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based Classification 

K-NN: K-Nearest Neighbors 

LC: Liquid Chromatography  

LC-MS: Liquid Chromatography – 

Mass Spectrometry 

LC-MS/MS: Liquid Chromatography – 

Tandem Mass spectrometry 

LDA: Linear Discriminant Analysis 

LFD: Lateral Flow Device 

LMT: Logistic Model Tree 

LS: Least-Square 

LV: Latent Variable  

MAPK: Mitogen-Activated Protein 

Kinases 

MIR: Mid-Infrared 

MLP: Multilayer Perceptron 

MLR: Multiple Linear Regression  

MS: Mass Spectrometry 

MSC: Multiplicative Scatter Correction 

MSI: Multispectral Imaging 

NIR: Near-Infrared 

NIRS: Near-Infrared Spectroscopy 

NIV: Nivalenol 

OTA: Ochratoxin A 

OW: Object-Wise 

PC: Principal Component 

PC-LDA: Principal Component Linear 

Discriminant Analysis  

PCA: Principal Component Analysis 

PCR: Principal Component Regression  

PLS: Partial Least Squares 

PLS-DA: Partial Least Square 

Discriminant Analysis 

PMTDI: Provisional Maximum 

Tolerable Daily Intake 

PW: Pixel-Wise 

QDA: Quadratic Discriminant Analysis 

qPCR: Quantitative Polymerase Chain 

Reaction 

R2: Coefficient of Determination   

Rc2: Coefficient of Determination of 

Calibration  
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Rp2: Coefficient of Determination of 

Prediction 

Rcv2: Coefficient of determination of 

Cross-Validation 

Rv2: Coefficient of determination of 

Validation 

RF: Random Frog 

RI: Reflective Index  

RMSE: Root Mean Square Error 

RMSEC: Root Mean Square Error of 

Calibration  

RMSECV: Root Mean Square Error of 

Cross-Validation 

RMSEP: Root Mean Square Error of 

Prediction 

ROI: Region of Interest 

RPD: Ratio of Performance to 

Deviation 

RT-PCR: Reverse-Transcription 

Polymerase Chain Reaction 

SAE: Sparse Autoencoder 

SAM: Spectral Angle Mapper 

SEC: Standard Error of Calibration 

SECV: Standard Error of Cross-

Validation 

SEP: Standard Error of Prediction 

SEPc: Standard Error of Prediction 

corrected by bias 

SIMCA: Soft Independent Modelling 

by Class Analogy 

SK-HSI: Single Kernel – Hyperspectral 

Imaging  

SK-NIR: Single Kernel – Near Infrared 

SNV: Standard Normal Variate 

SOM: Self-Organizing Map 

SPA: Successive Projections Algorithm 

SPLS-DA: Sparse Partial Least Square 

Discriminant Analysis 

SVM: Support Vector Machine 

SWIR: Short-Wave Infrared 

UHPLC: Ultra High-Performance 

Liquid Chromatography 

UHPLC-DAD: Ultra High-Performance 

Liquid Chromatography – Diode Array 

Detector 

UV: Ultraviolet 

UVE: Uninformative Variables 

Elimination 

Vis: Visible  

WL: Wavelength 

ZEN: Zearalenone 

ZnSe: Zinc Selenide
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Abstract 

Mycotoxins are fungal secondary metabolites that are harmful to human and 

animal health and reduce economic yield in cereal production. The cereal 

industry and suppliers require novel technologies to detect their presence before 

entering the food chain. Traditional analytical techniques for mycotoxins are 

time-consuming, expensive, destructive and pollutant. Contrarily, spectroscopic 

applications are rapid, eco-friendly and non-destructive, depending on the 

technology used. The present work tests the suitability of near-infrared 

hyperspectral imaging and Fourier transform mid-infrared to detect 

deoxynivalenol (DON) in two of the most consumed commodities worldwide, 

wheat and corn. 

For the HSI-NIR application, the methodological design started with the 

standardization of the analytical procedure and sampling parameters before the 

spectra acquisition. Two samplings were tested depending on the analytical 

purpose: wheat samples and individual wheat kernels. For sample analysis, bulk 

and milled wheat samples were scanned under the imaging system, obtaining 

their NIR spectra. Then, the samples were analysed by HPLC, determining the 

ergosterol (fungal metabolite not present in plant cells) and DON concentrations 

as the reference data. Spectral and chromatographic data were modelled using 

chemometric tools, calibrating predictive models for ergosterol and DON 

quantification and discrimination models to reject DON contaminated samples 

over the regulatory limits (1250 µg/kg). For single grain analysis, pixels mean 

NIR spectra of the kernel were the analytical target. In this instance, grains were 

categorised as symptomatic, mildly-symptomatic or healthy according to 

Fusarium Head Blight common damages and analysed by HPLC, obtaining their 

DON concentration. Predictive models for DON quantification and 

discrimination models for Fusarium-damaged kernels and DON detection (at EU 

limits) were calibrated as a cereal sorting strategy. Additionally, several solvents, 
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based on water, methanol, acetonitrile and ethanol, were tested, determining the 

DON extraction and FTIR analytical power of corn-infected samples. 

For HSI-NIR, the standardization started by assessing the method repeatability, 

the most suitable region of interest selection and the kernel orientation and 

location effect. The PCA results showed good repeatability between 

measurements. In addition, the ROI delimitation method selected was by similar 

pixels selection with Euclidean distance. The results also demonstrated that 

kernel location had no effect on the measurement and that, although the kernel 

orientation affected the PCA projection, fungal damage and DON contamination 

predominated. 

HPLC analysis demonstrated the weak correlation between ergosterol and DON 

(0.61). Consequently, the next step was to calibrate independent predictive 

models for each compound. PLS regression on ergosterol presented cross-

validation performances of Rcv2 of 0.89 and RMSECV of 1.17 mg/kg, while DON 

predictive ability on an independent validation set was R2 of 0.61 and RMSEP of 

501.4 µg/kg. The classification results showed an accuracy of 85.4% to 

discriminate samples at EU regulatory limits. 

DON prediction results in individual wheat kernels showed better adjustment R2 

of 0.88 but higher RMSEP (6.66 mg/kg) for a DON contamination ranging from 

LOD to 135.7 mg/kg. Alternatively, the discrimination of Fusarium-damaged and 

DON-contaminated kernels discrimination were more suitable than the 

predictive models to work at regulatory limits, with an accuracy of 85.8% and 

76.9%, respectively. 

For FTIR, water and methanol (70%) were selected for the tendency to form 

clusters for maize samples contaminated above and below the DON EU limit 

(1750 µg/kg) and their technological applications. SPLS-DA discriminated 

samples with an accuracy of 86.7% and 90.8% for water and methanol, 

respectively. In addition, the SPLS-DA score plots displayed a will-defined 
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separation of samples according to the regulatory limit and revealed the impact 

of the fungal species on the clustering ability. 

The present thesis proves the ability of HSI-NIR to manage fungal and DON 

contamination in cereals. Although prediction models are insufficient for DON 

quantification at low concentrations, classification models are accurate enough 

at regulatory EU thresholds. In addition, the FTIR analysis of water and methanol 

70% maize extracts exhibited also high accuracy discriminations. Thus, the 

general results indicate that both technologies are potent to reject contaminated 

samples and that HSI-NIR is suitable as a cereal sorting tool. 

  



 

 22 

Resum 

Les micotoxines són metabòlits secundaris fúngics causants de malalties en 

humans i animals i de reduccions del rendiment econòmic en la producció de 

cereals. La indústria i els proveïdors demanden noves tecnologies per detectar la 

seva presència abans de la seva entrada en la cadena alimentària. Les tècniques 

d'anàlisi convencionals per a la detecció de micotoxines són lentes, costoses, 

destructives i contaminants. No obstant això, les aplicacions espectroscòpiques 

es caracteritzen per ser ràpides, respectuoses amb el medi ambient i no 

destructives, depenent de la tecnologia utilitzada. Aquest treball examina 

l'aptitud de l'anàlisi per imatges hiperespectrals l'infraroig proper i 

l'espectrofotometria de transformada de Fourier a l'infraroig mitjà per detectar 

deoxinivalenol (DON) en dos dels cereals més consumits a escala mundial, el blat 

i el panís. 

Per aplicar HSI-NIR, el disseny metodològic passa primer per estandarditzar el 

procediment analític i els paràmetres de mostreig abans d'adquirir l'espectre. Es 

van posar a prova dos tipus de mostreigs, segons l'objectiu analític: l'anàlisi de 

mostra sencera i de grans individuals. Per l'anàlisi de mostra, els grans sencers i 

mòlts es van posicionar sota del camp de visió del sistema i es van escanejar, 

obtenint l'espectre infraroig. Es van determinar les concentracions d'ergosterol 

(metabòlit fúngic absent en les cèl·lules vegetals) i DON mitjançant HPLC com a 

mètode de referència. Un cop aconseguides les dades espectrals i de referència, 

es van modelar per quimiometria per a la calibració de models de predicció de 

DON i models de discriminació per rebutjar mostres per sobre del límit legal 

(1250 µg/kg). En l'anàlisi de grans individuals, l'espectre NIR corresponent a la 

mitjana de píxels de cada gra fou la regió analítica d'interès. En aquest cas, els 

grans es varen categoritzar com a simptomàtics, lleugerament simptomàtics o 

sans segons els símptomes comuns de la fusariosi de l'espiga, i es varen analitzar 

per HPLC per determinar la concentració de DON. Un cop adquirides les dades, 
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es van calibrar models de predicció per quantificar DON i els models de 

discriminació per detectar grans amb danys per Fusarium i DON (segons el límit 

legal de la UE) com a estratègia per separar grans contaminats. Per altra banda, 

es varen provar diferents dissolvents, basats en aigua, metanol, acetonitril i 

etanol per determinar la seva capacitat d'extracció de DON en mostres de panís 

contaminat, analitzades posteriorment per FTIR. 

En el cas de l’HSI-NIR, l'estandardització va passar per identificar la repetibilitat 

del mètode, l'eina de selecció de la regió d'interès més convenient i l'efecte de la 

posició i l'orientació dels grans. Els resultats de PCA demostren una bona 

repetibilitat entre mesures. A més, el mètode seleccionat per a la delimitació de 

la regió d'interès va ser mitjançant píxels similars amb distància Euclidiana. Els 

resultats també varen demostrar que la posició del gra dins el camp de visió de 

l'equip no afecta a la mesura espectre i que, encara que l'orientació del gra té 

influència sobre la projecció del gra, el dany fúngic i DON predominen per sobre 

d'aquesta. 

L'anàlisi per HPLC va demostrar la baixa correlació entre ergosterol i DON (0,61). 

A causa d'això, el pròxim pas va ser calibrar models de predicció independents 

per cada un d'aquests components. Les regressions PLS per ergosterol van 

presentar un rendiment per validació creuada de Rcv2 de 0,89 i un RMSECV de 

1,17 mg/kg, mentre que l'habilitat de predir DON per un conjunt de validació 

independent va ser de R2 de 0,61 i un RMSEP de 501,4 µg/kg. L'exactitud en la 

classificació als límits màxims establerts per la UE va ser del 85,4%.Els models de 

predicció de DON en grans de blat individuals varen presentar millors 

ajustaments amb una R2 de 0,88, encara que l'RMSEP va ser major (6,66 mg/kg), 

amb una rang de contaminació dels grans des de LOD fins a 135,7 mg/kg. Malgrat 

això, les discriminacions de grans danyats per Fusarium i contaminats amb DON 

foren més adequades per a l'anàlisi a concentracions properes al límit legal que 
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els models de predicció, classificant correctament el 85,8% i 76,9% dels grans, 

respectivament. 

En l'anàlisi per FTIR, les extraccions basades amb aigua i metanol 70% es varen 

seleccionar per la seva tendència en agrupar mostres de panís segons el límit 

establert en panís (1750 µg/kg) respecte als altres dissolvents i per les seves 

aplicacions tecnològiques. Els models SPLS-DA discriminaren mostres amb una 

precisió 86,7% i 90,8% per aigua i metanol (70%), respectivament. A més, els 

gràfics SPLS-DA mostraren una bona separació de mostres segons el límit legal i 

un impacte de les espècies fúngiques sobre aquestes agrupacions. 

Aquesta tesi demostra l'habilitat de l'HSI-NIR per detectar les contaminacions 

fúngiques i el DON en cereals. Encara que els models de predicció són 

insuficients per determinar la quantitat de DON a baixes concentracions, els 

models de classificació són precisos a límits propers als establerts per la UE. A 

més, l’anàlisi per FTIR dels extractes d’aigua i metanol (70%) també va presentar 

alta capacitat de discriminació. D'aquesta manera, els resultats demostren que 

ambdues tecnologies presenten potencial per rebutjar mostres contaminades i 

l'HSI-NIR és adequada com a tècnica de separació de grans contaminats. 
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Resumen 

Las micotoxinas son metabolitos secundarios fúngicos causantes de 

enfermedades en humanos y animales y de reducciones del rendimiento 

económico en la producción de cereales. La industria y proveedores de cereales 

demandan nuevas tecnologías para detectar su presencia antes de su entrada en 

la cadena alimentaria. Las técnicas de análisis convencionales para la detección 

de micotoxinas son lentas, costosas, destructivas y contaminantes. Sin embargo, 

las aplicaciones espectroscópicas se caracterizan por ser rápidas, respetuosas con 

el medio ambiente y no destructivas, dependiendo de la tecnología utilizada. Este 

trabajo examina la aptitud del análisis por imágenes hiperespectrales en el 

infrarrojo cercano y la espectrofotometría de transformada de Fourier en el 

infrarrojo medio para detectar deoxinivalenol (DON) en dos de los cereales más 

consumidos a nivel mundial, el trigo y el maíz. 

Para aplicar HSI-NIR, el diseño metodológico pasa primero por estandarizar el 

procedimiento analítico y los parámetros de muestreo antes de adquirir el 

espectro. Se pusieron a prueba dos tipos de muestreos dependiendo del objetivo 

analítico: el análisis de muestra entero y de granos individuales. Para el análisis 

de muestra, los granos a granel y molidos se escanearon bajo del campo de visión 

del sistema, obteniendo el espectro infrarrojo. Después, se determinaron las 

concentraciones de ergosterol (metabolito fúngico no presente en las células 

vegetales) y DON mediante HPLC como método de referencia. Además, se 

modelaron datos espectrales y de referencia por quimiometría para la calibración 

de modelos de predicción capaces de cuantificar DON y modelos de 

discriminación para rechazar muestras por encima del límite legal (1250 µg/kg). 

Para el análisis de granos individuales, el espectro NIR correspondiente a la 

media de los píxeles de cada grano fue establecido como la región analítica de 

interés. En este caso, los granos se categorizaron como sintomáticos, ligeramente 

sintomáticos o sanos según los síntomas comunes de la fusariosis de la espiga y 
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se analizaron por HPLC para obtener la concentración de DON. Una vez 

obtenidos ambos datos, se calibraron modelos de predicción de DON y los 

modelos de discriminación para detectar granos dañados por Fusarium y 

contaminados con DON (usando el límite legal de la UE) como estrategia para 

separarlos. Por otra parte, se probaron diferentes disolventes basados en agua, 

metanol, acetonitrilo y etanol para determinar su capacidad para extraer DON 

en muestras de maíz contaminadas, para su posterior análisis por FTIR. 

En el caso del HSI-NIR, la estandarización pasó por identificar la repetibilidad 

del método, la herramienta de selección de la región de interés más conveniente 

y el efecto de la posición y la orientación de los granos. Los resultados de PCA 

muestran una buena repetibilidad entre medidas. Además, el método 

seleccionado para la delimitación de la región de interés fue mediante píxeles 

similares con distancia Euclidiana. Los resultados también demostraron que la 

posición del grano dentro del campo de visión del equipo no afecta a la medida 

espectro y que, aunque la orientación del grano tiene influencia sobre la 

proyección en el PCA, el daño fúngico y DON predominan por encima de esta. 

El análisis por HPLC demostró la baja correlación entre ergosterol y DON (0,61). 

Debido a esto, el siguiente paso fue calibrar modelos de predicción 

independientes para cada uno de estos componentes. Las regresiones PLS por 

ergosterol presentaron un rendimiento por validación cruzada de Rcv2 de 0,89 y 

un RMSECV de 1,17 mg/kg, mientras que la habilidad de predecir DON validado 

con un conjunto de muestras independiente fue de R2 de 0,61 y un RMSEP de 

501,4 µg/kg. La exactitud en la clasificación según los límites máximos 

establecidos por la UE fue del 85,4%. Los modelos de predicción de DON en 

granos de trigo individuales presentaron mejores ajustes, con una R2 de 0,88, 

aunque el RMSEP fue mayor (6,66 mg/kg) con un rango de contaminación desde 

LOD hasta 135,7 mg/kg. Sin embargo, las discriminaciones de granos dañados 

por Fusarium y contaminados con DON son más adecuadas para el análisis a 
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concentraciones cercanas al límite legal, clasificando correctamente el 85,8% y 

76,9% de los granos, respectivamente. 

En el análisis por FTIR, se seleccionaron las extracciones basadas en agua y 

metanol (70%) por su mayor tendencia en agrupar muestras de maíz según el 

límite legal (1750 µg/kg), además de sus aplicaciones tecnológicas. Los modelos 

SPLS-DA discriminaron muestras con una precisión 86,7% y 90,8% para agua y 

metanol (70%), respectivamente. Además, los gráficos de SPLS-DA mostraron 

una buena separación de muestras según el límite legal y un impacto de las 

especies fúngicas sobre estas agrupaciones. 

La presente tesis demuestra la habilidad del HSI-NIR para detectar las 

contaminaciones fúngicas y contaminaciones por DON en cereales. Aunque los 

modelos de predicción son insuficientes para determinar la cantidad de DON a 

bajas concentraciones, los modelos de clasificación son precisos en límites 

cercanos a los establecidos por la UE. Además, el análisis por FTIR de los 

extractos de agua y metanol (70%) también presentaron alta capacidad de 

discriminación. De esta forma, los resultados demuestran el potencial de ambas 

tecnologías para rechazar muestras contaminadas y la habilidad del sistema HSI-

NIR como técnica de separación de granos contaminados. 
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 Fusarium species and pathogenicity 

Cereals and their derived products are a considerable part of the daily diet in the 

worldwide population. Almost 80% of the European cereal production is wheat, 

maize and barley and more than 60% of the global. Under several environmental 

conditions, cereal crops are susceptible to mould contamination associated with 

a negative impact on the quality and safety of the final product. Fusarium is a 

plant pathogen that produces diseases in small grain cereals related to a crop 

yield reduction. It belongs to a large genus of filamentous fungi, which presents 

high occurrences in cereal seeds (Uoti, 1975). Although the recent technological 

advances in mitigation strategies, it remains a problem for cereal producers 

(Nelson, Dignani, & Anaissie, 1994).  

Depending on the host, fungal species cause more acute diseases on the plant. 

The most widely known fusariosis associated diseases are seed blight, foot rot 

and head blight in numerous cereals; and stalk, ear rot and seedling blight in 

maize (Janse & Obradovic, 2015). Soil-habiting fungi can rot the seed before 

germination or cause seedling blight, in which the fungi infected grains are 

discoloured and soft. Alternatively, Fusarium graminearum predominantly 

produces head blight, thus is known as Fusarium Head Blight (FHB) or scab. In 

continuous climate change, the environmental conditions are becoming 

favourable for Fusarium species growth and disease production (Chakraborty & 

Newton, 2011). 

Wheat and barley are the most affected cereals due to fungal growth within the 

spikelet head, which becomes bleached (Zhang et al., 2013). With favourable 

conditions, they produce pinkish spores, which are visible on the spikelets. In the 

late stages, black spheres called perithecia appear on the surface of the affected 

spikes. At the grain level, the colonization of the fungi during cereal growth 

stages causes the shrink and wrinkle of the kernel, producing a shrivelled, rough 
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and pinkish appearance. The adverse effects of FHB include the loss of around 

50% of the entire production yield and, in worst cases, 70%; a loss of grain quality 

caused by the destruction of proteins, cells walls and starch during fungal 

infection with negative effects on bread and beer fermentation; and an 

undesirable effect on seed drilling and foot rot during plant growth (Osborne & 

Stein, 2007; Pirgozliev, Edwards, Hare, & Jenkinson, 2003). 

Fusarium species not only have side effects on grain quality, as their secondary 

metabolism can produce a wide range of toxic compounds, known as 

mycotoxins, being the trichothecenes one of the most important group. Although 

many Fusarium species are not trichothecene producers (they can be non-

pathogenic), the species responsible for FHB predominantly produce toxins from 

this group. F. graminearum species complex, Fusarium culmorum, Fusarium poae, 

Fusarium cerealis, Fusarium sibiricum, Fusarium langsethiae, Fusarium 

pseudograminearum and Fusarium sporitrichioides contaminate cereals for human 

and livestock consumption with trichothecenes (Foroud et al., 2019). Despite the 

efforts to control Fusarium species growth and FHB in cereals, such as cultural 

and biological control, cultivar resistance and chemical control, they remain a 

concern for farmers, food producers and consumers. 

 Trichothecenes 

When fungi infect the inflorescence structure of the small grain cereals in 

favourable environmental conditions, Fusarium can produce FHB and penetrate 

the cell wall after germination. Fungi produce trichothecene toxins excreted from 

the mycelium, which accumulate on infected tissues and, consequently, on the 

agricultural product (Sweeney, 1999). Although Fusarium is the most studied 

trichothecene-producer, other genera can also produce them, such as 

Myrothecium, Spicellum, Stachybotrys, Cephalosporium, Trichoderma, and 

Trichothecium (Kimura, Tokai, Takahashi-Ando, Ohsato, & Fujimura, 2007).  
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Trichothecenes are one of the main groups of mycotoxins, which present a 

structure derived from the 12,13-epoxytrichothec-9-ene ring. The molecular 

structure within these toxins can differ depending on the functional groups 

(Kotal, Holadová, Hajšlová, Poustka, & Radová, 1999). The trichothecenes are 

divided into four groups (A, B, C and D) depending on the producer and the 

functional groups, although other classifications are reported depending on the 

number of molecules in the ring, conformation, reactivity, etc. Farmers consider 

types A and B for their high incidence in commonly cultivated crops, such as 

wheat, barley, oats and maize. Trichothecenes are amphipathic and small 

molecules that easily penetrate cell membranes and are rapidly absorbed by 

intestinal tissues. Their ingestion is related to immunological and haemorrhagic 

problems, dermatitis, vomiting and feed refusal (McCormick, Stanley, Stover, & 

Alexander, 2011). Type A is represented by T-2 and HT-2 toxins, being of concern 

from the extreme acute toxicity perspective, which affects mainly the 

hematologic and immune systems. On the other hand, deoxynivalenol (DON) 

and nivalenol (NIV) and their acetylated derivatives: 3-acetyl-deoxynivalenol (3-

ADON) and 15-acetyl-deoxynivalenol (15-ADON) constitute the type B group 

(Rosa et al., 2018). The phytotoxic effects of this group are more severe than in 

group A, caused by the inhibition of protein synthesis and cellular intake of DON 

and 3-ADON. In addition, type B trichothecenes are also associated to a reduced 

feed uptake, nausea and immunosuppression in animals (Foroud et al., 2019). 

Among the trichothecenes, DON is the toxin found with the highest occurrence 

worldwide and presents the highest concentrations as a consequence of the 

extended Fusarium infections. Consequently, due to its high incidence and toxic 

effects, DON is the most studied Fusarium toxin. 

 Deoxynivalenol 

DON also known as vomitoxin, is a mycotoxin produced predominantly by F. 

graminearum, but also by F. culmorum and F. crookwellense (Bianchini & Bullerman, 
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2014). From the chemical point of view, DON is a polar and organic chemical, 

containing three free hydroxyl (-OH) groups responsible for DON toxicity 

(Sobrova et al., 2010). In addition, DON is very stable under temperatures up to 

350 °C. Consequently, it is not reduced in cooking or baking steps. However, 

some studies reported its reduction in boiling or malting water due to its high 

solubility into polar substances (Pascari et al., 2019; Vidal, Sanchis, Ramos, & 

Marín, 2016). Studies reported DON high prevalence in small grain cereals, such 

as wheat, barley, maize, oats and rye (Mishra, Srivastava, Dewangan, Divakar, & 

Kumar Rath, 2020; Patriarca & Fernández Pinto, 2017). 

Based on toxicological studies, DON can produce acute and chronic effects on 

human and animal health. In acute exposure doses, DON is related to nausea, 

vomiting, diarrhoea, abdominal pain and malnutrition (Knutsen et al., 2017). 

Cellular behaviour is also affected by the alteration of protein synthesis on the 

ribosomes, producing a ribotoxic effect that phosphorylates mitogen-activated 

protein kinases (MAPK) and activates genes associated with immune response, 

chemotaxis, inflammation and apoptosis. Consequently, DON intake is related 

to intestinal, immune, endocrine and nervous system affectations (Escrivá, Font, 

& Manyes, 2015). International Agency for Research on Cancer (IARC, 2012) 

classifies DON as a group 3 carcinogen as there is inadequate evidence in 

experiments of its carcinogenicity in humans and animals. However, a 2-year 

bioassay in mice established the Provisional Maximum Tolerable Daily Intake 

(PMTDI) for DON at 1 µg/kg bw/day (WHO, 2011). Due to the exposure risks of 

DON, the European Commission (2006a) set maximum levels for DON in 

foodstuffs, establishing the limit of 1250 µg/kg for unprocessed cereals other than 

durum wheat, oats and maize; 1750 µg/kg for durum wheat, oats and maize; 750 

µg/kg for direct human consumption cereals and pasta; and 500 µg/kg for bread. 

The cereal products that present contaminations above the regulatory threshold 
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are rejected from the food chain, producing a negative impact on the economic 

yield of producers. 

 Analytical techniques commonly used for DON in 

cereals 

Food producers in European countries based the majority of DON analyses (55 

%) on liquid chromatography (LC) coupled with ultraviolet (UV), fluorescent 

(FD), or mass spectrometry detectors (MS); the 23 % with Gas Chromatography 

(GC) coupled with an electron capture detector or with MS; and the 22 % with 

Enzyme - Linked Immunosorbent Assay (ELISA) (European Food Safety 

Authority, 2013). High-Performance Liquid Chromatography (HPLC) is a 

suitable technique for DON detection due to its polarity, which can be dissolved 

into organic solvents and water. Depending on the detector used, HPLC presents 

LOD for DON between 14-200 µg/kg and LOQ between 47-380 µg/kg (Ran et al., 

2013). Thus, its main advantages are high sensitivity and selectivity and reliable 

repeatability. On the other hand, Liquid Chromatography–Mass Spectrometry 

(LC-MS) analysis also presents high sensitivity, accuracy and reliability for DON 

analysis in cereals. Additionally, this technique offers the highest degree of 

certainty in analyte identification (Lattanzio, Solfrizzo, & Visconti, 2008). Despite 

the advantages of LC analysis, they have several throwbacks, as the elevated cost, 

a significant time-consumption, the sample destruction, a complex cleaning step, 

and the pollutant chemicals usage. Moreover, Gas Chromatography coupled to 

Mass Spectrometry (GC-MS) depends on derivatization and has thermal stability 

problems; while LC-MS has matrix effects that can affect the results, a complex 

selection of an internal standard, and a limitation caused by the diversity of 

polarities and ionization capacities of the analyte (Turner, Subrahmanyam, & 

Piletsky, 2009). ELISAs are kits available for multiple mycotoxins, characterised 

for their specificity, fast and relatively easy-usage. The most frequent 
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disadvantages present in ELISA are false positives due to antibodies’ cross-

reactivity and matrix dependence, and false negatives caused by low sensitivity 

(Kharayat & Singh, 2018). Consequently, farmers and industry require 

alternative detection and quantification techniques, substituting expensive 

laboratory facilities and pollutant chemicals and to analyse mycotoxins in a 

rapid, non-destructive and eco-friendly way. Thus, advanced methods involving 

the maximum information possible are required to control rapidly and accurately 

fungi and associated metabolites in industrial stages. Hyperspectral imaging 

(HSI) has been considered a promising method to assess the quality and safety 

of food products. The HSI introduces the spectral recognition of the sample that 

makes it suitable for heterogeneous foods analysis, presenting solutions to 

conventional analysis techniques. 

 Basis of Near-Infrared Hyperspectral imaging (HSI-

NIR) 

Near-Infrared Spectroscopy (NIRS) employs the spectral range from 780 to 2500 

nm, offering information about the overtones and the combination of the 

molecular vibrations of the hydrogen bonds (O-H, C-H, N-H and S-H) from the 

tested object (Cen & He, 2007). When the organic molecules are exposed to NIR 

frequencies, the vibration of the abovementioned bonds absorbs the spectral 

energy. Then, the rest of the chemical bonds reflect or transmit the other beams 

at different infrared (IR) wavelengths and are dispersed and measured by the 

detector. In solid samples, the spectral bands in the NIR regions are wide and 

overlapped, so the spectra obtained is characterized by a smooth shape. 

Preliminary studies of Dowell, Ram, & Seitz (1999) demonstrated the ability of 

NIR for DON classification. They observed absorption patterns of DON 

determined by its functional groups (O-H, C-H and N-H), comprised between 

the NIR spectral region. The characteristic overtones of each group were (750, 950 
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and 1400 nm), (1200, 1400 and 1650 nm), and (1050 and 1500 nm) respectively, 

and the absorption wavelengths were used for DON detection. Several studies 

proved the feasibility of NIR technologies to detect DON in different cereal 

commodities and proposed it as an efficient tool to manage contaminations in 

cereal industry (Caporaso, Whitworth, & Fisk, 2018). However, NIR 

spectroscopy is a spatially limited technique, especially for heterogeneous 

samples measurement (Manley, 2014). Consequently, efficient technologies in the 

spatial characterization of the samples are required.  

HSI is a high-potential technique based on the electromagnetic spectrum 

collection through the spatial positions of the measured object. Figure 1 shows a 

schematic representation of the three dimensions captured by the image, two of 

them corresponding to the spatial location of the pixel, and the third one 

equivalent to the spectral data acquisition through the NIR wavelength range. In 

addition, the illustration presents the spectral response for both individual pixels 

and the whole image. The multiple combinations between the imaging vectors 

(X, Y), which determine the pixel location in the scanned region, and the spectral 

information vector for each pixel at different wavelengths create a three-

dimensional hypercube containing an elevated amount of information (Dale et 

Figure 1. Basis of the hypercube in HSI. Relationship between the spatial resolution (x, 

y) and the spectral resolution (l). 
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al., 2013). The HSI technique generates a spectral variation map showing many 

advantages such as a minimum and non-destructive sample manipulation, 

environmental-friendly, extremely rapid measurements once validated, low-cost 

analysis and detection of different chemical compounds at specific sample 

locations (Sendin, Williams, & Manley, 2018).  

HSI application in the food industry would imply a diminished loss in 

production yield associated with a positive economic impact and a more 

sustainable working system. In addition, it would also include a substitution of 

the expensive laboratory equipment and qualified personnel. Thus, the 

application of HSI technology in postharvest and in the industry would offer an 

alternative to wet chemistry methods. HSI present several advantages beyond 

other conventional methods of chemical analysis. Imaging-based systems have 

high analysis speed compared to chromatographic and immunoassay 

techniques. Consequently, although chromatography has high sensitivity and 

specificity, HSI is more suitable for routine analysis in cereal-based industries. In 

addition, the interest in green analysis methods is a concern to develop new 

approaches in chemical analysis. HSI uses light sources to detect sample features 

to substitute pollutant reagents for eco-friendly sources (Caporaso et al., 2018). 

HSI is applied at a laboratory scale to screen quality and safety in individual 

grains (e.g. protein, starch, moisture, hardness, fungal contamination, 

mycotoxins, defects, etc.) (Fox & Manley, 2014). Several studies built robust 

models to manage these parameters to accomplish the established quality and 

safety standards. 

Moreover, cereal sorting after reception would be interesting to remove kernels 

that do not accomplish the established quality and safety parameters. Some 

kernels from the batch can present fungal contamination, while others can 

remain uncontaminated, due to the uneven contamination of ears or spikes in the 

field (Lu, Saeys, Kim, Peng, & Lu, 2020). For that reason, high contaminations are 
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found in a minority of the kernels, which can be responsible for a whole batch 

rejection in the industry based on sampling and analysis protocols (Shahin & 

Symons, 2012). 

 HSI equipment 

The most common HSI acquisition method is the push-broom for its online 

scanning ability line by line while the sample moves. A typical push-broom HSI 

system incorporates an optical system, an illumination device, a moving unit and 

a data acquisition instrument. The optical systems include the following three 

components: a charged coupled device (CCD) camera characterized by 

semiconductor electronic properties for spectral and spatial detection; a 

spectrograph, which is considered the key of the optical system, disperses the 

light into different wavelengths to generate a spectrum for each pixel of the 

image (ElMasry, Kamruzzaman, Sun, & Allen, 2012); and an objective lens which 

is coupled to the spectrograph to focus the light beam from the scanned object to 

Figure 2. HSI acquisition system. 
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the detector (camera). The illumination unit produces a homogeneous focus of 

light, which does not alter the sample (ElMasry & Sun, 2010). The target is 

scanned line by line by a moving system, which permits the measurement of the 

entire Region of Interest (ROI) with the optical systems fixed. The translation 

stage and the motor are the two main components of the moving device, and they 

control the sample movement speed (Delwiche et al., 2017). Finally, the data 

acquisition instrument is based on computer processing software, which 

converts the raw data from the measurements to band image data. Furthermore, 

it also permits dark and light correction, image improvement, simple 

mathematical operations and a high volume of data storage as spectral band 

images (Kim & Chen, 1998). Figure 2 is a schematic representation of a tower 

push-broom HSI system. 

Recent studies have used HSI devices to screen Fusarium and DON 

contamination of cereal kernels. Tekle, Måge, Segtnan, & Bjørnstad (2015) used a 

SWIR (Short-Wave Infrared) camera coupled to a Mercury Telluride (HgCdTe) 

detector with a spectral range of 1000-2500 nm. The data obtained were processed 

by SpectralDAQ software. Barbedo, Tibola, & Lima, (2017) used a XENICS 

camera combined with a VIS/NIR spectrometer working at wavelengths of 528-

1785 nm. The illumination system consisted of a Quartz Tungsten-Halogen 

Lamp. In recent publications, Ropelewska & Zapotoczny (2018) acquired images 

with a CCD camera, a VIS/NIR (400-1100 nm) spectrometer and a Fiber Optic 

Illuminator associated with a supplementary IR lamp (600-1100 nm). Liang et al. 

(2018) also used a CCD camera but a different spectrometer (ImSpector V10) 

detecting 400-1000 nm wavelengths. The illumination source was a 150-W 

halogen lamp. Finally, Alisaac, Behmann, Kuska, Dehne, & Mahlein (2018) used 

two different cameras (Hyperspectral Camera ImSpector V10 and SWIR-camera) 

with wavelengths ranging from 400 to 1000 and 1000 to 2500 nm, respectively. 
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Analytical Spectral Devices PRO-Lamps illuminated the samples, and Spectral 

Cube Software controlled the spectral measurements of both cameras. 

 

The three most used methods for hyperspectral images production are push-

broom imaging (two-dimension spectral information across the spatial axis line 

by line), whisk-broom scan (spectrum generation for a single pixel at a time) and 

staring imaging (spectral plan across the wavelength axis generation). The 

interaction of the light beam with the measured object can be recorded in 

different ways. Some measurement modes are more suitable for specific samples 

depending on the nature of its matrix, as the light has several behaviours 

depending on the chemical and physical properties (Pasquini, 2003). Light 

reflection variances, caused by the interaction with the sample, should be 

recorded and interpreted correctly, correlating them with the changes in 

chemical composition or physical features of the measured object. 

1.6.1.1. Push-broom imaging 

A push-broom imaging scanner is a system that obtains spectral measurements 

for each pixel in a line. The push-broom imager is based on the sample movement 

in the Y-axis direction, in which the spectrometer records the spectra for each 

pixel in the X-axis line. This technique displays good relationships between 

spatial and spectral resolution. Consequently, its main uses are online and in-line 

measurements (Boldrini, Kessler, Rebnera, & Kessler, 2012).  

1.6.1.2. Whisk-broom imaging 

A point-scanning method (or whisk-broom method) is an imaging system 

obtaining spectral measurement pixel by pixel. The hyperspectral image is 

acquired while the sample or the detector moves in the X and Y axis for a single 

position spectral acquisition. This mode requires an exhaustive pixel by pixel 

data collection to obtain high spectral resolutions of the physical and chemical 
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information of the sample (Qin, 2010). Nevertheless, the method shows low 

spatial resolutions due to the long times used to measure the sample point by 

point.  

1.6.1.3. Staring Imaging 

The staring method is an area scanning technique characterized by the 2-D spatial 

(x, y) plane acquisition at a single spectral wavelength. The hypercube is 

constructed collecting of the spatial areas through the spectral domain for a 

determined number of wavelengths. They can be selected by illuminating the 

sample at a specific wavelength or by the monochromatic reflection analysis in 

the detector. In this case, the advantage is that the images obtained have a high 

spatial resolution, although lower spectral resolutions are obtained (ElMasry & 

Sun, 2010; Gupta, 2011). 

The comparison between the studies using HSI shows that the predominant 

method used for HSI-NIR is line-by-line scanning (push-broom imaging) at 

different pixel resolutions (x, y, l). Barbedo, Tibola, & Fernandes (2015) and 

Barbedo, Guarienti, & Tibola (2018) used this method to capture a 3D hypercube 

with a 320 x 800 x 256 dimension. Besides,  Delwiche, Kim, & Dong (2011) also 

acquired a push-broom image, using a different pixel resolution of 320 x 320 x 

288. The hypercube dimension depends on the wavelength range, the spectral 

resolution of the camera, and the field of view (spatial resolution) selected for the 

image capture.   

 

Hyperspectral measurement modes are generally based on reflectance, 

transmittance or absorbance. The difference between the modes depends on how 

the light beam reaches the detector after interacting with the sample. The 

variances in the light due to its interaction with the measured object should be 

recorded, correlating them with the contamination changes and sample features. 
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The light radiation of the illumination unit to the sample can be reflected, 

transmitted or absorbed, so that one of them is measured. Thus, the relationship 

between incident illumination, fixed at characteristic optical properties, and the 

released radiation is employed to obtain sample properties information 

(Pasquini, 2003). 

In transmittance mode, the detector is placed on the opposite side of the light 

source, thus is ideal for transparent samples, as liquids or gases. An additional 

way to transmittance is the transflectance mode, consisting of the light beam 

amplification by a mirror to make it pass twice through the sample. Alternatively, 

diffuse reflectance measurement is used in NIR spectroscopy. The scattering and 

absorbance of the solid bonds produce changes in the signal intensity. In the 

interactance mode, the light beam penetrates deeper into the sample because the 

detector is located distant from the emission position. Consequently, the light 

beam contains more information about the sample composition. Finally, light 

absorption is also related to food chemical and biological properties, estimated 

by the inversed logarithm of the measured reflectance.     

1.6.2.1. Reflectance Calibration 

When the HSI system works in reflectance mode, the raw data obtained from the 

measurements are in absolute reflectance. These values require compensation by 

removing the dark current noise and correcting the white response (Ngadi & Liu, 

2010). Thus, a reflectance correction of the original measurements is performed, 

obtaining the relative reflectance, according to equation 1: 

! = !!"	!"
!#"	!"

 (1) 

where !$	is the raw hyperspectral image obtained, !% is the white reference and 

!& is the dark current reference. In practice, the compensation of dark and white 

is performed by covering the lens with a zero reflectance cap and using a white 
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fluoropolymer with the highest known reflectance (99%), respectively (Huang, 

Liu, & Ngadi, 2014).  

 Basis and applications of Fourier Transform Infrared 

Spectroscopy (FTIR) 

The light absorption produces energy differences which can be detected, 

obtaining a chemical profile of the analysed material in the MIR region (2500-

25000 nm), which is a reproducible and robust region that can reliably represent 

minor differences in sample composition (Subramanian & Rodriguez-Saona, 

2009). The information obtained includes all the biological information of the 

sample, permitting the differentiation of the major constituents, such as water, 

lipids, carbohydrates, etc., in specific and known bands. The 2500-3225 nm region 

absorbances correspond to the O–H stretching vibrations from hydroxyl groups 

and the N–H from amides of proteins. Protein features are not only shown in this 

region but also the 5882-8695 nm (amide I & II) and 7633-8000 nm (amide III) 

(Barth, 2007). The region of the MIR spectrum between 3225-3571 nm contains 

the C–H stretching information from the –CH3 and =CH2 groups. Carbohydrates 

and phosphodiester vibrational signals are present in the 8000-12500 nm region. 

Finally, a commonly-used MIR region (8333-16666 nm), well-known as the 

fingerprint region, presents detectable signal differences between samples and 

remains stable within the same. Consequently, MIR region interpretation is 

simpler than NIR, although it still requires multivariate analysis for information 

enhancement and application (Bureau, Cozzolino, & Clark, 2019). 

 

Attenuated total reflectance (ATR) is one of the most frequently used sampling 

accessories for IR spectroscopy. Consequently, its application in food analysis 

using ATR-FTIR spectrometers is interesting for producers to obtain a rapid and 

accurate analysis. The ATR principle consists of the IR beam movement from a 
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material with a high reflective index (RI), such as Zinc Selenide (ZnSe) crystal, to 

a low RI material, such as a sample. Although the light rays do not propagate 

into the low RI medium, an evanescence field is formed, interacting with the 

material placed at the surface. When using a critical incident angle, the crystal 

reflects almost all the incident light, less some of the energy that extends beyond 

the crystal (0.1-5 µm) in waveform within the sample (Milosevic, 2004). This 

condition, named total internal reflection, is represented graphically in Figure 3, 

where the extension of the light energy (evanescent wave) is specified. When this 

light penetrates the sample, some of the light is absorbed, giving the IR spectrum 

of the target compounds (Vigano, Ruysschaert, & Goormaghtigh, 2005).  

The outgoing IR beam registered by the detector contains the structural and 

compositional information of the substances in contact with the surface. 

Accordingly, it gives high reproducible results and the detection of specific 

compounds variations. It can be used for solid samples, pressing the material 

against the crystal, liquid samples or the solid residue after liquid evaporation 

on the ATR crystal. The light does not penetrate deep inside the target material, 

so the ATR is considered a surface analysis. Consequently, sample preparation 

should ensure adequate homogenization to obtain accurate results (Ramer & 

Lendl, 2013; Subramanian & Rodriguez-Saona, 2009). 

Detector Source 

Sample 

ATR crystal 

Evanescent wave 

Figure 3. Schematic representation of Attenuated Total Reflection (ATR) sampling 

technique. 



Chapter 1. Introduction 

 46 

 Hyperspectral data pre-processing 

Pre-processing techniques aim to reduce the data variability to highlight desired 

spectral characteristics before modelling Frequently used pre-processing 

techniques in HSI-NIR spectroscopy are classified into two main groups: scatter-

correction methods and spectral derivatives. Additional objectives of these 

approaches are to improve subsequent exploratory analysis, ameliorate linear 

calibration modes, or improve classification or prediction models (Martens, 

Nielsen, & Engelsen, 2003). The success of the models depends on the suitable 

pre-processing technique selection to reduce or maintain model complexity. On 

the other hand, too strict pre-processings should be avoided because they can 

hide valuable information from the spectral data.  

Scatter correction approaches are designed to solve multiple light scatterings or 

additive effects which produce non-linearities for the calibration model. The 

extensively used technique for NIR pre-processing is the Multiplicative Scatter 

Correction (MSC). When samples are solid or emulsions, multiplicative 

scattering effects occur due to the deviations in the optical path length. The 

influence of the vibrations of the neighbour chemical bonds of the sample is 

responsible for this effect. Coefficients of regression, which describe the 

dispersion, are obtained from the original spectrum to build a scatter corrected 

one (Wu et al., 2019). The first step involves the estimation of the correction 

coefficients that are obtained from a least-square (LS) linear regression against 

the average optical spectrum from the calibration set, given by the equation 2: 

$' = % + ' · $()* + )  (2) 

Where $' 	is the previously measured spectrum from the sample; %	is the specular 

effect of the reflection; '	are the estimated scatter interferences different for each 

sample; $()* 	is a reference spectrum used for the pre-processing of the data set, 

which usually corresponds to the average spectral information of the calibration 
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set; and e is the error which contains the chemical information not explained by 

physical variations.  

The second step is the correction of the recorded spectrum using the coefficients 

obtained previously, following the equation 3: 

$+,(( =
-$%&".

& = $()* + )
& (3) 

Where $+,(( is the corrected spectrum similar to $()*  in terms of linear regression. 

The transformation would give a consistent baseline to the spectra (Rinnan, Berg, 

& Engelsen, 2009). 

The second most applied technique used for scatter correction of NIR is the 

Standard Normal Variate (SNV) (Equation 4). This pre-processing method has 

similar benefits to MSC, as it is suitable for removing multiplicative and additive 

interferences of scattering in the light distance and particle size  (Barnes, Dhanoa, 

& Lister, 1989; Cen & He, 2007). The mean spectrum and the standard deviations 

are first calculated, and then each point is recalculated, subtracting the mean and 

dividing by the standard deviation. 

*+,' = (0'"	0̅)
3()'*	),).

/*0

 (4) 

Where, *+,' are individual standard normal variations for - wavelengths 

(corrected value); .' is reflectance value at - wavelength; .̅ is the mean of the .' 
reflectance’s for all the wavelengths and 0 is the number of wavelengths from 

the used range (Caporaso, Whitworth, & Fisk, 2017).  

The first and second derivatives are widely applied in analytical spectroscopy for 

data in which noise is a problem. Such transformations remove both 

multiplicative and additive effects. The first or second derivative differ in that 

the first works on the difference between two subsequent spectral points, 

correcting the baseline, while the second derivative uses the successive spectral 
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points of the first derivative (1stD), removing both baseline and derivative trends 

(Tsai & Philpot, 1998).  

Moreover, Savitzky-Golay smoothing and differentiation are derivative 

techniques based on the computation of local polynomial regression to obtain a 

similar but smoothed function. The advantages of this approach are noise 

reduction, the smoothing of spectra and a single-step derivative computation 

with the application of a filter. The difference with other pre-processing 

techniques is that the initial distribution, relative maxima and minima, and peak 

width are preserved (Savitzky & Golay, 1964).  

Two more pre-processing techniques, such as averaging and normalization, 

transform data sets into a suitable matrix for subsequent modelling. Averaging 

reduces the number of variables or objects in the data set, noise and uncertainty 

measurements. On the other hand, normalization uses the vector scaling (to 1.00 

or 100) of the sample set to obtain variables of the same size. This pre-processing 

is used to compensate variances in analytical measurements, and it is similar to 

SNV (Esbensen, Guyot, Westad, & Houmoller, 2002).  

 Hyperspectral data calibration 

Hyperspectral data complexity should be modelled to obtain efficient 

quantitative and qualitative information. Once the data is pre-processed, 

multivariate statistical tools are applied to find relationships between the 

samples and the numerous spectral variables. Figure 4 is a graphical 

representation of multivariate qualification (projection and classification models) 

and quantification (regression models) methods used as chemometric tools to 

deal with Fusarium and DON contaminated samples using HSI-NIR (Dale et al., 

2012; Kumar, Bansal, Sarma, & Rawal, 2014).  
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Multivariate qualification methods are applied to reduce a large amount of data 

to a limited number of variables, called principal components (PC). Principal 

component analysis (PCA) extracts the most relevant information from the raw 

data and reduce its dimension by compressing the spectral data into a new group 

of orthogonal variables. It primarily permits the detection of sample groups used 

to classify them (Gatius, Lloveras, Ferran, & Puy, 2004). The optimum number of 

PC should be fixed to build the best projection method. The optimum number is 

reached when, introducing one more PC, the performance does not improve, so 

we are increasing the computation time and the complexity of the model without 

improving the explained variance. Cross-validation methods are useful to 

determine the optimum number of PC for the best performance of the analysis 

and are adequate when the data set is reduced (Jiang, Zhu, & Tao, 2010). 

Supervised classification models can be constructed making class models 

independently, each one described by a PCA.  Unknown samples can be assigned 

to the known classes to classify them. Several studies of fungal contamination in 

cereals have used this technique to explain their results (Barbedo et al., 2015; 

Figure 4. Diagram of the most commonly used multivariate data analysis systems in 

HSI-NIR. 

Principal component analysis (PCA); component analysis (CA); discriminant analysis (DA); linear 

discriminant analysis (LDA); partial least squares (PLS) regression; principal component regression (PCR); 

multiple linear regression (MLR); supported vector machines (SVM). 
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Serranti, Cesare, & Bonifazi, 2013; Shahin & Symons, 2011). The structure of the 

PCA model is characterized by equation 5: 

1 = 	 24	345 + 26	365 +⋯+ 20	305 + 50  (5) 

Where 1 are the coordinates expressed over the original X variables; 2 
corresponds to the coordinates of the objects over the PCs; 3	corresponds to the 

vectors of the new subspace where the original variables X are projected; 5 

corresponds to the noise characterized by the residuals; and . corresponds to the 

number of PC used. 

Polder, Heijden, Pioneer, Waalwijk, & Young, (2005) used Fuzzy c-means 

clustering as a statistical method for a prediction model development. Cluster 

analysis is a method that consists of the categorization of the observations into 

groups (clusters), in which each one has more similar features than other groups. 

More specifically, Fuzzy C-means clustering is used to characterize each data 

point inside the clusters by ranging the observation between 0 and 1 (fuzzy 

partition). An algorithm is built to discriminate according to the observation 

group and the other group's differences, minimizing iteratively and obtaining 

optimal fuzzy partition. Values close to 1 indicate the similarity of the 

observation with its cluster, and values near 0 indicate less similarity (Bezdek, 

Ehrlich, & Full, 1984).  

An additional extensively used classification method in HSI is discriminant 

analysis (DA), which aims to find recognition patterns that permit the separation 

of the observations into classes. The rules obtained should also allow the 

association of new data into one of these groups, so it belongs to the supervised 

method's group (requires calibration and validation sets) (Hubert & Van 

Driessen, 2004). Linear Discriminant Analysis (LDA) is used when de data shows 

the same covariance matrix. LDA uses a linear combination of features in the 

multivariate data, dividing observations into two or more groups and 

maximising the ratio between variances of the compared data points concerning 
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the group variance (Esteki, Shahsavari, & Simal-Gandara, 2018). This latest 

method was applied more commonly because of the reduced number of 

parameters involved in contrast with the unequal covariance matrix structures. 

Consequently, both procedures have been used for hyperspectral data analysis 

in Fusarium and DON contamination in cereals (Delwiche & Kim, 2000; Delwiche 

et al., 2011; Delwiche, Kim, & Dong, 2010; Rinnan et al., 2009; Ropelewska & 

Zapotoczny, 2018; Serranti et al., 2013; Shahin & Symons, 2012, 2011; Singh, Jayas, 

Paliwal, & White, 2012; Tekle et al., 2015). 

Linear and non-linear regression techniques have been used to predict unknown 

sample concentrations from the spectral data (Westad, Bevilacqua, & Marini, 

2013). Regression methods require a calibration set, for which the coefficients of 

the relationship between concentrations and spectra are calculated; and a 

validation group, in which these coefficients obtained from the calibration set are 

checked with a new sample set to give the prediction error (Boldrini et al., 2012). 

The most commonly used methods in hyperspectral image data analysis are 

Principal Component Regression (PCR) and Partial Least Squares (PLS) 

(Caporaso et al., 2018; Viscarra Rossel, 2008). 

MLR is the most basic regression method, which can provide successful models 

for data matrix with few X variables. Thus, for the prediction of simple 

components, it does not present substantial differences with other regression 

procedures. However, its application in complex systems (more X than Y 

variables) gives ineffectiveness because it cannot deal with interferences, noise, 

errors and collinearity between X variables. For that reason, MLR is not used 

commonly in HSI-NIR calibration (Balabin, Safieva, & Lomakina, 2007; Fox, 

Onley-Watson & Osman, 2002).  

PCR is a two-step model which involves PCA on the spectral data and a 

subsequent MLR of the prediction parameters on the scores obtained from the 

PCA. The regression is performed on the scores with the optimum number of 
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PCs, which are much less than the number of original X variables, avoiding MLR 

weaknesses. The scores are orthogonal, so collinearity problems disappear. In 

addition, the reduction of the number of variables permits solving the model 

with a lower number of equations (Næs & Martens, 2005).  

PCR is used when the target is the X information corresponding to the spectral 

data because it works with the maximum variance direction of X. However, the 

HSI-NIR calibration focuses on the Y information about the analyte. PLS focuses 

the instrumental data on the Y variables to obtain a well-fitted model and lower 

prediction errors. 

PLS is, as PCR, a two-step model, that, instead of projecting on the directions of 

maximum variance of X, it does on the covariance of X-Y, so it improves the 

subsequent regression of the dependent variable on these directions. To reach 

this cooperation, Latent Variables (LV) are computed to model the covariance 

structure for matrix and dependent variables (Mehmood, Liland, Snipen, & 

Sæbø, 2012; Westad et al., 2013). PLS algorithms can be applied to a single Y 

variable (PLS1) or multiple Y variables (PLS2). Both PCR and PLS methods are 

adequate for wavelength selection, permitting the analysis of the original 

variables and discerning the significant ones that introduce much information 

from the irrelevant ones.  

Finally, Support Vector Machines (SVM) are frequent in kernel classification 

approaches due to their applications in recognition and detection. Theoretically, 

SVM purposes finding an optimal hyperplane surface that divides the maximum 

of the data points into classes by representing the sample points in the space. The 

space divides by this hyperplane, consisting of a vector between both groups 

points. When a new sample is introduced to the model, it will classify it into one 

group depending on its position previously separated by the hyperplane (Yang, 

Hong, You, & Cheng, 2015).  
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Depending on the spectral resolution of the HSI device, the acquired spectral 

information may include hundreds or even thousands of wavelengths for each 

sample. Moreover, the management of such a dataset is laborious, and the 

mathematical computation of the model is time-consuming. In addition, those 

methods applied to the industry would need simplified and rapid procedures. 

Consequently, wavelength selection is an important step to reduce irrelevant 

bands and noise, obtaining fast and reliable analysis. Wavelengths can be 

localized manually by selecting the highest regression coefficients, which have 

more influence over the model. Alternatively, also complex algorithms are 

applied to the optimal band selection. The most common ones are Competitive 

Adaptive Reweighted Sampling (CARS), Random Frog (RF), Successive 

Projections Algorithm (SPA), genetic algorithm (GA) and Uninformative 

Variables Elimination (UVE) (Li et al., 2018; Tang, 2012; Xiaobo, Jiewen, Povey, 

Holmes, & Hanpin, 2010). 

 Model validation and performance 

The procedures for calculating a regression model include the reference values 

and spectral data (usually pre-treated) achievement for the calibration set. A 

cross-validation procedure or an independent sample set should be introduced, 

obtaining a realistic prediction error to achieve concentration values as close as 

possible to the real concentration of the analytes of interest in unknown samples 

from their spectral data. The previous calibration step involves the reference 

values and spectra included in the training set, both related with a regression 

model that has a basic form as shown in the equation 6: 

6 = '$ + '414 + '616 +⋯+ '717  (6) 

Where 6	is the unknown variable to be measured; 1' are characteristic 

wavelengths used for the regression model; '' are the regression coefficients, 



Chapter 1. Introduction 

 54 

which estimates the unknown parameters; and '$ is the offset (Givens, De 

Boever, & Deaville, 2005). During calibration, the spectral values are used to 

calculate the regression coefficients. Subsequently, a set of new spectral data and 

the previously obtained regression coefficients are used to predict and measure 

the unknown variables (Y) in the validation set. The information from the 

reference method and the spectral data used for calibration and validation should 

represent the maximum population features.  

To adjust the model, the number of PCs to be used should be fixed to explain the 

variability of the calibration and validation sets efficiently. The criteria used to 

select the number of PCs to optimize the model is to detect the PC where a break 

on the curve of the residual variance or a minimum in the prediction error occurs. 

Other considerations about the analyte should also be considered to obtain a 

feasible method (Viscarra Rossel, 2008). 

The following statistical parameters describe the calibration adjustment:  

Coefficient of Determination of Calibration (RC2), Standard Error of Calibration 

(SEC), the Root Mean Square Error of Calibration (RMSEC) (Chavez et al., 2013). 

The closest RC2 value to 1 and the closest SEC and RMSEC values to 0 correspond 

to the best calibration model. 

To achieve the internal test and know which model fits the data, cross-validation 

is a procedure commonly used when it is not possible to have a large number of 

independent samples from the calibration set. Leave-one-out cross-validation 

removes a single sample of the training set for each iteration. Otherwise, k-fold 

cross-validation leaves out an entire data group. They separate into different 

groups (k), k-1 used for the calibration training and one remaining group for the 

test set. The test set group is changed until all samples are tested (Ramírez-

Morales, Rivero, Fernández-Blanco, & Pazos, 2016). Thus, the number of LV and 

the model parameters, such as Root Mean Square Error of Cross-Validation 

(RMSECV), is evaluated by its internal implementation.  
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Full cross-validation is considered the most realistic estimation when only one 

sample set is available, although it will always be more optimistic than the 

prediction error calculated from a training and a test set. Two sample sets are not 

always accessible because it requires a large number of samples and, if they are 

not representative of the population you are working with, the model will not be 

so realistic. Thus, to build an ideal model, large and representative sets of 

samples from the calibration and external validation of the model are needed. It 

improves the model linearity, specificity, and accuracy for future sample 

concentrations prediction (Levasseur-Garcia, 2018).  

Table 1. Performance statistic parameters of the validation set (adapted from 

Agelet & Hurburgh, 2010; Levasseur-Garcia, 2018).  

Validation set parameters 

Rp2 Coefficient of determination of 
prediction "!" =

Σ	(&'# − &))"
Σ	(&# − &))"

 

di Residual +# = &'# − &# 

Bias Bias ,-./ = 	Σ	+#0  

SEPc Standard Error of Prediction 
(corrected by the bias) 1234 = 	5(+# − 6-./)0 − 1  

RMSEP 
Root Mean Square Error of 

Prediction "8123 = 	5Σ	(+#)
"

0  

RPD Ratio of Performance to Deviation "39 = 1+:;$%&
1234  

!"! = ith validation sample predicted value, !! = ith validation measured values, !# = mean of the n values 

(measured or predicted), n = number of samples; Sdevref = Standard deviation of reference. 

Model performance is described by the statistical parameters, that have to be 

compared to select the most suitable one. Table 1 presents the most used statistic 

parameters to estimate the statistical performance of the models. The Coefficient 

of Determination of Prediction (R p2) numerically describes the variance between 

reference and predicted values and the reference values versus the total. The 

Standard Error of Prediction (SEP) determines the model precision. However, it 

should be corrected by the bias, which considers the difference between the 
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expected SEP value and its true value. The Root Mean Square Error of Prediction 

(RMSEP) determines how accurate is the calibration, and it is closely related to 

SEP and bias. Finally, the Ratio of Performance to Deviation (RPD) is the ratio 

between the SEP and the standard deviation of the samples, and it is under 

discussion for its advantages in NIR calibration. Thus, some publications 

consider RPD a redundant parameter (Bellon-Maurel, Fernandez-Ahumada, 

Palagos, Roger, & McBratney, 2010). The optimum model has the Rp2 closer to 1, 

and the SEPc (corrected by bias) and the RMSEP closer to 0. 

 HSI and DON management in cereal samples 

HSI-NIR is not applied only to improve the detection of visible features by sight 

but also to detect components in a sample not appreciated visually. DON is 

found commonly in asymptomatic grains, and its detection is more complex than 

other visible traits. The application of HSI-NIR to DON detection is a novel 

approach that could solve the heterogeneity problem of the toxin through the 

sample with the spatial examination capacity (Fox & Manley, 2014). Recent 

studies based on detection, screening and quantification of DON in cereal 

samples have been summarised in Table 2 to present the last progresses about 

the topic.  

Tekle et al. (2015) aimed to measure DON content from oat using average NIR 

spectra by a PLS regression model. They obtained the reference contaminations 

using GC-MS, and the images were acquired by HSI-NIR at a wavelength range 

of 1000-2500 nm. Then, they transformed reflectances into absorbances, and SNV 

was applied to remove the scattering impact and calibrated a PLS model. Using 

112 validation images and five PCs to optimize de model, they obtained a Rv2 of 

0.81. On the other hand, they build an alternative PLS-LDA using the ratio of 

damaged pixels in the kernel. The correlation between predicted and measured 

DON was 0.79, proving that both were valid for DON prediction.  
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Barbedo et al. (2015) built an algorithm to assess DON contamination of wheat 

samples. They used the spectra from the entire image (cereal samples), avoiding 

the analysis of individual kernels. The authors studied the correlation between 

the Fusarium index (FI) and DON concentrations, obtaining a strong correlation 

of 0.84. Due to the complexity of DON assessment with visual discrimination, the 

correlation with FI decreased at low DON levels. Later studies by Barbedo et al. 

(2017) focused on DON screening and developed a new algorithm. In this case, 

they obtained DON reference values by ELISA and LC-MS. Two wavelengths 

(627 and 1411 nm) were selected because they seemed to converge with DON 

presence. The authors obtained a DON preliminary index (DPI) calculation, 

based on the kernel reflectance. They were able to classify the samples into the 

three classes proposed with an accuracy of 72%. In addition, the  accuracy 

increased to 81% when the classes were reduced into two, separated by the UE 

legal limit (1250 µg/kg). Liang et al. (2018) also used algorithms for DON 

detection in the Vis/NIR of 400-1000 nm. First, they analysed the entire samples 

using LC-MS and divided them into three groups. Then, they acquired images 

from each level of contamination, pre-processing the spectra obtained by SNV 

and MSC. The authors also selected optimal wavelengths by SPA and RF 

methods to reduce dimensionality. The best combination between pre-

processing and the selected algorithm was the MSC-SPA-SVM, obtaining an 

accuracy of 100% and 97.72% in the training and the testing set, respectively. A 

visual representation of the DON contamination using the same model was 

obtained, which provided information about the toxin levels within the sample. 

 



 

 

Table 2. HSI studies for DON management in cereals. 

FI = Fusarium index, PLS-DA = partial least squares regression – discriminant analysis, PLSR = partial least squares regression, SVM = support vector machine.  

Crop Number of samples 
Wavelength 

range 

Reference of 
contamination/Type 

of infection 

Spectral pre-processing 
and characteristic 

wavelength 
Model Performance Reference 

Oat 
kernels 

Calibration set: 248 kernels; 
31 kernels/category; 4 

dorsal, 4 ventral 
Validation set: 112 kernels; 

14 kernels/category; 4 
dorsal, 4 ventral 

HSI-NIR 1000-
2500 nm 

GC-MS 
Artificially infected 

Positive infection: 1925, 
2070, 2140 nm 

Negative infection: 
1400, 1626, 1850 nm 

SNV 

PLSR, PLS-
LDA 

Calibration R2 = 0.75 
Cross-validation R2 = 0.71 
Correlation PLSR = 0.81 

Correlation PLS-LDA = 0.79 

(Tekle et al., 
2015) 

Bulk 
wheat 

25-50 kernels/image 
6 hyperspectral images 

HIS-Vis/NIR  
528-1785 nm 

LC-MS 
Naturally infected 

PCA: 1411 nm FI Correlation FI/DON = 0.84 
(Barbedo et 

al., 2015) 

Bulk 
wheat 

30-50 kernels/image 
3 levels of contamination 

251 total images 
Calibration set: 33 images 
Validation set: 218 images 

HSI-Vis/NIR 
528-1785 nm 

ELISA, LC-MS 
Naturally infected 

Wavelength observation  
623, 1411 nm 

Confusion 
matrix, k 

values 

Classification accuracy: 72% in 
three classes, 81% in two classes 

(EU limit) 

(Barbedo et 
al., 2017) 

Bulk 
wheat 

70 kernels/image 
60 images/level of 

contamination 
Calibration set: 44 images 
Validation set: 16 images 

HSI-Vis/NIR 
400-1000 nm 

LC-MS/MS 
Naturally infected 

SNV, MSC 
14, 12, 7, 14 wavelengths 
for each pre-processing 

method 

SVM, PLS-DA 
Classification accuracy: 100% in 
training set; 97.92% in testing set 

(Liang et al., 
2018) 
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 HSI as a cereal sorting tool 

Generally, mono or dichromatic cameras have been used for fungal inspection 

purposes. High-power LED pulses have been applied as inspection systems, 

measuring samples reflectance. Although kernel classifications are achieved, 

spatial characterization of the grain is not possible, so the image is processed as 

a whole, not selecting its regions of interest. Consequently, the imaging system 

needs a measurement analysis for the whole field of view, making it impossible 

to use a spectrum from a specific area, like a kernel (Delwiche, 2008, 2009). Thus, 

massive and rapid classification systems are needed to achieve discriminations 

of tonnes of grain in a few hours (Fox & Manley, 2014).  

The first approaches of optical cereal sorting started in the Single Kernel-NIR 

(SK-NIR) spectroscopy, focused on the automatic classification of grain. 

McMullin, Mizaikoff, & Krska (2015) reached this aim by providing a wheat 

kernels discernment according to DON contamination at a limit of 60 mg/kg in 

96% of the cases. Moreover, they obtained positive and negative fungal infection 

discrimination in corn kernels with an efficacy of 96% and 98%, respectively 

Other rapid cereal sorting methods have also been tested to reduce mould 

damage and DON contamination. The rejections of contaminated kernels during 

freefalling along a steeply inclined surface were interesting for their rapid 

discrimination (Delwiche, 2006, 2007). Although the studies reached good 

results, they were in laboratory-controlled conditions, so further reports are 

needed to improve fungi and DON sorting in wheat. Moreover, recent studies 

also obtained good in-line results for AFB1, with 99% of the samples accepted 

below 10 µg/kg with a laser-based system (Liu et al., 2019).  

HSI has been proposed as a routine grain inspection tool in food industries. Its 

ability to 'see' all over the kernels and across them to detect fissures or insect 

damage has driven this instrument to be promising to detect real-time Fusarium 
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damage and mycotoxins. Asymptomatic kernels hinder visual evaluation, 

making their detection for fungal contamination more complex than for 

symptomatic. HSI-NIR can evaluate fungal growth and spatially ubicate its 

presence on a single kernel. Moreover, although Fusarium produces DON, both 

contaminations are not proportional. Asymptomatic samples with high DON 

concentrations can be fungal-free. For that reason, a precise technique with the 

ability to chemically inspect and sort contaminated cereals is needed (Tatzer, 

Wolf, & Panner, 2005). A typical Single Kernel-Hyperspectral Imaging (SK-HSI) 

analysis flowchart is represented in the Figure 5.  

Industrial reception of grain is a critical step in which HSI-NIR applications 

would be interesting to substitute classical analysis methods. Still, the 

heterogeneity of the batches often presents troubles in the representativeness of 

the samples to be analysed. Moreover, HSI-NIR would overcome this 

heterogeneity by rapid kernel or pixel spectra evaluation (Gruna, Vieth, 

Michelsburg, & Puente-León, 2010). In short, HSI is an encouraging analysis 

technique for fungal damage and mycotoxin analysis due to the spatial 

dimension introduced and its fast scanning capacity.  

 

Figure 5. Flowchart of the most common SK-HSI analysis process of cereals for fungal 

and mycotoxin contamination 
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 SK-HSI classification according to fungal 

contamination 

Fungal contamination is responsible for the quality and yield reduction of cereal 

crops. Fungal growth produces several changes on cereal kernels structure that 

can be visualized as weight loss, shrivelling, discolouration, etc. Several authors 

proposed visible (Vis) (400-700 nm) and near-infrared (NIR) (780-2500 nm) 

regions of the electromagnetic spectrum for fungal detection in single cereal 

kernels. Therefore, they also proposed classification models for kernel sorting 

according to fungal species or the symptomatology caused on the grain. The 

classification accuracies describe model performances, which assess the correctly 

classified percentage of the kernels (Xing et al., 2019). 

In this section, the studies focused on single kernels as the ROI for fungal 

infection assessment are reviewed and compiled in Table 2. Numerous studies 

focused on single wheat kernels in the last years. The two most studied fungi in 

grain sorting publications are Aspergillus and Fusarium genera for their associated 

impact on grain quality and health effects. The studies of Zhang, Paliwal, Jayas, 

& White (2007) and Singh et al. (2012) discriminated between non-contaminated 

kernels and fungal infected kernels by Penicillium spp., Aspergillus niger, and 

Aspergillus glaucus in the NIR region. Previous to the HSI analysis, the kernels 

were artificially contaminated with fungal spores and incubated for growth. This 

reference method ensured fungal growth but, depending on the inoculation 

method, it could cause differences from the inoculation naturally found in the 

field. Although they used different chemometric tools to calibrate the models, 

both studies obtained positive results above 87% of correctly classified grains. 

Alternatively, Alisaac et al. (2019) represented their results as differences in the 

spectral signature of the scanned kernels instead of evaluating the percentage of 

correct classification. This study used the differences in several spectral regions 
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to correlate them with artificial fungal presence and DON. Despite the obtained 

good correlations, spectral characterization in the NIR region is complex due to 

the peak overlapping, especially in high-frequencies (low wavelengths).  

The alternative to fungal inoculation is assessing the visual changes produced 

during fungal growth. Kernels can be inspected visually to determine the 

damage caused by Fusarium infection, categorizing the kernels as FDK according 

to their weight loss, shrivelling and discolouration. Despite the simplicity of this 

method, it is less reliable than chemical or biological techniques due to the 

subjectivity of the inspector. Several authors used LDA as a classification tool for 

FDK (Delwiche, Rodriguez, Rausch & Graybosch, 2019 and Shahin & Symons, 

2011). They presented high-accurate results between 92 and 100% of correctly 

classified kernels. Despite the high accuracies, the visual inspection 

categorization of kernels does not consider the fungal contaminations not 

visually detectable, introducing some deviations. There are some alternatives to 

identify fungi by visual inspection, e.g. automatized kernel categorization, fungal 

isolation, fungal DNA quantification, among others. Ropelewska & Zapotoczny 

(2018) study additionally classified wheat kernels as healthy or infected with 

Fusarium species in the Vis and NIR region using visual inspection as reference 

method. However, they used further chemometric analyses to LDA, such as 

Bayes, K-Star, Rules PART and Decision Tree classifiers, obtaining classification 

accuracies between 78 and 100%. 

Delwiche & Kim (2000) used a spectral range of 430-860 nm obtaining 

classifications accuracies of 86.8 and 98.4% in two different wheat varieties. 

Moreover, Delwiche et al. (2010) combined two pairs of wavelengths in the 

spectral range of 1000-1700 nm (1199, 1474 nm and 1315, 1474 nm), obtaining an 

LDA classification accuracy of 82.5% in high visual contrast kernels. A year later, 

Delwiche et al. (2011) repeated the experiment at similar conditions but adding a 
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Vis camera (400-1000 nm) and different wavelength pairs (502/678 nm) and 

(1198/1498 nm), achieving a better LDA classification accuracy (95%). 

Chemometric alternatives to LDA were also used, as PLS-DA, applied in the 

study of Serranti, Cesare, & Bonifazi (2012) and Delwiche et al. (2019) for wheat 

kernels sorting according to the damage caused by fungal infection. The first 

study obtained accurate classifications with a percentage of correctness above 

94%. Likewise, Delwiche et al. (2019) classified with an overall accuracy of 97.3% 

and an optimized model with four LV of 96.8%. Finally, Barbedo et al. (2015) 

classified wheat grains according to fungal damage using the FI, which measures 

the probability of wheat kernels to develop FHB. The FI based algorithm 

obtained a classification accuracy of 91%. Generally, the studies aiming at wheat 

kernels sorting according to fungal infection presented good results. However, 

the researchers based their models on low-precision reference data. 

Consequently, they require field fungal infections and improved reference 

methods to apply their classifications to the food industry. Polder et al. (2005) 

also used the HSI-NIR for wheat analysis, but they employed PLS regression for 

Fusarium quantitative analysis in single kernels. The reference values were fungal 

DNA concentration obtained with Taqman Real-Time PCR (RT-PCR). The 

spectra were pre-processed by normalization and second polynomial order SG-

smoothing. The regression model permitted a well-defined identification for 

Fusarium DNA in concentrations above 6000 pg and the concentration prediction 

of higher than 100 pg with an R2 of 0.8. Although the correlation between the 

Fusarium DNA and the spectra was acceptable, further investigations are needed 

to improve fungal and DON concentration predictions.  

 



 

 

Table 3. Single-kernel HSI studies for the classification of fungal infection in cereals.  

ELM = Extreme Learning Machine; JSRC = Joint Sparse Representation based Classification; PW = Pixel-wise; SOM = Self-Organizing Map; SPA = Successive Projection Algorithm; SVM = Support Vector Machines; FDK = Fusarium-damaged kernel, iPLS-DA = interval partial least 
squares – discriminant analysis, LDA = Linear discriminant analysis, LMT = decision tree classifier, ND = not defined, PART = rules classifier, PCA = Principal component analysis, QDA = quadratic discriminant analysis, SND = sound. 

Cereal Fungi Spectral range 
Nº of LV used 

Pre-processing technique Reference method Training/test set 
Total kernels 

Classification model and accuracy (%) References 

Wheat 

FDK 

(Natural contamination) 

430-860 nm - Visual inspection Cross-validation 

32 scabby kernels 32 control kernels 

Increasing 5 bands from 458-844 nm 

LDA (83-98%) 

(Delwiche & Kim, 2000) 

A. niger, A. glaucus and Penicillium 
spp. (Inoculated) 

900-1700 nm 

20 LV 

Normalization 

PCA transformation 

Artificial inoculation 400/140 kernels for each mould specie 

2160 total kernels 

SVM (> 87.2%) (Zhang et al., 2007) 

F. verticillioides 
(Inoculated) 

960–1662 nm and 

1000–2498 nm 

MSC 

SNV 

Fungal artificial inoculation 15 kernels (5 infected, 5 

asymptomatic, 5 control) 

Fuzzy c-means clustering (94.4-97.7%) (Williams et al., 2010) 

FDK 

(Natural contamination) 

400-1700 nm  

4 LV 

- Visual inspection ~480 kernels LDA (95%) (Delwiche et al., 2011) 

FDK 

(Natural contamination) 

400-1000 nm 

6 LV 

Normalization 

Extremes removal 

Visual inspection 400/400 (200 healthy and 200 FDK) 

800 total kernels 

LDA (92%) (Shahin & Symons, 2011) 

FDK 

(Natural contamination) 

1000-1700 nm 

4 LV 

GLS Weighting Visual inspection 40/30 

70 total kernels 

PLS-DA (94.4-99.2%) (Serranti et al., 2012) 

Penicillium spp., A. glaucus, and A. 
niger (Inoculated) 

700-1100 nm 

13 LV 

- Artificial inoculation 240/60 

300 total kernels (Independent) 

LDA, QDA, Mahalanobis (94-98.3%) (Singh et al., 2012) 

FDK 

(Inoculated) 

528-1785 nm 

1 LV 

Normalization Visual inspection 50-100/700-750 

803 total kernels 

Fusarium index (91%) (Barbedo et al., 2015) 

F. graminearum 
(Natural contamination) 

600-1100 nm 

3 LV 

- Visual inspection 120 total kernels 

(Cross-validated) 

LDA, K Star, PART, LMT (78-100%) (Ropelewska & Zapotoczny, 2018) 

FDK 

(Natural contamination) 

938-1654 nm 

2-7 LV 

Mean centring 

SNV 

Visual inspection 556/20820 

21376 total kernels 

LDA, PLS-DA (> 92%) (Delwiche et al., 2019) 

F. culmorum and 
F. poae (Inoculated) 

400-2500 nm 

(Whole range) 

- qPCR No calibrations performed Spectral signature ( - ) (Alisaac et al., 2019) 

Maize 

 

A. flavus, A. parasiticus and A. niger 
(Inoculated) 

400–1000 nm 

3 WL 

- Artificial inoculation No validation performed PCA-DA ( - ) (Del Fiore et al., 2010) 

A. flavus 
(Inoculated) 

400-700 nm 

2 LV 

- Artificial inoculation 243/249 

247/245 

492 total kernels 

Maximum likelihood: >80% 

Binary encoding: >87% 

(Yao et al., 2013) 

A. flavus, A. niger and A. ochraceus 
(Natural contamination) 

900-1700 nm 

8-10 LV 

- Fungal isolation 595/297 

892 total kernels 

PW-PCA-SVM (100%) (Chu et al., 2020) 

F. verticillioides and 
F. graminearum 

(Inoculated) 

1000-2100 nm 

4 LV 

SNV 

Mean-centring 

Fungal isolation 2/13 isolates 

15 total isolates 

PCA ( - ) 

PLS-DA (88-100%) 

(da Conceição et al., 2021) 

Rice 

A. oryzae 
(Inoculated) 

400-1000 nm 

10 LV 

- Artificial inoculation 

Electron microscopy 

119/91 kernels 

210 total kernels 

SOM ( - ) (Siripatrawan & Makino, 2015) 

Villosiclava virens 
(Inoculated) 

874-1734nm 

Regions selection 

Extremes removal Artificial inoculation 

PCR 

Different sets 

1720 total kernels 

PLS-DA (98.4%) 

SVM (98%) 

ELM (99.2%) 

(Wu et al., 2020) 

Barley 
A. glaucus and Penicillium spp. 

(Inoculated) 
400-2500 nm 

3 LV 

- Artificial inoculation 240/60 

300 total kernels 

Linear, Quadratic and 

Mahalanobis discriminant analysis (> 94%) 

(Senthilkumar et al., 2016) 
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Although wheat is the most investigated cereal, other grains have been tested to 

assess the fungal infection at the single-kernel level. Maize is the second most 

investigated cereal, mainly for Aspergillus infection assessment. Del Fiore et al. 

(2010) and Yao et al. (2013) used similar spectral regions to differentiate among 

previously inoculated Aspergillus species, such as Aspergillus flavus, Aspergillus 

parasiticus, and Aspergillus niger. The first study used PCA to discriminate the 

species in the Vis-NIR region at different infection stages after artificial 

inoculation. Yao et al. (2013) used only the Vis spectra to build two classification 

models. Alternatively, they calibrated an LDA model, for which weak results 

were obtained (44.2%). By a confusion matrix (CM), the previous results 

improved, with a percentage of accuracy of 74.7%. Naturally contaminated 

kernels with A. flavus, A. ochraceus, and A. niger were analysed in the NIR region 

by Chu, Wang, Ni, Li, & Li (2020). In this study, they built a complex algorithm 

composed of pixel-wise (PW), PCA, and SVM, obtaining a classification of 100%.  

Da Conceição et al. (2021) analysed two Fusarium species infection (Fusarium 

verticillioides and F. graminearum) in maize kernels by HSI after their artificial 

inoculation. They pre-processed the NIR spectra with SNV and mean-centring, 

calibrating a PLS-DA model with a perfect discrimination accuracy. 

Alternatively, Williams, Manley, Fox, & Geladi (2010) proved the discrimination 

power of HSI-NIR of Fusarium-infected corn with different pre-processing 

techniques (MSC, SNV and non-processed). Selecting the wavelengths 1960 nm 

and 2100 nm for infected and 1450 nm, 2300 nm and 2350 nm for non-infected 

kernels, a classification accuracy between 94.0-97.7%, a coefficient of 

determination (R2) of 0.73 and 0.86 for each camera, and an RMSEP of 0.23 was 

reached. The best classification conditions were applying an MSC step in infected 

kernels spectra. 

Maize analysis by HSI should offer advantages compared to cereals with smaller 

kernel sizes, like wheat and rice. Size is directly related to the light penetration 
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in diffuse reflection or transmittance modes. Maize permits deeper penetration 

of incident radiation and, thus, enhanced information is obtained for the inner 

part of the kernels. For small kernel analysis, surface information has more 

influence on the overall data. In addition, it is not possible to compare cereal 

types due to different light incidence angles and shadowing effects. Some studies 

evaluated rice by HSI. They analysed artificially inoculated Aspergillus oryzae rice 

by Vis-NIR HSI, prior to electronic microscopic examination. The authors also 

built an unsupervised Self-Organizing Map (SOM) to visually assess the different 

fungal levels of contamination (Siripatrawan & Makino, 2015). The study of 

Senthilkumar, Jayas, White, Fields, & Gräfenhan (2016) evaluated barley kernels 

according to previously inoculated A. glaucus and Penicillium spp. in the Vis-NIR 

region. They used different DA (linear, quadratic, and Mahalanobis) for which 

the classification accuracy of barley kernels was greater than 94%.  

Finally, other studies evaluating fungal infection in individual kernels other than 

cereals were also reviewed. Legumes, which have a similar shape as cereal 

kernels, could be handled using HSI analysis. The study of Karuppiah et al. 

(2016) evaluated the fungal infection in different pulses, including chickpeas, 

green peas, lentils, pinto beans and kidney beans. They evaluated inoculated 

legumes by an HSI-NIR analysis by Quadratic Discriminant Analysis (QDA) and 

LDA modelling. The results were similar for both models, despite LDA achieving 

slightly better classifications (98-100%). Finally, fungal contamination in peanuts 

was also studied, calibrating algorithms based on Joint Sparse Representation 

based Classification (JSRC) and SVM for individual peanut kernels 

discrimination. The accuracies ranged from 96.8-99.2% in JSRC models and 90.5-

97.6% depending on the threshold and the peanut variety.  

Taken together, the overall results in SK-HSI reviewed studies are positive, 

achieving classification accuracies above 90% in most cases. The results are 

promising to implement HSI technologies in the food industry aiming at cereal 
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sorting according to fungal infections. Although the authors obtained high 

accuracies, further studies are required, including bigger data sets and 

independent model validations for routine analysis. In addition, calibrations 

should be on naturally contaminated kernels to build robust algorithms to 

predict and discriminate typical fungal contamination found in the field. 

However, despite the results obtained, further studies with more precise 

reference methods and natural contamination are also required to assess the 

usefulness of their application in industrial sorting processes. 

Artificial fungal inoculation offers some advantages, as controlled growing 

conditions and selected strains. However, the changes produced on cereals differ 

from the naturally infected, which experience contamination with more than one 

fungal strain and at variable contamination levels. Consequently, artificial 

inoculation may be considered a suitable approach for laboratory-controlled 

preliminary studies, despite further investigations on independent and 

naturally-infected kernels should be performed. Moreover, the comparison of 

studies with different infection types is complex and has to be considered in 

further sections. The infection type is collected in the Table 3 for the most relevant 

studies using HSI-NIR for fungal infection detection.  

Almost all the studies reviewed attempted the optimal LV selection. The number 

of wavelengths selected is variable, and it goes from 1 to 20 LV, using different 

selection strategies. Although the LV selection does not improve model 

performance in all the studies, it offers a reduction in data dimension, reducing 

computational time in online sorting strategies, in which the contaminated 

kernels removal has to be in situ. The characterization of the selected 

wavelengths is also fundamental to correlate the changes produced by fungi on 

cereals with the spectral profile obtained. Optimal selection is an essential point 

for sorting purposes. Although the presented results discriminate kernels 

accurately, future additional work on this item is required. 



Chapter 1. Introduction 

 68 

 

Fungal metabolism produces physical and chemical changes in cereals. Physical 

features of kernels include structural changes (kernel size, kernel shape and 

shrivelling) and colour changes (discolouration and pinkish colour). On the other 

hand, noticeable chemical changes produced by fungi are inherent to their 

growth, such as protein, starch, lipid and water composition. The spectral 

changes correspond to the differences in matrix composition. Thus, these optical 

variations can monitor fungal growth and point out to mycotoxin production in 

cereal products. In addition, long-wavelength regions are more suitable for the 

quantification of minor components in food matrices, as they require a shorter 

optical path length and penetration depth. 

The structural changes and chemical decompositions affect the different spectral 

regions on the NIR window. Kernel size differences produce baseline offset, as 

the thicker kernels would have a deeper penetration of the light, and the 

absorbance would be higher (Chu et al., 2020). Otherwise, kernel infections 

produce reflectance changes in cereal kernels at the late Vis spectral region (628-

706 nm) (Su et al., 2021). Dowell et al. (1999) correlated the differences caused by 

fungal infection in protein and starch content with 1400 nm region for its use as 

indirect detection of DON in cereals. Nevertheless, Peiris, Pumphrey, & Dowell 

(2009) studied NIR absorption related to fungal damage and DON. First, they 

identified the NIR changes produced by shrink and brightness in FDK, which is 

a known difference due to fungal infection. The spectral differences were in the 

1425-1450 nm region, where FDK kernels showed a shifted peak at 1445 nm, 

while for the sound the difference was at 1430 nm. Liang et al. (2020) attributed 

the changes produced around 1190-1212 nm (2nd overtone of C–H stretching 

vibration) to starch and fat content that are some of the principal storage 

compounds. In addition, the region between 1733-1778 nm (1st overtone C–H) 

changed according to amylose content, a majority component of the starch. The 
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authors also attributed higher radiations (1935-1952 nm) to the combinations of 

stretching and bending of water molecules. 

Protein changes in NIR spectra were in the 1446-1502 nm region, corresponding 

to the 1st overtone of N–H. Otherwise, N–H stretching related to CONH2 in maize 

proteins was related to absorbance deviations in the 1520 nm region reported by 

Chu et al. (2020). In addition, variations in functional groups of oils and fatty 

acids caused by fungal infection were in the 1666-1818 nm region. Phenolic 

content produced by vegetal products also experienced a difference between 

damaged and healthy kernels, presenting intensity alterations in 1415-1512 nm. 

 SK-HSI classification according to mycotoxins 

contamination 

NIR differences due to mycotoxins are complex due to their low concentrations. 

However, Peiris et al. (2009) identified the spectral characteristics for pure DON 

solution in acetonitrile and FDK. The authors recognised two NIR regions that 

differ with DON concentration, corresponding to 1390-1440 nm and 1880-1950 

nm regions. Two characteristic peaks inside these regions correlated with DON 

1st overtone in 1414 nm for O–H bonds and 1906 nm for -C=O and R–OH. 

Fusarium damage related with DON in the NIR region, where the most noticeable 

alterations were detected in 1204, 1365 and 1700 nm, associated with 1st overtone 

alterations in C–H groups in reserve compounds of grains (carbohydrate, lipids 

and proteins). 

Fungal infection is frequently associated with mycotoxin production, inherent to 

fungal secondary metabolism. Mycotoxin contamination of cereals is associated 

with harmful health effects in humans and animals. Consequently, food safety 

authorities (European Commission, 2006a) established maximum mycotoxin 

limits in cereal products. According to their potential health risk, the regulated 

mycotoxins are aflatoxins (AFs), ochratoxin A (OTA), patulin, deoxynivalenol 
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(DON), zearalenone (ZEN), and fumonisins (FBs). Mycotoxin detection with HSI 

in cereal products is challenging because they do not produce visual changes in 

kernels, their low levels (low ppm or ppb) in samples regarding other majority 

substances, and their heterogeneous distribution in a batch. Notwithstanding the 

detection difficulties, several authors applied the HSI potential to discriminate 

the highly-contaminated kernels in a cereal batch (Table 4). DON contamination 

in wheat and AFs in maize are the most studied for HSI mycotoxin assessment. 

Several authors classified contaminated wheat kernels according to DON levels. 

Liang et al. (2020) used a complex computational model based on the 

combination of MSC, GA and Sparse Autoencoder (SAE), which separated 

contaminated kernels above and below 1 mg/kg of DON with an accuracy of 

100%. In addition, the study of Senthilkumar, Jayas, White, Fields, & Gräfenhan 

(2017) studied OTA contamination in wheat kernels for five different thresholds 

between 54-700 µg/kg. The DA performed (linear, quadratic and Mahalanobis) 

reached classifications above 98% of precision.   

The legal limit for the sum of AFs in maize subjected to physical treatments 

before sorting is 10 µg/kg (European Commission, 2006b). Thus, the classification 

of individual kernels according to AFs contamination is not allowed. However, 

AFs in individual maize kernels were investigated in two similar studies from 

the same authors, with two limits established in 20 and 100 µg/kg (Yao et al., 

2010). Although both analyses included the Vis spectrum, they used different 

discrimination tools and reference methods. The results ranged between 84-87% 

and 86-91% for 20 and 100 µg/kg threshold, respectively. On the other hand, other 

authors worked on the NIR range (1000-2500 nm) with the same purpose. First, 

Wang, Lawrence et al. (2015) classified extreme (very high or very low) 

contaminated kernels with better precision between the 10-100 µg/kg range. 

Nevertheless, the overall result was 86.3% using the Spectral Angle Mapper 

(SAM) classifier. Then, Chu, Wang, Yoon, Ni, & Heitschmidt (2017) validated a 



Chapter 1. Introduction 

 71 

SVM classifier in 3 classes (< 20, 20-100, and > 100 µg/kg) with a precision of 

82.5%. 

Some authors also analysed different mycotoxins by HSI in individual barley 

kernels. Barley grain sorting according to OTA, which legal limit is 5 mg/kg, was 

first studied by Senthilkumar et al. (2016). However, they established a 140 µg/kg 

threshold before calibrating several discriminant models (linear, quadratic and 

Mahalanobis). The accuracy reached 100% in the differentiation of OTA 

contaminated and non-contaminated kernels. Unlike OTA analysis, DON was 

also evaluated by Vis-NIR HSI, using complex wavelength selection tools based 

on CARS and Iterative Selection of Successive Projections Algorithm (ISSPA) (Su 

et al., 2021). They fixed five different thresholds (1.25, 3, 5, and 10 mg/kg), and 

the PLS-DA accuracy improved as the limit increased (79.2, 90.9, 91.7, and 95.8 

%, respectively). 

Tekle et al. (2015) investigated DON infection in oat kernels in the NIR region 

(1000-2500 nm). They obtained a positive correlation of 0.8 by PLS analysis 

between the spectra from oat and the reference values obtained by GC-MS. In 

addition, they identified DON, based on LDA, for the visual representation of 

infected regions within the wheat kernels. Finally, single peanut kernels were 

analysed using similar processes to the used for cereal sorting by HSI (Zhongzhi 

& Limiao, 2018). AFs sorters were evaluated based on different chemometric and 

artificial intelligence tools (Random forest, SVM, K-NN and Backpropagation 

Artificial Neural Networks -BP-ANN-) using a Savitzky-Golay modified 

spectrum. Models performance for a 20 µg/kg threshold were 89.4, 62.2, 88.1, and 

80.9%, respectively. Thus, the studies demonstrated the single kernel sorting 

potential of HSI according to toxic substances. 
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 Applications of FTIR in cereal quality and safety 

NIR spectroscopy has been used extensively for food analysis purposes 

compared to FTIR. However, FTIR application to food analysis has increased 

recently due to its suitability in numerous applications. In recent studies, FTIR 

has been used to quantify nutritional compounds and other molecules in food, 

characterize the structure of food molecules, determine the quality and safety of 

raw products and detect food adulteration (Badhan, Wang, & McAllister, 2017; 

Cavin et al., 2016; Fernández & Agosin, 2007; Patz, Blieke, Ristow, & Dietrich, 

2004; Rodríguez, Rolandelli, & Buera, 2019).   

Although several studies focused on food products analysis, such as fruits, 

vegetables, wine, etc., FTIR analysis of cereals increased in the last decades for 

quality and safety control. Hell et al. (2016) developed multivariate calibrations 

with ATR-FTIR for wheat bran compositional parameters, including water, 

protein, ash, starch, soluble and insoluble dietary fibres, and lipids. They 

compared the results with FT-NIR and, even FTIR presented better accuracy for 

protein content prediction, NIR results seemed to be more robust. Shi & Yu (2017) 

followed the same objective, but only for protein and moisture content in wheat. 

They determined that the best spectral pre-treatment for crude protein prediction 

in the characteristic wavelength region selected (5714-9090 nm) was SNV with an 

R2 of 0.90. The results do not match with the ones in the previous study because 

the MIR prediction performance is lower than the NIR (R2 of 0.97). FTIR moisture 

prediction presents a weaker adjustment (R2 of 0.72) than for protein content, 

using the combination of 1stD and SNV. In both studies, the FT-NIR prediction 

showed higher performances than FTIR. They agree that more appropriate pre-

treatments and chemometric tools are required to improve ATR-FTIR results. In 

addition, Kim, Himmelsbach, & Kays (2007) focused on other compositional 

parameters detection in cereals by ATR-FTIR. They measured the trans fatty acids 

from cereal-derivate products (snacks, cookies, breakfast cereals, etc.), pressing 
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the ground samples on the ATR crystal. Although they did not extract the oil 

from the products, they obtained accurate performance parameters for the PLS 

models, with an R2 of 0.89-0.92 for the validation results. The fingerprint range 

selection 6666-1111 nm presented similar results to the full-range, representing 

the trans double bonds at the 10351 nm band included in the region. The studies 

did not focus only on the compositional analysis to determine the cereal quality 

but also on the baking quality of wheat flour (Chen, Ye, & Zhao, 2017). 

Combining determined bands from NIR and MIR region, they obtained 

correlations above 0.94 for all the analysed quality parameters (water absorption, 

dough development time, dough stability, and degree of softening), improving 

the performance of both regions analyses separately. 

The food industry demands the rapid identification of cereal varieties. The FTIR 

application to identify cereal species has been recently investigated (Porker, 

Zerner, & Cozzolino, 2017; Suchowilska, Kandler, Wiwart, & Krska, 2012). 

Suchowilska et al. (2012) used FTIR spectroscopy and PCA to determine the 

differences of four wheat species by PCA. However, Porker et al. (2017) used 

additional chemometric tools (PLS-DA, LDA and Soft independent modelling by 

class analogy -SIMCA-) to discriminate barley malt varieties. PLS-DA presented 

classification accuracies between 91-100% for eight different barley varieties. The 

fingerprint region showed the differences between cereal varieties, discriminated 

by the cereal matrix composition. These results showed the initial suitability of 

MIR spectra to classify or identify cereal varieties with potential application in 

breeding programmes. 

The high prevalence of fungal-related contaminations in cereal products has 

yielded many studies on the feasibility of FTIR to control those infections. 

Fusarium is one of the most studied species using this technology. Kos, 

Lohninger, & Krska (2001, 2002, 2003) measured the corn ergosterol content to 

indirectly detect fungal contamination with ATR-FTIR, pressing the ground 
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sample against a diamond crystal. The first two studies showed high 

classification accuracies for a cut-off of 8.23 mg/kg (analysed by HPLC), with 75% 

and 100% of correctly-classified samples, respectively. In their last work, they 

used Gas Chromatography with Electron Capture Detector (GC-ECD) as the 

reference method and the accuracy improved for low levels (0.88 mg/kg), 

although they reduced the sample set (n = 14). In addition, they built a PLS model, 

which permitted ergosterol content prediction with a R of 0.77 and an RMSECV 

of 0.66 mg/kg. Peiris, Bockus, & Dowell (2012) attempted the same objective but 

for wheat. They did not use chemometric tools to model the MIR spectral 

information, correlating visual fungal contamination signs with five spectral 

bands. The results suggested that ATR-MIR is suitable for fungal contamination 

detection in cereals. 

The same authors (Kos et al., 2002 & 2003) not only classified samples according 

to ergosterol but also to DON. In their first study using 52 samples, PCA 

classified correctly more than 75% of the samples with a DON level higher than 

0.13 mg/kg from the blank ones. Alternatively, they increased the classification 

to 100% in distinguishing 14 naturally-contaminated corn with higher levels than 

0.31 mg/kg.  Abramović, Jajić, Abramović, & Jurić (2007) used a similar sample 

amount (17) to predict and classify DON-contaminated samples. The selected 

spectral information was 5665–5917 nm range for PLS and two spectral bands 

(5737 and 5851 nm) for Multiple Linear Regression (MLR) models. PLS validation 

presented a high correlation of 0.92 and an RMSEP of 1.64 mg/kg. The results for 

MLR had lower RMSEP (1.48 mg/kg) and equal correlation (0.92) for a model 

calibrated using the ratio between 5851/5737 nm. In addition, a cluster analysis 

attempted to discern three blank samples from samples with a DON 

concentration range of 2.51-5.55 mg/kg, obtaining an inappropriate classification 

for one of the three blank samples.  
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Further studies focused on the classification of DON levels in cereals. The 

fingerprint spectral region was used to classify DON-contaminated corn samples 

in Kos et al. (2016) study. The spectra were obtained from ground and sieved 

artificially infected samples, pressed against a diamond crystal before ATR-FTIR 

analysis. Several pre-treatments were applied, such as baseline correction, mean-

centring, normalisation and 1stD. PCA models could classify correctly 79% of the 

110 samples used, establishing the threshold at the European Union (EU) limit 

(1750 µg/kg). Sieger et al. (2017) followed the same strategy but used a portable 

laser-based spectrometer and the 5494-6410 nm region. Although they used a 

reduced sample set (24), they demonstrated an accurate PCA discrimination of 

samples contaminated above 1250 µg/kg from uncontaminated ones. Öner et al. 

(2019) also used the fingerprint region to discriminate 183 corn samples on the 

regulatory limits (1250 µg/kg). They used several sophisticated classification 

models (Adaptive Boosting -AdaBoost-, Multilayer Perceptron -MLP-, Random 

Forests, and SVM). All the models obtained accurate classifications, despite the 

MLP showed the better performances classifying correctly 91% of the 

contaminated samples and 94% of uncontaminated. Finally, De Girolamo et al. 

(2019) also used an FTIR spectrometer applied to DON detection on wheat bran. 

They used 0.5 g of ground sample pressed on an ATR accessory, consisting of 

two crystals, one diamond attached to a ZnSe. The spectral range used was 2500-

28571 nm (not selecting any variable) and was pre-processed by correcting the 

baseline and applying SNV and MSC transformations. The PLS-DA and Principal 

Component Linear Discriminant Analysis (PC-LDA) models classified 86% and 

87% of the 94 samples used with a cut-off established at 400 µg/kg. Studies results 

suggest that FTIR is a suitable technique to detect cereal fungal and mycotoxins 

contamination at regulatory levels with minimum sample preparation. 

Consequently, the approach is adequate for rapid and routine analysis for cereal 

producers and traders as an alternative to complex chromatography and 

immuno-based methods. 



 

 

Table 4. FTIR studies for Fusarium and DON management in cereals. 

Product Contaminant Range Pre-treatment Reference method Sample set Model performance References 

Maize Ergosterol (F. graminearum artificial 
inoculation) 

15384-2500 nm 1stD HPLC-DAD 52 PCA: > 75% accuracy for levels > 8.23 mg/kg (Kos et al., 2002) 

Maize Ergosterol (F. graminearum artificial 
inoculation) 

15384-2500 nm Normalisation 

1stD 

GC- ECD 14 PCA: 100% accuracy for levels > 0.88 mg/kg 

PLS: R 0.77; RMSECV 0.66 mg/kg 

(Kos et al., 2003) 

Wheat F. graminearum (Artificial 
inoculation) 

26315-2500 nm SG 2ndD Visual inspection 145-150 Differences in bands: 9661, 8620, 8312, 7616, and 
7272 nm 

(Peiris et al., 2012) 

Maize DON (Artificial fungal inoculation) 15384-2500 nm 1stD HPLC-DAD 52 PCA: > 75% accuracy for levels > 0.13 mg/kg (Kos et al., 2002) 

Maize DON (Natural infection) 15384-2500 nm Normalisation GC- ECD 14 PCA: 100% accuracy for levels > 0.31 mg/kg 

PLS: R 0.81; RMSECV 0.49 mg/kg 

(Kos et al., 2003) 

Wheat DON (Artificial fungal inoculation) 15384-2500 nm 
5851/5737 nm 

- HPLC-DAD 17 PLS: R 0.92; RMSEP 1.64 mg/kg 

MLR: R 0.92; RMSEP 1.48 mg/kg 

(Abramović et al., 
2007) 

Maize DON (Artificial fungal inoculation) 12500-5555 nm Baseline, mean-
centring, normalisation, 

1stD 

LC/MS-MS 110 PCA: 79 % accuracy (cut-off 1750 µg/kg) (Kos et al., 2016) 

Maize DON (Artificial/natural infection) 6410-5494 nm Averaging, smoothing LC/MS-MS 24 PCA discrimination (cut-off 1250 µg/kg) (Sieger et al., 2017) 

Maize DON (Artificial/natural infection) 12500-5555 nm Baseline, averaging, de-
trending, normalisation 

LC/MS-MS 183 MLP: 91% (contaminated) 94% (non-
contaminated) samples accuracy (cut-of 1250 

µg/kg) 

(Öner et al., 2019) 

Wheat 
bran 

DON (Natural infection) 28571-2500 nm SNV, baseline, MSC HPLC-DAD 94 PLS-DA: 86% (cut-off 400 µg/kg) 

PC-LDA: 87% (cut-off 400 µg/kg) 

(De Girolamo et al., 
2019) 
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The present thesis general objective was to manage Fusarium and deoxynivalenol 

(DON) contamination in wheat using novel technologies based on spectroscopic 

techniques. We focused our attention on HSI-NIR and FTIR technologies. 

The study was divided into diverse sub-sections to achieve the main objective: 

• Standardization of HSI-NIR to analyse wheat entire samples and 

calibration of prediction and discrimination models to detect fungal 

presence and DON (Chapter 4 and 5). 

• Standardization of HSI-NIR to analyse wheat individual kernels and 

calibration of prediction and discrimination models to detect Fusarium 

damaged kernels (FDK) and DON (Chapter 6 and 7). 

• Determination of the most suitable solvent to extract maize samples 

compounds for the subsequent analysis of DON by FTIR (Chapter 8). 
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 Experimental design 

The global methodology of the study was divided into two main parts: (i) 

calibrating predictive and discrimination models for fungal infection and DON 

quantification and classification in wheat samples with HSI-NIR; (ii) calibrating 

discrimination models for fungal damage identification and quantification and 

classification models to discern wheat kernels according to DON levels (Figure 

6). Both studies were performed after the standardization of the HSI-NIR, 

obtaining the optimal lighting, scanning, ROI selection and pre-processing for  

Figure 6. Global methodology design. 
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subsequent models calibration. Additional work (iii), determining the most 

suitable solvent for DON extraction from maize for the subsequent FTIR analysis, 

was also included in the experimental design (Figure 7). 

 HSI-NIR analysis 

Before modelling HSI data, imaging parameters were set, ensuring a subsequent 

quality analysis. The Pika NIR-320 camera, assembled in RESONON Inc. 

(Bozeman, MA, USA), was placed 220 mm above the sampling stage and the 

illumination unit 70 mm. The spectral resolution was 4.9 nm (164 spectral bands 

from 895 to 1731 nm), with 320-pixel spatial resolution. The camera height chosen 

had an exploring area of 90 mm vertically. The horizontal dimension 

corresponded to the selected scanning bands (pixel lines) from the software, 

which can be extended or reduced depending on the sample size. The framerate 

was established at 520 fps, and the exposure time was determined before each 

analysis, avoiding saturated pixels on the images. Also, black and white images 

were captured before samples scanning. The settings and the scans were adjusted 

and processed using Spectronon PRO software benchtop. 

 

A total of 270 naturally contaminated wheat samples were supplied by a feed-

producing agricultural cooperative, during 2018–2019. Bulk sample analysis was 

performed first for the standardization of the HSI system, using 7 g of wheat for 

each sample and then for fungal infection and DON models, using 14 g and 

dividing the sample into two equal parts for each reference analysis, respectively. 

Briefly, the scans were performed in triplicate, mixing the kernels between each 

one to ensure the maximum sample representation possible. Similar pixel 

reflectances were selected by Euclidian distance, removing the background. The 

mean spectra of all the grains composing the sample were exported and 

considered the ROI for the subsequent spectral processing. 
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In total, 50 kernels for the standardization and 300 for model calibration were 

used, selecting them from DON contaminated samples. In single kernel analysis, 

the ROI changed, providing the mean spectra from the pixels of a wheat grain. 

The scans were also performed by triplicate, ensuring the adequate selection of 

the region delimiting the kernel. The 50 wheat kernels were scanned for both 

positions (crease-up and crease-down) to determine the influence of the different 

parts on the spectral analysis. The kernel position influence was also tested. The 

mean raw spectrum and 1stD spectral data for each grain were exported to an 

excel file, using the Spectronon PRO software for the subsequent spectral 

processing. 

 

3.2.3.1. Visual inspection 

The kernels used for the experimental study were manually selected and divided 

into three levels (symptomatic, mildly-symptomatic and asymptomatic) 

according to visual symptoms of fungal infection. Discoloured, shrivelled and 

wrinkled kernels were considered symptomatic (S). Kernels with part of these 

symptoms were categorized as mildly symptomatic (M), and kernels with no 

visible signs as asymptomatic (A). The kernels were selected trying to cover, as 

wide as possible, all the damage visual features. Consequently, the percentage of 

kernels with symptoms visually perceived in our sample set was higher than in 

the original sample. 

3.2.3.2. Ergosterol HPLC analysis 

Concisely, 7 g of previously ground wheat was extracted with a solid-liquid 

phase extraction, using 40 mL of methanol and 10 mL of hexane. The solution 

needed 2 g of KOH for a better extraction. Temperature and stirring were applied 

to the solution, placing it into a bath at 55–60 °C for 20 min. Then, ergosterol was 



Chapter 3. Global methodology 

 104 

extracted with three liquid-liquid phase extractions, adding 2 mL of bi-distilled 

water (to cool the solution) and 2 mL of hexane. The upper layer corresponding 

to 6 mL of the hexane phase was recovered and evaporated with a low nitrogen 

steam at 40 °C. The resuspension of the extract in 1 mL of methanol was injected 

into the analytical system, quantifying ergosterol concentrations, consisting of an 

HPLC coupled with a UV/Vis detector set at 282 nm with a LOD of 0.5 mg/kg. 

3.2.3.3. DON HPLC analysis of wheat 

For wheat samples, 7 g of the cereal were ground with a solid-liquid phase 

extraction, using Milli-Q water. The mixtures were stirred for 10 min and then 

centrifuged at 1780 ´ g. 5 mL of the filtered supernatant were passed through 

IAC, retaining DON and obtaining pure extracts in methanol. These were 

evaporated and resuspended into the mobile phase before injecting them into the 

analytical system, which consisted of an Ultra-High-Performance Liquid 

Chromatography coupled to a DAD detector (UHPLC-DAD) with a LOD of 50 

µg/kg. 

For single kernel analysis, the grains were ground with a mortar and pestle and 

mixed with 0.3 mL of Milli-Q water and vortexed for 10 min. The supernatant 

was obtained by centrifugation before filtering it. The extract was directly 

injected into the same analytical system used for wheat samples.  

 

The results obtained are in the international system units. The spectral and 

reference data was imported to Office Excel 2016 software to handle spectral data 

obtained from the Spectronon Pro software. The Excel files were imported to The 

Unscrambler 7.6 and JMP PRO 14 software for data processing, employing the 

first for spectral pre-processing and predictive models calibration and the second 

for classification models calibration. The prediction models performance was 
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determined using the parameters RMSEP, R2, RPD, and slope, and the 

classification models by the percentage of accuracy in the discrimination. 

 FTIR analysis 

The extractions were done on naturally-contaminated and inoculated with F. 

graminearum, F. verticillioides or F. culmorum ground samples. First, DON was 

extracted from samples, using four different solvents: Water (100), 

Methanol:Water (70:30), Acetonitrile:Water (70:30), and Ethanol:Water (70:30). 

Two new solvents (Methanol:Water (30:70) and Methanol (100)) were tested, 

after evaluating the performance of the methanol-water mixtures, following the 

same extraction procedure as for the previously solvents used. DON was 

extracted from 200 mg of powder, using 0.8 mL of all the previously solvents 

Figure 7. Methodology design for FTIR trials. 
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selected. The solid-liquid mixtures were shaken for 30 minutes at 70 rpm and 

then centrifugated twice for 2 minutes at 5800 rpm, obtaining the liquid phase in 

each step. 

The spectroscopic equipment used was an FTIR spectrometer ALPHA II with the 

platinum ATR unit equipped with the one reflection – diamond crystal as an ATR 

element. The spectrometer was controlled by Opus 8.1. software, setting the scans 

at 2 cm-1 resolution and the MIR region between 2500-25000 nm. An aliquot of 

each extraction solution (10 µl) was poured on the ATR crystal, covering it 

completely for the spectroscopic analysis. Enough time was allowed for solvents 

to evaporate before analysing. Once the solvent reached the complete 

evaporation, the thin film formed on the ATR crystal containing the extracted 

compounds was analysed three times by FTIR spectroscopy, cleaning the crystal 

with isopropanol between samples and registering subsequent backgrounds to 

avoid atmospheric effects. 

 

The reference method used for DON analysis was LC-MS/MS with a QTrap 550 

LC-MS/MS System equipped with TurboIonSpray electrospray ionization (ESI) 

source and 1290 Series HPLC Systems. Before, 5 g of homogenized samples were 

extracted with 20 ml of extraction solvent (acetonitrile/water/acetic acid 79:20:1, 

v/v/v), shaking the mixture for 90 min. The extracts were injected after a 1 + 1 

(v/v) dilution using dilution extraction solvent. The LODs for DON were 1.2 

µg/kg. 

 

An unsupervised analysis was done by PCA to determine the different patterns 

in clustering formation depending on the solvent used. Once determined the 

most suitable solvents, supervised models based on cross-validated Sparse 

Partial Least Squares – Discriminant Analysis (SPLS-DA) were calibrated to 



Chapter 3. Global methodology 

 107 

determine the classification power of FTIR according to the DON regulatory 

standard in maize (1750 µg/kg). Additionally, SPLS-DA scores were projected to 

determine the influence of the type of inoculation and fungal species used on the 

classification accuracy. Also, correlation plots were represented to associate the 

high influence spectral variables on the model with the matrix compound 

variations during fungal infection and DON production. 
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 Abstract 

HSI-NIR is considered a promising technique able to replace time-consuming, 

costly and destructive classic methods to predict and classify DON contaminated 

wheat kernels or samples by their concentration and level of contamination, 

respectively. The main objective of the present study was to standardise the HSI-

NIR image acquisition method in naturally contaminated whole wheat kernels 

to obtain a high accuracy method to quantify and classify samples according to 

DON levels. Wheat samples were analysed by HPLC as the reference method, 

determining their DON levels. Hyperspectral images of single kernels and entire 

wheat samples were obtained, processing the spectra by the multivariate analysis 

software. The initial work revealed that HSI-NIR could overcome kernel 

orientation, position and pixel selection. The subsequent developed PLS 

prediction achieved an RMSEP of 405 µg/kg and 1174 µg/kg for a cross-validated 

model and an independent set validated model, respectively. Moreover, the 

classification accuracy obtained by LDA was 62.7% for two categories depending 

on the UE maximum level (1250 µg/kg). Although the results are not accurate 

enough for DON quantification and sample classification, they can be considered 

a starting point for further improved protocols for DON management. 

 

Keywords: Hyperspectral imaging; Deoxynivalenol; Near infrared; Cereal 

sorting: Contamination prediction. 
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 Introduction 

DON is a Fusarium produced mycotoxin causing increasing concern due to its 

prevalence in wheat. European diet relies on wheat derivatives consumption, 

increasing the exposure to DON significantly (Cano-Sancho et al., 2011). There is 

a highly seasonal variation in Fusarium mycotoxins in wheat. Thus, the 

agronomic factors should be considered to minimise Fusarium mycotoxin levels 

in harvested cereals. F. graminearum, a major DON producer, invades the 

spikelets, causing kernel damage in the form of shrivelling appearance, loss of 

weight, and discolouration that results in a white or pink appearance (Delwiche 

et al., 2010). Although different preharvest strategies have been used, minimizing 

DON presence in wheat, the problem remains (Edwards & Jennings, 2018). 

Moreover, DON is not removed during food processing steps (Vidal et al., 2016). 

Consequently, monitoring wheat batches is a key point before entering the food 

chain to avoid highly contaminated batches. 

Several laboratory methods are available to detect and measure DON in cereal 

grains, including HPLC, MS, and ELISA. However, these methods are not 

suitable for rapid detection at the entry in food industries. At the moment, 

companies that monitor entering batches use lateral flow devices (LFD) to 

rapidly screen, although they have limited accuracy. To date, there exists a high 

interest to apply spectroscopic techniques to identify DON contaminated 

samples. Spectroscopic detection techniques are already widely used in food and 

feed industries to determine organic compounds, like proteins, moisture, starch 

and pigments. The relatively low concentration range for DON makes it very 

challenging for NIR quantitative analysis. 

As an alternative to measurement of DON, some NIR studies have relied on the 

positive, though the imperfect correlation between the visual appearance of 

Fusarium damage and DON (Delwiche et al., 2010). For the NIR region, the 

spectral absorption near 1200 nm, attributed to ergosterol, was used in spectral 
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recognition of Fusarium damage (Delwiche et al., 2011). In particular, FT-NIR and 

FTIR spectroscopy have been used to detect DON in 30 g (De Girolamo, 

Cervellieri, Visconti, & Pascale, 2014) and 25 g (Dvořáček, Prohasková, Chrpová, 

& Štočková, 2012) of wheat. It has allowed the classification of samples according 

to their level of contamination, although some studies used artificially-inoculated 

cereals, and, in some cases, milling procedures before spectroscopic 

measurements. The technology is based on interferometry, opposing the grating-

based ones and producing better resolution and throughput. 

HSI combined with spectroscopy represents a new non-destructive 

methodology. Its advantage is that it provides spectral information at each 

spatial pixel on a sample, thus ensuring higher analytical potential (Cen, Lu, Zhu, 

& Mendoza, 2016). The most common HSI methods use diffraction gratings 

based on the online acquisition of spectra. The push-broom method is the most 

widely spread within the market of HSI cameras. It consists of an online spatial 

line (x) and the entire lambda range acquisition. Only the ‘y’ dimension scanning 

should be performed over time. Studies applying HSI-NIR technology have been 

reviewed, detecting quality parameters in cereals (Caporaso et al., 2018), assessing 

Fusarium and DON in wheat kernels (Femenias, Gatius, Ramos, Sanchis, & Marín, 

2020a) and detecting mycotoxins and mycotoxigenic fungi in food products (Xing 

et al., 2019).  

HSI-NIR has been proposed by some authors to assess the FDK percentage and 

DON presence at given levels. Delwiche et al. (2010, 2011) studies used visual 

inspection as a reference method to classify 60-kernels samples by LDA 

according to FHB presence. Moreover, Shahin & Symons (2011, 2012) and 

Delwiche et al. (2019) also aimed to classify a high number of FDK by LDA and 

Partial Least Squares-Discriminant Analysis (PLS-DA). All these authors reduced 

the dimensionality of the data by characteristic wavelengths selection for FDK 

analysis. However, the symptomatology of kernels cannot be directly related to 



Chapter 4. Standardisation of near-infrared hyperspectral imaging for quantification and classification of DON 
contaminated wheat samples 

 114 

DON presence because asymptomatic grains can contain DON and vice versa 

(Barbedo et al., 2015). The correlation between DON concentrations and Fusarium 

is higher for elevated DON levels than for low concentrations. Thus, some error 

is inevitable because, at low DON concentrations, typical Fusarium damage 

symptoms are not visually detectable. Moreover, at high DON contaminations, 

the correlation is higher, and, consequently, a higher percentage of damaged 

kernels can be observed (Beyer, Klix, & Verreet, 2007). Therefore, the HSI-NIR 

technique has been proposed to overcome visual symptoms disassociations with 

DON contamination.  

Moreover, Barbedo et al. (2017) used a CM to classify DON contaminated kernels 

into three groups: below 500 µg/kg, between 500 and 1250 µg/kg and above 1250 

µg/kg (legal EU limit); and Liang et al. (2018) developed a complex method based on 

SVM and PLS-DA to classify at three DON levels with mean values of < 250, 1162 

and 2665 µg/kg. 

The present article focuses on HSI-NIR methodology standardisation for wheat 

kernel scanning to have a precise method to screen samples for DON presence. Once 

standardised, it uses the protocol for DON levels quantification through PLS 

regression. Moreover, 150 naturally contaminated samples were scanned and 

classified according to the maximum limit in the EU (1250 µg/kg). 

 Materials and methods 

 

4.3.1.1. Reagents and chemicals 

Water was obtained from a Milli-Q® SP Reagent system (Millipore Corp., Brussels, 

Belgium). Methanol and acetonitrile (HPLC grade) were purchased from Scharlab 

(Sentmenat, Spain). Mycotoxin standards of DON were bought to Romer Labs 
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(Tulln, Austria). Immunoaffinity columns (IAC) for DON (DONPREP®) were 

acquired from R-Biopharm (Rhone LTD Glasgow, UK).   

4.3.1.2. Preparation of DON solutions 

DON concentration in the stock solution was checked by UV spectroscopy, 

according to AOAC Official Methods of Analysis, Chapter 49 (AOAC, 2005), 

obtaining a concentration of the stock solution of 791 µg/mL. A 9.55 µg/mL DON 

standard was obtained, storing it at 4 °C. Calibration curves, prepared by diluting 

known volumes of the stock solution with the mobile phase, were used for DON 

quantification. 

4.3.1.3. DON extraction in wheat 

A total of 150 wheat samples, supplied by a feed producing agricultural cooperative 

from Lleida province, were used in the study. They were taken within its quality 

control programme from each incoming truck. The cooperative sent a subsample 

(200-500 g) from each homogenized sample to our laboratory. 

DON was extracted from wheat samples with specific IAC (DONPREP®), following 

the manufacturer's instructions. The mycotoxin extraction followed a slightly 

modified version of the methodology used by Vidal, Sanchis, Ramos, & Marín (2018). 

Briefly, five grams of wheat previously ground with an IKA® A11 Basic mill 

(Darmstadt, Germany) were mixed with 30 mL of MiliQ water in a 250 mL 

Erlenmeyer flask, followed by 10 min stirring. Then, samples were 10 min 

centrifuged at 1780×g, the supernatant was filtered through a 9 cm diameter glass 

microfiber paper filter (Whatman™ GF/A, Maidstone, UK), and 5 mL of the filtrate 

passed through the IAC. The washed column with 10 mL of bi-distilled water was 

eluted with 3 mL of methanol HPLC grade (the first 1.5 mL performing back-

flushing), recovering DON from the samples. The elution solvent was evaporated 

under a low nitrogen steam at 40 °C and resuspended in the mobile phase 

(acetonitrile:methanol:water, 5:5:90, v/v/v). Every resuspended extract was filtered 

through a nylon filter (0.4µm) before being injected into the UHPLC-DAD system. 
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4.3.1.4. UHPLC system 

DON was quantified using an Agilent Technologies 1260 Infinity UHPLC system 

(California, USA) coupled with an Agilent 1260 Infinity II Diode Array Detector 

(DAD). The device used a Gemini® C18 column from Phenomenex 150×4.6 mm 

(California, USA) with a particle size of 5 µm and a pore size of 110 Å. The absorption 

wavelength for DON was 220 nm. The mobile phase was composed of 

methanol:acetonitrile:water (5:5:90, v/v/v) and set at a flow rate of 1 mL/min. The 

column temperature was 40 °C, the injection volume was 50 µL, and the total run 

time was 15 min for mycotoxin analyses. The performance of the quantification 

method of DON in wheat was published by Vidal et al. (2018), considering the limit 

of detection (LOD) to be three times the signal of the blank (50 µg/kg). 

 

4.3.2.1. Instrumentation and data acquisition by HSI-NIR 

A push-broom HSI system, composed of a Pika NIR-320 camera assembled in 

RESONON Inc. (Bozeman, MA, USA), was used. The device consists of an 

InGaAs sensor line scan camera with a 320×256-pixel resolution, a 30×30 µm pixel 

size, and a 14-bit resolution A/D spectrograph (Goldeye G-008 SWIR TEC1, 

Allied Vision Technologies GmbH, Germany). The spectral resolution is 4.9 nm 

(164 spectral bands from 895 to 1700 nm), with 320 pixels of spatial resolution 

and a frame rate of 520 fps. The objective lens has 25 mm of focal length (F/1.4 

SWIR, 0.9-1.7 µm, 21mm image format, c-mount) and is positioned 220 mm 

above the image surface. The illumination unit was composed of a four halogen 

lamps lighting system with Lambertian filters fixed on an adjustable tower that 

is turned on at least 20 min before the image acquisition. The illumination system 

was supplied by Samplexpower® power converter (SEC-1223CE, Burnaby, BC, 

V5A 0C6, Canada), which provides a highly regulated output DC voltage of 13.8 

Volts at 23 Amps with an AC input of 230 Volts, 50 Hz. Finally, a motorized linear 
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translation stage of 600 mm was also used, which permitted the scan of the entire 

sample having the optical systems fixed. 

The software Spectronon PRO controlled the Resonon’s benchtop for image 

processing. The intensity readings of each test sample data array were transformed 

automatically to reflectance by dividing the dark current-subtracted intensity by the 

dark current-subtracted white standard at each of the corresponding wavelengths 

(1). A dark current intensity image was collected before samples’ scanning, 

removing the dark noise by covering the camera lens. Likewise, the intensity from a 

99% reflectance standard, made of PTFE (Spectralon™, SRT-99-120, Labsphere, 

North Sutton, NH, USA) to correct illumination effects, was collected immediately 

after the dark image. Both images were applied subsequently to correct sample 

intensities.  

! = !!"	!"
!#"	!"

 (1) 

where !$	is the raw hyperspectral image obtained, !% is the white reference and 

!& is the dark current reference. Apart from the dark and absolute reflectance 

response, the pixel illumination saturation also was adjusted using the camera 

controls. The framerate and the integration time were fixed, avoiding saturated 

pixels on the image. 

The work was divided into three parts, first establishing the pixel selection 

methodology, the kernel location and the repeatability. The results were obtained 

by acquiring images of 30 individual kernels (from uncontaminated samples), 

placed crease-down in a template as shown in Figure 8a. The mean spectrum was 

recorded individually for each grain. In the second part, kernel orientation and 

data pre-processing were evaluated, acquiring images of 30 individual kernels 

(from both contaminated and uncontaminated samples) placed crease-down in a 

template (Figure 8a).  
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The mean spectrum also was obtained individually for each grain. In the third 

part, for bulk sample analysis, approximately 7 g of wheat kernels were scanned 

without any specific template, as in Figure 8b, and the mean spectra were 

recorded from the entire images. In all parts, a black tray was used as 

background, reducing the noise on the scan and obtaining an accurate pixel 

selection. Images adjusted to 350 bands for the horizontal axis and approximately 

90 mm for the vertical. The pixels were selected by collecting the mean 

reflectance’s of similar spectrum pixels by Euclidian distance that is best adjusted 

to the ROI to remove the background signal. Mean spectra for each kernel and 

entire samples were recorded as a text file, exporting them later to the spectral 

analysis software.  

4.3.2.2. Hyperspectral data processing for preliminary work 

Spectral data were processed using The Unscrambler software (version 7.6 SR1, 

CAMO, Oslo, Norway, 2001). For preliminary work, mean spectra from 

uncontaminated samples were projected by PCA without pre-processing the spectra. 

The purpose of PCA was to identify the variations between different sampling 

conditions by highlighting valuable information from the spectral data. First, the 

Figure 8. a) Hyperspectral image of 30 wheat kernels in crease-down orientation. b) 

Hyperspectral image of 7 g of wheat (approximately 200 kernels). 
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same sample was selected in two modes, comparing by PCA the differences between 

the selection mode between restrictive (avoiding any pixels from the background) or 

permissive (extending the selection to all kernel pixels including some from the 

background). Second, PCA was also used to determine the influence of the kernel 

position on the scanning tray. For position effect evaluation, 30 crease-down kernels 

were located on different locations for each of the three images captured, as shown 

in Figure 9. Finally, the repeatability of the image acquisition was also evaluated by 

PCA, scanning 5 samples in 3 consecutive days (different calibrations of the 

equipment).  

4.3.2.3. Hyperspectral data processing for tests with DON-contaminated and 

uncontaminated samples 

The spectral profile of the mean raw spectra of kernels from non-contaminated 

(<LOD), mildly-contaminated (1605.9 µg/kg) and highly contaminated (2682.8 

µg/kg) samples was determined by a line plot representation of the reflectance 

spectra. Spectral pre-processing algorithms were evaluated, determining the best-

fitted pre-treatment for the raw data obtained. First, the transformation of the 

reflectance data to absorbance spectra was introduced, using the spectroscopic 

transformation tool from The Unscrambler software. Second, baseline correction, 

which subtracted the lowest value from all the remaining values in the spectrum, 

was applied to both reflectance and absorbance spectra. Third, the algorithms were 

obtained by pre-processing both spectra with SNV. PCA was used to evaluate the 

best pre-treatment. 

Figure 9. Evaluation of the differences between kernel position on the scanning tray. 
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In addition, the kernel axis (crease up and down) orientation effect was 

determined by capturing images of both orientations of each kernel rotating on 

themselves. The differences in their spectra were estimated for DON 

contaminated and non-contaminated samples projecting PCA with the most 

suitable pre-treatment applied. The DON-effect and kernel orientation were 

compared by PCA, using grains from contaminated samples with 2190, 2682.8 

and 2882 µg/kg paired in each case with grains from samples with DON 

concentrations below the LOD.  

Moreover, kernels from DON-contaminated and uncontaminated samples were 

classified depending on the symptoms caused by Fusarium infection by a visual 

inspection (e.g. discolouration, wrinkles, wilting and dwarfing). Visually sound 

kernels were round, large and brownish. Contaminated and uncontaminated 

samples were scanned, pre-processing the resulting spectra with the best pre-

treatment. The pre-processed spectra were modelled by PCA, evaluating the 

relationship between symptomatology and DON contamination. 

 

Firstly, the within-sample repeatability was assessed by sampling for three times 

approximately 7 g of grain from the same, evaluating different kernels from the same 

sample. Grains arising from four samples considered contaminated (2681 µg/kg and 

1770 µg/kg), mildly-contaminated (660 µg/kg), and uncontaminated (<LOD) were 

scanned in triplicate so that a total of 36 images and 12 mean spectra were acquired. 

The kernels were together in the image, finding some of them overlapped. The 

spectral processing was applied to the formerly selected spectral pre-treatment, 

followed by a PCA model. 

The prediction model was built recording pixel mean reflectances of 7 g of wheat 

from 74 samples, covering the DON concentration range from <LOD to 2660.0 µg/kg 

as explanatory variables and DON concentration obtained by UHPLC as the 
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dependent variable. A total of 222 images were scanned (74 samples in triplicate), 

using them to develop a cross-validated model. The same samples were divided into 

two sets, the first with kernels arising from 24 samples (72 images) for the calibration 

set and the second with grains from 50 samples (150 images) for the validation set, 

shaking them between scans to distribute the kernels randomly to obtain major 

representativeness of the spectra. The spectral data came from the mean of all the 

pixels spectrum of a scanned grain. The triplicates were independently introduced 

(a total of 222 observations) in the multivariate analysis tool (The Unscrambler 7.6 

SR1). A baseline correction offset (subtracting the minimum value to the entire 

spectrum) was applied to the absorbances obtained from reflectances 

transformation. PLS were constructed and refined to simplify the complexity, 

calibrating two prediction models. The first regression model used full cross-

validation, which presented the best RMSECV as possible. The second one used the 

two sample sets to obtain the prediction performance with the RMSEP. The 

calibration set presented 22 from 220 spectra considered outliers for the cross-

validated model, and the test set only three outliers. The criteria followed for outlier 

detection was to represent the influence plot and reject those spectra with higher 

leverage and residual Y-variance, removing less than 10% of the original data. The 

criteria used to select the number of PCs to optimize the models (for cross-validation 

and test set) was the PC number where the first minimum on the curve of the Root 

Mean Square Error (RMSE) occurs. Validation accuracy was determined using the 

performance parameters: slope, correlation, R2, RMSEP and SEP.  

The classification model was developed with the data in the validation set of the 

preceding PLS model, corresponding to 150 images from 50 samples at different 

concentrations. The scans were distributed into two groups, covering the broader 

range of concentrations possible. The JMP PRO 14.1.0 (SAS Institute Inc., 2018) 

software analysed the data by multivariate statistics. LDA modelled two or more 

classes, first by a dimensionality reduction step and a second classification stage. 

The limit established for the two classes separation was the EU legal limit for 
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DON (1250 µg/kg). From the 75 images used for the calibration and the 75 for the 

validation set, 47 corresponded to kernels arising from samples below 1250 µg/kg 

of DON (B) and 28 to grains from samples above the legal limit (C). The 

accuracies results were the percentage (%) of correctly classified images from the 

total (75). 

 Results 

 

4.4.1.1. Image pre-processing: Kernel pixels’ selection 

The selection tool of the software was used for the segmentation of the kernels 

from the background, based on the similar spectra to the chosen pixel. The 

selection tool does not ensure that the same pixels are selected because it depends 

on the pixel chosen. Still, the recorded reflectances were quite similar when the 

pixels from the same kernel were selected twice, using 25 grains arising from the 

same sample placed crease-down and captured in a single image. The score plot 

of the PCA model showed that the differences among kernels were much broader 

than the error caused by the selection tool (Annexe, Figure 1). 

Moreover, a score plot of the PCA model for the reflectance spectra of the 

previously used 25 kernels was obtained, selecting twice the ROI for each grain 

(the first spectra limited to the pixels located within the kernel and the second 

one including the whole kernel area and, consequently, some background). The 

differences among grains were broader than those due to the selection method, 

but still, the difference was considerable (Annexe, Figure 2). Consequently, the 

narrow selection was selected for the following steps. 
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4.4.1.2. Kernel location on the scanning tray 

The PCA projection, obtained from the three images of 30 kernels crease-down 

placed on different locations on the plate (as explained in methodology), did not 

present considerable differences among the three repetitions of the same kernel, 

as is shown in the score plot in Figure 10. It means that radiation reached kernels 

equally regardless of their location on the tray and was reflected and measured 

similarly. 

4.4.1.3. Repeatability of image acquisition 

A PCA model showed the differences among sample scans for three different 

days. The possible variances caused by time intervals between analyses were 

checked by analysing five samples. Although projections between days 

presented differences, they did not present day-grouping, explaining that time 

did not influence group formation. In addition, the plot showed a grouping for 

the repeated samples, each one represented with the same colour for the three 

scores (Annexe, Figure 3).  

Figure 10. PCA score plot of the 3 different scans of the same kernels placed in 

different positions on the tray. X-expl: 94%, 5%. N=90. 
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4.4.2.1. Spectral profiles of different DON levels 

Figure 11 shows three spectra corresponding to different levels of contamination 

of 30 kernels placed crease-down on the scanning area. In general, 

uncontaminated samples showed higher reflectance, however, this point was not 

confirmed for different samples, thus it was concluded that some kind of data 

pre-processing was required. In Figure 11, the 1200 nm and 1480 nm absorption 

bands are indicated as they have been related to ergosterol and chitin, 

respectively (Delwiche et al., 2011, 2019). However, the observed differences 

were not clear at these wavelengths.  

4.4.2.2. Kernel orientation (crease-down or crease-up) 

Kernels reflectances were compared by rotating grains on themselves to obtain 

crease-down and crease-up images for a DON-free and a DON-contaminated 

sample. Figure 4 (Annexe) shows the projections for 30 kernels of a non-

contaminated sample in the upper part and a contaminated sample in lower part. 

The dashed line ellipse is the group that represents the majority of the crease-up 

kernels. Besides, the continuous line ellipse includes the crease-down grains. PC1 

explained most of the kernels differences (93% of the variability), while the 

Figure 11. Mean spectra profile of 30 crease-down kernel samples at three DON 

concentrations. B = <LOD; M = 1605.9 µg/kg; C = 2682.8 µg/kg. 
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impact of the different orientations appeared in the PC2, explaining less than 7% 

of the spectral variance.  

4.4.2.3. Spectral data pre-treatment determination 

A PCA analysis compared the different spectral pre-treatments applied to the 

raw data (reflectance spectra) in the ability of HSI-NIR to discriminate DON-

contaminated kernels from those under the LOD (Annexe, Figure 5 and 6). The 

PCA score plot corresponded to crease down and crease up kernels scan, 

respectively. Continuous line ellipses represent the projection area in the score 

plot for grains contaminated with 1719.8 µg/kg, while dashed-lines ellipses 

correspond to the <LOD kernels. The ellipses showed kernels clusters for each 

contamination level. In some cases, they were overlapped, appearing some 

samples in the middle of two groups. The results showed that transformation to 

absorbance plus baseline correction was the best choice for grains in the crease-

down and crease-up positions placed in the scanning area. 

4.4.2.4. Kernel orientation and discrimination of DON contaminated kernels 

Figure 12 shows the comparison of contaminated (C) and non-contaminated (B) 

kernels placed crease-down (D) or crease-up (V) during the scan. The following 

results obtained using the absorbance spectra pre-treated with a baseline 

correction were categorized as the most appropriate adjustment to highlight 

DON contamination. Each number corresponds to the evaluation of four 

different samples, three contaminated with DON and one under the LOD. Result 

1A depicts 60 wheat kernels arising from a batch with a DON concentration of 

2682.8 µg/kg; result 2A from a sample with 2190.0 µg/kg of DON and finally; 

result in 3A plots the same number of kernels from a batch with 2660.0 µg/kg. 

Group B kernels came from samples with concentrations below the LOD. The 

results showed that, while separation of grains due to DON-contamination 
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occurs in the PC1 (A figures), no relation exists with the grain orientation (B 

figures). Thus, it concludes that grains could be placed in the scanning area 

oriented randomly. 

4.4.2.5. Visual symptoms and contaminated kernels detection 

A PCA score plot of the combination of two features, DON contamination and 

kernel symptoms, is presented in Figure 13. It shows kernel symptoms influence 

(discolouration, wrinkles and wilting) in the discrimination of kernels with and 

without DON. Contaminated samples contained more symptomatic grains than 

non-contaminated ones. Four different groups: contaminated and symptomatic 

(CS), contaminated and asymptomatic (CA), non-contaminated and 

symptomatic (BS) and non-contaminated and asymptomatic (BA), showed that 

the separation along PC1 (97% of explained variance) is due to the difference 

among symptomatic contaminated kernels from uncontaminated ones (either 

symptomatic or not). We remind that, in this study, no confirmation of the DON-

contamination at kernel level exists, so some of the kernels classified as 

Figure 12. Evaluation of the influence of the kernel position on the ability of HSI-NIR to 

discriminate between DON-contaminated and <LOD kernels. Result 1 = X-expl: 97%; 1%. 

Result 2 = X-expl: 99%; 1%. Result 3 = X-expl: 98%; 1%. N = 120. 



Chapter 4. Standardisation of near-infrared hyperspectral imaging for quantification and classification of DON 
contaminated wheat samples 

 127 

contaminated could be uncontaminated and vice-versa. In conclusion, the 

symptoms of Fusarium damage are the basis for the discrimination, as it was 

expected. Thus, the discrimination success is directly affected by the correlation 

between Fusarium-DON. 

 

4.4.3.1. Repeatability within samples 

The different subsamples (7 g) arising from the same bulk sample showed some 

differences (Figure 14).  PC1 accounted for 100% of spectral data variability, where 

subsamples <LOD were projected separately on the left from those contaminated 

with 660 µg/kg placed in the middle, and those with levels between 1770 and 2881 

µg/kg overlapped on the right, which is quite expectable considering the 

heterogeneous distribution of mycotoxins in cereal commodities. 

Figure 13. Evaluation of the influence of the kernel symptomatology on the ability of 

HSI-NIR to discriminate between DON-contaminated and <LOD kernels. CS = 

Contaminated/Symptomatic; CA = Contaminated/Asymptomatic; BS = Non-

contaminated/Symptomatic; BA = Non-contaminated/Asymptomatic. Xexpl: 97%, 1%. 
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4.4.3.2. Calibration of a PLS regression model and validation 

The model used 200 images (from 74 samples scanned in triplicate, less the outliers) 

to calibrate the PLS model. The model included contaminated cereals between <LOD 

and 2660 µg/kg, including the legal UE limit (1250 µg/kg). Figure 15 represents the 

predicted versus measured values plot in which the line corresponds to the 

regression line of prediction obtained from spectral data (by full cross-validation). 

Figure 15 also shows the statistic parameters of the validation (obtained by full cross-

validation) of the model. The coefficient of determination of cross-validation (Rcv2) 

Figure 14. PCA score plot for four bulk samples subsampled three times and scanned (7 

g) in triplicate (Mean of triplicated scans are presented). Baseline corrected absorbance 

spectra. X-expl: 100%, 0%. N=12. 

Figure 15. Predicted vs. measured plot for PLS calibration set. Optimum number of PC: 

17. N = 200. 
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was 0.72, the offset 249.48 µg/kg, the RMSECV 405.9 µg/kg, and the slope 0.76. The 

optimum number of PC used for the best adjustment of the regression was 17. 

The same samples were evaluated by dividing the images into 72 for the calibration 

set (24 in triplicate) and an independent test set of 150 (50 scanned in triplicate). The 

concentration range used for model testing was the same for the cross-validated 

model. In this case, the statistic parameters obtained by the model based on the test 

set spectra were a Rp2 of 0.27 an offset of 883.4 µg/kg, an RMSEP of 1174.4 µg/kg and 

a slope of 0.77, which suggested that the prediction of DON concentrations for 

individual bulk samples was not possible under the conditions tested in this work 

(Figure 16).  

4.4.3.3. Classification model 

A total of 150 images divided into two sets of 75 (training and validation) were 

used to calibrate an LDA classification model. Each set was composed of 47 

corresponding to the B group (grain arising from samples contaminated by DON 

below 1250 µg/kg) and 28 images corresponding to group C (above 1250 µg/kg). 

Table 5 shows the number of correct and misclassified samples for both sets by 

LDA. The percentage of samples correctly classified was 73.4% (55/75) for the 

training set and 62.7% (47/75) for the validation set. Half of the incorrectly-

Figure 16. Predicted vs. measured plot for PLS validation set. The optimum number of 

PC: 12. N = 150. 
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classified (19%) were fail-dangerous, meaning that were contaminated over the 

legal limit but predicted to be under the limit. 

Table 5. LDA accuracies for training and validation sets. 

B = low-contaminated group of samples (< 1250 µg/kg); C = contaminated group of samples (≥ 1250 µg/kg). 

Grey cells indicate the number of correctly-classified samples. White cells indicate the number of miss-

classified samples. 

 Discussion 

In the present work, an HSI-NIR system was standardized for wheat sample images 

acquisition and to detect DON from naturally-contaminated bulk samples. In 

summary, for the setup, the results affirmed that good repeatability was expected 

for intraday and for repeated scannings of the same object (even with mixing up of 

the kernels), as the position in the scanning area and orientation of the grains had a 

low impact on the mean reflectance. FT-NIR has also been used to screen bulk 

samples. Published studies used high DON levels, much above those considered as 

safe, except for De Girolamo, Lippolis, Nordkvist, & Visconti (2009) and De 

Girolamo et al. (2014) worked in naturally contaminated samples (ground samples) 

with a DON range of 50-2600 µg/kg and <50-16,000 µg/kg, the last one so far to the 

present study. In comparison with De Girolamo et al. (2009), our study achieved a 

slope of 0.85 for the cross-validated model, slightly better than the 0.83 obtained by 

the abovementioned author. Otherwise, the R2 obtained was lower (0.72) than 

achieved in previous studies (0.82). In addition, the RMSECV obtained in this study 

was better (405.9 µg/kg) in comparison with the error obtained in the previous one 

Training set Validation set 

 Predicted Accuracy (%)  Predicted Accuracy (%) 

Groups B C 

73.4 

Groups B C 

62.7 B 33 14 B 33 14 

C 6 22 C 14 14 
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(516 µg/kg). However, in the present study, 17 LV were required, which resulted in 

a complex model compared to the two abovementioned studies (4). Our 

independent validation set model presented poorer results for the model 

adjustment, obtaining a correlation of 0.52 compared to the 0.79 achieved by both 

studies. In addition, in our work, the R2 value was 0.27, lower than 0.63 from both 

compared studies. However, our RMSEP achieved for the validation set (1174.6 

µg/kg) is comparable to the lower error (868.0 µg/kg) obtained by De Girolamo et al. 

(2009) and the higher (1977.0 µg/kg) achieved by De Girolamo et al. (2014), needing 

only 8 LV. 

Our R2 described a weak adjustment, but we obtained a significance level for the 

analysis of variance lower than 0.05 in the predicted vs observed values. Thus, we 

can affirm that a linear relationship between both measures exists and that the 

difference between the real and the obtained values is not due to random error. 

However, our SEP (979.3 µg/kg) was extensively lower than that of the validated 

model of Peiris, Dong, Bockus & Dowell (2013) by FT-NIR in bulk grain samples, 

which was 2400 µg/kg. The difference in the errors of prediction between studies 

could be due to the broader range of concentrations used in previous studies (<50-

3000 µg/kg; <50-16000 µg/kg and <40-17400 µg/kg, respectively). At broader 

concentration ranges, higher RMSEPs are obtained, caused by the higher standard 

deviations in the extremes of the distribution than in the centre. For that reason, the 

complete comparison of the results obtained in all these studies should include 

similar contamination ranges. 

As in our study, De Girolamo et al. (2014, 2009) also classified samples by LDA, in 

the first work applying a cut-off of 300 µg/kg, in which the classification accuracy 

was 69% and in the second work fixing a similar cut-off as in our study (1200 µg/kg), 

for which the accuracy was 90%. Our poorer accuracies could be due to the low 

number of samples (150) compared to previous studies (394 and 464) and their 

concentration range. In addition, unlike preceding works using FT-NIR, we applied 

HSI-NIR directly in whole kernel samples, avoiding a previous grinding step. Once 
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refined, it can be a rapid and cost-effective alternative to chemical analysis for cereal 

screening batches according to DON contamination. It explains the fitting difficulty 

due to the complex heterogeneity presented in whole samples compared to 

previously ground ones. 

Barbedo et al. (2017) published the first report using DON concentration as 

reference and HSI-NIR. Their initial experimental results revealed that direct 

estimation of DON content using HSI was currently unfeasible but also indicated 

that an indirect analysis exploiting the correlation between Fusarium damage and 

DON content may be accurate enough to improve the process of DON screening 

in the production chain. The wheat batches were discriminated between two or 

three categories, obtaining 81 and 72% of accuracies, respectively. They worked 

with 251 naturally contaminated samples, from which 152 presented DON levels 

above 1250 µg/kg, well above our values. However, they analysed by ELISA and 

LC the same grains as in the HSI-NIR system (after capturing images), this point 

may be the difference for their better performance and confirms that the 

variability of the different subsamples taken from the laboratory sample for 

analysis is an issue (as it is for chemical analysis). Future studies would require 

enlarging the sample size and determining their optimum dimension. Barbedo et 

al. (2017) used 30-50 kernels analysing the scanned sample by ELISA/LC to assess 

more accurately the HSI-NIR performance. Our study presented differences in 

sampling conditions for the qualitative analysis, in which each image contained 

approximately 200 kernels (7 g). In addition, for kernel segmentation from the 

tray and the dark background, Barbedo et al. (2015, 2017) operated on the 647 nm 

band to obtain the best contrast. Instead, we used background segmentation 

based on the selection of similar pixels. 

In our study, wavelengths were not selected for the classification and regression 

models, working with the whole range, as this was just a starting point. 

Interestingly, Barbedo et al. (2017) subtracted the reflectance at 623 nm from that 
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at 1411 nm band and worked with just one explanatory variable in the developed 

models. We observed that, for healthy kernels, these two bands did not differ 

much, diverging only when DON was present. In our case, the results did not 

differ when subtracting the lower weigh wavelengths, so we decided to maintain 

the whole NIR region. Other authors working on NIR spectrometry and 

Fusarium-damaged wheat have related changes at 1420 nm to reduced water 

content (Barbedo et al., 2015), at 1200 nm to ergosterol levels (Dowell et al., 1999), 

and at 1480 nm to chitin levels (Delwiche et al., 2011). A change near 1450 nm 

corresponded to the differences in moisture contents (Sundaram, Mani, Kandala, 

& Holser, 2015). Figure 11 showed two local minimums at 1200 nm and 1450 nm 

that could be associated with ergosterol produced from fungal cells and to the 

reduced water content in shrivelled kernels.  

Recently, Liang et al. (2018) published the second research on DON detection in bulk 

wheat kernels by HSI, but at 400-1000nm, thus results are not comparable. However, 

a peak appeared in 960 nm as in our reflectance raw spectra. They used naturally 

contaminated grains (250-5000 µg/kg). They placed 70 overlapping wheat kernels in 

the scanning area, and, as in our study, they recorded the mean spectra. The number 

of scanned grains was reduced compared to our study, examining approximately 

200 kernels in triplicate. After an exhaustive search of the best pre-processing 

method for the data, as well as for the selection of a discrete number of wavelengths 

(7 to 14), they achieved a 100% classification (<250, 1162, 2655 µg/kg mean levels in 

each class) accuracy for the training set and 97.92% for the testing set. They used for 

each group 44 images to calibrate the model and 16 to validate it. Instead, we used 

47 images to calibrate and 28 to obtain the accuracy for each classification group. 

The remaining studies on HSI used visual appearance or FDK as a reference 

variable and used the mean spectra for individual kernels. In the present work, 

we obtained discrimination between symptomatic and asymptomatic grains by 

the HSI-NIR system, projecting the data in PCA plots (Figure 13). The use of FDK 

to estimate DON levels was investigated by Paul, Lipps, & Madden (2005), with a 
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correlation of 0.73. The PCA scores presented two well-defined groups, one on 

the left (contaminated and symptomatic) and one on the right (uncontaminated 

and asymptomatic). These groups corresponded to the positive 0.73 correlation, 

in which Fusarium have produced kernel damage and DON on the kernel. 

Otherwise, grains with a low correlation between DON and symptomatology 

were represented in the middle of the score plot, corresponding to the region 

where both features converged and cannot be distinguished. 

As stated before, HSI-NIR analysis can discriminate between FDK and healthy 

grains and indirectly between DON contaminated and uncontaminated kernels, 

as both DON and symptomatology show a positive correlation. To deeply 

evaluate damage by the HSI-NIR, some studies, using a similar spectral range 

(900-1750 nm) to ours, have been compared (Polder et al., 2005). They worked 

with 96 artificially contaminated kernels, and they also performed a 

quantification with HSI-NIR, but in this case, the reference values corresponded 

to Fusarium DNA quantification, using TaqMan RT-PCR. A PLS model was built 

considering the spectra of complete grains, different from our mean data of the 

whole sample selection, leading to Q2 levels of 0.42 (0.80 for highly contaminated 

grains). Although similar Q2 values were obtained from the 1250/1050 nm 

reflectance ratio, it is complex to compare the prediction performances due to the 

differences in the methodology.  

LDA classification methods were also used in previous works by Delwiche et al. 

(2010, 2011), but they were applied to FHB in samples instead of DON 

contamination, although they had the information on DON. As in our 

preliminary studies, they worked on the mean spectra of crease-down positioned 

kernels. However, they selected 1199, 1474, 1315 nm, and 1998 nm and 1486 nm 

(local minima or maxima), respectively, as wavelengths required to separate 

kernels of healthy appearance from FDK in LDA. Both studies results presented 

correct classifications for high contrast in damage kernels but not for low contrast 
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ones. This fact agrees with Figure 13, in which the influence of the kernel 

symptomatology has more weight than DON contamination, although a 

correlation between both variables exists according to literature. However, 

Delwiche et al. (2010, 2011) used high DON contaminated samples (2900 to 13500 

µg/kg), in which Fusarium symptoms are expected. We agree with their study 

that low DON-contaminated cereals were not distinguishable for their visual 

Fusarium symptoms in a high percentage of the kernels (Barbedo et al., 2015). 

Thus, spectral pre-treatments, algorithms construction, wavelength selections or 

more precise calibrations are needed to highlight DON influence above fungal 

damage on the NIR spectra.  

Multivariate methods were applied by Shahin & Symons (2011) work, in which 

PCA scores extracted six characteristic wavelengths by the loading plot to 

develop an LDA. Thus, Shahin & Symons (2012) used PLS to select the best 

wavelength combination (494, 578, 639, 678 nm) by regression coefficients which 

provided higher accuracies for PLS-DA analysis. By contrast, we used a one-step 

LDA, which assumes that the within-group covariance matrices are equal. High 

accuracies were achieved in both studies (92% and 90%, respectively), although 

their purpose was to classify between FDK and sound kernels and not between 

DON contaminated and uncontaminated samples. Additionally, individual 

kernel spectra collection was used, unlike sample mean selection achieved in our 

study. 

The results of Barbedo et al. (2015) compared with our results (Figure 13) 

regarding the symptomatology of FDK. A correlation of 84% was achieved 

between DON contamination and visual assessment, distinguishing kernels 

according to symptomatology and DON contamination. Although correlations 

between DON/FI for low toxin contamination were accurate, symptoms were 

absent or too low to be visually assessed. Consequently, future studies are 

required to quantify DON and discriminate contamination independently from 
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imprecise visual evaluation. As in our work, they arranged random kernel 

orientation. Nevertheless, DON reference concentrations were obtained from 

kernels previously analysed by HSI, not from grains arising from the same 

sample, as in our case. Thus, their results would be more precise, as the sample 

heterogeneity can produce discordance between DON concentration in kernels 

achieved by the reference method and concentration in grains scanned.  

The high cost of NIR cameras may be a limiting factor in commercially viable 

applications development, and developing multispectral cameras may be more 

feasible than using hyperspectral ones. Moreover, the massive spectral variables 

and high dimensional data require more processing time than other imaging 

systems. In addition, large amounts of data noise and redundant information 

exist in high-dimensional data, which reduce the prediction accuracy of the HSI 

data model (ElMasry et al., 2012). Although the present work used the whole 

spectra, wavelength selection would be a future option to improve model 

performances. As described above, some authors chose a discrete number of 

wavelengths based on local minima or maxima spectra, and their differences 

related to visually damaged grains (Barbedo et al., 2018; Delwiche et al., 2010), 

other used PLS coefficients (Tekle et al., 2015) or more complex techniques 

(Delwiche et al., 2019; Liang et al., 2018). In the NIR region, the lower wavelength 

region demonstrated closer similarity between sound and FDK reflectance for 

most wavelength pairs (Delwiche et al., 2011). The present work obtained high-

influence regression coefficients by local minima or maxima selection in 955, 

1287, 1403, 1455, 1528, 1671 and 1714 nm. The wavelength selection, especially 

for the 1403 nm band, is discussed by Peiris et al. (2009), that observed DON 

absorptions in the 1408 nm band. Previous studies highlight the importance, 

among others, of 950 nm (absorption from O-H) and 1400 nm (absorption from 

C-H) bands, which is related to scab effects on protein and starch and 

consequently the indirect detection of DON (Dowell et al., 1999). Moreover, a 
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study by Delwiche & Gaines (2005) focused on the single wavelength sorting for 

Fusarium-damaged wheat stated that the best accuracy was between 1450-1460 

nm. Some of these bands coincide with ours (955, 1403 and 1455 nm) and present 

positive or negative coefficients of regression. 

On the other hand, besides contaminated samples detection, this technique may 

have a high potential for cereal grain selection, detecting contaminated single 

kernels. Preliminary trials showed that single-grains from DON-contaminated 

samples could be separated from the grains arising from non-contaminated, 

regardless of kernel location in the scanning area and kernel orientation (either 

crease-down or crease-up). In this work, DON levels were not known for every 

single kernel of the scanned sample. Consequently, there is still room for 

improvement if grain selection was the aim. Similarly, a recent work (Delwiche 

et al., 2019) proposed HSI-NIR sorting of FDK. They scanned about 200 grains 

randomly positioned for each sample, using 5 samples for model training and 82 

for model testing. The reflectance of each grain was averaged, obtaining the mean 

reflectance within the kernel. PLS-DA models were used to establish the limits of 

model accuracy and to evaluate LDA models employing a much smaller number 

of wavelengths. From the 5 samples, 278 sound and 278 damaged kernels were 

used. They selected 1100, 1197, 1308, and 1394 nm, with accuracies over 95% in 

the classification of the test kernels. Although it is still little studied, if sorting of 

grains by Fusarium damage/DON could be feasible, food safety management 

systems would not have to trust only the analytical screening for wheat batches 

admission, not able to deal with sampling variability. HSI-NIR sorting 

implementation would be a critical control measure that. In addition, improving 

food and feed safety would be more sustainable, as only contaminated kernels 

and not whole batches would be diverted to other uses or for destruction. 
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 Conclusions 

Rapid and non-destructive methods are required to quantify and discriminate DON, 

which would be interesting for mycotoxin management in cereals. The results 

obtained in the present work stated that HSI-NIR is a powerful technique for DON 

screening, as the preliminary outcomes confirmed the potential of this technique. 

The most significant parameters which can disturb DON discrimination have been 

evaluated, obtaining interesting results. Moreover, the quantitative and qualitative 

analyses do not present high accuracies for naturally contaminated samples, but they 

are a starting point for further processing improvements and calibration techniques. 

Future studies will be required to improve the HSI-NIR technique, as high-influence 

wavelength selection, reference method improvements or single kernel 

quantification. In addition, new methodologies to overcome sample heterogeneity 

are necessary to obtain high accurate classification and low prediction error results. 

Notwithstanding those hitches, the initial results are encouraging, and propose the 

HSI-NIR as a prospective system for DON quantification and kernel sorting for DON 

reduction. 
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 Abstract 

The present study aimed to evaluate the use of HSI-NIR spectroscopy to assess 

the presence of DON and ergosterol in wheat samples through prediction and 

classification models. To reach the objective, the first set of bulk samples was 

scanned by HSI-NIR and divided into two subsamples, analysing one for 

ergosterol and the other for DON by HPLC. The method was repeated for a 

second set with more samples to build prediction and classification models. All 

the spectra were pre-treated and statistically processed by PLS and LDA. The 

prediction models presented an RMSEP of 1.17 mg/kg and 501 µg/kg for 

ergosterol and DON, respectively. Classification achieved an encouraging 

accuracy of 85.4% for an independent validation set of samples. The results 

confirm that HSI-NIR may be a suitable technique for ergosterol quantification 

and DON classification of samples according to the EU legal limit for DON. 

 

Keywords: Hyperspectral imaging; Deoxynivalenol; Ergosterol; Near-infrared; 

Cereal analysis.  
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 Introduction 

Fusarium is a plant pathogen that is extensively present in wheat and produces 

diseases that result in loss of harvest yield, decreased crop quality and decreased 

economic value. One of the most important diseases caused by these fungi is 

FHB, which affects spikes causing shrivelling, weight loss and discolouration of 

kernels (Beyer, Pogoda, Ronellen, Hoffmann, & Udelhoven, 2010). Moreover, 

under suitable environmental temperature, water activity, pH and nutrient 

availability conditions, Fusarium produces DON, consisting of a mycotoxin with 

harmful effects on human and animal health. Ineffective approaches for DON 

reduction in preharvested wheat and its resistance to food processing methods 

make DON a high prevalence toxin in the food chain (Pestka, 2010). In addition 

to DON contamination, fungal spoilage results in dry matter loss and reduction 

of nutritional value. For these reasons, efficient strategies to discern between 

contaminated and sound, toxin-free wheat batches before food chain entry are 

needed. 

Well-known strategies such as HPLC and ELISA have been used for DON 

detection and quantification in cereal grains. However, time consumption is one 

of the most remarkable shortcomings of these techniques. Consequently, 

companies demand rapid approaches to detect and measure DON, monitoring 

grains before entry into the food industry, such as LFD. At the moment, 

spectroscopic techniques are promising not only for the rapid analysis power but 

also because they are environmental-friendly, cost-effective and non-destructive. 

NIRs has been used to determine the major components present in food, such as 

protein, moisture, structural carbohydrates and fats (Caporaso et al., 2018; 

Pandey, Srivastava, & Mishra, 2018). The application of this technique to 

minority pollutants, such as DON, has been investigated by many authors. Some 

studies have also evaluated the influence of ergosterol by measurement of NIR 

spectra for its determination and prediction concerning Fusarium growth and 
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damage (Dowell et al., 1999; Mancinelli, Costantini, & Rossi, 2014). Ergosterol is 

a predominant chemical component of the fungi cell membrane. At the same 

time, it is a minor or absent component in most plants and, consequently, 

indicates the presence of fungal growth in cereal products (Seitz, 1979). 

HSI is a novel approach that presents advantages over conventional NIR devices. 

Its main advantage is the spectral information acquisition from every image 

pixel. Thus, it is a high-performance analytical device, especially for 

heterogeneous samples. The most appropriate spectrometry technology for grain 

evaluation is diffuse reflectance, which can partially penetrate the object to show 

its physical and chemical characteristics (Fox & Manley, 2014). In addition, push-

broom imaging is the most widely used technique for HSI recording. This 

measurement involves scanning through the ‘y’ axis to record NIR spectra for 

each pixel in the ‘x’ dimension over all the measured wavelength range (Boldrini 

et al., 2012). 

Several studies tested HSI spectroscopy for Fusarium damage assessment. Most 

of them used visual inspection as a reference for HSI calibration, using kernel 

symptoms to build classification models (Delwiche et al., 2011; Ropelewska & 

Zapotoczny, 2018; Serranti et al., 2013). Otherwise, ergosterol has not been used 

for HSI calibration yet. However, as ergosterol is considered an indicator of 

fungal growth (Magan, 1993), some authors used this chemical compound to 

estimate fungal damage in cereals (Börjesson, Stenberg, & Schnürer, 2007; 

Delwiche et al., 2011; Dowell et al., 1999). In addition, the influence of ergosterol 

for the spectra measured near the 1200 nm band has been studied (Delwiche et 

al., 2011; Delwiche et al., 2019; Femenias, Gatius, Ramos, Sanchis, & Marín, 

2020b). Consequently, an ergosterol calibration for a rapid determination of 

fungal growth would improve visual inspection, which is an imprecise and 

qualitative method. 
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Likewise, HSI-NIR has been used to detect and quantify DON in wheat. Barbedo 

et al. (2015) focused on the correlation between the visual symptoms and DON 

concentration by a FI determination in which they demonstrated that visual 

symptoms do not correlate with DON contamination. A subsequent study 

(Barbedo et al., 2017) aimed to classify wheat samples into two (above or under 

the EU limit, 1250 µg/kg) and three groups (< 500 µg/kg; 500-1250 µg/kg; > 1250 

µg/kg) using a CM. In this report, DPI was employed, obtaining notable 

classification accuracies of above 70%, although prediction models were not used 

due to their low correlation (0.54) with the DON concentration. Moreover, Liang 

et al. (2018) also classified wheat samples according to the DON mean 

concentrations into three groups (< 250 µg/kg; 1162 µg/kg; 2665 µg/kg) using a 

high complexity model by the combination of SVM and PLS-DA. Recently, 

published studies determined a positive correlation between the spectral 

signatures of wheat kernels and wheat flour and fungal DNA and DON content 

(Alisaac et al., 2019).  

The first aim of this study was to determine ergosterol by HSI-NIR as an indicator 

of fungal presence to assess grain quality, nutritional value and yield loss. 

Second, by using a considerable number of samples compared to other studies 

with similar purposes, DON quantification and classification of wheat samples 

according to the established EU limit was carried out by HSI-NIR analysis. PLS 

and LDA were used as multivariate statistical techniques to reach these 

objectives (Esbensen, Swarbrick, Westad, Whitcombe, & Anderson, 2018). In this 

study, a first approximation of the potential of HSI-NIR, assessing the spatial 

distribution of the variables, was not achieved. Instead, mean spectra of the 

image comparing the performance with other techniques recording single 

spectra, like FT-NIR, etc., were used. 
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 Materials and methods 

 

A feed-producing agricultural cooperative supplied a total of 270 wheat samples 

during 2018 and 2019. The origin of the samples was the plain area of Lleida 

province. Samples passed within its quality control programme from each 

incoming truck. The moisture content, protein, fat, and ash levels were 

determined from the whole homogenized sample, sending a subsample (200-500 

g) to our laboratory. 

 

A push-broom HSI system, composed of a Pika NIR-320 camera assembled by 

RESONON Inc. (Bozeman, MA, USA), was used. The device consists of an 

InGaAs sensor line scan camera with a 320×256-pixel resolution, 30×30 µm pixel 

size, and 14-bit resolution A/D spectrograph (Goldeye G-008 SWIR TEC1, Allied 

Vision Technologies GmbH, Germany). The spectral resolution was 4.9 nm (164 

spectral bands from 895 nm to 1700 nm), with a spatial resolution of 320 pixels 

and a frame rate of 520 fps. The objective lens had a focal length of 25 mm (F/1.4 

SWIR, 0.9-1.7 µm, 21 mm image format, c-mount) positioned 220 mm above the 

image surface. The illumination unit was composed of a four halogen lamp 

lighting system with Lambertian filters fixed onto an adjustable tower that was 

turned on at least 20 min before image acquisition. The illumination system, 

supplied by a Samplexpower® power converter (SEC-1223CE, Burnaby, BC, V5A 

0C6, Canada), provided a highly regulated output DC voltage of 13.8 Volts at 23 

Amps with an AC input of 230 Volts, 50 Hz. Finally, a motorized linear 

translation stage with a range of 600 mm was also used, which permitted 

scanning of the entire sample with the optical systems remaining in a fixed 

position. 



Chapter 5. Near-infrared hyperspectral imaging for deoxynivalenol and ergosterol estimation in wheat samples 

 150 

The software Spectronon PRO controlled Resonon’s benchtop for image 

processing. The raw reflectance readings for each test sample data array were 

corrected by dividing the dark current-subtracted reflectance by the dark current 

subtracted white standard reflectance at each of the corresponding wavelengths 

(1). A dark current intensity image, collected before sample scanning, removed 

the dark noise by covering the camera lens. Likewise, the intensity from a 99% 

white reflectance standard, made of polytetrafluoroethylene (Spectralon™, SRT-

99-120, Labsphere, North Sutton, NH, USA), was used to correct the illumination 

effects immediately after the dark image. The two images corrected the 

subsequent sample intensities, set by equation 1. 

! = !!"	!"
!#"	!"

 (1) 

where !$ is the raw hyperspectral image obtained, !% is the white reference and 

!& is the dark current reference. Apart from the dark and absolute reflectance 

response adjustment, the pixel illumination saturation was corrected using the 

camera controls. The framerate and integration time values were determined, 

ensuring that no pixel on the image was saturated. 

The work had two trials: in the first, 14 g of wheat kernels from each sample were 

scanned, not following any specific template. The bulk sample mean spectrum 

was recorded, repeating this process in triplicate and shaking between each 

scanning to obtain a change in the kernel orientation of the entire sample and 

representative spectra for its characteristics. The subsamples were ground after 

the spectra record by an IKA® A11 Basic mill (Darmstadt, Germany). Ground 

wheat obtained in each subsample (14 g) was scanned, following the same 

procedure for the whole kernels. After these two steps, each sample was divided 

into two equal parts of 7 g; one for ergosterol extraction and the other for DON 

extraction. The second trial was also divided into two steps: In the first, 14 g bulk 

wheat kernels were scanned in triplicate, grinding the subsamples as in the first 
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trial and scanning the resulting product three times. This step used the entire 14 

g of kernels to extract DON. 

In all cases, the black tray reduced the background noise in the image, obtaining 

an accurate pixel selection. Images had 350 bands for the horizontal axis and 

approximately 90 mm for the vertical. Pixels were selected from the mean 

reflectance values of similar spectrum pixels by Euclidian distance, 

corresponding to the best adjusted to the ROI to remove the background signal. 

Mean spectra for entire samples were recorded as a text file, exporting the data 

to the software to analyse the spectra. 

 

5.3.3.1. Reagents and chemicals 

The Milli-Q® SP Reagent water system obtained from Millipore Corp. (Brussels, 

Belgium) provided the water. Methanol and acetonitrile (HPLC grade) were from 

Scharlab (Sentmenat, Spain). DON standards were from Romer Labs (Tulln, 

Austria) and IAC (DONPREP®) from R-Biopharm (Rhone LTD Glasgow, UK). 

Potassium hydroxide was obtained from VWR Prolabo (Geldenaaksebaan, 

Leuven) and n-hexane from VWR BDM Prolabo (Fontenay-sous-Bois, France). 

Finally, ergosterol was purchased from Sigma (St. Louis, Mo). 

5.3.3.2. Preparation of ergosterol solutions 

Standard solutions were prepared by dissolving 20 mg of ergosterol in 10 mL of 

solvent (dicloromethane:isopropanol, 99:1, v/v). Then, 3 mL of the solution were 

evaporated using a nitrogen steam at 40 °C. The resulting product was 

resuspended in methanol (HPLC grade), and the calibration curves were 

prepared by diluting appropriately known volumes of the stock solution in 

methanol. 
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5.3.3.3. Preparation of DON solutions 

The DON concentration in the stock solution was checked by UV spectroscopy, 

according to the AOAC Official Methods of Analysis, Chapter 49 (AOAC, 2005), 

obtaining a concentration of 1336 µg/mL for the stock solution. Standard 

solutions of DON were prepared in methanol at a concentration of 10 µg/mL and 

stored at 4 °C. Calibration curves were prepared, diluting appropriately known 

volumes of the stock solution with the mobile phase. 

5.3.3.4. Ergosterol extraction in wheat 

Concisely, 7 g of previously ground wheat were mixed by an IKA® A11 Basic 

mill (Darmstadt, Germany) with 40 mL of methanol and 10 mL of hexane. The 

mix was stirred for 30 min at 112×g and filtered through a sieve of filter paper. 

Then, 20 mL of the solution was transferred to a tube, adding 2 g of KOH. Next, 

it was shaken with a magnetic stirrer, placing the mixture into a bath at 55-60 °C 

for 20 min. The ergosterol was extracted with 2 mL of bi-distilled water to cool 

the solution and 2 mL of hexane. Then, it was stirred to enable a liquid-liquid 

extraction and recover the upper layer corresponding to the hexane phase. Two 

additional liquid-liquid extraction steps with 2 mL of hexane were performed, 

recovering a final extract volume from the three extractions of 6 mL. This volume 

evaporated with a low nitrogen steam at 40 °C. The dried samples were 

resuspended into 1 mL of methanol (HPLC grade) before being injected into the 

UHPLC-DAD system. 

5.3.3.5. DON extraction in wheat 

As stated before, the same samples used for spectral analysis were analyzed to 

determine the mycotoxin content. DON was extracted using specific IAC 

columns (DONPREP®) and following the manufacturer's instructions. The 

mycotoxin extraction followed a slightly modified version of the methodology 

used by Vidal et al. (2018). Briefly, 7 g or 14 g, for the first and the second trial, 
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respectively, of sample previously ground with an IKA® A11 Basic mill 

(Darmstadt, Germany) was mixed with 42 mL and 78 mL, correspondingly, of 

Milli-Q water in a 250 mL Erlenmeyer flask, followed by 10 min of stirring. Then, 

samples were centrifuged for 10 min at 1780×g, obtaining the supernatant filtered 

through 9 cm diameter glass microfiber filter paper (Whatman™ GF/A, 

Maidstone, UK), and, then, 5 mL of the filtrate passed through the IAC column. 

The columns were washed with 10 mL of bi-distilled water, eluting the toxins 

with 3 mL of HPLC-grade methanol (the first 1.5 mL performing back-flushing). 

Samples were evaporated under a low nitrogen steam at 40 °C and resuspended 

in the mobile phase (methanol:acetonitrile:water, 5:5:90, v/v/v). Every 

resuspended extract was filtered through a nylon filter (0.4 µm) before being 

injected into the UHPLC-DAD system. 

5.3.3.6.  HPLC system for ergosterol analysis 

The HPLC equipment consisted of an HPLC Waters 2695 system, with a Waters 

Spherisorb 5 µm ODS2 and a 4.6 × 250 mm analytical column coupled with a 

Waters 2487 UV/Vis dual λ absorbance detector set at 282 nm. For each sample 

analysis, the mobile phase was methanol (HPLC grade) at 1 mL min-1, the 

injection volume was 100 mL, and the total run time was 18 min. The ergosterol 

standard was purchased from Sigma (St. Louis, Mo) for calibration solutions 

preparation, obtaining a curve with R2 0.99. The limit of detection (LOD) for 

ergosterol in wheat was 0.5 mg/kg. 

5.3.3.7.  UHPLC system for DON analysis 

DON was determined using an Agilent Technologies 1260 Infinity UHPLC 

system (California, USA) coupled with an Agilent 1260 Infinity II DAD. A 

Gemini® C18 column from Phenomenex 150×4.6 mm (California, USA) with a 

particle size of 5 µm and a pore size of 110 Å was ensembled to the device. The 

absorption wavelength was 220 nm. The mobile phase was composed of 

methanol:acetonitrile:water (5:5:90, v/v/v) and set at a flow rate of 1 mL min-1. 



Chapter 5. Near-infrared hyperspectral imaging for deoxynivalenol and ergosterol estimation in wheat samples 

 154 

For the mycotoxin analyses, the column temperature was 40 °C, the injection 

volume was 50 µL, and the total run time was 15 min. The performance of this 

method to quantify DON in wheat has been previously published in Vidal et al. 

(2018), in which the LOD was three times the signal of the blank (50 µg/kg). 

 

First, the spectral data were obtained from 50 samples of 14, recording the mean 

reflectance (167 wavelengths) and using them as explanatory variables. The 

cross-validated model included 150 images for unground samples and 150 

images (50 samples in triplicate in both cases) for ground samples. The samples 

were achieved in triplicate, shaking the samples between scans to randomly 

distribute the unground kernels or ground meal to obtain the major 

representativeness of the sample. The 14 g from each sample were divided into 

two subsamples of 7 g each, one used for ergosterol and the other for DON 

analysis. The ergosterol concentration ranged from 1.9 mg/kg to 18.7 mg/kg and 

the DON contamination range included samples from < LOD to 2660.0 µg/kg. 

These results were obtained by HPLC and categorized as the dependent 

variables. 

Second, the prediction model used 165 samples of 14g and included a DON 

concentration range of <LOD - 2660.0 µg/kg. Mean reflectances (167 

wavelengths) were the explanatory variables, and the DON concentrations 

obtained by UHPLC were the dependent variables. A cross-validated model, 

developed using 495 images (165 samples in triplicate), had two sample sets 

divided randomly (some kernels were switched from one to the other to obtain 

similar distributions), in which kernels arising from 83 samples were scanned 

(249 images) for the calibration set, and grains from 82 samples were scanned 

(246 images) for the validation set. 
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The mean spectra correspond to the pixel spectra obtained for all the scanned 

kernels. Triplicate spectra were treated independently by the statistical software, 

introducing 495 observations in the multivariate analysis tool (The Unscrambler 

7.6 SR1 software by CAMO AS, Oslo, Norway, 2001). First, the reflectances were 

transformed to absorbances and then baseline corrected. Alternatively, the 1stD 

was also applied. One PLS model was calibrated for each pre-processing, refining 

variables and outliers to simplify the model. Models were validated in two ways: 

by full cross-validation, obtaining the lowest RMSECV possible; and dividing the 

sample sets to determine the prediction performance with the RMSEP. Some 

spectra, considered outliers, were removed for all the models. The criterion 

followed for outlier detection was to represent the influence plot and reject those 

spectra with higher residual Y-variance, which described the mismatch between 

the sample and the model. The samples with high leverage and low residual Y-

variance were considered extreme samples and maintained in the model. High-

leverage and residual Y-variance samples were rejected from the model, as they 

were considered out of adjustment and influencing the model. Less than 10% of 

the spectra were removed from the original data. The criterion used to select the 

number of PCs to optimize the models (for cross-validation and test set) was the 

PC number where the first minimum on the curve of the RMSE occurs. The 

performance parameters (slope, correlation, R2, RMSEP and SEP) gave the 

validation accuracy. 

The 495 images spectra from 165 samples were introduced, as well as for the PLS 

models, to the classification models. A first classification was calibrated, cross-

validating the model to obtain its accuracy. Then, the images were distributed 

into two sets, each of them covering the broadest range of concentrations possible 

for an independent validated model. Statistical analysis was performed with JMP 

PRO 14.1.0 (SAS Institute Inc., 2018) software using a LDA model to characterize 

two or more classes, first by a dimensionality reduction step, and then, a second 
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classification stage. The limit established to separate the two classes was the EU 

legal limit for DON (1250 µg/kg). From the 249 images used for the calibration 

and the 246 used for the validation set, 411 images corresponded to kernels 

arising from samples with a DON concentration of below 1250 µg/kg and 84 to 

grains obtained from samples above the legal limit. Accuracies were the 

percentage (%) of correctly classified images from the total (495). 

 Results 

 

The mean concentration for the 50 samples was 6.13 mg/kg, with a standard 

deviation of 3.64 mg/kg. The samples showed a concentration range from < 0.5 

mg/kg to 18.65 mg/kg. Finally, the coefficient of variation (CV) was 59.33%. 

Figure 7 (annexe) represents the distribution frequency for the ergosterol 

concentration in the whole data set. The highest frequencies were obtained for 

medium-low concentrations (from 2 mg/kg to 12 mg/kg), finding a data 

asymmetry distributed under the mean. 

Table 6. Performance parameters of ergosterol predictive models. 

Sample Pre-treatment Slope RMSEP 
(mg/kg) 

R2 Number of 
PC 

Whole 
samples 

Raw spectra 0.88 1.35 0.85 20 

ABS/BC 0.85 1.35 0.82 18 

1stD 0.92 1.17 0.89 21 

Ground 
samples 

Raw spectra 0.62 2.15 0.57 10 

ABS/BC 0.60 2.24 0.53 11 

1stD 0.84 1.57 0.77 23 

ABS/BC = Baseline-corrected absorbance spectra; PC = Principal Components; RMSEP = Root Mean Square 

Error of Prediction; R2 = Coefficient of Determination. 
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PLS regression between Y (ergosterol HPLC results) and X variables (HSI-NIR 

results) was calibrated for whole and ground samples, cross-validating the 

models because they used just 150 images. Table 6 show performance results for 

the raw spectra and both spectral pre-treatments. 

The application of the 1stD to the raw spectra appeared to be the best pre-

treatment for unground wheat samples, obtaining the lowest RMSEP (1.17 

mg/kg) and the highest slope and R2 (0.92 and 0.89, respectively) (Figure 17). 

However, the model needed too many PC (21) to adjust. In addition, 14 outliers 

were removed, debugging the models and improving the adjustment. 

Figure 17. Predicted vs. measured plot of ergosterol PLS regression for 1st derivate 

spectra. a) Unground wheat data set. Optimum number of PC = 21; N = 135. b) Ground 

wheat data set. Optimum number of PC = 21; N = 141. 
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In the case of ground samples, 9 samples were outliers. Table 6 presents the 

results obtained for the three applied pre-treatments. The best-fitted model was 

the one built on the 1stD spectra, which had the lowest RMSEP (1.57 mg/kg) and 

the highest slope and R2 compared to the obtained with other pre-treatments 

(0.84 and 0.77, respectively) (Figure 17). Nevertheless, the number of PC used in 

this model wsa also high (23), so the model presented more complexity. 

 

Figure 8 (annexe) shows the distribution of DON concentration in the samples 

used in the present study for DON quantification and classification trials. The 

statistical parameters of the calibration and the validation sets are shown 

independently, with mean DON concentrations of 497.7 µg/kg and 467.1 µg/kg, 

respectively. Both values are considered low-contaminated due to the high 

frequency of samples above the LOD. The highest DON concentrations were 

3537.0 µg/kg and 2628.5 µg/kg for the calibration and validation sample set, 

respectively.  

Figure 8 (annexe) also represents the frequency of the reference DON content. 

The frequency histogram shows the number of samples in each category. A high 

sample density was represented in the medium-low contaminated area followed 

a non-Gaussian distribution, in which most of the DON contents were under the 

mean. This fact was expected, due to the heterogeneity between batches, in which 

fungal production of DON can depend on environmental factors, such as 

moisture, temperature or harvest season. The samples were divided between two 

sets, covering the broadest range possible and with similar frequencies for all 

contamination levels in the calibration and validation sets.  
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The models were based on the 495 images (from 165 samples in triplicate) to 

calibrate the model, introducing different spectral pre-treatments to determine 

the best-fitted model with the lowest error of prediction possible. Apart from the 

raw data, spectra were transformed to absorbances and baseline-corrected 

(ABS/BC), and first derivated (1stD). The models were verified by cross-validation 

and independent validation (dividing the samples into two groups, one of 83 to 

calibrate and another of 82 to validate), assembling a total of six models for each 

data set. For both validations, the models used the same sample set. Table 7 

presents their parameters. 

Table 7. Performance parameters of DON predictive models for unground 

samples. 

Bulk samples Validation Slope RMSEP 

(µg/kg) 

R2 Number 

of PC 

Raw spectra Cross-validation 0.67 252.70 0.62 18 

ABS/BC Cross-validation 0.59 503.76 0.55 20 

1stD Cross-validation 0.76 354.28 0.73 16 

Raw spectra Test set validation 0.56 540.19 0.56 15 

ABS/BC Test set validation 0.58 561.04 0.52 14 

1stD Test set validation 0.59 501.36 0.61 13 

ABS/BC = Baseline-corrected absorbance spectra; 1stD = 1st derivative; PC = Principal Components; RMSEP 

= Root Mean Square Error of Prediction; R2 = Coefficient of Determination. 

From the original 495 images, a total of 23 (4.64%) were removed, considered as 

outliers. Figure 18 shows the predicted versus measured plot and the 

performance parameters obtained for the independent validation of the best-
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fitted model. The trend line corresponds to the prediction regression line 

obtained for model validation. The slope was 0.59, the offset 13.03 µg/kg, the 

correlation 0.81, the coefficient of determination of validation (Rv2) 0.61, and the 

RMSEP 501.36 µg/kg. The optimum number of PCs used to fit the model was 13. 

From the spectral range used (895–1731 nm), two characteristic wavelengths 

contributed substantially, explaining the DON variance within the model. These 

spectral bands showed a maximum at 1220 nm and a minimum at 1380 nm, 

showing regression coefficients with higher positive and negative weights than 

the rest of the wavelengths. Thus, both bands contributed significantly to the 

DON prediction. 

 

The 495 mean spectra obtained from unground wheat, used to calibrate the 

models, were introduced to the JMP Pro statistics software for an LDA 

classification. Two models, one validated by cross-validation and the other 

dividing samples into training and validation sets, were calibrated. The 

classification threshold was the actual maximum EU limit (1250 µg/kg) for 

unprocessed cereals. 

Figure 18. Predicted vs. measured plot for the PLS validation set in unground samples. 

Optimum number of PC = 13. N of validation = 239. 
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Table 8. LDA accuracies for training and validation sets in unground samples. 

B = low-contaminated group of samples (< 1250 µg/kg); C = contaminated group of samples (≥ 1250 µg/kg). 

Grey cells indicate the number of correctly classified samples. White cells indicate the number of miss-

classified samples. 

Table 1 (Annexe) shows the results obtained for the cross-validated models for 

unground samples. The 1stD spectra had higher classification accuracies for LDA, 

classifying correctly 95.66% of the samples. Only 24 samples were incorrectly 

classified, being the best model for sample classification according to the DON 

level for a single dataset. Otherwise, the classification accuracies validated 

independently were similar for the three pre-treatments (Table 8). Despite the 

similar results, the best accuracy was for the 1stD pre-treatment, in which 82.93% 

of the samples were classified correctly. Despite the similarity of the validation 

accuracies of the different pre-treatments, 1stD model was selected for its 

accuracy in the training set (97.99), providing robustness to the model. The 

samples with DON levels below the EU limit incorrectly classified as highly 

contaminated should be considered. It may be due to the high number of samples 

below the 1250 µg/kg limit (411) compared to the ones above the threshold in 

both calibration and validation sets. 

 Training set Validation set 

Raw 

spectra 

 Predicted Accuracy 

(%) 

 Predicted Accuracy 

(%) Groups B C 
86.35 

Groups B C 
82.52 B 170 34 B 172 35 

C 0 45 C 8 31 

ABS/BC 
Groups B C 

86.35 
Groups B C 

83.33 B 172 32 B 174 33 

C 2 43 C 8 31 

1stD 
Groups B C 

97.99 
Groups B C 

82.93 B 199 5 B 170 37 

C 0 45 C 5 34 
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The predictive model for ground wheat used the same samples as previous 

models. As for unground sample analysis, the same spectral pre-treatments were 

applied to the raw data and validated in two ways, building six models. Table 9 

includes the results obtained for all the models. The ones with the best 

performance were for data transformed with the 1stD, which showed a low 

RMSEP and a high R2. The independent set validated model is represented by 

the measured versus predicted plot in Figure 19. 

Table 9. Performance parameters of DON predictive models for ground samples. 

Bulk 
samples 

Validation Slope RMSEP 
(µg/kg) 

R2 Number 
of PC 

Raw spectra Cross-validation 0.72 483.28 0.62 13 

ABS/BC Cross-validation 0.73 438.94 0.70 16 

1stD Cross-validation 0.72 403.29 0.69 16 

Raw spectra Test set validation 0.55 578.68 0.49 7 

ABS/BC Test set validation 0.71 588.21 0.48 13 

1st D Test set validation 0.55 518.95 0.59 10 

ABS/BC = Baseline-corrected absorbance spectra; 1stD = 1st derivative; PC = Principal Components; RMSEP 

= Root Mean Square Error of Prediction; R2 = Coefficient of Determination. 

First, from the original 495 images used for the cross-validated model, 24 (4.84%) 

were discarded, considered as outliers. These 471 samples were used to both 

calibrate and validate the model. The most remarkable performance parameters 

were a slope of 0.72, an offset of 108.57 µg/kg, a correlation of 0.83, a Rcv2 of 0.69 

and an RMSEP of 403.29 µg/kg. The model needed 16 PCs to be correctly fitted. 
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Likewise, the same pre-treatments were applied to the spectra, obtained from 

ground samples and divided into calibration and a test set. Only 5 (1.98%) 

outliers were discarded from the calibration data, considering them abnormal 

compared with the rest. The regression parameters were a slope of 0.55, an offset 

of 122.30 µg/kg, a correlation of 0.78, an R2 of 0.59 and an RMSEP of 518.95 µg/kg. 

The predictions needed fewer PCs for the cross-validated model, resulting in an 

optimum number of PCs of 10. In this case, two wavelengths that contained high 

variances were also determined, explaining the DON changes in the model. 

However, these two wavelengths were at the spectral extremes (941.7 nm and 

1728 nm), where the 1stD spectral noise is enhanced (Agelet & Hurburgh, 2010). 

A third wavelength (1380 nm) also had significant weight on the model (local 

minimum), which matched with the characteristic wavelengths found in the 

models for the unground wheat. It led us to select unground samples as a more 

reliable choice for model development. 

 

A total of 495 images were used for classification by LDA. Initially, all the spectra 

were classified by cross-validation, obtaining the performance parameters. Then, 

Figure 19. Predicted vs. measured plot for PLS validation set in ground samples. 

Optimum number of PC = 10. N of validation = 243. 
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they were divided into a training and test set, validating the model 

independently. The process for ground samples consisted only of a milling step, 

in which the product obtained was not refined, so the wheat bran was 

maintained. Thus, the classification threshold was the UE maximum limit of 

DON (1250 µg/kg), as for unprocessed cereals. 

Table 10. LDA accuracies for training and validation sets (threshold 1250 µg/kg) 

in ground samples. 

B = low-contaminated group of samples (< 1250 µg/kg); C = contaminated group of samples (≥ 1250 µg/kg). 

Grey cells indicate the number of correctly classified samples. White cells indicate the number of miss-

classified samples. 

Table 2 (annexe) shows the LDA accuracies for a cross-validated models in 

ground samples. For the milled sample analysis, the 1stD pre-treated spectra 

presented the highest classification accuracy (97.18%), beyond that obtained for 

the non-treated and ABS/BC spectral results (94.35% and 84.05%, respectively). 

The low number of over-limit samples misclassified as under-limit contaminated 

samples should be considered in all cases. For the 1stD model, only one sample 

highly-contaminated was classified incorrectly. Conversely, Table 10 gathers the 

LDA results for the training and validation sets. The highest accuracy for the 

training set (99.20%) was for the 1stD spectra. In addition, the accuracies obtained 

 Training set Validation set 

Raw 

spectra 

 Predicte

d 

Accuracy 

(%) 

 Predicte

d 

Accuracy 

(%) Group

s 

B C 
93.58 

Group

s 

B C 
82.53 B 191 13 B 176 31 

C 3 42 C 12 27 

ABS/BC 
Group

s 

B C 
83.14 

Group

s 

B C 
87.81 B 168 36 B 180 27 

C 6 39 C 3 36 

1stD 
Group

s 

B C 
99.2 

Group

s 

B C 
85.37 B 203 1 B 188 19 

C 1 44 C 7 22 
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for the validation set were similar for the ABS/BC spectra and the 1stD spectra 

(87.81% and 85.37%, respectively), although the 1stD model presented a higher 

overall accuracy. For the ABS/BC spectra, the obtained calibration accuracies 

were poorer than validation. It can occur when the validation sample set differs 

from the one used in the calibration. Nevertheless, the accuracies for the 1stD 

corrected spectra as a whole (training and validation) presented higher overall 

performance compared to the ABS/BC transformed data set efficiencies. As 

found for the cross-validated models, low percentage samples with 

concentrations over the legal limit were misclassified. 

 Discussion 

 

Ergosterol was detected in all wheat samples, showing most of the samples 

medium-low ergosterol concentrations and a few presenting high ergosterol 

levels. It suggested that all samples presented fungal contamination. Our 

ergosterol results had higher ergosterol content than that found by Perkowski et 

al. (2008), whose range was 0.40-3.40 mg/kg for naturally infected wheat, but 

similar to the content range of 1.46 to 42.14 mg/kg reported by Lamper et al. 

(2000). It demonstrates that our samples covered a broader range of 

concentrations than other naturally infected samples, making them appropriate 

for HSI-NIR evaluation. 

Interestingly, the HSI-NIR models obtained from unground samples performed 

better than those for ground samples. This point can attribute to the fact that 

ergosterol is normally present on the surface of the kernels as a result of fungi 

colonizing their surface; thus, grinding could reduce ergosterol detection. The 

regression coefficients with the highest values were determined to reduce the 

variables and model complexity. Two peak maxima (983.8 nm and 1701 nm) and 
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two peak minima (960.3 nm and 1380 nm) were considered for their high weights 

on the model, which can explain the ergosterol variability. 

One of the first studies that quantified ergosterol in wheat samples by NIR was 

published by Dowell et al. (1999), who adjusted their model with an R2 of 0.62 

and an SEC of 108 mg/kg for ergosterol concentrations above 50 mg/kg. As in our 

study, they used all the spectral ranges between 500-1700 nm. The results have 

been improved recently (Berardo et al., 2005; Börjesson et al., 2007) on maize and 

barley samples, respectively. Berardo et al. (2005) reported the best regression 

models that showed an R2 of 0.81 and a SEP of 1.74 mg/kg using the 

characteristics bands of 1430 nm, 1470 nm, 1820 nm, 2140 nm, and 2180 nm, and 

Börjesson et al. (2007) detected ergosterol by NIR reflectance with an R2 of 0.83 

and an RMSE of 4.5 mg/kg, considering the whole complex information from the 

NIR region to estimate ergosterol. Our best results (1stD spectra for unground 

kernels) show lower errors (RMSEP = 1.17 mg/kg) and a higher R2 (0.89). In our 

study, four wavelengths (960 nm, 983.8 nm, 1380 nm and 1701 nm) presented 

higher weights for the whole model, as they explained the variance of ergosterol 

compared to the other bands. Only the 1400 nm region of the spectra was used 

to detect ergosterol in previous studies. Furthermore, HSI-NIR spectroscopy may 

be more appropriate to describe ergosterol content based on the surface 

reflectance of unground samples, as our results for ground wheat presented 

weaker adjustment parameters (R2 of 0.77) compared to the previous reports. In 

conclusion, HSI-NIR spectroscopy is a suitable method to assess grain quality in 

terms of fungal presence. 

In our previous study (Femenias et al., 2020b), we assessed the correlation 

between kernel symptomatology and DON contamination using PCA and 

showed that, in general, DON contaminated kernels show visible symptoms, but 

that asymptomatic kernels with high DON can also appear. As grains were not 

individually analysed to build the PCA, the entire samples should be evaluated 
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to determine the contamination levels. In the present study, the same kernels 

were first scanned by HSI-NIR and analysed by the reference method, presenting 

advantages for model calibration. In addition, ergosterol is present at higher 

concentrations than DON; therefore, it would be an interesting compound for 

fungal spoilage detection before the apparition of visual symptoms, despite its 

low correlation with mycotoxins. 

 

From the 165 original samples analysed by the reference method, 62 presented 

concentrations under the LOD. Ideally, the dataset should represent the broadest 

DON concentration range possible, having the maximum variability to build a 

solid prediction model. Our results showed a DON distribution with a high 

density of samples with low DON concentrations. Despite this, the interest of this 

study is that it used naturally contaminated samples, and, consequently, the 

results are directly applicable in real situations for DON prediction in wheat. In 

addition, the dataset was equally divided into calibration and validation groups, 

covering similar ranges of concentration. Balanced sets of data are required to 

obtain validation performance parameters that represent the maximum variance 

of the model calibration. 

The models applied to unground and ground wheat samples presented the best 

performances for the 1stD pre-treatment. The unground grain model had a slope 

of 0.59, an R2 of 0.61 and an RMSEP of 501 µg/kg. Alternatively, the milled grain 

model had a slope of 0.55, an R2 of 0.59 and an RMSEP of 518 µg/kg. These results 

showed a slightly higher performance for unground samples than for ground 

samples. Avoiding the grinding step presents advantages to the method: faster 

and reduced complexity. The differences in the majority components of wheat, 

such as water, protein or starch, could influence DON prediction errors, which 

may interfere in the quantification; thus, it is more suitable to model such 

variables concerning DON for the classification of samples than for 
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quantification. However, multivariate analysis techniques allow us to model the 

spectral differences generated by the different sample components. 

Some preliminary studies used pre-HSI technology for DON quantification, 

although most works used NIR and Fourier Transform Near Infrared (FT-NIR) 

spectroscopy. Although these technologies cannot recognize the spatial 

distribution of the cereals, some approximations for mycotoxin content 

prediction have been described. Dvořáček et al. (2012) estimated the DON 

content in intact wheat samples by FT-NIR; thus, we can discuss and compare 

their results with our outcomes for unground wheat. Their best PLS-DA result 

showed a high correlation of 0.92 and a high SEP of 2.35 mg/kg. Unlike in our 

study, they used ELISA as a reference method, and they worked on artificially 

contaminated samples at a higher DON range (0-90 mg/kg). In addition, they 

identified two spectral regions between 1390-1770 nm and 1880-2070 nm, using 

them to describe DON contamination. Our methodology focused on the NIR 

spectra, whose range went from 895 nm to 1728 nm; thus, only the first region is 

comparable to our results. The study of Peiris, Dong, Davis, Bockus, & Dowell 

(2017) obtained a SEP of 2400 µg/kg and an R2 of 0.48, and, in this case, using the 

entire spectral range with a mean centring for the calibration of the FT-NIR. They 

scanned 65-70 g of non-milled wheat; thus, their model parameters are 

comparable to ours for unground samples. However, some spectral bands were 

related to the presence of DON because they can be correlated to the light 

interaction differences with DON vibrating bonds. Therefore, their regression 

coefficients showed spectral peaks at 1310 nm, 1400 nm, 1420 nm, 1920 nm and 

1960 nm. The first three peaks are comparable to ours, obtained at the same 

spectral region (1380 nm), which led us to consider the region of maximum 

information for DON. Remarkably, the present study is the first one that uses 

naturally contaminated wheat samples for HSI-NIR technology. 
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HSI-NIR technologies have been used for DON quantification by a few authors. 

In our previous study (Femenias et al., 2020b), the PLS regression parameters for 

bulk samples were poorer than in the present study, using fewer samples and 

different kernels for both HSI and HPLC analyses. The R2 has increased from 0.27 

to 0.61, and the RMSEP has been reduced from 1174 µg/kg to 501 µg/kg. 

Moreover, the 1stD of the spectra, which was not the best spectral pre-treatment 

method for DON-contaminated single kernel discrimination by PCA in our 

previous work, presents the best results for bulk kernel analysis by PLS 

regression in the present work. However, comparing the ABS/BC spectral model 

results obtained from both studies, the PLS parameters are also improved (R2 of 

0.52 and RMSEP of 561 µg/kg). The characteristic peaks obtained in the previous 

work were local minima or maxima at 955 nm, 1287 nm, 1403 nm, 1455 nm, 1528 

nm, 1671 nm and 1714 nm. The pre-treatment of the spectral data may introduce 

changes to our spectral behaviour, but our peaks are still comparable to those 

obtained in previously presented unground models (1220 nm and 1380 nm). 

However, the unground model for DON determination can avoid characteristic 

bands near the extremes that introduce noise to the ground wheat model (Agelet 

& Hurburgh, 2010; Yao & Lewis, 2010). 

Our results were comparable to the ones of De Girolamo et al. (2009), who also 

worked with naturally contaminated ground wheat samples with a similar DON 

concentration range (50-3000 µg/kg); however, they used FT-NIR to scan milled 

and sieved wheat. For our ground model, we obtained a similar slope and Rcv2 

(0.72 and 0.69, respectively) than in their case (0.71 in both cases). Nevertheless, 

our RMSECV was better (403 µg/kg) than that obtained in the previous study 

(516 µg/kg). For the independent validation of the model for milled samples, the 

R2 was slightly lower (0.59) than the compared study (0.63), and RMSEP was 

better (518 µg/kg) than the 868 µg/kg obtained by De Girolamo et al. (2009). 

Moreover, the high-influence peaks in this study were near the 1409 nm region 
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and the 1904 nm band. Our results also pointed out the spectral region near 1400 

nm, which may be related to DON contamination. In addition, De Girolamo et 

al. (2014) used FT-NIR for DON evaluation of the ground naturally contaminated 

wheat samples. In this case, the range of concentrations increased to 16000 µg/kg. 

Their PLS results using ground and sieved wheat presented a reduced prediction 

capacity compared to our model (not sieved). They obtained an RMSEP of 1977 

µg/kg and an R2 of 0.63. Although their R2 was similar to ours (0.69), their RMSEP 

was much higher than ours (403 µg/kg). This increase in the RMSEP can be due 

to the higher DON range, which depends on the original Y variable scale. In the 

last two studies, samples were sieved, obtaining a final sample size of < 500 µm. 

This step may reduce sample heterogeneity at the expense of losing DON, which 

is present with a higher probability at the external layer of the kernel. After 

milling, the larger particles correspond to the outer layer and the smaller particles 

to the endosperm. To avoid DON loss in our samples, we did not sieve because 

it increases the operation time and the analysis complexity. 

 

As in the present study, De Girolamo et al. (2014, 2009) classified milled wheat 

samples by LDA. In the first study, they obtained discrimination of 69% of the 

samples below and above the cut-off (300 µg/kg). A high prediction accuracy, 

ranging from 75-90%, was achieved for 3 classes of discrimination (< 1000 µg/kg; 

1000-2500 µg/kg; > 2500 µg/kg) by De Girolamo et al. (2014) using FT-NIR, which 

is comparable to our results of more than 82% correctly classified samples. 

Although the high accuracy of classification from the 495 spectra obtained in this 

work, only 84 samples were above the UE maximum limit. Future studies should 

evaluate the introduction of similar frequencies of DON between groups above 

and under the threshold to obtain the same weight in models. 
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Peiris et al. (2017) also employed an FT-NIR device for DON classification at 

different thresholds. The contamination range varied between non-detectable 

levels to 58100 µg/kg. The closest cut-off they used (2000 µg/kg) is comparable to 

the one used in this work. Their overall classification accuracy for this cut-off was 

87%, similar to ours. Nevertheless, their classification accuracy for the samples 

below the threshold (only 7.2% of the total samples) was 38.9%. In our case, we 

used a higher number of samples below the limit, with 96% correctly classified 

samples. It demonstrated that it is possible to manage naturally contaminated 

wheat batches, in which moderate concentrations are frequent. However, we 

need a more balanced dataset in which highly contaminated samples appear with 

similar frequency to low-contaminated. 

Moreover, Barbedo et al. (2017) published a study evaluating DON by HSI in the 

NIR region. Although they did not consider it feasible to estimate the DON 

content, they focused on a classification method for wheat batches using two or 

three categories. The two categories model followed the EU legal limit for 

unprocessed cereals (1250 µg/kg) as the cut-off. They achieved a correct sorting 

ratio of 81%, slightly lower than our (83%) for the two split groups. Our study 

presents differences in the sampling conditions, in which the sample weights 14 

g (approximately 400 kernels), unlike the 30-50 kernels used by Barbedo et al. 

(2017) for each image. Consequently, our sample volume is more representative 

of the whole batch than previous studies to classify wheat samples. 

Complex statistical research was published by Liang et al. (2018), assembling 

spectral pre-processing and novel algorithms to determine different DON levels 

in bulk wheat samples. A PLS-DA model classified samples between classes 

divided into three mean categories (< 250 µg/kg, 1162 µg/kg and 2665 µg/kg). 

Samples contained a DON concentration ranging from 250 µg/kg to 5000 µg/kg 

and were analysed by HSI-Vis/NIR. The wavelength range varied between 250-

1000 nm, so only one peak (980 nm) is comparable to our spectra (895-1731 nm). 
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Consequently, the characteristic wavelengths obtained by Liang et al. cannot be 

compared with the present study, as they worked in a different spectral range. 

Even though the computation involved in their models was complex, they 

obtained high classification accuracies, achieving their best result for the MSC-

SPA-SVM combination, which classified correctly 97.75% of the test set samples. 

 Conclusions 

Food and feed industries need urgently to have rapid methods that allow the 

analysis and rejection of mycotoxin-contaminated batches in a short time. With 

HSI-NIR application for fungal growth and DON inspection, traditional 

screening analysis, such as ELISA and LFD, could be replaced by rapid and non-

destructive screening methods. The results demonstrated that despite the low 

correlation between ergosterol and DON, successful outcomes for ergosterol 

quantification with high performance can be achieved by HSI-NIR. In addition, 

our findings establish that it is possible to quantify DON in naturally 

contaminated bulk wheat samples with an error of prediction of 501.36 µg/kg. 

With such an error, the device can be implemented to screen DON-contaminated 

samples. Moreover, the classification model to accept or reject according to the 

EU maximum limit presented remarkable accuracies (> 80%), which can be 

applied to prevent highly contaminated batches from entering the food chain. In 

addition, further studies for single kernel screening via individual kernel sorting 

are required, avoiding the entire batch exclusion and improving DON reduction 

and production yield. 
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 Abstract 

The spatial recognition feature of HSI-NIR makes it suitable for Fusarium and 

DON management in single kernels in order to break the contamination 

heterogeneity in wheat batches and to replace commonly used time-consuming 

and destructive techniques. This study aimed to standardize HSI-NIR to predict 

the level of DON contamination and classify grains according to the DON EU 

maximum limit (1250 µg/kg) and Fusarium damage. The reference methods were 

visual inspection on Fusarium symptoms and HPLC analysis for DON 

determination. The kernels were positioned in crease-up and crease-down faces 

and scanned in different images. The spectra were pre-treated by MSC, SNV, 1stD 

and 2ndD, and normalisation. The differences of removing spectral tails also were 

evaluated. The best fitted predictive model was on SNV pre-treated data (R2 0.88 

and RMSECV 4.8 mg/kg), using 7 characteristic wavelengths. LDA, Naïve Bayes 

and K-nearest Neighbours (K-NN) models classified 100 % of the 1stD and SNV 

pre-treated spectra according to symptomatology and 98.9 and 98.4 % of the 1stD 

and SNV spectra, respectively. The starting point results encourage future 

investigations on HSI-NIR technique application to Fusarium and DON 

management in single wheat kernels to overcome their contamination 

heterogeneity. 

 

Keywords: Hyperspectral imaging; Deoxynivalenol; Single Kernel; Near-

infrared; Cereal sorting.  



Chapter 6. Standardization of near-infrared hyperspectral imaging for wheat single kernel sorting according to 
deoxynivalenol level 

 182 

 Introduction 

DON, also known as vomitoxin, is a Fusarium-produced mycotoxin that presents 

a high incidence in wheat. DON ingestion includes a wide range of harmful 

effects, in which gastroenteritis and potential chronic diseases are the most 

frequent (Eriksen & Pettersson, 2004; Pestka & Smolinski, 2005). A significant 

cereal consumption in occidental countries associated with an increased 

incidence of mycotoxins due to global climatic change, in which high 

temperatures promote their production, is an issue of especial concern for human 

and livestock health (Nesic, Milicevic, Nesic, & Ivanovic, 2015; Uhlig et al., 2013). 

Due to this exposure, the European Commission established DON maximum 

limits for unprocessed durum wheat (1750 µg/kg), unprocessed wheat other than 

durum wheat (1250 µg/kg) for human foodstuffs (European Commission, 2006b) 

and recommended limits for animal feed (5 mg/kg) (European Comission, 2006a). 

As its presence is not reduced sufficiently in the pre-harvest stages, food 

producers demand post-harvest strategies to reduce mycotoxins in the food 

industry. Recent studies demonstrated that part of DON contamination remains 

after food processing (Vidal et al., 2016). Consequently, it should be reduced 

before entering the food industry.  

To date, several analytical methods are accessible for DON detection in wheat 

batches, including HPLC, ELISA and MS. These techniques are time-consuming, 

expensive and, associated with low representability in sample collection in food 

industry entrance and increase batch rejections. DON heterogeneity causes the 

refusal of entire wheat lots. The methods of cereal sampling established by the 

European Commission (2006a) lay down that an aggregate sample weight of 10 

kg, obtained from 100 incremental samples, is analysed for larger batches than 

50 tonnes. Consequently, some highly contaminated kernels can disrupt the 

whole batch admission in the food industry according to UE legal limit, with a 

high impact on food chain sustainability. Rapid analyses could avoid the over-
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contaminated grains, discarding them from the whole batch. As a result, a sub-

batch with kernels not exceeding the DON established limits could be obtained. 

HSI-NIR has been proposed as a rapid, low cost and eco-friendly technique, 

which permits the analysis of chemicals in a specific sample position. This 

method combines the spectral features of each pixel location in the image 

acquired. Thus, the spatial skill of HSI allows the discernment of an individual 

kernel light spectrum (Fox & Manley, 2014). This information is used to calibrate 

models to quantify DON and discard over-contaminated kernels from whole 

batches.  

Revision articles compiled several studies referring to similar purposes 

attempting effective systems for cereal sorting according to fungal and DON 

contamination (Femenias et al., 2020a; Fox & Manley, 2014). The authors used 

SK-NIR to assess FDK and DON contamination. Some studies with the same aim 

used NIR technology recording single grain reflectance (Jin et al., 2014; Peiris, 

Bockus, & Dowell, 2016; Peiris et al., 2010).  

However, the HSI development introduced spatial features to spectroscopic 

measurements, which permitted single kernel recognition in a whole image. 

Several authors have used HSI-NIR for Fusarium damage detection and 

classification in a wheat single-grain. Singh, Jayas, Paliwal, & White (2009) and 

Delwiche et al. (2010, 2011) built a DA by selecting wavelengths in NIR and 

Vis/NIR region spectra, respectively. All these studies used visual inspection as 

a reference method to discern as a sprout, midge or Fusarium damaged and 

healthy kernel. Moreover, Shahin & Symons (2011) used the same method, 

classifying healthy and FDK by LDA based on PCA scores. In addition, the whole 

Vis/NIR spectrum (450-950 nm) and six selected wavebands defined the most 

accurate model, also based on visual inspection. 

Both studies from Barbedo et al. (2015) and Ropelewska & Zapotoczny (2018) 

used HSI-Vis/NIR technology for FHB and F. graminearum infection in individual 
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wheat kernels, respectively. The first study used a complex system based on the 

FI, which reveals the grain likelihood of being infected, to build a probability 

distribution function discerning between FHB and sound kernels and correlate it 

with DON. Based on these results, Barbedo et al. (2017) built a CM algorithm 

based on k values to classify kernels in two and three categories below 500 µg 

DON/kg, between 500 and 1250 µg DON/kg and above 1250 µg DON/kg (legal 

EU limit). In both cases, they used direct competitive LC-MS obtaining the 

reference DON concentrations of 30-50 kernel lots instead of single kernels. The 

second research selected three characteristic wavelengths to compare LDA, 

Logistic Model Tree (LMT), Partial Decision Tree (PART), Naïve Bayes and K star 

classifications from artificially infected and visually examined kernels. Delwiche 

et al. (2019) used the potential of HSI-NIR to classify sound and FDK by PLS-DA 

and LDA. The first classifier obtained the best results for two wavelengths 

selection and the second model obtained the best accuracies selecting four 

wavelengths between 1000-1400 nm. Single kernels also were visually checked, 

which introduced the inspector subjectivity to the analysis. In addition, Alisaac 

et al. (2019) investigated FHB in artificially inoculated wheat kernels and flour 

by HSI-Vis/NIR by comparing the spectral signature reflectance. Spectral profiles 

of FDK presented higher reflectances than non-infected ones. HSI-NIR could also 

be used to recognize early FHB in the field by spikelet’s analysis. Alternatively, 

Zhang, Pan, Feng, & Zhao (2019) targeted Fusarium damage by the FHB 

classification index, calculated by, first, an extraction of four sensitive 

wavelengths. Then, they used PLS to determine the broadest differences in the 

spectral index (two bands extraction) to calculate both best combinations and 

detect and classify healthy and damaged wheat kernels according to the index.  

Despite the studies applying HSI-NIR on single wheat kernels to detect and 

classify DON, batch heterogeneity remains an issue in the so-far published 

studies. The present work aims to overcome the kernel diversity by 
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standardization of HSI-NIR to screen kernels by DON level. To reach this 

purpose, spectral pre-treatments, wavelength selection and model calibrations 

were performed, mainly using PLS for single kernel DON quantification and 

LDA for individual kernel classification. 

 Materials and methods 

 

A feed producing agricultural cooperative supplied the wheat samples during 

2018-2019. Their origin was the plain area of Lleida province. They were from the 

quality control programme from each incoming truck. A subsample (200–500 g), 

arising from the whole homogenized batch, was given to our laboratory. A total 

of 18 kernels from a non-contaminated sample were selected to validate the 

UHPLC analytical method and 50 grains from a highly-contaminated for the 

experimental analysis.  

 

The 50 kernels used for the experimental study were selected manually and 

divided into three levels (symptomatic, mildly-symptomatic and asymptomatic) 

according to visual symptoms of fungal infection. Discoloured, shrivelled and 

wrinkled kernels were considered symptomatic (S). The grains with part of these 

symptoms were considered mildly symptomatic (M), and the ones not 

presenting visible signs as asymptomatic (A). The grains were selected trying to 

cover, as wide as possible, all the visual kernels characteristics. Consequently, the 

percentage of kernels with symptoms in our working sample set was higher than 

in the original sample.  
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6.3.3.1.  Instrumentation and data acquisition by HSI-NIR  

A Pika NIR-320 camera assembled in RESONON Inc. (Bozeman, MA, USA) was 

used in this study, scanning with push-broom mode to obtain the hyperspectral 

images. The device consists of an InGaAs sensor line scan camera with 320 × 256-

pixel resolution, a 30 × 30 µm pixel size and a 14-bit resolution A/D spectrograph 

(Goldeye G-008 SWIR TEC1, Allied Vision Technologies GmbH, Germany). The 

framerate was 520 fps, combining the spectral resolution of 4.9 nm (164 spectral 

bands from 900 to 1700 nm) and a spatial resolution of 320 pixels. The objective 

lens was positioned 220 mm above the scanning surface and had 24 mm of focal 

length (F/1.4 SWIR, 0.9–1.7 µm, 21 mm image format, c-mount). The illumination 

device consisted of four halogen lamps lighting systems with Lambertian filters 

fixed on an adjustable tower. The lights were turned on at least 20 minutes before 

taking the images to ensure the stability of light beams. Samplexpower® power 

converter (SEC-1223CE, Burnaby, BC, V5A 0C6, Canada) powered the 

illumination system, which provides a highly regulated output DC voltage of 

13.8 V at 23 Amps with an AC input of 230 V, 50 Hz. Lastly, the fixed optical 

devices could register entire samples due to a motor-powered linear translation 

stage of 600 mm. 

The Spectronon PRO software permitted the Resonon's benchtop control before 

and after the image acquisition. The captured intensities of each sample data 

array were transformed automatically to reflectance by dividing the dark current 

by the dark subtracted white standard at each of the corresponding wavelengths 

(1). A dark correction image was obtained before samples' scanning, removing 

the dark noise by the camera lens cover. Likewise, the intensity from a 99% 

reflectance standard, made of polytetrafluoroethylene (PTFE) (Spectralon™, 

SRT-99-120, Labsphere, North Sutton, NH, USA) to correct lighting effects, was 
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registered immediately after the dark image. These two images were applied to 

the subsequent sample intensities as the equation 1: 

! = 	 !!"!"!#"	!"
   (1) 

where I0 is the raw hyperspectral image obtained, Iw is the white reference and Ib 

is the dark current reference. Apart from the dark and absolute reflectance 

response, the camera controls also were used to correct the pixel illumination 

saturation. Framerate and integration times were set, ensuring that no pixel on 

the image was saturated. 

The 50 wheat kernels were first scanned in triplicate individually for both 

positions (crease-up and crease-down). The kernel location was adjusted on the 

scanning plate, recording all the grains spectra at the same image position. The 

Spectronon PRO software provided the mean raw and the mean 1stD spectrum 

of each kernel. Subsequently, the same 50 grains were placed on the scanning 

tray shifting positions, repeating the process in triplicate for both kernel faces. 

Images adjusted to 350 bands for the horizontal axis and approximately 90 mm 

for the vertical. The pixels were selected with the mean and mean 1stD 

reflectance's of similar spectrum pixels by Euclidian distance best adjusted to the 

ROI to remove the background signal. Both spectra for each kernel, saved as a 

text file, were subsequently exported to the spectral analysis software 

 

6.3.4.1.  Reagents and chemicals 

Milli-Q® SP Reagent water system from Millipore Corp. (Brussels, Belgium) gave 

the water. Methanol (HPLC grade) was from Scharlab (Sentmenat, Spain) and 

the DON standards from Romer Labs (Tulln, Austria). Finally, IAC for DON 

(DONPREP®) came from R-Biopharm (Rhone LTD Glasgow, UK). 
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6.3.4.2.  Preparation of DON solutions 

DON concentration in the stock solution, checked by UV spectroscopy according 

to AOAC Official Methods of Analysis, Chapter 49 (AOAC, 2005), had a 

concentration of 962 µg/mL. Standard solutions of DON were prepared in 

methanol at a concentration of 10 µg/mL and stored at 4 °C. Calibration curves 

were prepared appropriately by diluting known volumes of the stock solution 

with the mobile phase. 

6.3.4.3.  IAC extraction of DON from wheat kernels for analytical method validation 

The 9 kernels from a non-contaminated sample used in this section were 

previously analysed twice by UHPLC (< LOD). Individual grains were spiked at 

different contamination levels before DON extraction with specific IAC 

(DONPREP®) following the manufacturer's instructions. A single wheat kernel 

previously crushed and pulverized with a small mortar and pestle was mixed 

with 1.5 mL of MiliQ water in a 1.5 mL Eppendorf tube, followed by 10 min 

stirring. Then, samples were centrifugated for 10 min at 1780×g, repeating this 

process three times to obtain a supernatant extract with a final volume of 4.5 mL. 

The filtrate, passed through the IAC and washed with 10 mL of bi-distilled water, 

contained the toxins, eluted with 3 mL of methanol HPLC-grade (the first 1.5 mL 

performing back-flushing). Samples were evaporated under a low nitrogen 

steam at 40 °C and resuspended in 0.3 mL of mobile phase (methanol:water, 

10:90, v/v). All the resuspended extracts passed through a nylon filter (0.4 µm) 

before being injected into the UHPLC-DAD system. 

6.3.4.4.  Direct extraction of DON from wheat kernels for analytical method validation 

The other 9 kernels from the same sample, used in the previous section, were also 

spiked at two different levels before their direct extraction. Concisely, individual 

wheat kernels, previously ground with a small laboratory mortar and pestle, 

were mixed with 0.3 mL of MiliQ water in 1.5 mL Eppendorf tubes, followed by 
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a 10 min vortexing. Then, samples were centrifugated for 10 min at 1780×g. The 

supernatant passed through a nylon filter (0.4 µm) before being injected into the 

UHPLC-DAD system. 

 

Selectivity was checked by injecting 50 µL of standard solution at least three 

times (150 µg/L) and comparing retention time and peak resolution between 

injections. For linearity check, a calibration curve, using eight concentration 

levels for DON solutions (20, 30, 50, 100, 250, 500, 1000, 3000 µg/L solutions), was 

prepared and injected into the system, generating a linear regression plotting 

solutions' concentration versus peak area according to the methodology used by 

(Wall-Martínez et al., 2019). The method performance, obtained according to 

Commission Regulation (EC) 401/2006 (European Commission, 2006c), gave the 

curve ability to predict DON concentrations. Precision was determined by 

preparing blank kernels, and kernels spiked with DON at several levels and 

obtaining the recovery percentages: 64–105% (direct extraction), 68–125% (IAC 

extraction) (Table 11). 

Table 11. Performance of methods for the determination of DON from wheat 

kernels. 

Mycotoxin Extraction aLOD 

(µg/kg) 

bLOQ 

(µg/kg) 

n Spiking 

level 

(µg/kg) 

cRecovery 

(%) 

dRSDr 

(%) 

DON 

Direct 100 300 5 1000 87 ± 10 12 

4 1500 93± 17 19 

IAC 100 300 5 700 111 ± 9 8.2 

4 1250 80 ± 17 21 

a LOD = limit of detection. b LOQ = limit of quantification. c Mean value ± standard deviation. d  

RSDr = relative standard deviation. 
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The recovery rates obtained for DON in single kernels for direct and IAC 

extraction were similar. Still, the direct extraction seems to be more suitable for 

small samples to avoid more steps, which could lose the toxin. Furthermore, this 

study used direct extraction due to its effectiveness, quickness and low costs 

(European Commission, 2006c). 

6.3.5.1.  Direct DON extraction from wheat kernels for experimental work 

A highly-contaminated sample was selected, previously analysed twice by 

UHPLC (2682.8 and 2403.5 µg/kg). A total of 50 wheat kernels, arising from this 

sample, were selected, presenting a mean weight of 33 mg in a range between 

11.3 to 53.4 mg per kernel. DON was extracted from every grain with Mili-Q 

water following the same methodology used in the direct DON extraction to 

validate the analytical method.   

6.3.5.2.  UHPLC system 

DON was determined using an Agilent Technologies 1260 Infinity UHPLC 

system (California, USA) coupled with an Agilent 1260 Infinity II DAD. The 

device had a Gemini® C18 column from Phenomenex 150 × 4.6 mm (California, 

USA) with a particle size of 5 µm and a pore size of 110 Å. The absorption 

wavelength was 220 nm. The mobile phase was methanol:water (10:90, v/v) and 

had a flow rate of 1 mL/min. The column temperature was 40 °C, the injection 

volume was 50 µL, and the total run time was 15 min for mycotoxin analyses. 

The performance of the quantification method for DON in wheat was 

determined, considering the limit of detection (LOD) as three times the signal of 

the noise (100 µg/kg). Once quantified, the kernels were categorised as 

contaminated above the EU legal limit (C) and below (B) for subsequent 

classifications. 
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Spectral data were processed using The Unscrambler software (version 7.6 SR1, 

CAMO, Oslo, Norway, 2001). First, to compare the spectral differences between 

high-contaminated (³ 1250 µg/kg) and low-contaminated kernels (< 1250 µg/kg), 

a linear representation of the mean spectral profile was performed. Once 

established the reflectance differences, the DON predictive models were 

calibrated by using the single kernel spectral information. The calibration was 

performed by recording mean reflectances of the pixels from the kernel as the 

explanatory variables (X) and the DON concentrations (from <LOD to 79.7 

mg/kg) obtained by UHPLC as the dependent variables (Y). A total of 150 images 

(arising from 50 kernels) were obtained to develop a leave-one-out cross-

validated prediction and classification models by leaving out a single sample of 

the training set for each iteration and using it to validate the corresponding 

model. This validation is considered the most realistic to obtain the closest 

prediction parameters to the independent set validation. However, it is used 

when a large sample size, separated between calibration and validation sets that 

can guarantee the representativeness of the population of samples, is not 

available. In our case, our sample size is small (150 images from 50 kernels), so 

we used leave-one-out cross-validation, removing a single sample from the 

training set for each iteration. The spectra were recorded with Spectronon PRO, 

testing the mean spectra of the kernel pixel’s for crease-up and crease-down 

positioned kernels for single kernel and fifty-kernel images. 

First, the spectral data were pre-processed by applying different pre-treatments 

apart from the raw and 1stD ones obtained directly from the Spectronon PRO 

software. The spectral array was imported to The Unscrambler software, and 

scatter correction pre-treatments were applied to minimise the non-linear effect 

of light scatter due to particle size differences among samples, as MSC and SNV. 
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The first and second derivatives were applied to remove noise, multiplicative 

and additive effects, selecting 5-point Savitzky-Golay derivates. There is no 

standard optimum pre-treatment for a specific type of data, as it depends on the 

signal (reflectance, absorbance or transmittance), sample features, instrument 

configuration or trial (prediction or discrimination). Consequently, its selection 

needs a trial and error process followed by experience. 

Delwiche (1998) reported possible nonlinearities between reflectances at spectral 

extremes and the single kernel components. Thus, we aimed to check if there was 

a substantial enhancement in the model when removing the extremes. Moreover, 

Agelet, Armstrong, Romagosa-Clariana, & Hurburgh (2012) also improved their 

model performance by removing the noisy extremes of the NIR range in a single 

kernel analysis. Consequently, we also subtracted the spectral tails, leaving a 

short wavelength range of 1000-1650 nm. 

The prediction models, which used short and large spectral ranges and each pre-

treatment by PLS regression, were calibrated. The models were refined to obtain 

the lower RMSECV. The RMSECV is defined as: 

$%&'() =	*'	(!̂!−!!)$
+  (2) 

In which +,, = ith validation sample predicted value; +, = ith validation measured 

values; +- = mean of the n values (measured or predicted), n = number of samples. 

For model depuration, data points that differed significantly from the other 

samples were considered outliers. The criteria followed for outlier exclusion was 

to represent the residual influence plot, representing the residual Y variance 

versus the leverage. Those samples that presented high values of both 

parameters were removed one by one, and the models recalculated for each 

rejection. The outlier detection removed less than 10 % of the original spectra. In 

addition, the overriding criterion for the optimal PC of the model selection was 

the first PC which presented a minimum on the RMSECV curve. Finally, the 
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regression coefficients of the PCA representation, able to separate high (≥ 1250 

µg/kg) and low (< 1250 µg/kg) contaminated DON kernel groups (marked as (B) 

and (C) in the previous section), gave the characteristic wavelengths (the spectral 

band which had the highest weight on the model). The performance parameters 

determined the fitness of the models, which consisted in the slope and offset, 

correlation (R), Rcv2, RMSEC, RMSECV, Standard Error of Cross-Validation 

(SECV) and bias. Finally, the ratio of prediction to deviation (RPD), which is the 

ratio between the laboratory-measured data standard deviation to the RMSE of 

cross-validation, was estimated (3) according to Rossel, Mcglynn, & Mcbratney 

(2006): 

RPD = 	 -./012-3	   (3) 

The RPD distinguish between five levels: excellent predictions (RPD > 2.5); good 

(RPD of 2.0 to 2.5); approximate quantitative predictions (RPD of 1.8 to 2.0); 

possibility to distinguish high and low values (RPD of 1.4 to 1.8); and 

unsuccessful (RPD < 1.40). The best-fitted models were ones combining the 

closest to 1 for slope and R2, the highest RPD and the lowest RMSECV and the 

number of PC. Most of the models presented excellent predictions as they 

achieved RPD > 2.5 due to low errors of predictions in models and a high 

standard deviation in reference values. 

For the best models, characteristic wavelengths were the ones that presented high 

positive or negative regression coefficients. They were recalibrated only with the 

spectral bands contributing substantially to explaining DON variance within the 

model. 

The same 50 kernels previously used were classified according to visual 

symptoms and DON. Statistical analysis was performed with JMP PRO 14.1.0 

(SAS Institute Inc., 2018) software using LDA, Naïve Bayes Confusion, K-NN and 

Neural Networks. Classification models were also cross-validated by a leave-
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one-out method. The concentration threshold was 1250 µg/kg. As stated before, 

spectra from kernels above this limit formed the group (C) and from below the 

limit formed the group (B). The classification accuracies and the false-negative 

percentages provided the model performances. Neural networks tended to over-

fit data for such a reduced data set. Thus, it was discarded from the results, 

although future testing on a broader sample set will be essential to develop 

robust neural network models. Figure 20 represents, in a schematic way, the steps 

mentioned in the previous sections to bring an overview of the methodology 

used in the study. 

 Results 

 

The mean spectral profiles of crease-down and crease-up positioned kernels for 

single kernel images and crease-down located for one picture containing the fifty 

grains are represented in Figure 21. The blue-coloured spectral profiles belong to 

the high-contaminated kernels (≥ 1250 µg/kg), and the red-coloured profile refers 

to the low contaminated grains (< 1250 µg/kg). The contaminated ones presented 

higher reflectances than low-contaminated, although kernels spectral shapes 

remained visually similar in all the cases. Consequently, as we cannot attribute 

any change in a specific spectral band associated with DON concentration, 

Figure 20. Schematic representation of the methodology for SK-HSI analysis. 
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multivariate analysis methods are needed to explain the spectral variability and 

associate them with DON contamination. 

 

Table 12 includes the descriptive statistics of the kernels used in the experimental 

work. As indicated before, the results correspond to the direct DON extraction 

methodology. The parameters reported are the DON content and single kernel 

weight. The minimum DON content of a single kernel was below the LOD, while 

Figure 21. Symptomatology and DON effect on spectral profiles depending on kernel 

position and image acquisition (raw reflectance’s). A) Mean spectra of crease-down 

positioned kernels for each symptomatology category (one image per kernel). B) Mean 

spectra of crease-up positioned kernels for each symptomatology category (one image 

per kernel). C) Mean spectra of crease-down positioned kernels for each 

symptomatology category (one image for the 50 kernels). Categories: A = Asymptomatic 

(red); M = Mildly-symptomatic (blue); S = Symptomatic (green). D) Mean spectra of 

crease-down positioned kernels DON level (one image per kernel). E) Mean spectra of 

crease-up positioned kernels DON level (one image per kernel). F) Mean spectra of 

crease-down positioned kernels DON level (one image for 50 kernels). DON levels: ≥  

1.25 mg/kg (blue); < 1.25 mg/kg (red). 
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the maximum was 78.7 mg/kg. The mean concentration of the dataset was 12.9 

mg/kg. It is interesting to suggest that the differences between this mean and the 

original sample concentration analysed twice (2682.8 and 2403.5 µg/kg) could be 

explained by the manual selection of the broader symptomatology range. In 

addition, the single kernel weight range includes loads from 11.3 mg to 53.4 mg. 

Figure 22 shows the frequency and distribution of single kernel DON content 

measured by the UHPLC system used in this study. Figure 22a describes the 

frequency and distribution of samples regarding DON contents. A 68 % of the 

kernels had a DON content from below the LOD to 10 mg/kg, including the 

maximum UE legal limit (1.25 mg/kg). The rest of the kernels presented lower 

frequencies for higher intervals, as higher concentrations of DON are rarer in 

naturally contaminated wheat. The distribution of the reference DON content in 

the single kernels is asymmetric under the mean, as 40% of the sample set had 

DON concentrations below the LOD. Thus, it does not follow a Gaussian 

distribution due to many environmental and harvest causes. Figure 22b shows 

the highest frequency in kernels between 20-25 mg, which corresponds to 20% of 

the entire sample set. Kernel weight could vary due to fungal infection, as its 

weight loss is a characteristic symptom of fungal growth. 

Table 12. Descriptive statistics for the variables used in the present work.  

 Mean Range SDev CV (%) 

Data set 

DON content 
(mg/kg) 

12.9 < 0.1 – 79.7 21.3 163.2 

Kernel weight 
(mg) 

33.0 11.3 – 53.4 11.4 34.6 

SDev = standard deviation; CV = coefficient of variation. 
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Figure 22. Distribution of DON content and kernel weight in single wheat kernels on 

the full dataset. A) Total kernel DON frequency and distribution. B) Total kernel weight 

frequency and distribution. 
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The quantifications considered the effect of several conditions (pre-treatment, 

spectral region, kernel position and number of images). Table 3 (annexe) collects 

all the regression performance parameters for cross-validated models. Although 

the crease-up or crease-down positions had no notable performance differences, 

individual kernel images or 50 kernel images presented some differences. Also, 

the effect of the kernel position and removing spectral bands from the extremes 

were estimated, leaving a wavelength range from 1000-1650 nm.  

Different spectral pre-treatments to quantify DON were tested before PLS 

regression, showing a substantial effect on the model performances. However, 

four models were selected for their high-performances and positive adjustments, 

representing their regression plots in Figure 23. The two best pre-treatments were 

SNV and 1stD, or the combination of both. 

Table 13. Performance parameters of PLS regressions from selected optimal 

wavelengths. 

Model Optimal wavelengths 
(nm) 

Slope RMSECV 
(mg/kg) 

R2 SEP 
(mg/kg) 

PC RPD 

SNV 1198, 1322, 1353, 1428, 
1445, 1497, 1549 

0.88 4.8 0.88 4.8 6 4.4 

1stD 1112, 1205, 1345, 1401, 
1452, 1499, 1525, 1541 

0.79 8.1 0.78 8.1 6 2.6 

1stD + SNV 1325, 1396, 1406, 1421 0.81 6.1 0.81 6.1 3 3.4 
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Table 13 includes the bands and the performance parameters of the models. 

Model A presented enhanced results, with a higher R2 (0.88) and lower RMSECV 

(4.8 m/kg) with only 6 PC and 7 bands. In addition, model C presented slightly 

Figure 23. Predicted vs measured plots of cross-validated models. Spectral range: 1000-

1650 nm. A) SNV pre-treated model for crease-up kernel position; n = 135; optimum PCs 

= 10. B) 1st derivative pre.treated model for crease-up kernel position; n = 137; optimum 

PCs = 13. C) 1st derivative + SNV pre-treated model for crease-up kernel position; n =135; 

optimum PCs = 8. 
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under-fitted results compared to the whole spectra model. Thus, a well-fitted 

model is obtained with a reduced wavelength number (4). As the model 

complexities are reduced to multispectral dimension by optimal wavelengths 

selection, they are closer to online DON detection. 

 

PCA was used for a first screening to discern between symptomatology, 

estimating the ability of HSI-NIR to discriminate between levels of 

symptomatology (asymptomatic, mildly-symptomatic and severe-symptomatic). 

Almost all the models showed a tendency to differentiate between those groups, 

as shown in Figure 24. However, 1stD seemed to be the pre-treatment that 

presented the best separation into three groups. Consequently, classification 

models, such as LDA, Naïve Bayes and K-NN, were performed, discriminating 

samples according to typical visual symptoms (shrivelling, discolouration and 

wrinkling) in fungal-contaminated wheat. The classifications contemplated the 

effect of the pre-treatments used in the DON quantification section. 

The results do not show differences for those conditions, except for spectral pre-

processing. Table 14 shows the mean accuracies for each analysis type and pre-

treatment. Naïve Bayes algorithms presented inefficient classifications because 

the conditional probabilities of class membership are assumed, independent. 

Classifications were above the 88.8 % to 97.6% of accuracy for K-NN predictions, 

although they correspond only to its calibration. Thus, those results would be 

overestimated compared to a validated model. The highest accuracies were for 

LDA cross-validated models, 1stD spectra, and the combination of 1stD and SNV 
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pre-treatments, presenting correctness of 100%. The classification results, 

including all the conditions independently, are represented in Table 14.

Figure 24. PCA scores for visual symptoms screening. A = asymptomatic; M = mildly-

symptomatic; S = symptomatic. A) Raw spectra, X-exp: 96%, 4%. B) Multiplicative Scatter 

Corrected spectra, X-exp:83%, 7%. C) SNV corrected spectra, X-exp: 83%, 7%. D) 1st 

Derivative spectra, X-exp: 71%, 12%. E) 1st Derivative + SNV corrected spectra, X-exp: 

62%, 17%. F) 2nd Derivative spectra, X- exp: 50%, 28%. G) Normalised spectra, X-exp: 

99%, 1%. 



 

 

Table 14. Classification accuracies (mean values) for single kernel classification according to symptomatology. A = asymptomatic; M 

= mildly-symptomatic; S = symptomatic. Correctly-classified kernels correspond to grey cells numbers. 

  Pre-treatment 

 
 Raw spectra MSC SNV 1stD 2ndD 1stD + SNV Normalisation 

Symptomatology A M S A M S A M S A M S A M S A M S A M S 

LDA 

A 56.2 4.7 0.3 63.2 3.5 0.3 62.5 4.3 0 69 0 0 58.3 3 5.8 69 0 0 59.7 4 0 

M 9.3 17.8 10 3.3 22 3.7 3.5 20.5 5.5 0 27 0 4 21 2.2 0 27 0 7.7 19.8 6.3 

S 3.5 4.5 43.7 2.5 1.5 50 3 2.2 48.5 0 0 54 6.7 3 46 0 0 54 1.7 3.2 47.7 

Accuracy (%) 78.4 90.1 87.7 100 83.6 100 84.8 

Naïve Bayes 

A 55.5 15.3 10.2 54.5 11.8 8 31.7 6.8 5.2 46.5 3.5 0.5 53.2 5 1.3 55 7.5 2.8 50.5 3.2 0 

M 3.5 3 12 7.5 10 10.2 29.8 14.8 15.7 19.5 20 5.5 12.2 18.5 6.5 6.2 13.2 7 14.5 18.8 11.7 

S 10 8.7 31.8 7 5.2 35.8 7.5 5.3 33.2 3 3.5 48 3.7 3.5 46.2 7.8 6.3 44.2 4 5.0 42.3 

Accuracy (%) 60.2 66.9 53.1 76.3 78.6 74.9 74.4 

K-NN 

A 64 4.3 0.7 62.7 4.8 2.2 62.7 4.7 2.8 66.3 3.8 1.8 65 3 3.2 66.2 3.3 3.3 68 1.5 0.3 

M 3 20.2 3.2 4.5 20.2 1.5 4 20.5 1.3 1.7 21.3 1.3 3.3 21.7 1.7 1.8 22.2 1.2 1 24.8 0.2 

S 2 2.5 50.2 1.8 2 50.3 2.3 1.8 49.8 1 1.8 50.8 0.7 2.3 49.2 1 1.5 49.5 0 0.7 53.5 

Accuracy (%) 89.6 88.8 88.7 92.3 90.6 91.9 97.6 
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The 68.3% of the kernels were symptomatic and contaminated over the EU limit 

and asymptomatic and below the limit. Thus, the remaining 31.7% were the 

grains that, although they had no symptoms, were heavily contaminated or even 

presented fungal changes, did not have DON. In addition, the DON content 

regarding other components of the sample, e.g. starch, protein and moisture, 

makes the ability to discern between levels challenging. 

Figure. 25. PCA scores for visual DON screening. B = < 1250 µg/kg kernels; C = ≥ 1250 

µg/kg kernels. A) Raw spectra, X-exp: 96%, 4%. B) Multiplicative Scatter Corrected 

spectra, X-exp:83%, 7%. C) SNV corrected spectra, X-exp: 83%, 7%. D) 1st Derivative 

spectra, X-exp: 77%, 14%. E) 1st Derivative + SNV corrected spectra, X-exp: 62%, 17%. F) 

2nd Derivative spectra, X- exp: 50%, 28%. G) Normalised spectra, X-exp: 99%, 1%. 
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A prior PCA analysis was performed to assess the ability of the NIR spectra to 

distinguish between samples contaminated above and below the UE maximum 

limit of DON (1250 µg/kg) (Figure 25). The classifications of kernels according to 

the 1250 µg/kg threshold presented results similar to symptomatology. 

discrimination, although the match between symptomatology and DON levels 

was low. The highest discrimination accuracies were obtained for the cross-

validated LDA models with a mean of 98.9 % for the 1stD spectra and 98.4 % for 

the combination of 1stD and SNV, represented in Table 15. For Naïve Bayes and 

K-NN algorithms, the classifications were from 73.4 to 81.9 % and 85.2 to 96.4 %, 

respectively. The compilation of the results for each condition is presented in 

Table 15.  

 



 

 

Table 15. Classification accuracies (mean values) for single kernel classification according to DON levels. B = < 1250 µg/kg; C = ³ 1250 

µg/kg. Correctly-classified kernels correspond to grey cells numbers. 

 

  Pre-treatment 

 
 Raw spectra MSC SNV 1stD 2ndD 1st D + SNV Normalisation 

DON levels B C B C B C B C B C B C B C 

LDA 

B 65.5 24.3 74.2 10.7 72.8 12.7 74.5 1.2 62.8 11.8 73.7 1 64.5 22 

C 9.5 50.7 0.8 64.3 2.2 62.3 0.5 73.8 12.2 63.2 1.3 74 10.5 53 

Accuracy (%) 77.4 92.3 90.1 98.9 84 98.4 78.3 

Naïve Bayes 

B 63.7 28.5 68.3 20.5 66.2 28.3 61 18.2 63.5 21.7 62 21.5 58.7 23.5 

C 11.3 46.5 6.7 54.5 8.8 46.7 14 56.8 11.5 53.3 13 53.5 16.3 51.5 

Accuracy (%) 73.4 81.9 75.2 78.6 77.9 77 73.4 

K-NN 

B 64.2 11.3 70.8 7 69.5 7.7 69.5 6.7 67.7 7.3 70.2 6.3 72.3 2.7 

C 10.8 63.7 4.2 68 5.5 67.3 5.5 68.3 7.3 67.7 4.8 68.7 2.7 72.3 

Accuracy (%) 85.2 92.6 91.2 91.9 90.2 92.6 96.4 
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 Discussion 

DON heterogeneity from a single batch is demonstrated in this irregular 

distribution, as its kernels can be infected from extremely high concentrations up 

to 79.7 mg/kg to undetectable levels. In addition, kernel weight could also affect 

NIR images acquisition, so its management is crucial to avoid measurement 

interferences. FDK and DON contaminated kernels had higher spectral 

intensities than healthy and uncontaminated ones. To summarize the results, the 

standardization of the methodology, quantifying DON and classifying grains 

according to their visual symptoms and DON levels, presented positive results 

for a reduced sample set. The results demonstrated that 1stD pre-treatment, SNV 

or both combined had the best PLS regressions performances and LDA 

accuracies. In addition, the outcomes confirmed that the kernel position and the 

image acquisition (one image for each kernel or one image for all) did not affect 

the results, selecting the single image for dorsally positioned grains for its low 

operation complexity. In addition, the re-calibration of models using only the 

optimal wavelengths reduced the complexity of the regression and maintained 

their adjustment. Consequently, this methodology will offer a rapid scanning of 

lots of kernels for its possible adaptation to industry, as most of the applied 

online detection models in the industry use multispectral analysis. 

The present study achieved lower errors of prediction for DON than one of the 

first studies trying to quantify DON concentrations in single wheat kernels 

(Dowell et al., 1999), for which SEC was 44 mg/kg and RC2 of 0.64. To validate, 

they used 20% of kernels from the original 88, obtaining an SEP of 52 mg/kg and 

an R2 of 0.66. Even though our research was cross-validated, not being entirely 

comparable with their validation results, their calibration results were weaker 

than the Rcv2 of 0.88 and 4.8 mg/kg RMSECV obtained in our work. Jin et al. (2014) 

and Peiris et al. (2010) evaluated the SK-NIR reflectance for FDK and DON 

estimation. The results were different from ours since they worked with DON 
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contamination ranges from 0.49 to 29.5 mg/kg and 0.2 to 1008.4 mg/kg, 

respectively. However, the correlations obtained for Visual-FDK/SK-NIR FDK 

and GC-MS-DON/SK-NIR-DON were weak (0.72 and 0.49). Peiris et al. (2010) 

obtained an Rcv2 of 0.72 and an SECV of 154.2 mg/kg for DON quantification, a 

98.8 and 99.9% of correct classification of sound and damaged kernels and a 95.7 

and 96.7% of the correctness of DON contamination above and below 60 mg/kg, 

respectively. Thus, our results presented higher DON prediction and 

classification accuracies, despite the different range of contamination and 

classification threshold. Polder et al. (2005) measured in transmittance mode 

instead of reflectance, not only the surface of the kernels but also the inner part, 

detecting Fusarium. 

The spatial ability of hyperspectromics permitted the analysis of a single kernel 

as the ROI from a whole image. As in our previous study (Femenias et al., 2020b), 

PCA evaluated the data before LDA classification to show differences in kernels 

symptomatology and DON contamination. The results confirmed the tendency 

to discriminate between classes extracting the most relevant information and 

compressing it into new orthogonal variables, although evaluations require LDA 

to overcome the covariance in the data matrix. Singh et al. (2009), Delwiche et al. 

(2011) and Shahin & Symons (2011) established a DA by selecting specific 

wavelengths of the NIR and the Vis/NIR spectra. The first research accomplished 

an LDA classification of 100% between healthy and damaged kernels with only 

three wavelengths (1101.7, 1132.2 and 1305.1 nm). Our studies also achieved the 

same accuracy using the whole spectra but using the 1stD or combined 1stD + SNV 

spectra pre-treatment, and our characteristic bands only can be comparable in 

the 1100-1200 nm region. Moreover, Delwiche et al. (2011) LDA results achieved 

a mean accuracy of 95%, for which the 1200 nm region (related with ergosterol 

absorption) was a remarkable wavelength for damage determination. Finally, 

Shahin & Symons (2011) classified FDK kernels by a combined LDA-PCA 
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method, achieving an accuracy of 92% for the validation set. Even though we 

cross-validated the LDA, our accuracies are higher than the calibration results 

obtained by these authors (93%). 

A method based on FI, which is the likelihood of a kernel of being infected by 

Fusarium, was used by Barbedo et al. (2015) to assess FHB in 50 individual grains 

by HSI-NIR screening. It is essential to state that visual inspection is subjective 

for fungal contamination perception. In some cases, the damage is not 

appreciable when an early stage fungal infection, making the detection by 

humans and devices remain indiscernible. However, the direct detection of FHB 

was 91 %, obtaining a FI correlation with DON contamination of 0.84. Moreover, 

Ropelewska & Zapotoczny (2018) also classified Fusarium infected kernels using 

HSI-Vis/NIR. They used some of the same discrimination models we employed 

(LDA and Naïve Bayes), even though they used a single selected wavelength. 

Their higher accuracies were using the ventral side for 550 and 710 nm bands, 

which were not in our spectral range, for which the correctness was from 90-100% 

for LDA and Naïve Bayes. In our work, the classifications accuracies for LDA are 

higher than for the Naïve Bayes models, which are in discordance with their 

results for which both models were similar. Data scarcity and continuous 

variables in Naïve models can be responsible, resulting in numerical instabilities 

and higher misclassification rates compared to a single band used in the 

discussed study. 

Delwiche et al. (2019) and Zhang et al. (2019) evaluated FHB by HSI in individual 

kernels. The first study used LDA to evaluate kernel health status, for which they 

granted a value of 0 and 1 for sound and damaged, respectively, from 200 

randomly orientated scanned kernels. Only mean centring (except for one test 

using SNV) was applied as spectral data pre-treatment, developing a cross-

validated model with selected wavelengths (1100, 1197, 1308 and 1394 nm). It 

was able to classify 97.1% of FDK and 96.4% of healthy ones. Their results were 
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close to the obtained in this study, although they achieved slightly lower 

accuracies, probably due to the higher number of kernels (556). As our results 

determined that no considerable differences are present between crease-up and 

crease-down positions, it would be interesting to test randomly individual grains 

as in the study discussed. Alternatively, Zhang et al. (2019)  build a FHB 

classification index to determine its damage on spikelets using hyperspectral 

microscopy imaging. They extracted four characteristic wavelengths, employing 

two (417 and 668 nm) for FHB classification index calculation. Even though the 

technique was quite different from HSI-NIR, they obtained an FDK overall 

classification accuracy of 89.9%. It was similar to Alisaac et al. (2019) findings, for 

which HSI-Vis/NIR spectral signatures showed correlations between fungal 

DNA and DON in wheat kernels.  

Some studies tried to classify wheat by HSI-NIR according to DON 

contamination levels. The first study which reached this purpose was that of 

Barbedo et al. (2017), in which a two and three categories CM was developed (< 

1250 µg/kg; > 1250 µg/kg and < 500; 500-1250; > 1250 µg/kg) for which they 

classified wheat batches with an 81 and 72 % of correctness, respectively. Even 

though they used naturally-contaminated wheat according to DON, remarkable 

differences with sampling conditions are noticeable, as they scanned 30-50 

kernels instead of single kernel analysis and analysed all the kernels together by 

ELISA as the reference method. Recently, Liang et al. (2020, 2018) also 

investigated DON detection, but they used 70 wheat kernel samples instead of 

single kernels. Consequently, this research had a different aim from ours, as they 

assessed bulk wheat samples. Nevertheless, in their last publication, the SNV was 

assigned as the best spectral pre-treatment for HSI-NIR (1000-2500 nm) 

classifications which, according to the present paper, it is appropriate for wheat 

classification according to DON levels. 
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 Conclusion 

Preliminary analysis demonstrated that 16 of the 50 kernels were FDK and DON 

uncontaminated or vice versa. We accomplished that reflectances of DON 

contaminated kernels were higher than kernels with DON levels above the UE 

limit. In addition, this study revealed by the PCA analysis that all the spectral 

pre-treatments showed a tendency in FDK and DON separation. This research 

proposed quantification and sorting according to DON of single grains, 

demonstrating that, despite the RMSEP (4.8 mg/kg) being higher than the EU 

maximum limit, a simplified model (7 WL and 6 PC) can identify the high 

contaminations. Moreover, the LDA cross-validated classifications presented 

promising results, achieving a 100 % accuracy for symptomatology prediction 

and 98.9 % for DON (according to EU maximum). Thus, based on these findings, 

HSI-NIR has a potential application as an accurate kernel sorting technique. Once 

standardized the single kernel analysis, further research will require to build 

better-fitted prediction models and increase the sample size to obtain robust 

classifications. 
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 Abstract 

Fusarium is a DON producing filamentous fungi which commonly infects small 

grain cereals. HSI-NIR is considered for its potential to manage this 

contamination, as it uses spatial recognition, which may be able to deal with the 

heterogeneity inside the batches for cereal sorting implementation. The focus of 

this study was the application of HSI-NIR for FDK detection and DON prediction 

and discrimination of wheat kernels over EU limits. After the HSI scanning of 

300 individual grains, the reference values were obtained attributing categories 

for typical fungal symptoms and analysing DON from individual grains by 

HPLC. Several spectral pre-processing methods selected valuable information 

before model calibration. Externally validated PLS predictions showed RMSEP 

of 6.66 mg/kg, an R2 of 0.88 and an RPD of 3.21. However, the classification 

models managed wheat contaminations more appropriately, obtaining 

discrimination accuracies of 85.8% and 76.9% for fungal symptoms and DON at 

the EU limit, respectively. These findings suggest that HSI-NIR can be a suitable 

tool for sorting DON contaminated kernels at EU limits.   

 

Keywords: Single-Kernel; Hyperspectral imaging; Deoxynivalenol; Fungal 

damage; Cereal sorting  
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 Introduction 

Fusarium is a well-known plant-pathogen fungus associated with small grain 

cereal diseases, such as FHB, which grows in favourable moist and warm 

conditions. Its infection is related to yield and grain quality reduction with the 

appearance of FDK. The main changes produced in FDK are shrivelling, weight 

loss, and discolouration. From a food safety perspective, F. graminearum and F. 

culmorum can produce mycotoxins, in which DON is the most common. This 

secondary metabolite is associated with human and livestock health problems. 

Acute and chronic disorders are attributed to DON through cereal consumption 

(Sudakin, 2003), thus exposure to a cereal-based diet, and the increased incidence 

of mycotoxins due to climatic change (Marroquín-Cardona, Johnson, Phillips, & 

Hayes, 2014) can increase the risk of developing an associated disease. 

Consequently, food safety authorities have established a maximum limit of DON 

for unprocessed wheat in 1750 µg/kg for durum wheat and 1250 µg/kg for cereals 

other than durum wheat, oats, and maize (European Commission, 2006a). 

Conventional analysis techniques, such as ELISA, HPLC, and High-Performance 

Liquid Chromatography-Mass Spectrometry (HPLC-MS) and 

immunochromatographic strips, for DON detection, have been frequently 

applied before cereal entrance in the food industry. The official controls of 

mycotoxins levels (European Commission, 2006b) attempts to represent, as far as 

possible, the contamination of the entire batch. Nevertheless, even if a suitable 

sampling protocol is applied, enough representation of the lot is not reached, and 

few extremely-contaminated kernels can disrupt the admission of the whole 

batch associated with a loss in the production yield and a negative economic 

impact. The heterogeneous distribution of the contaminated grains is an issue in 

the cereal batches. Some kernels suffer fungal infection (with or without 

associated DON presence) inside the sample, while the rest can remain healthy 

(Champeil, Fourbet, & Doré, 2004; Delwiche, Pearson, & Brabec, 2007). Besides, 
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the abovementioned traditional techniques are expensive, time-consuming, and 

sample destroying. Companies require new methods able to sort mycotoxin 

contaminated kernels overcoming batch heterogeneities. 

In some studies, authors used FDK as DON presence indicators (Delwiche et al., 

2011; Dowell et al., 1999; Jin et al., 2014). However, Paul et al. (2005) obtained a 

correlation of 0.73 between FDK and DON. Moreover, Barbedo et al. (2015) used 

an algorithm based on a FI (probability of a kernel of being infected with FHB 

based on visual inspection) that presented a correlation of 84% with DON. It also 

demonstrated that correlations found for high DON levels were substantially 

higher than for low DON concentrations. Although they reached positive 

correlations, the indirect determination of DON using FDK would drag 

consecutive errors that would affect the reliability of the results. 

SK-NIR has been used for Fusarium detection in wheat by Polder et al. (2005), 

which used NIR technology linked to RT-PCR to predict the amount of Fusarium. 

However, most studies with the same objective used the visual inspection of 

kernel symptoms to typify them as FDK or healthy by NIR (Delwiche et al., 2011). 

Some of them also analysed  DON in single kernels (Peiris et al., 2010 & 2016) by 

SK-NIR technology. However, in both studies, artificial inoculation of wheat 

spikes was performed before GC-MS analysis, achieving kernel discrimination 

with a DON threshold of 60 mg/kg. Dowell et al. (1999) analysed by SK-NIR 

using HPLC as the reference method for DON. In their calibration, they removed 

kernels with contamination > 5 mg/kg, for which most of them presented a DON 

concentration between 50-500 mg/kg, a level which differs from those commonly 

found in naturally contaminated samples. Jaillais, Roumet, Pinson-gadais, & 

Bertrand (2015) developed SK-NIR multivariate imaging method to detect FHB 

in wheat kernels. They analysed different trichothecenes-producing fungi with 

RT-PCR. Then, they calibrated PCA models for contaminated grains detection 
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and PLS to map the contaminated regions within the kernels using selected 

spectral bands. 

Researchers used HSI to combine the whole spectra and the spatial resolution, 

making it appropriate to apply it to single kernel screening. All the studies except 

one focused on detection of Fusarium in wheat single kernels. In most of the 

works, an inspector examined manually the grains, which added subjectivity to 

the study. On the other hand, Singh et al. (2012) artificially inoculated kernels 

with fungi before scanning them by HSI-NIR and digital colour imaging. 

Although the artificial contamination avoided the subjectivity from visual 

inspection, the controlled inoculation presents differences from natural 

contamination. Delwiche et al. (2011) calibrated a FHB classification model based 

on LDA using HSI-Vis/NIR on four characteristic wavelengths (502, 678, 1198 

and 1496 nm). A second attempt was done (Delwiche et al., 2019) but using HSI-

NIR (938-1654 nm). They selected four spectral bands (1000, 1197, 1308 and 1394 

nm) as the optimum for LDA calibration, although they built an alternative PLS-

DA model. In addition, Ropelewska & Zapotoczny (2018) classified FHB 

damaged kernels by testing different mathematical classifiers (Bayes net, LDA, 

K-Star, Rules PART and LMT for hyperspectral and colour images. Barbedo et al. 

(2015) also evaluated FHB in SK, which used HSI-Vis/NIR technology to build an 

algorithm based on the FI. The probability density function based on FI, 

identifying sound and diseased kernels, was correlated with DON concentration 

to attempt an indirect estimation of the DON levels. Liang et al. (2018) focused 

exclusively on the determination of different levels of DON using a complex 

algorithm. Although they did not analyse single kernels, they built a distribution 

map discerning heavily infected regions within the bulk samples corresponding 

to the highly contaminated grains.  

This study focused on DON prediction in single wheat kernels by an optimized 

algorithm and to classify them according to typical visual symptoms caused by 
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Fusarium infection and different DON levels according to EU maximum limit. 

This study is a starting point for HSI-NIR calibration that could at real-time 

identify and reject damaged or DON contaminated kernels at food industry 

entrance. 

 Material and methods 

 

A feed-producing agricultural cooperative supplied wheat samples harvested 

during 2018-2019. The origin of the wheat was the plain area of Lleida province. 

A highly contaminated sample was selected, previously analysed twice by 

UHPLC (2682.8 and 2403.5 µg/kg of DON). Three hundred wheat kernels from 

the sample were selected, including all the typical characteristics of sound and 

diseased wheat kernels. The kernels had a mean weight of 30.2 mg, ranging from 

6.2 to 58.1 mg, and were used for DON prediction and classification according to 

fungal symptomatology and DON levels. 

 

The HSI system consisted of a Pika NIR-320 camera assembled by RESONON 

Inc. (Bozeman, MA, USA). The device consists of an InGaAs sensor line scan 

camera with a 320×256-pixel resolution, 30×30 µm pixel size, and 14-bit resolution 

A/D spectrograph (Goldeye G-008 SWIR TEC1, Allied Vision Technologies 

GmbH, Germany). The spectral resolution was 4.9 nm (167 spectral bands from 

895 nm to 1700 nm), with a spatial resolution of 320 pixels and a frame rate of 520 

fps. The objective lens had a focal length of 25 mm (F/1.4 SWIR, 0.9-1.7 µm, 21 

mm image format, c-mount) and was positioned 220 mm above the image 

surface. The illumination unit was composed of a four halogen lamp lighting 

system with Lambertian filters fixed onto an adjustable tower that was turned on 

at least 20 min before image acquisition. Samplexpower® converter (SEC-

1223CE, Burnaby, BC, V5A 0C6, Canada) supplied the illumination unit power, 
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which provides a highly regulated output DC voltage of 13.8 Volts at 23 Amps 

with an AC input of 230 Volts, 50 Hz. Finally, a motorized linear translation stage 

with a range of 600 mm was also used, which permitted scanning of the whole 

sample with the optical systems remaining in a fixed position. 

Spectronon PRO software performed the image processing controlled by 

Resonon's benchtop. The raw reflectance readings for each test sample data array 

were corrected by dividing the dark current-subtracted reflectance by the dark 

current subtracted white standard reflectance at each of the corresponding 

wavelengths (Equation 1). A dark current intensity image, taken with the covered 

camera's lens, removed the dark noise. Likewise, a reflectance standard with a 

99% intensity made of polytetrafluoroethylene (Spectralon™, SRT-99-120, 

Labsphere, North Sutton, NH, USA) corrected the illumination effects. These two 

images were applied to subsequent sample intensity images. 

! = !!"	!"
!#"	!"

   (1) 

where the ! is the corrected reflectance intensity, !$ the raw hyperspectral image 

intensity, !% the white reference intensity and !& the dark current reference 

intensity. In addition to the dark current, the camera controls permitted the 

adjustment of the pixel illumination saturation. The configuration of the 

framerate and the integration time avoided pixel saturation. 

The hyperspectral system acquired data for 300 kernels to calibrate the predictive 

and classification models. According to our previous studies (Femenias, Bainotti, 

Gatius, Ramos, & Marín, 2021), the analysis was performed for the crease-down 

side of the kernel, which is more rapid and easily manipulated and did not show 

significant differences in results with the crease-up position.  

In all cases, the black tray reduced the background noise in the image to obtain 

an accurate pixel selection. The image scan had 350 bands on the horizontal size 

and approximately 90 mm on the vertical. Kernel's pixels data were collected by 
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the mean reflectance and mean 1stD values of similar spectrum pixels calculated 

by Euclidian distance, which is best adjusted to the ROI to remove the 

background signal. Individual kernel raw and 1stD spectra were saved as a text 

file for subsequent exporting to the spectral analysis software.   

 

7.3.3.1. Reagents and chemicals 

A Milli-Q® SP Reagent water system from Millipore Corp. (Brussels, Belgium) 

produced the water used. Methanol and acetonitrile (HPLC grade) were 

purchased from Scharlab (Sentmenat, Spain). DON standards were obtained 

from Romer Labs (Tulln, Austria). 

7.3.3.2. Preparation of DON solutions 

The DON concentration was checked in the stock solution by UV spectroscopy 

following the AOAC Official Methods of Analysis, Chapter 49 (AOAC, 2005). The 

concentration obtained was 7530 µg/mL for the stock solution. Standard 

solutions of DON were prepared in acetonitrile at a concentration of 10 µg/mL 

and stored at 4 °C. The calibration curves were prepared by the appropriate 

dilutions of known volumes of the stock solution with the mobile phase. 

7.3.3.3. DON extraction in wheat kernels 

The kernels already analysed by spectroscopy were quantified for DON by 

UHPLC. The extraction followed the methodology used by Femenias et al. (2021). 

Concisely, each grain was individually and manually ground with a small 

laboratory mortar and pestle and mixed with 0.5 mL of MiliQ water in a 1.5 mL 

Eppendorf tube, followed by 10 min vortexing and 10 minutes of sonication. 

Then, samples were centrifuged for 10 min at 1780×g. The supernatant was 

filtered through a nylon filter (0.4 µm) and was evaporated. Finally, the sample 

was resuspended with 150 µL of mobile phase before being injected into the 

UHPLC-DAD system. 
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7.3.3.4.  UHPLC system 

DON concentrations were obtained using an Agilent Technologies 1260 Infinity 

UHPLC system (California, USA) coupled with an Agilent 1260 Infinity II DAD. 

A Gemini® C18 column from Phenomenex 150 × 4.6 mm (California, USA) with 

a particle size of 5 µm and a pore size of 110 Å was used. The absorption 

wavelength was set at 220 nm. The mobile phase was composed of 

methanol:water (10:90, v/v/v) and set at a flow rate of 1 mL/min. The column 

temperature was 40 °C, the injection volume was 100 µL and the total run time 

was 15 min for mycotoxin analyses. The performance of the method for the 

quantification of DON in wheat was tested, in which the limit of detection (LOD: 

100 µg/kg) was considered to be three times the signal of the blank. 

 

Selectivity was checked by injecting 5 µL of standard solution at least three times 

(150 µg/L) and comparing retention time and peak resolution between injections. 

For linearity check, a calibration curve of eight concentration levels for DON 

solutions (20, 30, 50, 100, 250, 500, 1000, 3000 µg/L solutions) was prepared and 

injected into the system, generating a linear regression plotting solutions’ 

concentration versus peak area. The method performance was assessed 

according to Commission Regulation (EC) 401/2006 (European Commission, 

2006b).  

7.3.4.1. Quantification modelling of DON contamination 

Hyperspectral data were modelled with The Unscrambler software (version 7.6 

SR1, CAMO, Oslo, Norway, 2001) for DON level prediction. The reflectance data 

were used as raw data for the calibration of the regression models. Each kernel 

was scanned three times, recording intensities from 900 hyperspectral images. 

Once the grains were optically analyzed, the DON concentration was determined 
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from each kernel by UHPLC. The contamination of the 300-kernels set ranged 

from <LOD to 135.73 mg/kg and the mean concentration was 9.02 mg/kg. The 

mean reflectance intensities of the pixels from each kernel corresponded to the 

explanatory variables (X) and the DON concentration obtained by UHPLC was 

the dependent variable (Y). A first modelling screening was performed by the 

regression of the hyperspectral data versus the reference method by a leave-one-

out cross-validation.  This approach allowed an overall perspective of the data 

adjustment by a single sample leaves out of the training set for each n iterations. 

The leave-one-out cross-validation demonstrated the most realistic 

approximations to the independent set validation. The data size used in this 

study is sufficiently large to validate the predictive models independently. The 

data was divided into a calibration set, which consisted of 540 hyperspectral 

images (3 images of 180 kernels), and a validation set, which included 360 images 

(3 images of 120 kernels).  

Before the predictive models’ calibration, spectral pre-processing tools were 

applied to the raw data to enhance the remarkable information. The 

transformations applied in The Unscrambler software were first and second 3 

and 5-point Savitzky-Golay and Norris Gap derivatives which reduce noise, 

additive and multiplicative effects. Alternatively, MSC and SNV were applied to 

overcome the non-linearity of light scattering due to the differences in kernels 

size. Other pre-treatments, such as Normalization and Baseline Correction, were 

also used to obtain balanced variances and to remove baseline noise, 

respectively. The optimum pre-treatment is not the same for all data sets, as it 

depends on the raw reflectances, absorbances and transmittances, instrument 

configuration and calibration, goal and sample characteristics. Thus, several 

spectral pre-treatments had been tested followed by the statistical experience. 

Otherwise, the improvements tested in previous investigations demonstrated 
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non-linearities and noisy regions in the extremes of the spectra. Thus, models on 

the 1000-1600 nm range were also calibrated.  

The information obtained was used to build the predictive model. We considered 

PLS regression as the most suitable chemometric tool to be used for NIR data 

calibration, as it is focused on the Y information to obtain better-adjusted models. 

The performance of the PLS models depended on the parameters obtained in the 

model calibration steps. The parameters which determine the most suitable 

model for DON quantifications are the slope, the offset, the R2, the RMSEP, the 

optimum number of PC and the RPD.  

Table 16. Performance statistic parameters of the PLS regression. 

Validation set parameters 

Rp2 

Coefficient of determination of 

prediction 
!!" =

Σ	(&'# − &))"
Σ	(&# − &))"

 

RMSEP 
Root Mean Square Error of 

Prediction 
!+,-. =	/Σ	(&'# − &#)

"

0  

RPD Ratio of Performance to Deviation !.1 = ,234
!+,- 

Depending on the RPD values, the models can be categorized as excellent 

predictions (RPD > 2.5); good (RPD of 2.0-2.5); approximate quantitative 

predictions (RPD of 1.8-2.0); possibility to distinguish high and low values (RPD 

of 1.4-1.8); and unsuccessful (RPD < 1.40) (Agelet & Hurburgh, 2010). The 

combination of the RPD values with high slopes and R2 and low RMSEP and 

number of PC indicates a high predictive power of the model. These parameters 

were calculated following the mathematical expressions included in Table 16. 

The calibration models were performed for full spectral range (893.1-1731 nm) 

and extremes removed spectra (1000-1600 nm). A characteristic wavelength 

extraction for the best-fitted models was performed, to simplify the 
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computational complexity of the models. The optimum bands were higher 

regression coefficients wavelengths, whose selection reduced data 

dimensionality with the minimum loss of information. Thus, band selection 

reduced the model complexity, the computational time and noise. Despite the 

reduction in data dimensionality, it explained most of DON variability. 

7.3.4.2. Classification modelling of fungal symptomatology and DON contamination 

Hyperspectral data from 300 kernels were modelled to discriminate fungal and 

DON contaminated kernels. Previous to the hyperspectral acquisition, the 

kernels were visually inspected and categorized as symptomatic (S) 

(discolouration, weight loss and shrivelled), medium-symptomatic (part of the 

symptoms) (M) and asymptomatic (A) (no visible symptoms). Then, based on the 

DON analysis of kernels by UHPLC, they were also categorized as contaminated 

(C) and non-contaminated (B) according to the threshold established (1250 µg/kg) 

corresponding to the legal limit of the EU. JMP PRO 15.2 software was used to 

calibrate the classification LDA, Naïve Bayes, K-NN and Artificial Neural 

Networks (ANN) models. The model performances were evaluated by the 

classification accuracy, expressed in percentage, and the ratio of false negatives, 

which indicated the introduction of contaminated kernels into the food chain.  

 Results 

 

Kernels from the same batch presented broad differences in DON content. DON 

contamination covered a range from < LOD and 135.7 mg/kg with a mean 

concentration of 9.02 mg/kg. From the kernel set, 82 were contaminated under 

the LOD, which represented the 27.3 % of the entire set. In addition, 204 grains 

had a concentration below the EU legal limit (1.25 mg/kg), and 59 kernels over 10 

mg/kg, which indicated that the rejection of a wheat batch could be due to a 

reduced percentage of highly contaminated kernels. The kernels were manually 
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selected to cover the maximum symptomatology range possible. For that reason, 

wide variability in DON concentration was observed. 

Kernel minimum weight was 6.2 mg, while the maximum observed was 58.1 mg. 

The differences in the kernel weight could be due to changes produced by fungal 

A) 

B) 

Figure 26. Distribution of DON content and kernel weight in 300 single wheat kernels 

dataset. (A) Total kernel DON frequency (in number of kernels) and distribution. (B) 

Total kernel weight frequency (in number of kernels) and distribution. 
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growth on the kernel. DON concentrations for kernels lighter or heavier than 30 

mg demonstrated that the differences in kernel weight are associated with DON, 

presenting the light a mean concentration of 15.5 mg/kg and the heavy 2.4 mg/kg. 

The weights with higher frequencies were the kernels between 20-30 mg, as is 

reported in Figure 26.  

 

The 1stD spectra in the NIR region were compared to detect differences in bands 

caused by Fusarium growth and mycotoxin contamination. From the spectral 

region used (895-1728 nm), the predominant changes were in the range between 

1100-1450 nm, which could be due to the differences produced by the fungal 

primary or secondary metabolism. Figure 27 shows the differences in the 1stD 

mean spectral profile of the (A) sound, mildly symptomatic and FDK and (B) 

DON kernel contamination above and below 1.25 mg/kg. The spectral bands 

around 1146 nm, 1220 nm, 1350 nm and 1406 nm showed differences between 

the mean of FDK and healthy kernels and DON high and low contaminated 

seeds. The use of differences in characteristic spectral peaks for contamination 

detection was not possible due to the high amount of data to be managed and the 

overlapping in specific bands. Therefore, the applied chemometric tools resolved 

the overlapping problems of NIR spectra. In addition, they highlighted the 

valuable information to build predictive and classification models presented in 

the following sections. 
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For DON quantification, data pre-processing improved the model performances.  

The results presented correspond to the different spectral pre-treatments and 

entire or extreme-reduced spectra. Despite the models calibrated presented 

similar results, some of them obtained better adjustments due to the spectral pre-

treatment. SNV and MSC pre-treated models had the highest performance in 

Figure 27. Mean 1st derivated spectral profile of the (A) difference between FDK 

(red/bold), mildly-damaged (yellow/semi-bold) and healthy kernels (green/light) and 

(B) DON contaminated above (red/bold) and below (green/light) 1250 µg/kg. 

A) 

B) 
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cross-validation and external validation procedures. Nevertheless, the models 

calibrated on SNV transformed spectra presented slightly better adjustment with 

an RMSEP of 6.66 mg/kg, an R2 of 0.88 and an RPD of 3.21 by 14 PC calibration, 

as indicated in Figure 28. Table 4 (Annexe) collects the performance parameters 

of all the models with the different spectral pre-treatments used. 

For the model selected (Figure 28, Model B), 11 characteristic wavelengths were 

the spectral bands with higher regression coefficients. Thus, the model is reduced 

Model A 

Model B 

Figure 28. PLS regression predicted vs. measured plot for independent set validation. 

Model A: SNV pretreated 1000-1600 nm spectra; optimum number of PC = 14. Model B: 

SNV pre-treated 11 characteristic wavelengths; optimum number of PC = 10. 
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from the hyperspectral dimension to multispectral to reduce model complexity. 

The bands were 1067, 1159, 1193, 1222, 1252, 1343, 1363, 1378, 1399, 1497, 1554 

nm. The model calibrated with those variables was adjusted with an R2 of 0.84, 

an RMSEP of 7.86 mg/kg and an RPD of 2.72 with 10 PC. For both models, RPD 

was higher than 2.5, which indicated that the models could predict DON 

concentrations adequately.  

 

HSI was used to discriminate kernels according to the symptoms of fungal 

infection. The grains were categorized as symptomatic, mildly-symptomatic and 

asymptomatic depending on the visual inspection of symptoms. The classifiers 

used to discern between classes were LDA, Naïve-Bayes, K-NN and ANN. The 

percentage of correctly classified kernels evaluated the discrimination accuracy 

of the models among the three categories. Table 17 indicates the classification 

accuracies for each pre-treatment and classifier; the overall results ranged from 

57.2 to 85.8 %. The pre-treatment which led to better discrimination was the 

normalization with a mean overall accuracy of 82.4%. However, the classifier that 

obtained the best accuracy in kernel separation was the ANN, with a percentage 

of 82.2 %.  

The classification model that showed the maximum accuracy was the ANN using 

the spectra transformed to absorbance (85.8 %). However, normalized spectra 

modelled with ANN and ABS/BC spectra with LDA also presented high-accurate 

results, obtaining 85.3 % and 82.8% of accuracy, respectively. The differences 

between the results for the whole spectral range and the extreme-reduced spectra 

were not remarkable. Nevertheless, in some cases, the entire spectral range 

accuracies were higher.  
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In some cases, changes produced on the kernel due to fungal growth do not 

imply an increased level of mycotoxins in the product. The classification 

according to DON levels was challenging due to batch contamination 

heterogeneity and the discordance between the fungal growth and the mycotoxin 

contamination.  DON was over the legal limit in symptomatic kernels (excluding 

mildly symptomatic ones) or under the legal limit in asymptomatic or mildly 

symptomatic ones in 70.7% of the cases. For the remaining 29.3 %, DON was 

present between LOD and the legal limit in symptomatic kernels (20.7 %), while 

the 8.6% had high DON concentrations without presenting visual symptoms. 

Table 18 contains the discrimination accuracy of single wheat kernels according 

to the level of contamination (above and below 1250 µg/kg). For DON 

discrimination, classification accuracies ranged between 65.0 % and 76.9 %. The 

most accurate model was the ANN classifier, with a 73.2 % of mean correctness. 

In addition, the results for the MSC and SNV pre-treated spectra had the highest 

mean accuracies compared with the other pre-treatments. The most accurate 

model obtained was the ANN classification with SNV, with an accuracy of 76.9 

%. However, other models also achieved discriminations above the 76.0 %, as 

Naïve Bayes model with SNV application (76.4 %), Naïve Bayes and ANN from 

the MSC transformed spectra (both 76.1 %), ANN for MSC transformed full 

spectral range (76.4 %), and ANN calibration with SNV and 1stD application (76.1 

%). In this case, the differences between the entire spectral range and the extreme 

reduced spectra calibrations were not significant. Nevertheless, most of the best 

results obtained in this section are using the spectra with the extremes removed.  
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Table 17. External validation accuracies of single wheat kernels discrimination 

according to symptomatology. 

Pre-treatment Spectral range LDA Naïve Bayes K-NN ANN Mean 

Raw spectra 
895-1731 76.1 60.6 83.3 84.8 

76.3 
1000-1600 77.5 60.3 84.2 83.6 

1stD 
895-1731 75.8 78.1 76.9 83.3 

78.2 
1000-1600 78.3 74.4 78.1 80.6 

SG 1stD 3-2 
895-1731 76.4 77.2 79.2 83.1 

78.5 
1000-1600 77.5 74.7 78.3 81.4 

SG 1stD 5-3 
895-1731 75.8 76.9 79.4 81.1 

78.6 
1000-1600 78.6 74.7 79.4 82.5 

SG 2ndD 3-2 
895-1731 75.8 68.1 71.4 80.0 

74.0 
1000-1600 75.0 71.4 71.1 78.9 

SG 2ndD 5-3 
895-1731 75.8 79.2 76.9 83.3 

78.8 
1000-1600 76.4 77.5 77.8 83.6 

NG 1stD 21 
895-1731 80.6 76.9 79.2 83.9 

79.2 
1000-1600 79.7 71.9 79.7 81.7 

NG 1stD 5 
895-1731 78.9 77.8 79.2 83.6 

79.1 
1000-1600 77.5 74.7 78.1 83.1 

SNV 
895-1731 80.6 68.1 75.6 80.6 

74.7 
1000-1600 79.4 58.6 73.9 80.8 

SNV + 1stD 
895-1731 74.7 77.8 71.7 82.2 

75.3 
1000-1600 77.2 63.9 72.5 82.2 

MSC 
895-1731 71.1 70.6 76.9 78.9 

72.3 
1000-1600 70.0 57.2 75.0 78.9 

MSC +1stD 
895-1731 76.4 78.3 71.9 80.8 

74.8 
1000-1600 75.6 63.6 71.9 80.0 

Normalization 
895-1731 81.4 83.1 82.2 85.3 

82.4 
1000-1600 81.4 82.5 80.0 83.6 

Absorbance 
895-1731 83.3 60.3 83.6 85.8 

77.7 
1000-1600 80.0 60.8 83.9 83.6 

ABS/BC 
895-1731 85.3 76.4 80.6 82.5 

80.8 
1000-1600 82.8 78.3 78.1 82.8 

Mean 77.8 71.8 77.7 82.2  
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Table 18. Validation accuracies of single wheat kernels discrimination according 

to DON. 

Pre-treatment Spectral range LDA Naïve Bayes KNN ANN Mean 

Raw spectra 
895-1731 67.8 72.2 70.8 69.3 

71.7 
1000-1600 75.0 72.8 70.8 75.0 

1stD 
895-1731 69.4 69.2 69.4 71.4 

70.4 
1000-1600 70.6 66.4 72.5 74.2 

SG 1stD 3-2 
895-1731 70.8 68.9 72.8 73.1 

71.1 
1000-1600 70.3 65.3 73.6 73.9 

SG 1stD 5-3 
895-1731 70.3 69.2 72.5 75.3 

71.2 
1000-1600 70.8 66.4 72.5 72.8 

SG 2ndD 3-2 
895-1731 68.9 70.3 71.4 73.3 

71.4 
1000-1600 68.9 72.8 72.8 72.5 

SG 2ndD 5-3 
895-1731 70.6 71.7 72.8 68.1 

71.3 
1000-1600 71.4 71.9 72.2 71.4 

NG 1stD 21 
895-1731 74.2 67.2 72.8 73.3 

71.9 
1000-1600 74.4 65.0 72.2 76.1 

NG 1stD 5 
895-1731 71.4 67.5 71.9 67.2 

69.9 
1000-1600 71.7 65.3 73.3 71.1 

SNV 
895-1731 71.7 74.2 71.4 73.9 

73.3 
1000-1600 71.1 76.4 71.1 76.9 

SNV + 1stD 
895-1731 68.1 71.9 72.5 76.1 

72.7 
1000-1600 73.1 75.0 74.7 70.6 

MSC 
895-1731 69.7 75.3 71.9 76.4 

73.5 
1000-1600 70.8 76.1 71.9 76.1 

MSC + 1stD 
895-1731 68.6 71.9 71.9 74.4 

73.1 
1000-1600 73.1 75.3 75.6 73.9 

Normalisation 
895-1731 73.9 71.7 72.2 73.1 

72.3 
1000-1600 73.1 71.7 69.4 73.1 

Absorbance 
895-1731 72.5 72.8 71.4 74.7 

72.8 
1000-1600 75.6 72.8 69.4 73.1 

ABS/BC 
895-1731 71.7 71.7 71.9 73.6 

71.8 
1000-1600 75.6 73.6 65.6 70.8 

Mean 71.5 71.1 71.9 73.2  
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 Discussion 

The analysis of DON content from individual kernels revealed the heterogeneity 

of the wheat batches. An 80 % of the 300-kernel set used in this study had a level 

of contamination below 10 mg/kg. Moreover, 204 kernels (68 %) had a 

concentration below the legal limit set by the EU (1.25 mg/kg). It indicates that a 

considerable part of the set (20 %), with extreme high contaminations up to 135.7 

mg/kg, are responsible for entire batch rejections. Thus, removing the percentage 

of high-contaminated kernels would mitigate DON presence to avoid whole 

batches refusal and ensure low DON levels accepted fraction to reduce harmful 

health effects and economic losses to producers.   

The weight of the grain is also a considerable parameter in the discrimination of 

the high-contaminated percentage. The mean DON concentration of kernels 

weighing more than 30 mg was 2.4 mg/kg, while the level in tiny grains lower 

than 30 mg was 15.5 mg/kg.  These differences suggest that weight is correlated 

with fungal symptomatology and DON production, as the common fungal 

infection effects include weight loss and shrivelling caused by moisture decrease. 

NIR data contains the physicochemical changes produced on the sample and can 

manage kernel size variations to obtain also an effect on the analytical 

information correlated, in part, by fungal and DON contaminations.  

The low correlation between kernels with characteristic visual symptoms and its 

DON contamination does not avoid the characterization of DON content 

considering the physical characteristics of the grains. As DON is synthesized as 

a product of the secondary metabolism of fungi, the amount of fungal growth 

does not match with the level of contamination. However, even if there are no 

visible physical changes on the kernels, DON contamination could be modelled 

by the chemical and nutritional modifications produced by fungal growth on the 

surface or inner parts of the grains. It includes sugar and free fatty acids content 

reduction, protein modifications and new fungal metabolites as chitin, ergosterol 
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and antibiotics (Sauer, 1988). Then, NIR spectra include all the chemical 

information of the ROI, which has to be modelled to extract the information 

required.  

The predictive models can be calibrated for more than one chemical compound. 

The reference values of the compound of interest are required to obtain 

predictive models to quantify chemicals by spectroscopic analysis. 

Consequently, authors use multivariate regression methods deal with the 

complexity of the NIR data to build well-fitted predictive models. Several 

published studies aimed to quantify mycotoxins in wheat batches, but only a few 

tried to use the spatial ability of HSI for the same purpose in individual kernels. 

First, conventional NIR techniques attempted DON detection in single grains.  

One of the first studies regarding DON prediction in single wheat kernels 

published by Dowell et al. (1999) obtained a prediction error for external 

validation of 54 mg/kg, including a weak adjustment of data (R2 of 0.66). The 

performance was far away from the common DON contamination as they only 

used scab-damaged kernels with a DON range between 0-400 mg/kg. Despite 

Dowell et al. (1999) worked on 114 single grains for DON assessment, they used 

only highly contaminated above 5 mg/kg. Even using high contaminations, 

which ideally would obtain the best adjustments than working on low 

contaminated samples, the R2 was 0.66 and the SEP 52 mg/kg.  Thus, they 

concluded that NIR spectrometry is unsuitable for this aim. As demonstrated in 

the study of Peiris et al. (2010), the results improved while working on high levels 

of contamination from artificially inoculated kernels (> 60 mg/kg), obtaining an 

R2 of 0.87 and a SEP of 60.8 mg/kg. Their results would be far from naturally-

contaminated DON concentrations found in the field and, thus, the application 

of their model would not fit with the legislation demands. Although we obtained 

similar adjustments (R2 = 0.88), we focused on naturally found levels of 
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contamination (<LOD to 135.7 mg/kg) that would be able to accurately detect 

high-DON contaminated kernels in terms of RMSEP (6.66 mg/kg).  

Otherwise, Jin et al. (2014) estimated the correlation between the visual FDK and 

SK-NIR DON data obtaining a correlation of 0.68. As expected, their results were 

similar to our percentage of kernels which, even though they presented 

symptoms of fungal growth, did not contain DON and vice versa. On the other 

hand, Peiris et al. (2009) studied DON absorbance NIR spectra. The different 

spectral profiles from DON in acetonitrile, sound and FDK were subtracted and 

compared. It allowed to attributing the changes produced by fungi and DON 

contamination to the differences in peak intensities in specific bands. They used 

log (1/T) and 2nd derivative pre-processing to detect differences in the spectral 

peaks. For FDK, broad differences were observed at 1205 nm and around 1400 

nm for 1/T and 1195 and 1425 nm for the 2nd derivative. These peaks are found in 

similar regions to our characteristic peaks, as 1220 and 1406 nm. Peiris et al. (2009) 

related the spectral peak at 1363 nm with FDK, close to the 1350 nm we obtained. 

Nevertheless, we should consider that their analysis was on kernels 

contaminated in a broader range (33-1008 mg/kg) than the one we used (<LOD-

135.7 mg/kg), in which they used artificial contamination that can cause 

differences in position and peak intensities.  

Although previous studies did not reach accurate DON predictions in single 

kernels, the emerging of HSI technology may permit a fast analysis of specific 

regions from the image, as a single kernel or even a portion, for the contamination 

levels. On the other hand, Tekle et al. (2015) also evaluated DON contamination, 

although they used single oat kernels. They also worked with a spectrum for each 

reference value regarding an individual grain, using PLS regression to model 

them. Otherwise, they applied logarithmic functions to avoid non-linearities. The 

performance of their model reached an R2 of 0.81 and an RMSECV of 39.8 mg/kg. 

Due to the high RMSE obtained, the authors considered HSI-NIR suitable for 
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FDK detection in oats. On the other hand, recently published works attempted 

the quantification of DON using HSI but in barley or corn (Parrag et al., 2020; Su 

et al., 2021). However, Parrag et al. (2020) predicted the level of DON in corn 

homogenized samples using a ROI of 20 x 100 pixels instead of single kernels. 

The model performance had an RMSEP of 11.95 mg/kg using 20 PC. Despite the 

results showing the difficulty to predict DON, we obtained better efficiencies for 

SK predictions (RMSEP = 6.65 mg/kg), even using naturally contaminated 

samples and a broader range of contaminations. Shi, Liu, Zhao, Liu, & Zheng 

(2020) studies focused on the Multispectral Imaging (MSI) analysis of 105 

samples of 20 wheat grains instead of individual kernels with HSI. As they were 

working with the mean spectra of 20 wheat kernels, reference values presented 

fewer deviations than for SK analysis, in which the DON differences between 

grains are high. Thus, they obtained accurate predictions and classifications for 

wheat batches. MSI has been proposed as a potential technique for DON spectral 

analysis that could reduce data dimension and enhance analysis speed. Thus, 

characteristic wavelengths selection from HSI would be a considerable strategy 

to reduce data dimension. Despite the recent advances in DON detection by HSI-

NIR, the correctness in toxin levels prediction need to improve. Consequently, 

discriminant strategies won popularity for DON management with HSI 

strategies. 

The correlation between Fusarium and DON presence with the physical and 

chemical changes of the cereal kernels remains a goal for cereal sorting strategies. 

Fusarium and DON analysis by NIR spectroscopy usually presents sensitivity 

issues that should be monitored to detect contaminated grains. However, Jin et 

al. (2014) correlated the visually labelled FDK and SK-NIR data, obtaining a 

correlation of 0.72. In addition, the higher correlation between visual symptoms 

and DON suggested the use of both techniques for the indirect estimation of 

DON in wheat (0.74). However, the correlation of SK-NIR for FDK estimation 
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with DON falls to 0.49, which shows the difficulty of indirect detection of DON 

levels. Thus, classification strategies by NIR spectroscopy are more suitable than 

studying the correlation between fungal damage and DON. 

Several authors focused on the NIR detection and classification of contamination 

on kernels. Singh et al. (2012) detected fungal damage on wheat kernels using 

NIR and colour imaging technologies. Although colour imaging obtained 

enhanced performances, NIR technology also gave good results, showing 

accuracies above 88.7%, especially in LDA models. From the full NIR spectra 

used by Pearson & Wicklow (2006), some wavelengths (580, 790 and 1405 nm) 

could describe the features of healthy and fungal infected maize with 85% and 

98%, respectively. The authors also used kernels with advanced fungal 

symptomatology, and obtained a correct discrimination of 96.6%. Tallada, 

Wicklow, Pearson, & Armstrong (2011) categorized four levels depending on 

their stage of infection with LDA and multi-layer perception neural network 

(MLP). The reference criteria used was also according to the visual symptoms. 

The models could classify correctly the 89% and 79% of the control and infected 

kernels, respectively, which are comparable to ours (86%). All the authors cited 

in this section artificially inoculated fungi to their samples before NIR analysis. 

Consequently, the symptoms observed are sometimes more severe than using 

naturally contaminated samples and have to be considered when comparing the 

results. 

In some studies, authors used different reference methods than visual inspection 

and artificial to detect fungi. Polder et al. (2005) quantified Fusarium amount on 

the kernel by quantitative Polymerase Chain Reaction (qPCR) analysis, avoiding 

the subjectivity of visual inspection, as it is specific on the fungal species of 

interest. The authors could correlate the spectral information with Fusarium DNA 

levels above 100 pg with an R2 of 0.8. 
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HSI and MSI -NIRs discriminated wheat kernels according to DON levels. 

Chemometric methods modelled the spectral information extracted from single 

wheat kernels to discriminate them according to certain DON limits. There are 

not many studies available on the classification of wheat kernels according to 

DON levels. However, some authors also tried to classify cereal kernels 

according to different mycotoxins. Yao et al. (2013) used HSI to discriminate corn 

kernels according to AFs levels. The spectral ranges used were the Vis and the 

NIR, irradiating the sample with fluorescence light. Two classification models, 

different from the one applied in the present study and based on pixel 

discrimination, were implemented (maximum likelihood and binary encoding). 

Nevertheless, the binary encoding presented higher performance results with 

87% correct classification for a 20 µg/kg threshold. The single-pixel analysis 

compares with the analysis of DON in oat kernels done by Tekle et al. (2015). 

They used PLS-DA to classify pixels according to DON with a correlation 

between predicted and measured values of 0.79. Following similar goals to those 

in the present study, some authors focused on the discrimination of DON 

contaminated kernels. Barbedo et al. (2017) developed an algorithm based on 

probability functions able to discriminate the images in three different groups (≤ 

0.5 mg/kg; 0.5 - 1.25 mg/kg: > 1.25 mg/kg). Algorithms classified wheat batches 

(not individual kernels) with 72% accuracy for three classes. With the cut-off 

fixed at 1.25 mg/kg for the discrimination into two groups, the classification 

accuracy rose to 81%. The results were comparable with ours, as we obtained 

correctness above 76%, although we used individual kernels instead of groups of 

around 30-50 kernels. 

Instead of building classification algorithms, Alisaac et al. (2019) compared 

spectral signatures of kernels with different DON concentrations. They obtained 

correlations of > 0.80 between the NIR spectra and DON. These high correlations 

in the NIR range suggest that our classifications models focused on the 
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information contained in specific regions, which account for the changes 

produced by fungi when DON is present. Several studies tried the detection of 

mycotoxins using HSI technologies. Nevertheless, most of them analysed bulk 

samples or grain groups instead of single kernels. Liang et al. (2020) and Shi et 

al. (2020) achieved the classification of bulk wheat and groups of wheat kernels, 

respectively, according to DON levels. Shi et al. (2020) focused on MSI for the 

calibration of the PLS-DA model with an accuracy precision of 94.29%. Although 

wheat grains were scanned individually in the crease-up and down position, they 

used 20 kernel batches for calibration and validation. Conversely, Liang et al. 

(2020) analysed 70 grains in each sample in the NIR range. The combination of 

SNV, GA and SAE showed their best performance, similar to the previous 

commented study. 

 Conclusions 

HSI-NIR analysis of wheat individual kernels presented differences in the 

spectral profile from fungal and DON contaminated and non-contaminated 

grains. The differences in spectral intensities, especially between the 1100-1400 

nm, could be correlated to the symptomatology caused by Fusarium growth on 

wheat kernels, and consequently, with an indirect DON prediction. However, 

the changes produced in the cereal chemical composition due to fungal growth, 

like proteins, carbohydrates and lipids, have more effects on the spectra than 

DON. DON quantification results show too high prediction errors to quantify 

DON at EU legal limits. Consequently, the authors focused on the discrimination 

of infected kernels as a more convenient mitigation approach. According to the 

results, it was proven that the classification strategies are more suitable for fungi 

and DON management in cereals than for their quantification, obtaining 

discrimination accuracies according to the EU cut-off around 86% and 77%, 

respectively. Thus, the detection of the low percentage of highly contaminated 
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kernels inside a batch would be a key mitigation strategy for contaminated 

cereals. 
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 Abstract 

Farmers, cereal suppliers and processors still demand rapid techniques for the 

assessment of mould-associated contamination. DON is one of the most 

produced Fusarium toxins, which is related to human and animal diseases and 

economic yield reductions. The regulatory routine analysis is based on 

chromatographic techniques, inconvenient for their high cost, time-consumption 

and use of pollutant chemicals. The present study evaluates the feasibility of FTIR 

on different extraction solvents to separate maize samples in contamination 

groups divided by the EU regulatory limit (1750 µg/kg). In this study, the liquid 

solvent was deposited on the diamond ATR-crystal, recording the MIR 

absorption spectrum. Reference DON concentrations were determined by LC-

MS/MS. The studied maize varieties are naturally infected or have been 

artificially inoculated in the field with F. graminearum, F. culmorum or F. 

verticillioides. PCA exploratory analysis demonstrated that water and methanol 

(70%) were the solvents presenting fungal-related clusters over the rest. The 

supervised SPLS-DA results presented significant classification accuracies of 

86.7% and 90.8% for water and methanol extracts, respectively. Fungal infection 

and DON contamination groups exhibited positive correlations with IR spectra 

variables associated with carbohydrates, proteins and lipid content changes in 

cereal. 
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 Introduction 

F. graminearum and F. culmorum are plant-pathogen fungal species commonly 

found on cereals that have several associated negative effects. In preharvest 

stages and during storage, these fungal species can grow on cereal ears and cause 

associated diseases. Maize ear rot is a severe disease caused by the growth of 

these species during flowering and before kernel development. Corn 

susceptibility to infection can trigger root, stalk and ear rot. Its most common 

effects are discolouration of ears, mycelial red or pink growth and drying of 

husks associated with weight loss. Thus, symptomatic ear affects cereal quality 

and it is also related to a decreased crop yield and economic loses (Logrieco, 

Mulè, Moretti, & Bottalico, 2002; Pascale, Visconti, & Chelkowski, 2002).  

Under suitable conditions, these species can produce mycotoxins derived from 

their secondary metabolism. One of the most commonly produced mycotoxins 

by these fungal species is DON, which is a well-known mycotoxin generally 

found in cereals. Fungal secondary metabolism can be activated under 

favourable environmental conditions or due to inadequate storage, but DON is 

frequently produced and accumulated on grain during preharvest stages (Pestka, 

2007). Furthermore, even the asymptomatic growth of Fusarium on maize ears 

can accumulate high amounts of DON, as well as FBs and other mycotoxins. 

Consequently, symptom inspection cannot be used as an indicator of mycotoxin 

presence (Gromadzka, Błaszczyk, Chełkowski, & Waśkiewicz, 2019). Recent 

studies confirmed that climatic change effects, as warmer weather, humidity, and 

extreme climate, have induced fungal growth with an increase of DON incidence 

(Uhlig et al., 2013).  

On the other side, its presence is considered threatening to humans and livestock 

due to the associated diseases experienced by mycotoxin contaminated products 

consumers. The main health effects of DON intoxication are related to acute and 
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chronic toxicity. Acute response to DON poisoning can derive from emesis, 

diarrhoea, headache and gastrointestinal irritation, and it can derive to death if a 

high dose is consumed in a short period. On the other side, chronic exposure is 

related to nutritional and immunological disorders, teratogenicity, and 

carcinogenesis. Anorexia is a frequently detected problem in livestock that causes 

weight loss and derived economic impact (Pestka, 2010). In addition, due to its 

high stability, DON is not completely removed by commonly used food 

processing methods, such as milling, baking, boiling, etc. (Bullerman & 

Bianchini, 2007; Vidal et al., 2016). Consequently, to fight against Fusarium toxins 

contamination, many countries have established maximum levels for foodstuffs, 

in particular for DON. The maximum level set by the European Commission 

(2006) for DON in unprocessed maize is 1750 µg/kg and milled maize with a 

particle size larger than 500 µm has a limited value for DON of 750 µg/kg. Finally, 

for fractions with a particle size lower than 500 µm, the limit established is 1250 

µg/kg. 

The most commonly used methods for analysis of mycotoxins are conventional 

wet chemistry techniques, including LC and ELISA. Despite the high sensitivity 

and specificity for mycotoxin detection and quantification, they also present 

some shortcomings. The main drawbacks of these methods are the complexity in 

sample preparation, time-consumption, cost, sample-destruction and pollution 

(Turner et al., 2009). Other main disadvantages are the need for specialized 

personnel and expensive devices to detect mycotoxin contamination. Thus, new 

technologies are required for the rapid and cost-effective detection and 

quantification of mycotoxins in cereals. 

Within optical methods, ATR-FTIR has been proposed as effective for its 

potential in mycotoxin detection in cereals. The implementation of FTIR, as it 

requires a minimum sample preparation, could reduce time dependence of the 
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analysis (Krska & Molinelli, 2007). Additionally, the amount of solvent needed 

for mycotoxin extraction is also notably reduced, thus it is considered an eco-

friendly technique. FTIR has other associated advantages, such as the 

simultaneous compound analysis, reliability, robustness and potential to be 

miniaturized (Öner et al., 2019). FTIR is ideally suggested for a rapid in-field 

screening before laboratory confirmation with a reference analysis (e.g. LC-MS) 

if the levels are close to the legally established limits. 

FTIR screens the stretching and bending vibrations of molecules to obtain a 

chemical outline of the sample. The region between 2500-25000 nm (MIR range) 

is a sufficiently reproducible area of the electromagnetic spectrum in which little 

variations of sample composition can be consistently detected (Subramanian & 

Rodriguez-Saona, 2009). Changes in protein, lipids and polysaccharides caused 

by fungal growth are translated into small changes in the spectral IR profile. The 

stretching vibrations of cereal samples are usually from carbonyl groups (CO) 

and amide, which correspond to polysaccharides and proteins, respectively. 

Nevertheless, for the interpretation of these changes in the IR spectrum it is not 

adequate to use a single spectral band. Thus, multivariate methods, such as PCA, 

PLS regression and DA (Kumar et al., 2014), are required to deal with numerous 

spectral features and overlapping absorption bands to obtain accurate and robust 

classification and quantification results (Öner et al., 2019). 

This study describes the application of ATR-FTIR for DON detection in maize, 

thus a review of the most significant studies has been included. A method for 

FTIR analysis of Fusarium fungi was established, in which changes in spectra due 

to lipid, protein and carbohydrate content variations were measured. DON and 

ergosterol were taken as reference and classification of up to 75% were 

successfully performed (Kos et al., 2002). The classification was upgraded up to 

100 % while sieving samples to similar particle size (Kos et al., 2003). The method 
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was optimized by the analysis of several particles for which 100-250 µm showed 

the best reproducibility. A decreased relative standard deviation of spectral 

measurements was obtained, thus classification results on DON analysis were 

successful (Kos, Lohninger, Mizaikoff, & Krska, 2007). Classifications on maize 

at DON regulatory limits were completed by Kos et al. (2016). FTIR was 

successful to discriminate samples with DON at 1750 and 500 µg/kg threshold 

with minimum sample pre-treatment for which it is proposed as a suitable 

method for rapid measurements at industrial entry or storage points. Other 

mycotoxins have been also evaluated by ATR-FTIR in cereal commodities. The 

application of the method to FBs analysis has not shown positive results for 

concentrations lower than 10 mg/kg and it was only possible to distinguish 

between extremely contaminated samples (190 mg/kg) and samples below 10 

mg/kg (Jaksic et al., 2017). However, the application of machine learning 

algorithms to ATR-FTIR data showed exceptional results for DON contaminated 

samples classification (Öner et al., 2019). 

ATR-FTIR has been applied to grinded cereal samples (Abramović et al., 2007; 

De Girolamo et al., 2019; Jaksic et al., 2017). IR-spectroscopy gathers molecular 

information of solid, liquid and gas samples. Hence, liquid extraction of cereal 

components for a subsequent analysis would be a promising approach to 

highlight soluble substances, especially DON. For that purpose, a study of the 

most suitable solvent which permits suitable discrimination between high and 

low contaminated samples is required. Thus, the main objective of this work was 

the determination of the most appropriate solvent for DON contaminated 

samples classification at the regulatory threshold. In the present study different 

organic solvents and mixtures of them with water have been tested. Afterwards, 

the results were analysed by PCA and SPLS-DA to determine the ability of the 

solvent to extract sample components to discern between groups.  
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 Material and methods 

 

Maize samples were supplied by Saatbau Linz (SBL; Linz, Austria) and by the 

Cereal Research Center (CRC; Szeged, Hungary). The samples consisted of maize 

hybrids used for field production which included dent or flint kernels types. 

Besides, two types of contamination were performed. Low contaminated 

samples were obtained by natural contamination in the field. Conversely, 

contaminations were generated with artificial infection by silk injection or 

toothpick inoculation of F. graminearum, F. verticillioides or F. culmorum, each 

specie separately. The artificial infections were performed during preharvest. 

Silk channel infection was performed 5 days after 50% of silking and toothpick 

10 days after 50% silking. Maize ears were injected in the silk channel with 2 ml 

of Fusarium suspension at a concentration of 5 ́  105 conidia ml-1. According to the 

method performed by Mesterházy (1977), in which a bubble breeding method in 

mung bean broth was used, the suspensions were obtained. Frozen aliquots (-

80°C) were brought rapidly to 35°C before use. Alternatively, the toothpick 

method consisted in drilling a hole to the centre of the ear and inserting a 

toothpick with Fusarium isolate. Harvested samples were milled (Romer, Union, 

MO, USA) before the extraction with several solvents. The samples were labelled 

according to the inoculation method: injection of F. graminearum in the silk 

channel (IG); toothpick inoculation with F. culmorum (ZC); injection of F. 

verticillioides in the silk channel (IV); toothpick inoculation with F. verticillioides 

(ZV); and natural infection unknown strains (NA). 

Before weighting, the obtained maize powder was shaken to homogenize the 

mycotoxin content. Then, 200 mg of powder were weighted at the precision 

balance (Sartorius Gmbh, Gottingen, Germany) and were transferred to a 1.5 ml 

tube (Eppendorf AG, Hamburg, Germany). 800 µl of solvent was added to the 
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tube. In the first part of the study, the tested solvents were: Water (100), 

Methanol:Water (70:30), Acetonitrile:Water (70:30), Ethanol:Water (70:30), 

Methanol:Water (30:70) and Methanol (100). The tubes were shaken horizontally 

on the VWR Rocking platform for 30 minutes at 70 rpm. Then, the extracts were 

centrifuged at the VWR Clinical 100 centrifuge for twice 2 minutes at 5800 rpm 

obtaining the liquid phase in each step. In the second part of the work, a deep 

evaluation of a green solvent (Water) and a non-green solvent Methanol:Water 

(70:30) was performed, increasing the number of samples in both datasets.  

For the spectroscopic analysis, an aliquot of each extraction solution (10 µl) were 

poured on the ATR crystal so that it remained completely covered. In all cases, 

enough time was allowed for solvents to evaporate before analysing. The times 

used were 15 minutes for Water (100) and Methanol:Water (70:30); 5 minutes for 

Acetonitrile:Water (70:30), Ethanol:Water (70:30), Methanol:Water (30:70); and 2 

minutes for Methanol (100). Once the solvent was evaporated, the thin film on 

the ATR crystal formed from the solution was analysed by FTIR spectroscopy. 

Between each analysis, the crystal was cleaned with isopropanol and the 

background was registered to avoid atmospheric effects. In the first part of the 

study, a reduced sample set was used to select, from the six solvents used, one 

green and one non-green solvent for further investigations. Once selected, 

additional samples were extracted following the same procedure to increase the 

dataset in order to attempt the calibration of robust classification models.  



Chapter 8. Determination of the best solvent for deoxynivalenol (DON) extraction from the maize for the subsequent 

Fourier transform infrared spectroscopic analysis with attenuated total reflection (ATR-FTIR) using advanced 

chemometric methods 

 258 

 

All infrared spectra were registered using FTIR spectrometer ALPHA II with the 

platinum ATR unit and DLaTGS (L-alanine doped triglycine sulfate) detector 

(Bruker, Germany). The ATR unit is equipped with one reflection – diamond 

crystal as an ATR element. Opus 8.1. software (Bruker, Germany) was used to 

record the spectra. 128 scans with the resolution 2 cm-1 formed the spectrum of 

each sample. The spectral range of the MIR region (2500 – 25000 nm) was chosen 

for the analysis. However, the ranges 3225 – 3571 nm and 5555 – 12500 nm were 

significant for the chemometric evaluation, since all relevant bands for the 

analysis are in this region (Table 19), as was found out in the previous studies 

(Kos et al., 2016). Each extract was measured three times. 

Table 19. Bands in the IR spectrum of maize in the MIR region. 

Vibrations Wavelength (nm) 

C-H 3448 

C-O ester stretching 5730 

C-O fatty acid 5847 

Amide I 6060 

Amide II 6493 

-C-H stretching, fatty acid 6711-7017 

-C-H symmetric bending, methyl 
groups 

7042-7518 

Ring vibrations of carbohydrates 9708 

Beyond the maize bonds, characteristic bonds of DON belong to the range of 5555 

– 12500 nm: e.g. bond at 5952 nm, which corresponds to C-O vibrations.  

EssentialFTIR Spectroscopy Software Toolbox (Operant LLC, USA) was used to 

convert the spectra to multifile for further convenient data evaluation. All data 

pre-processing was done during the chemometric analysis later on.  
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Homogenised samples of 5 g were extracted with 20 ml of extraction solvent 

(acetonitrile/water/acetic acid 79:20:1, v/v/v) for 90 min on a rotary shaker (GFL 

3017, Burgwedel, Germany). After a 1 + 1 (v/v) dilution using dilution solvent 

(acetonitrile/water/acetic acid 79:20:1, v/v/v), the diluted extracts were injected 

without further pre-treatment. 

The analytical technique of Liquid Chromatography – Tandem Mass 

spectrometry (LC-MS/MS) with a QTrap 550 LC-MS/MS System (Applied 

Biosystems, USA) equipped with TurboIonSpray electrospray ionization (ESI) 

source and 1290 Series HPLC Systems (Agilent, Germany) has been applied as a 

reference method. The detailed parameters of the reference measurements are 

described by Kos et al. (2016). The accuracy of the method is verified on a routine 

basis by regular participation in proficiency testing schemes. This approach 

quantifies the exact concentrations of DON in the maize samples. The LODs for 

DON was 1.2 µg/kg. 

 

Spectral quality test and outlier detection was done prior to analysis (Tafintseva, 

Shapaval, Smirnova, & Kohler, 2020). Thus, spectra of one sample from water 

dataset, one from acetone, one from ethanol, four from methanol 30%, three from 

methanol 100% were removed from the analysis. Spectral pre-processing was 

applied prior to data analysis and modelling. The following was done: (1) spectra 

of each sample were averaged; (2) second derivative was calculated using 

Savitzky-Golay algorithm (Savitzky & Golay, 1964; Zimmermann & Kohler, 

2013) with second order polynomial and window size 13; (3) the spectral ranges 

3225 to 3571 nm and 5555 to 12500 nm were chosen and used for the analysis; (4) 

extended multivariate signal correction (EMSC) was applied using linear and 

quadratic terms (Kohler, Solheim, Tafintseva, Zimmermann, & Shapaval, 2020; 



Chapter 8. Determination of the best solvent for deoxynivalenol (DON) extraction from the maize for the subsequent 

Fourier transform infrared spectroscopic analysis with attenuated total reflection (ATR-FTIR) using advanced 

chemometric methods 

 260 

Martens & Stark, 1991). The same pre-processing was applied to each dataset and 

the pre-processed spectra were used in all subsequent analysis. 

PCA was applied in order to discover patterns in the data in an unsupervised 

manner. Further supervised analysis was done using SPLS-DA. SPSL-DA is a 

variable selection technique which is used to establish robust models which are 

much easier to interpret (Karaman et al., 2013; Lê Cao, Rossouw, Robert-Granié, 

& Besse, 2008). In SPLS-DA loading weights are penalized using soft 

thresholding resulting in sparse loadings. Sparse PLSR algorithm penalizes the 

loading weight vectors according to a parameter called degree of sparsity which 

defines a number of zeros in a given loading (Shen & Huang, 2008; Tafintseva et 

al., 2018). For each PLS component, we selected the degree of sparsity to be 99%. 

This means that for each PLS component 99% of variables were penalized and 

thus put to zero and only 1% of variables were used for model building. 

The models established in the analysis were discriminative models for low vs 

high DON samples. The threshold was selected to be 1750 µg/kg according to the 

EU standard (European Commission, 2006). Thus, samples with DON < 1750 

µg/kg were considered uncontaminated, while samples with DON ³ 1750 µg/kg 

were considered contaminated with DON. The modelling was only possible for 

the samples extracted by water and methanol 70% since there were enough 

samples in each group whereas in other datasets obtained by other extraction 

methods there were not enough samples to perform classification. 

SPLS-DA models were established using leave-one-out cross-validation. Such an 

approach is fully justified since no replicates were present in the dataset, all of 

them were averaged prior the analysis. The optimal number of LVs (Aopt) was 

selected based on the classification accuracy of the groups. The number was 

optimized to maximize the accuracy of the group with the lowest classification 

accuracy (Tafintseva et al., 2022). This approach helps avoiding biased 
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classification of one of the groups especially when the groups are unbalanced. 

Regression coefficients, scatter plots and correlation loading plots were used to 

learn about models and patterns in the data. 

 Results 

 

This study investigated a set of DON contaminated maize samples of known 

concentrations. DON concentration distribution is displayed to represent the 

number of samples within each contamination level for the two inoculation types 

used (Figure 29). It provides individually the DON concentrations distribution 

histogram for naturally contaminated and artificially inoculated samples. 

Comprehensibly, the concentration range for naturally contaminated samples 

was narrower (96 – 6528 µg/kg) than for inoculated ones (81.6 – 73840 µg/kg). 

Despite the range differences, both inoculation groups had balanced number of 

samples above and below the EU regulatory limit. Naturally contaminated 

sample set was composed of 11 samples at the low contamination group and 8 at 

the high contaminated one, while the inoculated set had 24 samples below the 

threshold and 32 above. The balanced contamination sets are crucial to build 

robust classification models at the established threshold. 

Figure 29. Histogram of DON concentrations of naturally contaminated (NAC) and 

artificially inoculated (INO) maize samples. 
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The solid residue of 10 µl drops on the ~ 3 mm ATR crystal had enough 

homogeneous material to obtain 3 repeated sample measurements with adequate 

signals. The spectra obtained showed differences depending on the solvent used 

and their regions were identified according to the band assignments for MIR 

spectrum vibration assignments. Then, the range of interest was selected, 

avoiding solvent differences and regarding sample features differences, and it 

was fixed on 3225 – 3571 nm and 5555 – 12500 nm. This reduction in spectral 

range ensured the good representation of the sample and reduced noise and non-

useful information on models. To obtain a first overview over the differences 

caused by fungal-related contaminations, the raw spectral differences of two 

maize extracts for each solvent were studied. Figure 9 (annex) shows the chemical 

differences at the fingerprint region between a high DON- contaminated sample 

(52.3 mg/kg) and an uncontaminated one (0.2 mg/kg) for the selected solvents. 

Water and methanol extract spectra presented more variations in absorbance 

intensities than acetonitrile and ethanol ones. Although the differences should be 

estimated with a larger sample set and using chemometric tools able to model 

the spectral variations, the representation is an initial approximation to 

determine the most suitable solvent for DON extraction. A deeper statistical 

analysis was obtained for a larger sample set by projecting their spectra with 

PCA. 

 

PCA analysis was done using FTIR spectra to determine which solvent better 

extracted fungi or DON-related components from the sample. The samples were 
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labelled as contaminated and uncontaminated depending on the DON 

concentration, previously analysed by LC-MS/MS. As we focused on the 

extraction power comparison of the different solvents, we established a 1750 

µg/kg threshold, to evaluate the potential of FTIR to detect contamination at 

regulatory limits. 

The differences between groups are presented in PCA score plots (see Figure 10, 

annex), where samples corresponding to the type of inoculation are 

differentiated by colour: naturally contaminated in blue and inoculated in red, 

while level of contamination is labelled by 0 representing uncontaminated 

samples and 1 representing contaminated samples, respectively. The PCA 

analysis shows that none of the solvents allow clear separation according to the 

contamination level, although some of them (e.g. ethanol) allow clearer 

separation of inoculated samples from naturally contaminated, more efficiently 

than acetonitrile. From the polar solvents tested, one of the green solvents 

(between water and ethanol) recommended for the solvent selection guides 

(Byrne et al., 2016) and one non-green solvent (methanol and acetonitrile), which 

can present environmental issues, were selected for the subsequent supervised 

modelling. The PCA score plots display a clustering tendency for the water 

extracts, although ethanol PCA showed an overlapping of uncontaminated 

samples (specified by 0 in plots) on the contaminated (specified by 1 in plots). In 

addition, the separation of water extracts was predominantly influenced by DON 

contamination, while ethanol extracts exhibited a separation according to the 

inoculation type (natural vs inoculation in blue and red colours, respectively). 

Regarding the nature of both compounds, despite both of them are non-toxic and 

bio-based, ethanol presents disadvantages, such as the flammability and 

production cost. Consequently, from the green solvents water was selected for 

its applications and preference. 
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From the non-green solvents, acetonitrile and methanol (100%) did not show 

clustering tendency in the PCA scores for the inoculation type neither for DON 

levels. Whereas for methanol (30%), we can see mostly clear clustering of the 

samples according to the inoculation type, for methanol (70%) the cluster 

tendency follows again the separation into DON groups according to the 

threshold without any observable impact of the inoculation type. In addition, 

methanol (30%) is almost a water-based solvent, for that reason, methanol (70%) 

Figure 30. PCA score plot for the first two PCs of different solvents (a), (c) water, (b), (d) 

methanol 70% where colours of labels correspond to (a), (b)  inoculation type: inoculated 

(INO) in red and naturally contaminated (NAC) in blue, (c), (d) fungal strain and 

inoculation method used (IG: F. graminearum in the silk channel; ZC: toothpick 

inoculation with F. culmorum; IV: injection of F. verticillioides in the silk channel; ZV: 

toothpick inoculation with F. verticillioides and; NA: natural infection, unknown strains), 

while labels correspond to DON levels where 0: DON < 1750 µg/kg, 1: DON ≥ 1750 µg/kg 

obtained by the reference method. The PCA plots (a), (c) and (b), (d) represent the same 

models, with different colour coding used. 

c) PCA scores for water d) PCA scores for methanol 70% 
70% 

a) PCA scores for water b) PCA scores for methanol 70% 
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was selected as the non-green solvent for the further supervised analysis. Once 

water and methanol (70%) were selected, the datasets for each one were enlarged 

with new samples extraction. 

Also, it was of interest to check whether clustering according to the inoculated 

species can be observed. The PCA score plot in Figure 30 provides this 

information and the inoculation type described in the previous section using the 

enlarged datasets. The samples are labelled by the fungal species inoculated by a 

given method: injection of F. graminearum in the silk channel (IG); toothpick 

inoculation with F. culmorum (ZC); injection of F. verticillioides in the silk channel 

(IV); toothpick inoculation with F. verticillioides (ZV); and natural infection 

unknown strains (NA). The PCA score plot show clear clustering according to 

the fungal species. Clustering was more well-defined for methanol (70%) extracts 

than for water. In methanol extracts, PC1 and PC2 divided more prominently 

between samples infected with F. culmorum (DON producer, samples in brown 

colour) from F. verticillioides (predominantly FBs producer, in blue and purple) 

and naturally contaminated (in green). Although the set only included three 

samples infected with F. graminearum, the samples were clustering in between 

two groups of inoculated samples. The results of unsupervised data analysis by 

PCA indicate that the fungal species produce different changes on the cereal 

matrix causing differences in MIR spectra. The PCA suggests that DON-producer 

species cause different compositional changes than the FBs-producer, providing 

broader separation from the naturally contaminated samples. Further, 

supervised multivariate analysis was used to obtain more information. 

 

Classification of maize samples into contaminated and non-contaminated was 

done using SPLS- DA method. The threshold for was set at DON = 1750 μg/kg 
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and the two datasets evaluated were water extracts and methanol 70% extracts. 

Figure 31 presents the results of classification while Figure 32 provides scatter 

plots of the model to show the clustering patterns in the SPLS-DA model. We can 

observe that the difference between the two models accuracy is 4.1%, with higher 

accuracy in methanol 70% (90.8%) than water (86.7%). The models have the same 

number of LVs: Aopt = 11 which indicated moderate complexity. The overall 

number of samples incorrectly classified were 10 for water and 7 for methanol 

70%. Among the total samples with contaminations ≥ 1750 μg/kg (40), 15% (7 

samples) were incorrectly classified in water extracts, while 10% (4 samples) for 

methanol 70%, indicating that the percentage of false negatives is also higher for 

water extractions, while the number of false positives was equal (3 samples by 

both models). From the incorrectly classified samples, three were common in 

both models, with DON concentrations equal to 1904, 2024 and 6528 μg/kg. As 

can be seen, two of these samples have contamination close to the threshold 

1750μg/kg. The most discriminant variables obtained from the regression models 

were 3418 & 3505 nm, 5730 – 6493 nm, 8695 – 10822 nm (highest peaks at 9523 

a) SPLS-DA classification for water b) SPLS-DA classification for methanol 70% 

Figure 31. SPLS-DA classification results for maize samples into two groups: non-

contaminated labelled as (0) DON < 1750 μg/kg and contaminated labelled as (1) DON 

≥ 1750 µg/kg (a) in water and (b) methanol 70% extracts. The results are provided as 

accuracy of cross-validation, the number of latent variables are Aopt = 11 for both models, 

the number of samples are indicated in parenthesis next to groups’ labels 1 and 0.  
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and 9842 nm) and 12195 nm for water, and 3428 – 3503 nm, 5770 nm, 6042 nm 

(amide I), 6410 nm (amide II), 7147 nm, 8695 – 10204 nm and 12195 nm for 

methanol 70%.  

The scatter plots shown on Figure 32 represent patterns in the samples space of 

the SPLS-DA models. There are clear clusters of contaminated vs non-

contaminated samples represented by labels 1 and 0, respectively, with a small 

cluster of overlapping samples. The clustering is also characterized by the type 

of inoculation: natural and inoculation represented by colours. Thus, both types 

of information are detected in spectra: inoculation type and contamination level. 

SPLS – DA model for methanol 70% did not present such clear clusters for the 

inoculation type (presented in colours), although a much clear clustering is 

observed according to DON contamination. 

To observe the influence of the samples clustering by different fungal species the 

same SPLS- DA models scatter plots are shown in Figure 33 labelled by the DON 

contamination level (0 or 1) but coloured by inoculated fungal species. Naturally 

contaminated samples form a separate group in green. The score plot showed 

clear clustering according to the fungal species. For water extracts, there is a clear 

a) PLS-DA scores for water b) PLS-DA scores for methanol 70% 

Figure 32. SPLS-DA score plot of different solvents (a) water and (b) methanol 70%. The 

colour corresponds to inoculation type: inoculated (INO) in red and naturally 

contaminated (NAC) in blue, and labels represent DON concentration (0: < 1750 µg/kg, 

1: ³ 1750 µg/kg). 
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separation in LV1 of the samples infected by F. graminearum and F. culmorum (red 

circle) from the naturally infected samples in green. LV2 is separating these two 

clusters from a third cluster (showed in blue circle) represented by the samples 

infected with F. vericilloides by two types of inoculation: the injection into the silk 

channel (labelled by IV) and took pick inoculated samples (labelled by ZV), 

indicating that the clustering according to DON (0, 1) depends also on the fungal 

species infecting the sample and its ability to produce DON. In addition, injected 

and toothpick inoculated F. verticilloides are clustered together, suggesting that 

the type of inoculation does not affect the classification performance. There is a 

linear trend of fungal species shown by arrow in the LV1 and LV2 plane. There 

is a bit less of a separation of the naturally infected samples of maize in green.  

To learn about pattern in the sample’s space and variables space representing 

different spectral bands correlation loading plots were investigated. Such 

analysis allows easy visualization of the correlations between spectral variables, 

design parameters and any metadata available in the experiment. To obtain a 

a) SPLS-DA scores for water b) SPLS-DA scores for methanol 70% 

Figure 33. SPLS-DA score plot of (a) water and (b) methanol 70% extracts. Colours 

represent fungal strains and method of inoculation used (IG: F. graminearum in the silk 

channel; ZC: toothpick inoculation with F. culmorum; IV: injection of F. verticillioides in 

the silk channel; ZV: toothpick inoculation with F. verticillioides and; NA: natural 

infection, unknown strains) and labels represent DON concentration (0: < 1750 µg/kg, 

1: ³ 1750 µg/kg). 
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correlation loading plot, scores of the corresponding model are used and the 

variables of interest are projected onto the scores. Figures 34 (a) and (b) represent 

the correlation analysis for the water extracts and methanol 70% extracts, 

respectively. Based on the distances between variables in the correlation loading 

plot, variables clustering together are strongly correlated to each other. Points 

closer to the outer circles are highly important and well explained by the model, 

while those close to the centre do not have any importance. Points far along the 

LV1 and LV2 axes present no correlation.  

In the correlation loading plots for both solvents, the origin of the samples 

(labelled by CRC and SBL) did not have importance for the model in LV 1 and 2, 

appearing in the centre of the plot. However, the inoculation type (inoculated or 

naturally infected, labelled by INO and NAC in purple) are negatively correlated 

a) Correlation loading plot for water b) Correlation loading plot for methanol 70% 

Figure 34. Correlation loading plots using SPLS-DA models’ scores for (a) water and (b) 

methanol 70% showing correlations of the major spectral variables and design 

parameters such as maize origin, type of inoculation, fungal species and DON levels for 

the first two LVs. The labels are: F. graminearum in the silk channel (IG); toothpick 

inoculation with F. culmorum (ZC); injection of F. verticillioides in the silk channel (IV); 

toothpick inoculation with F. verticillioides (ZV); natural infection (NAC), inoculated 

(INO); Saatbau Linz (SBL); and Cereal Research Center (CRC). 
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with high importance on the model for both solvents, despite that the importance 

of them being slightly lower in methanol 70% extracted samples. Contrarily, the 

groups of samples with DON above and below the limit (labelled by 0 and 1 in 

red) for methanol 70% extraction presented higher importance than in water. 

However, for both solvents, they correlated negatively in the plot. It is important 

to underline that F. culmorum infected group positively correlated with DON 

contaminated samples. On the opposite side of the plot, F. verticillioides correlate 

negatively with the other fungal species and positively with DON 

contaminations below the threshold. It is also remarkable that both F. 

verticillioides inoculation methods (injection and toothpick inoculation) are highly 

correlated, demonstrating that the inoculation type does not matter as much as 

the fungal specie. 

The spectral features with high influence in the models are similar for water and 

methanol 70% extracts in the inoculated (INO) group, represented mostly by the 

carbohydrate peaks in the region 9523 – 10101 nm. However, the correlation is 

completely different for naturally infected samples, showing a strong correlation 

of the carbohydrate peaks in the region 8695 – 10000 nm for water extracts, while 

fatty acids peaks of the region 3428 – 3512 nm were observed the for methanol 

70%. The majority of peaks with high importance in the correlation loading plot 

of the water extracts are carbohydrate peaks and they are mostly correlated to 

the inoculation type. This means that water solvent extracts mostly sugars. 

Correlation loading plot of the methanol 70% extracts show a lot of different 

peaks, such as lipid peaks (5747 and 5777 nm), fatty acid peaks (3428 – 3512 nm), 

protein peaks (6027, 6045, 6393 and 6489 nm) in addition to carbohydrate peaks 

(9551, 10101 and 10162 nm). Those bands have also high importance on the model 

and correlate to the DON levels (below and above the threshold). 
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 Discussion 

In this study, a variety of contaminated samples with different fungal species and 

DON levels around the EU regulatory cut-off were used to prove the feasibility 

of FTIR to discriminate the class of contaminated maize samples (DON ≥ 1750 

μg/kg) from non-contaminated ones (DON < 1750 μg/kg). In the first instance, the 

selection of the maximum valuable spectral region is fundamental to remove the 

non-informative variables. The lipid-water (3225 – 3571 nm)  and the fingerprint 

region (5555-12500 nm) used in the analysis proved to contain enough 

information to discriminate between DON contaminated and uncontaminated 

samples (Figure 9, annex, shows the fingerprint region). Due to DON polarity, 

several polar solvents were selected to test their ability to extract DON from 

maize samples. However, the other polar matrix compounds extracted by those 

solvents should be considered as associated with DON produced by fungal 

infections. Further studies including nonpolar solvents to determine fungal 

growth associations with nonpolar compounds, such as lipids, should be 

considered. DON contamination in maize samples was broadly distributed on 

equitable parts for edible and unfit for consumption. Understandably, the 

number of inoculated samples with high DON was higher than in naturally-

contaminated ones. However, the number of naturally contaminated samples 

above the DON threshold and inoculated below it was enough to ensure the 

representation of both groups and, at the same time, the variability was full on 

each class. In addition, this study used a larger sample set than previously 

published investigations with similar aims (Abramović et al., 2007; Sieger et al., 

2017). A considerable number of samples with concentrations close to the limit 

was used to obtain a robust model (see Figure 29). The DON concentration 

distribution at cut-off concentrations ensured the representability of 
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contaminations at field common levels as the studies of Kos et al. (2016) and Öner 

et al. (2019). 

Considering the unsupervised modelling and the recommendations in solvent 

selections, acetonitrile and ethanol exhibited disadvantages against the other 

solvents tested. Contrarily, methanol 70% and water PCA plots displayed a 

tendency in separation depending on the artificial and natural contamination, 

reinforced by the fungal species clustering. PCA results proved the extracts’ 

ability to form clusters on contamination and indicated that the clustering 

depended on the fungal components and their compositional changes produced 

in the cereal matrix extracted by the polar solvents. The supervised results 

provided a more in-depth explanation of the clustering behaviour and the related 

IR variations.  

SPLS-DA classifications exhibited high accuracies in water (86.7%) and methanol 

70% (90.8%) for the chosen threshold (DON = 1750 μg/kg). From the incorrectly 

classified, four and three samples for each solvent, respectively, presented DON 

levels close to the cut-off, two of them in common in both models. Some 

deviations between FTIR and reference analysis could be caused by the different 

subsample analysis. In addition, the reference analysis error must be considered, 

which is approximately 5% with a tendency to overestimate DON concentration. 

The error depends on the extraction recovery, the matrix effect and the apparent 

recovery. Literature displayed RSDr for DON in maize, reporting recovery errors 

between 10-20% (De Santis et al., 2017; Santini, Ferracane, Somma, Aragón, & 

Ritieni, 2009). Thus, the 5% error would be optimistic and could reach higher 

deviations in DON measurements. It is important to notice that, if uncertainties 

of 20% were considered, the accuracies could increase to 90.7% for water and 

93.4% for methanol, remaining two samples close to the threshold value (1708.9 

and 1747.2 μg/kg). Although samples with concentrations near the threshold 
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induce error, it is important to point out that are required to train the algorithms 

at cut-off concentrations, modelling the small differences that decide whether 

samples are rejected or accepted.  

DON cannot be directly determined in maize by IR technques because of the 

overlapping of the DON signals with the matrix features, displaying a 

convoluted spectrum. Extensive approaches were used to identify the source of 

variations induced by different experimental parameters such as inoculation 

type and fungal species. SPLS-DA scores exhibited defined clusters for classes of 

the above and below the DON threshold in both solvents and similar tendency 

in grouping samples by the inoculation type (artificial or natural). However, not 

only the inoculation type was investigated but also the influence of the diverse 

fungal species on the model ability to discriminate DON classes, which 

demonstrated a correlation between the fungal species and DON classes. The 

results match those of Kos et al. (2016), whose classification could more precisely 

discriminate DON contaminated maize samples from blank samples when using 

only F. graminearum and F. culmorum inoculated samples (79%) than using 

additionally F. verticillioides inoculated samples, which impact negatively on the 

accuracy (73%). Despite we did not work with maize powder, our SPLS-DA score 

plots could prove that DON-producer species separate well from the naturally 

infected but at the same time F. verticillioides (producing in majority FBs) forms a 

cluster in between, which could reduce the model performance. Despite the 

tendency of forming clusters for the inoculation type (natural or artificial), the 

SPLS-DA results reveal that the clustering is more important due to the different 

fungal species used. Thus, the clustering tendency according to inoculation type 

could be attributed to the differences caused by the fungal species. 

The correlation loadings plot showed that variations in IR spectra that were 

important for the classification of DON groups were associated with the 



Chapter 8. Determination of the best solvent for deoxynivalenol (DON) extraction from the maize for the subsequent 

Fourier transform infrared spectroscopic analysis with attenuated total reflection (ATR-FTIR) using advanced 

chemometric methods 

 274 

proteolytic fungal activity causing the degradation of cereal reserve proteins and 

of proteins from plant cell walls (affecting mainly the 6060 nm and at 6451 nm 

bands) (Alconada, Moure, & Ortega, 2019). We observed that F. culmorum 

infected samples positively correlated with high DON in both solvents. The most 

relevant spectra signatures for the DON groups are encompassed between the 

5747 – 6622 nm region corresponding to the double bond region (carbonyl, 

carboxylic acids and amide groups), which can be related to the lipid and protein 

content. These signatures were much stronger represented when methanol 70% 

was used. It has been reported that F. culmorum inoculation reduces the overall 

lipid content in cereals due to the predominant reduction of oleic acid 

(Havrlentová et al., 2021). F. graminearum infection had a minor influence on the 

correlation loading plot. Also, it has been described that its infection reduces the 

lipid content but to a lesser extent than for F. culmorum infection. The lipid 

variations influence also naturally contaminated samples, with characteristic 

peaks predominantly in the 3389 – 3508 nm region. But for the naturally 

contaminated samples the fungal species are unknown. This region is primarily 

related to absorptions in alkyl groups, which could be methyl alcohols or methyl 

ketones as a product of the b-oxidation of lipids and fatty acids.  

Characteristic peaks correlated positively to F. culmorum and DON are 6435 nm 

in water and 6393 nm in methanol 70% related to N–H absorptions (functional 

groups found in proteins). Literature reported alterations in proteins depending 

on the fungal species infecting the cereal. It is reported that during pathogenic 

instigation, plant cells increase structural protein content on cell wall as a 

defensive function to avoid the pathogen penetration (Houston, Tucker, 

Chowdhury, Shirley, & Little, 2016). Cereal quality is reduced in fungal infection 

episodes caused by the deterioration of proteins and carbohydrates. Apart from 

the amide bands, a strong correlation between the inoculation type (natural or 

artificial) the alcohol functional group (C–O) was reported, primarily for natural 
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infections in water extracts (9267, 9900, 9940 and 10330 nm) but also for 

inoculated samples extracted with methanol 70% (9551, 10101 and 10162 nm), 

mostly due to polysaccharide absorption. Also, F. verticillioides and naturally 

infected samples exhibited a positive correlation with carbohydrates 

characteristic peaks (9460 and 9661 nm, respectively). Hettiarachchy & 

Boyacioǧlu (1995) reported that the total amount of reducing and nonreducing 

sugars increases during Fusarium growth caused by the destruction of starch and 

cellulose.  

The general results indicated that the classification of samples according to the 

DON regulatory threshold depends on the inherent food biomolecules 

alterations, such as lipids, proteins and carbohydrates. Those variations are 

reported to be correlated to the fungal species infecting the cereal. Methanol and 

water-based extracts presented similar performances, despite methanol- based 

models were slightly more accurate. However, special consideration has to be 

taken to water as an environmentally friendly solvent. Non-polar solvents should 

also be tested, due to the reported influence of the lipid regions related to the 

fungal species and DON contamination. Some issues still need to be addressed, 

such as bigger sample set where more infected samples by each fungal species 

should be a included. In addition, the naturally contaminated samples are 

required to build a classification model able to manage the common field DON 

concentrations. In addition, including more samples with DON concentrations 

close to the threshold would be also convenient to build robust classifiers able to 

detect the small variations at cut-off levels and improve the discrimination 

around those levels.  

 Conclusions 

The unsupervised and supervised analysis used in this study demonstrated the 

feasibility of water and methanol (70%) over other polar solvents to extract DON 
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associated components from maize samples and discriminate them into groups 

of contaminated vs non-contaminated with DON regulatory threshold of 1750 

µg/kg with an accuracy of 86.7% and 90.8%, respectively. The results 

demonstrated the correlation of the maize extracts from the DON-producer 

fungal species (F. culmorum and F. graminearum) with DON contaminated 

extracts (DON ≥ 1750 µg/kg), both negatively correlated with the maize extracts 

from FBs-producer (F. verticillioides) and the non-contaminated group (DON < 

1750 μg/kg). The biomolecular changes in cereal matrix and fungal specie 

infecting the samples appear to be the resulting factors for the high accuracy of 

classification of the maize samples contaminated by DON and non-contaminated 

samples, overcoming the low sensibility of IR to detect DON molecules in food. 

Therefore, the extraction of DON associated components and their detection by 

FTIR analysis is feasible and could be used in routine analysis. A rapid sample 

preparation and a data analysis automatization makes this approach practical for 

its implementation in cereal industry during processing and storing stages. 

Moreover, the suitability of water as the extraction solvent offers a non-pollutant 

sorting tool before LC-MS positive confirmation. Further developments must be 

focused on the optimization of the FTIR measurement set up, reinforcing the 

fungal species and DON variability, building a robust model to monitor the 

recently increased DON occurrences caused by climate change. 
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Mycotoxins are secondary fungal metabolites that accumulate in plants during 

growing or in post-harvest stages and are a risk for human and animal health. 

Fungal and mycotoxin presence in the food industry remains a frequent problem. 

Their management in field is especially difficult for cereal producers, thus 

mycotoxin contaminated grains, especially produced by Fusarium, arrive to 

industry entrance and cause production yield reduction and associated economic 

losses. Mycotoxins removal from cereals is complex due to their stability during 

food processing. Consequently, the surveillance and prevention of fungal 

infections in pre-harvest and post-harvest stages are crucial to avoid mycotoxins 

entering the food chain. The main step between harvest and cereal processing is 

the product reception in the cereal industries. Cereal receptors analyse the 

material using several methods to check that suppliers provide uncontaminated 

products. Some official sampling methods are available to overcome the frequent 

heterogeneity of cereal contamination before the analysis. They focus on enough 

sample size collection and its homogenisation to obtain an overall representative 

contamination level from the batch.   

The AOAC (2005) proposed analytical chemistry operations for sampling from 

bulk or packaged goods. Samples from three separated regions of the bulk 

content or three packs should be collected. For bulk cereals, the three gross 

samples are aggregated to form a composite. Then, a subsample is collected from 

the gross, and divided into different laboratory samples, grinding them before 

the analysis. Packages are divided first into primary samples and then separated 

twice into aggregates and subsamples. The three subsamples are joined and 

ground before laboratory analysis. The European Commission (2006) laid down 

the official control sampling methods for mycotoxins in cereals. Lots > 50 tonnes 

must be divided either into three sub lots or several sub lots of either 100 or 500 

tonnes (depending on their weight). At least 100 incremental samples must be 

collected from each sub lot. The aggregate sample weight (100 incremental 
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samples of at least 100 grams samples) must be 10 kg. For lots < 50 tonnes, 3-100 

incremental samples must be taken, depending on the lot weight. In this case, the 

aggregate sample weight must be 1-10 kg. The sampling method shows that from 

a lot weighing several tonnes, only a few kilograms from each lot reach the 

laboratory, from where a portion is analysed. Consequently, although those 

strategies intend to represent as much as possible the entire batch contamination, 

it remains a problem for mycotoxins mitigation, which would still put consumers 

and livestock at risk. 

The European Comission (2006) does not suggest the methods of analysis for 

mycotoxins in food, despite they propose several criteria that they should 

accomplish, such as repeatability, reproducibility and recovery. Following the 

standards, chromatographic and immunologic methods are the most frequently 

used for mycotoxin analysis in cereals. However, although they accomplish the 

EU recommendations, they present drawbacks predominantly related to the 

operation time, the analysis costs, the sample destruction and the green relation 

with the environment. In addition, the previously discussed sampling methods 

also demonstrate the complexity of working with heterogeneous contaminations, 

which may cause deviations in the results. Thus, future studies should focus on 

emergent technologies to overcome the problems presented by traditional wet 

chemistry, immunological and sampling methods.   

In recent times, sensors have been currently implemented in the food industry to 

detect chemical or biological compounds, determine adulterations or monitor 

food processes (El-Mesery, Mao, & Abomohra, 2019). Such technologies attempt 

the online monitoring of food quality. Therefore, they must have short operation 

time to obtain the results while screening. In addition, the food industry 

demands pocket-sized and portable technologies to be carried into the field to 

analyse preharvest products in situ. Although some advances are available in 

online monitoring of several quality parameters applied in the cereal fields, 
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fungal infections and mycotoxins detection methods are still unavailable (Huang, 

Liu, & Ngadi, 2014).  

Spectroscopic methods are applied broadly as an alternative to chromatographic 

methods in food analysis for their potential for the fast determination of multiple 

food compounds. Food producers demand NIR devices due to their cost-

effectiveness, stability to environmental factors and spectral information. NIR 

spectrometers are found commonly in the food chain to determine the 

compositional parameters of products. Despite NIR’s application remaining 

popular for food analysis, the interest has increased in MIR spectroscopy for its 

reproducibility, simple qualitative analysis and strong signals. In some studies, 

both spectral regions are combined to obtain more information about the sample, 

increasing the analytical power (Bureau et al., 2019; Caporaso et al., 2018).  

HSI has drawn the attention of food suppliers and industry for the benefits of its 

application to cereal analysis. The space vision of the HSI devices introduces 

various advantages to the conventional spectrometers. Unlike those methods 

that require an extraction or grinding step, HSI analysis does not demand sample 

destruction or solvents, so the analysed cereals can remain in the further 

processing steps. Spectroscopy could be extremely useful in cereal analysis as a 

rapid complementary technique to chromatography. Moreover, HSI opens a 

broad range of possibilities for cereal analysis, which has to be fixed depending 

on the requirements of the food industry. The present work has two main targets: 

the first for sample analysis as a complement to the conventional methods used 

at cereal reception in the food industry; the second for online sorting purposes, 

analysing cereal kernels individually to discriminate the high-contaminated 

ones. A third complementary target focused on the most suitable solvent 

selection for cereal analysis by FTIR. The following sections discuss the most 

relevant results, providing a global vision of the calibration and applications. 
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 Preliminary work for wheat samples HSI analysis  

 

The ROI selection is a crucial step for cereal analysis. The sample delimitation 

from the surroundings is required to obtain the desired information, avoiding 

background or noise deviations. Several ROI selection methods have been 

applied, segmenting cereal samples before HSI analysis. The present work 

selected in triplicate the similar spectrum pixels by Euclidian distance as the most 

suitable ROI delimitation method, which is a fast-manual selection. However, 

other authors used diverse segmentation techniques to remove the contributions 

from the background. The most frequent approach for removing the non-desired 

surrounding noise was to establish an intensity threshold between one or more 

spectral bands. The intensities of the pixels above and below the threshold 

correspond to the kernel and the background, respectively. Typically, the 

spectral band that presents more variations between the cereal pixels and the 

surroundings is selected by normalising intensities to values between 0 – 1 and 

establishing the threshold between 0.1 – 0.25. The pixel spectrum is removed if 

the selected wavelength intensity value is below the threshold. This ROI selection 

processing is the most frequent in the studies aiming the fungal and mycotoxins 

analysis (Delwiche & Kim, 2000; Delwiche et al., 2010, 2011; Delwiche et al., 2019; 

Liang et al., 2020; Polder et al., 2005; Shahin & Symons, 2011, 2012). Although it 

is simple, it presents some drawbacks, as the kernels reflectance differences 

caused their deformities, noise influence from the background and the specular 

reflection. Some authors attempted to solve this problem using the variations of 

four bands instead of a single band (Barbedo et al., 2015; Barbedo et al., 2017). 

However, they proposed using manual selection when some crucial wavelengths 

are not available to discern the delimitation region. 
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Numerous studies used multivariate imaging (MVI) based on PCA to group the 

image pixels between kernels and background, edge or shadowed pixels (Chu et 

al., 2020; Serranti et al., 2013; Williams et al., 2010). Depending on the image 

obtained, pixels cluster in the score plot divided into interest and background 

pixels. In some cases, the differences are interpreted in the score image, detecting 

simply the separation of both groups. Although the performances in background 

segmentation using multivariate analysis are accurate, sometimes it requires 

iterations to obtain the desired results. Consequently, the computational time can 

be an obstacle in threshold segmentation optimisation.  

Instead of manually selecting the pixels from the image to obtain the ROI 

information, a different manual segmentation is also available, inspecting the 

spectra directly. Tekle et al. (2015) removed the background pixels manually, 

observing and comparing all raw spectra. The ones with lower intensity than the 

threshold were removed from the overall data, keeping just the cereal pixels 

spectra. Finally, the watershed segmentation was applied in kernel 

segmentation, consisting of the representation of the image as a topographic 

landscape, which differentiates between water basins and watershed boundaries 

(Chu et al., 2020). The water basins are a group of pixels surrounding a grayscale 

minimum. Then, the regions between the kernels were determined as water 

basins, while the grains corresponded to the watershed boundaries, permitting a 

kernel-level segmentation. 

The ROI selection at PW level is more frequent than at object-wise (OW). The PW 

selection considers the pixel spectrum as the sample, while the OW considers the 

mean spectrum. The present study uses OW delimitations for wheat bulk 

samples and individual kernels selection. Although Chu et al. (2020) study 

obtained better classifications for PW segmentation with visual maps, OW 

presents advantages in data handling. The mean spectrum selection from the 
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entire kernel reduces the data dimension and improves the computational time. 

In addition, we understand that determining the contamination at pixel-level 

does not have any applicability for decontamination purposes, as a kernel section 

cannot be removed. Future work will be focused on cereal samples or individual 

kernels spectra selection, programming an automated selection system to obtain 

the ROI information.  

 

NIR spectra do not contain only the chemical information of the samples but also 

the physical features, such as shape, size, deformities, etc. Wheat kernels present 

different aspects depending on their position. The dorsal side (or crease-down) 

has smoothed and regular curved shape, while de ventral side (or crease-up) has 

a dash sunken, which can present differences in the light interaction with the 

kernel. Before determining the effect of kernel orientation, the authors inspected 

the fungal damage or mycelial growth in the grain using microscopic techniques. 

Abramson, Gan, Clear, Gilbert, & Marquardt (1998) affirmed that, besides the 

common fungal effects (shrivelling, chalk, decolouration, etc.), FDK have 

pink/white fibrous growth at the crease. Tekle et al. (2015) supported the 

previous findings, observing F. graminearum mycelial growth in oat high-

contaminated kernels crease. In addition, Shahin & Symons (2011) affirmed that 

mycelia were not exclusively in the crease and its surroundings but also at the 

germ. 

As in our methods, most studies aiming at fungal or associated contamination 

detection used crease-down positioned kernels to build classification models 

(Delwiche, 1998; Delwiche & Kim, 2000; Delwiche et al., 2010, 2011; Shahin & 

Symons, 2011). Although the previously mentioned studies affirmed that 

mycelial growth was predominantly at the crease, the crease part has a more non-

uniform shape that can present shadowing or scattering light effects. However, 

Caporaso et al. (2018) calibrated PLS models for protein prediction in wheat 
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kernels, obtaining slightly lower R2 for the crease-down side. Unlike the R2, the 

PLS performances were similar in random and crease-down positions, which 

indicated that kernels orientation does not affect protein prediction. In addition, 

Caporaso et al. (2017) affirmed that kernels could orientate randomly for baking 

quality determination (Hagberg falling number). For corn kernels, Williams, 

Geladi, Britz, & Manley (2012) found differences depending on germ orientation, 

attributing those discrepancies to the lipid content of the germ. As we have 

already discussed, they attributed non-germ side shadow and deformity 

differences of corn, in which the indent (similar to the crease shape of wheat) 

vary in depth or size from kernel to kernel. In transmission mode, kernel 

orientation does not affect the result because the light can fully penetrate inside 

the kernel, obtaining the information of both sides. In reflectance mode, the beam 

partially penetrates inside the grain and is reflected in the detector. 

Consequently, the amount or direction of light reflected is inevitably affected by 

the surface attributes, affecting the results (Wang et al., 2015).  

In our PCA results, kernels showed a slight tendency to cluster in crease-up and 

crease-down position groups. Comparing orientation and contamination PCA 

results, they showed that contamination clustering was more prominent than the 

orientation, determining that the orientation effects did not influence the results 

on DON analysis. Then, the comparison of the PLS performances did not show 

notable performance differences according to the kernel orientation. However, 

the random position showed weaker results than a defined orientation, selecting 

the crease-down for its handling advantages. As the kernel has a round (non-

crease) and a flat (crease) part, the grains tend to orientate with the flat face in 

contact with the scanning tray (crease-down). Consequently, it would be 

interesting for further investigations to find an approach that locates the kernels 

in a crease-down position (e.g. vibration). 
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Concerning bulk sample analysis, the kernel both sides representation effect 

must be studied, avoiding deviations and ensuring repeatability. In our study, 

bulk wheat samples were analysed in triplicate, shaking between each scanning 

to change the kernels randomly and increase sample repeatability. The scanned 

cereals presented contact between the grains, being an OW measurement. The 

spectra did not have wide deviations between repetitions, although the position 

and orientation of kernels changed. It demonstrated that the NIR spectra 

contained the general information about the sample, and it was suitable to model 

the changes of different samples caused by fungal-related contaminations. For 

wheat analysis, Barbedo et al. (2015) and Delwiche et al. (2019) positioned 

randomly and separately the kernels over the scanning tray for one face analysis, 

which were then inspected visually for fungal damage. Liang et al. (2020) 

analysed 25 g samples, where the average pixels intensities of all the randomly-

positioned kernels were extracted and processed. Finally, Su et al. (2021) used the 

same strategy, analysing 10 g of bulk barley, presenting the grains randomly to 

the HSI system, and having contact between the kernels. However, they did a 

single measurement, representing only one kernel face. The positive results in 

bulk sample analysis, scanning random-positioned kernels on the tray, suggested 

that the kernel orientation does not affect the overall spectral intensity. It was 

concluded that scanning the averaged spectra of a high kernel number in 

different positions and subsequently analyse them by the reference method 

altogether led to good results. Our studies reduce even more the orientation 

effect, triplicating the number of scans. 

 Fungal inoculated vs naturally infected wheat 

When fungi infect wheat plants naturally in the field, two main processes may 

occur. The first is related to the primary metabolism, intrinsic to fungal growth. 

Fusarium can grow at a wide temperature and water activity range, changing the 

optimum depending on the strain. Concretely, F. graminearum optimum 
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conditions are 24-28 °C and -10 to -14 bars, while for F. culmorum are 20-25 °C and 

-8 to -14 bars. Fungal development changes the cereal composition while using 

the plant reserves (carbohydrates, proteins and lipids) to sprout. The second is 

associated with secondary metabolism activation when the optimum conditions 

are available. In those conditions, fungi produce mycotoxins which accumulate 

in the cereal plant tissues. F. graminearum and F. culmorum produce DON in 

cereals at temperatures between 25-28 °C and aw 0.97 (Doohan, Brennan, & 

Cooke, 2003). 

Natural infection in wheat depends on several parameters. Fusarium infection 

incidence correlates with the climatic conditions of the geographical region 

(temperature and rainfall). Those climatic parameters affect the production and 

propagation of the Fusarium fungi. The fungi reproduce sexually or asexually 

depending on the environmental conditions which influence the dissemination. 

Other parameters which influence natural proliferation are nutrient availability, 

pH, competition between Fusaria and light (Magan, Medina, & Aldred, 2011). 

Artificial inoculation involves the fungal suspensions inoculation either 

preharvest, directly to the plant in the field, or in cereal kernels in the laboratory. 

Propagation parameters do not influence artificial inoculation because the plant 

is inoculated with fungal suspensions. For laboratory inoculation, the 

dissemination, nutrient accessibility or environmental conditions are controlled, 

obtaining an optimum fungal growth on the cereal.  

For HSI detection of Fusarium and DON in cereals, most studies used artificially 

inoculated kernels or samples with fungal suspensions (Alisaac et al., 2019; 

Dvořáček et al., 2012; Su et al., 2021; Tekle et al., 2015). Fungal inoculation ensures 

the presence of the fungi in the field or the optimum growth at the laboratory, 

which translates to a high fungal presence and DON levels in samples. 

Spectroscopic data do not contain only the fungal and mycotoxins information 

but also the variations of the physical and chemical components. Our results 
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allow us to conclude, as the first instance, that NIR and MIR present convoluted 

peaks for molecules in low concentrations in complex matrixes, such as DON. 

Consequently, DON detection involves modelling the compositional changes 

related to fungal primary and secondary metabolism. As we already explained, 

artificial inoculation produces dramatic changes in cereal matrixes compared to 

natural infection. The studies using artificially inoculated samples present higher 

accuracies, although they used higher fungal and DON levels than those 

common in the field. Thus, further studies using natural contamination are 

required to build robust calibrations with common field contaminations and 

higher applicability to the industry (Barbedo et al., 2017; De Girolamo et al., 2014; 

Peiris et al., 2017). 

 Correlation between ergosterol and DON contents 

Ergosterol is a common fungal cell wall component not present in plant tissues 

(Seitz, 1979). We used ergosterol to determine the fungal presence in wheat 

samples. Its analysis revealed that all the analysed samples presented ergosterol 

and showed that fungal infections are a current problem in the field. Ergosterol 

is produced on the cereal surface due to the fungi predominantly growing and 

accumulating on the outer parts of the cereal, being suitable for diffuse 

reflectance NIR analysis. We tried to correlate ergosterol and DON to determine 

if ergosterol indirect HSI-NIR analysis could be useful to predict DON 

contamination. However, our hypothesis presented some drawbacks, mainly 

that ergosterol is not exclusively in Fusarium genera compound but also of other 

fungi, and the low correlation between the fungal first metabolism (fungal 

growth) and secondary metabolism (DON production). Ergosterol content 

showed a correlation with DON of 0.61, not being possible to predict DON 

content indirectly. Studies with similar purposes reinforced our findings, 

affirming that ergosterol does not correlate with mycotoxins (Stanisz & 

Beszterda, 2015). However, one of the first authors who tried to predict DON 
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using ergosterol content (Lamper et al., 2000) supported the indirect prediction. 

Although they did not use spectroscopic techniques, ergosterol strongly 

correlated with DON (R = 0.87) and with visual evaluation (R = 0.89). They 

reported that most samples with severe symptomatology presented high 

ergosterol and DON levels. Thus, it is expected to obtain high correlations at high 

contaminations and weaker correlations at lower correlations. In addition, 

Snijders & Krechting (1992) found a positive correlation of ergosterol and DON 

with coefficients between 0.71 and 0.85 in wheat kernels. Several studies 

confirmed that ergosterol levels are in all cases higher than DON (Abramson et 

al., 1998; Dowell et al., 1999); in addition, they did not find any correlation 

between ergosterol and DON, while Fusarium damage or exoantigens (soluble 

extracellular components) correlated positively with DON. Polisenska et al. 

(2008) studied the ergosterol correlation with DON in corn contaminated kernels, 

showing a correlation coefficient of 0.38, although the coefficient was higher 

between ergosterol and maize ear rot damage (0.47). The overall findings confirm 

that, although ergosterol and DON correlate, the correlation is not sufficient to 

predict DON via ergosterol. They also demonstrated that fungi may grow in high 

amounts on cereals without producing significant DON levels. Additionally, as 

ergosterol is not exclusively present in Fusarium, their levels can be high due to 

other fungi growing on cereals, although they are not producing DON.  

Although the DON indirect detection was not possible, studies revealed that 

ergosterol is suitable to determine fungal biomass and correlate it with cereal 

diseases. Ergosterol content prediction through HSI was interesting regarding 

the fungal biomass presence in wheat samples, which correlates directly with 

cereal quality due to changes produced on cereal composition while fungi are 

growing. 
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 Correlation between visual damage and DON content 

Fusarium diseases, predominantly FHB, produce changes in kernels appearance, 

such as shrivelling, discolouration, weight loss, etc. Kernel visual inspection can 

recognize all these symptoms, characterizing them according to the disease 

severity. Fungal damage has been proposed as a mycotoxin presence indicator. 

Comparing our results of visual inspection and DON concentrations, we 

obtained that the 68.3% of the grains presented symptoms and DON levels over 

the EU limit (1250 µg/kg) or were visually healthy and had DON levels below the 

limit. The remaining 31.7% of the kernels showed no correlation between 

symptomatology and DON, presenting symptomatic condition and 

contaminations below the EU regulations or appeared healthy but contained 

DON above the cut-off. Without considering the mildly-symptomatic kernels, 

only the 3.7% of the kernels were fully asymptomatic and contaminated over the 

limit, and the 20.7% were uncontaminated and symptomatic. As for ergosterol, 

visual symptoms are indicators of the fungal presence and cereal spoilage and 

are one of the most used reference methods to calibrate HSI-NIR models because 

visual inspection is fast and cost-effective. Despite its advantages, visual 

inspection cannot determine the fungal species or even the genera infecting the 

cereal, as the symptoms can be similar in some other diseases. In addition, the 

visual observation of the samples requires a trained expert that determines the 

typical symptoms. Often, the human-eye inspected symptoms induce 

subjectivity, having different results depending on the inspector. Broad 

correlation diversity has been published regarding the association of FHB 

symptoms and DON and presenting FDK-DON correlations that varied between 

studies or within the same one from -0.47 to 0.98 (Paul et al., 2005). Positive 

correlations between FDK-DON (0.73) were stronger than measuring the 

diseased spikelets per spike, the proportion of diseased spikes or the diseases-

head severity. That suggests that the proportion of visibly scabby kernels at 
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harvest is the more suitable observation approach to correlate with DON 

accumulation. Additional studies reported that although relating kernels 

damage with DON is complex, the kernels with DON levels above 50 mg/kg (> 

80%) presented FHB damages (Dowell et al., 1999). However, 60% of the healthy 

grains had detectable DON levels, suggesting that damage recognition do not 

indicate low DON levels presence. Moreover, it was concerning that a 

considerable percentage (> 70%) of kernels between 6-50 mg/kg of DON were 

sound. Thus, visual inspection at mid-high DON levels induces errors to 

correlate FHB damage and DON. In conclusion, considering the discussed 

results, Fusarium damage recognition presents variable correlations with DON 

that depends on many factors, such as harvesting time, DON producing ability 

of the fungal strains, optimum environmental conditions to produce DON, etc. 

Although both events present some correlation, FDK inspection is adequate to 

determine fungal infection and not reliable enough to determine DON presence 

in cereal products.  

 Sample milling prior HSI analysis 

Cereal grinding is an additional step which allows samples homogenisation. 

Milled wheat HSI analysis presented lower prediction performances for 

ergosterol and DON than intact kernels. Sample grinding can affect NIR spectra 

differently, having advantages and drawbacks. Two advantages of grinding are 

the kernel size and shadowing effect elimination. Grains have a round surface, 

producing shadows in some kernel regions or over others within the sample and 

affecting the spectral quality. Although this effect can occur when analysing bulk 

samples, we ensured the correct separation between kernels and the sample 

region delimitation to reduce the shadowing effects. However, milling presents 

some limitations on sample presentation to the HSI-NIR. NIR spectra are 

strongly affected by the physical and structural appearance of the sample. The 

grinding process destroys the cereal tissues, changing the spectral shape. Two 
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main variations are produced regarding fungal and DON infection while 

grinding. First, milling destroys the Fusarium disease visible damages. We 

consider that chemical composition is not the only target to detect fungal damage 

and DON but also structural changes due to the limited sensibility of NIR to 

molecules present in low concentrations. When milling the samples, those FHB 

frequent symptoms (shrivelling, discolouration, pinkish colour, etc.) are 

eliminated, losing that fungal-related information in the spectra.  

The second is related to the contamination distribution in the sample. Fungal 

presence and, therefore, DON production are frequent in cereal surfaces, as fungi 

deposit on the outer kernel layers and grow there. As we worked in diffuse 

reflectance mode, the light beam slightly penetrates the sample, and the 

information detected is predominantly from the cereal surface. Fungi and DON 

are homogenised and redistributed across the ground samples. Consequently, it 

produces a dilution effect of the target compounds, making the detection of 

fungal components and DON molecules in the NIR spectra difficult. An 

additional disadvantage is the time-dependence of the method. Even if a 

grinding step is included, the analysis time will be shorter than for traditional 

chemistry or immunological techniques. Nevertheless, unground samples 

analysis would require even less time. In addition, sieving the ground samples 

could be an option to analyse the largest parts, which correspond to the outer 

layers (kernels skin) that may contain higher fungal and mycotoxin content. 

Some studies compared intact and milled cereal analysis with HSI-NIR. Liang et 

al. (2020) analysed wheat kernels and then reanalysed them after milling. Like in 

our results, the whole wheat kernels analysis was more accurate (100%) for 

sample classification than flour analysis (96%), also not presenting broad 

differences depending on milling. In addition, the Vis-NIR range was optimum 

for the intact sample analysis and SWIR for milled wheat. Instead of classifying 

samples, Alisaac et al. (2019) compared wheat kernels and flour spectral profiles 
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and correlated them with fungal infections. Their results were comparable to 

ours, obtaining correlations above 0.80 for fungal detection in intact kernel 

samples and, in some NIR regions, the correlations were above 0.90. For flour 

analysis, the correlations were poorer, even though the correlation were higher 

at the Vis range (0.80). They affirmed that flour spectral profile has more 

accentuated peaks in the Vis range caused by the Fusarium effect on the starch 

and protein amount, although no correlation was detected in the NIR range due 

to the kernel tissue destruction. Tyska, Mallmann, Gressler, & Mallmann (2021) 

compared NIR and FT-NIR to detect DON in wheat flour, obtaining similar PLS-

DA and PC-LDA classification accuracies for FT-NIR spectra and for NIR, 

between 85% and 90%. These results demonstrated that both NIR and FT-NIR 

are suitable techniques for wheat flour fungal and mycotoxin analysis, as flour is 

ideal for covering the cell to analyse solid samples (Börjesson et al., 2007; De 

Girolamo et al., 2014; De Girolamo et al., 2009). 

 Spectral profiles comparison of fungal-infected and 

DON contaminated wheat samples and kernels 

Before multivariate analysis, sample and kernel spectral profiles showed band 

intensities variations, which can be related to fungal and DON infection. The raw 

and 1stD spectral profiles were plotted to compare the samples and kernels 

variations regarding DON, and grains variances regarding symptomatology 

(severe damage, mild damage and healthy). Wheat samples results diverged in 

reflectances intensity between contaminated samples above and below the EU 

limit. The spectral representation showed that the uncontaminated samples had, 

in general, higher signals than contaminated ones. The spectral peaks that 

diverged depending on the contamination were, for the raw spectra, near 1120, 

1200, 1300 and 1450 nm. Additionally, the first derivate spectra presented 

remarkable spectral differences near 1150, 1220, 1345, 1370 and 1405 nm. 
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Additional bands (1280 and 1500 nm) in the 1stD spectra also differed, but the 

variations were not as strong as the abovementioned. 

Unlike wheat samples, individual kernels presented higher NIR reflectances for 

FDK and DON contaminated kernels. Although the intensities were different, it 

indicated that contamination variations were registered at specific peaks 

occurring at similar spectral regions to whole kernel samples for raw spectra, 

such as 1120, 1200, 1300 and 1450 nm. Also, the differences in the 1stD spectra, 

showing more pronounced peaks, were around 1146, 1220, 1350, 1370 and 1406. 

Understandably, wheat samples have similar spectra to kernels, as only the ROI 

changes from the mean of several wheat kernels that form the sample to the mean 

spectra of a single grain. 

Fungal infection symptoms changes cause differences in reflectance intensities 

among wheat samples. One of the damages caused by Fusarium diseases is 

weight loss and withering. Weight loss is associated with structural changes in 

kernels, losing size and thickness. Those changes in kernels size affect different 

regions of the NIR spectra, as the thicker grains have higher absorbances caused 

by the deeper penetration of the light (Chu et al., 2020). Consequently, FDK 

kernels, which present reduced size, would increase the overall reflectance in the 

NIR spectra. In addition, water has a high absorbance at the NIR region, for this 

reason, it is used frequently for moisture analysis. FDK kernels present 

shrivelling due to water loss, reducing the water absorption in the NIR region 

and, therefore, the overall reflectance increase. This effect is not produced in 

samples because they are composed of several kernels. Although the intensities 

shifted comparing whole kernel samples and individual grains, the spectra of 

both conditions have variations at similar peaks, containing information 

regarding fungal infection. Shrink and brightness are not described only by the 

overall NIR spectra but also by specific band differences. Those physical features 

divergences produced by Fusarium infection differ at the 1425-1450 nm region 
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and shift between bands, for FDK at the 1445 nm and healthy kernels at 1430 nm. 

Although our spectra did not present shifting between peaks at that region, a 

considerable variation in the 1450 nm band was observed that could be correlated 

with kernel size diminution and, consequently, brighter kernels. 

NIR spectra do not contain only the structural and physical information of wheat 

but also the fungal-growth related chemical variations in cereal matrix 

components, predominantly in proteins, lipids, and starch content. Although the 

NIR signals are overlapped due to their amount of information, some of the 

peaks can be correlated to overtone vibrations of specific molecules, which 

permit the determination of sample changes. 

Concerning fungal infection, Dowell et al. (1999) attempted DON indirect 

detection by correlating the differences in the 1400 nm region with the variances 

in protein and starch caused by fungal infection. In our 1stD spectra, we also 

observe a region at the same frequencies differing from the fungal/DON 

contaminated and healthy wheat, which could be due to those changes. 

Additionally, as shrink and brightness, the region near the 1450 nm band was 

related to the 1st overtone of N–H related to protein variations, although changes 

were in the 1446-1502 nm region for corn (Chu et al., 2020). However, it can be 

related to two characteristic peaks from our studies, one around 1450 nm and the 

other around 1500 nm. Our second peak comprises differences between 1480-

1530 nm that may be associated with the N–H stretching of the CONH2 of 

proteins. In addition, they reported phenolic content alterations caused by fungal 

damage which cause differences in intensities in the 1415-1512 nm that correlate 

to our peak at that region. However, other variations produced in fatty acids 

related to fungal infection are not represented in our spectra because the 1666-

1818 nm region correspond to our spectral extreme, which is affected commonly 

by light scattering and deviations. Liang et al. (2020) detected variations in the 

2nd overtone of C–H stretching vibration related to the 1190-1212 nm and 
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attributed them to starch and lipid variations. We obtained a strong peak in the 

1200 nm band that presents differences between FDK and healthy, related to the 

stretching vibration on those molecules.  

Further characteristic band variations are reported due to fungal infection, 

although they are out of the spectral area used in the present study. Shortly, those 

changes have been associated with fungal infection variations on kernel 

brightness (620-706 nm), 1st overtone C–H vibrations of amylose molecules 

(starch majoritarian compound) (1733-1778 nm), and water molecules stretching 

and bending (1935-1952 nm) (Su et al., 2021). 

Depending on DON concentration, NIR signals change at specific regions. DON 

molecule is complex, having different bonds that can absorb light energy and 

produce variations detected in the reflected beam. Peiris et al. (2009) 

demonstrated that the main variations were in two NIR regions depending on 

DON concentration (1390-1440 nm and 1880-1950 nm). Those regions presented 

peaks in 1414 nm related to DON 1st overtone of O–H bonds and 1906 nm for -

C=O and R–OH. The characteristic peak near 1414 nm also appears in our NIR 

spectra, attributing it to DON variations in the sample. Those results are not 

comparable to ours because they used pure DON in acetonitrile instead of a 

complex matrix as cereals. Thus, they obtained a defined signal for DON because 

they avoided overlapping effects of the region in which DON appears with other 

cereal compounds, absorbing light at the same frequencies, such as protein and 

starch. However, Peiris et al. (2009) not only obtained DON spectra in acetonitrile 

but also FDK in wheat, obtaining characteristic absorption peaks at 1205 nm and 

1400 nm. 

In conclusion, the comparison of our results with other studies allow us to 

attribute variations in our target NIR region (895-1731 nm) to fungal growth 

changes in the physical appearance and the chemical composition of cereals 

caused by the cereal matrix consumption while growing. Nevertheless, direct 
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DON visualization in the NIR spectra is complex due to the low levels of this 

molecule compared with the main cereal compounds, such as starch, protein, 

water and lipid, and the reduced sensibility of NIR spectroscopy to detect such 

concentrations. Low sensibility and overlapping problems should be solved with 

multivariate analysis, enhancing the variances caused by DON presence or 

correlating the Fusarium main changes in the cereal composition with the DON 

production. Thus, the following sections discuss the quantification and 

classification of wheat samples according to fungal and DON contaminations. 

 Perspectives for DON quantification in wheat samples 

and kernels by HSI 

Predictive chemometric tools are broadly applied to spectral or hyperspectral 

data to predict target compounds. As discussed in the previous section, 

regression tools are applied to the spectral matrixes, modelling the data with the 

reference method results and predicting DON concentration in future samples. 

PLS regression is the most frequent multivariate approach used to predict food 

compounds concentration. As it is explained in the results section, we applied 

PLS to the wheat samples mean spectra to build a predictive model from the 

HPLC measurements. The present study includes different wheat analyses 

(whole and ground grain samples, and single kernels) to determine the suitability 

of HSI-NIR to predict DON levels, such as wheat entire sample, ground sample 

and individual kernels. Prediction models displayed performances of R2 of 0.61 

and RMSEP of 501.4 µg/kg, respectively. Although models presented a weak 

fitting, the predictive error was lower than the DON EU limit for wheat. If the 

data fitting improved, the model could be applied for DON predictions at low 

concentrations and implemented as a complementary analysis of the established 

routine chemical methods. 
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The individual kernels prediction presented better performance than sample 

analysis, achieving an R2 of 0.88. However, the RMSEP was much higher (6.66 

mg/kg). The performance parameters are not comparable between the models 

using samples and single kernels, as they depend on the contamination standard 

deviation of the calibration and validation set. A valuable parameter to compare 

between both models is the RPD. Contamination deviation in wheat samples and 

kernels was 0.84 mg/kg and 21.4 mg/kg, respectively. Understandably, the DON 

levels in wheat samples present, in general, lower deviations than in individual 

kernels as the DON contamination corresponds to 14 g, which contain high and 

low contaminated grains, smoothing the concentration deviations. By contrast, 

contamination deviations within grains of the same sample are higher. The 

results suggest that a limited number of highly contaminated kernels increase 

sample contamination above the legal limits. In addition, almost all the sample 

grains contain low DON levels, decreasing the concentration deviations between 

samples. According to the standard deviations and the RMSEP, the several-

kernel sample RPD was 1.64 (able to distinguish low and high concentrations) 

and 3.21 for individual kernels (excellent predictions), confirming that predicting 

DON in individual grains was more suitable than for samples, even though the 

RMSEP was higher. More studies have been published regarding DON 

prediction in wheat samples by HSI than for single kernel analysis, although 

there is still not much-published information. Otherwise, there are no available 

studies on DON prediction using naturally infected samples by HSI. Chen et al., 

(2020) and Shi, Liu, Zhao, Liu, & Zheng (2020) tried to predict DON in wheat, but 

they used MSI and wheat flour, respectively. Additional studies are accessible 

using FT-NIR or FTIR, although in all cases used artificially inoculated wheat 

samples (Abramović et al., 2007; De Girolamo et al., 2009; Dvořáček et al., 2012; 

Peiris et al., 2017). 
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In most instances, artificially fungi-inoculated wheat samples have higher DON 

concentrations than natural inoculated cereals, which also present dramatic 

changes produced by fungal growth. Parrag et al. (2020) used HSI-NIR in the 

same spectral range but broader DON concentration range than ours (0.09-73.8 

mg/kg). Even though they obtained an adjusted PLS model with an R2 of 0.98, the 

RMSEP was 11.95 mg/kg. Both parameters can be related to the wide 

contamination range, as it can increase the adjustment and present higher 

RMSEP. Su (2021) worked with HSI-Vis/NIR on barley samples with a narrower 

contamination range (0-10 mg/kg). Their HSI scanning method was similar to 

ours, as they distributed randomly 10 g of barley kernels in the scanning tray. 

Their PLS regression presented a slightly better adjustment than ours (0.73), 

although their predictive power was lower (RMSEP of 3.80 mg/kg). In that case, 

it is also complex to compare the results, as our DON concentration range is 

narrower (<LOD-3.57 mg/kg). Chen et al. (2020) predictive results are comparable 

to our PLS regressions for naturally infected ground wheat, obtaining similar 

performance parameters (R2 of 0.69 and RMSEP 0.70 mg/kg) using samples with 

similar DON contaminations (LOD-6.23 mg/kg). 

DON quantification in single wheat kernels is a recently opened field of study. 

Single kernel analysis was performed before but not analysing DON from each 

individual kernel as the reference method. This study is the first that quantifies 

DON concentration from single wheat grains to build DON predictive models 

from HSI-NIR data. Thus, the results obtained in the present report can only be 

compared with those in Shen et al. (2022) study, working with similar 

methodologies. Although the results are comparable, they used F. graminearum 

inoculated samples, which resulted in extremely highly contaminated kernels, 

with a range of 39.45 to 507.28 mg/kg. Comparing the PLS results for the dorsal 

side, they obtained a weaker regression adjustment (R2 0.76) and a considerable 

RMSEP (55.26 mg/kg). Even though their results reflect a starting point for 
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SKHSI-NIR analysis, the contamination levels used are not comparable to the 

commonly found in naturally infected kernels (found in the present work). 

Consequently, the method applicability for online quantification purposes 

would have limitations.  

To date, the so far published results regarding HSI predictive performances for 

DON detection presented insufficiently adjusted models to screen contaminated 

wheat samples, or there is still not enough information available for single 

kernels analysis. The reduced performance in quantification models and the 

complexity of the heterogeneity for DON contamination in cereal batches have 

led the authors to switch from predictive models to discrimination models, 

classifying samples or kernels according to the established maximum legal limits. 

 Perspectives of discrimination of DON contaminated 

wheat samples and kernels by HSI 

The limited predictive power for DON quantification in wheat commodities at 

EU regulatory levels (1250 or 1750 µg/kg, depending on the unprocessed cereal) 

made researchers focus on the discrimination of contaminated batches, 

establishing the threshold on the legal limits or close to them. The classifications 

from the present study are encouraging to apply them as further discrimination 

models for routine analysis. Unlike the predictive results, the whole and milled 

wheat sample discrimination was more accurate than for individual kernels. 

Comparing the LDA models of the different wheat analyses (unground and 

ground samples and single kernels) at the same threshold (1250 µg/kg), the 

discrimination of unground and milled samples (83.3 and 85.4%, respectively) is 

more accurate than for single grains (75.6%). Not only the classification 

accuracies are better, but also the percentage of false negatives (contaminated 

classified as uncontaminated, which would be accepted in the food chain, 

introducing risk). Sample classification presented a low percentage of false 
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negatives with 3.25% and 2.96% in unground and milled samples, respectively. 

Conversely, the false-negative ratio for individual kernels classification is 

significantly higher (13.6%). This result reinforces the discrimination power of 

samples above single grains. In addition, spectral pre-processing does not make 

substantial differences in classification performances. The better sample 

classification accuracy could be due to the contamination distribution. Wheat 

samples used in our study presented mean contamination under the established 

threshold (0.48 mg/kg), while grains mean concentration was 9.02 mg/kg. Thus, 

individual kernels discrimination within low contamination levels can be 

challenging. In addition, selection of grains according to their symptomatology 

in groups of similar size led to a higher overall DON contamination than in a real 

batch. Although sample discrimination worked well at the EU level, kernels 

discrimination threshold could be increased in future works (e.g. 10 mg/kg) to 

sort the extremely highly contaminated kernels (19.7%), which are responsible 

for the entire batch rejection.  

The discrimination models from the literature are, in general, more precise than 

the predictive to manage DON contaminations. Liang et al. (2018) analyses are 

similar to ours because they worked with HSI-NIR in wheat samples. They 

scanned 70 kernels on the scanning tray, determining the DON concentration of 

all of them as a single sample by LC-MS/MS. Samples were discriminated into 

three groups, depending on their mean DON content (< 250, 1162 and 2655 

µg/kg). They achieved a high discrimination power (97.92%) working in similar 

contamination ranges (250-5000 µg/kg) using an SVM classifier, pre-processed 

with MSC and selecting optimal wavelengths with SPA. Gathering the results of 

the discussed studies, they suggest that, in future applications, the optimal 

wavelength selection is essential to highlight DON contamination spectral 

features, improving the discrimination power. Barbedo et al. (2017) used a 

similar procedure as Liang et al. (2018) by scanning 30-50 kernels per image, 
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working as a sample unit. Although we used a larger sample size and did not 

separate grains on the scanning tray, the results are comparable, as they 

established the limit at 1250 µg/kg. At this cut-off, the classification accuracy was 

81%, similar to our (83.3%), while dividing the model into three classes (500 and 

1250 µg/kg limits), the overall accuracy decreases to 72%.  In general, the results 

for the entire sample classification indicate the potential of HSI to discriminate 

according to DON levels. 

HSI technologies have been applied to discriminate milled cereal commodities 

according to DON contamination, such as wheat flour and cornmeal. Chen et al. 

(2020) classified naturally-infected flour samples with LDA, comparing the use 

of spectral and colour imaging to discriminate according to DON at 1 mg/kg 

limit. The combination of spectral and colour imaging was the most accurate 

model (96.62%), selecting some variables to reduce noise (23 LV and 12 colour 

parameters). Without selecting spectral variables, the classification ratio 

decreased to levels comparable levels to ours (70.8-84.6%). Also, these findings 

indicate that characteristic bands selection is fundamental in DON contamination 

classification and must be applied in future cereal sorting strategies. In addition, 

several publications used FT-NIR in ground sample classification. The 

application of FTIR requires sample milling to homogenize the sample and 

ensure contact with the crystal, as it is spatially limited. However, the overall 

classification results were similar to the HSI accuracies, ranging between 75-90% 

for thresholds between 1000-2500 µg/kg. In addition, some studies reported 

accuracies of 69% for low limits (300 µg/kg) and up to 93.4% for higher limits (10 

mg/kg). The present study is the only one that discriminates individual naturally 

infected wheat kernels according to DON by HSI-NIR, using grain 

concentrations to calibrate the classifiers. However, Peiris et al. (2010) attempted 

the first approximation of individual kernels classification using NIR 

spectroscopy. As in our study, they analysed kernels individually by 
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chromatography. However, the contaminations were extremely high due to 

artificial inoculation on spikes. Consequently, they could distinguish 

contaminated grains above and below 60 mg/kg with an approximate accuracy 

of 96%, far from the regulatory limits established. The generally positive results 

for DON-contaminated wheat samples and grains demonstrate the suitability of 

HSI-NIR as a mycotoxin mitigation strategy. 

 Discrimination of fungal contaminated kernels 

HSI-NIR feasibility has been tested for FDK recognition. Unlike for DON, HSI 

has been applied broadly for fungal detection, not only FDK but also Fusarium 

species, such as F. graminearum, F. culmorum, F. poae. However, this technology 

detected also other fungi in wheat (Aspergillus niger, A. glaucus and Penicillium 

spp.). The most frequent reference method for FDK determination is a visual 

inspection of the typical FHB symptoms. The discrimination of single kernels 

according to fungal damage was more accurate than for DON, with accuracies 

up to 85.8%. As already discussed in previous sections, fungal growth produces 

physical changes in kernels, such as shrivelling, size diminution and colour 

change. In addition, the compositional changes which cause fungal consumption 

while growing, affect the protein, carbohydrate, and lipid composition of the 

kernels. The NIR spectra contain these variations, which are the base for 

discrimination models building (LDA, SVM, PLS-DA, etc.). However, DON 

production is not directly correlated to those changes, as it is a secondary 

metabolite present, commonly, at low concentrations. 

Several researchers studied naturally infected kernels to discriminate them 

according to fungal infection. Interestingly, Shahin & Symons (2012) used the 

same analysis conditions than ours, except for the spectral range (400-1000 nm). 

In the 620-706 nm region, which is out of our target, spectral differences related 

to fungal infection occur. Those changes are associated with fungal infection 
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effect on kernel brightness and 1st overtone of C–H of amylose molecules 

(majority compound of starch). Thus, the spectral information in the Vis range 

could improve the accuracy to 92%. Ropelewska & Zapotoczny (2018) and 

Serranti et al. (2012) studies are similar to Chapter 3 because they used 70 and 

120 kernels, respectively, and cross-validated the discrimination models. In all 

the models, the accuracies were excellent, reaching values close to 100%. 

Delwiche et al. (2019) also determined the percentage of FDK by PLS-DA and 

LDA, obtaining in all cases precisions above 92%. However, they used cross-

validation in a 556 kernels sample set (half healthy/half FDK). Cross-validated 

models are suitable as a first estimation of the classification power of the spectral 

data. 

Studies are available reporting artificial infection of wheat. The work performed 

by Barbedo et al. (2015) inoculated Fusarium on kernels, using a set of 803 grains. 

The classification model externally validated had a FI (probability to have FHB) 

of 91%, similar to our results (85.8%). Singh et al. (2012) and Zhang et al. (2007) 

reports used other fungal species. A. niger, A. glaucus and Penicillium spp. 

previously inoculated, so the visual inspection was not required. Using SNV, the 

classification performance of inoculated and non-infected kernels was above 87% 

(Zhang et al., 2007). Nonetheless, LDA models for HSI-NIR analysis ranged from 

88.7 to 98.0%, depending on the inoculated species (Singh et al., 2012). Although 

we used natural infection, the LDA correctness went from 71.1-85.3%, depending 

on the pre-processing. 

In short, the percentage of fungal damaged kernels presented higher 

performances than DON. Fungal infection and related structural and 

compositional changes are dramatic compared to the mycotoxin levels 

variations. A common discrimination model could be proposed for fungal 

infection and DON discrimination, considering the correlation between fungal 

and DON presence. However, as sometimes the correlation is not accomplished, 
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independent classification models are more suitable. In conclusion, HSI is 

feasible for fungal damage detection of individual kernels, obtaining high 

discrimination percentages in all the studies reported to date (70-100%).  

 HSI-NIR as a cereal sorting tool 

Cereal industry processes have an impact on mycotoxin content. Typical stages 

in the grain industry, such as cleaning, sorting and milling, affect DON content 

(Nagy, Korzenszky, & Sembery, 2016; Tibola, Fernandes, & Guarienti, 2016). The 

studies reported a significant reduction in DON content while removing light, 

broken, shrivelled, and damaged grains by density or colour (between 28-33% of 

discarded kernels). It suggests that FDK removal would reduce mycotoxin 

content notably, although more precise strategies than gravity separation are 

required. The results reported in the present work indicated that HSI-NIR is 

appropriate to sort kernels in industrial processing steps. Its calibration 

according to fungal damage or DON would improve the detection specificity of 

fungal related damages, improving the ratio between the percentage of discarded 

kernels and DON reduction. Therefore, DON could be reduced by removing 

fewer kernels, which would increase the economic yield. HSI-NIR has been 

proposed as an inline sorting tool (Gruna et al., 2010; Tatzer et al., 2005), 

overcoming the reduced sensibility of optical sorters based on colour. 

Considering the present study results and literature, the advances in HSI-NIR for 

cereal sorting should involve (i) calibration with a suitable sample set, including 

naturally contaminated kernels with a wide range of DON concentrations and 

damage features (ii) the selection of optimal variables to reduce the computation 

time for online analysis, (iii) the analysis automatization (ROI selection, spectral 

pre-processing, contaminated kernels removal, etc.). Despite reported advances, 

future studies are required to implement this technology as an inline industrial 

process. 
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 Solvent selection to classify DON contaminated 

maize samples by ATR-FTIR 

Polar solvents were selected due to their extraction power of DON molecules. 

The PCA plots demonstrated that the most suitable solvents for DON 

contaminated samples discrimination at EU regulatory limits were water and 

methanol (70%). The classification accuracies obtained in the SPLS-DA algorithm 

(86.7% and 90.8%) revealed the potential of the FTIR technology to manage DON-

contaminated samples at low concentrations. The classification performances 

were higher for solvent-extract than for maize powder analysis (79%), obtained 

by Kos et al. (2016). Still, a larger sample set is required to build independently-

validated models and to cover a broader DON variability. In addition, the 

application of machine learning approaches for the automatic detection of 

contaminated samples over the regulatory limit involves calibration sets with 

additional samples contaminated close to the threshold concentrations to avoid 

the common misclassifications at those levels. 

As expected, IR present convoluted peaks that cannot be distinguished for DON 

variations. However, the approach exhibited ability to cluster samples according 

to the fungal species, especially grouping DON-producer species separately from 

the FBs-producers and naturally-contaminated samples. In addition, high 

correlations were displayed between F. culmorum infection and DON 

contamination above the limit samples, as well as between F. verticillioides and 

DON below 1750 µg/kg. Moreover, the inoculation method did not have impact 

on grouping. The clustering is noted be due to the variations in protein, lipids 

and carbohydrates associated to fungal growth, supporting the affirmations of 

Kos et al. (2003). IR characteristic regions of those biomacromolecules functional 

groups were associated to fungal infections and DON. The solvent should extract 

those compounds to model fungal presence and its association to DON 

production, showing water and methanol the best performances. Water extracted 
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more polysaccharides, exhibiting significant IR variation at the alcohol functional 

groups. The methanol (70%) extracts presented slightly higher performances, 

although water must be significantly considered for its non-pollutant nature. The 

water extraction prior to the FTIR analysis would be a rapid, eco-friendly and 

cost-effective approach for its automatic implementation in in cereal industrial 

stages for routine analysis techniques complementation. 

 References 

Abramović, B., Jajić, I., Abramović, B., Ćosić, J., & Jurić, V. (2007). Detection of 

deoxynivalenol in wheat by fourier transform infrared spectroscopy. Acta 

Chimica Slovenica, 54, 859–867. 

Abramson, D., Gan, Z., Clear, R. M., Gilbert, J., & Marquardt, R. R. (1998). 

Relationships among deoxynivalenol, ergosterol and Fusarium exoantigens 

in Canadian hard and soft wheat. International Journal of Food Microbiology, 

45, 217–224.  

Alisaac, E., Behmann, J., Rathgeb, A., Karlovsky, P., Dehne, H. W., & Mahlein, A. 

K. (2019). Assessment of Fusarium infection and mycotoxin contamination of 

wheat kernels and flour using hyperspectral imaging. Toxins, 11, 1–18. 

AOAC. (2005). Official Methods of Analysis. Official Methods of Ananlysis of AOAC 

International, 18, 20877–22417. 

Barbedo, J. G. A., Guarienti, E. M., & Tibola, C. S. (2018). Detection of sprout 

damage in wheat kernels using NIR hyperspectral imaging. Biosystems 

Engineering, 175, 124–132.  

Barbedo, J. G. A., Tibola, C. S., & Fernandes, J. M. C. (2015). Detecting Fusarium 

head blight in wheat kernels using hyperspectral imaging. Biosystems 

Engineering, 131, 65–76. 

Barbedo, J. G. A., Tibola, C. S., & Lima, M. I. P. (2017). Deoxynivalenol screening 



Chapter 9. General discussion 

 314 

in wheat kernels using hyperspectral imaging. Biosystems Engineering, 155, 

24–32. 

Börjesson, T., Stenberg, B., & Schnürer, J. (2007). Near-infrared spectroscopy for 

estimation of ergosterol content in barley: A comparison between reflectance 

and transmittance techniques. Cereal Chemistry, 84, 231–236. 

Bureau, S., Cozzolino, D., & Clark, C. J. (2019). Contributions of Fourier-

transform mid infrared (FT-MIR) spectroscopy to the study of fruit and 

vegetables: A review. Postharvest Biology and Technology, 148, 1–14. 

Caporaso, N., Whitworth, M. B., & Fisk, I. D. (2017). Application of calibrations 

to hyperspectral images of food grains: example for wheat falling number. 

Journal of Spectral Imaging, 6, 1–15. 

Caporaso, N., Whitworth, M. B., & Fisk, I. D. (2018). Near-Infrared spectroscopy 

and hyperspectral imaging for non-destructive quality assessment of cereal 

grains. Applied Spectroscopy Reviews, 53, 667–687. 

Caporaso, N., Whitworth, M. B., & Fisk, I. D. (2018). Protein content prediction 

in single wheat kernels using hyperspectral imaging. Food Chemistry, 240, 32–

42. 

Chen, M., Zhao, T., Jiang, X., Shen, F., He, X., Fang, Y., … Hu, Q. (2020). 

Integration of spectra and image features of Vis/NIR hyperspectral imaging 

for prediction of deoxynivalenol contamination in whole wheat flour. 

Infrared Physics & Technology, 109, 103426. 

Chu, X., Wang, W., Ni, X., Li, C., & Li, Y. (2020). Classifying maize kernels 

naturally infected by fungi using near-infrared hyperspectral imaging. 

Infrared Physics and Technology, 105, 103242.  

De Girolamo, A., Cervellieri, S., Visconti, A., & Pascale, M. (2014). Rapid analysis 

of deoxynivalenol in durum wheat by FT-NIR spectroscopy. Toxins, 6, 3129–

3143. 



Chapter 9. General discussion 

 315 

De Girolamo, A., Lippolis, V., Nordkvist, E., & Visconti, A. (2009). Rapid and 

non-invasive analysis of deoxynivalenol in durum and common wheat by 

Fourier-Transform Near Infrared (FT-NIR) spectroscopy. Food Additives & 

Contaminants: Part A, 26, 907–917. 

Delwiche, S. R. (1998). Protein content of single kernels of wheat by near-infrared 

reflectance spectroscopy. Journal of Cereal Science, 27, 241–254. 

Delwiche, S. R., & Kim, M. S. (2000). Hyperspectral imaging for detection of scab 

in wheat. Biological Quality and Precision Agriculture II, 4203, 13–20. 

Delwiche, S. R., Kim, M. S., & Dong, Y. (2010). Damage and quality assessment 

in wheat by NIR hyperspectral imaging. In M. S. Kim, S.-I. Tu, & K. Chao 

(Eds.), Sensing for Agriculture and Food Quality and Safety II, 7676, 1–8. 

Delwiche, S. R., Kim, M. S., & Dong, Y. (2011). Fusarium damage assessment in 

wheat kernels by Vis/NIR hyperspectral imaging. Sensing and 

Instrumentation for Food Quality and Safety, 5, 63–71. 

Delwiche, S. R., Rodriguez, I. T., Rausch, S. R., & Graybosch, R. A. (2019). 

Estimating percentages of Fusarium-damaged kernels in hard wheat by near-

infrared hyperspectral imaging. Journal of Cereal Science, 87, 18–24. 

Doohan, F. M., Brennan, J., & Cooke, B. M. (2003). Influence of climatic factors on 

Fusarium species pathogenic to cereals. European Journal of Plant Pathology, 

109, 755–768. 

Dowell, F. E., Ram, M. S., & Seitz, L. M. (1999). Predicting scab, vomitoxin, and 

ergosterol in single wheat kernels using near-infrared spectroscopy. Cereal 

Chemistry, 76, 573–576. 

Dvořáček, V., Prohasková, A., Chrpová, J., & Štočková, L. (2012). Near infrared 

spectroscopy for deoxynivalenol content estimation in intact wheat grain. 

Plant, Soil and Environment, 58, 196–203. 



Chapter 9. General discussion 

 316 

El-Mesery, H. S., Mao, H., & Abomohra, A. E. F. (2019). Applications of non-

destructive technologies for agricultural and food products quality 

inspection. Sensors (Switzerland), 19, 1–23. 

European Commission. (2006). Commission regulation (EC) No 401/2006 of 23 

February 2006. Laying down the methods of sampling and analysis for the 

official control of the levels of mycotoxins in foodstuffs. Official Journal of the 

European Union, 70, 12–34. 

Gruna, R., Vieth, K., Michelsburg, M., & Puente León, F. (2010). Hyperspectral 

imaging – from laboratory to in-line food sorting. International Workshop on 

Image Analysis in Agriculture, 2, 79-90. 

Huang, H., Liu, L., & Ngadi, M. O. (2014). Recent developments in hyperspectral 

imaging for assessment of food quality and safety. Sensors (Switzerland), 14, 

7248–7276. 

Kos, G., Lohninger, H., & Krska, R. (2003). Development of a method for the 

determination of Fusarium fungi on corn using mid-infrared spectroscopy 

with attenuated total reflection and chemometrics. Analytical Chemistry, 75, 

1211–1217. 

Kos, G., Sieger, M., McMullin, D., Zahradnik, C., Sulyok, M., Öner, T., … Krska, 

R. (2016). A novel chemometric classification for FTIR spectra of mycotoxin-

contaminated maize and peanuts at regulatory limits. Food Additives and 

Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk 

Assessment, 33, 1596–1607.  

Lamper, C., Téren, J., Bartók, T., Komorowski, R., Mesterházy, Á., & Sági, F. 

(2000). Predicting DON contamination in Fusarium-infected wheat grains via 

determination of the ergosterol content. Cereal Reserach Communications, 28, 

2000. 

Liang, K., Huang, J., He, R., Wang, Q., Chai, Y., & Shen, M. (2020). Comparison 



Chapter 9. General discussion 

 317 

of Vis-NIR and SWIR hyperspectral imaging for the non-destructive 

detection of DON levels in Fusarium head blight wheat kernels and wheat 

flour. Infrared Physics & Technology, 106, 103281.  

Liang, Kun, Liu, Q. X., Xu, J. H., Wang, Y. Q., Okinda, C. S., & Shena, M. X. (2018). 

Determination and Visualization of Different Levels of Deoxynivalenol in 

Bulk Wheat Kernels by Hyperspectral Imaging. Journal of Applied 

Spectroscopy, 85, 953–961. 

Magan, N., Medina, A., & Aldred, D. (2011). Possible climate-change effects on 

mycotoxin contamination of food crops pre- and postharvest. Plant 

Pathology, 60, 150–163. 

Nagy, E. K., Korzenszky, P., & Sembery, P. (2016). The role of color sorting 

machine in reducing food safety risks. Potravinarstvo Scientific Journal for Food 

Industry, 10, 354–358. 

Parrag, V., Gillay, Z., Kovács, Z., Zitek, A., Böhm, K., Hinterstoisser, B., … 

Baranyai, L. (2020). Application of hyperspectral imaging to detect toxigenic 

Fusarium infection on cornmeal. Progress in Agricultural Engineering Sciences, 

16, 51–60. 

Paul, P. A., Lipps, P. E., & Madden, L. V. (2005). Relationship between visual 

estimates of Fusarium head blight intensity and deoxynivalenol 

accumulation in harvested wheat grain: A meta-analysis. Phytopathology, 95, 

1225–1236. 

Peiris, K. H. S., Dong, Y., Davis, M. A., Bockus, W. W., & Dowell, F. E. (2017). 

Estimation of the deoxynivalenol and moisture contents of bulk wheat grain 

samples by FT-NIR spectroscopy. Cereal Chemistry Journal, 94, 677–682.  

Peiris, K. H. S., Pumphrey, M. O., Dong, Y., Maghirang, E. B., Berzonsky, W., & 

Dowell, F. E. (2010). Near-infrared spectroscopic method for identification 

of Fusarium head blight damage and prediction of deoxynivalenol in single 



Chapter 9. General discussion 

 318 

wheat kernels. Cereal Chemistry, 87, 511–517. 

Peiris, K. H. S., Pumphrey, M. O., & Dowell, F. E. (2009). NIR Absorbance 

characteristics of deoxynivalenol and of sound and Fusarium-damaged 

wheat kernels. Journal of Near Infrared Spectroscopy, 17, 213–221.  

Polder, G., Van Der Heijden, G. W. A. M., Waalwijk, C., & Young, I. T. (2005). 

Detection of Fusarium in single wheat kernels using spectral imaging. Seed 

Science and Technology, 33, 655–668. 

Polisenska, I., Kubicek, J., Dohnal, V., Jirsa, O., Jezkova, A., & Spitzer, T. (2008). 

Maize ear rot, Fusarium mycotoxins and ergosterol content in maize hybrids. 

Cereal Research Communications, 36, 381–383. 

Ropelewska, E., & Zapotoczny, P. (2018). Classification of Fusarium-infected and 

healthy wheat kernels based on features from hyperspectral images and 

flatbed scanner images: a comparative analysis. European Food Research and 

Technology, 244, 1453–1462. 

Seitz, L. M. (1979). Ergosterol as a measure of fungal growth. Phytopathology, 69, 

1202. 

Serranti, S., Cesare, D., & Bonifazi, G. (2012). Hyperspectral-imaging-based 

techniques applied to wheat kernels characterization. Sensing for Agriculture 

and Food Quality and Safety IV, 8369, 83690T. 

Serranti, S., Cesare, D., Marini, F., & Bonifazi, G. (2013). Talanta classification of 

oat and groat kernels using NIR hyperspectral imaging. Talanta, 103, 276–

284. 

Shahin, M. A., & Symons, S. J. (2011). Detection of Fusarium damaged kernels in 

Canada Western Red Spring wheat using visible/near-infrared 

hyperspectral imaging and principal component analysis. Computers and 

Electronics in Agriculture, 75, 107–112.  



Chapter 9. General discussion 

 319 

Shahin, M. A., & Symons, S. J. (2012). Detection of Fusarium damage in Canadian 

wheat using visible/near-infrared hyperspectral imaging. Journal of Food 

Measurement & Characterization, 6, 3–11. 

Shen, G., Cao, Y., Yin, X., Dong, F., Xu, J., Shi, J., & Lee, Y. W. (2022). Rapid and 

nondestructive quantification of deoxynivalenol in individual wheat kernels 

using near-infrared hyperspectral imaging and chemometrics. Food Control, 

131, 108420. 

Shi, Y., Liu, W., Zhao, P., Liu, C., & Zheng, L. (2020). Rapid and nondestructive 

determination of deoxynivalenol (DON) content in wheat using 

multispectral imaging (MSI) technology with chemometric methods. 

Analytical Methods, 12, 3390–3396. 

Singh, C. B., Jayas, D. S., Paliwal, J., & White, N. D. G. (2012). Fungal damage 

detection in wheat using short-wave near-infrared hyperspectral and digital 

colour imaging. International Journal of Food Properties, 15, 11–24.  

Snijders, C. H. A., & Krechting, C. F. (1992). Inhibition of deoxynivalenol 

translocation and fungal colonization in Fusarium head blight resistant 

wheat. Canadian Journal of Botany, 70, 1570–1576. 

Stanisz, E., & Beszterda, M. (2015). Can Ergosterol Be an Indicator of. Journal of 

Braz. Chem. Soc., 26, 705–712. 

Su, W. H. (2021). Rapid Assessment of Deoxynivalenol Content in Barley Using 

Hyperspectral imaging. ASABE Annual International Virtual Meeting, 

2100348, 1–8. 

Su, W. H., Yang, C., Dong, Y., Johnson, R., Page, R., Szinyei, T., … Steffenson, B. 

J. (2021). Hyperspectral imaging and improved feature variable selection for 

automated determination of deoxynivalenol in various genetic lines of 

barley kernels for resistance screening. Food Chemistry, 343, 128507. 

Tatzer, P., Wolf, M., & Panner, T. (2005). Industrial application for inline material 



Chapter 9. General discussion 

 320 

sorting using hyperspectral imaging in the NIR range. Real-Time Imaging, 11, 

99–107. 

Tekle, S., Mage, I., Segtnan, V. H., & Bjornstad, A. (2015). Near-infrared 

hyperspectral imaging of Fusarium-damaged oats (Avena sativa L.). Cereal 

Chemistry, 92, 73–80. 

Tibola, C. S., Fernandes, J. M. C., & Guarienti, E. M. (2016). Effect of cleaning, 

sorting and milling processes in wheat mycotoxin content. Food Control, 60, 

174–179. 

Tyska, D., Mallmann, A., Gressler, L. T., & Mallmann, C. A. (2021). Near-infrared 

spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour 

and its applicability in the industry. Food Additives and Contaminants - Part A 

Chemistry, Analysis, Control, Exposure and Risk Assessment, 38, 1958–1968. 

Wang, W., Ni, X., Lawrence, K. C., Yoon, S. C., Heitschmidt, G. W., & Feldner, P. 

(2015). Feasibility of detecting Aflatoxin B1 in single maize kernels using 

hyperspectral imaging. Journal of Food Engineering, 166, 182–192. 

Williams, P. J., Geladi, P., Britz, T. J., & Manley, M. (2012). Investigation of fungal 

development in maize kernels using NIR hyperspectral imaging and 

multivariate data analysis. Journal of Cereal Science, 55, 272–278. 

Williams, P., Manley, M., Fox, G., & Geladi, P. (2010). Indirect Detection of 

Fusarium verticillioides in Maize (Zea mays L.) Kernels by near Infrared 

Hyperspectral Imaging. Journal of Near Infrared Spectroscopy, 18, 49–58. 

Zhang, H., Paliwal, J., Jayas, D. S., & White, N. D. G. (2007). Classification of 

Fungal Infected Wheat Kernels Using Near-Infrared Reflectance 

Hyperspectral Imaging and Support Vector Machine. Transactions of the 

ASABE, 50, 1779–1785. 



 

 

 Conclusions and future development 

 



 

 



Chapter 10. Conclusions and future development 

 

 Conclusions 

The present work demonstrated the HSI-NIR potential detecting Fusarium and 

DON contamination in wheat kernels. The conclusions are grouped into sample 

analysis and single kernel analysis. 

HSI-NIR standardization. The results indicated that sampling, scanning 

conditions and image processing are crucial to establishing an analytical method. 

PCA results proved the standardization parameters, obtaining: (i) good scanning 

repeatability between days and according to the ROI delimitation; (ii) the 

position of kernels on the scanning tray does not affect the spectra; (iii) a 

clustering tendency is observed due to the kernel orientation (crease-up or 

crease-down), although the clustering caused by DON contamination is stronger; 

and (iv) defined clustering delimitate kernels contaminated with DON and 

symptomatic from uncontaminated and asymptomatic, although two groupings 

are formed in the intermediate region regarding the asymptomatic and 

contaminated kernels and the symptomatic and uncontaminated ones. 

 

Ergosterol detection. Although ergosterol correlated with DON (0.61), its R2 is 

not enough for DON indirect detection. However, ergosterol PLS models proved 

the HSI-NIR quantification power in wheat entire samples with high 

performance (R2 0.89 and RMSECV 1.17 mg/kg). Nevertheless, ergosterol 

indicated fungal presence, not only Fusarium. 

DON quantification of wheat samples. The predictive performances 

demonstrated that whole wheat analysis is more appropriate for DON 

quantification (R2 0.61 and RMSECV 501.4 µg/kg) than milled (R2 0.59 and 

RMSECV 519.0 µg/kg). Spectral 1stD pre-processing enhanced all the models’ 

performances, including ergosterol prediction, and seems to be the most effective 
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pre-processing method for wheat samples analysis. Although a better fitting 

would be required, HSI quantifies DON at regulatory limit concentrations. 

Discrimination of DON-contaminated wheat samples. Classification models 

have similar discriminant performances for entire and ground samples, with 

accuracies of 83.3 and 85.4%, respectively. Discrimination performance 

demonstrated that HSI could detect a high percentage of contaminated batches 

and establish it as a routine analysis before chromatography confirmation. 

 

Fusarium damage-DON correlation. FHB effects on wheat kernels are not direct 

indicators of DON presence. Only 68.3% of the grains matched having visible 

symptoms and DON over the EU limits. The remaining 31.7% were visually 

healthy kernels with high-DON concentrations or DON-free but damaged. 

Particularly, these results reinforce that, although the fungal growth and DON 

production correlate, there are differences in primary and secondary metabolism 

that add complexity to DON spectral analysis. 

Spectral features. The spectral profile demonstrated that the significant spectral 

information appears in the 1100-1400 nm region. The signal variations are related 

to physical (brightness, size and shrivelling) and chemical (carbohydrates, lipids, 

proteins and water) grain changes. Fungal growth can produce those structural 

and compositional variations on wheat caused by metabolism consumption. 

DON quantification in wheat kernels. Single kernel predictive models 

presented higher coefficients of determination than for samples (0.88), although 

the RMSEP increased (6.66 mg/kg). The RPD indicated that single kernel models 

(3.21) have more predictive power than sample analysis (1.64), due to the DON 

variability in individual kernels. The prediction performances suggested that, 

although the precision is not enough to quantify DON at regulatory limits, it 

could be applied to quantify highly contaminated grains. 
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Discrimination of DON-contaminated wheat kernels. The results showed that 

discrimination accuracy decreased compared to wheat samples (76.9%). An 

increase in false-negative kernels (23.3%) was also concerning, indicating that the 

discrimination depends on DON levels, as they presented higher contaminations 

than samples. However, DON variability among grains proved that a reduced 

fraction of extremely high contaminated kernels removal would decrease the 

general batch contamination. 

Discrimination of FDK. The proportion of correctly discarded kernels increased 

to 85.8% and false negatives reduced to 8.6 %, compared to DON, although three 

severity categories were used. Fungal growth changes on the cereal matrix affect 

the spectral signals, directly correlated with its presence. DON detection is more 

complex for its weak correlation with fungal infection and the NIR overlapped 

signals at field levels. This work proves the precision of HSI-NIR to replace 

physical and visual sorting methods. 

 

Determination of the most suitable extraction solvent. The selection procedure 

considered the solvents technological applications and the clustering ability 

according to DON levels. The green solvent selected was water and the non-

green solvent was methanol (70%), both exhibiting clustering tendency according 

to DON regulatory limit. 

FTIR ability to classify the two selected extracts according EU DON limit: The 

classification results showed the potential of FTIR to classify samples at 

regulatory threshold, displaying an accuracy of 86.7% and 90.8% for water and 

methanol (70%), respectively. The SPLS-DA showed the impact of fungal species 

in the classification accuracy, obtaining well-defined clusters between samples 

inoculated with DON-producing species, FBs-producing species and naturally-

infected.   
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 Future development 

i. The cereal industry requires rapid and non-destructive analytical techniques 

to manage fungal spoilage and associated mycotoxin contamination. 

Considering standardization results, automatization of the computational 

process, especially the ROI selection, spectral data management and pre-

processing and model application is required for the batch rejection and 

online sorting of contaminated cereal commodities. Thus, future work 

should focus on software development for the real-time detection of 

contaminated grains. 

ii. Several studies used HSI-NIR to detect fungal contaminations, although 

most with artificially inoculated cereals. Further investigations on larger 

naturally contaminated cereal sets at field levels are essential to calibrate 

models with application at the commonly found concentrations.  

iii. Further studies must approach pixels spectra, applying the previous models 

to estimate the contaminated regions of the sample areas over the maximum 

limit in a simulated stream of wheat. It could manually withdraw the kernels 

located in those areas, determine the contamination in the safe and rejected 

fractions, as well as its weight percentage. 

iv. Studies investigating the HSI-NIR analysis of other cereals different than 

wheat (maize, oat and barley), other mycotoxins (FBs, ZEA and 

trichothecenes), masked mycotoxins (3-ADON, 15-ADON and DON-3G) 

and multiple mycotoxins in diverse commodities would be required. 

v. For FTIR, studies increasing the sample set, based on water and methanol 

70% extracts, are required for robust classification model’s calibration, with 

especial consideration to samples with concentrations close to the regulatory 

limit. 
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Figure 1. PCA score plot for the assessment of the repeatability of the pixel 

selection option. X-expl: 88%, 11%. N=50. 

Figure 2. PCA score plot for the representation of the differences between 

narrow and wider pixel selection options. X-expl: 89%, 10%. N=50. 

Figure 3. PCA score plot for the assessment of the interday repeatability. Five 

samples were scanned in three different days. Raw spectra. 1=1st day scan; 

2=2nd day scan; 3=3rd day scan. X-expl: 88%, 8%. N=15. 
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Figure 4. PCA score plot of the differences between crease-down/up kernel 

position for a DON-free sample (upper, X-expl: 93%, 7%. N=60) and a DON-

contaminated sample (lower, X-expl: 92%, 7%. N=60). D = Crease down (Dorsal), 

V = Crease-up (Ventral). 
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Figure 5. Comparison between spectral pre-treatments for crease-down 

positioned kernels. A = Raw spectra (reflectance) X-expl: 95%, 5%; B = Raw 

spectra (absorbance) X-expl: 95%, 4%; C = Reflectance + Baseline correction X-

expl: 58%, 40%; D = Reflectance + SNV X-expl: 91%, 3%; E = Absorbance + 

Baseline correction X-expl: 98%, 1%; F = Absorbance + SNV X-expl: 94%, 2%. N 

= 60. 
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Figure 6. Comparison between spectral pre-treatments for crease-up positioned 

kernels. A = Raw spectra (reflectance) X-expl: 93%, 6%; B = Raw spectra 

(absorbance) X-expl: 94%, 5%; C = Reflectance + Baseline correction X-expl: 66%, 

31%; D = Reflectance + SNV X-expl: 88%, 5%; E = Absorbance + Baseline correction 

X-expl: 97%, 2%; F = Absorbance + SNV X-expl: 91%, 3%. N = 60. 
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Figure 7. Distribution of total ergosterol content in single wheat kernels, on the full 

dataset used in the present experiments. 

 

Figure 8. Distribution of total DON content in wheat samples, on the full dataset 

used in the present experiments, and separately for the calibration and validation 

sets. Statistical analysis of the parameters of the samples used for DON models 

building, showing independently calibration and validation sets. 
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Figure 9. FTIR spectra of high and low DON-contaminated maize extracts in A) 

water, B) methanol 70%, C) ethanol 70%, D) acetonitrile 70%, E) Methanol 30%, F) 

Methanol 100%. 
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Figure 10. PCA score plot of acetonitrile (70%), ethanol (70%), methanol (70%) 

and water extracts where colours of labels correspond to inoculation type: 

inoculated in red and naturally contaminated in blue while labels correspond to 

DON levels where 0: DON < 1750 µg/kg, 1: DON ≥ 1750 µg/kg obtained by the 

reference method. 

PCA scores for acetonitrile (70%) 

PCA scores for methanol (70%) PCA scores for water 

PCA scores for ethanol (70%) 
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Table 1. LDA accuracies for the cross-validated model in unground samples. 

B = low-contaminated group of samples (< 1250 µg/kg); C = high-contaminated group of samples (≥ 1250 

µg/kg). Grey cells indicate the number of correctly-classified samples. White cells indicate the number of 

miss-classified samples.  

Cross-validated set 

Raw spectra 

 Predicted Accuracy (%) 

Groups B C 
84.65 B 341 70 

C 6 78 

ABS/BC 
Groups B C 

83.64 B 336 75 

C 6 78 

1st D 
Groups B C 

95.66 B 393 18 

C 4 80 
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Table 2. LDA accuracies for a cross-validated model (threshold 1250 µg/kg) in 

ground samples. 

B = low-contaminated group of samples (< 1250 µg/kg); C = contaminated group of samples (≥ 1250 µg/kg). 

Grey cells indicate the number of correctly-classified samples. White cells indicate the number of miss-

classified samples. 

Cross-validated set 

Raw spectra 

 Predicted Accuracy (%) 

Groups B C 
94.35 B 389 22 

C 6 78 

ABS/BC 
Groups B C 

84.05 B 341 70 

C 9 75 

1stD 
Groups B C 

97.18 B 400 11 

C 3 81 



 

 

Table 3. Performance parameters of PLS regression for different spectral pre-treatments. 

  

DON 
Cross-validation (n = 150) 

Pre-processing Position Spectral range (nm) Slope RMSECV R2 SEP PC Outliers RPD 
Raw spectra Crease-down 895 – 1731 0.85 7.6 0.80 7.6 13 6 2.8 

1000 – 1650 0.86 8.3 0.84 8.4 11 3 2.5 
Crease-up 895 – 1731 0.86 7.0 0.80 7.1 18 9 3.0 

1000 – 1650 0.83 9.0 0.82 9.0 10 5 2.3 
Crease-up (single image) 895 – 1731 0.89 7.2 0.85 7.2 16 7 2.9 

1000 – 1650 0.87 6.5 0.86 6.5 11 10 3.2 
MSC Crease-down 895 – 1731 0.86 6.1 0.85 6.2 9 9 3.4 

1000 – 1650 0.90 7.3 0.87 7.3 17 8 2.9 
Crease-up 895 – 1731 0.92 6.6 0.90 6.6 13 15 3.2 

1000 – 1650 0.90 6.5 0.90 6.5 16 12 3.2 
Crease-up (single image) 895 – 1731 0.81 7.7 0.80 7.7 7 7 2.7 

1000 – 1650 0.83 8.5 0.79 8.5 10 7 2.5 
SNV Crease-down 895 – 1731 0.87 5.9 0.86 5.9 6 9 3.6 

1000 – 1650 0.87 8.2 0.83 8.3 13 5 2.5 
Crease-up 895 – 1731 0.89 7.5 0.86 7.5 12 9 2.8 

1000 – 1650 0.88 7.9 0.84 7.9 15 6 2.7 
Crease-up (single image) 895 – 1731 0.86 5.2 0.85 5.3 6 12 4.0 

1000 – 1650 0.87 5.0 0.87 5.0 10 15 4.2 
1stD Crease-down 895 – 1731 0.87 7.7 0.85 7.7 17 14 2.7 

1000 – 1650 0.85 6.6 0.83 6.6 9 14 3.2 
Crease-up 895 – 1731 0.91 7.4 0.87 7.4 18 11 2.8 

1000 – 1650 0.86 7.7 0.84 7.7 8 9 2.7 
Crease-up (single image) 895 – 1731 0.89 6.1 0.87 6.2 16 13 3.4 

1000 – 1650 0.89 6.1 0.88 6.1 13 13 3.4 
2ndD Crease-down 895 – 1731 0.86 6.4 0.83 6.4 12 15 3.3 

1000 – 1650 0.83 7.2 0.82 7.2 9 15 2.9 
Crease-up 895 – 1731 0.87 6.8 0.84 6.8 12 14 3.1 

1000 – 1650 0.85 7.1 0.84 7.2 7 15 2.9 
Crease-up (single image) 895 – 1731 0.85 6.8 0.81 6.8 13 13 3.1 

1000 – 1650 0.78 6.7 0.76 6.8 7 15 3.1 
1stD + SNV Crease-down 895 – 1731 0.85 6.0 0.82 6.0 10 15 3.5 

1000 – 1650 0.92 6.0 0.90 6.0 16 15 3.5 
Crease-up 895 – 1731 0.87 7.5 0.83 7.5 13 10 2.8 

1000 – 1650 0.88 7.1 0.81 7.2 13 13 2.9 
Crease-up (single image) 895 – 1731 0.83 9.1 0.76 9.2 16 6 2.3 

1000 – 1650 0.86 5.7 0.83 5.7 8 15 3.7 
Normalisation Crease-down 895 – 1731 0.82 7.6 0.78 7.6 12 11 2.8 

1000 – 1650 0.88 7.3 0.83 7.3 18 14 2.9 
Crease-up 895 – 1731 0.82 7.7 0.80 7.8 11 15 2.7 

1000 – 1650 0.84 7.6 0.79 7.6 13 9 2.8 
Crease-up (single image) 895 – 1731 0.91 6.6 0.87 6.6 19 15 3.2 

1000 – 1650 0.77 7.3 0.71 7.4 11 13 2.8 



 

 

Table 4. Performance parameters of externally-validated PLS models. 

SG = Savitzky-Golay; 1stD = First derivative; SP = Smoothing Point; PO = Polynomial Order; SNV = Standard Normal Variate; MSC = Multiplicative Scatter Correction; BC = 

Baseline correction.  

External validation PLS performance parameters 

Pre-treatment Spectral range Slope Offset R2 RMSEP PC Samples % outliers 

Raw spectra 895-1731 0.69 0.92 0.72 8.53 13 847 5.9 
1000-1600 0.74 0.39 0.76 8.03 14 838 6.9 

1stD 895-1731 0.69 0.71 0.74 8.24 14 849 5.7 
1000-1600 0.67 0.51 0.71 8.77 10 840 6.7 

SG 1stD 5-SP 3-PO 895-1731 0.71 1.24 0.8 8.57 11 845 6.1 
1000-1600 0.65 1.32 0.7 8.92 7 850 5.6 

SG 1stD 3-SP 2-PO 895-1731 0.73 0.79 0.81 8.33 14 829 7.9 
1000-1600 0.63 1.21 0.71 9.72 9 842 6.4 

SG 2ndD 3-SP 2-PO 895-1731 0.57 1.04 0.69 10.77 17 838 6.9 
1000-1600 0.52 1.37 0.47 8.55 8 809 10.1 

SG 2ndD 5-SP 3-PO 895-1731 0.65 1.02 0.78 9.15 19 820 8.9 
1000-1600 0.49 1.3 0.55 11.9 13 844 6.2 

NG 1stD gap size 21 895-1731 0.72 1.28 0.82 8.08 11 811 9.9 
1000-1600 0.62 1.2 0.74 10.65 9 855 5.0 

NG 1stD gap size 5 895-1731 0.74 0.84 0.83 8.02 16 815 9.4 
1000-1600 0.7 0.76 0.8 8.59 13 828 8.0 

SNV 895-1731 0.79 0.34 0.87 7.04 18 826 8.2 
1000-1600 0.78 0.93 0.88 6.66 14 810 10.0 

SNV + 1stD 895-1731 0.71 1.24 0.8 8.58 15 826 8.2 
1000-1600 0.71 1.76 0.81 8.53 10 812 9.8 

MSC 895-1731 0.8 0.71 0.88 6.86 17 822 8.7 
1000-1600 0.78 0.92 0.88 7.43 12 825 8.3 

MSC + 1stD 895-1731 0.8 1.31 0.8 7.15 11 811 9.9 
1000-1600 0.72 1.27 0.81 8.56 13 818 9.1 

Normalisation 895-1731 0.7 0.61 0.79 8.9 18 808 10.2 
1000-1600 0.62 0.89 0.77 10.94 13 842 6.4 

Absorbance 895-1731 0.75 1.19 0.72 7.7 10 811 9.9 
1000-1600 0.7 0.56 0.7 10.51 14 835 7.2 

ABS/ttea 895-1731 0.66 1.65 0.69 8.1 7 814 9.6 
1000-1600 0.64 0.81 0.69 10.3 9 824 8.4 
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