2004, Proc. SPIE 5622, ISBN: 0-8194-5575-X, Marcano O., A., Paz, J. 
L. ed., 1259-1264, Isla Margarita, Venezuela, 2004. 
 
Millán, M. S., Valencia, E., Corbalán, M., Gastón, G. "A comparison of a multi-layer silicon sensor 
camera and a 3CCD camera for measuring small colour differences" en 10th Congress of the 
International Colour Association – AIC Colour 05, ISBN: 84-609-5162-6, 299-302, Granada, España, 
2005. 
 
Valencia, E., Millán, M. S. "Color referred to a patch of a standard chart: differences between 
individual collections" en 10th Congress of the International Colour Association – AIC Colour 05, 
ISBN: 84-609-5162-6, 1111-1114, Granada, España, 2005. 
 
Millán, M. S., Valencia, E. "Color image sharpening using color difference based operators" en 10th 
Congress of the International Colour Association – AIC Colour 05, ISBN: 84-609-5162-6, 1055-1058, 
Granada, España, 2005. 
 
Pérez-Cabré, E., Millán, M. S., Abril, H. C., Valencia, E. "Colour image analysis for papillary 
conjunctivitis assessment" en 10th Congress of the International Colour Association – AIC Colour 05, 
ISBN: 84-609-5162-6, 1047-1050, Granada, España, 2005. 
 
Pérez-Cabré, E., Millán, M. S., Abril, H. C., Valencia, E. "Image analysis of contact lens grading 
scales for objective grade assignment of ocular complications" en Opto-Ireland 2005: Photonic 
Engineering, Proc. SPIE 5827, ISBN: 0-8194-5812-0, Bowe, B. W., Byrne, G., Flanagan, A. J., 
Glynn, T. J., Magee, J., O'Connor, G. M., O'Dowd, R. F., O'Sullivan, G. D., Sheridan, J. T. ed., 418-
427, Dublin, Irlanda, 2005. 
 
Millán, M. S., Valencia, E. "Image sharpening based on spatiochromatic properties of the human 
vision system" en Proc. IS&T, CGIV-2006, the 3rd European Conference on Colour in Graphics, 
Imaging, and Vision, ISBN: 0-89208-262-3, Leeds, United Kingdom, 2006. 
 
Valencia, E., Millán, M. S. "Color image analysis of the optic disc to assist diagnosis of glaucoma 
risk and evolution" en Proc. IS&T, CGIV 2006, the 3rd European Conference on Colour in Graphics, 
Imaging, and Vision, ISBN: 0-89208-262-3, Leeds, United Kingdom, 2006. 



Lista de Publicaciones 

 

203 

 
Valencia, E., Millán, M. S., Kotynski, R. "Cup to disc ratio of the optic disc by image analysis to 
assist diagnosis of glaucoma risk and evolution" en 5th. International Workshop on Information 
Optics, AIP CP860, ISBN: 978-0-7354-0356-7, Cristóbal, G., Javidi, B., Vallmitjama, S. ed., 290-
299, Toledo, España, 2006. 
 
 
 
 

ACTAS EN CONGRESOS NACIONALES  
(publicados como capítulos de libros de amplia difusión que alcanzan círculos comerciales) 

 
 
Millán, M. S., Valencia, E., Corbalán, M. "Análisis comparado de las diferencias de color en muestras 
Munsell casi neutras medidas con una cámara 3CCD" en 7 Reunion Nacional de Óptica - 7RNO, 
ISBN: 84-8102-348-5, Santander, España, 2003. 
 
Millán, M. S., Valencia, E., Pérez-Cabré, E., Abril, H., Gil, M. A. "Procesado de imagen en color con 
aplicaciones a la imagen oftálmica" en 8 Reunión Nacional de Óptica - 8RNO, Alicante, España, 
2006. 
 





 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3CCD Camera's capability for measuring  
color differences: experiment in the nearly 

neutral region 
 
 
 

App. Opt. 43(36), 6523-6535 (2004). 





3CCD camera’s capability for measuring color
differences: experiment in the nearly neutral region

Marı́a S. Millán, Edison Valencia, and Montse Corbalán

A method to assess the discrimination capability of a camera to measure small color differences is
proposed. The method helps to fix the working conditions of the camera and analyzes the reliability of
the measurements through comparison with a reference instrument. Attention is paid to the camera’s
performance in the nearly neutral region of color space. The color differences are calculated using the
Commission Internationale de l’Eclairage L*a*b* �CIELAB� �Eab* and CIE 2000 color-difference formula
metrics. The Sony DX-9100P 3CCD camera results are very close to those obtained by the Photo
Research PR-715 spectroradiometer. Their absolute discrepancy is lower than the suprathreshold of
visual discrimination �0.887 CIELAB unit�. © 2004 Optical Society of America

OCIS codes: 040.0040, 040.1490, 120.5240, 330.0030, 330.1710.

1. Introduction

During the past decade, color-imaging devices such
as cameras and scanners have achieved an increasing
relevance in color data acquisition of spatially variant
scenes. These devices, as well as display and hard-
copy systems, are based on color management and
technology. A color camera can be a component in-
tegrated in a versatile computer-vision system, not
necessarily complex or too expensive, that permits a
great variety of tasks in image featuring and inspec-
tion with a good trade-off between image quality and
measurement capability of color. Computer-vision
systems are easily adaptable to a large number of
products and configurations, and hereby they are
highly appreciated for industrial applications.

Several techniques for camera characterization ori-
entated to colorimetric purposes have already been
described in the literature.1–4 They focus on two
aspects: the three spectral-sensitivity functions of
the sensors for the red-green-blue �RGB� channels,
and a linearization function that depends on the
stimulus intensity. A camera model widely used

over a variety of computer-vision systems1–3 consid-
ers that, given the sensor, all nonlinear behavior is
independent of wavelength. The three sensor re-
sponse functions can be seen as a set of color-
scanning filters for which a measure of goodness, in
terms of similarity to the human color-matching
functions, can be determined.5

The camera characterization allows one to predict
an acceptable acquisition and record the color content
of the image with enough covering of luminance, hue,
and chroma scales. The RGB color components pro-
vided by a camera lead to a device-dependent repre-
sentation of color. For this reason, in color
management and in colorimetric applications, a
transformation that defines a mapping between the
camera RGB signals and a device-independent rep-
resentation, such as standard Commission Interna-
tionale de l’Eclairage �CIE� 1931 XYZ, is necessary.
There is some previous work concerning a linear
transformation from the R, G, B components given by
the camera to the X, Y, Z tristimulus values.6–8

Hong et al.4 carried out a study for the colorimetric
characterization of digital cameras based on a poly-
nomial modeling. Once the XYZ tristimulus values
are obtained, the Commission Internationale de
l’Eclairage L*a*b* �CIELAB� coordinates, as well as
the values of hue hab and chroma Cab*, can be derived
from them.9,10

As far as we know, less effort has been devoted to
exploit the discrimination capability of color cameras
in the measurement of color differences. A possible
reason could be the existence of a number of instru-
ments �colorimeters, spectrophotometers, spectrora-
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diometers� capable of measuring highly precise color
differences. These instruments, however, measure
color in an integration area of the sample with lim-
ited flexibility in configuration, dimensions, and sam-
ple scanning. These conditions cannot be easily
modified in general, even when using expensive and
sophisticated instruments.

In this paper, we deal with the measurement of
color differences by a 3CCD camera. We propose a
method to assess the discrimination capability of a
camera to measure small color differences. We also
are concerned with the reliability of the camera in
comparison with a reference instrument �a spectro-
radiometer�. We focus our attention on the camera’s
performance in the nearly neutral region of color
space for three reasons. First, it represents a chal-
lenge for the instrument, since the nearly neutral
colors entail a similar stimulation of the three �red,
green, and blue� sensitive channels of the camera,
and the differences between these colors involve
small variations on a high nearly constant back-
ground signal. Second, most of the colors contained
in real and natural scenes have low chroma, and,
third, the nearly neutral color region draws indus-
trial attention, particularly related to materials for
painting, clothing, or decorating.

The method proposed has two stages. In the first
stage, we determine the appropriate working condi-
tions of the acquisition system and try to adjust the
gain and offset controls to obtain the camera response
closest to the reference-instrument response in the
CIELAB system for an achromatic grade. In the
second stage of the method, we select a set of samples
of very pale colors from the nearly neutral matte
Munsell collection, regularly distributed in the hue
circle. A large number of color differences between
pairs of nearest-neighbor chips are separately evalu-
ated by both the camera and the reference instru-
ment according to the CIELAB9,10 and the more
recent CIE 2000 color-difference formula (CIEDE-
2000)11 metrics, which includes a term to improve
performance of low-chroma colors.12 The compari-
son of the results gives the discrepancy between the
two systems. This discrepancy is used to test the
reliability of the camera’s performance.

We have applied the method to the Sony DX-9100P
3CCD camera that is compared with the Photo Re-
search PR-715 spectroradiometer as a reference in-
strument. The results are discussed and the
conclusions outlined in the last sections of this paper.

2. Method

The method described in this section explores the
discrimination capability of a color camera in order to
determine if it can be used to measure small color
differences with a certain reliability. The camera
performance is compared with a reference instru-
ment, a spectroradiometer, that is assumed to be cal-
ibrated and high quality. The method has two
stages. In the first stage, we determine the appro-
priate working conditions of the acquisition system.
In the second stage, we evaluate the discrepancy in

the small color differences measured by the camera in
comparison to the same color differences measured
by a reference instrument. The test consists of an
assortment of Munsell chips distributed in the hue
circle and belonging to the nearly neutral region.

A. Working Conditions of the Acquisition System

A camera-based color-imaging acquisition system con-
sists of a camera �often 3CCD�, a frame grabber, a
personal computer, and a given lighting–viewing con-
figuration. We compare the camera and the reference
instrument in the same illumination–observation
conditions �Fig. 1�: We use an observation booth with
a given illuminating light source �fluorescent lamps
to build a D65 simulator are often used in booths� and
a given illumination–observation geometry for which
the scene is captured away from specular reflections.
The field of view of the camera is fully occupied by a
single Munsell matte chip ��3.5 cm2�. When using
the standard 45° illumination, some image artifacts
or noise caused by a shading effect on the rough sur-
face are observed. Since the samples are matte, the
choice of the illumination geometry is not critical.
Thus to reduce noise, we consider a 20° illumination
from the surface normal for all the measurements.
Regarding the observation, the camera is placed in
front of the sample, in the direction perpendicular to
the sample surface. A frontal viewing is preferable
to a slant viewing because it reduces focus errors and
geometrical distortions produced by perspective that
could be important for future applications to spatially
variant images. Normal observation is also consid-
ered for the reference instrument.

The characterization of a 3CCD camera requires
the spectral sensitivity curves of the sensors. There
are various methods described in the literature to
estimate them. A conceptually simple method is
based on stimulating the camera with very narrow-
band illumination produced by a monochrometer.2
The sophisticated equipment necessary to implement
this technique motivated several researchers to ob-
tain other procedures based on the camera responses
to a number of inputs with known spectral distribu-
tion. In this line, the characterization method pro-
posed by Barnard and Funt3 is based on an optimized
procedure that jointly fits the small nonlinearity in
the camera response with the sensor response func-

Fig. 1. Scheme of the booth and the illumination–observation
geometry used to measure with either the camera or the spectro-
radiometer.
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tions. The three spectral-sensitivity functions are a
set of color-scanning filters for which the measure of
goodness, �, defined in Ref. 5, can be determined.
The � factor is used to characterize input devices,
such as cameras or scanners, and indicates the sim-
ilarity of the set of the device spectral sensitivities to
human color-matching functions so that � � 1 means
a perfect fit. According to Berns and Reiman,13 val-
ues of the � factor �0.9 are desirable for colorimetric
purposes. Relatively good results can be obtained,
however, using input devices with lower values of the
� factor in color-management processes.13

Taking into account the spectral-response curves of
the camera sensors, Simpson and Jansen7 described
a procedure to calculate the 3 � 3 matrix coefficients
of the linear transformation to obtain the XYZ tri-
stimulus values from the RGB components given by
the camera for each pixel. We have used this pro-
cedure in previous works,8,14 but taking into account
the particular spectral radiant power distribution of
the illuminating light source in the calculation of the
coefficients of the linear transformation. Once the
linear transformation is defined for a given camera
and a given light source, the tristimulus values XYZ
of a uniform color sample can be derived from the
RGB components provided by the camera. The
CIELAB coordinates L*a*b* �CIE 1976� can be cal-
culated using the standard formulas given in Refs. 9
and 10. Other useful magnitudes of the CIELAB
system are chroma Cab* and hue hab, which corre-
spond to the polar coordinates of this cylindrical rep-
resentation system, for which the luminance L* gives
the axis.

In the next step, and provided the camera is used
with its gamma function disabled, we analyze their
linearity over the operating range and try to obtain
the most linear response by adjusting the gain and
offset controls. This analysis is carried out, for in-
stance, by stimulating the camera with a scale of
achromatic stimuli. Barnard and Funt3 and Vora et
al.1 consider this linearization as a function associ-
ated with each RGB channel. However, in our
method, we propose to measure the L*a*b* coordi-
nates of an achromatic scale of Munsell neutral matte
chips, with variant luminance �Munsell value�, by the
reference instrument and, separately, by the camera.
A representation of L* measured by each instrument
versus sample luminance allows the comparison be-
tween both instrument’s performances and thereby
to adjust the camera linearized response to that of the
reference instrument as much as possible.

The analysis of either a*, b* or Cab*, hab values
measured by both instruments for the neutral scale of
chips is also interesting. Provided the set of neutral
chips and the reference instrument’s response are
consistent with achromacy, the values of a*, b* and
Cab* have to be very close to zero. This statement
can also be used to compare the camera with the
reference instrument. Following these two condi-
tions, gain and offset ranges of values can be suitably
adjusted, and the general working conditions of the
acquisition system fixed.

B. Color-Discrimination Capability of the Camera

Standard color targets consisting of an assortment of
color patches are commonly applied to camera char-
acterization. The Gretag Macbeth color-checker
color rendition chart15 is one of the most utilized,
although it consists of only 24 patches. In some cas-
es,13 as we will also do in the second stage of the
method, a custom characterization target consisting
of a larger number of patches is designed and applied.

We select a set of matte samples from the Nearly
Neutral Munsell Collection and the Munsell Book of
Colors, regularly distributed in the hue circle �10
Munsell hue� with a low value of chroma �2� and a
high value of value �8�. The set of samples gener-
ated in this way belong to the very pale color region.
Each one of the selected chips is compared with its
nearest neighbors of the Munsell color system. Tak-
ing into account the Munsell specification of hue
value and chroma, we consider variations of �2.5
hue, �0.5 value, �0.5 chroma, and �1.0 chroma
around each selected chip. Figure 2 contains a
sketch of the distribution in the Munsell system of
the sample set that we use to test the camera. The
sketch represents the selected samples in the circle of
hue. Each selected sample is the center of the group
constituted by it with its neighbors �only shown for
the group centered at 5B 8�2 in Fig. 2�. According to
this, our test in the second stage of the method con-
sists of 90 Munsell matte color chips.

The absolute measurement of color by the camera
may be compared with the external reference pro-
vided by the reference instrument. For instance,
the CIELAB coordinates of a given chip, separately
obtained by the camera and the reference instrument
in the same conditions, could be compared, and this
comparison would be extended to the total amount of
test samples.

Apart from absolute measurements, we are more
interested in the relative measurement of color that
lets us estimate color differences. The uncertainty
intervals of the color differences measured by the
camera and by the reference instrument will be cal-
culated before comparing the measurement results.
All the color differences between the group center and

Fig. 2. Scheme of the selection of the 90 Munsell matte chips that
comprise the test. They are grouped in 10 subsets regularly dis-
tributed on the hue circle. Each subset consists of a group center
and its closest neighbors that differ �2.5 in hue, �0.5 in value, and
�0.5 and �1.0 in chroma from the center.
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its neighbors are evaluated in pairs. The discrep-
ancy between the results obtained by the camera and
by a reference instrument can be seen as the error
associated with the camera. This is a way to test the
reliability of the camera’s performance in comparison
with that of the reference instrument. The best
camera performance would correspond to a discrep-
ancy equal to zero or, equivalently, within the uncer-
tainty interval of the reference-instrument mea-
surement.

The experiment just described allows us to obtain
additional information about the uniformity of the
camera response along different hue regions. Fur-
ther information relating to the camera response to
luminance variations only, or to chroma variations
only, is found as well.

A variety of formulas can be considered to evaluate
color differences. In this work, we use two of them:
the CIELAB classical formula for color differences
�Eab*,

�Eab* � 	��L*�2 � ��a*�2 � ��b*�2
1�2, (1)

which is widely known and a reference for other met-
rics,9,10 and the CIEDE2000 formula �E00, recently
proposed by Luo et al.11 and recommended by CIE.

3. Experimental Application

We apply the method described in Section 2 to the
characterization of the discrimination capability of a
3CCD camera. The image-acquisition system of our
study consists of the following components:

• A Sony DX-9100P 3CCD camera.
• A Matrox Meteor II M�C �8 bits� frame grabber.

The frame grabber is integrated in a personal com-
puter that is used for subsequent calculations.

• A VeriVide CAC 120H4 observation booth with
a D65 daylight simulator given by a F40�T12 fluo-
rescent lamp. We measured its spectral power dis-
tribution, and its correlated color temperature was
6438 K �10° observer�.

The color camera is configured so that the gamma
function is equal to 1.0. The white balance is auto-
matically adjusted to the color temperature of 6500 K
�daylight D65�. We totally occlude the camera-lens
aperture for the black reference and capture a stan-
dard reflectance plate �Photo Research RS-3� for the
white reference. The reflectance spectral distribu-
tion of the plate is nearly constant and equal to 1 �its
calibration did not exceed �0.6% versus the values of
a reference-calibrating source, within 380–780 nm�.
The gain control was in manual position, at 0-dB
level. The camera aperture remained fixed � f�# �
4� during the rest of the experience.

The frame grabber captures an image of 640 � 780
pixel size for each single Munsell chip imaged by the
camera lens. However, we only analyze a central
window. In this way, we take advantage of the op-
timal performance of the camera lens around its op-
tical axis, and we also avoid effects from possible

nonuniformities of illumination. We initially se-
lected two squared windows of 500 � 500 and 300 �
300 pixel size in images captured by the camera of
uniform color samples. Since the mean RGB values
and the standard deviations hardly varied from using
either one window or the other, we eventually decided
to use the smallest one, of 300 � 300 pixel size. The
Matrox Meteor II M�C �8 bits� frame grabber digi-
tized the analogic signals provided by the camera into
256 gray levels �digital values� for each R, G, and B
channel. The gain and offset values have to be suit-
ably fixed before acquiring images. In Subsection
2.A, we explain the procedure followed to this end.

For image acquisition, we used a VeriVide booth
with the illumination provided by its D65 daylight
simulator and the illumination–observation geome-
try stated in Section 2 �Fig. 1� either for the camera or
the reference instrument �spectroradiometer�. In-
side the booth, the illumination is almost uniform,
and we verified this characteristic using a luxometer.
However, this is not critical in this particular work
because the samples we analyze are small enough to
consider that the illumination is uniform throughout
the sample �the Munsell matte chip area is �3.5 cm2�.
The illumination is approximately 20° from the nor-
mal of the sample surface, but within the booth, it
must be taken into account that both direct and dif-
fuse light is present. Nevertheless, these geometri-
cal considerations have little importance when one is
measuring diffuse materials such as the very matte
surface of the Munsell chips.

In this work, the camera’s performance is com-
pared with a calibrated spectroradiometer as the ref-
erence instrument; both work with the same
illumination–observation geometry �replacing the
camera by the spectroradiometer in the setup of Fig.
1�. We use the Photo Research PR-715 spectroradi-
ometer. The spectroradiometer measured the cen-
tral area of a Munsell chip with 1° aperture or field
coverage. We have used this spectroradiometer to
measure several things in this work: the spectral
power distribution and correlated color temperature
of the D65 simulator of the booth, the spectral sensi-
tivities of the 3CCD camera, and the diffuse spectral
reflectance and triestimulus values of the Munsell
chips.

A. Camera-Independent Representation of Color

In the camera initialization, the gain and offset val-
ues have to be fixed so that the frame grabber con-
verts the analogical signal of the camera into the
RGB digital values in the 8-bit range of 0 to 255.
Initially, one tries setting some combination out of
the four possible combinations where the gain and
the offset take the extreme values of the range, i.e.,
either 0 or 255. We studied the RGB responses of
the camera versus a gray scale of 31 Munsell matte
neutral chips �within the value range V � 2 up to V �
9.5� for these four cases �Fig. 3�. To complete the
range of the gray scale, we occluded totally the cam-
era aperture �that stands for V � 0�, and then we
captured the reference white, the standard RS-3
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plate �that stands for V � 10�. Since the camera
response that takes profit from its maximum dy-
namic range with the minimum alteration in the sig-
nal is usually sought, we selected gain �255� and
offset �0�, which correspond to the RGB responses
graphed in Fig. 3�a�. Note in Fig. 3�a� that even
when setting offset equal to 0, nonzero RGB signals
are obtained when the camera aperture is totally
closed, which means there is a constant background
or a noise introduced by the camera. The values
gain equal to 0 and offset equal to 0 	Fig. 3�b�
 are not
preferable to the former gain �255� and offset �0� 	Fig.
3�a�
 because they lead to a saturation of the sensor
for high luminances �our region of interest�, and, in
addition, the constant background is nearly doubled.

We measured the RGB responsivity values of the
Sony DX-9100P camera for some values of gain �255,
128� and offset �0, 32, 64� around the initially selected
values of gain �255� and offset �0�. We applied the
classical technique based on stimulating the camera
with very narrow-band illumination produced by a
monochrometer. Figure 4 shows the graphs of the
three spectral responses of the camera measured for
the six combinations of gain and offset values. Con-
sidering each set of three responsivity functions as a
set of color-scanning filters, we calculate the measure
of goodness given by factor �.5 From Fig. 4, a value
� � 0.9 is reached by the pairs �gain, offset� � 
�128,

32�, �255, 32��. On the other hand, the pair �gain,
offset� � �255, 0� obtains the lowest value � � 0.8208
among the six pairs studied. It can be seen that
offset variations have greater influence in the RGB
responsitivity functions, and hence in their factor �,
than gain variations do. We eventually consider
that the best result is obtained for �gain, offset� �
�255, 32�. In this case, the shape of the R sensitivity
function is slightly smoother than for the pair �128,
32�.

From the different sensitivities presented in Fig. 4,
the spectral power distribution of the D65 simulator,
the standard observer responses, and the coefficients
of the linear transformations that relate the RGB
values obtained by the camera with a given �gain,
offset� to the XYZ tristimulus values can be calcu-
lated. We followed the procedure described in Refs.
6 and 7. For instance, for �gain, offset� � �255, 32�,
we obtained the linear transform

�X
Y
Z
� � �2.080 0.246 0.359

1.239 1.059 0.094
0.065 �0.119 2.130

� � �R
G
B
� . (2)

From the XYZ values, the CIELAB coordinates
L*a*b* are calculated using the CIE 1976 formu-
la.9,10 As the white reference for this calculation, we

Fig. 3. RGB values provided by the camera when capturing a scale of gray samples with �gain, offset� � 
�255, 0�, �0, 0�, �0, 255�, �255,
255��. A D65 simulator was the light source. The gray scale consisted of a gradation of Munsell matte neutral chips �from value of 2 up
to 9.5�. Value of 0 corresponds to totally occluding the camera lens, and value of 10 corresponds to capturing the reference white.
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used the Xn, Yn, and Zn obtained for the Photo-
Research RS-3 standard reflectance plate.

B. Influence of Gain and Offset in the CIELAB
Coordinates of a Neutral Scale

To confirm the selection of the camera working con-
ditions, we develop a deeper study of how the camera
response, in terms of color representation, is jointly
influenced by the gain and the offset controls when it
captures the samples of the neutral scale used in
Subsection 3.A. This study will allow us to carry out
a comparison between the colorimetric data obtained
by the camera with those obtained by the reference
instrument �spectroradiometer�. We apply the lin-
ear transformation to the RGB values captured by
the camera with a given �gain, offset� to obtain the
XYZ, and then we apply the CIE 1976 formula to
calculate the CIELAB coordinates. Several values
of gain �128, 255� and offset �0, 32, 64� have been
combined to capture the gray samples with the cam-
era. Figure 5 shows graphs of the luminance L*
versus the Munsell value for the two instruments.
All the curves reveal camera responses quite close to
the spectroradiometer response in the medium and
bright regions of the gray scale. The curves look
rather linear, and this fact is in correspondence with
the nearly linear scale of the considered neutral Mun-
sell chips. Among the camera-response graphs rep-
resented in Fig. 5, the group corresponding to offset
�32� and gain �128, 255� is really very close to the
spectroradiometer response within the whole gray
scale.

On the other hand, if we consider the chromatic
plane defined by the a*, b* coordinates, all the gray

samples �Munsell neutral chips from V � 2 to V �
9.5� should be represented by points near the origin.
As Fig. 6 shows, this is fairly accomplished for the
measurements obtained by the spectroradiometer,
except for two gray samples with the highest Munsell
values. There is a small error or a slight deviation
toward the yellow region, which could be due to the
samples or to the spectroradiometer. We include in
Fig. 6 the group of graphs corresponding to the cam-
era capturing with �gain, offset� � 
�255, 0�, �255, 32�,
�128, 32��. These measurements obtained by the
camera tend to deviate toward the red or red-orange
zone. The graph corresponding to �gain, offset� �

Fig. 4. Spectral responsivities of the Sony DX-9100P camera measured for different �gain, offset� values.

Fig. 5. CIELAB luminance L* versus the Munsell value of the
neutral chips of the gray scale. The measurement of L* was
obtained by a spectroradiometer �in solid curve� and by the camera
with different values of gain and offset.
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�255, 32� falls approximately between the other two.
If we compare the results of Figs. 5 and 6, we see that,
with respect to L*, the pair �gain, offset� � �255, 32�
is better than �gain, offset� � �255, 0�. But, looking
at the chromaticity plane, we conclude the opposite,
i.e., the pair �gain, offset� � �255, 0� obtains slightly
better results than the pair �gain, offset� � �255, 32�.

Figure 7 takes information from Figs. 5 and 6 and
shows the luminance L* versus the chromaticity
Cab*. It can be seen �marked by arrows in Fig. 7�
that, when using the camera, the pair �gain, offset� �
�255, 0� gives lower chromaticity values for the neu-
tral scale, but, on the other hand, it also has less
covering of luminance than the pairs �gain, offset� �

�255, 32�, �128, 32��. Again, the graph correspond-
ing to �gain, offset� � �255, 32� is between the other
two obtained for the camera. In addition, looking at
the area of interest of the pale color region �with
Munsell values from V � 7 to V � 9�, we see that the
curves corresponding to �gain, offset� � 
�255, 32�,
�255, 0�� appear very close in this region in Fig. 7 and,
in fact, also in Fig. 5. For the reasons concerning the
results shown in Figs. 5–7, the capturing condition
given by �gain, offset� � �255, 32� seems to be prefer-

able, although some tolerance in the gain value can
be accepted. For the next experiment, we still con-
sider two offset values �0 and 32� and, in consequence,
two capturing conditions �gain, offset� � 
�255, 32�,
�255, 0�� are studied. They lead to interesting com-
parisons of the results in the measurement of small
color differences.

C. Color Measurement and Color Difference

To apply the second stage of the method, we have
measured the CIELAB coordinates, chroma Cab*,
and hue hab of the test of 100 Munsell color chips �Fig.
2� by the spectroradiometer and by the camera with
two capturing conditions: �gain, offset� � 
�255, 32�,
�255, 0��. We present in Fig. 8 the results obtained
for the groups centered at �a� 5YR8�2, �b� 5G8�2, �c�
5B8�2, and �d� 5P8�2, as representative of the rest of
groups. For a given group, three figures are pre-
sented �from left to right�: first �left�, the a*, b*
chromatic plane with the points corresponding to the
Munsell neighbor chips that represent chroma or hue
variations with respect to the group center; second
�center�, the luminance L* versus Cab* figure, with
the points corresponding to the neighbor chips that
represent value or chroma variations with respect to
the group center; third �right�, the luminance L* ver-
sus Cab* figure, with the points corresponding to the
neighbor chips that represent hue variations with
respect to the group center.

From the diagrams of Fig. 8, one can appreciate
that, in general, the values measured by the spectro-
radiometer do not coincide with those measured by
the camera, but, on the other hand, there is a certain
similarity between their relative point positions.
Thus the chroma variations in the Munsell system
appear radially ordered in the a*, b* chromatic plane,
whereas the Munsell hue variations appear with a
predominantly angular distribution in the same
plane. As expected for both devices �camera and
spectroradiometer� in the central L*Cab* diagrams,
Munsell chroma variations are nearly constant in
luminance, whereas Munsell value variations are
nearly constant in chroma and give rise only to pre-
dominant luminance variations. Munsell hue vari-
ations should not be appreciated in the right-handed
L*Cab* diagrams, so a single point representing the
group center and its corresponding one-step-away-in-
hue neighbors are expected in each diagram. In
fact, points in these right-handed L*Cab* diagrams
�in Fig. 8� appear quite close in general. In addition
to the results shown in Fig. 8 for four groups, we have
verified the uniformity of the camera response along
different hue regions, for luminance variations only,
and for chroma variations only.

If we compare the spectroradiometer’s performance
with the results obtained by the camera for the two
capturing conditions �gain, offset� � 
�255, 32�, �255,
0�� in Fig. 8, it can be said that both capturing con-
ditions lead to rather similar results, and neither of
them appears as clearly advantageous.

The results just presented allow us to roughly de-
scribe the camera’s performance in the absolute mea-

Fig. 6. CIELAB chromatic plane showing the a*, b* coordinates
of the gray samples measured by the spectroradiometer and by the
camera with �gain, offset� � 
�128, 32�, �255, 0�, �255, 32��.

Fig. 7. CIELAB luminance L* versus chroma Cab* of the gray
scale measured by the spectroradiometer and the camera under
the capturing conditions of Fig. 6.
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surement of color. But they do not give enough
information about the capability of the camera to
obtain relative measurements of color. We are now
interested in exploring the discrimination capability

of the camera and its reliability in the measurement
of small differences between very pale colors. There
are a number of industrial tasks for which the abso-
lute measurement of color is not so important, and,

Fig. 8. CIELAB L*, a*, b*, Cab* for four groups of Munsell chips �Fig. 2� centered at �a� 5YR 8�2, �b� 5G 8�2, �c� 5B 8�2, and �d� 5P 8�2,
measured by the spectroradiometer and by the camera with two capturing conditions �gain, offset� � 
�255, 0�, �255, 32��. On the left,
Munsell chroma and hue variations with respect to the group center are represented on the chromatic a*b* plane. In the center, Munsell
value and chroma variations are represented on a L*Cab* diagram. On the right, Munsell hue variations are represented on a L*Cab*
diagram.
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instead, color difference is what is really important
�e.g., in go�not go, pass�fail inspection�. We con-
sider the CIELAB formula9 for the calculation of color
differences �Eab* and the more recent CIEDE2000
formula �E00,11 also recommended by CIE.

Concerning the amount of uncertainty associated
with the measurement process, we consider a specific
metric called the mean color difference from the
mean10 �MCDM�. For a set of CIELAB measure-
ments, the average �L� *, a�*, b�*� is calculated. Then,
a color-difference equation �in our case, either �Eab*
or �E00� is calculated between each individual mea-
surement and �L� *, a�*, b�*�. The average of all the
color differences defines the MCDM. The greater
the MCDM, the poorer the precision �expressed as a
sphere�. Although color differences can only be
greater than zero and, consequently, a skewed distri-
bution of measurements results, it is still reasonable
to use MCDM. As Berns point out,10 color-difference
data are always skewed to larger color differences,
and this leads to a larger MCDM, erring on the con-
servative side when defining instrumental precision.
We calculate the MCDM of the measurements ob-
tained from a set of ten samples taken at the central
area of a Munsell chip. In the case of the camera
measurements, each individual measurement �Li*,
ai*, bi*� is, in turn, the average CIELAB coordinates
of the central field window of 300 � 300 pixels. We
have repeated the procedure for a number of color
chips and have observed stability in the final result.
Following the notation given in Ref. 10, the value

n�Eab* is the MCDM in the CIELAB metrics. Sim-
ilarly, the value n�E00 is the MCDM in the
CIEDE2000 metrics. We have found that the spec-
troradiometer has a precision, expressed as MCDM,
of CIELAB 0.025�Eab* and CIEDE2000 0.020�E00.
The camera has a precision, expressed as MCDM, of
CIELAB 0.05�Eab* and CIEDE2000 0.06�E00 work-
ing with �gain, offset� � �255, 32�. When it captures
with �gain, offset� � �255, 0�, its precision is CIELAB
0.1�Eab* and CIEDE2000 0.09�E00. According to a
statistical rule of thumb, the instrumental color tol-
erance should be no less than ten times the measure-
ment precision. This rule gives us a magnitude
order of our instrumental tolerances: 0.25�Eab* or
0.20�E00 for the spectroradiometer, 0.5�Eab* or
0.6�E00 for the camera capturing with �gain, offset� �
�255, 32�, and 1�Eab* or 0.9�E00 for the camera cap-
turing with �gain, offset� � �255, 0�.

We continue our analysis calculating the color dif-
ferences between each group center of Fig. 2 and its
neighbors within the group. We calculate these
color differences from the CIELAB coordinates mea-
sured by the reference instrument, and, afterwards,
we repeat the calculation from the CIELAB coordi-
nates obtained by the camera working with either
�gain, offset� � �255, 32� or �gain, offset� � �255, 0�.

In Fig. 9, we plot the color differences �E00, calcu-
lated for the spectroradiometer and for the camera
with �gain, offset� � �255, 32�, at ten positions in the
circle of hue �Fig. 2�. In each diagram of Fig. 9, we
plot the color differences between each group center

Fig. 9. CIEDE2000 color differences between each group center and its neighbors, calculated for the spectroradiometer and for the camera
with �gain, offset� � �255, 32�, at ten positions in the circle of hue �Fig. 2�. We plot the color differences concerning the following variations
in the Munsell system: �a� �0.5 value, �b� �2.5 hue, �c� and �0.5, and �1.0 chroma.
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and some neighbors. The color differences plotted
concern the following variations in the Munsell sys-
tem: �0.5 value 	Fig. 9�a�
, �2.5 hue 	Fig. 9�b�
, and
�0.5 and �1.0 chroma 	Fig. 9�c�
.

From the results plotted in Fig. 9, we realize that
the camera and the reference instrument present a
high level of agreement in the estimation of the color
differences. Looking in detail at the figures, we see
that the color differences corresponding to �0.5 value
variations 	Fig. 9�a�
 are nearly uniform as measured
by both devices around the circle of hue. Munsell
�2.5 hue variations give rise to color differences in
Fig. 9�b� not so uniform around the circle as before.
In fact, fluctuations affect the measurements ob-
tained by both the spectroradiometer and the camera.
Munsell �0.5 and �1.0 chroma variations give rise to
relatively oval plots in Fig. 9�c�. A high coincidence
between both devices can be appreciated when the
differences are measured between neighbors that are
one Munsell chroma step ��0.5� away from the group
center. The discrepancy becomes slightly bigger for
neighbors two Munsell chroma steps ��1.0� away
from the group center.

D. Instrument Discrepancy

We have estimated the absolute discrepancy D be-
tween the color differences measured by the reference
instrument and the camera under a given �gain, off-
set� capturing condition by simply subtracting them
and taking the absolute value. Thus we consider the
discrepancies defined by the expressions

D00 � ��E00�ref� � �E00�camgain,offset��, (3)

Dab � ��Eab*�ref� � �Eab*�camgain,offset��, (4)

where subindex 00 stands for CIEDE2000 in Eq. �3�
and subindex ab stands for CIELAB in Eq. �4�. Ta-
ble 1 contain the absolute discrepancies Dab between
the spectroradiometer and the camera capturing with
�gain, offset� � �255, 32�. Although the discrepan-
cies exceed the uncertainty ��0.06 CIELAB units�,
they fall in general in the camera tolerance
�0.5�Eab*� for this �gain, offset� capturing condition.
This can be considered a good achievement for the
camera performance. It can be seen that most of the
absolute discrepancies of Table 1 are even lower than

Table 1. Absolute Discrepancies Dab�255, 32� between the Spectroradiometer and the Camera with �gain, offset� � �255, 32� in the Measurement of
CIELAB Color Differences

Dab �255, 32� ��0.06 CIELAB units�

Group Center �1.0 Chroma �0.5 Chroma �0.5 Chroma �1.0 Chroma �0.5 Value �0.5 Value �2.5 Hue �2.5 Hue

5R 8�2 0.271 0.078 0.175 0.544 0.254 0.143 0.342 0.103
5RP 8�2 0.636 0.324 0.699 1.312 0.094 0.909 0.009 0.210
5P 8�2 0.314 0.165 0.264 0.345 0.384 0.016 0.568 0.260
5PB 8�2 0.446 0.061 0.079 0.124 0.196 0.653 0.937 0.298
5B 8�2 0.056 0.178 0.067 0.330 0.110 0.363 1.170 0.671
5BG 8�2 0.955 0.370 0.200 1.026 0.599 0.374 0.406 0.040
5G 8�2 1.727 0.782 0.502 1.366 0.123 0.720 0.322 1.536
5GY 8�2 0.269 0.519 0.235 0.225 0.214 0.431 0.150 1.161
5Y 8�2 0.441 0.436 0.297 0.470 0.560 0.049 0.518 0.308
5YR 8�2 0.302 0.114 0.057 0.104 0.492 1.300 0.065 0.685
Mean 0.542 0.303 0.257 0.584 0.303 0.496 0.449 0.527

Table 2. Relative Discrepancies D00
r �255, 32� between the Spectroradiometer and the Camera with �gain, offset� � �255, 32� in the Measurement of

CIEDE2000 Color Differences

D00
r �255, 32�

Group Center �1.0 Chroma �0.5 Chroma �0.5 Chroma �1.0 Chroma �0.5 Value �0.5 Value �2.5 Hue �2.5 Hue Mean Std.

5R 8�2 0.193 0.131 0.191 0.214 0.063 0.014 0.233 0.061 0.137 0.082
5RP 8�2 0.541 0.581 0.559 0.544 0.029 0.208 0.098 0.357 0.365 0.226
5P 8�2 0.427 0.436 0.409 0.341 0.084 0.006 0.427 0.209 0.293 0.171
5PB 8�2 0.099 0.044 0.012 0.013 0.014 0.145 0.976 0.262 0.196 0.327
5B 8�2 0.170 0.298 0.139 0.085 0.017 0.120 0.770 0.359 0.245 0.239
5BG 8�2 0.153 0.192 0.230 0.133 0.187 0.015 0.200 0.209 0.165 0.068
5G 8�2 0.095 0.048 0.005 0.054 0.015 0.217 0.432 0.627 0.187 0.228
5GY 8�2 0.323 0.491 0.288 0.153 0.009 0.147 0.140 0.324 0.235 0.150
5Y 8�2 0.218 0.270 0.234 0.210 0.096 0.050 0.210 0.086 0.172 0.082
5YR 8�2 0.043 0.022 0.030 0.043 0.100 0.283 0.019 0.425 0.121 0.151
Mean 0.226 0.251 0.210 0.179 0.061 0.121 0.351 0.292
Std. 0.158 0.200 0.179 0.162 0.057 0.097 0.308 0.167
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the suprathreshold for visual discrimination of 0.887
CIELAB units.16

We consider that the results obtained so far for the
camera are actually very good, and they confirm the
camera studied as a reliable imaging system for

the measurement of small color differences, particu-
larly in the pale color region.

For further analysis of the camera performance, we
have considered relative discrepancies. The relative
discrepancy is the absolute discrepancy divided by

Table 3. Relative Discrepancies Dab
r �255, 32� between the Spectroradiometer and the Camera with �gain, offset� � �255, 32� in the Measurement of

CIELAB Color Differences

Dab
r �255, 32�

Group Center �1.0 Chroma �0.5 Chroma �0.5 Chroma �1.0 Chroma �0.5 Value �0.5 Value �2.5 Hue �2.5 Hue Mean Std.

5R 8�2 0.083 0.045 0.069 0.107 0.051 0.033 0.191 0.041 0.078 0.052
5RP 8�2 0.284 0.347 0.363 0.368 0.020 0.209 0.004 0.151 0.218 0.148
5P 8�2 0.139 0.157 0.150 0.105 0.083 0.003 0.335 0.136 0.138 0.094
5PB 8�2 0.145 0.039 0.039 0.031 0.043 0.157 0.834 0.118 0.176 0.271
5B 8�2 0.013 0.083 0.024 0.064 0.024 0.083 0.968 0.528 0.223 0.345
5BG 8�2 0.194 0.147 0.084 0.222 0.133 0.082 0.324 0.018 0.151 0.096
5G 8�2 0.327 0.288 0.232 0.324 0.026 0.193 0.119 0.607 0.264 0.173
5GY 8�2 0.035 0.129 0.069 0.040 0.047 0.096 0.052 0.367 0.104 0.111
5Y 8�2 0.058 0.117 0.083 0.066 0.124 0.011 0.261 0.200 0.115 0.081
5YR 8�2 0.057 0.038 0.019 0.018 0.123 0.269 0.035 0.334 0.112 0.123
Mean 0.133 0.139 0.113 0.134 0.067 0.114 0.312 0.250
Std. 0.107 0.105 0.108 0.126 0.045 0.090 0.333 0.201

Table 4. Relative Discrepancies D00
r �255, 0� between the Spectroradiometer and the Camera with �gain, offset� � �255, 0� in the Measurement of

CIEDE2000 Color Differences

D00
r �255, 0�

Group Center �1.0 Chroma �0.5 Chroma �0.5 Chroma �1.0 Chroma �0.5 Value �0.5 Value �2.5 Hue �2.5 Hue Mean Std.

5R 8�2 0.108 0.088 0.105 0.133 0.057 0.156 0.604 0.054 0.163 0.182
5RP 8�2 0.484 0.545 0.484 0.479 0.140 0.114 0.193 0.283 0.340 0.177
5P 8�2 0.157 0.175 0.161 0.097 0.186 0.075 0.262 0.223 0.167 0.061
5PB 8�2 0.233 0.172 0.159 0.165 0.114 0.053 0.851 0.154 0.238 0.253
5B 8�2 0.269 0.410 0.276 0.235 0.082 0.023 0.633 0.143 0.259 0.194
5BG 8�2 0.306 0.355 0.339 0.255 0.071 0.094 0.069 0.528 0.252 0.164
5G 8�2 0.051 0.019 0.171 0.071 0.074 0.102 0.455 0.777 0.215 0.265
5GY 8�2 0.548 0.675 0.412 0.271 0.148 0.044 0.214 0.317 0.329 0.209
5Y 8�2 0.448 0.471 0.405 0.361 0.223 0.063 0.083 0.006 0.258 0.188
5YR 8�2 0.110 0.170 0.206 0.123 0.231 0.178 0.353 0.299 0.209 0.084
Mean 0.271 0.308 0.272 0.219 0.133 0.090 0.372 0.278
Std. 0.173 0.215 0.131 0.128 0.064 0.049 0.259 0.229

Table 5. Relative Discrepancies Dab
r �255, 0� between the Spectroradiometer and the Camera with �gain, offset� � �255, 0� in the Measurement of

CIELAB Color Differences

Dab
r �255, 0�

Group Center �1.0 Chroma �0.5 Chroma �0.5 Chroma �1.0 Chroma �0.5 Value �0.5 Value �2.5 Hue �2.5 Hue Mean Std.

5R 8�2 0.076 0.104 0.084 0.054 0.045 0.152 0.554 0.041 0.139 0.171
5RP 8�2 0.150 0.231 0.204 0.217 0.111 0.129 0.335 0.009 0.173 0.097
5P 8�2 0.210 0.191 0.200 0.247 0.170 0.074 0.108 0.087 0.161 0.063
5PB 8�2 0.408 0.303 0.327 0.331 0.130 0.074 0.585 0.124 0.285 0.171
5B 8�2 0.204 0.263 0.167 0.139 0.111 0.012 0.861 0.270 0.254 0.260
5BG 8�2 0.038 0.021 0.049 0.071 0.032 0.172 0.026 0.310 0.090 0.101
5G 8�2 0.110 0.132 0.019 0.095 0.092 0.094 0.228 0.802 0.196 0.251
5GY 8�2 0.334 0.428 0.352 0.241 0.144 0.046 0.274 0.227 0.256 0.121
5Y 8�2 0.337 0.383 0.367 0.343 0.205 0.060 0.086 0.101 0.235 0.138
5YR 8�2 0.268 0.278 0.253 0.208 0.223 0.191 0.295 0.220 0.242 0.037
Mean 0.213 0.233 0.202 0.195 0.126 0.100 0.335 0.219
Std. 0.123 0.125 0.125 0.102 0.062 0.058 0.261 0.228
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the mean value of the color differences measured by
the spectroradiometer and the camera,

D00
r �

D00

��E00�ref�, �E00�camgain,offset��

�
2��E00�ref� � �E00�camgain,offset��
�E00�ref� � �E00�camgain,offset�

. (5)

An analogous equation would be obtained for the
CIELAB metrics by replacing subindex 00 with ab in
Eq. �5�. Tables 2 to 5 contain the relative discrep-
ancies in both metrics for the camera capturing con-
ditions �gain, offset� � 
�255, 32�, �255, 0��. In each
table, we have taken the mean value and the stan-
dard deviation by rows �i.e., all the relative discrep-
ancies related to a given group center�, and the
results are plotted in Fig. 10. It shows that the cam-
era behaves rather uniformly around the circle of
hue. We have also taken the mean value and the
standard deviation by columns in Tables 2 to 5, and
the results are plotted in Fig. 11. This figure shows
that the camera is highly accurate when it measures
chroma and value variations, but less accurate for
hue variations.

From Figs. 10 and 11, it is difficult to conclude
which �gain, offset� capturing condition, �255, 32� or
�255, 0�, is better, because they both lead to similar
results. Instead, this study eventually demon-
strates that the selection of the offset value admits
some tolerance. The tolerance in the offset value,
along with the tolerance in the gain value pointed out
in Subsection 3.B, demonstrates that the selections of
the gain and offset values are not critical for the
considered colorimetric application. Thus it can be
said that the imaging system analyzed is a good in-
strument for color-difference measurements and ro-

bust to variations in the capturing conditions of �gain,
offset�.

4. Conclusions

The method presented has been demonstrated to be
useful to analyze the discrimination capability of a
color camera for colorimetric purposes. In its first
stage, the method helps to select the working condi-
tions of the acquisition system. The comparison be-
tween the camera response and a reference
instrument in the measure of luminance �L*� of a
gray scale led us to select the gain and the offset
range of values in a more appropriate way than by
considering the camera response in the separate RGB
channels exclusively. In addition to this, our
method takes into account possible chromatic devia-
tions in capturing achromatic samples and compares
them with the response of the reference instrument.
This sort of analysis can also be used as a basis to
establish tolerances in the camera response with re-
spect to the reference instrument.

The second stage of the method analyzes the reli-
ability of a camera for the measurement of color and
color differences. To test the camera capability in a
difficult case of discrimination, we have considered
small color differences in the very pale color region of
the Munsell system. A test of 90 Munsell chips dis-
tributed in groups of neighbors around the circle of
hue has been used to compare the responses of the
camera and the reference instrument. This study
has allowed us to evaluate the camera’s performance

Fig. 10. Relative discrepancies versus group color: �a� in
CIEDE2000, �b� in CIELAB. Data are taken from Tables 2–5.

Fig. 11. Relative discrepancies versus type of variation with re-
spect to the group center: �a� in CIEDE2000, �b� in CIELAB.
Data are taken from Tables 2–5.
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for the absolute measurement of color and for the
relative measurement of color through the calcula-
tion of color differences. The discrepancies between
the results obtained by the camera and by the refer-
ence instrument are used to test the reliability of the
camera’s performance. The experiment proposed in
the second stage of the method also provides infor-
mation about the uniformity of the camera response
along different hue regions, for luminance variations
only, and for chroma variations only.

We have applied the method to the Sony DX-9100P
color camera �Matrox Meteor II M�C frame grabber�
capturing under the illumination of a real D65 sim-
ulator, and we have compared it with the Photo Re-
search PR-715 spectroradiometer. Following our
method, the gain and offset ranges of values were
first selected, and two pairs of �gain, offset� values
were analyzed during the whole experiment. Sec-
ond, we measured the CIELAB coordinates of 90
Munsell chips in the very pale color region using the
spectroradiometer and the camera under two captur-
ing conditions.

Although the lack of coincidence in the absolute
measurements of color is appreciable, we conclude
that the camera is reliable to measure color differ-
ences. This reliability has been quantitatively esti-
mated through the absolute discrepancy in the
measurement of color differences with respect to the
reference instrument. Discrepancies have been ad-
dressed considering the MCDM metric to represent
the uncertainty, and ten times this amount, to deter-
mine the instrumental color tolerance. Although
the discrepancies exceed the uncertainty, they fall, in
general, in the camera tolerance for a given �gain,
offset� capturing condition. This is a good achieve-
ment for the camera performance. Moreover, the
absolute discrepancies are generally lower than the
suprathreshold for visual discrimination of 0.887
CIELAB unit.

The analysis of the relative discrepancy shows that
the camera behaves quite uniformly around the circle
of hue; it is highly accurate when it measures chroma
and value variations, but somewhat less accurate for
hue variations. We also conclude that the selection
�gain, offset� � �255, 32� is suitable but not critical.
Moreover, the camera’s performance is robust to vari-
ations of these values. The results obtained in this
work using the CIELAB color-difference equation are
very close to those obtained using CIEDE2000; thus
the conclusions outlined are consistent in both met-
rics.

For future study, practical real cases of pale color
sample pairs of several materials �textile, ceramic,
etc.� that involve nonuniform or textured color sam-
ples are to be considered. Taking into account the

conclusions outlined in this work, we consider that an
image-acquisition system based on a 3CCD camera
has promising characteristics for objective and auto-
matic inspection of color matching.

The authors acknowledge the Spanish Ministerio
de Ciencia y Tecnologı́a for financial support under
project DPI2003-03931. They also thank Javier Ro-
mero from the Universidad de Granada and Miquel
Ralló from the Universidad Politécnica de Cataluña
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amined in order to produce hardcopy results that are
spectrally matched to original colors.8 The approach
consists of scene capture using a trichromatic digital
camera combined with multiple color filtration,9 image
processing, and four color ink jet printing.8

As far as we know, less effort has been devoted to ex-
ploit the discrimination capability of color cameras in the
measurement of color differences. A possible reason may
be the existence of a number of instruments (colorim-
eters, spectrophotometers, spectroradiometers) capable
of measuring color differences with high precision. These
instruments, however, measure color in an integration
area of the sample with limited flexibility in configura-
tion, dimensions and sample scanning. These conditions
cannot be easily modified in general, even when using
expensive and sophisticated instruments. Marszalec et
al.10 studied the performance of color cameras for mea-
suring small color differences and related it to metamer-
ism. They concentrated on the fact that, in general, color
cameras and human vision have not exactly the same
response functions and, consequently, they could find a
number of sample pairs that were metameric or very simi-
lar for the human observer but were measured by a color
camera as separate colors. They evaluated how similar
these colors were in the RGB camera color space by us-
ing a non established formula.

In this article we consider a 3CCD camera to measure
small color differences with applications in industrial
inspection. We emphasize that the target measure here
is the “size” of color difference, not color accuracy. This
goal in itself is valid, especially for applications where
color uniformity, not color fidelity, is the concern. We fix
the working conditions of the camera system according

Introduction
The characterization of a camera orientated to colori-
metric purposes has been described in Refs. 1 through
4. Important applications can be found in color man-
agement, for which the acquisition of the color content
of either a scene or an image and the transformation to
obtain a device independent representation of color are
some of the basic stages. Some applications propose to
develop databases of calibrated color images. Face col-
ors under varying lighting conditions are the object of
the Physics-Based Face Database for color research.5

Xiao et al. describe an initial methodology to create a
database of high dynamic range, color images that rep-
resent typical scenes in digital photographs.6 Such a
database7 should help the development and evaluation
of rendering methods and it can also be used to evalu-
ate the constraints imposed by image sensors and lens
configurations. Other examples of colorimetric applica-
tions of digital cameras can be found in end-to-end color
reproduction systems. The possibilities and limitations
of commercial input and output devices have been ex-
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The camera capability to measure small color differences between sample pairs is evaluated by comparing the camera performance
with a reference instrument. To this end, the appropriate working conditions are established, the camera spectral sensitivities and
imaging noise are characterized, and the transformation to obtain a device independent representation of color is calculated consider-
ing two approaches: one, on the basis of the camera spectral sensitivity (CSS), and two, on the basis of the unified measure of goodness
of the camera (UMG) that involves an imaging noise model. The camera performance is assessed from the measurement results of a
large number of varied small color differences in the very pale and the dark grayish color regions, the involved uncertainty, the
absolute discrepancy, and the relative discrepancy with respect to the reference instrument. In the experimental application, the three
CCD camera SONY DX-9100P is assessed and compared with the spectroradiometer Photo Research PR-715 as reference instrument.
The results reveal a high quality performance of the camera system, with absolute discrepancies in the estimation of color differences
around the camera tolerances (CIELAB 0.5ΔE*

ab or CIEDE2000 0.6 ΔE00). The color uniformity in textile dying is evaluated by analyz-
ing some pairs of extreme center fabric samples. Although the camera is more sensitive to the texture effects than the spectroradiometer,
both instruments yield consistent and satisfactory Pass/Fail results.
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to methods previously described in Ref. 11. In that study,
the camera performance was compared with the perfor-
mance of a reference instrument in a camera indepen-
dent color space. In addition to the characterization of
the spectral sensitivities of the camera and the Vora–
Trussell measure of goodness12 considered previously in
Ref. 11, in this work we also consider the characteriza-
tion of imaging noise related to dark current, shot noise,
and the unified measure of goodness (UMG).13 This more
general approach leads us to compute new coefficients
for the linear transform applied to the RGB camera val-
ues to obtain the XYZ tristimulus values in the device
independent color representation. In this work we explore
the reliability of the camera system and estimate the
precision and accuracy considered before Ref. 11 and the
approach involving the UMMG.

In the experiments we pay particular attention to the
nearly neutral region of the color space (unsaturated col-
ors). The nearly neutral colors imply a similar stimula-
tion of the three red-, green- and blue-sensitive channels
of the camera, and the differences between these colors
involve small variations on a nearly constant background
signal. Although humans show a subjective preference
for colorfully enhanced images, real colors of original
scenes are not as saturated as observers prefer.14,15 There
are a large number of examples, particularly in the west-
ern culture, for which unsaturated colors compose the
main part of real scenes: natural scenes in cold countries,
outdoor city scenes, indoor scenes, suits and other cloth-
ing, wall paints and decoration, human skin and faces,
etc. Saturated colors are rather limited to children in
western countries. Due to such cultural reasons, unsat-
urated colors draw industrial attention, particularly in
the textile industry, which has motivated the application
presented in this article. Finally, as a practical consider-
ation, two matte Munsell collections: the Book of Color
and the Nearly Neutral Collection, were available to the
authors. These provided them with large enough color
sample sets to carry out this study.

The CIELAB16,17 and the more recent CIEDE200018 for-
mulae are used in this work to compute color differences.
More especially, CIEDE2000 includes a term to improve
performance of low-chroma colors19 and therefore we
have considered it suitable for our study. We analyze
the camera performance for the very pale and the dark
grayish color regions. As an example of application, we
consider a practical real case of color matching in the
textile industry.

Method for Camera Evaluation
The method aims to assess the discrimination capabil-
ity of a camera to measure small color differences. We
are concerned with the accuracy and precision of the
camera and compare it with a reference instrument that
is assumed to be calibrated, high quality, and to have a
linear response. The method has several stages, includ-
ing the camera calibration.

Firstly, we determine the appropriate working condi-
tions of the acquisition system. A camera based color
imaging acquisition system consists of a camera (often
3CCD), a framegrabber, a PC, and a given lighting-view-
ing configuration. We compare the camera and the ref-
erence instrument in the same illumination/observation
conditions (Fig. 1): we use an observation booth with a
given light source and a given illumination/observation
geometry for which the scene is captured away from
specular reflections.

In the camera initialization, the gamma function and
the automatic gain control are disabled, and the camera

raw signal is white balanced to a given illuminant. The
framegrabber converts the analog signal of the camera into
the R, G, B digital values (for instance, from 0 to 255 in an
8 bit camera). In the analog to digital conversion, the gain
and offset values have to be fixed. In Ref. 11, we mea-
sured the R, G, and B responses of the camera when it
captures a gray scale using all the four possible combina-
tions where the gain and the offset take the extreme val-
ues of the range, i.e., either 0 or 255. Since the camera
response that profits from maximum dynamic range with
minimum alteration in the signal is usually sought, we
tentatively selected the combination of (gain, offset) that
best approached this property. We considered intervals
around these gain and offset tentative values to further
analyze the camera response within such intervals and,
consequently, to refine the gain and offset selection.

The calibration of a 3CCD camera should involve both
the measurement of its 3CCD spectral sensitivities and
its noise properties. There are various methods described
in the literature to estimate the spectral sensitivity curves
of the sensors, e.g., Refs. 2, 3, and 20–22. A conceptually
simple method, which we have already followed,11 is based
on stimulating the camera with very narrow band illumi-
nation produced by a monochromator.2 The three RGB
spectral sensitivity functions are a set of color scanning
filters for which the Vora–Trussell measure of goodness (ν
factor, defined in Ref. 12) can be determined. The ν factor
is used to characterize input devices, such as cameras or
scanners, and indicates the similarity of the set of the de-
vice spectral sensitivities to human color matching func-
tions, so that ν = 1 means a perfect fit. According to Berns
and Reiman,23 values of the ν factor above 0.9 are desir-
able for colorimetric purposes in the first approach.

To overcome the device dependent representation of color
based on the R, G, B components provided by the camera,
we calculate the coefficients of the linear transformation
that defines a mapping between the camera RGB signals
and a device independent representation, such as the stan-
dard CIE 1931 XYZ. In this study, we consider two ways
of calculating the (3 × 3) linear matrix. In one of them, the
coefficients are calculated following the method24,25 which
takes into account the three spectral response curves of
the camera sensors, the standard observer responses x10,
y10, z10 (CIE 1976), and the spectral distribution of the white
light source. This calculation was already used in our
former work,11 but it does not consider the noise proper-
ties of the camera.

A more complete calibration increases the camera’s mea-
sure of goodness by considering noise characteristics.
Among the research works on CCD camera calibration that

Figure 1. Setup scheme. The camera can be replaced by
the spectroradiometer (reference instrument) at the same
position so that both instruments measure with the same
illumination/observation geometry.



Small Color Differences in the Very Pale and Dark Grayish Regions Measured by Camera Vol. 49, No. 6, November/December 2005  607

estimate noise, we mention the work of Healey and
Kondepudy for a single CCD camera26 and the work of
Quan et al.13 that is closer to ours. In the latter, the CCD
noise model has two main components: a signal indepen-
dent noise such as dark noise and a signal dependent noise
represented by shot noise. Dark current noise can be mea-
sured by taking images with the camera aperture totally
closed at ambient temperature. This noise has an average
value, which is often subtracted from the output signal,
but it also exhibits fluctuations that create fixed pattern
noise.27 Shot noise is associated with the random arrival
of photons at the CCD. It is governed by Poisson statistics
and, consequently, the shot noise variance is equal to the
mean input signal. In our study, we assume the zero mean
noise model considered by Quan et al.13 whose variance

  ση
2  is given by

    σ σ μη
2 2= +d ik , (1)

where     σ d
2  denotes the dark noise variance,   k is the pho-

ton-electron conversion quantum efficiency coefficient
of the CCD, and μi is the input signal intensity, which
coincides with the shot noise variance (    σ i

2 ). From Eq.
(1), the noise is dominated by dark noise when the in-
put signal level is low. But when the input signal level
is high, shot noise, which is proportional to the signal
level, dominates. Noise levels can be represented by digi-
tal counts relative to the digital count of maximal signal
in Eq. (1). The coefficient k associated to shot noise can
be obtained by fitting Eq. (1) with a series of signal lev-
els and the corresponding signal variations. Taking into
account the metric called Unified Measure of Goodness
(UMG), proposed by Quan et al.,13 we can compute the
coefficients of a linear matrix converting camera RGB to
CIE XYZ through the minimization of noise propagation.
This metric minimizes the average color difference or
error for an ensemble of standard reflectance samples in
a perceptually uniform color space. For additional prop-
erties and details about the computing procedure, the
reader is referred to Quan et al.’s paper.13

The CIELAB coordinates L* a* b* (CIE 1976) can be
calculated from CIE XYZ using the standard formulae.16,17

CIELAB chroma C*ab and hue hab, that correspond to the
polar coordinates of this cylindrical representation sys-
tem for which the luminance L* gives the axis, will also
be computed and used.

Concerning the amount of uncertainty associated with
the measurement process we consider a specific metric

called the mean color difference from the mean (MCDM).17

For a set of CIELAB measurements, the average (  L *,
    a *,     b *) is calculated. Then, a color difference equation
(in our case, either ΔE *

ab CIELAB16,17 or ΔE00

CIEDE200018) is calculated between each individual mea-
surement and (  L *,     a *,     b *). The average of all the color
differences defines the MCDM. The greater the MCDM,
the poorer the precision. We calculate the MCDM of the
measurements obtained from a set of ten samples taken
at the center of a single Munsell patch. In the case of the
camera measurements, each individual measurement
(Li*, ai*, bi*) is, in turn, the average CIELAB values of
the CIELAB values of each of the 300 × 300 pixels that
compose the central field window of the captured image
in our case. We repeat the procedure for a number of color
patches to observe stability in the final result. Following
the notation given in Ref. 17, the value νΔE*ab is the
MCDM in the CIELAB metrics. Similarly, the value nΔE00

is the MCDM in the CIEDE2000 metrics. We calculate
these values to estimate the precision of both the refer-
ence instrument and the camera. According to a common
statistical rule, the instrumental color tolerance should
be no less than ten times the precision. This rule will
give us a magnitude order of our instrumental tolerances.

In the following stage of the method, we assess the ca-
pability of the camera to measure small color differences,
and compare the measurements obtained by the camera
with those obtained by the reference instrument. We fo-
cus on the extremes of the unsaturated color region, i.e.,
the very pale and dark grayish colors. To this end, we
build a test consisting of samples from two matte Munsell
collections: the Munsell Book of Color and the Nearly
Neutral Munsell Collection. Ten selected samples are
regularly distributed in the hue circle (Fig. 2). They have
low value of Chroma = 2, and two values of Value: V = 8
(Fig. 2(a)), and V = 4, (Fig. 2(b)). The two subsets of
samples generated in this way are the very pale color
subset (with V = 8)11 and the dark grayish color subset
(with V = 4). In the experiment, each one of the selected
chips has to be compared with its neighbors according to
the sketches of Figs. 2(a) and 2(b).

According to the test of Fig. 2, a large number (140) of
color differences between nearest neighbor pairs are
separately evaluated by both the camera and the refer-
ence instrument. CIELAB ΔE*ab and CIEDE2000 ΔE00 for-
mulae are used to calculate the color differences. The
comparison of the results gives the discrepancy between
the instruments. The absolute discrepancy Di can be es-

Figure 2. Test of nearly neutral Munsell chips organized in two subsets: (a) very pale sample subset, and (b) dark grayish
sample subset. In each one, there are ten groups of samples regularly distributed around the Hue circle. Each group
consists of a group center and its closest neighbors (there is a group sketched in detail in both figures).

(a) (b)
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timated by simply subtracting the color differences mea-
sured by the reference instrument and the camera, and
taking the absolute value, that is,

    
D E ref E cami i i= ( ) − ( )Δ Δ , (2)

where subindex i = {ab, 00} indicates either the CIELAB
or the CIEDE2000 metric in Eq. (2). The relative dis-
crepancy   Di

r  is the absolute discrepancy divided by the
mean value <⋅> of the color differences measured by the
spectroradiometer and the camera,

    
D

D

E ref E cam

E ref E cam

E ref E cami
r i

i i

i i

i i
=

( ) ( )
=

( ) − ( )
( ) + ( )Δ Δ

Δ Δ

Δ Δ,
.

2
  (3)

These discrepancies are used to test the level of agree-
ment between both the camera and the reference instru-
ment in the estimation of the color differences. Since
the reference instrument is of high quality, its tolerance
is commonly low (0.5 ΔE*

ab or even coger). As a conse-
quence, these discrepancies allow us to evaluate the
reliability of the camera’s performance. If the absolute
discrepancies do not exceed the uncertainty, then the
measurements are indistinguishable. This is an ideal
case. More realistically, if the camera tolerance is ac-
ceptable (about 1.0ΔE*

ab) and the absolute discrepancies
fall in general within the camera tolerance, then it can
be considered a good achievement for the camera. The
relative discrepancies provide information about the ac-
curacy and uniformity of the camera’s performance in
evaluating hue, chroma or value differences.

Experimental Results
We have applied the method described above to charac-
terize the discrimination capability of a 3CCD camera.
The image acquisition system of our study consists of
the following components:
• 3CCD camera SONY DX-9100P, with nominal SNR

of 57dB,
• Framegrabber MATROX Meteor II M/C (8 bits) that

captures a 640 × 780 pixel size image and digitizes
the analog signal provided by the camera into 256
gray levels for each R, G, and B channel. The
framegrabber is integrated into a personal computer
that is used for subsequent calculations.

• Observation booth VeriVide CAC 120H4 with a D65
daylight simulator given by a fluorescent lamp F40/
T12. We measured its spectral power distribution
(Fig. 3), and its correlated color temperature was
6,438 K (10º observer).

The color camera was configured with the automatic
gain control disabled (0 dB level) and the gamma func-
tion equal to 1.0 because otherwise it could distort col-
ors. For the white calibration or white balance, we
imaged a standard reflectance plate (Photoresearch RS-
3) under the illumination given by the D65 daylight
simulator of the booth. The entire field of view was then
a white area of the standard plate imaged by the cam-
era and, in this situation, the camera made automatic
adjustments of the channel responses to achieve the
white balance. The reflectance spectral distribution of
the plate was nearly constant and equal to 1 (its cali-
bration did not exceed ±0.6% versus the values of a ref-
erence calibrating source, within 380–780 nm). We
occluded totally the camera lens aperture for the black
reference. The camera aperture remained fixed at f/#=4
during the rest of the experiment.

The camera is compared with a calibrated spectro-
radiometer as reference instrument. We used the
spectroradiometer Photo Research PR-715. It measured
the central area of a Munsell chip with 1º aperture or
field coverage.

The camera and the reference instrument worked with
the same illumination/observation geometry 20º/0º (re-
placing the camera by the spectroradiometer in the setup
of Fig. 1). Since the samples we consider are matte in
general, the choice of the illumination geometry is not
critical. We observed that a standard 45º illumination
gave rise to some image artifacts or noise caused by a
shading effect on the rough matte surface. Instead, we
decided to use an approximate 20º illumination for all
the measurements. Regarding the observation, the cam-
era was placed in front of the sample, in the direction
perpendicular to the sample surface. A frontal viewing
is preferable to a slant viewing because it reduces focus
errors and geometrical distortions produced by perspec-
tive that could be important for future applications to
spatially variant images. We verified that the illumina-
tion was almost uniform throughout the sample placed
inside the booth. The camera lens was adjusted so that
the field of view was entirely filled by a single Munsell
chip (approximately 3.5 cm2).We always analyzed, how-
ever, a central window of 300 × 300 pixel size.

The gain and offset values were not selected for each
R, G, B channel independently, but on the contrary,
the gain and offset pair was the same for all the three
channels. For an initial selection of the gain and offset
values, a gray scale was captured by the camera set-
ting the four combinations of extreme values, i.e., (gain,
offset) = {(0,0), (0,255), (255,0), (255,255)}.11 The cam-
era response that allowed maximum dynamic range
with the minimum alteration in the signal was sought.
The combination (gain, offset) = (255,0) gave the best
camera response out of the four measured. After this
coarse selection, we considered intervals around the
gain and offset values to further analyze the camera
response within such intervals and, consequently, to
make a fine selection of the gain and offset. The inter-
vals of greatest interest were eventually limited to gain
= [255…128] and offset = [0...64] in our former work.
We considered six gain and offset pairs belonging to
these intervals and measured the R, G, B responsitivity
functions of the camera for each pair. The R, G, B

Figure 3. Spectral power distribution of the fluorescent lamp
F40/T12 installed in the booth as D65 daylight simulator.
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responsitivity functions were measured by applying the
classical technique based on stimulating the camera
sensors with a very narrow band illumination gener-
ated by a light source and a monochromator. We calcu-
lated the factor ν associated to each set of RGB spectral
responsivity curves12 and values > 0.9 were only
reached for the pairs (gain,offset) = {(128,32),(255,32)}
that yield very close  ν  values.  These spectral
responsitivities are represented in Fig. 4. We prefer
the RGB responsitivity functions obtained setting
(gain,offset) = (255,32), with ν = 0.9162, because the
shape of the R sensitivity function is slightly smoother
than the corresponding to (gain, offset) = (128, 32).

Regarding the influence of imaging noise in our mea-
surements, we examined dark noise and shot noise
among the different noise sources. Dark noise is a sig-
nal independent noise, and it can be estimated from the
signal fluctuations in the absence of light exposure. In
our case, when the offset value was set equal to zero,
the dark noise in the three R, G, B components was char-
acterized by non zero mean values (14 for the B channel
and 15 for the G and R channels) and a similar vari-
ance     σ d

2  (Fig. 5). By setting the offset value equal to 32,
however, we compensated for the uniform constant of
the dark noise and obtained a nearly zero mean distri-
bution. This result for the dark level reveals a physi-
cally meaningful characteristic of the camera and
clarifies our final selection of the offset = 32. Shot noise
is a signal dependent noise, and it can be estimated from
the signal variations corresponding to a series of differ-
ent signal levels. The coefficient k associated to shot
noise can be obtained by fitting Eq. (1), where noise lev-
els can be represented by digital counts normalized to
the digital count of maximal signal. To estimate the pa-
rameters of noise model for the camera capturing with
(gain, offset) = (255,32), we captured multiple images
of the white standard plate, uniformly illuminated, with
different apertures of the camera lens (including total
occlusion). The apertures producing saturation were ex-
cluded. In this simple way, we had a variation in the
signal level without affecting other acquisition condi-

(a) (b)

Figure 4. Spectral responsivities of the SONY DX-9100P camera for the (gain, offset) values: (a) (128, 32), and (b) (255, 32).

Figure 6. Imaging noise model of the 3CCD camera with
contributions of the dark and shot noise. Experimental points
and linear fits are given for the R, G, B channels.

Figure 5. Effects of the offset setting on the dark noise
level measured in the R, G, B components of an image cap-
tured in absence of light exposure: offset = 0 (dashed lines),
offset = 32 (solid lines).
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tions. The variances of the RGB components of the cap-
tured images were calculated. Figure 6 shows the ex-
perimental points and the results of fitting Eq. (1) in
the R, G, B channels of the camera. The three channels
obtained very close linear fits. The coefficients k associ-
ated to shot noise were (kR,kG,kB) = 3.011, 3.048, 3.073)
× 10−4. Since they are very close in the three channels,
we used the average value k = 3.044 × 10−4. The dark
noise variances were (    σ σ σdR dG dB

2 2 2, , ) = (3.8, 5.8, 3.7) ×
10–6 and the correlation coefficients of the fits (rR,rG,rB)
= (0.995, 0.997, 0.997) were acceptable.

Following the procedure outlined in Refs. 24 and 25,
we calculated the coefficients of the linear transform to
pass from the RGB device dependent values to the XYZ
tristimulus values. Taking into account the camera spec-
tral sensitivities (CSS) for the pair (gain, offset) = (255,
32), the spectral power distribution of the D65 simula-
tor, and the standard observer responses, we computed
the coefficients of the linear transform and obtained

    

X
Y
Z

R
G
BCSS

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= ⋅

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 947 0 237 0 373
1 155 1 000 0 103
0 062 0 112 2 179

. . .

. . .

. . .
. (4)

From the XYZ values, the CIELAB coordinates L* a*
b* are calculated using the CIE 1976 formula.16,17 As
white reference for this calculation we used the Xn, Yn

and Zn obtained for the standard reflectance plate
Photoresearch RS-3.

We measured the CIELAB coordinates of a gray scale
using the camera with (gain, offset) = (255, 32). We com-
pared the camera response with the measurements ob-
tained by a spectroradiometer (see Figs. 5 through 7 in
Ref. 11) and they nearly coincided in the measurement
of L* over the whole range of grayscale. They were also
close in the measurement of low chromaticities C*ab for
bright neutral chips, but the camera measured higher
chromaticity values for dark gray chips that might be
due to higher dark current effects. In comparison with
other gain and offset pairs, the response of the camera
with (gain, offset) = (255, 32) provided the CIELAB
measurements closest to those obtained by the
spectroradiometer.

The uncertainties associated with the measurement
process, expressed as MCDM and calculated following
the procedure outlined above, are 0.025 ΔE*

ab in CIELAB
(0.020 ΔE00 in CIEDE2000) for the spectroradiometer,
and 0.5 ΔE*

ab in CIELAB (0.020 ΔE00 in CIEDE2000) for
the camera working with (gain,offset) = (255,32). Accord-
ingly, the instrumental color tolerances are 0.25 ΔE*

ab

(0.20 ΔE00) for the spectroradiometer and 0.5. ΔE*
ab (0.6

ΔE00) for the camera.
So far, the calculations to measure the CIELAB coor-

dinates from the camera RGB values and the measure
of goodness of the system do not consider the imaging
noise characterization of the camera. In this article,
taking into account the Unified Measure of Goodness
(UMG) proposed by Quan et al.,13 we have alternatively
computed the coefficients of the linear matrix convert-
ing camera RGB to CIE XYZ. This linear transform is
obtained through the minimization of noise propagation.
The noise model assumed in Ref. 13 is zero mean and
the noise variance has the main contributions of dark
and shot noises. The UMG metrics minimizes the aver-
age color difference or error for an ensemble of stan-
dard reflectance samples in a perceptually uniform color
space. As representative ensemble of standard object

reflectance spectra we took Hardeberg’s28 optimal set
consisting of 20 Munsell patches distributed approxi-
mately uniformly in the (a*, b*) plane (Table I). In ad-
dition to the measured spectral reflectance of each
sample of the set, we took into account the following
data to calculate the coefficients of the linear matrix:
the spectral sensitivity curves of the camera, the imag-
ing noise characterization (dark current variances and
k coefficient associated to shot noise), the spectral power
distribution of the recording and viewing illuminant
given by the D65 simulator (Fig. 3), the CIE color match-
ing functions. We completed the UMG computing pro-
cedure (see Ref. 13 for details), which requires much
more computation than the Vora–Trussell’s ν factor, and
obtained the following results:

- The linear transform is
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BUMG
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0 075 0 009 1 886
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. . .

. (5)

- The minimal color error for the ensemble in CIELAB
units is εmin = 1.423,

- And the UMG value is θ = 0.899.
Note that the UMG value (θ = 0.899) is lower than

the v factor (ν = 0.9162). Since noise effects are also con-
sidered in UMG, it gives a more complete measure of
goodness of the camera and, consequently, its value is
lower than the ν factor, which exclusively characterizes
the deviation from the human color subspace (given by
the CIE color matching functions). Using the linear
transform of Eq. (5), we can calculate the XYZ, and
hence, the CIELAB coordinates from some given RGB
values provided by the camera.

Although we are more interested in color differences
between sample pairs rather than in the absolute mea-
surement of color, we briefly report on what the color
fidelity of the camera estimates are. Figure 7 shows the
a*b* plane with the points corresponding to the CIELAB
cromaticities of the Munsell group center patches of the
very pale and dark grayish sets measured by the
spectroradiometer, and by the 3CCD camera with the
linear transforms given by either Eq. (4) or Eq. (5). The
mean color differences between the camera estimated
CIELAB values and the spectroradiometer CIELAB
measured values were calculated for the entire 90
samples of the very pale test plus the 70 samples of the
dark grayish test, and they are contained in Table II.
The results are quite close for the two sets and also for
the two linear transforms. They reveal that the color
fidelity of the camera estimates is limited by an aver-
age error of 7 CIELAB units. Although the UMG based
linear transform leads to a mean color difference (or
error) slightly higher than the CSS based linear trans-
form (about 1 CIELAB or CIEDE2000 unit higher), the

TABLE I. Hardeberg’s Optimal Set of Munsell Patches
(see Ref. 28)

Hardeberg’s optimal set of 20 Munsell patches28

7.5RP9/2 10R7/12 10B6/10 7.5PB5/12
5R4/14 7.5RP6/10 10Y8/4 10Y8.5/6

7.5Y8/12 2.5B5/8 7.5YR8/8 10PB4/10
2.5G7/10 10P3/8 10RP8/6 10YR3/1
5P2.5/6 7.5R7/4 10R3/2 7.5YR6/4
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dispersion is lower. This means that the CSS based lin-
ear transform leads to slightly more accurate results
whereas the UMG based linear transform leads to
slightly more precise results.

Using the test of very pale and dark grayish color
patches of Fig. 2, we measured the color differences be-
tween each group center and its neighbors by both the
reference instrument and the camera. The linear trans-
forms from RGB to XYZ values, given by Eqs. (4) and
(5), were separately taken into account to calculate the
camera based color differences. Figure 8 shows the
CIEDE2000 color differences ΔE00 between the very pale
Munsell patches. Each diagram corresponds to a given
Munsell variation from the group center, e.g., +0.5 Value,
–2.5 Hue, +1.0 Chroma, etc. From the results, it can be
said that the camera (for both linear transforms) and
the reference instrument show a high degree of agree-

ment in the estimation of the color differences between
very pale patches. Looking at the diagrams in detail,
we can see that the highest coincidence is obtained in
the estimation of the color differences corresponding to
± 0.5 variations in the Munsell Value. Figure 9 shows
the CIEDE2000 color differences ΔE00 between the dark
grayish Munsell patches. Again, the diagrams show a
good agreement between color differences measured by
the spectroradiometer and the camera (for both linear
transforms).

We have calculated the absolute discrepancies Di (Eq.
(2)) between the measurements obtained by both instru-
ments for the very pale test (Table III) and the dark
grayish test (Table IV). The mean values of the abso-
lute discrepancies corresponding to each color variation
are calculated in Tables III and IV. These mean values
of the absolute discrepancy exceed the camera uncer-

Figure 7. Chromaticity plane showing the CIELAB a*b* values of the Munsell group center patches measured by the
spectroradiometer, and by the 3CCD camera with the linear transforms given by either Eq. (4) (CSS) or Eq. (5) (UMG). (a)
Very pale set, (b) dark grayish set.

 (a) (b)

TABLE II. Statistics of the Color Differences Calculated between the Camera Estimated CIELAB Values and the Spectroradiometer
Measured CIELAB Values for Each Patch of Both the Very Pale and the Dark Grayish Set. The Camera CIELAB Values were
Computed using Two Different Linear Transforms: The Matrix with Subindex CSS (Eq. (4)), and the Matrix with Subindex UMG
(Eq. (5)).

      Color differences tha camera estimated and the spectroradiometers mesured CIELAB values

Very Pale Dark Grayish Mean

CIELAB CSS UMG CSS UMG CSS UMG

Mean ΔEab
*( ) 6.29 7.40 5.96 6.78 6.13 7.09

std. dev (σ) 2.33 1.43 1.70 0.99 2.02 1.21

Max ΔEab
*

max
{ }( ) 10.48 9.99 9.87 9.35

MIn ΔEab
*

min
{ }( ) 1.19 3.70 3.38 5.06

CIEDE2000

Mean ΔE00( ) 7.25 8.50 6.68 7.61 6.97 8.06

std. dev (σ) 2.85 1.75 2.40 1.63 2.63 1.69

Max ΔE00
max

{ }( ) 11.60 11.46 11.95 13.30

Min ΔE00
min

{ }( ) 0.90 3.84 3.14 4.60
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in both the very pale and the dark grayish regions. This
fact also reveals a good property of the camera perfor-
mance. In Fig. 10, the values calculated using
CIEDE2000 and graphed in Fig. 10(a) lead to similar
comments to those calculated using CIELAB and
graphed in Fig. 10(b). Also the values calculated using
either the CSS or the UMG linear transform lead to close
graphs in Fig. 10. In Fig. 11, we observe again that the
relative discrepancies are low in the evaluation of the
color variations of the Munsell components. It can be
appreciated that relative discrepancies are slightly
higher in the evaluation of Munsell Hue variations than
for Munsell Value variations. This is common for both
color regions considered, the very pale (Figs. 11(a) and
11(b)) and the dark grayish (Figs. 11(c) and 11(d)). Slight
differences in the estimation of small chroma variations
(less than ± 1.0 Munsell Chroma) can be appreciated
depending on the use of CIEDE2000 or CIELAB. In such
a case, CIEDE2000 formula tends to be more sensitive
and makes the relative discrepancy between the cam-
era and the reference instrument measurements higher
than CIELAB formula.

The results shown in Figs. 8 through 11 and Table III
through Table VI, computed from the camera estimated
XYZ values using either the linear transform of Eq. (4)
(matrix with subindex CSS) or Eq. (5) (matrix with sub-
index UMG), are very close each other, and do not allow
us to extract any conclusion about the advantages of

Figure 8. CIEDE2000 color differences ΔE00 between each group center and its neighbors in the very pale set of Munsell
patches (Fig. 2(a)). ΔE00 are calculated from the measurements obtained by the spectroradiomenter and by the camera
using either the CSS or the UMG linear transforms. The Munsell color variations concerned are: ±1.0 and ±0.5 Chroma,
±0.5 Value, and ±2.5 Hue.

tainty in general. However, in the case of the very pale
subset, most of them fall in the camera tolerance (ei-
ther 0.5 ΔE*

ab or 0.6 ΔE00). This fact, along with the mag-
nitude of the camera tolerance, can be considered a good
achievement for the camera’s performance. In the case
of the dark grayish subset, whose color variations in
Value and Chroma are also bigger, the absolute discrep-
ancies are somewhat higher, and correspond to a much
lower stimulation of the instrument sensors and a
greater influence of dark current. If we consider the
minimal color error calculated with the UMG approach
for Hardeberg’s ensemble (εmin = 1.423 CIELAB units)
as another reference for comparison, nearly all the ab-
solute discrepancies calculated with the UMG matrix
are lower than it.

We have calculated the relative discrepancies   Di
r  (Eq.

(3)) to further analyze the uniformity of the camera per-
formance. Tables V and VI contain the results for the
very pale and the dark grayish tests, respectively. In
Tables V and VI, we have calculated the mean value of
the (CSS or UMG) relative discrepancies aligned on the
same row, i.e., corresponding to a given group center,
and also the mean value of the relative discrepancies
aligned on the same column, i.e., corresponding to a
given color variation. These mean values, calculated
using CIELAB and CIEDE2000 metrics, are graphed in
Figs. 10 and 11. From Fig. 10, the relative discrepan-
cies are low and quite uniform around the circle of hue

Spectroradiometer
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Figure 9. CIEDE2000 color differences ΔE00 between each group center and its neighbors in the dark grayish set of
Munsell patches (Fig. 2(b)). ΔE00 are calculated from the measurements obtained by the spectroradiomenter and by the
camera using either the CSS or the UMG linear transforms. The Munsell color variations concerned are: −1.0 and +2.0
Chroma, ±1.0 Value, and ±2.5 Hue.

Figure 10. Mean relative discrepancies between the camera and the spectroradiometer around the circle of Hue using: (a)
CIEDE2000 metric, and (b) CIELAB metric. The data represented are contained in Tables V and VI. The graphs labeled
with V = 8 corresponds to the very pale test, whereas V = 4 corresponds to the dark grayish test. CSS and UMG have the
same meaning as in previous figures.

(a) (b)

Spectroradiometer
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using one of them in particular. This fact means that
the effects of the sources of imaging noise considered in
our experiment do not significantly alter the color dif-
ference measurements.

Application: Evaluation of Color Uniformity in
Textile Dying
From the results obtained above, we consider that the
camera system has promising characteristics for objec-
tive and automatic inspection of color matching. For this
reason, we have applied this system to the evaluation
of color uniformity in textile dying. A common task in
inspection of textile color is the comparison between the
center and both the left and right extremes of the us-
able width of a fabric piece (usually 150 cm). This is
known as extreme-center color matching. The assess-
ment may be repeated several times along the fabric
length to evaluate the color uniformity of a piece. An
extreme-center sample pair consists of an extreme
sample, from either the left or the right side of the fab-
ric piece, sewn side by side, to a sample taken from the
central part of the fabric piece. Commonly, the color dif-
ference between them is visually estimated by an ex-
pert. If the color difference of the extreme-center
samples is visually perceived, then the fabric is rejected.
Two extreme-center sample pairs, i.e., the left center
sample pair and the right center sample pair, are al-

ways assessed together at a given length of the fabric
piece. This inspection of the fabric quality is difficult to
carry out and requires trained vision in color evalua-
tion. Frequently, the standard of quality in the textile
industry is very high, but it is difficult to apply because,
in addition, the samples to compare are often of unsat-
urated dark colors, e.g., fabrics for men’s suits, and may
show very subtle color differences, and may involve tex-
ture effects, etc.

In this application, assessing textile samples is more
complex than Munsell chips because the structure of the
woven fabric adds texture to the colored sample. We have
applied our camera vision system to assess eight ex-
treme-center sample pairs of cloths of navy, blue, black
and green colors in the dark grayish region. They are
also assessed using the spectroradiometer as a refer-
ence instrument.

Because the fabric samples are textured, we have first
analyzed their variability expressed as MCDM in
CIEDE2000. We have calculated the MCDM from the
measurements obtained by the spectroradiometer and
the camera at ten different positions of each side, named
A and B, of every extreme-center sample pair. In the
case of the camera measurements, as was already stated
above, each individual measurement (L*i, a*

i , b*
i ) at a

given position is, in turn, the average CIELAB values
of the CIELAB values of each of the 300 × 300 pixels

Figure 11. Mean relative discrepancies between the camera and the spectroradiometer versus the Munsell color varia-
tions of Hue, Chroma and Value: (a)-(b) for the very pale test, and (c)-(d) for the dark grayish test. The data represented
are contained in Tables V and VI.

(a) (b)

(c) (d)

Dark Grayish Colors (Value = 4) -CSS Dark Grayish Colors (Value = 4) -UMG
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TABLE III. Absolute Discrepancy between the Measurements of the Color Difference Obtained by the Camera and by the
Spectroradiometer for the Very Pale Subset Test.

D00 CIEDE2000

Group Center -2.5 Hue +2.5 Hue -1.0 Chroma -0.5 Chroma +0.5 Chroma +1.0 Chroma -0.5 Value +0.5 Value Mean

CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 8/2 0.331 0.320 0.111 0.355 0.663 0.160 0.234 0.023 0.439 0.174 0.918 0.475 0.218 0.312 0.038 0.005 0.369 0.228

5RP 8/2 0.171 0.173 0.464 0.335 1.326 1.036 0.574 0.462 1.060 0.858 1.825 1.481 0.095 0.041 0.596 0.626 0.764 0.627

5P 8/2 0.586 0.537 0.402 0.086 0.869 0.848 0.401 0.391 0.606 0.576 0.915 0.850 0.272 0.225 0.015 0.059 0.508 0.447

5PB 8/2 1.060 0.987 0.722 0.295 0.221 0.705 0.025 0.266 0.024 0.270 0.037 0.538 0.051 0.025 0.410 0.458 0.319 0.443

5B 8/2 0.984 0.801 0.524 0.252 0.681 2.152 0.654 1.430 0.320 0.969 0.321 1.372 0.052 0.064 0.355 0.405 0.486 0.931

5BG 8/2 0.209 0.158 0.424 0.622 0.785 2.440 0.486 1.237 0.491 1.040 0.504 1.440 0.577 0.570 0.046 0.021 0.440 0.941

5G 8/2 0.968 1.609 0.668 0.747 1.558 3.127 0.909 1.581 0.521 0.953 0.771 1.496 1.465 1.397 2.458 2.437 1.165 1.668

5GY 8/2 0.268 0.638 1.052 0.438 1.903 2.450 1.484 1.909 0.604 0.786 0.512 0.743 0.027 0.030 0.442 0.504 0.786 0.937

5Y 8/2 0.461 0.178 0.107 0.045 1.125 1.314 0.643 0.750 0.493 0.608 0.841 1.071 0.296 0.288 0.148 0.174 0.514 0.553

5YR 8/2 0.039 0.069 0.693 0.687 0.227 0.110 0.068 0.070 0.053 0.146 0.175 0.026 0.268 0.250 0.896 0.928 0.302 0.286

Mean 0.508 0.547 0.517 0.386 0.936 1.434 0.548 0.812 0.461 0.638 0.682 0.949 0.332 0.320 0.540 0.562

Dab CIELAB

Group Center -2.5 Hue +2.5 Hue -1.0 Chroma -0.5 Chroma +0.5 Chroma +1.0 Chroma -0.5 Value +0.5 Value Mean

CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 8/2 0.363 0.415 0.112 0.336 0.295 0.021 0.093 0.076 0.161 0.055 0.399 0.026 0.255 0.332 0.131 0.109 0.226 0.171

5RP 8/2 0.214 0.160 0.179 0.096 0.777 0.567 0.365 0.276 0.734 0.549 1.354 1.009 0.083 0.048 0.921 0.930 0.578 0.454

5P 8/2 0.664 0.620 0.434 0.132 0.613 0.557 0.285 0.259 0.480 0.431 0.801 0.702 0.394 0.357 0.035 0.001 0.463 0.382

5PB 8/2 0.990 0.949 0.677 0.377 0.229 0.570 0.078 0.079 0.141 0.011 0.350 0.077 0.212 0.200 0.638 0.681 0.414 0.368

5B 8/2 0.816 0.706 0.541 0.346 0.380 1.185 0.307 0.731 0.038 0.488 0.141 0.656 0.125 0.125 0.364 0.411 0.339 0.581

5BG 8/2 0.276 0.235 0.209 0.423 0.333 1.389 0.205 0.712 0.264 0.672 0.000 0.835 0.591 0.575 0.329 0.261 0.276 0.638

5G 8/2 0.479 0.860 0.687 0.764 0.857 1.829 0.495 0.882 0.233 0.585 0.276 0.973 2.427 2.362 3.548 3.517 1.125 1.471

5GY 8/2 0.010 0.249 1.051 0.749 1.238 1.696 0.879 1.183 0.434 0.563 0.374 0.530 0.191 0.197 0.462 0.518 0.580 0.711

5Y 8/2 0.527 0.208 0.325 0.251 0.910 1.179 0.525 0.644 0.378 0.486 0.656 0.862 0.559 0.565 0.114 0.133 0.499 0.541

5YR 8/2 0.143 0.021 0.631 0.604 0.318 0.573 0.163 0.273 0.133 0.222 0.007 0.202 0.485 0.486 1.386 1.400 0.408 0.473

Mean 0.448 0.442 0.485 0.408 0.595 0.957 0.339 0.512 0.300 0.406 0.436 0.587 0.532 0.525 0.793 0.796

TABLE IV. Absolute Discrepancy between the Measurements of the Color Difference Obtained by the Camera and by the
Spectroradiometer for the Dark Grayish Subset Test

D00 CIEDE2000

Group Center -2.5 Hue +2.5 Hue -1.0 Chroma +2.0 Chroma -1.0 Value +1.0 Value Mean
CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 4/2 1.539 1.468 0.633 0.607 0.984 0.412 1.112 0.683 1.435 1.567 0.041 0.021 0.957 0.793
5RP 4/2 0.027 0.000 0.442 0.466 1.283 0.831 2.367 1.931 2.254 2.233 0.028 0.001 1.067 0.910

5P 4/2 0.409 0.235 0.229 0.447 0.833 0.732 0.864 0.640 2.776 2.753 0.155 0.156 0.878 0.827

5PB 4/2 0.404 0.038 0.318 0.120 0.852 1.272 1.545 2.568 1.895 1.487 1.425 1.443 1.073 1.155

5B 4/2 0.180 0.218 0.243 0.488 1.226 2.678 0.149 1.394 2.136 1.584 0.229 0.331 0.694 1.115

5BG 4/2 0.036 0.027 1.344 1.822 1.057 2.359 0.305 0.931 1.092 0.221 0.119 0.048 0.659 0.901

5G 4/2 0.572 0.675 0.275 0.292 1.167 0.354 1.463 2.682 1.855 1.177 0.129 0.062 0.910 0.874

5GY 4/2 0.522 0.408 0.254 0.233 0.059 0.277 0.949 1.457 0.760 0.684 0.803 0.913 0.558 0.662

5Y 4/2 1.032 0.863 0.650 0.329 0.393 0.684 1.460 2.257 1.105 1.099 0.889 0.783 0.922 1.003

5YR 4/2 0.427 0.510 0.310 0.213 0.383 0.069 0.555 0.006 0.276 0.247 0.747 0.725 0.449 0.295

Mean 0.515 0.444 0.470 0.502 0.824 0.967 1.077 1.455 1.558 1.305 0.457 0.448

Dab CIELAB

Group Center -2.5 Hue +2.5 Hue -1.0 Chroma +2.0 Chroma -1.0 Value +1.0 Value Mean
CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 4/2 1.677 1.584 0.660 0.630 0.164 0.168 0.698 0.076 1.315 1.339 0.431 0.550 0.824 0.725

5RP 4/2 0.014 0.048 0.556 0.612 0.747 0.301 2.294 1.639 2.409 2.283 0.446 0.611 1.077 0.916

5P 4/2 0.037 0.190 0.431 0.659 0.131 0.076 0.667 0.356 2.983 2.879 0.801 0.925 0.842 0.848

5PB 4/2 0.021 0.263 0.343 0.557 1.019 1.332 1.233 1.650 2.296 1.998 2.078 2.147 1.165 1.324

5B 4/2 0.478 0.534 0.072 0.091 1.081 1.770 0.044 1.049 2.547 2.233 1.010 1.099 0.872 1.129

5BG 4/2 0.084 0.023 1.022 1.323 0.897 1.627 0.890 0.432 1.622 1.111 0.724 0.754 0.873 0.878

5G 4/2 0.542 0.660 0.241 0.263 0.942 0.395 0.559 1.899 2.207 1.811 0.515 0.645 0.834 0.945

5GY 4/2 0.585 0.492 0.166 0.111 0.021 0.200 0.835 1.291 0.293 0.217 1.376 1.463 0.546 0.629

5Y 4/2 0.594 0.441 0.410 0.109 0.346 0.598 1.957 2.942 2.022 2.075 0.474 0.325 0.967 1.081

5YR 4/2 0.485 0.605 0.119 0.014 0.122 0.449 0.310 0.395 0.688 0.725 0.288 0.134 0.335 0.387

Mean 0.452 0.484 0.402 0.437 0.547 0.692 0.949 1.173 1.838 1.667 0.814 0.865
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TABLE V. Relative Discrepancy between the Measurements of the Color Difference Obtained by the Camera and by the
Spectroradiometer for the Very Pale Subset Test

D r
00 CIEDE2000

Group -2.5 Hue +2.5 Hue -1.0 Chroma -0.5 Chroma +0.5 Chroma +1.0 Chroma -0.5 Value +0.5 Value Mean
Center CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 8/2 0.232 0.225 0.059 0.177 0.208 0.046 0.143 0.013 0.203 0.076 0.222 0.109 0.064 0.090 0.013 0.002 0.143 0.092
5RP 8/2 0.100 0.102 0.363 0.250 0.553 0.407 0.593 0.452 0.569 0.437 0.551 0.425 0.030 0.013 0.207 0.216 0.371 0.288
5P 8/2 0.437 0.394 0.221 0.044 0.426 0.414 0.431 0.419 0.408 0.384 0.341 0.314 0.085 0.069 0.005 0.019 0.294 0.257
5PB 8/2 0.992 0.894 0.271 0.103 0.076 0.224 0.018 0.171 0.014 0.142 0.011 0.146 0.016 0.008 0.145 0.160 0.193 0.231
5B 8/2 0.771 0.586 0.372 0.163 0.145 0.395 0.276 0.518 0.121 0.326 0.068 0.262 0.016 0.020 0.120 0.136 0.236 0.301
5BG 8/2 0.212 0.156 0.215 0.300 0.139 0.376 0.180 0.401 0.215 0.407 0.119 0.306 0.184 0.182 0.015 0.007 0.160 0.267
5G 8/2 0.394 0.580 0.386 0.422 0.255 0.453 0.304 0.476 0.253 0.419 0.200 0.355 0.590 0.554 0.719 0.715 0.388 0.497
5GY 8/2 0.129 0.282 0.341 0.129 0.325 0.400 0.493 0.593 0.287 0.358 0.154 0.216 0.009 0.010 0.149 0.168 0.236 0.269
5Y 8/2 0.211 0.077 0.075 0.030 0.215 0.247 0.267 0.304 0.233 0.280 0.209 0.259 0.096 0.093 0.051 0.059 0.170 0.169
5YR 8/2 0.023 0.041 0.425 0.420 0.055 0.025 0.031 0.031 0.027 0.072 0.048 0.007 0.098 0.091 0.282 0.291 0.124 0.122

Mean 0.350 0.333 0.273 0.204 0.240 0.299 0.274 0.338 0.233 0.290 0.192 0.240 0.119 0.113 0.171 0.177

D r
ab CIELAB

Group -2.5 Hue +2.5 Hue -1.0 Chroma -0.5 Chroma +0.5 Chroma +1.0 Chroma -0.5 Value +0.5 Value Mean
Center CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 8/2 0.233 0.262 0.051 0.146 0.122 0.008 0.072 0.055 0.086 0.028 0.106 0.007 0.052 0.067 0.030 0.025 0.094 0.075
5RP 8/2 0.110 0.081 0.162 0.083 0.439 0.302 0.500 0.356 0.494 0.347 0.496 0.348 0.018 0.010 0.212 0.214 0.304 0.218
5P 8/2 0.417 0.385 0.255 0.071 0.317 0.284 0.320 0.287 0.334 0.295 0.300 0.258 0.085 0.077 0.007 0.000 0.255 0.207
5PB 8/2 0.983 0.924 0.308 0.160 0.087 0.203 0.058 0.056 0.085 0.006 0.106 0.022 0.046 0.044 0.154 0.163 0.228 0.197
5B 8/2 0.835 0.684 0.500 0.293 0.111 0.311 0.176 0.373 0.018 0.206 0.035 0.149 0.027 0.028 0.083 0.093 0.223 0.267
5BG 8/2 0.271 0.226 0.114 0.219 0.085 0.314 0.104 0.321 0.145 0.332 0.000 0.215 0.132 0.128 0.073 0.057 0.116 0.227
5G 8/2 0.206 0.341 0.359 0.392 0.199 0.381 0.224 0.368 0.141 0.319 0.086 0.272 0.687 0.663 0.690 0.686 0.324 0.428
5GY 8/2 0.005 0.120 0.422 0.284 0.255 0.333 0.345 0.438 0.209 0.262 0.110 0.152 0.042 0.044 0.105 0.117 0.187 0.219
5Y 8/2 0.321 0.115 0.230 0.173 0.195 0.245 0.233 0.278 0.177 0.222 0.155 0.199 0.124 0.126 0.026 0.030 0.183 0.174
5YR 8/2 0.090 0.012 0.364 0.346 0.090 0.157 0.083 0.135 0.068 0.110 0.002 0.053 0.121 0.121 0.291 0.293 0.139 0.153

Mean 0.347 0.315 0.277 0.217 0.190 0.254 0.212 0.267 0.176 0.213 0.139 0.167 0.134 0.131 0.167 0.168

TABLE VI. Relative Discrepancy between the Measurements of the Color Difference Obtained by the Camera and by the Spectroradiometer for
the Dark Grayish Subset Test

D r
00 CIEDE2000

Group Center -2.5 Hue +2.5 Hue -1.0 Chroma +2.0 Chroma -1.0 Value +1.0 Value Mean
CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 4/2 0.637 0.598 0.925 0.870 0.184 0.073 0.188 0.112 0.141 0.155 0.004 0.002 0.347 0.302
5RP 4/2 0.014 0.000 0.305 0.319 0.391 0.237 0.423 0.332 0.263 0.260 0.003 0.000 0.233 0.191
5P 4/2 0.298 0.161 0.096 0.180 0.206 0.179 0.184 0.133 0.284 0.282 0.014 0.014 0.180 0.158
5PB 4/2 0.202 0.017 0.114 0.040 0.210 0.298 0.235 0.362 0.184 0.142 0.127 0.128 0.178 0.164
5B 4/2 0.092 0.110 0.213 0.387 0.225 0.433 0.020 0.175 0.239 0.172 0.021 0.030 0.135 0.218
5BG 4/2 0.021 0.015 0.520 0.645 0.212 0.419 0.043 0.120 0.117 0.023 0.011 0.004 0.154 0.204
5G 4/2 0.250 0.289 0.240 0.253 0.279 0.077 0.176 0.300 0.205 0.125 0.012 0.006 0.194 0.175
5GY 4/2 0.267 0.203 0.101 0.084 0.017 0.078 0.124 0.184 0.084 0.075 0.072 0.082 0.111 0.118
5Y 4/2 0.534 0.428 0.300 0.141 0.082 0.138 0.189 0.277 0.119 0.119 0.080 0.070 0.217 0.196
5YR 4/2 0.173 0.204 0.219 0.145 0.071 0.012 0.088 0.001 0.031 0.028 0.063 0.061 0.108 0.075

Mean 0.249 0.203 0.303 0.306 0.188 0.194 0.167 0.200 0.167 0.138 0.041 0.040

D r
ab CIELAB

Group Center -2.5 Hue +2.5 Hue -1.0 Chroma +2.0 Chroma -1.0 Value +1.0 Value Mean
CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG CSS UMG

5R 4/2 0.674 0.625 0.920 0.861 0.040 0.039 0.116 0.012 0.109 0.111 0.042 0.053 0.317 0.284
5RP 4/2 0.007 0.022 0.355 0.383 0.299 0.111 0.444 0.299 0.236 0.222 0.041 0.056 0.230 0.182
5P 4/2 0.033 0.157 0.180 0.263 0.035 0.020 0.138 0.071 0.255 0.245 0.071 0.082 0.119 0.140
5PB 4/2 0.014 0.156 0.161 0.249 0.268 0.337 0.176 0.229 0.192 0.165 0.180 0.185 0.165 0.220
5B 4/2 0.244 0.268 0.075 0.088 0.253 0.384 0.006 0.135 0.245 0.211 0.090 0.097 0.152 0.197
5BG 4/2 0.047 0.013 0.479 0.579 0.251 0.413 0.137 0.061 0.152 0.102 0.063 0.065 0.188 0.205
5G 4/2 0.238 0.282 0.201 0.217 0.313 0.120 0.072 0.226 0.214 0.172 0.048 0.060 0.181 0.180
5GY 4/2 0.288 0.237 0.082 0.052 0.007 0.064 0.095 0.143 0.027 0.020 0.121 0.128 0.103 0.107
5Y 4/2 0.410 0.289 0.279 0.067 0.080 0.135 0.212 0.303 0.183 0.187 0.042 0.029 0.201 0.168
5YR 4/2 0.203 0.247 0.095 0.010 0.027 0.097 0.044 0.054 0.065 0.068 0.024 0.011 0.076 0.081

Mean 0.216 0.230 0.283 0.277 0.157 0.172 0.144 0.153 0.168 0.150 0.072 0.076
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that compose the central field window of the captured
image. Although we have computed the camera XYZ
values using both the CSS and UMG based linear trans-
forms of Eqs. (4) and (5), we only present the results
obtained using the UMG linear transform in this sec-
tion. Since each sample pair is made of a single fabric,
we expect to obtain similar variabilities for both sides.
The results are contained in Table VII and in Fig. 12.
Note that each extreme-center sample pair is labeled
by a generic color followed by a number and their mean
L* a* b*  CIELAB coordinates measured by the
spectroradiometer. As expected, the color variabilities
of both sides of given pair, represented by small triangles
in Fig. 12, are quite similar in all cases. The influence
of texture can be clearly appreciated in the magnitudes
of the MCDM values, especially those high values mea-
sured by the camera.

We measure the color difference between the sides A
and B of each pair following this procedure: we calcu-
late the color differences between a sample point of one
side and each one of the ten sample points of the other
side; then, we repeat the same calculation for the rest
of nine sample points of the first side to complete a set
of 100 individual measurements of the color differences
between sides A and B of the given pair. We take then
the mean value and compare it with the variabilities
(expressed as MCDM) of both sides of the pair. If the
mean color difference between both sides is clearly
higher, depending of the quality standard, than the vari-
abilities, then it can be said that the extreme-center
samples of the pair are different, and the result is “fail”.
Otherwise, they are accepted as similarly dyed, and the

color matching “passes” the test. The mean color differ-
ences, the absolute discrepancy between the camera and
the reference instrument, and the pass–fail results ob-
tained in our experiment are contained on the right–
hand of Table VII. The mean color differences measured
by the spectroradiometer and the camera are also rep-
resented in Fig. 12 by small circles. As a quality stan-
dard, we have considered that a given extreme-center
sample pair obtains a “fail” result when the mean color
difference between its sides is higher than twice the
highest variability of the sides. The instrument preci-
sion and the standard of quality have a decisive influ-
ence in the final result. Thus, for instance, if the common
human visual discrimination of color was applied as
quality standard, a suprathreshold of visual discrimi-
nation (0.887 CIELAB units29) could be used alterna-
tively. We observe that the values obtained by the camera
are generally higher than those obtained by the
spectroradiometer, which might be due to a higher sen-
sitivity of the camera to texture than the reference in-
strument. In other words, the spectroradiometer
performs a certain integration within the sample area
assessed, whereas the camera is more influenced by the
variations of the fabric structure imaged pixel by pixel.
However, both instruments lead ultimately to similar
results. There is only one case (Black 2) out of the eight
cases analyzed for which the final decision depends on
the instrument: it fails for the reference instrument, but
passes for the camera. In fact, this case is near the limit
of the applied standard of quality (the mean color dif-
ference measured by the camera is 1.7 times the vari-

Figure 12. Assessment of the extreme-center sample pairs by: (a) camera, (b) spectroradiometer. The variability (◆ side
A, � side B) and CIEDE2000 color difference (�) data are taken from Table VII.

(a) (b)

TABLE VII. Assessment of Extreme-Center Sample Pair of Fabrics. In the Measurements Made by the Camera, the UMG Based
Linear Transform from RGB to CIE XYZ Values was Used

Color Variability
Extreme-Center Sample MCDM CIEDE2000 (nΔE00) Color difference Result

Pair (L*a*b*) Side A Side B

SpecR. Camera SpecR. Camera SpecR. Abs. Disc Camera SpecR. Camera

Navy 1 (17,5 : 0,7 : -4,8) 0,49 2,18 0,72 2,44 0,83 1,91 2,74 Pass Pass
Navy 2 (17,6 : 0,6 : -5,2) 0,27 1,20 0,35 1,18 0,75 2,19 2,94 Fail Fail
Blue 1 (18,3 : 0,6 : -5,4) 0,52 3,74 0,75 3,22 0,74 3,94 4,68 Pass Pass
Blue 2 (18,2 : 0,6 : -5,1) 0,24 2,44 0,33 2,72 0,37 2,77 3,14 Pass Pass
Black 1 (16,3 : 1,0 : -2,6) 0,43 2,75 0,62 3,13 0,66 2,55 3,21 Pass Pass
Black 2 (16,1 : 0,9 : -2,4) 0,24 1,67 0,35 1,67 0,93 1,86 2,79 Fail Pass
Green 1 (33,4 : -0,4 : 8,9) 0,34 0,59 0,41 0,83 0,71 0,38 1,09 Pass Pass
Green 2 (32,4 : -0,4 : 8,9) 0,59 1,44 0,73 1,82 0,77 0,94 1,71 Pass Pass
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ability of the sides) and we should also bear in mind the
difficulty of the color involved (black).

For a better understanding of both instrument per-
formances, we have filtered the measurements obtained
by the camera in order to introduce some integration in
the sample area imaged. Two sorts of filters have been
applied. One of them is a smoothing filter. In each
sample, we have lightly smoothed the image using a
Gaussian mask of 5 × 5 pixels before taking the mean
values of L*a*b*. This filter averages the effects of tex-
ture within a sample area that approximately corre-
sponds to thread size, more specifically, 5 pixels
corresponds to the mean thread width in both the warp
and weft directions of the fabric samples under study
(in comparison, the integration area of the
spectroradiometer is 100 times wider). Alternatively, we
have built the L* histogram of the sample image and
then, we have neglected all the values within either the
lowest 20% (shadow) or the highest 20% (bright) of the
histogram. This other filter resembles a median filter.
From the filtered images, we have recalculated all the
variabilities and the color differences obtained by the
camera system. For each sort of filter, we have built a
table analogous to Table VII. In both cases of filtering,
the results obtained by the camera were slightly closer
to those obtained by the spectroradiometer than before
(Table VII). The final Pass/Fail results did not alter in
any case. Table VIII contains the absolute discrepan-
cies between the measurements obtained by the
spectroradiometer and the camera in all the three cases
analyzed: without filtering (same as in Table VII),
smoothing filter, and (±20%) filter. It can be seen that,
in general, the absolute discrepancies reduce when some
integrating filter is applied to the sample images cap-
tured by the camera.

Conclusions
The method presented here analyzes the camera’s ca-
pability to measure small color differences between
sample pairs with reliability. In the first part, the ap-
propriate working conditions are established, the cam-
era spectral sensitivities and imaging noise are
characterized, and the transformation to obtain a de-
vice independent representation of color is calculated
considering two different approaches: one, on the basis
of the camera spectral sensitivity (CSS), and two, on
the basis of the unified measure of goodness of the cam-
era (UMG) that involves an imaging noise model. In the

second part, a large number of varied small color differ-
ences in the very pale and the dark grayish color re-
gions are measured by both the camera and the reference
instrument. The assessment of the camera performance
is based on the analysis of the results, the involved un-
certainty, the absolute discrepancy and the relative dis-
crepancy between the camera and the reference
instrument.

The method was applied to a camera vision system
(3CCD camera SONY DX-9100P) placed in an observa-
tion booth with controlled illumination of a D65 real
simulator. We used a spectroradiometer (PhotoResearch
PR-715) as the reference instrument. Good agreement
was obtained between the color differences measured
by the spectroradiometer and the camera. Although the
mean values of the absolute discrepancy exceed the cam-
era uncertainty, most of them fall within the camera
tolerance in the case of very pale colors (CIELAB 0.5
ΔE*

ab or CIEDE2000 0.6 ΔE00). This fact, along with the
magnitude of the camera tolerance, is considered a good
achievement for the camera’s performance. In the dark
grayish region, probably caused by a greater influence
of dark current, the absolute discrepancies are some-
what higher. Nevertheless, nearly all of them are still
lower than the minimal color error calculated with the
UMG approach (εmin = 1.423 CIELAB units). The rela-
tive discrepancies are low and nearly uniform around
the circle of hue in both the very pale and the dark gray-
ish regions. This fact is also a good property of the cam-
era performance. The use of the two CIELAB and
CIEDE2000 metrics in parallel led to similar results.
The two approaches (CSS and UMG) used in the linear
transformation of the RGB values to the camera esti-
mate XYZ values led also to similar results in the mea-
surement of the color differences between sample pairs.

The camera system has been applied to the evalua-
tion of color uniformity in textile dyeing. Eight pairs of
extreme-center fabric samples have been analyzed by
both the camera and the reference instrument. In this
case, the effects of the texture are noticed. Although the
camera is more sensitive to texture than the
spectroradiometer, both instruments yielded consistent
and satisfactory Pass/Fail results. Since the samples as-
sessed were real cases of high difficulty (most of them
were very dark colors), the results showed the high qual-
ity of the camera performance and, thereby, the poten-
tial of this sort of machine vision system for colorimetric
tasks that usually have been exclusively the domain of
trained observers.
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Color image sharpening inspired by human vision models

María S. Millán and Edison Valencia

A method to sharpen digital color images that takes viewing conditions and human vision models into
consideration is described. The method combines the Laplacian of Gaussian (LoG) operator with
spatial filters that approximate the contrast sensitivity functions of human visual systems. The
sharpening operation is introduced in the opponent color space, following the scheme proposed in the
spatial extension of CIELAB (S-CIELAB). We deduce the modification of the original image necessary
to obtain the spatially filtered image that approaches the perceived LoG-sharpened image for given
viewing conditions. At short viewing distances, for which the spatial blurring is small, most fine edges
and object contours are sharpened. At long distances, for which the spatial blurring is greater, only
large figures are sharpened. Because of the smoothing Gaussian functions involved in the LoG
operator, the proposed image sharpening does not tend to increase noise. When the sharpening
operation is limited to the achromatic channel, the results are good. This is consistent with the high
importance attached to the luminance channel in the spatial content of color images. Image sharp-
ening based on only the Laplacian of the original is not sensitive to variations of viewing conditions,
tends to increase noise, and suffers from its appearance deteriorating rather quickly with the depth
of the sharpening operation. © 2006 Optical Society of America

OCIS codes: 100.0100, 330.0330, 100.2000, 100.2980, 330.1690, 330.6110.

1. Introduction

Edges and object contours in images are usually noisy
and badly defined areas as a consequence of the
point-spread function of the camera lens, the sensor
and/or display resolution, viewing conditions, and
digital operations such as image compression and
halftone patterns. There are a large number of appli-
cations for which image edges or the differences be-
tween adjacent light and dark sample points in an
image need to be emphasized or sharpened. But im-
age sharpening is a double-edged sword: It may won-
derfully enhance an image, but, on the other hand, an
improper or excessive use of it affects the image, pro-
ducing artifacts such as overly contrasted contours,
edges that look like halos around objects, jagged
edges, mottled areas, and increasing noise.

The use of a second derivative or Laplacian operator
to enhance gray-scale images by edge sharpening is
widely known. A discrete representation of this oper-

ator is a convolving mask whose kernel computes the
addition of the weighted gray-level differences be-
tween a pixel and its neighbors. The operator has been
extended to color images by applying it to each red (R),
green (G), or blue (B) component separately and com-
bining the result to yield the sharpened color image.1
As has been reported, the simple extension of classical
gray-level methods to the RGB channels is not the best
solution.2–7 In fact, reasonably good results can be ob-
tained by sharpening edges just in the intensity com-
ponent while keeping the chromatic components of hue
and saturation unchanged.8 In the work of Di Zenzo2

color images are treated as multivalued functions for
which the tensor gradient is used in more effective
edge detection. A more abstract treatment was done
by Sochen et al.4,5 They viewed images as embedding
maps that flow toward minimal surfaces. They consid-
ered a color image as a 2D surface in a 5D space (x, y,
RGB). Their geometric framework led to building pow-
erful smoothing and scale space algorithms. In the
mathematics developed in Refs. 2–7 the feature coor-
dinates of a color image are the RGB intensity values,
although the authors of Ref. 5 mentioned the possibil-
ity of using a Euclidean space such as the international
standard CIELAB system (CIE 1978). This space has
also been used as a basis to define a color-difference-
based Laplacian operator for color image sharpening
in Ref. 9. But CIELAB, as well as other standard sys-
tems, was tested against data from color appearance
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judgments of large uniform patches. Consequently, it
should not be used to determine the color difference
between images on a pixel-by-pixel basis because a
point-by-point computation of the CIELAB error tends
to produce larger errors at most image points than the
perceived ones.10

Zhang and Wandell10 proposed a spatial extension
to the CIELAB color metric, known as the S-CIELAB
metric, that can be applied to complex stimuli, such
as digital images, when they are viewed at different
distances. They use a series of spatial filters in the
opponent color space AC1C2, containing one lumi-
nance channel (A) and two chrominance channels
�C1, C2�. The filters are smoothing filters consisting of
a linear combination of Gaussian masks that approx-
imate the contrast sensitivity functions of the human
vision system for a given viewing distance. The fil-
tered image is then back transformed to the CIELAB
representation. S-CIELAB allows one to measure the
perceived color differences by applying the standard
CIELAB formula �E to the filtered images pixel by
pixel. S-CIELAB has been used to measure color re-
production errors in images,10 to predict texture vis-
ibility of printed halftone patterns,11 to evaluate the
effects of image compression,10 and to segment color
images.12 This technique can be implemented in both
the spatial and the frequency domains.13 The CIE
2000 color-difference formula14 (CIEDE2000) �E00
combined with S-CIELAB was compared with other
existing CIE color-difference formulas and three dif-
ferent viewing conditions in Ref. 13. Recently, a new
model of the contrast sensitivity functions that is
specifically designed for use in image-difference and
image-quality models was introduced.15

In this work we introduce a new method for color
image sharpening that takes into consideration the
viewing conditions of an image and the models of the
human vision system. Our method follows the basic
steps defined in the S-CIELAB algorithm since it
offers an interesting scheme to introduce spatial fil-
tering of the visual system in digital color images. We
combine such spatial filtering with the Laplacian op-
erator in each channel of the opponent space to obtain
the sharpened image. In fact, there is evidence that
shows that smoothing and sharpening spatial filters
can simulate the on-center off-surround receptive
field performance of the primary stages of human
vision.16,17 For instance, the brightness enhancement
of Mach bands, which can be explained by retinal
receptive field center–surround interactions,18 is
closely related to the result obtained after applying
the Laplacian operator. Since the spatial filters used
in S-CIELAB are linear combinations of weighted
Gaussian functions, the application of the Laplacian
to the spatially filtered components can be further
simplified by introducing the Laplacian of Gaussian
(LoG).19 This operator takes advantage of the prop-
erties of convolution and derivatives and is widely
used as an edge detector with a reduced sensitivity to
noise. The LoG operator can be approximated by the
difference of Gaussians (DoG) that is a computation-
ally efficient function. The DoG function can be com-

puted by convolving an image with two Gaussians of
different spread and forming the difference of the
resulting two smoothed images. The use of DoG is
consistent, and it can be justified since it has also
been widely utilized to model receptive fields in early
human vision (see, for instance, Refs. 17 and 19).
Thus, summarizing, to sharpen a color image that is to
be seen at a given viewing condition (i.e., pixel resolu-
tion and distance) we combine the basic steps of the
S-CIELAB algorithm with either the LoG or the DoG
operators to generate the modified spatial filters to
convolve with the image in the opponent color space
representation. In the case of the DoG operator the
modification is quite simple as the new spatial filters
are again linear combinations of convolving Gaussian
functions but of different spread. The LoG (DoG) fil-
tered images are subtracted from the image compo-
nent in each opponent channel, then back transformed
to XYZ space, and then to the device-dependent color
representation space RGB (sRGB) for display. We will
assume some monitor type (sRGB)20 using appropriate
color profiles. The result is a sharpened color image
adapted to viewing conditions.

As far as we know, this compact combination of the
S-CIELAB algorithm with derivative edge detectors
in the opponent color space has not yet been applied
to the color sharpening of digital images. To the best
of our knowledge it is also new that human vision
models and viewing conditions are involved in the
sharpening operation.

The method proposed here is applied to several dig-
ital color test images to render sharpened images. We
evaluate the possible artifacts that may appear as a
consequence of having spatially filtered with different
size filters for each channel and the lack of orthogo-
nality of the three channels in the opponent color
space. The results are compared on the S-CIELAB
basis with other results obtained by applying the LoG
operator to the achromatic channel A only (keeping the
chrominance C1 and C2 components unchanged) or
just the Laplacian ��2� to the image components in all
three channels.

2. Spatial Filtering in the Opponent Color Space
and S-CIELAB

In this section we give a brief overview of
S-CIELAB10 that constitutes a general background
on which we describe our proposal in the following
sections. With S-CIELAB, Zhang and Wandell10 pro-
vided a metric to determine the perceived color dif-
ferences between image pairs.

To implement S-CIELAB, a sequence of steps has
to be followed. First, it is necessary to transform the
input images into a device-independent color space,
such as CIE 1931 XYZ. This transformation requires
having a well-characterized display device such as a
computer CRT display that can be characterized, for
instance, by applying the gain, offset, gamma (GOG)
model,21 although the method can be extended to
other displays such as printers. In the following, we
assume that the input images of a given pair are
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expressed in the standard color space sRGB and are
then transformed into CIE XYZ.

The second step involves a spatial filtering of the
images that is performed in an opponent color space
consisting of one luminance channel (A) and two
chrominance channels �C1, C2�. The transformation
and spatial filters used in S-CIELAB have been esti-
mated from human psychophysical measurements of
color appearance.22 The opponent channels AC1C2 are
linear transformed from CIE 1931 XYZ as shown by
the equation

�A
C1

C2
��� 0.297 0.72 �0.107

�0.449 0.29 �0.077
0.086 �0.59 0.501

��X
Y
Z
�. (1)

Since the three AC1C2 channels are not completely
orthogonal, some color fringes may appear after spa-
tially filtering the image components with different
size filters in each channel. These effects are not par-
ticularly relevant when calculating color differences
for the number of applications described in Refs. 10–
13, but it may generate artifacts when rendering im-
ages. Nevertheless, we will use the transform given
by Eq. (1) in subsequent sections, and we will exam-
ine the possible complications caused by the lack of
orthogonality.

Once two images I and I= are transformed into the
opponent color space, they are spatially filtered using
filters that approximate the contrast sensitivity func-
tions of the human visual system. This filtering can
be carried out either via convolution in the spatial
domain, as we do in this work, or by multiplication in
the frequency domain.13 In each opponent channel,
the filter is a linear combination of weighted Gauss-
ian functions, and its kernel sums to 1. Thus the
three filters preserve the mean color value for large
uniform areas, and S-CIELAB and CIELAB give sim-
ilar predictions for them. The kernel of each spatial
filter Fdi is given by

Fdi�x, y� � �
j

wijGij�x, y,
d�ij

�2 	, (2)

where i � 
0, 1, 2� indicates the opponent channel

A, C1, C2�, wij is the weight, and Gij is the normalized
kernel of a Gaussian function described by the ex-
pression

G�x, y, s� �
1
S exp��

�x2 � y2�
2s2 �. (3)

In Eq. (3) s is the spread and S is a constant that
normalizes the kernel of the Gaussian so that it sums
to one. In Eq. (2), the spread of the Gaussian func-
tions is sij � d�ij��2 , and it represents the decrease in
sensitivity that occurs in the human vision system
when the viewing distance increases. This blurring
effect is represented by the product of the spread
expressed in degrees of visual angle ��ij� times the
number of pixels per degree of visual angle (d) when

the observer is placed at a given distance from the
monitor. Table 1 shows the values of weights and
spreads used in S-CIELAB.10,13 Note that the weights
wij correspond to those published in Ref. 13 that are
already adjusted to sum to 1. Let us denote Idi and Idi�
as the components of the spatially filtered images in
the opponent color space. They are produced from the
convolution of the spatial filters Fdi with the input
image components Ii and Ii�:

Idi�x, y� � Fdi�x, y� � Ii�x, y�,

Idi��x, y� � Fdi�x, y� � Ii��x, y�,
(4)

where the symbol � is the convolution operation. The
2D convolution in the spatial domain of Eq. (4) can
be more efficiently computed as two 1D convolutions
taking into account that the kernels are separable. It
can be advantageously calculated in the frequency
domain as is described in Ref. 13.

The filtered components in the opponent channels
Idi and Idi� [Eq. (4)] are then transformed back into
CIE XYZ space by using the linear transformation

�X
Y
Z
���0.979 �1.535 0.445

1.189 0.764 0.135
1.232 1.163 2.079

��A
C1

C2
�, (5)

which is the inverse of Eq. (1). The filtered images
Id�XYZ�, Id�XYZ�� are transformed into the CIELAB space
by using standard equations,21 for which the tri-
stimulus values of the white point of the display de-
vice Xn, Yn, Zn have to be known through the device
characterization (sRGB monitors have a D65 white
point). Once the CIELAB coordinates are calculated
for all the pixels, the color differences between the
filtered images Id�CIELAB� and Id�CIELAB�� can be com-
puted on a pixel-by-pixel basis. The result is a color-
difference image in which each pixel value represents
the perceived color difference at that given point. The
standard CIE �Eab* color-difference equation21 has
been traditionally used with S-CIELAB. Johnson and
Fairchild13 compare the results of three existing CIE
color-difference formulas ��Eab*, �E94*, and �E00)
when evaluating the color-difference image for a
given halftone image pair consisting of an original
image and its replica as a cluster dot halftone image.
From the image statistics, the authors pointed out

Table 1. Weight and Spread of Gaussian Kernels Used to Build the
Spatial Filters for Image Convolution in the Opponent Channels

i j w �

0 (A) 1 1.00327 0.0500
2 0.11442 0.2250
3 �0.11769 7.0000

1 (C1) 1 0.61673 0.0685
2 0.38328 0.8260

2 (C2) 1 0.56789 0.0920
2 0.43212 0.6451
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that CIEDE2000 ��E00� tends to produce color-
difference images (called error images) with the
smallest mean and standard deviation among the set
of three CIE color-difference formulas. In this work
we also use the CIEDE2000 color-difference formula
to compare image pairs.

3. Displayed and Perceived Sharpened Images

When performing operations that involve second de-
rivatives for edge extraction, such as edge detection or
image sharpening, it is a common practice to smooth
the image first by convolution with a Gaussian kernel
of spread s to reduce noise before computing a second
derivative or Laplacian. Taking into account the prop-
erties of the derivative, Gaussian function, and convo-
lution, it is verified that �2�G�x, y, s� � I�x, y�
 � �2G
�x, y, s� � I�x, y�, in which the Laplacian of Gaussian
is often just named LoG. A convolution kernel of the
LoG operator can be obtained by sampling the con-
tinuous function �2G�x, y, s� over a W � W window.
To reduce the deleterious truncation effects, the size
of the kernel must be set so that W � 3c � 8.5s, where
c � 2�2s is the width of the central lobe of the LoG
function.23,24 Figure 1 shows a plot of ��2G�x, y, s�.

A sharpened version ShI of a given image I can be
obtained by computing

ShI�x, y� � I�x, y� � LoG � I�x, y�. (6)

In this work we propose to sharpen the components
of the spatially filtered image in the color opponent
space, taking into consideration the linear combina-
tion of weighted Gaussian functions that compose the
spatial filters Fdi [Eq. (2)] to build the LoG operator.
This is the key point of the proposal, and it can be
expressed by

ShIdi�x, y� � Idi�x, y� � kLoG
Fdi� � Idi�x, y�, (7)

where k is a real positive parameter introduced to
control the depth of the sharpening and

LoG
Fdi�x, y�� � �
j

wijLoGdij � �
j

wij�
2Gij�x, y,

d�ij

�2 	.

(8)

In fact, Eq. (7) represents the sharpening of an
image as it would be perceived in a given viewing
condition. But the perceived sharpened image, repre-
sented in the opponent color space by ShIdi [Eq. (7)],
has to be obtained by spatially filtering the corre-
sponding sharpened image displayed on the monitor.
The displayed sharpened image, whose components
in the opponent color space are ShIi, then verifies

Fdi�x, y� � ShIi�x, y� � ShIdi�x, y�. (9)

By introducing Eqs. (4) and (7) into Eq. (9), we obtain
for the displayed LoG-sharpened image

ShIi�x, y� � Ii�x, y� � kLoG
Fdi� � Ii�x, y�. (10)

Note that ShIi�x, y� of Eq. (10) represents the sharp-
ened image that must be displayed on the monitor to
perceive the sharpened image ShIdi�x, y� of Eq. (7)
in the viewing condition given by d (pixels�degree of
vision angle). Equations (7) and (10) describe a LoG-
based sharpening operation in the perceived and the
displayed levels, respectively, that depends on

Y the opponent channel—it also involves the lin-
ear combinations of Gaussian functions used for spa-
tial filtering in the opponent channels, and

Y the viewing conditions (i.e., monitor address-
ability and viewing distance) through the number of
pixels�degree of visual angle d.

Let us consider a monitor that displays a color
image of N � M pixel size with a fixed number of
pixels�cm. At short viewing distances, for which the
spatial blurring is small, Eq. (10) would sharpen most
fine edges and large object contours. At these short
distances, some noise could also be emphasized. At
long distances, however, for which the spatial blur-
ring is greater, Eq. (10) would sharpen just the most
significant object contours. Moreover, the spatial ex-
tension of the double edge produced by the LoG 
Fdi�
operator, which is added to the image component for
sharpening, varies with distance. Whereas fine dou-
ble edges would be added when viewing the image at
short distances, thicker double edges would be added
at longer distances. In addition, this sort of image
sharpening tends to preserve the continuous tone
perceived of areas covered by patterns of spatial rapid
variations such as those processed with a halftone
algorithm. This is a remarkable property of the pro-
posed sharpening technique, since the majority of
sharpening techniques tend to increase noise and the
differences between small individual dots.

To have ShIi displayed on the monitor, it is neces-
sary to first transform the image components in the

Fig. 1. Profile of the (negative) LoG function (solid curve). The
Gaussian considered was G(x, y, s � 5) [Eq. (3)]. The LoG profile
can be approximated by a DoG function (dashed curve) G(x, y, s1)
� G(x, y, s2), with s2�s1 � 1.6 and s1 � s (Ref. 19). The DoG
function has been plotted normalized to the LoG maximum for
comparison.
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opponent color space back into the CIE XYZ by using
Eq. (5). The result is transformed in turn into sRGB
to address the sharpened image ShIRGB for display on
the monitor.

Several other possibilities can be considered for
color image sharpening instead of that used in Eq. (7).
Let us mention two of them. In the first one, we
consider that the sharpening operation [Eq. (7)] is
limited just to the achromatic channel A that repre-
sents luminance and that the chrominance channels
C1 and C2 are kept unchanged. In the second possi-
bility, we consider that the LoG operator is convolved
by the image component Ii (before the spatial filter-
ing) in Eq. (7). In such a case, the components of the
perceived sharpened image would be

ShIdi�x, y� � Idi�x, y� � kLoG
Fdi� � Ii�x, y�. (11)

Equation (11) can be rewritten as

ShIdi�x, y� � Idi�x, y� � k�2Idi�x, y�

�Fdi�x, y� � �Ii�x, y� � k�2Ii�x, y�
, (12)

and, taking into account Eq. (9), the components of the
corresponding displayed sharpened image should be

ShIi�x, y� � Ii�x, y� � k�2Ii�x, y�. (13)

The sharpening operation described by Eq. (13) cor-
responds to the traditional Laplacian-based sharpen-
ing operation. Although it is defined here for the
channels of the opponent color space, the same form
has been extensively used in a single gray-scale
channel1,8 and other sets of three channels correspond-
ing to different color spaces (RGB and CIELAB, for
example).1,9 This sharpening operation tends to in-
crease noise excessively since no smoothing of the im-
age is performed prior to applying the second
derivative. In such a case, the image smoothing corre-
sponds just to the spatial filtering of visual perception
according to Eq. (12).

Finally, we consider that the LoG operator can be
closely approximated by a difference of Gaussians or
DoG operator in the preceding equations. This DoG is
defined by

DoG�x, y, s1, s2� � G�x, y, s1� � G�x, y, s2�, (14)

and it can be used as a convolution kernel instead of
(�LoG). Marr and Hildreth19 found that the ratio
s2�s1 � 1.6 provides a good approximation to the LoG
(Fig. 1). This sort of operator has been used to de-
scribe the neural cell performance of the receptive
fields in human vision.

4. Experiments

We apply the sharpening operation described by Eqs.
(7)–(10) to the test image I�x, y� of 385 � 289 pixel
size [Fig. 2(a)]. Let us consider that this image is to be
displayed on a CRT monitor controlled by a computer.

Since the RGB values are device dependent, we per-
form the color transformations based on devices that
conform to sRGB. The sRGB color space has been
characterized by the International Electrotechnical
Commission (IEC).20 Thus, we consider that the orig-
inal image is in sRGB; i.e., it was created using de-
vices that conform to sRGB, and the monitor is sRGB
compliant, and it is associated with an appropriate
color profile. In consequence, the resulting processed
images will be consistent across the devices, and we
will be able to compare them with the original in
appearance. The formulas to convert between sRGB
and the XYZ tristimulus values for the D65
white point are the following (also available on the
Internet20,25):

�X
Y
Z
���0.4124 0.3576 0.1805

0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

��R
G
B
�,

�R
G
B
��� 3.2406 �1.5372 �0.4986

�0.9689 1.8758 0.0415
0.0557 �0.2040 1.0570

��X
Y
Z
�. (15)

Let us consider that the monitor is capable of dis-
playing p pixels per centimeter (ppc) and it is viewed
at L cm. The number of pixels per degree of visual

Fig. 2. (Color online) (a) Test, original image of 385 � 289 pixel
size. (b) Set of ten regions of interest of nearly uniform colors that
are defined to analyze noise and color variations due to the pro-
cesses.
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angle is then

d � pL tan� �

180	� 0.0175pL. (16)

In our case, we consider that the image is displayed
on the monitor with p � 57 ppc and is to be observed
at two different distances L � 
25, 50� cm so that,
according to Eq. (16), the pixels per degree of vis-
ual angle are d � {25, 50}. Figure 3 shows the results
of applying Eqs. (7) and (10), with d � 50 pixels�
degree and k � 5, to the achromatic image component
of channel A [i � 0, Fig. 3(a)]. Figure 3(b) shows the
spatially filtered version of the image in Fig. 3(a), and
it was obtained by convolution with the spatial filter
Fdi�x, y� of Eq. (2) with d � 50 and i � 0. Figure 3(c)
is the LoG term kLog
Fd0� � I0�x, y� that is to be sub-

tracted from the original A component to produce the
sharpened version ShI0�x, y� in Fig. 3(d). Note the
double-edge distribution in Fig. 3(c) that emphasizes
object contours. Figure 3(e) shows the spatially fil-
tered version of the sharpened component in Fig.
3(d). The spatially filtered images Figs. 3(b) and 3(e)
appear as blurred versions of the images Figs. 3(a)
and 3(d), respectively, when they are shown with the
same scale. But the viewing condition d � 50 pixels�
degree implies that they would be seen with a scale
reduced to a factor of 2. Thus the scaled versions of
the spatially filtered images Id0�x, y� and ShId0�x, y�
are placed together for comparison in Fig. 3(f) as if
they would be seen with d � 50 pixels�degree. In
Figure 3(f), we realize the edge sharpening effects
introduced in ShId0�x, y� in comparison with Id0�x, y�.

Fig. 3. Sharpening operation in the A channel (i � 0) for d � 50 pixels�degree and k � 5: (a) original image component I0�x, y�, (b) spatially
filtered image Id0�x, y� shown with the same scale as in (a), (c) LoG term kLoG
Fd0� � I0�x, y�, (d) sharpened image component ShI0�x, y�, (e)
spatially filtered sharpened image component ShId0�x, y� shown with the same scale as in (d), (f) scaled versions of Id0�x, y� and
ShId0�x, y� as they would be seen at d � 50 pixels�degree.
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In this section we organize the following series of
experiments:

Y Experiment 1. To restrain the sharpening op-
eration to the achromatic channel A, while keeping
the chrominance channels C1 and C2 unchanged.
The result is to be compared with the sharpening
operation applied to the whole set of channels A,
C1, and C2. The CIEDE2000 color differences be-
tween the resulting and the original images will be
computed on the S-CIELAB basis for the sake of com-
parison.

Y Experiment 2. Comparison of the convention-
al Laplacian-based sharpening operation ShI�2 [Eq.
(13)] with our proposed LoG-sharpening operation
ShI [Eq. (10)] in terms of color variations and noise
with respect to the original image. Again, the
CIEDE2000 color differences between the original
image and the image resulting from each sharpen-
ing operation will be computed on the SCIELAB
basis ��E00

SCIELAB�I, ShI� and �E00
SCIELAB�I, ShI�2�].

We consider a set of ten regions of interest (ROIs) in
the original image [Fig. 2(b)] to analyze the effects of
noise and color variations. All ten ROIs have the
same area (either 6 � 6 or 4 � 9 pixels). They show
different but nearly uniform colors, and they are
placed relatively far from edges or other contours.
The signal-to-noise ratio (SNR) is the metric we use
to evaluate noise in the image of the color differences
between the sharpened and the original images
��E00

SCIELAB�I, ShI� and �E00
SCIELAB�I, ShI�2�]. Since

edges and contours are sharpened by design, they
contribute to have a large value of the standard de-
viation, not due to noise, but to the variation in local
information. Consequently, the zones corresponding
to edges and contours must be excluded from the
estimation of noise. For this reason, the average
SNR is calculated from the logarithm of the ratio
of the contrast due to the structural difference
�Vmax � Vmin� to the noise level represented by the
standard deviation of the ROIs, according to the ex-
pression

�SNR� � � 20
NROI

	 �
i�ROI

log10�Vmax � Vmin

si
	, (17)

where Vmax and Vmin are the maximum and minimum
boundaries between which the image of the color dif-
ferences lies, NROI is the number of ROIs, and si is
the standard deviation of the iROI in the images of
the color differences [either �E00

SCIELAB�I, ShI� or
�E00

SCIELAB�I, ShI�2�]. The experiment will be re-
peated for different viewing distances.

Y Experiment 3. The DoG operator [Eq. (14) with
s2�s1 � 1.6] is taken in Eq. (10) as an approximation
of the LoG operator. The results will be compared by
computing the color differences on the SCIELAB ba-
sis.

Y Experiment 4. We will look for the effects of
the proposed method in terms of artifacts. We focus
on possible fringes or color variations that may ap-
pear when rendering images caused by the lack of

complete orthogonality of AC1C2 channels. We will
consider tests of geometrical figures on uniform back-
ground, and we will analyze the characteristics of
color variations in sharpened edges and contours.

Y Experiment 5. We analyze the joint influence
of the control parameter k and the viewing condi-

Fig. 4. (Color online) (a) Original image (I); (b) A component (I0);
(c) C1 component (I1); (d) C2 component (I2); LoG-sharpened images
obtained by using Eq. (10) with k � 5 and d � 50 pixels�degree: (e)
limited to the A channel, and (f) in the A, C1, and C2 channels. (g)
CIEDE2000 color difference between the (e) and (a) image pair
based on the S-CIELAB metric. (h) CIEDE2000 color difference
between the (f) and (a) image pair based on the S-CIELAB metric.

Fig. 5. (Color online) LoG-sharpened images obtained by using
Eq. 10 with k � 5 and d � 50 pixels�degree: (a) limited to the A
channel, and (b) in the A, C1, and C2 channels. (c) CIEDE2000 color
difference between the (a) and (b) images based on the S-CIELAB
metric. The data corresponding to the CIEDE2000 color differences
of the processed whole images (of 385 � 289 pixels) are mean �
2.7197, std � 4.7788, max � 54.9434, min � 0.0036.
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tions (d pixels�degree) in the LoG-sharpened im-
age. With this experiment, we will try to reach some
conclusion about the value of k for different viewing
conditions d. The method will be applied to different
images.

5. Results

A. Results of Experiment 1

Experiment 1 restrains the sharpening operation to
just the achromatic channel A and keeps the chromi-

Fig. 6. (Color online) (a)–(d) Zone of the image of Fig. 2(a), displayed on the monitor with p � 57 ppc: (a) original, (b) sharpened image
using the Laplacian [Eq. (13)], (c) sharpened image using the proposed LoG method [Eq. (10)] to be seen at d � 25 pixels�degree; (d) same
as (c) but to be seen at d � 50 pixels�degree; (e)–(g) spatially filtered images of (a)–(c) for the viewing conditions of d � 25 pixels�degree;
(h) and (i): color differences �E00

SCIELAB�I, ShI�2� and �E00
SCIELAB�I, ShI� for the viewing condition of d � 25 pixels�degree; (j), (k), (l) spatially

filtered images of (a), (b), (d), respectively, for the viewing condition of d � 50 pixels�degree; (m), (n) color differences �E00
SCIELAB�I, ShI�2�

and �E00
SCIELAB�I, ShI� for the viewing condition of d � 50 pixels�degree.
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nance channels C1 and C2 unchanged. Figure 4 gives
an example obtained for a test image consisting of
four sectors. Each sector of the test has some A, C1, or
C2 components constant [Figs. 4(a)–4(d)]. Figure 4(e)
shows the result of using the LoG of the spatial filter
[Eq. (10)] with k � 5 and d � 50 pixels�degree to
sharpen only the A component of the test, keeping the
components C1 and C2 constant, whereas Figure 4(f)
shows the sharpened image in all its A, C1, and C2
components. Both sharpened images Figs. 4(e) and
4(f) are rather similar at first sight. However, looking
at them in detail, we appreciate that only the top left
sector, which exhibits variations in the A channel,
has been sharpened in Fig. 4(e) and the rest of the
sectors, with constant A values, are not sharpened. In
Fig. 4(f) all sectors have been sharpened, although
the clearest effects appear in the top left and the
bottom right sectors. Evidence of this fact are pro-
vided in Figs. 4(g) and 4(h) that show the CIEDE2000
color differences computed between each sharpened
version and the original image according to the
S-CIELAB metric. In most of the images analyzed by
us, the exclusive sharpening of the A channel pro-
duces good results, very close to those obtained by
sharpening in all three channels. This can be seen in
the example of Fig. 5. The S-CIELAB color differ-
ences between the whole processed images ShIA only
and ShI, of 385 � 289 pixels are small as it can be
appreciated the from the following statistics (in
CIEDE2000 units): mean � 2.7197, std � 4.7788,
max � 54.9434, min � 0.0036.

B. Results of Experiment 2

Figure 6 shows the sharpened images obtained by
using the bare Laplacian operator [Eq. (13), repre-
sented by ShI�2] and the LoG of the spatial filter in
each channel [Eq. (10), represented by ShI] and com-
pares them with the original image when they are
seen at two distances, with d � 
25, 50� pixels�
degree. We have considered k � 7.5 to make the
differences between them more evident. In the first
row, Figs. 6(a)–6(d), we can see the images as they
would be displayed on a monitor with p � 57 ppc.
Note that the LoG-sharpened image takes into ac-
count the distance at which it is going to be seen and,
consequently, two different images are computed to
be displayed on the monitor [Figs. 6(c) and 6(d)] for
the distances L � 
25, 50� cm (equivalent to the view-
ing conditions of d � 
25, 50� pixels�degree). That is
not the case of the image sharpened by using the
Laplacian operator [Eq. (13)], which is an operation
independent of the viewing conditions. This ShI�2

image also shows a colored noise, as could be expected
from this sort of operation, in contrast with the sharp-
ened images of Figs. 6(c) and 6(d) that appear
smoothed. A high value of k also produces rapid sat-
uration in a large number of points in the displayed
image level ShI�2. In these points, values are trun-
cated according to the considered dynamic range (8
bits). In such a case, Eq. (12) is no longer verified in
a large number of points, that is

Idi�x, y� � k�2Idi�x, y� 	 Fdi�x, y� � �Ii�x, y�

� k�2Ii�x, y�
. (18)

As a consequence, the spatially filtered image
Fdi�x, y� � �Ii�x, y� � k�2Ii�x, y�
 has been taken into
account for computing the S-CIELAB color differ-
ences.

To evaluate the color variation and noise associ-
ated with both the Laplacian and the LoG-based
sharpening operations, we compute the CIEDE2000
��E00� color differences between the sharpened and
the original images on the S-CIELAB basis [Figs.
6(h), 6(i), 6(m), and 6(n)]. Table 2 contains the nu-

Fig. 7. (Color online) (a) Area of the original image (Fig. 2).
Sharpened images obtained by using (b) the LoG operator [Eq.
(10)], (c) the DoG [Eq. (14)] instead of LoG in Eq. (10). Values of
k � 5 and d � 50 pixels�degree were used to compute (b) and (c).
(d) Color difference between (b) and (c) image pair based on the
S-CIELAB metric. Statistics of �E00

SCIELAB�ShILoG, ShIDoG� in
CIEDE2000 units: mean � 6.3, std � 8.6, max � 112, min � 0.01.

Table 2. Average Metrics of the ROIs in the SCIELAB �E00 Color
Differences Computed between the Sharpened and Original Imagesa

Mean
CIEDE2000

Units

std
CIEDE2000

Units
SNR
dB

�E00
SCIELAB�I, ShI�

d � 25
3.0043 1.6738 38.6370

�E00
SCIELAB�I, ShI�2�

d � 25
10.5977 3.1173 30.8695

�E00
SCIELAB�I, ShI�

d � 50
1.5848 0.5330 42.7710

�E00
SCIELAB�I, ShI�2�

d � 50
9.9441 1.5266 35.1087

aA zone is shown in Fig. 6; k � 7.5 in all the sharpened images,
and two distances L � {25, 50} cm were considered (p � 57 ppc,
d � {25, 50} pixel�degree).
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merical results obtained for the set of ten ROIs de-
fined in this experiment [Fig. 2(b)]. After sharpening,
the color distortions should ideally be limited to the
vicinity of the object contours to produce the desired
edge enhancement and should decrease to negligible
values in the uniformly colored areas of the image.
This ideal situation is better approached by our LoG
sharpening operator of Eq. (10) [Figs. 6(i) and 6(n)]
than by the Laplacian-sharpening operator of Eq.
(13) [Figs. 6(h) and 6(m)]. In fact, the average mean
color differences evaluated in the ROIs shows a lower
value and a lower standard deviation for
�E00

SCIELAB�I, ShI� than for �E00
SCIELAB�I, ShI�2� at

the two distances considered. Moreover, this average

value of the mean color differences decreases signif-
icantly with the viewing distance in the case of using
our LoG-sharpening operator, whereas the decrease
is very slow in the case of using the Laplacian-
sharpening operator. As for noise, the ShI�2 images
show an increase in noise in comparison with the
smoothed sharpened ShI images. Thus from Table 2,
it can also be seen that the average SNR evaluated
for the ROIs in the color-difference image
�E00

SCIELAB�I, ShI�2� is lower than the value obtained
for �E00

SCIELAB�I, ShI� for both viewing conditions. For
all these reasons, it can be said the LoG-sharpening
operator is more conservative with the color of the

Fig. 8. (Color online) (a) Achromatic test with three gray levels: light (triangle), medium (background), dark (star). The column of pixels
marked with arrows is analyzed in (c)–(f); (b) sharpened image with (k � 5, d � 50); (c)–(e) CIELAB coordinates of the pixels of the column
in the original I (thick black curve) and the sharpened ShI (red line) images; (f) distortions [Eq. (19)].
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uniform areas and shows a much lower tendency to
increase noise than does the Laplacian-sharpening
operator.

C. Results of Experiment 3

We have approximated the LoG operator in Eq. (10)
by the DoG operator defined in Eq. (14) to sharpen
the image of Fig. 2(a). Figure 7 shows the results
ShILoG and ShIDoG for a part of the image, with k
� 5 and d � 50, and Fig. 7(d) shows the part of the
color difference between the image pair on the
S-CIELAB basis. From the statistics of �E00

SCIELAB

�ShILoG,ShIDoG�, the color differences are acceptable
(mean � 6.3, std � 8.2, max � 112, min � 0.01 in
CIEDE2000 units). Moreover, these differences are
concentrated mainly in the vicinity of the sharpened
edges as can be seen in Fig. 7(d) and as can be derived
from the fact that the average of the mean and the
standard deviations of the color differences computed
for the ROIs in �E00

SCIELAB�ShILoG, ShIDoG� are very
small quantities (�mean� � 0.99, �std� � 0.29, max
� 1.70, min � 0.58 in CIEDE2000 units). Conse-
quently, the approach is reasonably good in this case.
The DoG operator is interesting because the spatial
summation properties (excitatory center-inhibitory
surround) of receptive fields of the retina have been
modeled by DoG functions. In addition to this, there
are clear advantages in applying the DoG operator
since it can be computed more efficiently than that of
the LoG. However, despite these advantages, we use
the LoG-sharpening operator in the rest of the exper-
iments for the sake of comparison of the results.

D. Results of Experiment 4

As stated in Ref. 13 the lack of complete orthogonality
of the AC1C2 channels may result in possible fringes
or color variations when rendering images. We have
looked for the artifacts derived from that statement
in the images sharpened with the LoG operator. Fig-
ure 8(a) shows an achromatic test of geometrical
figures. The gray levels are limited to light gray (tri-
angle), medium gray (background), and dark gray
(star). The test is achromatic by design to better show
the possible color deviations introduced by the sharp-
ening process. Figure 8(b) shows the LoG-sharpened
image ShI with �k � 5, d � 50�. A column of pixels
marked with arrows in Figs. 8(a) and 8(b) has been
selected to analyze the CIELAB values in both the
original and the sharpened images [Figs. 8(c)–8(e)].
This column of pixels is placed in the abscissa axis of
Figs. 8(c)–8(f). The L* profiles of Fig. 8(c) show the
results expected for the sharpened image with re-
spect to the original. However, the a* and b* profiles
of Figs. 8(d) and 8(e) show unexpected results. Al-
though the a* and b* profiles of the original image
column are flat (constant), as corresponding to an
achromatic image, the a* and b* profiles of the sharp-
ened image column are not. This fact is particularly
notable for the a* profile in Fig. 8(d), and it reveals
the color distortions introduced by the sharpening
process. For a proper comparison of both the original

and the sharpened images we consider the color dif-
ferences on the SCIELAB basis. For each spatially
filtered image Idi and ShIdi, we have computed
the �L, �a, and �b CIELAB differences between the
neighbor pixels � j, j � 1� of the column, that is,

�L� j, j � 1�, �a� j, j � 1�, �b� j, j � 1�}. For each
pixel of the column, we have calculated the differ-
ences between the �L, �a, and �b values correspond-
ing to the ShIdi and Idi images, and we have taken
the absolute value to obtain the distortions D in
the CIELAB coordinates between both images.
These distortions are then given by the set of ex-
pressions

DL* �
�L� j, j � 1�ShIdi
� �L� j, j � 1�Idi
,

Da* �
�a�j, j � 1�ShIdi
� �a�j, j � 1�Idi
,

Db* �
�b�j, j � 1�ShIdi
� �b�j, j � 1�Idi
.

(19)

Figure 8(f) plots DL*, Da*, and Db*. In this figure we
see that the distortions of L* (expected) and a* and b*
(undesired) are comparable in magnitude. Neverthe-
less, the undesired color distortions have been esti-
mated to be less than 2.5 CIELAB units, in general

Fig. 9. (Color online) Butterfly, original image 300 � 197 pixels,
displayed with 57 ppc to be seen at L � 25 cm (d � 25 pixels�
degree). Artifacts appear when the sharpening LoG operator of Eq.
(10) is used with high values of k. For instance in this figure halos
in antennas and wings and pseudotexture in the background. Note
that these artifacts are clearly visible for k � 5 not only in the
displayed image (left column) but also in the spatially filtered
image (right column).
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for the pixels of the column, and it reveals that such
color distortions are of little relevance.

Figure 9 shows some artifacts that may appear
when dealing with images that contain objects with
high contrast and our LoG-sharpening operation is
applied with an unnecessarily high value of k [Fig.
9(e)]. In this case, halos and a pseudotextured back-

ground can be perceptible even in the spatially fil-
tered image [Fig. 9(f)].

E. Results of Experiment 5

As stated in Section 3, the sharpening operation rep-
resented by Eq. (10) varies with viewing conditions
through the number of pixels per degree of visual

Fig. 10. (Color online) Dependence on k � {2.5, 5, 7.5} and d � {25, 50} pixels�degree. (a) Original image I and sharpened ShI images as
they would be displayed. On the left, the A component of the original image and LoG terms in channel A. (b) Spatially filtered (original
and sharpened) images as they would be perceived.
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angle d. Since the monitor is assumed to display the
original image with a fixed number of pixels�cm, the
variations in the viewing distance are what deter-
mine the variations in d (pixels�degree) according to
Eq. (16). In Fig. 10(a) on the left, an area of the A
component of the original image and its correspond-
ing LoG terms calculated for d � 25 pixels�degree
and d � 50 pixels�degree are shown. For both LoG
terms, parameter k was set to k � 2.5. At short view-
ing distances �d � 25�, for which the spatial blurring
is small, Eq. (10) sharpens most fine edges (for in-
stance, basket lines, shadow lines in clothes, and de-
tails of the face) and object contours. At these short
distances, some noise could also be emphasized. At
long distances �d � 50�, however, for which the spa-
tial blurring is greater, Eq. (10) sharpens just the
large figures and the most significant object contours
(now, the basket lines and other fine details are no
longer sharpened). Moreover, the spatial extension of
the double edge produced by the LoG
Fdi� operator,
which is subtracted from an image component for
sharpening, varies with distance. Thus fine double
edges are superposed when viewing the image at
short distances, and thicker double edges are super-
posed at longer distances.

Figure 10(a) also contains the original and sharp-
ened images as they would be displayed on a monitor
in full color. Sharpened full color images were com-
puted for different values of d � 25, 50 pixels�degree
and sharpening depths �k � 2.5, 5, 7.5�. All these
images are more properly compared in the spatially
filtered versions of Fig. 10(b), in which they appear as
they would be perceived. When the sharpened image

is to be seen at a short distance, an increase of pa-
rameter k tends to rapidly increase noise and gives an
artificial appearance. On the other hand, when the
sharpened image is to be seen at a long distance, the
result changes much more slowly with k. In fact, it is
necessary to consider higher values of k to have sim-
ilar effects (Fig. 11).

6. Conclusions

A method to sharpen digital color images that takes
into consideration human vision models and viewing
conditions (pixels per degree of visual angle, esti-
mated from both the pixels�cm displaying capability
and the viewing distance) has been described. The
method combines the LoG operator with the spatial
filters that approximate the contrast sensitivity func-
tions of human visual systems. The sharpening op-
eration has been introduced in the opponent color
space, following the scheme proposed in S-CIELAB.
We deduced the degree of sharpening to introduce in
the original image to obtain the spatially filtered im-
age (that approaches the perceived image), LoG
sharpened for a given viewing condition. Conse-
quently, at short viewing distances, for which the
spatial blurring is small, most fine edges and object
contours are sharpened by adding narrow double
edges. At these short distances, some noise can also
be emphasized. On the other hand, at long distances,
for which the spatial blurring is greater, just large
figures are sharpened by adding thick double edges.
Because of the smoothing effect of the Gaussian func-
tions involved in the LoG operator, the proposed
image sharpening does not tend to increase noise.

Fig. 11. (Color online) Original and sharpened images for d � {25, 50} pixels�degree. First row, images as they are displayed with p �
57 ppc. Second row, spatially filtered images as they would be seen at distances L � {25, 50} cm from the display. Note that (e) sharpening
with low values of k is preferable when the image is to be seen at short viewing distances, whereas (f) higher values of k must be used to
produce similar effects at longer viewing distances.
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When the sharpening operation is limited exclu-
sively to the achromatic channel, the results obtained
are good. This is consistent with the high importance
of the luminance channel in the spatial content of
color images. When the sharpening is based on the
Laplacian operator instead of on the LoG operator,
the image sharpening does not adapt to the viewing
conditions. In this case, the image sharpening tends
to increase noise and distort colors, and the general
appearance of the image deteriorates rather quickly
with the depth of the sharpening operation. The LoG
operator has been approached by a DoG operator, and
the results obtained in sharpening color images are
good. Some artifacts involving color distortions of lit-
tle relevance were observed when rendering sharp-
ened achromatic tests designed on purpose, but they
were not imperceptible in other examples of more
natural images. These artifacts are consequences of
the fact that the three opponent color channels are
not completely orthogonal. Thus, should such a case
ever appear when rendering images, it would be con-
venient to limit the sharpening operation exclusively
to the achromatic channel. The depth of the sharp-
ening operation must be carefully applied, taking into
account the viewing distance, to avoid overacting or
producing artificial appearances. When the sharp-
ened image is to be seen at a short distance, a low k
value can lead to the desired result, whereas when
the sharpened image is to be seen at a longer dis-
tance, we must considerably increase the k value to
have a similar result.
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RESUMEN: 
Las muestras de un atlas de color pueden experimentar variaciones en su color de 
referencia, dependiendo de su antigüedad, estado de conservación, uso, etc. En este 
trabajo medimos las diferencias de color existentes entre pares de muestras que tienen 
la misma especificación pero que pertenecen a dos libros distintos del atlas de color 
Munsell. Utilizamos un espectrorradiómetro para medir el color bajo iluminación 
D65. Calculamos las diferencias de color en las métricas CIELAB y CIEDE2000 y 
las comparamos con otras distancias: el error instrumental y la diferencia de color de 
cada una de las muestras del par con sus vecinos más próximos dentro de la propia 
colección a la que pertenece. El estudio se realiza sobre los ejemplares de dos libros 
Munsell de muestras mate: la colección de colores casi neutros (Nearly Neutral 
Munsell Collection) y el libro de colores (Munsell Book of Colours). Las diferencias 
de color llegan a alcanzar 1 unidad CIELAB en las muestras de la región del amarillo. 
 
Palabras Clave: diferencias de color, CIELAB, CIEDE2000, atlas de color Munsell 
 
ABSTRACT: 
A colour chart consists of a collection of patches whose reference colour may vary 
depending on their age, keeping conditions, use, etc. In this work we measure the 
colour differences between sample pairs with the same specification but belonging to 
two individual books of the Munsell chart. A spectroradiometer is used for colour 
measurements under D65 illumination and CIELAB and CIEDE2000 metrics are 
considered for colour difference calculation. The colour differences are then 
compared with other distances: the instrumental uncertainty and the colour 
differences between each pair sample and their respective nearest neighbour samples 
within the particular collection to which they belong. The study is carried out on two 
individual Munsell books of matte colour samples: the Nearly Neutral Munsell 
Collection and the Munsell Book of Colours. The colour differences reach one unity 
CIELAB in the case of patches belonging to the yellow colour region. 
 
Keywords: colour difference, CIELAB, CIEDE2000, Munsell colour chart 
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1.- Introducción 

Un atlas de color es una colección de muestras de 
colores dispuestas e identificadas según reglas 
específicas [1], que sirven como guía de referencia 
para orientar la selección del color a usar y como 
indicador de control de calidad. Los atlas de color 
(por ejemplo, Pantone, Munsell) son utilizados 
ampliamente en  distintos ámbitos: gestión del color 
(caracterización, calibración y puesta a punto de 
dispositivos, imagen digital), arte de impresión, 
arquitectura (doméstica, decoración), industria 
(igualación del color, diseño e inspección), ciencia, 
artes plásticas, moda, etc. También son muy 
utilizados algunos tests o cartas que constan de un 
pequeño número de muestras, como la 
GretagMacbeth Color-Checker. Uno de los atlas 
más utilizados en el campo de la ciencia del color y 
en la industria es el atlas Munsell [2]. Una muestra 
de color en el sistema Munsell está definida como un 
punto con tres dimensiones: Munsell Hue (H), 
Munsell Value (V) y Munsell Chroma (C), que se 
escriben como H V/C, fórmula conocida como  
“Notación Munsell”.  

Las muestras de un atlas pueden experimentar 
variaciones en su color de referencia, dependiendo 
de la antigüedad de las muestras, las horas de uso, 
las condiciones de almacenamiento, el estado de 
conservación, etc. Por esta razón, aunque dos 
personas empleen el mismo atlas de referencia, 
puede suceder que una determinada especificación 
de color se corresponda con muestras cuyo color real 
no sea idéntico, dependiendo de la colección o libro 
concreto en el que se encuentren. Así pues, existe 
una incertidumbre en la definición del color asociada 

al hecho de utilizar un ejemplar concreto de un atlas.  
En este trabajo analizamos el problema de las 

variaciones de color en material impreso debidas 
principalmente a la distinta edición, si bien no se 
excluye la incidencia de otras causas como el 
envejecimiento y el uso. El problema es tanto más 
grave por cuanto el material impreso del que se trata 
es un atlas de color, que se usa como referencia para 
especificar el color, mediante la asignación de 
valores a los atributos perceptivos de claridad, tono y 
croma. 

Para llevar a cabo el análisis mediremos las 
diferencias de color existentes entre pares de 
muestras que tienen la misma especificación pero 
que pertenecen a distintos ejemplares del atlas de 
color Munsell. Utilizamos un espectrorradiómetro y 
una iluminación determinada para efectuar las 
medidas. Empleamos la formulación CIELAB [3,4] 
y la fórmula más reciente CIEDE2000 [5] para el 
cálculo de las diferencias de color, ∆E*

ab y ∆E00, 
respectivamente. Comparamos las diferencias de 
color calculadas con otras distancias: 

- el error instrumental y  
- la distancia o diferencia de color de cada una 

de las muestras del par con sus vecinos más 
próximos dentro de la colección a la que 
pertenece.  

2.- Diseño del experimento 

Comparamos las muestras mate de dos libros 
Munsell distintos: la colección de muestras casi 
neutras (Nearly Neutral Munsell Collection) y el 
libro de color (Munsell Book of Colors). Estos dos 
libros fueron adquiridos simultáneamente (fecha de 
certificación 07/2002, fecha de vencimiento 
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07/2004) y se han conservado juntos en nuestro 
laboratorio, en las mismas condiciones ambientales 
de temperatura y humedad controladas. 

El test de muestras a analizar es un conjunto de 
muestras mate que está formado por diez grupos 
distribuidos de forma regular alrededor del círculo 
de tono Munsell (Fig. 1a). Cada grupo Hi, con 
i={5R, 5YR, 5Y, 5GY, 5G, 5BG, 5B, 5PB, 5P, 
5RP} está formado por un conjunto de muestras 
cuyos valores Munsell de Valor y Croma son 
(V/C)i={6/2, 7/1, 7/2, 7/4, 8/2}. La muestra central 
del grupo es Hi 7/2 y, alrededor de ella, se 
distribuyen cuatro muestras vecinas (Fig. 1b). Todas 
las muestras del test están contenidas tanto en la 
colección Munsell de colores casi neutros, como en 
el libro de colores Munsell. De este modo, podemos 
cubrir el objetivo de medir la diferencia de color que 
presentan los pares de muestras con igual 
especificación pero pertenecientes a dos ejemplares 
distintos del atlas Munsell. 

En esta experiencia se ha empleado una cabina 
de observación con iluminación controlada 
proveniente de un simulador D65 (lámpara 
fluorescente F40/T12 con temperatura 
correlacionada de color 6438K y observador de 10º). 
Se utilizó una geometría de iluminación/observación 
aproximada de 45/0. La iluminación directa se veía 
ligeramente incrementada por la luz que, tras ser 
reflejada difusamente por las paredes de la cabina, 
incidía sobre la muestra. Como blanco de referencia 
se ha utilizado la placa  Photoresearch RS-3. La 
reflectancia espectral de esta placa es 
aproximadamente constante e igual a 1 (su 
calibración no excedió de ±0.6% respecto a los 
valores de la fuente calibradora de referencia, dentro 
del intervalo 380-780nm). Como instrumento de 
medida, se ha empleado un espectroradiómetro 
Photo Research PR-715. Todas las medidas fueron 
efectuadas en pocos días, tres meses después de la 
fecha límite de vencimiento de la certificación por el 
laboratorio Munsell fabricante. De cada muestra se 
obtuvieron su reflectancia espectral, los valores 
triestímulos CIE XYZ y las coordenadas CIELAB 
en las condiciones de iluminación y observación 
descritas. Se calcularon las diferencias de color en la 
métrica CIELAB [3,4]. También se han calculado 
las diferencias de color en la métrica CIEDE2000 
[5,6], asimismo recomendada por la CIE más 
recientemente. En la Ref. [7] la métrica CIEDE2000 
ha sido considerada más adecuada para evaluar 
muestras con valores bajos de croma.  

El error instrumental al medir las coordenadas 
CIELAB de cada muestra, expresado en términos de 
la “media de las diferencias de color de las medias” 
(MCDM, iniciales de su nombre en inglés ‘Mean 
Colour Difference from the Mean’ [4]), se ha 
determinado antes de iniciar la experiencia 
siguiendo el procedimiento indicado en la Ref. 4. A 

partir de un conjunto de medidas CIELAB, en 
nuestro caso 10, consecutivamente tomadas de 
puntos distintos de una muestra, se calcula el valor 
medio ( *** ,, baL ). A continuación se calcula la 
diferencia de color entre cada medida individual y el 
promedio ( *** ,, baL ). Para ello utilizamos dos 

formulas de diferencias de color, *
abE∆  y 00E∆ .  El 

valor medio de las diferencias de color calculadas es 
el MCDM. Se ha calculado el MCDM de un 
conjunto de 10 muestras Munsell contenidas en el 
test (centros de grupo) (Fig. 1), alcanzándose valores 
de MCDM <∆E*

ab>=0.025 unidades CIELAB y 
<∆E00>=0.020 unidades CIEDE2000.  
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(b) 

Fig. 1.- Esquema del test de muestras: (a) distribución de 
grupos sobre el círculo de tono Munsell, (b) composición 

de cada grupo en una muestra central y cuatro vecinas 
(del Munsell Book of Colors). 

 
Como se ha dicho, nuestro interés es medir  y 

analizar las diferencias de color entre pares de 
muestras que responden a una misma especificación 
de color en  dos ejemplares concretos de la colección 
Munsell. Nos interesa asimismo conocer la 
importancia que tienen las variaciones de 
luminancia, croma o tono en la diferencia de color 
existente entre muestras nominalmente iguales.  

Por otra parte, en cada libro de los dos 
considerados, la muestra central de cada grupo 
aparece rodeada de modo distinto por sus muestras 
vecinas. En el caso del libro de color Munsell, los 
vecinos inmediatos de cada centro de grupo son los 
mismos que se representan en la Fig. 1(b). En el caso 
del libro Munsell de colores casi neutros, los vecinos 
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del centro de grupo son colores más próximos, con 
pasos de 0.5 tanto en los valores de Value como de 
Chroma (Fig. 2). Obsérvese que las muestras que 
ocupan el centro y los extremos de este grupo de la 
Figura 2 tienen una especificación coincidente con el 
centro y los extremos del grupo representado en la 
Figura 1(b). 

Para completar nuestra experiencia, 
compararemos las diferencias de color obtenidas 
entre los pares de muestras nominalmente iguales, 
pertenecientes a libros distintos, con las diferencias 
de color existentes entre el centro de cada grupo y 
sus vecinos más inmediatos dentro de cada libro. En 
el caso del libro de colores Munsell se tendrán en 
cuenta los cuatro vecinos representados en la Figura 
1(b), mientras que para el libro de colores casi 
neutros se tendrán en cuenta los diez vecinos 
representados en la Figura 2.  

 

H 7/2 H 7/2.5 H 7/3 H 7/3.5 H 7/4H 7/1.5H 7/1

H 6.5/2
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V
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Fig. 2.- Composición de cada grupo en una muestra 
central y diez vecinas de la colección Nearly Neutral 

Munsell. 
 

3.- Resultados 

En la Figura 3 representamos los resultados de las 
diferencias de color CIELAB ∆E*

ab (línea azul) y 
CIEDE2000 ∆E00 (línea roja) obtenidas para los 
pares de muestras de la misma especificación 
nominal pertenecientes a los dos libros Munsell. En 
la Figura 3 se presentan, sobre cinco diagramas 
circulares de tono Munsell, las diferencias de color 
obtenidas para cada uno de los valores (V/C)i={6/2, 
7/1, 7/2, 7/4, 8/2}, con i={5R, 5YR, 5Y, 5GY, 5G, 
5BG, 5B, 5PB, 5P, 5RP}. De esta forma, la figura 
3(a) presenta las diferencias de color para los pares 
muestras con (V/C)i = 7/2, la figura 3(b) para los 
pares de muestras con (V/C)i = 6/2, la figura 3(c) 
para los  pares de muestras con  (V/C)i = 7/1, la 
figura 3(d) para los pares de muestras con (V/C)i = 
7/4 y la figura 3(e) para los pares de muestras con 
(V/C)i = 8/2. En cada diagrama circular, la 
dimensión radial representa la magnitud de la 
diferencia de color en las unidades correspondientes 
al gráfico considerado (CIELAB para el gráfico azul 
y CIEDE2000 para el gráfico rojo). Las diferencias  
de color medidas en CIEDE2000 son de menor 
magnitud que las medidas en CIELAB. Todos los 

valores de diferencias de color medidos son, en 
general, muy superiores al error instrumental. 

Como característica común, se observa en estas 
figuras que las diferencias de color más altas se dan 
en la amplia región de los tonos cálidos: rojos, 
naranjas, amarillos y amarillo verdosos (R, YR, Y y 
GY), mientras que las diferencias más pequeñas se 
dan para los tonos fríos: púrpura y verde (P y G). Las 
diferencias de color en la región de tonos azules, 
entre el verde y el púrpura, tienen valores 
intermedios, relativamente bajos en comparación con 
la región ya señalada del amarillo-rojo.  

En la tabla I se presentan las mismas 
diferencias de color pero promediadas para cada 
tono. Junto a los valores medios de las diferencias de 
color en unidades CIELAB (∆E*

ab) y en unidades 
CIEDE2000 (∆E00), se indican sus respectivas 
desviaciones estándar. En la última fila de la tabla I 
se calculan los valores globales de la media y la 
desviación estándar para todos los tonos 
considerados. La media global de las diferencias es 
relativamente baja, con un valor de 0.59 y una 
desviación estándar de 0.34 en unidades CIELAB y 
de 0.44, con una desviación estándar de 0.26, en 
unidades CIEDE2000. 

 Los tonos cálidos (R, YR, Y y GY) tienen en 
media diferencias de color mayores a 0,9 unidades 
CIELAB (la mayor diferencia se obtiene para el tono 
Y cuyo valor medio es de 1,05) lo que representa 
valores por encima del umbral justamente 
perceptible, situado entre 0.38 y 0.73 unidades 
CIELAB [8]. Quiere esto decir que, en esta región 
cromática, las diferencias de color entre los pares de 
muestras de igual especificación, pertenecientes a los 
dos libros Munsell considerados, pueden ser 
percibidas por una persona que observe las muestras 
en las condiciones adecuadas. Si bien las diferencias 
de color medidas por nosotros en esta región no 
alcanzan el valor supraumbral de 1.75 unidades 
CIELAB [9] relacionado con la tolerancia de color o 
aceptabilidad de la diferencia de color, también es 
cierto que no se quedan tan lejos. Aunque se trata de 
un tema controvertido en general, en el caso de un 
atlas parece razonable elevar el nivel de exigencia, 
por parte del fabricante, en la reproducción del color 
de las muestras que componen el atlas y en la 
conservación de sus atributos durante un periodo de 
vida útil relativamente largo. Este periodo de vida 
debe ser tenido en cuenta por los usuarios del atlas.  

Profundizando un poco más, nos preguntamos  
qué tipo de variación, en las dimensiones de 
luminancia, croma y tono, es la que más influye en la 
diferencia de color medida entre muestras con la 
misma especificación de color pero pertenecientes a 
libros distintos.  
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Fig. 3.- Diferencias de color (CIELAB en azul, 
CIEDE2000 en rojo) entre pares  de muestras de igual 

denominación Munsell pertenecientes a libros diferentes. 
Valores agrupados por (V/C)i igual a: (a) 7/2, (b)  6/2, (c) 

7/1,  (d) 7/4 y (e) 8/2. 

Tabla I – Diferencias de color entre pares  de muestras 
de igual denominación Munsell pertenecientes a dos 

libros diferentes. Valores agrupados y promediados por 
región de tono. 

Media 0,911 0,980 0,065 -0,172
σ 0,137 0,016 0,033 0,079

Media 0,902 0,968 0,104 -0,069
σ 0,055 0,053 0,235 0,025

Media 1,048 0,988 -0,068 -0,063
σ 0,111 0,011 0,128 0,052

Media 0,975 0,983 0,080 0,019
σ 0,215 0,010 0,172 0,065

Media 0,243 0,907 -0,216 -0,021
σ 0,123 0,120 0,303 0,239

Media 0,332 0,946 0,004 0,112
σ 0,110 0,045 0,327 0,075

Media 0,452 0,980 0,044 0,127
σ 0,140 0,018 0,134 0,087

Media 0,477 0,978 0,157 -0,010
σ 0,164 0,023 0,121 0,088

Media 0,143 -0,430 0,330 -0,371
σ 0,026 0,729 0,357 0,228

Media 0,401 0,963 0,050 -0,192
σ 0,039 0,042 0,134 0,148

Media 0,588 0,826 0,055 -0,064
σ 0,335 0,442 0,142 0,150

B 

PB

P 

RP

CIELAB
Color

R

YR

Y 

GY

G 

BG

*
abE∆ * */ abL E∆ ∆ * */ab abC E∆ ∆ * */ab abH E∆ ∆

 

Media 0,702 0,966 0,117 -0,202
σ 0,146 0,031 0,063 0,108

Media 0,667 0,981 0,094 -0,094
σ 0,092 0,022 0,153 0,033

Media 0,806 0,989 -0,054 -0,084
σ 0,108 0,012 0,111 0,051

Media 0,724 0,989 0,055 0,029
σ 0,115 0,005 0,125 0,083

Media 0,184 0,900 -0,238 -0,003
σ 0,105 0,130 0,283 0,265

Media 0,244 0,931 0,032 0,117
σ 0,076 0,062 0,371 0,083

Media 0,326 0,978 0,001 0,147
σ 0,089 0,016 0,132 0,092

Media 0,347 0,968 0,164 -0,013
σ 0,100 0,032 0,141 0,154

Media 0,115 -0,420 0,227 -0,481
σ 0,018 0,667 0,400 0,271

Media 0,300 0,947 0,058 -0,214
σ 0,032 0,070 0,176 0,180

Media 0,442 0,823 0,046 -0,080
σ 0,255 0,438 0,128 0,185

P 

RP

G 

BG

B 

PB

R

YR

Y 

GY

CIEDE2000
Color 00E∆ '

00/L E∆ ∆ '
00/C E∆ ∆ '

00/H E∆ ∆

 

 
En la tabla I se incluyen, para la métrica 

CIELAB las relaciones ( * */ abL E∆ ∆ ), ( * */ab abC E∆ ∆ ), 

( * */ab abH E∆ ∆ ) y para CIEDE2000, las relaciones 

( '
00/L E∆ ∆ ), ( '

00/C E∆ ∆ ), ( '
00/H E∆ ∆ ). En 

general, se observa que la variación de la luminancia 
es la que tiene mayor peso en la diferencia de color 
medida entre las muestras de ambos  libros.  Las  
otras  variaciones  de  croma  y tono tienen un peso 
relativo en la diferencia de color muy similar entre sí 
y muy inferior al de la luminancia. Este efecto nos 
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lleva a concluir que incluso en las regiones de tono 
de mayor diferencia de color entre ambos libros, 
estas diferencias se deben fundamentalmente a 
variaciones de luminancia (claro-oscuro), 
permaneciendo bastante estable la cromaticidad de 
las muestras (dada por el tono y el croma). No 
obstante, podemos señalar el caso curioso del tono 
púrpura (P) que, por una parte, obtiene las menores 
diferencias de color para los pares de muestras de 
ambos libros (media de 0.105 unidades CIEDE2000) 
y, por otra parte, tiene más repartido el peso relativo 
de las variaciones de luminancia, croma y tono.   

La figura 4 ilustra directamente los valores de 
la luminancia versus el croma para las muestras de 
cada grupo Hi en los dos libros. En cada uno de los 
diez diagramas se representan elementos en forma  
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Fig. 4.- Diagramas de los valores de Luminancia versus 

Croma para los diez grupos de tono Hi (Fig. 1(a)). En rojo 
se representan los grupos del libro Munsell de Color (Fig. 

1(b)) y en azul los grupos del libro Munsell de Colores 
Casi Neutros (Fig. 2). 

de cruz, que corresponden al centro de grupo y a sus 
vecinos. Los elementos dibujados en línea roja unen 
los puntos correspondientes a las cinco muestras 
extraídas del Munsell Color Book según la 
composición de los grupos de la figura 1(b). Los 
elementos dibujados en línea azul unen los puntos 
correspondientes a las once muestras extraídas del 
libro Nearly Neutral Munsell Collection según la 
composición de los grupos mostrada en la figura 2.  

En cada figura, cabe resaltar  la diferente 
posición de estos elementos en cruz que, aun siendo 
similares en forma, aparecen afectados por un 
desplazamiento relacionado principalmente con la 
luminacia (L). En la Fig. 4 este desplazamiento es 
máximo en el tono amarillo verdoso (5GY) y 
mínimo en los tonos púrpura (5P) y verde (5G). 

Por último, compararemos las diferencias de 
color entre los pares compuestos por los centros de 
grupo, con igual denominación pero pertenecientes a 
distinto libro Munsell (Figura 3(a)), con las 
diferencias de color entre cada centro de grupo del 
par con los vecinos de su mismo libro. Con ello 
pretendemos conocer si la diferencia de color debida 
al cambio de libro puede ser alguna vez mayor que 
las distancias a las muestras más próximas dentro de 
un mismo libro. 

En la Figura 5 se muestra un diagrama circular, 
en el que se representan las diferencias de color 
CIELAB y CIEDE2000 con respecto a los centros de 
grupo Hi 7/2. La línea gruesa negra (etiquetada con 
la letra o) corresponde a las diferencias medidas 
entre pares de muestras (centros de grupo) de igual 
especificación pero de libro distinto. En trazos 
continuos, finos y de diferente color, se representan 
las diferencias de color entre el centro y los vecinos 
de cada grupo de muestras extraídas del libro 
Munsell de colores casi neutros. En trazos similares, 
pero discontinuos, se representan las diferencias de 
color entre el centro y los vecinos de cada grupo de 
muestras extraídas del libro Munsell de color. 

Del análisis de la Figura 5 se deduce que la 
incertidumbre en la definición del color asociada al 
cambio de libro (línea de trazo grueso, o) puede 
englobar la incertidumbre asociada a la variación de 
color entre muestras vecinas de un mismo ejemplar 
(líneas de trazo fino). Tan sólo para los tonos verde 
(5G), verde azulado (5BG) y púrpura (5P) la 
diferencia de color asociada al cambio de libro es 
inferior a las distancias de la muestra (centro de 
grupo) a todos sus vecinos inmediatos en ambos 
libros. En los restantes tonos se presentan mayores y 
más variados niveles de incertidumbre. Así, por 
ejemplo, en el otro extremo, los tonos 5GY, 5Y, 
5YR, 5R, 5PB y 5B, presentan una diferencia de 
color asociada al cambio de libro superior a las 
diferencias de color introducidas por variaciones de 
(-1.0 Chroma) en  ambos libros Munsell (líneas i y j 
en la Figura 5).  
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Fig. 5.– Diferencias de color CIELAB (a) y CIEDE2000 (b) entre cada centro de grupo (Hi 7/2) y otra muestra 
correspondiente a:  una muestra de igual especificación nominal que el centro de grupo pero de distinto libro Munsell (trazo 
grueso negro), o bien, una muestra que representa una variación de Munsell Value y Munsell Chroma en los libros Munsell 

de color (trazos finos discontinuos) y Munsell de colores casi neutros (trazos finos continuos). 
 

4.- Conclusiones 

Concluimos que, para los dos ejemplares de 
libros Munsell analizados existe una diferencia de 
color perceptible entre pares de muestras con la misma 

especificación Munsell de color. Los ejemplares  
(Nearly Neutral Munsell Collection y Munsell Book of 
Colors) contienen muestras mate, tenían algo más de 
dos años de antigüedad en el momento de efectuar las 
medidas, tiempo que superaba en tres meses la fecha 
de vencimiento de la certificación establecida por el 
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fabricante. En el test de muestras analizadas, esta 
diferencia de color era muy pequeña en los tonos fríos 
(verde, verde azulado y púrpura), pero era 
comparativamente elevada en los tonos cálidos 
(amarillo-rojo), llegando a alcanzar en estos últimos el 
valor de 1 unidad CIELAB. La variación en 
luminancia era la dimensión que incidía con mayor 
peso relativo en la diferencia de color existente entre 
muestras con la misma especificación y de libro 
distinto. La incidencia relativa de las variaciones de 
croma y tono era mucho menor que la de la 
luminancia y estaba más equilibrada. Este efecto nos 
llevó a concluir que incluso en las regiones de mayor 
diferencia de color entre ambos libros, estas 
diferencias son fundamentalmente variaciones de 
luminancia (claro-oscuro), permaneciendo bastante 
estable la cromaticidad de las muestras. 

 En los casos de mayor diferencia de color 
debida al cambio de libro, se llega a dar la 
circunstancia de que esta distancia es superior a la que 
existe entre una muestra y sus vecinas, dentro de un 
mismo libro. Este hecho constituye una fuente de 
incertidumbre o ambigüedad que, en general, no es 
evaluada por los usuarios de estos atlas y que puede 
dar lugar a errores inaceptables en la especificación de 
un color.  

Los autores de este trabajo desconocen en qué 
medida las conclusiones extraídas en este trabajo para 

dos ejemplares concretos del Atlas Munsell pueden 
extenderse o generalizarse a otros ejemplares del 
mismo atlas o de atlas diferentes. Tampoco conocen la 
causa o las causas que pueden dar lugar al fenómeno 
descrito. No pueden excluirse defectos de impresión 
en la fabricación de las muestras ya que es bien 
conocida la dificultad técnica de la reproducción del 
material impreso. Sin profundizar en tales 
consideraciones, sí puede recomendarse a los usuarios 
de los atlas de color realizar regularmente una 
evaluación de la posible inconsistencia en el color de 
las muestras del libro concreto que utilizan, a fin de 
acotar el margen de ambigüedad introducido en la 
especificación del color, así como de hacer un 
seguimiento del estado del ejemplar que permita su 
uso correcto. 
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ABSTRACT 

Ocular complications in contact lens wearers are usually graded by specialists using visual inspection and comparing 
with a standard reference. The standard grading scales consist of either a set of illustrations or photographs ordered from 
a normal situation to a severe complication. Usually, visual inspection based on comparison with standards yields 
results that may differ from one specialist to another due to contour conditions or personal appreciation, causing a lack 
of objectiveness in the assessment of an ocular disorder. 
We aim to develop a method for an objective assessment of two contact lens wear complications: conjunctiva hyperemia 
and papillary conjunctivitis. In this work, we start by applying different image processing techniques to two standard 
grading scales (Efron and Cornea and Contact Lens Research Unit-CCLRU grading scales). Given a set of standard 
illustrations or pictures, image pre-processing is needed to compare equivalent areas. Histogram analysis allows 
segmenting vessel and background pixel populations, which are used to determine features, such as total area of vessels 
and vessel length, in the measurement of contact lens effects. 
In some cases, the colour content of standard series can be crucial to obtain a correct assessment. Thus, colour image 
analysis techniques are used to extract the most relevant features. The procedure to obtain an automatic grading method 
by digital image analysis of standard grading scales is described. 

Keywords: Biomedical image, Image analysis, Objective assessment, Ocular redness, Contact lens standard grading 
scales.

1. INTRODUCTION 

Inadequate wearing of contact lenses gives rise to ocular complications that need to be assessed by specialists. So far, 
the most common assessment is based on a visual comparison of the affected eye with standard scaled series of 
illustrations or photographs.1-3 Visual inspection based on comparison with standards, either illustrations or 
photographs, yields results that may differ from one specialist to another due to contour conditions or personal 
appreciation, causing a lack of objectiveness in the assessment of an ocular disorder. Available standards are difficult to 
compare between them because the grading scales corresponding to a given effect may not coincide neither in the 
number of degrees nor in the area of the eye under evaluation, among other reasons. An attempt to overcome these 
difficulties was made by Nathan Efron.3 He recommended the use of a set of illustrations instead of still images in order 
to keep constant some factors (field of view, magnification, etc), to avoid potentially confounding artifacts, and, what is 
even more important, to depict the effects of one single complication in the illustrations.  

Some proposals to objectively quantify ocular hyperemia from image analysis have been introduced in the literature.4-8

So far, most of the studies (on conjunctiva hyperemia) concentrate their efforts on applying image processing techniques 
to grey level or binary images. In general, they try to evaluate blood vessel pixel population to compute the area 
occupied by vessels, assuming that the level of redness is proportional to the presence of vessels. Standard image 
enhancement techniques were applied by Villumsen et al.4 to increase vessel border contrast so that a threshold value 
could be easily chosen to binarize an image. Afterwards, a point counting technique was used to estimate the degree of 
hyperemia. Willingham et al.5 analyzed McMonnies standard1 along with real images. In their paper, pixels from a 
group of test images were hand labeled according to the known vessel and non-vessel areas. Guillon and Shah6 proposed 
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a semiautomatic method to detect blood vessels along a set of sampling lines distributed over the limbal and bulbar 
conjunctiva. They applied their method to real images. Finally, Owen et al.7 also used images captured from real 
patients and measured the percentage of vessel area after binarizing a monochrome image of the eye. As it was stated in 
the paper, threshold selection was of critical importance to appropriately determine the degree of vascular 
representation. Assessment results for different threshold values allowed them to choose the most suitable threshold. 

Our aim is to analyze the set of illustrations (Fig. 1a) and photographs (Fig 1b) displaying the conjunctival hyperemia 
effects by two different standards (Efron and CCLRU grading scales). Another effect, known as papillary conjunctivitis, 
will be analyzed from the corresponding set of photographs of CCLRU standard (Fig. 1c). This study will permit us to 
extract the most relevant features for these ocular disorders. Feature extraction and evaluation should allow us to build a 
model of the visual assessment and establish an objective grading method based on digital image processing. Vessel 
segmentation from conjunctiva and palpebral background will be achieved by a computer-based procedure. Threshold 
determination will be based on the probability of pixel misclassification. Vessel area and color information, among 
other features, will provide information about the degree of severity of the ocular complications.  

(a)

(b)

(c)
Fig. 1. Standard grading scales. (a) Efron illustrations and (b) CCLRU photographs for conjunctival hyperemia, (c) CCLRU 
photographs for papillary conjunctivitis. 

2. IMAGE PREPROCESSING 

Accurate monitoring of the evolution of an ocular complication by using standard grading scales assumes that the 
feature extraction and evaluation has to be carried out over a similar area imaged under comparable conditions. As it can 
be seen in Fig. 1, none of the illustrations or photographs belonging to any standard meets this requirement and, 
consequently, they can not be compared straightforwardly.  

For CCLRU photographs differences between pictures belonging to the same grading scale are evident. They do not all 
possibly correspond to the same patient, and they have been taken under different experimental conditions. Illumination 

0 1 2 3 4

1 2 3 4 

1 2 3 4
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is not uniform over the whole area depicted in the photograph and the area is not the same in all the pictures. Slight 
defocusing can be noticed in some images of the set. Provided that we want to obtain an objective measure of the 
complication evolution, some image preprocessing must be carried out to assure similar feature analysis over the whole 
set of standard pictures.  

Firstly, to ensure that a similar area is analyzed along the different photographs of a given set, a polynomial 
transformation is applied to pictures of the CCLRU standard. Photographs are adjusted so that the conjunctiva contour 
or the palpebral edges match those of the pictures corresponding to degree 2 (Fig. 1b and 1c). Fig. 2 displays two 
examples of the polynomial transformation applied to CCLRU images corresponding to grade 4 for conjunctiva 
hyperemia and to grade 1 for papillary conjunctivitis, respectively. 

(a)

(b)
Fig. 2. Example of the polynomial transformation applied to the standard CCLRU photographs to match the contour depicted in 
the pictures of grade 2 for (a) conjunctiva hyperemia (grade 4) and (b) papillary conjunctivitis (grade 1). 

Secondly, it is necessary to determine the region of interest (ROI) where the effects of a contact lens wear complication 
should be evaluated. Fig. 3 shows the ROI for conjunctiva hyperemia in the case of Efron illustrations (Fig. 3a) and in 
the case of CCLRU pictures (Fig. 3b). These regions have been chosen by taking into consideration a specialist opinion, 
and in accordance to the procedure followed by Owen et al.7 Palpebral conjunctiva is divided into five areas to grade 
redness and roughness (Fig. 3c). According to CCLRU standards, areas 1, 2 and 3 are the most relevant in contact lens 
wear to evaluate lid redness. 

(a) (b) (c)
Fig. 3. Regions of interest (ROI) for ocular effect assessment, in the cases of (a) Efron illustration of conjunctiva hyperemia
(grade 2), CCLRU photographs of (b) conjunctiva hyperemia (grade 2), and (c) papillary conjunctivitis (grade 2). 

4 42

1 12
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Apart from the polynomial transformation, which was not necessary to apply to the Efron standard, preprocessing of 
images follows the same steps in both cases, illustrations and still images. A diagram describing the preprocessing steps 
is shown in Fig. 4. First of all, a ROI selection is carried out from either the original illustration or the transformed 
photograph. An RGB decomposition is considered to choose the channel with the highest inverted contrast. A 
morphological operation, called Top-Hat, makes the background energy low and uniform.  

Polynomial transformation  

Original image ROI selection Top-Hat transform. 

R
G

B

RGB decomposition 

R
G

B

Fig. 4. Diagram of the image preprocessing step. RGB components are displayed as negative images. 

3. VESSEL SEGMENTATION FROM BACKGROUND 

Once the standard images are preprocessed, the second step consists of segmenting vessel pixel population from the 
bulbar or palpebral background. A single chromatic channel is chosen to carry out this step. The channel that keeps the 
vessel information with the highest contrast is selected to determine the image pixels belonging to vessels. Our choice is 
channel B for conjunctiva hyperemia and channel G for papillary conjunctivitis. 

Vessel segmentation can be automatically achieved following the sequence of steps displayed in Fig. 5. First, the 
histogram of the selected channel is computed. We assume that the background distribution tends to follow a gaussian 
profile, while the possible asymmetries of the histogram are mainly due to vessel contribution. A criterion of equal 
probability of misclassification error of vessel and background pixels is considered to establish the threshold level for 
image binarization. Noise is reduced by applying a size-based threshold on the skeleton of the binary image. 

Selected channel Curve fitting and threshold 
determination from histogram 

Binarization Noise reduction

Fig. 5. Diagram for vessel (object) to bulbar background segmentation. 
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4. FEATURE EXTRACTION 

From the noise-reduced binary images of the standards (Fig. 6), the extraction and evaluation of features that best 
describe the ocular complications is aimed. Conjunctiva hyperemia is analyzed using different parameters, such as 
percentage of the area occupied by vessels, number of nodes (intersections between vessels) and distribution of vessel 
segment lengths.  

Nodes are detected by following the procedure described by Lin and Zheng.9 Node location allows us to study segment 
length variations. The results obtained from the Efron and CCLRU standards will be compared. 

For the case of papillary conjunctivitis, the color content of these images appears to be crucial information in order to 
obtain a correct assessment. Thus, lid redness evolution could be monitored from grade 1 to grade 4 of the CCLRU 
grading scale by analyzing the color information for both vessel and background pixel populations. 

0 1 2 3 4 

1 2 3 4 

(a)

(b)

(c)

1 2 3 4 

Fig. 6. Noise-reduced binary images of selected ROI for (a) Efron and (b) CCLRU standards describing 
conjunctiva hyperemia, (c) CCLRU photographs (zone 2) for papillary conjunctivitis. 

5. RESULTS 
1. Conjunctiva hyperemia 

1.1. Efron grading scale (illustrations) 
Fig. 7 includes three graphs representing, respectively, the area occupied by vessels, the number of nodes and the 
distributions of vessel segment lengths. From these plots, both the area in percentage and the number of nodes increase 
with the severity of ocular hyperemia. The higher degree of this contact lens effect, the larger number of vessels is 
presented. Number of nodes also increases with the degree of the complication, but at the same time, the vessel length 
between intersections shortens significantly. 
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(a) (b) 

(c)

Fig. 7. Feature evaluation for illustrations of conjunctiva hyperemia from Efron grading scale. (a) Vessel area in percentage, 
(b) Number of nodes in percentage and (c) distributions of vessel segment lengths. 

1.2. CCLRU grading scale (photographs) 
The same features are evaluated for the four photographs of the CCLRU standard. The results are plotted in Fig. 8. 
There is an increase of the vessel area (Fig. 8a) and the number of nodes (Fig. 8b) when the ocular complication 
corresponds to a higher degree. The length distribution of vessel segments (Fig. 8c) shows a result similar to that for the 
Efron illustrations. The higher the grade of the ocular disorder, the larger the number of segments, particularly short 
segments.  

Proc. of SPIE Vol. 5827     423



(a) (b) 

(c)

Fig. 8. Feature evaluation for photographs of conjunctiva hyperemia from CCLRU grading scale. (a) Vessel area in 
percentage, (b) Number of nodes in percentage and (c) distributions of vessel segment lengths. 

2. Papillary conjunctivitis 
The objective assessment for papillary conjunctivitis (Fig. 1c) is considered in this section. Image preprocessing 
techniques as well as vessel segmentation from palpebral background are carried out to analyze the CCLRU standard 
pictures.  

Analysis of the RGB components of the color standard images is performed. Fig. 9 depicts the RGB histograms for the 
zone 2 (Fig. 2c) of each standard image from grade 1 up to 4. The evolution of these histograms permits to monitor the 
variation of the contact lens wear effect. The most relevant changes in the RGB histograms are the mean value of the 
green distribution (G histogram), and the standard deviation of the blue distribution (B histogram). Both magnitudes 
should be taken into account in order to obtain an objective measurement of papillary conjunctivitis. Table 1 contains 
the mean value of the RGB distributions and their standard deviations. As the degree of this effect increases, the green 
mean value decreases (the histogram mode shifts to lower grey levels), and the blue standard deviation decreases (the 
histogram mode drifts to a sharper, narrower curve). 
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(a) (b) 

(c) (d) 

Fig. 9. Normalized histograms of RGB components for CCLRU photographs of papillary conjunctivitis (zone 2). 

Table 1. Mean value and standard deviation for the RGB histograms of the 4 grades of papillary conjunctivitis (CCLRU 
standards) (zone 2). 

Mean value 1 2 3 4  Standard deviation 1 2 3 4 
R 250.3 224.6 229.7 215.8  R 16.6 234.6 906.3 354.1 
G 221.7 167.8 142.7 94.2  G 113.8 577.1 821.6 309.8 
B 115.6 64.2 49.9 39.8  B 206.2 286.7 43.6 40.8 

The RGB images belonging to the standard series have strong limitations: unavailability of the channel responsivities of 
the color camera used in the image acquisition, undefined illumination conditions and spectral power distribution of the 
illumination source. Taking these limitations into account, we convert the RGB images to the HSI color space by 
applying standard formula in digital image processing.10 We use this conversion as a tentative approach that will allow 
us to redistribute the image color content into more perceptually meaningful components. 

We represent the hue (H) and saturation (S) components of each pixel belonging to the zone 2 of all the images in a 
polar diagram (Fig. 10). For a given grade, all the pixels depicted in Fig. 6 appear covering a cloud-shaped area, where 
the diamond indicates the H and S mean values of the image pixels. As we move from grade 1 up to grade 4 the area 
also moves in two senses: rotation towards low hue values (red) and shift towards high saturation values.  

Some differences can be noticed if two polar diagrams are independently displayed for vessel and background pixel 
populations (Fig. 11). Fig. 11a corresponds to the polar diagram for pixels of standard images (zone 2) classified as 
vessels whereas Fig. 11b depicts a similar diagram for pixels corresponding to the background of the eyelid. To make 
differences clearer between the two graphs, Fig. 11c shows the mean H and S values obtained separately for vessels and 
backgrounds from grade 1 up to 4. 
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From Fig. 11, we can observe that vessel pixels have a lower hue, shifting to red, and slightly higher saturation than 
background pixels of the same picture. 

S

H

Fig. 10. Polar HS diagram of image pixels (zone 2) of standard series. The diamond indicates the H and S mean values corresponding
to each grade. 

S

H

Vessel 

(a)

S

H

Background

(b) 

S

H

(c)
Fig. 11. Polar HS diagram of image pixels (zone 2) of standard series. (a) Diagram for pixels belonging to vessel population. The 
diamonds indicate the H and S mean values corresponding to each grade. (b) Diagram for pixels corresponding to background 
population. The squares stand for the H and S mean values obtained for each grade. (c) HS polar diagram of vessel (diamond) and
background (square) mean values from grade 1 up to 4. 
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6. CONCLUSIONS 

We have analyzed standard image series of two ocular complications produced by inadequate lens wearing. Pre-
processing of the standard images is carried out to assure feature comparison over a similar area (region of interest) with 
uniform illumination.  

The analysis of the conjunctiva hyperemia images that compose the Efron illustration and CCLRU picture standard 
grading scales has allowed us to extract several features for an objective and automatic assessment. These features are 
the area of vessels, the number of nodes and the distribution of vessel segment lengths. Although the images of both 
standards are very different, the results show that they are in good agreement with respect to the features extracted.  

Papillary conjunctivitis images of the CCLRU grading scale have been analyzed on the basis of their RGB histogram 
and the way they vary from the lowest to the most severe degree. The G mean value and the B standard deviation appear 
to be two good features for grading this disorder. Having been converted from RGB images into HSI images, the 
distribution of the H and S pixel values of the different images gives relevant information for an objective assessment of 
the effect severity. Color differences are noticeable for vessel and background pixel populations. 
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Abstract. This work builds an image analysis algorithm to give assistance in the cup to disc 
ratio estimation of glaucomatous eyes. Often the contours of both the optic cup and disc are faint 
and intersected by entangled veins that make it difficult to draw their silhouettes.  The algorithm, 
which takes into account the viewing conditions of the specialist, is based on the information of 
color, the color differences between neighbor pixels and the geometry of the areas involved. 

Keywords: Retinal image, color, color difference, S-CIELAB, segmentation, cup-to-disc ratio. 
PACS: 87.57.-s; 87.57.Nk; 87.57.Ra; 42.66.Ne. 

INTRODUCTION 
The optic disc (optic nerve head) is the entrance region of blood vessels and optic 

nerves to retina (Figure 1(a)). The examination of the optical disc appearance in retina 
fundus images is a general practice of ophthalmologists to evaluate the potential risk 
of glaucoma or to monitor the evolution of glaucomatous eyes. Reductions of the 
neuroretinal rim may reveal the pathological damage. A common parameter to assess 
the severity of the damage is the cup-to-disc ratio [1], which gives an idea of the area 
occupied by the cup in the optic disc. This ratio is useful to evaluate the nerve fiber 
loss and the structural damage. These symptoms usually come before the detectable 
alterations in the field of view [2]. 

In the last years there is an increasing interest to obtain an objective estimation of 
the cup-to-disc ratio from the analysis of the digital retina images provided by a 
variety of improved and sophisticated instruments of the ophthalmologic clinic. 
Greaney et al. [3] used optic nerve head stereophotographs (ONHPs), confocal 
scanning laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and optical 
coherence tomography (OCT) to measure different characteristics of glaucomatous 
optic nerve damage with the goal of diagnosing early to moderate glaucoma in the 
same population sample. The authors concluded that the quantitative methods CSLO, 
SLP and OCT were no better than qualitative assessment of disc ONHPs by 
experienced observers. However, this capability could significantly be improved by a 
combination of the imaging methods. 
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Li and Chutatape [4,5], used principal component analysis and proposed a modified 
active shape model to detect the disc boundaries in retinal images. They built a point 
distribution model from a training set and applied an iterative searching procedure to 
locate instance of such shapes (represented by the position of n landmark points) in a 
new image. Walter et al. [6] have detected the optic disc by means of morphological 
filtering techniques and the watershed transformation. Pinz et al. [7] presented a 
prototype software system for automatic map generation of retina. They apply a 
circular shape approach for the optic disc and used a two-stage gradient-based Hough 
transform. Zana and Klein [8] present an interesting algorithm based on mathematical 
morphology and curvature evaluation for the detection of vessel-like patterns in a 
noisy environment and applied it to the analysis of a variety of retinal images. A 
method for automated blood vessel detection in the optic disc area that takes into 
account the axial specular reflection of vessels is described by Vermeer et al. [9]. 

    

  
(a) (b)

 
FIGURE 1.  (a) Retinal image and (b) optic disc (region of interest). 

Although the development of automatic retinal image analysis to assist diagnostic 
systems has attracted the interests of many researchers, there are difficulties mainly 
due to noise, uneven illumination and great variation between individuals. The 
combination of several images of the same eye fundus acquired by different 
instruments and techniques contributes to improved results. But, on the other hand, the 
extensive testing to create such combination is expensive, cumbersome and too time 
consuming to be clinically practical. An automated or semiautomated computer-
assisted mass screening for diagnosis and monitoring of glaucomatous eyes is the most 
important task to which image processing can contribute. As main advantages it could 
bring a diminution of the necessary resources in terms of specialists and a reduction of 
the examination time. To this end, we consider single images captured by a non-
mydriatic retinal camera [10]. This sort of cameras can be handily used by technicians, 
not necessarily ophthalmologists, thus saving resources of such specialists.  

This work aims to build an algorithm to segment the optic cup inside the optic disc, 
and the optic disc from the rest of the eye fundus image. The algorithm is intended to 
give assistance in the cup-to-disc ratio estimation. Note that the contours of both the 
optic cup and disc are faint and intersected by entangled veins that make it difficult to 
draw their silhouettes. The algorithm is based on the information of color, color 
differences between neighbor pixels and geometry of the areas involved. 
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ALGORITHM OF SEGMENTATION  

Retinal Imaging 

We consider digital color images of the eye fundus obtained using a non-mydriatic 
retinal camera that incorporates an infrared focusing system and a white-light flash to 
register eye fundus with no need of paralyzing the iris diaphragm function. Images can 
be digitized by computer and displayed on a CRT monitor screen, or printed for 
visualization. In our case, we use the Topcon TRC-NW6S retinal camera that has a 
3CCD Sony DXC-990P camera for imaging and a Xenon flash lamp. Retina fundus 
images of 30º field are digitized in arrays of 768 x 576 pixels size, where the region of 
interest corresponding to the optic disc area occupies 100 x 100 pixels approximately. 
This region, with the optic disc in the center, is segmented from the rest of the image 
(Figure 1(b)). Since RGB values are device dependent, we perform the color 
transformations based on devices (camera and display) that conform to the standard 
color space sRGB. The sRGB color space has been characterized by the International 
Electrotechnical Commission (IEC) [11]. 

Preprocessing. LoG Sharpening Inspired By Human Vision Models 

In general, the regions of interest of the input images need some preprocessing 
before applying the algorithm of segmentation. This preprocessing is basically noise 
smoothing and edge sharpening and it should enhance faint edges without increasing 
noise. To this end, we apply our recently proposed method for color image sharpening 
[12] based on the S-CIELAB extension [13]. S-CIELAB involves a series of 
smoothing spatial filters in the opponent color space that approximate the contrast 
sensitivity functions of the human vision system. The spatial filters are linear 
combinations of Gaussian masks. S-CIELAB has been demonstrated to be useful and 
more realistic than conventional schemes in measuring the color differences between 
two digital images because it takes into consideration the viewing conditions of the 
image displayed on a monitor (viewing distance, pixels per inch or ppi). Our method 
of color image sharpening is a compact combination of S-CIELAB with derivative 
edge detectors in the opponent color space that considers human vision models and 
viewing conditions. First, the input images are linearly transformed from the standard 
color space sRGB to the device independent color representation CIEXYZ and then, to 
the opponent color space. We combine the spatial filters of the S-CIELAB extension 
with the Laplacian operator in each opponent channel to obtain the sharpened image. 
The Laplacian of the smoothed components is simplified by introducing the Laplacian 
of Gaussian (LoG) operator. The resulting image is subtracted from the original in 
each opponent channel and then back transformed to the device independent 
representation space (XYZ) and to sRGB to obtain the final sharpened image. This 
final image is intended to be displayed on a given monitor to be seen from a given 
distance by the specialist (with d pixels/degree of visual angle). Mathematically, the 
sharpened image ShI to display can be described by the expression 

 
( ) ( ) { } ( ), , , ,i i di iShI x y I x y kLoG F I x y= ! "                                (1) 
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where I(x,y) is the region of interest of the input image, i={0,1,2} represents the 

opponent color channel {0=A, achromatic; 1=C1, red-green; 2=C2, blue-yellow}, 
parameter k controls the sharpening depth, { }diLoG F is the Laplacian of Gaussian 
operator that involves the Gaussian functions of the weighted linear combinations of 
the spatial filters 

di
F , which are defined for each channel i and viewing conditions d 

[12,13], and finally, symbol * indicates convolution. The viewing conditions specified 
by d can be easily related with the ppi number displayed on the monitor and the 
viewing distance. When the sharpened image displayed on the monitor is seen at a 
given distance, a smoothed, spatially filtered version of it is perceived. The perceived 
sharpened image ShId can be obtained from the displayed sharpened image ShI by 
convolving with the spatial filters, according to the expression 

 
( ) ( ) ( ), , , .di di iShI x y F x y ShI x y= !                                         (2) 

 
To realize of the sharpening effect introduced in Eq. 1, the perceived sharpened 

image ShId should be compared with the original image as is it would be perceived in 
the same viewing conditions Id, that is, the smoothed and spatially filtered 
( ) ( ) ( ), , ,di di iI x y F x y I x y= ! . In this work we assume a sRGB monitor with 100 ppi 

(39 pixels per cm), a viewing distance of L=19.7 inches (50cm), which corresponds to 
d=35 pixels/degree, and two sharpening depths of k=1 and k=5. We choose a deeper 
sharpening to segment the optic disc and a lighter to segment the cup.  Figure 2 shows 
the sharpened image ShI that can be obtained after applying Eq. 1 to the region of 
interest (Figure 1(b)). The smoothed spatially filtered version ShId of Figure 2, which 
simulates what the observer sees in the viewing conditions given by d, will be used in 
the calculations through the paper.  
 

 
(a) I (original) 

 
(b) ShI (k = 1) 

 
(c) ShI (k = 5) 

 
(d) Id 

 
(e) ShId (k = 1) 

 
(f) ShId (k = 5) 

 
FIGURE 2. (a)-(c) Original and sharpened images as they would be displayed. (d)-(e) Spatially filtered 
images (as they would be perceived). L = 19.7 in., p = 100 ppi, and d=35 pixels/degree. 
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Optic Disc 

The neuroretinal rim does not appear as a continuous shape with uniform color, but, 
on the contrary, it is crossed by retinal veins and arteries. For this reason, the 
algorithm has to approximate the occluded zones of the neuroretinal rim contour. 
Figure 3 shows a scheme of the process to determine the outer rim contour.  

 
 

Size of the radius N
um

ber of radius 

a b 
ΔE00(a,b) 

 

Guide line 

Points of the rim 

Selected band 

Nasal   Temporal 

(a) 

(b) (c) 

(d) 

 
FIGURE 3. Scheme of the algorithm to mark the neuroretinal rim boundary.  

 
From the center of the region of interest, color differences are calculated radially, 

between neighbor pixels, to find the highest color difference going from the center 
towards the temporal side (Figure 3(a)). In the standard uniform color space frame of 
CIELAB, extended to S-CIELAB for color analysis of digital images, we have 
considered the standard CIEDE2000 color difference formula ΔE00, and related 
component differences of luminance ΔL, chroma ΔC, and hue Δh [14]. Pixels with the 
highest color differences ΔE00 usually mark points of the rim contour in the temporal 
side. Taking advantage of the nearly round shape of the optic disc, a new image is 
generated in polar coordinates (Figure 3(b)). Since the center and the corners of the 
image in Figure 3(a) are not interesting for our purpose of finding the rim contour, we 
just pay attention to the band limited by dashed lines in Figure 3(b). The top and 
bottom rows of this new array correspond to the central part of the temporal side 
where blood vessels are rare and the contrast between the neuroretinal rim and the rest 
of the eye fundus appears most sharpened. In the array of Figure 3(b), the contour 
sought appears close to a right vertical line (not drawn) within the band. This means 
that a nearly circular geometry for the disc boundary can be assumed in first approach.  

294

Downloaded 17 Oct 2006 to 147.83.9.123. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



The algorithm to segment the disc begins with both extremes of the band, i. e. the 
top and the bottom rows of the array and looks for the pixel (represented by a white 
point in the small diagram at the top of Figure 3(c)) whose neighbors a, b, placed at 
both sides, several pixels far from it, show the highest color difference ΔE00(a,b) 
between them. The maximum difference is estimated to select the initial points 
(pixels) of the rim contour at the top and bottom rows of the array. These initial points 
have obviously the same (o nearly the same) position in the top and the bottom rows. 
We draw an imaginary guide line (in green in Figure 3(c)) along the band that joins 
both initial points. On the other hand, the color difference ΔE00(a,b) used to fix the 
initial points is also considered as to be a reference for selecting subsequent pixels to 
add to the contour. From the visual perception of a large number of images, we 
realized that the color difference between the neuroretinal rim and the eye fundus is 
mainly characterized by noticeable differences in Luminance and Hue, but much 
lower difference in Chroma. In fact, the next pixels to add to the contour are found 
among those pixels contained in certain vicinity of the guide line that have some a,b 
neighbors in their respective rows whose color difference is close enough to that taken 
as reference. In this point, not only high ΔE00(a,b) color differences are sought, but 
also high differences in Luminance ΔL and Hue ΔH, and low differences in Chroma 
ΔC. If some pixels of the contour are occluded by a blood vessel (that introduces a big 
distortion in the local distribution of color), then the algorithm jumps beyond the 
vessel in the direction of the guide line (Figure 3(c)). Finally, the segments of the 
contour are linked by interpolation and the neuroretinal rim is completed (Fig 3(d)). 

Cup  

In general, the area of the optic cup appears very bright inside the optic disc, often 
near to saturation. This part of the image is usually affected by several sources of 
noise, variability, and it is difficult to segment even for specialists.  

To segment the cup we consider the perceived sharpened image ShId with depth of  
k=1. In this image we cut the region outside the optic disc. Taking the pixel color with 
the highest value of luminance and minimum chromaticity -usually in the yellowish 
white region- as a seed (s), the color differences ΔE00(s, p) between this seed color and 
the color of other pixels (p) are calculated within the optic disc. As a general idea the 
pixels that obtain the smallest color differences from the seed are likely to belong to 
the cup, but this rough assignation needs to be refined. To this end, we build the image 
of the color differences from the seed (Figure 4(a)). In this image, each pixel has the 
value given by ΔE00(s, p). Pixels with low values of ΔE00(s,p) are concentrated in the 
left part of the histogram. We study two possibilities to establish a threshold that may 
help us to separate the pixels of the cup from the rest of pixels of the optic disc. The 
histogram of the image of the color differences usually shows a multimodal profile 
with local maxima and minima (Figure 4(b)). In case of being monomode histogram 
(with no local maxima) the optic disc is said to have no cup. In case of having two or 
more modes, we order the maxima in decreasing order starting from the absolute 
maximum. The local minimum with lowest value existing between the two first 
maxima (i.e. the absolute maximum and the second maximum) can be a possible good 
threshold. We call this threshold the local minimum threshold (LM). 
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(a) (b) (c) (d) 

FIGURE 4. Sequence to segment the cup inside the optic disc: (a) image of the color differences from 
the seed; (b) histogram with two tentative thresholds: entropy based threshold (H in blue) and local 
minimum (LM in red); (c) cup determined by highest threshold (LM); (d) cup determined by the lowest 
threshold (H). 

We explore another possibility that takes into account the entropy H [15] as an 
estimation of the randomness of the various zones of the histogram. The histogram is 
divided into two sectors 1 and 2 (first level) with 50% of pixels each. We calculate the 
entropy of each part. Let H1 and H2 correspond to the entropies of the histogram 
sectors with low and high ΔE00(s, p) values, respectively, and let ε1 be the ratio of 
entropies ε1=(H1/H2). If  ε1 >0.5, we divide sector 1 into two subsectors, 11 and 12 
(second level), with half number of pixels of old sector 1 each, and repeat the 
estimation of the entropy for each subsector. The procedure is repeated successively 
and stops when the ratio of entropies of level n satisfies εn <0.5. In such a case, the 
threshold that divides the former level (n-1) can be taken as a good possibility to 
separate the pixels of the cup from the rest of pixels of the optic disc. We call it the 
entropy based threshold (H). The cups segmented by applying both thresholds 
separately are shown in Figure 4(c,d). The real cup is approximated by these two 
figures, but it must be taken into consideration that the shape of the cup is close to a 
round shape in a rough approximation. Let us consider the lowest (most restrictive) 
threshold. The resultant smallest figure of cup is now framed in a square and the 
center of the square is determined (Figure 5(a)). From this center we transform again 
this part of the image in polar coordinates and repeat the procedure already described 
to determine the optic disc contour. The results are shown in Figure 5 (b) and 5(c). 

 

 
(a)  

(b) 
 

(c) 
FIGURE 5. (a) Cup inside a square, (b) Cup in polar coordinates, (c) Segmented cup (black line) and 
optic disc (blue line) in the original image.   
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Feature Extraction 

The cup-to-disc ratio is the amount of the entire nerve head that has been cupped 
out or where glaucoma has caused damage. Readings range from 0 meaning no 
cupping at all to 1.0 where the entire optic nerve is cupped out (normal eye 0.3 - early 
glaucoma 0.7- severe glaucoma 0.9). Many people have some cupping, which is 
normal. Changes in size of the cup-to-disc ratios or a difference between the two eyes 
lead the eye care specialist to suspect glaucoma.  

RESULTS 

Figure 6 shows a selection of some original images of the optic disc and their 
corresponding results after applying the proposed algorithm. A variety of situations 
concerning dynamic range, noise level, and disc to fundus contrast are shown. A red 
line segments the cup and the blue line the optic disc. The results are acceptable in 
general, though the segmentation of the cup needs further improvement in some 
difficult cases. 

 
 

Original image Segmented optic disc and cup (C/D) 

  C/D = 0.24 

  C/D = 0.30 

  C/D = 0.24 
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Original image Segmented optic disc and cup (C/D) 

  C/D = 0.54 

  C/D ≤ 0.15 

  C/D ≤ 0.15 
FIGURE 6.  Results. 

CONCLUSIONS 

The algorithms for the automatic segmentation of both cup and disc in the optic 
nerve head have been developed and applied to a set of real images obtained by using 
a non-mydriatic retinal camera. They are intended to assist the eye care specialists in 
the cup-to-disc ratio estimation, which is an important metric for the detection of 
glaucoma risk. The algorithms are based on the analysis of the color content of the 
region and the color differences between neighbor pixels. Some considerations about 
smoothness and round shape of the optic disc boundary have been taken. The method 
shows a feasible way for complex optic disc image analysis and feature extraction.  
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