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EXPERIMENTS ON PERTURBED SAFFMAN-TAYLOR FLOWS

Abstract

We have performed pattern formation experiments where a relatively well under­

stood system (flow in a Hele-Shaw cell) is perturbed either by means of a lattice of

grooves or by the use of viscoelastic fluids. We have extended the qualitative analysis
found in the literature for anisotropic fingering patterns, presenting a more quantita­
tive approach that may prove useful as a tool to attack more complex problems. We

have analyzed the different morphological regimes and looked for signatures of the

transition between phases, with partial success when we try to characterize a given

morphology quantitatively.

In our studies of viscoelastic Hele-Shaw flow with associative polymer solutions,
we have observed a transition from viscous fingering patterns into a regime where the

growing patterns resemble the fracture in brittle solids. We have been able to rescale

the threshold for these transitions, and we have observed interesting properties in a

regime of fracturelike patterns where, under sorne circumstances, we have measured a

characteristic oscillation frequency which shows interesting regularities. We have also

studied the pressure in the viscoelastic flow, and found consistent results that may

be used to implement a better theoretical model to fully understand the dynamics.
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CHAPTER 1

Introduction

Pattern formation in soft condensed matter has been the object of extensive study for

most of the past two decades [1-5]. The configuration we have used in the experiments
described herein (Hele-Shaw cell, see Figure 1) is simple enough that the dynamical

equations and the boundary conditions can be easily written down; yet, their non­

linearity and non-locality generate a very rich variety of phenomena. The basic

problem, where flat, smooth Hele-Shaw cells and Newtonian fluids are used, can be

extended by introducing different kinds of perturbations, either by modifying the cell

or by using a complex fluid system [6].

The patterns and phenomenology observed in our experiments with liquid den­

drites (see chapter 3) have strong qualitative similarities with the dendritic patterns

observed in crystal growth. In fact, the equations used to model both systems are

so similar that the results we obtain in our simple experiments may well be applied
in crystal growth. Additionally, experiments of crystal growth have typically much

smaller length scales and time scales, which makes quantitative analysis more diffi­

culto Our experiments with complex fluids exhibit a transition into patterns whose

evolution shows strong qualitative similarities to that of experiments on fracture in

brittle solids. In solid fracture, it is relevant to relate the onset of the fracture mecha­

nism, and the subsequent dynamical development with the properties of the material.

In our experiments of fluid fracture, we have information about the rheological prop­
erties of our polymeric fluids, and we try to relate these properties to the dynamical
features we can measure. Moreover, the slower dynamics in our experiments allows

for easier and more complete measurements than what is attainable in fracture of

brittle materials.

1
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Figure 1: (A) Hele-Shaw cell in the channel geometry; (B) Hele-Shaw cell in the radial

geometry.

1.1 Overview ofthe Viscous Fingering Instability

A Hele-Shaw cell is a system consisting of two rigid plates (usually made of glass or

Plexiglas), placed parallel to each other with a small gap b between them (see Figure
1). The gap is filled with a viscous fluid. A second, less viscous fluid is forced to

push the more viscous one. The most common case is that in which the viscosity of

the invading fluid is negligible, when compared to that of the more viscous fluid.

Two geometries are commonly used: channel geometry, where the plates are rect-

o angular and a pressure gradient is applied along the channel, with the less viscous

fluid being injected from one end of the channel; and radial geometry, where the

plates are circular, and a radial pressure gradient is applied by the less viscous fluid

being injected through a hole at the center of the top plateo Interesting pattern for­

mation happens when the moving interface between the fluids becomes unstable. The

high impedance to the flow, due to the small cell gap, effectively constrains the fíuids

in a quasi two-dimensional motion. For this reason we can describe the flow and,

particularly, the motion of the interface by the average fluid velocity across the gap.

It can be shown (see Appendix A) that the same expression can be used to relate the

average velocity field to the pressure gradient in the channel (equation A.8) and in
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radial (equation A.17) geometry:

(1.1)

where vis the flow velocity in the fluid, J..L is the dynamic viscosity of the fluid, b is

the cell gap and P is the pressure in the body of fluid.

The appearance of this equation is the same as that of the flow of a viscous fluid

through a porous medium [7]:
(1.2)

and it is known as Darcy's law. Mis the mobility of the medium. In the Hele-Shaw

flow, the mobility is M = b2/(12J..L). In porous media, it is the ratio ofthe permeability
of the medium to the viscosity of the invading fluid, M = k/ J..L. Using Darcy's law

to describe the flow in the cell effectively treats the flow as bi-dimensional, since the

pressure gradient lies in the plane of the cell. This assumption will be valid as long
as three dimensional effects are negligible. Examples of three dimensional effects are

the presence of a three dimensional meniscus at the interface, or a Hele-Shaw cell

where the gap b varies locally, b = b(x, y).

Since we will be dealing with incompressible fluids,

V·v=o. (1.3)

Equation (1.1) and equation (1.3) lead to a pressure field that obeys the equation:

(1.4)

which leads to

(1.5)

provided the term b2/12J..L is uniform over the cell.

1.1.1 Fluid-fluid interface

The situation relevant to the experiments in the present work is that where we have

a moving interface between two fluids in a Hele-Shaw cell. Then, we will have a set
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of bulk equations describing the flow in each fluid, with the two fluids viscosities MI,

M2. At the interface, we will have to match the velocity fields in each constituent.

Moreover, gravity may be relevant in the dynamics, unless the cell is perfectly hor­

izontal. In what follows, we will neglect the viscosity of one of the fluids (we will

have a very large viscosity contrast, MI!M2 rv O) and we will consider our cell to be

horizontal (gravity plays no role). This approximation assumes implicitly that there

is a negligible viscous dissipation in the lighter fluid, thus the pressure is uniform in

this constituent. A treatment that includes both constituents and couples gravity
with the fíow can be found elsewhere [7] and the effect of the viscosity contrast is

also addressed in the literature [8].

Our system is, then, the following: we have a moving interface that pushes a

viscous fluid, of viscosity M, and with a surface tension (J, being driven by a pressure

gradient and constrained to move in a quasi two-dimensional system.

The pressure field satisfies Laplace's equation in the bulk (1.5). At the moving
interface, there is a jump discontinuity in the pressure field, given by the Gibbs­

Thomson equation [3],
(1.6)

where 2/b is the curvature of the interface across the gap, assuming a () = O fluid-wall

contact angle (true if the fluid wets the wall), in which case the profile is circular,
with radius b/2 (with curvature /'i, rv 2/b) as long as capillary effects are dominant.

Gravity will start to deform the profile of the interface when b is large. With the

. fluids we commonly use, b should not be larger than 2 mm. /'i, is the two-dimensional

curvature of the interface in the plane of the flow; and Po is the pressure in the less

viscous constituent, whose viscous dissipation we neglect. Since Po and b are treated

as constants, we rescale P to get, as a boundary condition,

Pis = a«. (1.7)

This, however, is only valid if the system can be treated as purely two-dimensional.

It occurs that, if the fluid being displaced wets the walls, the interface leaves behind a

layer of the fluid being displaced, whose thickness depends on the velocity. Park and

Homsy [9] derived a corrected expression for the pressure jump, based on asymptotic
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analysis:
20" [ (I-W ) 2/3] 7r

(f.1V )
2/3

Pis = b 1 + 3.80
O"

n

+ ¡O"K + o
O"

n

, (1.8)

where Vn is the local normal velocity at the interface.

1.1.2 Radial Geometry

Consider the flow between two circular smooth plates, placed parallel to each other

with a small gap b between them (radial Hele-Shaw cell, see Figure 1). The gap space

is filled with a viscous fluid and a second, less viscous fluid is injected at a constant

volumetric injection rate through a hole at the center of the top plateo Initially, a

circular bubble will develop, but that regime is linearly unstable and viscous fingers

grow until a size when a single finger is also unstable and tip splits [10].
As explained aboye, the system would be described by the following set of equations:

--+

(1.9)\1·v O,
--+

b2 --+

(1.10)v -\1P
12f.1

'

\12p O, (1.11)

at the bulk (with v being the velocity in the displaced fluid, b the cell gap, f.1 the

dynamic viscosity of the viscous fluid and P the pressure in the viscous fluid), and

Pis

J n· ikls
-O"K, (1.12)

(1.13)Q,

at the interface (with O" being the surface tension at the interface, K the local curvature
and Q the areal injection rate) , where (1.13) constrains the flow to have constant

(areal) injection rateo A growing bubble of the less viscous fluid, initially circular,
becomes unstable, and it deforms by fingering into the more viscous fluid, with a

characteristic wavelength that can be understood from this model (see appendix B).

The four dimensional parameters of the experiment - Q, b, f.1 and O" - can be

combined to produce the dimensionless quantity f.1Q [ab. Hence, if we try to render

the aboye equations dimensionless, there will be freedom in the choice of units. A
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customary choice is

(1.14)

which gives the dimensionless set of equations:

V·v O,
_,

_,

v VP,

V2p O,

Pis -/'l"

J n· ilds 211".

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

If kinetic effects are taken into account, an extra term is added to eq. 1.12 and an

extra parameter is introduced in the problem [9,11,12]:

Pis = -(J/'l, + f3v�. (1.20)

The complexity of the problem increases when miscible fluids are used [13]; when

spatial perturbations are added to the cell gap, in which case b = b(x, y) is no longer
uniform, or when non-Newtonian fluids are used, in which case f.l = f.l(v). These

modifications may cause the pressure field to cease to be Laplacian, so V2P =1- o.

1.1.3 Channel Geometry

Consider the flow between two rectangular smooth plates, placed parallel to each

other with a small gap b between them (Hele-Shaw cell). The flow is restricted inside

a channel by straight side walls (see Figure 1). Consider the gap space filled with two

immiscible fluids, thus forming a flat interface. When a pressure gradient is applied

along the channel, the interface advances. When the less viscous fluid is pushing the

more viscous fluid, the flat interface becomes unstable [3, 7,14].

After a transient, a steady state consisting of a finger of the less viscous fluid

penetrating the more viscous one is formed. The shape of a finger which is growing
from right to left can be expressed in terms of its width through a theoretically
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expected relation [14]
W (A - 1) [ ( 1I"y )]x =

11"
In cos

AW ' (1.21)

where A is the ratio of the finger width to the channel width. This is the shape of the

so-called Saffman-Taylor fingers [14]. This expression ignores surface tension, and

should be useful for small surface tension interfaces, such as in the case of miscible

fluids. The finger tip is supposed to be at (0,0), and the cell walls to be at y = ±W/2.
If we expand (1.21) around the tip we get

1I"W(1 - A) 2
X =

2(AW)2 y +"', (1.22)

which is the well known parabolic tip pro file of the Saffman-Taylor fingers. A rela­

tionship that ineludes surface tension, and that fits slightly better the shape of wide

fingers was found by Pitts [15].

The width of the finger is unique if there is a non-zero surface tension at the

interface [16]. The relationship between A and the surface tension has been measured

experimentally [17]. It is convenient to define a surface tension parameter [18] as

(1.23)

where J-l is the viscosity of the fluid being displaced (much higher than that of the

displacing fluid), V is the finger tip velocity, W is the channel width, and o is the

interfacial surface tension).

Tabeling and Libchaber [17] ineluded in the analysis of their measurements a

wetting correction by using an effective surface tension

[11" (W) (J-LV)2/3]o" = a ¡ + aA b --;;- , (1.24)

where a is a number related to the interface shape and is adjusted experimentally
to rescale eq. (1.23). This correction accounts for the draining film left behind by
the fluid that wets the walls, and was required to account for discrepancies between

experiments and theoretical predictions. It is a first approximation to take into

account the correction introduced in eq. (1.8). A more complete analysis of the

inelusion of this wetting correction in the fingering equations has been given by
Sarkar and Jasnow [19].
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1.2 Perturbations to Radial Hele-Shaw Flow

The presence of anisotropy in the radial (isotropic) Hele-Shaw flow changes the nature

of the problem in that new morphologies (such as dendrites) are possible. Ben Jacob

et al. [20] proposed a phenomenological local model (Boundary Layer Model) to

describe the dynamics of the advancing interface, which is applicable in solidification,
Hele-Shaw flow, and other growth phenomena in chemistry and biology. They showed

that the appearance of dendrites is a signature of the presence of anisotropy, even

though it has been observed that even the presence of anisotropy is not enough to

guarantee the appearance of dendritic patterns (it has been shown before [21], and we

will give some examples from our own experiments, that tip splitting morphologies
are found, under some dynamical conditions, in the presence of anisotropy).

The experimental details of the perturbation that adds anisotropy to the flow

have many possible realizations. In the literature we find how a bubble at the tip
of a growing viscous finger in smooth (isotropic) Hele-Shaw cells generates dendritic

branches [22, 23]. We also find experiments where the anisotropy is provided by
the fluid being displaced, such as experiments with liquid crystals [5, 24, 25], where
dendritic phases are observed. The experiments that offer a better control of the

perturbation, however, are those where the anisotropy is introduced by means of a

lattice of grooves etched on one of the plates of the cell. We find in the literature

systematic qualitative descriptions of the morphologies observed with a single groove

[26], with series of parallel grooves [27], and with a regular array of grooves [21]. The
.

qualitative effect of different control parameters is described in these works, particu­

larly the effect of the driving force (a pressure gradient) and the ratio of the depth of

the grooves to the cell gap. However, a quantitative study of the experimental obser­

vations is not found in the literature, and it is not clear how to quantitatively relate

the experimental control parameters to the parameter that introduces the anisotropy
in the theoretical analysis. The use of an etched array of grooves offers the best

control over the experimental parameters and, since the lattice is unaltered in the

experiments, it offers very reproducible results.
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1.3 Hele-Shaw flow with viscoelastic fluids

The use of viscoelastic fluids in Hele-Shaw flow should have important effects as long
as the flow enters a dynamical regime where the possible non-Newtonian features

of the fluid (non-zero normal stresses, shear thinning /shear thickening, yield stress,

stress relaxation, etc.) become important. As we will explain in chapter 2, perturba­
tions to the flow of Newtonian fluids have an effect mostly in the interfacial region.
When the flow becomes non-Newtonian, with a velocity dependent shear viscosity

(see eq. 1.1), the perturbations should be relevant, not only in the interfacial region,
but also in the bulk of the fluid. The effects of viscoelastic fluids in Hele-Shaw flow

were first studied in experiments by Nittman, Dacord and Stanley [28, 29], show­

ing interesting qualitative effects. Further experimental work was performed by van

Damme et al. [30-33]. The effects of viscoelastic fluids in Hele-Shaw flow have also

been studied by de Gennes [34]. Viscoelastic effects in patterns between miscible

fluids have been recently studied in experiments [35,36] showing drastic changes in

the morphology of the patterns that can be obtained by changing the rheology of the

polymeric solutions. The fact that the rheological properties of viscoelastic materials

depend on the dynamical regime in which the flow is taking place allows for a very

rich variety of phenomena. It is particularly interesting that, under sorne high flow

conditions, viscoelastic fluids can be made to generate fracturelike patterns, whose

morphologies resemble more the fracture in brittle materials than the flow of a New­

tonian viscous fluid in a Hele-Shaw cell. Such observations have been made in clay

suspensions [31-33,37] and in associative polymer solutions [38]. The resemblance

between these systems and the fracture in brittle materials suggests several possible

approaches to study the dynamics governing the observed behavior.

1.4 Overview of the following chapters

In the following chapters we will describe experiments where perturbations have been

added to the basic Hele-Shaw flow. In chapters two through four we present radial

fingering experiments with Newtonian fluids, where the cell gap is non-uniform, and it

changes periodically over the cell. This generates a rich variety of anisotropic fingering
patterns, particularly dendritic regimes, which we present both qualitatively and with
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a quantitative analysis. Our quantitative analysis is based on a time scaling of the tip
position of the growing dendrites, only found in the presence of anisotropy. The shape
of the dendrite is also well described by the model, which we find to be strongly self

consistent. Even though this model proves to be a promising tool to quantitatively

analyze the effect of the periodic gap perturbations on the Hele-Shaw flow, we have

been only partially successful at characterizing quantitatively the morphology of the

patterns resulting from a given flow realization [39].

The second half of this thesis describes our experiments with viscoelastic fluids

(associative polymer solutions) which exhibit a transition from fluidlike into solidlike

behavior. Chapters five through seven describe our viscous flow experiments in a

Hele-Shaw channel using viscoelastic fluids, so Jl = Jl( iJ) is no longer a constant. We

have observed a transition from viscous fingering into fracturelike behavior, where the

evolving patterns resemble, both because of their morphology and because of their

dynamics, the fracture of brittle materials. We describe our successful (although
limited) rescaling of the onset of the fracturelike instability, and the consistent trends

found in the evolution of the characteristic frequency of the oscillating regimes when

we study its changes with the different control parameters [40]. We also explain our

attempts at obtaining a more complete understanding of the observed phenomena by

studying the shear stress in the viscoelastic medium, even though it is a quantity we

cannot measure directly.



CHAPTER 2

Introduction of a regular perturbation in the
radial cell. Qualitative aspects.

[Regular perturbation in a radial cell. Qualitative.] Anisotropy, frequently introduced

experimentally in the Hele-Shaw flow as a perturbation in the uniformity of the gap,

generates a rich variety of morphologies not present in the isotropic flow [10] (that is,
in the flow of an isotropic material in a homogeneous Hele-Shaw cell. See appendix

B). Before this work, however, the distinctions between the different morphologies
were mainly qualitative. In the following two chapters, we describe a set of experi­
ments designed to find a quantitative signature of the anisotropy that would allow

us to characterize a given morphology, and to study the transitions among different

morphologies from a more quantitative point of view.

We have designed an experiment where the anisotropy is introduced in a very

controlled fashion, by adding a regular array of grooves inside the Hele-Shaw cell. In

this chapter we give an overview of the different morphologies that we have observed,
and we discuss the effect of the different control parameters in our experiment, from

a mainly qualitative point of view. We explain how the qualitative effects we observe

are consistent with what has been described in the literature. We notice, in partic­

ular, that the relative strength of the gap modulations has a dramatic effect on the

morphology. We also give a brief overview of the standard mathematical description
of the anisotropy and note that we lack a clear (quantitative) relation between the

anisotropy parameter found in such models and our experimental control parameters.

In the next chapter, we discuss a recent model that allows a quantitative analysis
of the effect of the anisotropy on the fingering patterns, based on asymptotic scaling
in the evolution of the fluid dendrites. We describe the predictions of the model,
including the expected asymptotic shape of the dendrites, and describe how it has

proven a useful tool in our experiments, even though we have achieved only partial

11
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Figure 2:

experiments.
Experimental design and data acquisition procedure in the radial fingering

success when we try to quantitatively characterize a given morphology.

2.1 Experimental design and measurement pro­

cedure. Etched lattice.

We have performed viscous fingering experiments on a radial Hele-Shaw cell with

glass plates. The top plate was 1 inch thick (to minimize plate flexing [18]) and 23

inches in diameter (1 inch � 2.54 cm). We measured plate flexing at the center ofthe

plate on a high pressure situation using a strain gauge and found a flexion of 50.8 ¡.tm

over a radius of 15.5 in. Heavy paraffin oil, with ¡.t = 1.6 P (1 Poise = 1 g cm-1 S-l)
and oil-air surface tension (J = 35 dyn cm=! at 22°C, acted as the more viscous fluid.

Dry nitrogen was injected at a constant volumetric injection rate, which translates

into a constant areal injection rate Q if the bubble has a uniform gap thickness (close
to the cell gap). The constancy of the injection rate was achieved by preparing a

large reservo ir with nitrogen at an intermediate pressure P (see Figure 2) and setting
a Iarge impedance to the flow at the output from this reservoir with the help of a

throttle vaIve. This way, the flow rate was dictated by this fixed Iarge impedance,
rather than by the impedance due to the evoIution of the pressure fieId inside of the

cell. The deveIoping fingering patterns were observed with a CCD [41] video camera
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Figure 3: Left: Profile oí the etched plate inside oí the cell gap. Right: Top view oí the

etching.

and taped on an Enhanced S-VHS recorder [42]. The images were then digitized and

analyzed with the assistance of image analysis software [43].

To introduce the anisotropy, a plate was superimposed on the bottom glass plate
of the cell (see Figure 3). The new plate was a large circuit board (25 x 50 cm2) with
its copper layer photochemically etched to produce a rectangular lattice pattern. The

grooves were 0.2 mm wide, 0.4 mm center to center in one direction and 0.8 mm center

to center in the other direction, with a depth of 0.07 mm, thus forming rectangular
islands of copper, 0.2 x 0.6 mm? in size, 0.07 mm in height and 0.2 mm of spacing
between neighboring edges.

The plates were designed with the software package AUTOCAD [44]. The pattern

was easy to encode since it is a regular array of grooves. The design was transferred

to DXF image file format to be used by the circuit board manufacturing company,

which was responsible for the photochemical etching process of the design on abare

copper layer of 2 oz.jft.2 ( 0.07 mm thick).

Spacers were used to keep the top and bottom plates at a uniform distance b,
thus setting the cell gap. Measurements were made with gaps ranging from 0.11 to

1.0 mm.
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2.2 Anisotropy and dendritic growth. Different

morphologies

It is known [20,45] that the presence of anisotropy is required in order to get dendritic

patterns, both in directional solidification and in viscous fingering. The effect of

the anisotropy on the fiow, however, depends on several control parameters such

as the cell gap, the driving force, the length scale of the etching, etc., and, as a

result, different morphologies can be obtained, and morphology phase transitions

between them can be observed [46]. For instance, as the driving force increases,
the morphology progresses through a faceted regime, to a regime of surface tension

dendrites, to a tip-splitting regime and finally to a regime of kinetic dendrites (see
below for a description of each regime and for the origin of the nomenclature, based

on what is found in the literature [46]). An example is given in Figure 4 where, for

a gap b = 0.11 mm, very different morphologies can be obtained in our experiments
of viscous fiow over a rectangular lattice, by changing Q: Q = 1.3 cm2/s generates

surface-tension-controlled dendrites; Q = 1.8 cm2/s generates a tip-splitting regime;

Q = 5.5 cm2/s generates a 2-fold symmetric pattern with kinetic dendrites along
one direction, but with tip splitting along the perpendicular direction (2-way kinetic

dendrites); and Q = 48 cm2/s generates a 2-fold symmetric pattern with kinetic

dendrites along perpendicular directions (4-way kinetic dendrites). It is a remarkable

fact that the effect of the anisotropy, which is introduced at very smalllength scales,
is refiected at macroscopic length scales. The characteristic length scale of the etching
is of the order of a few tenths of a millimeter, yet the observed fingering patterns
have a size of tens of centimeters, and the symmetry of the etching (twofold, fourfold,
etc.) generates patterns with the same symmetry, but at much larger length scales.

In our experiments, we have focused, mainly, on the two dendritic morphologies
(see Figure 4):

• at low velocities, dendrites grow away from the etched grooves, presumably
because of surface tension effects, since minimization of the surface energy of

the growing patterns requires the cross sectional area to be a minimum, and

that occurs away from the grooves;

• at high velocities, dendrites grow along grooves, presumably because of kinetic
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10 cm

Figure 4: Anisotropic fingering morphologies for b = 0.11 mm. The rectangle shows

the orientation of the etching. From left to right: Q = 1.3 cm2/s, Q = 1.8 cm2/s, Q = 5.5

cm2/s, and Q = 48 cm2/s.

effects, since the most favorable configuration is the one that minimizes the

impedance to the flow, and that occurs along the grooves.

2.3 Mathematical description of the Anisotropy

Even though anisotropy acts as a singular perturbation when introduced in these flow

situations [4], its effects on the patterns depend on the strength of that anisotropy.
If the strength is very low, the anisotropic effects will become negligible, and regular
growth based on tip splitting will dominate [47].

In a theoretical analysis, the effect of the anisotropy appears in the pressure

boundary condition (1.20) as:

Pis = af(O)K + (3g(O)v�, (2.1)

where a is the surface tension, (3 is a kinetic coefficient, O is the local angle between

the normal to the interface and the lattice, Vn is the local normal velocity and K is

the local curvature. The term proportional to Vn should dominate at high speeds

(kinetic dendrites) while the term proportional to the curvature should dominate at

low velocities (surface tension dendrites). Given that f(O) and g(O) should reflect the
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symmetry of the lattice, it is customary to use expressions of the kind

f(O)

g(O)

1 - Ecos(mO),
1 - xcos(mO + 8),

(2.2)

(2.3)

where E and X are the anisotropy parameters, and they should quantify the effect of

the lattice on the patterns, i.e., they should quantify the strength of the anisotropy.
m gives the symmetry of the anisotropy (2-fold, 4-fold, etc.). The phase shift 8

allows for sorne competition between kinetic and static terms in the selection of the

direction of growth (for instance, 8 rv 45° seems to be what we would infer from our

experimental observations, since growth in directions 45° apart occurs when surface

tension effects dominate and when kinetic effects dominate (see Figure 4)).

Sarkar and Jasnow [47] studied the effect that a regular perturbation on b would

have on the fingering patterns, by analyzing first its effect on the equations. They
first note that, if b is not uniform, then the pressure field ceases, in general, to be

Laplacian. They argue that the two-dimensional mobility (which, for the smooth

plates case is the scalar b2/(12M)) can be expressed as a tensor. This tensor could be

diagonalized and, in the case of four fold symmetric perturbations, the eigenvalues
would be equal. Then, they argue, if the length scale of the etching is small enough, we

could coarse grain the pressure field, so that the coarse grained mobility would have

space independent elements. In our case, we have a two fold symmetric etching, so the

coarse grained mobility will have different (constant) eigenvalues. Thus, according
to that analysis, a rectangular etching could modify the bulk equations for the flow.

We have observed, however, that simulations by Almgren [48] assuming two­

fold symmetry generate patterns which are in at least qualitative agreement with

our experiments, even though the equations he uses include the anisotropy in the

boundary conditions only (the bulk pressure field is considered to be Laplacian).

2.4 Experimental control parameters

In our experiments, we have observed that the morphology of the viscous fingering
patterns can be altered by three control parameters: a = I:1b/b, the ratio between

the depth of the grooves to the average cell gap; Q, the areal injection rate; and the
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length scale of the gap modulations, that is, the length scale of the etched lattice.

Since our plate has a rectangular etching, we will have two such length scales (see
Figure 3).

We are still not confident of how to write down an expression for an anisotropy

parameter of the kind present in equation (2.2), but such a parameter should de­

pend on the experimental control parameters, and that dependence should take into

account their experimentally observed effects on the patterns:

• An increase in a dramatically increases the effect of the anisotropy on the

patterns. For instance, we cannot observe any clear effect of the etching on the

fingering patterns for b > 1.0 mm, that is, for a < 0.07.

• An increase in Q seems to increase the effect of the anisotropy on the patterns.

For a large value of a, such as a = 0.64 (see Figure 4), increasing Q makes the

morphology change from surface tension dendrites to tip-splitting to kinetic

dendrites. But within a given dendritic morphology, increasing Q increases the

effect of the anisotropy since, for instance, kinetic dendrites become sharper
when we increase Q.

• An increase in the length scale of the anisotropy also increases its effect on the

patterns. We can see an influence of this length scale on the third pattern from

the left on Figure 4, which exhibits sharp kinetic dendrites along one side of the

rectangles, while along the other side, we are still in a tip-splitting dominated

regime. Also, on experiments with a square etching with a length scale equal
to the short side of the rectangles here, one observes that, with the same value

of a and Q, the effect of the anisotropy is smaller than in the rectangular case,

presumably because of the longer length scale in the rectangular lattice.

The effect of the anisotropy on a given flow realization is given by a combination of

all these parameters. The examples on Figure 4 are for flows on the same lattice, for
a fixed gap b = 0.11 mm, and for different values of Q. We have been able to observe

similar morphologies after changing the gap. However, in order to generate the same

qualitative morphology with different gaps, very different values for the injection rate

are required. For instance, obtaining the two-way kinetic dendritic morphology in

Figure 4, with a gap b = 0.11 mm, requires Q =5.5 cm2/s, but with a gap b = 0.22

mm, it requires Q f'.J 32 cm2/s to obtain a qualitatively similar pattern. The effect of
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the anisotropy, thus, depends more dramatically on a, since small changes in a have

a strong effect on the morphology.

Sarkar and Jasnow [47] found that if the magnitude of their anisotropy parameter

(see eq. 2.2) was less that 0.07, the effect of the anisotropy started to vanish. We

are not confident on how to relate this anisotropy parameter with our experimental
control parameters, even though, as explained aboye, we cannot observe any effect of

the etching on the fingering patterns for a < 0.07.



CHAPTER 3

Introduction of a regular perturbation in the
radial cell. Quantitative analysis.

We have seen, in the previous chapter, the dramatic effect anisotropy has on the

morphology of the viscous fingering patterns. In particular, it can originate dendritic

branches, which grow with a very stable tip, unlike the tip splitting growth dynamics

typical ofisotropic Hele-shaw flow. The description ofthese effects, however, has been

mainly qualitative. A good model to quantitatively analyze this pattern formation

system was lacking. In this chapter, we explore a model that yields very consistent

results in the quantitative description of liquid dendrites.

3.1 Theoretical model

Almgren et al. [49] studied the growth of fingering patterns in the presence of

anisotropy by introducing an anisotropy term in the pressure boundary condition:

Pis rv x;(1 - € cos(mO)). (3.1)

Their work neglected kinetic effects completely. This is a simplification of the prob­
lem, but might appropriately be matched with the experiments at low driving force

(assuming kinetic effects become small and possibly negligible). Their analysis presents
asymptotic effects in the dynamics that are only possible in the presence of anisotropy.

19
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3.1.1 Asymptotic Scaling

Almgren et al. [49] predicted that, in the presence of anisotropy in the surface tension,
the distance from the tip of a growing (surface-tension) dendrite to the injection point
should scale with time as

(3.2)

with a = 3/5. If x is the coordinate along the axis of a growing dendrite, and y is

perpendicular to that axis then, using simulation, they encounter a scaling behavior

(3.3)

(3.4)

where the fact that the exponents add up to one is a result of the constraint that the

flow has constant injection rate (either areal or volumetric), so that the area of the

pattern should grow linearly with time,

xy ('.J t, (3.5)

for any point inside a growing dendrite. This would be true if the flow is equally
distributed among all dendrites (so that the individual area grows linearly with time,
and not only the total area of the multi-branched bubble). This is automatically
satisfied in the simulations but is not always satisfied experimentally. The predicted

scaling behavior is asymptotic and experiments should observe it only after transients
have relaxed. At each instant, the dendrite tip has the speed predicted by steady­
state theory [4]. Then, nondimensionalization yields the result that the steady-state
tip should have a value for p2V/do independent of time (it would be sorne function

of the anisotropy parameter), where p is the tip radius of curvature, V is the tip

velocity and do is the surface tension parameter. Considering the scaling assumption
x ('.J tO/., Y ('.J tI-O/., we have

V
dx 0/.-1=-('.Jt
dt '

and
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1
time (s)

Figure 5: Scaling in isotropic fingering (smooth plates). A perfect Xtip '" tO.s is found.

Then, if p2V is independent of time,

(3.6)

From here, a = 3/5 (= 0.6). Following the same arguments, it is easy to see that

in the isotropic case (smooth plates), the only scaling should be a = 0.5 (the same

for x and y axes) [18,50]. Moreover, one would need to obtain a finger that does

not change topology (no tip splitting) and that does not feel a strong competition
with the other fingers (its area should grow linearly with time) in order to observe

such scaling. In Figure 5 we have an example of that. A finger, growing in a smooth

Hele-Shaw cell, which seems to suffer no competition effects, and before tip-splitting,

displays a perfect Xtip = Ata scaling with a = 0.5.

3.1.2 Asymptotic Shape

Almgren et al. were also able to find the asymptotic shape to which the time­

rescaled dendrites should converge. This curve has a dependence on the symmetry
of the etching and is based on the finger being isolated (growing unperturbed by the
other fingers). The exponent a, however, will be universal: the same for all kinds

of surface-tension-anisotropy, regardless of the details of that anisotropy. Almgren
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gives the following expression for the shape of the asymptotic branch, with x being

along the symmetry axis of the dendrite and y perpendicular to x:

_ .9_ _!_ 2/5 (�)y(x, t) -

27r aA
t Ym

Ata
' (3.7)

where

_ 2/3 {1 ds
_ � _ (m _ )ym (p) - p }p s'VI _ Sm

' 'Y -

2 2
1,

with A and a obtained from the scaling behavior of the tip position (eq. 3.2). In

(3.8)

the aboye equations, the anisotropy (and, thus, the resulting patterns) has m-fold

symmetry. These expressions are derived after considering an anisotropic fiow with

constant Q and assuming the tip scaling hypothesis. Then the shape is derived

by replacing the fingers by a cross of m arms (m even) in the complex plane, and

considering the potential field around the cross to satisfy

2 (z)m/2w(z) =
m

cosh"
R (3.9)

3.1.3 Expected evolution of A

As we will see in section (3.2.4), A presents an interesting regularity in its evolution

with Q. Karma has pointed out to us that the dependence of A on Q at fixed b can

be easily understood with sorne dimensional analysis [51] as follows: The equations of

viscous fiow in a radial Hele-Shaw cell can be made dimensionless by the customary

choice of units showed in eq. 1.14. Since J.-L (viscosity) and (J (surface tension)
remain unchanged in our experiments, we just need to focus on the dependence
on Q and b. The aboye mentioned choice of units, namely, Po rv Q, Lo rv o:' and

To rv Q-3, effectively removes all dependence on Q from the equations. With this, the

dimensionless pressure (p'), time (t') and tip position (x') are expressed: x rv x' /Q,
t rv t' /Q3 arrd p rv Qp'. Then, if we assume a scaling behavior x' rv A't'a (now A'

is independent of Q, since Q is no longer present in the equations), the dimensional

variables will verify:

(3.10)
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If a = 0.6, then j3 = 3a -1 = 0.8 is expected. We can also explore what dependence
would A have on b by including b in the former analysis.

If we include b, then the characteristic units of the problem go as Po rv Qlb2,
Lo rv b2/Q and To rv b41Q3 (see eq. 1.14). Once more, assuming x' rv A't,a we will

have

(3.11)

So the expected behavior is A rv A'Q3a-1b2(1-2a). If a rv 0.6 this becomes A rv

A'QO.8b-o.4 or, in a more compact way

I ( Q )0.8ArvA -

Vb (3.12)

3.2 Experimental procedure and observations

To investigate the scaling behavior, we must obtain dendritic branches whose area

grows linearly with time, that is, dendritic pieces of a larger pattern that are fed by
a constant injection rateo Even though the analysis in [49] is restricted to surface

tension controlled dendrites, we extend the analysis to kinetic controlled dendrites as

well. We have observed power-Iaw behavior of the tip position in both regimes.

3.2.1 Experimental Procedure

As described in section 2.1, a typical flow realization consists on injection of dry

nitrogen, at a constant injection rate, into a radial Hele-Shaw cell whose gap is filled

with heavy paraffin oil, and with a bottom plate that has a rectangular lattice of

grooves etched on it. We record the growth of the fingering pattern and digitize each

frame into the computer. Our analysis proceeds as follows:

1.- For a dendrite in a given run, we examine successive frames (up to 30 frames/sec),
and for each frame we obtain its contour shape, from which we can measure

the area and the tip position. This yields a time series for the area and the tip
position.
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2.- From the time series of the tip position, we obtain the time series for the

distance from the tip to the injection point, Xtip, and try to fit to Xtip = AtO<.

Sometimes, it is required to allow a small time shift to to be fitted, due to a

small uncertainty on the starting time for the flow, possibly including a transient

time for the asymptotic flow to set up. We always require this time shift to be

small, as compared to the time it takes the pattern to evolve. Also, we usually
discard sorne of the first few frames, wherein shapes might be dominated by
the transient.

For each run, the pattern evolution of each of the dendrite branches obtained

(up to four branches for high Q) was analyzed independently. The flow was not in

general distributed uniformly among the different growing branches so the area of

each branch within the same run would grow at a different rateo For this reason, we

used the rate of growth of the area for each branch, Q, as the relevant parameter

instead of the global injection rate for the runo Doing this allowed us to obtain one

independent value for A and one for a for each of the branches, up to 4 independent
values for each flow realization. With this, we obtain a series of pairs (a, A) as a

function of our control parameters (b, Q).

3.2.2 Dependence of a on morphology

In general, there is a dispersion in the values of a, so patterns corresponding to the

same morphology generate values of a that can be quite different:

• In the surface-tension-controlled regime, the analysis of 45 branches for several

different gaps yields an average a = 0.64 with a large standard deviation (Jo< =

0.098.

• The analysis of 29 kinetic-controlled branches yields an average a = 0.66 with

a standard deviation a¿ = 0.096.

Therefore, we can see no significant difference between the values of a in both regimes.
A generalized trend is for the value of a to be larger than 0.5 (the one expected in

the absence of anisotropy) and consistent with the value of 0.6 predicted in the
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Figure 6: Digitized patterns (right) and fit of tip position to ta for the fastest growing
branch (left) corresponding to a surface tension dendrite. A value a = 0.6 is found. The

rectangle shows the orientation of the etching.

case of surface tension controlled flow. In Figure 6 a run that generates a surface­

tension dendrite is shown, and the scaling exponent has a value in agreernent with the

expected 0.6. The rectangle in the graph represents the orientation of the pattern.

Figure 7 shows a run in the kinetic controlled regirne, where dendritic branches follow

the grooves. The rectangle in the graph represents the orientation of the pattern.

The dorninant branch is analyzed, and yields a value for a larger than 0.6 (a = 0.64).

Sorne prelirninary argurnents by Alrngren [48] lead to the conclusion that a value

a = 2/3 is what should be found in the kinetic controlled regirne, regardless of the

syrnrnetry of the anisotropy.

3.2.3 Observation of the Asymptotic Shape

In Figure 6 a run that generates a surface-tension dendrite is shown. For this par­

ticular run, the rescaled shape does not conforrn with the asyrnptotic shapes found

in [49], probably because of sorne" interaction with the rest of the bubble, far behind
the tipo The fact that the scaling of the tip position is so clear, however, can be

interpreted as a sign that the selected velocity is only affected by what happens in

the neighborhood of the tip, and not on the full shape. For the run shown in Figure 7,
corresponding to kinetic controlled dendrites, using the value of Q for the whole bub-
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Figure 7: Observation of the predicted asymptotic shape for kinetic dendrites: (a)
2-fold symmetry, (b) 4-fold symmetry. The 2-fold shape adjusts better to our data. The

evolving kinetic dendrite (right) has been rescaled, using a = 0.64. The rectangle shows

the orientation of the etching.

ble, and the fitted value a = 0.64, we compare the rescaled data with the predicted
asymptotic shape in the case of2-fold (a) and 4-fold (b) symmetry (see equation 3.7).
We notice that the 2-fold shape adjusts better to our data (see Figure 7) which is

what we would expect from having rectangular symmetry in the etching. Since the

analysis that yields the theoretical expression for the asymptotic shapes relies on the

symmetry of the problem, it may be reasonable that the same expressions could be

used for surface-tension-controlled and for kinetic-controlled dendrites.

3.2.4 Regularity in A vs. Q. Confirmation of the scaling

assumption

For 4-fold symmetry (the case studied in [49]) the value of A as a function of € has

been computed analytically [52]. In our case, with 2-fold symmetry and no reliable

procedure to relate our experimental parameters with the anisotropy parameter € that

the theoretical treatment deals with, we must look for empirical regularity. Most of

the values for a we obtain are scattered around a = 0.6 (the value expected for

surface tension dendrites in [49]). Our analysis concentrates on the dendrites that

scale with a = 0.6 (within experimental uncertainty).

When we plot A vs. Q, keeping the gap b fixed we see the data align in a simple
pattern which we can roughly describe with a power law: A rv Qf3 (see Figure 8). In
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Figure 8: Anisotropic fingering. Dependence of A (solid squares) on Q for a "" 0.6 at

three different values of the gap b.
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Figure 9: Anisotropic fingering. A (solid symbols) vs tí with a ""' 0.6 (o) combining
gaps that range from b = 0.11 mm up to b = 0.37 mm. Different symbols correspond to

different gaps.

Figure 8 no distinction has been made between surface tension and kinetic dendrites,
so branches from both regimes are present on the same graph. Note a regime of Q
values where there are no data. That regime connects surface tension dendrites (low
Q) with kinetic dendrites (high Q) and there, tip-splitting dominates the dynamics.
The exponent of the power law is: top, f3 = 0.74 ± 0.01 for b = 0.11 mm; middle,

f3 = 0.70 ± 0.02 for b = 0.22 mm; bottom, f3 = 0.77 ± 0.03 for b = 0.37 mm; open

circles are the values of a for each case. The analysis presented in section (3.1.3)
predicts a value f3 = 0.8.

An even more striking result is that, if we put together in the same graph the

data obtained from different gaps, they superimpose, showing an apparent lack of

dependence on the gap, as we can see in Figure 9. The two groups of data points we

can see in that graph, with a range of injection rate in between where no dendrites are

found, correspond to surface tension dendrites (low Q) and kinetic dendrites (high
Q). Gaps range from b = 0.011 cm up to b = 0.037 cm. In the surface tension regime,
a = 0.62 ± 0.02 (24 points) and in the kinetic regime, a = 0.61 ± 0.04 (32 points).
The combined statistics are a = 0.61 ±0.03 (56 points). The fit to a power law yields
an exponent f3 = 0.71 ± 0.01.

If we use the result presented in Eq, 3.12 where b is included in the dimensional
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Figure 10: Anisotropic fingering. A vs Q/v'b for b = 0.11 mm, b = 0.22 mm and b =

0.37 mm combined.

analysis we see (Figure 10) how in the range of b we used (from 0.11 mm up to

0.37 mm) the final result is not very different from that in Figure 9, even though we

believe this last expression allows us to more confidently compare results obtained

with different cell gaps.

3.3 Summary and future work

We have performed radial viscous fingering experiments in the presence of anisotropy
introduced in the form of geometrical perturbations of the cell gap. We have observed

the different morphologies that can be obtained in the presence of anisotropy and have

se�n the basic qualitative features of these morphologies to be consistent with results

from other experiments in the literature. The main objective of our work, however,
has been to look for quantitative signatures of the effects of the anisotropy on the

fingering patterns. Our experiments exhibit an asymptotic scaling of the tip position
of a growing dendrite in viscous fingering in the presence of anisotropy, which has been

modeled in the literature [49]. We have observed this scaling in both surface-tension­

controlled and kinetic-controlled-dendrites. Our analysis has independently extracted
three parameters from our experimental data: A, the prefactor in the scaling of the

tip position; Q, the rate of growth of the area of the dendrite branch; and a, the time
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exponent of the dendrite tip growth. While the theoretical results predict a single
value of a = 0.6 for surface tension controlled dendrites, in the presence of static

anisotropy, and our individual measurements are frequently compatible with this

value, we observe significant dispersion among the exponents observed in repeated
fiow realizations, yielding an averaged value of O:' = 0.64 ± 0.09. For kinetic dendrites,
O:' = 0.66 ± 0.09. When we restrict our analysis to the fiow realizations where a =

0.6 (O:' = 0.61 ± 0.03), we experimentally recover the relationship between A and

Q that the scaling of the tip position would impose (equations 3.10, 3.11). Since A

and Q are two experimentally independent parameters, verifying those relationships

experimentally is a strong self consistency test for the tip-scaling assumptions [49].
Thus far, the relatively large dispersion of a under conditions where the pattern
was of unambiguous morphology has prevented us from meaningful comment on

the quantification of the data in the morphology transition zones. However, the

analysis described in this chapter indicates a way of analyzing quantitatively the effect

of anisotropy on viscous fingering patterns, thus extending the mostly qualitative
analysis found in the literature.

The observations made in these experiments suggest a way of studying the effect

of noise in pattern formation, from a quantitative viewpoint. Earlier attemps at

studying the effect of static multiplicative noise in viscous fingering experiments using
a radial cell [53] showed a dramatic effect of noisy perturbations on the fiow. In those

experiments, we forced the radial fiow over a lattice etched in a pseudorandom fashion.

Even with modests amounts of noise, the effects on the patterns were dramatic, and

it was not possible to find meaningful trends.

By means of the analysis we have developed here, one would like to study how

static noise destroys the effect of the regular anisotropy. Superimposing random

spatial noise at the top of a regular etched plate might present a transition from the

observations reported here (perfect anisotropic fiow) ,
when no noise is present, to

the high noise situation when viscous fingering patterns have been reported to have

DLA-like morphologies [45].

Preliminary results show that even modests amounts of noise have strong effects

on the patterns. On Figure 11 we compare two dendritic branches obtained under

the same conditions, and which have the same rate of growth, Q = 6.4 cm2/s. The

only difference is that, while the branch at the top has been generated in fiow over
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Figure 11: EfIect of static noise on the regular lattice. Top: dendrite obtained on a

noise-free lattice. Bottom: dendrite obtained on a lattice with 5% noise.

a perfectly regular rectangular lattice of grooves, the one below has been generated
in flow over a rectangular lattice whose channels have been randomly blocked on 5%

of their surface. The flow has been performed using the same experimental setup
described in the previous sections, with a cell gap of b = 0.22 mm. We can see

how this amount of noise deforms the otherwise sharp needle dendrite, favoring the

growth of sidebranches. If we try to look for the validity of the tip scaling assumption
discussed in this chapter, we see that the presence of noise gradually destroys that

scaling. It would be interesting to perform an analysis similar to the one reported
in this work, using lattices with an increasingly high amount of noise, and study the

effect this has on the dendritic morphologies.



CHAPTER 4

Fracture of Soft Condensed Matter

The use of non-Newtonian fluids in pattern formation experiments generates a broad

variety of morphologies not present in flow with Newtonian fluids. In particular, the

rheological properties of sorne materials lead to a dynamic regime where we can see

the fluid behave in a way not unlike a brittle solido We have studied the behavior

of these fluids by performing viscous fingering experiments in a Hele-Shaw channel

where the typical time scales (of the order of a few tenths of a second) present simpler
experimental conditions that in the study of solid fracture.

In a previous study of radial viscous fingering patterns in Hele-Shaw cells filled

with viscoelastic aqueous solutions of end-capped associative polymer, we observed

a transition from viscous fingering to fracturelike behavior [38] (see Figure 12, where

Figure 12.A corresponds to a run with linear end-capped associative polymers with

Mw = 50700, e = 2.5%, b = 0.4 mm, Q = 5.0 ml/min; and Figure 12.B corresponds
to a run with the same polymer solution, b = 0.4 mm, Q = 1.0 ml/rnin. See below for

more details on these polymers). The fracturelike behavior was easy to distinguish
from viscous fingering when the full time series of patterns was observed because

the large angle branches, which were obvious in any one stage of development of
the pattern, could be observed to grow from a main branch at very large distances

behind the propagating crack tip, a clear departure from viscous fingering where

the side-branches, which have generally much smaller angles, always result from tip­

splitting. Similar results are observed in experiments of flow in clay suspensions

[31-33,37]. Radial flow in Newtonian fluids is characterized by asymptotic behavior

with continuous tip-splitting with a decreasing tip velocity. We come back to the

channel geometry to study viscoelastic materials because, in this system, the basic

flow (Newtonian fluids) has a steady state characterized by a constant tip velocity.
Departures from this simple behavior will be the signature of the effect of the non-

33
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Figure 12: Examples of fracturelike patterns in radial viscous fingering.

Newtonian fluid.

In analogy to the measurements of Fineberg et al. for fracture in brittle solids

[54,55], the study of the tip velocity evolution and, particularly, its departure from

the constant velocity in the fingering regime should give us sorne insight into the

dynamics of this transition into fracturelike behavior.

In the remainder of this chapter, we give a brief description of the experimental

apparatus and present the relevant rheological properties of the associative polymers
we have used in the current work. The different morphologies and dynamical regimes
we have been able to observe are presented, from a qualitative point of view. In

chapter 5, we present the results of our attempts at rescaling the onset of the frac­

turelike instability in the viscoelastic flow. In chapter 6, we describe our analysis of

the dynamics after the fracturelike instability, and present a very interesting oscillat­

ing regime with a frequency that changes very consistently with the different control

parameters. We also discuss the resemblance of sorne flow realizations to fracture in

brittle materials and compare the dynamics in the oscillating regime with systems

governed by stick-slip dynamics. Finally, chapter 7 addresses sorne unresolved issues

from the previous chapters by analyzing the stress in the viscoelastic flow. We show

how, despite not being able to directly monitor that stress, we obtain very consistent

results that may lead to a better understanding of these phenomena.
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4.1 Associative Polymer Networks.

The model associative polymers we use in this work (see Figure 13) are amphiphilic
molecules consisting of a linear hydrophilic backbone (based on Poly Ethylene Gly­
col (PEG) with DI being isophorone diisocyanate) with hydrophobic groups placed
at different locations in the molecule [56,57]. We have used two basic architectures

(see Figure 13): linear end-capped associative polymers, where the linear backbone is

terminated at both ends by hydrophobic end groups (R); and comb associative poly­
mers, where hydrophobic groups (R) stick out from the backbone at regular intervals,
forming a comb-shaped molecule. Once in aqueous solution, the hydrophobic groups

will try to minimize contact with the solvent by forming associative nodes with hy­

drophobic groups from different polymer strands, with multiple possible associations

(see Figure 14), forming a so-called associative network.

The polymer solution is a non-Newtonian fluid, thus normal stress differences,

yield stress, shear thinning, stress relaxation, etc., need to be taken into account in

any description of the dynamics.

It turns out that no yield stress is measured for these fluids. This suggests that the

network bonds are not rigid but, in fact, recombining dynamically. The associative

network gives most interesting rheological properties to these materials [56] (sorne
of these properties are absent in PEG homopolymers of similar molecular weight,
which generate very different results under similar experimental conditions [38]). For

instance, the zero shear viscosity of a given concentration of these polymers in water

can be orders of magnitude larger than that of the corresponding hydrophilic ho­

mopolymers, where chain entanglement is the main mechanism responsible for the

viscoelasticity. Measurements of the viscosity as it changes with shear rate show

that these associative polymer solutions are shear-thinning beyond a characteristic

shear-thinning shear-rate, 'Yo, which depends on polymer architecture and on con­

centration of the solution. Sometimes, the shear-thinning regime is preceded by a

shear thickening regime (see Figure 15 for the shear viscosity measurements on the

high molecular weight linear end-capped associative polymer, as reported in [56]).
From the available rheology data, we can extract the zero-shear viscosity, J..Lo, the

shear-thinning shear-rate, 'Yo, and, from the oscillatory stress measurements on the

solutions, the frequency at which the storage modulus and the loss modulus take

on the same value, wo. The latter rheological parameter has a more clear definition
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Figure 13: Structure oí the model associative polymers. R are hydrophobic groups.
DI-PEG form the hydrophilic backbone.

Figure 14: Formation oí the Associative Network oí polymers in the linear endcapped
case. Hydrophobic groups try to minimize the contact with water.
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Figure 15: Shear viscosity vs. shear rate for the 100400 molecular weight linear
endcapped associative polymer at different concentrations in water as measured by R. D.

Jenkins [53].

than the former. 1'0 is somewhat arbitrarily chosen from the measured shear-rate

dependence of the solution viscosities. The criterion we used was assigning 1'0 to the

shear rate where the shear viscosity goes below the zero shear value.

Since, when available, the rheological data are limited to a small number of con­

centrations, we have used extrapolation of the different parameters mentioned aboye

assuming a power law dependence with concentration of the polymer in solution,
which is a commonly found behavior in these materials. In Figure 16 we can see

an illustration of this dependence. The points are the data, and the line is a power

law fit to that data, that we have used to extrapolate the rheology parameters to

other concentrations. The top of that figure corresponds to rheology data for the

100400 molecular weight linear end-capped associative polymer, for which we find

the empirical relations 1'0 rv e-l.7, 110 rv C4.3, and the bottom of the figure corresponds
to the 53300 molecular weight comb associative polymer, for which we find 1'0 rv «",
110 rv e6.2• The square symbols correspond to the shear thinning shear rate, and the

circular symbols correspond to the zero-shear viscosity. The extrapolation certainly
introduces extra uncertainty in the shear-thinning shear rates, but it is probably a

good estimate of this rheological property, for a narrow range of concentrations.
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Figure 16: Shear thinning shear-rate (D) and zero-shear viscosity (O) for linear end­
capped (top) and for comb (bottom) associative polymers. The symbols are the measured

data [53, 58] and the solid lines are power law fits, that we use for the extrapolation at

different concentrations.
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4.2 Experimental procedure

We used a Hele-Shaw cell with a channel of length 22 cm with Teflon spacers which

both set the side wall spacing at values between 1.0 and 2.0 cm and determined the

gap between the cell plates (see Figure 1). Gaps were studied in the range 0.05 cm

to 0.16 cm. The glass plates ofthe cell were 1/4 inch thick, and calculated maximum

flexion [18] was in no case greater than 0.5% of the gap. We ran the flows at constant

and controlled volumetric injection rate, Q, by injecting dyed water with a syringe

pump [58] over a range from 0.5 ml/min to about 10 ml/rnin (±10%). Resulting

patterns were observed with a CCD video camera [59] and recorded on an enhanced

S-VHS video cassette recorder [42]. Subsequent digital analysis was performed with

the assistance of image-processing software [43]. In addition to analyzing the shapes
of patterns, the recorded time series could be digitized to give tip positions at 1/30
s intervals, as the tip of the pattern progressed through the cell. From the time

series, velocities averaged over 1/30 s intervals could be constructed (electronic shut­

ter speeds of 1/2000 s were used to sharpen images and define temporal averaging

intervals) .

We also used a modified apparatus where we monitored the pressure of the in­

vading fluid (water) at the injection point, with the help of solid state pressure

transducers [60] which convert pressure to a measurable voltage. We had three dif­

ferent transducers, with different full scale pressure: 1 Psi, 5 Psi and 15 Psi (1 Psi

= 7.09 104 dyn cm-2). Depending on the pressure range that we expected to reach

in a given flow realization we used the transducer that optimized the reading. We

were able to monitor this pressure at arate of 15 readings per second (limited by
the speed of the voltage meter). It was important that we synchronized the pressure

readings with the video frames in the VCR. This way we could obtain a time series

of the tip velocity, the area of the growing pattern and the injection pressure. Only
with the measurements of comb associative polymers did we monitor the pressure.

As noted aboye, we have used aqueous solutions of two different architectures of

model associative polymers: linear associative polymers and comb associative poly­
mers. We used linear associative polymers with molecular weights 17400, 50700 and

100400 (as calculated from reaction stoichiometry [56]). Different molecular weights
differ only in the size of the backbone (index Y in Figure 13). The comb associative

polymers had a number averaged molecular weight (also calculated from reaction
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stoichiometry [61]) of 53300, 106800 and 160300. Different molecular weights dif­

fer only in the index Z in Figure 13. We prepared solutions with concentrations in

the range 0.1% up to 8.0% in weight. We had observed earlier that the associative

process starts taking place at very low concentrations. In preparing the solutions,
we were careful not to disturb the forming network. The dissolving polymer was not

stirred, and it was stored at cold temperatures (I"V 4°C) to prevent degradation of the

backbones. AIso, we added a small amount (a few parts per million) of hydroquinone,
which is an inhibitor of the chemical degradation of the PEG backbones. As a test, we

monitored the shear viscosity of the solutions over the period of measurements. We

discarded data when the shear viscosity had dropped noticeably. It is a generalized
trend for these solutions to degrade over time. But keeping them at low temperatures
and using the chemical inhibitor preserves them long enough (several days, or even

weeks) without much degradation to allow the experiment to be performed.

4.3 Qualitative results. Different patterns and

transitions

When we injected the dyed water at a low enough injection rate into any of our

polymer solutions, we were able to obtain a steady-state Saffman-Taylor finger. This
was true for all the linear end-capped polymers, but it was not true for the two larger
molecular weights of the comb polymers. Even at the lowest possible concentrations,
we were not able to observe viscous flow with those polymers (the water being injected
was not able to penetrate the solution and was forming a very disordered pattern in

the region adjacent to one of the glass plates).

As the injection rate increased, the viscous fingers became unstable, and regimes
with different morphologies and different dynamical features were found. At early

times, a viscous finger grew. The width and the tip curvature of this pattern always
conformed to the relation expected for a Saffman-Taylor finger in the absence of

surface tension (see eq. 1.21) even though there is no reason to believe that this

solution (or the solution that includes surface tension effects) must survive the use of

a viscoelastic material. In Figure 17, the solid lines are a fit to the parabolic shape of
a Saffman-Taylor finger, and the circles are the digitized contour of a growing finger.
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Figure 17: The shape of two viscous fingers obtained with flow in associative polymer
solutions. Left: A = 0.54. Right: A = 0.50. The data (O) are compared with the theoretical

expectation (solid curves).

If we consider the shape of a finger, whose tip is at (0,0), to be

1
x = _y2

a
(4.1)

then, from eq. (1.21) we get, by approximating the exact tip-shape to a parabola,

2 7rW(l- A)
a (AW)2 (4.2)

From the fit of the tip shape to a parabola, we extracted a value for A which matched

the width of the finger, experimentally measured.

Even though the fluids are miscible, such systems are known to have an effective

surface tension and, if this is large enough, it might be expected to make the finger
width follow the Saffman-Taylor width as a function of the inverse capillary number

[62]. However, our fingers always had a width very close to half the channel, suggest­
ing a sufficiently small dynamic surface tension that our effective inverse capillary
number was always large enough to give this width. We would need extremely low

velocities to be able to see much wider fingers (i.e., to make 1/B small enough since,
from eq. 1.23, 1/B increases with V and the measured relation between A and 1/B

[17] shows that A decreases towards a plateau value when 1/B increases).

In Figure 18 we can see the three possible flow realizations we found in the ex­

periments: The top series (labeled al, a2) corresponds to a typical flow with the

two lower molecular weights of the linear end-capped associative polymer, with Q
aboye a threshold, Qth. The flow starts with a viscous finger whose shape is that
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Figure 18: Different morphologies in the flow in associative polymer solutions. Top
series: flow in lower Mw linear endcapped; middle series: flow in highest Mw linear end­

capped; bottom series: flow in lowest Mw comb associative polymer solutions.
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of a Saffman-Taylor finger (al). This regime, however, becomes unstable, and the

morphology and the dynamics of the growth change abruptly (a2), with a narrow,

fracturelike pattern that grows along the center of the channel, near the center of the

gap space and much thinner across the cell gap than the parent finger, which we can

note because of the lighter color of the fracture. We have measured it (comparing the
rate of growth of the area with the known volumetric injection rate, see section 6.1)
to fill about one-sixth of the gap thickness occupied by the previous viscous finger.
We can observe the evolution of the tip velocity in the graph below the pictures.
We see how, in the fingering regime, the velocity fluctuates about a constant, small

rms value. However, when the transition occurs, a sudden jump (faster than 1/30 s)
occurs, and the velocity has a gentler, almost linear increase in its rms value during
the subsequent regime, which resembles the dynamics of fracture in brittle materials

[54, 55]. This fracturelike pattern typically progresses at sufficiently high speeds that

not many independent measurements of velocity are possible before the tip reaches

the end of the cell.

The middle series (labeled b1, b2, b3) corresponds to a typical flow with the

highest molecular weight ofthe linear end-capped associative polymer, with Q > Qth.

Again, the flow starts with a viscous finger (b1) where the tip velocity oscillates

around a small value, and its shape conforms with that of a Saffman-Taylor finger.
This regime becomes unstable, and the pattern that emerges (b2) is characterized

by its meandering along the channel, with an unsteady tip velocity (large amplitude

oscillations). This regime becomes eventually unstable, and a third regime sets in

(b3) characterized by a fast increase of the tip velocity, straight along the channel.

Notice that all the interesting dynamics takes place in a small region around the

tip of the growing patterns, as the pattern that is left behind shows no evolution

with time (compare b2 with the later pattern b3). In fact, even though we talk

about a fracturelike transition when we refer to the third regime (b3), its morphology
is different from the observations in radial geometry, in that we do not see any

sidebranching, but that is possibly an effect of the sidewalls in the channel.

Finally, the last series in that figure (el, c2) corresponds to a flow using the low

molecular weight comb associative polymer. The flow starts with a fingering regime
(cl ) which becomes unstable; a regime similar to the meandering regime described

aboye follows (c2), displaying large oscillations in the tip velocity; and, finally, a

regime similar to (a2) may develop as the oscillating regime becomes unstable at
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later times. The velocity profile (not shown in the figure) exhibits a behavior similar

to the middle series, except for the final fast fracture regime, where a straight branch

appears, acompained by a sudden increase in the tip velocity, in much the same way

as was observed in (a2).
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Fracturelike Instability of the Fingering Regime

As we saw in the previous chapter, different morphologies are observed when we

perform viscous fingering using associative polymer solutions. In particular, (see
Figure 18) a fingering regime can be made unstable by injecting water beyond a

certain driving force, and a pattern that resembles the fracture of brittle materials

develops. There is a transition, from the polymer solution flowing like a viscous

fluid into a solid-like behavior. One might try to explain this as follows: for small

injection rates, the energy introduced externally, at a slow rate, can be efficiently
dissipated by the viscous flow. However, at high imposed flow rates, the polymeric
liquid cannot dissipate energy at the required rate, and another, presumably more

efficient, mechanism is chosen: fracture of the medium. Using these observations, in
a previous experiment with associative polymers in radial Hele-Shaw flow [38], the
transition from Viscous Fingering to fracturelike behavior was rescaled by a suitable

definition of a Deborah number [63]. The Deborah number is defined as the ratio

between a time of relaxation and an inverse applied shear. The time of relaxation is a

characteristic time of the medium under study. The general idea behind the Deborah

number in rheology is that its magnitude informs of how much will a medium behave

as a solid or as a fluid. Large values of De correspond to the medium behaving in a

solidlike fashion. Small values of De suggest a fluidlike behavior of the medium.

In the previous study of radial viscous fingering [38], a Deborah number was

defined as the ratio of the polymer network relaxation time (taken to be the inverse

shear- thinning shear rate) to the inverse external shear rate (or characteristic time

related to the viscous flow), that is,

De = Tr,
TI

1
Tr = -:-,

"Yo
(5.1)

45
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where TI would also contain a characteristic length of the radial cell, which is irrele­

vant if the same cell is used in all the experiments. It was observed that the transition

to fracturelike behavior appeared at roughly the same Deborah number under vari­

ations in the rheological properties (polymer molecular weight or concentration in

solution) or changes in the cell geometry (variations in the cell gap).

5.1 Scaling of the instability

From the Hele-Shaw channel experiments, we can extract, as a characteristic time

for the externally imposed flow

(5.2)

which is the inverse of the characteristic shear rate due to that flow. (If the charac­

teristic velocity is U = Qj(bW), then the shear rate is 'Y = (dU)j(dz) rv U[b, since
the velocity has a change of order U over a length of order b). Using

1
Tr rv -:-,

'Yo
(5.3)

we obtain a Deborah number
Q

De =
'YoWb2 (5.4)

Here, W should be the width of the Hele-Shaw channel, from the definition of TI.

However, in the experimental computation of De presented below, we have found a

better result if we use the actual width of the finger, w, rather than the full channel

width. Even though A rv 0.5 in most flow realizations (see section 4.3), using w gives
a better scale for TI and for De.

When we used the same polymers that were studied in the radial geometry (lin­
ear endcapped with molecular weights 17400 and 50700), the transition from viscous

fingering to a propagating crack tip was successfully rescaled with the aboye defined

Deborah number. That is, transitions occurred at roughly the same Deborah number

for different rheological properties of the material and for changes in the cell dimen­

sions. As we saw in section 4.3, the transition from viscous fingering into fracturelike

behavior was very sharp in these two cases. We wanted to compare the results ob­

tained in the current experiments with what was observed in the radial case. We
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found that the transition Deborah numbers for each geometry could be brought into

agreement by an arbitrary factor of 4.0, which is justifiable since different scale factors

are omitted in the definitions of TI for each geometry.

Figure 19 presents the range of Deborah number within which the fracturelike

instability appears for different combinations of polymer molecular weight, polymer

concentration, cell-gap, and channel width. For a given cell geometry and using a

given polymer solution, we perform a series of experiments, spanning the injection
rate over a range that includes the transition point. We have observed that this

transition point does not correspond to a very sharply defined injection rate (Qth)
but rather, all we can do is give an upper and lower bound to the region where we

observe the transition to occur (the error bars in Figure 19 are, then, the meaningful
information since they inform of the range where the transition occurs during many

flow realizations).

The fact that this transition has a wide range of onset points may suggest it is

related to a supercritical bifurcation that the system is undergoing, so that the flow

may enter a regime where it is unstable to finite size perturbations. In a supercritical

bifurcation, a critical value for the control parameter is reached where a previously
stable dynamical regime becomes unstable, and new stable solutions exist when the

control parameter is aboye that threshold. Even though the previously stable solution

is now unstable, the old dynamical regime may still be dominating the system in a

metastable fashion, maybe requiring a finite size perturbation to enter one of the new

stable dynamical regimes.

Figure 19.a corresponds to experiments using the two lower molecular weight

endcapped associative polymers. The triangles correspond to experiments in the

channel geometry and the circles correspond to experiments in the radial geometry.

As explained above , the error bars exhibit the range in which the transition appears

after many flow realizations. The two sets of data have been brought into agreement

by an arbitrary factor of 4.0, as explained aboye. We can see how all the transitions

occur in overlapping ranges of De.

Figure 19.b corresponds to experiments using the 100400 molecular weight end­

capped associative polymer. Here the transition happens much earlier (at much lower

De) than in the other case. We observe in our experiments (see Figure 18) that the
instability of the fingering regime takes place in a different way for this molecular
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Figure 19: Range of Deborah number at which transitions are observed to occur for

experiments with the lower (left) and the highest (right) molecular weights linear endcapped
associative polymers. On the left, t::,. corresponds to channel experiments and O to radial

experiments.

weight. There is a meandering regime that is not present in the two lower molecular

weights. However, at high injection rates and at later times, this meandering phase
can turn into a fracture pattern as defined for the two lower molecular weights. It is

difficult to define the exact point of onset of the fracturelike behavior in the presence

of this meandering phase, but it is always possible to find a point in the evolution

within the meandering regime where the tip velocity has reached a value which gives
a Deborah number in agreement with the one expected for the fracture transition

from the lower molecular weights. Even though the transition between the meander­

ing regime and the fast fracture regime is not clear at all, it is never far from this

point at which the Deborah number expected from the low molecular weight results

is reached.

We also explored the use of an alternative characteristic time scale for the polymer

network, namely, the inverse of the excitation frequency at which the elastic moduli

of the material (the Storage modulus and the Loss modulus) take on the same value,
WT. This seemed a better approach given the nature of the dynamics we observed but,
as it happened in earlier experiments [38], using 'Yo gave consistently better results.

We can also observe a clear threshold injection rate, Qth, for experiments using the

lowest molecular weight comb associative polymers. We can see, in Figure 20, that

the dependence of Qth vs. concentration closely follows a power law. This a typical
behavior for rheological properties of these materials. The solid Iine is a power law

fit, giving Qth rv c-2.9. The available rheological data for these polymer solutions
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Figure 20: Threshold injection rate for comb associative polymer solutions. The

threshold ranges seem to follow a power law dependence on concentration

(see Figure 16) show a shear thinning shear rate that can be reasonably described

with a power law "Yo f'.J «". Earlier attempts with the comb associative polymers in

the radial geometry [38] obtained values for the Deborah number at the transition

that were more than one order of magnitude off what the other experiments (with
linear endcapped associative polymers) were giving. In the current experiments,

using the definition of De (eq. 5.1) would yield De f'.J e-4.1, which changes with the

concentration and, thus, fails to rescale the onset of the instability (Qth). The fact

that Qth f'.J e-2.9 suggests that there may well be a rheological parameter (perhaps
related to "Yo) that would allow us to rescale these threshold values, just as we did

for the linear endcapped. However, given our current rheology data, "Yo is not a good
choice, since the power law dependences of Qth and "Yo on e have different exponents.

We have seen how analyzing the onset of the instability that leads to the fracture­

like regime with the help of a single characteristic parameter of the fluid material,
namely a characteristic time scale given by the shear thinning shear rate, is able

to rescale the onset of that instability across changes in polymer concentration and

across changes in polymer molecular weight, when we work with the linear endcapped
associative polymers. This simple analysis, based on the definition of a Deborah num­
ber (5.1), fails to work when we change the polymer architecture. Our experiments
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with comb associative polymers, however, show that there may well be a rheological

property of the materials that could rescale the onset of these instabilities also in this

second architecture (see Figure 20).



CHAPTER 6

Dynamics after the instability of the Viscous

Fingering regime

In the previous two chapters we have described the interesting patterns that grow

when Saffman-Taylor fingers, obtained with fiow in associative polymer solutions, be­

come unstable. Both the morphologies that result, very different from those obtained

in viscous fiow of Newtonian fiuids, and the dynamics, where the tip velocity exhibits

a clear acceleration and, in sorne cases, a clear unsteady evolution, suggested to us a

comparison with fracture in brittle materials [54, 55] and with experiments of peeling
of adhesive tapes [64], where stick-slip dynamics plays a major role. In analogy with

what was done in those experiments, we measured the evolution of the tip velocity,
and we tried to analyze there the signatures of the dynamics.

6.1 Acquisition of the Experimental Data

In a typical experiment, we observed with a CCD camera [59] the top view of the

Hele-Shaw channel where the fiow took place and taped it on an Enhanced S-VHS

recorder [42]. The videotape recorded this way was analyzed with the help of image

processing software [43]. We extracted, from each video frame, the position of the

tip and the area of the growing pattern. A Video Controller [65] was used as an

interface to both keep the time reference of the images and to remotely control the

position of the tape in the VCR from the computer. Since the polymer solution was

almost transparent, there was a very high contrast with the dark color of the injected
dyed water (see Figure 18). We were able to automate the data acquisition process

by digitally subtracting a background image from each frame, thus enhancing the

contrasto This way, having previously selected a suitable luminance threshold, the

51
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software was able to efficiently trace the contour of the pattern. From the digitized
contour points, it was straightforward to find the tip position and the area of the

pattern.

In the experiments with the comb associative polymers, we were able to monitor

the pressure at the injection point as well. We used pressure transducers [60] which

generated an output voltage that changed linearly with pressure. We calibrated

these sensors by measuring with them the pressure under a column of water and we

found that their accuracy was better that 10%. The output of the transducer was

monitored by a computer at arate of 15 readings per second. We synchronized the

pressure readings with the video images simply by recording the image of a light

being switched on and, simultaneously, registering the event on the computer that

was monitoring the pressure.

We can see on Figure 21 an example of the information extracted from a run

using the low molecular weight comb associative polymer (a similar set of data was

extracted for the linear endcapped experiments, except from the pressure, which was

not monitored in those cases). For this fiow realization, the injection rate was Q = 2.5

ml/min, and the concentration e = 2.52%. The channel was W = 1.0 cm wide and

the gap was b = 0.16 cm. We recorded the time evolution for the X position (graph
a), and for the Y position (graph b) of the tip of the growing pattern. From the time

evolution of the tip position, we evaluate the time series for the evolution of the tip

velocity, or rather, the tip speed

(6.1)

We also recorded the evolution ofthe area ofthe pattern (graph c) and the evolution of
the pressure at the injection point (graph d). We can see the onset of the meandering

regime in the large oscillations of the Y position at later times. In Figure 21, we

have marked the onset of the meandering regime (instability of the viscous fingering

regime), which takes place at about t = 31 s. Before that, the Saffman-Taylor finger
had a tip centered along the channel (the channel width is W = 1 cm) and there are

only fiuctuations about that position. When the transition occurs, the tip starts to

meander along the channel (we see large fiuctuations of the Y component of the tip

position). At about t = 37.5 s, the meandering regime becomes unstable, and we

observe another jump in the tip velocity, with its position centered in the channel.
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Figure 21: Data obtained from a channel flow realization with comb associative polymer
solutions. The onset of the meandering regime (t ,...., 31 s) and the onset of the fast fracture

regime (t,...., 37.5 s) are marked.
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We also see that the area of the growing pattern (graph c) does not grow linearly
with time throughout the run, which would be the case if both the constraint Q =

constant held and the thickness of the pattern across the gap was constant. Since

we are confident on both the constancy of the injection rate (given by the syringe

pump) and on the accuracy of the measurement of the area of the pattern, the only
conclusion is that the thickness of the pattern across the gap is, in fact, decreasing
as the speed of the fracture tip increases. Thus, from these measurements, we can

monitor the fraction of the gap space that is actually filled by the invading fluid,

beff. Since the growth of the pattern is concentrated in the tip region, it is a good

approximation assuming (see appendix C)

(6.2)

from where
Q

beff = dA/d{ (6.3)

The evolution of the pressure of the invading fluid at the injection point shows an

initial increase, possibly showing stress building up in the associative polymer net­

work, up to a maximum value. In this example, we can see that this maximum is

reached at about the same time the fingering regime is about to fracture. We looked

for correlations of these two events in the different flow realizations, but we have not

obtained any conclusive results.

From the evolution of the tip position, we extracted the evolution of the tip

velocity, averaged over the 1/30 s interval between frames. Using a fast electronic

shutter we were able to obtain very sharp images, with very good spatial resolution.

Since, in sorne flow realizations, we observed interesting unsteady evolution of the

tip velocity, we tried to detect characteristic oscillation frequencies in sorne dynamic

regime. For this purpose, we performed Fourier Transforms of the time evolution

of the tip velocity. It is usually the case, however, that there is a net acceleration

to which an oscillating velocity is superimposed. This causes a jump discontinuity
between the velocity in the first time value and the velocity at the last time value of

a given time range. This will cause a spreading of the peaks in the power spectrum

and will difficult the observation of characteristic frequencies. For this reason, we

applied a numerical window to our data. In particular we chose the Hanning window
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[66], which optimized the results. Given the time series of a measured quantity, Vi,
we apply the numerical window H; to obtain the filtered time series

(6.4)

for i = 1···N sampling intervals. In particular the Hanning window has the expression
J I

1

[ (27ri)]H, = 2"
1 - cos

N
. (6.5)

This procedure turns the original time series into another one where the jump discon­

tinuity has been removed. It preserves the other interesting features of the original
power spectrum, reducing the power spreading due to that jump discontinuity. This

way, it sharpens the interesting frequencies in the original evolution. The only side

effect is generating a broad peak that fills the first few channels of the power spec­

trum. Thus, we need a run that lasts long enough to give a power spectrum with

a fine frequency resolution so that the artificial peak will not hide interesting low

frequency features.

6.2 Analysis of the Experimental Data

We presented in chapter 4 the different morphologies we can observe in our experi­

ments, together with the measured evolution of the tip velocity. Now, we willlook

at the results of the analysis of these time series.

Figure 22 is a typical example of what we can observe in the evolution of the tip
velocity for runs using the lower molecular weight linear end-capped associative poly­
mers (it corresponds to the same run shown on Figure 18.a). This case corresponds to

the injection of water at arate of Q = 1.2 ml/rnin into a e = 2.6 % solution of 17400

molecular weight linear endcapped associative polymer, in a Hele-Shaw channel of

gap b = 0.12 cm and width W = 1.0 cm. We see at the top in Figure 22 the time

evolution of the tip velocity. In the fingering regime ( O s < t < 4 s), the velocity fluc­
tuates about a constant, steady state value. We can see that these fluctuations are

mostly high frequency noise. The inset in that figure corresponds to the same veloc­

ity evolution after a low-pass filter is applied. This filter removes the high frequency
fluctuations and we have generated it by replacing each data point with the average
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Figure 22: Time evolution and frequency spectrum of the velocity profile in a low

molecular weight linear endcapped associative polymer fracture.

of its neighbors. Note the sharp transition in tip velocity from the viscous fingering

regime into the fracturelike regime. This increase takes less that 1/30-s of duration

(our time resolution). After the transition, there are small fluctuations superimposed
on a dominant acceleration of the tipo At the bottom of that graph we have the

frequency spectrum for the same velocity distribution. This Fourier spectrum shows

no trend that is reproducible (not surprising considering the severe limitations in the
. finite range of data).

The behavior of these lower molecular weight associative polymer solutions is very
reminiscent of the brittle-solid fracture results of Fineberg et al. [54, 55]. As in that

work, we observe a sudden increase in velocity at the onset of fracture-like behavior,
followed by small fluctuations superimposed on a rather constant value of .6..V/ .6..x
at later stages of the crack propagation. Fineberg et al. have measured the jump of

velocity at onset to be continuous in .6..x, with a mean value of .6..V/ .6..x that we have

determined (from their published data) to be about 30 times higher than .6..V/.6..x in
the subsequent regime. The jump we observe occurs in one time step. If we assume

our observed jumps to occur linearly throughout the one averaging interval, .6..x , we

estimate, for the example shown in Figure 18.a, that .6..V/.6..x at the onset of fracture

is of the order of 30 times that of .6..V/.6..x in the subsequent regime. This is very
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consistent with the results of Fineberg et al., but we cannot compare time scales

directly since we cannot confidently define a dimensionless time. However, Fineberg
et al. report a third crack propagation stage characterized by a stilllower value of

t:�..vj !:::..x, and this, we have not observed.

Figure 23 presents the tip speed as a function of time and its Fourier transform

for the same experiment shown in Figure 18.b. It has been generated by the injection
of water at arate of Q = 2.9 mljmin into a e = 8.0% solution of 100400 molecular

weight linear endcapped associative polymer, in a Hele-Shaw channel of gap b = 0.16

cm and width W = 1.0 cm. This is typical of runs with Q > Qth using the 100400

molecular weight linear endcapped associative polymer and is similar to a run with

the lower molecular weight comb associative polymer (Figure 18.c).
In Figure 23.a we have marked the boundaries between the viscous finger regime

(it becomes unstable at t rv 4.8 s), the meandering regime (it becomes unstable at

t rv 8.3 s), and the fast fracture regime. The inset in that figure shows the same

velocity evolution after a low-pass filter is applied (it is a simple averaging filter)
where we can see the main velocity oscillations more easily.

Figure 23.b shows the frequency spectrum of the last 4 s of the velocity evolution.

This spectrum has been computed by taking the FFT of the original data (Figure
23.a) after a Hanning window has been applied to it, in order to reduce the power

leaking due to the jump discontinuity in the time series (see section 6.1). As we

explained above , the numerical window generates a peak, which is an uninteresting

artifact, spanning the first three frequency channels. Beyond the third channel, we

can see a smaller peak PI at frequency f¡ and then a succession of still smaller peaks
at higher frequencies. Of all the meaningful peaks in the Fourier spectrum from a

given fiow realization, PI is the largest and it is the only reproducible peak. All these

properties are true whether we Fourier analyze the tip speed or the component of the

tip velocity in the channel direction. In fact, we looked for characteristic frequencies
in all the measured parameters, and we found that in the tip speed is where we could

see the most consistent results.

Figure 23.c is the FFT of the time series in Figure 23.a, but without any numerical

windowing. We can see how the jump discontinuity in the original data has coarsened

the power spectrum to the level of hiding the relevant information that we can extract

if we apply the windowing. The characteristic frequency f¡ can be detected in the

time series of the meandering regime alone or in the combination of the meandering
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Figure 23: Time evolutíon and frequency spectrum of the velocity profile in a high
molecular weight linear endcapped associative polymer fracture: (a) Evolution of the tip
velocity, with the onset of the meandering regimc, and the fast fracture regime marked.

(b) Power spectrum of the meandering regime, obtainod with a Hanning window. The

high peak in the first three frequency channels is a numorical artifact. (c) The lnterestíng
foatures of the power spoctrum are not visible without the Hanning window.
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Figure 24: Dependency of characteristíc meandering frequency on Doborah number,
showing an approximately linear íncrease of h with driving force. An altérnate Deborah

number is considered in (B), as díscussed in the texto

and the fast-fracturing regime. Howevcr, it cannot be distinguishod in the faat­

fracturing rcgime alone, possibly bocause of a lack of experimental resolution, We

have scon the frcquoucy ft to dopnnd on the rheological propertíos of the material, on

the goomotry of the channol and 011 tho injcction rate. It íncrcascs roughly lincarly
with injcction rate (in the rango of injection rates experimcntally acccssíble). The

8101>e of this increase doponds on tho gcornctry of the channel and on the rheology of

the polymer solution.

Figure 24, loft, ShOW8 11 as a function of Doborah numbor for flOW8 at sovoral

diílorcnt concentrations of tho high molecular woight polymcr and at dífloront Hclo­

Shaw cha111101 dhnensíons. The figure shows that, in tho range of Doborah numbors

attaíncd, oach polyrnor solution shows a linear dopcndence of the characteristic fre­

quoncy on the Dcborah numbor [01' on the injoction rate, since the Doborah numbcr

has been constructed as De = Q/(Wb2-yo)]. We can also see that the geomctric
dofínition of the Dcborah numbor successfully scales two experiments with the same

polymer concentration (5.0%), but diffcrent channel dimensions. Similarly, data mea­

sured at conccntrations of 5.0% and 6.4% are collapsed by the Deborah number scal­

ing, even though their characteristíc relaxation times [56] differ by a factor of 1.4.

This collapse ís not extended to the data for the 8.0% polymcr concentration whoso

estimatod rclaxution time [G6] is roughly twice the oue for the 5.0% solution,
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Just as we did when we studied the threshold for the instability of the viscous

fingering regime, and defined a Deborah number to rescale the onset of this instability,
it is of interest here to consider an alternate rheological time for the polymeric fluids,

. namely, the inverse of WT, the frequency at which the storage and loss moduli of

the polymer solution take on the same value. As we explained above , the Deborah

number obtained with this time, De' = Q/ (Wb2wT), is a less reliable prediction of the

fracture onset. In Figure 24, right, we have rescaled the X axis using this alternate

Deborah number. While the attempt to scale the data with this alternate Deborah

number is not a total failure, it collapses the date less effectively that the analysis
using De.

It would be interesting to learn whether the characteristic frequency we have

detected mixed with noise in the meandering regime has an analog in the fracture

regime. However, the spectra in the fracturelike regime are limited by our 1/30-
s frame-to-frame time interval in the small number of observing frames measured

during the rather short time for propagation of the crack tip through the cell. If we

were able to measure for a longer time (longer cells) we would improve our frequency

resolution, and we would be more sensitive in the low frequency region. If we were

able to monitor the evolution at a faster frame rate, we would be more sensitive in the

high frequency region. Unfortunately, we are also limited by the spatial resolution of

the CCD device: using a longer cell (longer flow times) reduces the spatial resolution

which increases the amount of experimental noise in the velocity measurements. We

would need to obtain the images at a faster frame rate, and with a better spatial
resolution to try to improve the sensitivity of our current measurements.

6.3 Summary and Unresolved Issues

We have described experiments where we measure crack-tip velocities for the injec­
tion of water into associative polymer solutions in rectangular Hele-Shaw cells. We

were able to characterize the onset of fracturelike behavior and define a Deborah

number which uses the shear-thinning shear rate of the polymer solution to rescale

the threshold injection rate beyond which a steady-state Saffman-Taylor finger be­
comes unstable. This Deborah number scaling works across changes in cell dimension

and across changes in polymer concentration in solution. It gives also consistent re-
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sults across changes in polymer molecular weight, but it cannot rescale the onset

of the fracturelike instability across changes of molecular geometry. The success in

the linear endcapped associative polymers is not carried into the comb associative

polymers. In the latter case, however, the results are consistent with what we ob­

served with the linear endcapped polymers, namely, the threshold injection rate is

consistent with a power law dependence on polymer concentration, which suggests a

relationship with sorne rheological property of the material. However, the available

rheology data indicates that the shear thinning shear rate cannot be directly used to

rescale that data.

Both in the low molecular weight comb and in the high molecular weight linear

endcapped associative polymer experiments, we observe a regime where the crack tip
meanders from side to side and fluctuates in both overall speed and velocity along
the channel with a characteristic frequency which depends linearly on fluid injection
rateo

The linear relation we observe between the characteristic meandering frequency
and the fluid injection rate (see Figure 24) is reminiscent of a very similar linear

relation between the stick-slip frequency and the imposed crack velocity in the peeling
of adhesive tape [64]. In those experiments, the frequency is attributed to a Hopf

bifurcation, which can be analyzed in terms of measured stress-strain relations of

the adhesive material. Stick-slip oscillatory behavior also disappears at higher tape

peeling velocity and this is not inconsistent with our observations of fracturelike flows.

In fact, we observe a fast fracture regime, where no oscillation frequency is observed.

This regime, which is clearly observed for the low molecular weight linear endcapped
associative polymers (where no meandering regime is observed) and at later stages
of the patterns in comb associative polymers, is very reminiscent of the brittle-solid

fracture results of Fineberg et al. [54, 55], specially when we consider the velocity
profile. The literature also describes oscillatory solutions [67-69] as rather general
features of quasistatic crack propagation, always in a restricted range of driving
velocity, reminiscent of the results in our experimento

We have seen that our simple way to rescale the onset of the fracturelike instability,
namely, constructing a Deborah number by using a single rheological parameter ('Yo)
is not enough to rescale the results across large changes in rheology. A model to

describe the dynamics of the network has been suggested by de Gennes [70]. In this
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model, the lifetime of the associative bonds depends on the stress imposed on the

network, and this lifetime decreases very fast with that stress. A typical dependence
would be

T = TI exp ( - �;) , (6.6)

where TI and (71 are a characteristic time and a characteristic stress in the network.

De Gennes suggests that (71 can be related to 'Yo by 'Yo = Mol (71. This model would

need two rheological parameters to describe the associative network, a time (TI) and
a stress ((71). It could certainly accommodate a larger variety of phenomena that the

simpler model we have used. However, it requires knowledge of a shear stress in the

system, which we have not considered up to this point.

On the other hand, we would like to understand the origin of the oscillations that

we can so clearly observe in the evolution of the meandering regime. We have already,
in a qualitative way, associated those oscillations with sorne stick-slip dynamics that

may be dominating our system. Kurtze and Hong [71] have explicitly considered

fracturelike behavior in soft condensed matter and have predicted an oscillatory ve­

locity for the advancing crack tip as long as the injection rate is such that the system

evolution is dominated by stick-slip dynamics. They speculated that the frequency
of these oscillations should increase with invading fluid injection rateo Our results

are consistent with their expectations. However, the expression they present for the

frequency of the characteristic oscillations requires knowledge of the shear stress in

the system in order to yield quantitative results.

We see, then, that in order to advance in both the understanding of the fracturelike

instability of the fingering regime and in the nature of the oscillations we observe in

the meandering regime, we need to measure the shear stress in the system. The

following chapter presents the analysis of the experiments with comb associative

polymers where, as explained aboye, we monitored the pressure at the injection point
as a first approximation to the stress in the system.
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Stress in the Fracturelike Patterns

As we saw in the previous chapters, we have obtained partial understanding of the

instability of the fingering regime, and of the dependence of the threshold injection
rate for the onset of these instabilities on the dynamics of the network.

A plausible model, presented by de Gennes [70], explores the lifetime of the associative

network bonds as the relevant parameter to control the onset of the instabilities,
and explores the possibility that this lifetime depends on the surrounding stress,
in order to account for the complex behavior we observe (see section 6.3). On the

other hand, Kurtze and Hong [71] present the only model available to us for the

oscillating dynamics we have observed. In order for the system to enter an oscillating
regime, they argue, a certain shear stress-shear rate response in the system is required.
We will present their analysis and our attempts at extracting from there relevant

information for our system. Having these models, we realized that we needed a

measurement of the shear stress in the system.

Stress in viscoelastic materials can be visualized taking advantage of the change
in birefringence that the medium exhibits depending on that stress [72]. We tried

this approach by illuminating our channel, from below, with linearly polarized light,
and observing the transmitted light with a crosspolarizer. We were unable to see

the different bands of uniform stress observed in many plastic materials. Either the

birefringence of our polymeric fluids is too small or the stress dissipation takes place
in a very small (maybe microscopic) region around the crack tipo Since we did not

have a way to directly monitor stress inside the Hele-Shaw channel, we opted for

measuring the pressure of the invading fluid at the injection point, and tried to see

there sorne signature of the stress inside the system.

63
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Figure 25: Expected shear stress - velocity response for the onset of stick-slip dynamics
in our fracturelike experiments. An initial condition with Va in the unstable region will

eventually generate periodic behavior.

7.1 Kurze and Hong's model for the oscillating
•

regrme

Kurtze and Hong consider the growth of an axisymmetric crack in a viscoelastic

medium, confined in a Hele-Shaw channel. Their description is in terms of a frac­

ture zone, or region that extends a certain length behind the tip of the crack, and

where most of the stress is dissipated. The length of this fracture zone depends on

the speed of the crack. This length is related to the stress and it decreases when

the stress increases. Their analysis is based on the fiow at constant injection rate in

the viscoelastic material and on considering a characteristic rheological time of the

medium. Their description, similar to what is observed in stick-slip dynamics experi­

ments, such as the peeling of an adhesive material [64], is based on the stress-velocity

response of the material.

They model a system with two dynamically stable branches (see figure 25). If the

injection has a constant fiow rate Q, we consider a fingering pattern developing, with
cross section .Eo (away from the tip), and with a tip velocity Va = Q/.Eo. When the

injection is slow, with a tip velocity Va < V_, where a(V_) = amax (see figure 25),
there is a slow stable fiow, which we may associate with the Saffman-Taylor fingering
regime. When the injection is faster, with Va > V+, where a(V+) = amín, there is a

fast stable fiow, that we may associate with the fast fracture regime we observe in our

experiments. There is, however, an intermediate, unstable regime, for V_ < Va < V+.
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If the flow has a steady state velocity in this region, it is unstable, and they show it

will converge toward a limit cycle due to a Hopf bifurcation.

The cycle is typical of systems dominated by stick-slip dynamics: when (J' = (J'min,

and the system is at the bottom of the slow branch (see Figure 25), the tip velocity
starts increasing, and so does the stress. When (J' = (J'max, the stress is too high, and
flow with a tip velocity V_ is not enough to dissipate the energy being introduced

externally. There is a sudden velocity jump into the fast fracture branch. Then, both
shear stress and tip velocity start decreasing until the bottom of the fast fracture

branch, where the tip velocity is too high for the stress (J'min, and the system falls

back to the slow flow branch.

Kurtze and Hong performed a linear analysis of this dynamical system, and found

an expression for the frequency of the oscillations,

1 (ll+ [1 1 17
=

Jll_ f+(x) - Vo
+

Vo - f-(x) A(x)dx, (7.1)

where A(x) is the cross-sectional area of the fracture front, a distance x behind the

tip (see D.7). �+ and �_ are the characteristic lengths of the fracture zone, and

they are related to the characteristic stresses (J'_ and (J'+, respectively.

In order to compare these results with our experiments, we have performed a

lowest order expansion of expression 7.1 in terms of Vol f+((J') for the fast branch and

f_ ((J') lVo for the slow branch. using the constitutive relations from elastic solid theory
in order to relate the different parameters (see appendix D). The approximation we

obtain is
128 1 4 Q

f rv

729 a3
(J'min

J1'Yo
' (7.2)

with (J'min being the minimum stress in the stick-slip loop of Kurze and Hong's model;
a is the surface tension at the fractured interface; J1 is the zero-shear viscosity of the

viscoelastic fluid; and 'Yo is the shear thinning shear rate of the polymer solution.

This expression is interesting when we compare it with our measurements (see
section 6.2). We found the oscillation frequency in the meandering regime of our

fracturelike patterns to grow linearly with the injection rateo It was also linear in the

Deborah number (5.1), so f rv QI'Yo. Clearly, equation 7.2 shows a linear dependence
of f on Q, with the slope being a combination of rheological properties of the material.
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Figure 26: EfIect of polymer concentration on the sIope of the increase in meandering
frequency with driving force.

It particularly depends very dramatically on a characteristic stress in the system.

We have measured the slope of f¡ vs. Q in these experiments (see section 6.2), and
we have studied how this slope changes with concentration of the polymer in solution.

We can see the results in Figure 26. In fact, in order to rescale any dependence on

channel geometry, we have rescaled Q by dividing it over b w, with b being the cell

gap and w the with of the pattern in the early fingering regime. This is the same

scaling used in our definition of a Deborah number which successfully rescaled the

geometry ofthe channel both for the threshold injection rate (see section 5.1) and for
the oscillating frequency measurements (see section 6.2). According to the analysis

aboye, the vertical axes in Figure 26 are, in fact, displaying the effective change of a

combination of rheological parameters with concentration, namely

4
Clmín
--

a3J1/yo
. (7.3)

The systematic analysis we performed with the lowest molecular weight comb

associative polymer, where we changed the rheology by changing the polymer con­

centration, keeping the channel dimensions constant, gives us a more complete set of

data. The same analysis for the experiments with the high molecular weight linear

endcapped associative polymer is presented in the same figure. In this case, however,
we explored fewer different concentrations, since we were also changing the molecular
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weight and the channel dimensions.

It is interesting to note that, in both polymer geometries, we observe a similar

trend in the dependence of the slope on concentration. In order to do a more quan­

titative comparison, the axes should be rescaled by sorne suitable combination of

rheology parameters in each case.

We lack a good enough characterization of the materials in order to compare (7.3)
with the data in Figure 26. No inconsistency is found, and the unknown dependency
of the different parameters on the concentration makes it difficult to give even a

qualitative comparison. The fact that the slopes in Figure 26 are not monotonically

changing with e, however, suggests that, at least, one of the parameters in 7.3 should

depend other than as a power law on the concentration.

7.2 Evolution of the Injection Pressure

In the fracture experiments we performed using comb associative polymers, we mon­

itored the pressure of the invading fluid at the injection point, for each runo We have

studied the dependence of this pressure on injection rate and on rheology performing
a series of experiments with solutions of the low molecular weight comb associa­

tive polymer, a gap of 0.16 cm and a channel width of 1.0 cm. For each run, we

have obtained an average pressure, Pave, which is the average of the pressure in the

meandering regime (see Figure 27).

Typically (see Figure 27), the profile of a run is as follows: at early times, there

is a viscous fingering regime setting up, and the pressure builds up from zero up to

a maximum value. After that, the pressure starts to decay as the growing pattern

approaches the open end of the channel. In a classical Saffman-Taylor flow, constant

tip velocity translates into constant pressure gradient, according to Darcy's law (A.8),
so if \7P rv (Pin - Pout) /d, where d is the distance from the tip of the growing pattern
to the open end, Pin is the pressure at the tip, and Pout is the outside pressure at the

end of the channel (constant), when d decreases, Pin must decrease as well to keep
the gradient constant.

When, in our fracture experiments, the viscous finger becomes unstable, a mean-
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Figure 27: Typical evolution of the pressure profile in a fracturelike flow. The limits of

the meandering regime are marked both in the tip-velocity evolution and in the pressure
evolution.

dering regime may set up. We do not see a clear correlation between the onset of

the meandering regime and any feature in the evolution of the pressure. We were

expecting to see the tip velocity oscillations reflected in the pressure measurements.

However, we do not seem to be sensitive to these stress oscillations (thinking in

terms of Kurze and Hong's model, we can describe the system as oscillating in a

stress-velocity parameter space). This is illustrated in Figure 27, where the large am­

plitude oscillations in the tip velocity are not present in the pressure evolution. We

are confident that our pressure sensors have a fast enough response that makes them

sensitive to the typical frequencies of these oscillations (the nominal response time is

of the order of milliseconds). However, the fact that we monitor the pressure away

from the tip of the fracturelike pattern may cause those oscillations to be dampened
in the bulk of the invading fluid.

In order to analyze the meaningful features of that pressure evolution, we have

extracted an average pressure for the meandering regime in each run, Pave (see Figure
27), defined as

p. -

Pmax + Pmin
ave

-

2 (7.4)

Note in that figure that the limits of the meandering regime are marked. We have

plotted Pave vs. Q for each run (see Figure 28). The error bars associated with
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Figure 28: Pave (meandering regime) vs. Q for different concentrations of comb

associative polymer. O e = 1.58%, O e = 1.83%, O e = 2.53%, \l e = 2.75%, D:. e = 3.0%.

each data point are actually the range of pressure in the meandering regime. We

see a consistent trend which is meaningful, since there are differences larger than the

overlaps between pressure ranges in different flow realizations. Each different symbol

corresponds to a series of runs with a given concentration of low molecular weight
comb associative polymer: O e = 1.58%, <> e = 1.83%, O e = 2.53%, \l e = 2.75%,
.6. e = 3.0%.

We do not have, a priori, any expectations on how the relationship Pave vs. Q

could be. We have noticed that comparing the data on Figure 28 with a straight
line is a good approximation. We have also tried to adjust a power law to that data,
and we have found in this latter case how, consistently, the exponent of the best fit

power law was, within error bars, compatible with one. Then, it seems that the linear

approximation is the best and the simplest we can use. Before we try to extract more

information from our data, however, we need sorne theoretical support in order to

understand the meaning of the trend we observe. We do this in the following section,

where we obtain an expression for Pave vs. Q after a series of approximations are

made.
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7.3 Extending Darcy's law to flow of viscoelastic

fluids

We saw in section 4.3 that the shape of the steady state fingers we obtained in

viscoelastic flow conformed with the expected relation for Saffman-Taylor fingers,
even though that relation was derived for Newtonian fluids. We will now argue, based

upon a very non-rigorous set of approximations, that, under certain circumstances, it

is expected that Hele-Shaw flow of viscoelastic fluids can be described with Darcy's
law. In order to find the appropriate approximation for a non-Newtonian fluid,
one should start with the constitutive relation for the material and do the suitable

approximations from there. A discussion on the generalization of Darcy's law for

non-Newtonian fluids is given by Rajagopal [73] and references therein. Since we

lack a good rheological description of our materials, we will make use of much more

simplistic approximations, which yield interesting results.

Since flow of a Newtonian fluid in a Hele-Shaw channel can be well described by

Darcy's law (see 1.1), incompressibility implies that the pressure field will be Lapla­
cian. The starting point to derive Darcy's law for a Newtonian fluid is the Navier­

Stokes equation (eq. A.2) which has the implicit assumption that p, = constant.

However, in the presence of a viscoelastic material (where p, = p,(ií)) , the second

term on the r.h.s. of eq. A.2 should read, in its X-component:

�p, (8Vx) = p,
82vx

+
8p, 8vx.

8z 8z 8z2 8z Bz (7.5)

A hypothesis that will allow us to recover Darcy's law is proposed by Bonn et a1.

[74], and reads
z (8P,)- - «1,
p, 8z (7.6)

which should be easily satisfied for shear rate regimes where p, has a slow variation.

The flow velocity changes across the cell gap (z-direction), so the local fluid viscosity
must change as well, even though this change may be negligibly small for certain

shear rate regimes. With this, eq. 7.5 drops the second term on the r.h.s. and eq.

A.2 remains unchanged. This way, we can extend Darcy's law to the viscoelastic
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case, obtaining the averaged two-dimensional velocity field

(7.7)

Bonn et al. also explain that /l can be considered as a function of the magnitude of

the velocity alone, /l = /l(v) and that 6.P = O still holds for slow flows.

7.3.1 Effective viscosity in the meandering regime

Saffman-Taylor flow with Newtonian fluids is well described by Darcy's law (7.7), with
all parameters being constant, and characterized by a constant pressure gradient and

a constant velocity. In this case, we can relate V and Pave, defined aboye, in a simple
and exact way as

b2
V = -LPave + constant.

6/l

We can express V in terms of Q, b and w and get

(7.8)

6L/l
Pave = b3w Q + constant, (7.9)

where we have introduced the flow rate defined as Q = Vwb, with w being the finger
width. So, for Newtonian Saffman-Taylor flow, Pave can be easily related to the fluid

viscosity, and it is linear in Q.

As explained aboye, in our experiments with comb associative polymers, we ob­

served that the relationship Pave vs. Q (in the meandering regime) could be reason­

ably matched with a linear dependence (see Figure 28). Even though eq. 7.9 was

derived for Newtonian fluids, let us study its usefulness in our non-Newtonian flows.

We have seen in the previous section that Darcy's law can still describe the non­

Newtonian flow under certain circunstances. Even though in our case V, /l and \lP

are not a constant anymore, we may assume that we can still use eq. 7.9 as an

approximation to the relationship Pave vs. Q.

We have fitted a straight line in the Pave vs. Q data (obtained in the meandering
regime) and we have extracted the slope for each lineo If we assume this slope
corresponds to the relation in eq. 7.9, then it must be related to a certain averaged
effective viscosity of the material over the meandering regime (where oscillations take
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Figure 29: Effective viscosity extracted from Pave in the meandering regime. The line
is a power law fit to the data, giving /l-eff rv él.

place). If we put

Pave = mQ +n, (7.10)

we will extract
b3w

/-le!! = m
6L '

where b is the effective thickness across the gap filled by the growing pattern, which

(7.11)

we have measured to be b rv 0.1 cm; Lis the typical spatiallength of the meandering
regime, which is L rv 15 cm; and w is the typical width of the growing pattern,
taken in the viscous fingering regime that precedes the meandering regime, where it
is clearly defined, and we observe w rv 0.5 cm.

This analysis yields a very interesting effective viscosity. As we can see in Figure
29, /-le!! changes very consistently with a power law with the polymer concentration

(although in our limited range of concentrations). This suggests that /-le!! is directly
related to sorne rheological property of the material. We find a best fit power law

with /-le!! rv C4.l.
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Figure 30: Monitoring the shear viscosity for glycerine. A steady-state Saffman-Taylor
fingering regime is observed. The salid lines are guides to the eye.

7.3.2 Observation of the effective viscosity vs. shear rate

characteristics

Monitoring Jl(v) in the fracturelike flow could give interesting information about the

dynamics. If we assume, based upon the same arguments given aboye, that Darcy's
law is a valid approximation to describe the flow of our non-Newtonian fluids, we can

extract Jl from Darcy's law as

b2 8P
Jl(v) = ---.12vx 8x (7.12)

In our systematic experiments of flow in comb associative polymers, where we have

monitored the pressure of the invading fluid at the injection point, we can obtain the

time evolution of the tip velocity, and we can monitor the effective thickness across

the gap of our flow (see section 6.1). Thus, all the parameters required to obtain Jl(v)
in eq. 7.12 are available.

Before trying to extract information from our non-Newtonian fluid data, we have

tested our ability to measure the viscosity Jl(v) in such a way by doing a series of

experiments with glycerine, a Newtonian fluid. The glycerine we have used has a

viscosity (as measured with a Brookfield Rheometer [75]) Jl rv10 Poise. We have
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Figure 31: Effective viscosity averaged over several runs for a e = 1.58% solution of low

molecular weight comb associative polymer. J..L has been estimated from Darcy's law.

injected dyed water into glycerine, using the same experimental setup and analysis

techniques that we used with the comb associative polymers, including monitoring of

the pressure of the invading fluid at the injection point. We have used three different

injection rates, and the results for the largest one (Q = 13 ml/rnin) are shown in

Figure 30.

The plots are the value of the pressure (bottom) as we monitor its evolution

with time, and the calculated effective shear viscosity (top) as calculated using the

value of the different magnitudes at each instant of time, according to eq. 7.12. The

X component of the tip velocity is measured for this Saffman-Taylor finger to be

Vx = 4.0 cm/s. We can immediately measure the value of the (constant) pressure

gradient to be D..P/D..x = 8 X 103 dyn/cm", Since we measure the effective gap to

be beff = 0.1 cm, we get, using eq. 7.12, J..L I"'.J 1.6 Poise consistently. We do not

know why this value, which we reproduce with different injection rates, is a factor of

around 6 times lower than the expected value J..L = 10 Poise (which we measure with

the rheometer), but we could expect sorne artificial numerical factor when we do the

same measurements with non-Newtonian fluids.

With the method described aboye, we can monitor now the effective shear vis­

cosity of the viscoelastic medium, and we can define the shear rate at the tip of the

fracturelike pattern as 'Y rv Vlb, and map the evolution of a given flow realization on

a shear-viscosity / shear-rate, or in a shear-stress / shear-rate map (defining the shear
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stress as O"(i') "-' i'J.l(i')). For a given flow realization, the result is a very complex tra­

jectory in the parameter space, from where it is not clear how to extract meaningful
properties. A first attempt has been obtaining average shear-viscosity vs. shear-rate

and shear-stress vs. shear-rate curves (averaging different flow realizations in order

to obtain single-valued functions) and comparing the resulting curves with the avail­

able rheological data. In Figure 31 we present the result of this analysis for the flow

realizations with e = 1.58% of low molecular weight comb associative polymer. Note

that the value for io "-' 102 S-l expected for this polymer concentration (as extracted
from the data in Figure 16) is compatible with the observations plotted on Figure 31.

As for the effective shear-viscosities vs. shear-rates we see here, they are roughly one

order of magnitude lower that the available rheological data [61], which is consistent

with some systematic experimental factor since the same problem was observed in

our calibration with a Newtonian fluid (see aboye).
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Summary and Conclusions

Viscous flow in Hele-Shaw cells offers an interesting framework allowing for very good
control on the relevant experimental parameters. The variety of challenging pattern
formation situations that one can encounter is greatly increased when perturbations
are added to the flow, either by using complex (non-Newtonian) fluids or by altering
the geometrical properties of the cell. In this work, we have presented two sets of

experiments, where both kinds of perturbations have been considered.

The first set of experiments (chapters 2 and 3) describe radial Hele-Shaw flow

with Newtonian fluids where anisotropy has been added by etching a regular array
of grooves on the bottom plate of the cell. This creates anisotropic modulations of

the cell gap that are responsible for the appearance of a rich variety of morphologies
(faceted growth, surface tension and kinetic dendrites, and tip splitting regime). In
particular, the two dendritic morphologies may offer an equivalent in fluid systems
for the dendrites found in crystal growth, and any understanding we may obtain from

the dynamics in our relatively simpler experimental situation may be used in the field

of crystal growth. We have presented a quantitative study of the growing patterns
based on a theoretical model that predicts a characteristic asymptotic growth in the

presence of the anisotropy. We have observed that this kind of growth has very con­

sistent features and we have considered two parameters, experimentally measured,
that can be used to quantitatively characterize the morphologies, namely, the expo­

nent and the prefactor of the asymptotic power law growth. We have discussed the

validity and the limitations of this model to describe our experiments in an attempt
at going beyond the qualitative studies that characterized earlier studies of similar

systems. The conclusion of our experiments is that, even though we have been able to

observe experimentally the features in the dynamics of liquid dendrites only predicted
in the presence of anisotropy, we have only had partial success in quantitatively char-
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acterizing a given morphology. In particular, the scaling exponent in the power law

behavior (eq. 3.2) seems very affected by experimental noise, which prevents from a

meaningful study of the transition between different fingering morphologies.

Future work in this system involves studying the effect of static noise on the

anisotropic viscous fingering, by means of the analysis tools we have developed here.

The noise is superimposed to the geometrical anisotropy by a random destruction of

a given fraction of the lattice of grooves. This has a strong effect on the dendritic

patterns that we could try to study quantitatively.

The second set of experiments (chapters 4, 5, 6, and 7) present our work with

associative polymer solutions. On top of having great technological interest, these vis­
coelastic fluids present very intriguing properties, from a statistical mechanics point
of view. Performing Saffman-Taylor experiments with these materials, we have seen

that, under certain dynamical conditions, they undergo a transition from fluidlike

into fracturelike behavior. Further analysis of the dynamics shows more similari­

ties to the fracture in brittle materials and we have observed regimes characterized

by oscillations with a typical frequency that has been conjectured to be related to

stick-slip dynamics in the system. A clear understanding on the dependence of the

transition and the subsequent dynamic regime on the material properties may be

carried into the study of fracture in brittle materials, where the shorter time scales

involved impose asevere limitation in the data available [54,55]. We have addressed

these issues and we have studied the relevant features of both the transition into

a fracturelike regime (where a simple Deborah number scaling successfully rescales

geometrical changes and sorne rheological changes) and the oscillating regime. We

have explained how the available models to further understand the dynamics of these

complex fluids require a good knowledge of the stress in the system, and we have

addressed this in a first order approximation, obtaining consistent results.

Further work in these systems is required to completely understand the nature

of the transition and the nature of the dynamics governing the fracturelike regime.
Systematic measurements on a larger number of model associative polymers can give
sorne more insight in those aspects. Also, a better model for the viscoelastic flow is

needed and it could very well suggest relevant magnitudes to measure.
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APPENDIX A

Flow in a Hele-Shaw cell. Darcy's law

A.l Bulk equations of motion

Consider an incompressible Newtonian fluid between two parallel rigid boundaries

(Hele-Shaw cell) that are wetted by the fluid, which is driven by a pressure gradient.
The bulk equations for the flow are given by the incompressibility condition and by
the Navier-Stokes equation [76]:

V·v

(av .... r; ....)p at+v,vv

(A.1)

(A.2)

0,

In a steady state av/at = 0, so equation (A.2) becomes

(A.3)

The boundary condition at the rigid walls (z = ±b/2, see Figure 32) is no-slip:

(A.4)

A.l.l Channel Geometry

The pressure gradient will be along the channel, say

(A.5)
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Figure 32: Poiseuille flow along a negative pressure gradient.

with \lP constant (see Figure 1). For simplicity, let's consider a channel infinitely
wide (sidewalls are at y = ±oo). This neglects sidewall effects in the fiow. Then,
v = v(z)i and the steady state Navier-Stokes equation is

(A.6)

The solution (with v(z = ±b/2) = O) is

(A.7)

A very useful quantity is the average velocity across the gap:

1 ¡b/2 b2
U =

-b v(z)dz = -12\lP.-b/2 f.l
(A.8)

.
Another interesting quantity is the flow across the channel:

b3
Q =b W u = -W\lP

12f.l
' (A.9)

where W is the channel width.

A.1.2 Radial Geometry

The pressure gradient will now be radial:

VP = \lP(r)r = �� r. (A. 10)
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That is, now \7P may depend only on the distance to the injection point. The velocity
field will also be radial, iJ = v(r, z)f.
Now, incompressibility is expressed in cylindrical coordinates as

V·iJ=O -+
8(rv)

= O
8r (A.ll)

For slow and slowly varying flows, v will change slowly with r. Then, we may neglect
v8vj8r in (A.2). We are left with (see [76])

O = _

dP
+ J1 (!� (r 8V) _ � + 82v) .

dr r 8r 8r r2 8z2 (A.12)

Using (A.ll):

�:r (r��) = -��� = :2V,
which removes the terms explicit in r from (A.12). Then, (A.12) becomes

(A.13)

(A.14)

whose solution is

(A.15)

or, written in a more familiar fashion

(A.16)

Note that, in the radial geometry, \7P can depend on r.

We can compute the average (radial) velocity fíeld across the gap, and obtain

1 ¡b/2 b2
U = V =

-b v(r,z)dz = -12 \7P.-b/2 J1
(A.17)

Another interesting quantity is the radial flow rate through a circle of radius r in the

cell:

¡b/2 7rrb3
Q = 27rr v(r, z) dz = -\7P.

-b/2 6J1 (A.18)
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Dispersion relation for Radial Viscous Fingering

Consider a circular Hele-Shaw cell filled with a viscous fluid, of viscosity p, and a

second, less viscous fluid, of viscosity p,', being injected through a hole at the center

of the top plateo We will consider a large viscosity contast, so that we neglect the

viscous dissipation inside the growing bubble (p, » p,'). Let's assume a uniform flow

rate, so that
dV

=Qb
dt

'

where V is the volume of injected fluid.

The average flow will be V, governed by Darcy's law (A.l7). If the flow is incompress­

ible, the velocity potential, <jJ ( v = -V <jJ), satisfies Laplace's equation, expressed in

(B.l)

cylindrical coordinates as

2 1 8 ( 8) l82<jJ(r,O)\7 <jJ(r, O) = -:¡. 8r
r
8r <jJ(r, O) + r2 802

= o. (B.2)

Because of Darcy's law, <jJ is proportional to the pressure gradient, <jJ = b2 /(l2p,)VP.
Consider an initial steady state consisting of a circular bubble, whose radius grows

with time as

R(t) = Ro + J� (t - to).

The radial velocity of a point at the interface will be

(B.3)

dr 1 Q
dt

r=R
R 27T"

• (BA)

Consider a perturbation of the velocity potential outside the bubble (in the more

viscous medium, where we assume all the viscous dissipation takes place). Any such
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perturbation can be expressed as a superposition of functions of the form

<jJ(r, (), t) = <jJ(O) + a(t)e±inO (�)
n

, (B.5)

where <jJ(O) is the unperturbed potential. If the circular interface is perturbed so that

r((), t) = R(t) + Af(t)e±inO, (B.6)

we obtain, by use of the pressure boundary condition, an expression for the growth
rate of the perturbation [10],

}:_ df = n - 1 [9_ _

n(n + 1) Ub2].f dt R2 27!" R 12¡.t (B.7)

If f f"V exp(wt), then eq. (B.7) gives a dispersion relation w(n) between the rate of

growth and the wave-number, We can see that w(n) is positive (thus, the perturbation
grows, and the radial bubble is unstable) for ti < n.; where

__ � [� 6¡.tRQ]
1/2

ti¿ -

2
+

4
+

7!"ub2 (B.8)

This is a broad band instability, since usually several unstable modes can contribute

to the growth of the perturbation. However, after a transient, the fastest growing
mode, i.e., the one that maximizes w(n) will dominate the dynamics. We can find

this mode easily by maximizing B.7,

1 (QR¡.t )nm =

'3 67!"ub2
+ 1 . (B.9)

Equation (B.9) can be conveniently made dimensionless by a suitable election of a

length,

(B. 10)

with

(B.l1)
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Figure 33: Dispersion relation for radial viscous fingering. The dark solid line corre­

sponds to the theoretical dispersion relation. The light solid line corresponds to a wetting­
corrected theoretical dispersion relation.

B.l Experimental Verification of the Radial Dis­

persion Relation

Using a radial Hele-Shaw cell, with dry nitrogen displacing light paraffin oil (see
section 2.1) we were able to experimentally obtain the dispersion relation for radial

viscous fingering [53]. We used a gap of b = 0.16 cm, set with Teflon spacers. We

prepared different circular initial conditions, in order to fix the value Ro at which

the circular interface will become unstable. The actual value for R at which the

instability sets in is more accurately measured from the images, and is the one used

in B.9. We explored several possible ways of measuring nm. Since we have a broad

band instability, several modes coexisto A Fourier analysis was always very noisy.
Even when we studied the time evolution of the power spectrum, it was not always
possible to pick a clear fastest growing mode. We found that the best results were

obtained by directly counting the number of fingers at the onset of the instability,
refining this number with the help of Fourier analysis, when required. Our control

parameters were R and Q. All the flow realizations could be combined into the same

graph by means of the dimensionless radius R' (eq. B.11). This way we could explore
a much wider range of wave numbers that a single value of R could make available.



88 Appendix B: Dispersion relation for Radial Viscous Fingering

The results of our experiments are presented in Figure 33. The thick solid line corre­

sponds to the dispersion relation B.IO. We see a good agreement with the experimen­
tal data in the low R' regime. As R' increases, we see a tendency toward saturation,
that we may attribute to the wetting effects becoming increasingly important in the

high velocity regime. In fact, we have recalculated the expected dispersion relation

including the effect of the wetting layer left behind by the displaced fluid (light line
in Figure 33). This correction is based on the calculations of Yeung and Jasnow [11]
and includes an average empirical wetting correction. We can see how all the data

fall between the standard dispersion relation (B.IO) and the one with the effective

wetting correction.



APPENDIX e

Monitoring the thickness of the Fracturelike
Pattern

With our experimental setup, we are able to monitor the area of a growing fracturelike

pattern. However, sometimes it would be of interest monitoring the thickness across

the cell gap filled by the invading fluid. We have observed that the growth of the

pattern is restricted to a small region around the tip (see Figure 18). Then, it is

a good approximation to consider that the change in volume, between times t and

t + dt is given by
dV dx

dt
= �y[x(t)] b[x(t)] dt' (C.1)

where the tip is located at x(t), and the pattern has a width �y(x) and a thickness

b(x) in the tip region.
Since we have a constant and controlled injection rate (Q), dV/dt = Q. On the

other hand, the fact that the growth is restricted, to a good approximation, to the

tip region, allows us to express the area as

[x(t)A(t) = Jo
dx �y(x), (C.2)

that is, no explicit time dependence in the width of the pattern is needed. Then,
equation C.2 gives

dA dx

di
= �y[x(t)] di: (C.3)

Combining this equation and C.1 we get

Q
b[x(t)] = dA/di' (CA)

89



APPENDIX D

Lowest Order Approximation for the Oscillation

Frequency in Fracturelike Patterns

A growing crack can be modeled as having regions with different dynamics [77]: the
region close to the tip is the plastic zone, where high stresses are dissipated; the

plastic region may be followed by a solidlike region which, in turn, may be followed

by a fluidlike region. Let us consider an axisymmetric fracture profile (Figure 34),
and let us model its elastic properties using those found in elastic solid theory.
Kurtze and Hong [71] have proposed an expression for the frequency ofthe oscillations

in the fracturelike patterns in viscoelastic flow, namely

1 ró.+ [1 1 17
=

Jó._ f+(x) - Vo
+

Vo - f-(x) A(x)dx. (D.1)

As explained in section 7.1, f- and f+ are the two stable dynamic branches in the

stress-velocity response in the viscoelastic medium (see Figure 25). Since, in Kurtze

and Hong's model, only the Z-shape of that curve is relevant, let us consider both

branches to be modeled by a power law,

¡-(v) = amo. (v�r.
I+(v) = ami. (v:r

(D.2)

(D.3)

From elastic solid theory [78], we get an expression for the opening of the crack,

(D.4)
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u(x)

x

Figure 34: Axisymmetric fracture profile.

and the stress in the fracture zone, a distance x from the crack tip

( ) -1/2 3 laG
O" X f"V Kox ,Ko =

2V-:;;:-' (D.5)

where G is the shear modulus and a is the surface tension. This way we can express

the two limits of the length of the fracture zone, �+ and �_ in terms of the stress,

K A -1/2 K A -1/2
O"max f"V Oll_ ,O"min f"V Oll+ , (D.6)

and the cross sectional area A(x) in terms of the opening of the crack,

A(x) = 7rU(X)2 f"V 7r (��)
2

x. (D.7)

Next, we replace all these expressions in D.l, in order to get an expression under the

integral sign that depends on 0". We make one more simplification considering that
.

most of the period of one oscillation is spent in the slow branch, so we neglect the
contribution of the fast branch. We perform a lowest order expansion of expression

D.l in terms of Vo/I+(O") for the fast branch and 1-(O")/Vo for the slow branch. We

obtain the expression

(D.8)

Finally, we take into account that J-L f"V TG, where J-L is the shear viscosity and T

is a characteristic rheological time which, in our experiments, we have taken to be

T f"V l/yo; and Q = Vo�oo, where �oo is the cross section of the crack away from the

tipo If we also assume O"min « O"max, the final expression for 1 is

(D.9)



,

RESUM EN CATALA

93



I. Introducció 95

1 Introducció

La formació d'escructures en materia condensada tova ha estat objecte d'un extensiu

estudi durant gran part de les dues decades passades [1-5]. La configuració utilitzada
en els nostres experiments (cel-la de Hele-Shaw) és prou senzilla com per poder ser

descrita de forma simple analíticament. Malgrat aixo, la natura no-linial i no local de

les equacions fa que puguin generar una fenomenologia prou rica. El problema basic,
on una cel-la de Hele-Shaw llisa (sense rugositats) i fluids newtonians són utilitzats,

pot ésser extés mitjancant la introducció de diferents tipus de perturbacions, bé

modificant la cel-Ia, bé utilitzant fluids complexos [6].

Les estructures i la fenomenologia observades en els nostres experiments amb den­

drites líquides (vegeu secció 11) presenten fortes similituds, qualitativament parlant,
amb les dendrites observades en el creixement de cristalls. De fet, les equacions util­

itzades per modelar ambdós sistemes són tan similars que es raonable pensar que els

resultats que trobem en els nostres senzills sistemes poden ser aplicats al creixement

de cristalls. A més, els experiments en creixement de cristalls tenen, típicament unes

escales de longitud i de temps molt més petites, la qual cosa fa que l'analisi quanti­
tativa sigui forca més dificultosa. D'altra banda, els nostres experiments amb fluids

complexos exhibeixen una transició cap a estructures l'evolució de les quals presenta,

qualitativament, una forta ressemblanca amb la que s'observa en la fractura de solids

fragils. En la fractura de solids, interessa relacionar l'inici del procés de fractura i la

dinámica que segueix amb les propietats del material. En els nostres experiments de

fractura en medis fluids, tenim informació sobre les propietats reológiques del nostres

fluids polimerics, i intentem relacionar aquestes propietats amb la dinámica que ob­

servem. A més, en seguir una dinámica més lenta, els nostres experiments ofereixen

un marc on és possible fer mesures més completes i amb més facilitat del que és

obtenible amb solids fragils,

Una cel-Ia de Hele-Shaw (HS) és un sistema format per dues plaques rígides (ha­
bitualment fetes de vidre o Plexiglas), col-locades paral-lelament, amb un petit espai
o gap entre elles. El gap s'omple d'un fluid viscós i un segon fluid, menys viscós,
s'injecta desplacant el primer fluid. El cas més comú és aquell en el qualla viscositat

del fluid invasor és negligible comparada amb la del més viscós. Els nostres exper­

iments utilitzen dues geometries diferents: geometria en canal o rectangular, en la

qualles plaques tenen forma rectangular, amb un gradent de pressió aplicat alllarg
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del canal; i geometria radial, on les plaques són circulars, i el gradent de pressió és

aplicat pel fluid menys viscós en ésser injectat per un orifici en el centre d'una de les

plaques. La formació d'estructures interessant es produeix quan la interfície entre els

dos fluids esdevé inestable. El fet que el gap de la cel-Ia sigui petit imposa una gran

impedancia al flux, de forma que la dinámica dels fluids es pot cosiderar confinada a

dues dimensions. Es pot demostrar que la velocitat promitjada a través del gap, i el

gradent de pressió satisfan la relació

(1)

on v és la velocitat de flux en el fluid, M és la viscositat dinámica del fluid, b és el gap

de la cel-Ia i P és la pressió en el volum del fluid. Aquesta relació rep el nom de llei de

Darcy, i és la mateixa relació que descriu el flux d'un fluid viscós a través d'un medi

porós. L'ús de la llei de Darcy suposa una descripció bidimensional del flux en la cel-Ia

de HS, i sera un model valid sempre que els efectes tridimensionals siguin negligibles.
Exemple d'efectes tridimensionals són la consideració d'un menisc tridimensional en

la interfície, o la descripció d'una cel-Ia de HS on el gap b varia localment, b = b(x, y).
Considerarem, a més, que els nostres fluids són incompressibles, de forma que

V·v=o. (2)

Combinant (1) i (2) arribem a

(3)

En cas que el terme b2/12M sigui uniforme en l'espai, obenim l'equació de Laplace

per la pressió,

(4)

La situació relevant en els nostres experiments és aquella on hi ha dos fluids, l'un

desplacant l'altre, amb una interfície mobil entre ells. A més, considerem un contrast

infinit de viscositats, és a dir, negligim la viscositat d'un dels fluids en front de la de

l'altre (simplificació perfectament valida en els nostres experiments). A més, ignorem
efectes gravitacionals.

Les equacions d'evolució en el volum s'han de complementar amb condicions en
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la interfície. Particularment, hi haurá un salt en la pressió entre ambdós costats de

la interfície, donat per l'equació de Gibbs-Thomson [3],

(5)

on a és la tensió superficial i ti, és la curvatura local en la interfície. En la liter­

atura trobem correccions cinetiques a aquesta relació [9, 11, 12]. A més, els nostres

experiments es duen a terme a ritme d'injecció constant, de forma que

/ ñ- iJds = Q. (6)

En geometria radial o circular, la injecció es duu a terme forcant el fluid menys

viscós a través d'un orifici en el centre de la cel-Ia, desplacant el fluid més viscós que

omple l'espai del gap. La bombolla circular que creix pot esdevenir inestable respecte

de deformacions ondulatories. Si aixo passa, ben aviat obtenim un estructura on

dits viscosos creixen, sense arribar a un estat estacionario Fins i tot, la possibilitat
d'observar un estat assimptotic no esta clarament establerta.

En geometria rectangular es pot arribar a obtenir un estat estacionari, en el qual
un únic dit viscós avanca, centrat en el canal, ocupant aproximadament la meitat de

l'amplada [3, 7,14]. La forma del dit és ben aproximada per la relació de Saffman­

Taylor[14]
W (A - 1) [ ( 7ry )]X =

7r
In cos

AW
'

on A és la raó entre l'amplada del dit i la del canal.

(7)

És habitual estudiar la dependencia entre A i el parámetre de tensió superficial

[18]

(8)

on ¡.t és la viscositat del fluit desplacat, V és la velocitat del cap del dit, W és

l'amplada del canal i a és la tensió superficial.

La introducció d'efectes de mullat [17, 19] aporta una millora en l'acord entre

prediccions teoriques i resultats experimentals per A en funció de l/B.
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I.A Pertorbacions a fluxos de Hele-Shaw radials

La presencia d'anisotropia en el flux de Hele-Shaw radial i isotropic canvia la natura

del problema per tal com noves morfologies (per exemple, dendrites) són possibles.
Ben Jacob i col-laboradors [21] van proposar un model fenomenologic local (Bound­
ary Layer Model) per descriure la dinámica de la interfície mobil, el qual és igualment

aplicable en solidificació, flux de Hele-Shaw, etc. Van mostrar com l'aparició de den­

drites és una prova clara de la presencia d'anisotropia, tot i que diferents morfologies

poden ser trobades, canviant les condicions dinámiques, en presencia d'anisotropia.

Hi ha diferents formes d'introduir, experimentalment, anisotropia en el sistema.

En la literatura trobem l'ús d'una petita bombolla en el cap que avanca d'un dit

viscós [22, 23] i l'ús de cristalls líquids [5, 24, 25] com a mecanismes que permeten
observar fases dendrítiques. Trobem tambe experiments on s'introdueixen escletxes

gravades en les plaques [21, 26, 27] per tal d'introduir anisotropia en el sistema. En

aquests treballs trobem un estudi de l'efecte qualitatiu que diferents parametres de

control, com el gradent de pressió o la profunditat relativa de les escletxes, tenen en

les morfologies observades. Nogensmenys, no trobem cap estudi quantitatiu de les

observacions experimentals, i no és gens clar com arribar a relacionar, d'una forma

quantitativa, els parametres controlables experimentalment amb el parametre que

introdueix l'anisotropia en l'analisi teórica. L'ús d'una xarxa d'escletxes grabades
en una de les plaques presenta el millor control sobre els parámetres experimentals,
i ofereix resultats ben reproduibles. En la secció II presentem experiments amb

. fluids newtonians en geometria radial on introduím pertorbacions en forma d'una

modulació periódica del gap. Presentem a l'hora una análisi qualitativa i també una

análisi quantitativa, basada en un model teoric que prediu unes relacions d'escala

en presencia d'anisotropia. Malgrat que verifiquem experimentalment les prediccions
del model teóric, no hem trobat una resposta definitiva a com caracteritzar de forma

quantitativa una morfologia determinada.

I.B Flux de Hele-Shaw amb fluids viscoelastics

És previsible que l'ús de fluids viscoelástics en fluxos de Hele-Shaw tingui efectes
relevants quan el regim dinámic posi en joc les propietats no-newtonianes del fluid

(esforcos normals, variació de la viscositat amb els esforcos de cisalla, relaxació dels
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esforcos, etc.). Tal i com expliquem en la secció següent, les pertorbacions al flux

de fluids newtonians té l'efecte més notable en la zona interficial. En contrast, en

l'ús de fluids no newtonians, amb una viscositat que depen de la velociat del flux,
les pertorbacions seran relevants, no només en la zona interficial, sino també en el

volum. L'efecte de fluids visccelástics en flux de Hele-Shaw va ser inicialment explorat

per Nittman, Daccord i Stanley [28,29], i per van Damme i col-laboradors [30-33].
De Gennes també ha estudiat l'efecte de fluids viscoeastics en flux de Hele-Shaw.

Recentment, s'han analitzat els efectes viscoelástics en estructures que creixen en

fluids miscibles [35, 36], mostrant canvis drástics en les morfologies que es poden
obtenir. Té un interés particular el fet que, en certes condicions de flux intens,
els fluids viscoeastics poder ser induits a generar estructures de quasi-fractura, més

similars a la fractura en materials frágils que al flux de fluids newtonians. Tals

observacions s'han fet en suspensions de fang [31-33, 37] i en solucions de polímers
associatius [38]. En la segona part d'aquesta tesi, mostrem els nostres experiments
amb solucions de polímers associatius, els quals exhibeixen una transició entre un

comportament fluid i un comportament de quasi-fractura. En la secció III descrivim

els nostres experiments i el nostre fructuós (si bé limitat) intent per trobar una relació
d'escala pel llindar de la transició a quasi-fractura, i també les tendencies trobades

en l'estudi de l'evolució de la freqüencia característica en regims oscil-latoris. També

descrivim els nostres intents per obtenir un major enteniment de la relació entre els

fenomens observats i les propietats reologiques dels materials.
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Figura 1: Esquerra: Perfil de la placa grabada dins del gap. Dreta: vista superior de
les escletxes grabades.

II Introducció de pertorbacions regulars en la

cel-Ia radial de Hele-Shaw

Hem dissenyat experiments en els quals introduím anisotopia en el flux de fluids

newtonians en una cel-Ia de H-S radial [39]. En condicions normals, el gap és uniforme

en tota la cel-Ia i, ates que els fluids són newtonians, no hi ha cap direcció afavorida

en el flux. Per tal d'introduir l'anisotropia, hem modificat la cel-Ia de H-S de forma

que la cara interior de la placa inferior conté un grabat regular en forma d'escletxes

constituint una xarxa rectangular amb una distancia entre els centres de les excletxes

de 0.4 mm en una direcció i 0.8 mm en l'altra. Les escletxes tenen una amplada de

0.2 mm i una profunditat de 0.07 mm (vegeu Figura 1). Les plaques són de vidre

rígid, per evitar deformacions i tenen un diámetro de 40 cm. L'espai del gap esta ple
d'oli de parafina (J1, = 1.6 Poise, (J = 3.5 dyn cm"? a 22°C) el qual actua com a fluid

més viscós. A través d'un forat en el centre de la placa superior, injectem Nitrogen
amb un ritme d'injecció constant Q. Les estructures que creixen són enregistrades i

analitzades digitalment mitjancant un programa de tractament d'imatges.

ILA Anisotropia i creixement dendrítico Diferents mor­

fologies

És ben conegut [20,45] que la presencia d'anisotropia és una condició necessária per

obtenir estructures dendrítiques, tant en solidificació direccional com en creixement

viscós. L'efecte de l'anisotropia en un experiment determinat, pero, depén de diversos
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10 cm

Figura 2: 'Morfologies en creixement viscós anisotrópic amb b = 0.11 mm. El rectangle
indica l'orientació del grabat. D'esquerra a dreta: Q = 1.3 cm2/s, Q = 1.8 cm2/s, Q = 5.5

cm2/s i Q = 48 cm2/s.

parámetres de control, com el valor del gap, el ritme d'injecció, etc., podent obtenir
diferents morfologies [46]. En la Figura 2 donem un exemple de les diferents morfolo­

gies que podem observar variant el ritme d'injecció Q. En els nostres experiments,
ens hem centrat en l'estudi de les dues morfologies dendrítiques:

• a velocitats petites observem dendrites que creixen allunyant-se de les escletxes,

presumiblement degut als efectes de tensió superficial que afavoreixen el creixe­

ment minimitzant la secció transversal de l'estructura (és el cas de l'estructura

per Q = 1.3 cm2/s en la Figura 2). Les anomenem dendrites de tensió superfi­

cial;

• a velocitats altes observem dendrites que creixen seguint les escletxes, pre­

sumiblement degut a efectes cinetics, els quals afavoreixen el creixement en la

direcció que minimitzi la impedancia al flux (és el cas de l'estructura per Q =

5.5 cm2/s Ó Q = 48 cm2/s en la Figura 2). Les anomenem dendrites cinéiiqnes.

L'objectiu dels nostres experiments és analitzar, de forma quantitativa, l'efecte
de l'anisotropia introduída en el sistema, tot relacionant-la amb les estructures que

en resulten, és a dir, relacionant els parámetres experimentals amb aquestes estruc­

tures. Per aixo necessitem també una forma de caracteritzar, quantitativament, la

morfologia de les estructures que creixen en la nostra col-la,

I fl
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ILB Parámetres controlables experimentalment

En els nostres experiments hem observat com la morfologia en les estructures de

creixement viscós pot ser alterada mitjancant tres parámetres controlables experi­
mentalment:

• a = !:l.bjb, la raó entre la profunditat de les escletxes i el gap promig de la

cel-Ia. Hem observat com un increment en a augmenta dramáticarnent l'efecte

de l'anisotropia en les estructures.

• Q, el ritme d'injecció (més precisament, el canvi d'area de la bombolla per unitat

de temps). Veiem com, per a fixat, canviant Q podem canviar la morfologia tal

i com s'observa en la Figura 2.

• l'escala de longitut característica de la modulació del gap. Per exemple, en els

nostres experiments, on tenim una xarxa rectangular, observem comportaments
diferents segons la direcció de creixement sigui paral-lela al costat curt o al

costat llarg dels rectangles.

Tot i que no tenim una forma precisa d'expressar el parámetre d'anisotropia util­

itzat en les expressions teoriques en termes d'aquests parámetres de control, creiem

que sera una combinació d'ells, recullint les variacions observades experimentalment
en l'efecte de l'anisotropia sobre les estructures.

II.C Caracterització quantitativa de les estructures

Malgrat que l'anisotropia actua com una pertorbació singular quan la introdunn en

aquests experiments[4], els seus efectes depenen de la intensitat de l'anisotropia. Si

la intensitat és baixa, els efectes anisotropics esdevenen negligibles i creixement basat
en tip splitting domina [47].

En una analisi teórica, l'efecte de l'anisotropia apareix en la condició de contorn

per la pressió, avaluada en la interfície,

Pis = af(O)/'l, + f3g(O)vJ, (9)
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on (J' és la tensió superficial, f3 és un coeficient cinetic, O és l'angle local entre la

normal a la interfície i la xarxa, Vn és la velocitat normal local i K és la curvatura

local. A altes velocitats, el terme proporcional a Vn dominara, i a velocitats petites,
sera negligible. Ates que f(O) i g(O) han d'introduir els efectes de simetria de la

xarxa, és habitual trobar expressions del tipus

f(O)

g(O)

1 - t cos(mO),
1 - X cos(mO + 8),

(10)

(11)

on t i X són parametres d'anisotropia, els quals quantifiquen els efectes de l'anisotropia
en les estructures. A més, m dóna la simetria de l'anisotropia i 8 aporta la competició
entre efectes de tensió superficial i efectes cinetics per triar la direcció afavorida de

creixement.

Almgren i col-laboradors [49] han estudiat el creixement viscós en presencia d'aniso­

tropia mitjancant la introducció del terme

Pis rv K(l - t cos(mO)), (12)

en la condició de contorn per la pressió. Cal notar que aquesta descripció negligeix

completament els efectes cinetics, La seva análisi presenta resultats assimptotics

que només són assolibles en presencia d'anisotropia. En els seus calculs, Almgren
i col-laboradors prediuen que, en presencia d'anisotropia en la tensió superficial, la

distancia des del cap d'una dendrita que creix fins al seu punt d'injecció escalara amb

el temps com

Xtip = Ata. (13)

En simulacions, troben una evolució en la forma d'una dendrita creixent que pot ser

escalada amb el temps com

tI-ay rv
,

(14)

(15)

expressions que satisfan la condició imposada de flux constant (xy rv t). Mitjancant
les seves análisis, troben un valor esperat a = 3/5 (= 0.6), independent dels detalls

i de la intensitat de l'anisotropia imposada. Només el prefactor A seria sensible a

aquests detalls. També troben l'expressió que descriu la forma a la qual tendeixen,
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assimptóticament, les dendrites:

_ 9_ _1 2/5 (�)y(x, t) -

27r aA
t Ym

Ata ' (16)

on

Ym(p) = p2/3 i1 S7v':� sm' ry = � - (; -1).
En aquestes expressions es considera que l'anisotropia té una periodicitat angular

(17)

Una conseqiiencia de les equacions que descriuen el flux de H-S, un cop assumim

el comportament x rv Ata, és la relació [51]

(18)

on A' és independent de Q i de b. Així, si a rv 0.6, és d'esperar

I ( Q )0.8ArvA -

Vb (19)

II.D Procediment experimental i resultats

En cada assaig experimental obtenim una bombolla de nitrogen que creix desplacant
l'oli mineral que omplia el gap. L'estructura que es desenvolupa és enregistrada i

analitzada digitalment. Directament, obtenim l'evolució de l'area i de la posició del

cap de cada branca de l'assaig. A continuació, verifiquem la validesa de Xtip rv Ata i,
en cas favorable, obtenim A i a ajustant aquesta expressió als resultats experimentals.

Aquest procediment el repetim amb tota una gamma de valors per b i per Q (Q és el

ritme de creixement de la branca estudiada). D'aquesta forma, obtenim una serie de

parelles (a, A) en funció dels nostres parámetres ajustables experimentalment, (b, Q).
A més, tot i que l'estudi teóric del qual disposem només considera anisotropia en la

tensió superficial, hem observat que la relació d'escala Xtip rv Ata es satisfá també en

el cas de dendrites cinetiques amb, potser, un valor diferent per a.
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Figura 3: Observació de la forma assimptotica predita per dendrites cinetiques: (a)
simetria a dues bandes, (b) simetria a quatre bandes. La forma amb simetria a dues bandes

s'ajusta millor a les nostres dades. La dendrita cinética que evoluciona (dreta) ha estat

reescalada utilitzant a = 0.64. El rectangle mostra l'orientació del grabat.

Verificació de la llei d'escala

La primera pregunta que ens fem és: quina és la relació entre el! i la morfologia
de l'estructura considerada? Tenint en compte que l'aparició de la relació d'escala

Xtip rv Ata només es verifica en presencia d'anisotropia, és raonable esperar que, quan

aquesta anisotropia canvii d'intensitat, el! reflexi, d'alguna forma, aquest canvi (el! =

0.5 s'observa en absencia total d'anisotropia), amb potser algun comportament de el!

que sigui una prova d'una transició de fase morfológica.

Els resultats, pero, mostren una gran dispersió en els valors obtinguts per o.

Així, per branques dendrítiques que, visualment i considerant la seva estructura, són

clarament classificables, bé com a dendrites de tensió superficial, bé com a dendrites

cinetiques, podem obtenir valors de el! bastant diferents, de forma que és difícil util­

itzar el valor de el! per caracteritzar una morfologia donada. L'únic efecte que notem

en el! quan l'anisotropia disminueix d'intensitat és una major dispersió, acompanyada
d'un empitjorament en la validesa de la relació d'escala (Xtip rv Ata). Així, en l'analisi
de 45 branques en el regim controlat per la tensió superficial, obtenim el! = 0.64 ±

0.098. D'altra banda, analitzant 29 branques corresponents al regim cinetic, obtenim

el! = 0.66 ± 0.096. Clarament, la dispersió en els valors per el! no permet fer cap

distinció entre ells. En els casos on la relació d'escala es satisfa, hem pogut també

comprobar com la forma de la dendrita líquida pot ser ben descrita per la relació

assimptotica (16), tal i com es pot veure en la Figura 3.
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Figura 4: Creixement viscós anisotropic. A vs Q/y'b per b = 0.11 mm, b = 0.22 mm i

b = 0.37 mm combinats.

Regularitat en A respecte Q

Tot i que en el cas de simetria quadrada (m = 4) la relació entre A i <: ha estat calcu­

lada analíticament, en el cas de simetria rectangular no tenim cap expressió analítica

per la relació entre aquests parametres. En els nostres experiments, ens hem concen­

trat en l'análisi de dendrites per les quals a rv 0.6. Si representem grafícament les

nostres mesures de A respecte Q, trobem que les dades segueixen una tendencia que

pot ser modelada com A rv (Q/Vb){3 (Figura 4). En l'esmentada figura, hem inclós

. tant experiments amb dendrites de tensió superficial com amb dendrites cinetiques.
En aquesta analisi que inclou experiments amb gaps b = 0.11 mm, b = 0.22 mm i b

= 0.37 mm, obtenim, ajustant una llei de potencies, f3 = 0.71 ± 0.01 (comparable al

valor f3 = 0.8 produit per l'análisi teórica (19) .

ILE Sumari i questions per resoldre

Hem presentat experiments de creixement viscós on, mitjancant la introducció d'aniso­

tropia, hem extés la gamma de morfologies que es poden observar. La intenció del

nostre estudi ha estat fer una analisi quantitativa de les fases dendrítiques, la qual cosa
hem abordat mitjancant el model introduit per Almgren i col-laboradors. Hem pogut

comprobar, experimentalment, la validesa i consistencia d'una relació dinámica entre



IJ. Introducció de pertorbacions regulars en la cel-Ie radial de Hele-Shaw 107

la forma i el ritme de creixement d'una branca dendrítica. De la relació d'escala

en forma de llei de potencies, el prefactor es mostra com una eina útil per rela­

cionar, quantitativament, l'anisotropia present a petites escales amb les estructures

dendrítiques observables a escales molt més grans. Tot i la consitencia de les nos­

tres análisis, no hem trobat una forma clara de caracteritzar, quantitativament, una

morfologia determinada, o d'observar quantitativament la desaparició dels efectes de

l'anisotropia a mida que en dismimúm la intensitat.
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III Fractura en materia condensada tova

L'ús de fluids no-newtonians en experiments de formació d'estructures genera una

amplia varietat de morfologies que no es troben en el cas de flux de fluids newtonians.

En particular, les propietats reologiques d'alguns materials duen a un regim dinámic

on podem observar com el fluid es comporta d'una forma ben similar a com ho fa un

solid frágil. Hem estudiat el comportament d'aquests fluids mitjancant experiments
de creixement viscós en un canal de Hele-Shaw, on les escales de temps típiques (de
l'ordre de decimes de segon) presenten unes condicions experimentals més simples

que en l'estudi de fractura en solids.

En un estudi previ de creixement d'estructures de dits viscosos en cel-les de Hele­

Shaw radials [38], es van utilitzar dissolucions de polímers associatius, la qual cosa

va conduir a l'observació de transicions entre creixement viscós i l'aparició de quasi­
fractura. El nom quasi-fractura ve donat tant per la morfologia com per la dinámica

de les estructures. S'observen branques que creixen a velocitats elevades, amb un

cap estable, i desenvolupant branques laterals que creixen darrera del cap principal

que avanca, Aquestes branques laterals creixen formant angles proxims a 90° amb la

branca principal, un comportament típic de fractura en medis frágils,

El fet que el creixement radial és mancat d'un estat estacionari, ens ha suggerit
realitzar experiments amb els mateixos materials en geometria rectangular. En el

cas d'un canal de Hele-Shaw, l'ús de fluids newtonians genera un estat estacionari

. forca simple: un dit viscós, avancant amb velocitat constant. Estudiant les desvia­

cions d'aquest comportament, podem observar l'aportació dcls fluids no-newtonians

al sistema.

Els materials que hem utilitzat com a fluids viscosos han estat solucions aquoses

de polímers associatius. El model per aquests polímers consisteix en una base es­

tructural lineal hidrófila, basada en oxid de polietilé, amb grups hidrofobics situats,
bé als extrems de la base (cas lineal) o bé situats a intervals regulars en la base (cas
de polímers en forma de pinta). En solució aquosa, els grups hidrofobics de diferents

molecules tendeixen a associar-se, format una xarxa. Aquestes disolucions són clara­

ment uns fluids no-newtonians. Particularment, les mesures de viscositat demostren

que aquesta depen del ritme de cisalla aplicat. A ritmes lents, el fluid es comporta
com a newtonia, amb una viscositat, pero, molt més elevada que en homopolímers de



IIl. Fractura en materia condensada tova 109

pes molecular similar. A partir d'un ritme de cisalla 'Yo, que depen de l'arquitectura
del polímer i de la seva concentració, la viscositat entra en un regim decreixent.

lILA Procediment experimental i resultats qualitatius

El sistema estudiat consisteix en una cel-Ia de Hele-Shaw rectangular, formada per

dues plaques de vidre rectangulars, col-locades paral-leles, formant un canal de 22 cm

x 1.0 cm. Les dues plaques tenen un espai o gap entre elles. L'espai del gap s'omple
amb la solució polimerica, i el creixement es düu a terme injectant aigua colorejada
amb un ritme d'injecció constant i control-Iat, Q. Les estructures que creixen són

enregistrades i analitzades digitalment. En una de les series d'experiments, hem

mesurat i enregistrat també l'evolució de la pressió del líquid invasor en la zona

d'injecció.

En tots els casos, si la injecció és prou lenta, obtenim un estat estacionari consis­

tent en un dit de Saffman-Taylor (de fet, hem comprobat que la forma d'aquest dit

satisfá la relació (7)). En la Figura 5 podem veure un exemple de les tres situacions

típiques amb les quals ens trobem [40].

La serie superior és un exemple típic d'experiments amb els dos pesos moleculars

més petits dels polímers associatius linials, amb Q > Qth, on Qth és el valor llindar

pel ritme d'injecció, més enlla del qual observem l'aparició d'estructures de quasi­
fractura. Observem com, en temps curts, es forma una estructura estacionaria en

forma de dit de Saffman-Taylor (a). El cap d'aquest dit, pero esdevé inestable i

la dinámica de creixement canvia abruptament (més de pressa que 1/30 s), amb

un sobtat increment en la velocitat seguit d'un increment més suau i continuat.

La morfologia de l'estructura canvia també, amb una secció transversal molt més

reduida que abans (a2). En el segon cas, presentem un exemple típic de flux en el

pes molecular més gran de polímer associatiu linial, amb Q > Qth. També tenim un

estat estacionari a temps curts, en forma de dit de Saffman-Taylor (bl ). Aquest estat,
pero, és inestable, i es tranforma en un altre amb una morfologia ramificada (b2),
amb una velocitat d'avanc que oscil-la amb una freqiiencia característica (vegeu més

endavant). La morfologia ramificada desemboca en un estat sense ramificacions i amb

un increment continuat de la velocitat (b3). El tercer exemple, en la part inferior de
la figura, correspon a flux amb polímers en forma de pinta del pes molecular més petit
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Figura 5: Diferents morfologies en el flux en polímers associatius. Serie superior: flux
en els polímers linials de pes molecular més petit; serie mitja: flux en els polímers linials
de pes molecular més gran; serie inferior: flux en els polímers en forma de pinta de pes
molecular més petit.
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i que mostra una evolució dinámica amb semblances amb els dos exemples anteriors.

IILB Inestabilitat de quasi-fractura del regím viscós

Tal i com hem descrit en la secció anterior, observem com el regim de dits viscosos pot

esdevenir inestable mitjancant la injecció més enllá d'un llindar Qth. L'estructura que

s'origina té fortes ressemblances amb la fractura en materials frágils, Un primer in­

tent d'explicar aquest fenomen implica la introducció d'una escala de temps intrínseca

dels líquids polimerics, Quan injectem aigua en el fluid a ritme lent, l'energia intro­

duida externament és eficientment dissipada pel flux viscós. Nogensmenys, a ritmes

d'injecció més elevats, la dissipació viscosa no és suficient i un altre mecanisme sem­

bla ser més favorable: la fractura de medio Per tal de caracteritzar aquesta transició,
definim un número adimensional, el número de Débora, De [63], de forma análoga a

experiments anteriors [38].

Dels experiments en canals de HS podem extreure, com a temps característic,
l'invers del ritme de cisalla:

(20)

on, si la velocitat característica és U = QjbW, aleshores el ritme de cisalla és·7 =

(dU)j(dt) rv U[b. També definim un temps característic de la disolució polimerica
com

1
7r rv -;-.

'Yo
(21)

Aleshores, obtenim un número de Débora

De =
7r
=

Q
.

7/ i'oWb2 (22)

L'ús del número de Débora permet rescalar el valor del llindar de transició, Qth,
incloent canvis en la geometria de la cel-Ia o en les propietats reológiques del material.

Hem observat com aquesta senzilla descripció permet rescalar, satisfactoriament, els
canvis en la geometria de la cel-la i els canvis en propietats reologiques derivats de

canvis en la concentració de polímer en disolució. No pot, pero, rescalar els canvis

reológics derivats de canvis en el pes molecular o en l'arquitectura dels polímers.
Hem experimentat també l'ús d'una escala de temps alternativa, la derivada de la

freqüencia d'excitació per la qual els móduls elastics del material tenen la mateixa
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magnitut, pero l'ús de 1'0 dóna els millors resultats.

En el cas dels polímers en forma de pinta, l'ús del número de Débora no permet

rescalar satisfactoriament ni tan sols canvis en la concentracio de polímero Observem,

pero, que els valors mesurats per Qth segueixen una evolució respecte la concen­

tració que pot ser ben aproximada per una llei de potencies, comportament típic dels

parámetres reologics d'aquests materials.

Un model per descriure la dinámica de la xarxa associativa ha estat proposat

per de Gennes [70]. En aquest model, el temps de relaxació dels enllacos associatius

depén de l'esforc aplicat amb una relació del tipus

(23)

on TI i al són un temps i un esforc característics de la xarxa. De Gennes suggereix,
a partir d'aquí, obtenir 1'0 = MI/al' Si bé aquest model permet acomodar una

fenomenologia més complexa, és precís el coneixement dels esforcos en el medi.

111.e Dinámica després de la inestabilitat del regím de dit

viscós

Tal i com hem descrit en les seccions precedents, hem observat un regim dinámic

interessant que apareix després de la inestabilitat d'un dit de Saffman-Taylor. En
.

alguns casos, la dinámica d'aquest regim presenta una evolució no monotónica de la

velocitat, amb oscil-lacions que suggereixen la comparació amb fractura de materials

fragils [54,55] i amb experiments de desenganxament d'una cinta adhesiva [64], on

stick-slip juga un paper primordial. Analogament amb com s'ha fet en aquests treballs

citats, hem mesurat i analitzat l'evolució de la velocitat del cap de l'estructura que

creix, per tal de trobar els trets principals de la dinámica,

En els nostres experiments, hem procedit enregistrant l'evolució d'una estructura

determinada, amb un ritme d'injecció fixat per un mecanisme d'injecció precís, i
analitzant digitalment les imatges, per tal d'obtenir l'evolució de la posició del cap

de l'estructura, de la seva área i, en una de les series d'experiments, de l'evolució

de la pressió d'injecció. L'ús d'una camera amb un temps d'exposició de 1/1000 s
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(controlable electronicament] ha permés unes imatges perfectament nítides. Per tal

d'extreure una freqiiencia característica en l'evolució del regim oscil-latori hem pro­

cedit a calcular l'espectre de freqiiencies corresponent. En l'análisi de Fourier hem

utilitzat un filtre numeric (hanning window) que elimina l'efecte del component no

oscil-lant en la velocitat.

Tal i com es pot observar en la Figura 5, hi ha regims dinamics qualitativament
diferents. L'estudi que segueix analitza aquestes diferencies.

En el cas corresponent a l'experiment mostrat en la Figura 5.a, l'evolució de

la velocitat en el régim de dit viscós no té cap tret significatiu, fora d'una velocitat

d'avanc constant (amb soroll experimental que no conté cap freqiiencia característica).
En el moment de la inestabilitat d'aquest regim, hi ha un canvi sobtat en la magnitut
de la velocitat, seguit per un increment moderat i continuat on, un cop més, no

trobem cap comportament periodic. El segon tipus d'experiments, corresponents a

l'exemple mostrat en la Figura 5.b, es donen en fluxos en disolucions de polímers
associatius linials del pes molecular més elevat. L'evolució temporal i l'espectre de

freqíiencies es poden observar en la Figura 6. Observem clarament (sobretot en la

gráfica insertada en la Figura 6.a que és l'evolució temporal a la qual s'ha aplicat un

filtre passa-baixos) l'aparició d'un regim oscil-Iatori, que s'inicia un cop el regim de dit

viscós es fa inestable. En aquest regim podem mesurar una freqüencia característica

JI (Figura 6.b), de forma reproduíble i que depen de les propietats reológiques del

material, del ritme d'injecció i de la geometria del canal. Podem observar en la

Figura 7 com JI mostra una dependencia aproximadament linial amb el número de

Débora [o amb el ritme d'injecció, ates que hem construit De = Q/(Wb2i'o)]. Podem

veure com aquesta definició del número de Débora pot rescalar dos experiments amb

la mateixa concentració de polímer (5%) pero dimensions del canal diferents. No és

capac, pero, de rescalar els canvis en concentració, indicant que aquest simple rescalat

no és suficient per descriure la dinámica, L'ús del número de Débora alternatiu,
De' = Q/(Wb2wT), dóna un resultat similar, peró el descartem en favor del primer

per tal com aquell funciona molt millor en la predicció delllindar de inestabilitat del

regim viscós.

Kurtze i Hong [71] han estudiat analíticament el comportament de quasi-fractura
en materia condensada tova i han predit l'aparició d'una freqiiencia d'oscil-lació

basant-se en la suposició que el sistema és dominat per dinámica de stick-slip. Pos-
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Figura 6: Evolució temporal i expectre de freqiiencies del perfil de velocitats en fluxes
amb polímers associatius linials del pes molecular més elevat: (a) Evolució de la velocitat

d'avanc, amb l'iniei del regim oscil-latori i del regim de fractura rápida marcats. (b) Es­

pectre de freqiiencies del regim oscil-latori, obtingut amb un filtre banning window. El pie
pronunciat en els primers tres canals de freqiiencia és un artefacte numeric. (e) Les partic­
ularitats interessants de l'espectre de freqíiencies no són visibles sense el filtre numeric.
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Débora, mostrant un increment aproximadament linial de JI respecte de la forca aplicada.
En (B) hem considerat l'ús d'un número de Débora alternatiu, tal i com es discuteix en el

texto

tulant la presencia d'una relació esforcos-velocitat d'avanc peculiar han demostrat

l'aparició d'una bifurcació de Hopf amb una freqiiencia característica que es pot ex­

treure del coneixement dels esforcos viscosos dins del sistema. Hem desenvolupat a

ordre més baix la seva expressió i hem arribat a l'aproximació:

128 1 4 Q
f rv

72930"min-. ,
a 1)/'10

(24)

on O"min és l'esforc mínim en el cicle de stick-slip del model de Kurze i Hong; a és la

tensió superficial i J1 es ellímit de la viscositat pel ritme de cisalla tendint a zero. En

els nostres experiments, hem observat com f rv Q (vegeu Figura 7), per la qual cosa

podem extreure un pendent de l'aproximació linial de les nostres dades experimentals.
El resultat es pot veure en la Figura 8, on l'eix d'ordenades hauria de correspondre,

segons (24) a

(25)

Qualsevol intent de comparar els nostres resultats experimentals amb aquesta predicció
teórica passa per un coneixement adequat deIs esforcos víscoelástics en el medí.
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III.D Esforcos en les estructures de quasi-fractura

Hem vist com la nostra descripció simple de la inestabilitat de quasi-fractura del

regim de dits viscosos i de la freqiiencia característica en aquest nou regim, basada

en el número de Débora (el qual construún amb un únic parametre característic,

1'0) no és suficient per descriure el que observem quan canviem de forma important
les propietats reologiques dels nostres materials. També hem vist que models que

intenten milIorar la nostra comprensió tant de la trasició de quasi-fractura com del

regim oscil-Iatori observat necessiten de bones mesures o estimacions dels esforcos en

el sistema.

Tot i que no tenim cap metode directe per mesurar els esforcos viscoelastics en

el sistema, hem intentat estimar algun valor característic a través de la mesura de la

pressió del fluid invasor en el punt d'injecció. Per fer-ho, hem utilitzat expressions

que ens permeten obtenir informació sobre la reologia del material que han estat

derivades per fluids newtonians, peró que utilitzem com a primera aproximació en el

nostre estudi de fluids no-newtonians. En primer lloc, hem obtingut una viscositat

característica del regim oscil-Iatori, la qual hem representat en funció de la concen­

tració en la Figura 9. Tot i que el valor absolut d'aquesta viscositat és quelcom més

baix que les mesures de reologia típiques, el seu canvi sistemátic amb la concentració

de la mostra suggereix que pot ser una magnitut forca significativa.



IV. Conc1usions 117

l1eft (Poise)

2

e (wt%)

3

Figura 9: Viscositat efectiva extreta del valor promig de P en el regim oscil-Iatori. La

línia és un ajust en llei de potencies, el qual dóna J.l.eff I'.J él.

D'altra banda, tenim els resultats presentats en la Figura 10, on la relació reologica

viscositatjritme de cisalla ha estat estimada experimentalment a partir de les mesures

fetes en un experiment de quasi fractura. En aquest cas, si bé el comportament qual­
itatiu és prou similar al mesurat en reologia, els valors absoluts tant de la viscositat

com de 'Yo són lleugerament inferiors als mesurats en reologia.

IV Conclusions

Hem descrit una serie d'experiments, basats en la formació d'estructures durant la

invasió d'un fluid poc viscós dins d'un fluid molt més viscós, en cel-Ics de Hele­

Shaw. El sistema és prou senzill i estudiat com per permetre afegir modificacions

que donen resultats nous forca interessants. En un primer grup d'experiments, hem

afegit externament anisotropia en el flux de fluids newtonians mitjancant un gravat
d'escletxes regular. Aquesta pertorbació permet l'observació de fases dendrítiques
les quals hem estudiat quantitativament mitjancant uns resultats teórica recents. EIs

nostres estudis han permés elaborar uns criteris per estudiar quantitativament els

efectes de l'anisotropia en les fases dendrítiques, basats en la regularitat observada
en parámetres ajustables a l'evolució del sistema. Si bé no hem trobat una forma

clara de caracteritzar la morfologia d'una fase determinada, aquest metode pot servir
d'eina en el futur a l'hora d'estudiar com els efectes anisotropics desapareixen a mida
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Figura 10: Viscositat efectiva promitjada sobre diverses realitzacions de flux en una

disolució amb e = 1.58% de polímer associatiu en forma de pinta del pes molecular més

petit. J1, ha estat estimada mitjancant la llei de Darcy.

que introduím soroll de major intensitat en el sistema.

En un segon grup d'experiments, hem estudiat l'ús de fluids polimerics amb

els quals observem una transició cap a un regim amb propietats morfologiques i

dinámiques similars a la fractura en solids fragils. Hem estudiat el llidar de la

transició i les freqiiencies característiques que apareixen, i els hem relacionat amb

parámetres característics del material. Hem vist com la simple comparació de dues

escales de temps, una imposada per les pertorbacions externes, l'altra propia del ma­

terial, permet entendre parcialment l'origen de la transició. Nogensmenys, el nostres
intents per fer un estudi que inclogui una amplia varietat de condicions reológiques
passen per l'obtenció de mesures addients dels esforcos viscoelastics en el medio
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