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Abstract

Deep convolutional neural networks (CNNs) have achieved superior performance
in many visual recognition applications, such as image classification, detection
and segmentation. Training deep CNNs requires huge amounts of labeled data,
which is expensive and labor intensive to collect. Active learning is a paradigm
aimed at reducing the annotation effort by training the model on actively selected
informative and/or representative samples. In this thesis we study several aspects
of active learning including video object detection for autonomous driving systems,
image classification on balanced and imbalanced datasets and the incorporation
of self-supervised learning in active learning. We briefly describe our approach in
each of these areas to reduce the labeling effort.

In chapter two we introduce a novel active learning approach for object de-
tection in videos by exploiting temporal coherence. Our criterion is based on the
estimated number of errors in terms of false positives and false negatives. Ad-
ditionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially
designed to evaluate active learning for video object detection in road scenes. Fi-
nally, we show that our approach outperforms active learning baselines tested on
two outdoor datasets.

In the next chapter we address the well-known problem of over confidence in
the neural networks. As an alternative to network confidence, we propose a new
informativeness-based active learning method that captures the learning dynamics
of neural network with a metric called label-dispersion. This metric is low when
the network consistently assigns the same label to the sample during the course of
training and high when the assigned label changes frequently. We show that label-
dispersion is a promising predictor of the uncertainty of the network, and show on
two benchmark datasets that an active learning algorithm based on label-dispersion
obtains excellent results.

In chapter four, we tackle the problem of sampling bias in active learning meth-
ods on imbalanced datasets. Active learning is generally studied on balanced
datasets where an equal amount of images per class is available. However, real-
world datasets suffer from severe imbalanced classes, the so called long-tail distri-
bution. We argue that this further complicates the active learning process, since the
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imbalanced data pool can result in suboptimal classifiers. To address this problem
in the context of active learning, we propose a general optimization framework that
explicitly takes class-balancing into account. Results on three datasets show that
the method is general (it can be combined with most existing active learning algo-
rithms) and can be effectively applied to boost the performance of both informative
and representative-based active learning methods. In addition, we show that also
on balanced datasets our method generally results in a performance gain.

Another paradigm to reduce the annotation effort is self-training that learns
from a large amount of unlabeled data in an unsupervised way and fine-tunes on
few labeled samples. Recent advancements in self-training have achieved very im-
pressive results rivaling supervised learning on some datasets. In the last chapter we
focus on whether active learning and self supervised learning can benefit from each
other. We study object recognition datasets with several labeling budgets for the
evaluations. Our experiments reveal that self-training is remarkably more efficient
than active learning at reducing the labeling effort, that for a low labeling budget,
active learning offers no benefit to self-training, and finally that the combination of
active learning and self-training is fruitful when the labeling budget is high.

Key words: visual recognition, deep active learning, video object detection, semi-
supervised learning, imbalance datasets, self-supervised learning
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Resumen

Las redes neuronales convolucionales profundas (CNNs) han logrado un rendimien-
to superior en muchas aplicaciones de reconocimiento visual, como la clasificación,
detección y segmentación de imágenes. El entrenamiento de CNNs profundas re-
quiere grandes cantidades de datos etiquetados, que tienen un alto coste y son
laboriosos de conseguir. El aprendizaje activo es un paradigma destinado a reducir
el esfuerzo de anotación entrenando el modelo con muestras informativas y / o
representativas seleccionadas de una manera activa. En esta tesis estudiamos varios
aspectos del aprendizaje activo, incluida la detección de objetos de video para siste-
mas de conducción autónoma, la clasificación de imágenes en conjuntos de datos
balanceados y no balanceados y la incorporación del aprendizaje auto-supervisado
en el aprendizaje activo. Describimos brevemente nuestro enfoque en cada una de
estas áreas para reducir el esfuerzo de etiquetado.

En el capítulo dos presentamos un nuevo enfoque de aprendizaje activo para la
detección de objetos en videos haciendo uso de la coherencia temporal. Nuestro
criterio se basa en el número estimado de errores en términos de falsos positivos
y falsos negativos. Además, presentamos un conjunto de datos de video sintético,
llamado SYNTHIA-AL, especialmente diseñado para evaluar el aprendizaje acti-
vo para la detección de objetos de video en escenas de la carretera. Finalmente,
mostramos que nuestro método supera unos métodos de referencia de aprendizaje
activo probadas en dos conjuntos de datos en adquiridos en el exterior.

En el próximo capítulo abordamos el conocido problema de la sobre confianza
en las redes neuronales. Como alternativa a la confianza en la red, proponemos
un nuevo método de aprendizaje activo basado en un criterio informativo que
captura la dinámica de aprendizaje de la red neuronal con una métrica llamada
dispersión de etiquetas. Esta métrica es baja cuando la red asigna constantemente
la misma etiqueta a la muestra durante el proceso entrenamiento y alta cuando la
etiqueta asignada cambia con frecuencia. Mostramos que la dispersión de etiquetas
es un predictor prometedor de la incertidumbre de la red, y mostramos en dos
conjuntos de datos de referencia que un algoritmo de aprendizaje activo basado en
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la dispersión de etiquetas obtiene excelentes resultados.

En el capítulo cuatro, abordamos el problema del sesgo de muestreo en los
métodos de aprendizaje activo sobre conjuntos de datos no balanceados. El apren-
dizaje activo se estudia generalmente en conjuntos de datos balanceados donde se
encuentra disponible la misma cantidad de imágenes por clase. Sin embargo, los
conjuntos de datos del mundo real consisten de clases severamente no balanceadas,
la denominada distribución de cola larga. Argumentamos que esto complica aún
más el proceso de aprendizaje activo, ya que el conjunto de datos no balanceado
puede dar lugar a clasificadores subóptimos. Para abordar este problema en el
contexto del aprendizaje activo, proponemos un marco de optimización general
que tiene en cuenta explícitamente el balance de las clases. Los resultados en tres
conjuntos de datos muestran que el método es general (se puede combinar con
la mayoría de los algoritmos de aprendizaje activo existentes) y se puede aplicar
de manera efectiva para impulsar el rendimiento de los métodos de aprendizaje
activo tanto informativos como representativos. Además, demostramos que tam-
bién en conjuntos de datos balanceados, nuestro método, en general, mejora el
rendimiento.

Otro paradigma para reducir el esfuerzo de anotación es el aprendizaje auto-
supervisado que aprende de una gran cantidad de datos sin etiquetar de una manera
no supervisada y se ajusta con pocas muestras etiquetadas. Los avances recientes
en el aprendizaje auto-supervisado han logrado resultados muy impresionantes
que rivalizan con el aprendizaje supervisado en algunos conjuntos de datos. En el
último capítulo nos enfocamos en si el aprendizaje activo y el aprendizaje auto-
supervisado pueden beneficiarse mutuamente. Sobre los conjuntos de datos para
el reconocimiento de objetos, estudiamos con conjuntos de datos etiquetados de
distintos tamaños para las evaluaciones. Nuestros experimentos revelan que el
aprendizaje auto-supervisado es notablemente más eficiente que el aprendizaje ac-
tivo para reducir el esfuerzo de etiquetado, que para un presupuesto de etiquetado
bajo, el aprendizaje activo no ofrece ningún beneficio para el auto-aprendizaje y,
finalmente, que la combinación de aprendizaje activo y auto-supervisado es útil
cuando el presupuesto de etiquetado es elevado.

Palabras clave: reconocimiento visual, aprendizaje activo profundo, detección de
objetos en video, aprendizaje semi-supervisado, conjuntos de datos imbalanceados,
aprendizaje auto-supervisado
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Resum

Les xarxes neuronals convolucionals profundes (CNN) han aconseguit un rendi-
ment superior en moltes aplicacions de reconeixement visual, com la classificació,
detecció i segmentació d’imatges. El entrenament de CNN profundes requereix
grans quantitats de dades etiquetades, que tenen un alt cost i son laboriosos de
recollir. L’aprenentatge actiu és un paradigma dirigit a reduir l’esforç d’anotació
entrenant el model en mostres informatives i/o representatives seleccionades d’una
manera activa. En aquesta tesi estudiem diversos aspectes de l’aprenentatge actiu,
com ara la detecció d’objectes de vídeo per a sistemes de conducció autònoma,
la classificació d’imatges en conjunts de dades balancejats i no balancejats i la
incorporació de l’aprenentatge auto-supervisat en l’aprenentatge actiu. Descrivim
breument el nostre enfocament en cadascuna d’aquestes àrees per reduir l’esforç
d’etiquetatge.

Al capítol dos introduïm un nou enfocament d’aprenentatge actiu per a la
detecció d’objectes en vídeos aprofitant la coherència temporal. El nostre criteri
es basa en el nombre estimat d’errors en termes de falsos positius i falsos negatius.
A més, introduïm un conjunt de dades de vídeo sintètic, anomenat SYNTHIA-AL,
especialment dissenyat per avaluar l’aprenentatge actiu per a la detecció d’objectes
de vídeo en escenes de carretera. Finalment, mostrem que el nostre enfocament
supera les línies de base d’aprenentatge actiu provades en dos conjunts de dades a
l’exterior.

En el següent capítol abordem el conegut problema de sobre confiança en les
xarxes neuronals. Com a alternativa a la confiança en xarxa, proposem un nou
mètode d’aprenentatge actiu basat en un criteri informatiu que captura la dinàmica
d’aprenentatge de la xarxa neuronal amb una mètrica anomenada dispersió d’eti-
quetes. Aquesta mètrica és baixa quan la xarxa assigna constantment la mateixa
etiqueta a la mostra durant el procés d’entrenament i alta quan l’etiqueta assigna-
da canvia amb freqüència. Mostrem que la dispersió d’etiquetes és un predictor
prometedor de la incertesa de la xarxa i mostrem en dos conjunts de dades de
referència que un algorisme d’aprenentatge actiu basat en la dispersió d’etiquetes
obté resultats excel·lents.

Al capítol quatre, abordem el problema del biaix de mostreig en mètodes d’a-
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prenentatge actiu sobre conjunts de dades no balancejats. L’aprenentatge actiu
s’estudia generalment en conjunts de dades balancejats on hi ha disponible la ma-
teixa quantitat d’imatges per classe. Tanmateix, els conjunts de dades del món real
consisteixen de classes severament no balancejats, l’anomenada distribució de cua
llarga. Argumentem que això complica encara més el procés d’aprenentatge actiu,
ja que el conjunt de dades no balancejats pot donar lloc a classificadors subòptims.
Per abordar aquest problema en el context de l’aprenentatge actiu, proposem un
marc d’optimització general que tingui en compte explícitament el balanç de classe.
Els resultats de tres conjunts de dades van mostrar que el mètode és general (es pot
combinar amb la majoria dels algorismes d’aprenentatge actiu existents) i es pot
aplicar de manera eficaç per augmentar el rendiment dels mètodes d’aprenentat-
ge actiu tant informatius com representatius. A més, demonstrem que també en
conjunts de dades balancejats, el nostre mètode, en general, millora el rendiment.

Un altre paradigma per reduir l’esforç d’anotació és l’aprenentatge auto-supervisat
que aprèn d’una gran quantitat de dades sense etiquetar de manera no supervisa-
da i afina en poques mostres etiquetades. Els avenços recents en l’aprenentatge
auto-supervisat han aconseguit resultats molt impressionants que rivalitzen amb
l’aprenentatge supervisat en alguns conjunts de dades. En el darrer capítol ens cen-
trem en si l’aprenentatge actiu i l’aprenentatge auto-supervisat es poden beneficiar
mútuament. Sobre els conjunts de dades per al reconeixement d’objectes, estudiem
amb conjunts de dades etiquetades de diferents mides per a les avaluacions. Els
nostres experiments revelen que l’aprenentatge auto-supervisat és notablement
més eficient que l’aprenentatge actiu per reduir l’esforç d’etiquetatge, que per a
un baix pressupost d’etiquetatge, l’aprenentatge actiu no ofereix cap benefici per a
l’aprenentatge auto-supervisat i, finalment, la combinació d’aprenentatge actiu i
auto-supervisat és útil quan el pressupost d’etiquetatge és elevat.

Paraules clau: reconeixement visual, aprenentatge actiu profund, detecció d’ob-
jectes en vídeo, aprenentatge semi-supervisat, conjunts de dades no balancejats,
aprenentatge auto-supervisat
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1 Introduction

Machine learning technology facilitated many aspects of modern life: web searches,
products like cameras and smartphones, recommendations systems in e-commerce
platforms and autonomous systems in industries such as car manufacturing. They
are used to recognize objects in images, transcribe speech into text, match posts or
products with users’ interests, and find relevant results of search. Deep learning is a
class of techniques that is widely used in these applications. It is very promising
across various modalities including image, text, and speech recognition.

The most common form of machine learning, in either deep or classical frame-
works, is supervised learning. In computer vision, to build a system that can classify
images as containing, say, a house, a car, a person or a pet we first need to collect
a large dataset of images of houses, cars, people and pets, each labeled with its
category. During training, the system is shown an image and produces an output in
the form of a vector of scores, one for each category. We want the desired category
to have the highest score of all categories. Deep learning is resource hungry and
requires specially large amounts of data. In a typical deep learning system, there
may be hundreds of millions of labeled examples with which to train the machine.

However, labeled examples are often difficult to obtain. For example, in the
object detection task, the annotation include drawing a bounding box around every
object in the image together with a class label that the object belongs to. Active
learning systems attempt to overcome the labeling bottleneck by asking queries in
the form of unlabeled samples to be labeled by an oracle (e.g., a human annotator).
In this way, the active learner aims to achieve high accuracy using as few labeled
instances as possible, thereby minimizing the cost of obtaining labeled data. Active
learners may query samples in several scenarios and various strategies to decide
which samples are most informative. In the context of computer vision, this thesis
studies strategies and scenarios in using pool-based active learning where the
queries are selected from a large pool of unlabeled images or frames in the case of
video.
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Chapter 1. Introduction

1.1 Active Learning

Active learning is a subfield of machine learning and artificial intelligence in general.
The main hypothesis is that, if the learning algorithm is allowed to choose the data
to train on, it will perform better with less training. This is a desirable property
for a learning algorithm because in many supervised learning systems in order
for the algorithm to work well, it must be trained often with millions of labeled
samples. Although sometimes, the labels come at little or no cost such as "spam"
flag you mark on unwanted email. These flags will be used by the algorithm to better
filter junk emails. In this case the information you provide is for free but for many
advanced supervised learning systems labels are very difficult, time-consuming, or
expensive to obtain.

In an active learning framework, a learner may begin with a small number of
instances in the labeled training set, request labels from the pool of unlabeled
data for one or more carefully selected instances, learn from the query results, and
then leverage its new knowledge to choose which instances to query next. Once a
query has been made, there are usually no additional assumptions on the part of
the learning algorithm. The new labeled instance is simply added to the labeled
set, and the learner proceeds from there in a standard supervised way. Figure 1.1
illustrates active learning framework.

Figure 1.1 – Pool based active learning cycle [116]
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1.1. Active Learning

(a) Binary classification problem (b) Informative queries (c) Representative queries 

Figure 1.2 – An illustrative example for selecting informative and representative in-
stances Notice that the circles and stars represent two different classes, green points are
queried samples using different methods and dashed line represent the classifier trained
on queried samples. It can be seen the models in (b) and (c) fail to classify all the instances
correctly.

Generally speaking, there are two main sampling criteria in designing an ef-
fective active learning algorithm, that is, informativeness and representativeness
[62]. Informativeness represents the ability of a sample to reduce the generaliza-
tion error of the adopted classification model, and ensures less uncertainty of the
classification model in the next cycle. Informativeness methods query samples that
are either uncertain or dissimilar to labelled samples, regardless of relationship to
other unlabelled samples using posterior probability. Representativeness decides
whether a sample can exploit the structure underlying unlabeled data. These meth-
ods query samples that represent well the underlying distribution of the input data
to maximize the benefit of labelling and prevent querying uninformative outliers.
Fig. 1.2 illustrates an example of instances quiered by each method.

Deep learning is limited by the high cost of labeling. In comparison, an effec-
tive AL algorithm can theoretically achieve exponential acceleration in labeling
efficiency [4, 106]. This huge potential saving in labeling costs is a fascinating
development. However, the classic AL algorithm also finds it difficult to handle
high-dimensional data [122]. Therefore, the combination of deep learning and
active learning is expected to achieve superior results.

Based on an analysis of active learning literature we have identified four re-
search directions which we have pursued in this thesis, and which we outline in the
following subsections.
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Chapter 1. Introduction

1.1.1 Active Learning for Object Detection in Video Sequences

Active learning is widely studied in image classification while only few works have
investigated active learning for object detection, even though the problem of active
learning is more pertinent for object detection than for image classification since
the labeling effort also includes the more expensive annotation of the bounding
box. One important application domain for which Object detection in sequences
is of key importance is autonomous driving. It has noticeably improved partially
due to the presence of large datasets. Further improvement however requires the
collection of larger labeled datasets, which is both time and labor expensive.

In chapter 2 we focus on active learning for object detection in videos within an
autonomous driving context. Ever since the introduction of the large-scale video
object detection challenge ImageNet-VID [111], object detection in videos received
more attention. The task is highly challenging due to phenomena such as detector
flicker, i.e. the predicted outputs are severely affected by small changes in the input
images. As a result many video-specific approaches are developed that require
full video annotation. However, annotating all object instances in every frame is
extremely costly. Hence recent datasets for autonomous driving provide a small
subset of frames with object ground-truth annotations.

The inherent property of videos is temporal coherence, i.e. nearby frames usually
contain the same instances in nearby locations. Fig. 1.3 shows eight consecutive
frames of ILSRVC video dataset that contain two people riding bikes across in all the
frames. This property can potentially be exploited to identify frames in which the
detector might have wrongly detected objects (there is no support in nearby frames)
or frames in which the detector failed to detect an object (there is evidence of the
object in the surrounding frames). These frames are expected to be more beneficial
to annotate than others, leading to potentially more accurate models when used for
training.

Another issue in active learning for video object detection is that most ac-
tive learning methods [44, 115, 116] are evaluated on simple image classification
datasets such as MNIST [81] or CIFAR [78]. Approaches specific for object de-
tection [15, 110, 126, 142] mainly use PASCAL VOC [38], covering various scene
types. In the context of autonomous driving, only [110] uses a dataset depicting
road scenes, KITTI [46]. Similarly to several other image datasets for autonomous
driving [26, 143], KITTI is manually curated to contain mainly relevant informa-
tion usable to train object detection models. This process is performed by human
annotators who select interesting data samples containing cars, pedestrians, etc.
The goal of active learning, however, is automatizing this process, making existing
datasets not suitable for a proper evaluation since they lack the inherent redun-
dancy present in automatically collected data. Ideally, a good dataset for evaluating
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Figure 1.3 – From left to right shows eight consecutive frames of ILSVRC2015 VID
dataset.

active learning contains a more raw version of the data, in which the image dis-
tribution is biased towards the uninteresting (e.g. empty road scenes) and highly
redundant. Such dataset would better represent the type of data collected in a real
setting, for example, video captured from a driving car. Consequently, in this thesis
we collect a more realistic dataset for active learning which has levels of redundancy
closer to real-world applications. In addition, we aim to explore the usage of temporal
coherence for the purpose of active learning.

1.1.2 Active Learning based on Neural Network Dynamics

Exploiting network’s uncertainty is one of the main approaches for active learning,
as contained in its prediction, to select data for labeling. It is shown that neural net-
works sometimes make wrong predictions with high certainty [99]; overly confident
with the predictions.

In a recent work, Toneva et al. [121] studied the learning dynamics during the
training process of a neural network. For each training sample they track the transi-
tions from being classified correctly to incorrectly (or vice-versa) over the course of
learning. Based on these learning dynamics, they characterize a sample of being
’forgettable’ (if its class label changes from subsequent presentation) or ’unforget-
table’ (if the class label assigned is consistent during subsequent presentations).
Fig. 1.4 shows examples of forgettable and unforgettable samples.

They have shown that the unforgettable samples can be removed from training
set without significant performance drop. However, the proposed method is not
applicable to active learning as it requires labels to identify the un/forgettable
samples. Inspired by this work we aim to introduce a novel method to measure the
uncertainty in model prediction by exploiting network dynamics. This measure can
then be used to query samples that are informative for the model if labeled.
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Figure 1.4 – Pictures of the most unforgettable (Left) and forgettable examples
(Right) of five CIFAR-10 classes, when examples are sorted by number of forgetting
events (ties are broken randomly). Forgettable examples seem to exhibit peculiar or
uncommon features. Images are taken from [121].

1.1.3 Active Learning for Imbalanced Datasets

Visual recognition datasets in computer vision research are often almost uniformly
distributed (e.g. CIFAR [77] and ILSVRC [79]). However, for many real-world prob-
lems data follows a long-tail distribution [97], meaning that a small number of
head-classes are much more common than a large number of tail-classes (e.g. iNat-
uralist [124], landmarks [98]). See Fig. 1.5 for long-tail distribution of iNaturalist
2018 dataset.

Classification on such imbalanced datasets is an important research topic [28,
60, 105]. However, active learning is mostly studied on curated close-to-uniform
datasets. Existing methods, regardless of how they are formulated, have a common
underlying assumption that all classes are equal. They do not consider that some
some classes might be more prevalent in the dataset than others. Instead, they
focus on, given a data sample, how much error a trained model is expected to make,
or the estimated uncertainties.

Closely related to the class-imbalance dataset problem, is the sampling bias
problem which is a well-documented drawback of active learning [30, 92]. Datasets
collected by active learning algorithms break the assumption that the data is identi-
cally and independently distributed (i.i.d), since the active learning algorithm might
be biased towards particular regions of the unlabeled data manifold. One possible
consequence of the sampling bias can be that the distribution over the classes no
longer follow that of the unlabeled data pool. Several papers have investigated this
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Figure 1.5 – The training set of iNaturalist 2018 exhibits a long-tailed class distribu-
tion. Image is taken from [64].

aspect of active learning however it remains not fully understood [12, 39].
Given the predominance of long-tail distributions, especially for real-world sce-

narios in which active learning is a crucial capability, we study active learning for
imbalanced datasets. The aim is to minimize the labeling effort, while maximizing
the performance when measured on a balanced test set.

1.1.4 Contribution of Self Supervised Learning in Active Learning

Active learning methods are typically evaluated by supervised training of the net-
work on only the labeled data pool: the active learning method that obtains the
best results, after a number of training cycles with a fixed label budget, is then
considered superior.

Self-supervised learning of representation for visual data has seen stunning
progress in recent years [19, 20, 21, 48, 55], with some unsupervised methods being
able to learn representations that rival those learned supervised. The main progress
has come from a recent set of works that learn representations that are invariant
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Augmented view 1 Augmented view 2

Input images

Figure 1.6 – Augmented views including cropping, flipping, blur and color distor-
tion.

with respect to a set of distortions of the input data (such as cropping, applying blur,
flipping, etc). See Fig.1.6 for the augmented views.

In these methods, two distorted views of the image are produced. Then the
network is trained by enforcing the representations of the two views to be similar. To
prevent these networks to converge to a trivial solution different approaches have
been developed [48, 145]. The resulting representations are closing the gap with
supervised-learned representation. For some downstream applications, such as
segmentation and detection, the self-supervised representations even outperform
the supervised representations [149].

Given the huge performance gains that are reported by applying self-supervised
learning, we propose to re-evaluate existing active learning algorithms in this new
setting where the unlabeled data is exploited by employing self-supervised learning.

1.2 Objectives and Approach

In the following we outline the objectives and approach for the four research lines
that we have identified in the previous section:

1.2.1 Active Learning for Object Detection in Video Sequences

As mentioned active learning has mainly focused on image classification and there
are relatively few works that focus on active learning for object detection in video
sequences. We arrive at the following objective:

Temporal coherence for active learning: Propose an active learning method
that exploits the temporal coherence of video sequences. In addition, col-
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lect a new dataset for active learning for object recognition in videos.

To reduce the annotation effort in the task of object detection in videos we propose
to mainly annotate frames that contain detection errors. We estimate the number
of errors in the frames by running the trained model on unlabeled frames. We
consider two types of errors, false positives and false negatives, and show the effect
of selecting either type. This exploratory experiment suggests a potentially powerful
approach for active learning. Motivated by this, we develop a novel method to
estimate detection errors in videos by exploiting the temporal coherence in the
videos. We track detections forward and backward and define a graph on the
detections that are temporally linked. Minimization of an energy function defined
on this graphical model provides us with the detection of false positives and false
negatives. These we subsequently use to select the frames to be annotated.

We also propose a new synthetic dataset specially designed for active learning
in road scene videos. we have created a new synthetic dataset to evaluate active
learning for object detection in road scenes. In particular, we modified the SYNTHIA
environment [108] to generate the SYNTHIA-AL dataset using Unity Pro game
engine. The aim is having an unbalanced foreground/background distribution,
simulating the real collection scenario of a driving car. To make the dataset favorable
for active learning a set of object classes and conditions are predominantly present,
while other classes and conditions must appear less frequent. The data is generated
by driving a car in a virtual world consisting of three different areas, namely town,
city, and highway that are populated with a variety of pedestrians, cars, cyclists, and
wheelchairs.

1.2.2 Active Learning based on Neural Network Dynamics

As discussed before the dynamics of labels for samples during the training of a
neural network could be used to derive an uncertainty measure for each sample.
We define therefore the following objective:

Network dynamics for active learning: Propose an active learning method
based on the learning dynamics of samples during the training of neural
networks. This measure should address the overconfidence that is present
in infromativeness methods that are directly based on network predictions.

In the context of active learning we propose a new uncertainty estimation method
which is based on the learning dynamics of a neural network. With learning dynam-
ics, we refer to the variations in the predictions of the neural network during training.
Specifically, we keep track of the model predictions on every unlabeled sample dur-
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ing the various epochs of training. Based on the variations of the predicted label of
samples, we propose a new active learning metric called label-dispersion. This way,
we can indirectly estimate the uncertainty of the model based on the unlabeled
samples. We will directly use this metric as the acquisition function to select the
samples to be labeled in the active learning cycles. Other than the forgetfulness
measure proposed in [121], we do not require any label information.

1.2.3 Active Learning for Imbalanced Datasets

Imbalanced data are prevalent in many real-world applications. We therefore pur-
sue the following objective:

Active learning for imbalanced data: Study active learning method for
imbalanced datasets. We aim to propose a method to address the data
imbalance if present in the unlabeled data-pool.

To mitigate the problems caused by the sampling bias and imbalanced datasets,
we introduce an optimization framework which corrects the class-imbalance pre-
sented in the unlabeled data pool, and aims to bias instead our selected samples
to resemble the uniform distribution of the test set. Since we have no access to
the class labels of the unlabeled data, we propose to trust the predicted labels, and
use them to select a set of class-balanced images. This combination leads to a
minimization problem, which can be formalized as a binary programming problem.
We show that our optimization scheme is efficient, boosting the performance of
both informativeness and representativeness methods.

1.2.4 Contribution of Self Supervised Learning in Active Learning

Self-supervised learning has seen considerable progress in recent years. Based on
this observation, we propose the following objective:

Combining self-supervised learning and active learning: Study the inter-
action between self-supervised learning and active learning; provide an
analysis on how these two paradigms can benefit each other.

Self-supervised learning can learn high-quality features that are almost at par
with the features learned by supervised methods. As such it has greatly improved
the usefulness of unlabeled data. The standard active learning paradigm trains
an algorithm on the labeled data set, and based on the resulting algorithm selects
data points that are expected to be most informative for the algorithm in better
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understanding the problem [117]. In this standard setup, the unlabeled data is not
exploited to improve the algorithm. We perform extensive experiments on various
datasets in terms of number of unlabeled data and categorise to study the contri-
bution of self supervised methods in active learning methods. We analyze active
learning and self supervised approaches independently and unified to investigate
how they can benefit from each other.
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2 Temporal Coherence for Active Learning in
Videos*

Summary: Autonomous driving systems require huge amounts of data to train.
Manual annotation of this data is time-consuming and prohibitively expensive
since it involves human resources. Therefore, active learning emerged as an
alternative to ease this effort and to make data annotation more manageable. In
this chapter, we introduce a novel active learning approach for object detection
in videos by exploiting temporal coherence. Our active learning criterion is
based on the estimated number of errors in terms of false positives and false
negatives. The detections obtained by the object detector are used to define the
nodes of a graph and tracked forward and backward to temporally link the
nodes. Minimizing an energy function defined on this graphical model provides
estimates of both false positives and false negatives. Additionally, we introduce
a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate
active learning for video object detection in road scenes. Finally, we show that
our approach outperforms active learning baselines tested on two datasets.

2.1 Introduction

For autonomous driving systems, the quality of object detection is of key impor-
tance. Its progress in recent years has been notable, partially due to the presence of
large datasets [46, 143]. However, pushing detectors to further improve and finally
be close to flawless, requires the collection of ever larger labeled datasets, which is
both time and labor expensive. Active learning methods [116] tackle this problem
by reducing the required annotation effort. The key idea behind active learning
is that a machine learning model can achieve a satisfactory performance with a
subset of the training samples if it is allowed to choose which samples to label. This
contrasts with passive learning, where the data to be labeled is taken at random
without taking into account the potential benefit of annotating each sample.

Active learning has been mainly investigated for the image classification task

*This chapter is based on a publication in the IEEE/CVF International Conference of Computer
Vision Workshops, 2019 [7]
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[31, 45, 68, 84, 86, 113, 136]. Only few works have investigated active learning for
object detection, even though the problem of active learning is more pertinent for
object detection than for image classification since the labelling effort also includes
the more expensive annotation of the bounding box [73]. For instance, in [126, 141]
the object detector is learned interactively in an incremental manner using a simple
margin approach to select the most uncertain images. In [110], the active learning
approach is based on a ‘query-by-committee’ strategy.

In this work we focus on active learning for object detection in videos. To the
best of our knowledge, we are the first to consider this scenario. Object detection in
videos has become of great interest ever since the introduction of the large-scale
video object detection challenge ImageNet-VID [111]. The task has proven highly
challenging due to phenomena such as detector flicker [67, 109], i.e. the drastic
effects in the predicted outputs given by small changes in the images. This has
spawn a multitude of video-specific approaches [70, 71, 129, 152, 153] that require
comprehensive video annotation. However, exhaustively annotating all object
instances in every frame is extremely costly. Possibly because of this, recent datasets
for autonomous driving [93, 143] only offer a small subset of frames with object
ground-truth annotations.

Video data has the inherent property of temporal coherence, i.e. nearby frames
are expected to contain the same instances in nearby locations. This property can
be exploited to identify frames in which the detector might have wrongly detected
objects (there is no support in nearby frames) or frames in which the detector
failed to detect an object (there is evidence of the object in the surrounding frames).
These frames are expected to be more beneficial to annotate than others, leading to
potentially more accurate models when used for training.

In this chapter, we confirm that annotating those frames that contain detection
errors leads to higher accuracy given a limited annotation budget. We consider
two types of errors, false positives and false negatives, and show the effect of se-
lecting either type. This exploratory experiment suggests a potentially powerful
approach for active learning. Motivated by this, we develop a novel method to esti-
mate detection errors in videos by exploiting the temporal coherence in the videos.
We track detections forward and backward and define a graph on the detections
that are temporally linked. Minimization of an energy function defined on this
graphical model provides us with the detection of false positives and false negatives.
These we subsequently use to select the frames to be annotated. In summary, the
contributions of this chapter are:

• We propose a new method for active learning in videos which exploits the
temporal coherence.

• We propose a new synthetic dataset specially designed for active learning in
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road scene videos.

• Our proposed method outperforms several baseline methods both on syn-
thetic and real video data.

2.2 Related Work

Active learning for object detection. A critical aspect for an active learner is repre-
sented by the strategy used to query the next sample to be labeled. Four main query
frameworks exist, which rely mostly on heuristics: informativeness [17, 44, 50, 139],
representativeness [113, 115], hybrid [63, 138], and performance-based [43, 49, 114,
137]. Among all these, informativeness-based approaches are the most successful
ones. A comprehensive survey of these frameworks and a detailed discussion can be
found in [116]. Active learning has been successfully applied to a series of traditional
computer vision tasks, such as image classification [45, 68, 72] (including medical
image classification [113] and scene classification [86]), visual question answering
(VQA) [88], image retrieval [147], remote sensing [31], action localization [58], and
regression [42, 69].

With a strong emphasis on image classification, active learning for object de-
tection has received less attention than expected due to the difficulty to aggregate
several object hypothesis at frame level. Recently, [142] employed a loss module
to learn the loss of a target model and select the images based on their output loss.
However, in hybrid tasks such as object detection learning the loss is challenging.
In [110], the active learning approach is based on a ‘query-by-committee’ strategy.
A committee of classifiers is formed by the last convolutional layer of the base net-
work together with the extra convolutional layers of the SSD architecture [90]. The
disagreement between them for each candidate bounding box in an image is used
as query strategy. In [126], the authors propose a system that learns object detectors
on-the-fly, by refining its models via crowd-sourced annotations of web images. As
active learning criterion, they use a simple margin approach which selects the most
uncertain images which should be annotated. A similar idea is reported in [141],
where an object detector is learned interactively, in an incremental manner. The
system selects the images most likely to require user input based on an estimated
annotation cost computed in terms of false positive and false negative detections.
Other approaches to reduce the annotation cost for object detection are based on
domain adaptation [59] or transfer learning [125].

In the current work, we introduce a novel active learning approach for object
detection in videos, which exploits the temporal coherence of the found detections.
The query strategy is based on the number of false positives and false negatives
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detections identified using a graphical model.

Temporal coherence in video object detection. Several video object detection
approaches [53, 70, 71, 89, 129, 152, 153] have attempted to use temporal informa-
tion to enhance single-image object detectors [107] for multi-class video object
detection. There are two main types of approaches.First, temporal information
can be used to refine the detections output by the detector as a post-processing
step. For example, Seq-NMS [53] re-scores detections using highly overlapping
detections from surrounding frames. Some approaches [70, 71] are based on the
concept of tubelet, i.e. spatio-temporal bounding boxes that span consecutive
frames. T-CNN [71] uses tubelets, generated by tracking high confidence detections
across frames, to re-score detections and recover false negatives.

The second type of approaches introduces temporal coherence while learning
the features used by the model in an end-to-end manner. FGFA [152] uses optical
flow to estimate the motion between frames, which is employed to learn features
that aggregate information from surrounding frames, while [153] uses it for effi-
ciency reasons, extracting features only for selected frames and propagating them to
nearby frames. Contrary to the pixel-level approaches, Motion-Aware network [129]
introduces instance-level feature aggregation by estimating the movement of pro-
posals across frames and combining them. All these approaches use temporal
information to improve object detection in videos, whereas we exploit it to select
sets of samples in the context of active learning.

2.3 Active Learning for Video Object Detection

We describe here the general process of active learning applied to video object
detection. Given a large pool of unlabeled data DU (video frames) and an anno-
tation budget b, the goal of active learning is to select a subset of b samples to be
annotated as to maximize the performance of an object detection model (e.g. Faster
R-CNN [107]). Active learning methods generally proceed sequentially by splitting
the budget in several cycles. Here we consider the batch-mode variant [116], which
annotates multiple samples per cycle, since this is the only feasible option for CNN
training. At the beginning of each cycle, the model is trained on the labeled set of
samples DL

†. After training, the model is used to select a new set of samples to be
annotated at the end of the cycle via an acquisition function. The selected samples
are added to the labeled set DL for the next cycle and the process is repeated until
the annotation budget b is spent. Fig. 2.1 presents the active learning framework

†Most methods start with a small initial labeled set selected at random.
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Detector
(Faster RCNN)

Score
aggregation

Unlabeled data

Input Frame i

Frames i+1, i+2, ...

Frames i-1, i-2, ...
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s2

s3

Acquisition function
Exploiting Temporal Coherence (TC)

FP FN

Labeled data

Model detections

Figure 2.1 – Overview of our active learning framework exploiting temporal coherence.
The detector outputs detections (green) for each frame in the unlabeled data. Considering
the relationships between the detections of neighboring frames (both forward and backward),
our temporal coherence acquisition function predicts false positive (red) and false negative
(yellow) errors. Based on these predictions, each frame is given an aggregated score and
ranked for selection. Finally the frames with top scores are annotated and added to the
labeled data.

with our temporal coherence acquisition function, described in sec. 2.3.2. Note how
each sample corresponds to an entire frame and thus all objects in the frame are
annotated simultaneously.

In image classification, a single label is predicted per image (e.g. “the image
contains a car”), and hence each data sample is a whole image. In object detec-
tion, however, the unit of prediction is a region inside the image, as the task also
includes localization. This leads to the following open issue: should the annotation
be performed for each individual region independently or considering all regions
in the image simultaneously? Current deep learning algorithms for object detec-
tion [56, 107] consider fully annotated images during training, as negative examples
are extracted from the unlabeled regions of positive images. Moreover, the most
commonly used annotation tools for object detection [87, 112] employ image-wise
annotations, requesting all regions for each presented image.This annotation style
is more efficient as the cognitive burden of parsing the image can be shared across
multiple regions. Therefore, we consider image-wise annotations in this chapter.

This is a more efficient approach since (i) parsing the image is a significant
portion of the labelling effort, while annotating additional boxes only incur a small
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minimize energy
(graph cut)Create 

graph

Figure 2.2 – Error estimation using temporal coherence. (a) Detections (green) across
different frames are linked depending on the overlap with their corresponding tracks (red).
(b) Candidate detections (red) are obtained by clustering tracked detections that do not
overlap any local detection. (c) Example of detections, candidates, and their links for four
consecutive frames. (d) Nodes of the generated graph using detections and candidates
corresponding to figure (c). Once the graph is created, we minimize its energy via graph-cut
to obtain and estimation of the errors in terms of FP and FN. In this example, we only track
up to two surrounding frames, but in practice we use three.

extra cost, and (ii) some isolated regions are not very informative and thus they need
to be presented in the context of the image nonetheless.(iii) most deep learning
algorithms for detection consider fully labeled images (among others they consider
the non labeled regions as negative examples during training). The former option is
clearly inefficient as isolated regions are frequently not very informative, and thus
the whole image must be presented. Once the annotator observes it, only requesting
a particular region is rather wasteful, as annotating all potential remaining instances
would only incur a small additional cost.

The acquisition function is the most crucial component and the main differ-
ence between active learning methods in the literature. In general, an acquisition
function ϕ receives a sample x and outputs a score ϕ(x) indicating how valuable
x is for training the current model. More sophisticated acquisition functions may
consider additional data such as the samples already selected for the current batch,
the previously labeled samples DL , or the unlabeled pool DU (see [116] for details).
In the remainder of this section, we introduce our two proposed acquisition func-
tions for video object detection in road scenes. Sec. 2.3.1 presents an exploratory
function that approximates a performance upper bound. Sec. 2.3.2 describes our
main contribution: a practical acquisition function based on temporal coherence
and specialized for video object detection.
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2.3.1 Oracle-based acquisition

The underlying assumption of active learning is that some data samples provide
more valuable information than others, so that when labeled and used for training,
they improve the model performance by decreasing the number of errors. A suitable
acquisition function would select those samples in which the network commits the
greatest number of errors so they can be remedied. Assuming perfect generalization
from training to test data, such function would be an upper bound for all active
learning methods.‡ Motivated by this and in order to study the potential of active
learning for video object detection, we propose here an oracle-based acquisition
function to implement this desirable behavior.

Our oracle-based active selection uses ground-truth information to quantify the
number of errors in a given image, and selects those images that have the greatest
number of errors. Note this is not a useful active learning function in practice,
as we would not have access to the ground-truth annotations in a real scenario.
We consider two types of errors that directly affect the usually employed object
detection metric of Average Precision (AP) [38, 87]: False Positives (FP) and False
Negatives (FP). Let us consider a detection as correct if it overlaps a ground-truth
bounding box more than 0.5, using the Intersection-over-Union (IoU) measure for
overlap [38]. FPs are detections that are not correct (i.e. have little or no overlap with
any ground-truth) or are duplicated, while FNs are those ground-truth instances
that have not been detected. We consider two different acquisition functions, one
which considers the number of FPs in a frame and the other which considers the
number of FNs in a frame§. Since the acquisition scores of these functions are
integer numbers, it is frequent to have ties between images. We disambiguate
between ties by random selection.

2.3.2 Temporal coherence for error estimation

Video data has the inherent property of temporal coherence, i.e. nearby frames are
expected to contain the same instances in nearby locations. Based on this, we
propose a method to estimate the errors of a video object detector by exploiting the
expected temporal coherence, and then use the estimates with the oracle-based
acquisition function proposed in sec. 2.3.1, but using estimations as oracle. Let
us consider a video v composed of a sequence of L frames {I1, ..., IL}. An object

‡In practice, a decrease in errors in the training set may not necessarily lead to better performance
in a separate test set, making this acquisition function an approximation to the upper bound.

§We experimented with combining both FP and FN in the acquisition function but found this to not
improve results.
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detector outputs a set of detections Di = {d 0
i , ...,d K

i } for each frame Ii
¶. Temporal

coherence induces a bijective mapping between sets of detections in nearby frames
when corrected for minor localization changes. In order to correct such changes we
employ an object tracker, of which details follow later. Formally, given a detection d k

i
in frame Ii , the tracker estimates the location of the contents of this region in frame
I j , which we refer to as d k

i→ j . The tracking can be performed in the direction of time

(i < j ) or in the reverse direction. The set of all tracked detections Di→ j = {di→ j } can
be thought of as weak detections obtained via temporal coherence using another
frame’s detections, rather than being directly predicted by the object detector based
on the frame’s content. We can now link detections of the same class across frames
based on their tracked detections. More concretely, we link detection d k

i in frame Ii

with detection d l
j in I j if IoU(d k

i ,d l
j→i ) > θ or IoU(d l

j ,d k
i→ j ) > θ (Fig. 2.2a). That is,

if any of the tracked detections (forward or backward) overlaps the other detection
in the corresponding frame. Note how there might be tracked detections that are
not matched with any local detection (Fig. 2.2b). Such tracked detections could
indicate the presence of an instance in that frame that has been missed by the
detector. We cluster groups of unmatched tracked detections in the same frame
based on their overlap. We term these groups as detection candidates and use the
notation ck

i for the k-th candidate of frame Ii . Each detection di can either be a
True Positive (TP) if it correctly localizes an object instance in the image, or a FP
if it erroneously predicts the presence of a particular object. On the other hand, a
detection candidate ci can be a True Negative (TN) if no object instance is present
in its location, or a FN if it corresponds to a missed detection. We now estimate the
type of every detection and detection candidate by formalizing our approach as a
graphical model.

Graphical model. Let us express all detections and candidates as a set of binary
random variables V = {v1, ..., vN }, where vn = d if it corresponds to a detection d k

i
and vn = c for a candidate ck

i . Let G = (V ,E ) be an undirected graph with vertices V

and edges E between connected detections across different frames (via the links
previously introduced) and candidates connected with their originating detections
(see Fig. 2.2). Each vn can take one of four possible labels: TP, FP, TN, or FN. We
consider the following energy function on label assignment L :

E(L ) = ∑
v∈V

φv (lv )+ ∑
v1,v2∈C

ψv1,v2 (lv1 , lv2 ), (2.1)

¶Here we consider object detectors that process each frame independently, such as Faster R-
CNN [107].
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where φv (lv ) is the unary cost of assigning label lv to v and ψv1,v2 (lv1 , lv2 ) is the
pairwise cost of assigning the label pair (lv1 , lv2 ) to a pair of connected variables
(v1, v2) ∈ E . We define the unary cost for detection variables as

φv=d (lv ) =


0 if lv = TP

∞ if lv = TN

1 if lv = FP

∞ if lv = FN

(2.2)

This indicates that in principle we trust the outputs of the detector and that as-
signing a contradicting label should incur some cost. By definition, detections are
‘positives’ and thus assigning a ‘negative’ label is strongly discouraged. Analogously,
the unary cost for candidate variables is

φv=c (lv ) =


∞ if lv = TP

0 if lv = TN

∞ if lv = FP

1 if lv = FN

(2.3)

In this case, candidates can only be negatives as they are not part of the original
outputs of the detector and hence cannot be positives.

We specify the pairwise cost using the following matrix

ψv1,v2 (lv1 , lv2 ) =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , (2.4)

where the considered label assignment order is lv = (TP, FP, TN, FN). This indicates
that TP should be connected with other TP or FN, whereas FP are preferably con-
nected with other FP or with TN. Intuitively, the pairwise cost enforces temporal
coherence between the detections and the candidates, propagating the correctness
to connected variables and collaboratively determining the errors.

We optimize the energy function in (2.1) via graph cut [76], which finds the
globally optimal solution by solving the dual max-flow problem. In fact, the problem
can be reduced to a binary labelling problem, considering only two possible labels
(True or False) with different meanings depending on the type of input variable,
i.e. positives for detections and negatives for candidates. We use the graph-cut
implementation in the Python library PyMaxflow [14].
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Acquisition function. Once all variables in V have been assigned their optimal
labels, we record the estimated number of FPs and FNs contained in each frame.
We revert now to the oracle-based acquisition function described in sec. 2.3.1, but
using error estimates instead of actual errors, which makes the function is useful
in practice as it does not require any ground-truth information. We refer to this
acquisition function as Temporal Coherence (TC). Experimental results show similar
performance when considering only FP, only FN, or both FP and FN. Therefore, we
use only the number of FP for the acquisition function of TC.

Object tracker. In order to temporally link detections and construct connections
between graph nodes, we considered two types of object trackers, namely Optical
Flow (PWC-NET) [120] and SiamFC tracker [11]. To utilize optical flow for the
purpose of object tracking, we first compute a dense 2D real-valued vector map
of the motions between all pairs of consecutive frames in the dataset. Then, we
translate the box coordinates using the motion vector corresponding to the box
center to obtain the tracked box in the next or previous frame. As an alternative to
track detections we employ SiamFC [11], a state of the art Siamese-based object
tracker. The bottleneck of this tracking method in the context of active learning is
that, despite its efficiency, it imposes a huge computational burden when tracking
detections every cycle, given the vast amount of detections. On the contrary, optical
flow is only computed once at the beginning and can be used throughout all cycles
with a negligible overhead.

2.4 Synthetic Dataset

Most active learning methods [44, 115, 116] are evaluated on simple image classifi-
cation datasets such as MNIST [81] or CIFAR [78]. Approaches specific for object
detection [15, 110, 126, 142] mainly use PASCAL VOC [38], covering various scene
types. In the context of autonomous driving, only [110] uses a dataset depicting
road scenes, KITTI [46]. Similarly to several other image datasets for autonomous
driving [26, 143], KITTI is manually curated to mostly contain relevant knowledge
usable to train object detection models. This process is performed by human
annotators that select interesting data samples containing cars, pedestrians, etc.
The goal of active learning, however, is automatizing this process, making existing
datasets not suitable for a proper evaluation. Ideally, a good dataset for evaluating
active learning contains a more raw version of the data, in which the image dis-
tribution is unbalanced towards the uninteresting (e.g. empty road scenes) and
highly redundant. Such dataset would better represent the type of data collected
in a real setting, for example, video captured from a driving car. For this reason,
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Subset Name Seq. Frames Area Conditions P(Pe/Cy/Ca/Wh)

Default 150 74K C,H S,W,F,R 30/20/35/0
Town 36 17K T S,W,F,R 30/20/35/0
Night 6 3K C,H N 0/0/35/0
Wheelchair 5 2K C,T S 20/20/0/100
Test (no WC) 85 40K C,H,T S,F,R,N 30/20/35/0
Test (WC) 12 5K C,T S 20/20/0/100

Table 2.1 – SYNTHIA-AL data distribution. Seq. indicates the number of videos. Environ-
ment conditions are Fall (F), Winter (W), Spring (S), Rain (R), and Night (N). Areas are City
(C), Town (T), and Highway (H). The spawning probabilities are given for pedestrians (Pe),
cyclists (Cy), cars (Ca), and wheelchairs (Wh).

and following recent trends [108, 119], we have created a new synthetic dataset to
evaluate active learning for object detection in road scenes. In particular, we modi-
fied the SYNTHIA environment [108] to generate the SYNTHIA-AL dataset|| using
Unity Pro game engine. The aim is having an unbalanced foreground/background
distribution, simulating the real collection scenario of a driving car. Moreover, a
set of object classes and conditions should be predominantly present, while other
classes and conditions must appear less frequent. The data is generated by driving
a car in a virtual world consisting of three different areas, namely town, city, and
highway. These areas are populated with a variety of pedestrians, cars, cyclists,
and wheelchairs, except for the highway which is limited to cars. These dynamic
objects are arbitrarily spawned at predefined positions with a given probability and
follow randomly predefined paths without leaving each area. Several environmental
conditions can be set: season (winter, fall, spring), day time (day or night), and
weather (clear or rainy). By default, we always use spring and clear during the day,
and only change one condition at a time. Objects with no lights can be hard to
visualize during the night, so we only use cars for the night condition. Figure 2.3
shows examples of images in the dataset.

Table 2.1 provides the specification of the dataset. The video sequences are
captured at 25 fps with a random length between 10 and 30 seconds. We have
generated one subset with the default parameters and three smaller subsets with
altered conditions. The first subset consists of 150 sequences, which amounts to
75% of all the data, with the default settings, i.e. containing cars, pedestrians, and
cyclists, under different daily conditions, but only in the city and highway areas. The

||Available at http://www.synthia-dataset.net
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second subset contains 36 sequences (20% of the dataset) captured in the town area
instead. The night condition only represents 3% of the whole data (6 sequences)
and it is fully contained in the third subset. Finally, we have added wheelchairs
and removed cars in the fourth subset, which represents the 2% of the dataset with
only 5 sequences. The test set contains 85 sequences with balanced distributions
on areas and conditions (except winter) on the three main classes plus another
12 sequences including wheelchairs. All images are automatically annotated with
2D bounding boxes and class labels for every object that can be reasonably seen
(more than 50 pixels). Figure 2.6 and 2.7 show few example frames in SYNTHIA-AL
dataset.

2.5 Experimental Setup

2.5.1 Active learning procedure

We use a state-of-the-art object detector based on Faster R-CNN [107]. This two-
stage detection model first generates object proposals using a sub-network called
Region Proposal Generator (RPN) and then outputs predictions for each proposal. It
first processes the image through multiple convolutional layers to generate feature
maps. After the RPN generates its candidate proposals, a Region of Interest (RoI)
pooling layer extracts features for each of the proposals. The extracted features are
further processed to obtain classification scores as well as bounding-box regression
values, which refine the proposals to localize the objects more accurately.

We start with the model pre-trained on COCO [87], which contains 80K images
from 80 different object categories. The initial labeled set DL consists of 2% of train
dataset that is selected randomly once for all the methods. At each cycle, we fine-
tune the latest model of the previous cycle, as we have experimentally observed that
this leads to faster convergence than fine-tuning the initial model or from scratch
as in [22]. We have also seen that in order not to get stuck in local minima, the
learning rate should be high enough. Once the new model is fine-tuned, we use it
with the corresponding acquisition function to select b/C frames, which are then
labeled and added to DL . We continue for C cycles until budget b is completely
exhausted. In all experiments, the budget per cycle is 2% of the dataset.

Evaluation. For each cycle, we evaluate the model trained with the updated la-
beled set for that cycle on the test set. Detections are processed using Non-Maxima
Supression [40] and thresholded by score, rejecting all detections below 0.5. We use
AP averaged over all classes using a detection threshold of IoU> 0.5.
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Implementation details. We used Tensorflow’s Object Detection API [61] as the
base code to develop our experiments. We trained all models with the momentum
optimizer with value 0.9 and the initial learning rates 0.02 and 0.001 for SYNTHIA-AL
and ImageNet-VID [111] datasets, respectively. We train for 10 epochs and reduce
the learning rate by a factor of 5 once after 5 epochs and again at 7 epochs for
SYNTHIA-AL. In the case of ImageNet-VID we reduce the learning rate at epochs
3 and 5, training a total of 6 epochs. For efficiency reasons, we resize all images to
fixed height of 300 pixels and preserve the aspect ratio. We use a batch size of 12 for
all the experiments. Finally, to obtain more stable results we repeat the experiments
3 times and report the mean and standard deviation in our results.

2.5.2 Baselines

Random. Random sampling selects an arbitrary subset of frames from all unla-
beled frames. Given the extreme imbalance inherent to video data due to varying
video length, uniform random sampling selects most frames from the longer videos
while under-representing shorter videos, which damages the performance. More-
over, video data is redundant due to the high similarity between nearby frames,
which makes annotating the surrounding frames of an already annotated frame
wasteful. For these reasons, we also consider an improved random sampling pro-
cedure that includes temporal representativeness, which prevents selecting the
k neighbors in both directions of already labeled frames. In the experiments, we
set the k to 3 for ImageNet-VID dataset and 1 for SYNTHIA-AL dataset for all the
methods. This criterion naturally increases the diversity of the selected batches at
each cycle by limiting the similarity between data samples. We call this baseline
Random+R.

Uncertainty. We consider three other baselines based on uncertainty measures
used in recent active learning approaches for object detection [15, 110]. Least
confidence [82, 110] considers the score of the most probable class and selects
those samples that have the lowest score on it. Entropy [29] is an information
theory measure that captures the average amount of information contained in the
predictive distribution, attaining its maximum value when all classes are equally
probable. In both cases, we use the average score of all detections in the image
to obtain a single score per image. Margin sampling [15, 116] uses the difference
between the two classes with the highest scores as a measure of proximity to the
decision boundary. Following [15], we sum all margin sampling scores of individual
detections to aggregate them into an overall image score.
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Figure 2.3 – Examples of errors detected by our temporal coherence approach on
SYNTHIA-AL (top, middle) and ImageNet-VID [111] (bottom). We show ground-truth
boxes in yellow and output detections in red. After solving our graphical model based
on temporal coherence, some of the detections are considered as false positives (purple),
while other boxes are added as false negatives (green).

2.5.3 Datasets

Besides our SYNTHIA-AL dataset (sec. 2.4), we also perform experiments on a
real-image dataset, ImageNet-VID [111], which is commonly used as video object
detection benchmark. Since the focus of this chapter is video object detection in
road scenes, we select 3 classes that are likely to be encountered in the context of
autonomous driving, namely: car, bike, and motorcycle. Selecting all videos that
contain these classes amounts to 795 videos in the training set and 87 videos in the
validation set, which we use for test. The length of the videos varies between a few
frames to over 1000. We have cleaned this dataset by manually discarding all those
frames that had missing annotations, which amounts to 20K frames in the training
set and 5K frames in the validation set. The final dataset contains 129K frames for
training and 14K frames for validation.

2.6 Results

We present active learning results using performance (mAP) curves as a function
of the number of selected samples, as usually reported in the literature [44, 115].
This allows us assess the benefit of each active learning method for different total
number of samples used to train the model. For each method, we plot the average
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Figure 2.4 – Results on SYNTHIA-AL. (a) Random baselines with and without representa-
tiveness. (b) Our Temporal Coherence using either Optical Flow or SiamFC. (c) Baselines,
oracle-based acquisition, and Temporal Coherence. All curves are the average of 3 runs.

performance for all runs with vertical bars to represent the standard deviation.
We first validate the ability of our graphical model (sec. 2.3.2) to estimate detec-

tion errors using temporal coherence. Fig. 2.3 presents some resulting predictions
on both datasets. We can see how many FP (purple) are correctly detected, including
those corresponding to double detections (top row, rightmost column). Moreover,
FN (green) are discovered due to the forward and backward tracking of surrounding
detections (middle row, third column).

2.6.1 SYNTHIA-AL

Fig. 2.4 presents all quantitative results on our SYNTHIA-AL dataset. We start by
evaluating the difference between the two random baselines: uniform and our
enhanced Random+R baseline (Fig. 2.4a). We can observe how the addition of
representativeness is clearly beneficial for active learning in video object detection.
In the remainder of the chapter, we always include temporal representativeness
and per-video sampling for all evaluated methods.

Next, we evaluate the effect of the two types of trackers considered in our tem-
poral coherence method, SiamFC [11] and Optical Flow [120], within the active
learning cycles. Fig. 2.4b presents the quantitative evaluation of temporal coher-
ence with either tracker. The results show that there is no improvement gained
by using the more sophisticated SiamFC tracker compared to Optical Flow. Fur-
thermore, Optical Flow can significantly speed up the active learning process. In
this case, the motion vectors are computed once at the beginning of the process,
whereas SiamFC needs to perform expensive computations at every cycle. Finally,
we compare Temporal Coherence (TC) with all baselines. To explore an upper
bound for TC, we also consider the oracle-based methods of section 2.3.1, selecting
those frames with the highest number of FP or FN based on ground-truth informa-
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Methods
SYNTHIA-AL ImageNet-VID
mAP Rel. mAP Rel.

All data 0.628 100% 0.839 100%

Random+R 0.578 92.0% 0.821 97.8%
Least Confidence 0.595 94.7% 0.818 97.4%
Margin sampling 0.586 93.3% 0.820 97.7%
Entropy 0.597 95.0% 0.821 97.8%

Oracle (FP) 0.607 96.6% - -
Oracle (FN) 0.601 95.7% - -
Temporal Coherence (SiamFC) 0.591 94.1% - -
Temporal Coherence (Opt. Flow) 0.599 95.3% 0.830 98.9%

Table 2.2 – Active learning results. The first row shows the performance (mAP) obtained
when using the entirety of the dataset. All other rows show the performance of all methods
using 12% of all data in SYNTHIA-AL and 10% of ImageNet-VID [111], both in absolute
performance and relative to using all data.

tion. These methods are designated by Oracle (FP) and Oracle (FN), respectively.
The results in Fig. 2.4c show that our TC method outperforms all three uncertainty
based methods and the random baseline. The narrow gap between our TC method
and the oracle-based methods implies that FP and FN predictions of the graphical
model are effective estimates of the actual errors that the model can learn from.
Moreover, TC enables us to achieve more than 95% of performance of the model
trained on entire dataset by annotating only 12% of the data. Table 2.2 shows
the effectiveness of active learning methods in videos by using a small portion of
datasets.

2.6.2 ImageNet-VID

To evaluate our temporal coherence method on a dataset of real images, we perform
experiments on ImageNet-VID [111]. Fig. 2.5 compares TC with Optical Flow against
uncertainty and random baselines. The results illustrate that TC is superior to all
the baselines for all cycles. Additionally, Table 2.2 shows that TC manages to attain
almost the full performance of a model trained with the entire dataset by using only
10% of the data, which is a significant reduction in the annotation effort.

28



2.7. Conclusions

4 6 8 10
% of train dataset

0.77

0.78

0.79

0.80

0.81

0.82

0.83

m
A

P

Random + R
Least confidence
Margin sampling
Entropy

TC (Optical Flow)

Figure 2.5 – Results on ImageNet-VID [111]. Average of 3 runs.

2.7 Conclusions

In this chapter, we introduced a novel active learning approach for object detection
in videos which exploits the temporal coherence. Our approach is formulated in
terms of an energy minimization function of a graphical model built on tracked
object detections. Additionally, we introduced a new synthetic dataset specially de-
signed to evaluate active learning for object detection in the context of autonomous
driving. Experimental results conducted on two datasets showed that our approach
outperformed major active learning baselines. A drawback of temporal coherence
based active learning is that it is computationally more demanding than the base-
lines. We plan to minimize the computational overhead of our system in future
research.
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Figure 2.6 – Examples of day, night, rainy weather conditions together with city, town frames
containing cyclists and cars.
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Figure 2.7 – Examples of sunny and rainy weather conditions together with city, town frames
containing pedestrians, wheelchair and cars.
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3 When Deep Learners Change Their Mind:
Learning Dynamics for Active Learning*

Summary: Active learning aims to select samples to be annotated that yield the
largest performance improvement for the learning algorithm. Many methods
approach this problem by measuring the informativeness of samples and do this
based on the certainty of the network predictions for samples. However, it is well-
known that neural networks are overly confident about their prediction and are
therefore untrustworthy source to assess sample informativeness. In this chapter,
we propose a new informativeness-based active learning method. Our measure
is derived from the learning dynamics of a neural network. More precisely we
track the label assignment of the unlabeled data pool during the training of
the algorithm. We propose to capture the learning dynamics with a metric
called label-dispersion, which is low when the network consistently assigns the
same label to the sample during the training of the network and high when the
assigned label changes frequently. We show that label-dispersion is a promising
predictor of the uncertainty of the network, and show on two benchmark datasets
that an active learning algorithm based on label-dispersion obtains excellent
results. Moreover we employ label-dispersion in the semi-supervised scenario
and conduct experiments to evaluate its effeciveness on CIFAR10 and CIFAR100
datasets.

3.1 Introduction

Deep learning methods obtain excellent results for many tasks where large anno-
tated dataset are available [77]. However, collecting annotations is both time and
labor expensive. Active Learning(AL) methods [117] aim to tackle this problem by
reducing the required annotation effort. The key idea behind active learning is that
a machine learning model can achieve a satisfactory performance with a subset
of the training samples if it is allowed to choose which samples to label. In AL, the
model is trained on a small initial set of labeled data called initial label pool. An

*This chapter is based on a publication in International Conference on Computer Analysis of Images
and Patterns (CAIP), 2021 [8]
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acquisition function selects the samples to be annotated by an external oracle. The
newly labeled samples are added to the labeled pool and the model is retrained
on the updated training set. This process is repeated until the labeling budget is
exhausted.

One of the main groups of approaches for active learning use the network
uncertainty, as contained in its prediction, to select data for labelling [23, 117,
128]. However, it is known that neural networks are overly confident about their
predictions; making wrong predictions with high certainty [99]. In this chapter, we
present a new approach to active learning. Our method is based on recent work of
Toneva et al. [121], who study the learning dynamics during the training process of
a neural network. They track for each training sample the transitions from being
classified correctly to incorrectly (or vice-versa) over the course of learning. Based
on these learning dynamics, they characterize a sample of being ’forgettable’ (if its
class label changes from subsequent presentation) or ’unforgettable’ (if the class
label assigned is consistent during subsequent presentations). Their method is only
applicable for labeled data (and therefore not applicable to active learning) and
was applied to show that redundant (forgettable) training data could be removed
without hurting network performance.

Inspired by this work, we propose a new uncertainty-based active learning
method which is based on the learning dynamics of a neural network. With learn-
ing dynamics, we refer to the variations in the predictions of the neural network
during training. Specifically, we keep track of the model predictions on every unla-
beled sample during the various epochs of training. Based on the variations of the
predicted label of samples, we propose a new active learning metric called label-
dispersion. This way, we can indirectly estimate the uncertainty of the model based
on the unlabeled samples. We will directly use this metric as the acquisition func-
tion to select the samples to be labeled in the active learning cycles. Other than the
forgetfulness measure proposed in [121], we do not require any label information.

Experimental results show that label-dispersion better resemble the true uncer-
tainty of the neural networks, i.e. samples with low dispersion were found to have
a correct label prediction, whereas those with high dispersion often had a wrong
prediction. Furthermore, in experiments on two standard datasets (CIFAR 10 and
CIFAR 100) we show that our method outperforms the state-of-the-art methods in
active learning.

3.2 Related work

The most important aspect for an active learner is the strategy used to query the
next sample to be annotated. These strategies have been successfully applied to
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a series of traditional computer vision tasks, such as image classification [43, 45],
object detection [2, 7], image retrieval [147], remote sensing [31], and regression
[69].

Pool based methods are grouped into three main query strategies relying mostly
on heuristics: informativeness [17, 44, 139], representativeness [115], and hybrid
[63, 138], and performance-based [43, 49, 137]. A comprehensive survey of these
frameworks and a detailed discussion can be found in [117]. Informativeness-

based methods: Among all the aforementioned strategies, the informativeness-
based approaches are the most successful ones, with uncertainty being the most
used selection criteria in both bayesian [44] and non-bayesian frameworks [139]. In
[83, 142], the authors employed a loss module to learn the loss of a target model and
select the images based on their output loss. More recently, query-synthesizing ap-
proaches have used generative models to generate informative samples [94, 95, 151].
Representativeness-based methods: In [118] the authors rely on selecting few ex-

amples by increasing diversity in a given batch. The Core-set technique was shown
to be an effective representation learning method for large scale image classification
tasks [115] and was theoretically proven to work best when the number of classes is
small. However, as the number of classes grows, its performance deteriorates. More-
over, for high-dimensional data, using distance-based representation methods, like
Core-set, appears to be ineffective because in high-dimensions p-norms suffer from
the curse of dimensionality which is referred to as the distance concentration phe-
nomenon in the computational learning literature [35]. Hybrid methods: Methods

that aim to combine uncertainty and representativeness use a two-step process
to select the points with high uncertainty as of the most representative points in
a batch [85]. A weakly supervised learning strategy was introduced in [128] that
trains the model with pseudo labels obtained for instances with high confidence in
predictions. While most of the hybrid approaches are based on a two-step process,
in [130] they propose a method to select the samples in a single step, based on a
generative adversarial framework. An image selector acts as an acquisition function
to find a subset of representative samples which also have high uncertainty.

3.3 Active learning for image classification

We describe here the general process of active learning for the image classification
task. Given a large pool of unlabeled data U and an annotation budget B , the goal of
active learning is to select a subset of B samples to be annotated as to maximize the
performance of an image classification model. Active learning methods generally
proceed sequentially by splitting the budget in several cycles. Here we consider the
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Figure 3.1 – Comparison between the dispersion and confidence scores. We show four
examples images together with the predicted label for the last five epochs of training. The
last predicted label is the network prediction when training is finished. We also report the
prediction confidence and our label-dispersion measure. (a) Shows an example which is
consistently and correctly classified as car. The confidence of model is 0.99 and the consistent
predictions every epoch result in low dispersion score of 0.01. (b-d) present examples on
which the model is highly confident despite a wrong final prediction and constant changes
of predictions across the last epochs. This network uncertainty is much better reflected by
the high label-dispersion scores.

batch-mode variant [115], which annotates multiple samples per cycle, since this is
the only feasible option for CNN training. At the beginning of each cycle, the model
is trained on the initial labeled set of samples. After training, the model is used to
select a new set of samples to be annotated at the end of the cycle via an acquisition
function. The selected samples are added to the labeled set DL for the next cycle
and the process is repeated until the total annotation budget is spent.

3.3.1 Label-dispersion acquisition function

In this section, we present a new acquisition function for active learning. The ac-
quisition function is the most crucial component and the main difference between
active learning methods in the literature. In general, an acquisition function receives
a sample and outputs a score indicating how valuable the sample is for training the
current model. Most of informativeness-based active learning approaches consider
to assess the certainty of the network on the unlabeled data pool which is obtained
after training on the labeled data [23, 117, 128].

In contrast, we propose to track the labels of the unlabeled samples during
the course of training. We hypothesize that if the network frequently changes the
assigned label, it is unsure about the sample, therefore the sample is an appropriate
candidate to be labeled. In figure 3.1 we depict the main idea behind our method
and compare it to network confidence. While the confidence score is used to
assign the label based on the certainty of the last epoch, the dispersion uses the
prediction over all epochs in order to assess the certainty. The first example shows
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Figure 3.2 – Active learning framework using Dispersion. Active learning cycles start with
initial labeled pool. The model trained on labeled pool is used to output the predictions and
compute dispersion for each sample. The samples with highest dispersion are queried for
labeling and added to labeled set. This cycle repeats until the annotation budget is exhausted.

the case of a correct label prediction when both confidence score and dispersion
agree. However, in the other three examples, we depict situations where the system
predicts the wrong label with high certainty. However, a large dispersion value (i.e.
high uncertainty) is the indication of an erroneous prediction.

This idea is based on the concept of forgettable samples recently introduced by
[121]. [121] states that there exist a large number of unforgettable samples that are
never forgotten once learnt. It is shown that they can be omitted from the training
set while the generalization performance is maintained. Therefore it suffices to learn
the forgettable samples in the train set. However to identify forgettable samples the
ground-truth labels is needed. Since we do not have access to the labels in active
learning, we propose to use a measure called the label-dispersion. The dispersion
of a nominal variable is calculated as the proportion of predicted class labels that
are not the modal class prediction [41]. It estimates the uncertainty of the model by
measuring the changes in the predicted class as following:

Di sper si on(x) := 1− fx

T
, (3.1)

with

fx =∑
t

1[y t = c∗],

c∗ = argmax
c=1,...,C

∑
t

1[y t = c],
(3.2)

where fx is the number of predictions falling into the modal class for sample x and
C is the number of classes. Larger values for dispersion means more uncertainty
in model outputs. Similar to forgettable samples, we are interested in samples for
which the model doesn’t persistently output the same class.
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Figure 3.3 – Informativeness analysis of dispersion across three cycles on CIFAR 100. The
bars show the frequency of samples w.r.t their dispersion. The curve is the ratio between
correctly classified and all samples which denote the model is less accurate about the samples
with higher dispersion. Hence labeling high dispersion samples provides information that
the model lacks.
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Figure 3.4 – Informativeness analysis of dispersion across three cycles on CIFAR 10. The
bars show the frequency of samples w.r.t their dispersion. The curve is the ratio between
correctly classified and all samples which denote the model is less accurate about the samples
with higher dispersion. Hence labeling high dispersion samples provides information that
the model lacks.

Fig. 3.2 presents the active learning framework with our acquisition function.
During the training of a network at regular intervals we will save the label predictions
for all samples in the unlabeled pool (green block in Fig. 3.2). In practice, we will
perform this operation at every epoch. These saved label predictions allow us to
compute the label-dispersion with Eq. 3.1. We then select the samples with highest
dispersion to be annotated and continue to the next active learning cycle until the
total label budget is used.
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Figure 3.5 – Informativeness analysis of AL methods on CIFAR10(a) and CIFAR100(b)
datasets. The model is used to infer the label of samples selected by AL methods before
labeling and the accuracy is measured. For any amount of unlabeled samples, dispersion
offers samples with lower accuracy and hence more informative for the model.

3.3.2 Informativeness Analysis

To assess the informativeness of methods, we compute the scores assigned to
the unlabeled samples and sort the samples accordingly. Then we select several
portions of the most informative samples (according to their score) and run the
model to infer their labels. We argue that annotating the correctly classified samples
would not provide much information for the model because the model already
knows their label. In contrast, the model can learn from misclassified samples if
labeled. We use the accuracy to implicitly measure the informativeness of unlabeled
samples. The lower the accuracy, the more informative the samples will be if labeled.
Fig. 3.5 shows the accuracy of model on the unlabeled samples queried by each
method. The model used in this analysis is trained on the initial labeled set. The
accuracy of samples selected randomly remains almost constant regardless of the
amount of unlabeled samples. In this analysis, the oracle method by definition uses
groundtruth and queries samples that the model misclassified and therefore the
accuracy of the model is zero. Among the active learning methods, on both CIFAR10
and CIFAR100 datasets, and for any amount of unlabeled samples, dispersion
queries misclassified samples the most, showing that high dispersion correlates well
with network uncertainty. These samples can potentially increase the performance
of the model if labeled.

To further analyze the dispersion in AL cycles we studied the accuracy of model
on the samples selected by dispersion across three cycles. Fig 3.3 illustrates the
histogram of samples according to their dispersion score. As can be seen, the
samples are mostly populated in mid range dispersion (blue bars). However the ratio
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of samples (black curve), that model is accurate about, to all samples is inversely
proportional to their dispersion score: the higher dispersion samples we select, the
less accurate the model becomes.

3.4 Experimental Results

3.4.1 Experimental Setup

We start with model trained on initial labeled set from scratch and employ Resnet-18
as the model architecture. The initial labeled set consists of 10% of train dataset that
is selected randomly once for all the methods. At each cycle, we use the model with
the corresponding acquisition function to select b samples, which are then labeled
and added to DL . We continue for 4 cycles until the total budget is completely
exhausted. In all experiments, the budget per cycle is 5% and total budget is 30%
of the entire dataset. Eventually for each cycle, we evaluate the model on the test
set. To evaluate our method, we use CIFAR10 and CIFAR100 [77] datasets with
50K images for training and 10K for test. CIFAR10 and CIFAR100 have 10 and 100
object categories respectively and image size of 32×32. During training, we apply a
standard augmentation scheme including random crop from zero-padded images,
random horizontal flip, and image normalization using the channel mean and
standard deviation estimated over the training set.

Dispersion is computed from the most probable class in the output of the model.
During training we do an inference on the unlabeled pool at every epoch and save
the model predictions. Based on these predictions we compute the label-dispersion
for each sample specifically.

Implementation details. Our method is implemented in PyTorch [100]. We trained
all models with the momentum optimizer with value 0.9 and the initial learning
rates 0.02. We train for 100 epochs and reduce the learning rate by a factor of 5 once
after 60 epochs and again at 80 epochs. Finally, to obtain more stable results we
repeat the experiments 3 times and report the mean and standard deviation in our
results.

Baselines. We compare our method with several informative and representative-
based approaches. Random sampling: selects an arbitrary subset of samples from
all unlabeled samples. BALD [44]: method chooses samples that are expected to
maximise the information gained about the model parameters. In particular, it
select samples that maximise the mutual information between predictions and
model posterior via dropout technique. Margin sampling [15]: uses the difference
between the two classes with the highest scores as a measure of proximity to the
decision boundary. KCenterGreedy [115]: is a greedy approximation of KCenter
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Figure 3.6 – Performance Evaluation. Results for several active learning methods on CI-
FAR10 (a) and CIFAR100 (b) datasets. All curves are average of 3 runs.

problem also known as min-max facility location problem [134]. Samples having
maximum distance from their nearest labeled samples in the embedding space
are queried for labeling. CoreSet [115]: finds samples as the 2-Opt greedy solution
of Kcenter problem in the form of Mixed Integer Programming (MIP) problem.
VAAL [118]: learns a latent space using a Variational Autoencoder (VAE) and an
adversarial network trained to discriminate between unlabeled and labeled data.
The unlabeled samples which the discriminator classifies with lowest certainty as
belonging to the labeled pool are considered to be the most representative and
queried for labeling. Oracle method: An acquisition function using ground-truth
and select samples that the model miss-classified. In order to study the potential
of active learning, we evaluate oracle-based acquisition function. Note this is not
a useful active learning function in practice, as we would not have access to the
ground-truth annotations in a real scenario. In order to make a fair comparison
with the baselines, we used their official code and adapted them into our code to
ensure an identical setting.

3.4.2 Results

Results on CIFAR10: A comparison with several active learning methods, includ-
ing both informativeness and representativeness, is provided in Fig. 3.6. As can
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be seen in Fig. 3.6(a) dispersion outperforms the other methods across all the cy-
cles on CIFAR10, only the BALD-Dropout method obtains similar results at 30%.
The active learning gain of dispersion against Random sampling is around 7.5%
at cycle 4, equivalent to annotating 4000 samples less. The informative methods
such as Margin Sampling and BALD lie above the representative methods including
KCenterGreedy, CoreSet, VAAL and Random highlighting the importance of infor-
mativeness on CIFAR10 where the number of classes is limited and each class is
well-represented by many samples.

Results on CIFAR100: Fig. 3.6(b) shows the performance of active learning meth-
ods on CIFAR100. As can be seen, the methods are closer and the overall perfor-
mance of Dispersion, Margin sampling and CoreSet are comparable. However, the
addition of labeled samples at cycle 3 and 4 makes the dispersion superior in per-
formance to others. The smaller gap between the informative based methods and
Random emphasizes the importance of representativeness on CIFAR100 dataset
which has more diverse classes that are underrepresented with few samples in small
budget size.

Additionally, Table 3.1 illustrates the full performance of models that are trained
on the entire datasets. It can be seen, Dispersion manages to attain almost 97% and
82% of full performance on CIFAR10 and CIFAR100 respectively by using only 30%
of the data, which is a significant reduction in the labeling effort.

Methods
CIFAR 10 CIFAR 100

Acc. Rel. Acc. Rel.

All data 93.61 100% 74.61 100%

Dispersion 90.74 96.93% 60.66 81.97%
Margin sampling [15] 90.44 96.61% 59.78 80.78%
BALD [44] 90.66 96.85% 59.54 80.46%
KCenterGreedy [115] 89.57 95.69% 59.64 80.59%
CoreSet [115] 89.45 95.56% 59.87 80.91%
VAAL [118] 87.88 93.88% 58.42 78.95%
Random sampling 87.65 93.63% 58.47 79.02%

Table 3.1 – Active learning results. Performance of AL methods using 30% of dataset both
in absolute performance and relative to using all data.

42



3.5. Label-Dispersion for Semi-Supervised active learning

3.5 Label-Dispersion for Semi-Supervised active learn-
ing

As previously discussed in many real applications of large-scale image classification,
due to the tedious manual labeling process the labeled data is not enough. Thus
developing a framework that combines CNNs and active learning which can jointly
learn features and models from unlabeled training data with minimal human an-
notations has great significance. Usually, incorporating CNNs into active learning
framework is not straightforward for real image classification tasks. The labeled
training samples given by current AL approaches are often insufficient for CNNs, as
the majority unlabeled samples are usually ignored. Active learning, in the small
budget schemes, usually selects only few most informative samples (e.g., samples
with least confidence) in each cycle and query for the labeling. Thus it is difficult
to obtain proper feature representations by fine-tuning CNNs with these minority
informative samples. Inspired by the insight from previous works [128], [66] as
well as the recently proposed techniques, i.e., self-paced learning [150] we address
above mentioned issue by combining the CNN and AL via a complementary sample
selection.

We use label-dispersion for sampling pseudo labels in the two-model frame-
work(see Fig. 3.7). The framework has multiple stages: first, we train model A on
initial labeled images. Then we use the model A to generate pseudo labels for the
unlabeled images. Next, we train the auxiliary model on the combination of oracle
labeled images and a portion of pseudo labeled images that are most certain based
on label-dispersion or entropy measures. Finally, we run the auxiliary model on the
remaining images to select and query the samples for oracle labeling. We iterate
this algorithm for a few cycles until the labeling budget is exhausted.

The idea behind using two models is that since at every cycle the pseudo labels
might be noisy we treat the model A as a teacher to correct the probably misguided
auxiliary model which is trained on both pseudo and oracle labeled samples. More-
over, we replace the pseudo labeled samples in the unlabeled pool after training
so they will be available for being picked and assigned more accurate labels in the
next cycles.

We use dispersion as the uncertainty measure for pseudo labeling. While for
choosing samples to query to the oracle, we used entropy. As explained earlier
in this chapter, to compute label-dispersion we do an inference on the unlabeled
pool at every epoch during the course of training and save the model predictions.
Based on these predictions we compute the label-dispersion for each sample. For
the initialization of models we start the framework with training the model A from
scratch on the initial labeled pool. After that, we initialize each model with the latest
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Figure 3.7 – Our active learning framework exploiting pseudo labels.

previously trained model.
During training, we apply a standard augmentation scheme including random

crop from zero-padded images, random horizontal flip, and image normalization
using the channel mean and standard deviation estimated over the training set.

Implementation details. Our method is implemented in PyTorch [100]. We trained
all models with the momentum optimizer with value 0.9 and the initial learning
rates 0.02. We train for 100 epochs and reduce the learning rate by a factor of 5 once
after 60 epochs and again at 80 epochs. Finally, to obtain more stable results we
repeat the experiments 3 times and report the mean and standard deviation in our
results.

We employ Resnet-18 as the model architecture. The initial labeled set consists
of 10% of train dataset that is selected randomly once for all the methods. At each
cycle, we use the model with the corresponding acquisition function to select b
samples, which are then labeled and added to DL . We continue for 4 cycles until
the total budget is completely exhausted. In all experiments, the budget per cycle
is 5% and total budget is 35% of the entire dataset. We incorporate 10% to 25% of
the dataset as pseudo labeled samples every cycle. Eventually for each cycle, we
evaluate the both models on the test set.

3.5.1 Results

We evaluate the performance of our framework using dispersion and/or entropy
against CEAL method on CIFAR10 and CIFAR100 datasets. The performance evalua-
tion of our method on CIFAR10 is shown in Fig. 3.8.

As can be seen the auxiliary models lie above the performance of model A. This
is due to the fact that auxiliary model (B) is trained on both pseudo and oracle
labeled samples whereas model A is only trained on oracle labeled samples. Besides,
our method (shown as B) outperforms the CEAL method either by using 10% or 25%
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Figure 3.8 – CIFAR10: Comparison of our method with CEAL and Core-set methods..

of pseudo labeled samples. Moreover, the best performance is achieved when the
dispersion criterion is used to select pseudo labeled samples and entropy is used to
select samples for oracle labeling.

The performance evaluation of our method on CIFAR100 is shown in Fig. 3.9. As
can be seen the auxiliary models lie above the performance of model A. Again, this
is because auxiliary model (B) is trained on both pseudo and oracle labeled samples
whereas model A is only trained on oracle labeled samples. In addition, our method
(shown as B) outperforms the CEAL method either by using 10% or 25% of pseudo
labeled samples. The best performance is achieved when entropy criterion is used
for selecting both pseudo and oracle labeled samples.
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Learning

Figure 3.9 – CIFAR100: Comparison of our method with CEAL and Core-set methods..

3.6 Conclusion

We proposed an active learning algorithm based on the learning dynamics of neu-
ral networks. We introduced the label-dispersion metric, which measures label-
consistency during the training process. We showed that this measure obtains
excellent results when used for active learning. For future work, we are interested
in exploring label-dispersion for other research fields such as out-of-distribution
detection and within the context of lifelong learning.
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4 Class-Balanced Active Learning for Image
Classification *

Summary: Active learning aims to reduce the labeling effort that is required to
train algorithms by learning an acquisition function selecting the most relevant
data for which a label should be requested from a large unlabeled data pool.
Active learning is generally studied on balanced datasets where an equal amount
of images per class is available. However, real-world datasets suffer from severe
imbalanced classes, the so called long-tail distribution. We argue that this further
complicates the active learning process, since the imbalanced data pool can
result in suboptimal classifiers. To address this problem in the context of active
learning, we proposed a general optimization framework that explicitly takes
class-balancing into account. Results on three datasets showed that the method
is general (it can be combined with most existing active learning algorithms)
and can be effectively applied to boost the performance of both informative and
representative-based active learning methods. In addition, we showed that also
on balanced datasets our method generally results in a performance gain.

4.1 Introduction

Convolutional neural networks have obtained state-of-the-art results on several
computer vision tasks such as large-scale object detection [104] or VQA [131]. How-
ever, the training of these often very large networks requires large-scale labeled
datasets, that are labor intensive and expensive to construct. Generally, in real-
world the amount of data that could be labeled is literary unlimited (e.g. in au-
tonomous driving, or robotics applications). Given an initial labeled dataset, de-
ciding what new data to label from the unlabeled data pool is a relevant question.
Active learning addresses this research questions and aims to minimize the labeling
effort while maximizing the obtained performance of the machine learning algo-
rithm. Active learning has successfully been shown to reduce the labeling effort for
image classification [6, 115], object detection [155], regression [69], and semantic

*This chapter is based on a publication in IEEE Winter Conference on Applications of Computer
Vision (WACV), 2022 [9]
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Figure 4.1 – Overview of our active learning framework. The unlabeled samples are sorted
by their uncertainty from green to yellow in ascending order. Given the the uncertainty of
unlabeled samples and class distribution at cycle c, we propose to solve an optimization
problem (λ> 0) yielding samples that are simultaneously informative and form a balanced
class distribution for training. Our sampling selects samples with lower uncertainty (in green)
in addition to high uncertainty to improve class-balanced profile. In contrast, classical AL
methods (λ= 0) selects the most uncertain samples (in yellow) that result in an informative
yet imbalanced training set.

segmentation [47, 127].
Several query strategies have been proposed for sample selection. The most

popular ones are those based on informativeness [142] and representativeness
[115] which demonstrated to be efficient for the task of selecting the most valuable
samples. The informativeness criteria is responsible for selecting those samples
which are the most uncertain (usually characterized by high-entropy) because they
affect the generalization capability of the model (they are the ones which are mostly
confusing the classifier, especially at the start of the active learning process when
the number of labeled samples is small), while representativeness guarantees a
diversity of the samples, following the underlying data distribution of the unlabeled
data pool.

Visual recognition datasets in computer vision research are often almost uni-
formly distributed (e.g. CIFAR [77] and ILSVRC [79]). However, for many real-world
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problems data follows a long-tail distribution [97], meaning that a small number
of head-classes are much more common than a large number of tail-classes (e.g.
iNaturalist [124], landmarks [98]). Classification on such imbalanced dataset is an
important research topic [28, 60, 105]. However, active learning is mostly studied
on curated close to uniform datasets. Given the predominance of long-tail distri-
butions, especially for real-world applications in which active learning is a crucial
capability, we consider here the study active learning for imbalanced datasets. The
aim is to minimize the labeling effort, while maximizing the performance when
measured on a balanced test set.

Closely related to the class-imbalance dataset problem, is the sampling bias
problem which is a well-documented drawback of active learning [30, 92]. Datasets
collected by active learning algorithms break the assumption that the data is identi-
cally and independently distributed (i.i.d), since the active learning algorithm might
be biased towards particular regions of the unlabeled data manifold. One possible
consequence of the sampling bias can be that the distribution over the classes does
no longer follow that of the unlabeled data pool. Several papers have investigated
this aspect of active learning however it remains not fully understood [12, 39].

To mitigate the problems caused by the sampling bias and imbalanced datasets,
in the current chapter we introduce an optimization framework which corrects the
class-imbalance presented in the unlabeled data pool, and aims to bias instead our
selected samples to resemble the uniform distribution of the test set. The overview
of the proposed approach is depicted in figure 4.1. Since we have no access to the
class labels of the unlabeled data, we propose to trust the predicted labels, and
use them to select a set of class-balanced images. This combination leads to a
minimization problem, which can be formalized as a binary programming problem.
We show that our optimization scheme is efficient, boosting the performance of
both informativeness and representativeness methods. In summary, the main
contributions of this chapter are:

• We propose a novel active learning method for imbalanced unlabeled dataset
that encourages the selection of class-balanced samples.

• The proposed optimization method is general and can be applied to both
informativeness and representativeness based methods.

• Extensive experiments show that our method improves performance of active
learning on imbalanced datasets. We show that even for balanced datasets
the proposed method can lead to improvements, mostly by countering the
sampling bias introduced by active learning.
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Figure 4.2 – Biased sampling across four AL cycles. In the background, the imbalanced
dataset is illustrated in yellow. The class distributions for two active learning approaches and
random sampling are shown. Similar to Random sampling (in cyan), samples selected by
active learning algorithms follow the biased distribution. Results are on imbalanced CIFAR10
(IF=0.3).

4.2 Related Work

Active Learning. Active Learning has been widely studied in various applications
such as image classification [43, 45, 72] (including medical image classification
[113] and scene classification [87]), image retrieval [147], image captioning [32],
object detection [155], and regression [42, 69].

Over the past two decades, several different strategies have been proposed for
sample query, which can be divided in three main categories: informativeness
[8, 17, 44, 50, 140], representativeness [113, 115] and hybrid approaches [63, 138]. A
comprehensive survey of these frameworks and a detailed discussion can be found
in [117].

Among all the aforementioned strategies, the informativeness-based approaches
are the most successful ones, with uncertainty being the most used selection cri-
teria used in both bayesian [44] and non-bayesian frameworks [85]. In [44], they
obtain uncertainty estimates through multiple forward passes with Monte Carlo
Dropout, but it is computationally inefficient for recent large-scale learning as it
requires dense dropout layers that drastically slow down the convergence speed.
More recently, [3] measures the uncertainty of the model by estimating the expected
gradient length. On the other hand, [83, 142] employ a loss module to learn the loss
of a target model and select the images based on their output loss.

Representativeness-based methods rely on selecting examples by increasing
diversity in a given batch [36]. The Core-set technique [115] selects the samples by
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4.3. Class Imbalance in Active Learning

minimizing the Euclidian distance between the query data and labeled samples in
the feature space. The Core-set technique is shown to be an effective representation
learning method, however, its performance is limited by the number of classes in
the dataset. Furthermore, Core-set, like other distance-based approaches, are less
effective due to feature representation in high-dimensional spaces since p-norms
suffer from the curse of dimensionality [35]. In a different direction, [118] uses an
adversarial approach for diversity-based sample query, which samples the data
points based on the discriminator’s output, seen as a selection criteria.

Class-Imbalanced Data. Learning with class-imbalanced data is a well investi-
gated research problem [65]. There are several approaches to address the conflict
between a highly imbalanced training dataset and the objective to perform equally
well for all classes on the test set. The bias towards the most frequent classes can be
reduced by re-weighting samples in the training objective. One popular approach
is re-weighting samples by the inverse of their class-frequency [60]. Cui et al. [28]
improve upon this method, and propose to re-weight samples with the effective
number of its class. Another approach is based on re-sampling where samples
of rare classes are more often rehearsed during training [54]. Ren et al. [105] in-
vestigate the training on imbalanced data in combination with label noise. They
propose a method based on meta-learning that learns to assign weights to training
examples. Our proposed method aims to prevent the dataset imbalance that could
arise during the active learning cycles. Other than the here discussed methods, our
approach is not presented with an imbalanced dataset, but actively participates in
its construction. We show that incorporating class-balance as one of the objectives
of active learning is of key importance on imbalanced datasets.

Previous works that addressed class imbalance in AL include [1, 13, 132, 144].
Among them, only [1] is applied to deep learning. Nevertheless, it studies sequential
AL as balancing is performed during manual labeling making it practically infeasible
for batch mode AL. In the same line [16] lacks automatic model to address the
class-imbalance problem and the evaluations are human-centered only. Unlike [24]
that lacks evaluation on large scale dataset, we show our method extends to Tiny
ImageNet as a large dataset with diverse classes.

4.3 Class Imbalance in Active Learning

4.3.1 Active Learning Setup

Given a large pool of unlabeled data DU and a total annotation budget B , the goal
is to select b samples in each cycle to be annotated to maximize the performance
of a classification model. In general, AL methods proceed sequentially by splitting
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the budget in several cycles. Here we consider the batch-mode variant [117], which
annotates b samples per cycle, since this is the only feasible option for CNN training.
At the beginning of each cycle, the model is trained on the labeled set of samples
DL . After training, the model is used to select a new set of samples to be annotated
at the end of the cycle via an acquisition function. The selected samples are added to
the labeled set DL for the next cycle and the process is repeated until the annotation
budget b is spent. The acquisition function is the most crucial component and
the main difference between AL methods in the literature. In the remainder of this
section, we describe our contributions to acquisition functions.

4.3.2 Motivation

Most active learning methods propose efficient sampling methods that are class ag-
nostic. The underlying assumption is that the distribution of train and test datasets
are uniform. However, in real world scenarios, where the datasets might be heavily
imbalanced, the methods suffer from biased sampling towards the majority class.
AL methods tend to sample more from frequent classes and less from minority
classes which consequently leads to biased predictions and a performance drop.
Fig. 4.2 presents an example of a such dataset with various AL methods (see Fig.
4.8,4.9,4.10 for more distributions). As it can be seen, the distribution of samples
selected by both informative and representative based methods follow the distribu-
tion of the unlabeled dataset. Moreover the imbalance of selected samples grows
across the cycles. It is known that when we aim for good performance on all classes
these imbalanced training sets are suboptimal [28, 60]. We tackle the problem of
class imbalance in the remainder of this section.

4.3.3 Reducing Class Imbalance

A balanced set of samples requires an equal number of samples per class. Since we
have no access to the class labels, we make an estimate of distribution of samples
by using a probability matrix. Assume we have |DU | = N unlabeled samples in C
categories. We use the classifier to output the softmax probability matrix P on the
unlabeled samples:

P =


p11 p12 ... p1C

p21 p22 ... p2C
...

...
. . .

...
pN 1 pN 2 ... pNC

 ∈ RN×C (4.1)

where each row sums to 1. Similar to [37], we use variable zi ∈ {0,1} associated to
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sample i to indicate whether a sample i is selected or not. To measure the distance
between the estimated distribution and the desired distribution we employ `1 norm
as:

`1(Ω,P T z) = ‖Ω(c)−P T z‖1. (4.2)

Here Ω(c) is vector with components specifying the number of required samples
from each class in order to achieve balance at cycle c. Given the labels of samples
selected in previous cycles, it is straightforward to compute the samples required at
cycle c:

Ω(c) = [ω1,ω2, ...,ωC ], (4.3)

where,

ωi = max(
cb +b0

C
−ni ,0), (4.4)

b is the budget per cycle, b0 is the size of the initial labeled set, c ∈ {1,2,3, ...} denotes
the cycle, and ni is the number of samples selected from class i in previous cycles.
Condition 4.4 avoids oversampling from a particular class. To obtain Ω at cycle
c = 1 for instance, given that we start the AL cycles from uniform initial set with
ni = b0/C we have:

Ω(1) = b

C
1C×1 (4.5)

In the following, we will minimize Eq. 4.2 to encourage the selection of class-
balanced samples.

4.4 Class Balanced Active Learning

In this section, we introduce the Class Balanced Active Learning (CBAL) formulation
for classification.

4.4.1 Informativeness

Entropy We describe our optimization framework that selects the most uncertain
samples while seeking to balance the number of samples over classes. Based on
informativeness approach, given the probability matrix the goal is to find samples
that are most uncertain for the model. To measure the uncertainty we use En-
tropy [29] as an information theory measure that captures the average amount of
information contained in the predictive distribution, attaining its maximum value
when all classes are equiprobable. Given the softmax probabilities, the entropy of a
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sample is computed as:

H =−
C∑

i=1
pi log pi . (4.6)

We aim to select samples with maximum entropy. Consequently, the sum of candi-
dates’ entropy should also be maximized. In matrix notation form, this is expressed
as: ∑

{ j |z j =1}
H(x j ) =−zT (P ¯ log(P ))1C×1, (4.7)

where z is all-ones column vector and ¯ denotes element wise multiplication. 1C×1

is an all-ones column vector. In our objective we will minimize the negative entropy,
which is equal to maximizing the entropy.

Finally, we combine the informative and balancing objectives in a single opti-
mization problem given as:

min
z

zT (P ¯ log(P ))1C×1 +λ‖Ω(c)−P T z‖1

s.t. zT1N×1 = b, zi ∈ {0,1}, ∀i = 1,2, ..., N
(4.8)

where λ is a parameter that regularizes the contribution of the balancing term in
the objective. Minimizing the cost in Eq. 4.8 encourages to select sufficient number
of samples per class while choosing the most informative ones. The cost function
consists of an affine term and a `1 norm that are both convex, and subsequently
their linear combination is also convex. However, as the constraint is non-convex
the optimization problem becomes non-convex. The underlying problem is Binary
Programming that can be optimally solved by an off-the-shelf optimizer using LP
relaxation and the branch and bound method. Algorithm 10 presents the AL cycles
using our approach.

Regularizer λ. Next, we analyze the effect of varying parameter λ on the cost
function. We start with a model trained on initial labeled samples of CIFAR100
dataset. Then, for every λ in range (0,3) the cost function in Eq. 4.8 is minimized.
Fig. 4.4 illustrates the changes in entropy loss and the `1 loss as the components
of the cost function with respect to λ. For comparison purposes, the horizontal
lines represent the same losses measured on samples given by standard entropy
and entropy L1-pseudo label methods. The latter uses the hard labels given by the
model to unlabeled samples also known as "Pseudo Labels" for balancing. See Fig.
4.7 for more details and performance evaluation of Entropy-L1-Pseudo Label. As
can be seen, greater λ reduces entropy, `1, and L1scor e (introduced in 4.5.1). It is
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Algorithm 1 Class Balancing AL

Input: Unlabeled Pool DU , Total Budget B , Budget Per Cycle b,
Initialize: Initial labeled pool |DL | = b0,c = 1

1: while |DL | < B do
2: Train CNN classifierΘ on DL

3: UseΘ to compute probabilities for x ∈DU

4: ComputeΩ(c) from Eq. 4.3
5: Solve 4.8 or Algorithm 2 for greedy, to obtain z
6: Query z to ORAC L E

7: DL ←DL ∪ z, DU ←DU \ z
8: c ← c +1
9: end while

10: return DL ,Θ

notable that the samples selected with greater λ are more balanced but at the cost
of lower entropy. As a result, there is a trade-off between balancedness and entropy
of samples.

Variational Adversarial Active Learning (VAAL) VAAL [118] is considered to be
one of the current state-of-the-art algorithms on active learning. This model uses a
variational autoencoder to map the distribution of labeled and unlabeled data to
a latent space. A binary adversarial classifier (analogous to a GAN discriminator)
is trained to predict if an image belongs to the labeled or the unlabeled pool. The
unlabeled images which the discriminator classifies with lowest certainty as belong-
ing to the labeled pool are considered to be the most representative with respect to
other samples which the discriminator thinks belong to the labeled pool. Thus, the
images labeled by the discriminator with lower certainty are sampled to be labeled
in the next cycle. Considering the uncertainty estimate u of the discriminator, we
can encourage finding a balanced sample set by minimizing:

min
z

zT u +λ‖Ω(c)−P T z‖1

s.t. zT1N×1 = b, zi ∈ {0,1}, ∀i = 1,2, ..., N
(4.9)

Bayesian Active Learning with Disagreement BALD method chooses samples
that are expected to maximise the information gained about the model parameters.
In particular, it select samples that maximise the mutual information between pre-
dictions and model posterior [44]. It approximates Bayesian inference by drawing
Monte Carlo sampling via dropout. Similar to our previous approach, we summa-
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Figure 4.3 – Class balanced sampling. Class distribution for Entropy and KCenterGreedy
for several active learning cycles on imbalanced CIFAR10 (IF= 0.3.). Our proposed class-
balancing (CB) method results in a improved class-balance for both methods.

rize the mutual information assigned to samples into a vector and incorporate into
our optimization problem.

4.4.2 Representativeness

Representativeness-based methods aim to increase the diversity of the selected
batch [115]. These active learning approaches select the samples iteratively one at
a time. In fact, every selected sample influences the next one. Therefore, a method
that integrates greedy selection while maintaining the class balance of samples is of
great interest. For this reason, we present the greedy class balancing algorithm that
incorporates balancing in the sample selection.

We focus on a prominent method of this approach namely KCenterGreedy,
which is a greedy approximation of KCenter problem also known as min-max facil-
ity location problem [134]. Our aim is to find b samples having maximum distance
from their nearest labeled samples while keeping the samples class-balanced. Simi-
lar to [115], we compute the embeddings for unlabeled samples via a deep neural
network. Specifically, we employ the model for inference on unlabeled samples and
consider the penultimate fully connected layer as the visual embedding. Then, we
compute the geometrical distances between the representations in the embedding
space and construct the distance matrix D . Given N unlabeled and L labeled sam-
ples, di j ∈ DN×L is the euclidean distance between the embeddings of unlabeled
sample i to labeled sample j . The algorithm 8 presents the KCenterGreedy sam-
ple selection combined with class balancing. We propose similar cost function to
Eq.4.8 for the greedy sampling. In the algorithm P T z represents the cost of already
selected samples and matrix Q represents the unlabeled samples to choose from.
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Figure 4.4 – The effect of λ on L1 and entropy losses in the cost function 4.8.

The broadcasting within the L1 norm is for the consistency across dimensions of
labeled samples, unlabeled samples and thresholds. Although here we integrated
the balanced sampling with KcenterGreedy, our method is general and applicable
to any greedy acquisition method.

4.5 Experiments

4.5.1 Experimental Setup

We evaluate our method on three image classification benchmarks and the imbal-
anced variants. The initial labeled set DL consists of 10% of the training dataset
that is uniformly selected from all classes at random. At each cycle we start with
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Algorithm 2 Greedy Class Balancing Selection

Input: Softmax output PN×C , Distance Matrix DN×L , Balancing threshold ΩC×1,
Regularizer λ, Budget Per Cycle b

Initialize: z(0) = 0N×1, Q = P
1: for i = 0 : b −1 do

2: d (i )
N×1 ← mi n(D, axi s = 1) . for each unlabeled sample find the nearest

labeled sample

3: ψ← ar g mi n(−d (i )
(N−i )×1 +λ‖Ω(c)−QT

C×(N−i ) −P T
C×N z(i )11×(N−i ))‖T

1

4: z(i+1)(ψ) ← 1 . select the sample
5: Q ← P (z(i ) = 0, :) . keep the remaining unlabeled samples in Q

6: D ← D(N−i )×(L+i ) . update D by removing a row and adding a column cor-
respond to newly selected sample

7: end for
8: return z(b)

our base model either from scratch or, in case of Tiny-imagenet, we start from a
pretrained imagenet model. We train the model in c cycles until the budget B is
exhausted. The budget per cycle for all experiments is 5% of the original dataset.

Datasets. To evaluate our method, we use CIFAR10 and CIFAR100 [77] datasets
with 50K images for training and 10K for test. CIFAR10 and CIFAR100 have 10
and 100 object categories respectively and an image size of 32×32. To evaluate
the scalability of our method we evaluate on Tiny ImageNet dataset [80] with 90K
images for training and 10K for testing. There are 200 object categories in Tiny
ImageNet with an image size of 64×64.

Long-Tailed Datasets. To verify our approach on imbalanced datasets, we make
the CIFAR10, CIFAR100 and Tiny ImageNet class-imbalanced. Again, we reserve
10% of samples of the three datsasets for initial labeled set. As in [27] we create long-
tailed datasets with the remaining 90% by randomly removing training examples.
In particular, the number of samples drops from y-th class is ny · IF where ny is the
original number of training samples in class y and the imbalance factor IF ∈ (0,1).
For the construction of long-tailed datasets we apply IF to half of the classes, and
use IF ∈ {0.1,0.3}.

Baselines. We compare our method with Random sampling and several informa-
tive and representative-based approaches including Entropy sampling, KCenter-
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Greedy, VAAL, BALD and Core-set. In order to make a fair comparison with the
baselines, we used their official code and adapted them into our code to ensure an
identical setting.

Performance Evaluation. We measure the accuracy on the test set to evaluate the
performance of the model. Results for all experiments are averaged over 3 runs.
For each method we plot the average performance for all runs with vertical bars to
represent the standard deviation. To measure the balancedness of selected samples,
we use L1_scor e by computing `1 distance between samples’ distribution and
uniform distribution. In order to have a measure ranging from 0 to 1, we normalize
`1 with the factor obtained as following:

`1([b,0, , ..,0], [
b

C
, ...,

b

C
]) =

|b − b

C
|+ |0− b

C
|+ ...+|0− b

C
| = 2b(C −1)

C
.

(4.10)

The first argument represents the distribution in which the entire budget b is spent
to sample from a single class while the second argument represents the uniform
sampling.

Implementation details. Our method is implemented in PyTorch† [100]. We start
with Resnet18 [57] model trained from scratch every cycle. For Tiny-Imagenet
dataset however we start with pretrained ImageNet model and Resnet101. All the
models are trained with SGD optimizer with momentum 0.9 and an initial learning
rate of 0.02 and 0.01 for CIFAR10/100 and Tiny ImageNet respectively. We train
CIFAR datasets for 100 epochs and reduce the learning rate by a factor of 0.5 once
at 60 and again at 80 epochs. In the case of Tiny ImageNet we reduce the learning
rate at 10, 15, 20, 25 epochs by factor of 0.5 training for a total of 30 epochs. During
training, we apply a standard augmentation scheme including random crop from
zero-padded images, random horizontal flip, and image normalization using the
channel mean and standard deviation estimated over the training set. We set the
regularizer λ based on the analysis in 4.4 specifically for each method. We choose
the smallest λ after which the L1 loss does not diminish further. Once we chose
λ we keep it fixed for that method across the experiments. To efficiently solve the
optimization problem we used python CVXPY [33] with Gurobi solver [51].

†Upon acceptance, we will release the code for our method.
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Figure 4.5 – Performance evaluation. Results for several active learning methods on CI-
FAR10 for different imbalance factors (IF).

4.5.2 Experimental Results

Performance on CIFAR10. Fig. 4.3 provides an evaluation of the class balancing
technique on Entropy and KcenterGreedy. The distribution of samples selected by
Class Balanced (CB) methods evidently remain close to the uniform compared to
the baselines across cycles.

Fig. 4.5 presents the quantitative results on CIFAR10. Dashed curves represent
the standard methods and solid curves represent the methods equipped with class-
balancing. We start by evaluating the performance of the methods on the balanced
(original) dataset denoted by IF=1. We observe in Fig. 4.5.a that the addition of
class balancing gives similar results compared to the standard methods. However,
for the case of VAAL, class-balancing results in notable improvements. Next, we
evaluate the performance of class-balancing on the imbalanced CIFAR10 dataset
where IF=0.3. Fig. 4.5.b illustrates clearly how class-balancing is beneficial for all the
methods across the cycles. As can be seen, the class-balanced variants constantly
improve the performance of both informative and representative based baselines.
Regarding the active learning gain, Entropy-CB achieves the performance of 86%
whereas Random requires almost 10% more annotation equivalent to 5K images to
achieve the same performance. In our experiments CoreSet and KCenterGreedy-CB
perform similarly on the balanced dataset (IF=1). However, when the dataset is
imbalanced (IF=0.3 and IF=0.1) the performance of CoreSet degrades compared to
KCenterGreedy-CB. As CoreSet is a MIP (Mixed Integer Programming) problem, our
technique cannot be applied to this method.

Fig. 4.5.c illustrates the performance of methods on a severely imbalanced
dataset where IF=0.1. We observe a considerable improvement in methods with
class balancing over the baselines. In particular VAAL-CB achieves a growing im-
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provement of 1% on average over VAAL across the cycles. See table 4.1 for the details
of performance gains over baselines.

Imbalance Factor Methods
Cycles

1 2 3 4

IF=0.1
Entropy CB(%) 0.54 0.86 0.57 0.27
KcenterGreedy CB(%) 0.84 0.44 0.77 0.77
VAAL CB(%) 0.57 0.85 1.08 1.19

IF=0.3
Entropy CB(%) 0.40 1.11 0.31 0.08
KcenterGreedy CB(%) 0.31 0.47 0.53 0.34
VAAL CB(%) 0.28 0.24 0.42 0.91

IF=1
Entropy CB(%) 0.00 0.027 -0.15 -0.12
KcenterGreedy CB(%) 0.19 0.14 0.03 0.05
VAAL CB(%) 1.08 0.68 0.47 0.29

Table 4.1 – Performance gain over AL baselines on CIFAR 10.

Performance on CIFAR100. Fig. 4.6 presents the performance of the baselines
and class-balanced counterparts on the CIFAR100 dataset. As can be seen in
Fig. 4.6.a, the class balanced methods improve baselines marginally even though the
dataset is balanced (IF=1). The improvements of class-balanced methods improve
for the lower IF values (see Fig 4.6.b and c).

Notably, VAAL-CB achieves 3% improvement on average over the VAAL baseline
in Fig. 4.6.b. See Table 4.2 for a detailed gain analysis. To put these improvements
into perspective, the gain obtained by class balancing methods over the baselines
is comparable to the improvement of those methods over Random. Specifically,
Entropy-CB after 4 cycles achieves over 1% improvement over the Entropy baseline
regardless of imbalance factor of the dataset.

Entropy L1 pseudo Label Fig. 4.7 presents the performance of another Entropy
variation on CIFAR100 for comparison. "Entropy L1 Pseudo Label" benefits from
"pseudo labels" defined as the most probable labels that the model assigns to unla-
beled samples (the prediction of the model is then converted to a one-hot vector).
This method utilizes the pseudo labels to balance the distribution of samples and
select certain number of samples (specified by Ω in Eq.3) from each class with
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Figure 4.6 – Performance evaluation. Results for several active learning methods on CI-
FAR100 for different imbalance factors (IF).
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Figure 4.7 – Performance evaluation. Comparing Entropy standard, Entropy balanced by
Pseudo Labels against the proposed Entropy CB.

maximum entropy. The experiments show that Entropy-CB outperforms Entropy
L1 Pseudo Label both in terms of active learning performance (see Fig. 4.7) and the
ability of class balancing (see λ tuning in Section 4).

Distribution of selected samples on CIFAR100 Fig. 4.8, 4.9 and 4.10 show the
distribution of samples selected by AL methods on original (IF=1) and imbalanced
(IF=0.3 and IF=0.1) CIFAR100 respectively. The L1 score above the distributions
(introduced in Section 5.1) measures the `1 distance from uniform distribution in
the corresponding cycle. As can be seen, CB methods are remarkably effective in
balancing the distribution of selected samples regardless of imbalance factor. It is
worth mentioning in Fig 4.8 although the dataset is balanced, AL baselines (Entropy
and KCenterGreedy) result in biased sampling. In contrast, CB methods provide

62



4.6. Conclusions

Imbalance Factor Methods
Cycles

1 2 3 4

IF=0.1
Entropy CB(%) 1.28 2.23 1.50 1.43
KcenterGreedy CB(%) 1.03 0.92 1.04 0.93
VAAL CB(%) 0.37 1.86 2.32 2.23

IF=0.3
Entropy CB(%) 1.16 1.76 1.44 1.63
KcenterGreedy CB(%) 0.28 0.76 1.52 1.70
VAAL CB(%) 2.47 2.42 3.23 3.29

IF=1
Entropy CB(%) 1.37 1.40 1.96 1.82
KcenterGreedy CB(%) 0.55 1.15 1.03 0.48
VAAL CB(%) 1.01 0.11 0.86 1.53

Table 4.2 – Performance gain over AL baselines on CIFAR 100.

more balanced samples across all cycles and imbalance factors.

Performance on Tiny ImageNet. Tiny ImageNet is a challenging large scale dataset
which we use to evaluate the scalability of our approach. Also to evaluate the gener-
ality of our approach we show the performance of class balancing applied to BALD
as a Baysian approach‡. Table4.3 shows evidently the addition of class balancing
to Entropy and BALD boost their performance on both balanced and imbalance
datasets. Fig. 4.11 illustrates the performance of class balanced (CB) methods and
AL baselines. As can be seen, both Entropy-CB and BALD-CB outperform the cor-
responding baselines. Notably in Tiny ImageNet, Random sampling serve as a
competitive baseline. Nevertheless the addition of class balancing made Entropy-
CB superior in almost all active learning cycles across different imbalance factors.

4.6 Conclusions

In this chapter, we have investigated the influence of class-imbalance on active
learning performance. Class-imbalance can be caused by an imbalanced unlabeled
data pool or by the sampling bias present in active learning algorithms. When

‡Representativeness-based methods are infeasible on large datasets.
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Figure 4.8 – Distribution of samples selected by our proposed method (CB) compared to
baselines on CIFAR100 with IF=1.

aiming for good performance of the final classifier on all classes, class-imbalance
has a detrimental effect. Therefore, to address the class-imbalance we proposed an
optimization-based method that aims to balance classes. The method is general
and can be combined with both the informativeness and representativeness criteria
often used in active learning. Extensive experiments, on several existing datasets
show that our method improves results of existing active learning methods. Our
results suggests that class-balancing should be an important criteria when selecting
samples, and that it should be considered next to the long-standing active learning
criteria of informativeness and representativeness.
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Figure 4.9 – Distribution of samples selected by our proposed method (CB) compared to
baselines on CIFAR100 with IF=0.3.
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Figure 4.10 – Distribution of samples selected by our proposed method (CB) compared
to baselines on CIFAR100 with IF=0.1.
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Figure 4.11 – Performance evaluation. Results for active learning methods on Tiny Ima-
geNet with different imbalance factors (IF).

Imbalance Factor Methods
Cycles

1 2 3 4

IF=0.1
Entropy CB (%) 0.48 0.63 0.21 0.58
BALD CB(%) 0.31 0.10 0.08 0.21

IF=0.3
Entropy CB (%) 0.34 -0.04 0.52 0.19
BALD CB(%) 0.07 0.07 0.36 0.19

IF=1
Entropy CB(%) 0.35 0.62 0.56 0.74
BALD CB(%) 0.10 0.21 1.11 0.51

Table 4.3 – Performance gain over AL baselines on Tiny ImageNet.
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5 Reducing Label Effort: Self-Supervised
meets Active Learning *

Summary: Active learning is a paradigm aimed at reducing the annotation
effort by training the model on actively selected informative and/or representative
samples. Another paradigm to reduce the annotation effort is self-training that
learns from a large amount of unlabeled data in an unsupervised way and
fine-tunes on few labeled samples. Recent developments in self-training have
achieved very impressive results rivaling supervised learning on some datasets.
The current work focuses on whether the two paradigms can benefit from each
other. We studied object recognition datasets including CIFAR10, CIFAR100 and
Tiny ImageNet with several labeling budgets for the evaluations. Our experiments
reveal that self-training is remarkably more efficient than active learning at
reducing the labeling effort, that for a low labeling budget, active learning offers
no benefit to self-training, and finally that the combination of active learning
and self-training is fruitful when the labeling budget is high. The performance
gap between active learning trained either with self-training or from scratch
diminishes as we approach to the point where almost half of the dataset is
labeled.

5.1 Introduction

Deep learning methods obtain excellent results on large annotated datasets [79].
However, labeling large amounts of data is labor-intensive and can be very costly.
Therefore, the field of active learning explores algorithms that reduce the amount
of labeled data that is required. This is achieved by labeling those unlabeled data
samples (from the unlabeled data pool) that are considered most useful for the
machine learning algorithm. The field of active learning can be roughly divided into
two subfields. Informativeness-based methods aim to identify those data samples
for which the algorithm is most uncertain [17, 50, 140]. Adding these samples to
the labeled data pool is expected to improve the algorithm. Representativeness-

*This chapter is based on a publication in the IEEE/CVF International Conference of Computer
Vision Workshops, 2021 [10]
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based methods aim to label data in such a way that for all unlabeled data there is
a ‘representative’ (defined based on distance in feature space) labeled sample [36,
115]. Active learning methods are typically evaluated by supervised training of the
network on only the labeled data pool: the active learning method that obtains
the best results, after a number of training cycles with a fixed label budget, is then
considered superior.

Self-supervised learning of representation for visual data has seen stunning
progress in recent years [19, 20, 21, 48, 55], with some unsupervised methods being
able to learn representations that rival those learned supervised. The main progress
has come from a recent set of works that learn representations that are invariant
with respect to a set of distortions of the input data (such as cropping, applying
blur, flipping, etc). In these methods, two distorted versions, called views, of the
image are produced. Then the network is trained by enforcing the representations
of the two views to be similar. To prevent these networks to converge to a trivial
solution different approaches have been developed [48, 145]. The resulting repre-
sentations are closing the gap with supervised-learned representation. For some
downstream applications, such as segmentation and detection, the self-supervised
representations even outperform the supervised representations [149].

As discussed, self-supervised learning can learn high-quality features that are
almost at par with the features learned by supervised methods. As such it has greatly
improved the usefulness of unlabeled data. The standard active learning paradigm
trains an algorithm on the labeled data set, and based on the resulting algorithm
selects data points that are expected to be most informative for the algorithm in
better understanding the problem [117]. In this standard setup, the unlabeled
data is not exploited to improve the algorithm. Given the huge performance gains
that are reported by applying self-supervised learning, we propose to re-evaluate
existing active learning algorithms in this new setting where the unlabeled data is
exploited by employing self-supervised learning.

Self-supervised learning and active learning both aim to reduce the label-effort.
Based on our experiments we conclude the following:

• In our evaluations on three datasets, Self-training is much more efficient than
AL in reducing the labelling effort.

• Self-training + AL substantially outperforms AL methods. However, the per-
formance gap diminishes for large labeling budget (approximately 50% of the
dataset in our experiments).

• Based on results of three datasets, Self-training+AL marginally outperforms
self-training but only when the labeling budget is high.
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In general, our results suggest that self-supervised learning techniques are more
efficient than active learning to reduce the label effort. A small additional boost can
be obtained from active learning when reaching the high label budget.

This chapter is organized as follows: In section 5.2 we describe the related work.
Next, in section 5.3 we introduce the proposed framework. Section 5.4 and 5.5
present the experimental setup and the evaluations on the datasets we used. Finally,
section 5.6 discusses an interesting finding we observed in our work.

5.2 Related work

Active learning. Active Learning has been widely studied in various applications
such as image classification [25, 43, 45], image retrieval [5], image captioning [32],
object detection [155], and regression [42, 69].

Over the past two decades, several strategies have been proposed for sample
query, which can be divided in three main categories: informativeness [8, 17, 44,
50, 140], representativeness [113, 115] and hybrid approaches [63, 138]. A com-
prehensive survey of these frameworks and a detailed discussion can be found in
[117].

Among all the aforementioned strategies, the informativeness-based approaches
are the most successful ones, with uncertainty being the most used selection cri-
teria used in both bayesian [44] and non-bayesian frameworks [85]. In [44], they
obtain uncertainty estimates through multiple forward passes with Monte Carlo
Dropout, but it is computationally inefficient for recent large-scale learning as it
requires dense dropout layers that drastically slow down the convergence speed.
More recently, [3] measures the uncertainty of the model by estimating the expected
gradient length. On the other hand, [83, 142] employ a loss module to learn the loss
of a target model and select the images based on their output loss.

Representativeness-based methods rely on selecting examples by increasing
diversity in a given batch [36]. The Core-set technique [115] selects the samples by
minimizing the Euclidian distance between the query data and labeled samples in
the feature space. The Core-set technique is shown to be an effective representation
learning method, however, its performance is limited by the number of classes in
the dataset. Furthermore, Core-set, like other distance-based approaches, are less
effective due to feature representation in high-dimensional spaces since p-norms
suffer from the curse of dimensionality [35]. In a different direction, [118] uses an
adversarial approach for diversity-based sample query, which samples the data
points based on the discriminator’s output, seen as a selection criteria. Following
the same strategy, improved versions have been proposed in [75, 146].
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Figure 5.1 – Overview of active learning framework enhanced by self supervised pre-
training. The framework consists of 3 stages: (i) Self supervised model is trained on the entire
dataset. (ii) Given the frozen backbone and few labeled data, a linear classifier or an SVM is
fine-tuned on top of the features in supervised way. (iii) Running the model as inference on
the unlabeled data and sort the samples from least to highest informative/representative via
acquisition function. Finally the top samples are queried to oracle for labeling and added to
labeled set. Stages 2 & 3 are repeated until the total labeling budget finishes.

Self-supervised learning. In self-supervised learning, an auxiliary task is intro-
duced. The data for this task should be readily available without the need for any
human annotation. The auxiliary task allows to perform unsupervised learning and
learn feature representations without the need of labels. Doersch et al. [34] intro-
duce the task of estimating the relative position of image regions. Other examples
include coloring gray-scale images [148], inpainting [102], and ranking [91].

In recent years, self-supervised learning has seen a significant performance
jump with the introduction of contrastive learning [19], where representations
are learned that are invariant with respect to several image distortions. Similar
samples are created by augmenting an input image, while dissimilar are chosen by
random. This connects to some extent unsupervised setting to previous contrastive
methods used in metric learning [52, 133]. To make contrastive training more
efficient MoCo method [55] and the improved version [20] use memory bank for
learned embeddings what helps with an efficient sampling. This memory is kept in
sync with the rest of the network during the training time by using a momentum
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encoder. Approach named SwAV [18] use online clustering over the embedded
samples. In this method negative exemplars are not defined. However, others
cluster prototypes can play this role. Even more interesting are methods without any
explicit contrastive pairs. BYOL [48] propose asymmetric network by introducing of
an additional MLP predictor between two branches’ outputs. One of the branch is
keep "offline" - updated by a momentum encoder. SimSiam [21] goes even further
and presents a simplified solution without a momentum encoder. It comparably
good to other methods and does not need a big mini-batch size. A follow up work of
BarlowTwins [145] proposes as simple solution as SimSiam with the use of a different
loss function - a correlation based one for each pair in current training batch. Here,
negatives are implicitly assumed to be in each mini-batch. No asymmetry is used
in the network at all, but a bigger embedding size and mini-batches are proffered in
comparison to SimSiam.

Previous works that integrated Active Learning and Self-supervised learning
include [101, 154]. [154] proposes a query based graph AL method for datasets
having structural relationships between the samples coming from few classes. In
the context of exploration-driven agent, [101] uses Active Learning and Self-training
to learn a policy that allows it to best navigate the environment space.

5.3 Preliminaries

The main objective of this chapter is to evaluate and compare the effectiveness of
active learning when combined with recent advances in self-supervised learning.
For this purpose we have developed a framework that comprises two parts: self
supervised pre-training and active learning (see Figure 5.1). Primarily, we train the
self supervised model as the pretrained model on the unlabeled samples. Next, we
use an initial labeled data to finetune a linear classifier on top of pre-trained model.
Then we run active learning cycles using the fine-tuned model to select the most
informative and/or representative samples and query them for labeling. Hence the
original dataset becomes partially labeled. We ablate the self-supervised and active
learning components to study their benefits.

We start pretraining our model with SimSiam [21] self-supervised model. The
model is based on siamese network trying to maximize the similarity between two
augmentations of one image, subject to certain conditions for avoiding collapsing
solutions. This enables us to obtain meaningful representations without using
negative sample pairs. The rich representations could also potentially help the
representative based active learning methods.

In the remainder of this section we describe the two components of the experi-
mental framework in detail.
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5.3.1 Active Learning

Given a large pool of unlabeled data DU and a total annotation budget B , the goal
is to select b samples in each cycle to be annotated to maximize the performance
of a classification model. In general, AL methods proceed sequentially by split-
ting the budget in several cycles. Here we consider the batch-mode variant [117],
which annotates b samples per cycle, since this is the only feasible option for CNN
training. At the beginning of each cycle, the model is trained on the labeled set of
samples DL . After training, the model is used to select a new set of samples to be
annotated at the end of the cycle via an acquisition function. The selected sam-
ples are added to the labeled set DL for the next cycle and the process is repeated
until the annotation budget is spent. The acquisition function is the most crucial
component and the main difference between AL methods in the literature. In the
experiments we consider several acquisition functions including Informativeness
[29] and Representativeness based methods [115, 118].

5.3.2 Self-supervised Learning

In this section, we shortly introduce self-supervised learning without contrastive
sampling and more particularly SimSiam [21], the architecture we employ in this
chapter.

For a given dataset D, contrastive learning assumes sampling pairs of data points
in order to create a good representation. Two main types of pairs are considered:
semantically similar pairs (x, x+) – provide an information about some form of
close relation of data (based on labeled or unlabeled data); negative pairs (x, x−) –
in contrast to positives ones, two non-related samples are given. It is presumed that
for a given x, x− is dissimilar to x+. Then, contrastive losses [52, 133] learn a new
embedding space where a distance between positive pairs is smaller than negatives
ones with some margin, e.g. d(x, x+) < d(x, x−)+m for triplet loss [133]. That is a
core of many metric learning methods [74, 96], where existing labels are used for a
semantic similarity check.

Contrastive learning is also often applied in self-supervised learning methods.
These methods aim to learn a semantically rich feature representation without the
need of any labels. Different augmented views of the same image x form positive
samples, while augmentation of different ones provide negatives. This is the base of
SimCLR [19] method. However, it’s shown that methods without explicit negative
sampling prove competitive performance as well, e.g. SimSiam [21] or BYOL [48].
In such methods some additional architecture changes are usually applied, like
using asymmetry with an additional predictor network as presented in Figure 5.2
for SimSiam.
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Figure 5.2 – SimSiam architecture Two augmented views of one image are processed by
the same encoder network (a backbone plus a projection MLP). Then a prediction MLP is
applied on one side, and a stop-gradient operation is applied on the other side. The model
maximizes the similarity between both sides.

The main part is an encoder (CNN based network), learned end-to-end in an
asymmetric Siamese architecture, where one branch got an additional predictor
(MLP network) which outputs aims to be as close as possible to the other branch.
The second branch is not updated in a backward propagation while training. For
the similarity function a negative cosine distance is minimized given as:

L =D(p1, z2)/2+D(p2, z1)/2 (5.1)

D(p1, z2) =− p1∥∥p1
∥∥

2

· z2

‖z2‖2
, (5.2)
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where z1, z2 are encoded values respectively for x1 and x2 – two different aug-
mented views of the same image x. p1 and p2 are encoded values additionally
passed by a predictor network. There is no contrastive term in this approach, only
the similarity is checked and enforced during learning. In SimSiam, besides simplic-
ity, neither negatives mining nor large mini-batches are needed which significantly
reduces the GPU requirements. This makes it a good fit for the evaluation proposed
in this chapter.

5.4 Experimental Setup

To study the influence of the initial model, various amounts of initial labeled data
and budget sizes are evaluated. For the initial labeled set, we considered 1%, 2%
and 10% of the entire dataset that are uniformly selected from all classes at random.
For one of the datasets we also evaluate 0.1% and 0.2% budget sizes. Before starting
the active learning cycles we train the self-supervised model. Then we use the
backbone as encoder from SimSiam architecture, freeze the weights and train a
linear classifier or SVM on top of the backbone so we only finetune the last layer. At
each cycle we start training either from scratch or, in case of self-training, we start
from the pretrained self-supervised backbone. We train the model in c cycles until
the total budget is exhausted. In each experiment the budget per cycle is equal to
initial labeled set.

Datasets. To evaluate various methods, we use CIFAR10 and CIFAR100 [77]
datasets with 50K images for training and 10K for testing. CIFAR10 and CIFAR100
have 10 and 100 object categories respectively and an image size of 32×32. To
evaluate the scalability of the methods we evaluate on Tiny ImageNet dataset [80]
with 90K images for training and 10K for testing. There are 200 object categories in
Tiny ImageNet with an image size of 64×64.

Data Augmentation We use different augmentation policies for self supervised
pre-training and supervised finetuning. [156] discusses how self-training outper-
forms normal pre-training in terms of stronger augmentation. For the self-training
similar to [21] we used Geometric augmentations [135]: RandomResizedCrop with
scale in [0:2; 1:0] and RandomHorizontalFlip. Color augmentation is ColorJitter
with {brightness, contrast, saturation, hue} strength of {0.4, 0.4, 0.4, 0.1} with an
applying probability of 0.8, and RandomGrayscale with an applying probability of
0.2. Blurring augmentation [19] has a Gaussian kernel with std in [0:1; 2:0]. For the
supervised training we used the conventional RandomResizedCrop with scale [0.08,
1.0] and RandomHorizontalFlip.
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Baselines. For the evaluation baselines we compared with Random sampling
and several informative and representative-based approaches including Entropy
sampling, KCenterGreedy, VAAL and SVM Min Margin. Below we describe the
details of the methods we used.

Entropy [29] is an information theory measure that captures the average amount
of information contained in the predictive distribution, attaining its maximum value
when all classes are equally probable. Entropy sampling selects the most uncertain
samples with highest entropy.

As a prominent representative method we evaluate KCenterGreedy, which is a
greedy approximation of KCenter problem also known as min-max facility location
problem [134]. The method selects samples having maximum distance from the
nearest labeled samples in the embedding space. We compute the embeddings by
running the self-trained model on unlabeled samples.

VAAL [118] is one of state-of-art methods that uses a variational autoencoder
to map the distribution of labeled and unlabeled data to a latent space. A binary
adversarial classifier is trained to predict if an image belongs to the labeled or
the unlabeled pool. The unlabeled images which the discriminator classifies with
lowest certainty as belonging to the labeled pool are considered to be the most
representative. We used their official code and adapted them into our code to
ensure an identical setting. To adapt VAAL for the self-training experiment we
initialized and froze the backbone of the task learner.

SVM Min Margin [123] learns a linear SVM on the existing labeled data and
chooses the samples that are closest to the decision boundary. To generalize SVM
for the multi-class classification problem we adopt it by querying the samples that
reside in margin area of decision boundaries.

Implementation details. Our method is implemented in PyTorch [100]. We train
Resnet18 [57] that is widely used on CIFAR10 and CIFAR100 datasets. For the self-
supervised training, the models are trained with SGD optimizer with momentum
0.9 and base learning rate of 0.03. As in [21] we train models for 800 epochs with
batch-size of 512. We use a weight decay of 0.0001 for all parameter layers, including
the BN scales and biases, in the SGD optimizer.

Given the pre-trained network, we train a supervised linear classifier on frozen
features, which are from ResNet’s global average pooling layer. The linear classi-
fier training uses base lr=30 with a cosine decay schedule for 100 epochs, weight
decay=0, momentum=0.9, batch size=256 with SGD optimizer.

To implement the SVM for the Min Margin method we used scikit learn python
package [103] with linear kernel and set the regularization parameter to 5 in the
experiments. To handle the multi-class problem, a one-vs-the-rest classification
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scheme is chosen.

5.5 Experiments

To evaluate active learning methods we consider several scenarios in the initial
labeled set and budget sizes. For the simplicity we refer to lower than 2% budget
sizes as low budget regimes. In this section we inspect the contribution of self-
supervised pre-training in active learning.

Performance on CIFAR10. Figure 5.3 shows active learning results on CIFAR10
dataset. The initial and per cycle budgets are 0.1%, 0.2%,1%, 2% and 10% of la-
beled data. The evaluated methods are divided into two groups: (i) methods using
self-supervised pre-training represented by solid lines. (ii) Methods using models
trained from scratch represented by dashed lines. As can be seen, self-training
substantially improves all the sampling methods. In particular at the low budget
regime, self-training drastically reduces the required labeling. Both types of meth-
ods achieve almost the full performance after labeling 50% of data that closes the
gap between the self-supervised and supervised methods. The exact numbers are
in Table 5.1. From the active learning perspective, Random sampling outperforms
AL methods when the budget is less than 1%. However from 1% budget onward,
AL + self-training methods transition to higher performance compared to Random
sampling with self-training. For AL methods, trained from scratch, this transition
happens after labeling 10% of data. Among AL methods with self-training, Entropy
as informativeness method outperforms KCenterGreedy and VAAL. Note that the
greatest active learning gain as a result of using self-training occurs after labeling
30% providing 20% less annotation that is equivalent to 10000 less labeling.

Performance on CIFAR100. Figure 5.4 presents active learning results on CI-
FAR100 dataset. The three set of curves correspond to three initial and per cycle bud-
get sizes: 1%, 2% and 10%. Solid lines represent AL methods using self-supervised
training. While dashed curves correspond to algorithms trained from scratch. As
can be seen, self-training dramatically improves the methods without self training.
In the low budget regime, self-training significantly reduces the required label-
ing. While AL methods w/o self-training achieve comparable performance to self-
trained counterparts as we approach to 50% labeled data, meaning that the impact
of self supervised pre-training diminishes when the budget increases. See Table 5.1
for detailed numbers. This can also be due to reaching almost the full performance.
On CIFAR100, Random sampling outperforms Active learning methods under low
budget regardless of using self-training. None of the studied methods foresee a
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regime where the labeling budget is small, for example, labeling lower than 10%.
Among the AL methods with self-training, representative-based methods perform
better than Entropy as informative-based in low budget. On CIFAR100, the active
learning gain of using self-training appeared almost after labeling 40% of dataset
resulting in 10% less annotation that is equivalent to 5000 less labeling.

Performance on Tiny ImageNet. Tiny ImageNet is a challenging dataset in terms
of diversity of classes. Active learning results on this dataset is presented in Figure
5.4. Similar to CIFAR100, the three set of curves correspond to 1%, 2% and 10%
budget per cycle. Solid lines represent AL methods with self-supervised pre-training
and dashed lines correspond to methods trained from scratch. As in other datasets,
Self-training drastically reduces the required labeling in low budget scheme. As the
labeling increases to 50% AL methods approach the performance of self-trained
counterparts. However, unlike CIFAR datasets, AL methods require more than 50%
labeling to close the performance gap they have from self-trained counterparts.
Among the methods using self training, Random sampling shows superior per-
formance. However, increasing labeled data reduces performance gap from the
AL methods. For AL methods w/o self-training, the labeling budget is required to
exceed 10% to improve upon Random sampling. In general, active learning fails to
perform well under low budget regardless of using self-training. Again AL methods
are not designed for low budget regime. Unless the model is trained from scratch
with greater than 10% labeling budget, we observe no improvement with the usage
of Active learning.

5.6 Discussion

The experiments in the previous section demonstrated that active learning methods
enhanced by self-training do not work well in all budget schemes. However, it might
be possible to estimate budgets above which the AL methods outperform Random
sampling. Our experiments on three object recognition datasets show that there’s
a strong correlation (corr. coeff=0.99) between the number of samples per class
required for AL and the number of classes in a datasets. Figure 5.6 presents the
thresholds for the budget required for active learning to improve upon Random
sampling when uses self-training. This is one interesting finding we observed which
can provide a guideline based on the number of classes in a dataset to decide with a
certain labeling budget whether it’s beneficial to use active learning.
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Methods
Datasets

CIFAR10 CIFAR100

AL w/o Self-training
Entropy 0.908 0.646
KCenterGreedy 0.895 0.641

AL + Self-training

Entropy 0.911 0.649
SVM Min Margin 0.909 0.644
VAAL 0.907 0.648
KCenterGreedy 0.909 0.645

Table 5.1 – Performance of AL methods with and without Self-training at 50% labeling.
For the high labeling budget, the gap between the performances of AL and AL+ Self-training
is diminished.

5.7 Conclusions

This chapter analyzed active learning and self supervised approaches independently
and unified to investigate how they can benefit from each other. Our experiments
demonstrated that self-training is way more efficient than active learning at reduc-
ing the labeling effort. Besides, for a low labeling budget, active learning brings no
benefit to self-training. Finally, the combination of active learning and self-training
is beneficial only when the labeling budget is high. The performance gap between
active learning with and without self-training diminishes as we approach to the
point where almost half of the dataset is labeled.
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Figure 5.3 – AL performance on cifar10 performance comparison between the addition of
self-training to AL methods (solid lines) and AL methods (dashed lines). The initial and per
cycle budget are equal in all the curves.
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Figure 5.4 – AL performance on cifar100 performance comparison between the addition
of self-training to AL methods (solid lines) and AL methods (dashed lines). The initial and
per cycle budget are equal in all the curves.
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Figure 5.6 – Correlation between number of samples per class required for AL and num-
ber of classes in the datasets. Above these budgets, AL outperforms Random sampling in
the self-supervised setting.
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6 Conclusions and Future Work

6.1 Conclusions

Deep learning algorithms are very promising in many visual tasks where large
amount of annotated data is available which are often difficult to obtain. In this
thesis we studied important aspects of active learning methods with the aim of
reducing the annotation effort.

In chapter 2, we introduced a novel active learning approach for object detection
in videos which leverages the temporal coherence. We formulated our approach
in terms of an energy minimization function of a graphical model built on tracked
object detections. Additionally, we introduced a new synthetic dataset specially de-
signed to evaluate active learning for object detection in the context of autonomous
driving. Experimental results conducted on two datasets showed that our approach
outperformed major active learning baselines.

In chapter 3, we proposed an active learning algorithm based on the learning
dynamics of neural networks. We introduced the label-dispersion metric, which
measures label-consistency during the training process. We showed that this mea-
sure obtains excellent results when used for active learning.

In chapter 4, we have investigated the influence of class-imbalance on active
learning performance. Class-imbalance can be caused by an imbalanced unla-
beled data pool or by the sampling bias present in active learning algorithms. To
address the class-imbalance we proposed an optimization-based method that aims
to balance classes. The method is general and can be combined with both the
informativeness and representativeness criteria often used in active learning. Ex-
tensive experiments, on several existing datasets show that our method improves
results of existing active learning methods. Our results suggests that class-balancing
should be an important criteria when selecting samples, and that it should be con-
sidered next to the long-standing active learning criteria of informativeness and
representativeness.

In chapter 5 we analyzed active learning and self supervised approaches inde-
pendently and unified to investigate how they can benefit from each other. Our
experiments demonstrated that self-training is way more efficient than active learn-
ing at reducing the labeling effort. Besides, for a low labeling budget, active learning
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brings no benefit to self-training. Finally, the combination of active learning and
self-training is beneficial only when the labeling budget is high.

6.2 Future work

A drawback of temporal coherence based active learning is that it is computationally
more demanding than the baselines. We plan to minimize the computational
overhead of our system in future research by solving the optimization problem with
efficient algorithms.For future work, we are interested in exploring label-dispersion
for other research fields such as out-of-distribution detection and within the context
of lifelong learning. To further reduce the imbalance of distribution of training
samples selected by active learning method we are interested to employ other
distance metrics such as Wasserstien or L2 distances in our optimization problem.
We are also willing to study the contribution of self-supervised learning in the active
learning for the tasks of object detection and image segmentation. Other lines of
research that we aim to pursue in the future are the application of Active Learning
in unsupervised domain adaptation and multi-modal Active learning.
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