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Abstract
Music recommendation systems (RecSys) are integral to modern music
streaming services. While there is much research on many aspects of
RecSys, there is not enough research on exploration and discovery that
contributes to long-term user retention. After conducting an anonymous
survey, we identify that the exploration and rediscovery of the personal
collections in particular needs improvement. To address this, we take ad-
vantage of music tags (genre, moods) and use deep auto-tagging systems
to construct latent spaces. We investigate different architectures, datasets,
layers, and projections and how they affect the perceived similarity of
nearest neighbors. Finally, we present a novel web interface to visualize
music collections using audio embeddings. We evaluate the proposed so-
lution via semi-structured user interviews and conclude that it provides an
excellent alternative to existing solutions. We believe that the contribu-
tions of this work enable more research and industry solutions for music
exploration and discovery.
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Resum
Els sistemes de recomanació de música (RecSys) son una part integral
de les actuals plataformes de música en streaming. Tot i que s’ha fet
investigació sobre molts aspectes relacionats amb RecSys, encara falta
investigació sobre l’exploració i el descobriment de continguts que per-
meti fidelitzar usuaris a llarg plaç. Després de realitzar un estudi preli-
minar, hem vist que existeix una manca d’eines per al re-descobriment
de les col·leccions de música personals. Per abordar aquest problema, en
aquesta tesi ens focalitzem en l’us d’etiquetes musicals sobre estil i mo-
od i treballem en espais latents de dades entrenant predictors automàtics
d’etiquetes basats en models d’aprenentatge profund (deep auto-tagging
systems). Analitzem i comparem diferents arquitectures de xarxes neu-
ronals, bases de dades, i diferents tècniques de projecció de dades per
entendre com aquestes afecten al concepte de similaritat percebuda entre
peces musicals que han estat projectades en punts propers dels espais la-
tents. Finalment, mostrem una interfı́cie web que hem desenvolupat per
visualitzar i navegar col·leccions de música utilitzant els espais latents.
Hem avaluat aquesta interfı́cie a partir d’entrevistes semi estructurades i
hem conclòs que la interfı́cie proporciona una alternativa excel·lent als
sistemes tradicionals de navegació de col·leccions musicals. Creiem que
les contribucions d’aquesta tesi permeten que es desenvolupi més recerca
i es creı̈n més aplicacions industrials per abordar el problema de l’explo-
ració i descobriment de música.
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Chapter 1

INTRODUCTION

Music is a massive part of the human culture throughout the world. Ev-
erybody knows what music is and the majority of people listen to music
on regular basis. Even if there are people who don’t listen to music, they
are still exposed to it because of the culture and society. The way peo-
ple listen to music evolved a great deal throughout human history: from
in-person live performances to the digitized collections of the most of the
recorded music available at our fingertips.

Contemporary music streaming services are the primary source of mu-
sic consumption and discovery (IFPI, 2021). And almost every music
streaming service company has an embedded recommendation system to
suggest the music to listen that is usually the primary way for users to
discover new music. The goal of the most of the recommendation sys-
tems is to suggest the tracks that are predicted to be liked by the user
the most based on various data available. However, it is also possible for
user to discover and engage in the completely new types of music that
wouldn’t be related to their tastes, which is difficult to predict for typical
recommendation systems.

The process of recommendations exhibits the explore-exploit dilemma
(Barraza-Urbina, 2017). This dilemma is widely known from multi-armed
bandit problem from game theory and reinforcement learning (Auer et al.,
2002). Exploitation involves recommending tracks which adhere to user’s
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tastes with high confidence, thus have high probability to be liked. This is
a safe approach with short-term reward, thus it contributes greatly to user
retention. For the most of the music streaming companies the exploita-
tion behavior of recommendation systems aligns well with the business
model. Because the goal of exploitation is to predict tracks that the user
will like, repeated recommendations are a common occurrence.

An opposite behavior to this, the goal of music exploration is to pro-
vide the user with novel and horizon-broadening tracks (even if not nec-
essary liked) with a potential for the user to find completely new favorite
genres or artists. Exploration can potentially have a long-term reward in
introducing the user to a new genre or type of music, but it carries more
risk with it. In the industry, streaming companies spend a lot of resources
on improving the exploitation and to find an acceptable balance between
exploration and exploitation (Barraza-Urbina, 2017) that is visualized on
Figure 1.1. Having an exploration algorithm that exhibits better perfor-
mance than random baseline takes a lot of resources, thus it is much more
difficult for the industry to warrant spending resources on improving ex-
ploration algorithms.

Thus, to summarize, exploitation usually provides benefits in short
term, while exploration has a potential to contribute in long term. In ad-
dition, exploration is a more active experience, as it requires effort and
attention by the nature. On the contrary, exploitation is usually associated
with passive experiences, as it takes advantage of familiarity. In current
streaming platforms there are multiple sources of exploitation, while the
exploration is usually more difficult to access.

Moreover, it is easier to evaluate the success of the exploitation than
of exploration. Typical offline recommendation systems metrics (accu-
racy, precision, recall, NDCG) measure the performance of exploitation.
Although in industry it is common to use online metrics such as click-
through-rate, time spent on platform, etc. (which can capture exploration
performance), those are much less present in published academic litera-
ture. Comparatively, there is less research done on the exploration than
on exploitation, thus we want to focus on exploration. Other terms that
are often used include discovery, browsing, navigation, etc. There are nu-
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Figure 1.1: Exploit vs Explore

ances to each term, but the essential concept is to find new music that is
far away from the obvious preferences. While it is certainly possible to
explore music within the scope of individual tastes (e.g. digging), it is
much more active and involved process.

The discovery of a completely new music that you like is a magnif-
icent experience. Thus, in this thesis we want to take a closer look at
methods for music exploration and discovery and to address some prob-
lems with the way it is currently treated in music streaming services as
well as outside.

1.1 Recommendation systems
The goal of recommendation (or recommender) systems (RecSys) is to
suggest new items to users. Usually, they infer the preferences based on
the history of interaction with other items. The research in the field of
recommendation systems has been steadily rising since 2001, although
there was an early work by Shardanand (1994). In the industry, with the
adoption of recommendation systems into e-commerce (Amazon, Net-
flix) leading to higher user retention it became hot topic very quickly.
There are numerous approaches to recommendation (Ricci et al., 2022),
but the two fundamental are: collaborative filtering and content-based
recommendations (Brusilovsky et al., 2007).

Collaborative filtering (CF) in general can be described as a tech-
nique of filtering information that involves collaboration between multi-
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ple agents, data sources etc. The basic assumption of CF is that if user
A has similar opinions to user B, then it is more likely that user B has
opinion of user A than of random user. Thus, in regards to music rec-
ommendation CF-based approach can use the target user’s preferences to
identify other users that have similar preferences to target user, and then
recommend the missing tracks that other users have in their preferences,
but the target user doesn’t. It was first successfully used for email sort-
ing system in Goldberg et al. (1992), first as a music recommendation
algorithm in Cohen and Fan (2000). Collaborative filtering works very
well even without considering the domain knowledge. The state-of-the-
art CF approach now comprises of various matrix factorization (Koren
et al., 2009) algorithms that operate on user-item matrices of interaction
statistics. There are many deep learning based approaches that are pro-
posed that are achieving state-of-the-art (Martins et al., 2020).

However, several shortcomings of collaborative filtering include cold-
start problem (Maltz and Ehrlich, 1995), where if tracks don’t have any
listening data, they will not be recommended to anyone and thus have
difficulties gaining more listening data. So this cycle is difficult to break
unless the tracks explicitly will gain a minimal amount of listening data
to be recommended. Closely related to this problem is popularity bias
that makes it difficult for less popular music to be recommended. And
another problem, called filter bubble (Pariser, 2011) is caused by system
essentially trying to make all users with slightly similar taste to listen to
similar music, i.e. being in the bubble, and it becomes difficult for users
to escape the bubble, thus exacerbating overall segregation and clustering
in the userbase.

While CF leverages user data to do recommendations, content-based
(CB) recommendations use the information available about or extracted
from the content itself. One of the first CB systems was used to recom-
mend technical reports based on previous technical reports read in Bell-
core (Foltz and Dumais, 1992). At the same time one of the first music
recommendation system — LyricTime was using lyrics to learn a user
profile and recommend music based on it (Loeb, 1992). Content for CB
can be metadata, categories, text or in case of music - features extracted
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with music information retrieval algorithms. CB does not exhibit the cold-
start problem, moreover, it is a solution to it. However, CB is more ex-
pensive from the computational standpoint what limits its scalability. It
is safe to say that modern recommendation systems are hybrid, mostly
using CF as primary recommendation engine and using CB to deal with
the cold-start problem and other shortcomings of CF (Yoshii et al., 2006;
Liang et al., 2015; Wang and Wang, 2014).

Talking about novelty and exploration aspect of recommendation sys-
tems, Oramas et al. (2017b) had done some work on the recommenda-
tion systems with some evaluation metrics based on the novelty (Bellogı́n
et al., 2010), specifically for the evaluation of exploration systems. Celma
and Herrera (2008) had shown how popularity bias of CF systems can hin-
der the novelty of the recommendations, but while CB doesn’t exhibit it,
perceived quality of the recommendations by users was higher for CF sys-
tem. Schedl and Hauger (2015) extensively explored notions of diversity
and novelty as an important factors in music recommendations. Ferraro
et al. (2021c) address the fairness in the music RecSys, particularly from
the artists’ perspective. Overall, it is important to use user-centric evalua-
tions (Schedl and Flexer, 2012) in this kind of research because it doesn’t
matter if objective novelty metric is high if it hurts user experience and
enjoyment.

Li et al. (2019) researched user search behavior in the context of music
streaming services and identified two mindsets: focused and non-focused.
In the focused mindset, users know what they are looking for; and in non-
focused, they only have a rough idea. While it was studied in the context
of the complete catalog of the music available on the streaming services,
those mindsets also apply to the case of users that mostly listen to their
personal collection. One of the situations that we want to consider is
when the user doesn’t know what he wants to listen to (non-focused) but
wants to listen to something familiar (from personal collection) — redis-
covery. The topic of rediscovery is usually not separated from discovery
in streaming platforms, i.e. user can get tracks from their library in the
“discovery” playlists. However, in this thesis we want to pay close atten-
tion to the following situation: The user doesn’t know what he wants to
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listen to (non-focused mindset) but wants to listen to something familiar
(from personal collection).

CF is much more dominant approach for implementation of RecSys
in online platforms, as it captures the exploitation behavior very well. We
mostly focus on CB methods in this thesis, as it is more suited for the
exploration behavior and doesn’t require history of user interactions that
results in a platform-agnostic approach.

1.2 Personal music collections
As streaming have grown to be the primary way of music consumption
with access to massive library for a recurring payment, the concept of
personal music collections has been slowly disappearing (Cunningham
and Cunningham, 2019). Before, it was quite common to have most of
the music collection as CD albums. With the appearance of iPods and
portable MP3 players, the collections of the CDs were transformed and
transitioned into digital library of MP3s that could be taken anywhere.
With the rise of smartphones, the digital collections slowly moved from
MP3 players towards the phones, but they still remained collections that
were gathered by the users.

Now, the paradigm of music discovery in streaming services neglects
the listeners who might want to re-engage with their personal music col-
lections, gathered, curated, and appreciated by their maintainers through-
out the years (Cunningham and Cunningham, 2019). For such users, ex-
ploring their own curated music selections can be a pleasurable and re-
warding experience, helping to appreciate and re-contextualize relations
between music items and rediscover artists or tracks that they haven’t lis-
tened to in a long time.

It can be especially relevant in the context of digital music downloads,
which still have a considerable impact within independent music distri-
bution (IFPI, 2021) (e.g., Bandcamp1 has gained growing digital sales
over the past years with a strong following among music enthusiasts).

1bandcamp.com
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In this context, many music consumers, and also musicians, DJs, radio
hosts, music journalists, archivists, and other professionals or hobbyists
that work with digital music collections can benefit from exploration and
rediscovery functionality.

For the users that like to have their own media servers, there are many
solutions to stream from their server to devices (e.g. Subsonic2, Plex3).
There is a community of people supporting this independent direction
too, with people building communities of music metadata, such as Mu-
sicBrainz.4

Cunningham and Cunningham (2019) argue that the disappearance of
the concept of the personal music collection devalues music moving it
to utilitarian commodity. If before people spent time and effort in main-
taining their physical collections, now it is difficult to warrant the effort
required for even the people that have time and desire to do that, given the
convenience of listening to music on streaming services. The shift from
personal collection to playlists, following and liking artists and tracks is
encouraged on the streaming services by design. In this thesis, we want to
keep the notion of personal music collections, whether it relates to actual
owned music, or albums and tracks from the streaming services that are
“added to the personal library”.

1.3 Music discovery

1.3.1 Streaming platforms

The interfaces for music exploration and discovery are quite homoge-
neous in the industry. The recommendations are usually presented in the
form of the playlists or artists, and if the user wants to browse their per-
sonal collections, you are presented with options to see your playlists,
artists or albums. Once you go to artist, the concept of personal collection

2http://subsonic.org
3plex.tv
4musicbrainz.org
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Figure 1.2: “Discover” section on Spotify

8



Figure 1.3: “Browse all” section on Spotify

is already almost non-existent, as you are presented with all works of the
artist. While you can usually see the songs liked by you of this artist, they
usually comprise a playlist. The groupings of artists by genre are replaced
by genre playlists, which also immediately takes you away from personal
collections.

Now that it is evident that the concept of personal collections is dis-
couraged in the streaming platforms, what is the intended way to find
some music to listen to? One way is the discovery from exploitation that
is achieved by recommender systems, and is usually provided to user in
form of playlists, artists or albums: “Discover Weekly”, “Top recommen-
dations to you”, “Suggested to you because you listened to . . . ”, “Because
you listened to . . . ”, “Similar to . . . ”, “More like . . . ” (see Figure 1.2).

However, if the user doesn’t want anything that is similar or based
on music that they usually listen to, the only option is to browse the full
catalog (see Figure 1.3). The categories that can be useful for brows-
ing are genres: latin, flamenco, hip-hop, indie, alternative, R&B, salsa;

9



Figure 1.4: Ishkur’s Guide to Electronic Music

moods: mood, chill, focus, party; contexts: at home, workout; etc. All
these categories and tags have many playlists that can be used to explore
and discover new categories. These and many more tags are also used to
categorize music.

1.3.2 On the web

Outside of the streaming services, there are many ways to explore mu-
sic online. Some obvious places for that are music databases and review

10



websites like Wikipedia, Discogs5, MusicBrainz, RateYourMusic6, All-
Music7 etc. Regular social networks have a lot of music communities to
explore and Last.fm8 that was created in 2002 as a music database is now
a social network for music, where you can scrobble your listens and see
a lot of statistics about your listening habits. Online music journalism is
very prominent and the well-written articles can serve as a starting points
to dive deeper into genres or artists, and they usually include embedded
track previews.

One of the first websites specifically for music exploration is Ishkur’s
Guide to Electronic Music9 created in 1999 as a Flash website. It pre-
sented the genealogy of electronic music throughout the years including
153 genres and 818 audio files visualized with connections between gen-
res and a timeline (Figure 1.4) that can be navigated and listened to.

Similarly, MusicMap10 provides a genealogy of popular music genres
including the relations, timeline, and evolution. It is a great visual tool to
explore new genres as well as the genres that you like and find the ones
that are related and potentially discover new music (Figure 1.5). It is very
comprehensive, but it suffers from popularity bias as well as being biased
to western music. Music that is used as examples for different genres
is curated and can be considered a good representation of that particular
genre.

Another genre exploration tool is Every Noise at Once11 that maps
all possible genres onto 2D plane with similar ones grouped together. By
clicking one genre user can hear a sample, and it is also possible to expand
the genre that caught interest and see the list of artists. While the neigh-
borhoods of familiar genres will probably be familiar, the website has a
functionality that will randomly pick one genre and play the sample, and
keep iterating.

5discogs.com
6rateyourmusic.com
7allmusic.com
8last.fm
9music.ishkur.com

10musicmap.info
11everynoise.com
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Figure 1.5: MusicMap

Figure 1.6: Every Noise at Once (screenshot of a sample)
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Above-mentioned exploration tools are useful for generic music ex-
ploration, Discover Quickly12 facilitates the rediscovery of the personal
music collection by playing audio on hover of the cover art. Not only
users can rediscover their personal collections, this tool is also useful for
browsing genres and playlists.

1.4 Auto-tagging

Music auto-tagging is the process of assigning various tags to a piece
of music. Music auto-tagging is the multi-label classification task that
usually encompasses multiple categories of tags. However there are many
tasks that are single-label classification problems: genre classification,
mood classification, etc. (Fu et al., 2011). Auto-tagging takes audio as
input and generates tags for the music: genres, moods, themes, etc.

One of first papers in this research area is by Tzanetakis (2001) in
genre classification. It tackles the problem as a single-label classifica-
tion task with 5 genre labels: classical, country, disco, hip-hop, jazz and
rock. Since 2001 and with the rise of the deep learning, auto-tagging sys-
tems became more prominent and hot topic in music information retrieval
(Nam et al., 2019).

Not only the tags are commonly used for music discovery and explo-
ration, the auto-tagging systems can also be used for music recommen-
dation systems, particularly for CB approaches. The playlists in music
streaming systems often are based on one or more category of tags, for
example genres, moods, decades, contexts. Some examples of multiple
tags being used: metal workout, 80s rock, relaxing piano.

As tags are quite useful for music exploration and discovery, in this
thesis we investigate how deep auto-tagging architectures can facilitate
the process of music exploration and rediscovery.

12discoverquickly.com/
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1.5 Survey
To learn more about the people’s music listening, exploration and discov-
ery habits, we conduct the anonymous survey. The questions are listed
in Appendix B and the survey is built using Google Forms. We made
sure that there is no personal information is being gathered, and explicitly
asked participants to not provide any personal identifiable information,
and manually monitored the free-form answers to delete any responses
that had any (2).

We circulated the survey in the social media (Twitter, Reddit) and
relevant mailing lists and in total received 319 responses. 50% of respon-
dents identify as men, 38% as woman, 2% preferring not to say and 10%
as other. 38% are aged 18–24, 39% — 25–34, 15% — 35–44, 5% — 45–
54, 3% — 55–65, and less than 1% preferring not to say. The respondents
of the survey are mostly based in western countries (36% USA, 10% UK,
9% Spain, 7% Canada, 6% Germany, 4% France, etc.), and there are in
total 43 unique countries.

While respondents generally agree that there are a lot of options for
music exploration and discovery, the amount of respondents that are sat-
isfied with the existing options is noticeably less (see Figure 1.7). Many
respondents have answered that is not easy for them to get an overview
and manage their library, and similarly other questions about interaction
and rediscovery have higher amount of negative responses.

Figure 1.8 shows the distribution of answers to the following three
questions:

• How often do you have a desire to listen to new music?

• How often would you like to listen to something from your collec-
tion/library that you haven’t listened in a long time?

• How often do you ACTUALLY listen to something from your col-
lection/library that you haven’t listened in a long time?

We can see that people’s desire to discover new music is slightly more
frequent than to rediscover their music, although not that much differ-
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Figure 1.8: Frequency of discovery and rediscovery

ent. Moreover, we can see that people don’t always act on their desire to
rediscover, as there is a shift towards less frequent options. Out of 127
respondents (total of 319) that engage in rediscovery not as often as they
have desire, the following reasons have been commonly mentioned:

• Not being in the proper mood (28)

• Forgetting (28)

• Prioritization of new music, enjoying discovery more than redis-
covery (25)

• Being lazy, going for easy options from home page, the desire being
fleeting, not caring too much, requiring effort, being too used to
familiar or regular music, passivity, etc. (25)

• Shuffle algorithm prioritizing the recent music (15)

• Not having enough time (14)
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Figure 1.9: Terms used for playlist search and exploration/discovery

• Listening too much to that music, overplaying it, getting bored,
burned out or having preferences and tastes change (13)

• Navigation of the personal collection being not good for rediscov-
ery (13)

• Library being too large (5)

• Difficulty of accessing physical media (3)

We can see that among the four most commonly mentioned reasons
for not acting on the rediscovery desire is not being in appropriate mood.
We can also see that multiple respondents (15) have mentioned that they
notice that shuffle algorithms are prioritizing recently played music, and
they don’t like that, as it makes rediscovery a process that you need to
actively engage in, as opposed to more passive shuffle.

Figure 1.9 shows the different terms that users use for playlist search
and exploration. For the question of playlist search, multiple choices
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could be picked, while for exploration/discovery question only one an-
swer could be chosen. However, we can see the relative importance of
the terms, with genre/style being the most used one, and mood/theme be-
ing the second. The relative difference between genre and mood is much
greater for discovery/exploration compared to playlist searching. That is
interesting, as we can draw conclusion that moods are less important then
genres for exploration.

When asked about sources for discovery (participants could choose
more than one option), out of 319 respondents 76% (244) use the stream-
ing platform discover functionality, 66% (211) — social recommenda-
tions, 28% (95) — music identification apps, 26% (84) — music journal-
ism, 10% (36) — influencers and journalists, and 9% (30) – music stores.
Among the “other” answers provided by the respondents commonly men-
tioned are radio (12), background music and recommendations from so-
cial media like YouTube, Instagram, TikTok (13), Reddit and other fo-
rums (12), hearing music in TV shows, movies and videogames (7), us-
ing third-party tools specifically for music discovery (e.g. Boil the Frog,
Every Noise at Once, Rate your Music) (7).

Talking about the strategies for music discovery, the respondents are
spread quite evenly between the provided options: 31% know what they
are looking for, 35% have a vague idea, and 25% have no idea. A lot
of free-form responses are either all of the above, or some combination
of the the options, depending on the context. There are few responses
that indicate that they like to just let the recommendation systems do their
work.

To summarize, there are indeed many options to explore and discover
music. There is a spectrum of people from the ones that like to let the
recommendation systems do all the work for them in terms of discov-
ery, towards the ones that put a lot of effort into discovering new music.
Moreover, talking about the rediscovery, the streaming services do not en-
courage this behavior, while certain population of people clearly has the
desire for it.
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1.6 Problem statement and thesis organization
While there are many ways to facilitate music exploration and discovery,
as we see from the survey, genre and mood tags are one of the most used
ones. As tags are ubiquitous in their ability to capture many facets of mu-
sic, we focus on using auto-tagging systems as the technology to facilitate
and enable music exploration and discovery. We have two main research
question we want to address:

• RQ1: can auto-tagging systems learn music representations that
will be useful for music exploration and rediscovery

• RQ2: can these representations help visualize the music in the way
that can be beneficial for user to explore or rediscover music

We start with introducing new auto-tagging dataset in Chapter 2. In
Chapter 3 we explore the modern auto-tagging deep learning architectures
and summarize three years of organizing a task in MediaEval challenge.
Chapter 4 talks more in depth about similarity spaces. Then we intro-
duce and evaluate new proposed music exploration interface in Chapter 5.
Chapter 6 summarizes the work and contributions of this thesis, as well
as discusses the implications and possible future directions.
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Chapter 2

AUTO-TAGGING DATASETS

2.1 Introduction

To train good music auto-tagging models in a supervised fashion large
amount of annotated data is required. It is not a problem in the industry
because of large catalogs of commercial music with metadata and anno-
tations available. However, it is not easy to share commercial music for
research purposes due to copyright regulations. There are several open
datasets that are trying to address this issue in different ways: including
audio features instead of audio or providing audio upon request.

One example of the platform providing audio features is AcousticBrainz1

(Porter et al., 2015). This platform allows users to extract audio features
for their personal music collections and upload them. The features vary
from low-level ones such as MFCCs, HPCP, loudness, etc., that are repre-
sented through their statistics over the length of the track (mean, variance,
kurtosis, etc.) to high-level ones such as key, tempo, danceability, genre,
etc. However, the limitation is that the features are not provided on a per-
frame basis but only as an overall summary. With the rise of deep learning
and the amount of data required to train deep models, it is not enough to
get good performance.

1acousticbrainz.org

21

https://acousticbrainz.org


Name Tracks Artists Tags Audio Split

Million Song Dataset 505 216 - 522 366 N/A* 1*
MagnaTagATune 25 877* 230 188 Poor No

Free Music Archive 106 574 16 341 161 Good 1

Music4All 109 269 16 269 19 541 Good No
Melon Playlist Dataset 649 091 - 30 652 Spec. No

MTG-Jamendo 55 609 3 565 195 Good 5

Table 2.1: Auto-tagging datasets

The following section introduces the most important and widely used
open datasets for music auto-tagging and their typical use cases and known
limitations.

2.2 Existing datasets
It is not easy to talk about auto-tagging without mentioning GTZAN (Tzane-
takis, 2001), which is one of the first music classification datasets. While
now primarily used in the demos and tutorials, it was one of the first la-
beled audio datasets. It contains 15×50 = 750 tracks that span 15 genres
with 50 tracks per genre. Every track is 30 seconds, so in total, there are
750 × 0.5 = 325 minutes of audio. While it is perfectly balanced and
relatively small, there are many issues with this dataset (Sturm, 2014):
repetitions, mislabeling, and distortions.

Million Song Dataset2 (MSD) (Bertin-Mahieux et al., 2011) is one of
the most famous auto-tagging datasets due to it’s size. However, one of
its biggest issues is that there is no audio publicly available. When it was
released, it was possible to download 30 seconds of audio previews with
the 7digital service, which is not available anymore. The previews ranged
in quality with an average of 104kbps bitrate and a sampling rate of 22 or

2http://millionsongdataset.com
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44.1kHz.
The tags are taken from Last.fm3 and are generated by the users.

Given the number of tracks, tags and that source of the tags are users of
Last.fm - the tags are quite noisy (Choi et al., 2018). With the sheer num-
ber of tags present in the full dataset, it is not uncommon for researchers
to use the top 50 tags from the MSD dataset. One of the notable splits
was created by Choi et al. (2016). The split4 contains 242 854 tracks:
201 680 training, 12 634 validation and 28 540 testing. The obvious tags
that are not related to music content have been discarded. The valid tags
include genres (rock, pop, jazz, funk), eras (60s – 00s), and moods (sad,
happy, chill). More recently, Won et al. (2021) have identified and ad-
dressed issues with previous split, and released new cleaned and artist-
level stratified split (CALS)5. It contains 233 000 labeled tracks and 516
000 unlabeled tracks, enabling it to be used in semi-supervised learning.
The labeled 233 195 tracks are separated into 163 550 training, 34 730
validation, and 34 915 testing sets.

MagnaTagATune (MTAT) (Law et al., 2009) is a smaller dataset that
is typically used for prototyping of the auto-tagging systems. The authors
used a game approach to ask two users to tag the track and then answer
if they think they had the same track to tag. The resulting annotations
include 188 tags. The website provides audio to be downloaded as well
as metadata and annotations. The provided audio does not include full
tracks but the 25 877 segments that have been annotated. While having
audio available is an advantage, the audio quality is quite low: 32kbps
and mono.

Some issues with MagnaTagATune is that if you use it out of the box,
there are multiple groups of redundant tags. For example, even in top 50
tags: vocal, vocals; no vocals, no vocal, no voice; female vocal, female
voice, woman; man, male, male voice. This stems from allowing free-
form annotations by the users instead of using standardized vocabulary.
Similarly to MSD, given the sparsity of the tags, researches often use top

3last.fm
4github.com/keunwoochoi/MSD split for tagging
5github.com/minzwon/semi-supervised-music-tagging-transformer
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50 tags.

Free Music Archive (FMA) (Defferrard et al., 2017) was introduced to
address the lack of large datasets with high-quality audio. It contains 106
574 tracks from the internet music archive licensed under the Creative
Commons (CC) license, thus having no problems providing the audio of
full tracks. While the tags only include genres and sub-genres, the audio
is high-quality: up to 320kbps, 263kbps on average, 44.1 kHz sample
rate, and stereo.

The issues with FMA are the lack of curation of the collection, as there
is much music of questionable origin and noisy tags. Many recordings
are of low technical quality and not up to the current industry standard of
mastering and quality control in music distribution.

Several large-scale auto-tagging datasets were introduced later. One
of such is Music4All (Pegoraro Santana et al., 2020) that has been created
by scraping Last.fm for users, tracks and tags, and YouTube for audio.
The dataset contains 109 269 tracks annotated with 19 541 tags, 853 of
which are genres. It has been linked to Spotify tracks ids and contains
the audio features that are available from Spotify6 API (such as valence,
energy, liveliness, etc.). The dataset contains audio that is middle 30 sec-
onds of the track. However, to get the dataset, one needs to request it from
the authors.

Another dataset worth mentioning is Melon Playlist Dataset (Ferraro
et al., 2021b) that has been created for the task of automatic playlist con-
tinuation in collaboration with the Korean streaming service Kakao. The
dataset contains 649 091 tracks from 148 826 playlists. The tracks are an-
notated with 30 652 tags, with the number of unique genres being 30 and
sub-genres — 219. The dataset distributes mel-spectrograms extracted
from each track’s 20-50 seconds of audio.

6spotify.com
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2.3 MTG-Jamendo dataset
To address the common issues with open music auto-tagging datasets, we
introduce the new MTG-Jamendo dataset. It includes full tracks from Ja-
mendo Music7 that are licensed under Creative Commons in high quality.
The tags are provided by artists and curated by Jamendo. There are mul-
tiple categories of tags: genres, moods/themes, and instruments. Also, as
all tracks are present on the Jamendo platform to be listened to by users
or used in a commercial application, the basic level of mastering quality
and absence of artifacts is ensured, so the quality of music is closer to the
commercial music collections.

We started with 56 639 tracks and filtered out tracks that were less
than 30s in duration, resulting in 55 701 tracks. We then encoded them
in high-quality 320kbps MP3, resulting in 509 GB of audio. The median
duration of a track is 224s, and in total, there are 3 777 hours of audio.

All these tracks are annotated by in total of 692 tags. As some tags
have the same meaning, we wanted to merge some tags. However, the
question was where to draw the line on merging. Obviously we can merge
relax and relaxing, but should we merge electronic (electronic music in
general) and electronica (specific sub-genre of electronic music)? Thus
we employed three researchers to look through the list of tags separated
by the category and independently give an opinion on which tags could be
merged. Then we merged only the tags that all three researchers agreed
on. The exact mapping can be found in the GitHub repository. Essen-
tially, we merged tags to consolidate variant spellings, translations, and
tags with the same meaning, re-mapping 99 tags (less than 15%). Ex-
amples include synth to synthesizer, guitarra to guitar, soundtracks to
soundtrack. After the tag merging stage, the number of tags decreased
from 692 to 595.

Another issue with tags was that there are some tags that are too spe-
cific and only used once or several time, for example deutschrock, lyre,
surdo, guilty, awake that were used only by one artist per tag. For auto-
tagging, these tags are tough to learn, as there are not represented by

7jamendo.com
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Category Tags Tracks Albums Artists

Genre 87 55 094 11 186 3 546
Instrument 40 24 976 5 672 2 003

Mood/theme 56 17 982 4 423 1 508

All 183 55 525 11 256 3 565
Top-50 50 54 380 11 107 3 517

Table 2.2: Statistics for category subsets

enough data. Thus, we filtered out all tags with less than 50 unique artists
represented and kept the tracks with at least one tag. The number of tags
decreased significantly from 595 to 195, while the number of tracks didn’t
change much — decrease from 55 701 to 55 609. Separated by category,
we ended up with 95 genre tags, 41 instrument tags, and 59 mood/theme
tags.

We generate the standardized splits for training, validation, and testing
to foster reproducibility. To avoid the artist and album effects (Flexer and
Schnitzer, 2009), we make sure that the tracks from the same artist do
not appear in the other subset. To ensure the balanced representation of
all tags, we constrain each tag to be represented by at least 40 tracks and
10 artists in the training subset and 20 tracks and 5 artists in validation
and testing subsets. We generated 5 splits in this manner to reduce the
possibility of bias from a particular split. Some tags were challenging
to split properly during generating the splits, so they were discarded. The
splitting resulted in 87 genre tags, 40 instrument tags, and 56 mood/theme
tags — 183 tags in total, 12 tags being discarded. The eventual number
of tracks is 55 525, down from 55 609.

For each split, we also provide the lists of tracks sets per category
of tags: genre, instrument, or mood/theme, and for the top 50 tags by
the number of tracks (31 genre, 14 instrument, 5 mood/theme tags). The
number of tracks in categories is listed in Table 2.2.

The dataset, detailed statistics, pre-processing scripts, and baseline
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Figure 2.2: FCN-5 architecture (taken from Choi et al. (2017))

implementation are available online.8 The metadata is released under the
CC BY-NC-SA 4.0 license, while the audio files are available under their
original Creative Commons licenses.

2.4 Baseline models

While we will talk more in detail about the deep learning architectures
for auto-tagging in Chapter 3, in this section, we will briefly mention the
baseline architecture that was trained for the release of the MTG-Jamendo
dataset and its performance.

The baseline architecture is based on the fully-convolutional network
(FCN) architecture by Choi et al. (2016), more precisely on FCN-5 that
has 5 layers that use 3×3 convolutional units, uses max-pooling and batch
normalization after each layer, and has one dense layer with a dropout of
0.5 as the last layer. We have constrained the sizes of the feature layers to
make the network smaller, as indicated in Table 2.3.

The original hyper-parameter values were used without modification.
The input size is 29.1 seconds of the audio. With the centered sampling
strategy, the audio is taken from the middle of the track and random sam-
pling — randomly from any part of the track. All models were trained for

8mtg.github.io/mtg-jamendo-dataset
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Layer Original Adjusted

1 128 64
2 256 128
3 512 128
4 1024 128
5 2048 64

Table 2.3: Layer sizes of our baseline compared to FCN-5

Subset ROC-AUC PR-AUC

Genre .8337 ± .0039 .1522 ± .0050
Instrument .7284 ± .0149 .1643 ± .0122

Mood/theme .7207 ± .0101 .1111 ± .0156

All .7856 ± .0077 .1108 ± .0069
Top-50 .7970 ± .0059 .2463 ± .0073

Table 2.4: Baseline performance (random sampling)

100 epochs with ADAM (Kingma and Ba, 2015) optimizer using binary
cross-entropy loss and batch size of 64. We use area under curve of re-
ceiver operating characteristic (ROC-AUC) (Fawcett, 2006) as a primary
metric during training. Thus, we used the model with the best validation
ROC-AUC to compute the results on the test set. We use PyTorch Light-
ning9 framework to implement the training code, which is available in the
GitHub repository.10 To facilitate the reproducibility, we used the seed
of 0 to report the results. One split took 12.5 hours to train and test (all
categories) on Nvidia 2080Ti with spectrograms stored on SSD as 16-bit
floats. In total, all 5 splits took 62.5 hours to process.

The performance of the baseline model averaged over 5 splits (mean
± standard deviation) is shown in Table 2.4. As the tag distribution is

9pytorchlightning.ai
10github.com/philtgun/mtg-jamendo-baseline
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quite imbalanced in the dataset (see Figure 2.1), ROC-AUC can give an
over-optimistic scores (Davis and Goadrich, 2006), so we also report area
under precision-recall curve (PR-AUC) as a better metric in our case.
The values reported are macro-averaged — averages of tag-wise ROC-
AUC and PR-AUC. PR-AUC is quite low, as sparse tags report inferior
performance. As the architecture was optimized for the top 50 tags, we
can see that it exhibits the highest PR-AUC.

2.5 Usage, impact and limitations
After MTG-Jamendo has been introduced in 2019, it has been used in
MediaEval11 challenge Emotion and theme recognition in music using
Jamendo (2019–2021), which is covered in Chapter 3. It has also been
used in multiple works that deal with music auto-tagging:

• Won et al. (2020b) perform analysis of state-of-the-art deep learn-
ing auto-tagging architectures on three datasets: MSD, MTAT, and
MTG-Jamendo

• Zhao and Guo (2021) introduces the new transformer-based ar-
chitecture for auto-tagging and uses MTG-Jamendo in addition to
other datasets for training and evaluation.

• Ferraro et al. (2021a) introduces a contrastive learning model to
learn the music representations and use MTG-Jamendo auto-tagging
as one of the evaluation tasks.

The most significant advantage of the MTG-Jamendo dataset is the
availability of royalty-free audio. Even for large datasets that provide
commercial music such as MSD, given that available audio is usually 30-
second previews, having full tracks contributes to a considerable amount
of audio data that can be used for self-supervised or semi-self-supervised
learning (3 777 hours of MTG-Jamendo vs. 4 210 hours of MSD).

11multimediaeval.github.io
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The commonly mentioned limitation of the MTG-Jamendo dataset is
the nature of music that is distributed under a Creative Commons license.
It is stylistically different from the typical commercial music. While the
production quality is often comparable with commercial music, the fact
that independent artists mostly create it imposes a bias on the content
of the music. Moreover, because Jamendo is based in Luxembourg, the
music is biased toward western traditions, resulting in less representation
of the music from other parts of the world and other cultures.
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Chapter 3

AUTO-TAGGING
ALGORITHMS

3.1 Introduction

In Chapter 2 we introduced commonly used datasets for music auto-
tagging and presented a new dataset: MTG-Jamendo (Bogdanov et al.,
2019). While we briefly mentioned the baseline architecture used to pro-
vide the baseline performance, we will talk about the state-of-the-art deep
architectures for auto-tagging and music emotion recognition in this chap-
ter.

3.2 Background

In Section 1.1 we talked about the recommendation systems and the two
main approaches: collaborative filtering (CF) and content-based (CB). As
we mentioned, CF suffers from several problems, like popularity bias and
cold-start problem. In Section 1.3 we have identified that music tags such
as genres, moods, and themes are the primary ways for music exploration.
As manual annotation of music is quite costly, auto-tagging and classifi-
cation systems are desirable in music information retrieval.
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In a survey of classification approaches by Fu et al. (2011) the clas-
sical machine learning approaches were used a lot: feature engineering
together with classifier. One of the first examples is the GTZAN paper
(Tzanetakis, 2001) where the authors, apart from introducing the dataset,
used it for automatic genre classification with crafted features that were
supposed to capture timbre, pitch, and rhythm. On top of these features,
a k-means classifier and Gaussian mixture models were trained to do the
classification.

Once auto-tagging became a topic of broad interest, many more so-
phisticated methods at that time were based on tag propagation in similar-
ity spaces (Sordo, 2012). Since its inception in 2005, the Music Informa-
tion Retrieval Evaluation eXchange1 (MIREX) had a task “Genre classifi-
cation”, in 2007 the “Mood classification” was introduced and since 2008
the “Audio tag classification” became the task for generic auto-tagging.
Feature engineering and selection were an important part of the method-
ologies until deep learning became prominent.

Now in the era of deep learning, the approach shifted toward end-to-
end learning (Nam et al., 2019). Most models’ inputs take either wave-
forms or mel-spectrograms as input and are trained end-to-end to learn
frontend (feature extraction) and backend (classifier). Won et al. (2020b)
did quite a thorough review of the recent research in the area of auto-
tagging architectures and evaluated them within the same framework on
three datasets: MSD, MTAT, and MTG-Jamendo (see Chapter 2). This
section will go through the evolution of state-of-the-art auto-tagging ar-
chitectures through the recent decade.

Convolutional neural networks (CNN) emerged from image process-
ing as efficient networks for image classification and tagging. The mel-
spectrogram audio representation is similar to how our ears process audio
signals and can be considered an image. Thus the natural thing was to use
CNNs on the mel-spectrograms for audio tagging and classification.

VGG (Simonyan and Zisserman, 2015) is a computer vision archi-
tecture that utilized multiple 3 × 3 CNN layers for image classification.
Inspired by it, Choi et al. (2016) introduced fully-convolutional network

1music-ir.org/mirex
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Architecture Input size ROC-AUC1 PR-AUC1

FCN 29.1s 0.8255 0.2801
CRNN 29.1s 0.7978 0.2358

MusiCNN 3s 0.8226 0.2713
Short-chunk CNN 3.69s 0.8324 0.2976

SampleCNN 3.69s 0.8208 0.2742
Harmonic CNN 5s 0.8322 0.2956

Table 3.1: Auto-tagging architectures
1 as reported on MTG-Jamendo by Won et al. (2020b)

(FCN) that consisted of the frontend of 4 layers of CNN and a backend of
one dense layer. Many network variations are mentioned with a different
number of CNN layers, but the core concept remains the same. The net-
work was designed for the experiments on the MTAT dataset, matching
the input size to the audio length and predicting the top 50 tags. Even with
the recent advances in the research, this architecture remains competitive
and, in its simplicity, provides a substantial baseline — that is why we use
a variation of it as a baseline for the MTG-Jamendo dataset (Section 2.4).

In the latter paper, Choi et al. (2017) introduced the convolutional
RNN (CRNN) that is based on their previous FCN architecture, but with
an RNN layer at the end to take advantage of temporal information and
reduce the number of parameters of the model. They conclude that CRNN
performs comparatively to FCN with a much smaller number of parame-
ters.

Directly adapting multiple computer-vision architectures including VGG,
Hershey et al. (2017) evaluated classification performance of multiple ar-
chitectures on AudioSet dataset (Gemmeke et al., 2017). We refer to the
architecture used by Hershey et al. as VGGish. It is widely used as an em-
beddings extractor for audio, as its output represents AudioSet taxonomy
and is useless for music auto-tagging.

As FCN and CRNN have quite a large input size that was designed
for an MTAT dataset, the VGG is the name for architectures that follow a
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very similar approach but take much shorter audio input. Those are also
called short-chunk CNNs to distinguish them from FCN. In the context
of auto-tagging, the reference implementations are considered to be VGG
by Pons and Serra (2019) and Short-chunk CNN by Won et al. (2020b).
The final output decisions for the music tracks are usually aggregated by
averaging or majority vote over the predictions from individual chunks.

MusiCNN (Pons et al., 2018) is a musically-motivated CNN. Instead
of square filters, it utilizes vertical and horizontal filters to capture tim-
bre and temporal information. The input size is the same as VGG — 3
seconds. The motivation for the design of this architecture was to take
advantage of the domain knowledge, and indeed, it does converge faster.
Another approach that attempts to take advantage of domain knowledge
is HarmonicCNN (Won et al., 2020a), which utilizes a trainable frontend
that can exploit the harmonic structure of audio and music.

Apart from the architectures that use mel-spectrograms as input rep-
resentations, SampleCNN (Lee et al., 2017) is an architecture that takes
audio waveform as input. It utilizes long 1D CNN blocks at the waveform
level with multiple layers on top to aggregate information.

Much more recently, with the popularity of transformer architecture
(Vaswani et al., 2017) in natural language processing, Won et al. (2021)
has proposed an auto-tagging architecture that uses CNN together with
transformer. The authors use the semi-supervised learning approach to
train the model, but even fully supervised, the proposed model outper-
forms previous architectures in music auto-tagging.

In the later chapters of this thesis (Chapters 4, 5), we will refer to
FCN, MusiCNN, VGG, and VGG-like (short-chunk) networks as they are
quite widely cited and used as a solid basis for more modern architectures.
Moreover, they do not require much computational power to train because
of their low complexity.

While generic auto-tagging and music classification are popular tasks
in music information retrieval, the question remains if some architectures
are better than others in recognizing a particular category of tags. As
we mentioned in Chapter 2, in the MTG-Jamendo dataset, we have three
categories for tags: genres, moods/themes, and instruments. In particular,
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mood/theme tags are the second most used tags for music exploration
and discovery, according to our survey (see Section 1.5). Thus, with a
particular interest in moods/themes, we organized a challenge to focus on
improving the state-of-the-art mood/theme auto-tagging.

3.3 Music emotion recognition

Music emotion recognition (MER) field is a young and prominent area
of research in MIR. Firstly, we need to mention that there is a differ-
ence between perceived and induced emotions in music (Gomez-Canon
et al., 2021; Yang and Chen, 2011). Because induced emotions are much
more difficult to predict, as they need to account for the user’s state and
context, MER typically deals with perceived emotions. Secondly, there
are two typical approaches to categorize emotions: use categorical labels
(happy, sad) or continuous arousal-valence space (Russell, 1980). There
are benefits and limitations to each of those. In this thesis, we also limit
ourselves to perceived emotions and self-reported categorical annotations
by creators or curators.

For the categorical characterization of emotions specifically for mu-
sic, Zentner et al. (2008) developed the Geneva Emotional Music Scales
(GEMS). GEMS-45 contains 45 labels that proved to be consistently cho-
sen for describing musically evoked emotive states across a relatively
wide range of music and listener samples. There are also condensed ver-
sions of the full GEMS scale: GEMS-25 and GEMS-9. The labels are
grouped into nine emotional scales, which in turn condense into three
“superfactors”: sublimity, vitality, and unease.

Our task is not the first one to do that in MediaEval, there was a task
titled Emotions in music in MediaEval 2013–2015 organized by Soley-
mani et al. (2013); Aljanaki et al. (2014, 2015). The goal of that task
was to predict arousal and valence of emotions for music tracks on the
fine-grained resolution (1 sec in 2013, 0.5 sec in 2014–2015). Through-
out the years, there were also other sub-tasks: predicting arousal/valence
for the whole tracks (2013) and designing new audio features for better
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performance (2014).
In another previously mentioned evaluation initiative — MIREX MER

was also present in the form of audio mood classification task (AMC) (Hu
et al., 2008a). Organizers have created a dataset that contains 600 tracks
split into five mood clusters with 120 tracks per cluster:

1. Rowdy, rousing, confident, boisterous, passionate

2. Amiable, good-natured, sweet, fun, rollicking, cheerful

3. Literate, wistful, bittersweet, autumnal, brooding, poignant

4. Witty, humorous, whimsical, wry, campy, quirky, silly

5. Volatile, fiery, visceral, aggressive, tense, anxious, intense

Thus the goal of the AMC challenge is to classify the audio into one
of these 5 clusters. The task was created in 2007 and has been active with
various number of participants. Since 2014, a K-pop extension of this
task has been introduced and applied to 1894 tracks.

While emotions and moods are concepts that MER specifically fo-
cuses on, in MTG-Jamendo dataset we use the name moods/themes for
a category of tags. Some tags can easily be identified as emotions and
connected to existing taxonomies (GEMS, arousal-valence): happy, re-
laxing, sad, calm; while others completely unrelated to emotions: film,
slow, melodic, sport. However, there are multiple tags that are describ-
ing specific moods that are only partially related to emotions: dark, love,
romantic, epic. Figure 3.1 shows the full list of the mood/theme tags
from MTG-Jamendo dataset. We decided not to try to separate tags into
emotion and non-emotion-related subcategories, as it is not as straight-
forward and subjective, thus keeping all of them under the umbrella term
moods/themes.

3.4 MediaEval
To promote the MTG-Jamendo dataset and facilitate the improvements of
state-of-the-art auto-tagging of moods/themes, we have been organizing a
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challenge titled Emotion and theme recognition in music using Jamendo
as part of Multimedia Evaluation Benchmark2 (MediaEval) initiative in
2019–2021. MediaEval is a community-driven benchmark that is run by
the MediaEval organizing committee consisting of the task organizers of
all the individual tasks in a given year. MediaEval tasks are largely au-
tonomous, and each team of task organizers is responsible for running
their tasks.

3.4.1 Task description
Our challenge invites the participants to build an auto-tagging system to
predict mood/theme tags of the MTG-Jamendo dataset. We choose the
mood/theme subset (instead of instruments or genres) for several reasons.
Firstly, we already mentioned the connection to the music discovery and
exploration in Section 1.5. Secondly, the mood/theme tags are pretty chal-
lenging, as it was shown in Section 2.4. Among all the subsets that we
have introduced, this subset has the poorest performance in the baseline
(see Table 2.4). Furthermore, thirdly, because of novelty and appeal to
the participants, moods/themes are less explored than genre recognition
which is a more popular task.

As mentioned in Section 2.3, we provide audio as well as extracted
with Essentia mel-spectrograms and features. The histogram of all the
tags is shown in Figure 3.1. Participants could use any data as input for
their systems. We use PR-AUC as the primary metric and ROC-AUC,
precision, recall, and F-score as additional metrics for evaluation. Every
team could submit up to 5 runs. Participants were provided with scripts
to download data and reference code implementation of the baseline VG-
Gish architecture.

To evaluate the submissions, we asked participants to generate activa-
tion values (predictions) for the test set (4231 tracks and 56 tags) that were
used to calculate PR-AUC and ROC-AUC. We also asked participants to
generate binary decisions on the test set to measure precision, recall, and
F-score. As the primary evaluation metric is PR-AUC, deciding on the

2multimediaeval.github.io

39

https://multimediaeval.github.io


happy
film

energetic
relaxing

emotional
melodic

dark
epic

dream
love

inspiring
sad

meditative
uplifting

advertising
motivational

deep
romantic

christmas
documentary

corporate
positive
summer

space
background

fun
soundscape

soft
calm

children
adventure

upbeat
melancholic

slow
commercial

drama
movie
action
ballad

dramatic
sport

trailer
party
game

nature
cool

powerful
hopeful

retro
funny

groovy
holiday

travel
heavy

sexy
fast

0

500

1000

1500

# of tracks

1657

119

Figure
3.1:H

istogram
ofallm

ood/them
e

tags

40



Year 2019 2020 2021

Registered 14 12 11
Submitted results 8 6 4

Submitted working notes 6 6 4

Table 3.2: Number of teams participating

thresholds to transform predictions into decisions is not the focus of the
task. Thus, we provided the script to do the thresholding and generate
binary decisions to maximize F-score.

The statistics of the number of participating teams and submissions
throughout the years are presented in Table 3.2. In the following sec-
tions, we will go through each year of the task, the submissions, and their
contributions.

3.4.2 2019 edition
For the 2019 edition of the task, out of 8 teams that submitted their
runs, 6 teams have submitted the working notes describing their approach
(see Table 3.2). The leaderboard summarizing the approaches and per-
formances is presented in Table 3.3. More detailed results are available
online3.

The team that achieves the highest performance — CP-JKU (Koutini
et al., 2019) applies multiple techniques throughout the whole process.
They use ResNet (He et al., 2016) as a basis for the architecture together
with techniques from acoustic scene classification such as receptive field
(RF) regularization, frequency-aware (FA) CNN layers, and shake-shake
regularization. For the data augmentation, the Mixup technique is used.
Multiple averaging techniques are used: stochastic weight averaging dur-
ing training, snapshot averaging for testing, and multi-model averaging
for ensemble results. This team focused on optimizing the architecture
and training process to get the highest score, which they achieved.

3tinyurl.com/mediaeval2019music
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AUC
Team Run PR ROC

1 CP-JKU Ensemble .1546 .7729
2 CP-JKU ShakeFaResNet .1480 .7716
3 CP-JKU FaResNet .1463 .7574
4 AMLAG MobileNetV2+Att .1258 .7528
5 YL-UTokyo CNN 6L .1255 .7531
6 AMLAG MobileNetV2 .1183 .7324
7 AugLi Ensemble † .1174 .7424
8 CP-JKU CRNN .1171 .7380
9 AIT-DIL* 01 .1126 .7191

10 TaiInn (In) RndS .1103 .7186
11 TaiInn (In) RndS+Att .1103 .7230
12 baseline VGGish .1077 .7258
13 Taiinn (Tw) Fx-VQVAE1+CNN ‡ .1076 .7207
14 AugLi All DS † .1038 .7260
15 Taiinn (Tw) FX-VQVAE1+GRU ‡ .1037 .7140
16 CP-JKU ResNet34 .1020 .7168
17 AugLi All CRNN † .0999 .7066
18 Taiinn (Tw) VQVAE1+CNN ‡ .0994 .7146
19 Taiinn (Tw) VQVAE1+GRU ‡ .0984 .7103
20 AugLi All DS 5s † .0980 .7162
21 AugLi All DS 1s † .0972 .7146
22 TaiInn (In) RndS+Ess .0897 .6852
23 TaiInn (In) RndS+Att+Ess .0891 .6839
24 Taiinn (Tw) VQVAE2+GRU ‡ .0860 .6916
25 TaiInn (In) BsS .0795 .6998
26 MCLAB-CCU* 03 .0341 .5014
27 MCLAB-CCU* 01 .0332 .4891
28 MCLAB-CCU* 02 .0332 .4937
29 baseline popular .0319 .5000

Table 3.3: MediaEval 2019 leaderboard
* Teams that didn’t submit working notes paper

Used external data: † Audioset, ImageNet; ‡ MSD, MTAT
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Figure 3.2: Not all tags benefit from joint training (taken from Sukhavasi
and Adapa (2019))

The team with the next best result is AMLAG (Sukhavasi and Adapa,
2019). Their architecture of choice is MobileNetV2 (Sandler et al., 2018)
with addition of self-attention. Data augmentation techniques such as
Mixup and SpecAugment were also used in this submission. The main
insight from this submission is that this team took time and effort to inves-
tigate the individual tag losses during training and discovered that some
tags’ performance suffers from joint training (see Figure 3.2). However,
the attempts to find several groups of tags that could benefit from train-
ing together ultimately lead to poorer overall results. They only employ
the early stopping for the individual tags based on the individual loss.
Moreover, the authors report the approaches that did not work, which is
valuable.

YL-UTokyo (Yi et al., 2019) utilize the simple approach and augment
the baseline model provided from 5 convolutional layers to 6 convolu-
tional layers using ELU. They achieve the performance that puts them as
the third-best team.
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AugLi (Amiriparian et al., 2019) utilize CRNN that consists of an
AudioSet-pretrained VGGish model with the final pooling layer replaced
by RNN. The second parallel model in the framework is DeepSpectrum
— ImageNet-pretrained VGGish model, taking 1- and 5-second chunks
of audio as input and feeding the penultimate feature vectors into RNN.
Authors test LSTM, GRU, and BLSTM as RNN units and ensemble them
together in different configurations as submissions.

Two teams TaiInn from Innsbruck and Taiwan collaborated to work
on the challenge and submitted different approaches. TaiInn (Innsbruck)
(Mayerl et al., 2019) uses CNN feeding into GRU units with dense lay-
ers in the end with ELU activation. Authors also test feeding Essentia
features as input to the last dense layers in some variations and adding at-
tention mechanism after GRU layers. The model was trained only for 16
epochs, thus achieving competitive performance with little computational
resources. TaiInn (Taiwan) (Hung et al., 2019) utilize different approach
based on using two variants of VQ-VAE as a feature extractor (pre-trained
of MSD) and comparing two different classifiers: GRU and CNN (using
MTAT as additional data).

To summarize this first edition of the challenge, it is essential to note
that the winning approach did not use any external data or pretrained
model. However, the team spent much effort on data augmentation, reg-
ularization, and optimization. The AMLAG submission is much more
insightful, as they show that some tags are difficult to train.

3.4.3 2020 edition
In 2020 6 teams submitted runs and working notes (see Table 3.2). We
provide the summary of the performances in the Table 3.4 and approaches
below (details are available online4).

SAIL-MiM-USC (Knox et al., 2020) use modified short-chunk CNN
architecture (Won et al., 2020b) as well external data from Music4All
dataset that exactly matches provided tags to expand the training set.
Moreover, they use MSD to pre-train the lower layers of the network.

4tinyurl.com/mediaeval2020music
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AUC
Team Run PR ROC

1 SAIL-MiM-USC Ens AllData † .1609 .7812
2 SAIL-MiM-USC Focal+AllData † .1561 .7782
3 Best 2019 Ensemble .1546 .7729
4 SAIL-MiM-USC Ens Jamendo .1421 .7625
5 HCMUS WN-EffB7+M-EffB0 ‡ .1414 .7663
6 HCMUS WN-MobV2+M-EffB0 ‡ .1413 .7680
7 HCMUS Mel-EffB0 ‡ .1398 .7627
8 AugsBurger Fusion+AUGment .1313 .7533
9 UAI-CNRL ResNet34+Att .1275 .7360
10 AugsBurger CBAMs-fusion .1227 .7405
11 AugsBurger CBAM-GRU-256 .1203 .7394
12 AUGment AReLU+Att+VGGish .1178 .7353
13 AUGment AReLU+Att .1136 .7323
14 AUGment Att .1082 .7169
15 baseline VGGish .1077 .7258
16 AUGment AReLU .1072 .7281
17 AugsBurger CBAM-GRU-128x2 .1070 .7158
18 HCMUS WN-EffB7 ‡ .1054 .7185
19 UIBK-DBIS A-CRNN .0965 .7043
20 UIBK-DBIS A-ECRNN-F1 .0903 .6849
21 UIBK-DBIS A-ECRNN-Man2 .0900 .6885
22 UIBK-DBIS ECRNN-Man2 .0887 .6953
23 UIBK-DBIS A-ECRNN-Man3 .0862 .6829
24 baseline popular .0319 .5000

Table 3.4: MediaEval 2020 leaderboard
Used external data: † MSD, Music4Aall; ‡ NSynth
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However, the most significant contribution is the training with different
loss functions: focal loss, class-balanced loss, distribution-based loss, and
ensembling of the resulting models. While models that take advantage of
external data exhibit the highest performance, the model trained without
external data still performs better than other submissions, although not
enough to beat the best submission of 2019.

HCMUS (Do et al., 2020) utilize WaveNet-style autoencoder pre-
trained on NSynth dataset as a feature extractor in conjunction with mel-
spectrograms. WaveNet features are fed into MobileNetV2 and EfficientNet-
B7, and mel-spectrograms — to EfficientNet-B0. SpecAugment was used
for data augmentation. The authors also attempted to reduce multiple la-
bels to a single label. Different combinations of those have been submit-
ted as runs with the ensemble of WaveNet features and mel-spectrograms
achieving the highest score. The team also reported trying SVM, Incep-
tionNet, ResNet, and self-attention, which did not improve the perfor-
mance.

AugsBurger (Gerczuk et al., 2020) use CRNN framework with mel-
spectrograms feeding into ResNet with Convolutional Block Attention
Modules (CBAMs) and GRU/LSTM blocks in the end. Authors perform
many fusion experiments of different architecture versions and fuse with
another approach from team AUGment.

AUGment (Rajamani et al., 2020) introduce self-attention into the
provided VGGish baseline. They replace various layers of the CNN with
stand-alone self-attention, thus reducing the number of parameters that
do not deteriorate performance much. Authors also experiment using
AReLU in all layers of CNN.

UAI-CNRL (Dipani et al., 2020) utilize ResNet34 as feature extractor
that feeds into self-attention module. Multiple data augmentation tech-
niques are used: Mixup, SpecAugment, random cropping, and scaling.
The team only submitted one run, so no architecture variations were ex-
plored.

UIBK-DBIS (Vötter et al., 2020) encompasses some participants from
TaiInn (Innsbruck) team from 2019. Their 2020 submission uses a slight
adaptation of their previous CRNN model and a CNN-based model with
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ELU activations. The CNN-based model did not perform well, so the sub-
mission only included CRNN-based approaches. However, the important
contribution of this team is that they attempt to separate tags into groups to
train separate models and ensemble them for the final predictions. Three
strategies are: linear (based on lexicographic order), performance (based
on F1 and PR-AUC), and moods vs. themes (vs. uncertain, judged by
four human judges). The dataset was also augmented to provide more
training samples for underrepresented tags based on the tag frequency.

3.4.4 2021 edition
In 2021 only 4 teams managed to submit runs and working notes (see the
results in Table 3.5). We do not include the best runs from previous years
in this year’s leaderboard, as they have not been beaten. More details are
available online.5

Team lileonardo (Bour, 2021) achieved the highest performance this
year. The main contribution is to try and employ frequency-dependent
convolutional layers. Several aspects were investigated: mel-spectrogram
resolution (96 and 128); input length (128 and 224 frames); and loss func-
tions (BCE, weighted BCE, and focal). The submitted runs consisted of
ensemble models for traditional convolutions, frequency-dependent ones,
and everything together. Although frequency-dependent convolutions do
not perform much better than traditional ones, the performance improves
from ensembling many models. The best single model uses 96 mel bands
and weighted BCE loss and input length of 224 frames and achieves a
PR-AUC of 0.1447.

SELAB-HCMUS (Pham et al., 2021), participating second year in the
row used the co-teaching (Han et al., 2018) paradigm to train Efficient-
NetB0 and ReXNet in parallel. Similar to the previous year’s submission
(Do et al., 2020), they used single labels per track instead of multi-labels
similarly, as well as Mixup and SpecAugment.

Team Mirable (Tan, 2021) tried to use a semi-supervised approach
of noisy student methodology (Xie et al., 2020) to take advantage of the

5tinyurl.com/mediaeval2021music
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AUC
Team Run PR ROC

1 lileonardo Ens all .1508 .7747
2 lileonardo Ens Freq-Dep .1478 .7703
3 lileonardo Ens Convs .1468 .7690
4 SELAB-HCMUS Ensemble .1435 .7599
5 SELAB-HCMUS EffNet Co-Teach .1415 .7574
6 Mirable Ensemble † .1356 .7687
7 SELAB-HCMUS ReXNet Co-Teach .1343 .7504
8 Mirable Short HPCP .1275 .7541
9 SELAB-HCMUS ReXNet .1261 .7463

10 Mirable Long HPCP Noisy † .1235 .7613
11 UIBK-DBIS Ens VGGish k-means .1087 .7046
12 baseline VGGish .1077 .7258
13 UIBK-DBIS Ens VGGish dk-means .0984 .6829
14 UIBK-DBIS Ens ResNet linear .0921 .6996
15 UIBK-DBIS Ens ResNet k-means .0910 .6916
16 UIBK-DBIS Ens ResNet dk-means .0799 .6807
17 baseline popular .0319 .5000

Table 3.5: MediaEval 2021 leaderboard
† used full MTG-Jamendo dataset as external data
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rest of the MTG-Jamendo dataset that is not tagged with moods/themes.
Their architecture is based on CRNN with added residual connections
and GeMPool instead of MaxPool. Besides mel-spectrograms, they also
used computed HPCPs as additional input to their model, which improved
performance. Authors have also tried a relatively long input length of 185
secs and 9.25 secs. The results of noisy student training are inconclusive,
presumably due to the abstract nature and subjectivity of emotion and
theme labels.

UIBK-DBIS (Mayerl et al., 2021) participated for the 3rd year in a
row. This year, their approach was to automatically cluster tags based on
similarity or dissimilarity, train individual models on the clusters, and use
the ensemble for prediction. Tag clusters were calculated based on high-
level Essentia features, and the authors propose a variation of k-means —
dissimilar k-means (dk-means) to calculate clusters that gather the most
different tags. The architectures submitted included VGG and ResNet-18.

3.4.5 Summary

There were a lot of different architectures being used in the task — mostly
CNN-based (VGGish, ResNet, MobileNet, EfficientNet), and WaveNet,
VQVAE, as feature extractors. Many teams added RNN units at the end
of the CNN pipeline, constructing the CRNN framework. Typical RNN
units used were GRU, LSTM, and BLSTM.

Data augmentation was commonly used among participants: Mixup,
SpecAugment, transformations (cropping, scaling). As the dataset is im-
balanced, tag frequency aware augmentations were also used to increase
the number of samples for underrepresented tags.

Usually, binary cross-entropy was used as a loss function. How-
ever, other types of losses, such as focal, class-balanced, and distribution-
balanced losses, are also present. Ensemble models and late fusion was
used almost by all participants as an easy way to improve the performance
of the models.
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3.4.6 Per-tag performances
With 16 teams and 49 submissions over two years of the challenge, we
wonder about the performance of the individual tags - to see if any tags,
in particular, were easy or challenging or if the performance is directly
correlated with the number of tracks available for training. Figure 3.36

shows the PR-AUC performances of the individual submissions per indi-
vidual tag. On the X-axis, 56 tags are shown in the order of decreasing the
number of tracks in the training set (left to right). The Y-axis represents
all submissions (from all years) ranked by average PR-AUC performance.

Interestingly enough, different architectures have similar performance
for the same tag, while performances vary depending on the tag. While
the expected result would be the higher performance of the tags on the left
(with more tracks in the training set) that would slowly decrease towards
the right, some tags clearly stand out and are much easier to predict than
others. Some tags that stand out: deep, summer, children, corporate. On
the left side of the figure, while happy, energetic and relaxing have a
slightly higher number of tracks, film, dark and epic tend to have higher
performance.

Interestingly, models that have been pre-trained on other datasets do
not perform much better on the difficult tags. However, they gain some
performance due to better predictions on the non-difficult tags. Here are
some interesting observations of differences in performance between the
submissions:

• HCMUS team (2020) have considerably lower performance on the
advertising tag compared to other high-performing approaches us-
ing WaveNet-style encoder pre-trained on NSynth, mel-spectrograms
with EfficientNet, as well as the ensemble model.

• YL-UTokyo’s (2019) quite simple approach of increasing the depth
of convolutional units from 5 to 6 has higher performance in a lot
of tags (including difficult ones: uplifting, background, adventure,

6Interactive version available at
philtgun.me/mediaeval-emothemes-explorer
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soft, hopeful, funny, etc.) than the best teams. That came at the cost
of significantly lower performance on the “easy” tags (deep: .44)
— ones that other teams have achieved relatively high performance
on, thus lowering the overall average team performance.

• Similar behavior can be observed in team Mirable (2020), who used
simple CRNN with residual connections and GeMPool with noisy
student training on the full MTG-Jamendo dataset. While deep and
summer have lower performance, a lot of more difficult tags (relax-
ing, meditative, inspiring, etc.) have higher PR-AUC than the top
submissions

• While the retro tag is quite difficult to predict (PR-AUC of 0.035
among top teams), team TaiInn (Taiwan), with their VQ-VAE ap-
proach, managed to get PR-AUC of 0.057–0.087

3.4.7 Dataset imbalances
Looking deeper into the reasons behind the trends of difficult and easy
tags, it becomes evident that even if the distribution of tags in the dataset
is quite unbalanced, it also is slightly different across train, validation,
and test sets (see Figure 3.4). The hypothesis that more variance in the
training data leads to better performance was not supported well enough.
Tags such as love, sad, melancholic, romantic and space that have higher
number of artists using them on average don’t exhibit considerably better
performance in the submissions.

Another potentially interesting effect to investigate was the impact of
tags with a higher number of tracks in the test set than other tags. Some
examples include film, emotional, children, commercial. Tag children in-
deed exhibits increased performance compared to the tags with a similar
number of tracks in the training set, but that is the only occurrence.

We also took a closer look at which tags are usually used together. To
measure the co-occurrence, we counted the number of tracks where the
pair of tags was used together. Some co-occurrences that are noticeable
by the absolute number of tracks (see Figure 3.5):
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• happy — uplifting (188)
• happy — positive (181)
• inspiring — motivational (156)
• happy — inspiring (149)
• deep — summer (141)
• motivational — corporate (130)
• dark — slow (129)
• epic — action (125)
• epic — trailer (104)
While the co-occurrences in the tags that already have many tracks are

not correlated to high performance, it is more noticeable in the tags that
have fewer tracks in the training set (the pairs are highlighted in bold)

However, the high performance of tags deep and summer cannot be
just explained by the co-occurrence, as other co-occurrences do not re-
sult in much difference in performance. Upon closer inspection, tag deep
is mostly used in reference to a genre deep house. While some moods
and themes might have a predisposition to some genres, usually, there is
enough variety within tags. In this case, the subgenre (even more spe-
cific) is the same for many annotated tracks, potentially reducing the task
to genre identification.

3.4.8 Insights from submissions
Training on external data

Non-surprisingly the best submission from all three years from SAIL-
MiM-USC took advantage of using external data from MSD and Mu-
sic4All datasets that matched some of the challenges’ tags. More data
improves the performance, especially in this challenge, where the dataset
is not that big.

Ensemble of loss functions

In 2020 team SAIL-MiM-USC (Knox et al., 2020), instead of ensembles
of different architectures, as it is commonly done among other submis-
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sions, hypothesized that the challenge lies in the problematic distribu-
tion of the data. They try several loss functions designed to work better
with less uniform distributions: focal, class-balanced, and distribution-
balanced losses. While they do not beat the best 2019 submission training
only on provided data, they come close (PR-AUC of 0.1421 compared to
0.1546).

Reducing multi-labels to single labels

In 2020 team HCMUS (Do et al., 2020) have introduced a data-balancing
pre-processing step. The idea is to reduce multi-labels to single labels per
track, keeping the most important tag, i.e., the one with the least repre-
sentations. In 2020 the reported increase in performance due to the data
balancing improved PR-AUC of 0.127 to 0.134 on their EfficientNet-B0
architecture.

Tonal information

Team Mirable (Tan, 2021) hypothesized that including tonal information
is helpful for emotion in music tagging, and to support their hypothesis
computed harmonic pitch class profiles (HPCPs) and used this data to im-
prove their performance. For long input length (185 sec), adding HPCPs
to mel-spectrograms has improved PR-AUC from 0.1024 to 0.1220, and
for short (9.25 sec) has not provided much improvement — PR-AUC went
from 0.1234 to 0.1275.

3.4.9 Conclusion
Thus, the conclusions from three years of organizing this task are that
there is possibly a glass ceiling related to the training data from MTG-
Jamendo. The distribution is unbalanced, and so far, the high performance
was achieved because of the submissions specifically tackling the problem
of the unbalanced distribution.

Moreover, the tag co-occurrence also contributes to the high perfor-
mance of certain tags (deep/summer, motivational/corporate, epic/trailer),
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as it leads to some tags having a much higher amount of data to be trained
on. The future work is to group some tags into the clusters and equalize
the distribution to reduce the impact of non-uniformity.

Many valuable insights and discussions about the architectures are
provided in the working notes. However, because of the lack of data, the
choice of architecture can lead to better efficiency (faster convergence and
lighter models) but not to a significant increase in performance. Never-
theless, it is important to consider efficiency in the deep learning model
training; thus, simple models are still valid options. The results align
with the study by Won et al. (2020b) with the simple short-chunk VGG
architecture with residual connections remaining competitive.
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Chapter 4

MUSIC SIMILARITY

4.1 Introduction

As we discussed in Section 1.1, music recommendation systems are cur-
rently one of the primary ways for people to listen to and find music.
While collaborative filtering (CF) approaches are still within the state-of-
the-art of personalized music recommendations, pure CF falls short of the
cold-start problem and non-personalized recommendations. The content-
based (CB) approaches can provide recommendations and suggestions
based on item-to-item similarity without CF data, and they are commonly
used together with CF in modern recommendation systems (Ricci et al.,
2022) to solve the cold-start problem. However, when there is no CF data
available due to design decisions or privacy concerns, CB approaches are
the only ones that can provide recommendations.

In the domain of music, there are different modalities to the content
that can be used for CB approaches. Apart from the audio signal, data
that can be used is metadata, user-defined tags, reviews, etc. This thesis
will focus on audio and current state-of-the-art auto-tagging models. We
are interested in how consistent are the latent spaces extracted by auto-
tagging models between each other, particularly concerning the choice of
the training dataset, architecture, or the layer of the network. These in-
sights can show which variable contributes to the most different results,
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which can inform practical decisions on prioritizing models for A/B test-
ing in an industry scenario with limited resources.

Latent similarity spaces are also quite extensively used in music visu-
alization interfaces (Knees et al., 2020) (we will talk more about those in
Chapter 5), where such similarity spaces represent music on a 2D plane or
3D space and facilitate exploration, discovery, and re-discovery of music.
The latent spaces usually are high-dimensional, and part of the informa-
tion is lost by performing the projection. We are interested to see how
well the commonly used projection methodologies represent and trans-
form similarity space and how much of the nearest neighbors’ information
is preserved.

Furthermore, we investigate how CB approaches compare to CF ap-
proaches in a user-less scenario, with CF factors representing a latent sim-
ilarity space. The motivation is to see if different CB approaches capture
more or less of the information from user interactions in CF systems, thus
resulting in more or less similar nearest neighbor results.

4.2 State of the Art

Music similarity is a widely researched topic in music information re-
trieval. In MIREX (Music Information Retrieval Evaluation eXchange),
the task of music similarity was active until 2015, as eventually, the per-
formances of the submitted systems reached a glass ceiling stemming
from evaluation being subjective and limited inter-rater agreement (Flexer,
2014). Music similarity is relatively subjective as humans use different
dimensions for assessing similarity: genre, moods, tempo, instrumenta-
tion, etc. Recent work investigates the importance of inter- and intra-rater
agreement in the context of music similarity and recommendation (Flexer
et al., 2021) that questions the validity of experiments on general music
similarity. Thus, it is vital to minimize the ambiguity of the evaluation
process and provide context or a scenario to allow users to provide more
informed answers instead of asking vague questions about which track is
more or less similar to the reference track.
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In the context of music recommendation, there are many approaches
to solve the cold-start problem (Ricci et al., 2022), for example, deep-
learning and hybrid approaches (Oramas et al., 2017a; Wang and Wang,
2014), or ones trying to predict the CF latent factors from audio (van den
Oord et al., 2013; Ferraro et al., 2021b). They all attempt to bridge the
gap between CF and CB, thus requiring CF data to train the model. This
chapter considers the scenario without personalization (anonymous user),
i.e., where the system has no information about the user and needs to
consider only track-to-track similarity.

Among the visualization interfaces of music collections, there are sev-
eral commonly used techniques to reduce the dimensionality of the orig-
inal latent spaces (Knees et al., 2020). One of the first successful tech-
niques is self-organizing maps (SOM) (Kohonen, 2001) used in Islands
of Music (Pampalk et al., 2002) and other works that have followed and
were inspired by it. We talk more about state of the art in music visual-
ization interfaces in Section 5.2. However, for the context of this chapter,
what is essential to know is that in more recent works, the newer algo-
rithms such as t-SNE (Maaten and Hinton, 2008) and UMAP (McInnes
et al., 2018) gained popularity. They transform space in a non-linear way
attempting to capture the relations between individual elements. The clas-
sic non-stochastic principal component analysis (PCA) approach can also
be used (Smilkov et al., 2016). While it is not as good at capturing the
individual relationships between items, it captures the global structure of
the whole space.

4.3 Similarity metric

We aim to compare multiple latent spaces that contain the same set of
items (music tracks). If we use one track as a reference and retrieve the
nearest neighbors to the reference, we would have several different lists of
nearest neighbors for each latent space. We introduce a simple metric Sn

to calculate the similarity between two ranked lists of nearest neighbors
L at the cutoff of n tracks obtained from two music similarity spaces X
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and Y . To differentiate this similarity between spaces from the music
similarity that we also talk about, we use the term NN-similarity in this
thesis. We divide the number of tracks that are common in both lists by
the cutoff to obtain the value between 0 (no common tracks) and 1 (all
tracks are the same):

Sn(X, Y ) =
|LX,n ∩ LY,n|

n
(4.1)

If we consider the following example of n = 5 nearest neighbors to
the track t0 in the spaces X and Y , we would calculate the NN-similarity
in the following way:

LX,5 = (t1, t2, t3, t4, t5)

LY,5 = (t2, t6, t3, t7, t8)

LX,5 ∩ LY,5 = {t2, t3}
S5(X, Y ) = 2/5 = 0.4

Sn does not take into account the ranking: t2 is ranked higher than t3
in both LX,5 and LY,5, but even if the relative rank would be reversed
for LY,5, S5(X, Y ) would still have the same value. In reality, if the
cutoff n is much smaller than the number of tracks in the dataset (n ∈
{5, 10, 100, 200}), the primary difference between the lists is the number
of intersected elements, not what is the difference between their ranks.
The only potential benefit of using metrics that take ranks into account is
getting the finer difference between lists with the same amount of com-
mon tracks. We tried to use Spearman rank correlation or rank-based
overlap (RDO) (Webber et al., 2010), and these metrics did not provide
more information about the difference between pairs compared to simple
Sn.1

1See additional materials at the companion website
philtgun.me/deep-neighbors for reports on other metrics.
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Figure 4.1: Baseline CF evaluation

4.4 Data
As we mentioned in Chapter 2, Jamendo2 is a platform that provides
royalty-free music for commercial and personal use, including music stream-
ing for venues or video production. The work introduced in this chapter
was partially performed as an internship in Jamendo. We use audio tracks
from their complete catalog, not only from MTG-Jamendo (Bogdanov
et al., 2019).

4.4.1 Collaborative filtering features

The collaborative filtering data was provided as part of the collabora-
tion with Jamendo and included 2.2 million interaction events (including
plays, skips, etc.) that have associated numeric values assigned via an
internal system for approximately 170 000 tracks and 60 000 users. We
pre-process the data by filtering out the tracks and users with too few in-

2jamendo.com
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teractions (less than 5) and the top outliers, resulting in approximately 31
000 tracks and 27 000 users.

We do a pre-analysis of the data to determine the number of factors to
be used for the matrix factorization. We use the alternating least squares
(ALS) algorithm (Hu et al., 2008b) which is one of the SOTA matrix fac-
torization algorithms.3 Using a stratified split with a test ratio of 0.2, we
evaluate different numbers of factors in terms of the performance using
normalized discounted cumulative gain (NDCG) and mean average preci-
sion (MAP). The results are shown in Figure 4.1 with 96 factors providing
the highest overall performance. We also consider 64 and 128 factors to
compare the consistency of several CF spaces.

4.4.2 Content-based features

To extract content-based features we use the Essentia library (Bogdanov
et al., 2013) and the following music auto-tagging models (Alonso-Jiménez
et al., 2020): MusiCNN, VGG and VGGish (see Chapter 3 for more de-
tails on these architectures).

The models provided were pre-trained on several datasets. MusiCNN
and VGG have been trained on top 50 tags from Million Song Dataset
(MSD) (Bertin-Mahieux et al., 2011) and MagnaTagATune (MTAT) (Law
et al., 2009). These datasets have been introduced in Chapter 4.4 and
contain music and are focused on the music auto-tagging. VGGish has
been trained on AudioSet (Gemmeke et al., 2017) which is an audio event
recognition dataset that also includes music. It allows us to compare dif-
ferent architectures that have been trained on the same dataset and the
same architecture trained on different datasets.

For the MusiCNN and VGG architectures, we consider the latent spaces
constructed by the output (taggrams) and the penultimate (embeddings)
layers. VGGish model only provides embeddings. The number of di-
mensions for the layers is summarized in Table 4.1. In total, we extract 9
content-based (CB) feature vectors.

3Implementation from github.com/benfred/implicit
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Dataset Architecture Layer Dim

MSD
×

MusiCNN
Embeddings 200

Taggrams 50

MTAT VGG
Embeddings 256

Taggrams 50

AudioSet VGGish Embeddings 128

Table 4.1: Dimensions of latent spaces

We attempted to process the 31 000 tracks that we obtained from CF
data, but due to some tracks being no longer available or corrupted, this
number decreased to approximately 29 000.

4.4.3 Final dataset

The final large dataset contains 29 275 tracks with successfully extracted
CB features. We repeated the matrix factorization on the collaborative
filtering data containing only those tracks (29 275 tracks × 27 235 users,
793 963 non-zero values) with the number of factors of 64, 96, and 128 to
obtain the CF features. We release this final dataset with 3 CF and 9 CB
representations publicly.

We create a smaller subset of the final dataset that is obtained by in-
tersection with MTG-Jamendo (Bogdanov et al., 2019) test set of split-0,
which resulted in 1 372 tracks, which is comparable to a small music col-
lection. We present the experiments on this small dataset, as it visualizes
the relative differences between spaces better. 4

4The results on the large dataset are available on the companion website.
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Figure 4.2: Nearest neighbor similarity (Sn) of CB vs. CF spaces
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4.5 Offline Experiments

4.5.1 Latent spaces

We compare the collaborative filtering and content-based spaces intro-
duced in Section 4.4 in terms of NN-similarity Sn, introduced in Sec-
tion 4.3. We present the results using cosine distance to calculate nearest
neighbors in Figure 4.2. Euclidean5 and cosine distances produce very
similar results, except that NN-similarity between CF rankings using Eu-
clidean distance is slightly lower.

The first thing that stands out in Figure 4.2 is that the CF spaces are
quite dissimilar in terms of NN-similarity from CB spaces, as all pairs of
rankings that include CF and CB spaces have the lowest values. This indi-
cates that the music similarity captured by CF and CB spaces is noticeably
different. The NN-similarity values between CF spaces stays consistent
and is among the highest observed overall at all cutoffs. However, there is
enough difference between CF spaces (e.g. max S5 is 0.66 which means
that 2 out of top-5 tracks will be different) to make the number of CF
factors an important design decision.

Related to CB embeddings, there is much more variability in the nearest-
neighbors lists at smaller cutoffs. Therefore, the choice of the latent space
leads to significantly different outcomes in the use-cases that rely on the
small number of nearest neighbors. For example, S10 varies between 0.16
to 0.58, which means that 4 to 9 tracks will be different between any two
CB spaces. At larger cutoffs (100, 200), the NN-similarity between CB
spaces is higher (S200 ranges from 0.46 to 0.77 between CB spaces).

We can calculate what choice impacts the NN-similarity more: dataset,
architecture, or layer. To analyze this, we can fix the two out of three vari-
ables and calculate the average NN-similarity between the pairs that come
from comparing the third variable. For example, to determine how much
the choice of dataset contributes to NN-similarity, we average the S val-
ues of MSD vs. MTAT for MusiCNN embeddings, taggrams, VGG em-
beddings, and taggrams. As we calculate those for a cutoff value of 5, we

5More figures available on the companion website.
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Cutoff 5 10 100 200

Dataset (MSD vs. MTAT) .26 .26 .46 .56
Arch. (MusiCNN vs. VGG) .35 .36 .57 .65

Layer (emb. vs. tag.) .50 .51 .68 .74

Table 4.2: Average NN-similarity along the variable

get that the average NN-similarity for choice of the dataset is 0.26, which
means that if we change the training dataset, roughly only 0.26 × 5 ≈ 1
track will be the same in the list of 5 nearest neighbors. The values for all
cutoff values are presented in Table 4.2. According to the computed aver-
age NN-similarity, latent spaces produced by models trained on different
datasets (MSD vs. MTAT) are more dissimilar than those using different
architectures (MusiCNN vs. VGG). Indeed MusiCNN and VGG are both
CNN-based and share some similarities.

Regarding the choice of the layer (taggrams vs. embeddings), we can
observe the highest NN-similarity when comparing spaces generated by
the same model (same dataset and architecture). At the same time, tag-
gram spaces are dissimilar to other CB spaces. That makes sense for
spaces from different datasets, as the resulting tag spaces have different
vocabulary and semantics. Interestingly enough, it also holds for dif-
ferent architectures on MSD (e.g., MSD MusiCNN vs. VGG taggrams
S5 = 0.18, which is close to MSD vs. MTAT MusiCNN taggrams:
S5 = 0.19). However, the NN-similarity is much higher for MTAT Mu-
siCNN vs. VGG taggrams: S5 = 0.40.

Overall, the MTAT dataset seems to produce spaces that are generally
more similar to each other than MSD. It can be attributed to the smaller
size of MTAT, where the difference between architectures cannot be as
pronounced. However, if the tag predictions produced by different ar-
chitectures on the same dataset are close, that might indicate the quality
of annotations. While MSD annotations come from Last.fm folksonomy
(every user can assign any tag), MTAT annotations come from the gami-
fied system, where the annotators are encouraged to assign tags that might
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be similar to ones used by the other people (Law et al., 2009).
Another interesting observation is that embeddings of different datasets

and architectures, despite having higher dimensionality produce lists of
nearest neighbors that are pretty similar to each other (minimum values
between CB embedding spaces: S5 = 0.30, S10 = 0.29, S100 = 0.46, and
S200 = 0.53). It is especially prominent at lower cutoff values (5, 10).

In an online evaluation with limited resources, selecting a subset of
latent spaces may be necessary. Based on the results from Table 4.2, it
makes sense to prioritize models trained on the different datasets rather
than different architectures.

4.5.2 Projections

One of the latent space applications is to visualize the similarity between
tracks. Hence, we want to use the same methodology to compare how
well the NN-similarity is preserved while being projected on a 2D plane.
Although some exploration interfaces use 3D planes, for consistency with
previous research on music exploration (Tovstogan et al., 2020), we only
consider 2D. We consider PCA (Pearson, 1901), t-SNE (Maaten and Hin-
ton, 2008) and UMAP (McInnes et al., 2018). Moreover, as t-SNE and
UMAP are stochastic, we consider two different seeds for each projection
to measure the robustness. It does not make sense to compare projections
for different datasets or architectures from previously obtained results.
However, as embeddings and taggrams are quite similar, we consider both
of them. Figure 4.3 shows the results for MSD MusiCNN embeddings
and taggrams using Euclidean distance to calculate nearest neighbors, as
it firstly makes more sense to use in 2D, and secondly, cosine distance
similarity is significantly lower for most pairs.6

Comparing different projections, it is evident from Figure 4.3 that
t-SNE exhibits the highest NN-similarity to the original spaces. Nev-
ertheless, this projection leads to noticeable changes in rankings (e.g.,
S10 = 0.42 for embeddings means that 6 tracks in the top-10 list will be

6Figures of cosine distance is available at companion website.
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Figure 4.3: Nearest neighbor similarity (Sn) of different projections of
MSD MusiCNN embeddings and taggrams
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different on average). UMAP is the second-best projection, with PCA be-
ing the poorest at preserving NN-similarity. The NN-similarity between
different seeds for t-SNE is quite close to 1.0, which is also more robust
than UMAP. In general, the NN-similarity values are closer to each other
at larger cutoff values. As PCA is a linear projection that works well
in preserving the global structure of data without much consideration for
nearest neighbors, its NN-similarity is relatively low for small cutoff val-
ues (5, 10).

From a practical perspective, using t-SNE for projection provides the
best results and preserves more than 40% of nearest neighbors for small
cutoffs. That means that in the visualization interface, among the five
closest tracks in projected space, two tracks are also closest in the original
space to the reference track.

4.6 Online experiments

Even if music similarity is relatively subjective, it can be partially alle-
viated by asking more specific questions to the participants, as shown
in related work in Section 4.2. We use a methodology similar to (Bog-
danov et al., 2009) to evaluate which spaces provide a better represen-
tation of music similarity for music recommendation. The difference
with other studies is that this methodology evaluates the perception of
playlists of top-N similar tracks instead of individual comparisons of pairs
of tracks. This approach is better aligned with tasks of music exploration
and playlist generation.

We use the same small dataset for this experiment for consistency with
offline experiments. For each latent space, the participants are presented
with a reference track and several candidate playlists containing the near-
est neighbors (ordered by their similarity to the reference). They are asked
to rate the similarity of each playlist to the reference track in the hypo-
thetical scenario of music recommendation: “If you liked how this track
sounds, you might like these other tracks”. The order of reference tracks
is the same for all participants, while the playlists are presented in random
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Figure 4.4: Online experiment interface

order.
Because the number of choices presented to participants is limited by

possible cognitive overload, we selected the five most dissimilar latent
spaces: CF 96, MSD VGG taggrams, MSD MusiCNN taggrams, MTAT
MusiCNN embeddings, and VGGish embeddings. We randomly select
four reference tracks, ensuring that they are pretty different from each
other and span several genres. To keep the time to complete one instance
of the experiment as low as possible while providing enough information
to the participants, we decided to include four tracks in each playlist,
making it 21 tracks per reference track (including the latter) and 84 tracks
in total. Because asking participants to listen to each track entirely is
unreasonable, by default, we present the participant with a segment of 15
seconds that starts at 0:30 and ends at 0:45. However, the participants can
use each player’s controls to play more different sections of the track if
they feel that they need more information. Participants are encouraged
not to spend much time on each track and to use their intuition to rate
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the similarity. We communicate that explicitly in the instructions for the
experiment. To measure the perceived similarity, we provide a slider that
uses a 4-point Likert scale: 0 - not similar, 1 - somewhat similar, 2 - quite
similar, and 3 - very similar. We specifically avoided the neutral option to
force participants to give their opinion. The interface of the experiment is
shown in Figure 4.4.

We provide introductory text that explains the experiment, interface,
and purpose and allows the participants to continue with the experiment
once they give their explicit consent. After circulating the link to the ex-
periment7 in the relevant communities (mailing lists, Twitter, subreddits8)
we obtained data from 39 participants. We asked optional general de-
mographic questions to verify coverage of different demographic groups.
All participants are aged from 14–64, with the majority (53%) falling into
the age group of 25–34. 55% of participants identify themselves as men,
33% as women, 9% non-binary, and 3% preferred not to say. Concerning
music background, 18% do not have any music training, 42% have some,
37% are hobbyists, and 3% (1) are professional musicians. The majority
of participants (52%) listen to music on average for 2–3 hours per day,
with the whole population listening from less than 1 hour up to 6–7 hours
per day.

We use the Shapiro test (p-value<0.001) to verify the assumptions
for the ANOVA test. We perform ANOVA (p-value<0.001) and Kruskal-
Wallis (p-value<0.001) tests to verify if the choice of the latent space
makes the similarity results significantly different. Subsequently, we use
Tukey’s honestly significantly differenced (HSD) test to identify which
pairs of latent spaces are significantly different. The only pair of spaces
where the difference is insignificant is AudioSet VGGish vs. MTAT Mu-
siCNN embeddings (p-value of 0.07).

Figure 4.5 shows the average ranking performance of each latent space
with the standard deviation represented as a vertical line. We can see as
both embedding spaces (AudioSet VGGish, MTAT MusiCNN) that we
have chosen for the online experiment perform the best, with no statistical

7philtgun.me/similarity-experiment
8reddit.com/r/samplesize
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Figure 4.5: Online experiment results

difference between them. An interesting observation is that AudioSet is a
generic audio event recognition dataset, and the VGGish model trained on
it performs comparably to the embeddings from the music auto-tagging
dataset MTAT. MSD MusiCNN taggram space has a worse average sim-
ilarity rating, with MSD VGG taggrams following it. The poor perfor-
mance of CF factors space can be attributed to the mismatch of the use-
case, as it is intended to be used in conjunction with the user factors,
not as a latent space. It is also possible that the small size of the dataset
impacted the poor performance of CF factors.

The results show that content-based latent spaces can power the anony-
mous recommendation systems with a similarity that is rated at least as
quite similar. It is a positive takeaway for exploration and visualization
systems that can be built on top of similar latent spaces.

74



4.7 Conclusions

We compared different collaborative filtering and content-based latent
spaces for the nearest-neighbor similarity. We observed that nearest neigh-
bors obtained from CF spaces are very dissimilar to nearest neighbors ob-
tained from CB approaches. Focusing on CB spaces, we identified that the
choice of the training dataset (MSD vs. MTAT) tends to produce the most
dissimilar spaces, followed by the architecture and then layer. We ob-
served that taggram spaces tend to be dissimilar across different datasets
and architecture, while embedding spaces tend to be more similar. Inter-
estingly, the consistency of CB latent spaces derived from a dataset may
differ in terms of their nearest-neighbors similarity, as we observed in the
MTAT vs. MSD datasets. In the context of 2D visualization of latent
spaces, t-SNE exhibits the highest nearest-neighbors similarity between
original and projected spaces.

We performed an online experiment to evaluate a selection of dissim-
ilar latent spaces in the context of music similarity for music recommen-
dation. The results show that the CB spaces can be successfully used in
music recommendation/exploration scenarios where user-generated data
is absent due to design decisions. We observe that embedding spaces
(AudioSet VGGish, MTAT MusiCNN) perform significantly better than
taggram spaces (MSD MusiCNN, MSD VGG).

Some limitations of our study are that we only work with the embed-
dings models that are widely known in the MIR research and are reason-
ably scalable. While there are some newer embedding models proposed
recently (Dhariwal et al., 2020), they usually require much more compu-
tational power. In practice, it is possible to train many embedding models
in the industrial setting.

All analysis9 and experiment interface10 code is publicly available on
GitHub, under Apache 2.0 license. The latent spaces are published on
Zenodo11 under CC BY-NC-SA 4.0 license, and the audio for the small

9github.com/philtgun/compare-embeddings
10github.com/philtgun/similarity-experiment
11doi.org/10.5281/zenodo.6010468
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dataset is available in MTG-Jamendo dataset.12

12mtg.github.io/mtg-jamendo-dataset
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Chapter 5

MUSIC EXPLORATION
INTERFACE

5.1 Introduction

In this chapter, we take advantage of the auto-tagging systems trained
to predict the music tags (genre, moods, instruments, etc.) and use the
extracted embeddings to visualize music collections. As mentioned in
Chapter 3, with the wide usage of deep learning in music information re-
trieval, the feature extraction moved from careful engineering to learned
features. There are multiple pre-trained feature-extractor models avail-
able (Hershey et al., 2017; Cramer et al., 2019) that can be used to extract
embeddings from audio. Often, these embeddings are used as input for
dense neural networks for particular downstream tasks (Alonso-Jiménez
et al., 2020). However, they can also be used to represent the music within
the embedding space.

We introduce the interface that allows users to visualize their entire
collection or subsets of their collection in terms of embeddings extracted
from different models and compare them qualitatively. We evaluate the
interface in terms of how useful it is for the users to explore their library
and create a playlist of the music they have forgotten and would like to
rediscover. In addition, we evaluate different models in terms of the users’
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preferences for the visualizations that have been produced.

5.2 State of the Art
Many research works investigated the visualization of the music in 2D
and 3D space for exploration, navigation, and recommendation. Knees
et al. (2020) do a comprehensive overview of many of those works and
identify 3 phases of music discovery interfaces:

1. Content-based music retrieval interfaces: audio processing features
and intention of grouping similarly-sounding music together, pri-
marily for small-scale music collections.

2. Collaborative and Automatic Semantic Description: interfaces that
attempt to aggregate the collaborative user-generated data from on-
line platforms

3. Recommender Interfaces and Continuous Streaming: interfaces in-
tegrated with streaming services, using data available online

We will take a look at the interfaces that are important for the context
of this thesis, and we will identify several aspects that are important for
us:

• Features used for visualization

• Dimensionality reduction techniques

• Presence of user studies to evaluate the interface

The summary is presented in Table 5.1 with the rest of this section
providing more details about those works.

One of the earliest works is GenreSpace (Tzanetakis, 2001) visualizes
tracks in 3D space with colors representing genres. As the core contri-
bution of the Tzanetakis was the methodology for automatic genre classi-
fication, and the interface was one of the applications, there was no user
evaluation associated.
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5.2.1 SOM-based interfaces

One of the most famous interfaces is Islands of Music (Pampalk et al.,
2002) that uses a self-organizing map (SOM) (Kohonen, 2001) for visu-
alizing music as an artificial landscape of the islands (dense clusters) in
the ocean (sparse regions). The emerging islands roughly correspond to
the genres of music, and the evaluation is performed primarily qualita-
tively by authors. The extension of the work (Pampalk et al., 2004) intro-
duces several views (based on timbre, rhythm, metadata features) and the
ability to switch between them. Moreover, there was also another related
work by Neumayer et al. (2005) that proposed methodology for playlist
generation by drawing the trajectory on the map.

In the following years, multiple studies were published that also used
SOM or some variation of it. NepTune (Knees et al., 2006), inspired by
Islands of Music, visualizes the space as a terrain that can be navigated
in 3D by a user. The interface was exhibited in public, where the users
could explore their collections. The authors conducted a small informal
user study (8 participants) to ask for opinions about the interface, which
were reported to be very positive.

Globe of Music (Leitich and Topf, 2007) projects the space onto sphere
instead a plane with the use of GeoSOM (Wu and Takatsuka, 2006). The
authors evaluated their system in the form of a questionnaire combined
with a semi-structured interview with 12 users. The focus was on the
interaction with the system, particularly on the given music collection
characteristics and ease of navigation of the system.

MusicMiner (Mörchen et al., 2005) uses emerging SOM (ESOM) (Ultsch,
1992) and U-Map to visualize transitions between genre-based groups.
The authors used a novel separation metric based on Pareto Density Esti-
mation (PDE) to select the best 20 from over 400 low-level features that
could separate individual genres of music (e.g., electronic vs. all other).
Moreover, the authors thoroughly compared their selection of the features
against other typically used ones in terms of “clustering and visualizing
different sounding music”. Their system was released as software, but no
user evaluation was performed in the paper.
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Vembu and Baumann (2004) use SOM together with natural language
processing (NLP) of the Amazon artist reviews. The authors performed an
offline evaluation in terms of the results of the external recommendation
service matching the distribution on their SOM. However, the paper only
discusses the possible integration of SOM-based artist similarity into the
proposed interface (MYMO) without implementation or evaluation.

SongExplorer (Julià and Jordà, 2009) is a tangible tabletop interface
that presents the songs in a hexagonal grid, also using SOM to project
7-dimensional emotion feature space to 2D. The interface was evaluated
by presenting it to users and giving the task to “find something interest-
ing” in the collection. The evaluation questionnaire focuses on “subjec-
tive experience, adequacy of the visualization and the organization, and
interaction” with positive feedback in all three areas.

5.2.2 Non-SOM-based interfaces

Some interfaces use the metadata in various creative ways for visualiza-
tion. Artist Map (Gulik and Vignoli, 2005) visualizes artists based on
the metadata (release year, tempo) in conjunction with low-level audio
features such as tempo and high-level ones, such as genres and moods.
Authors develop the visualization algorithm that uses music similarity for
clustering and metadata “magnets” to provide semantics to dimensions.
One of the use-cases of the interface is playlist creation, which can be
achieved by drawing regions or paths. Sadly, the user studies are only
mentioned as future work.

Torrens et al. (2004) focus on visualizing personal music collections
in the form of a disc, rectangle, or tree-map organized according to meta-
data (genre, sub-genre, year, artist) and highlighted according to personal
ratings or playcount with the ability to highlight playlists. The authors
have performed no user studies.

Musicream (Goto and Goto, 2009) is an interface that does not visual-
ize the whole collection at once but presents the user with the flow of the
disks. The users are encouraged to actively interact with the interface and
listen to tracks presented. Once they find something interesting, they can
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save the track and get more similar tracks in the flow. Authors use similar-
ity vectors from Tzanetakis and Cook (2002), but as the paper states, any
similarity measure can be used. The authors performed a user study with
27 participants to evaluate the interface with mostly positive feedback.

MusicGalaxy (Stober and Nürnberger, 2010) uses multiple so-called
facets (timbre: GMMs of MFCCs, rhythm: FPs, dynamics, and lyrics:
tf-IDF) to compute similarity for the visualization. Each facet is used to
calculate distances independently of others. One of the important features
of this paper is an adaptive non-linear multi-focus zoom lens that allevi-
ates the impact of projection distortions. The authors also spend much
effort optimizing the implementation to achieve real-time responsiveness.
The authors also performed an extensive user evaluation of the prototype
(presented at the fair, feedback was collected from 112 visitors). Sev-
eral conclusions include that projection-based visualization is preferred
to the list views, and younger users welcome interactivity. Three testers
tested the second prototype with eye-tracking, including various usability
improvements.

Since 2010 and the emergence of music streaming, studies have started
to focus more on web audio and digital collections. A probabilistic pro-
jection of personal music collections based on moods (Vad et al., 2015)
is a remarkable study that focused a lot on user evaluation. It uses the
mood features that were extracted via the MoodAgent1 commercial ser-
vice from personal Spotify libraries. The features are projected with t-
SNE (Maaten and Hinton, 2008), and the interface includes background
highlighting based on the probabilistic models to show moods with dif-
ferent colors. The system enables playlist generation via both region se-
lection and drawing trajectories. The authors performed a user study with
eight participants over two weeks with overall positive responses and mul-
tiple valuable insights that include a preference for region selection over
trajectory drawing. The authors have also mentioned the concept of re-
discovery in this work.

MoodPlay (Andjelkovic et al., 2019) is another remarkable 2D in-
terface that visualizes artists on a mood space. The authors also used

1moodagent.com
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a commercial service (Rovi) to obtain mood descriptors for the artists
and performed correspondence analysis to calculate similarity. While the
free-form exploration is supported, the system is presented as a recom-
mendation system that recommends the artists based on moods. The au-
thors conducted a pervasive user study from human-computer interaction
(HCI) perspective that provides multiple insights. The participants were
recruited in the Mechanical Turk2 platform. There is an online implemen-
tation of the interface available3.

To mention several more recent interesting works, Songrium (Hamasaki
et al., 2015) is a comprehensive interface that uses learned music simi-
larity from audio features to visualize web-native audio in both 3D and
2D. The platform has much functionality to visualize derivative works,
chronological sequences, and play music. Songrium was introduced in
2012 and had over 147 000 website visitors. However, no user evaluation
was mentioned in the paper.

InstruDive (Takahashi et al., 2018) presents the visualization of tracks
according to instrument classification. The mapping is achieved t-SNE of
absolute appearance rate of 11-dimensional instrument space in scatter-
ing mode. The authors also provide a circular visualization based on the
shortest route from the traveling salesman problem. No user evaluation is
mentioned in the paper.

5.2.3 Summary

One common thing in all these works is that the visualization unit is either
a music track, artist, or album. As music similarity is a well-researched
area of MIR, and it was a task in MIREX until 2014, the similarity on
the level of tracks can go only so far until the subjectivity gets in the way
(Flexer, 2014). Our approach is to work with the segments of the music
tracks on a smaller scale, which might alleviate the subjectivity of the
similarity.

2www.mturk.com
3moodplay.pythonanywhere.com
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Moreover, only several of the mentioned interfaces (Knees et al., 2006;
Torrens et al., 2004; Vad et al., 2015) work with the personal music collec-
tions. Our study focuses on the rediscovery of personal music collections
and directly works with the audio files without external commercial ser-
vice. Also, most of the works, save for a few exceptions (Mörchen et al.,
2005; Hamasaki et al., 2015; Andjelkovic et al., 2019) have never been
released publicly, as they have been used for study as prototypes. Fur-
thermore, there is a lack of music exploration systems that use the latest
state-of-the-art MIR, particularly deep embeddings.

Another common issue with the related work is that many of the men-
tioned papers (except for a few notable exceptions) do not perform con-
clusive user evaluation, which is important for user-centric MIR systems
(Schedl and Flexer, 2012). However, several of the above-mentioned in-
terfaces perform exhaustive user studies (Vad et al., 2015; Andjelkovic
et al., 2019; Stober and Nürnberger, 2010). The studies that do both are
marked in bold in Table 5.1. We conduct a user study to evaluate our
system through semi-structured user interviews to get feedback and ana-
lyze the functionality in the context of rediscovery and exploration of the
personal music collections.

5.3 Models
We use Essentia4 library (Bogdanov et al., 2013) to process audio and ex-
tract representations. We use the audio embeddings extracted with mod-
ern deep auto-tagging models to represent music in the embedding space
and distances between embeddings as a measure of similarity (which has
been used for the music recommendation in Ferraro et al. (2021a)).

We use the same architectures from Chapter 4: MusiCNN (Pons and
Serra, 2019) and VGG (Choi et al., 2016) (see Section 3 for more de-
tails) pre-trained on Million Song Dataset (MSD) (Bertin-Mahieux et al.,
2011) and MagnaTagATune (MTAT) (Law et al., 2009) (see Section 2),
and VGGish Hershey et al. (2017) pre-trained on AudioSet Gemmeke

4essentia.upf.edu
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et al. (2017).
While MTAT is significantly smaller and usually training on larger

datasets gives higher accuracy on downstream tasks, the labels are less
noisy, and it provides an excellent second option for the system. As
we mentioned in Chapter 4, different MTAT embeddings and taggrams
spaces are more similar to each other in terms of retrieved lists of nearest
neighbors than MSD. The top 50 most frequent tags from each dataset
were used for training the models.

We use the same two layers as in experiments of Chapter 4 in the
models’ outputs to generate the visualizations in our system:

• Taggrams - the output layer that provides tag activation values. The
dimension of this layer is 50 for all our models, as they have been
trained on top 50 tags.

• Embeddings - the penultimate layer of the model. The dimension
of embeddings is 200 for MusiCNN and 256 for VGG (summarized
in Table 4.1).

We process the audio with the hop size equal to the receptive field of
the model (3 seconds), which means no overlapping of the frames. We
call the part of the audio of the size of the receptive field that produces
one vector of output values a segment. Thus, the track is represented by
a two-dimensional array with a vertical dimension equal to the extracted
layer dimension and the horizontal (time) dimension equal to the track’s
duration divided by the size of the model receptive field.

5.4 Implementation
The system is implemented in Python as a Flask web app. The code is
open-source and available on GitHub5 under GNU Affero General Public
License v3.0. The rest of this section will provide details of the data
processing pipeline.

5github.com/MTG/music-explore
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First, the audio is indexed in the newly created local SQL database6

with the track, artist, album, and genre metadata imported from ID3 tags.
Next, the audio is processed with the Essentia library with the output of
several layers. The advantage of using Essentia is that the models are
easy to use out-of-box and that if one has a working CUDA installation,
it will be used to do TensorFlow inferencing. We extract both the tag ac-
tivation values (taggrams) and the activations from the penultimate layer
(embeddings). The taggram and embedding vectors are stacked for every
audio segment, resulting in a two-dimensional representation of the track,
which is saved as a .npy file.

After the data for all tracks have been extracted, the PCA (Pearson,
1901) projection of the embeddings and taggrams is performed. We also
compute STD-PCA projection for the second iteration, where each em-
bedding/taggram vertical dimension is first normalized on the whole pop-
ulation to prevent large variation ranges in the activation values from dom-
inating the PCA-projected space. For retrieval efficiency, the taggrams
and embeddings are then aggregated into one .npy file per model. The
segments are indexed in the database for easy lookup of the associated
track.

We use Plotly7 library to visualize the embeddings. It is a robust li-
brary that works well for our use case. One of its advantages is that it
supports multiple programming languages, so it is possible to generate
plots in Python and add the interactivity in JavaScript.

5.5 First iteration of interface

The first iteration of the interface (Tovstogan et al., 2020) (Figure 5.1)
was built with the primary motivation of quick qualitative evaluation of
the auto-tagging models. We use the models mentioned in Section 5.3 to
extract embeddings for the MTG-Jamendo dataset. The choice of MTG-
Jamendo dataset allows us not to host audio and use Jamendo API to serve

6SQLite via SQLAlchemy
7plotly.com
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the audio.
The data controls are located on the left side of the interface. The first

field is used to limit the number of tracks that are visualized, as too much
data visualized simultaneously affects the performance of the interface
and clarity of visualization. Depending on the system’s technical capa-
bilities, it can vary: 100 tracks can be handled with no problem on most
systems (MacBook Air 2017), while more powerful ones could handle
300–500.

Colored in the red there are three modes to visualize tracks:

• Segments – each segment is visualized as a separate point on the
graph (Figure 5.1).

• Trajectories – each track is visualized as a line that connects its
consecutive segments (Figure 5.2a). It allows for the visualization
of separate tracks but works well only for a small number of tracks
(10 or less).

• Averages – The track is represented as an arithmetic mean of the
values of its segments, visualized as a circle with a diameter pro-
portional to the standard deviation (Figure 5.2b).

One can listen to that particular segment or track by hovering or click-
ing on the point. It is also possible to zoom in and out to look at clusters
of points or areas on the graph that might be of particular interest.

Colored in blue are the controls to select the architecture and training
dataset and which layer to visualize. Colored in teal are the projection op-
tions that can be used for dimensionality reduction: PCA (Pearson, 1901),
and t-SNE (Maaten and Hinton, 2008). It is also possible to visualize the
original dimensions. In the case of taggrams, they directly correspond to
the tag that the model is predicting. In the case of embeddings, looking
at original dimensions is not very useful; thus, dimensionality reduction
techniques are useful here.

Visualizing individual tags in taggrams is very useful for quick qual-
itative evaluation of the auto-tagging system. By listening to segments
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(a) Trajectories

(b) Averages

Figure 5.2: Viewing modes
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with high activation values, one can immediately hear if the tag is rep-
resentative (e.g., hearing guitar or comparing if it is slower than other
segments). Also, in the case of noisy labels it easy to see if the tags with
the same semantic meaning have a high correlation (e.g. vocal and vocals
in MTAT), or that semantically mutually exclusive tags have negative cor-
relation (e.g. vocal and no vocals in MTAT).

The interface is also helpful for exploring music. By selecting tags
to look for new music at the intersection of genres/categories or using
dimensionality reduction, one can explore the whole latent space from
different perspectives. Distance between the points is indicative of simi-
larity relative to selected tags.

Dimensionality reduction also allows for exploring the semantics of
the learned embedding space. Listening to segments while slowly mov-
ing along one of the axes can give insight into the semantics of the most
significant differences learned by auto-tagging systems.

Looking at trajectories with t-SNE can give insights into the structure
of the tracks and their temporal evolution. For example, transitions be-
tween vocal and instrumental parts of the track are pretty evident (two
cyan clusters in Figure 5.2a).

5.6 Second iteration of interface

The second iteration of the interface was designed to address some of the
comments from the first paper. We have a working prototype (Figure 5.3)
that we evaluate with users to compare visualization; therefore, it has two
panes. In a final system, it can be reduced to one pane only.

The interface is split into several sections: music selection, visualiza-
tion selection, and highlighting. The user can select music to visualize by
selecting the tags of interest or artists. One of the essential aspects of the
system is that it does not average the individual embeddings of the song
segments. Each segment is of the appropriate length of the input size of
the model (3 sec for both MusiCNN and VGG architectures).

One point on the graph represents one segment. The reduction slider
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allows showing fewer segments per track to visualize many tracks at once.
The number represents the step size when loading the data, so it shows all
segments for a value of 1, skips every other segment for the value of 2,
skips two for the value of 3, etc.

The highlighting section allows highlighting one or more artists, tags,
albums, or tracks in red color on the graph. It is interesting to see the
groupings and spread of the particular subset of the collection in the con-
text of the more extensive selection of music.

The visualization selection controls above the graphs allow a user to
select architecture, dataset, layer, and projection to visualize embeddings.
The option names have been anonymized during the user study to remove
any bias the participants might have towards any options. Each option can
be selected individually to facilitate the comparison of the combinations.
For example, the user might only change the dataset while keeping all
other fields the same to see how the training dataset impacts the embed-
ding space visualization.

The available architectures, datasets, and layers have been described
in Section 5.3. Among the available projections, apart from PCA and t-
SNE, we also introduced STD-PCA and UMAP (McInnes et al., 2018).
PCA and STD-PCA are computed after the extraction of the embeddings.
T-SNE and UMAP are computed dynamically upon user request. So
while they are slower initially, a caching layer is implemented to prevent
repeated computation of the projections of the same subset.

To get an impression of how different the embeddings spaces are, Fig-
ure 5.4 shows one of the users’ personal music collections that was used
for evaluation (with a reduction value of 20). This collection mainly con-
sists of rock and metal music. Highlighted in red is the artist Enigma
which is tagged as new age. While it is mostly condensed in one part of
the visualizations, some architecture/dataset/layer combinations manage
to cluster it better.

There are several features of the system to facilitate interactivity. The
user can listen to the music while hovering or by clicking the point on
the graph representing a track segment. Moreover, when the label of the
segment is displayed on one graph, the same label for the same segment is
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displayed on another graph (see Figure 5.3). It enables easy identification
of the same segment on both graphs during an interaction. Moreover,
the user can select several segments on one graph with the lasso or box
selection, and the corresponding segments will also be selected on the
second graph. More tools are available to zoom in and pan the individual
graphs to delve deeper into exploring the cluster of interest.

5.7 Experiments

We invited eight users with personal music collections to participate in a
user study by authors’ colleagues to test the system. We conducted indi-
vidual semi-structured interviews with each participant to gather feedback
and assess the usability and viability of the system. While there are a lot
of potential uses for the system, we focus on the use case of exploration
and rediscovery of the music in the private personal collections. We want
to address two main research questions: the system’s feasibility for the
exploration and rediscovery of the users’ music collection and the com-
parison of visualizations in terms of usefulness and interest to users.

While we could potentially use the MTG-Jamendo dataset for the
evaluation, we decided to use users’ personal music collections. Firstly,
participants are familiar with their catalog (even for rediscovery) and will
be knowledgeable in their judgments. Another reason for familiarity is for
participants to engage with the system personally. Secondly, it is helpful
to see how the system performs for different collections of different music
and reduce the dataset bias for the evaluation.

Before the experiment, the participants were asked to select a subset
of their private music collection that they wanted to explore. We recom-
mended the participants limit the subset to no more than 1,000 tracks, and
in practice, we encountered collections of sizes from 400 to 1,200. In
the remote setup, we communicated with the participants through chat to
help with data extraction and ensure that the system ran on the users’ ma-
chines. Then we conducted a video conferencing call with the participant
sharing their screen. We asked participants to bring the music collection
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(a) VGG MSD taggrams (b) MusiCNN MSD taggrams

(c) VGG MTT taggrams (d) MusiCNN MTT taggrams

(e) VGG MSD embeddings (f) MusiCNN MSD embeddings

(g) VGG MTT embeddings (h) MusiCNN MTT embeddings

Figure 5.4: UMAP visualizations of new age (in red) in mostly rock and
metal collection (reduction of 20)
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on the external storage device and performed data extraction and setup
on the authors’ machines in the live setup. Of 8 participants, one was
interviewed remotely, and 7 — in-person. The data extraction took dif-
ferent times depending on the specification of the user machine: from 1
to 4 hours with an average of 1.5 hours. While the system does not re-
quire GPU for processing, most participants used machines with CUDA
installation, which sped up the extraction process drastically.

The video and audio from the call and audio from the live interview
were recorded with the participant’s consent for further transcript analy-
sis. The experiment started with introducing the features of the system
to the participants by reading the introduction text. The text was kept the
same to minimize the possible bias. We let participants get familiar, ask
questions, play with the system, and make sure that they are comfortable
with it. The maximum time allocated for the familiarity phase is 10 min-
utes. We ensured that participants used every part of the interface at least
two times, and if they did not, we encouraged them to use it. Then we
gave the participants a task that was formulated as such: “Imagine that
you want to listen to something from your library that you have not lis-
tened to in a while. Explore the system and make a playlist for yourself.”

During the interview, the participants were encouraged to try different
settings and engage with the system as much as possible. When they
changed the visualization parameters (architecture, dataset, layer, and
projection), we asked them if they liked or disliked the previous com-
bination. After the users were content with their selection of the tracks
for the playlist, we asked them to fill in the questionnaire8 to assess their
thoughts about the system.

The questionnaire is split into two parts: the first part included back-
ground questions such as age, musical training, familiarity with playlists,
and experience with listening to music. The authors were present to an-
swer any questions the users might have about the questions but did not
interfere beyond that.

The second part of the questionnaire contains questions about the sys-
tem designed to identify which features the system users like, what they

8The questions are available in the Appendix C
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thought about the visualizations on both macro and micro levels, the sys-
tem’s usefulness for music exploration, rediscovery, and playlist creation.
To measure users’ opinions and feedback, we used the 5-point Likert
scale: 1 - Strongly disagree, 2 - Disagree, 3 - Neither agree nor disagree,
4 - Agree, 5 - Strongly agree. Interviewees were asked to be as critical
as possible and encouraged to explain their reasoning behind the choices
they made and think out loud.

5.8 Results and Discussion

The participants of our study are aged 27-39 years with an average age of
30, 7 male and 1 female. They all have some music training ranging from
1 to 20 years, the median of 6, and an average of 8 years. They listen
to music for 0.5-8 hours per day with 1 hour or less actively, less than
50%, 20% on average to playlists. The participants create playlists with
frequency ranging from every day to almost never, with good coverage
of all options. The frequency of desire to rediscover their music ranges
from every day to several times per month, with most of the answers in
the latter category. The broad genres covered by the users’ personal music
collections span mainly electronic, rock and metal.

5.8.1 Interaction, exploration and rediscovery

After analyzing the interviews and the results of the survey (see Table 5.2),
we can see the trend that the system achieves its goal of helping users
to interact, explore and rediscover personal music collections and create
playlists. The feedback is very positive, with every participant having dis-
covered some exciting connections between tracks in their library during
the interviews.

One of the topics that came up in several interviews was about using
segments instead of tracks, segment length, and possible averaging of the
segments. An argument in favor of using segments is that they are short,
concise, can represent better the music evolution with time and span mul-

96



Question Mean ± STD

Liked interacting with system 4.9± 0.4
Had preference for particular model 3.6± 1.2
Preferred over browsing 4.3± 0.7
Preferred over random 4.4± 0.9
Liked big picture 3.8± 1.0
Liked segment groupings 4.4± 0.7
Discovered unexpected connections 4.5± 0.5
Rediscovered something 4.6± 1.1
Want to use for playlist creation 4.1± 1.0
Want to use for inspiration 4.3± 0.7
Had rewarding experience 4.1± 1.1
Had engaging experience 4.5± 0.8

Table 5.2: Summarized results from Likert scale questions

tiple tags, and are easier to perceive as a unit. For example, while it might
be challenging to say which track is more similar to the reference track,
some participants agreed that it is relatively easier to answer the same
question with the segments.

However, multiple participants remarked that the length of 3 seconds
was too short. While the similarity might be easier to judge, it might not
translate well towards track similarity and exploration process and lead
to undesirable behavior during playlist generation. For example, if there
is a segment of low-energy music in the cluster of similarly chill tracks,
but the segment is an interlude in a much more aggressive track, the track
in question will be undesirable in the low-energy playlist. Another issue
with the 3-second segments that was raised is that the duration is too short
for exploration and rediscovery. Some participants mentioned that they
would prefer segments of at least 10 seconds.

One suggestion that came up multiple times is to average embeddings
of several segments. It makes sense for the segments that are similar to
each other. However, if the segments are pretty distinct and are from two
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Figure 5.5: Long complex track highlighted in red

different regions in the embedding space, taking the average might put
the resulting average into a new third region with nothing to do with the
original ones. This problem is exacerbated on a larger scale, where aver-
aging can make tracks that are very complex and span multiple regions in
the embedding space (Figure 5.5) be reduced to several points which are
not representative of the dynamics of the track.

Participants’ opinions varied regarding the ability of the interface to
visualize the entire collection. One of the participants noted that it was
nice that all aggressive and high-energy tracks were on one side with the
more chill and relaxed tracks on the other side (PCA). Other participants
just enjoyed hovering the mouse over the different regions of embedding
space without trying to make sense of the global distribution. Some par-
ticipants enjoyed zooming into random clusters and exploring them with-
out much interaction on the global scale.

Participants’ opinions varied regarding the ability of the interface to
visualize the entire collection. Some participants noted that it was nice
that all aggressive and high-energy tracks were on one side with the more
chill and relaxed tracks on the other side. One participant mentioned
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“(pointing at one side of the visualization) here is hard music, music
that my mother does not like, but if I come here (pointing at the opposite
side), it is more peaceful, relaxing” while moving from one side of the
visualization to the opposite one. The semantics gradients mentioned as
evident from the big picture are (depending on the architecture/dataset):
rock–ambient, electronic–acoustic, vocal–instrumental. The tags from the
training datasets represent those semantics, and it is helpful to see that the
participants agree on those semantics. Several other participants did not
pay any attention to the global distribution and dived right into explor-
ing clusters hovering the mouse over the different regions of embedding
space. Some participants enjoyed zooming into random clusters, while
others did not utilize zoom functionality as much.

Rediscovery was the part of the experience that almost all the par-
ticipants were pleased with and vocal. Ones that were not particularly
keen on rediscovery evaluated the system more in the context of DJing.
Encountering artists and tracks that they have not listened to in a while
happened both during the random walks over the entire space and while
investigating local clusters. The same can be said about unexpected con-
nections, with several participants saying “I would never think to put these
two artists together in a playlist, but it works quite well for these tracks,”
or “if you listen to segments, they sound quite similar in timbre, what will
not happen to full tracks.” Some participants have noted that it was good
to have an audio player in the interface because if they were using the
system outside of the interview, they would stop the exploration process
and listen to the track that they stumbled upon from start to finish.

Interestingly enough, the highlighting functionality of a particular artist
/ album / track / tag became quite divisive — many participants used it to
highlight a tag or an artist either as a seed to go from or as a target that
they wanted to explore. This functionality was most often mentioned as a
favorite in the questionnaire. However, some participants did not engage
with it after the introduction.

As the tags that the models are trained on are pretty generic (guitar,
vocal, rock, chill, electronic, etc.), several participants mentioned that
the models probably are not capable of distinguishing subtle differences
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between sub-genres of their homogeneous collection by pointing out the
segments in some clusters that do not belong together due to stylistic.
One participant noted: “The similarity is not captured well within dance
music.”

Overall, the participants took between 5 to 10 minutes to get famil-
iar with the system and 2 to 20 minutes to explore it, try different visu-
alizations and make a selection that would produce a playlist that they
were satisfied with. However, after they had created the playlist that they
were content with, some participants spent much time continuing explo-
ration of other regions of their collection. Several users mentioned that
there could be other methods to generate a playlist, for example, track- or
artist-based radio that uses the seed segment or track: “Maybe the system
can lasso select tracks for me.” The playlist creation functionality was
mentioned multiple times as a solid use case for using the system after
the novelty would wear off.

5.8.2 Comparison of visualizations

Even if the sample size for the comparison study is not ample to draw
firm conclusions, after analyzing the responses to the question of whether
the participants liked or disliked a particular combination of architec-
ture/dataset/layer/projection, some interesting insights can be drawn. As
mentioned before, all options were anonymized for user testing to remove
potential biases. The only option that could be easily inferred was the pro-
jection, as participants could guess the type of projection just by looking
at the graphs. However, no participants made it evident that they recog-
nized any projections.

Several participants mentioned that they liked two visualizations side-
by-side and used both to select subsets. Some participants pointed out that
different combinations captured well different aspects of similarity: “It
seems that A2D2 (MusiCNN-MTAT) can separate ambient from drums,
while A1D1 (VGG-MSD) gets the timbral aspect of sounds together well”
and took advantage of that by using both at the same time. Multiple par-
ticipants have mentioned the VGG-MSD combination as being suitable
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for timbre similarity.
Among architectures, datasets, layers, and projections, participants

had the strongest preferences for projection options. Most participants
mentioned that the distribution looks more attractive in UMAP and t-SNE
than in PCA and STD-PCA. We attribute it to both t-SNE and UMAP
being non-linear transformations and UMAP preserving distances better
than t-SNE. Non-linearity helps to represent the local distances better at
the cost of the global distribution. The typical comments in favor of PCA
and STD-PCA are that they are faster and capture the global picture much
better. “P1 (STD-PCA) seems to group sounds that I would put together
for DJing”

While participants were encouraged to compare different architec-
tures, datasets, and layers, it took much effort and was less engaging than
exploring the visualizations already in front of them. We conclude that a
separate experiment should present participants with predetermined com-
parison pairs for proper evaluation. Although, all participants answered
positively to the question of them having a favorite combination of archi-
tecture / dataset / layer / projection.

Comparing the architectures coupled with datasets, commonly men-
tioned as good were combinations VGG-MSD (n = 3) and VGG-MTT
(n = 3), a bit less MusiCNN-MTT (n = 2). While VGG is an archi-
tecture from computer vision that was not modified much, and MusiCNN
takes advantage of the music domain knowledge in the filter design, there
was no conclusive evidence for one being preferred more than the other.
Taggram layer was mentioned several times in the preferred combinations
(n = 4), more than the embedding layer (n = 2). It might indicate that the
semantics of the tags is more valuable and representative than the deeper
layer of the neural network.

5.9 Conclusions

We present the interface that allows users to visualize personal music col-
lections. It is the first study proposing a music exploration interface that
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uses state-of-the-art deep audio embeddings to the best of our knowledge.
Notably, the system is open-source, the installation process is well docu-
mented, and it is easily extendable with other models for extracting fea-
ture embeddings.

We evaluated our system via semi-structured interviews with the users.
From the evaluation results, we can conclude that this interface is en-
gaging and rewarding to use for people when they are in the mood for
rediscovery or exploration of personal music collections. Moreover, the
questionnaire results strongly support the usefulness and viability of the
system.

While the performed small-scale evaluation provides initial results
and insights on the preferences for architectures, training datasets, layers,
and projections, a more extensive study need to be conducted to gather
more data to support our initial findings. To provide a better comparative
analysis of our interface to other methods to create playlists (metadata
browsing and random shuffle), it would be useful to implement those as
baselines and provide more ways to create playlists.
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Chapter 6

CONCLUSIONS AND
FUTURE WORK

6.1 Contributions
In this thesis, we explored the concept of music exploration and redis-
covery of personal music collections from the perspective of the deep
auto-tagging systems. The contributions of the work are:

• Conducting an anonymous online survey to identify trends in music
listening, exploration, and discovery behavior with 330 responses.
Considerable evidence shows an opportunity for a better explo-
ration and discovery systems and processes.

• Introduction of a new open dataset for auto-tagging — MTG-Jamendo
with over 55 thousand creative-commons licensed tracks and 183
tags split over three categories: 87 genres, 40 instruments, and 56
mood/theme. It contains over 500 GB of freely downloadable au-
dio, pre-computed mel-spectrograms, and Essentia features.

• Organization of Emotion and theme recognition in music using Ja-
mendo task within the Multimedia Benchmarking Initiative (Medi-
aEval) in 2019–2021. In this way, we promote usage of the MTG-
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Jamendo dataset for auto-tagging and provide a framework for re-
searchers to build better auto-tagging systems for moods and themes.
After analyzing the results of three years of the task, we identify the
approaches that are high-performing or promising.

• Comparison of different collaborative filtering and content-based
latent spaces of the state-of-the-art auto-tagging systems regarding
the nearest-neighbor similarity. We identified that the choice of
the training dataset (MSD vs. MTAT) tends to produce the most
dissimilar spaces, followed by the architecture (VGG, MusiCNN),
and then layer.

• Performing an online experiment to evaluate a selection of dissimi-
lar latent spaces in the context of music similarity for music recom-
mendation. The results show that the embedding spaces from the
penultimate layer perform better than taggrams activations in terms
of subjective music similarity in the context of recommendations
achieving a rating of at least quite similar.

• Building of a web app that allows exploring the MTG-Jamendo
dataset from the perspective of state-of-the-art auto-tagging sys-
tems. It serves as a proof-of-concept interface that enables quick
qualitative evaluation of deep learning architectures.

• Creation of the framework that uses state-of-the-art deep auto-tagging
systems to process the personal music collections and visualize
them in the web interface providing a multi-faceted novel way for
users to explore and rediscover their collections. We have evalu-
ated the interface via semi-structured interviews, with the results
confirming the value of such an interface for the rediscovery of per-
sonal music collections and playlist creation.
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6.2 Limitations

One of the most significant limitations is the availability of the music
data. Even though we introduced the MTG-Jamendo dataset, the indus-
trial catalogs are more extensive in orders of magnitude. With the larger
amount of data, it would be possible to train better models and evaluate
them within the MediaEval challenge. Moreover, the quality of the MTG-
Jamendo dataset still will not match the quality of catalogs of commercial
music.

Another limitation is that we mainly work with the architectures and
embeddings widely known in the MIR community in this thesis and do
not require a lot of computation power. Many modern architectures are
relatively better, but usually, they are more complex and thus require more
computational resources and data to train. However, the framework intro-
duced in this thesis can be used in the industrial scenario to extract and
evaluate embeddings on a larger scale.

While the evaluation of the interface within this thesis provides excit-
ing and valuable discussion and conclusions, the number of participants
can be considered a bit small1. While we focus on the qualitative results
and insights from the interview, the quantitative results should be inter-
preted with the awareness of the respective biases.

6.3 Open science and reproducibility

We follow the principles of open sciences and make all the code and data
produced in this thesis available online to foster reproducibility.

All code related to MTG-Jamendo dataset (Chapter 2) is released on
the GitHub2 under Apache 2.0 license. All metadata is available under
Creative Commons BY-NC-SA 4.0 license3. All audio is available under
creative commons licenses. Details for individual track licenses are in the

1This thesis was partially conducted during the COVID-19 pandemic
2github.com/MTG/mtg-jamendo-dataset
3creativecommons.org/licenses/by-nc-sa/4.0
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audio_licenses.txt file in the repository. The repository includes
all the pre-processing code that was used to generate the final version
of the dataset, scripts to download the dataset (audio, spectrograms, pre-
computed features), and the baseline PyTorch code. All instructions are
included in the README file. We mirror the metadata in Zenodo4, how-
ever, as the audio data is too large to be hosted on Zenodo, it is hosted on
the MTG servers (Spain) with the mirror on the Google Drive.

While the original baseline code for the baseline from Chapter 2 is
part of the MTG-Jamendo repository, the latest version of the baseline is
reimplemented with PyTorch Lightning and published on GitHub 5 under
Apache 2.0 license. The results reported in the Chapter 2 of this thesis
use the seed of 0 and the code from v0.1.0 tag.

The code for the MediaEval task is part of the MTG-Jamendo dataset,
and the code for the task website, as well as the code to process submis-
sions and generate results page, is available on GitHub.6. The websites
for all editions are hosted with the help of GitHub Pages and are available
under their URLs (see Chapter 3). We encouraged all teams to open-
source their code, and the individual submissions have links to the team
repositories if those were provided.

There are several code repositories for similarity experiments (Chap-
ter 4) that are published on GitHub:

• Analysis and plots7 (Apache 2.0)

• Interface for online experiment8 (Apache 2.0)

We also publish the companion website9 with more figures. The Latent-
Jam dataset in published in Zenodo10 under CC BY-NC-SA 4.0 license.

4doi.org/10.5281/zenodo.3826813
5github.com/philtgun/mtg-jamendo-baseline
6github.com/multimediaeval/

2019-Emotion-and-Theme-Recognition-in-Music-Task
7github.com/philtgun/compare-embeddings
8github.com/philtgun/similarity-experiment
9philtgun.me/deep-neighbors

10doi.org/10.5281/zenodo.6010468
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Code for exploration system (Chapter 5) is published on GitHub11 un-
der Afero GPL 3.0 License. We provide all the instructions for processing
audio and running the system locally in the README. There is an online
version12 of the system that allows users to explore the MTG-Jamendo
dataset.

6.4 Future work

6.4.1 Interface

While the visualization of personal music collections can provide users
with an engaging and rewarding experience, the research on such inter-
faces is decades old, and we still do not see any of those in current stream-
ing services. One of the significant issues that we mentioned in Chapter 1
is that exploration and discovery are challenging to quantify. Some met-
rics involve serendipity, entropy, user engagement, etc. However, the suc-
cess of music exploration and discovery is only tangible in the long term
and needs to be evaluated appropriately. It is not easy to perform long-
term user studies, but it is necessary for this type of research.

Although Chapter 5 provides initial findings and insights on the visu-
alization interface, the obvious next step would be a more extensive study
with possible integration with popular music streaming platforms, so the
participants are not limited to the ones that have digital music collec-
tions. However, this research is difficult to conduct without a partnership
with the music streaming platform. We successfully collaborated with
Jamendo to extract audio features for their music and evaluated them in
terms of music similarity, but the integration of the visualization interface
is on a much larger scope than a single internship.

11github.com/MTG/music-explore
12music-explore.upf.edu
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6.4.2 MediaEval

After three years of MediaEval task organization, it is evident that the
performance of the submitted systems hit a glass ceiling. We have identi-
fied that the unevenness of data distribution and a limited amount of data
might be impeding the advances of the task. Thus, the extension of this
task needs to be investigated, possibly with the introduction of several
sub-tasks.

One possibility is to introduce a regression sub-task with predicting
arousal and valence, with the ground truth derived from the sentiment
analysis of the tags. This sub-task was considered before the first edition
of the task in 2019 but was discarded. The reason is the intermediate step
to generate the ground truth for arousal and valence values that depend on
the quality of the vocabulary mapping.

6.4.3 Latent spaces

With the introduction of more systems that are focused on producing the
best embeddings either for one specific or multiple MIR tasks (Dhari-
wal et al., 2020; Castellon et al., 2021; Turian et al., 2022), the proposed
framework can take advantage of the better and newer architectures and
embeddings for the visualization of music. In the hypothetical scenario,
if the streaming services would provide the embeddings via the API, it is
possible to adapt the proposed system for visualizing the users’ personal
libraries or other collections.

6.5 Concluding remarks

We hope that this thesis enables and encourages more research on music
discovery and exploration and industry adoption of the concepts and in-
terfaces introduced. We stress the importance of user-centric approaches
similar to those used in this thesis to evaluate such systems.

While the paradigm of music consumption has changed drastically in
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the last decades, the concept of personal collections and music rediscov-
ery should not be ignored by the streaming platforms.
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Appendix B

SURVEY ON MUSIC
LISTENING, DISCOVERY
AND EXPLORATION
BEHAVIOR

This is a survey that was shared on the internet.
Background questions:
• What gender do you identify as? Man / Woman / Prefer not to say

/ Other
• What is your age? 18–24 / 25–34 / 35–44 / 45–54 / 55–65 / Prefer

not to say
• Which country do you currently live in? Prefer not to say / 204

countries
General music questions:
• Please select how often do you engage in the following activities:

(Never / Rarely / Sometimes / Very often / Always)
– I write about music on social media
– I keep track of new music that I come across (e.g. new artists

or recordings)
– I read or search the internet for things related to music
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– I do music-related activities in my free time
– I try to find out more about music I’m not familiar with
– I pick certain music to motivate or excite me
– I listen to music to trigger the associated memories / put my-

self into associated mood
• How would you describe your musical background?

– I don’t have any musical training
– I have some musical training
– I am a hobbyist/amateur musician
– I am a professional musician

• On average, how many hours per day do you spend listening to
music? Less than 1 / 1–2 / 3–4 / 5–6 / 7–8 / More than 8

• Out of those hours, how many hours do you spend listening ac-
tively? (You put the music not just in the background, and you are
not doing anything else at the same time that takes away your focus.
For example, listening during the commute, before going to sleep,
checking out new album.) Less than 0.5 / 0.5–1 / 1–2 / 3–4 / 5–6 /
7–8 / More than 8

• How do you get access to the music you listen to? (If you listen to
music from multiple places, indicate where do you spend the most
time)

– Streaming (e.g. Spotify, Apple Music, Deezer, YouTube, etc.)
– Owned music (e.g. digital, vinyls, BandCamp)
– Other

• If you use streaming services, what sources do you usually use to
listen to music? (If you don’t use streaming services, you can select
the options that you imagine yourself using.)

– I don’t use streaming services
– Something quick from the home page
– My library/artists that I follow and know
– Playlists created by me
– Playlists created by other users
– Playlists curated by platform (e.g. Evening Chillout, Rock

Classics, Essential Trap)
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– Algorithmically generated playlists of your music (e.g. your
daily/genre/artist mixes)

– Algorithmically generated playlists of new music (e.g. dis-
cover weekly, new releases)

– Algorithmically recommended albums/artists (e.g. because
you liked X, based on your activity)

– Other
• Do you usually listen to playlists made by others? What kind? (This

question refers to situation when you know what you want to listen
to.)

– I don’t typically listen to playlists
– Based on genre / style (e.g. rock, pop, metal, reggae, deep

house, symphonic metal)
– Based on culture / country of origin, location / regional scene

(e.g. oriental metal, J-Pop, bands from Barcelona)
– Based on moods / themes (e.g. chill, party, sleep, workout,

melancholic)
– Based on instrumentation (e.g. female vocal, electric guitar,

sax, electronic synths)
– Based on decade (e.g. 80s, 90s, 00s, 10s)
– Based on editorial metadata (e.g. artists, music producers,

recording labels)
– Other

• How large is your personal music library? (if you have any) (You
can provide answer in whatever units that you are comfortable,
e.g. 50 artists, 2000 tracks, 500 hours. Answer this question in
terms of whatever you consider your “personal music library”, e.g.
followed/saved artists/albums/tracks on streaming services, bought
records on Bandcamp, music stored on hard drive, number of phys-
ical records.)

Music exploration and discovery:

• How often do you have a desire to listen to new music?
• How often would you like to listen to something from your collec-

tion/library that you haven’t listened in a long time?
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• How often do you ACTUALLY listen to something from your col-
lection/library that you haven’t listened in a long time?

– Every day
– Once or several times per week
– Once or several times per month
– Once or several times per year
– Never or almost never

• Why do you think you don’t listen to those parts of your collec-
tion/library as often as you would like? (if your answers to previous
two questions are different)

• What are your go-to sources to discover new music?
– Streaming platform discover functionality
– Social recommendations (e.g. asking a friend)
– Music journalism (e.g. review articles, best albums of the

year)
– Influencers or highly reputed journalists that I follow
– Music identification apps (e.g. Shazam)
– Music stores (e.g., new arrivals, charts, selling right now on

Bandcamp, album of the day)
– Other

• What is your usual music discovery and exploration strategy? (For
example, you might want to find some music for a specific context
or genre that you heard about. Everyone is different, feel free to
describe your strategy.)

– I know what I am looking for and/or research a specific topic
(e.g. trance metal, side project of artist X)

– I have a vague idea of what I want to listen (e.g. something
jazzy, melacholic)

– I have no idea, usually I am pretty open
– Other

• When you are looking for new music, which of these types of infor-
mation is the most useful for you to explore? (Probably you use mix
of these terms, please select the option that is the most important to
you)
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– Genre / style (e.g. rock, pop, metal, reggae, deep house, sym-
phonic metal)

– Culture / country of origin, location / regional scene (e.g. ori-
ental metal, J-Pop, bands from Barcelona)

– Moods / themes (e.g. chill, party, sleep, workout, melan-
cholic)

– Instruments (e.g. female vocal, electric guitar, sax, electronic
synths)

– Decade (e.g. 80s, 90s, 00s, 10s)
– Editorial metadata (e.g. relations between artists, music pro-

ducers, recording labels)
– Other

• How many new artists have you discovered in last year? 0 / 1–2 /
3–4 / 5–10 / 10–20 / More than 20

• In which context do you usually like to explore and discover new
music? (E.g. jogging, workout, in commute, chilling at home)

• What is your motivation for music exploration and discovery?
– Curiosity
– Getting tired of listening to the same music
– Getting more of my favorite type of music
– Desire to learn about new music
– Keeping up with trends
– Pushing myself out of comfort zone
– Connecting with people
– Other

• Talking about modern music streaming services, do you agree or
disagree with the following statements: (Strongly disagree / Dis-
agree / Neither agree nor disagree / Agree / Strongly agree)

– There are many options for music exploration and discovery
– I am satisfied with the options for music exploration and dis-

covery that are available
– The way terms ”music exploration and discovery” are used

aligns well with my perception
– I would like more functionality to rediscover my library
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– I would like to interact with my library in more ways than
current systems allow

– I can usually quickly find the music that I want to listen to
– I have discovered music that is different from what I usually

listen to through recommendations
– There should be more recommendations outside of my com-

fort zone
– It is easy for me to get an overview and manage my library

• Do you have any additional comments or thoughts to share regard-
ing music exploration and discovery?
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Appendix C

INTERVIEW
QUESTIONNAIRE

This is a questionnaire that was presented to the users after the semi-
structured interview.

Background questions:
• Name
• Age
• Gender: Man / Woman / Prefer not to say / Other
• Do you have any form of musical training (either formal or just

classes): Yes / No
• If you answered yes to the previous question, how many years?
• How many hours on average do you listen to music per day (both

actively and in the background)?
• How many hours on average do you ACTIVELY listen to music per

day?
• Where do you usually listen to music: Streaming platforms / Per-

sonal collection; Other
• Which percentage of the time that you listen to music do you listen

to playlists (including created by others, or algorithmically gener-
ated)?

• How often do you create playlists?
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• How often do you feel the desire to listen to something from your
collection that you haven’t listened in a while?

– Every day
– Once or several times per week
– Once or several times per month
– Once or several times per year
– Never or almost never

Questions about the system:

• Which features of the interface is your favorite? (select at most 3)
• Which features of the interface you dislike or have troubles with?

(if any)
– Selecting tags to visualize
– Selecting artists to visualize
– Seeing different architecture/dataset/layer side by side
– Seeing different projections side by side of the same model
– Reducing the number of segments visualized to see more tracks

at the same time
– Highlighting particular artists/albums/tags/tracks
– Clicking/hovering the points to listen to the segment
– Coupled labels on graphs
– Coupled selection of graphs

• Did you find any particular combination of architecture/dataset/layer/projection
more interesting or meaningful than others: Yes / No

• Which combination of architecture/dataset/layer/projection do you
like the most?

• Select whether you agree or disagree with the following statements:
(Strongly disagree / Disagree / Neither agree nor disagree / Agree /
Strongly agree)

– I like interacting with the system
– I have a preference for a particular architecture/dataset/layer/projection
– I found the system more useful or interesting to explore my

music collection comparing to regular browsing by metadata
(artists/albums/tracks/genres)

– I found the system more useful or interesting to explore my
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music collection compared to random shuffle
– I think that the visualizations captured a good overview of my

library
– I think that the visualizations managed to capture the similar-

ity between the track segments
– I feel that I discovered some interesting connections between

the tracks in my library that were not obvious to me before
– This system made me want to listen to some parts of my music

collection that I haven’t listened to in a while
– I would like to sometimes use this system for playlist creation
– I would like to use this system to get ideas when I am not sure

what to listen to next
– I feel that interacting with the system is a rewarding experi-

ence for me
– I think that interacting with the system is an engaging experi-

ence for me
If you have any comments or suggestions, please write them here.
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