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Summary  
 

Obesity is considered a modifiable risk factor for cognitive impairment that may contribute 

to perpetuating the vicious cycle of overeating and weight gain. Compelling evidence in animal 

models has demonstrated the role of the gut microbiome on cognition. In particular, the learning 

and memory domain has recently been associated with specific gut microbiota composition and 

metabolites in mice. Nevertheless, while the influence of the gut microbiome in metabolic health 

and disease is increasingly recognized, evidence regarding its impact on obesity-associated 

cognitive impairment in humans is still scarce.  

This thesis aims to describe the impact of the gut microbiome on cognitive function in 

middle-aged subjects with obesity. For this purpose, a prospective longitudinal case-control study 

(n=114) of subjects with and without obesity was conducted. Brain function was assessed through 

neurocognitive testing, including the California Verbal Learning Test (CVLT) and Total Digit 

Span (TDS) for short-term and working memory, respectively, and the Stroop Color and Word 

Test (SCWT) for inhibitory control, a key subdomain of executive function. Brain structure was 

studied through the analysis of gray matter volume by magnetic resonance imaging. Fecal 

metagenomics were explored through shotgun sequencing and fecal/plasma metabolomics by 

high-performance liquid chromatography-electrospray ionization tandem mass spectrometry and 

nuclear magnetic resonance. Some of these parameters were also measured in two independent 

cohorts (n=24, n=970). Fecal microbiota transplantation from humans to mice were performed. 

Subsequent neuropsychological assessment and study of prefrontal cortex gene expression were 

conducted in mice, in an attempt to identify transmissible factors that impact the mouse brain’s 

transcriptome.  

The results point to the existence of an ecosystem of gut bacteria that is differentially linked 

to memory and inhibitory control in subjects with and without obesity. Firstly, subjects with 

obesity presented deficits in short-term memory, working memory and inhibitory control as 

indicated by lower scores in the CVLT, TDS and SCWT than their counterparts without obesity. 

Secondly, a characteristic microbiome profile was associated with these cognitive scores after 

adjusting for the main confounding factors. Convergent and divergent patterns of bacterial 

species, functions and circulating metabolites were identified at baseline and one-year follow-up 

and were mostly replicated in independent cohorts. Overall, altered plasma and fecal levels of 

tryptophan, tyrosine and phenylalanine aromatic amino acids (AAA) and their catabolites, 

circulating metabolites involved in one-carbon (1C) metabolism and bacterial functions related to 

these pathways were linked to memory and inhibitory control scores. In particular, the alterations 

of memory and inhibitory control and tryptophan-related metagenomic functions and levels were 
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only observed in subjects with obesity, whereas disturbances in methionine and betaine pathways 

involved in 1C metabolism were observed in individuals without obesity. Thirdly, the gray matter 

volume of brain areas involved in memory and inhibitory control such as the hippocampus, the 

frontal inferior orbital or the anterior cingulate cortex were longitudinally associated with the 

CVLT, TDS and SCWT scores, respectively, and concordantly with the cognition-gut 

microbiome relationships. Notably, in individuals with obesity, no significant associations among 

memory domain, brain volumes and metagenomic functions were observed. Finally, cognitive 

deficits from human donors with obesity were phenocopied in recipient mice through fecal 

microbiota transplantation, leading to decreased memory and inhibition-like behavior scores in 

mice. Donors’ metagenomic species and functions associated with human cognitive tests were 

also linked to the cognition-like performance in mice. The mice RNA sequencing of the prefrontal 

cortex revealed AAA- and 1C-related genes simultaneously associated in the same direction with 

the mice cognitive tests and different bacterial clusters.  

Altogether, these innovative findings suggest bidirectional host-microbiome networks that 

may impact brain physiology and highlight the potential diagnostic and therapeutic value of 

targeting the gut microbiome for memory and inhibitory control impairment, particularly in 

subjects with obesity. Further studies to confirm these results and assess their clinical implications 

are warranted. 
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Resum 
 

L'obesitat es considera un factor de risc modificable per al deteriorament cognitiu que pot 

contribuir a perpetuar el cercle viciós del menjar en excés i l'augment de pes. Existeixen 

evidències convincents en models animals que han demostrat un paper del microbioma intestinal 

en la cognició. En particular, el domini d'aprenentatge i memòria s'ha associat recentment amb la 

composició i metabòlits específics de la microbiota intestinal en ratolins. No obstant això, en 

humans, tot i que la influència del microbioma intestinal en la salut metabòlica i la malaltia és 

cada cop més reconeguda, el seu impacte en el deteriorament cognitiu associat a l'obesitat és 

encara escàs. 

Aquesta tesi té com a objectiu descriure l'impacte del microbioma intestinal en la funció 

cognitiva en subjectes de mitjana edat amb obesitat. Amb aquesta finalitat, es va realitzar un estudi 

longitudinal prospectiu de casos i controls (n=114) de subjectes amb i sense obesitat. La funció 

cerebral es va avaluar mitjançant proves neurocognitives, incloent el California Verbal Learning 

Test (CVLT) y el Total Digit Span (TDS) per a la memòria a curt termini i la memòria de treball, 

respectivament, y el Stroop Color and Word Test (SCWT) per al control inhibitori, un subdomini 

clau de la funció executiva. Es va estudiar l'estructura del cervell analitzant el volum de matèria 

grisa mitjançant imatges de ressonància magnètica. La metagenòmica fecal es va explorar 

mitjançant la seqüenciació shotgun i la metabolòmica fecal/plasma mitjançant espectrometria de 

masses en tàndem de cromatografia líquida d'alt rendiment amb ionització d’electrospray i també 

per ressonància magnètica nuclear. Alguns d'aquests paràmetres també es van mesurar en dues 

cohorts independents (n=24, n=970). Es van realitzar experiments de trasplantament de 

microbiota fecal i, posteriorment, una avaluació neuropsicològica i un estudi de l'expressió gènica 

de l'escorça prefrontal en ratolins, en un intent d'identificar els factors transmissibles que afecten 

el transcriptoma del cervell del ratolí. 

Els resultats apunten a l'existència d'un ecosistema de bacteris intestinals relacionat amb la 

memòria i el control inhibitori de manera diferencial en subjectes amb i sense obesitat. En primer 

lloc, els subjectes amb obesitat presentaven dèficits en la memòria a curt termini, la memòria de 

treball i el control inhibitori que es mostraven com a puntuacions més baixes en CVLT, TDS i 

SCWT que les persones sense obesitat. En segon lloc, es va associar un perfil de microbioma 

característic amb aquestes puntuacions cognitives després d'ajustar-se als principals factors de 

confusió. Es va identificar un ecosistema d’espècies bacterianes, funcions metabòliques i 

metabòlits circulants que es trobaven associats als tests cognitius, tant al principi de l’estudi a 

nivell basal com després de seguiment d'un any. Aquestes observacions es van replicar 

majoritàriament en cohorts independents. En general, els nivells plasmàtics i fecals alterats 
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d'aminoàcids aromàtics (AAA) triptòfan, tirosina i fenilalanina i els seus catabòlits, així com 

metabòlits implicats en el metabolisme d'un carboni (1C) i funcions bacterianes relacionades amb 

aquestes vies es van relacionar amb la memòria i les puntuacions de control inhibitori. En 

particular, les alteracions relacionades amb la memòria i el control inhibitori i diferents funcions 

metagenòmiques relacionades amb el triptòfan només es van observar en subjectes amb obesitat, 

mentre que es van observar alteracions en les vies de la metionina i la betaïna implicades en el 

metabolisme 1C en individus sense obesitat. En tercer lloc, el volum de matèria grisa de les àrees 

cerebrals implicades en la memòria i el control inhibitori com l'hipocamp, l'orbital frontal inferior 

o l'escorça cingulada anterior es van associar longitudinalment amb les puntuacions CVLT, TDS 

i SCWT, respectivament i en concordança amb les relacions cognitives-microbioma intestinal. En 

particular, no es van observar associacions significatives entre les puntuacions de memòria, els 

volums cerebrals i les funcions metagenòmiques en individus amb obesitat. Finalment, els dèficits 

cognitius de donants humans amb obesitat es van fenocopiar en ratolins receptors mitjançant 

experiments de trasplantament de microbiota fecal, donant lloc a una disminució de les 

puntuacions de comportament semblants a la inhibició i memòria en els ratolins. Les espècies 

bacterianes del donant i les funcions metagenòmiques associades a les proves cognitives humanes 

també es van relacionar amb un rendiment cognitiu similar dels ratolins. La seqüenciació de 

l'ARN del ratolí de l'escorça prefrontal va revelar gens relacionats amb AAA i 1C associats 

simultàniament amb les tasques cognitives del ratolí i diferents grups de bacteris de la microbiota 

en la mateixa direcció.  

En conjunt, aquestes troballes innovadores suggereixen xarxes hoste-microbioma 

bidireccionals que poden afectar la fisiologia del cervell i destaquen el valor potencial diagnòstic 

i terapèutic de la microbiota intestinal com una eina d’estudi per al deteriorament de la memòria 

i el control inhibitori, especialment en subjectes amb obesitat. Es requereixen estudis addicionals 

per confirmar aquests resultats i avaluar les seves implicacions clíniques. 
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Resumen 
 

La obesidad se considera un factor de riesgo modificable de deterioro cognitivo, el cual 

parece contribuir a perpetuar el círculo vicioso de la sobrealimentación y finalmente, el aumento 

de peso. Evidencia convincente en modelos animales ha demostrado el papel del microbioma 

intestinal en la cognición. En particular, el dominio del aprendizaje y la memoria se ha asociado 

recientemente con la composición y metabolitos específicos del microbioma en ratones. Sin 

embargo, aunque la influencia del microbioma intestinal tanto en los estados fisiológicos como 

patológicos metabólicos, es cada vez más reconocida, la evidencia disponible acerca del impacto 

en el deterioro cognitivo asociado a la obesidad en humanos, sigue siendo escasa.  

Esta tesis tiene como objetivo describir el impacto del microbioma intestinal en la función 

cognitiva de sujetos de mediana edad con obesidad. Para ello, se realizó un estudio prospectivo 

longitudinal de casos y controles (n=114) incluyendo sujetos con y sin obesidad. La función 

cerebral se evaluó mediante pruebas neurocognitivas, incluyendo el California Verbal Learning 

Test (CVLT) y el Total Digit Span (TDS) para la memoria a corto plazo y de trabajo, 

respectivamente, y el Stroop Color and Word Test (SCWT) para el control inhibitorio, un 

subdominio clave de la función ejecutiva. La estructura del cerebro se estudió mediante el análisis 

del volumen de materia gris mediante resonancia magnética. La metagenómica fecal se exploró 

mediante secuenciación shotgun y la metabolómica fecal/plasmática mediante cromatografía 

líquida de alto rendimiento con espectrometría de masas en tándem de ionización por 

electropulverización y resonancia magnética nuclear. Algunos de los parámetros anteriores 

también fueron medidos en dos cohortes independientes (n=24, n=970). El diseño experimental 

incluyó modelos de trasplante de microbiota fecal de humanos a ratones. Posteriormente, estos 

ratones fueron sometidos a una evaluación neuropsicológica y al estudio de la expresión génica 

de la corteza prefrontal, en un intento de identificar factores transmisibles que pudiesen afectan 

el transcriptoma del cerebro del ratón.  

Los resultados apuntan a la existencia de un ecosistema de bacterias intestinales vinculadas 

a la memoria y al control inhibitorio de forma diferente en sujetos con y sin obesidad. En primer 

lugar, los sujetos con obesidad presentaron déficits en la memoria a corto plazo, la memoria de 

trabajo y el control inhibitorio mostrando puntuaciones más bajas en el CVLT, TDS y SCWT que 

los sujetos sin obesidad. En segundo lugar, un perfil de microbioma característico se asoció con 

estas puntuaciones cognitivas después de ajustar por los principales factores de confusión. Se 

identificaron patrones convergentes y divergentes de especies bacterianas, funciones y 

metabolitos circulantes al inicio del estudio y al año de seguimiento, que en su mayoría se 

replicaron en cohortes independientes. En general, niveles alterados en plasma y heces de los 
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aminoácidos aromáticos (AAA) triptófano, tirosina y fenilalanina y sus catabolitos, metabolitos 

involucrados en el metabolismo de un carbono (1C) y las funciones bacterianas relacionadas con 

estas vías se relacionaron con las puntuaciones de memoria y de control inhibitorio. En particular, 

las alteraciones relacionadas con la memoria y el control inhibitorio y los niveles circulantes y 

funciones metagenómicas relacionadas con el triptófano sólo se observaron en individuos con 

obesidad, mientras que las alteraciones en las vías de la metionina y betaína involucradas en el 

metabolismo del 1C, se observaron en individuos sin obesidad. En tercer lugar, el volumen de 

materia gris de las áreas cerebrales involucradas en la memoria y el control inhibitorio, como el 

hipocampo, la corteza orbitofrontal inferior o la corteza cingulada anterior, se asociaron 

longitudinalmente con las puntuaciones CVLT, TDS y SCWT, respectivamente, y de forma 

concordante con las relaciones cognición-microbioma intestinal. En particular, no se observaron 

asociaciones significativas entre las puntuaciones de memoria, los volúmenes cerebrales y las 

funciones metagenómicas en individuos con obesidad. Finalmente, los déficits cognitivos de 

donantes humanos con obesidad fueron replicados en ratones receptores a través del trasplante de 

microbiota fecal, lo que condujo a una disminución en las puntuaciones similares a memoria y 

control inhibitorio en ratones. Las especies y funciones bacterianas del donante asociadas con las 

puntuaciones cognitivas en humanos también se relacionaron con el desempeño cognitivo en 

ratones. Por último, la secuenciación del ARN de la corteza prefrontal en estos ratones reveló 

genes relacionados con el metabolismo de AAA y 1C asociados simultáneamente y en la misma 

dirección con las tareas cognitivas de los ratones y diferentes grupos bacterianos del microbioma 

intestinal.  

En conjunto, estos hallazgos innovadores sugieren la existencia de redes bidireccionales 

huésped-microbioma que podrían jugar un papel en la fisiología cerebral. Además, estos 

resultados resaltan el valor diagnóstico y terapéutico potencial del microbioma intestinal en el 

deterioro de la memoria y el control inhibitorio, particularmente en sujetos con obesidad. No 

obstante, se necesitan más estudios para confirmar estos resultados y evaluar sus implicaciones 

clínicas. 
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1. INTRODUCTION 

1.1. Obesity 

1.1.1. Definition and classification  

Obesity is a multifactorial chronic disease in which abnormal or excess body fat impairs 

physical and mental health, increases the risk of long-term medical complications1 and reduces 

lifespan.2  

Classically, body mass index (BMI) has been a simple and an available index widely used 

to classify overweight and obesity in adults. It is defined as body weight in kilograms divided by 

height in square meters (kg/m2). Based on the BMI, the World Health Organization (WHO)3 

defined obesity as a BMI equal or higher than 30 kg/m2 (Table 1). 

  

Table 1. Nutritional status based on BMI according to WHO (adapted from WHO, 2021).3 

Nutritional Status Body mass index (kg/m2) 

Underweight < 18.5 

Normal weight 18.5 – 24.9 

Overweight, pre-obesity 25.0 – 29.9 

Obesity: ≥ 30 

                   Class I   30.0 – 34.9 

                   Class II 35.0 – 39.9 

                   Class III ≥ 40 

 

BMI is fairly well correlated to adiposity, adverse health outcomes and overall mortality.  

Globally, high BMI accounted for 4 million deaths worldwide, mainly due to cardiovascular 

disease.4 Moreover, figures get worst in parallel to the BMI. Thus, it is estimated2 a median 

reduction of survival of 2-4 years at BMI between 30-35 kg/m2 and 8-10 years at BMI of 40-45 

kg/m2.  

 

1.1.2.   Epidemiology 

The global prevalence of obesity was 13% among adults in 2016.5 In Europe, obesity was 

present in roughly 23% of women and 20% of men6 whereas in Spain, obesity was observed in 

21.6% of Spanish adult population; more specifically, 22.8% among men and 20.5% among 

women.7   
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Unfortunately, the evolution of data shows alarming figures. According to the WHO, 

worldwide obesity has nearly tripled since 1975. In 2016, more than 1.9 billion adults were 

overweight and of these, 650 million had obesity.5 A similar tendency is shown in Spain. The 

prevalence of obesity is steadily and progressively rising in all groups of ages and both sexes. 

During the period 1993-2006, class I obesity, class II obesity and class III obesity exhibited a 

relative increment of 50%, 110% and 240% of their previous prevalence, respectively.8 It is 

important to note the alarming rate of class III obesity which involves more serious difficulties 

and a therapeutic challenge.  

In addition to the adverse health consequences; obesity and its associated diseases have a 

negative economic impact on the health care system. In the United States, obesity-related medical 

care costs were estimated to be $78.5 billion in 1998, rising to $147 billion per year by 2008.9 An 

increase of medical costs by $48-66 billion per year in parallel to the boost of obesity and 

combined-entities are predicted by 2030.10 In Spain, direct costs related to overweight already 

account for 9.7% of healthcare budget.11 

Therefore, preventive and therapeutic strategies are needed to reverse this trend, improve 

the adverse health consequences of obesity and cut down the medical expenses.  

 

1.1.3.  Pathophysiology and etiology 

Energy homeostasis is the biological process responsible for the maintenance of a balance 

between energy intake and energy expenditure over time. The central nervous system, especially 

the neurons in the hypothalamic arcuate nucleus and nucleus of the solitary tract, play a key role 

in this homeostatic system.12 Moreover, other brain areas are involved, such as the cortico-limbic 

system and the hindbrain.13 The central nervous system integrates inputs from long-term energy 

storage from adipose tissue, such as leptin and short-term meal-related signal, like nutrients and 

gut-derived molecules; developing behavioral, autonomic and neuroendocrine responses to 

maintain energy homeostasis.14 Any dysfunction of this homeostatic control system might develop 

obesity.  

Obesity, by definition, results from consumption of calories in excess of ongoing 

requirements;15 resulting in energy storage in the form of lipids in adipose tissue, which expands 

to accommodate this storage.16 The expansion of adipose tissue comprises two features: the ability 

to increase in size, hypertrophy, and in number, hyperplasia.17 As a result, ectopic locations of 

adipocytes in organs and tissues where they are not normally found, like skeletal muscle, liver, 

heart and pancreas determine an important lipid overload, called lipotoxicity, which finally 

impairs the functions of these tissues and organs.18  
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Furthermore, adipose tissue produces factors with endocrine and paracrine functions, such 

as leptin, adiponectin or pro-inflammatory cytokines, which interact with the central nervous 

system and peripheral organs and contribute to insulin resistance and chronic inflammation 

underlying obesity and related-disorders.19,20  

Moreover, the adipose tissue physiology is even more complex.21 Apart from white adipose 

tissue, the classically known as adipose tissue, specialized for energy storage and mobilization;22 

brown adipose tissue has been identified with opposite action to the former. Brown adipose tissue 

is implicated in adaptative thermogenesis and may prevent obesity modulating energy 

expenditure. It also has secretory function. Brown adipose tissue activity seems to be altered in 

obesity.23 Finally, beige adipocytes, the latest identified, appear to be bifunctional, having the 

capacity to switch between energy storage and energy dissipation phenotype.24  

Genetic, developmental and environmental forces affect this energy homeostasis system 

promoting obesity25 (Figure 1):  

 

Figure 1. Pathophysiology and etiology of obesity. Genetic and environmental factors could impact energy 

homeostasis promoting endocrine, autonomic and behavioral responses converging on a positive or negative energy 

balance. α-MSH, α-Melanocyte-stimulating hormone; CCK, cholecystokinin; GLP-1 glucagon-like peptide-1; EDCs, 

endocrine-disrupting chemicals; MC4R, melanocortin-4 receptor; NPY/AgRP, neuropeptide Y/agouti-related protein; 

POMC/CART proopiomelanocortin/cocaine-and amphetamine-regulated transcript; PYY, peptide YY (original 

illustration by Arnoriaga-Rodríguez, 2021).  
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Genetic factors: Obesity is mainly considered a polygenic disease. More than 140 genetic 

regions have been related to different adiposity measures.26 Monogenic obesity is rare; mutations 

in the melanocortin-4 receptor (MC4R),27 leptin receptor28 or leptin deficiency29 have been 

identified, to name just a few.   

Epigenetic modifications: Genetic predisposition, ageing and environmental factors can 

interact with the human epigenome contributing to obesity through DNA methylation, histone 

modifications and RNA-mediated processes.30 

Obesogenic environment: It refers to the influences that the environment, opportunities and 

living conditions exert in the development of obesity.31 It includes dietary patterns,32 sedentary 

lifestyle,33 overeating and stress,34 sleep disturbances35 and socio-demographic indicators,36 

among others.  

Several diseases and treatments: Endocrine disorders37 and medications, such as insulin, 

secretagogues, thiazolidinediones can promote obesity. This is also the case of some 

antipsychotic, antidepressants and antiepileptic drugs.38  

 

In addition, there are other novel factors involved in obesity development that have had a 

great impact in the last decade, including:  

Gut microbiota: The community of microorganism that live in the digestive tract acts 

through an integrated host signaling pathway to regulate energy storage.39 Specific bacteria 

profiles have been identified in obesity40 and this hypothesis has been supported by the 

transmission of obesity phenotype via fecal microbiota transplant from obese to lean mice.41 

Endocrine-disrupting chemicals (EDCs): Exogenous chemicals such as tributyltin, 

bisphenol A, flame retardants, polychlorinated biphenyls, phthalates or perfluorinated, can mimic 

or block actions of hormones interfering with their receptors, particularly important during the 

early human development.42 

Chronodisruption: Alterations in the physiological circadian rhythm impairing the internal 

clock or late timings of food intake have been related to obesity pathogenesis.43  

 

1.1.4.  Diagnosis  

BMI is the measurement used in clinical practice to tackle obesity. A BMI of 30 kg/m2 or 

higher is considered obesity (Table 1). Although fairly correlated to adiposity and negative health 

outcomes; it also has limitations.  
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For example, it does not report body fat distribution; does not discriminate between fat 

mass and fat-free mass and varies between races and ethnicities; being less accurate in pregnancy, 

short stature, advanced age and pathologies with impaired hydrosaline balance.44  

Waist circumference might complement BMI assessing visceral fat.45 In Caucasic 

population, abdominal or central obesity is considered with waist circumference equal or greater 

than 88 cm in women and 102 cm in men. These cut-off values strongly correlate with increased 

cardiovascular disease.46 Skin thickness or waist to hip ratio, are other indices which estimate 

obesity, less used in clinical practice.   

Nevertheless, obesity by definition implies an excess of fat mass and neither of those 

indices are perfect indicators of adiposity, the true gold-standard measure in obesity assessment. 

A percentage of fat greater than 25% in men and 33% in women defines obesity.47 Dual-energy 

X-ray absorptiometry (DXA), magnetic resonance imaging (MRI), computed tomography (CT) 

scan, bioelectrical impedance, plethysmography and abdominal ultrasonography, although less 

available in clinical settings, provide a complete evaluation of body composition.48  

 

In fact, the latest position statement for the American Association of Clinical 

Endocrinology (AACE) and American College of Endocrinology (ACE) advocate for the concept 

of obesity as an adiposity-based chronic disease (ABCD). This term considers obesity as a chronic 

disease with characteristic adiposity-based complications and evaluate quantity, distribution and 

function of adipose tissue moving beyond BMI as the key tool.49 This declaration has also been 

adopted by the European Association for the Study of Obesity (EASO)50 and the Sociedad 

Española de Endocrinología y Nutrición (SEEN)44 (Table 2).  

 

Table 2. Obesity as an Adiposity-Based Chronic Disease (Arnoriaga-Rodríguez, 2021).  

Adiposity-Based Chronic Disease (ABCD) 

AACE/ACE49,51 EASO50 SEEN44 

Pathophysiology (A) Etiology Fisiopatología 

BMI classification (B) Degree of adiposity Grado de adiposidad 

Complications (C) Health risks Riesgo para la salud 

Degree of severity of complications (D)   Gravedad de las complicaciones 

The coding system of ABCD49,51 propose the evaluation of obesity not only based on the BMI classification but also 

on its pathophysiology and the number and severity of the complications. This approach has also been adopted by 

the EASO50 and the SEEN44. AACE, American Association of Clinical Endocrinology; ACE, American College of 

Endocrinology; EASO, European Association for the Study of Obesity; SEEN, Sociedad Española de Endocrinología 

y Nutrición.  
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1.1.5.  Obesity and related disorders 

Obesity is associated with countless conditions contributing to a decline in quality of life 

and life expectancy; as well as unemployment and social disadvantage.52 To note:   

Metabolic syndrome and cardiovascular disease: One of the main consequences of obesity 

is atherosclerotic cardiovascular disease. Adiposity is significantly associated with increased risk 

for stroke53 and ischemic heart disease.54 Insulin resistance underlying obesity leads to atherogenic 

dyslipidemia, elevated triglycerides and reduced HDL-cholesterol levels; endothelial dysfunction 

and inflammation; impaired glucose tolerance and type 2 diabetes (T2D) and hypertension. All 

these alterations added to abdominal obesity define the metabolic syndrome.55 

Obstructive sleep apnea (OSA): The prevalence of moderate to severe OSA is very high, 

roughly 60% in metabolic syndrome.56 Obesity hypoventilation syndrome can also appear in 

association with OSA and other metabolic entities.57  

Cancer: Obesity is estimated to contribute up to 14% and 20% of all deaths from cancer in 

men and women, respectively.58 Epidemiological evidence of obesity-associated tumors includes 

mammary, renal, esophageal, gastrointestinal (liver, gallbladder, pancreas, colon), hematopoietic, 

and reproductive cancers (endometrial, aggressive prostate cancer) (etc.).59, 60 

Gastrointestinal conditions: Non-alcoholic fatty liver disease is prevalent in obesity, 

progressing to steatohepatitis and cirrhosis in roughly 20% of cases.61 Obesity also increases the 

risk of gastroesophageal reflux disease, erosive esophagitis, Barrett’s esophagus, diarrhea, colonic 

diverticular disease, polyps, gallstones and acute pancreatitis.62 

Neurological manifestations: Obesity is associated with central and peripheral nervous 

system impairments such as mild cognitive impairment and dementia or polyneuropathy.63 These 

alterations of cognitive function related to obesity are one of the reasons that motivated this thesis 

topic.  

Psychiatric conditions: Binge eating disorders and night eating syndrome are more 

prevalent in obesity.64 Increased odds of anxiety (generalized, panic without agoraphobia, specific 

phobia), mood (major depression, dysthymia, manic episode) and personality (antisocial, 

avoidant, schizoid, paranoid and obsessive-compulsive) and alcohol abuse disorders have been 

observed in obesity.65 

Polycystic ovary syndrome and infertility: Polycystic ovary syndrome,66 menstrual 

irregularities and pregnancy complications are some of the reproductive concerns linked to 

obesity. Infertility is also prevalent due to mainly anovulation in women or reduced testosterone 

levels and sperm count in men.67 
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Osteoarthritis: Obesity is a risk factor for both osteoarthritis incidence and progression, 

leading to negative weight loss outcomes and impaired quality of life.68  

Nutritional deficiencies: Deficiency of iron, calcium, magnesium, zinc, copper, thiamine, 

folate, retinol acid69 and vitamin D70 have been identified in obesity; due to inadequate intake with 

high-calorie low-nutrient processed food and altered pharmacokinetics.   

Dermatological entities: Acanthosis nigricans, acrochordons, keratosis pilaris, striae 

distensae, cellulite and plantar hyperkeratosis are the most common skin manifestations of 

obesity. There is also an increase of cutaneous bacterial and Candida infections including 

inflammatory skin diseases, onychomycosis and chronic dermatosis.71 

 

1.1.6.  Management 

The ABCD approach proposed by the AACE/ACE focuses on the lifestyle medicine as the 

central therapeutic intervention.49 The components of lifestyle medicine that should be addressed 

include establishing a healthy eating pattern and physical activity; evaluating percentage and 

distribution of fat mass by body composition; improving sleep hygiene; reducing stress; quitting 

smoking; moderate drinking; counseling about substance abuse, mood and behavior and 

providing community engagement and transculturalization.49 

In addition to adopting a healthy lifestyle, pharmacotherapy is indicated in patients with 

BMI ≥ 30 kg/m2 or BMI ≥ 27 kg/m2 with other related disorders. Medications approved for weight 

management and long-term use in the United States are orlistat, naltrexone/bupropion, liraglutide, 

semaglutide and phentermine/topiramate, the three first ones also approved in Europe. In addition, 

drugs associated with weight gain should be replaced by others with neutral or weight loss effect.72 

Pharmacological therapeutics are linked to achieving at least 5% weight loss at 52 weeks of 

treatment.73 

Bariatric surgery might be considered in BMI ≥ 40 kg/m2 or BMI ≥ 35 kg/m2 with related 

disorders. Sleeve gastrectomy and Roux-en-Y gastric bypass are two of the most widely used 

techniques.72 Bariatric surgery is associated with long-term weight loss and decreased overall 

mortality74 and the best option for extreme obesity.75 

In general, despite the fact that the more weight loss the greater benefits, modest weight 

loss of 5 to 10% are associated with significant cardiovascular improvements.76 
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1.1.7.  Long-term weight loss maintenance 

The real challenge is not to lose weight but to maintain it long-term. Durable benefits are 

frequently elusive. Successful weight loss maintenance considered as losing at least 10% of initial 

body weight and maintaining the loss for at least 1 year, is observed in just about 20% of cases.77 

The usual pattern of weight loss in interventions based on lifestyle changes reaches a peak 

at 6 months after the initiation of treatment, followed by a plateau and gradual recovery.78 If 

pharmacological or surgical treatments are added, weight regain can be delayed over time. 

Unfortunately, the percentage of subjects who regain lost weight is high because of appetite 

changes12 and reduced energy expenditure79 after weight loss can promote weight recovery. 

Suggested strategies for long-term weight loss success are:77, 80  

Greater initial weight loss: Higher weight loss in the 1-2 first months seems to predict 

weight loss at 4-8 years.81 

Healthy lifestyle: Adherence to a healthy eating pattern (consumption of fruits and 

vegetables and low intake of fats and sugars; eating breakfast; maintaining a consistent eating 

pattern across weekdays and weekends) and increased physical activity (preferably more than 1 

hour a day or 300 min/week) are the keys of the weight loss maintenance. Regular physical 

activity has been shown to be an integral component of sustained weight loss in the long-term. 

Monitoring: Continuous monitoring by professionals in addition to self-monitoring. Longer 

duration of the treatment and follow-up gives participants more time to engage in consistent habits 

related to physical activity and healthy eating in all settings.  

Behavioral modifications: Training inhibitory control, developing problem-solving skills 

resulting in reduced food intake, has been beneficial. In fact, low disinhibition and food addition 

scores at the end of the weight loss intervention are related to greater odds of success.82 The 

importance of the inhibitory control motivated us to include it as a priority element of cognitive 

function to analyze in the interaction between obesity and cognitive function.  
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1.2. Obesity and the brain  

1.2.1. Introduction 

 

Obesity is associated with different neurological disorders,63 being cognitive impairment 

one of the major health concerns nowadays due to both increased life expectancy83 and the 

growing prevalence of obesity and metabolic disorders.84 

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)85 

defines six key domains of cognitive function (Table 3) whose impairment lies in the main 

neurocognitive syndromes: delirium, mild neurocognitive disorder and major neurocognitive 

disorder.86 Furthermore, particular domains and subdomains can be predominantly affected in 

different neurodegenerative diseases, for example Alzheimer’s disease (AD), frontotemporal 

lobar degeneration, vascular disease or Parkinson’s disease.85 

 

Table 3. Neurocognitive domains and subdomains defined by DSM-5 (adapted from American Psychiatric 

Association, 201385 and Sachdev et al., 2014).86 

Neurocognitive domains (DSM-5) 

Learning and memory Language 

Free recall Object naming 

Cued recall Word finding 

Recognition memory Fluency 

Semantic and autobiographical long-term memory Grammar and syntax 

Implicit learning Receptive language 

Perceptual-motor function Social cognition 

Visual perception Recognition of emotions 

Visuoconstructional reasoning Theory of mind 

Perceptual-motor coordination Insight 

Executive function Complex attention 

Planning Sustained attention 

Decision-making Divided attention 

Working memory Selective attention 

Responding to feedback Processing speed 

Inhibition   

Flexibility   
DSM-5 sets up six principal domains: learning and memory, perceptual-motor functions, executive function, language, 

social cognition and complex attention. These domains are divided into different subdomains as they can be seen in 

Table 3. DSM-5, Diagnostics and Statistical Manual of Mental Disorders 5th edition.  
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Mild neurocognitive disorder is the evidence of cognitive decline from a previous level of 

performance in one or more cognitive domains, which could not be explained by another mental 

disorder and does not interfere with the capacity for independence. Otherwise, if this capacity is 

affected, a major neurocognitive disorder, classically known as dementia, is considered.85 Thus, 

mild neurocognitive disorder is an intermediate stage in the spectrum from normal to severe 

cognitive impairment; although it is not always a precursor of major neurocognitive disorder.86 

Rates of progression from mild to major neurocognitive disorder have been estimated from 

3% and 13% per year, in community and clinic settings, respectively.87 Percentages might vary 

relating to sample selection and inconsistency of diagnostic criteria, but are higher than in age-

matched subjects without mild neurocognitive disorder.88 A larger initial degree of functional 

impairment, generally shown in those who seek medical evaluation, has been identified as an 

important predictor of conversion to major neurocognitive disorder.87 Involvement of two or more 

domains, one of them being verbal learning and memory with impairments in psychomotor speed 

or executive function, have also strongly predicted progression to a specific major condition, 

AD.89 

On the contrary, mild cognitive impairment could remain stable in case of, for example, 

traumatic brain injury; or even improve if causes are potentially reversible, such as in 

pharmacologic, metabolic, vascular or systemic etiologies.88 In this line, atrial fibrillation, 

hypertension, diabetes mellitus, obesity and metabolic syndrome are some of the recognized risk 

factors for vascular neurocognitive disorders but also for AD.90 Indeed, 40% of dementia cases 

have been attributable to a combination of twelve potentially modifiable risk factors: low 

educational attainment, physical inactivity, smoking, diabetes, midlife obesity, midlife 

hypertension, late-life depression, hearing loss, social isolation,91 air pollution, excessive alcohol 

consumption and head injury.92 Focusing on obesity, a reduction of 4-5% in 2035 and 9-10% in 

2050 in dementia cases is estimated if obesity is diminished by 20%; in a projection model of an 

Australian cohort.93 

Although subjective cognitive complaints alone are insufficient to diagnose mild 

neurocognitive disorder; they might reflect a change in cognitive function, making these subjects 

eligible to close follow-up and study to assess for reversible causes.88 Impairments in cognitive 

function should be documented objectively through standardized neuropsychological testing to 

determine the severity and subtype of disorder. Accordingly, in mild neurocognitive disorder the 

level of cognitive decline is modest, in the range of 1-2 SD or between the 3rd and 16th percentiles, 

below the normative data for age, educational attainment and cultural-linguistic background; 

larger involvements are attributed to major neurocognitive disorders.86  
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Nevertheless, these measures are not an absolute threshold and should be taken into account in 

the context of each subject. Moreover, mood and behavioral symptoms are more common in mild 

and major neurocognitive disorders than in healthy counterparts.94 To note, the prevalence of 

depression in mild neurocognitive disorder ranges from 25 to 40% in community- and clinic-

based samples, respectively.95 Remarkably, the presence of neuropsychiatric symptoms in turn 

appears to be a marker of mild neurocognitive disorder severity,96 since it has been associated 

with greater cognitive impairment.  

In addition to neuropsychological testing, structural neuroimaging using MRI or CT scan 

can support the suspicion of cognitive decline as well as fluid biomarkers. However, it is the 

medical judgement what ultimately establishes the diagnosis.88 

Regarding the management, apart from reversible and treatable causes and control of 

modifiable risk factors during midlife (age 45 to 65 years); no specific medications or dietary 

agents are approved for mild neurocognitive disorders that improve cognition or delay 

progression to major neurocognitive disorders.88 Therefore, more studies are needed to identify 

therapeutic targets.  

 

1.2.2. Obesity and the brain function 

Growing evidence in systematic reviews and meta-analyses supports the association 

between obesity in middle-ages and an increased risk of later-life dementia;97-99 although not all 

the studies have found this relationship.100 Whether the link between obesity and cognitive 

dysfunction is independent of other obesity comorbidities is more controversial.101 Nevertheless, 

the independency of this relation is gradually becoming clearer, since more and more research 

demonstrates that these effects are not solely mediated by obesity-related diseases.102-105 For 

instance, in a large cohort of more than 10.000 individuals and 36-years follow-up, obesity in 

middle-aged (40-45 years) subjects was independently associated with a 3.10- and 5-fold increase 

in risk of AD and vascular dementia respectively, after adjusted for main confounding factors.106 

In addition to obesity as a modifiable risk factor for cognitive impairment;107 cognitive 

dysfunction seems to be a predisposing factor for overeating and obesity;103,108 perpetuating the 

cycle and making this association even more complex.  

The optimal therapy of obesity-related cognitive dysfunction may target obesity itself.63 

Weight loss through lifestyle interventions and bariatric surgery109 has proved short-term 

neurocognitive improvements, although there is a lack of evidence of long-term effects. 

Therefore, the ideal intervention to tackle cognitive decline in obesity is currently not known. 
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Focusing on neurocognitive domains and subdomains, deficits in verbal learning and 

memory, attention and executive function are the most common cognitive impairments observed 

in obesity. These alterations were also linked to physiological and structural changes in the brain 

(Figure 2).63  

Figure 2. Neurological changes of the central nervous system in obesity. Obesity is associated with psychological 

and behavioral, structural and physiological brain modifications which finally lead to cognitive dysfunction. MCI, mild 

cognitive impairment (adapted from O’Brien et al., 2017).63 

 

 

 1.2.2.1. Verbal learning and memory function in obesity 

Memory refers to the complex processes in a multicomponent system with a variety of 

different subtypes, mediating by several factors and neural mechanisms.110 Theoretically, 

different models have been proposed based on its major components:111  

Long-term memory: Storage of stable or permanent memories.  

Short-term memory: The limited-capacity storage over seconds to minutes. 

Working memory: It includes short-term storage components but also central executive 

processes that manipulate stored information and help to make use of short-term memory. Thus, 

other authors consider working memory as the set that includes immediate and short-term 

memory.110  

Clinically, data from molecular biology, neuropsychology, clinical neurology and 

neuroimaging support the concept of distinct memory systems: episodic, semantic, working and 

procedural memory.112 This model of multiple memory systems that are distinct yet 

complementary can compensate for each other when other parts fail.112  

Focusing on the memory systems evaluated in this thesis:  

  

• Cognitive decline, MCI and 
dementia:                               
attention, learning and 
memory, decision making. 

• Feeding behavior and satiety 
control impairments. 

• Mood disorders:              
anxiety, depression. 

Psychological and 
Behavioral

• Brain atrophy.

• Reduced gray matter volume:  
frontal and temporal lobes. 

• Enlarged white matter:                                   
orbitofrontal cortex. 

• Decreased integrity:            
hippocampus, hypothalamus.  

Structural

• Cerebral ischemia. 

• Hypoperfusion. 

• Decreased brain metabolism. 

• Reduced nerve function. 

Physiological
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Episodic memory: The ability to recall personal experiences. It is the subtype of memory 

most often perceived as dysfunctional. It involves the process of encoding, the direction of 

cerebral resources to process information from attentional mechanisms; consolidation, storage of 

information accessible in the future; and retrieval, the act of remembering that information.112 

Clinical measures of learning and memory are commonly assessed episodic memory and typically 

involve free recall, cued recall and recognition of lists of items (words, pictures, faces).110 

Working memory: It refers to the active maintenance of information for potential 

manipulation to complete goal-directed tasks and behaviors. Although working memory is a 

memory subtype, it is generally considered a component of executive function.112,113 

At a structural level, medial temporal lobe structures, in particular the hippocampal 

formation and associated cortical and subcortical structures (diencephalon, limbic system, 

posterior cingulate and precuneus) are most often associated with episodic memory loss.112 

Working memory is mainly linked to prefrontal cortex (PFC), subcortical structures and parietal 

association cortex.112 

 

Episodic and working memory are core cognitive processes that are critical for food-related 

decision-making. In fact, disruptions of memory systems are linked to appetite dysregulation and 

weight gain.114  

Obesity has been associated with impaired cognitive function, especially executive 

function.115 What is less explored is the impact of obesity on learning and memory. Compared 

with executive function, relatively fewer studies in humans have evaluated this cognitive domain 

showing contradictory results. Memory has been negatively and independently associated with 

body mass index (BMI) across adult lifespan116, 117 and improvements on memory function have 

been identified three years after bariatric surgery.118 Conversely, other studies did not find 

differences in memory tasks between subjects with and without obesity.119,120 More recently, in a 

systematic review that included fourteen studies evaluating the effects of obesity on episodic 

memory in mainly middle-aged subjects, ten found an inverse association of weight status and 

memory function whereas four did not observe a direct effect of obesity on memory.121  

 

1.2.2.2. Executive function in obesity 

Executive function represents a constellation of cognitive abilities that drive goal-oriented 

behavior and are critical to the ability to adapt to an ever-changing world.122 From a clinical 

perspective, executive function can be split into four distinct components: 
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Working memory: A limited capacity system that enables us to temporarily process, store 

and manipulate information. It is critical for planning and decision-making tasks.  

Inhibition: The ability to hold back a predominant, automatic, impulsive or previously 

learned response that might be inappropriate or irrelevant.  

Set shifting: The capacity to modify attention and behavior in response to changing 

circumstances and demands. Also known as cognitive or mental flexibility.123 

Fluency: The ability to maximize the production of verbal or visual information in a 

specific time period, whilst avoiding repeating responses.  

Executive dysfunction relies on PFC, parietal cortex, basal ganglia, thalamus and 

cerebellum as well as their matter connections and neurotransmitter systems.122 Roughly on 

working memory tasks, the dorsolateral PFC is active in executive processing, active 

manipulation or updating of information, whereas the ventrolateral prefrontal regions are 

responsible for storage-related processes.124 In addition, inferior frontal regions may be critical 

for inhibiting inappropriate responses125,126.  

 

Executive dysfunction may manifest in many problems in everyday life, such as 

inappropriate social behavior; problems with decision making and organization; difficulties 

following and shifting plans or in situations involving memory aspects and distractibility.110 

Remarkably, impaired executive abilities such as reduced self-control, low inhibitory control and 

mental flexibility might lead to poorer food choices, disordered eating, overeating and weight 

gain;127 entering in a vicious cycle of positive energy balance perpetuating obesity.115 On the other 

hand, improving elements of executive function through inhibitory control training has shown a 

moderate reduction of unhealthy behaviors in the short-term.128 

Consistent findings linked obesity to impaired executive function, in most of the studies as 

a direct association.102,127,129-131 The most promising executive function subdomains correlating 

obesity and eating behavior seems to be inhibitory control and working memory.132,133 Impaired 

inhibitory control131,134-136 and working memory115,131 have been identified in obesity, being altered 

even since the overweight status.131 Furthermore, in severe obesity, namely eligible bariatric 

surgery patients, executive dysfunction is common102,137,138 and seems to play an important role 

on weight loss maintenance and treatment adherence in both behavioral programs139 and after 

bariatric surgery at short-term.140,141  

 

Overall, most studies support the associations between obesity and worse memory and 

executive function. Moreover, more and more data reinforce its independent role in this interplay, 

in particular in executive function. However, the existing evidence is somewhat inconsistent in 

case of the impairment of learning and memory domain in middle-aged subjects with obesity.  
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1.2.3. Obesity and the brain architecture 

1.2.3.1. Morphometric changes in obesity 

Impairments on cognitive function in subjects with obesity have been associated with 

morphometric and functional changes in the brain identifying by different MRI techniques. 

Structural MRI is used to obtain brain morphometry that includes indices of volume and integrity, 

thickness and surface areas.  

Brain volume and integrity: Gray matter volume which contains neurons and nerve fibers 

and white matter volume, myelinated nerve fibers, may be obtained in anatomical detail based on 

the different paramagnetic properties of the brain tissues.142 

Lower gray matter volume has been found in association with BMI, waist-to hip ratio and total 

fat mass, even after adjustment for covariates.143 Moreover, greater gray matter atrophy has been 

observed when high BMI and central obesity were simultaneously presented.143 A meta-analysis 

revealed the largest cluster of reduced gray matter volume in the left, middle and right inferior 

frontal gyrus, the left middle temporal cortex, the left precentral gyrus and the cerebellum in 

subjects with obesity.144 Similar findings have been observed in other studies, showing lower gray 

matter volume in the medial prefrontal cortex, cerebellum and left temporal pole.145 On the other 

hand, increased gray matter volume has also been identified in subjects with obesity, in particular 

in the left cuneus, left middle frontal gyrus, left inferior occipital gyrus144 as well as the subcortical 

volumes of the amygdala, thalamus and nucleus.146 Conversely, other studies revealed no 

differences in brain gray matter volume between subjects with and without obesity.147  

White matter refers to myelinated tracts connecting gray matter structures throughout the brain.148 

Albeit, there is less conclusive evidence of measures of white matter with respect to gray 

matter149; increased in the frontal, temporal and parietal lobes150 and reduced in the basal ganglia 

and corona radiata white matter volumes were found in association with higher BMI.151 

Microstructural composition and architecture of the white matter have also been studied revealing 

global reductions in white matter integrity in parallel to higher BMI,152 in form of demyelination 

or axonal loss.  

This loss of integrity has been described in some tracts within the limbic system and those 

connecting the temporal and frontal lobe,153 among others. In addition, white matter 

hyperintensities have been identified, ranging from slight disentanglement to varying degrees of 

myelin and axonal loss.154 
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Fortunately, both gray matter and white matter alterations appear to be recovered after weight 

loss, particularly after bariatric surgery techniques, at least in the short-term, at six months follow-

up.149,155  

Thickness: Cortical thickness reductions in the temporal and frontal cortex have been 

identified in obesity, with a similar effect size to thickness decrements observed in 

neuropsychiatric disorders, such as major depressive and bipolar disorders.146 

Surface: Both higher surface cortical area, as for example, in the isthmus cingulate cortex, 

paracentral lobule or left transverse temporal gyrus and lower surface area in the inferior temporal 

gyrus, right rostral middle frontal gyrus and left lingual gyrus have been found in subjects with 

obesity.146 

In addition, MRI can determine brain iron load. Iron accumulates in the brain during ageing 

resulting in cognitive impairment and neurological disorders.156 Higher brain iron accumulation 

has been observed in subjects with obesity.157,158 Particularly, in the caudate nucleus, lenticular 

nucleus, hypothalamus and hippocampus,157 in association with worse cognitive performance.158 

 

1.2.3.2. Functional changes in obesity 

In addition to structural and morphological alterations in the obese brain, neural imaging 

studies have shown altered brain activation and functional connectivity.  

Functional MRI measures differences in brain activity through the detection of changes in 

cerebral blood flow in resting state or doing a task.159 Roughly, an increase of the activity relating 

to food in brain areas associated with reward, emotion/memory and sensory/motor processing, in 

parallel to a decrease in areas associated with homeostatic satiety and cognitive control/attention 

have been identified in obesity.142 Notably, greater hypothalamic connectivity with regions 

implicated in motivation feeding, as the insula or the thalamus, was associated with higher BMI. 

On the contrary, reduced connectivity was found with the superior parietal lobe, involved in the 

cognitive control of food intake.160 

Neuroimaging studies using positron emission tomography also evidenced lower prefrontal 

metabolism linked to higher BMI.161 Accordingly, decreased blood flow in the prefrontal cortex 

and thus, prefrontal function was found in those subjects with higher BMI, using single photon 

emission computed tomography imaging.162 
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1.2.4. Mechanisms underlying obesity-associated cognitive dysfunction 

Although the mechanisms involved are still largely unclear and need to be fully elucidated; 

it is speculated that multiple pathways may interact and stablish bidirectional communications 

and a feed-forward cycle which ultimately culminates into cognitive decline. Some of the 

proposed factors are briefly summarized below:149,163-166 

Inflammation: Chronic or low-grade inflammation is a key feature of obesity characterized 

by high circulating levels of inflammatory markers such as cytokines, hormones, proteins and 

other mediators.167 Some of these markers, such as lipopolysaccharide binding protein (LBP), 

have been associated with either cognitive dysfunction and brain microstructure and integrity.168 

In fact, obesity and neurodegenerative disorders, even since initial stages, share some patterns of 

inflammatory markers.169 Therefore, some authors consider peripheral inflammation as a potential 

prodromal indicator of dementia.170 Apart from peripheral inflammation, inflammation in the 

central nervous system or neuroinflammation coexists in obesity.171 They are not isolated since 

different communication pathways participate in the cross-talk between the periphery and the 

central nervous system such as the vagus nerve, blood-brain barrier (BBB) and choroid plexus.172 

Insulin resistance: Insulin is released from the pancreas, crosses the BBB and activates the 

insulin receptors in the central nervous system inducing different signaling pathways. Impaired 

insulin signaling contributes to cerebral insulin resistance154 and thus, a reduction of brain insulin 

sensitivity.  

Advanced glycation end products (AGEs): Chronic hyperglycemia also leads to an increase 

of the formation of AGEs and the expression of the AGEs receptor (RAGE) in the endothelium 

and the brain.173 It enhances oxidative stress, tissue damage and cellular dysfunction;174 affects 

BBB integrity and promotes amyloid deposition.175 Apart from hyperglycemia, high levels of 

exogenous AGEs from high-fat and processed food may impact cognition.176 AGEs have also 

been related to the severity of cognitive impairment, since the presence of AGEs in cortical 

neurons and cerebral vessels in subjects with cerebrovascular disease were associated with larger 

cognitive decline.177   

Bioactive lipids: Triglycerides and free fatty acids might mediate changes of the central 

nervous system in obesity.163 The injection of triglycerides into the brain impaired cognitive 

function in mice. Conversely, the administration of a fibrate to reduce triglycerides improved 

cognition.178 Triglycerides also impact leptin transport across the BBB contributing to leptin 

resistance seen in obesity.179 Free fatty acids are the result of the breakdown of triglycerides with 

are linked to both metabolic180 and brain dysfunction.181 Elevation of circulating free fatty acids 

causes insulin resistance and peripheral182 and central inflammation.183 
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Glucocorticoids: Stress might contribute to the relation between obesity and cognitive 

function. The stress response is mediated by the sympathetic adrenal-medullary system and the 

hypothalamic-pituitary-adrenal (HPA) axis. Their activation induces the release of corticosteroids 

and glucocorticoids, respectively.184 Glucocorticoids are the primary moderators of the acute 

effects of stress on cognition and also impair neural integrity in the long-term.184 Chronic elevated 

glucocorticoid levels are associated with reduced hippocampal volume and hippocampus-

dependent memory deficits.185 In addition, stress may promote central obesity through energy 

homeostasis and feeding behavior disbalance184  and, in turn, subjects with obesity seem to be 

more vulnerable to cognitive impairments due to basal and reactive raised glucocorticoid levels.184 

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress: Mitochondrial 

dysfunction and ER stress are responsible for increased oxidative stress and inflammation in the 

brain.186 In fact, oxidative stress and mitochondrial dysfunction are some of the common 

mechanisms observed in obesity, diabetes and AD.182 Diet-induced obesity mice exhibited higher 

levels of reactive oxygen species (ROS) in the brain in association with cognitive impairment.187 

Ectopic fat deposition in obesity induced the production of ROS promoting mitochondrial 

dysfunction and insulin resistance.188 ER stress is also associated with insulin189 and leptin 

resistance190 in obesity.  

Blood-brain barrier (BBB) disturbances: The BBB is a continuous endothelial membrane 

within brain microvessels whose integrity is necessary for proper synaptic and neural functioning. 

BBB breakdown, which causes infiltration of immune cells into the brain, has been identified in 

neurodegenerative disorders.191 Obesity is also linked to macro and microvascular endothelial 

dysfunction.164 Microvascular dysfunction is related to increased oxidative stress, inflammatory 

and immune responses and BBB permeability; leading to perfusion defects, hypoxia, increased 

angiogenesis and cognitive dysfunction.192 

Gut microbiome: In the last twenty years, there has been a massive gain of knowledge on 

the impact of gut microbiome in health as well as in the pathophysiology of common metabolic 

disorders including obesity.193 Changes in microbiota composition and diversity have been 

observed in obesity194 promoting metabolic inflammation.195 In addition, rodent models provide 

compelling evidence on the effects of gut microbiota in brain function and structure through the 

gut-brain axis communication.196 Nevertheless, further investigations are needed to elucidate the 

role of gut-brain axis on obesity-associated cognitive dysfunction in humans.  

The picture illustrates the proposed factors that may be involved in the pathophysiology of 

cognitive decline in obesity (Figure 3).  
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Figure 3. Overview of the mechanisms underlying obesity-associated cognitive decline. Inflammation, insulin 

resistance, advanced glycation end products (AGEs), glucocorticoids, lipids, mitochondrial dysfunction, endoplasmic 

reticulum (ER) stress, oxidative stress and blood-brain barrier (BBB) dysfunction are the mechanisms widely proposed 

to explain the pathophysiology of cognitive impairment in obesity. The missing piece of the puzzle may be the gut 

microbiome, whose broad role needs to be further elucidated (original illustration by Arnoriaga-Rodríguez, 2021).  

 

 

1.3. Obesity, cognitive dysfunction and the gut microbiome 

1.3.1. The gut microbiome 

The microbiome constitutes a complex and immense ecosystem. Microbiota includes 

bacteria, viruses and bacteriophages, fungi, protozoa and archaea. Firmicutes and Bacteroidetes 

and, to a lesser extent, Actinobacteria and Proteobacteria, are the dominant bacteria phyla in the 

gut.197 This microbiota and its collective genome is referred to as the microbiome.198 The 

microbiome is essential for human health, since host-microbial relationships are established for 

mutual benefit.199 

Gut microbiota composition is characterized by a large interindividual variability and 

heterogeneity due to constant interactions with host elements.200 Exogenous and endogenous 

factors such as diet, drugs, the intestinal mucosa, the immune system and the microbiota itself 

may affect the gut microbiota.201 Disturbances in gut microbiota, termed dysbiosis, comprise 

decreased microbial diversity or expansion of specific bacteria taxa, with a loss of beneficial and 

an overgrowth of detrimental bacteria.201  
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Dysbiosis is involved in the pathophysiology of several disorders.202 In obesity, a dysbiotic 

microbiota has been identified as, for example, an increase in the ratio of 

Firmicutes/Bacteroidetes,40 although not consistent in all the studies;203 or a reduction in bacterial 

diversity;204 in association with adiposity, insulin resistance and dyslipidemia.205 In turn, as a 

vicious cycle, dysbiosis may trigger intestinal barrier dysfunction, promoting the translocation of 

bacterial metabolites195 and low-grade inflammation.206 Dysbiosis and obesity phenotype can be 

transmissible; fecal microbiota transplantation (FMT) from obese to germ-free mice leads to 

obesity.41 By contrast, dysbiosis may also be amended; an increase of gene richness and bacterial 

diversity has been described in bariatric surgery-induced weight loss in parallel to improvements 

in metabolic and inflammatory profiles.207 

 

1.3.2. The gut microbiome and obesity-associated cognitive dysfunction 

The cross-talk between the microbes and the host involves different immune-mediated 

signalling pathways, establishing host-microbiota axis.208 Compelling evidence demonstrates that 

there is a link between the gut and the brain, the gut-brain axis (Figure 4), in which microbiota 

plays a crucial role;209 influencing neural development, cognition and behaviour.210,211  

 

 

Figure 4. The gut-brain axis. Bidirectional pathways communicate the gut and the brain such as the hypothalamic-

pituitary axis, the vagal afferent neurons, inflammatory markers, microbial metabolites, neurotransmitters or gut 

peptides, to name a few (original illustration by Arnoriaga-Rodríguez, 2021). 
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Multiple pathways can communicate the brain and the gastrointestinal tract, including the 

HPA axis, the sympathetic-adrenal axis, descending monoaminergic pathways or the autonomic 

nervous system such as the vagus nerve and the enteric nervous system.212 Moreover, a gut to 

brain communication is mediated through vagal and spinal afferents.212 Dysbiosis can alter this 

bidirectional crosstalk between the gut and the brain213 impacting on its function.  

 

Different mechanisms may shift the microbiome and promote cognitive dysfunction, as 

listed below:214-216 

Immune signalling pathways: The microbiome is deeply linked to the immune system and 

can impair peripheral insulin sensitivity215,217 Over the past century, the improvements in 

household amenities and standards of personal cleanliness with a decline of family size resulted 

in a higher prevalence of chronic inflammatory disorders.218 In this line, changes in the 

environment also influenced the microbiome, leading to an enhancement of inflammatory 

responses which may also be extended to brain diseases.219 

Neural pathways: Vagal afferent neurons influence gastrointestinal function, glucose 

homeostasis, food intake and body weight220 and are one of the main pathways to connect the gut 

and the brain. Microbiota can also modulate the HPA axis in response to stress, especially 

important during early development.221 

Intestinal and blood-brain barriers: The gut microbiome can modulate intestinal 

permeability.222 Impaired intestinal barrier allows translocation of gram-negative bacteria-derived 

lipopolysaccharide (LPS) into circulation, promoting endotoxemia and inflammation. In parallel, 

systemic inflammation may increase intestinal barrier permeability, allowing translocation of 

commensal bacteria with implications for systemic inflammation and the brain.223 Preclinical 

evidence from rodent models suggests that the microbiota and microbial-derived compounds can 

impact on the BBB.224 For instance, a reduction in gut microbiota richness and diversity, in 

association with reduced tight junction proteins, increased plasma endotoxin LPS and impaired 

recognition and spatial memory was observed in high-fat diet-induced obesity mice.225 

Microbial products: Metabolites: The microbiota can produce short-chain fatty acids 

(SCFAs): including butyrate, propionate and acetate, which may exert central effects226 and 

influence the production of neurotransmitters or the release of gut peptides from enteroendocrine 

cells. Neurometabolites: The microbiota can synthetize neurotransmitters including serotonin, 

dopamine, noradrenaline, gamma-aminobutyric acid (GABA), acetylcholine.226 Interestingly, 

serotonin and its precursor tryptophan are key systems in the gut-brain axis.227 Enterosynes: 

intestinal bioactive molecules that can modulate the enteric nervous system to modify duodenal 

contraction.228 
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The factors briefly summarized above are some of the plausible mechanisms through the 

gut microbiome may impact on cognition. Available evidence is based mainly on preclinical 

studies. However, more studies are needed to elucidate the involved pathways and their effects in 

humans.  

 

1.3.2.1. Evidence in preclinical models 

As it has been previously described, dysbiosis is involved in the pathophysiology of 

neurodegenerative229 and psychiatric disorders.230 More recently, the disbalance of the gut-brain 

axis has been associated with cognitive decline in obesity and other metabolic disorders.196,211 

Most of the research supporting the role of the gut microbiome in obesity-associated cognitive 

dysfunction have been conducted in mice.196,211 

Rodent models of obesity: Mice fed a high-sucrose diet showed impaired short and long-

term memory and reversal training in association with changes in the gut microbiota. Higher and 

lower expression of Clostridiales and Bacteroidales, respectively, were linked to decreased 

cognitive flexibility.231 Mice which developed diet-induced obesity exhibited a reduction in gut 

microbiota richness and diversity in parallel to diminished recognition and spatial memory.225 

Obesity, memory impairment, modifications of the expression of hippocampal markers and an 

increase of Proteobacteria phylum have been observed by high-fat diet feeding.232 

Fecal microbiota transplantation (FMT): Evidence of microbial influence on cognitive 

dysfunction-associated obesity derives from the effects observed from FMT. Transplantation of 

high-fat diet microbiota to mice which had previously been fed a chow diet led to learning and 

memory deficits.233 

Prebiotics: Administration of prebiotics, non-digestible dietary substances, has shown 

beneficial effects in cognition. The prebiotic xylooligosaccharide (XOS) restored cognitive 

function in high-fat diet rats through improving hippocampal plasticity, brain mitochondrial 

dysfunction and decreasing microglial activation.234 

 Curdlan, a bacterial polysaccharide produced by some species of Agrobacterium and 

Alcaligenes, may exert beneficial effects on cognitive dysfunction linked to obesity. Acute 

curdlan supplementation for 7 days prevented shifts induced by high-fat diet in the gut microbiota 

composition. In a chronic period of 15 weeks, curdlan also improved cognitive dysfunction using 

the Temporal Order Memory Test, the Novel Object Recognition (NOR) Test and the Y-maze 

test and mitigated microgliosis, neuroinflammation and synaptic impairments in the prefrontal 

cortex and hippocampus. In parallel, prebiotic supplementation attenuated hyperendotoxemia and 

colonic permeability and inflammation.235  
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Recently, two studies have demonstrated a favorable effect of the β-glucan.236,237 In high-fat and 

fiber-deficient diet rodents, long-supplementation for 15 weeks with the β-glucan prevented 

cognitive dysfunction assessed by Object Location, NOR and Nesting Building. In addition, it 

ameliorated gut microbiota dysbiosis, impairment of intestinal barrier and hippocampal 

neuroinflammation. Short-term β-glucan supplementation for 7 days produced microbiota 

changes before establishing cognitive dysfunction. Furthermore, the beneficial effects of the 

supplementation disappeared after a broad-spectrum antibiotic treatment and thus, the ablation of 

the microbiota.236  

Probiotics: Supplementation with live microorganisms seems to have a positive impact on 

cognitive dysfunction related to obesity. Lactobacillus helveticus improved deficits in spatial 

memory and anxiety in mice on a Western diet.238 A probiotic, which contained a combination of 

different strains of bacteria species belonging to Bifidobacterium, Lactobacillus and 

Streptococcus genera, prevented the diet-induced memory deficits in rats on Western diet; 

increasing some bacteria taxa and reversing alterations in hippocampal genes.239 In addition, 

Akkermansia muciniphila improved learning and memory in mice which had been fed a high-fat 

diet, reducing hippocampal microgliosis and proinflammatory cytokines and restoring neuronal 

development and synapse plasticity.233  

 

1.3.2.2. Evidence in clinical models 

In contrast to the emergence of a more and more robust preclinical literature on obesity and 

microbiota-neurocognition interactions, limited information is available from human studies.240 

To the best of our knowledge, only two cross-sectional case-control studies;241,242 one longitudinal 

case-control study243 and one placebo-controlled trail244 have been published on this topic.  

The earliest evidence of the relationship between the gut microbiota and obesity-associated 

cognitive dysfunction in humans was published in 2015.241 The study included 20 and 19 middle-

aged subjects with and without obesity, respectively. A specific microbiota profile was linked to 

disturbances of brain microstructure and cognition. Remarkably, the higher the gut microbiota 

diversity, the lower the MRI R2* values, an in vivo measure of iron brain content, in the 

hypothalamus, hippocampus and caudate nucleus; in association with cognitive impairment.157 At 

phylum level, relative abundance of Actinobacteria was linked to well-organized brain 

microstructure, through fractional anisotropy values and better motor speed, attention and 

cognitive flexibility reflected in the Trail Making Test score, whereas the genus Prevotella was 

linked to worse cognitive traits. Bacterial diversity was also negatively associated with total fat 

mass and obesity-associated inflammatory markers. 
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Later, a study described the impact of gut microbiota on metabolites and neurotransmitters 

involved in cognition. Particularly, the glutamate, one of the key neurotransmitters of the central 

nervous system. The study242 included 19 participants with obesity and 16 paired controls. The 

cognitive assessment encompassed the Trail Making Test to measure executive function and 

focused on different determinations of glutamate. In this research, some bacterial families were 

associated with processing speed and mental flexibility, modulating fecal and plasma glutamate 

and glutamate-derived indices related to its production or degradation. Some microorganisms that 

appeared to influence glutamate levels included the families of Corynebacteriaceae, 

Coriobacteriaceae and Burkholderiaceae. Moreover, bacterial ratios such as 

Coriobacteriaceae/Streptococcaceae and Corynebacteriaceae/Streptococcaceae were linked 

simultaneously to cognitive scores and fecal glutamate/glutamine ratio. 

Longitudinal evidence is even sparser, since only one study has evaluated the gut 

microbiota and obesity-associated cognitive dysfunction at 2-year follow-up.243 The research 

comprised 35 participants, 17 of them with obesity. Cognitive function assessment included 

immediate and delayed visual memories; visual-spatial constructional ability and executive 

function. During that period, changes in the gut microbiota were longitudinally linked to cognitive 

function and brain iron deposition.  

In particular, shifts in the relative abundance of the Gemmatimonadetes, Bacteroidetes, 

Proteobacteria, Caldiserica, Tenericutes, Thermodesulfobacteria and Chlorobi phyla were 

associated with increased percentage change of R2* at the striatum, superficial amygdala and 

hippocampus, as a measure of brain iron load, but also beta-amyloid deposition. Moreover, the 

increase of waist circumference was associated with higher R2* brain values in parallel to worse 

visual-spatial constructional ability and circulating beta-amyloid levels.  

Recently, a multicentric, single-blinded, placebo-controlled trial has evaluated the effects 

of a prebiotic in biochemical and psychological parameters, in parallel to gut microbiota changes. 

The study included 106 patients with obesity who received a prebiotic, inulin, or placebo, 

maltodextrin; combined with inulin-rich or poor food, respectively, dietary advise and a 

restriction of caloric intake for three months. Cognitive assessment included flexibility, working 

memory and inhibition. Prebiotic intervention led to moderate improvements of mood and 

cognitive flexibility. Moreover, baseline microbiota could identify those individuals who may 

experiment more beneficial for inulin intervention in case of mood but not cognition. Particularly, 

responders in terms of mood had higher levels of basal Coprococcus genus in association with a 

more deleterious metabolic and inflammatory profile.244 

An overview of the studies previously presented is compiled in the next page (Table 4). 
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Table 4. Summary of the human studies related to obesity-associated cognitive dysfunction (Arnoriaga-Rodríguez, 2021).  

Authors (Year) Study design  Population Age 
Obesity 

measurements 

Cognitive 

assessment 

Brain 

imaging 
Microbiota Results 

 Fernández-Real et al.241 

(2015) 
 Cross-sectional 

 20 Obesity 

19 Controls 
48.7 

 BMI, Waist,  

Fat mass 
 TMT  R2*, DTI 

 Diversity; 
phylum, 

genus 

 A specific microbiota-brain map in obesity.   

 

         p_Actinobacteria (+) 

 g_Prevotella (-) 

 Blasco et al.243                              

(2017) 
 Longitudinal (2 years) 

 17 Obesity 

18 Controls 
51.5  BMI, Waist 

 TMT, ROCFT, 

Verbal fluency task 
 R2*  Phylum 

 Changes in gut metagenome were inked to brain iron 

and cognitive function at 2-years follow-up.   

 
p_Tenericutes (+) p_Thermodesulfobacteria (+) 

p_Bacteroidetes (-) p_Proteobateria (-) p_Chlorobi (-) 

 Palomo-Buitrago et al.242 

(2019) 
 Cross-sectional  

 19 Obesity 
16 Controls 

52  BMI  TMT  ---  Family 

 Gut microbiota may modulate fecal glutamate 
improving cognitive function.  

 

f_Coriobacteriaceae (+) f_Corynebacteriaceae (+) 
f_Burkholderiaceae (+)   f_Streptococcaceae (-) 

 Leyrolle et al.244                      

(2021) 

 Randomized, single-
blinded, multicentric, 

inulin vs placebo trail 

(3 months) 

 106 Obesity 47 
 BMI, Waist/Hip,  

Fat mass 

 Number-letter, 

Mental Counters, 
Stop-Signal 

 ---  Genus 
 Inulin supplementation in obesity led to moderate 

improvements in cognitive flexibility.  

Obesity-associated cognitive impairment: Evidence in humans. Age represents the mean age of study population; BMI, body mass index; DTI, diffusion tensor imaging; g_, genus; f_, family; p_, 

phylum; TMT, Trail Making Test; R2*, brain relaxometry as a measure of iron brain content; ROCFT, Rey-Osterrieth Complex Figure Test.
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Overall, based on existing evidence, more data in humans are needed to further confirm 

and translate the animal findings.  Furthermore, the pathways through the gut microbiome which 

may impact on cognitive dysfunction in obesity remain largely unknown and, to date, only 

associations and plausible speculations have been proposed to be involved. Therefore, it might be 

interesting to deeply explore molecular mechanisms underlying this relationship. All these gaps 

of knowledge motivated the aim of the studies included in the present thesis.
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2. JUSTIFICATION  
 

 

The prevalence of obesity has dramatically increased in the last forty years, reaching 

epidemic proportions. Obesity has nearly tripled since 1975 and a 13% of adults with obesity was 

estimated in 2016.5 Unfortunately, this trend appears to continue, owing to changes in society, 

behavioural patterns245 and the low effectiveness of the conservative treatments in the long-term 

weight loss maintenance.77  

 

Obesity is associated with multiple disorders including cognitive impairment.63 Cognitive 

decline and dementia are nowadays major health concerns due to larger life expectancy and 

greater rates of metabolic disorders. More than 55 million people worldwide live with dementia 

with almost 10 million new diagnostics annually,246 which implies social and economic costs in 

terms of carers, families and health-care systems.247 Regrettably, there are no curative treatments 

except the control of modifiable risk factors.88 Midlife obesity is one of these potentially 

factors.91,92 In fact, a projection model estimated a reduction of 9-10% of dementia cases in 2050 

with the decline of 20% of obesity cases.93 

 

The gut microbiome has revolutionized the concept of health and disease,193 in particular 

in obesity pathophysiology. Gut microbiome may impact on metabolic inflammation,195 identify 

subjects with obesity248 and even predict weight loss.249 Changes in the gut microbiota, towards a 

more beneficial profile, have been observed after weight loss interventions.207 In addition, 

different rodent models have also demonstrated the role of microbiota in obesity-related cognitive 

impairment.225,231-239 Nevertheless, data in humans are limited.240 The evidence available is based 

on preliminary studies241-243 with small sample sizes and simple associations. In addition, 

underlying mechanisms remain largely unknown.  

 

Therefore, more studies assessing the role of microbiota in obesity-related cognitive 

impairment in humans are needed. These should include large populations, optimal standardized 

approaches and a combination of clinical and preclinical models.  

 

Gaining further insight into potential metabolic pathways may provide a major 

breakthrough in the management of obesity and cognitive impairment and could identify new 

targets to tackle and even to prevent obesity and related disorders.
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3. HYPOTHESIS AND OBJECTIVES 
 

 

Hypothesis 

It is hypothesized that the gut microbiome may differently influence cognition, at both 

functional and structural levels, in subjects without and with obesity, in whom impaired cognitive 

function could be expected.  

 

General objective 

The aim of the studies included in this thesis was to evaluate the impact of the gut 

microbiome on cognitive function in midlife obesity.  

 

Specific objectives 

1) To assess cognitive function in middle-aged subjects with obesity compared to their 

counterparts without obesity, focused on memory and inhibitory control. 

 

2) To investigate the influence of the gut microbiome on cognitive function, combining 

OMICS’ approaches:  

2.1. Metagenomics. 

2.2. Metabolomics.  

 

3) To determine the links between brain structure, cognitive function and the gut 

microbiome.  

 

4) To explore the neurocognitive effects of fecal microbiota transplantation from human 

donors to recipient mice.   
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4. METHODS 

4.1. Clinical and experimental design 

4.1.1.   Clinical discovery and replication cohorts 

Discovery cohort: The main results of the original papers I and II included in this thesis 

were based on the Ironmet cohort. The aim of the Ironmet project (PI15/01934) was to evaluate 

adipose tissue, muscle and brain iron and volume in subjects with obesity, as well as their 

relationships with the gut microbiota and the effects of weight loss. To address the hypothesis of 

the present thesis a subset of variables was examined including clinical parameters, cognitive 

assessment, brain gray matter volume and the gut microbiome. 

Study design: A pilot prospective 1-year case-control study including subjects with (BMI ≥ 30 

kg/m2) and without (BMI < 30 kg/m2) obesity matched by age and sex. Due to a lack of 

standardized studies evaluating cognition and microbiota in middle-aged subjects with and 

without obesity; we established a number of 90 subjects in each arm (30 men, 30 pre- and 30 

postmenopausal women). 

Eligible participants: The inclusion and exclusion criteria are listed below (Table 5). 

Table 5. Discovery cohort: Inclusion and exclusion criteria (Arnoriaga-Rodríguez, 2021).  

 

Inclusion criteria   

Aged 25-67 years.   

Provide informed consent prior to any study procedure. 

Available to complete the follow-up.   

Exclusion criteria   

Presence of concomitant diseases:  Type 1 or 2 diabetes 

  Malignant condition 

  Chronic active inflammatory disease 

  Chronic kidney or liver conditions. 

Neuropsychiatric conditions: Neurological or psychiatric diseases 

  History of traumatic brain injury or language disorders 

  Severe eating disorders. 

Infection in the previous month.    

Treatment with antibiotics, antifungal, antiviral, proton pump inhibitors, anti-inflammatory drugs in the last 3 months.  

Use of drugs or alcohol abuse (40 g/d men, 20 g/d women). 

Pregnancy or lactation.    
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The graph (Figure 5) shows the flowchart and an overview of the timeline of the study.  

 

 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Discovery cohort: Flowchart and timeline of the study. Blue, salmon and blue-salmon indicate the 

selection included in paper I, paper II and both papers, respectively. BIC, borderline intellectual capacity; DXA, dual-

energy X-ray absorptiometry; HPLC-ESI-MS/MS, high-performance liquid chromatography-electrospray ionization 

tandem mass spectrometry; IC, inhibitory control; MRI, magnetic resonance imaging; NMR, nuclear magnetic 

resonance (original illustration by Arnoriaga-Rodríguez, 2021).  

IRONMET 
 (n=181) 

Excluded (n=65): 

 No microbiota analysis (n=49).   

 No cognitive tests (n=13). 

 BIC (n=3). 

Case group: 

Memory (n=65) 

Excluded (n=2):  

Visual deficit.  

Cognition & MRI (n=143):      
    No MRI (n=32).   

    No cognitive tests (n=6). 

Cognition & Metabolomics: 

    HPLC-ESI-MS/MS (n=130).   

    NMR (n=156). 

Recruited  

for evaluation 

 (n=116) 

MRI (n=60) 

Baseline (2016-2017) Follow-up (2018-2019) 

Medical history 

Anthropometric data, DXA 

Plasma, fecal, urine samples 

Laboratory parameters 

Cognitive assessment 

MRI study 

Gut microbiome analysis 

Control group: 

Memory (n=51) 

Case group:  

IC (n=63) 

Control group:     

IC (n=51) 

Follow-up 12 months 

(n=69) 

MRI (n=95) 

Medical history 

Anthropometric data, DXA 

Plasma, fecal, urine samples 

Laboratory parameters 

Cognitive assessment 

MRI study 

Gut microbiome analysis 
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Period of recruitment: From January 2016 to October 2017 and from February to April 2019 for 

the cross-sectional and longitudinal study, respectively.  

Setting: Department of Endocrinology, Hospital Universitari Dr. Josep Trueta (Girona). 

Data collection: Participants were recruited from both clinical (cases) and community-based 

(controls) sources through word-of-mouth or announcements. Selection of participants, 

ascertainment of inclusion and exclusion criteria, medical history and physical examination were 

conducted by an endocrinologist in a personal interview. Blood sample testing was performed by 

a trained nurse. Urine and fecal samples were provided by the participants. Data were stored in a 

confidential database whose content was encrypted.  

Funding: This work was partially supported by research grant (PI15/01934) from the Instituto de 

Salud Carlos III from Spain and the Project ThinkGut (EFA345/19) 65% co-financed by the 

European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra 

program (POCTEFA 2014-2020).  

Ethical considerations: The Institutional review board - Ethics Committee and the Committee for 

Clinical Research (CEIC) of Hospital Universitari Dr. Josep Trueta (Girona) approved the study 

protocol and informed written consent was obtained from all participants. 

 

Replication cohorts: Findings from the discovery study Ironmet were validated in two different 

cohorts. The main features of these studies are summarized below (Table 6).  

Table 6. Replication cohorts: Main characteristics (Arnoriaga-Rodríguez, 2021).  

Features Florinash-MRI (n=24) Imageomics (n=970)250 

Aim 

To evaluate the role of intestinal microflora in 

non-alcoholic fatty liver disease. Florinash-MRI 

is a sub-study of the entire project, in a cohort 

from Girona.  

To identify biomarkers of human aging by 

analyzing imaging, biopsychosocial, 

cardiovascular, metabolomic, lipidomic and 

microbiome variables. 

Design  Cross-sectional case-control. Population-based study.  

Recruitment 2010-2012. 2017-2019. 

Participants Age 30-60 years.  Age ≥ 50 years, dwelling in the community. 

Exclusion  Infection in the previous month.  Infection during the previous 15 days.  

criteria Major systemic diseases, including malignancy. Contraindications for MRI.  

  History of drug or alcohol abuse.    

  Medication interfering with insulin action.   

  Acute cardiovascular event or illness (6 months).  

 

 Mental illness.   

Setting Hospital Universitari Dr. Josep Trueta.       Province of Girona. 

All subjects gave written informed consent, validated and approved by the Ethics Committee and the Committee for Clinical Research 
(CEIC) of Hospital Universitari Dr. Josep Trueta (Girona). 
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4.1.2. Experimental design 

Preclinical research included different mouse models of fecal microbiota transplantation 

and subsequent assessments of cognitive-like behavior. They were designed in an attempt to 

validate the results and to establish a causal relationship of the observations identified in humans. 

All the experiments were conducted in wild-type C57BL/6J male mice (Charles River, 

France) with an initial weight of 23–26 g and a number of 11 mice for each group. Mice were 

housed individually in controlled laboratory conditions with the temperature maintained at 21 ± 

1ºC, humidity at 55 ± 10% and 7:30h-19:30h light/dark cycle, local time for memory-like 

behavior or 12 hours reversed light/dark cycle, lights off at 8:00h for operant behavior. In the 

latter, mice were tested during the first hours of the dark phase of the reversed light/dark cycle. 

Animals were fed a standard chow diet RM1 (Irradiated Vacuum packed, Dietex International 

Ltd.) with food and water ad libitum. Health status of each mouse was checked every day before 

the experimental sessions and recorded in the protocol notebook. It included assessments of body 

weight, physical aspect, behavior and clinical signs.  

Fecal microbiota transplantation (FMT) experiments: After acclimatization to housing 

conditions, animals were divided into groups matched by average body weight. Mice were treated 

with a cocktail of antibiotics251 to deplete gut microbiota. Antibiotic cocktail consisted of 

ampicillin (1 g/L), metronidazole (1 g/L), vancomycin (400 mg/L), ciprofloxacin HCl (250 mg/L) 

and imipenem (250 mg/L). After 14 days of antibiotic intake animals were subjected to 72 hours 

wash out and then colonized daily via oral gavage of donor microbiota (200 μL) for 3 days. Donor 

microbiota was acquired from fecal samples of selected human subjects. Booster inoculations 

were given twice weekly throughout the study to reinforce donor microbiota phenotype. Control 

animals were subjected to the same protocol but instead of receiving donor microbiota they 

received oral gavage of 200 μL of saline solution (0.9% NaCl). After 4 weeks, animals were 

exposed to a series of behavioral testing. At the end of the study, mice were sacrificed and cecums 

were extracted, weighted and directly frozen in dry ice and stored at -80ºC. Mice brains were also 

removed to further study the prefrontal cortex (PFC) gene expression (Figure 6).  

 

 

Figure 6. Timeline of the fecal microbiota transplantation experiments. FMT, fecal microbiota transplantation; 

PFC, prefrontal cortex; RNA-seq, RNA sequencing (original illustration by Arnoriaga-Rodríguez, 2021).  
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Experimental design for FMT – Memory (Paper I): Microbiota from 22 human subjects (11 with 

low and 11 with high memory scores matched for age, sex, BMI, and depression scores) was 

orally delivered to individual mice in a blinded fashion. Control mice (n=11) received saline. 

Cognitive assessment including the Novel Object Recognition (NOR) and Fear Conditioning 

Tests. Finally, RNA sequencing of the PFC was performed. Analysis: i) The effects of FMT on 

memory-like behavior in mice compared with control mice receiving saline. ii) The effect of FMT 

from human donor with and without obesity compared to control mice. iii) Study of the PFC gene 

expression. 

Experimental design for FMT - Inhibitory control. Study I (Paper II):  The microbiota from 22 

human donors with (BMI ≥ 30 kg/m2, n=11) and without obesity (BMI < 30 kg/m2, n=11) 

matched for age, sex and education years was orally delivered to recipient mice. Reversal learning 

was conducted. Then, rodent performance of mice receiving human microbiota from donors with 

obesity was compared to those from human donors without obesity.  

Experimental design for FMT - Inhibitory control. Study II (Paper II): The microbiota from 

human donors with low (n=11) and high (n=11) Stoop Color and Word Test (SCWT) scores 

matched for age, BMI, gender and education years was delivered to recipient mice. RNA 

sequencing of the PFC was performed.  

The overview of the FMT designs is presented below (Figure 7).  

 

Figure 7. Experimental design for the fecal microbiota transplantation experiments. FMT-Memory (Paper I), 

mice were subjected to the Novel Object Recognition and Fear Conditioning Tests. FMT-IC Study I (Paper II), Reversal 

learning was conducted after FMT. FMT-IC Study II (Paper II), RNA sequencing of the mice PFC was performed. 

BMI, body mass index; FMT, fecal microbiota transplantation; IC, inhibitory control; SCWT, Stroop Color and Word 

Test (original illustration by Arnoriaga-Rodríguez, 2021).  

 

Ethical considerations: Animal procedures were conducted in accordance with the 

guidelines of the European Communities Council Directive 2010/63/EU regulating animal 

research and were approved by the local ethical committee (Comitè Ètic d´Experimentació Animal 

- Parc de Recerca Biomèdica de Barcelona, CEEA-PRBB). 
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4.2. Method details 

4.2.1.   Clinical measurements 

4.2.1.1. History and physical examination 

Family, social and medical history was assessed in a personal interview by an 

Endocrinologist as well as a physical examination. Nutritional history was collected using a 

validated food-frequency questionnaire.252 

 

4.2.1.2. Measures of obesity  

BMI was calculated by the kilograms of body weight divided by the square of the height 

in meters (kg/m2).3 Waist circumference was measured using a tape around the highest point of 

the upper margin of the iliac crest in parallel to the ground without compressing the skin at the 

end of a non-forced expiration. Total percentage of fat mass was assessed with dual-energy x-ray 

absorptiometry (DXA, GE lunar, Madison, Wisconsin).  

 

4.2.1.3. Biochemical parameters 

After fasting for a minimum of eight hours, blood sample testing was performed. As routine 

measurements in clinical practice, the biochemical parameters were analyzed with the same 

biochemical procedures. Plasma glucose, lipids profile and high-sensitivity C-reactive protein 

concentrations were measured using an analyzer (Cobas 8000 c702, Roche Diagnostics, Basel, 

Switzerland). Glycated hemoglobin was determined by performance liquid chromatography 

(ADAMA1c HA-8180V, ARKRAY, Kyoto, Japan).  

 

4.2.1.4. Hyperinsulinemic-euglycemic clamp 

Insulin sensitivity was determined by the hyperinsulinemic-euglycemic clamp. The 

procedure consists in creating in fasting conditions, a hyperinsulinemic state with an insulin 

infusion of predetermined fixed dosage and a variable rate glucose infusion.253 Glucose levels 

should be maintained constant at normal fasting or any pre-existing (isoglycemic) level adjusting 

the infusion rate of a 20% glucose solution. A steady state is usually reached in the last 40 minutes 

after 2 hours. Under these conditions the glucose infusion rates equal the glucose disposal rate, 

M (mg・ kg-1・min-1), a measurement of overall insulin sensitivity (Paper II).  
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4.2.2.   Neuropsychological assessment 

4.2.2.1. The California Verbal Learning Test 

Episodic verbal learning and memory was measured by the California Verbal Learning Test 

(CVLT) - second edition.254 It consisted of 5 learning tests in which a list of words (list A) was 

presented. The subject was immediately asked to recall as many words as possible after each 

presentation. The result of these first five tests, CVLT Immediate Recall (CVLT-IR) provided 

information about the learning process. Second, an interference list (list B) was introduced and 

the subject was requested to repeat the same task. Then, in the short delay test, the patient was 

asked to recall list A, free, CVLT Short Delayed Free Recall (CVLT-SDFR) or with semantic 

facilitation, CVLT Short Delayed Cued Recall (CVLT-SDCR). The higher the score, the better 

the memory function. About 30 minutes were necessary to administrate the test. The reliability of 

the CVLT-II ranges from 0.78 to 0.94.254 (Paper I).  

 

4.2.2.2. The Digit Span  

Working memory was assessed by the Digit Span, a subtest of the Wechsler Adult 

Intelligence Scale-III (WAIS-III)255 a measure of general intellectual functioning. It is based on 

numbers and includes the Forward and Backward Digit Span. In the Forward Digit Span, the 

examinee repeated a sequence of numbers in the same order as presented; a measure of working 

memory but also attention. Sequence length is increased until the participant cannot repeat the 

sequence properly. In the Backward Digit Span, the examinee repeated the number sequence in 

reverse order. Total Digit Span (TDS) represented the total score of the two previous tests. A 

higher score reflected better memory function. In a standardization sample of 394 participants 

(aged 16-89 years), the reliability coefficient was high, in the 0.80s-0.90s.110 (Paper I). 

 

4.2.2.3. The Stroop Color and Word Test  

The Golden’s version of the Stroop Color and Word Test (SCWT)256 assesses inhibition, 

but also cognitive flexibility, selective attention and information processing speed. Subjects are 

required to read three tables as fast as possible: 1) 100 words (color names) printed in black ink; 

2) 100 “XXX” printed in color ink (green, blue and red); 3) 100 color names (from the first page) 

printed in color ink (from the second page) which did not match and the subject was asked to 

name the ink color (and not to read the color name). Forty-five seconds were given for each task 

and after that, the last item completed was noted, obtaining three scores W, C and CW, 

respectively.  
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The interference (I) index was also obtained from the subtraction CW-CW’ 

(CW’=WxC/W+C). Reliability coefficients have been reported around 0.7-0.8. Standard 

administration procedures were followed as indicated in the test manual.256 (Paper II).  

 

4.2.2.4. The Iowa Gambling Task  

The computerized version of the Iowa Gambling Task (IGT) (Bechara A; Psychological 

Assessment Resources, Inc.) measured decision making. Four upside down card decks were 

shown in the screen, each of them identified by a letter (A, B, C or D). Participants could freely 

choose cards from any deck in order to win as much money as possible. When the subject clicked 

on a card deck a smiley face and the amount of money won appeared in the screen. Sometimes, 

after the smiley face was shown a sad face appeared together with a message indicating the 

amount of money lost. In the upper left side of the screen there are a green bar and a red bar 

indicating the amount of money won and lost. A and B decks gave bigger amounts of money but 

they also made important losses whereas C and D decks made smaller profits but they caused 

fewer losses. On the A and C decks the punishment frequency raised progressively but magnitude 

was constant, whereas on the B and D decks the punishment frequency was constant but 

magnitude raised progressively. Standard administration procedures were followed as indicated 

in the test manual.257 Standardized (t-score) Net Total Score, resulted from the subtraction of the 

disadvantageous from the advantageous decks (CD-AB), was used for the statistical analysis 

(Paper II).  

 

4.2.2.5. The Wisconsin Card Sorting Test 

The computer version 4-Research Edition (Heaton RK; Psychological Assessment 

Resources, Inc.) of Wisconsin Card Sorting Test (WCST) was used to assess executive function. 

The test consisted of four stimulus cards: a red triangle, two green stars, three yellow crosses and 

four blue circles. The stimulus cards were always placed in the screen and different cards were 

shown below, one at a time. The subject was asked to match each of these cards, which have 

designs similar to those on the stimulus cards (varying in color, geometric form or number), with 

one of the four stimulus cards. No warning was provided about the sorting rule nor about changes 

of the rule; only feedback about the answer was given in each trial (correct or incorrect). The 

sorting rule (color, form or number) changed after 10 consecutive correct answers (category). 

Standard administration procedures were followed.258 We analyzed the trials to complete first 

category score, which was the total number of trials needed to complete 10 consecutive correct 

answers (Paper II).  
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4.2.2.6. The Patient Health Questionnaire-9 

The Patient Health Questionnaire-9 (PHQ-9) is the depression module of the Primary Care 

Evaluation of Mental Disorders (PRIME-MD).259 It encompasses 9 items of depression symptoms 

plus a question about functional impairment and can be scored as a depression severity rating 

(scores of 10-14 moderate, 15-19 moderately severe and 20-27 severe depressive symptoms) or 

with an algorithm based on the DSM-IV criteria (major and minor episode). Scores of 10 or more 

have an 88% sensitivity and specificity. PHQ-9 score was considered as a possible confounding 

factor in the analyses. 

 

 

4.2.3.   Magnetic resonance imaging (MRI) 

4.2.3.1. MRI acquisition and image pre-processing 

All subjects were studied on a 1.5 T Ingenia (Philips Healthcare, Best, the Netherlands) 

with eight channel head coils. Structural images were acquired using a 3D Turbo Field Echo 

Planar Imaging (TFEPI) sequence and parameters of echo time (TE) = 4.1 ms, repetition time 

(TR) = 8.4 ms, flip angle 8, field of view (FOV) 230 x 190 matrix. A total of 145 whole-brain 

images per subject with thickness axial slices of 1 x 1 x 1 mm3 with or without gap. The total scan 

time was 189.6 s. The anatomical imaging data was processed and analyzed using MATLAB 

version R2017a (The MathWorks Inc, Natick, Mass) and Statistical Parametric Mapping software 

(SPM12; The Welcome Department of Imaging Neuroscience, London). Preprocessing steps 

involved motion correction, spatial normalization and smoothing using a Gaussian filter (FWHM 

8 mm). Data were normalized to Diffeomorphic Anatomical Registration Through Exponentiated 

Lie Algebra (DARTEL) and resliced to a 2 mm isotropic resolution in Montreal Neurological 

Institute (MNI) space.  

 

4.2.3.2. Volumetric brain analysis  

The Automated Anatomical Labeling (AAL)260 atlas was used to obtain the volumetric 

information of the right and left hippocampus, opercula (orbitalis, tringularis, opercularis), and 

middle and superior frontal gyri as informed by the involvement of these brain regions in verbal 

memory261-263 in 14394 participants as well as the anterior cingulate cortex in the Stroop task.264 

Each region was orthogonalized for sex, age and total gray matter volume in MATLAB version 

R2017a (The Math Works Inc, Natick, MA).  
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4.2.4.  Metagenomics 

4.2.4.1. Extraction of fecal genomic DNA 

Total DNA was extracted from frozen human stools using the QIAamp DNA mini stool kit 

(QIAGEN, Courtaboeuf, France). Quantification of DNA was performed with a Qubit 3.0 

fluorometer (Thermo Fisher Scientific, Carlsbad, CA, USA) and 1 ng of each sample (0.2 ng/mL) 

was used for shotgun library preparation for high-throughput sequencing, using the Nextera DNA 

Flex Library Prep kit (Illumina, Inc., San Diego, CA, USA) according to the manufacturers’ 

protocol.  

 

4.2.4.2. Whole-genome shotgun sequencing 

Sequencing was carried out on a NextSeq 500 sequencing system (Illumina) with 2 x 150 

bp paired-end chemistry, at the facilities of the Sequencing and Bioinformatic Service of the 

FISABIO (Valencia, Spain). Metagenome sequences were trimmed and quality controlled using 

the PRINSEQ-lite-0.20.4 program265 and overlapping pairs were joined using FLASH-1.2.11.266 

Host reads were removed by mapping the reads against the host reference genome, by using 

bowtie2-2.3.4.3267 with end-to-end and very sensitive options. 

Functional analyses were performed by assembling the host-free reads into contigs using 

MEGAHIT v1.1.2268 and mapping those reads against the contigs with bowtie2. Reads that did 

not assemble were appended to the contigs. Next, the program Prodigal v2.6.342269 was used for 

predicting codifying regions. The functional annotation was carried out with HMMER270 against 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database271 to obtain the functional 

subcategory, pathway and annotation of the genes. The filtering of the best annotations and the 

assignment of the orf annotation to every read were carried out using the statistical package R,272 

which was also used to count the aligned reads and to add the category and its coverage and finally 

to build abundance matrices.  

Taxonomic annotation was implemented with Kaiju v1.6.2273 on the host-free reads. 

Addition of lineage information, counting of taxa and generation of the operational taxonomic 

unit (OTU) absolute and relative abundance matrices for all samples were performed using the 

package R.272 
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4.2.5.   Metabolomics  

For non-targeted metabolomics analysis, metabolites were extracted from fecal and plasma 

samples with methanol (containing phenylalanine-C13 as an internal standard) according to 

previously described methods.274 Briefly, for plasma samples 30 μl of cold methanol were added 

to 10 μl of each sample, vortexed for 1 min and incubated for one hour at -20ºC. For fecal samples, 

the content of a 1.2 mL tube of Lysing Matrix E (MP biomedicals) and 600 μl of cold methanol 

were added to 10 mg of sample. Samples were homogenized using FastPrep-24TM (MP 

biomedicals) and were incubated overnight in a rocker at 4ºC. Then, all samples were centrifuged 

for three minutes at 12,000 g, the supernatant was recovered and filtered with a 0.2 μm Eppendorf 

filter. Two μL of the extracted sample were applied onto a reversed-phase column (Zorbax SB-

Aq 1.8 μm 2.1 x 50 mm; Agilent Technologies) equipped with a precolumn (Zorbax-SB-C8 Rapid 

Resolution Cartridge 2.1 x 30 mm 3.5 μm; Agilent Technologies) with a column temperature of 

60ºC. The flow rate was 0.6 mL/min. Solvent A was composed of water containing 0.2% acetic 

acid and solvent B was composed of methanol 0.2% acetic acid. The gradient started at 2% B and 

increased to 98% B in 13 min and held at 98% B for 6 min; post-time was established at 5 min.  

Data were collected in positive and negative electrospray modes time of flight operated in 

full-scan mode at 50–3000 m/z in an extended dynamic range (2 GHz), using N2 as the nebulizer 

gas (5 L/min, 350ºC). The capillary voltage was 3500 V with a scan rate of 1 scan/s. The ESI 

source used a separate nebulizer for the continuous, low-level (10 L/min) introduction of 

reference mass compounds 121.050873 and 922.009798, which were used for continuous, online 

mass calibration. MassHunter Data Analysis Software (Agilent Technologies, Barcelona, Spain) 

was used to collect the results and MassHunter Qualitative Analysis Software (Agilent 

Technologies, Barcelona, Spain) to obtain the molecular features of the samples, representing 

different, co-migrating ionic species of a given molecular entity using the Molecular Feature 

Extractor algorithm (Agilent Technologies, Barcelona, Spain). We selected samples with a 

minimum of 2 ions. Multiple charge states were forbidden. Compounds from different samples 

were aligned using a retention time window of 0.1% ± 0.25 minutes and a mass window of 20.0 

ppm ± 2.0 mDa. We selected only those present in at least 50% of the samples of one group and 

corrected for individual bias.  

Fecal samples for the Ironmet cohort were also analyzed by Nuclear Magnetic Resonance 

(NMR) (Paper II). The preparation protocol started with around 15-20 mg of dried fecal matter 

that was placed in a 2 mL Eppendorf tube. Then, 500 μl of 0.05 M PBS buffer in H2O (pH = 7.3) 

was added and vortexed vigorously, frozen and thawed twice and centrifuged (2.1000 g, 15 min, 

4°C) to obtain a clear fecal water over the precipitated stool.  
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From the upper layer, 200 μl of prepared fecal water was placed in a 2 mL Eppendorf tube 

and then, 400 μl of 0.05 M PBS buffer in D2O (pH = 7.2, TSP 0.7 mM) was added. The sample 

was vigorously vortexed and sonicated until complete homogenization and the mixture (clear 

dispersion), if necessary, was centrifuged again (14.000 rpm around 14.000 g, 5 min, 4ºC). For 

NMR measurement the clear upper phase was placed into a 5 mm o.d. NMR tube. 1H NMR 

spectra were recorded at 300 K on an Avance III 600 spectrometer (Bruker®, Germany) operating 

at a proton frequency of 600.20 or 500.13 MHz using a 5 mm PABBO gradient probe.  

 

 

4.2.6.   Behavioral testing in mice  

4.2.6.1. The Novel Object Recognition 

The Novel Object Recognition (NOR) Test was performed in a V-maze as previously 

published.275 Three phases of 9 minutes were performed on consecutive days. Mice were first 

habituated to the V-maze. On the second day, two identical objects (chess pieces) were presented 

to the mice and the time that they spent exploring each object was recorded. In the test phase, 3 

hours later for short-term memory (NOR3h) or 24 hours later for long-term memory (NOR24h), 

one of the familiar objects was replaced with a novel object (a different chess piece) and the time 

spent exploring each object, novel and familiar, was computed. A discrimination index was 

calculated as the difference between the time that the animal spent exploring the novel (Tn) and 

familiar (Tf) object divided by the total time of object exploration: (Tn-Tf)/(Tn + Tf). (Paper I).  

 

4.2.6.2. Fear Conditioning 

Fear Conditioning was conducted as previously described with some modifications.276,277 

Mice were individually placed in a shuttle chamber (LE918, Panlab, Barcelona) surrounded by a 

sound-attenuating cabinet. The chamber floor was formed by parallel stainless-steel bars 

connected to a scrambled shock generator. On the training day, mice were habituated to the 

chamber for 180 seconds before the exposure to an acute 30 second beeping sound (80 dB). Each 

animal received an unconditioned stimulus (0.6 mA footshock for 2 seconds) paired with the end 

of the sound (conditioned stimulus). After the shock, the animal remained in the shuttle chamber 

for 60 seconds. To evaluate Cued Fear Conditioning, mice were re-exposed to the conditioned 

stimulus in a novel environment (a wide white cylinder in the chamber) 24 hours after the 

conditioning session. Mice were allowed to adapt for 180 seconds to the new environment which 

was followed by 30 seconds of the sound used in the training day.  
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After the last sound trial, mice remained in the cylinder for 60 seconds. Fear memory was 

assessed as the percentage of time that mice spent freezing during the session. Freezing response, 

a rodent’s natural response to fear, was evaluated by direct observation and defined as complete 

lack of movement, except for respiration for more than 1 second. The procedure was performed 

between 8.00 and 12.00h in an experimental room different to the housing room. 

 

4.2.6.3. Operant Conditioning 

Food self-administration: Mouse operant chambers (Model ENV-307A-CT, Med 

Associates, Georgia, VT, USA) were used for operant responding. At the start of each food self-

administration session, a house ceiling light turned on for the first 3 seconds of the session to 

indicate the start of the session. All sessions lasted 60 minutes and regular-flavored pellets were 

used. The food self-administration session consisted of two pellet periods of 25 minutes and a 10-

minute pellet-free period in between both pellet periods (25/10/25). In the two pellet periods, 

animals received a pellet after an active response paired with a stimulus light (cue light). After 

performing an active response on the active lever, a time-out period of 10 seconds was set where 

the cue light was off and no reward (pellet) was provided. No pellets were provided in the inactive 

lever. Responses on active lever, inactive lever and during the time-out period were recorded. The 

start of the pellet-free period was signaled by the illumination of the entire operant chamber. 

During this period no pellet was delivered. In the operant conditioning sessions, mice were under 

fixed ratio 1 (FR1) of reinforcement for 7 days (one active lever-press resulted in a delivery of 

one pellet). Following FR1 phase, animals were subjected to an increase fixed ratio up to 5 (5 

lever-presses in order to obtain one reward) (FR5) for 8 days. Criteria for the achievement of the 

operant responding were acquired when the following conditions were met: (i) at least 75% 

responding on the active lever; and (ii) a minimum of 5 rewards per session (5 and 25 active lever 

presses in FR1 and FR5, respectively). After each session mice were returned to their home cages.  

Persistence to response: Non-reinforced active responses during the pellet-free period (10 

min) were measured as a persistence of food-seeking behavior. 

Cognitive flexibility: After 8 days of FR5, animals were exposed to 2 sessions of reversal 

learning (RL). In these 2 sessions, active and inactive levers were switched. Thus, the active lever 

during FR1 and FR5 phases became the inactive and vice versa. Higher number of lever-presses 

in the inverted active lever (inactive during FR phases) indicates higher scores of cognitive 

flexibility. 
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4.2.7.   Study of the gene expression in the prefrontal cortex of mice 

The brains of mice were quickly removed and the medial prefrontal cortex (PFC) was 

dissected according to the atlas of stereotaxic coordinates of mouse brain.278 Brain tissues were 

then frozen by immersion in 2-methylbutane surrounded by dry ice and stored at -80ºC. For RNA 

preparation, each brain sample was treated individually. Total RNA was isolated from the brains 

using the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen Düsseldorf, Germany) according to 

the manufacturer’s protocol.  

Quality control of the RNA was performed using the RNA 6000 Nano chip (Agilent) on an 

Agilent Bioalyzer 2100 obtaining RIN values between 8.7 - 9.8. 

Libraries were prepared from 500 ng of total RNA using the TruSeq stranded mRNA 

library preparation kit (Illumina, #20020594) with TruSeq RNA Single Indexes (Illumina, 

#20020492 and #20020493) according to the manufacturer’s instruction reducing the RNA 

fragmentation time to 4.5 minutes. Prepared libraries were analyzed on a DNA 1000 chip on the 

Bioanalyzer and quantified using the KAPA Library Quantification Kit (Roche, #07960204001) 

on an ABI 7900HT qPCR instrument (Applied Biosystems). Sequencing was performed with 

2x50-bp paired-end reads on a HiSeq 2500 (Illumina) using HiSeq v4 sequencing chemistry. 

Raw sequencing reads in the fastq files were mapped with STAR version 2.5.3a279 to the 

Gencode release 17 based on the GRCm38.p6 reference genome and the corresponding GTF file. 

The table of counts was obtained with FeatureCounts function in the package subread, version 

1.5.1.280 The differential expression gene analysis (DEG) was assessed with voom+limma in the 

limma package version 3.30.13281 and R version 3.4.3. Genes having less than 10 counts in at 

least 5 samples were excluded from the analysis. Raw library size differences between samples 

were treated with the weighted ‘‘trimmed mean method’’ TMM282 implemented in the edgeR 

package.283 The normalized counts were used in order to make unsupervised analysis, PCA and 

clusters. For the differential expression (DE) analysis, read counts were converted to log2 counts 

per million (logCPM) and the mean-variance relationship was modeled with precision weights 

using voom approach in limma package. 
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4.3. Statistical analysis  

4.3.1. General statistical analysis 

First, normal distribution and homogeneity of variances were tested. Results were 

expressed as number and frequencies for categorical variables, mean and standard deviation for 

normal distributed continuous variables and median and interquartile range for non-normal 

distributed continuous variables. To determine differences between study groups, we used Chi-

Square for categorical variables, unpaired T-Test in normal quantitative and Mann-Whitney U 

test for non-normal quantitative variables. Spearman or Pearson analysis was used to determine 

the correlation between quantitative variables. ANOVA with repeated measures was used when 

required to test the evolution over time. In particular, for food self-administration analysis in mice, 

within-subject factors were Lever (two levels: active and inactive), Day (7 levels for FR1, 9 levels 

for FR5 and 2 levels for RL). Between-subject factor was Transplant (2 levels: Control and 

Transplant). The criterion for significance (alpha) was set at 0.05. These statistical analyses were 

performed with SPSS, version 19 (SPSS Inc., Chicago, IL).   

 

4.3.2. Specific statistical procedures 

4.3.2.1. MRI data analysis 

Brain regions of interest (ROI) were orthogonalized for sex, age and total gray matter 

volume in MATLAB version R2017a (The Math Works Inc., Natick, MA). Spearman or Pearson 

analysis was used to determine the correlation between quantitative variables, corrected for 

multiple comparisons using q-values.284 

 

4.3.2.2. Metagenomic analysis 

Differential abundance analyses for taxa and KEGG-based metagenome functions 

associated to cognitive tests and brain volumes were performed using the DESeq2 R package,285 

controlling for i) age, sex, BMI, education years and PHQ-9 scores in memory; ii) age, sex and 

education years or iii) age, sex, education years, insulin sensitivity and high-sensitivity C-reactive 

protein in inhibitory control. Fold change with a unit change in the corresponding variable and 

Benjamin-Hochberg adjusted p-values286 were plotted for each taxon. Significantly different taxa 

were colored according to phylum. Taxa and bacterial functions were previously filtered so that 

only those with more than 10 reads in at least two samples were selected.  
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Manhattan-like plot were used to show significantly expressed KEGG metagenome 

functions. The −log10(pFDR) values were multiplied by the fold change sign to take into account 

the direction of the association. Bars were colored according to the pFDR. A significance <0.05 

was established unless otherwise indicated.  

To take into account the compositional structure of the microbiome and rule out possible 

spurious associations, microbiome data were also analyzed using a compositional approach with 

the ALDEx2 R package,287 controlling for age, sex, BMI, education years and depression scores 

and adjusting for multiple comparisons using q-values284 and with a multivariate machine learning 

feature selection algorithm applied to the centered log ratio transformed data using the Variable 

Importance Testing Approach (VITA) algorithm.288 

 

4.3.2.3. Metabolomic analysis 

Metabolomic data were analyzed using machine learning methods. In particular, an all-

relevant machine learning variable selection strategy was adopted, applying two random forest 

(RF)-based methods as implemented in the Boruta algorithm289 and the VITA method.288  

The Boruta algorithm performs feature selection based on the learning performance of the 

model.289 It performs variables selection in different steps: (a) randomization, to create a duplicate 

copy of the original features randomly permutate across the observations; (b) model building, to 

compute the normalized permutation Variable Importance Measure (VIM) scores; (c) statistical 

testing, to find those relevant features with a VIM higher than the best randomly permutate 

variable using a Bonferroni corrected two-tailed binomial test and (d) iteration, until the status of 

all features is decided. We run the Boruta algorithm with 500 iterations, a confidence level cut-

off of 0.005 for the Bonferroni adjusted p values, 5000 trees to grow the forest (ntree) and a 

number of features randomly sampled at each split given by the rounded down number of 

features/3 (the mtry recommended for regression). 

The VITA algorithm288 uses a strategy inspired in the cross-validation procedure to obtain 

the cross-validated permutation variable importance (CVPVI). The method randomly splits the 

data in a total of k-folds of equal size. For each i-fold, a RF is trained using all samples that are 

not part of the i-test set and the response variable is predicted for the samples in the i-test set. The 

procedure is repeated after permutating n times the values of the predictor variables. The 

permutation variable importance is calculated as the average difference in the prediction errors 

between the original data and the permutations and the CVPVI is the average over all k-fold-

specific permutation variable importance.  
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Second, taking into account that for non-relevant features the change in accuracy is only 

due to random variations and thus it does not change (zero CVPVI) or slightly increases (negative 

CVPVI) when not using the variable for prediction, the non-positive CVPVI values are used to 

compute a symmetric null distribution of CVPVI scores around zero for non-relevant features by 

mirroring them on the y axis. From this approximated null distribution, p-values can be calculated. 

As the null distribution is obtained from non-relevant features, this testing approach is only 

suitable for datasets with a large number of variables without effect. In our calculations we used 

5000 trees, a 7-fold CV and 10 permutations. P-values were then corrected using the Benjamini-

Hochberg procedure for false discovery rate (FDR).286 

 

4.3.2.4. Prefrontal cortex gene expression analysis 

DESeq2285 was also used to identify the medial PFC genes of recipient mice associated with 

metagenomic functions of human donors linked to cognitive tests controlling for donor’s age, sex 

and education years.  

Gene Ontology (GO) and Reactome pathway analyses of differentially expressed genes 

were performed using the clusterProfiler R package290 and the ConsensusPathDB291 respectively. 

The p value of each term was assessed using a hypergeometric test and significantly enriched 

terms were determined based on a q value (Storey correction)284 cut-off of 0.1, to account for 

multiple testing. GO terms were visualized using the goplot function from the enrichplot R 

package, and significant reactome pathways were visualized using a gene overlap plot. 
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5. RESULTS 
 

 

The results of this thesis are included in the following publications:  

 

 

Original Paper I 

Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, Contreras-Rodríguez O, Blasco G, 

Coll C, Biarnés C, Miranda-Olivos R, Latorre J, Moreno-Navarrete JM, Castells-Nobau A, 

Sabater M, Palomo-Buitrago ME, Puig J, Pedraza S, Gich J, Pérez-Brocal V, Ricart W, Moya A, 

Fernández-Real X, Ramió-Torrentà L, Pamplona R, Sol J, Jové M, Portero-Otin M, Maldonado 

R, Fernández-Real JM. Obesity Impairs Short-Term and Working Memory through Gut 

Microbial Metabolism of Aromatic Amino Acids. Cell Metab. 2020 Oct 6;32(4):548-560.e7. 

doi: 10.1016/j.cmet.2020.09.002.  

Impact factor (JCR 2020): 27.287 (D1, 3/145 Endocrinology & Metabolism).  

 

 

Original paper II 

Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Contreras-Rodríguez O, Burokas A, Ortega-

Sanchez JA, Blasco G, Coll C, Biarnés C, Castells-Nobau A, Puig J, Garre-Olmo J, Ramos R, 

Pedraza S, Brugada R, Vilanova JC, Serena J, Barretina J, Gich J, Pérez-Brocal V, Moya A, 

Fernández-Real X, Ramio-Torrentà L, Pamplona R, Sol J, Jové M, Ricart W, Portero-Otin M, 

Maldonado R, Fernández-Real JM. Obesity-associated deficits in inhibitory control are 

phenocopied to mice through gut microbiota changes in one-carbon and aromatic amino 

acids metabolic pathways. Gut. 2021 Dec;70(12):2283-2296. doi: 10.1136/gutjnl-2020-323371.  

Impact factor (JCR 2020): 23.059 (D1, 3/90 Gastroenterology & Hepatology).
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5.1. Original paper I 

 

 

Obesity impairs short-term and working memory through gut microbial 

metabolism of aromatic amino acids 

Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, Contreras-Rodríguez O, Blasco G, 

Coll C, Biarnés C, Miranda-Olivos R, Latorre J, Moreno-Navarrete JM, Castells-Nobau A, 

Sabater M, Palomo-Buitrago ME, Puig J, Pedraza S, Gich J, Pérez-Brocal V, Ricart W, Moya A, 

Fernández-Real X, Ramió-Torrentà L, Pamplona R, Sol J, Jové M, Portero-Otin M, Maldonado 

R, Fernández-Real JM. 

 

Cell Metab. 2020 Oct 6;32(4):548-560.e7. © 2020 Elsevier Inc.  

doi: 10.1016/j.cmet.2020.09.002.  

 

  

Highlights 

• Metagenomic data associate aromatic amino acids (AAA) and one-carbon (1-C) 

metabolism with memory and brain region volumes.  

• Memory scores are associated with altered plasma levels of AAA and betaine.  

• Obesity modulates these relationships and is associated with impaired memory.  

• FMTs from obese subject lead to decreased memory scores in recipient mice.  
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SUMMARY

The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore
the gut microbiome and memory domains according to obesity status. A specific microbiome profile asso-
ciated with short-term memory, working memory, and the volume of the hippocampus and frontal regions
of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic
amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with
short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity
led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA
sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aro-
matic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight
the potential therapeutic value of targeting the gutmicrobiota formemory impairment, specifically in subjects
with obesity.

INTRODUCTION

The decline of cognitive function is rising worldwide due to

longer life expectancy (Larson et al., 2013) and increased preva-

lence of obesity and related metabolic disorders (Ward et al.,

2019). Obesity has been identified as a modifiable risk factor

for cognitive impairment (Kivipelto et al., 2018), but in turn, cogni-

tive dysfunction is a predisposing factor for overeating and
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obesity (Gunstad et al., 2020). One of the core cognitive domains

that is impaired first is learning and memory (Petersen et al.,

1999). Subjects with obesity have shown memory deficits, with

bodymass index (BMI) being negatively associatedwithmemory

traits across adult lifespan (Cournot et al., 2006; Gunstad

et al., 2006).

The link between obesity and altered gut microbiota is clearly

recognized (Ley et al., 2006). Increasing evidence supports the

role of microbiota in cognitive disorders (Rogers et al., 2016;

Sarkar et al., 2018). Learning and memory have been associ-

ated with specific microorganisms and metabolites (Mao

et al., 2020). For example, the lack of microbiota produced

fear extinction learning deficits in germ-free mice (Chu et al.,

2019) and the administration of Lactobacillus helveticus

prevented the memory impairment induced by a western diet

(Ohland et al., 2013). Bifidobacterium longum also led to a

beneficial effect in the object recognition tasks (Savignac

et al., 2015). However, it is important to note that all of these

studies have been performed in mice.

Evidence in humans is still scarce. Preliminary findings have

shown impaired cognitive traits and detrimental metabolic

profiles linked to some bacterial families in subjects with obesity

(Arnoriaga-Rodrı́guez and Fernández-Real, 2019; Blasco et al.,

2017; Fernandez-Real et al., 2015; Palomo-Buitrago et al.,

2019). In fact, interventions that delay or prevent cognitive

impairment, such as weight loss and treatment with some antidi-

abetic drugs, are well known to be associated with microbiota

shifts (Brunkwall and Orho-Melander, 2017; Livingston et al.,

2017; Maruvada et al., 2017).

Herein, we hypothesized that memory impairment is associ-

ated with both obesity status and a specific gut microbiome pro-

file. We evaluated brain structure (through magnetic resonance

imaging [MRI]) and function (using validated neuropsychological

tests) in subjects with and without obesity and determined how

these measurements associated with the gut microbiota and

the plasma and fecal metabolome. We also tested whether fecal

microbiota transplantation (FMT) from humans into mice could

help identify transmissible factors that impact the brain’s tran-

scriptome. The results showed that a specific gut microbiome

profile was linked to several memory domains and to the volume

of hippocampus and prefrontal regions differentially in subjects

with and without obesity. A plasma and fecal metabolomics

signature associated with these traits was also identified. Impor-

tantly, the microbiota from obese subjects led to decreased

short-term memory scores in recipient mice, which had shifts

in aromatic amino acid (AAA) pathways and inflammatory genes

in the prefrontal cortex (PFC) linked to clusters of bacterial

species.

RESULTS AND DISCUSSION

Analysis of theGutMetagenomeReveals Bacterial Gene
Functions and Species Associated with Memory Scores
Memory function was evaluated in a cohort of 116 middle-aged

subjects (n = 65 with obesity, n = 51 without obesity; Table 1).

Impairments in learning, immediate recall, short delayed recall,

and working memory were observed among subjects with

obesity, based on the scores of California Verbal Learning Test

Table 1. Clinical and Neuropsychological Data of the Human Discovery Cohort

Total Population (n = 116) Without Obesity (n = 51) With Obesity (n = 65) p

Age (years) 50.4 [41.8-58.5] 53.9 [44.4-59.0] 48.6 [41.1-57.1] 0.097

Females n (%) 81 (69.8) 34 (66.7) 47 (72.3) 0.511

Education (years) 12 [11-16.8] 15 [12-17] 12 [9-14] 9.0x10�6

BMI (kg/m2) 34.8 [25.3-43.3] 24.6 (2.6) 43.2 (6.7) 3.3x10�34

Waist (cm) 110 [92-126] 89.8 (9.6) 125.2 (13.9) 3.6x10�29

Fat mass (%) 43.6 [34-50.5] 32.4 (7.2) 49.9 (5.5) 2.7x10�27

SBP (mmHg) 132.8 (20.0) 124.3 (15.8) 139.3 (20.6) 2.3x10�5

DBL (mmHg) 74.8 (11.5) 71.2 (10.9) 77.6 (11.3) 0.003

HDL-C (mg/dL) 56 [45-68] 66.0 (17.0) 50.8 (12.7) 2.1x10�7

Triglycerides (mg/dL) 90 [65.3-134.8] 79 [58-96] 123 [81.5-156] 7.1x10�5

FPG (mg/dL) 96 [90-102.8] 95 [89-101] 97 [92.5-104.5] 0.196

HbA1c (%) 5.5 (0.3) 5.5 (0.3) 5.6 (0.3) 0.035

hsCRP (mg/dL) 2.4 [0.7-5.9] 0.7 [0.4-1.4] 5.0 [2.7-9.5] 8.1x10�14

CVLT-IR (score) 61 [55-67.8] 65 [56-70] 59 [52.5-65] 0.003

CVLT-SDFR (score) 14 [12-15] 14 [12-16] 13 [11-14] 0.002

Total Digit Span (score) 14 [11.3-17] 15 [13-18] 13 [11-16] 0.003

PHQ-9 (score) 5.5 [3-9] 4 [2-6] 7 [4-10] 1.8x10�4

Results are expressed as number and frequencies for categorical variables, mean and standard deviation (SD) for normal distributed continuous

variables, and median and interquartile range [IQ] for non-normal distributed continuous variables. To determine differences between study groups,

we used c2 for categorical variables, unpaired Student’s t test in normal quantitative, and Mann-Whitney U test for non-normal quantitative variables.

p values for the difference between subjects with obesity (BMI > 30 kg/m2) and without obesity (BMI between 18.5–30 kg/m2). SBP, systolic blood

pressure; DBP, diastolic blood pressure; HDL-C, high density lipoprotein cholesterol; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin;

hsCRP, high-sensitive C-reactive protein; CVLT, California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; PHQ-9, Pa-

tient Health Questionnaire.
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Figure 1. A Characteristic Microbiota Taxonomic and Functional Profile Is AssociatedwithMemory Scores andModulated byObesity Status

(A and B) Boxplot for the total digit span (TDS) (A) and California Verbal Learning Short Delayed Free Recall (CVLT_SDFR) (B) in subjects with and without obesity.

Differences between groups were analyzed by a Wilcoxon tests.

(legend continued on next page)
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Immediate Recall (CVLT-IR), California Verbal Learning Test

Short Delayed Free Recall (CVLT-SDFR), and Total Digit Span

(TDS), respectively (Figures 1A, 1B, and S1A; Table 1).

A characteristic microbiome ecosystem was associated with

cognitive scores using DESeq2 (Love et al., 2014) after adjusting

for age, sex, BMI, years of education, and depression scores as-

sessed using the Patient Health Questionnaire (PHQ)-9 (Figures

1C–1F, S1B, and S1C; Tables S1A–S1F). To take into account

the compositional structure of the microbiome data and rule

out possible spurious associations, we further analyzed the

data using a compositional univariate approach (Table S2) with

the ALDEx2 R package (Fernandes et al., 2014), as well as a

multivariate machine learning feature selection strategy on the

centered log-ratio transformed data (Table S3). Common spe-

cies were positively associated with learning and verbal memory

(CVLT-SDFR [Figure 1C; Tables S1A, S2A, and S3A]; CVLT-IR

[Figure S1B; Table S1B]) and working memory (TDS [Figure 1D;

Tables S1C, S2B, and S3B]), such as Clostridium sp. 27_14 or

Clostridium sp. CAG:230, all of them belonging to Firmicutes

phylum. On the contrary, negative associations between the

gut microbiota and memory scores were identified within the

phylum Bacteroides (Bacteroides fragilis CAG:558, Bacteroides

sp. 43_46, Bacteroides caccae CAG:21, Bacteroides sp.

HMSC067B03, and Bacteroides sp. AR20) and phylum Proteo-

bacteria (Citrobacter freundii, Enterobacter cloacae, Salmonella

enterica, and Klebsiella aerogenes).

Of note, while some species were positively and specifically

associated with verbal learning, such as Ruminococcus sp.

CAG:353,Roseburia sp. CAG:197, Pararhodospirillum photome-

tricum, and Veillonella magna (Figures 1C and S1B; Tables S1A,

S1B, S2A, and S3A), others were positively linked to working

memory but not with learning or verbal memory (Clostridium

sp. CAG:440, Ruminococcus sp. CAG:177, and Firmicutes

bacterium CAG:103) (Figure 1D; Tables S1C, S2B, and S3B),

suggesting divergent memory domains. Remarkably, several of

the identified bacterial species were also longitudinally associ-

ated with the several memory domains measured one year later

(Figure S2). The characteristics of these subjects are shown in

Table 2.

Not only did the microbiota composition associate with mem-

ory, but also the metagenome functions were linked to this

cognitive trait (Figures 1E, 1F, and S1C; Tables S1D–S1F,

S2G, S2H, S3G, and S3H). Bacterial functions related to vitamin

B metabolism, such as riboflavin (ribBA, aphA, fre, and ubiB),

vitamin B6 (pdxA), folic acid (pabB, queE, pabC, folM, and

folX), and vitamin B12 (btuB), were negatively associated with

all memory domains (highlighted in black in Figures 1E, 1F,

and S1 and in Tables S1D–S1F). Of note, all these vitamins

are essential for one-carbon metabolism. There is convincing

data for the association between B vitamins and cognition

(Mendonça et al., 2017; Obeid et al., 2007; Smith et al., 2010).

In particular, it is well known that thiamine and folate impact

memory (Matté et al., 2009; Witt and Goldman-Rakic, 1983).

Bacterial functions involved in thiamine (vitamin B1) metabolism

(thiB, thiK, and ABC.VB1X.P) were also associated with low

memory scores. We hypothesized that these functions would

result in preferential uptake or catabolism of thiamine by intes-

tinal bacteria, resulting in decreased thiamine uptake by the

host. Concordantly, significantly low plasma thiamine levels

were found in subjects with lower memory scores (34.5 [27.2–

45.3] versus 44.3 [32.3–64.6] ng/mL, p = 0.016). Other relevant

metagenomic functions associated with several memory do-

mains included those related to the AAA metabolism, one-car-

bon metabolism, and endocannabinoid signaling (highlighted in

Figures 1E, 1F, and S1C and in Tables S1D–S1F) and are further

discussed below.

When we evaluated the associations separately in subjects

who were obese and non-obese (Figures 1G–1N and S1D–

S1G; Tables S1G–S1R, S2C–S2F, and S3C–S3F), we found

that several Prevotella sp. were positively associated with verbal

memory among non-obese subjects (Figures 1G and S1D;

Tables S1G, S1O, S2C, and S3C) while Eubacterium and

Clostridium sp. showed similar associations within subjects

with obesity (Figure 1I and S1E; Tables S1I, S1Q and S2D). Bac-

teria belonging to Proteobacteria phylum were similarly and

negatively associated in subjects without and with obesity, but

preferentially in the latter (Figures 1G and 1I; Tables S1I and

S3D). Regarding working memory, we observed positive associ-

ations of Selenomonadaceae, Lactococcus sp., and Colinsella

sp. in non-obese subjects (Figure 1K; Tables S1K, S2E, and

S3E) and Eubacterium sp., Ruminococcus sp., Clostridium sp.,

and Faecalibacterium sp. CAG:74 in subjects with obesity (Fig-

ure 1M; Tables S1M, S2F, and S3F). The associations of

bacterial functions related to thiamine weremoremarked among

subjects with obesity (Figures 1J and 1N; Tables S1J, S1N, S2J,

S2L, S3J, and S3L) who have been described to be particularly

susceptible to thiamine deficits (Maguire et al., 2018).

In summary, several species of the phylum Firmicutes

(belonging to Clostridium, Ruminococcus, and Eubacterium

genera, and Selenomonadaceae family) were positively associ-

ated with memory scores. Species from the phyla Bacteroidetes

and Proteobacteria mainly presented negative associations with

memory scores.

To our knowledge, there are no previous descriptions of gut

microbiota linked to the different memory domains in humans.

Current results are in line with those identifying a higher preva-

lence of Bacteroidetes in patients with mild cognitive impairment

(Saji et al., 2019). Species of the Enterobacteriaceae family such

(C and D) Volcano plots of differential bacterial abundance associated with the CVLT_SDFR (C) and the TDS (D), as calculated by DESeq2 from shotgun met-

agenomic sequencing in the IRONMET cohort, adjusting for age, BMI, sex, education years, and Patient Health Questionnaire (PHQ)-9 scores. Fold change (FC)

associated with a unit change in the corresponding test and Benjamini-Hochberg-adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa

are colored according to phylum.

(E and F) Manhattan-like plot of significantly expressed KEGG bacterial genes associated with the CVLT_SDFR (pFDR < 0.002) (E) and TDS (pFDR < 0.04) (F),

identified from DESeq2 analysis adjusted for age, BMI, sex, educations years, and PHQ-9. The -log10(pFDR) values are multiplied by the FC sign to take into

account the direction of the association. Bars are colored according to the pFDR. Those functions related to B vitamin metabolism, one-carbon metabolism,

phenylalanine, tryptophan, and endocannabinoid metabolism are highlighted in black.

(G–N) Taxonomic and functional associations for the CVLT_SDFR and TDS tests in subjects with and without obesity. The complete list of significantly associated

species and metagenomic functions can be found in Table S1.
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as Citrobacter rodentium (phylum Proteobacteria) were associ-

ated with impaired memory in acute stress (Gareau et al.,

2011). Ruminococcus gnavus and different Bacteroidetes and

Enterobacter species were increased in subjects with insulin

resistance and obesity (Ley et al., 2006; Org et al., 2015) and

associated with a worse cognitive profile (Tables S1A–S1C).

Conversely, taxa of the phylum Firmicutes such as Clostridiales

and Roseburia linked to higher memory score had a decreased

relative abundance in subjects with type 2 diabetes (Tilg et al.,

2020). In mice, the combined administration of Lactobacillus

rhamnosus and helveticus led to increased non-spatial memory,

improving c-Fos expression in the hippocampus (Gareau et al.,

2011; Smith et al., 2014).

Brain Structure Differentially Associates with the Gut
Microbiome and Bacterial Functions in Subjects Who
Are Obese versus Non-obese
We evaluated the volume of different brain areas involved in

verbal and working memory in 143 subjects using MRI (Table

S4). Verbal and learning memory were associated with the vol-

umes of the right and left hippocampus, and working memory

with the right frontal inferior orbital (FIO) volume in all subjects

after adjustment for age, BMI, sex, total intracranial volume

(TIV), and PHQ-9 (from now on the term ‘‘adjusted’’ will refer

to these adjustments) (Figure 2A). The hippocampal associa-

tions were also significant and positive within non-obese sub-

jects, although no significant associations were found with the

frontal areas (Figures 2B–2D). Conversely, working memory

(TDS) was positively associated with the left FIO volume in all

subjects (Figure 2A) and with other frontal areas within non-

obese subjects (Figures 2B, 2E, and 2F). Notably, no signifi-

cant associations among these memory domains and brain

volumes were observed in individuals with obesity. The

adjusted relationships between the baseline verbal and

learning memory (free retrieval of words in CVLT tests) and

the volumes of the right and left hippocampus as assessed

one year later in 69 of the participants were also significant.

These findings highlight different brain structures involved in

verbal and working memory and are in line with previous re-

ports linking verbal memory performance with prefrontal and

temporal brain features, such as the hippocampus (Aslaksen

et al., 2018; Colom et al., 2007; Gross et al., 2018; Yu et al.,

2018). Interestingly, we found several Roseburia sp. positively

associated with verbal memory that were directly associated

with the adjusted volume of the left hippocampus, and also

concordant negative associations among Bacteroides sp., ver-

bal memory scores, and the adjusted volume of left hippocam-

pus (Figure 2G; Table S5A). Other concordant associations are

shown in bold in Figure 2G.

On the other hand, Acetitomaculum ruminis was concomi-

tantly associated with working memory and the adjusted vol-

ume of the right FIO area (Figure 2H; Table S5D) while several

Bacteroides sp. appeared negatively and concordantly associ-

ated with both verbal and working memory and the adjusted

volume of both the left hippocampus and right FIO area (Fig-

ure 2H; Tables S5A and S5D). We also found several bacterial

functions concordantly associated with memory scores and

adjusted volumes (both positively and negatively), shown in

bold in Figure 2I and Tables S5B and S5E. Of note, a function

related to thiamine metabolism was associated with the

adjusted right FIO volume.

Notably, the metagenomic functions found to be associated

with the volume of the hippocampus were also associated with

verbal memory, while those associated with the FIO volume

were also concordantly linked to working memory. In addition,

the bacterial taxonomy and metagenomic functions were asso-

ciated with the volume of brain areas and memory domains not

only at baseline but also at follow up (Figures S3A–S3D; Tables

S5G–S5J).

When subjects with and without obesity were evaluated sepa-

rately, several bacterial functions that were found to be signifi-

cantly linked with verbal and working memory were also associ-

ated with the adjusted left hippocampus (Figure 2K ) and right

FIO volumes (Figure 2L), respectively, in subjects without obesity

(shown in bold). Remarkably, no associations were found be-

tween metagenomic functions and these brain volumes in sub-

jects with obesity, which is in line with the lack of significant as-

sociations between memory tests and selected brain volumes in

subjects with obesity.

There is preliminary evidence that commensal bacteria are

associated with morphological brain features in animal models

(Lu et al., 2018; Luczynski et al., 2016). In addition, the gut micro-

biota composition at a single timepoint was associated with

several brain features in humans (Labus et al., 2017; Tillisch

Table 2. Clinical and Neuropsychological Data of the Human

Follow-up Cohort

Total Population

(Female

n = 47, 68.1%) Baseline (n = 69) Follow-up (n = 69) p

Age (years) 51.9 [44.3-59] 53 [45.4-60.2] 5.2x10�13

BMI (kg/m2) 28.2 [24.7-40.0] 28 [24.9-36.4] 0.192

Waist (cm) 103 [86.3-121.3] 97 [87-119] 0.044

Fat mass (%) 40.2 [32.7-49.7] 36.9 [31.8-46.9] 0.158

SBP (mmHg) 128 [118-141.8] 128 [118-138.3] 0.278

DBL (mmHg) 72.5 [67-82] 74 [67.8-80] 0.817

HDL-C (mg/dL) 58 [47-70.5] 57 [49-68.5] 0.601

Triglycerides

(mg/dL)

86 [59-122] 88 [64-122] 0.796

FPG (mg/dL) 96 [89-102] 95 [90-102] 0.820

HbA1c (%) 5.5 [5.3-5.6] 5.5 [5.3-5.7] 0.317

hsCRP (mg/dL) 1.5 [0.6-5.1] 1.9 [0.7-3.3] 0.335

CVLT IR (score) 63 [56-70] 65 [60.5-72] 1.8x10�4

CVLT SDFR

(score)

14 [12-16] 15 [13.5-16] 0.005

Total Digit

Span (score)

15 [12-17] 15 [12.5-17] 0.169

PHQ-9 (score) 5 [3-9] 4 [2-8] 0.209

Results are expressed as median and interquartile range [IQ]. To deter-

mine differences between study groups, we used paired Mann-Whitney

U test. BMI, body mass index; SBP, systolic blood pressure; DBP, dia-

stolic blood pressure; HDL-C, high density lipoprotein cholesterol;

FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; hsCRP,

high-sensitive C-reactive protein; CVLT, California Verbal Learning

Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; PHQ-9, Pa-

tient Health Questionnaire.
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et al., 2017). For instance, in agreement with our findings, Tillisch

and colleagues (2017) found greater Bacteroides abundance to

be associated to larger gray matter volume in the hippocampus

of healthy women. In patients with irritable bowel syndrome, the

relative abundance of Firmicutes and Bacteroidetes showed a

relationship with the gray matter volume of the opercula (orbital

and triangularis sections) as well as with the temporal cortex

(Labus et al., 2017).

Memory Scores Differentially Associate with Plasma/
Fecal Metabolomics and Bacterial Functions in Subjects
Who Are Obese versus Non-obese
We then performed metabolome-wide association studies

(MWASs) using random forest-based machine learning variable

selection techniques to identify plasma (Figures 3A–3H, S4A–

S4H, and S5A–S5H) and fecal (Figures 3I–3P, S4I–S4P, and S5I–

S4P) metabolites associated with the memory tests. Remarkably,

Figure 2. The Gut Microbiota Is Associated with Brain Structure

(A and B) Heatmap showing the partial correlations (adjusted by age, sex, BMI, education years, PHQ-9, and total intracranial volume [TIV]) between the TDS and

CVLT_SDFR tests and selected brain volumes in all subjects with andwithout obesity (A) and subjects without obesity (B). Significant associations are shownwith

a cross: +, p < 0.05; ++ p < 0.01. No statistically significant associations were found in individuals with obesity and are not shown.

(C, D, E, and F) After controlling for the above covariates, the left hippocampus volume had a positive association with the CVLT_SDFR (C and D), whereas the

right frontal inferior orbital volume was positively associated with the TDS (E and F). Both associations were more marked when only individuals without obesity

were considered.

(G and H) Volcano plots of differential bacterial abundance associated with the left hippocampus volume (G) and right frontal inferior orbital volume (H), as

calculated by DESeq2, controlling for covariates. Fold change (FC) associated with a unit change in the corresponding volumes and Benjamini-Hochberg-

adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa are colored according to phylum. Taxa that were also associated with thememory

domains are highlighted in bold.

(I and J) Manhattan-like plot of significantly expressed KEGG bacterial genes associated with the left hippocampus volume (I) and right frontal inferior orbital

volume (J), identified from covariate-adjusted DESeq2 analysis. The -log10(pFDR) values are multiplied by the FC sign to take into account the direction of the

association. Bars are colored according to the pFDR. Metagenomic functions that were also associated with the several cognitive domains are highlighted

in bold.

(K and L) The results of the same functional analysis for the left hippocampus volume (K) and right frontal inferior orbital volume (L) in individuals without

obesity. The complete list of associated functions can be found in Table S5. No significant functional associations were found in individuals with obesity for these

brain volumes.
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the scores of all memory domains were associated with altered

plasma levels of the AAAs tryptophan, tyrosine, and phenylala-

nine and their catabolites (Tryptophan catabolites: Indole-3-

acetaldehyde [3-IAAld], Indole-3-propionic acid [3-IPA]; Tyrosine

catabolites: 4-hydroxyphenyllactic acid [4-HPLA]; Phenylalanine

catabolites: Phenylacetylglutamine and Phenylacetylglycine).

These AAAs are the precursor amino acids of serotonin and dopa-

mine, two neurotransmitters that play a key role in the central ner-

vous system. Brain regions implicated in cognition, such as the

hippocampusand thePFC, arevastly innervatedbydopaminergic

and serotonergic afferents, and alterations in both the seroto-

nergic and dopaminergic neurotransmission are associated with

impaired learning and memory (González-Burgos and Feria-Ve-

lasco, 2008; �Svob �Stracet al., 2016). Both tryptophanand tyrosine

positively associated with memory scores. This finding is in line

with past work where the oral administration of tryptophan led to

improved memory acquisition, consolidation, and storage in ro-

dents (Haider et al., 2007; Noristani et al., 2012).

Previous studies have shown that alterations of the microbiota

due to antibiotic treatment resulted in decreased AAA concen-

trations and serotonin and dopamine levels in the porcine hypo-

thalamus (Gao et al., 2018). The gutmicrobiota has also shown to

directly metabolize tryptophan into several indole derivatives,

which are potent ligands of the aryl hydrocarbon receptor

(AhR). Deletion of the AhR alters adult hippocampal neurogene-

sis and contextual fearmemory (de la Parra et al., 2018; Latchney

et al., 2013). Consistently, we found several indole derivatives

positively associated with memory scores. In addition, we also

identified several bacterial functions involved in tryptophan and

phenylalanine metabolism that negatively associated with the

Figure 3. Plasma and Fecal Metabolomics in Electrospray Ionization (ESI) Positive Mode Linked to Memory Domains

(A, E, I, and M) Boxplots of the normalized permutation importance measure for the metabolites associated to the to the CVLT_SDFR in plasma (A), the TDS in

plasma (E), the CVLT_SDFR in feces (I), and the TDS in feces (M), identified by machine learning thorough the random forest-based Boruta feature selection

algorithm at each of the 500 iterations.

(B, F, J, and N) Cross-validated permutation variable importance (CVPVI) measure 3 sign of the correlation between each metabolite associated to the

CVLT_SDFR test in plasma (B), the TDS in plasma (F), the CVLT_SDFR in feces (J), and the TDS in feces (N), identified by machine learning using the random

forest-based Vita method.

(C, D, G, H, K, L, O, and P) Normalized permutation importance measure for Boruta selected metabolites associated to the CVLT_SDFR in plasma (C and D), the

TDS in plasma (G and H), the CVLT_SDFR in plasma (K and L), and the TDS in feces (O and P), in individuals with and without obesity, respectively. All metabolites

were identified based on exact mass, retention time andMS/MS spectrum, except those with (*) that were only identified based on exact mass and retention time.

3-IAAld, Indole-3-acetaldehyde; AEA, arachidonoylethanolamide; CA, cholic acid; CDA, chenodeoxycholic acid; FA, fatty acid.
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different memory domains (Figures S1H and S1I; Tables S1D–

S1F). In particular, functions related to tryptophan transporters

such as tryptophan-specific transporter (mtr) and low-affinity

tryptophan permease (tnaB) had negative associations with

the CVLT-SDFR. Quinate dehydrogenase (quiA), involved in

tryptophan, tyrosine, and phenylalanine metabolism, had the

strongest negative association with CVLT. Notably, fecal quinic

acid had, by far, the strongest negative association with the

TDS scores, followed by tryptophan (Figures S4I and S4J). The

negative association between fecal tryptophan and memory

scores might be related either to its transformation into trypto-

phan metabolites (see below) or to its increased systemic

absorption.

Interestingly, the memory-related alterations in tryptophan

metabolism were only observed in individuals with obesity, align-

ing with associations of tryptophan-related metagenomic

functions and memory domains in subjects with obesity, but not

in subjects without obesity. Chronic low-grade inflammation is a

hallmark of obesity, and the association between obesity and

cognitive decline has recently been shown to be mediated by

inflammation (Bourassa and Sbarra, 2017; Yang et al., 2020).

Consistently, we found a strong positive association between

BMI and hs-CRP (R = 0.71, p < 1 3 10�16). Notably, more than

90% of tryptophan is metabolized through the kynurenine

pathway, which is activated under inflammatory conditions

(Wang et al., 2015). In line with this, plasma tryptophan levels

had a negative correlation with the hs-CRP (R = �0.34, p < 3.33

10�4). Importantly, microbial-derived products, including indoles,

play a key role in the activation of indole-amine 2,3-dioxygenase

(IDO), the rate-limiting enzyme in the kynurenine pathway (Gao

et al., 2020). There is previous evidence that these metabolites

haveaneffectonastrocytes to limit inflammationof thecentral ner-

vous system in experimental models (Rothhammer et al., 2016).

Thecurrent observations are the first inhumans, toour knowledge,

linking tryptophan and its metabolites to cognition.

Cholinergic systems have also been linked to cognitive pro-

cesses such as attention and memory (Jeltsch-David et al.,

2008). Hence, choline is the precursor of the neurotransmitter

acetylcholine, but it can also be metabolized to betaine, a key

methyl donor in the one-carbon metabolism and modulator of

homocysteine status, whose elevated plasma levels have been

implicated in learning and memory deficits (Mendonça et al.,

2017). Thus, betaine supplementation has shown to prevent

homocysteine-induced memory impairment via changes in the

activity of MMP-9 in the frontal cortex (Kunisawa et al., 2015).

In agreement, we found circulating betaine levels associated

with memory scores. The changes in betaine levels are in line

with the associations between cognitive domains and several

metagenomic functions involved in choline and betaine trans-

porters, such as choline/betaine transport protein (betT and

betS), betaine/proline transport systems ATP-binding protein

(proV), and betaine/proline transport systems substrate-binding

protein (proX) (Tables S1D–S1F). Additionally, one of the func-

tions most associated with short and immediate memory impli-

cated the choline dehydrogenase (betA) gene (Tables S1D and

S1E), responsible for the conversion of choline to betaine. Inter-

estingly, we also found several alterations in metagenomic func-

tions related to themetabolism of B vitamins involved in one-car-

bonmetabolism, homocysteine levels, and cognition (Mendonça

et al., 2017; Obeid et al., 2007; Smith et al., 2010), mainly B2, B6,

B9, and B12.

Other metabolites that had positive associations with the

different memory domains were the endocannabinoids oleamide

and arachidonoylethanolamide (AEA, anandamide). The endo-

cannabinoids are lipid-derived mediators that play a key role in

neurotransmission. Consequently, extensive evidence indicates

a role of the endocannabinoid system in the modulation of cogni-

tion, particularly in learningandmemory functioning (Marosoet al.,

2016;Morena andCampolongo, 2014). Anandamide has been re-

ported to reverse hippocampal damage and memory impairment

in rodents and protect neurons from amyloid-b cytotoxic effects

(van der Stelt et al., 2006). Similarly, oleamide administration

significantly reversed memory and cognitive impairment in mice

(Heo et al., 2003). Interestingly, we found that microbial N-acetyl

Phosphatidylethanolamine Phospholipase D (NAPEPLD) (Figures

1F and 4H; Tables S1D and S1F), which is necessary for the

biosynthesis of fatty acid ethanolamides, including the endocan-

nabinoids (Basavarajappa, 2007), had one of the strongest asso-

ciations with the cognitive domains of both humans and mice.

Effects of Microbiota Transplantation from Humans
to Mice
We then tested the possible effects of the microbiota onmemory

scores in mice. The mouse behavioral models used in this study

evaluated two different memory tasks. The cue-induced fear

conditioning is a well-recognized model of emotional memories

(Sun et al., 2020), whereas the novel object recognition paradigm

is a widely used model of memories with a different neurobiolog-

ical substrate (Puighermanal et al., 2009). Specifically, cue-

induced fear conditioning evaluates emotional memory by as-

sessing mice ability to associate neutral cues with an aversive

experience, in which behavioral responses are mainly mediated

by the amygdala (Barsy et al., 2020). The subsequent presenta-

tion of the cue retrieves the memory trace and initiates a condi-

tioned response; freezing, driven by the central amygdala (Sun

et al., 2020). In contrast, the hippocampus plays a crucial role

in the memory responses evaluated in the novel object recogni-

tion paradigm. The long-term memory traces evaluated in this

paradigm are related to spatial memories not related to

emotional aspects (Puighermanal et al., 2009).

The novel object recognition cognitive task was performed us-

ing a V maze, since the accuracy and reliability of the behavioral

response is improved when compared to the use of an open field

for this task. In this task, the exploration of the mouse is directed

to the two different objects located in the extremes of the Vmaze

(Puighermanal et al., 2009; Busquets-Garcia et al., 2013).

Microbiota from 22 human subjects (11 with low and 11 with

high memory scores matched for age, sex, BMI, and PHQ-9

scores) (Table S6) was orally delivered to individual mice in a

blinded fashion (the investigator who performed the experiment

was blinded regarding the origin of feces). The effects on mem-

ory were compared with those of saline in 11 control mice. All

mice were pretreated with antibiotics for 14 days (Figure 4A).

Mice receiving FMT had higher scores in the Novel Object

Recognition test at 24 h (NOR24 h) and lower Freezing Total

scores than control mice (Figures 4B and S6A). Interestingly,

microbiota from non-obese donors led to significantly increased

NORII24 h scores compared with both obese donors (p = 0.026)
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and control mice (p = 0.009) (Figure 4C). Of note, both donor’s

CVLT-SDFR and CVLT-Short Delayed Cued Recall scores

were significantly correlated with NOR24 h scores in recipient

mice (Figures 4D and 4E). Bacterial species from the donor’s

microbiota, including Akkermansia sp. and Subdoligranulum

sp. (NOR3 h) (Figure 4F; Table S7A), and Clostridium, Rumino-

coccus, and Roseburia sp. (NOR24 h) (Figure 4G; Table S7B),

were associated with increased memory scores of recipient

mice, while several Bacteroides sp. were negatively associated

with this score. Accordingly, the same Bacteroides sp. were

positively associatedwith the Freezing Total scores (Figure S6C).

Notably, several donors’ metagenomic functions, including the

NAPEPLD, associated with the TDS memory domains of the

donor andwith the NOR24 h scores of recipient mice (Figure 4H).

Figure 4. Human Donor’s and Recipient’s Mice Memory Became Aligned through the Microbiota

(A) Experimental design for the fecal microbiota transplantation (FMT) study. The microbiota from low-memory (n = 11) and high-memory (n = 11) human donors

were delivered to recipient mice pre-treated with antibiotics for 14 days. n = 11 control mice were treated with saline. Cognitive tests were performed after

4 weeks.

(B and C) Violin plots for the Novel Object Recognition tests comparing the control group and the FMT group (t test) (B), and comparing the control group to the

groups receiving microbiota from human donors with and without obesity (one-way ANOVA) (C).

(D and E) Spearman correlation between the California Verbal Learning tests (CVLTs) in humans and the NOR24 h in mice.

(F and G) Volcano plots of differential human donor bacterial abundance associated with the recipient’s mice NOR3 h (F) and the NOR24 h (G), from DESeq2

analysis. Fold change (FC) associated with a unit change in the corresponding memory test and Benjamini-Hochberg-adjusted p values (pFDR) are plotted for

each taxon. Significantly different taxa are colored according to phylum.

(H) Manhattan-like plot showing only the significantly expressed KEGG bacterial genes associated with the mice NOR 24 h test (pFDR < 0.05) that were also

associated to the total digit span score in humans. The -log10(pFDR) values are multiplied by the FC sign to take into account the direction of the association. Bars

are colored according to the pFDR. A complete list of significantly associated bacterial genes can be found in Table S5C.

(I) Volcano plot of differential prefrontal cortex (PFC) genes associated with the NOR3 h. FC associated with a unit change in the NOR3 h test and Benjamini-

Hochberg-adjusted p values (pFDR) are plotted for each gene. Those genes with the highest FC and the lowest pFDR values are highlighted. Genes with a

possible role in memory based on the literature are also highlighted.

(J) Correlation heatmap among mice bacterial species and selected PFC genes associated with NOR3 h. Clustering was performed using Euclidean distances

and Ward linkage. Three bacterial clusters with strong correlations were identified and highlighted. These involve bacterial species positively linked to both the

NOR3 h and PFC genes positively associated with the NOR3 h, and bacterial species negatively associated to the NOR3 h and at the same negatively associated

to PFC genes positively associated with the NOR3 h and positively associated to genes negatively associated with the NOR3 h.
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Further, in linewith the human results, other associated functions

included those related to vitamin B6 (pdxJ and pdxB), B12

(btuB), and tryptophan metabolism (trpA and trpB) (Table S7C).

Finally, an RNA sequencing of the PFC of the mice highlighted

several significant genes associated with the NOR3 h score (Fig-

ure 4I; Table S7D). In the test phase, different memory scores

were recorded:micewere studied 3 h later for short-termmemory

(NOR3 h) and 24 h later for long-termmemory (NOR24 h). Notably,

the gene with the highest negative fold change was transthyretin

(ttr), which has been shown to have altered hippocampal expres-

sion associated with memory deficits in aged animals (Brouillette

and Quirion, 2008). The gene with the second strongest fold

change was slc6a3, which encodes a dopamine transporter. In

addition, there was a direct association between NORI3 h and

the5HT receptorgeneshtr1aandhtr2a, aswell as the folate recep-

tor gene folr1, further emphasizing the connection between AAAs,

folate metabolism, and memory. The nuclear factor gene nfkb1,

known to be crucial in the inflammatory cascade and in memory

consolidation (Snow et al., 2014), was also directly associated to

short-term memory; whereas dicer1 was negatively associated

with this memory trait. Relatedly, the knockout of dicer1 has

been previously reported to enhance memory (Konopka et al.,

2010). Finally, acss2 and hdac1 were directly associated to

short-term memory, confirming recent observations of brain his-

tone acetylation relationships with associative learning (Mews

et al., 2017). Interestingly, the expression of the memory genes

associated to the NORI3 h was simultaneously associated with

different bacterial clusters and in the same direction (Figure 4J).

Altogether, the current findings point to the existence of an

ecosystem of bacteria that are simultaneously linked to verbal

andworkingmemory, the volume of brain areas involved in these

traits, plasma/fecal tryptophan, microbiota-driven tryptophan

metabolites, and 5HT receptor expression in the PFC. Several

of the species identified here have been previously linked with

positive (Roseburia, Subdoligranulum, and Faecalibacterium)

and negative (Fusobacterium and Bacteroides) healthy eating

scores (Liu et al., 2019) in the same direction as the increased

and decreased memory scores described here. These findings

suggest a bidirectional host/microbe ecosystem that impacts

brain physiology. In this sense, the gut microbiota phenocopied

memory traits from humans to mice.

Limitations of Study
The current study presents some limitations. Although the sam-

ple size of the different cohorts seems appropriate, population-

based studies including subjects with different classes of obesity

and ethnic groups would be more representative of this condi-

tion. In addition, although our conclusions are based on the find-

ings of cross-sectional and one-year longitudinal studies, longer

term follow-up would be necessary to better understand the

strength of our conclusions. Finally, regarding the mouse

models, despite being widely used and validated to infer cogni-

tive function in real settings, they cannot be exactly comparable

with cognitive evaluation and brain morphology in humans.
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Critical Commercial Assays
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Nextera DNA Flex Library Preparation kit Illumina Cat#20018705

TrueSeq stranded mRNA library
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Truseq RNA Single Indexes Illumina Cat#20020492

Truseq RNA Single Indexes Illumina Cat#20020493
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KAPA Library Quantification Kit Roche Cat#07960204001

Deposited Data

Metagenome Sequencing Data of Fecal

Samples from Human subjects and Mice

European Nucleotide
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Project number: PRJEB39631

Human samples accession numbers:

ERS4859818-ERS4859933
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SPSS software (version 19) IBM https://www.ibm.com/analytics/spss-statistics-
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Rstudio (version 1.3.959) Rstudio Team https://rstudio.com/

R (version 3.6) R https://www.r-project.org/

MATLAB (version R20217a) Mathworks https://www.mathworks.com/products/matlab.html

Statistical Parametric Mapping software
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UCL Queen Square Institute
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https://www.fil.ion.ucl.ac.uk/spm/software/

MassHunter Data Analysis software Agilent Technologies https://www.agilent.com/en/products/software-

informatics/mass-spectrometry-software

Prinseq-lite-0.20.4 (Schmieder and Edwards, 2011) http://prinseq.sourceforge.net/

FLASh 1.2.11 (Mago�c and Salzberg, 2011) https://ccb.jhu.edu/software/FLASH/

Bowtie2-2.3.4.3 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

MEGAHIT v1.1.2 (Li et al., 2015) https://github.com/voutcn/megahit

Prodigal v2.6.342 (Hyatt et al., 2010) https://github.com/hyattpd/Prodigal
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Limma (version 3.30.13) (Smyth, 2005) https://bioconductor.org/packages/release/bioc/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to andwill be fulfilled by the LeadContact JoséManuel Fernández-

Real (jmfreal@idibgi.org).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The data that support the findings of this study are available from the lead contact (jmfreal@idibgi.org) upon reasonable request. The

accession numbers for the rawmetagenomic sequence data of the 116 humans subjects reported in this paper are [European Nucle-

otide Archie]: ERS4859818-ERS4859933.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Study
Recruitment of Study Subjects

From January 2016 to October 2017, a cross-sectional case-control study was undertaken in the Endocrinology Department of

Josep Trueta University Hospital. We included consecutive subjects with obesity (body mass index, BMI330kg/m2) and age- and

sex-matched nonobese subjects (BMI 18.5-<30kg/m2), with an age range of 27.2-66.6 years. The sex Distribution and age range

is reported in Table 1. All analysis were adjusted by gender to remove the influence of gender on the results. Exclusion criteria

were: type 2 diabetes mellitus, chronic inflammatory systemic diseases, acute or chronic infections in the previous month; use of

antibiotic, antifungal, antiviral or treatment with proton-pump inhibitors; severe disorders of eating behavior or major psychiatric an-

tecedents; neurological diseases, history of trauma or injured brain, language disorders; and excessive alcohol intake (3 40 g OH/day

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

edgeR (version 3.26.8) (Robinson et al., 2010) https://bioconductor.org/packages/release/bioc/

html/edgeR.html

DESeq2 (version 1.26.0) (Love et al., 2014) https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

ALDEx2 (version 1.18.0) (Fernandes et al., 2014) https://www.bioconductor.org/packages/release/

bioc/html/ALDEx2.html

VITA (version 1.0.0) (Janitza et al., 2018) https://cran.r-project.org/web/packages/

vita/index.html

Boruta (version 6.0.0) (Kursa and Rudnicki, 2010) https://cran.r-project.org/web/packages/Boruta/

Other

1.5T Ingenia Philips Healthcare N/A

Dual energy X-ray absorptiometry GE Healthcare N/A

Cobas 8000 c702 analyzer Roche Diagnostics N/A

ADAM�A1c HA-8180V ARKRAY, Inc N/A

FastPrep-24TM MP biomedicals N/A

Reversed-phase column (Zorbax SB-Aq

1.8 mm 2.1 3 50 mm)

Agilent Technologies Cat#AG827700-914

Precolumn (Zorbax-SB-C8 Rapid Resolution

Cartridge 2.1 3 30 mm 3.5 mm)

Agilent Technologies Cat#AG873700-906

Shuttle chamber LE918 Panlab N/A

Bioanalyzer 2100 Agilent N/A

ABI 7900HT qPCR Applied Biosystems N/A

HiSeq 2500 Illumina N/A

Qubit 3.0 fluorometer Thermo Fisher Scientific N/A

NextSeq 500 Illumina N/A
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in women or 80 g OH/day in men). The Institutional review board - Ethics Committee and the Committee for Clinical Research (CEIC)

of Dr. Josep Trueta University Hospital (Girona, Spain) approved the study protocol and informed written consent was obtained from

all participants.

Longitudinal Cohort
Cognitive tests and MRI variables were collected again in 93 consecutive subjects after 1 year of follow up. The sex distribution and

age range is reported in Table 2. All analyses were adjusted by gender to remove the influence of gender on the results.

Animal Study
Male C57BL/6J mice (Charles River, France), weighing 23–26 g at the beginning of the experiment were used in this study. Mice were

housed individually in controlled laboratory conditions with the temperature maintained at 21 ± 1�C, humidity at 55 ± 10%, and 7 h30/

19 h30 light/dark cyles. All animals were fed a standard chow diet RM1 (Irradiated Vacuum packed, Dietex International Ltd.). The

health status of each mouse included in the experimental schedule was checked every day before the experimental sessions and

recorded in the experimenter protocol notebook. Health status checks included body weight, physical aspect, behavior, and clinical

signs. No abnormalities were recorded in the animals included in this study. Animal procedures were conducted in strict accordance

with the guidelines of the European Communities Directive 86/609/EEC regulating animal research and were approved by the local

ethical committee (CEEA-PRBB). All the experiments were performed under blinded conditions (the researcher who administered the

microbiota was blinded in relation to the memory scores of the subjects who provided the feces). Mice were given a cocktail of ampi-

cillin and metronidazole, vancomycin (all at 500 mg/L), ciprofloxacin HCl (200 mg/L), imipenem (250 mg/L) once daily for 14 consec-

utive days in drinking water, as previously described (Kelly et al., 2016). Seventy-two h later, animals were colonized via daily oral

gavage of donor microbiota (150 mL) for 3 days. Animals were orally gavaged with saline (n = 11) and fecal material from healthy

volunteers’ samples from humans with better cognitive scores (n = 11) and humans with decreased cognitive scores (n = 11)). No

differences were found related to BMI, age, years, sex within these two groups. To offset potential confounder and/or cage effects

and to reinforce the donormicrobiota phenotype, booster inoculationswere given twice per week throughout the study. Animalswere

exposed to a series of behavioral testing including novel object recognition (NOR) test and fear conditioning with nociception

assessed by the hot plate test to ensure specificity.

At the end of the study the animals were consecutively sacrificed. The cecum was removed, weighted and stored, and the feces

collected and stored at �80�C for further microbiota analysis.

METHOD DETAILS

Clinical and Laboratory Parameters
Body composition was assessed using a dual energy X-ray absorptiometry (DEXA, GE lunar, Madison, Wisconsin). Fasting plasma

glucose (FPG), lipids profile and high-sensitivity C-reactive protein (hsCRP) levels were measured using an analyzer (Cobas� 8000

c702, Roche Diagnostics, Basel, Switzerland). Glycated hemoglobin (HbA1c) was determined by performance liquid chromatog-

raphy (ADAM�A1c HA-8180V, ARKRAY, Inc., Kyoto, Japan). Dietary pattern: The dietary characteristics of the subjects were

collected in a personal interview using a validated food-frequency questionnaire (Vioque et al., 2013).

Magnetic Resonance Imaging (MRI)
MRI Acquisition and Image Pre-processing

All subjects were studied on a 1.5T Ingenia (Philips Healthcare, Best, the Netherlands) with eight channel head coils. Structural

images were acquired using a 3D Turbo Field Echo Planar Imaging (TFEPI) sequence and parameters of echo time (TE) = 4.1ms,

repetition time (TR) = 8.4ms, flip angle 8, field of view (FOV) 230x190 matrix. A total of 145 whole-brain images per subject

with thickness axial slices of 1x1x1mm3 with or without gap. The total scan time was 189.6 s. The anatomical imaging data was

processed and analyzed using MATLAB version R2017a (The MathWorks Inc, Natick, Mass) and Statistical Parametric Mapping

software (SPM12; The Welcome Department of Imaging Neuroscience, London). Preprocessing steps involved motion correction,

spatial normalization and smoothing using aGaussian filter (FWHM8mm). Data were normalized to Diffeomorphic Anatomical Regis-

tration Through Exponentiated Lie (DARTEL) and resliced to a 2mm isotropic resolution in Montreal Neurological Institute

(MNI) space.

Volumetric Brain Analyses

The Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) atlas was used to obtain the volumetric information of the

right and left hippocampus, opercula (orbitalis, tringularis, opercularis), and middle and superior frontal gyri as informed by the

involvement of these brain regions in verbal memory (Aslaksen et al., 2018; Colom et al., 2007; Gross et al., 2018; Yu et al., 2018)

in 14394 participants. Volumetric differences for these targeted regions between participants with and without obesity were explored

using independent sample t tests, and we used Pearson Partial correlations to explore for Each region was orthogonalized for sex,

age and total graymatter volume inMATLAB version R2017a (TheMathWorks Inc, Natick, MA) and subsequently entered to SPSS to

investigate associations between the gray matter volumes and the performance in the CVLT and the digit tasks controlling for age,

sex, education, depressive symptoms, BMI and total intracranial volume in the whole sample, and within the obese and non-obese
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groups. Finally, we investigated the associations and between the volume in the selected brain regions and the microbiota using

Spearman correlation analyses corrected for multiple comparisons using q-values (Storey, 2002).

Neuropsychological Assessment in Humans
California Verbal Learning Test-II (CVLT)

CVLT is used to assess verbal learning and memory (Delis et al., 2000). It consists of 5 learning tests in which a list of words (list A) is

presented and the subject is asked, immediately after each presentation, to recall as much words as possible. Then an interference

list (list B) is presented, and the subject is asked to repeat the same task. CVLT Immediate Recall score is a result of the first five tests

and provides information about the learning process. In the short delay test, the patient is asked to recall list A, free (CVLT Short

Delayed Free Recall) or with semantic facilitation (CVLT Short DelayedCuedRecall). A higher score reflects a bettermemory function.

About 30 min are necessary to administrate this test and its reliability ranges from 0.78-0.94 (Paolo et al., 1997).

Total Digit Span (TDS)

Working memory was assessed by the Digit Span, a subtest of the Wechsler Adult Intelligence Scale-III (WAIS-III) (Wechsler, 2012) a

measure of general intellectual function. It is based on numbers and includes the Forward and Backward Digit Span tests. In the

Forward Digit Span test, the examinee repeats a number sequence in the same order as presented. This constitutes a measure

of working memory but also of attention. In the Backward Digit Span, the examinee repeats the number sequence in reverse order.

Total Digit Span represents the total score of the two previous tests. A higher score reflects a better memory function. In a standard-

ization sample of 394 participants (aged 16-89 years), the reliability coefficient was very high, ranging from 0.94-0.97 (Strauss

et al., 2006).

The Patient Health Questionnaire-9 (PHQ-9)

Is a depression module of the PRIME-MD diagnostic instrument for mental disorders (Spitzer et al., 1999). It encompasses 9 items of

depression symptoms plus a question about functional impairment and can be scored as a depression severity rating (scores of

10-14 moderate, 15-19 moderately severe and 20-27 severe depressive symptoms) or with an algorithm based on the DSM-IV

criteria (major and minor episode). Scores of 10 or more have an 88% sensitivity and specificity. PHQ-9 score was considered as

a possible confounding factor in the analyses.

Extraction of Fecal Genomic DNA and Whole-Genome Shotgun Sequencing
Total DNA was extracted from frozen human stools using the QIAamp DNA mini stool kit (QIAGEN, Courtaboeuf, France). Quantifi-

cation of DNA was performed with a Qubit 3.0 fluorometer (Thermo Fisher Scientific, Carlsbad, CA, USA), and 1 ng of each sample

(0.2 ng/ml) was used for shot gun library preparation for high-throughput sequencing, using the Nextera DNA Flex Library Prep kit

(Illumina, Inc., San Diego, CA, USA) according to the manufacturers’ protocol. Sequencing was carried out on a NextSeq 500

sequencing system (Illumina) with 2 X 150-bp paired-end chemistry, at the facilities of the Sequencing and Bioinformatic Service

of the FISABIO (Valencia, Spain). The obtained input fastq files were decompressed, filtered and 3$ ends-trimmed by quality, using

prinseq-lite-0.20.4 program (Schmieder and Edwards, 2011) and overlapping pairs were joined using FLASH-1.2.11 (Mago�c and

Salzberg, 2011). Fastq files were then converted into fast files, and human and mouse host reads were removed by mapping the

reads against the GRCh38.p11, reference human genome (Dec 2013), and GRCm38.p6, reference mouse genome (Sept 2017),

respectively, by using bowtie2-2.3.4.3 (Langmead and Salzberg, 2012) with end-to-end and very sensitive options. Next, functional

analyses were carried out by assembling the non-host reads into contigs by MEGAHIT v1.1.2 (Li et al., 2015) and mapping those

reads against the contigs with bowtie2. Reads that did not assemble were appended to the contigs. Next, the program Prodigal

v2.6.342 (Hyatt et al., 2010) was used for predicting codifying regions. Functional annotation was carried out with HMMER (Durbin

et al., 1998) against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, version 2016 (Kanehisa and Goto, 2000) to

obtain the functional subcategory, route and annotation of the genes. The filtering of the best annotations and the assignment of the

orf annotation to every read were carried out using the statistical package R 3.1.0 (R Development Core Team, 2013) which also was

used to count the aligned reads and to add the category and its coverage, and finally to build abundance matrices. Taxonomic anno-

tation, was implemented with Kaiju v1.6.2 (Menzel et al., 2016) on the human and mouse-free reads. Addition of lineage information

was added, counting of taxa and generation of an abundance matrix for all samples were performed using the package R (R Devel-

opment Core Team, 2013). Fecal microbiota composition from mice was also analyzed following the same procedures as humans.

Metabolomics Analyses
For non-targeted metabolomics analysis, metabolites were extracted from fecal and plasma samples with methanol (containing

phenylalanine-C13 as an internal standard) according to previously described methods (Wikoff et al., 2008). Briefly, for plasma

samples 30ml of cold methanol were added to 10 ml of each sample, vortexed for 1 min and incubated for one h at �20�C. For faecal
samples, the content of a 1.2 mL tube of Lysing Matrix E (MP biomedicals) and 600 mL of cold methanol were added to 10mg of

sample. Samples were homogenized using FastPrep-24 (MP biomedicals) and were incubated overnight in a rocker at 4�C. Then,
all samples were centrifuged for three minutes at 12,000 g, the supernatant was recovered and filtered with a 0.2 mmEppendorf filter.

Two mL of the extracted sample were applied onto a reversed-phase column (Zorbax SB-Aq 1.8 mm 2.1 3 50 mm; Agilent

Technologies) equipped with a precolumn (Zorbax-SB-C8 Rapid Resolution Cartridge 2.1 3 30 mm 3.5 mm; Agilent Technologies)
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with a column temperature of 60�C. The flow rate was 0.6mL/min. Solvent Awas composed of water containing 0.2%acetic acid and

solvent B was composed of methanol 0.2% acetic acid. The gradient started at 2% B and increased to 98% B in 13 min and held at

98% B for 6 min. Post-time was established in 5 min.

Data were collected in positive and negative electrospray modes time of flight operated in full-scan mode at 50–3000 m/z in an

extended dynamic range (2 GHz), using N2 as the nebulizer gas (5 L/min, 350�C). The capillary voltage was 3500 V with a scan

rate of 1 scan/s. The ESI source used a separate nebulizer for the continuous, low-level (10 L/min) introduction of reference mass

compounds 121.050873 and 922.009798, which were used for continuous, online mass calibration. MassHunter Data Analysis Soft-

ware (Agilent Technologies, Barcelona, Spain) was used to collect the results, andMassHunter Qualitative Analysis Software (Agilent

Technologies, Barcelona, Spain) to obtain themolecular features of the samples, representing different, co-migrating ionic species of

a given molecular entity using the Molecular Feature Extractor algorithm (Agilent Technologies, Barcelona, Spain), as described 5,6.

We selected samples with a minimum of 2 ions. Multiple charge states were forbidden. Compounds from different samples were

aligned using a retention timewindow of 0.1%± 0.25min and amasswindow of 20.0 ppm± 2.0mDa.We selected only those present

in at least 50% of the samples of one group and corrected for individual bias.

Behavioral Testing in Mice
The NOR was performed in a V-maze as previously published (Burokas et al., 2014). Three phases of 9-min were performed on

consecutive days. Mice were first habituated to the V-maze. On the second day, 2 identical objects (chess pieces) were presented

to themice, and the time that they spent exploring each object was recorded. In the test phase (3 h later for short-termmemory or 24 h

later for long-term memory), 1 of the familiar objects was replaced with a novel object (a different chess piece), and the time spent

exploring each object (novel and familiar) was computed. A discrimination index was calculated as the difference between the times

that the animal spent exploring the novel (Tn) and familiar (Tf) object divided by the total time of object exploration: (Tn-Tf)/(Tn + Tf).

Fear conditioning was conducted as described previously with somemodifications (Burokas et al., 2017; Saravia et al., 2019). Mice

were individually placed in a shuttle chamber (LE918, Panlab, Barcelona) surrounded by a sound-attenuating cabinet. The chamber

floor was formed by parallel stainless-steel bars connected to a scrambled shock generator. On the training day, mice were habit-

uated to the chamber during 180 s before the exposure to an acute beeping 30 s sound (80 dB). Each animal received an uncondi-

tioned stimulus (US) (0.6 mA footshock during 2 s) paired with the end of the sound (conditioned stimulus, CS). After the shock, the

animal remained for 60 s in the shuttle chamber. To evaluate cued fear conditioning, mice were re-exposed to the CS in a novel envi-

ronment (a wide white cylinder in the chamber) 24 h after the conditioning session. Mice were allowed to adapt for 180 s to the new

environment which was followed by 30 s of the sound used in the training day. After the last sound trial, mice remained in the cylinder

for 60 s. Fear memory was assessed as the percentage of time that mice spent freezing during the session. Freezing response, a

rodent’s natural response to fear, was evaluated by direct observation and defined as complete lack of movement, except for respi-

ration for more than 1 s. The procedure was performed between 8.00 and 12.00 h in an experimental room different to the hous-

ing room.

Study of Gene Expression in Prefrontal Cortex
Sample Preparation

The mice brains were quickly removed and the medial prefrontal cortex was dissected according to the atlas of stereotaxic coordi-

nates of mouse brain (Paxinos and Franklin, 1997). Brain tissues were then frozen by immersion in 2-methylbutane surrounded by dry

ice, and stored at �80�C.
RNA Quality Control

Quality control of the RNA was performed using the RNA 6000 Nano chip (Agilent) on an Agilent Bioalyzer 2100 obtaining RIN values

between 8.7 - 9.8.

RNA Libraries

Libraries were prepared from 500 ng of total RNA using the TruSeq stranded mRNA library preparation kit (Illumina, #20020594) with

TruSeq RNA Single Indexes (Illumina, #20020492 and #20020493) according to the manufacturer’s instruction reducing the RNA

fragmentation time to 4.5 min. Prepared libraries were analyzed on a DNA 1000 chip on the Bioanalyzer and quantified using the

KAPA Library Quantification Kit (Roche, #07960204001) on an ABI 7900HT qPCR instrument (Applied Biosystems). Sequencing

was performed with 2x50 bp paired-end reads on a HiSeq 2500 (Illumina) using HiSeq v4 sequencing chemistry.

Bioinformatic Analysis

Raw sequencing reads in the fastq files were mapped with STAR version 2.5.3a (Dobin et al., 2013) to the Gencode release 17 based

on the GRCm38.p6 reference genome and the corresponding GTF file. The table of counts was obtained with FeatureCounts

function in the package subread, version 1.5.1. (Liao et al., 2014). The differential expression gene analysis (DEG) was assessed

with voom+limma in the limma package version 3.30.13 (Smyth, 2005) and R version 3.4.3. Genes having less than 10 counts in

at least 5 samples were excluded from the analysis. Raw library size differences between samples were treated with the weighted

‘‘trimmed mean method’’ TMM (Robinson and Oshlack, 2010) implemented in the edgeR package (Robinson et al., 2010). The

normalized counts were used in order to make unsupervised analysis, PCA and clusters. For the differential expression (DE) analysis,

read counts were converted to log2-counts-per-million (logCPM) and the mean-variance relationship was modeled with precision

weights using voom approach in limma package.
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QUANTIFICATION AND STATISTICAL ANALYSIS

First, normal distribution and homogeneity of variances were tested. Results are expressed as number and frequencies for categor-

ical variables, mean and standard deviation (SD) for normal distributed continuous variables and median and interquartile range [IQ]

for non-normal distributed continuous variables. To determine differences between study groups, we used c2 for categorical

variables, unpaired Student’s t test in normal quantitative andMann-Whitney U test for non-normal quantitative variables. Spearman

or Pearson analysis was used to determine the correlation between quantitative variables. Theses statistical analyses were per-

formed with SPSS, version 19 (SPSS, Inc, Chicago, IL). Statistics can be found in the figures and legends.

Differential abundance analyses for taxa and functions associated to the memory tests and brain areas volumes were performed

using the DESeq2 R package (Love et al., 2014), adjusting for age, body mass index, sex, education years, and Patient Health Ques-

tionnaire (PHQ)-9 scores. Fold change associated with a unit change in the corresponding test and adjusted p-values are plotted for

each taxon. Significantly different taxa are colored according to phylum. OTUs and bacterial functions were previously filtered so that

only those with more than 10 reads in at least two samples were selected. To take into account the compositional structure of the

microbiome data and rule out possible spurious associations microbiome data were also analyzed using a compositional approach

with the ALDEx2 R package (Fernandes et al., 2014). ALDEx2 uses a Dirichlet-multinomial model to inter abundance from read

counts. We used 128 Dirichlet Monte Carlo instances in the aldex.clr function, and then applied a generalized linear model with

the aldex.glm function controlling for age, BMI, sex, education years and depression scores. The p values were then adjusted for

multiple comparisons using q-values (Storey, 2002). We further analyzed the microbiome data adopting a multivariate machine

learning feature selection strategy after transforming the data to take into account the compositional nature. Specifically, first we

imputed the zero valueswith a Geometric Bayesianmultiplicative replacement using the zcompositions R package. Then, we applied

a clr transformation using the clr function from the compositions R package. Finally, we applied an all-relevant machine learning var-

iable selection strategy to the clr-transformed data using the VITA algorithm (describe below).

Metabolomics data were also analyzed using machine learning (ML) methods. Omics datasets are usually composed of high-

dimensional data with many redundant, non-informative and noisy features, i.e., not related to the outcome, with complex correlation

patterns. Therefore, feature selection, plays a crucial role in omics data analysis. In this context, MLmethods, such as random forest

(RF), are promising computational approaches for feature selection in high-dimensional omics datasets. ML tree-based algorithms

are particularly well-suited to this aim. Thus, variable selection tree-based methods have shown to perform better than classic

regression-based methods in large datasets (Sanchez-Pinto et al., 2018).

When the main goal is building a predictive model, variable selection techniques designed to identify a minimal set of strongest

predictors associated with the outcome are used (minimal-optimal problem). However, if the objective involves providing a more

holistic pictures of the underlying mechanisms, networks and pathways involved in pathophysiological or metabolic processes,

all-relevant variable selection methods, which include weak, correlated and redundant features, but avoid inclusion of uninformative

variables, are preferred (Shi et al., 2019). Therefore, we adopted an all-relevant machine learning variable selection strategy applying

two random forest-based methods, the Boruta algorithm (Kursa and Rudnicki, 2010) and the Variable Importance Testing Approach

(VITA) method (Janitza et al., 2018). The Boruta and Vita approaches have been recently proposed as the two best-performing var-

iable selection methods making use of RF for high-dimensional omics datasets (Degenhardt et al., 2019).

RF is an ensemble machine learning method based on ‘‘growing’’ many classification or regression trees. The advantage of the RF

is that the observations not used for the construction of a specific tree (termed out-of-bag (OOB) observations) may be used to

estimate the variable importance measure (VIM). Among the several VIMs, the permutation variable importance has shown to be

the most reliable. However, a drawback of VIMs in RF is that they are not directly related to the statistical significance and there

is no statistical test that discriminates between relevant and non-relevant features. Boruta and Vita are two RF-based approaches

that deal with this issue. The Boruta algorithm is a wrapper algorithm that performs feature selection based on the learning

performance of the model (Kursa and Rudnicki, 2010). The main idea behind this approach consists in: a) Randomization. Create

a duplicate copy of the original features randomly permutate across the observations (the so-called shadow features) to remove their

correlation with the response; b) Model building. Add the shadow feature to the original predictor feature dataset, built a RF with the

extended dataset, and compute the normalized permutation importance (Z) scores for each predictor and shadow feature; c)

Statistical testing. Find the maximum normalized importance among the shadow attributes (MZSA) and compare it with each orig-

inal predictor feature using a Bonferroni corrected two-tailed binomial test. Predictor features with significantly higher, significantly

lower, or non-significantly different Z scores than expected at random compared to theMZSA are deemed important, unimportant, or

tentative, respectively. d) Iteration. Unimportant and shadow features are removed and the previous steps are repeated until the

status of all features is decided or a predefined number of iterations has been performed. We run the Boruta algorithm with 500

iterations, a confidence level cut-off of 0.005 for the Bonferroni adjusted p-values, 5000 trees to grow the forest (ntree), and a number

of features randomly sampled at each split given by the rounded down number of features/3 (themtry recommended for regression).

The Vita algorithm is based on the assumption that most variables in omics datasets are non-relevant for the biological question

and can be used to approximate the unknown null distribution of variable importance scores to be able to select relevant variables

based on p-values (Janitza et al., 2018). First, the VIM for all features are obtained. The importancemeasure in the vita algorithm is not

based on the ‘‘standard’’ permutation variable importance calculated using the OOB samples, but uses a strategy inspired in the

cross-validation (CV) procedure, which is not based on the OOB observations, to obtain the CV permutation variable importance

(CVPVI). The method randomly splits the data in a total of k-folds of equal size. For each i-fold, a RF is trained using all samples
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that are not part of the i-test set, and the response variable is predicted for the samples in the i-test set. The procedure is repeated

after permutating n times the values of the predictor variables. The permutation variable importance is calculated as the average dif-

ference in the prediction errors between the original data and the permutations, and the CVPVI is the average over all k-fold-specific

permutation variable importance. Second, taking into account that for non-relevant features the change in accuracy is only due to

random variations and thus it does not change (zero CVPVI) or slightly increases (negative CVPVI) when not using the variable for

prediction, the non-positive CVPVI values are used compute the a symmetric null distribution of CVPVI scores around zero for

non-relevant features by mirroring them on the y axis. From this approximated null distribution, p-values can be calculated. As

the null distribution is obtained from non-relevant features, this testing approach is only suitable for datasets with a large number

of variables without effect. In our calculations we used 5000 trees, a 7-fold CV, and 10 permutations. P-values were then corrected

using the Benjamini-Hochberg procedure for FDR.
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Figure S1. Microbiota taxonomic and functional profiles associated to the California Verbal Learning Immediate Recall (CVLT_IR). Related to Figure 1. a) 

Boxplot for the CVLT_IR in non-obese and obese patients. Differences between groups were analysed by a Wilcoxon tests. b) Volcano plots of differential 

bacterial abundance associated with the CVLT_IR calculated by DESeq2 controlling for age, BMI, sex, education years, and Patient Health Questionnaire (PHQ)-

9 scores. Fold change associated with a unit change in the CVLT_IR and Benjamini-Hochberg adjusted p-values (pFDR) are plotted for each taxon. Significantly 

different taxa are coloured according to phylum. c) Manhattan-like plot of significantly expressed KEGG bacterial genes associated with the CVLT_IR (pFDR 

<0.005) identified from DESeq2 controlled for the previous covariates. The -log10(pFDR) values are multiplied by the fold change (FC) sign to take into account 

the direction of the association. Bars are coloured according to the pFDR. Those functions related to B vitamins metabolism, one-carbon metabolism, 

phenylalanine, tryptophan, and endocannabinoid metabolism are highlighted in black. The complete list of significantly associated metagenomic functions 

can be found in Table S1. d-g) Taxonomic and functional associations for the CVLT_IR in non-obese and obese patients. h) Manhattan-like plot of significantly 

expressed KEGG bacterial genes related to the phenylalanine metabolism and i) the tryptophan metabolism associated with the CVLT Short Delayed Free 

Recall. 

 

 

 



  

 

Figure S2. Microbiota composition associated with memory domains in the replication 

longitudinal cohort. Related to Figure 1. a) Volcano plots of differential bacterial abundance 



  

associated with the California Verbal Learning Tests Short Delayed Free Recall (CVLT_SDFR), b) 

the CVLT Immediate Recall (IR), and c) the Total Digit Span (TDS) in 69 consecutive subjects after 

1 year of follow-up as calculated by DESeq2 analysis controlling for age, body mass index, sex, 

education years, and Patient Health Questionnaire (PHQ)-9 scores. Fold change associated with 

a unit change in the corresponding test and Benjamini-Hochberg-adjusted p-values (pFDR) are 

plotted for each taxon. Significantly different taxa are coloured according to phylum. Only the 

bacterial species that were also significantly associated with the memory domains at baseline 

and in the same direction are highlighted. 



  

 

Figure S3. Microbiota taxonomic and functional associations the brain structure in the 

replication longitudinal cohort. Related to Figure 2. a) Volcano plots of differential bacterial 

abundance associated with the left hippocampus volume and b) right frontal inferior orbital 

volume in the replication cohort after 1 year of follow-up, as calculated by DESeq2 controlling 

for age, BMI, sex, education years, PHQ-9 and total intracranial volume (TIV). Fold change 

associated with a unit change in the corresponding volumes and Benjamini-Hochberg adjusted 



  

p-values (pFDR) are plotted for each taxon. Significantly different taxa are coloured according to 

phylum. Only those bacterial species that were also significantly associated with the 

corresponding brain volumes at baseline and in the same direction are highlighted. c) 

Manhattan-like plot of significantly expressed KEGG bacterial genes associated with the left 

hippocampus volume and k) the right frontal inferior orbital in the replication cohort after 1 year 

of follow-up, identified from covariate-adjusted DESeq2 analysis. For the left hippocampus, only 

those bacterial functions also associated to the memory domains are represented. The -

log10(pFDR) values are multiplied by the fold change (FC) sign to take into account the direction 

of the association. Bars are coloured according to the pFDR. Metagenomic functions that were 

also associated with the corresponding brain volumes at baseline are highlighted in bold. The 

complete list of significantly associated functions can be found in Supplemental Table S5g-j.  



  

 



  

Figure S4. Plasma and fecal metabolomics in electrospray ionization (ESI) negative mode linked to memory domains. Related to Figure 3. a) Boxplots of the 

normalized permutation importance measure for the metabolites associated to the to the TDS in plasma, e) the CVLT_SDFR in plasma, i) the TDS in faeces, 

and m) the CVLT_SDFR in faeces, identified by machine learning thorough the random forest-based Boruta feature selection algorithm at each of the 500 

iterations. b) Cross-validated permutation variable importance (CVPVI) measure  sign of the correlation between each metabolite associated to the TDS test 

in plasma, f) the CVLT_SDFR in plasma, j) the TDS in faeces, and n) the CVLT_SDFR in faeces, identified by machine learning using the random forest-based 

Vita method. c-d) Normalized permutation importance measure for Boruta selected metabolites associated to the TDS in plasma, g-h) the CVLT_SDFR in 

plasma, k-l) the TDS in plasma, and o-p) the CVLT_SDFR in faeces. All metabolites were identified based on exact mass, retention time and MS/MS spectrum, 

except those with (*) that were only identified based on exact mass and retention time. 3-IPA, Indole-3-propionic acid; CA, cholic acid; CDA, chenodeoxycholic 

acid; FA, fatty acid; 4-HPLA, 4-hydroxyphenyllactic acid; MG, monoglyceride. 



  

 



  

Figure S5. Plasma and fecal metabolomics linked to the California Verbal Learning Tests Immediate Recall (CVLT_IR). Related to Figure 3. a) Boxplots of the 

normalized permutation importance measure for the metabolites associated to the to the CVLT_IR in positive ESI mode in plasma, e) negative ESI mode in 

plasma, i) positive ESI mode in faeces, and m) negative ESI mode in faeces, identified by machine learning thorough the random forest-based Boruta feature 

selection algorithm at each of the 500 iterations. b) Cross-validated permutation variable importance (CVPVI) measure  sign of the correlation between each 

metabolite associated to the CVLT_IR in ESI positive mode in plasma, f) negative ESI mode in plasma, j) positive ESI mode in faeces, and n) negative ESI model 

in faeces, identified by machine learning using the random forest-based Vita method. c-d) Normalized permutation importance measure for Boruta selected 

metabolites associated to the CVLT_IR in positive ESI mode in, g-h) negative ESI mode in plasma, k-l) positive ESI model in faeces, and o-p) negative ESI model 

in faeces, for non-obese and obese patients, respectively. All metabolites were identified based on exact mass, retention time and MS/MS spectrum, except 

those with (*) that were only identified based on exact mass and retention time. 21-HEA, 21-hydroxyheneicosanoic acid; 3-IAA, Indoe-3-acetic acid; 3-IPA, 

Indole-3-propionic acid; CA, cholic acid; CDA, chenodeoxycholic acid; FA, fatty acid; MG, monoglyceride. 

 



  

 

Figure S6. Results for the freezing total test in the faecal microbiota transplantation (FMT) 

experiment. Related to Figure 4. a) Violin plots for the Freezing total test scores comparing the 



  

control group and the FMT group (t-test). b) Spearman correlation between the freezing total 

test in recipient’s mice and the total digit span (TDS) test in human donors. c) Volcano plots of 

differential human donor bacterial abundance associated with the recipient’s mice freezing total 

test from DESeq2 analysis. Fold change associated with a unit change in the freezing total test 

and Benjamini-Hochberg adjusted p-values (pFDR) are plotted for each taxon. Significantly 

different taxa are coloured according to phylum. Only significant species that were also 

associated inversely in the NORII24h test are highlighted. 

  



  

 Total population 
(n=143) 

Without obesity 
(n=71) 

With obesity 
(n=72) 

        p 

Age (years) 48.6 [40.3-57.0] 50.6 [40.6-59.0] 47.9 [37.0-53.2] 0.095 

Females n (%) 97 (67.8) 46 (64.8) 51 (70.8) 0.439 

Education (years) 14 [11-17] 15 [12-17] 12 [9.5-15] 6.0x10-5 

Smoking n (%) 19 (13.3) 7 (9.9) 12 (16.7) 0.471 

Alcohol intake (g/d) 1.4 [0-4.3] 2.3 [0.6-7.9] 0 [0-2.3] 1.5x10-5 

BMI (kg/m2)  30 [24.8-43.3] 24.8 [22.4-26.8] 43.3 [39.9-47.3] 5.7x10-25 

Waist (cm) 105 [88-125] 88 [83-97.3] 125 [116-138] 1.9x10-23 

Fat mass (%) 41.8 [32.3-50.5] 32.5 [26.4-37.8] 50.5 [47.8-53.5] 8.0x10-23 

SBP (mmHg) 129 [117.8-143.3] 124 [111-135] 134.5 [123.3-151.5] 1.3x10-4 

DBL (mmHg) 74.2 (11.3) 71.9 (10.9) 76.5 (11.3) 0.014 

HDL-C (mg/dL) 56 [46-68] 61 [54-77] 49 [43-59.8] 6.3x10-7 

Triglycerides (mg/dL) 86 [64-129] 77 [58-98] 109.5 [69.5-146.5] 0.001 

FPG (mg/dL) 94 [89-102] 93 [89-100] 96 [89.5-103.8] 0.211 

HbA1c (%) 5.5 [5.3-5.6] 5.4 [5.2-5.5] 5.5 [5.3-5.8] 0.010 

hsCRP (mg/dL) 2.0 [0.7-5.5] 0.7 [0.4-1.6] 4.6 [2.8-8.2] 8.6x10-16 

CVLT IR (score) 61 [55-67] 63 [55-70] 59 [54.5-65] 0.020 

CVLT SDFR (score) 14 [12-15] 14 [12-15] 13 [11-15] 0.087 

Total Digit Span (score) 15 [12-17] 16 [13-19] 14 [11-16] 0.001 

PHQ-9 (score) 5 [3-9] 3 [2-6] 8 [4-11] 3.0x10-6 

Hippocampus L (mm3) 0.37 [0.34-0.39] 0.37 [0.35-0.40] 0.36 [0.34-039] 0.046 

Hippocampus R (mm3) 0.36 [0.34-0.39] 0.36 [0.34-0.39] 0.36 [0.34-0.38] 0.012 

Frontal Sup L (mm3) 0.28 (0.03) 0.28 (0.04) 0.27 (0.02) 0.015 

Frontal Sup R (mm3) 0.29 (0.03) 0.30 (0.04) 0.28 (0.03) 0.004 

Frontal Mid L (mm3) 0.31 (0.04) 0.32 (0.04) 0.30 (0.03) 0.008 

Frontal Mid R (mm3) 0.32 (0.04) 0.33 (0.04) 0.32 (0.03) 0.006 

Frontal Inf Oper L (mm3) 0.33 (0.04) 0.33 (0.04) 0.32 (0.03) 0.008 

Frontal Inf Oper R (mm3) 0.33 (0.04) 0.34 (0.04) 0.32 (0.03) 0.003 

Frontal Inf Orb L (mm3) 0.37 (0.04) 0.38 (0.05) 0.37 (0.04) 0.186 

Frontal Inf Orb R (mm3) 0.35 (0.04) 0.35 (0.04) 0.35 (0.04) 0.941 

Frontal Inf Tri L (mm3) 0.33 (0.04) 0.33 (0.04) 0.32 (0.03) 0.032 

Frontal Inf Tri R (mm3) 0.31 (0.03) 0.31 (0.03) 0.30 (0.03) 0.116 

Results are expressed as number and frequencies for categorical variables, mean and standard deviation (SD) for 
normal distributed continuous variables and median and interquartile range [IQ] for non-normal distributed 
continuous variables. To determine differences between study groups, we used χ2 for categorical variables, unpaired 
Student’s t-test in normal quantitative and Mann-Whitney U test for non-normal quantitative variables. P value 
determinates differences between subjects with obesity (Body mass index, BMI ≥ 30 kg/m2) and without obesity (BMI 
18.5-30 kg/m2). SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high density lipoprotein 
cholesterol; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin; hsCRP, high-sensitive C-reactive protein; CVLT, 
California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; PHQ-9, Patient Health 
Questionnaire; L, left; R, right; Sup, superior; Mid, middle; Inf, inferior; Oper, opercularis; Orb, orbital; Tri, triangularis.  

 

Table S4. Clinical and neuropsychological data of the human MRI cohort. Related to Figure 2. 

  



  

 Total population 

(n=22) 

Without obesity 
(n=9) 

With obesity 

(n=13) 

        p 

Age (years) 51.5 [46.3-55.8] 55 [50-59] 48 [41-52] 0.030 

Females n (%) 12 (54.5) 4 (44.4) 8 (61.5) 0.429 

Education (years) 12 [10-17] 17 [11-17.5] 11 [9-13.5] 0.060 

BMI (kg/m2)  36.5 [24.9-42.0] 24.8 [22.8-25.3] 41 [39.0-44.7] 4x10-6 

Waist (cm) 118.5 [90.8-128.0] 87 [83.5-92.5] 127 [121.5-139] 4x10-5 

Fat mass (%) 46.9 [24.6-51.1] 23.7 [20.1-35.8] 49.4 [47.1-52.6] 5.3x10-5 

SBP (mmHg) 131 [118.5-139.5 123 [105.5-129.5] 135 [129.5-145] 0.025 

DBL (mmHg) 75 [67.8-81.5] 64 [57-73] 81 [74.5-84] 0.001 

HDL-C (mg/dL) 52.5 [45.8-65.5] 61 [53.5-77] 48 [39.5-57.5] 0.021 

Triglycerides (mg/dL) 111 [85.8-136.5] 81 [83-117] 128 [92.5-158] 0.096 

FPG (mg/dL) 98 [91.8-110.8] 99 [89.5-110] 97 [91.5-114] 0.948 

HbA1c (%) 5.5 [5.3-5.7] 5.5 [5.4-5.7] 5.5 [5.3-5.7] 0.896 

hsCRP (mg/dL) 1.6 [0.5-5.0] 0.5 [0.4-0.9] 3.9 [1.6-6.5] 0.003 

CVLT IR (score) 49.5 [47-66] 57 [47-68] 48 [46.5-65] 0.512 

CVLT SDFR (score) 12.5 [10-14.3] 13 [10.5-14.5] 11 [10-14] 0.324 

Total Digit Span (score) 13.5 [12-16.3] 15 [13-18] 13 [12-15.5] 0.164 

PHQ-9 (score) 6 [2.8-9] 4 [1.5-5.5] 8 [5.5-10.5] 0.011 

Table 4. Results are expressed as number and frequencies for categorical variables and median and interquartile range 
[IQ] for non-normal distributed continuous variables. To determine differences between study groups, we used χ2 for 
categorical variables and Mann-Whitney U test for non-normal quantitative variables. P value determinates 
differences between subjects with obesity (Body mass index, BMI ≥ 30 kg/m2) and without obesity (BMI 18.5-30 
kg/m2). SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL-C, high density lipoprotein cholesterol; FPG, 
fasting plasma glucose; HbA1c, glycated hemoglobin; hsCRP, high-sensitive C-reactive protein; CVLT, California Verbal 
Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; PHQ-9, Patient Health Questionnaire.  

 

Table S6. Clinical and neuropsychological data of the human donors’ cohort. Related to Figure 

4. 
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Highlights 

• Gut microbiome composition and functionality was linked to several tests evaluating 

inhibitory control in subjects with and without obesity.  

• Brain structures associated with this cognitive domain were also associated with gut 

microbiome alterations.   

• The impairment of inhibitory control from the donors was phenocopied in recipient 

mice through a fecal microbiota transplantation, resulting in alterations of reversal 

learning and changes in brain transcriptomics. 
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ABSTRACT
Background  Inhibitory control (IC) is critical to 
keep long-term goals in everyday life. Bidirectional 
relationships between IC deficits and obesity are behind 
unhealthy eating and physical exercise habits.
Methods  We studied gut microbiome composition 
and functionality, and plasma and faecal metabolomics 
in association with cognitive tests evaluating inhibitory 
control (Stroop test) and brain structure in a discovery 
(n=156), both cross-sectionally and longitudinally, and 
in an independent replication cohort (n=970). Faecal 
microbiota transplantation (FMT) in mice evaluated the 
impact on reversal learning and medial prefrontal cortex 
(mPFC) transcriptomics.
Results  An interplay among IC, brain structure (in 
humans) and mPFC transcriptomics (in mice), plasma/
faecal metabolomics and the gut metagenome was 
found. Obesity-dependent alterations in one-carbon 
metabolism, tryptophan and histidine pathways were 
associated with IC in the two independent cohorts. 
Bacterial functions linked to one-carbon metabolism 
(thyX,dut, exodeoxyribonuclease V), and the anterior 
cingulate cortex volume were associated with IC, cross-
sectionally and longitudinally. FMT from individuals with 
obesity led to alterations in mice reversal learning. In an 
independent FMT experiment, human donor’s bacterial 
functions related to IC deficits were associated with 
mPFC expression of one-carbon metabolism-related 
genes of recipient’s mice.
Conclusion  These results highlight the importance of 
targeting obesity-related impulsive behaviour through 
the induction of gut microbiota shifts.

INTRODUCTION
Executive function constitutes one of the six 
key domains of cognition and mainly comprises 

reasoning, problem solving and component skills 
management, required for real-world adaptive 
success.1 Executive functions are critical to keep 
long-term goals in everyday life.2 Detrimental effects 
of excess weight on executive functions determine 
the individual’s ability to break ingrained actions 
such as unhealthy eating and physical exercise 
habits in obese conditions.3 Very preliminary small 
studies showed impaired executive function linked 
to the gut microbiota composition, suggesting that 

Summary box

What is already known on this subject?
►► Inhibitory control is fundamental to keep long-
term goals in everyday life.

►► In subjects with obesity, this cognitive domain 
is impaired.

What are the new findings?
►► Gut microbiome composition and functionality 
was linked to several tests evaluating inhibitory 
control in subjects with and without obesity.

►► Brain structures associated with this cognitive 
domain was also associated with gut 
microbiome alterations.

►► The impairment of inhibitory control from the 
donors was phenocopied in recipient mice 
through a faecal microbiota transplantation, 
resulting in alterations of reversal learning and 
changes in brain transcriptomics.

How might it impact on clinical practice in the 
foreseeable future?

►► The adherence to diet could be improved by 
modifications in the gut microbiome.
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the deleterious effects of adiposity on cognition are not merely 
mediated by the metabolic complications.4

We here aimed to study the interplay among IC, brain struc-
ture (in humans) and medial prefrontal cortex (mPFC) tran-
scriptomics (in mice), plasma/faecal metabolomics and the gut 
metagenome and their transmission to mice through microbiota 
transplantation.

MATERIALS AND METHODS
Clinical study
Discovery cohort, cohort 1 (Ironmet): this is a cross-sectional 
case-control study setting at the Endocrinology Department of 
Josep Trueta University Hospital. The recruitment of subjects 
started in January 2016 and finished in October 2017. Consec-
utive middle-aged subjects, 27.2–66.6 years, were included. 
Patients with obesity (body mass index (BMI) ≥30 kg/m2) and 
age-matched and sex-matched subjects without obesity (BMI 
18.5–<30 kg/m2), were eligible. Exclusion criteria were type 2 
diabetes mellitus, chronic inflammatory systemic diseases, acute 
or chronic infections in the previous month; use of antibiotic, 
antifungal, antiviral or treatment with proton pump inhibi-
tors; severe disorders of eating behaviour or major psychiatric 
antecedents; neurological diseases, history of trauma or injured 
brain, language disorders and excessive alcohol intake (≥40 g 
OH/day in women or 80 g OH/day in men).

Longitudinal cohort (Ironmet study): cognitive tests and MRI 
variables were collected again in 69 consecutive subjects after 1 
year of follow-up.

Replication cohort, cohort 2: the study participants were 
recruited to evaluate the role of intestinal microflora in non-
alcoholic fatty liver disease. The cohort included 24 subjects, 
12 participants with obesity (BMI ≥30 kg/m2) and 12 without 
obesity (BMI <30 kg/m2). The exclusion criteria were systemic 
diseases, infection in the previous month, serious chronic illness, 
ethanol intake >20 g/day or use of medications that might 
interfere with insulin action. All control subjects were normo-
tensive and were selected on the basis of similarity in age and 
sex compared with subjects with obesity and the absence of 
a personal history of inflammatory diseases or current drug 
treatment.

Replication cohort, cohort 3 (Imageomics): the Ageing 
Imageomics Study is an observational study including partic-
ipants from two independent cohort studies (MESGI50 and 
MARK). Detailed description of the cohorts can be found else-
where.5 Briefly, the MESGI50 cohort included a population aged 
≥50 years, while the MARK cohort included a random sample 
of patients aged 35–74 years with intermediate cardiovascular 
risk. Elegibility criteria included age ≥50 years, dwelling in the 
community, no history of infection during the last 15 days, no 
contraindications for MRI and consent to be informed of poten-
tial incidental findings.

Clinical and laboratory parameters: body composition 
was assessed using a dual energy X-ray absorptiometry (GE 
lunar, Madison, Wisconsin). Fasting plasma glucose, lipids 
profile and high-sensitivity C reactive protein (hsCRP) 
levels were measured using an analyzer (Cobas 8000 c702, 
Roche Diagnostics, Basel, Switzerland). Glycated haemo-
globin was determined by performance liquid chromatog-
raphy (ADAMA1c HA-8180V, ARKRAY, Kyoto, Japan). 

Study of insulin sensitivity: Insulin sensitivity was determined 
by the hyperinsulinemic euglycemic clamp. The procedure 
consists in create in fasting conditions, a hyperinsulinemic state 

with an insulin infusion of predetermined fixed dosage and a 
variable rate glucose infusion. Glucose levels should be main-
tained constant at normal fasting (5 mmol/L) or any pre-existing 
(isoglycaemic) level adjusting the infusion rate of a 20% glucose 
solution. A steady state is usually reached in the last 40 minutes 
after 2 hours. Under these conditions the glucose infusion rates 
equal the glucose disposal rate, M (µmol・ kg-1・min-1), a 
measurement of overall insulin sensitivity.

Dietary pattern: the dietary characteristics of the subjects 
were collected in a personal interview using a validated food-
frequency questionnaire.6

The MRI acquisition and image preprocessing, the cognitive 
assessment (through the Stroop Color and Word Test (SCWT), 
Iowa Gambling Task (IGT) and the Wisconsin Card Sorting Test 
(WCST)), the extraction of faecal genomic DNA and whole-
genome shotgun sequencing, plasma metabolomics analyses and 
animal experiments, including transcriptomics of the mPFC are 
described as online supplemental methods.

Statistical analyses
First, normal distribution and homogeneity of variances were 
tested. Results are expressed as number and frequencies for cate-
gorical variables, mean and SD for normal distributed contin-
uous variables and median and IQR for non-normal distributed 
continuous variables. To determine differences between study 
groups, we used χ2 for categorical variables, unpaired Student’s 
t-test in normal quantitative and Mann-Whitney U test for non-
normal quantitative variables. Spearman’s analysis was used 
to determine the correlation between quantitative variables. 
All statistical analyses were performed with SPSS, V.19 (SPSS, 
Chicago, Illinois, USA).

Differential abundance analyses for taxa and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)-based metagenome func-
tions associated with the SCWT, the anterior cingulate cortex 
(ACC) volume and the recipient’s mice mPFC gene transcripts 
were performed using the DESeq2 R packages, controlling 
for age, sex and education years. Fold change (FC) associated 
with a unit change in the corresponding variable and Benjamin-
Hochberg adjusted p values were plotted for each taxon. Signifi-
cantly different taxa were coloured according to phylum. Taxa 
and bacterial functions were previously filtered so that only 
those with >10 reads in at least two samples were selected. 
Manhattan-like plot were used to show significantly expressed 
KEGG metagenome functions. The −log10(pFDR) values were 
multiplied by the FC sign to take into account the direction of 
the association. Bars were coloured according to the pFDR. A 
significance <0.05 was established unless otherwise indicated. 
DESeq2 was also used to identify recipient’s mice mPFC genes 
associated with donor’s metagenomic functions linked to the 
SCWT test controlling for donor’s age, sex and education years. 
Gene Ontology (GO) and Reactome pathway analyses of differ-
entially expressed genes were performed using the clusterPro-
filer R package7 and the ConsensusPathDB,8 respectively. The p 
value of each term was assessed using an hypergeometric test and 
significantly enriched terms were determined based on a q value 
(Storey correction) cut-off of 0.1, to account for multiple testing. 
GO terms were visualised using the goplot function from the 
enrichplot R package, and significant reactome pathways were 
visualised using a gene overlap plot.

Metabolomics data were analysed using machine learning (ML) 
methods. In particular, we adopted an all-relevant ML variable 
selection strategy applying a multiple random forest (RF)-based 
method as implemented in the Boruta algorithm.9 It has been 
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recently proposed as one of the two best-performing variable 
selection methods making use of RF for high-dimensional omics 
datasets.10 The Boruta algorithm is a wrapper algorithm that 
performs feature selection based on the learning performance 
of the model.9 It performs variables selection in three steps: (a) 
randomisation, which is based on creating a duplicate copy of 
the original features randomly permutate across the observa-
tions; (b) model building, based on RF with the extended data 
set to compute the normalised permutation variable importance 
measure (VIM) scores; (c) statistical testing, to find those rele-
vant features with a VIM higher than the best randomly permu-
tate variable using a Bonferroni corrected two-tailed binomial 
test and (d) iteration, until the status of all features is decided. We 
run the Boruta algorithm with 500 iterations, a confidence level 
cut-off of 0.005 for the Bonferroni adjusted p values, 5000 trees 
to grow the forest (ntree) and a number of features randomly 
sampled at each split given by the rounded down number of 
features/3 (the mtry recommended for regression).

RESULTS AND DISCUSSION
We initially evaluated the SCWT in a cohort of subjects with and 
without obesity. As expected, lower SCWT scores, indicative of 
impaired inhibitory control, were found in subjects with obesity 
(table 1, figure 1A). Inhibitory control was associated with the 
gut microbiota composition. Differential abundance of species 
associated with the SCWT were identified from raw read count 
data adjusted by age, sex and education years using the DESeq2 
package in R. We identified 297 species (pFDR <0.1) associated 
with the SCWT (figure 1A; online supplemental table S1). In all 
subjects as a whole, positive associations with executive perfor-
mance were found with Eubacterium sp CAG:603 and Firmic-
utes bacterium CAG:238; whereas most of the species negatively 
linked to SCWT scores belonged to the Bacteroidetes phylum: 
Bacteroides plebeius, Bacteroides gallinarum, Bacteroides mediter-
ranensis, Desulfovibrio fairfieldensis, Lachnospiraceae bacterium 
5_1_57FAA and Lachnospiraceae bacterium 6_1_37FAA. As both 
inflammation and insulin resistance may play a role in cognitive 
function and neurodegenerative disorders, we further analysed 
the data controlling for hsCRP, a marker of inflammation, and 

the hyperinsulinaemic-euglycaemic clamp (he-clamp), the gold-
standard method to assess insulin sensitivity. Notably, ~85% of 
the species associated with the SCWT were still significant after 
adjusting for both parameters. We could reproduce these results 
in an independent cohort (n=24) (table 2) using two measures of 
executive function (the IGT and the WCST): several Bacteroides 
sp and Alistipes sp were also associated with the scores of these 
tests (figure 1B, online supplemental figure S1A, online supple-
mental tables S2 and S3).

Metagenome functional analyses based on KEGG pathways 
controlling for age, sex and education years also revealed signif-
icant associations of several bacterial pathways with the SCWT 
(figure 1C, online supplemental table S6), which were also repli-
cated in an independent cohort (figure  1D). Further analysis 
controlling for hs-CRP and he-clamp revealed no effect of either 
inflammation or insulin sensitivity. Thus, >98% of the species 
associated with the SCWT were still significant after controlling 
for these additional variables. Notably, three bacterial functions 
related to nucleotide metabolism (dUTP pyrophosphatase, dut; 
thymidylate synthase, thyX and exodeoxyribonuclease V) had 
the strongest negative associations with the SCWT. Both dut 
and thyX participate in folate-mediated one-carbon metabolism. 
Consistently, dut correlated significantly with the plasma folic 
acid concentration (R=0.32, p=7×10-4, online supplemental 
figure S1B). It could seem counterintuitive that plasma folic acid 
was positively associated with a function linked to worse cognitive 
function. However, circulating unmetabolised folic acid implies 
that the body’s capacity to convert folic acid to the metabolically 
active 5-methyltetrahydrofolate has been overwhelmed and that 
folic acid has passively diffused intact into the circulation.11 In 
addition, thyX had a negative correlation with plasma uric acid 
levels (R=−0.20, p=0.034, online supplemental figure S1C). 
Alterations in folate-mediated one-carbon metabolism have been 
associated with increased risk for cognitive decline.11 In line with 
these findings, other functions related to folate-mediated one-
carbon metabolism (phosphoribosylglycinamideformyltrans-
ferase 2, purT) or folate biosynthesis (2-amino-4-hydroxy-6-hyd
roxymethyldihydropteridine diphosphokinase, folK; dihydrone-
opterin triphosphate diphosphatase, nudB) were also negatively 

Table 1  Clinical and neuropsychological data of the human discovery cohort

 �
Total population
(n=114)

Without obesity
(n=51)

With obesity
(n=63) P value

Age (years) 50.4 (41.8–58.6) 53.9 (44.4–59.0) 48.6 (40.7–57.5) 0.096

Females n (%) 79 (69.3) 34 (66.7) 45 (71.4) 0.584

Education (years) 12.5 (11–17) 15 (12–17) 12 (9–14) 1.9×10–5

BMI (kg/m2) 34.6 (25.3–43.3) 24.9 (2.6) 43.1 (6.7) 6.8×10–33

Waist (cm) 110 (92–126) 89.8 (9.6) 125.5 (14.0) 5.8×10–29

Fat mass (%) 43.5 (33.8–50.2) 32.4 (7.2) 49.7 (5.5) 2.7×10–24

SBP (mmHg) 132.8 (20.2) 124.3 (15.8) 139.5 (20.9) 2.6×10–5

DBP (mmHg) 74.8 (11.6) 71.2 (10.9) 77.7 (11.4) 0.003

HDL-C (mg/dL) 56 (45–68) 66.0 (17.0) 51.0 (12.9) 4.1×10–7

Triglycerides (mg/dL) 90.5 (65.8–135.3) 79 (58–96) 124 (82–156) 4.0×10–5

FPG (mg/dL) 96 (90–103) 95 (89–101) 97 (93–105) 0.155

HbA1c (%) 5.5 (0.3) 5.5 (5.3–5.6) 5.6 (5.3–5.8) 0.021

hsCRP (mg/dL) 1.8 (0.7–5.9) 0.7 (0.4–1.3) 4.9 (2.7–9.5) 1.6×10–13

SCWT (score) 43.1 (10.1) 45.9 (9.6) 40.8 (10.0) 0.006

Results are expressed as number and frequencies for categorical variables, mean and SD for normal distributed continuous variables and median and IQR for non-normal 
distributed continuous variables. To determine differences between study groups, we used χ2 for categorical variables, unpaired Student’s t-test in normal quantitative and Mann-
Whitney U test for non-normal quantitative variables. P value determines differences between subjects with obesity (BMI ≥30 kg/m2) and without obesity (BMI 18.5–30 kg/m2).
BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-
sensitivity C reactive protein; SBP, systolic blood pressure; SCWT, Stroop Color and Word Test.
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Figure 1  A microbiota taxonomic and functional signature is associated with inhibitory control. (A) Volcano plot of differential bacterial abundance 
(pFDR <0.05) associated with the Stroop Color Word Test (SCWT) as calculated by DESeq2 from shotgun metagenomic sequencing in the IRONMET 
cohort (n=114), adjusting for age, sex and education years. Fold change (FC) associated with a unit change in the SCWT and Benjamini-Hochberg 
adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa are coloured according to phylum. In the same graph, the violin plots 
for the SCWT scores in patients with and without obesity are also shown. Differences between groups were analysed by a Wilcoxon tests. (B) Volcano 
plot of differential bacterial abundance (pFDR <0.1) associated with Iowa Gambling Test (IGT) as calculated by DESeq2 from shotgun metagenomic 
sequencing in an independent cohort (n=24), adjusting for age, sex and education years. (C) Manhattan-like plot of significantly expressed KEGG 
metagenome functions associated with the SCWT (pFDR <0.020) identified from DESeq2 analysis in the IRONMET cohort (n=114) adjusted for age, 
sex and educations. The −log10(pFDR) values are multiplied by the FC sign to take into account the direction of the association. Bars are coloured 
according to the pFDR. (D) Manhattan-like plot of significantly expressed KEGG metagenome functions associated with the IGT (pFDR <0.05) 
identified from DESeq2 analysis in an independent cohort (n=24) adjusted for age, sex and educations.
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associated with the SCWT. In addition, several functions related 
to vitamins involved in the folate and one-carbon metabolism, 
specifically vitamin B6 (4-hydroxythreonine-4-phosphate dehy-
drogenase, pdxA), vitamin B12 (vitamin B12 transporter, btuB) 
and vitamin B2 (5,6-dimethylbenzimidazole synthase, bluB; 
3,4-dihydroxy 2-butanone 4-phosphate synthase, ribBA; ribo-
flavin synthase, ribE), were also negatively associated with the 
SCWT.

Notably, the associations between the SCWT and bacterial 
composition were different in subjects with and without obesity. 
Negative associations with Bacteroides nordii, Fusobacterium 
varium, Prevotella sp CAG:279 and Prevotella timonensis were 
observed in subjects with obesity, while Bacteroides ovatus 
CAG:22, Bacteroides sp CAG:462, Alistipes sp CAG:157, Rikenel-
laceae sp and Acidaminococcus sp were associated negatively in 
subjects without obesity (figure 2A,B, online supplemental tables 
S4 and S5). In the latter, we also observed positive associations 
with Roseburia sp CAG:471, Clostridum sp CAG:632, Pasteu-
rellaceae sp and Butyrivibrio sp CAG:318. Similarly, the associ-
ations at the functional level were also different in subjects with 
and without obesity. In particular, the association of the SCWT 
with the one-carbon metabolism-related functions thyX and dut 
was specifically significant among individuals without obesity 
(figure 2C, online supplemental table S7), white the link with 
exodeoxyribonuclease V was prominent among subjects with 
obesity (figure 2D, online supplemental table S8). Remarkably, 
most of these metagenomic composition and functional associ-
ations were replicated longitudinally after 1 year of follow-up 
(online supplemental figure S1D,E and tables S9 and S10). In 
addition to exodeoxyribonuclease V, dut, thyX and kinB, the 
SCWT performance at follow-up had a relatively strong nega-
tive association with nicotinamide phosphoribosyltransferase. 
The knockdown of this gene in mice has shown to recapitulate 
hippocampal cognitive phenotypes in old mice.12

We then used a multiple RF models-based ML variable selec-
tion strategy, as implemented in the Boruta R package, to iden-
tify plasma and faecal metabolites predictive of the SCWT. 
Among the plasma metabolites positively associated with 

SCWT performance, tryptophan and 4-hydroxyphenyllactic 
acid (4-HPLA, a tyrosine catabolite) were the most important 
(figure  3A,B). Tryptophan and tyrosine are the precursors for 
the synthesis of the neurotransmitters serotonin and dopa-
mine, respectively. In healthy adults, low tryptophan levels 
were associated with a decrease in the Stroop interference 
effect,13 14 although the results are somewhat inconsistent.15 16 
Previous research has also suggested that inhibitory control also 
relies on dopaminergic signalling.17 Stimulation of dopamine 
D2 receptors has shown to decrease Stroop interference.18 
A higher dopaminergic uptake was also linked to less WCST-
related activation in the PFC.19 Increased 4-HPLA acid levels 
may indicated that tyrosine is diverted from dopamine synthesis. 
Interestingly, 4-HPLA is a microbial-derived tyrosine catabolite 
that has shown to decrease reactive oxygen species production 
in both mitochondria and neutrophils.20 Alterations in trypto-
phan and tyrosine metabolism in relation to SCWT performance 
were also observed in faecal samples (figure  3C,D). Hence, 
5-hydroxyindoleacetic acid (5-HIAA), the end-product of sero-
tonin metabolism, tyrosine itself and some microbial-derived 
tyrosine metabolites (2-phenylpropanoic acid) had consistent 
associations with the SCWT. The associations between the 
SCWT and alterations in tryptophan metabolism were repli-
cated in the Imageomics cohort (n=970), where plasma levels of 
tryptophan and some microbial-derived tryptophan catabolites 
(indolepropionamide) were positively associated with the SCWT 
performance (figure  3F,G). Remarkably, these alterations in 
tryptophan metabolism were only observed in individuals with 
obesity in both the Ironmet (figure 4A-J) and Imageomics cohorts 
(figure 4K-M). This is in line with recent studies reporting alter-
ations in tryptophan metabolic pathways in obesity in associa-
tion with systemic inflammation.21 A summary of these findings 
can be found in figure 5A.

The purine, thymidylate and methionine cycles encom-
pass the one-carbon metabolism in the cytosol, which largely 
rely on B vitamins, specifically vitamins B2, B6, folate (B9) and 
vitamin B12.

22 In agreement with alterations in the metagenomic 
functions involved in the two former cycles and one-carbon 

Table 2  Clinical and neuropsychological data of the human replication cohort

 �
Total population
(n=24)

Without obesity
(n=12)

With obesity
(n=12) P value

Age (years) 53.5 (44.3–57.8) 52 (39–58.3) 53.5 (48.5–57.8) 0.478

Females n (%) 15 (62.5) 7 (58.3) 8 (66.7) 0.673

Education (years) 16 (15–17) 17 (14–17) 16 (15–17) 1.9×10–5

BMI (kg/m2) 29.9 (23.2–45.1) 23.2 (21.3–25.5) 44.3 (38.6–47.7) 3.2×10–5

Waist (cm) 96 (81–127) 82 (72.8–87.8) 127 (121–136) 7.1×10–5

Fat mass (%) 37.4 (29.2–45.3) 29.6 (21.3–34.9) 45.2 (39.6–51.3) 2.8×10–4

SBP (mmHg) 123.5 (115–136.8) 116 (108–121.3) 135.5 (124.5–148.3) 0.001

DBP (mmHg) 69.5 (64.3–78.8) 64.5 (59.5–69.5) 78 (69.3–150.8) 0.003

HDL-C (mg/dL) 56 (43–76) 67 (58.3–77) 44.5 (40–52.8) 0.043

Triglycerides (mg/dL) 73 (48.8–117.5) 57.5 (42.3–98.5) 93 (68.5–150.8) 0.069

FPG (mg/dL) 94.5 (84–103.8) 92 (84–102) 99 (85.3–103.8) 0.418

HbA1c (%) 5.5 (5.3–5.8) 5.5 (5.3–5.7) 5.7 (5.3–6.3) 0.147

hsCRP (mg/dL) 0.2 (0–0.5) 0.1 (0–0.2) 0.5 (0.2–0.8) 0.009

IGT (score) 45 (42–49) 44.5 (39–48.3) 45.5 (43.3–49.8) 0.271

WCST (score) 11 (11–12) 11 (10.5–12.5) 11 (11–12) 0.918

Results are expressed as number and frequencies for categorical variables, mean and SD for normal distributed continuous variables and median and IQR for non-normal 
distributed continuous variables. To determine differences between study groups, we used χ2 for categorical variables, unpaired Student’s t-test in normal quantitative and Mann-
Whitney U test for non-normal quantitative variables. P value determines differences between subjects with obesity (BMI ≥30 kg/m2) and without obesity (BMI 18.5–30 kg/m2).
BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; HDL-C, high-density lipoprotein cholesterol; hsCRP, high-
sensitivity C reactive protein; IGT, Iowa Gambling Test; SBP, systolic blood pressure; WCST, Wisconsin Card Sorting Test.
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metabolism-related vitamins in relation to the SCWT scores, we 
found negative associations between the faecal levels of methi-
onine and microbial-derived methionine catabolites (dimethyl 
sulfone)23 in the Ironmet cohort (figures  3D,E and 5B). 

Interestingly, these alterations in the methionine cycle were only 
observed in individuals without obesity (figure 4E-I), who also 
had alterations in betaine (figure 4E), which serves as a methyl 
donor in the reaction converting homocysteine to methionine 

Figure 2  The microbiota taxonomic and functional signature linked to inhibitory control is modulated by obesity. (A, B) Volcano plot of differential 
expressed (pFDR <0.1) bacterial abundance and (C, D) bacterial functions associated with the Stroop Color and Word Test (SCWT) as calculated by 
DESeq2 from shotgun metagenomic sequencing in the patients without and with obesity from the IRONMET cohort, respectively, controlling for age, 
sex and education years. Fold change associated with a unit change in the SCWT and Benjamini-Hochberg adjusted p values (pFDR) are plotted for 
each taxon. Significantly different taxa are coloured according to phylum.
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Figure 3  Plasma and faecal metabolomics linked to inhibitory control in the Ironmet and Imageomics cohorts. Bar plots of normalised variable 
importance measure (VIM) for the metabolites associated with the Stroop Color and Word Test (SCWT) in (A, B) plasma and (C–E) faecal samples 
identified by HPLC-ESI-MS/MS in positive mode (n=130), negative mode (n=130) and NMR (n=156), respectively, in the Ironmet cohort. Bar plots of 
VIM for the metabolites associated with the SCWT in plasma samples of the Imageomics cohort (n=970) identified by HPCL-ESI-MS/MS in (F) positive 
and (G) negative mode. In all cases, metabolites were identified using a multiple random forest-based machine learning variable selection strategy 
using the Boruta algorithm with 5000 trees and 500 iterations. All metabolites were identified based on exact mass, retention time and MS/MS 
spectrum, except those with (*) that were only identified based on exact mass and retention time. Unidentified metabolites are shown as exact mass 
at retention time. 2-PPA, 2-phenylpropanoic acid; 4-HPLA, 4-hydroxyphenyllactic acid; 5-HIAA, 5-hydroxyindoleacetic acid; DMSO2, dimethyl sulfone; 
FA, fatty acid; IPAM, indolepropionamide; MA, methylamine; TMA, trimethylamine.
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Figure 4  Plasma and faecal metabolomics linked to inhibitory control in the Ironmet and Imageomics cohorts according to obesity status. Bar plots 
of normalised variable importance measure (VIM) for the metabolites associated with the Stroop Color and Word Test (SCWT) in (A–D) plasma and 
(E–J) faecal samples identified by HPLC-ESI-MS/MS in positive mode (n=130), negative mode (n=130) and NMR (n=156), respectively, in the Ironmet 
cohort in patients with and without obesity. Bar plots of VIM for the metabolites associated with the SCWT in plasma samples of the Imageomics 
cohort (n=970) identified by HPCL-ESI-MS/MS in (K) positive and (L, M) negative mode in patients with and without obesity. The above colour bar 
indicates the sign of the association among the metabolites and the SCWT, with red indicating negative correlation and green positive correlation. In 
all cases, metabolites were identified using a multiple random forest-based machine learning variable selection strategy using the Boruta algorithm 
with 5000 trees and 500 iterations. All metabolites were identified based on exact mass, retention time and MS/MS spectrum, except those with 
(*) that were only identified based on exact mass and retention time. Unidentified metabolites are shown as exact mass at retention time. 4-
HPLA, 4-hydroxyphenyllactic acid; BA1, Bile acid1: 4,4-dimethyl-5-α-cholesta-8,14-dien-3β-ol; EPA, eicosapentaenoic acid; FA, fatty acid; IPAM, 
indolepropionamide; MA, methylamine; TMA, trimethylamine.

 on D
ecem

ber 20, 2021 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2020-323371 on 29 January 2021. D
ow

nloaded from
 

http://gut.bmj.com/


2291Arnoriaga-Rodríguez M, et al. Gut 2021;70:2283–2296. doi:10.1136/gutjnl-2020-323371

Gut microbiota

(figure  5B). These results are in agreement with the observed 
associations among one-carbon metabolism related metagenomic 
functions (thyX and dut) and SCWT only in individuals without 
obesity. These alterations in betaine levels are also consistent 

with the significant associations between the SCWT and bacte-
rial betaine transport functions (proW, betaine/proline trans-
port system permease protein; proV betaine/proline transport 
system ATP-binding protein; proX, betaine/proline transport 

Figure 5  Main metabolic pathways involved in the associations among metagenomics, metabolomics and the Stroop Color and Word Test 
(SCWT). (A) Overview of the main catabolic pathways of tryptophan and tyrosine. Tryptophan and tyrosine are the precursors for the synthesis 
of the neurotransmitters serotonin and dopamine, respectively. The gut microbiota can also metabolise tryptophan and tyrosine to indoles and 
hydroxyphenolic acids, respectively. Dietary tryptophan is mostly metabolised via the Kynurenine pathway, which is activated by inflammation. 
(B) Overview of the folate-mediated one-carbon metabolism. The folate cycle (green) is required for the synthesis of DNA (pink and blue) as 
well as methylation reaction (DNA, proteins and lipids) through the methionine cycle (orange). Histidine (purple), choline and betaine are two 
sources of 1C units feeding into the one-carbon metabolism. Bacterial pathways have been shaded in red. Metabolites involved in the one-carbon 
metabolism and significantly associated with the SCWT are highlighted in bold in a yellow box. Bacterial functions participating in the one-carbon 
metabolism and significantly associated with the SCWT are highlighted in bold in a red box. AICAR, 5-aminoimidazole-4-carboxamide 1-β-D-
ribofuranoside; bgtB, arginine/lysine/histidine/glutamine transport system substrate-binding and permease protein; bluB, 5,6-dimethylbenzimidazole 
synthase; btuB, vitamin B12 transporter; DHF, dihydrofolate; DMA, dimethylamine; DMSO2, dimethylsulfone; dut, dUTP pyrophosphatase; FAICAR, 
5-formamidoimidazole-4-carboxamide ribotide; FGAR, 5’-phosphoribosyl-N-formylglycineamide; FIGlu, N-Formimino-glutamate; folK, 2-amino-4-
hydroxy-6-hydroxymethyldihydropteridine diphosphokinase; GAR, 5’-phosphoribosylglycineamide; hisB, imidazoleglycerol-phosphate dehydratase; 
IGP, imidazole glycerol-phosphate; IMP, inosine 5’-monophosphate; MA, methylamine; nudB, dihydroneopterin triphosphate diphosphatase; pdxA, 
4-hydroxythreonine-4-phosphate dehydrogenase; proV, glycine betaine/proline transport system ATP-binding protein; proW, glycine betaine/proline 
transport system permease protein; proX, glycine betaine/proline transport system substrate-binding protein; purT, phosphoribosylglycinamide 
formyltransferase 2; ribBA, 3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II; ribE, riboflavin synthase; SAH, S-
adenosylhomocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate; thyX, thymidylate synthase; TMA, trimethylamine.
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system substrate-binding protein) (online supplemental table 
S6, figure 5B). It is also worth noting that both betaine and its 
precursor (choline) can be metabolised by the gut microbiota 
to trimethylamine (TMA) and eventually methylamine (MA), 
which were also only associated with the SCWT in individuals 
without obesity (figure 4G).

Another one-carbon donor that contributes to the pool of 
1C units in the folate-bound one-carbon metabolism is histi-
dine (figure 5B).24 Again, in agreement with the above findings, 
plasma histidine was positively associated with SCWT in indi-
viduals without obesity in the Imageomics cohort (figure  4L). 
Histidine is an important precursor of histamine, which acts as a 
neurotransmitter in the brain and has been involved in anxiety, 
stress response, learning and memory.25 Consistently, we also 
found negative associations between faecal histamine and SCWT 
(figure 4G). Notably, vitamin B6 acts as a cofactor for histidine 
decarboxylase, the sole enzyme responsible for the conversion of 
histidine to histamine. Histidine can alternatively be converted 
to urocanic acid, which was significantly associated with the 
SCWT performance in individuals with obesity (figure  4J). 
Urocanate has recently shown to cross the blood-brain barrier 
and promote glutamate biosynthesis and release in various brain 
regions, thereby enhancing learning and memory.26 Therefore, 
histidine might be metabolised differently in obesity.

We further analysed the associations among the metabolome 
and those bacterial functions most negatively associated with the 
SCWT. ML analyses revealed consistent associations with trypto-
phan, 4-HPLA, 3-methyl-2-oxovalerate, FA(16:1) and FA(18:2) 
(online supplemental figure S2 A–C). These functions also had 
positive associations with betaine, reflecting the involvement of 
these functions in the one-carbon metabolism.

We next questioned whether these associations could have 
a structural correlate. Both the anterior cingulate and the PFC 
are thought to be critically involved in the performance of the 
Stroop task. In agreement with previous findings,27 we found 
that the grey matter volume of the ACC was positively linked to 
SCWT scores (figure 6A,B). Interestingly, in line with inhibitory 
control-bacterial relationships, we found negative associations of 
different Bacteroides sp, Anaerovibrio sp RM50 and Selenom-
onas sp Oral taxon 478 with ACC volume (figure  6C, online 
supplemental table S11). Conversely, bacterial species positively 
associated with better inhibitory control were also directly 
linked to ACC volume (Clostridium sp CAG:226, Roseburia sp 
CAG:182 and Ruminococcus sp CAG:417). The strongest nega-
tive associations between the bacterial functions and the ACC 
volume were with kinB, dut and thyX, that were precisely the 
bacterial function negatively associated with SCWT in subjects 
without obesity (figure 6D). Other bacterial functions involved 
in pyrimidine metabolism were positively linked (pseudou-
ridylate synthase, psuG; TYMP thymidine phosphorylase, deoA; 
5’-deoxynucleotidase, yfbR) (figure 6D,E, online supplemental 
table S12). An increased frequency of red meat consumption 
was associated with those bacterial functions negatively related 
to inhibitory control (online supplemental figure S3A). Of note, 
dut and kinB had the strongest negative associations with the 
ACC volume at baseline, and after 1 year of follow-up (online 
supplemental figure S3B).

The correlates of cognitive flexibility of humans and mice are 
often measured using reversal learning (RL) paradigm experi-
ments, in which subjects need to overcome established associa-
tions and learn new ones based on feedback.28 RL also provides a 
measure of inhibition and impulsiveness.29 In a faecal microbiota 
transplantation experiment, microbiota from n=22 humans 
donors (n=11 with BMI <30 kg/m2 and n=11 with BMI ≥30 

kg/m2 matched for age, sex and education years) was orally 
delivered to recipient mice (figure  7A, online supplemental 
table S13). Mice receiving the microbiota from the subjects with 
obesity with lower inhibitory control had significantly lower RL 
performance at day 18 evaluated as the number of lever-presses 
in the inverted active lever (figure  7A). Remarkably, several 
human donor’s bacterial species (figure 7B, online supplemental 
table S1) and functions (figure 7C, online supplemental table S6) 
associated with the SCWT in humans were also associated with 
the recipient’s mice RL task performance.

PFC activity is known to affect inhibitory control, and inhib-
itory control-related activity in regions of the PFC have been 
found to correlate inversely with BMI and weight increase.30 31 
Therefore, in an independent faecal microbiota transplantation 
experiment, we performed an RNA sequencing of the mPFC of 
mice that received microbiota from human donor’s with either 
low or high SCWT scores matched for age, gender and education 
years (figure 7D, online supplemental table S14). DESeq2 anal-
yses adjusted for donor’s age, sex and education years, revealed 
several mPFC genes from recipient’s mice associated with the 
SCWT-related human’s donor bacterial functions (figure 7E,F, 
online supplemental table S15 and S16). In particular, dut 
had significative positive associations with the expression of 
Kcne2, Prlr, Folr1, Cldn2, Slc4a5, Sostdc1 and borderline asso-
ciations (pFDR <0.11) with Tmem72, F5 and Ttr (figure 7E). 
Remarkably, all these genes were found among the top 25 genes 
changing the hippocampal expression after contextual fear 
conditioning.32 Enrichment analysis of differentially expressed 
genes based on GO revealed over-representation of biological 
processes related to neuron development and histone methyl-
ation (online supplemental figure S4A). The genes involved in 
these processes included Folr1, Mecp2, Auts2, Mfrp and Hipk1. 
It is particularly noticeable, the significant association between 
this donor’s bacterial function involved in folate-mediated one-
carbon metabolism and the expression of the folate receptor 1 
(Folr1) and methyl-CpG binding protein 2 (Mecp2) in the recip-
ient mice mPFC. This is in agreement with our previous findings 
and further highlights the key role of the one-carbon metabo-
lism and its involvement in DNA methylation. The Mecp2 has 
a well-established function in neurodevelopment33 and has also 
been linked to autism and Alzheimer’s disease.34 On the other 
hand, exodeoxyribonuclase V was significantly associated with 
the expression of 152 PFC genes, with transthyretin having the 
strongest FC by far (figure 7F). Ttr is one of the major amyloid 
β peptide-binding proteins acting as a neuroprotector in Alzhei-
mer’s disease.35 This bacterial function also had a significant 
association with methylenetetrahydrofolate dehydrogenase 
1-like (Mthfd1l) gene, which encodes for an enzyme that has an 
important role in folate-mediated one-carbon metabolism. Dele-
tion of one allele of Mthfd1 resulted in impaired cue-conditional 
learning in mice.36 Finally, enrichment analyses based on reac-
tome pathways revealed a network of pathways related to netrin 
signalling, which has recently shown to play an important role in 
synaptic plasticity and memory formation.37

Next, we also searched for relevant genes in the PFC of recip-
ient’s mice that were able to predict the human’s donor SCWT 
using an ML-based variable selection strategy. After application 
of the Boruta algorithm, we identified Ms4a4a and the mono-
carboxylic acid transporter 12 (Slc16a12) as the main predic-
tors of SCWT (figure 7G). Interestingly, the later gene has been 
recently described to be linked to folate status.38 Monocarbox-
ylate transporter transports lactate to the brain and promotes 
neurogenesis.39 In addition, this is the transporter for creatine. 
Spontaneous mutations in creatine transporters and creatine 
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Figure 6  The gut microbiota is associated with the brain area involved in inhibitory control. (A, B) The anterior cingulate cortex (ACC) volume 
was positively associated with the Stroop Color and Word Test (SCWT) in the Ironmet cohort (n=95) after controlling for age, sex, education years 
and total intracranial volume. (C) Volcano plots of differential bacterial abundance and (D) KEGG metagenome functions associated with the ACC 
volume as calculated by DESeq2 controlling for previous covariates. Fold change (FC) associated with a unit change in the corresponding volumes 
and Benjamini-Hochberg adjusted p values (pFDR) are plotted for each taxon. (E) Manhattan-like plot of significantly expressed KEGG metagenome 
functions associated with the ACC volume highlighting those bacterial functions also associated with the SCWT in blue. The −log10(pFDR) values are 
multiplied by the FC sign to take into account the direction of the association. Bars are coloured according to the pFDR.
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transporter knockout mice show impairments of short-term and 
long-term memory,40 and severe deficits in cognitive function.41 
Recently, Ms4a4a has also been identified as a key modulator of 
soluble TREM2 and Alzheimer’s disease risk.42 We then used 

DESeq2 to identify those SCWT-related bacterial functions 
that were associated with the expression of these two genes 
(figure  7H,I, online supplemental tables S17 and S18). Inter-
estingly, both genes were significantly associated with dut 

Figure 7  Faecal microbiota transplantation (FMT) mice studies. (A) Experimental design for the first FMT study. The microbiota from human donors 
without obesity (body mass index (BMI) <30 kg/m2, n=11) and with obesity (BMI ≥30 kg/m2, n=11) was delivered to recipient mice pretreated with 
antibiotics for 14 days. Reversal learning tests (RLT) were performed after 18 days. Violin plot for the recipient’s mice RLT scores at 18 days based 
on human donor obesity status. (B) Volcano plot of differential human donor bacterial abundance associated with the recipient’s mice RLT at day 
18, identified from DESeq2 analysis controlling for donor’s age, sex and education years. Fold change (FC) associated with a unit change in the 
corresponding memory test and Benjamini-Hochberg adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa are coloured 
according to phylum. (C) Manhattan-like plot showing only the significantly expressed KEGG metagenome functions associated with the recipient’s 
mice RLT (pFDR <0.1) that were also associated with the Stroop Color and Word Test (SCWT) in humans. The −log10(pFDR) values are multiplied by the 
FC sign to take into account the direction of the association. Bars are coloured according to the pFDR. (D) Experimental design for the second FMT 
study. The microbiota from human donors with low (n=11) and high (n=11) SCWT scores was delivered to recipient mice pretreated with antibiotics 
for 14 days. RNA sequencing of the medial prefrontal cortex (mPFC) was performed after 4 weeks. Violin plots for the SCWT according to the human 
donor scores. (E) Volcano plots of recipient’s mice differential mPFC genes associated (pFDR <0.1) with the human’s donor metagenome functions 
dUTP pyrophosphatase and (F) exodeoxyribonuclease V controlling for donor’s age, sex and education years. FC associated with a unit change in the 
expression of the corresponding bacterial function and the Benjamini-Hochberg adjusted p values (pFDR) are plotted for each gene. (G) Bar plot of the 
normalised variable importance measure (VIM) for the recipient’s mice mPFC genes associated with the human donor’s SCWT identified by machine 
learning using multiple random forest-based variable selection strategy with the Boruta algorithm with 5000 trees and 500 iterations. (H) Volcano plot 
of differential human donor’s KEGG metagenome functions associated with recipient’s mice Ms4a4a and (I) Slc16a12 genes. FC associated with a unit 
change in the expression of both genes and Benjamini-Hochberg adjusted p values (pFDR) are plotted for each metagenome function.
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and thyX, which we had identified as the main contributors the 
SCWT.

Inhibitory control, a fundamental component of executive 
function,2 overrules automatic intentions to directly respond 
to stimuli without thought.3 We here describe multiple inter-
actions among the gut microbiota taxonomy and functionality, 
and plasma and faecal-microbiota metabolites, with inhibitory 
control in humans with obesity that were partially transmissible 
to mice. This may have therapeutic implications for the disen-
gagement of ongoing behaviours, including the suppression of 
impulsive food reward-related choices in subjects with obesity.3
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Supplementary methods 

 
MRI study 

MRI acquisition and image pre-processing: All subjects were studied on a 1.5T Ingenia 

(Philips Healthcare, Best, The Netherlands) with eight channel head coils. Structural 

images were acquired using a 3D Turbo Field Echo Planar Imaging (TFEPI) sequence 

and parameters of echo time (TE) = 4.1ms, repetition time (TR) = 8.4ms, flip angle 8 , 

field of view (FOV) 230x190 matrix. A total of 145 whole-brain images per subject 

with thickness axial slices of 1x1x1mm³ with or without gap. The total scan time was 

189.6s. The anatomical imaging data was processed and analyzed using MATLAB 

version R2017a (The MathWorks Inc, Natick, Mass) and Statistical Parametric software 

(SPM12; The Welcome Department of Imaging Neuroscience, London). Preprocessing 

steps involved motion correction, spatial normalization and smoothing using a Gaussian 

filter (FWHM 8 mm). Data were normalized to Diffeomorphic Anatomical Registration 

Through Exponentiated Lie (DARTEL) and resliced to a 2mm isotropic resolution in 

Montreal Neurological Institute (MNI) space.  

Volumetric brain analyses: The Automated Anatomical Labeling (AAL) [1] atlas was 

used to obtain the volumetric information of 94 participants. Each region was 

orthogonalized for sex, age and total grey matter volume in MATLAB version R2017a 

(The Math Works Inc, Natick, MA) and subsequently entered to SPSS to investigate for 

differences between participants with and without obesity using independent sample t-

test and for associations with the microbiota using Spearman correlation analyses and 

corrected for multiple comparisons using q-values [2]. 
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Cognitive assessment  

The Stroop Color-Word Test (SCWT) (Golden’s version) was administered to assess 

cognitive flexibility, selective attention, inhibition and information processing speed. 

This version consists of three different parts: 1) 100 words (color names) are printed in 

black ink and the subject is asked to read them as fast as possible, 2) 100 “XXX” are 

printed in color ink (green, blue and red) and the subject is asked to name as fast as 

possible the ink color, and 3) 100 color names (from the first page) printed in color ink 

(from the second page), the color name and the ink color do not match and the subject is 

asked to name the ink color (and not to read the color name). The subject is given 45 

seconds for each task, after the 45 seconds the last item completed is noted, obtaining 

three scores: one for each part of the test (“P”, “C” and “PC”). The interference (“I”) 

index was also obtained from the subtraction PC-PC’ (PC’=PxC/P+C). Standard 

administration procedures were followed as indicated in the test manual [3]. 

Computerized version of the Iowa Gambling Task (IGT) (Bechara, A; Psychological 

Assessment Resources, Inc.) was used to assess decision making. Four upside down 

card decks are shown in the screen, each of them identified by a letter (A, B, C or D). 

The subject is told that he or she can freely choose cards from any deck in order to win 

as much money as possible. When the subject clicks on a card deck a smiley face and 

the amount of money won appears in the screen. Sometimes, after the smiley face is 

showed a sad face appears together with a message indicating the amount of money lost. 

In the upper left side of the screen there are a green bar and a red bar indicating the 

amount of money won and lost. A and B decks give bigger amounts of money but they 

also make important losses meanwhile C and D decks make smaller profits but they also 

cause less losses. On A and C decks punishment frequency raises progressively but 

magnitude is constant, on B and D decks punishment frequency is constant but, 
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magnitude raises progressively. Standard administration procedures were followed as 

indicated in the test manual [4] Standardized (t-score) Net total score, which results 

from the subtraction of the disadvantageous from the advantageous decks (CD-AB), 

was used for the statistical analysis.  

The Wisconsin Card Sorting Test (WCST): computer version 4-Research Edition 

(Heaton, RK; Psychological Assessment Resources, Inc.) was used to assess executive 

function. The test consists in four stimulus cards: one with a red triangle, one with two 

green stars, one with three yellow crosses and another with four blue circles. The 

stimulus cards are always placed in the screen and different cards are shown below, one 

at a time. The subject is asked to match each of these cards, which have designs similar 

to those on the stimulus cards (varying in color, geometric form or number), with one of 

the four stimulus cards. No warning is provided about the sorting rule neither about 

changes of the rule, only feedback about the answer is given in each trial (correct or 

incorrect). The sorting rule (color, form or number) changes after 10 consecutive correct 

answers (category). Standard administration procedures were followed [5]. We analyze 

the “trials to complete first category” score, which is the total number of trials needed to 

complete 10 consecutive correct answers.  

 

Extraction of faecal genomic DNA and whole-genome shotgun sequencing 

Total DNA was extracted from frozen human stools using the QIAamp DNA mini stool 

kit (Qiagen, Courtaboeuf, France). Quantification of DNA was performed with a Qubit 

3.0 fluorometer (Thermo Fisher Scientific, Carlsbad, CA, USA), and 1 ng of each 

sample (0.2 ng/µl) was used for shot gun library preparation for high-throughput 
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sequencing, using the Nextera DNA Flex Library Prep kit (Illumina, Inc., San Diego, 

CA, USA) according to the manufacturers’ protocol. 

Sequencing was carried out on a NextSeq 500 sequencing system (Illumina) with 2 X 

150-bp paired-end chemistry, at the facilities of the Sequencing and Bioinformatic 

Service of the FISABIO (Valencia, Spain). The obtained input fastq files were 

decompressed, filtered and 3· ends-trimmed by quality, using prinseq-lite-0.20.4 

program [6] and overlapping pairs were joined using FLASH-1.2.11[7]. Fastq files were 

then converted into fast files, and human and mouse host reads were removed by 

mapping the reads against the GRCh38.p11, reference human genome (Dec 2013), and 

GRCm38.p6, reference mouse genome (Sept 2017), respectively, by using bowtie2-

2.3.4.3 [8] with end-to-end and very sensitive options. Next, functional analyses were 

carried out by assembling the non-host reads into contigs by MEGAHIT v1.1.2 [9] and 

mapping those reads against the contigs with bowtie2. Reads that did not assemble were 

appended to the contigs. Next, the program Prodigal v2.6.342 [10] was used for 

predicting codifying regions. Functional annotation was carried out with HMMER [11] 

against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, version 2016 

[12] to obtain the functional subcategory, route and annotation of the genes. The 

filtering of the best annotations and the assignment of the orf annotation to every read 

were carried out using the statistical package R 3.1.0 [13] which also was used to count 

the aligned reads and to add the category and its coverage, and finally to build 

abundance matrices. Taxonomic annotation, was implemented with Kaiju v1.6.2 [14] on 

the human and mouse-free reads. Addition of lineage information was added, counting 

of taxa and generation of an abundance matrix for all samples were performed using the 

package R.  
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Metabolomics analyses 

 

For non-targeted metabolomics analysis, metabolites were extracted from plasma and 

faecal samples with methanol (containing phenylalanine-C13 as an internal standard) 

according to previously described methods [15]. Briefly, for plasma samples 30µl of 

cold methanol were added to 10 µl of each sample, vortexed for 1 minute and incubated 

for one hour at −20 °C. For faecal samples, the content of a 1.2 ml tube of Lysing 

Matrix E (MP biomedicals) and 600 µl of cold methanol were added to 10mg of sample. 

Samples were homogenized using FastPrep-24™ (MP biomedicals) and were incubated 

overnight in a rocker at 4°C. Then, all samples were centrifuged for three minutes at 

12.000g, the supernatant was recovered and filtered with a 0.2 µm Eppendorf filter. 

Two µL of the extracted sample were applied onto a reversed-phase column (Zorbax 

SB-Aq 1.8 µm 2.1 x 50 mm; Agilent Technologies) equipped with a precolumn 

(Zorbax-SB-C8 Rapid Resolution Cartridge 2.1 x 30 mm 3.5 µm; Agilent Technologies) 

with a column temperature of 60°C. The flow rate was 0.6 mL/min. Solvent A was 

composed of water containing 0.2% acetic acid and solvent B was composed of 

methanol 0.2% acetic acid. The gradient started at 2% B and increased to 98% B in 13 

min and held at 98% B for 6 min. Post-time was established in 5 min. 

Data were collected in positive and negative electrospray modes time of flight operated 

in full-scan mode at 50–3000 m/z in an extended dynamic range (2 GHz), using N2 as 

the nebulizer gas (5 L/min, 350°C). The capillary voltage was 3500 V with a scan rate 

of 1 scan/s. The ESI source used a separate nebulizer for the continuous, low-level (10 

L/min) introduction of reference mass compounds 121.050873 and 922.009798, which 

were used for continuous, online mass calibration. MassHunter Data Analysis Software 

(Agilent Technologies, Barcelona, Spain) was used to collect the results, and 
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MassHunter Qualitative Analysis Software (Agilent Technologies, Barcelona, Spain) to 

obtain the molecular features of the samples, representing different, co-migrating ionic 

species of a given molecular entity using the Molecular Feature Extractor algorithm 

(Agilent Technologies, Barcelona, Spain). We selected samples with a minimum of 2 

ions. Multiple charge states were forbidden. Compounds from different samples were 

aligned using a retention time window of 0.1% ± 0.25 minutes and a mass window of 

20.0 ppm ±2.0 mDa. We selected only those present in at least 50% of the samples of 

one group and corrected for individual bias.  

Faecal samples for the Ironmet cohort were also analysed by Nuclear Magnetic 

Resonance (NMR). The preparation protocol started with around 15-20 mg of dried 

faecal matter that was placed in a 2 ml Eppendorf tube. Then, 500 µl of 0.05 M PBS 

buffer in H2O (pH=7.3) was added and vortexed vigorously, frozen and thawed twice 

and centrifuged (2.1000 g, 15 min, 4°C) to obtain a clear faecal water over the 

precipitated stool. From the upper layer, 200 µl of prepared faecal water was placed in a 

2 ml Eppendorf tube and then, 400 µl of 0.05M PBS buffer in D2O (pH=7.2, TSP 

0.7mM) was added. The sample was vigorously vortexed and sonicated until complete 

homogenization and the mixture (clear dispersion), if necessary, was centrifuged again 

(14.000 rpm around 14.000 g, 5 min, 4ºC). For NMR measurement the clear upper 

phase was placed into a 5mm o.d. NMR tube. 1H NMR spectra were recorded at 300 K 

on an Avance III 600 spectrometer (Bruker®, Germany) operating at a proton frequency 

of 600.20 or 500.13 MHz using a 5 mm PABBO gradient probe. 
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Animals faecal microbiome transplantation (FMT) experiments 

All animal procedures were performed in accordance with the guidelines of the 

European Communities Council Directive 2010/63/EU regulating animal research and 

were approved by the local ethical committee (Comitè Ètic d´Experimentació Animal-

Parc de Recerca Biomèdica de Barcelona, CEEA-PRBB). For each FMT study, thirty-

three wild-type C57BL/6J male mice were used. Upon arrival to the animal facilities, 

animals were let to adapt during 5 days to housing conditions (12 hours reversed 

light/dark cycle, 08:00 AM lights off). Mice were housed individually in controlled 

laboratory conditions with temperature maintained at 21±1 °C and humidity at 55 ± 

10%. Food and water were available ad libitum during all the experiment. Operant 

behavior testing was always performed during the first hours of the dark phase of the 

reversed light/dark cycle. Body weight gain of mice was controlled during all the 

experiment. 

Experimental design FMT Study 1. After acclimatization to housing conditions, animals 

were divided intro Control (n=11) and Transplant (n=22) groups matched for average 

body weight. Transplant group mice were given ad libitum cocktail of antibiotics during 

14 days in drinking water to deplete gut microbiota. Antibiotic cocktail consisted of 

ampicillin (1 g/L), metronidazole (1 g/L), vancomycin (400 mg/L), ciprofloxacin HCl 

(250 mg/L) and imipenem (250 mg/L). After 14 days of antibiotic intake animals were 

subjected to a 72 hours wash out and then colonized via daily oral gavage of donor 

microbiota (200 µL) for 3 days. Donor microbiota was acquired from fecal samples of 

non-obese (n=11) and obese (n=11) patients matched for age, sex, and education years. 

Booster inoculations were given twice weekly to throughout the study to reinforce 

donor microbiota phenotype. Control animals were subjected to the same protocol but 

instead of receiving donor microbiota they received oral gavage of 200 µL of saline 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2020-323371–14.:10 2021;Gut, et al. Arnoriaga-Rodríguez M



solution (0.9% NaCl). 10 days after the first oral gavage animals were subjected to food 

self-administration procedure (see below) for the next 18 days. Two days after 

termination of self-administration procedure animals were sacrificed and cecums were 

extracted, weighted and directly frozen in dry ice and stored at -80 °C.  

Food self-administration. Mouse operant chambers (Model ENV-307A-CT, Med 

Associates, Georgia, VT, USA) were used for operant responding. At the start of each 

food self-administration session, a house ceiling light turned on during the first 3 

seconds of the session to indicate the start of the session. All sessions lasted 60 min and 

regular-flavored pellets were used. The food self-administration session consisted of 

two pellet periods of 25 min and a 10 min pellet-free period in between both pellet 

periods (25/10/25). In the two pellet periods, animals received a pellet after an active 

response paired with a stimulus light (cue light). After performing an active response on 

the active lever, a time-out period of 10 sec was set where the cue light was off and no 

reward (pellet) was provided. No pellets were provided in the inactive lever. Responses 

on active lever, inactive lever and during the time-out period were recorded. The start of 

the pellet-free period was signaled by the illumination of the entire operant chamber. 

During this period no pellet was delivered. In the operant conditioning sessions, mice 

were under fixed ratio 1 (FR1) of reinforcement during 7 days (one active lever-press 

resulted in a delivery of one pellet). Following FR1 phase, animals were subjected to an 

increase FR up to 5 (5 lever-presses in order to obtain one reward) for 8 days. Criteria 

for the achievement of the operant responding were acquired when the following 

conditions were met: (1) at least 75% responding on the active lever; and (2) a 

minimum of 5 rewards per session (5 and 25 active lever presses in FR1 and FR5, 

respectively). After each session mice were returned to their home cages. 
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Persistence to response: Non-reinforced active responses during the pellet-free period 

(10 min) were measured as a persistence of food-seeking behavior.  

Cognitive flexibility: after 8 days of FR5, animals were exposed to 2 sessions of 

reversal learning (RL). In these 2 sessions, active and inactive levers were switched. 

Thus, the active lever during FR1 and FR5 phases became the inactive and vice versa. 

Higher number of lever-presses in the inverted active lever (inactive during FR phases) 

indicates higher scores of cognitive flexibility. 

Statistical analysis. All statistical analysis was performed with SPSS (IBM, version 25). 

Comparisons between groups were analyzed by Student t-test. ANOVA with repeated 

measures was used when required to test the evolution over time. For food self-

administration analysis, within-subject factors were Lever (two levels: active and 

inactive), Day (7 levels for FR1, 9 levels for FR5 and 2 levels for RL). Between-subject 

factor was Transplant (2 levels: Control and Transplant). The criterion for significance 

(alpha) was set at 0.05. 

Experimental design FMT Study 2. Mice were given a cocktail of ampicillin and 

metronidazole, vancomycin (all at 500 mg/L), ciprofloxacin HCl (200 mg/L), imipenem 

(250 mg/L) once daily for 14 consecutive days in drinking water, as previously 

described [16]. Seventy-two hours later, animals were colonized via daily oral gavage of 

donor microbiota (150 µL) for 3 days. Animals were orally gavaged with saline (n=11) 

and faecal material from healthy human donor’s with low- (n=11) and high SCWT 

scores (n=11), matched for age, BMI, sex, and education years. To offset potential 

confounder and/or cage effects and to reinforce the donor microbiota phenotype, booster 

inoculations were given twice per week throughout the study. After 4 weeks, mice were 

sacrificed. 
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Study of gene expression in the prefrontal cortex from mice in the FMT study 2 

The brains were quickly removed and the medial prefrontal cortex was dissected 

according to the atlas of stereotaxic coordinates of mouse brain [17]. Brain tissues were 

then frozen by immersion in 2-methylbutane surrounded by dry ice, and stored at -80ºC. 

RNA quality control performed using the RNA 6000 Nano chip (Agilent) on an Agilent 

Bioalyzer 2100 obtaining RIN values between 8.7 - 9.8. Libraries were prepared from 

500 ng of total RNA using the TruSeq stranded mRNA library preparation kit (Illumina, 

#20020594) with TruSeq RNA Single Indexes (Illumina, #20020492 and #20020493) 

according to the manufacturer's instruction reducing the RNA fragmentation time to 4.5 

minutes. Prepared libraries were analyzed on a DNA 1000 chip on the Bioanalyzer and 

quantified using the KAPA Library Quantification Kit (Roche, #07960204001) on an 

ABI 7900HT qPCR instrument (Applied Biosystems). Sequencing was performed with 

2x50 bp paired-end reads on a HiSeq 2500 (Illumina) using HiSeq v4 sequencing 

chemistry. Raw sequencing reads in the fastq files were mapped with STAR version 

2.5.3a[18] to the Gencode release 17 based on the GRCm38.p6 reference genome and 

the corresponding GTF file. The table of counts was obtained with FeatureCounts 

function in the package subread, version 1.5.1 [19]. Genes having less than 10 counts in 

at least 5 samples were excluded from the analysis.  
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Fig. S1. a) Volcano plot of differential bacterial abundance associated with the Wisconsin Card 

Sorting Test (WCST) as calculated by DESeq2 from shotgun metagenomic sequencing in an 

independent cohort (n=24), controlling for age, sex, and education years. Fold change associated 

with a unit change in the WCST and Benjamini-Hochberg adjusted p-values (pFDR) are plotted 

for each taxon. Significantly different taxa are coloured according to phylum. b) Partial Spearman 

correlation controlling for age, sex, and education years, between the plasma levels of folic acid 
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and the KEGG metagenome function dut. c) Partial Spearman correlation controlling for age, sex, 

and education years, between the plasma levels of uric acid and the KEGG metagenome function 

thyX. d) Volcano plot of differential bacterial abundance associated with the Stroop Colour Word 

Test (SCWT) as calculated by DESeq2 from shotgun metagenomic sequencing in the IRONMET 

cohort after 1-year of follow-up (n=69), controlling for age, sex, and education years. Fold change 

associated with a unit change in the SCWT and Benjamini-Hochberg adjusted p-values (pFDR) 

are plotted for each taxon. Significantly different taxa are coloured according to phylum. Only 

bacterial species that were also significantly associated with the SCWT at baseline and in the 

same direction are highlighted. e) Manhattan-like plot of significantly expressed KEGG 

metagenome functions associated with the SCWT identified from DESeq2 analysis in the 

IRONMET cohort after 1-year follow-up (n=69) adjusted for age, sex, and educations. The -log-

10(pFDR) values are multiplied by the fold change (FC) sign to take into account the direction of 

the association. Bars are coloured according to the pFDR. Metagenomic functions that were also 

associated with the SCWT at baseline are highlighted in bold.  
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Fig. S2. Plasma and faecal metabolomics linked to metagenome functions associated 

with the SCWT in the Ironmet cohort. Barplots of the normalized variable importance 

measure (VIM) for the metabolites associated with the KEGG metagenome functions 

exodeoxyribonuclease V, dUTP pyrophosphatase (dut), and thymidylate synthase (thyX) 

in a-c) plasma and d-f) faecal samples, respectively. Significant metabolites were 

identified through a multiple random forest-based machine learning variable selection 

strategy using the Boruta algorithm with 5000 trees and 500 iterations. All metabolites 

were identified based on exact mass, retention time and MS/MS spectrum, except those 

with (*) that were only identified based on exact mass and retention time. Unidentified 
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metabolites are shown as exact mass@retention time. 4-HPLA, 4-hydroxyphenyllactic 

acid; EPA, eicosapentaenoic acid; FA, fatty acid. 
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Fig. S3. a) Correlations among selected KEGG metagenomes functions and dietary items. 

b)Manhattan-like plot of significantly expressed KEGG metagenome functions associated with 

the ACC volume after 1-year follow-up in the Ironmet cohort (n=60). The -log10(pFDR) values 

are multiplied by the fold change (FC) sign to take into account the direction of the association. 

Bars are coloured according to the pFDR. Metagenomic functions that were also associated with 

the ACC volume at baseline are highlighted in bold, and those also associated with the SCWT at 

baseline at highlighted in italics. 
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Fig S4. Over-representation analysis from significant recipient mice PFC genes associated 

with the donors metagenome functions. a) Over-represented biological processes from Gene 

Ontology based on significant genes linked to the donors dUTP pyrophosphatase (dut). Over-

represented terms are shown in color, with red indicating higher significance. b) Over-represented 

Reactome pathways from significant genes linked to the donors exodeoxyribonuclease V. Each 

node is a predefined gene set. The node size reflects the size of the gene set and the node color its 

P-value. An edge denotes shared genes between sets. The edge width reflects the size of this 

overlap and the color reflects the number of genes from the input list contained in the overlap. 
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6. GENERAL DISCUSSION 

This thesis comprises two original papers which have revealed the substantial role of the 

gut microbiome in obesity-associated cognitive impairment. The successive sections summarize 

the principal results; strengths and limitations; practical implications and future 

recommendations. 

 

6.1. Global discussion of main findings 

Obesity and cognitive decline are public health problems nowadays. Unfortunately, there 

are still gaps in their pathophysiology and therefore, in their treatment. Furthermore, both 

conditions can appear, coexist and mutually reinforce even since middle age. It implies 

unfavorable results in terms of obesity management, but also in the prevention; assuming a real 

challenge to deal with it. The gut microbiome represents one of the most promising breakthroughs 

in the last decades and increasing evidence supports its role in a myriad of conditions, including 

obesity and cognition. Delving into the study of the gut microbiome in obesity-associated 

cognitive impairment may shed some light on the understanding and handling of these conditions.  

The present thesis attempts to address these issues studying cognitive function and the gut 

microbiome in middle-aged subjects with and without obesity. The results point to the existence 

of a gut bacterial ecosystem simultaneously linked to cognitive function, focused on memory and 

inhibitory control, and the gray matter volume of the brain areas involved in these domains. Gut 

bacterial modulation of aromatic amino acid (AAA) and one-carbon (1C) metabolism pathways 

may underlie these relationships. The findings were also validated in rodent models since the gut 

microbiota phenocopied cognitive traits from humans to mice.   

In the following sections, a comprehensive discussion of the main findings of both papers 

is presented. It is based on the prior set objectives, the different pathways and mechanism 

identified and the relevance in the context of previous studies and existent knowledge.  

 

6.1.1.  Objective 1: Subjects with obesity exhibited deficits in the cognitive domains 

of learning and memory and executive function 

 

Impairments in learning, short-term and working memory measured by the scores of the 

California Verbal Learning Test (CVLT), subtests Immediate Recall (IR); Short Delayed Free 

Recall (SDFR); and the Total Digit Span (TDS), respectively, were found in obesity (Paper I). 
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These results are in line with previous studies which evaluated the relationship between obesity 

and memory function in middle-aged subjects116,117 and the majority of compiled works in a more 

recent review.121 Nonetheless, our findings contradict other studies in that no associations between 

memory and obesity were observed.119,120 The existence of fewer studies evaluating learning and 

memory than executive domain in obesity along with the inconsistent data of some of them add 

importance to our results. Our findings support the theory that memory function is impaired in 

middle-aged subjects with obesity.  

Impaired inhibitory control assessed by lower scores of the Stroop Color and Word Test 

(SCWT) was found in subjects with obesity (Paper II). Inhibition is one of the subdomains of 

executive function85 and is crucial to overrule automatic intentions to directly respond to stimuli 

without thought.292 As expected, out results aligned with previous literature, in which disturbances 

in executive functions102,127,129-131 and particularly inhibitory control131,134-136 have been widely 

linked to obesity.   

Memory114 and inhibitory control127 disturbances might lead to poor food choices, 

uncontrolled eating and finally weight gain; perpetuating a vicious cycle.115 Conversely, better 

cognitive function could predict greater weight loss.139,140 Thus, it is essential to promptly detect 

and handle cognitive dysfunction to achieve a successful obesity management. Cognitive 

modulation and training approaches may be promising tools to further investigate128 in obesity.293 

 

6.1.2.  Objective 2: A characteristic gut microbiome ecosystem was associated with 

memory and inhibitory control 

 

6.1.2.1. Metagenomics 

A specific community of bacteria was linked to cognitive scores in all the subjects after 

adjusting for confounding factors. This ecosystem was detected not only at baseline but also one-

year follow-up and was replicated in independent cohorts.  

 

At taxonomy level, general associations with memory (Paper I) and inhibitory control 

(Paper II) were observed, whereas specific bacterial clusters were distinctively found related to 

immediate and short-term memory and working memory; suggesting both convergent and 

divergent bacterial-cognitive patterns (Paper I). A brief summary of the most relevant associations 

between cognitive performance and gut bacterial taxa as well as the latest insights of these species 

is presented below (Table 7).  
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Table 7. Summary of the different bacterial taxa associated with cognitive scores (data extracted from 

Arnoriaga-Rodríguez et al., 2020, Paper I; Arnoriaga-Rodríguez et al., 2021, Paper II).  

Bacterial taxa Tests (Association) Evidence 

  p_Firmicutes; f_Clostridiaceae; g_Clostridium 

   s_Clostridium sp. 27_14 CVLT-IR, CVLT-SDFR, TDS, NOR24h (+) Attenuation inflammation (Clostridium spp.).294 

   s_Clostridium sp. CAG:230 CVLT-SDFR, TDS, SCWT (+) Attenuation of microglia-mediated neuroinflammation in 

Alzheimer’s disease295 and adjuvant therapy for hepatic 

encephalopathy (C. butyricum).296    s_Clostridium sp. CAG:440 TDS (+) 

  p_Firmicutes; f_Eubacteriaceae; g_Eubacterium 

   s_Eubacterium sp. CAG:603 TDS, SCWT, RL (+) 
Inhibition of colorectal cancer and atherosclerosis; 

modulation of inflammation (Eubacterium spp.).297 

  p_Firmicutes; f_na Firmicutes; g_na Firmicutes 

   s_Firmicutes bacterium CAG:103 TDS (+) Decrease in atrial fibrillation (F. bacterium CAG:103).298 

   s_Firmicutes bacterium CAG:238 SCWT, RL (+) 
Reduction in AD299 and depression;300 increase in sleep 

efficiency (p_Firmicutes).301 

  p_Firmicutes; f_Lachnospiraceae; g_uc Lachnospiraceae 

   s_Lachnospiraceae bacterium 5_1_57FAA  SCWT, RL (-) 
Impaired glucose and inflammation; increased in obesity 

and metabolic syndrome (f_Lachnospiraceae).302     s_Lachnospiraceae bacterium 6_1_37FAA SCWT, RL (-) 

  p_Firmicutes; f_Lachnospiraceae; g_Roseburia 

   s_Roseburia sp. CAG:197 CVLT-IR, CVLT-SDFR (+) Decreased in cognitive deficits in mice (g_Roseburia).303 

  p_Firmicutes; f_Ruminococcaceae; g_Ruminococcus 

   s_Ruminococcus sp. CAG:353 CVLT-IR, CVLT-SDFR, NOR24h (+) Associated with healthy eating behavior304 and positively 

related to Recognition, Digit Span Backward, Fluency 

Span and Memory domain in elderly patients with mild 

cognitive impairment (g_Ruminococcus).305 
   s_Ruminococcus sp. CAG:177 TDS (+) 

  p_Firmicutes; f_Selenomonadaceae; g_Megamonas 

   s_Megamonas funiformis CVLT-IR, CVLT-SDFR, TDS (+) Decreased in multiple system atrophy (M. funiformis).306 

  p_Firmicutes; f_Veillonellaceae; g_Veillonella 

   s_Veillonella magna CVLT-SDFR (+) Decreased in cognitive decline, T2D (g_Veillonella).307  

  p_Bacteroidetes; f_Bacteroidaceae; g_Bacteroides 

   s_Bacteroides fragilis CAG:558 CVLT-IR, CVLT-SDFR, TDS, NOR24h (-) 
Lower abundance in cognitive impairment with brain 

amyloidosis (B. fragilis).308 

   s_Bacteroides sp. 43_46 CVLT-SDFR, TDS, SCWT, NOR24h (-)   

   s_Bacteroides caccae CAG:21 CVLT-SDFR, TDS, SCWT, NOR24h (-) 
Enriched in subjects with T2D,309 gout310 and bloodstream 

infections (B. caccae).311 

   s_Bacteroides sp. AR20 CVLT-SDFR, TDS, SCWT (-)   

   s_Bacteroides plebeius SCWT, RL, NOR24h (-) Increased in patients with hypertension (B. plebeius).312 

   s_Bacteroides gallinarum SCWT, RL, NOR24h (-) Inflammation and T2D in mice (B. gallinarum).313 

   s_Bacteroides mediterraneensis SCWT, RL, NOR24h (-) 
Increased after post-stroke cognitive impairment 

(g_Bacteroides).314 

  p_Proteobacteria; f_Enterobacteriaceae; g_Citrobacter 

   s_Citrobacter freundii CVLT-IR, CVLT-SDFR, TDS (-) Bloodstream, abdominal infections (C. freundii).315 

  p_Proteobacteria; f_Enterobacteriaceae; g_Enterobacter 

   s_Enterobacter cloacae CVLT-SDFR, TDS (-) 
Enriched abundance in lower cognitive functioning in 

children (f_Enterobacteriaceae).316 

  p_Proteobacteria; f_Enterobacteriaceae; g_Klebsiella 

   s_Klebsiella aerogenes CVLT-IR, CVLT-SDFR, TDS (-) Bloodstream infections (K. aerogenes).317 

  p_Proteobacteria; f_Enterobacteriaceae; g_Salmonella 

   s_Salmonella enterica CVLT-IR, CVLT-SDFR, TDS (-) 
Amyloid production318 and impaired cognition in mice  

(S. enterica serovar Typhimurium).319 

CVLT, California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; f_, family; g_, genus; NOR24h, Novel Object 

Recognition 24h; p_, phylum; s_, species; SCWT, Stroop Color and Word Test; TDS, Total Digit Span; T2D, type 2 diabetes; RL, Reversal learning.  
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Furthermore, cognitive-gut microbiota associations depended on obesity status, since 

bacteria taxa were differentially linked to memory (Paper I) and inhibitory control (Paper II) in 

subjects with and without obesity (Table 8).  

Table 8. Different cognitive-bacterial associations in subjects with and without obesity (data extracted 

from Arnoriaga-Rodríguez et al., 2020, Paper I; Arnoriaga-Rodríguez et al., 2021, Paper II). 

Without obesity Obesity 

Bacterial taxa Tests (Association) Bacterial taxa Tests (Association) 

 s_Alistipes sp. CAG:157 SCWT (-)  s_Anaerovibrio lipolyticus CVLT-SDFR (+) 

 s_Bacteroides ovatus CAG:22 SCWT (-)   s_Clostridium spp. CVLT-IR, CVLT-SDFR, TDS (+) 

 s_Bacteroides sp. CAG:462 SCWT (-)  s_Bacteroides nordii  SCWT (-) 

 s_Butyrivibrio sp. CAG:318 SCWT (+)  s_Faecalibacterium sp. CAG:74 TDS (+) 

 s_Clostridium sp. CAG:632 SCWT (+)  s_Fusobacterium varium SCWT (-) 

 s_Roseburia sp. CAG:471 SCWT (+)  s_Prevotella timonensis SCWT (-) 

 Acidaminococcus spp. SCWT (-)  Eubacterium spp. CVLT-IR, CVLT-SDFR, TDS (+) 

 Lactococcus spp. TDS (+)  Ruminococcus spp. TDS (+) 

CVLT, California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; s_Species; SCWT, Stroop Color and Word Test; TDS, 

Total Digit Span.  

 

 

 

Based on the identified relationships, we hypothesized that positive associations of 

bacterial taxa and cognitive scores may presumably be beneficial, whilst negative associations, 

detrimental. In this line, our results fit with the current evidence. Concordantly with our negative 

correlations, patients with mild cognitive impairment had a higher prevalence of Bacteroides.320 

Moreover, impaired memory under acute stress conditions was linked to Citrobacter rodentium 

in mice.321 Conversely, within the positive relationships, Ruminococcus was positively linked to 

Recognition trials, Digit Span Backward, Semantic Fluency Span and Memory Domain in elderly 

patients with mild cognitive impairment after a Mindful Awareness Program305 or species from 

the phylum Firmicutes such as Roseburia intestinalis or Faecalibacterium prausnitzii 

(f_Ruminoccocaceae) had been detected in lower abundance in T2D.309 Dietary quality assessing 

by Healthy Eating Scores was also linked to some genera in the same direction as our 

observations; positively with Roseburia, Faecalibacterium and negatively with Bacteroides and 

Fusobacterium (f_Fusobacteriaceae, p_Fusobacteria).322 Other species linked to cognitive scores 

and aligned with current evidence are shown in Table 7.  
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At functional level, the analysis of the gut metagenome revealed several bacterial pathways 

associated with memory and inhibitory control. Bacterial functions related to AAA metabolism 

were negatively associated with all memory scores (Paper I) whilst bacterial functions related to 

nucleotide metabolism have the strongest negative associations with inhibitory control (Paper II). 

Other bacterial functions related to B vitamins and choline and betaine metabolism were also 

negatively associated with memory (Paper I) and inhibitory control (Paper II). The main bacterial 

functions associated with memory and inhibition scores are shown below (Table 9).  

Table 9. Bacterial functions associated with cognitive scores (data extracted from Arnoriaga-Rodríguez et 

al., 2020, Paper I; Arnoriaga-Rodríguez et al., 2021, Paper II). 

Bacterial functions Tests 

Aromatic amino acids 

AOC3, AOC2, tynA primary-amine oxidase [EC:1.4.3.21] CVLT-IR, CVLT-SDFR 

aspC aspartate aminotransferase [EC:2.6.1.1] CVLT-IR, CVLT-SDFR 

dadA D-amino-acid dehydrogenase [EC:1.4.5.1] CVLT-IR, CVLT-SDFR 

enr 2-enoate reductase [EC:1.3.1.31] TDS 

fadB 3-hydroxyacyl-CoA dehydrogenase … [EC:1.1.1.35 4.2.1.17 5.1.2.3 5.3.3.8] CVLT-IR, CVLT-SDFR 

feaB phenylacetaldehyde dehydrogenase [EC:1.2.1.39] CVLT-IR, CVLT-SDFR 

katE, CAT, catB, srpA catalase [EC:1.11.1.6] CVLT-SDFR 

katG catalase-peroxidase [EC:1.11.1.21] CVLT-IR, CVLT-SDFR 

mhpA 3-(3-hydroxy-phenyl) propionate hydroxylase [EC:1.14.13.127] CVLT-IR, CVLT-SDFR 

mhpB 2,3-dihydroxyphenylpropionate 1,2-dioxygenase [EC:1.13.11.16] CVLT-SDFR 

mhpD 2-keto-4-pentenoate hydratase [EC:4.2.1.80] CVLT-SDFR 

mtr tryptophan-specific transport protein CVLT-IR, CVLT-SDFR 

OGDH, sucA 2-oxoglutarate dehydrogenase E1 component [EC:1.2.4.2] CVLT-SDFR 

paaA ring-1,2-phenylacetyl-CoA epoxidase subunit PaaA [EC:1.14.13.149] CVLT-SDFR 

paaC ring-1,2-phenylacetyl-CoA epoxidase subunit PaaC [EC:1.14.13.149] CVLT-SDFR 

paaZ oxepin-CoA hydrolase … [EC:3.3.2.12 1.2.1.91] TDS 

pheP phenylalanine-specific permease CVLT-IR 

quiA quinate dehydrogenase (quinone) [EC:1.1.5.8] CVLT-IR, CVLT-SDFR 

solA N-methyl-L-tryptophan oxidase [EC:1.5.3.-] CVLT-IR, CVLT-SDFR  

tnaB low affinity tryptophan permease CVLT-SDFR 

trpB tryptophan synthase beta chain [EC:4.2.1.20] CVLT-IR 

tyrC cyclohexadieny/prephenate dehydrogenase [EC:1.3.1.43 1.3.1.12] CVLT-IR, CVLT-SDFR 

Nucleotides 

dut,DUT dUTP pyrophosphatase [EC:3.6.1.23] SCWT 

thyX thy1 thymidylate synthase (FAD) [EC:2.1.1.148] SCWT 

purT phosphoribosylglycinamide formyltransferase 2 [EC:2.1.2.2] SCWT 

Signal transduction 

kinB two-component system, NtrC family, sensor histidine kinase KinB [EC:2.7.13.3] SCWT 

Unclassified: metabolism 

E3.1.11.5 exodeoxyribonuclease V [EC:3.1.11.5] SCWT 

Endocannabinoid signaling 

NAPEPLD N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D [EC:3.1.4.54] CVLT-SDFR, TDS 
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Bacterial functions Tests 

Thiamine B1 

ABC.VB1X.A putative thiamine transport system ATP-binding protein CVLT-IR, CVLT-SDFR 

ABC.VB1X.P putative thiamine transport system permease protein CVLT-IR, CVLT-SDFR 

thiB, tbpA thiamine transport system substrate-binding protein CVLT-IR, CVLT-SDFR 

THI4, THI1 cysteine-dependent adenosine diphosphate thiazole synthase [EC:2.4.2.60] TDS, SCWT 

thiK thiamine kinase [EC:2.7.1.89] TDS 

thiP thiamine transport system permease protein CVLT-IR, CVLT-SDFR 

Riboflavin B2 

aphA acid phosphatase (class B) [EC:3.1.3.2] CVLT-IR, CVLT-SDFR 

bluB 5,6-dimethylbenzimidazole synthase [EC:1.13.11.79] SCWT 

fre, ubiB aquacobalamin reductase / NAD(P)H-flavin reductase [EC:1.16.1.3 1.5.1.41] CVLT-IR, CVLT-SDFR 

ribBA 3,4-dihydroxy 2-butanone 4-phosphate synthase … [EC:4.1.99.12 3.5.4.25] TDS, SCWT 

ribE, RIB5 riboflavin synthase [EC:2.5.1.9] SCWT 

Pyridoxine B6 

epd D-erythrose 4-phosphate dehydrogenase [EC:1.2.1.72] CVLT-SDFR 

pdxA 4-hydroxythreonine-4-phosphate dehydrogenase [EC:1.1.1.262] TDS, SCWT 

Folic acid B9 

folK 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine diphosphokinase [EC:2.7.6.3] SCWT 

folKP ´´/dihydropteroate synthase [EC:2.7.6.3 2.5.1.15] CVLT-IR, CVLT-SDFR 

folX D-erythro-7,8-dihydroneopterin triphosphate epimerase [EC:5.1.99.7] CVLT-IR, CVLT-SDFR 

nudB, ntpA dihydroneopterin triphosphate diphosphatase [EC:3.6.1.67] SCWT 

pabB para-aminobenzoate synthetase component I [EC:2.6.1.85] TDS 

pabC 4-amino-4-deoxychorismate lyase [EC:4.1.3.38] TDS 

queE 7-carboxy-7-deazaguanine synthase [EC:4.3.99.3] TDS 

Cobalamin B12 

ABC.VB12.P, btuC vitamin B12 transport system permease protein CVLT-IR, CVLT-SDFR 

 btuB vitamin B12 transporter SCWT 

Choline and betaine 

betA, CHDH choline dehydrogenase [EC:1.1.99.1] CVLT-IR, CVLT-SDFR 

betT, betS choline/glycine/proline betaine transport protein CVLT-IR, CVLT-SDFR 

proV glycine betaine/proline transport system ATP-binding protein [EC:3.6.3.32] CVLT-SDFR, TDS, SCWT 

proX glycine betaine/proline transport system substrate-binding protein CVLT-SDFR, TDS, SCWT 

CVLT, California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; SCWT, Stroop Color and Word Test; TDS, Total 

Digit Span. 

 

 

 

In accordance with the bacterial taxa, the associations at the functional level also varied in 

subjects with and without obesity. For example, the relationship between SCWT scores and thyX 

and dut was specifically marked in subjects without obesity, whereas the link with 

exodeoxyribonuclease V was stronger in subjects with obesity (Paper II). Similarly, the 

associations of tryptophan-related metagenomic functions and memory were mainly detected in 

subjects with obesity (Paper I).   
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6.1.2.2. Metabolomics 

Untargeted metabolomic approach was able to identify plasma and fecal metabolites linked 

to memory (CVLT, TDS) and inhibition (SCWT) scores.  

Disturbances in AAA metabolism were linked to both cognitive domains. All memory 

scores were associated with altered plasma levels of tryptophan, tyrosine, phenylalanine and their 

catabolites (Paper I). Remarkably, positive associations were found between memory function 

and plasma levels of tryptophan and several indole derivatives metabolized by the gut microbiota 

(Figure 8). Noteworthy changes in tryptophan and tyrosine metabolism in relation to SCWT 

scores were also observed. In plasma, tryptophan and 4-hydroxyphenyllatic acid (4-HPLA) had 

the strongest positive association with SCWT scores, whereas in feces, consistent associations 

were found with tyrosine and the 5-hydroxyindoleacetic acid (5-HIAA). Tryptophan alterations 

were also replicated in an independent cohort, in which tryptophan itself and microbial-derived 

tryptophan metabolites, such as indolepropionamide (IPAM), were positively linked to SCWT 

(Paper II). Again, cognitive-related tryptophan disturbances, in both memory and inhibitory 

control, were mainly observed in subjects with obesity.  

To the best of our knowledge, the current observations are the first in humans linking 

tryptophan and its metabolites to cognition.  

 

 

Figure 8. Overview of the main catabolic pathways of aromatic amino acids. Tryptophan and tyrosine are the 

precursor of the serotonin and dopamine neurotransmitters, respectively. The gut microbiota can metabolize 

AAA323,324,325 to indoles and other compounds, some of them ligands of aryl hydrocarbon receptor (AhR). Bacterial 

pathways and metabolites involved in AAA metabolism and significantly associated with cognitive function are shown 

in blue and red, respectively. AhR, aryl hydrocarbon receptor; aspC, aspartate aminotransferase; dadA, D-amino-acid 

dehydrogenase; IDO, indole-amine 2,3-dioxygenase; IPAM, indolepropionamide; mtr, tryptophan-specific transport 

protein; NAD, nicotinamide adenine dinucleotide; PAGIn, phenylacetylglutamine; PAGly, phenylacetylglycine; pheP, 

phenylalanine-specific permease; trpB, tryptophan synthase beta chain; tnaB, low affinity tryptophan permease; tyrC, 

cyclohexadieny/prephenate dehydrogenase; 3-IAAld, indole-3-acetaldehyde; 3-IPA, Indole-3-propionic acid; 4-HPLA, 

4-hydroxyphenyllatic acid; 5-HIAA, 5-hydroxyindoleacetic acid (mostly adapted from Arnoriaga-Rodríguez et al., 

2021, Paper II; some data also extracted from Liu et al., 2020323 and Nemet et al., 2020).324 
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In addition, other metabolites related to cognitive function were identified. Fecal levels of 

methionine and microbial-derived methionine catabolite, dimethyl sulfone (DMSO2), showed a 

negative association with SCWT scores (Paper II) as well as plasma levels of betaine with both 

memory and inhibition (Figure 9). Similarly, these later relationships were only found in subjects 

without obesity.  

 

 

Figure 9. Overview of the one-carbon metabolism. One-carbon metabolism326,327,328,329 is a metabolic process that 

transfers 1C units to purine and thymidine synthesis and homocysteine remethylation, among others. Bacterial 

pathways and metabolites involved in 1C metabolism and significantly associated with cognitive function are shown 

in blue and red, respectively. bluB, 5,6-dimethylbenzimidazole synthetase; btuB, vitamin B12 transporter; DHF, 

dihydrofolate; DMA, dimethylamine; DMG, dimethylglycine; DMSO2, dimethyl sulfone; dut, dUTP pyrophosphatase; 

dUTP, deoxyuridine triphosphate; dUMP, deoxyuridine monophosphate; dTMP, deoxythymidine monophosphate; 

FGAR, 5’-phosphoribosyl-N-formylglycineamide; folK, 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine 

diphosphokinase; GAR, 5’-phosphoribosylglycineamide; MA, methylamine; nudB, dihydroneopterin triphosphate 

diphosphatase; pdxA, 4-hydroxythreonine-4-phosphate dehydrogenase; proV, glycine betaine/proline transport system 

ATP-binding protein; proW, glycine betaine/proline transport system permease protein; proX, glycine betaine/proline 

transport system substrate-binding protein; purT, phosphoribosylglycinamide formyltransferase 2; ribBA, 3,4-

dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II; ribE, riboflavin synthase; SAH, S-

adenosylhomocysteine; SAM, 5-adenosylmethionine; THF; tetrahydrofolate; thyX, thymidylate synthase; TMA, 

trimethylamine (mostly adapted from Arnoriaga-Rodríguez et al., 2021, Paper II; some data also extracted from Lyon 

et al., 2020327 and Konno et al., 2017).329 

Conversely, positive associations between the endocannabinoids oleamide and 

arachidonoylethanolamide (AEA, anandamide) and memory were observed (Paper I). The 

endocannabinoids are lipid-derived mediators involved in neurotransmission and learning and 

memory.330,331 Oleamide and AEA reversed cognitive impairment332,333 and hippocampal 

damage333 in mice. Interestingly, we found that microbial N-acyl phosphatidylethanolamine-

hydrolyzing phospholipase D (NAPEPLD) (Table 9), essential in endocannabinoid 

biosynthesis,334 had one of the strongest associations with cognition in both humans and mice.  
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6.1.2.3. Integrative analysis of metagenomics and metabolomics 

The current functional metabolomics and metagenomics analyses highlighted several 

bacterial functions and circulating metabolites essentially involved in aromatic amino acid (AAA) 

and one-carbon (1C) metabolism differentially linked to memory and inhibitory control scores, 

in subjects with and without obesity.  

Aromatic amino acid metabolism: Tryptophan and tyrosine are the precursors of serotonin 

and dopamine, respectively. Disturbances in serotoninergic and dopaminergic neurotransmission 

have been associated with learning and memory335 and executive function impairments.336,337 

Projections of both systems in the hippocampus are mainly involved in memory function338,339 

whereas in the prefrontal cortex (PFC) they play a key role in executive function.340,341 We 

evidenced plasma tryptophan, tyrosine and some related-catabolites positively associated with 

memory and inhibitory control (Figure 8). In line with our results, the administration of 

tryptophan improved memory in rodents through increased serotonergic neurotransmission in the 

hippocampus342 and reduced intraneuronal amyloid-beta load in a mouse model of AD.343 

Furthermore, preclinical studies have evidenced an important role of dopamine output in the 

hippocampus in recognition memory.344 In case of executive function, our results fit with 

available evidence in which low levels of tryptophan increased impulsiveness345 or reaction 

times346 in healthy adults; although available data show somewhat inconsistent results.347,348 These 

differences may be related to the different cognitive tests assessing inhibitory control, 

underpinning similar but not identical neurobiological mechanisms.349 Moreover, our findings 

related to tyrosine are concordant with previous reports showing that enhancing brain dopamine 

through tyrosine supplementation350 or bromocriptine, a dopamine D2 selective agonist,351 

improved inhibitory control in healthy participants.   

 

 

Gut microbiota can modulate AAA metabolism. Changes in the gut microbiota due to 

antibiotic treatment in piglets decreased the concentrations of serotonin and dopamine as well as 

their AAA precursors in the hypothalamus.352 Gut microbiota has also shown to directly 

metabolize tryptophan into several indole derivatives which are potent ligands of the aryl 

hydrocarbon receptor (AhR). In experimental models, these metabolites had an effect on 

astrocytes to limit central nervous system inflammation353 and deletion of the AhR altered adult 

hippocampal neurogenesis and contextual fear memory.354,355 Consistently, we found several 

indole derivatives positively associated with memory scores (Figure 8). Furthermore, microbial-

derived products including indoles can modulate the tryptophan metabolism through the 

activation of indole-amine-2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine 

pathway.356 The kynurenine pathway is the major catabolic route of tryptophan which is activated 

under inflammatory conditions.357 
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Notably, cognitive-tryptophan metabolites disturbances aligned with the associations of 

cognitive-tryptophan-related metagenomic functions mainly observed in subjects with obesity. 

Low-grade inflammation may underline both cognitive and tryptophan metabolism dysfunction. 

On the one hand, the role of chronic inflammation in obesity and associated disorders such as 

cognitive decline is well-established.358,359 On the other hand, a more recent report has also linked 

obesity and systemic inflammation to alterations in tryptophan metabolic pathways.360 

Concordantly, we obtained a negative correlation between plasmatic tryptophan and high-

sensitive C-reactive protein.   

One-carbon metabolism: Folate derivatives, tetrahydrofolate (THF) polyglutamates, are 

coenzymes that donate or accept one-carbon units in a network of reactions known as one-carbon 

(1C) metabolism.361 1C metabolism supports numerous physiological processes, such as purine 

and thymidine biosynthesis; glycine, serine and methionine homeostasis; epigenetic maintenance 

and redox defense.362 Although all the mechanisms are not fully known, folate and other B vitamin 

deficiencies and/or genetic mutations and polymorphisms can impair 1C metabolism.363,364 1C 

metabolism is compartmentalized in the mitochondria, nucleus and cytoplasm361 and eukaryotic 

cells mobilize multiple carbon sources to supply 1C metabolism.362 1C sources originate in the 

diet are metabolized to generate 1C units. The most important are choline, serine and glycine. 

Glucose, threonine, methionine and histidine can also contribute to the 1C pool.362 The purine, 

thymidylate and methionine cycles encompass the 1C metabolism in the cytosol.326 In this line, 

we found bacterial metagenomic functions involved in the purine (purT), thymidylate (thyX, dut) 

and methionine (proW, proV, porX) cycles, showing a negative association with inhibitory control 

(Figure 9). These alterations were also supported by the metabolomic identification of low fecal 

levels of methionine and microbial-derived methionine catabolites such as DMSO2 related to 

SCWT scores.365 

Remarkably, alterations in those cycles are different in subjects with and without obesity. 

Thus, disturbances in SCWT and methionine and thymidylate cycles were only detected in 

subjects without obesity as well as in betaine levels. Similarly, metagenomic betaine-related 

functions (proW, proV, proX) and metabolomics, betaine and gut microbiota-betaine derived, 

trimethylamine (TMA) and methylamine (MA) were also associated with memory and inhibitory 

control. Choline is the precursor of the neurotransmitter acetylcholine but it can also be 

metabolized to betaine, a methyl donor in the 1C metabolism and modulator of homocysteine 

status (Figure 9). High plasma levels of homocysteine have been associated with cognitive 

impairment366 whereas betaine supplementation has shown to prevent these homocysteine-

induced deficits.367 By contrast, plasmatic levels of 1C donor histidine, the precursor of the 

neurotransmitter histamine368 were positively associated with SCWT scores in subjects with 

obesity. Consistently, we also found negative associations between fecal histamine and SCWT.  
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Bacterial functions related to B vitamin metabolism, including B2, B6, B9, B12 showed 

negative relationships with memory and inhibitory control (Table 9). Those vitamins are essential 

for 1C metabolism (Figure 9). Disturbances in 1C metabolism have been associated with 

cognitive decline369 and there is compelling evidence for the impact of B vitamins on 

cognition.366,370,371 In particular, the role of folate (B9) and thiamine (B1)372, 373 in memory function 

has been widely studied. In agreement, we also identified negative associations between thiamine-

related bacterial functions (Table 9) and memory scores. We hypothesized that this negative 

relationship may be explained by preferential consumption or catabolism of B vitamins by internal 

bacteria to the detriment of the host. Concordantly, we detected low plasma thiamine levels linked 

to worse memory scores, more marked in subjects with obesity, in turn, particularly susceptible 

to thiamine deficits.374 

 

 

6.1.3. Objective 3: Brain structure differentially associated with the gut 

microbiome depending on obesity status 

 

A region of interest (ROI) approach of the brain areas involved in memory and inhibitory 

control revealed positive associations between the right and left hippocampus with verbal learning 

and memory (CVLT); the right frontal inferior orbital (FIO) with working memory (TDS) (Paper 

I); and the anterior cingulate cortex (ACC) with inhibitory control (SCWT) (Paper II) in all the 

subjects. The relationships remained significant after adjusting for confounding variables, at both 

cross-sectional and after 1-year follow-up. These findings aligned with previous reports linking 

verbal memory performance with prefrontal and temporal brain features, such as the 

hippocampus261-263 and inhibitory control with ACC.375 Notably, in a sub-group analysis, the 

correlations between memory function and brain structure remained significant in subjects 

without obesity whilst disappearing in obesity.  

Interestingly, in line with cognitive-bacterial relationships, different taxa and metagenomic 

functions were concordantly and longitudinally associated with the volume of the brain areas. A 

concise compilation of bacterial taxa simultaneously linked to cognitive scores and brain structure 

is listed below (Table 10). Notably, the strongest negative associations between the bacterial 

functions and the ACC gray matter volume were with dut, thyX and kinB, that were precisely the 

bacterial function negatively associated with SCWT scores (Table 9) in subjects without obesity 

(Paper II).  

Again, no associations were found between memory, metagenomics and brain volumes in 

subjects with obesity, which is in line with the lack of significant associations between memory 

tests and selected brain volumes in this population (Paper I).  
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Table 10. Structural and functional brain features correlated with the gut microbiota (data extracted 

from Arnoriaga-Rodríguez et al., 2020, Paper I; Arnoriaga-Rodríguez et al., 2021, Paper II). 

Bacterial taxa Tests (Association) Brain volume  

 Roseburia spp.  
CVLT-IR, CVLT-SDFR (+)  Left hippocampus  

SCWT (+) ACC 

 Bacteroides spp.  

CVLT (-) Left hippocampus  

TDS (-) Right FIO 

SCWT (-) ACC 

 s_Firmicutes bacterium CAG:534 CVLT-IR, CVLT-SDFR (+) Left hippocampus  

 s_Lachnospiraceae bacterium TF01-11 CVLT-SDFR (-) Left hippocampus  

 s_Anaerovibrio sp. RM50 SCWT (-) ACC 

 s_Selenomonas sp. oral taxon 478 SCWT (-) ACC 

 s_Clostridium sp. CAG:417 SCWT (+) ACC 

 s_Ruminococcus sp. CAG:724 SCWT (+) ACC 

ACC, anterior cingulate cortex; CVLT, California Verbal Learning Test; IR, Immediate Recall; SDFR, Short Delayed Free Recall; FIO, frontal 

inferior orbital; SCWT, Stroop Color Word Test; TDS, Total Digit Span. 

 

 

Our data provides more evidence in support of the theory that gut microbiota is 

associated with morphological brain features; as it has been described in animal models376,377 

or in humans, at a single point in time.378,379 For example, previous works have observed 

associations between the relative abundance of Firmicutes and Bacteroidetes phyla and the 

gray matter volume of the orbital and triangularis sections of the opercula as well as the 

temporal cortex in patients with irritable bowel syndrome.378 In obesity, pilot studies identified 

changes in gut microbiota at phyla and family level in association with both cognitive function 

and brain architecture,241 in particular, focus on brain iron load.243 Nevertheless, our study has 

gone one step further illustrating a more in-depth gut-brain ecosystem at two different points 

in time.  

 

 

6.1.4. Objective 4. Effects of fecal microbiota transplantation from humans to mice 

 

Finally, in order to validate the results identified in humans and to figure out a potential 

causal role of the gut microbiota in cognitive impairment, different experiments of fecal 

microbiota transplantation (FMT) from humans to mice were conducted. Overall, cognitive traits 

from human donors were aligned with cognition-like behaviors in mice. Mice receiving the 

microbiota from donors without obesity with high memory scores exhibited better performance 

in the Novel Object Recognition (NOR) (Paper I). Conversely, mice receiving the microbiota 

from subjects with obesity with lower inhibitory control had significantly worse reversal learning 

(RL) performance (Paper II).  
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Several bacterial species and functions from human donors associated with the SCWT in 

humans were also linked to the RL task in recipient mice (Table 7) (Paper II). Similarly, common 

bacterial species associated with CVLT and TDS scores in humans were also linked to NOR 

performance in transplanted mice (Table 7) (Paper I). Notably, memory-related donor’s 

metagenomic functions linked to vitamin B6 (pdxJ, pdxB), B12 (btuB), tryptophan metabolism 

(trpA, trpB) and endocannabinoid signaling (NAPEPLD) were also associated with memory-like 

behavior in mice (Paper I).  

Prefrontal cortex (PFC) transcriptomics in recipient mice revealed more than 2,700 genes 

associated with memory-like performance in mice (Paper I). The most relevant genes identified 

and available evidence are summarized below (Table 11). To note the associations with SLC6A3, 

which encodes a dopamine transporter, the 5-HT receptors HTR1A and HTR2A as well as the 

FOLR1 emphasizing the connection between AAAs, folate metabolism and memory.  

Table 11. PFC genes of recipient mice associated with the NOR3h (data extracted from Arnoriaga-

Rodríguez et al., 2020, Paper I; Arnoriaga-Rodríguez et al., 2021, Paper II). 

PFC genes  Evidence 

 TTR  Memory deficits in aged animals with altered hippocampal TTR expression.380 Neuroprotection in AD.381 

 SLC6A3  Alcohol use disorder, attention-deficit/hyperactivity disorder, autism and movement disorders.382 

 HTR1A, HTR2A  HTR1A involved in social behavior;383 HTR2A in memory and cognition.384 

 FOLR1  Genetic defects affecting folate caused multiple brain manifestations.385 

 NFKB1  Synaptic plasticity, learning, and memory.386 

 DICER 1  The knockout of DICER1 has been reported to enhance memory.387 

 ACSS2  Regulation of histone acetylation in neurons and spatial memory in mammals.388 

TTR, transthyretin; SLC6A3, solute carrier family 6 member 3; HTR1A, HTR2A, 5-hydroxytryptamine (serotonin) receptor 1A and 2A; FOLR1, folate 

receptor 1; NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B cells 1; ACSS2, acyl-CoA synthetase short-chain family member 2.  

 

Furthermore, PFC genes of recipient mice were associated with SCWT-related bacterial 

functions of human donors (Table 12) (Paper II). In particular, dut was positively associated with 

the expression of KCNE2, PRLR, FOLR1, CLDN2, SLC4A5, SOSTDC1 and borderline 

associations (pFDR <0.11) with TMEM72, F5, and TTR. All these genes were found among the 

top 25 genes changing the hippocampal expression after contextual fear conditioning.389 

Moreover, particularly noticeable is the significant association between the bacterial function of 

human donors involved in folate-mediated one-carbon metabolism, dut and the expression in the 

PFC of recipient mice of the FOLR1 (Table 11, Table 12) and MECP2 (Table 12), which has a 

well-established function in neurodevelopment390 and has been linked to AD.391 This is in 

agreement with our previous findings and further highlights the key role of the 1C metabolism 

and its involvement in DNA methylation.  
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Enrichment analysis of differentially expressed genes revealed over-representation of 

biological processes related to neuron development and histone methylation, in case of dut and 

netrin signaling, which has recently shown to play and important role in synaptic plasticity and 

memory formation,392 in case of exodeoxyribonuclase V. 

Table 12. PFC genes of recipient mice associated with bacterial functions of human donors (data 

extracted from Arnoriaga-Rodríguez et al., 2020, Paper I; Arnoriaga-Rodríguez et al., 2021, Paper II). 

PFC genes of recipient mice Human bacterial functions 

KCNE2 (Potassium voltage-gated channel subfamily E regulatory subunit 2)  dut 

PRLR (Prolactin receptor)  dut 

FOLR1 (Folate receptor 1)  dut 

CLDN2 (Claudin 2)  dut 

AUTS2 (Autism susceptibility candidate 2)  dut 

MFRP (Membrane frizzled-related protein)  dut 

HIPK1 (Homeodomain interacting protein kinase 1)  dut 

SLC4A5 (Solute carrier family 4 member 5)  dut 

SOSTDC1 (Sclerostin domain containing 1)  dut 

MECP2 (Methyl CpG binding protein 2)         dut 

TMEM72 (Transmembrane protein 72)  dut 

F5 (Coagulation factor V)  dut 

TTR (Transthyretin) dut,exo V 

MTHFD1L (Methylenetetrahydrofolate dehydrogenase 1-like) exo V 

dut, dUTP pyrophosphatase; exo V, exodeoxyribonuclease V controlling for age, sex and education years of the donors.  

 

 

In addition, the examination of the PFC genes could identify the MS4A4A (Membrane-

spanning 4-domains) and the SLC16A12 (Solute Carrier Family 16 Member 12) as the main 

predictors of SCWT scores of the human donors; in turn, associated with SCWT-related bacterial 

functions dut and thyX. Supporting our results, both genes have been related to cognition. 

SLC16A12 is the transporter for creatinine and its alterations have been associated with cognitive 

impairment.393 Moreover, it has been described to be linked to folate status.394 MS4A4A has also 

been identified as the key modulator of soluble TREM2 (triggering receptor expressed on myeloid 

cells 2) and AD risk.395 
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6.2. Strengths and limitations 

This thesis provides a new insight into the relationships between the gut microbiome and 

obesity-associated cognitive dysfunction in humans; identifying involved mechanisms and 

translating prior evidence in animals to humans. In spite of the significant contributions and novel 

findings, the works compiled in this thesis (Paper I and Paper II) have also some limitations that 

should be acknowledged. The following sections present a summary of the main strengths and 

weaknesses of the entire project.  

Research topic: While compelling evidence supports the impact of the gut microbiota on 

cognition in animals’ models of obesity,196,211 there was a lack of consistent evidence in humans. 

Thus, it makes this project original and innovative. To the best our knowledge, there are no 

previous descriptions of gut microbiota simultaneously linked to the different memory tests in 

humans neither evaluating differences in subjects with and without obesity. By contrast, the 

absence of similar studies does not allow us to directly match our results and we must rely on 

available data in preclinical models. Only one prospective243 and two preliminary case-control 

studies241,242 in humans have evaluated this topic, assessing other subdomain of executive 

function, cognitive flexibility. In addition, more recently, in a cohort of patients with obesity, 

working memory, inhibitory control and cognitive flexibility were measured in order to quantify 

the effects of a prebiotic administration. Due to the nature of its design, it is not possible to 

compare between subjects with and without obesity as it can be done in our study.  

Sample size: Although the sample size of the discovery cohort seems appropriate and 

provides subtype-specific associations; large-scale data collection from consortiums related to the 

microbiome would have had greater power to detect effects. Our study may be considered as an 

intermediate step between prior underpowered studies and population-based cohorts; since we 

validated the results in different replication cohorts; one of them, a population study which 

included nearly 1000 microbiota samples.  

Time points: The design of our prospective studies with both cross-sectional and 

longitudinal data enables us to detect not only associations between cognitive function and the 

microbiome but also a plausible direction of the relationships. Nevertheless, longer term follow-

up would be necessary to better understand the strength of our conclusions.  

Selection and characterization of subjects: Extensive phenotype of the subjects was carried 

out. It implied not only the use of anthropometric, medical and biochemical measurements in the 

same way as those applied in clinical practice, but also the employment of gold-standard 

techniques including the clamp or the DXA to assess insulin sensitivity and body composition, 

respectively. Furthermore, in an attempt to include as much homogenous subsets as possible, we 

matched subjects with and without obesity by age, sex and menopausal status.  
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Cognitive assessment: Comprehensible evaluation of cognition was conducted by a trained 

bilingual neuropsychologist using validated versions of neuropsychological tests and 

questionnaires. Even though these tests are usually used in clinical practice to assess parameters 

focusing on the different cognitive domains, it should be taken into account that some of them 

might rely on multiple brain regions and it is not possible to totally separate their functionality.  

MRI examination: Both cross-sectional and longitudinal data related to MRI has been 

analyzed as a measurement of brain structure in an equipment with a high resolution. MRI has 

been widely used for non-invasive evaluation of either structural, functional or metabolic changes 

in the brain. However, it should be acknowledged that the capacity to detect molecular alterations 

is limited, unlike in the study of postmortem brain samples.  

Multi-omics approach: The study of the gut microbiota is complex. To overcome this issue, 

we applied an integrative multi-omics approach including shotgun metagenomics and 

metabolomics, which did reveal insight into molecular mechanisms underlying the interactions 

between the microbiome and the cognitive function. One of the strengths of our study is the 

application of shotgun metagenomics instead of 16S-RNA sequencing. The latter prevented other 

reports from performing species-level associations as well as information about microbial 

functionality. In addition, statistical analysis included not only correlations like previous studies 

but also compositional univariate and multivariate machine learning strategies, to take into 

account the compositional structure of the microbiome data and rule out possible spurious 

associations. Overall, it provided an intricate network of interactions between the gut microbiome 

and functional and structural cognitive measurements, in general and at the same time, specifically 

according to the presence or absence of obesity, and allowed us to detect bacterial signatures of 

cognitive profiles. Nonetheless, experimental models which confirm the potential effects of 

certain species or microbial-derived compounds may be necessary to close the circle and reach 

feasible practical applications.  

Preclinical models: Fecal microbiota transplantation (FMT) experiments validated our 

conclusions and enabled causal statements about the role of the gut microbiota in cognition and, 

particularly, in obesity-related cognitive dysfunction. Despite mouse models being widely used 

and validated to infer cognition-like phenotypes in real settings, they cannot be exactly 

comparable with cognitive evaluation and brain morphology in humans.  In addition, we only 

studied male mice to avoid the possible effects of estrogen in female mice. However, rodents as 

well as humans also exhibit sex differences in cognition-like behavior.396 Thus, further studies 

should include female mice. Finally, it would be interesting to assess metabolic alterations in 

recipients’ mice depending on human donor’s microbiota to measure whether the cognitive 

response may be mediated or modulated by some of these changes.  
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Dealing with confounders: Apart from obesity, several variables are known to influence 

cognitive function including the age, sex and education,110 to name just a few. Moreover, the 

impact of depression in memory function397 as well as in obesity is also noticed.398,399 Hence, the 

associations between the microbiome and the cognitive scores were adjusted for these 

confounding factors. In addition, other elements such as total intracranial volume and insulin 

resistance and inflammation parameters were considered in specific or subtype analysis. These 

adjustments notwithstanding, there may be other determinants that we have not taken into account 

and that could have meaningful effects in cognitive function. One of the main limitations of our 

study is that the impact of physical activity and diet on the relationships between the gut 

microbiome and the cognitive scores was not evaluated. It could be to some extent offset by the 

fact that we studied individuals from the same environments with expected similar dietary patterns 

regarding the cultural backgrounds at least within the groups. Nevertheless, further research is 

warranted to evaluate the role of both factors in this complex interaction.   

 

 

6.3. Public Health implications 

In the light of obesity as a public health concern, due to the increasing prevalence of obesity 

worldwide and in the framework of the objective 3, Good health and well-being of The Global 

Goals for Sustainable Development of the United Nations,400 translational research initiatives are 

needed to fully understand the underlying mechanisms of the pathophysiology of obesity and 

related disorders. The interplay obesity-cognitive dysfunction is one of them. Obesity is 

considered a modifiable risk factor for cognitive decline and, in turn, cognitive impairment 

predisposes to overeating and weight gain. This idea reinforces the control of modifiable risk 

factors as well as some non-communicable diseases to prevent cognitive impairment in a 

bidirectional perspective. As an appreciation, subjects with even only subjective cognitive 

complaints are referred to the medical specialist, addressing their manifestations from a 

multidisciplinary view. However, much more remains to be done in the case of obesity, in which 

a non-depreciable number of cases, hardly appears among the patient’s diagnoses. Therefore, it 

must be imperative to raise awareness not only amongst patients, but also amongst physicians of 

the importance of recognizing and acting on obesity. It would improve morbidity and mortality 

rates, reduce caregiver’s burnout and health expenditure in the long-term.  

The role of cognitive decline in obesity outcomes has also been described. A worse 

cognitive profile may determine negative results in terms of healthy patterns adherence, food 

choices and related-behaviors and weight-loss maintenance.  



General Discussion 

146 

 

Thus, clinicians should be encouraged to evaluate the presence of cognitive dysfunction in 

patients with obesity from the initial visits in order to select the best therapeutic option; or almost 

in bariatric surgery candidates to identify those more prone to respond.  

In the future, the analysis of the gut microbiome would be used as an additional tool to 

detect vulnerable individuals to develop cognitive impairment, even in a preclinical stage, before 

the start of the symptoms. As it can be seen by our results, in a sample of clinically healthy 

cognitive subjects, individuals with obesity had lower scores in cognitive tasks that may 

determine long-term outcomes. Moreover, cognitive traits were phenocopied through gut 

microbiota, inferring the possible causal role of the microbiota in this interaction. Including a gut 

microbiota analysis in clinical practice could detect patients at higher-risk to develop cognitive 

impairment and, consequently, a more aggressive course of disease. Nevertheless, further studies 

should examine the cost-efficiency of this measure in routine clinical settings.   

Overall, albeit the design of this thesis does not allow to have direct clinical applicability, 

it provides a theoretical basis for formulating and testing novel hypothesis to be addressed in the 

future. In particular, aromatic amino acid and one-carbon metabolism pathways should be noted.  

The development of diets, supplements, pre- and probiotics and like in other conditions, 

the possibility to design fecal microbiota transplantations towards a personalized medicine based 

on an individual’s microbiome, are some of the possibilities to further consider.  

Finally, as a social impact of the present scientific work to reach to general public and in 

the framework of the European project ThinkGut401, the results of this thesis are treated actively 

in information campaigns to be disseminated to the general public.  

 

6.4. Perspectives 

The findings of this thesis offer a novel perspective of the role of the gut microbiome in 

obesity and cognition and provide metabolic mechanistic pathways in this host-microbe interplay. 

Nevertheless, there are new questions and some limitations that need to be addressed in future 

investigations.  

Firstly, one of the drawbacks of the present thesis is not exploring in detail the role of the 

diet and physical activity in the interaction cognition-microbiota. Therefore, to overcome this 

limitation our group designed a study (PI18/01022; NCT03889132)402 which includes the 

monitorization of physical activity using a wearable smartwatch device in association with an 

assessment of dietary habits.  
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Secondly, to tackle the links between tryptophan pathways and cognitive function in 

subjects with obesity and low-grade inflammation-related disorders, another study is being carried 

out in our group (PI20/01090). This study combines different approaches to explore molecular 

mechanisms in order to translate the potential results to a clinical applicability, in a pre- or 

probiotic or dietary intervention way.  

Thirdly, different experiments in rodent models are being conducted. On the one hand, a 

FMT in a model that includes male and female mice to assess the impact of the sex in this 

relationship. On the other, a FMT in germ-free mice instead of antibiotic eradication to test 

whether there may be some differential features to further consider. In both cases, metabolic 

changes resulting from FMT will be taken into account to identify possible mediators or 

moderators of this interaction.  

Finally, the evaluation of the effects of weight loss in the obesity-associated cognitive 

dysfunction is an important area of investigation. Hence, long-term studies, in bariatric surgery 

patients, in particular, could provide interesting information. In addition, projects that involve a 

greater number of subjects, such as the results of microbiota consortium, may represent the truly 

global approach to generalize the findings to different populations. 
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7. CONCLUSIONS 
 

General conclusion:  

The studies included in the present thesis identified deficits in memory and inhibitory 

control in middle-aged subjects with obesity in association with a gut bacterial community of 

species, functions and metabolites. Alterations in aromatic amino acids and one-carbon 

metabolism may be involved. Furthermore, obesity-associated cognitive disturbances were 

phenocopied to recipient mice through fecal microbiota transplantation.  

 

Specific conclusions:  

1) Middle-aged subjects with obesity exhibited deficits in memory and inhibitory control 

compared to their counterparts without obesity.  

2) Convergent and divergent patterns of microbial taxa were linked to memory and 

inhibitory control scores. Functional analysis of the gut microbiome through fecal 

metagenomics and fecal and plasma metabolomics revealed distinctive alterations in 

aromatic amino acid and one-carbon metabolism linked to cognitive function in subjects 

with and without obesity. To note, the changes in tryptophan-related bacterial functions 

and metabolites that were identified in obesity-cognitive dysfunction.  

3) Brain structure also differentially associated with the gut microbiome composition and 

functionality depending on obesity status.  

4) Cognitive scores of human donors and recipient mice became aligned via fecal microbiota 

transplantation. The microbiota from subjects with obesity led to decreased cognitive 

performance in recipient mice, which presented shifts in aromatic amino acid- and one-

carbon metabolism-related genes in the prefrontal cortex simultaneously associated with 

different clusters of bacterial species and functions in the same direction as in humans.  

 

Final comments:  

- To the best our knowledge, these results are the first to provide broad information of the 

interactions between the gut microbiome and cognitive function in humans, particularly, in 

obesity-associated cognitive impairment, integrating different OMICs approaches.  

- Finally, the findings emphasize the potential role of the gut microbiome in the prevention 

and management of obesity-cognitive dysfunction, even from preclinical stages. Further 

studies are needed to address the practical applications in clinical settings. 
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