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1 Abstract

Abstract

Since the split with chimpanzees, and especially since the migrations that led

humans to colonize almost every place on Earth, our species has faced frequent

environmental and social changes that have shaped the variation patterns of our

genomes through the action of natural selection. These selection pressures left

signatures in the landscape of genetic variation that can be identified in today’s

genomes. Numerous statistical methods have been proposed to analyze genomic data,

allowing the detection and quantification of molecular adaptation at different temporal

scales and providing essential insights into past and recent human evolutionary history.

The availability of the most comprehensive worldwide nucleotide variation dataset

so far, the 1000 Genomes Project, provides a resource to test population genetics

hypotheses and eventually pinpoint targets of positive selection from the background

evolutionary dynamics of genetic variation.

This thesis aims to trace the shape and strength of positive selection on

1000GP data, mainly focusing on population genetics methods that try to disentangle

the adaptive selection contributing to between species and between populations

diversification. For this purpose, the thesis develops statistical and bioinformatics

approaches to solve issues of major importance in population genomics.

We performed a genome-wide scan of selection on the 1000GP data by surveying

distinctive signatures of genomic variation left by selective events and created an online

catalog of all candidates to facilitate their validation and thorough analysis. The

outlier approach applied here detects sweeps at different historical ages and evidence

of recurrent selection in the human lineage since the split between our species and

chimpanzees. We provide new candidates and bring together studies that locate

repeatedly the same target genes independently of data and methodologies. These

results have been made available in a collaborative, online database, compiling and

annotating adaptation events along with the human evolutionary history, which aims

to be expanded in future studies.

In addition, we reviewed the McDonald and Kreitman test (MKT), one of the

most powerful and robust methods to detect the action of recurrent natural selection

at the DNA level, both at the gene and the genome level. First, although several

modifications of the original MKT have been proposed to account for the potential

biases underlying the MKT, most of these extensions mainly deal with the presence of

slightly deleterious mutations (SDM). While more and more genome-wide analyses have



2 Abstract

been carried out, the simple G-test of the original MKT has become almost deprecated.

For that reason, we present the imputed MKT (impMKT), an MKT extension that

significantly improves gene-by-gene analyses maximizing the information to test the

recurrent positive at the gene level. Second, in addition to SDM, demography, linked

selection and weak adaptation have been repeatedly postulated as the possible cause of

the much lower proportion of adaptive mutations measured by the MKT in humans and

primates. Taking advantage of genome-wide information, we also develop an extension

of the ABC-MK method. Our approach is a simpler and much more computationally

efficient ABC-based inference procedure than the previous one, which accounts for

the DFE of deleterious and beneficial alleles and incomplete recombination between

selected genomic elements. We describe the inference procedure, assess its performance

and robustness, and finally show that it is reasonably robust to non-equilibrium events

or different configurations of adaptive selection. In addition, we present evidence for

a substantial effect of RNA-viruses on human adaptation rates, providing new insight

into the human drivers of adaptation.

Finally, in addition to our collaborative database and computationally efficient

methods, we developed a web server that facilitates MKT analyses in the human lineage

and custom analyses for humans and other species with population genomics data.
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Resumen

Desde que los humanos y chimpancés se separaron evolutivamente, y

posteriormente a través de las migraciones, nuestra especie se ha enfrentado a numerosos

cambios ambientales y sociales. Estas presiones han moldeado los patrones de variación

de nuestros genomas, dejando caracteŕısticas huellas moleculares a lo largo del genoma

que pueden identificarse mediante numerosos métodos estad́ısticos. Dichos métodos han

permitido detectar y cuantificar la adaptación molecular a diferentes escalas temporales,

proporcionando información esencial sobre la historia evolutiva pasada y reciente de

nuestra especie. La disponibilidad del conjunto de datos de variación nucleot́ıdica más

completo hasta la fecha, el Proyecto 1000 Genomas, permite probar hipótesis de la

genética de poblaciones en base a los patrones de variación y finalmente identificar

caracteres sujetos a selección positiva.

Esta tesis tiene como objetivo inferir la forma y la fuerza de la selección

positiva en datos los de 1000GP, centrándose principalmente en métodos estad́ısticos

y bioinformáticos que pueden revelar la selección adaptativa que contribuye a la

diversificación entre especies y entre poblaciones de nuestra especie.

Con este propósito, hemos realizado un escaneo de selección de todo el genoma

en los datos de 1000GP mediante el análisis de improntas distintivas de variación

genómica causados por diferentes sucesos selectivos y creado un catálogo de todas

las regiones genómicas candidatas a estar sujetas a la acción de la selección natural,

para aśı facilitar su validación y análisis exhaustivo. La aproximación presentada

detecta barridos selectivos en diferentes momentos históricos y evidencias de selección

recurrente en el linaje humano desde la división entre nuestra especie y los chimpancés.

Proporcionamos nuevos candidatos y reunimos estudios que localizan repetidamente los

mismos genes independientemente de los datos y las metodoloǵıas. Estos resultados se

han puesto a disposición en una base de datos colaborativa, que recopila y anota eventos

de adaptación junto con la historia evolutiva humana, la cual pretende ampliarse con

estudios futuros.

Además, revisamos la prueba de McDonald y Kreitman (MKT), uno de los

métodos más potentes y robustos para detectar la acción de la selección natural

recurrente a nivel de ADN, tanto a nivel de gen como de genoma. En primer lugar,

aunque se han propuesto varias modificaciones del MKT original para solventar sus

posibles sesgos subyacentes, la mayoŕıa de estas extensiones principalmente tratan

la presencia de mutaciones levemente perjudiciales (SDM). Si bien se han cada vez
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se llevan a cabo más y más análisis a escala genómica, el simple G-test propuesto

por el MKT original está desuso. Por esa razón, presentamos el imputed MKT

(impMKT), una extensión de MKT que mejora significativamente los análisis gen por

gen y maximiza la información para cuantificar la selección positiva a nivel génico. En

segundo lugar, además de SDM, la demograf́ıa, la selección ligada y la adaptación débil

se han postulado repetidamente como causantes de la menor proporción de mutaciones

adaptativas en humanos y primates. Aprovechando la información genómica, hemos

desarrollado una extensión del método ABC-MK. Nuestro enfoque es un procedimiento

de inferencia basado en ABC más simple y eficiente que el anterior, modelando la DFE

de alelos perjudiciales y beneficiosos y la recombinación incompleta entre elementos

genómicos. Describimos el procedimiento de la inferencia, evaluamos su desempeño y

robustez, y finalmente mostramos que es razonablemente robusto frente a eventos de no

equilibrio o diferentes configuraciones de selección adaptativa. Además, presentamos

evidencia de un efecto sustancial de los virus de ARN en las tasas de adaptación humana,

proporcionando una nueva visión de los impulsores humanos de la adaptación.

Finalmente, además de nuestra base de datos colaborativa y métodos

computacionalmente eficientes, creamos un servidor web que facilita los análisis MKT

en el linaje humano y análisis personalizados.
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Resum

Des que els humans i els ximpanzés es van separar evolutivament, i posteriorment

a través de les migracions, la nostra espècie s’ha enfrontat a nombrosos canvis ambientals

i socials. Aquestes pressions han modelat els patrons de variació dels nostres genomes,

deixant caracteŕıstiques empremtes moleculars al llarg del genoma que es poden

identificar mitjançant nombrosos mètodes estad́ıstics. Aquests mètodes han permès

detectar i quantificar l’adaptació molecular a diferents escales temporals, proporcionant

informació essencial sobre la història evolutiva passada i recent de la nostra espècie. La

disponibilitat del conjunt de dades de variació nucleot́ıdica més complet fins ara, el

Projecte 1000 Genomes, permet provar hipòtesis de la genètica de poblacions sobre

la base dels patrons de variació i finalment identificar caràcters subjectes a selecció

positiva.

Aquesta tesi té com a objectiu inferir la forma i la força de la selecció positiva

en les dades de 1000GP. Per fer-ho ens centrem en mètodes estad́ıstics i bioinformàtics

que detecten la selecció adaptativa que contribueix a la diversificació entre espècies i

entre poblacions.

Amb aquesta finalitat, hem realitzat un cribratge de selecció al llarg de tot

el genoma, per totes les poblacions de 1000GP mitjançant l’anàlisi d’impromptus

distintives de variació genòmica causades per diferents tipus d’esdeveniments selectius.

El mètode emprat detecta arrossegaments selectius per diferents escales temporals i

evidències de selecció recurrent al llinatge humà des de la separació evolutiva respecte

als ximpanzés. A partir dels resultats, s’ha creat un catàleg que incorpora totes les

regions genòmiques candidates a haver estat subjectes a l’acció de la selecció natural,

per facilitar aix́ı, la seva validació i anàlisi en profunditat. Proporcionem nous candidats

i reunim estudis que localitzen repetidament els mateixos gens independentment de les

dades i les metodologies. Els resultats s’han posat a disposició en una base de dades

col·laboratives en ĺınia, amb l’objectiu de compilar i anotar esdeveniments d’adaptació

d’estudis futurs.

Per altra banda, fem una revisió del test de McDonald i Kreitman (MKT), un

dels mètodes històrics més potents i robusts per detectar l’acció de la selecció natural

recurrent, tant en l’àmbit genètic com genòmic. En primer lloc, tot i la gran quantitat

de modificacions proposades que corregeixen els potencials biaixos del test original, la

majoria d’aquestes extensions principalment tracten la presència de mutacions lleument

perjudicials (SDM). Si bé cada vegada tenim més i més anàlisis a escala genòmica,
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el simple G-test proposat pel MKT original està en desús. Per tot això, presentem

imputed MKT (impMKT), una extensió del MKT que millora l’anàlisi i maximitza

la informació que permet quantificar la selecció positiva a nivell genètic. En segon

lloc, a més de la presencia de SDM, la recombinació, la demografia, la selecció positiva

dèbil o la selecció lligada s’han postulats com a possible causa de la baixa proporció de

mutacions adaptatives detectat en humans i primats. Aprofitant la informació de tot

el genoma, desenvolupem una extensió del mètode ABC-MK. La nostra proposta és un

procediment d’inferència basat en ABC més simple i eficient que l’anterior, modelant la

DFE d’al·lels perjudicials i beneficiosos i la recombinació incompleta entre elements

genòmics. Descrivim el procediment de la inferència, avaluem el seu rendiment i

robustesa, demostrant que és raonablement robust per a esdeveniments demogràfics

diversos i en diferents escenaris adaptatius. A més, presentem l’evidència d’un efecte

substancial dels virus d’ARN en les taxes d’adaptació humana, proporcionant una

nova perspectiva sobre la importància del virus d’ARN com a promotors d’adaptació

molecular en humans.

Finalment, a part de la nostra base de dades col·laborativa i mètodes

computacionalment eficients, implementem un servidor web que facilita l’anàlisi MKT

al llinatge humà i anàlisis personalitzades.



Chapter 1

Introduction

Population genetics describe and interpret the changes in allelic frequencies or

genetic structures of natural populations. The intra-population or species-specific

changes, also called micro-evolution and macro-evolution, result from the time scale at

which evolution is observed as micro-evolutionary changes lead to macro-evolutionary

changes in the long term (Dobzhansky, 1982). In the first half of the 20th century, the

population genetics principles and forces defining evolutionary changes were defined

by the pioneering work of Fisher, Wright, and Haldane (Fisher, 1930; Wright, 1931;

Haldane, 1932). These forces, namely natural selection, genetic drift, mutation,

recombination, and gene flow, were defined and modeled, becoming the fundamental

factors in the later theoretical and empirical developments. These studies widely

explored the consequences of selection and randomness on allele frequency trajectories

at a first attempt to model variation at natural populations while integrating principles

of Mendelian inheritance, making population genetics the theoretical core of Darwin’s

theory of evolution. The interaction between population genetics and other disciplines

such as the experimental evolution of populations, zoology or paleontology, resulted in

the so-called Modern Synthesis of evolutionary biology, or Neo-Darwinism (Dobzhansky,

1982). The Modern Synthesis supposed the incorporation of Mendelian laws of

inheritance and the gene concept in the original theory of evolution by natural selection

of Darwin. Nonetheless, the near absence of actual genetic data constrained population

genetics fundamentally to a mathematics development. Half a century ago, the

technique of protein gel electrophoresis was applied to get the first estimates of genetic

variation at the molecular level, providing nucleotide diversity measures for several

loci and inaugurating the subfield of molecular population genetics. From then on,

the fundamental forces defining evolution and genetic variation had been extensively

7
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explored. During the last decades, the tools, theoretical frameworks, and data that

the field has offered to science have been essential for the birth and development of

other disciplines. Thus, if not possible to conceive broad concepts such as personalized

medicine, genome-wide association studies, or the migratory movements of the ancestral

human populations without considering the bases of molecular population genetics.

Molecular data in many levels has provided evidence to theorists, which interpreted

and redefined concepts (Charlesworth and Charlesworth, 2017) while solving some

classical questions and proposing others (Charlesworth, 2010). The explosion of genomic

data has provided wide evidence of adaptation to trace phenotypes from genotypes,

where the action of natural selection can lead to characteristic footprints on variation

patterns. Nonetheless, genomic data have provided wide evidence of natural selection on

genomes, notwithstanding the phenotype being the primary target of natural selection.

Molecular population genetics has attempted to describe and infer the levels of genetic

variation observed in natural populations, trying to model the relative importance

of each evolutionary process aforementioned. The knowledge of the processes that

intrinsically model these patterns and ultimately their population dynamics holds the

answer to the other great question in population genetics: which traits or phenotypes are

targets of natural selection. The genetic basis of any phenotype that has a reproductive

advantage is modeled by natural selection. Therefore, natural selection contributes to

shaping genetic variants in populations that lead to a phenotype. Over time, the process

can result in traits that specialize in particular ecological niches and may eventually

result in speciation. Nonetheless, resolving this question requires knowledge of the

relationship between genotype and phenotype, the genotype-phenotype map, or the

gene architecture of traits. Despite the massive information provided by next-generation

sequencing and the thorough description of some essential adaptive traits in the human

lineage (Kwiatkowski, 2005; Bersaglieri et al., 2004; Sabeti et al., 2007; Genovese et al.,

2010; Beleza et al., 2013; Huerta-Sánchez et al., 2014; Schlebusch et al., 2015; Fumagalli

et al., 2015; Minster et al., 2016; Mathieson and Mathieson, 2018), the role of each

evolutionary force remains unsolved, and new genomic layers has to be incorporated

to understand the mechanisms of variation better. The following sections will focus on

the three main molecular population genetics milestones: the allozyme, the nucleotide

sequence and the current population genomics eras. We will empathize how the long

struggle for measurement of genetic variation has been evolving, solving old debates and

bringing new ones. Besides, we will review the theoretical side, including the nearly

neutral theory of molecular evolution, the role of recombination, and linked selection.
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1.1 Molecular population genetics: from the allozyme era to SNPs
genealogies

The first molecular dataset allowed the estimation of genetic variation at an

average locus in natural populations. This section reviews the three main milestones

fostered by the technological innovations to survey molecular genetic variation.

1.1.1 The allyzome era

Lewontin and Hubby (1966) and Harris (1966) provided the first estimates of

variation at protein-level natural populations. Both works described electrophoretically

detectable variation -or allozymes- which screens for protein migration on an

electrophoretic gel. Proteins differing in electrophoretic mobility ultimately result from

the existence of variation at the DNA level. Allozyme data were commonly used,

measuring the levels of genetic diversity at populations, species, and taxa levels, showing

that genetic diversity varies non-randomly and is much higher than expected from

two main evolutionary selective scenarios of the time (Lewontin, 1974). The classical

hypothesis predicted that natural selection mainly purges variation, and therefore most

loci were thought to be homozygous. The balance hypothesis (Dobzhansky, 1955), which

was the prevalence selective view, predicted that natural selection acts by maintaining

genetic variation and thus, a large proportion of heterozygous loci. Nonetheless, the

electrophoretic technique had significant limitations that made it difficult to reconcile

the prevailing theories with the observed data. First, allozyme studies were doubly

flawed. Not only was it limited to detecting non-synonymous changes at the DNA level,

but such changes were only detectable if the amino acid change affected the mobility of

the protein in the gel (Lewontin, 1991). Therefore, allozyme measures only consider a

small part of possible mutations at the protein level, producing low-resolution data for

understanding evolutionary forces and discriminating between classical and balancing

hypotheses. In addition, Barbadilla et al. (1996) conclude that in highly polymorphic

loci the commonly observed frequency pattern of electrophoretic variants is purely a

consequence of statistical relations and conveys no information about the underlying

evolutionary forces.

Despite its limitations, the first results showed that population size is a key

parameter in population genetics. For example, the two measures provided by

Lewontin and Hubby (1966) and Harris (1966) (H, the average proportion of loci

that are heterozygous in an individual; and P , the average proportion of loci that are
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polymorphic in the population) exhibited higher values in Drosophila than humans

(P 43% vs. 28% and H 12% vs. 7% for each species respectively) (Casillas and

Barbadilla, 2017). Such measures were applied between species and taxa, showing that

invertebrates tend to be highly polymorphic, whereas mammals and other animal taxa

are only about half as variable on average (Nevo et al., 1984). A priori, large populations

were expected to accumulate more variation. However, the narrow spectrum in genetic

diversity levels was insufficient to explain considerable differences in population size,

the so-called Lewontin’s Paradox (Lewontin, 1974). Later studies showed population

sizes exceeding several orders of magnitude, while genetic diversity levels only varied

by a few orders (Buffalo, 2021). From the very beginning, explanations for diversity

measured across species and taxa and explanations for Lewontin’s Paradox in neutralist

vs. selectionist terms were controversial.

1.1.2 The nucleotide sequence era

In the 90’s, nucleotide sequencing replaced allozyme data completely.

Nonetheless, in the 80’s restriction enzyme techniques played an important role as the

first mass genotyping technique (Charlesworth, 2010). Although limited to a few known

sequences recognized by restriction enzymes, this technique represented a significant

advance, because by the first time it allowed the survey of much larger genomic regions.

Therefore, new statistics, such as the nucleotide diversity (π) proposed by (Nei and

Li, 1979) were defined, and empirical published results regarding restriction enzyme

techniques. are the basis of many hypotheses and studies nowadays (Casillas and

Barbadilla, 2017). Some important examples are the positive correlation between

nucleotide diversity and recombination (Begun and Aquadro, 1992) or the inference

of the effective size of the human population through the mean nucleotide diversity per

site (Robertson et al., 1983).

Kreitman (1983), for the first time, revealed the entire nucleotide sequence

variation present in a gene region. Eleven Adh genes were sequenced from 11

chromosomes independently isolated from five natural populations of D. melanogaster.

The study revealed 43 SNPs, only one being a non-synonymous polymorphism

(responsible for the electrophoretic polymorphism LF), while the rest were silent

polymorphisms found in the gene’s coding and non-coding regions. The results led

to the well-known conclusion that most non-synonymous mutations have deleterious

effects on fitness that contribute little to within-population variation or divergence

compared to silent changes in the DNA sequence (Charlesworth, 2010).
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For a long time, the studies focused on specific genomic regions or genes. However,

this crucial step facilitated the development of the first databases and statistics to

initially characterize genetic diversity (Casillas et al., 2005; Casillas and Barbadilla,

2006). Despite the advance, genetic diversity studies based on a sample of genes or

DNA regions may provide a biased view of genome-wide measurements. It was not

until the advent of the Next Generation Sequencing (NGS) that studies have been

expanded at the genomic level and were no longer limited to a set of model organisms.

1.1.3 The population genomics sequence era

In the last decade, the development of massive sequencing techniques has

led to the current population genomic era. Thanks to NGS improvement and

cheaper techniques, we have complete genomes for multiple species, which facilitated

comparisons at the population and the phylogenetic levels. Furthermore, the errors

associated with the sequencing of short-reads (assembly, SNP-calling, sequencing errors)

fostered the creation of bioinformatics tools to overcome their limitations. As a result,

we have the multiple full genome catalogs for humans and Drosophila, such as 1000

Genome Projects (1000GP) or Drosophila Genome Nexus (DGN), on which much of

the development of this dissertation thesis is based.

Nevertheless, it was not until 2007, with the study by Begun et al. (2007), that

the first study of population genetics was carried out. Until then, as mentioned above,

the large catalogs of variation were based on non-random regions or samples of the

genomes despite sequencing advances. This generated a partial, perhaps biased, view

of the inferred processes that shape genetic variation in natural populations. The first

population genomic study carried out by Begun et al. (2007) (followed by Macpherson

et al. (2007) and Sackton et al. (2009)) challenged the population level predictions of

the neutral theory. However, the data from these studies had severe limitations. First,

in the study of Begun et al. (2007), the sequenced lines did not come from a common

source, implying that this is not a population genomic study in the strictest sense, with

the implications that population structure can have on natural variation. Secondly,

the study was carried out through low coverage sequencing, which can significantly

impact the detection of variants and in the estimation of allele frequencies in the

population. The approach of Begun et al. (2007) once again highlights: i) that the

study of Drosophila is, and has been, one of the centerpieces in population genetics,

ii) an approach that followed the future of genomic variation analyses not only in

Drosophila (Macpherson et al., 2007; Sackton et al., 2009), but in other species.
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The limitations of these studies have led to what can now be considered the

standard analysis of population genomics. The Drosophila Genetic Reference Panel

(DGRP) (Mackay et al., 2012) project sequenced with high coverage a total of 205 lines

derived from a North American Raleigh natural population (RAL). The study provided

for the first time the opportunity to perform the most comprehensive population

genetics study done so far in any species, corroborating preliminary hypotheses and

results on smaller datasets. First, they demonstrated that the pattern of polymorphism

and divergence by functional site class is consistent within and among chromosomes.

Second, polymorphism levels between synonymous and nonsynonymous sites differ by

order of magnitude. Third, the proportion of the genome that is subject to the action of

purifying selection was estimated, being around ≈ 40%. Globally, Mackay et al. (2012)

estimated that ≈ 25% of substitutions are adaptive, and that the centromeric regions

show little evidence of positive selection.

While genome-level sequencing has provided a new resolution to understand

molecular population genetics, the advances in other technologies have allowed

unraveling multiple layers of the Genotype-Phenotype map. Hence, new omics

datasets (regulatory elements, gene expression, chromatin states, etc.) allow a deeper

characterization of the targets of natural selection. Furthermore, the advent of this

huge amount of data allows us to test and create new hypotheses, and for the first time,

there are enough resources to confront seriously theory and empirical data.

Genome-wide catalogs of variation

Since the beginning of sequencing, the effort to generate nucleotide variation

catalogs has been more significant in humans than in any other species. As early as

2005, the International HapMap Consortium began creating the first catalog of common

human genetic variation in diverse populations. The first version of HapMap, put on

the databases the information of 264 samples corresponding to 4 human populations.

The final version of the project featured haplotype maps of 1.6 million single nucleotide

polymorphisms (SNPs) in 1184 reference individuals from 11 global populations. The

haplotypic information deposited in HapMap revealed a linkage disequilibrium and low

haplotype diversity (Consortium, 2007), leading to substantial correlations of SNPs

with many of their neighbor SNPs.

Thus, the HapMap project allows for the first time genome-wide variation

description and the detection of positive natural selection through the human genome,

as well as the development of new tests to infer natural selection. These methods
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were based on the relationship between SNPs and the extent of the surrounding linkage

disequilibrium (LD), looking for recent adaptation on the human genome (Voight et al.,

2006; Sabeti et al., 2007; Pickrell et al., 2009). In Section 1.2.6, we review the main

examples, as the integrated Haplotype Score (iHS) (Voight et al., 2006) or the Cross-

Population Extended Haplotype Homozygosity (XP-EHH) (Sabeti et al., 2007), which

were developed to exploit HapMap data. On one hand, HapMap data tested how

ubiquitous natural selection was in the human genome and what kinds of genes and

biological processes determined human adaptation.

Nevertheless, since HapMap publication, sequenced individuals and projects have

continued growing per year and species. Table 1.1 reviewed some of the most important

projects in terms of quality, accessibility, and impact in population genomics studies

from several species. Important genome catalogs in other species, such as 1001 Genomes

(Alonso-Blanco et al., 2016), Ag1000G (Miles et al., 2017), Great apes (de Manuel

et al., 2016) or Simon Genome Diversity Project (SGDP) (Mallick et al., 2016) as well

as the increasing number of ancient genomes and the sampling of populations in space

and time have opened the door to new studies on a temporal and longitudinal scale

(Kapun et al., 2021; Machado et al., 2021; Speidel et al., 2021). In addition, sequencing

techniques have provided a deeper resolution at the phylogenetic level. A clear example

is Clark et al. (2007) or, more recently, Kim et al. (2020), where 101 lines encompassing

93 Drosophila species were assembled. Overall, these datasets constitute a landscape

when natural variation is revealed at the DNA level.

The Drosophila Genome Nexus (DGN) and the 1000 Genome Project (1000GP)

represent the most significant examples of nucleotide variation at the genomic level

for Drosophila and humans to date, respectively. In this thesis we have explored the

genome variation patterns led by natural selection through the population information

deposited in the 1000GP data. In addition, we have explored the creation of statistics

and resources for the detection of recurrent positive selection, which take advantage of

all the information deposited in 1000GP and DGN.

DGN. The Drosophila Genome Nexus project (Lack et al., 2015, 2016) provides the

genome sequences of 1,121 worldwide D. melanogaster individuals from 58 populations

out of 23 countries spanning 5 continents.

Each population genomic sequence is assembled against a single common

reference. This project aims to increase the comparability of different population

genomic data sets (Lack et al., 2015). DGN re-aligned genome sequences from: DPGP1
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Table 1.1: Catalogs of genome-wide variation

Year Dataset Citation

2005 HapMap phase I Altshuler et al. (2005)

2005 HapMap phase I Altshuler et al. (2005)

2005 Perlegen Hinds et al. (2005)

2007 HapMap phase II Consortium (2007)

2010 HapMap phase III Altshuler et al. (2010)

2010 1000GP pilot Consortium (2010)

2012 DPGP Langley et al. (2012)

2012 DPGP2 Pool et al. (2012)

2012 DGRP Mackay et al. (2012)

2014 Great apes Prado-Martinez et al. (2013)

2015 1000GP phase III Consortium (2012)

2015 DGN 1 Lack et al. (2015)

2016 SGDP Mallick et al. (2016)

2016 DGN 2 Lack et al. (2016)

2016 Great apes de Manuel et al. (2016)

2017 1000Ag phase I Miles et al. (2017)

2019 D. simulans Signor et al. (2018)

2020 1000Ag phase II Consortium et al. (2020)

2020 HGDP Bergström et al. (2020)

2020 GnomAD Karczewski et al. (2020)

2021 DEST Kapun et al. (2021)

(Langley et al., 2012), 27 genomes from Malawi; DPGP2 (Pool et al., 2012), 139

genomes from 22 populations, mainly from Africa; DPGP3 (Lack et al., 2015), 197

genomes from Zambia; DGRP (Mackay et al., 2012), 205 genomes from Raleigh, USA;

the global diversity lines (Grenier et al., 2015): 85 genomes from Australia, China, the

Netherlands, the USA and Zimbabwe; (Bergman and Haddrill, 2015): 50 genomes from

France, Ghana and the USA; (Campo et al., 2013)): 35 genomes from California; (Kao

et al., 2015), 23 genomes from 12 New World locations; and 306 new sequenced genomes

from Ethiopia, South Africa, Egypt and France; resulting in a dataset of 1,067 complete

sequence genomes which cover almost the complete geographical range of this species.

1000GP. The 1000GP project is the largest catalog of human nucleotide variation

published to date. However, with decreasing costs and improvements in sequencing

technologies, we have seen an increase in catalogs of a similar nature, such SDGP,

or Human Genome Diversity Project (HGDP) (Mallick et al., 2016; Bergström et al.,

2020). The main goal of the 1000GP project was to discover and describe the different

forms of polymorphisms at the genomic level in multiple populations. Therefore, it was
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designed not only to genotype markers but to characterize at least 95% of all variants

present in the genome.

The project was divided into three phases due to the initial cost of sequencing

and the technologies available. The 1000G pilot phase included complete, low-

coverage whole-genome sequencing of 179 individuals from four populations: Yoruba

individuals from Nigeria (YRI), individuals of European ancestry from Utah (CEU),

Han Chinese individuals from Beijing (CHB), and Japanese individuals from Tokyo

(JPT) (Consortium, 2012). It concluded with the detection and cataloging of 14.4

million SNPs, 1.3 million short indels, and over 20,000 structural variants. The resulting

dataset covers approximately 85% of the reference sequence and 93% of the coding

sequence of the genome, with the vast majority (97%) of inaccessible sites being high

copy number repeats or segmental duplications.

By 2012, 1000GP consortium reported completion of the project, having

reconstructed the genomes of 2,504 individuals from 26 populations, including samples

from Africa (AFR), East Asia (EAS), Europe (EUR), South Asia (SAS), and the

Americas (AMR). The combination of low-coverage whole-genome sequencing, deep

exome sequencing, and dense microarray genotyping showed for the first time that

most variants in the human genome are rare. About 64 million SNPs have a frequency

< 0.5%, 12 million have a frequency between 0.5% and 5%, and only about 8 million

have a frequency. Moreover, as predicted by the out-of-Africa (OoA) hypothesis, the

individuals from African ancestry showed a more significant number of variant sites.

At the same time, the variation at admixed populations (AMR) was proportional to

the degree of recent African ancestry in their genomes. Thus, the broad spectrum of

genetic variation increased to a total of 88 million variants (84.7 million single nucleotide

polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000

structural variants) all phased onto high-quality haplotypes. This resource includes

99% of SNP variants with a frequency of 0.1% for various ancestries, describing the

distribution of genetic variation across the global sample. To date, the project continues

growing and it encompasses more than 3,000 highly-coverage genomes (Byrska-Bishop

et al., 2021). Nonetheless, project such as HGDP, have led to the discovery of

hundreds of thousands of new variants that reflect substantial amounts of previously

ignored common genetic variation which together with the geographic and antrophogical

information shows the importance of further studies for understanding human diversity

(Bergström et al., 2020).
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1.1.4 From genomes to trees

The correlation between recombination and nucleotide variation along the genome

has been one of the primary pieces of evidence describing nucleotide variation (Begun

and Aquadro, 1992; Mackay et al., 2012). Begun and Aquadro (1992) showed for the

first time the positive correlation between the exchange rate (recombination) of genetic

material and nucleotide variation, results validated by Mackay et al. (2012) at deeper

resolution. In addition, recombination is also crucial to promote adaptation since it

modulates interference between deleterious and advantageous alleles as demonstrated

by Castellano et al. (2016), reducing or increasing adaptation in genomes. Linked

selection models, such as hitchhiking and BGS, along with recombination, can better

predict patterns of variation and thus explain the observed variation (Kern and Hahn,

2018; Gillespie, 1994; Hahn, 2008; Johri et al., 2020).

The increasing number of catalogs of nucleotide variation and NGS advances

driven by new technologies, bioinformatic tools and statistics models have allowed the

measure of local recombination rate, a crucial parameter in population genetics to

understand patterns of genome variation. Comeron et al. (2012) integrated the power

of classical genetics with NGS achieving the first integrated high-resolution description

of the recombination patterns of both intragenomic and population variation. New

methodologies try to overcome the limitation of theory (such as neutrally evolving sites,

constant mutation and population size, demography, unphased data or pooled data)

and computational requirements. Based on Sequential Markov Chain (SMC) models

and machine-learning, we have methods that can infer recombination at a significantly

higher resolution, scaling better to larger datasets (Spence and Song, 2019; Barroso

et al., 2019; Adrion et al., 2020b).

Recombination generates different ancestries of a set of linked DNA sequences.

Altogether, coalescence and recombination can be used to determine both the common

sequence ancestor and the branching time. The historical process of recombination

and coalescence that describes each site’s evolutionary relationships and genealogy

can be summarized in what is known as Ancestral Recombination Graphs (ARGs)

(Dutheil, 2020). ARGs encode all the information by which a sample can be traced to

a common ancestor. Possible recombination events cause the patterns to differ from

one sample or site to another. ARGs summarize all the coalescence, recombination,

and mutation information that produce the observed variation patterns. Consequently,

inferring each site’s genealogy in a genome sample comprises the information recorded

at genomes describing different evolutionary processes. For example, variants under the
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effect of natural selection will show modified genealogies topology, since tree genealogies

under natural selection result in shorter branches than expected in neutrally evolving

populations (Harris, 2019). ARGs store information that standard summary statistics

cannot assess, including introgression, time to the most common ancestors (TMRCA),

recombination, and linkage disequilibrium (LD). Typically, ARGs are represented as

marginal coalescence trees, including or not full information of the ARG, depending

on the recombination time stored in such trees (Rasmussen et al., 2014; Brandt et al.,

2021).

So far, inference from ARGs has been limited due to computationally

requirements because mutation and recombination events finally result in an intractable

probabilistic space (Dutheil, 2020). Based on SMC, introduced by McVean and Cardin

(2005), ARGweaver software pioneered ARG inference in accuracy and computational

performance (Rasmussen et al., 2014). Because ARGweaver is able to perform full

ARG inference and quantifying inference uncertainty by sampling from the posterior

distribution, it was restricted to a limited number of individuals and scaled poorly with

the sample. Overall, the number of studies that benefit from ARGs’ inference was low,

but, in any case, the approach was prepared for genome-wide inference.

For a while, the computational cost of the inference and the many genomes

available implied that conventional population genetic summary statistics overcomes

ARGs (Hejase et al., 2020). Nonetheless, the state of ARGs inference has recently

drastically changed. Simultaneously, Speidel et al. (2019) (Relate) and Kelleher et al.

(2019) (tree sequence framework) developed new methodologies to approximate ARG

while producing genealogies SNPs to SNPs at genome-wide level. Unlike ARGweaver,

both methodologies cannot work with full ARG, but only encode topology change

recombination events (Kelleher et al., 2019) or allow more than one recombination

event between trees but finally encoding average of multiple coalescence trees (Brandt

et al., 2021). Such methods approximate the coalescence with recombination using

a modification of the Li and Stephens (2003) model to infer local tree topologies. As

further explained in Brandt et al. (2021), Relate, use the Li and Stephens (2003) model

to infer the topologies and use Markov Chain Monte Carlo (MCMC) under a coalescent

prior to infer coalescence times. On the other hand, the tree sequence framework

recreates ancestral haplotypes based on allele sharing between samples and applies a

Hidden Markov Model (HMM) and the Li and Stephens (2003) model to generate

the tree topology through using ancestral and the sampled haplotypes (Brandt et al.,

2021). Both methods were tested in the most comprehensive human variation catalogs

(1000GP, SGDP), analyzing selection, introgression, and population structure, among

other patterns. Through extensive analysis using inference ARGs, Speidel et al. (2019)
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dated TCC to TTC enrichment mutational signal (Harris and Pritchard, 2017) around

10,000 to 20,000 years ago, and introgression between Neanderthals and modern humans

in Eurasia and between modern East and South Asians and Denisovans, alongside to

other signals specific to African groups. Moreover, they tested for selection signals on

complex traits while finding widespread directional polygenic adaptation at enriched

SNPs in GWAS analysis. Remarkably, Kelleher et al. (2019) not only revealed subtle

genetic distinctions among the populations of London, Edinburgh, and their rural

outskirts or characterized ancestral relationships in 1000GP and SGDP datasets but also

achieved store the information into a new data highly efficient tree sequence-structure

called tree succinct.
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Figure 1.1: Tree succint representation. A. Conventional matrix describing Variant Calling
Format (VCF) storage. B. Genealogy encoding the data and constant variant storage. Figure
taken from Kelleher et al. (2019).

While Variant Calling Format (VCF) data was the standard format to encode

catalogs of genome-wide variation, the tree succinct seems to be the natural successor.

Tree succinct benefits of the ancestral information provided by ARGs. As detailed

in Kelleher et al. (2019), tree succinct is the result of recording mutations using the

genealogy at particular sites, recording variation in the ancestry where these mutations

arose. It allows reducing the classic matrix of n samples and m sites (see Figure 1.1),

commonly used, to a file where each variant maintains a constant size and format

(Kelleher et al., 2019). Therefore each variant is recorded where the mutation arose in

the ancestry through edges and nodes. For example, at the largest simulation provided

at Kelleher et al. (2019), representing the ancestry of 107 chromosomes, each of which is

100Mb long, tree succinct showed improvements in several orders of magnitude not only

in storage (from TB to GB) but also in accessing data and computing statistics (from

hours to seconds) concerning a compressed and more efficient version of VCF (Kelleher
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et al., 2019). Tree succinct format shows the future of massive sequenced data, such

as the UK Biobank, which provides information about several thousand of individuals,

overcoming the future limitations of the VCF in terms of performance, storage and

scalability.

Speidel et al. (2019) and Kelleher et al. (2019) achieved a new milestone into

molecular population genetics. The software and data structure will be key to explore

evolutionary questions. New standard statistics will provide new accuracy level testing

for introgression, selection, and demography (Harris, 2019).

1.2 Primary evolutionary forces: the theory

Population genetics moved from fundamentally theoretical science to a landscape

where massive genomic data at different levels became available. Thus, the information

encoded at the genetic level and its interpretation led to redefining population dynamics.

The first population genetics model was proposed by G.H. Hardy and W. R. Weinberg

in 1908 (the Hardy-Weinberg principle, (Hardy, 1908)). It can be defined as the zero-

force state model and serves as a null model to explain the maintenance of genetic

variation in populations. The principle states that allele frequencies would remain

unchanged generation after generation once they reach the equilibrium state in an

ideal population and the absence of any other evolutionary forces. A population in

Hardy-Weinberg equilibrium underlies the following assumptions: i) diploid organism,

ii) infinite population size, iii) sexual reproduction, iv) allele frequencies do not differ

between sexes, v) absence of external forces affecting mutation dynamics, such as

gene flux or selection, vi) random mating, vii) non-overlapping generations. From

this perspective, the theoretical Wright, Fisher and Haldane modeled the fundamental

evolutionary forces, conceiving population genetics as a theory on which diverse forces

can affect the allele frequencies in a population: mutation, migration, natural selection,

recombination, and genetic drift.

This section describes the main evolutionary forces through the Wright-Fisher

model, the extension and predictions proposed by Kimura and Otha in the nearly

neutral theory of molecular evolution, and the importance of these models in the current

coalescence and forward-in-time simulations.



20 Abstract

1.2.1 Wright-fisher model: genetic drift and probability of fixation

The assumptions of random mating and infinite population size in the Hardy-

Weinberg law could hardly be associated with natural populations. Under the

assumption of panmixia, for some populations with large individual sizes, it could serve

as a first approximation to explain natural variation. However, for most species, the

population size is not big enough to overcome the effect of genetic drift. Thus genetic

drift occurs because alleles are transmitted to the next generation by chance. In a finite,

diploid, sexual population, following Mendel’s principles, only one of the two alleles in

an individual, chosen at random at a locus, is transmitted to the offspring. These

random samplings can significantly affect the evolutionary process (Gillespie, 1994).

Wright and Fisher were the first to explore theoretically the impact of genetic drift in

depth. Nowadays, we describe the Wright-Fisher model for the algorithm that defines

a simplified biological model considering:

� We consider a constant diploid population

� Two segregating alleles, A1 and A2

� Discrete generations

In this model, each parental allele has the same probability of contributing to the

next generation, so each new copy of a gene in the new generation depends only on

that gene frequency in the previous generation. For many years, the genetic drift

algorithm has been computationally simplified as sampling a bag of marbles with

two colors (alleles A1 and A2). Analogous to a discrete generation, sampling 2N

marbles randomly and replacing them with another bag can cause a fluctuation in

the frequency of colors. By chance, type A1 (or A2) individuals may leave more or less

offspring in the next generation. In genetic terms, to develop the current population,

we randomly sample the parental population with replacement where, at the individual

level, any parent allele has the same probability of appearing in the gamete, and at the

population level, different individuals in the population can contribute unequally to the

offspring, being the primary sources of randomness in the process (Gillespie, 2004). The

random sampling process is mathematically described with a Binomial random variable.

Following the examples at Masel (2011) and Gillespie (2004), Figure 1.2 shows genetic

drift following a simplified version of the Wright-Fisher model. The simulation showed

five independent populations considering 100 and 1000 individuals, where an allele A1

is at frequency 0.5 the first generation.

Overall, the changes produced uniquely by the binomial sampling is neutral,
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and the direction of the random changes cancels out in the long term. However, any

trajectory is a random walk and behaves differently of any other, showing the stochastic

nature of evolution in a future generation. Nonetheless, some alleles are fixed or lost

to the population, removing genetic variability. As shown in Figure 1.2, this effect may

be especially relevant in small populations. As the Wright-Fisher model shows, every

segregating neutral mutation in a population is eventually fixed or lost by genetic drift.

Furthermore, as shown in Figure 1.3, the initial allele frequencies influence the fixation

or loss probabilities. Lower initial allele frequency is associated with higher frequent

loss, just as higher initial frequencies with frequent fixations. Finally, binomial sampling

allows us to estimate the final fixation probability of a neutral allele as a function of

its initial frequency (i/N), and its extinction probability (1 − i/N), a classic result in

population genetics which can be derived from diffusion theory too (Kimura, 1955).
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Figure 1.2: Simplified Wright-Fisher algorithm representing the stochastic nature of genetic
drift. The frequency of the allele A1 is plotted over time and the initial frequency p(0) = 0.5.
Each generation the initial frequency of the A1 allele (0.5) varies due to sampling with
replacement. Panel A and B represent 5 independent replicates for an A1 allele with constant
populations of 100 and 5000 individuals respectively.
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Figure 1.3: Genetic drift depending on initial allele frequency for a constant population of
100 individuals. Because fixation probability only depends on the frequency at t = 0, panel B,
starting at frequency p(0) = 0.8 shows a higher number of fixed alleles, while neither replicas of
panel A reach fixation.

The above assumptions define the simplest dynamic of the Wright-Fisher model.

Nevertheless, considering that the state of A1 at time t + 1 only depends on its state

at time t, it is possible to predict how genetic drift causes fixation or loss, as well the

chances to find a population at a specific state (see Hartl (2020)). The likelihood to go

from one state to another can be defined by extending the binomial formula.

P (i→ j) =
(

2N !
j!(2N−j)!

)
piq2N−j (1.1)

where j will be the number of alleles obtained from the initial number of i alleles

after the sampling process. For i and j equal to 1, ..., 2N the values of P (i→ j) define a

square transition matrix, which show the probability of state i changing to state j in a

single generation (Hartl, 2020), and commonly known as the transition probability

matrix. The simplest case, a diploid locus in a population, can be summarized

considering 0, 1 or 2 copies P (0), P (1), and P (2). Considering the extreme case of

obtaining two A1 alleles in the next generation, P (2) can be defined as the sum of the

transition probabilities given the combination and sampling error.

Pt=1(2) = (P2→2)Pt=0(2) + (P1→2)Pt=0(1) + (P0→2)Pt=0(0) (1.2)
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Transition probabilities are calculated with the binomial formula, whereas

probabilities at time t = 0 represent the frequencies of populations with a given allelic

state. The Wright-Fisher model of genetic drift is a special Markov chain process with

two absorbing states corresponding to the allele frequencies p = 0 and p = 1. Each

fixation state is called absorbing because, once a subpopulation is fixed, it remains

fixed. Eventually, each subpopulation is absorbed at either p = 0 or p = 1.

Equation (1.1) can model discrete generations for the Wright-Fisher model, where

time and allele states move forward from the initial condition to another at time t+ 1.

The discrete modeling shows the role of genetic drift in actual biological populations

over generations. Other models have been proposed to deal with the main assumptions

of the Wright-Fisher (Moran, 1962; Cannings, 1975). While equation (1.1) fits the

Wright-Fisher model, this discrete process can be approximated using particle diffusion

theory and partial differential equations, where time and allele frequency are continuous

variables. This approach is known as the diffusion approximation for genetic drift.

Although Wright used diffusion approximation to model some aspect of genetic drift

(Wright, 1938), the complete approximated solutions were solved by Motoo Kimura

(Kimura, 1955).

Like Markov chains, diffusion theory can predict the probability distribution of

frequency alleles over time. Thus, both predictions become similar to the outcome of

neutrality and genetic drift. Nonetheless, diffusion theory assumes that populations are

large enough, which turns the probability distribution into a continuous and smooth

function compared to discrete prediction over generations output from the Markov chain

estimations, predicting the distribution probability of an allele given a population. The

diffusion approximation has been used to precisely describe genetic drift while being

flexible to include other evolutionary factors, such as migration or selection, including

non-equilibrium populations (Evans et al., 2007), as well as to measure the average

time to fixation and loss for alleles the population. As previously mentioned, diffusion

approximation converges to the classical probability of fixation of neutral alleles i/2N .

Moreover, using the diffusion approximation, Kimura was able to define the probability

of fixation of a selective allele (Kimura, 1964, 1968), being one the essential expressions

in our field. Figure 1.4 shows the probability of fixation depending on the population

size and coefficient product and the probability of fixation of a neutral allele.

Pfixation =
1− e−4Nsp

1− e−4Ns
(1.3)
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where p is the initial frequency of the mutation, sis the selection coefficient, and N is

the population size.

From equation (1.3) and by extension Figure 1.4 it is important to emphasize two

key points. First, as described by Ohta (1973), the probability of fixation of a mutation

depends not only on the effect it has on the biological fitness of the individual carrier,

but also on the population size. The product of both parameters, Ns, the population

scaled selection coefficient, predicts the relationship of forces between drift and selection.

Second, that in the interval −1 < Ns < 1 the probability of fixation approaches that

of neutrality. These nearly neutral or effectively neutral mutations are essential in

explaining deviation of the neutral patterns of polymorphism and divergence that we

observe in natural populations, culminating in the nearly neutral theory of evolution.

For |Ns| > 1 selection significantly impacts the probability and time of fixation. These

mutations are commonly referred to as slightly selected. At mutations with population

scaled selection coefficient |Ns| > 10 natural selection exerts dramatic power over the

population dynamics and genetic drift. These mutations are commonly referred to as

strongly selected. Therefore, the selection coefficients scaled to population size are of

evolutionary relevance. In Section 1.2.3 we review these concepts deeply, as well as the

Distribution of the Effect (DFE) from which these values can be determined.

From diffusion theory and the Wright-Fisher model it can be derived another

important equation commonly employed to define the population stationary frequency

distribution. The stationary frequency distribution describes the density probability

of a mutation i at frequency x + dx (Wright, 1938), allowing the calculation of the

frequency spectrum at different distributions of selection coefficients. It has been

largely explored since Wright considered it for the first time (Wright, 1938), including

non-equilibrium populations (Evans et al., 2007). The irreversible equation for the

stationary distribution is commonly be stated as:

φ(x) =
1

1− x
e4Ns1− e4Ns(1−x)

e4Ns − 1
(1.4)

Wright-Fisher model and diffusion theory for genetic drift have been extensively

used in Chapters 4 and 5 of this dissertation. First, we account for forward simulations

assuming Wright-Fisher populations, including selection and complex demography.

Second, the Wright-Fisher model and the stationary distribution of alleles were used

in Chapter 4 through a Maximum Likelihood approach based on the Poisson Random

Field (PRF) framework to estimate the proportion of adaptive mutations. Finally,
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Chapter 5 uses diffusion theory to construct a population genetic model when solving

the proportion of adaptive mutations using an Approximate Bayesian Computation.
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Figure 1.4: Fixation probability according to diffusion equations approximation with selection.
Selection coefficients are shown in 4Nes units. The fixation probability of a neutral allele is equal
to its initial frequency.

1.2.2 Ne vs Nc

Focusing on the mathematical definition of genetic drift, selection, and the

extensions of the diffusion theory, we can observe that the dynamics of genetic variation

depends highly on population size (N). In the Wright-Fisher population’s context,

the concept of effective population size (Ne) is the size of the idealized Wright–Fisher

population that would show the same amount of genetic diversity or other parameters

of interest as the actual population. Therefore the population size definitions depend on

how genetic variation changes over time and rely on the dynamics of genetic variation

in the population. Considering the Wright-Fisher model, A1 copies into the next

generation are defined by a binomial random variable, implying a binomial variance.

Hence, for big N , the variance in the frequency of allele A will be minor than under

lower N . Ne, the effective population size, should be understood as the number of

individuals that satisfies the expected variance in allele frequencies under the binomial

distribution, not as the number of individuals we count in a population, the so-called

population census (Nc). Thus, for example, a population showing frequency changes

slowly over time is expected to be associated with a relatively large population size,

as shown in previous simulations when considering the exclusive influence of genetic

drift. In that sense, the effective population size allows us to compare the idealized

drift expected in different frameworks, such as different populations or species. Wright-
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Fisher model assumptions are commonly violated in the natural population. Several

forces affect the offspring variance. Such is the case where populations size fluctuates

over generations, where females and males differ, due to variation in the number

of offspring per individual, or by continuous, overlapping, generations. Hence, the

expected population size in a Wright-Fisher model, the effective population size, is

usually smaller than the current census population size. In an equilibrium population,

Wright-Fisher population size and Ne will converge. In populations with nonequilibrium

histories, effective population size will differ from Wright-Fisher (Hahn, 2018).

In addition, it is essential to note that directional selection, which would increase

the variance in the number of offspring per parent, also acts by decreasing Ne concerning

Nc. Understanding the Ne dynamics is fundamental to explaining the evolutionary role

of genetic drift and the interactions with other forces such as mutation, migration,

recombination, and selection. Then, Ne values significantly affect genetic variability

and the rate of evolution. For example, as extensively discussed at Charlesworth (2009),

mutation rate and Ne will determine the equilibrium level of neutral or weakly selected

variability in a population and the dynamic (fixation or loss) and effectiveness of selected

mutation, since Ne can vary the intensity of selection (as explained in the previous

section). All in all, Ne estimations allows us to understand the role of genetic drift and

the other forces modeling genetic variation, capturing long-term population dynamics.

Although Ne rather than population census size, Nc, is the parameter summarizing

the actual number of individuals contributing to the offspring (Charlesworth, 2009),

Nc determines, however, the number of new mutations entering in the population each

generation. Karasov et al. (2010) presented a plaing example in the evolution of the

Ace gene (a pesticide resistance). For accounting for the quick, repeated convergent

mutations in this gene, they assume a Nc ≈ 109, a value 100-fold the estimated effective

population size of D. melanogaster. Therefore, despite Ne would finally determine the

fate of beneficial alleles, Nc has to be accounted for to infer the adaptive potential of a

gene or the whole genome.

1.2.3 Neutral, nearly neutral theory and Distribution of Fitness Effect

Hundred studies measured protein genetic variability within and between species

with the advent of electrophoretic data (Nevo et al., 1984). Because of the amount

of genetic variation exposed in these studies, Kimura proposed the neutral theory of

evolution since the segregating load (genetic load) was incompatible with the classical

thought that mutations should have selective effects. Furthermore, the underlying
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process driving the amino acid substitutions and the associated variation patterns

was inexplicable for the balance hypothesis. In addition, previously, Zuckerkandl and

Pauling (1965) estimated that mammal hemoglobins evolve at a roughly constant rate

of amino acid substitutions per year (the so-called molecular clock hypothesis) whose

substitution load was unaffordable for the survival of species .

Based on both the segregation and the substitution loads, Kimura suggests

a radical alternative to explain genetic variation: the vast majority of segregating

mutations should have little or no fitness advantage or disadvantage and therefore

be selectively neutral. In this frame, most polymorphic and fixation patterns can be

explained by genetic drift and mutation rate, the main evolutionary force that dictates

the trajectory of mutations present in a population. Under the neutral theory, the

frequency dynamics in the population are determined by the rate of mutation and

random genetic drift. Considering neutral variants, the bulk of existing polymorphisms

and fixed differences between species are selectively neutral and functionally equivalent.

As reviewed by Casillas and Barbadilla (2017), the following statements summarize the

neutral theory (also called the mutation-drift balance hypothesis):

� Deleterious mutations are rapidly eliminated from the population, and adaptive

mutations are rapidly fixed. Therefore, within-species variation must be

selectively neutral (i.e., the derived allele has the same biological fitness as the

ancestral allele).

� Polymorphism is a transient phase of molecular evolution between extinction and

fixation, rather than balanced selection.

� The levels of neutral polymorphism (θ) are the product of the neutral mutation

rate and the effective size, Ne. Large populations will have more polymorphism

than small populations.

� Neutral mutations are fixed at a constant rate (K) that is equal to the product of

the mutation rate per generation (µ0) and the proportion of new neutral mutations

(f). K = fµ0.

Then, considering polymorphism as the transitional state to fixation (which

ultimately contributes to divergence) or lost, neutral theory becomes the basic

framework in which natural selection can easily be compared to neutral genetic drift in

terms of allele trajectories and fixation patterns. Under neutrality, directional selected

mutations will be lost or fixed faster than by genetic drift, since natural selection will

deterministically reduce or increase their frequencies (see Figure 1.5). On the other

hand, neutral mutations give rise to a random walk in frequencies that allele frequency

dynamics and genetic drift can predict (see Figure 1.5). Many tests for natural selection
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underlie these neutral assertions, such as the McDonald and Kreitman test (MKT) (see

Section 1.3).

A consequence of the neutral hypothesis is the minimal equation K = µ (Kimura,

1968). Under neutrality, the rate at which allelic changes are fixed in a given species

(K) equals the mutation rate (µ). Also, this linear accumulation of substitutions over

generations predicted by the neutral theory is the theoretical frame for the molecular

clock hypothesis. We can define K as the rate at which mutations are fixed in each

generation in a species. Hence, K informs about the rate at which species diverge over

their evolutionary time. The fate of new variation also depends on the probability of

fixation of each new mutation. This probability depends on two factors: the strength

of selection (s) and the population size, assuming the simplification that the effective

population size Ne equals Nc. Specifically, mutations enter the population at a rate of

2Nµ (the mutation rate is per site per generation, and in a diploid population, there

are 2N potential chromosomes to mutate), so the overall molecular evolutionary rate

taking into account all mutations is determined by the general expression.

K = 2Nµ0

∞∫
−∞

u(N, s)f(s)ds (1.5)

Considering neutrality, most of the mutation will be neutral or strongly deleterious

rather than beneficial, hence s will be s = 0 and s << 0 and K is defined as

K = 2N [µ0u(N, s = 0) + (µ− µ0)u(N, s << 0)] (1.6)

Note that the probability of fixation of a neutral mutation equals its initial

frequency in the population u(N, s) = 1
2N and fixation probabilities of strongly

deleterious mutations are null, then K turns to the minimal Kimura’s expression.

K = 2Nµ0
1

2N
= µ0 (1.7)

Several studies in the mid-1970s showed that different proteins had different

molecular clocks. For example, Dickerson showed that the values ranged from 9 · 10−9

substitutions per site per year, like fibrinopeptide to 10 · 10−11 per site per year, like

histone IV. The neutral theory was challenged because the rates of protein evolution
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were proportional to absolute time (in years), not to generation time; the expected time

unit if mutation rate depends on generation time. In addition to Lewontin’s paradox,

this assertion represented the most controversial points of the neutral theory, despite

the multiple proposal attempting to explain it (Ohta, 1972; Lynch, 2006; Corbett-Detig

et al., 2015; Buffalo, 2021)

Figure 1.5: Frequency trajectories of neutral (blue), adaptive (green) and deleterious alleles
(red). Neutral alleles are eventually fixed following a random walk that can be predicted by
genetic drift. Selected alleles are rapidly fixed or lost depending on their selection coefficient
and the action of natural selection.

Tomoko Ohta redefined neutral theory by introducing a new class of mutation,

nearly neutral mutation (Ohta, 1973). To understand Ohta’s proposal, known as the

nearly neutral theory (Ohta, 1992; Ohta and Gillespie, 1996), it is needed to consider

the Distribution of Fitness effect (DFE), another core concept in molecular population

genetics. The DFE reflects the distribution of selection coefficients of new mutations. As

we have just mentioned, the neutral theory considers only three types of effects: neutral,

deleterious, or beneficial, of which neutral mutations account for the vast majority of

polymorphism, since deleterious mutations are rapidly eliminated from the population

by the action of natural selection and do not contribute to intra or interspecific variation.

Otha’s proposal finally reflected that the DFE should be continuous and proposed

to incorporate two new mutations concerning the neutral theory. On the one hand,

effectively neutral mutations, mutations either slightly beneficial or deleterious that

behave as neutral. These mutations have a fitness effect coefficient much smaller in

magnitude than 1/Ne, spanning the range −1 < Nes < 1. Such mutations act as

effectively neutral because their fate is basically controlled by genetic drift. On the

other hand, nearly neutral mutations, which are mutations that have fitness effects on

the order of 1/Ne. These kinds of mutations range is |10 < Nes < 1|. Note that s
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can be positive or negative too. Summarizing, nearly neutral mutation can be slightly

deleterious or advantageous, and their fate depends on natural selection and genetic

drift.

Since more mutations will fall in the range −1 < Nes < 1 in populations with

small effective population sizes, they will have a larger number of effectively neutral

mutations. Thus, in small populations, genetic drift surpasses natural selection often.

Conversely, as Ne increases, less mutations fall within a coefficient |Nes| < 1, purging

deleterious mutations or favoring the fixation of beneficial mutations.

Thus, Ne dramatically influences the strength of purifying selection when purging

slightly deleterious mutations (SDM). Because larger populations usually have shorter

generation times, you also expect higher mutation rates. Since the proportion of

effectively neutral mutations (f0) and neutral mutation rate counteracts (K = f0µ0),

this can explain why neutral substitution rate (K) is constant per year between species,

and protein evolution is relatively insensitive to generation time contrary to strict

Kimura neutral theory. Considering the DFE and the effective population size, Kimura

and Ohta (1971) redefined the molecular clock by assuming that less important proteins,

or parts that are less important for their function, evolve more rapidly, while other

less critical parts or proteins are constrained because of their fitness. Thus, assuming

nucleotide polymorphism as a phase of molecular evolution (Kimura and Ohta, 1971).

The shape of DFE is a fundamental information in population genetics and other

research fields. We need to know the shape to predict the polymorphism and divergence

of any given species, to explain the maintenance of quantitative and phenotypic genetic

variation in quantitative genetics, to understand the relationship between evolution

of sex and recombination, or predict the rate of genomic degradation due to Muller’s

ratchet. It has been the subject of debate for 30 years since Otha’s proposal, in which,

for the first time, underlyingly and due to new types of mutations, it is stated that the

DFE must be continuous. Today we know that this is the case thanks to a range of

studies ranging from mutation accumulation experiments to statistical inference using

synonymous and nonsynonymous polymorphism. That continuum would encompass

strongly deleterious, slightly deleterious, effectively neutral, and slightly beneficial and

highly beneficial mutations, as opposed to Kimura’s original neutral theory.

The fundamental question, therefore, is what shape such a DFE takes. Over the

last decade, many models have been developed to infer the DFE. Inferring the DFE can

help us resolve which traits or phenotypes are subject to natural selection since we might

know what proportion of mutations are selective. Statistical methods typically compare
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the levels of synonymous and nonsynonymous polymorphism to find out. Considering

that synonymous variability evolves neutrally, the levels of nonsynonymous variability

that differ may reflect the nature of the DFE in nonsynonymous variants, which, a priori,

are more likely to affect protein functions. Such approximations have determined that

in D. melanogaster and humans around 20-30%, and 6% of non-synonymous mutations

are effectively neutral (−1 < Nes < 1), while between 10-20% are slightly deleterious

(−10 < Nes < −1) (Eyre-Walker et al., 2006; Boyko et al., 2008; Eyre-Walker and

Keightley, 2009). More importantly, there is no single DFE; each nucleotide depending

on the functional class to which it belongs, or mutation type, such as insertions or

inversions, has its own DFE and may vary across the genome. Over the last decade,

several mathematical models have been proposed to infer the DFE, although it is unclear

what type of distribution may best fit the data, whether multiple species share a similar

form of DFE (Galtier and Rousselle, 2020) or even if it follows a continuous distribution,

as extensively reviewed by Kousathanas and Keightley (2013). Some representative

DFE models are discussed in depth in Section 1.3. and used in Chapter 4 and 5

Deleterious Slitghly
deleterious

Slitghly
beneficial

Beneficial

Figure 1.6: Continuous DFE according to the nearly neutral theory of molecular evolution.
Mutation mutations are colored from red to green according to their fitness effect. Effectively
neutral mutation are shown in gray.

1.2.4 Lewontin paradox, background selection and hitchhiking

Lewontin’s paradox remains one of the Achilles’ heels of population genetics.

This paradox, described by Lewontin (1974), arose with the data provided by the
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allozyme era, and despite the limitations of this technique, it remains unsolved by

DNA sequencing data.

Neutral and nearly neutral theories assume that nucleotide variation is mainly

determined by the balance of new mutations and drift. Hence, considering nearly

neutral theory, mutations introduce genetic variation at 2N while genetic drift removes

it depending on the population size at a rate 1/2N . As we explained in the previous

section, in small populations genetic drift removes variation faster than mutation adds.

It is therefore intuitive that there must be a relationship between variation and effective

population size. Under neutrality, this relationship can be summarized through the

expected neutral heterozygosity (θ). θ is defined as θ = 4Nµ, from which it is easy to

predict from his linear relationship that small populations are expected to show lower

variation levels. Unfortunately, this prediction was precisely challenged with the advent

of the allozyme-era data and remains unresolved to date. The failure of this prediction

is known as Lewontin’s paradox. Lewontin (1974) and subsequent studies (Buffalo,

2021; Leffler et al., 2012) showed that heterozygosity levels vary only a few orders of

magnitude between taxa, while species’ population sizes vary up to several (Buffalo,

2021).

Lewontin’s paradox implies the lack of a model that can explain the levels of

nucleotide variation between species. As mentioned in the previous section, together

with the on year substitution rate of the molecular clock, it was one of the most criticized

points of the neutral theory. Moreover, Tomoko Ohta’s revision through the nearly

neutral theory has not provided a reliable explanation either. This situation continued

the neutralist-selectionist debate for years, despite the incorporation of two significant

models broadly consistent with current data that can redefine the null hypothesis (see

Figure 1.7). Both models can usually be interpreted as extensions of the nearly neutral

theory once it is considered that sites do not segregate independently and the effect of

selection on neutral linked variants.

On the one hand, Smith and Haigh (1974) introduced genetic hitchhiking as an

molecular evolutionary force. The hitchhiking model proposes that when a beneficial

allele reaches fixation, the diversity around the allele is reduced because neutral variants

are swept along the selective fixation, a process which was named later selective sweep.

Hence, the reduction of genetic diversity is directly related to the rate of fixation of

neutral-linked variants, and levels of genetic variation are determined over time by

mutation, genetic drift and recombination. John Gillespie developed a stochastic model

that considers both the effects of genetic drift and recurrent hitchhiking, called genetic

draft (Gillespie, 1994). Like genetic drift, genetic draft eliminates genetic variation and
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depends on population size. As we have seen in the previous section, genetic drift is

less effective in eliminating alleles on large populations, while natural selection is more

effective. If we also consider that more adaptive mutations will occur by chance in these

populations, genetic variation should be significantly reduced due to a more significant

number of hitchhiking events. With this model, population size and genetic diversity

can be decoupled, potentially resolving Lewontin’s paradox. In addition, the genetic

draft model is consistent with high adaptation rates in large species (Hahn, 2008, 2018)

On the other hand, Charlesworth et al. (1993) proposed the background selection

model (BGS) . This model can be considered similar to the hitchhiking model. However,

it involves deleterious mutations rather than beneficial. Thus, in the BGS model, linked

neutral variation is removed from the population due to linkage with deleterious alleles,

achieving not fixation but the loss of alleles by the action of purifying selection. BGS is

expected to reduce genetic variation like the hitchhiking effect, although it can hardly

mimic the pattern of genetic variation (Schrider, 2020). The effects of BGS on fixations

and frequency spectrum have been the subject of much theoretical work (Charlesworth

et al., 1993; Charlesworth, 1994; Hudson and Kaplan, 1995; Barton, 1995; Nordborg

et al., 1996). In Chapter 3, we explored the role of BGS in the MKT. We use the

classical BGS model described in Charlesworth et al. (1993), Charlesworth (1994),

Hudson and Kaplan (1995) and Nordborg et al. (1996) to model the deleterious alleles

considering analytical estimation of positively selected allele fixation and BGS model,

while accounting for linked neutral diversity reduction and the reduction of fixation

probability of a positively selected allele under BGS (Charlesworth, 1994).

Both models, selective sweeps and background selection, have been extensively

applied to numerous species and genome regions. However, although the effect appears

ubiquitous, Hahn (2018) remarks that what remains to be determined is the relative

importance of each process across regions of the genome and species. For that reason,

neither genetic draft nor BGS can constitute a null model, whereas the nearly neutral

theory can fit any species or part of the genome in a generalized way, allowing us to

test the role of natural selection in cases where we obtain unexpected patterns.
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A. Hitchhiking event

B. Background selection

Initial scenario Low recombination High recombination

Initial scenario Low recombination High recombination

Figure 1.7: Hitchhiking and BGS effect on neutral linked sites considering low and high
recombination scenarios. A. Neutral mutations (gold dots) are fixed along with beneficial
mutations (green dots) because of linkage, resulting in a reduction of genetic diversity. If
recombination is sufficiently high, the neutral levels (white dots) of polymorphisms can be
recovered. B. Neutral mutations (blue dots) are purged along with deleterious mutations (red
dots) because of linkage, resulting in reduced genetic diversity. However, if recombination is
sufficiently high will break the haplotype. Hence linked neutral alleles (blue dot) remain in the
population.

1.2.5 Hill-Robertson interference

Although Lewontin’s paradox remains unsolved and requires complementary

models to understand the relationship between diversity and population size, the

hitchhiking and BGS models of linked selection place the importance of recombination

in nucleotide diversity levels. The fate of a new mutation is conditioned not only by the

selective advantage or disadvantage it confers, but also by the genomic context in which

it appears. A classic paper of population genetics, presented by Hill and Robertson

(1966), predicts that when selection is common, an increased linkage between sites will

limit the effectiveness of both positive and purifying selection since selection at one site

interferes with the selection at other linked sites. Therefore, if one or more selected

mutations surround a newly selected mutation, they will interfere with each other since

they do not segregate independently. Hence, recombination can determine not only the

fate of the selected mutation but also the fate of surrounding mutations.
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The reduction in selection efficiency due to interaction between linked sites is

known as Hill-Robertson interference (HRi (Hill and Robertson, 1966), see Figure 1.8).

HRi can occur in two different ways, involving either beneficial alleles or deleterious

alleles, and both types can compromise the adaptation of genomes. HRi involving

beneficial alleles occurs when beneficial mutations segregate simultaneously in different

haplotypes and compete for fixation. This type of HRi is known as clonal interference.

The second type (a Ruby in the Rubbish (Peck, 1994)), involving deleterious alleles,

occurs when a beneficial mutation appears in a genetic background loaded with

segregating deleterious mutations.

The context of genomic recombination determines both types of HRi. In a low

recombination context, the beneficial alleles will compete until one of them will become

fixed together with the carrier haplotype, while the other beneficial alleles are lost.

In these cases, deleterious mutations linked to the beneficial mutation could be carried

over to fixation due to clonal interference. In a Ruby in the Rubbish scenario, beneficial

mutations in linkage with deleterious ones are lost. In contrast, when recombination

is high enough, haplotypes carrying beneficial mutations can swap alleles generating a

new haplotype carrying both adaptive mutations and fix clonal interference. Similarly,

deleterious alleles can be eliminated, and adaptive alleles can be fixed without interfering

with each other. This interference can be the result of the BGS process. Both types

of interference limit the rate of adaptation in genomes, mainly affecting the fixation

of slightly beneficial alleles (Uricchio et al., 2019). These concepts are discussed in-

depth in Chapter 5. As mentioned above, the chapter shows the incorporation of the

BGS model into the MKT, which indirectly measures interference by correcting α when

selection is weak
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Figure 1.8: Hill-Robertson interference considering adaptive and deleterious mutations. Dot
color represents beneficial (green) or deleterious (red) mutations and size the strength of
selection. A. Two adaptive mutations occur in two different haplotypes and compete for fixation.
If recombination is sufficiently high, it will generate a new haplotype carrying both adaptive
mutations and can both be fixed. B-C. Deleterious alleles are dragged to fixation due to linkage
to beneficial one or beneficial alleles are purged depending on the selection coefficients. If
recombination is sufficiently high, deleterious alleles can be purged and beneficial alleles are
fixed without interference.

1.2.6 Signatures and tests of positive selection

Much has been debated about the ubiquitous effect of BGS, positive, linked

selection and neutrality (Hahn, 2008; Kern and Hahn, 2018; Jensen et al., 2019; Johri

et al., 2020). Although the effect of linked selection is one of the most plausible

explanations to unexpected neutral patterns in the genomes and Lewontin’s Paradox,

the most recent studies show we still need a selection model that fully describes the

patterns of genetic variation among species (Corbett-Detig et al., 2015; Buffalo, 2021).

Despite the controversy, there is ample evidence that positive selection is ubiquitous

in the genome, and during the last decade, neutral theory has provided the necessary
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null model against which to evaluate non-neutral hypotheses. These patterns can be

tremendously valuable for inferring the presence and effects of mutations, including

mutations that we can consider advantageous (direct selection) and the effects on linked

mutations (linked selection).

Numerous studies verified that, more than positive selection, is BGS the pervasive

form of selection across the genome (McVicker et al., 2009; Murphy et al., 2021).

McVicker et al. (2009) summarize the effect of background selection through the B

statistic. The author stated that a sizable genomic fraction (19-26%) has a reduced

neutral diversity due to BGS. BGS has been commonly explored at the genome-

wide level (Lohmueller and Nielsen, 2021), showing that most mutations tend to be

deleterious, as proposed by the neutral and nearly neutral theory.

However, positive selection can leave much stronger signals in the variation

pattern. Nowadays, a great debate has arisen regarding the relative importance of

demography, linked selection, and genome-wide BGS. While some argue that much

of the nucleotide patterns can be explained by different modes of selection (such as

hard and soft sweeps), others argue for incorporating a new null model, under which

demographic factors and BGS can alternatively explain the patterns attributed to

positive linked selection (Kern and Hahn, 2018; Johri et al., 2020). However, a detailed

exploration of this problem shows that BGS patterns can hardly resemble the diversity

patterns produced by a selective sweep (Schrider, 2020). Regardless of the debate, it

is clear that natural selection results in patterns of diversity and linkage disequilibrium

that cannot be explained under the null neutral model.

During the last decade, neutral theory has provided the necessary null model

to evaluate non-neutral hypotheses such as hitchhiking or BGS. The most direct

consequence of genetic hitchhiking is the reduction of neutral diversity around the

selected mutation. There are other effects besides the reduction of genetic diversity,

such as the deviation of the neutral SFS pattern and the increased homozygosity of

haplotypes (Lohmueller and Nielsen, 2021). The deviations of the neutral diversity

patterns depend on the sweep’s time or strength and have been widely used to detect

and measure the effect of positive directional selection. The following section describes

the main summary statistics used to describe the patterns of genetic variation and

to pinpoint genomic regions subjected to positive selection. They are classified into:

deviations from neutral SFS, population differentiation, and LD (see Figure 1.9). In

addition, because this thesis is mainly focused on the MKT, we also dedicate a section

to describe the signatures of recurrent positive selection.
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Figure 1.9: Statistics and signatures to infer selection at DNA level regarding the timing of
the selective events. Adapted from (Sabeti et al., 2007)

Deviations from neutral SFS

The reduction in neutral diversity produced by selective sweeps can result in

unexpected patterns at the SFS depending on the sweep fixation past time. A significant

proportion of intermediate neutral alleles drifting in the population are purged by the

hitchhiking process (Lohmueller and Nielsen, 2021). Once the advantageous mutations

and linked variants get fixed, new mutations will restore neutral diversity levels.

However, new mutations will appear slowly, and all the new variants in the population

will be at low frequency. Hence, fixed sweeps can be detected not only by the reduction

in genetic diversity, but also by an excess of rare variants at SFS (Sabeti et al., 2007).

The strength of selection finally determines the reduction in genetic diversity and the

size of the affected regions. Stronger adaptive events result in rapid fixations and, finally,

higher excess of rare alleles, since recombination cannot rescue unlinked neutral variants

at intermediate frequencies (Lohmueller and Nielsen, 2021). This kind of measure is

interesting because the reduction of genetic diversity persists more extensively than

other signatures (< 250, 000kyrs, see Figure 1.9).

Tajima’s D (Tajima, 1989), Fay and Wu’s H (Fay and Wu, 2000), and Fu and

Li’s D and F (Fu and Li, 1993) are among the summary statistics most widely used

to detect this kind of selection signature. Tajima’s D measures the difference between

two estimators of the population variability (θw and π). Under neutrality, the means

of θw (Watterson, 1975) and π should approximately equal one another. Therefore, the
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expected value of Tajima’s D for a population conforming to a standard neutral model is

zero. Significant deviations from zero indicate a skew in the allele frequency distribution

relative to neutral expectations. Positive values of Tajima’s D arise from an excess of

intermediate frequency alleles and can result from population bottlenecks, structure, or

balancing selection. Negative values of Tajima’s D indicate an excess of low-frequency

alleles and result from population expansions or positive selection. Fu and Li’s D and

F are based on the number of old and recent mutations found and expected under

neutrality. It is computed by comparing the number of derived nucleotide variants

observed only once in a sample with the total number of derived nucleotide variants or

the mean pairwise difference between sequences. Thus, the expected value considered

under neutrality is zero, and significant deviations from zero are informative about

distinct demographic and/or selective events.

Before sweep fixation, neutral linked alleles will be found to be at high frequencies

since they had hitchhiked along with the selected alleles. Eventually, once the selected

alleles get fixed, neutral linked alleles become fixed too, and the excess of high-frequency

alleles will disappear (Zeng et al., 2006). However, positive selection can create an excess

of high-frequency derived alleles due to incomplete sweeps or due to recombination

of the selected variants during hitchhiking (Lohmueller and Nielsen, 2021), opposite

to the excess of rare alleles where positive selection signals are reflected because of

the associated reduction of diversity and the presence of new alleles. Fay, and Wu’s

H detects the presence of an excess of high frequency derived alleles in a sample by

comparing pairwise differences in the sample to the total number of the homozygous

allele for the derived allele (Vitti et al., 2013). The derived allele is defined from

the ancestral alleles of a closely related species, assuming each mutation occurred

only once since the species split. More sophisticated methods to infer the ancestral

state include multiple species comparison (Keightley and Jackson, 2018). The excess

of rare and high-frequency derived alleles has been widely used as signals of positive

selection in the genome. Nonetheless, several simple demographic processes can mimic

both. For example, population expansion can result in higher proportions of new rare

alleles, whereas population splits can result in high-frequency differentiated alleles. In

addition, these patterns primarily reflect hitchhiking events from de novo mutations.

When considering positive selection on standing variation, the selected alleles probably

recombine several times before the action of natural selection. Thus, the hitchhiking

process will occur on different genetic backgrounds affecting both the reduction of the

genetic variation and the expected SFS patterns.
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Population differentiation

Different populations can be subjected to different selective pressures, resulting

in high levels of genetic differentiation between them. The measure of genetic

differentiation between populations can disentangle the role of positive selection on

both. Hence, if natural selection is acting on a specific trait in a population, then the

adaptive allele and neutral linked sites can differ significantly regarding frequencies.

The population undergoing selection is expected to have high frequencies at selected

and neutrally linked alleles or even be a private mutation in the selected population.

FST relates the amount of genetic variation among populations to the total genetic

variation of overall populations. Genetic drift, migration, and admixture define genetic

diversity between populations considering the nearly-neutral theory. Nonetheless, local

adaptation will contribute to the level of population differentiation at a particular locus,

creating unexpected patterns of diversity resulting in large FST values. The largest

values of FST at a locus indicate differentiation between populations. First proposed

metrics of population differentiation have been widely extended to improve power.

For example, the locus-specific branch length metric (LSBL) compares pairwise FST

measures between three or more populations (Shriver et al., 2004). LBSL have benefited

from different genetic contexts to isolate population-specific differentiation (Vitti et al.,

2013). Population differentiation can only arise when populations are partially isolated

reproductively and both are subject to different selective pressures (Sabeti et al., 2006).

Natural selection may change an allele frequency in one population but not in another,

or act in the opposite direction. The extreme differentiation patterns detected will

finally depend on the nature of the selection and the direction of selection in each

population. Unlike other methods, population differentiation–based approaches can

detect many types of selection, including classic sweeps, sweeps on standing variants,

negative, and balancing selection (Lohmueller and Nielsen, 2021).

Linkage Disequilibrium (LD)

With the fast rise in frequency of a selected allele and the associated hitchhiking

process, there is not enough time for recombination to break down the association

with the neighboring loci on the ancestral chromosome. Such a collection of alleles

in a chromosomal region that occurs together in individuals is termed haplotypes.

Long haplotype methods can be beneficial in detecting ongoing sweeps. However,

the unexpected patterns of LD would persist shortly in time because of the action

of recombination. After 30,000 years, a typical chromosome will have undergone more
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than one crossover per 100 kb, leaving fragments that are too short to detect. However,

it will depend on selection strength and local recombination rate too.

The Extended Haplotype Homozygosity (EHH) test was one of the first statistical

methods to explore these kinds of signals. As defined by Sabeti et al. (2002), EHH is

the probability that two randomly chosen chromosomes carrying the core haplotype of

interest are identical by descent for the entire interval from the core region to the point x.

It captures the decay of identity and the distance of a haplotype carrying a specific allele

at a position of interest, correcting for local recombination rates. EHH values decrease

from 1 to 0 with increasing distance from the core-site. In the case of strong positive

selection, due to the rapid increment in frequency, haplotype homozygosity will tend to

extend much further than expected under neutrality (Voight et al., 2006). EHH is one of

the most sophisticated methods to measure the effect of positive selection on haplotype

structure. Major limitations related to EHH include non-uniform recombination levels

and arbitrary physical distances to define perfect homozygosity to the core haplotype.

Voight et al. (2006) proposed the integrated haplotype score (iHS) to solve EHH’s major

limitation. First, iHS measures the EHH decay as a function of the distance to the core

haplotype. The integration of the function represents a less arbitrary statistic than

EHH measured for a fixed distance to the core haplotype. Second, iHS used genetic

distance rather than physical, capturing the recombination between the tested allele

and the tested position. It has good power to detect ongoing sweeps where the selected

allele has a frequency between 50% and 80% (Pickrell et al., 2009). nSL is conceptual

and mathematically similar to iHS. However, it measures the length of homozygosity

between a pair of haplotypes in the number of mutations and the remaining haplotype at

the region (Ferrer-Admetlla et al., 2014). Other important statistical methods have been

developed, benefiting from the ideas explored at EHH and iHS. The cross-population

extended haplotype homozygosity (XP-EHH) uses IHH measures around the same allele

in two different populations. XP-EHH is similar to FST, but using haplotype structure

rather than changes in allele frequencies. It has more power to detect selective sweeps

with haplotypes at above 80% frequency.

LD-based approaches have been widely used to detect recent adaptation on

standing variation during the last decade too. Garud et al. (2015) developed H12,

which measures the increased levels of haplotype homozygosity due to the increase in

the frequency of adaptive alleles. Nonetheless, assuming that the adaptive alleles are

drifting in the population, different haplotype backgrounds are expected to be at high

frequency. H12 evaluates the frequency and presence of the most common background

haplotypes making inferences of soft-sweeps in addition to classic hard sweeps (Garud

et al., 2015, 2021). In addition to H12, other methods considering selection on standing
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variations have been developed and tested over different datasets and species, such

as diplo-SHIC (Kern and Schrider, 2018), LASSI (Harris and DeGiorgio, 2020b),

saltiLASSI, (DeGiorgio and Szpiech, 2021), SS-H12 (Harris and DeGiorgio, 2020a),

or G123 (Harris et al., 2018).

It is also essential to consider that different tests can measure different types

of signals, which on the one hand, can be helpful since knowing each statistic can be

accurate in solving the proposed hypothesis. However, on the other hand, it can be

challenging to establish which combination of methods is most beneficial to the whole-

genome positive selection detection. To address this problem, composite of multiple

signals, machine learning approaches and Approximate Bayesian Computation (ABC)

can provide powerful ways to disentangle the patterns of natural selection considering

any possible demography or selection background.

1.2.7 Simulations

Considering the Wright-Fisher model and the neutral theory, nucleotide variation

data can be evaluated against a null hypothesis. However, testing such hypotheses

requires a comparison between the observed data and data that can reproduce

neutrality. Therefore, modern population genetics usually use stochastic data in silico,

following a simulation process of the sequence data. The simulation process can be a

valuable resource to evaluate evolutionary hypotheses and new methodologies, as it is

an available scenario that can assess the expected performance. This section describes

the main types of population genomic simulation processes. These methodologies

correspond to two main approaches: coalescence and forward-in-time simulations.

Keeping in mind the description of genetic drift in the previous sections, we can

intuit that the mathematical modeling developed by Haldane, Wright and Fisher, as

well as Kimura and Otha, was done by imagining a stochastic process that progresses

in time. From the binomial sampling in the simplest Wright-Fisher model (like the

marble bag examples) to the exploration of diffusion equation that led to the neutral

theory, genetic drift is modeled either at a time point t or on a scale t + i (where i is

the number of generations). Nonetheless, once DNA alignment became available, the

paradigm changed to understand what evolutionary process led to such alignment and

what forces played a significant role in it.

In the early 1980s, Kingman (1982) developed coalescence theory, a stochastic

retrospective theory that operates at the level of samples, not populations, and from
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the present backward in time. Coalescence theory describes this backward process

regarding the probabilities of lineage pairs coming together (finding common ancestry)

in a randomly admixing population (Hejase et al., 2020). Coalescence theory allows

us to estimate the expected levels and patterns of genetic variation in a sample of size

n, given a stochastic evolutionary model. Coalescence can mathematically describe

the most common ancestor of a sample of sequences in a population. Since lineages

in the sample that are extinct or not sampled are ignored during the data generation

process, coalescent simulations are much more efficient in both time and resources

(Hejase et al., 2020). Usually, to generate the observed polymorphism, the mutations

are placed along the sampled lineage using Poisson modeling and a constant mutation

rate parameter (Kim and Wiehe, 2009). Many extensions have been proposed to

overcome the limitations of Kingman’s model that initially accounted for Wright-Fisher

simplifications (Kim and Wiehe, 2009). Such extensions include general models of

recombination, mutation, and demography. Probably the most important and widely

used coalescent simulator was ms, proposed by Hudson in 2002 (Hudson, 2002). Its

successor, msprime, dramatically improves computational and storage efficiency by

using the tree sequence storage, aforementioned in Section 1.1.4. Other coalescent

simulators, such as discoal (Kern and Schrider, 2016), msms (Ewing and Hermisson,

2010) or cosi2 (Shlyakhter et al., 2014), can handle selection by conditioning on the

trajectory of beneficial alleles (Kim and Wiehe, 2009; Hejase et al., 2020).

Despite the limited options of coalescence simulations regarding selection

regimes, they remain helpful because of time and resource efficiency and provide null

distributions to predict deviations of neutral theory, which should be caused by natural

selection.

While coalescence simulations are an elegant and efficient mathematical

framework, forward-in-time simulations are a brute-force attack. Coalescence can

reproduce the conditions that lead to specific scenarios. On the contrary, forward-

in-time simulations start from an initial model that progresses from generation to

generation and finally leads to the model features. Therefore, there is no prior

assumption, such as coalescence, but rather the simulation starts with an ancestral

population and tracks it forward in time (Hejase et al., 2020). Furthermore, forward-

in-time simulations can consider any virtually evolutionary condition, which allows for

any combination of selected alleles. This flexibility makes these simulators especially

interesting for studying linkage effects, such as recurrent hitchhiking or background

selection scenarios.

However, flexibility comes at a cost. Forward-in-time simulations need more
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resources and time-consuming than any coalescent simulation. Assuming that we

need to establish an ancestral population that will evolve, it is not difficult to

imagine that population size is one of the limiting factors of these simulations.

Moreover, many evolutionary parameters are products of the population size, and

complex demography scenarios can be prohibitive, especially when considering complex

migrations or exponential growth patterns. A common strategy to solve performance

problems has been to rescale the ancestral population size. However, it is not

straightforward to determine the stochastic effect of evolution on small populations

because rescaling may fail to represent the original population genetics accurately when

selection in strong (Uricchio and Hernandez, 2014). Thus, although rescaling is a widely

used measure, it should be considered with care and validated against tractable, non

scaled scenarios (Hejase et al., 2020; Uricchio and Hernandez, 2014).

Most of the results in Chapters 4 and 5 are based mainly on simulated forward-

in-time data, as we tested several conditions based on recurrent positive selection and

background selection. Today, several forward-in-time simulators deal pretty well in

terms of performance and flexibility. However, each one has its peculiarities, and the

choice depends on the user’s requirements (Thornton, 2014; Hernandez, 2008; Haller

and Messer, 2019). For this thesis, all simulations have been carried out using SLiM

(Haller and Messer, 2019). To date, SLiM is probably the most popular forward-in-

time simulator. Not only does it support complex demographic and selection scenarios

under different mating and breeding strategies, but it has also been extended to

non Wright-Fisher models, allowing the breeding of spatially structured populations.

More interestingly, SLiM has recently incorporated two crucial capabilities that can

significantly increase performance. First, it allows simulations using the aforementioned

tree sequences, which improves performance, especially when performing genome-wide

simulations. Second, it allows combinations of forward and backward simulations, where

msprime can be used to generate coalescent histories for a selected prior population

forward in time, efficiently generating neutral variation (Hejase et al., 2020).

In the last decade, and especially in the last few years, simulations have played

an essential role in developing new methodologies, and without them, two of the

most robust and promising methodologies could not have been developed. Both ABC

and machine-learning methodologies can bypass direct computation of the likelihood

function, which can be challenging to disentangle when considering an accurate number

of parameters affecting an evolutionary model. Such methodologies can be exciting

in detecting selection across different evolutionary timescales and inferring selection

strength, timing, or even recombination since the inference is, a priori, unlimited to

any parameter combinations producing the simulations. However, the main limitation
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of both lies in the number of simulations required and the selection of summary statistics

that best capture the model. Training machine-learning methods require more realistic

models to perform inference and ABC approaches a good understanding of the model

to generate the prior distribution properly. Therefore, although unlimited theoretically,

both can be highly computationally expensive and, in most, intractable unless using

High-Parallel Computing platforms.

1.3 Recurrent positive selection: the McDonald and Kreitman Test

In humans, migrations since the OoA led humans to colonize almost everywhere on

Earth, often facing new selective pressures, leading to potential new targets of positive

selection. Most statistical measures described in the Section 1.2.6 detect selective sweeps

that have not been fixed or have taken relatively little time using genetic diversity data.

However, natural selection can act on a larger temporal scale, finally contributing to

species differentiation.

Measuring the effect of natural selection at a larger temporal scale can allow

us to detect how much positive selection occurred genome-wide since divergence with

outgroup species or significant functional differences caused by positive selection events.

Similar to hitchhiking, the effect of recurrent positive selection over time can also be

captured by unexpected patterns, usually reflected in increased fixation rates. Since

most mutations are usually neutral or deleterious considering nearly neutral theory,

higher fixation rates will increase the proportion of beneficial substitutions. These

signatures can detect natural selection on larger evolutionary time scales, comparing

genetic data across lineages. When searching for higher fixation rates, we focus only

on the beneficial alleles themselves, testing for the aforementioned directional selection

(Sabeti et al., 2006). Nonetheless, multiple recurrent adaptive fixations are required

to detect higher substitution rates than the background neutral mutation rate (Hahn,

2018), limiting the power of the analysis. Some clear examples of recurrent adaptive

selection are genes involved in gametogenesis or viral interaction proteins (VIPs),

which have a high proportion of nonsynonymous substitutions (Nielsen et al., 2005;

Bustamante et al., 2005; Enard et al., 2016; Enard and Petrov, 2020).

One of the most straightforward ways to measure the effect of direct selection

is through phylogenetic methods. Due to the lack of population data, the divergence

accumulation between two orthologs sequences was initially used to infer the rate of

adaptation. Because substitutions between species are a long-term consequence of
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polymorphism within species (Ohta, 1973), these methods are the base defining more

sophisticated statistics which use divergence and polymorphism data (Hahn, 2018). As

a result, the expected d, the distance between two orthologs sequences is defined as:

E[d] = 2tK (1.8)

K represents the average substitution rate of new alleles across sites, and t is the

divergence time between species. Note that the genetic distance is measured using 2t

since the substitutions can occur on both branches. Therefore, species are differentiated

depending on the number of alleles that appear and are fixed and the time of separation

between species. As previously explained (Section 1.2.1), considering neutral mutations,

the fixation probability depends only on the initial frequency (n/2N), and the rate at

which neutral mutation arises will only depend on the mutation rate, following K = µ.

Then, the substitution rate is equal to the mutation rate, regardless of population

size. K represents the average substitution rate of new alleles across sites, and t is the

divergence time between species.

Genetic distance is measured empirically by aligning two orthologous sequences

and counting the number of differences between them. However, two factors can affect

the measurement of genetic distance. First, the presence of derived alleles which may

be polymorphic in the ancestral population is usually ignored. Such presence can inflate

the number of sites that we consider divergent, especially when considering a closely

related outgroup. Thus, closely related outgroups can potentially bias estimates of

the rate of adaptive substitutions due to shared polymorphisms. On the other hand,

if we consider that a site may be subject to more than one change from divergence,

we might underestimate the actual number of differences between the two sequences.

Finally, supposing that the divergence between the outgroup and focal species is

too high, we may suffer the same bias as phylogenetic methods toward the most

conserved genes, as rapidly evolving genes will not produce reliable sequence alignments.

Keightley and Jackson (2018) show that these limitations can be overcome by using the

multiple outgroup species, spanning multiple levels of divergence, and extracting local

substitution rate information (Moutinho et al., 2019a). In the most extreme case, when

each site has changed several times, we would still have 25% of the bases matching at

random and d = 0.75. d has been widely explored to account for multiple substitutions.

Among the most widely used models which parameterize the substitution process, we

find those proposed by Jukes and Cantor (1969), Kimura (1980), Felsenstein (1981) or
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Tamura and Nei (1993). The first correction was proposed by Jukes and Cantor (1969),

where d becomes:

d = −3

4
ln(1− 4

3
a) (1.9)

and a is the count of divergent sites. There are several methods to estimate the

strength and direction of selection using between-species sequence data. The genetic

distance can be used to perform the dN/dS ratio estimation (also referred to as Ka/Ks

ratio, or simply ω), one of the classical approaches to test the direction of selection.

dN/dS approach is defined by the number of replacement substitutions (DN ) per non-

synonymous site (dN ), and the number of silent substitutions (DS) per synonymous site

(dS). Since the mutation rate varies throughout a genome, Kimura (1977) suggested

correcting DN with DS , equivalent to controlling the differences in neutral mutation

rates. dN/dS ratio can indicate the general impact of natural selection on a sequence,

but include the combined effect of neutral, advantageous, and deleterious mutations.

For phylogenetic and population genetic analyses, divergence is one key parameter

and must be estimated as accurately as possible. Therefore, erroneous divergence

measures would affect subsequent estimates of adaptive substitutions using phylogenetic

or population genetic methods.

dN/dS is expected to be 1 when changes have been selectively neutral during

the evolution of the sequence. A dN/dS ratio higher than 1 is indicative of recurrent

positive selection. However, a ratio above 1 can only be obtained if a considerable

fraction of the mutations were advantageous, and only a few genes will ever reach a

dN/dS higher than 1. Thus, since most mutations are deleterious following neutral and

nearly theory, the ratio usually is dN/dS < 1. ω is a first approximation to pin-point

putative genes or positions under the action of natural selection, measured through a

pattern statistically incompatible with neutral theory.

1.3.1 McDonald and Kreitman Test

The McDonald and Kreitman Test (MKT) is an alternative to the ω estimate for

the detection of positive selection, which takes advantage of phylogenetic and population

information. It can detect the action of recurrent positive selection by analyzing

polymorphism and divergence data altogether. MKT covers the evolutionary period

spanning from the divergence of the outgroup species to the present.
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The original MKT (McDonald and Kreitman, 1991) is one of the most powerful

and robust methods we have to detect the action of natural selection at the DNA

level. Polymorphic data correct for purifying selection on divergent non-synonymous

sites, significantly increasing the detection power of recurrent positive selection. Four

different counts are needed to conduct the MKT: the count of polymorphisms at

synonymous (PS) and non-synonymous sites (PN ), as well as the count of substitutions

at synonymous (DS) and non-synonymous sites (DN ). The four counts are placed in a

2 × 2 contingency table to test the null hypothesis of neutrality. Under neutrality, all

non-synonymous mutations are expected to be neutral, and the DN/DS ratio will be

roughly equal to the PN/PS ratio.

Because infrequent adaptive mutations fix fast relatively to common neutral

mutations, they contribute almost exclusively to divergence and not to polymorphism;

therefore, an excess of the divergence ratio relative to polymorphism can be interpreted

as positive selection signals. Considering neutrality, the resulting 2 × 2 will show no

deviation of the neutral expected ratio. The significance is commonly assessed through

a Fisher Exact test or a chi-square test.

Several parameters have been derived to quantify the amount of selection using

the MKT, such as the Neutrality Index (NI) (Rand and Kann, 1996) or the Direction of

Selection (DoS) index (Stoletzki and Eyre-Walker, 2011). NI indicates to what extent

the polymorphism to divergence ratio in the testing region departs from the expected

under the neutral model. Under neutrality, PN/PS equalsDN/DS , and thus NI equals 1.

NI below 1 can be interpreted as an excess of divergence between species due to adaptive

selection. NI above 1 is interpreted as an excess of polymorphic variation compared to

neutral regions, which can be interpreted as evidence of purifying selection.

NI =
PN/PS
DN/DS

(1.10)

The DoS statistic, proposed by Stoletzki and Eyre-Walker (2011), is an unbiased

metric calculated as

DoS =
DN

DN +DS
− PN
PN + PS

(1.11)

Positive values of DoS show evidence of adaptive evolution at nonsynonymous

sites, whereas negative values indicate negative selection. Because NI statistic is
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estimated as a ratio of two ratios, they tend to be biased and to have a large variance

towards negative values, specially when data is sparse (any count < 5) (Stoletzki and

Eyre-Walker, 2011).

The most popular summary statistic derived from MKT is the proportion of

substitutions that have been fixed by adaptive evolution: α (Charlesworth, 1994; Smith

and Eyre-Walker, 2002).

α = 1− DS

DN

PN
PS

(1.12)

α have been widely used during the last decade to test regions and genes

where natural selection would hypothetically act, as well as the frequency of adaptive

mutations along the genome. Most existing approaches to computationally estimate the

fraction of non-synonymous substitutions (α) derive from MKT and Poisson Random

Field (PRF) frameworks (Sawyer and Hartl, 1992), both of which use divergence and

polymorphism data to infer the adaptation rate (see Figure 1.10). PRF derive PN ,

PS , DN and DS modeling the mutation process, selection and genetic drift at evolving

sampled independent sites, in addition to the associated population-scaled selection

coefficient (γ = 2Nes) and population size (Ne) (Moutinho et al., 2019a). PRF approach

is the base model for multiple statistical approaches trying to estimate the proportion

of adaptive substitutions, including Maximum Likelihood (ML) estimations of the DFE

(see Section 1.3.4), but also Bayesian models to infer the population-scaled selection

coefficients (Bustamante et al., 2002b; Sawyer et al., 2003)

Nonetheless, MKT and PRF-derived approaches have several drawbacks that

could finally bias the estimation. First of all, it assumes the strict neutrality of

segregating sites. However, several studies in multiple species have shown that selected

mutations could be drawn following different forms of the DFE, resulting in unexpected

patterns in the polymorphism ratio. A clear example could be the genomes where

weak negative selection abounds (Casillas and Barbadilla, 2017). In these cases, where

natural selection is not efficient purguing deleterious mutations, the SFS tends to

accumulate SDM at low frequencies. Another of the most unrealistic assumptions of

the MKT is that the neutral mutation rate is constant over time, and so is the selective

constraint. However, the neutral mutation rate is heavily affected by changes in the

effective population size (Balloux and Lehmann, 2012; Lanfear et al., 2014; Galtier and

Rousselle, 2020; Rousselle et al., 2020). For example, suppose a population that has been

expanding. In that case, slightly deleterious substitutions can lead to an overestimation
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of α as they could have been fixed in the past (thus, contributing to divergence) due

to the larger impact of genetic drift in small populations (Eyre-Walker and Keightley,

2009). Another illustrative example of why neither the neutral mutation rate nor the

selective constraint is constant over time is the trajectory of newly duplicated genes.

For a newly duplicated gene, the strength of selection is initially relaxed, and then it

might become under selective constraint if a new function is acquired. The strength of

selection may also fluctuate over time in single-copy genes. In these cases, the MKT

results can be misleading. However, this effect is expected in general to be negligible in

the MKT for single genes because the fluctuations in the selection strength over time

should not have directionality (Fay et al., 2001).

Besides, there is evidence that weakly advantageous mutations are segregating

at the SFS (Galtier, 2016; Tataru et al., 2017; Uricchio et al., 2019). The presence of

this non-neutral polymorphism can mask the effect of adaptive selection, as it acts in

the opposite directions in the MKT. Lastly, as recently described at (Uricchio et al.,

2019), the patterns of nucleotide diversity can be affected by hitchhiking or background

selection, leading to patterns of fixation not assumed by strict neutrality due to linkage

with slightly deleterious segregating alleles.

Over the last decades, several modifications of the original MKT have been

proposed to account for the potential biases in estimating the proportion of adaptive

substitutions (α). However, as aforementioned, other forces are affecting the SFS (such

as recombination, demography, ancestral population sizes or weak adaptation) and

several studies have shown the importance of dealing with slightly deleterious alleles

(Fay et al., 2001; Mackay et al., 2012; Eyre-Walker and Keightley, 2009; Messer and

Petrov, 2013b). Therefore, the presence of slightly deleterious mutation segregating

and the subsequent distortion of the SFS have been repeatedly shown to be one of the

essential factors biasing downwards biasing α.
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1.3.2 Heuristic extensions

The very first correction to the MKT approach was suggested by Templeton

(1996). He suggested dealing with the presence of SDM, extending the contingency

table to a 3× 2 contingency table. The resulting table divided the polymorphic counts

into singletons and multitons. Singleton categories are expected to be overrepresented

due to the presence of SDM. While there are neutral nonsynonymous polymorphisms

at low frequency, under neutrality there should also be a proportional number of

synonymous polymorphisms at the same frequency. Later, Akashi (1999) proposed a

more robust method that considers the complete distribution of allele frequencies rather

than only multitons and singletons. Although both extensions are more powerful than

the original MKT approach, their results are challenging to interpret when the ratio of

non-synonymous to synonymous differences varies among allele frequency classes (Hahn,

2018).

fwwMKT. Fay et al. (2001) developed a straightforward methodology that removes

all polymorphisms segregating at a frequency below a given threshold (normally

5%–15%). Although there is no consensus about the exact value of the this threshold,

(Charlesworth and Eyre-Walker, 2008) explored the MKT and concluded that α

estimates are robust using a frequency threshold of 15%, below which most slightly

deleterious polymorphisms are found and removed. These estimates are reasonably

accurate only when the rate of adaptive evolution is high, and the Distribution of

Fitness Effects (DFE) of deleterious mutations is leptokurtic (Charlesworth and Eyre-

Walker, 2008). α is estimated using the standard MKT equation, but considering only

those polymorphic sites (for both neutral and selected classes) whose counts are above

the established frequency j.

αFWW = 1−
(
PN(j>15%)

PS(j>15%)
· DS

DN

)
(1.13)

eMKT. Mackay et al. (2012) proposed the extended MKT (eMKT). Instead of simply

removing low-frequency polymorphism below a given threshold, the count of segregating

sites in non-synonymous sites is partitioned in the number of neutral variants (using

neutral sites as a proxy) and the number of weakly deleterious variants. This increases

the power of detecting adaptive selection (as it does not remove as much data as

the fwwMKT) and allows the independent estimation of both adaptive and weakly

deleterious substitutions. PN , the count of segregating sites in the non-synonymous
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class, is decomposed into the number of neutral variants and the number of weakly

deleterious variants, PN = PNneutral + PN . The estimation of both numbers allows

estimating positive (adaptive) and negative selection independently. α is estimated from

the standard MKT table discounting weakly deleterious variants: PN is substituted by

the expected number of neutral segregating sites, PNneutral . The corrected estimate of

α is then

αextended = 1−
(
PNneutral

PS
· DS

DN

)
(1.14)

The fraction of sites segregating neutrally (PNneutral) is estimated through the

neutral polymorphic ratio given the frequency threshold (15%) over the SFS frequencies

(j)

f̂neutral j<15% =
PS(j<15%)

PS
(1.15)

Therefore, the expected number of segregating sites in the non-synonymous class

neutral evolving given the threshold is

PNneutral<15% = PN · f̂neutral j<15% (1.16)

Despite being inspired in the fwwMKT, since PNneutral is considered a fixed

proportion of nearly neutral variants given the synonymous count, this eMKT

assumption result in associated biased estimations, and the amount of bias directly

depends on the selected frequency cutoff (see Chapter 4).

aMKT. Messer and Petrov (2013b) proposed the asymptotic MKT. This MKT

extension is robust to the presence of selective sweeps and to the segregation of slightly

deleterious polymorphism. In this approach, the authors defined α as a function that

depends on the SFS of alleles. Therefore, α is estimated in different frequency intervals.

Given the frequency spectrum distribution in the frequency interval [0, 1], the estimate

of αx results in an exponential function of the form. α(x) = a + b · e−cx. The best

fit of the exponential at x = 1, eliminates the effect of a slightly deleterious allele.

The exponential fit is suitable as the non-synonymous allele frequency is expected to
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decay exponentially over the respective levels of synonymous polymorphisms, since the

fixation probability differs highly from the neutral alleles (Messer and Petrov, 2013b).

α(x) = 1− DS

DN
·
PN(x)

PS(x)
(1.17)

aMKT does not assume that sites evolve independently and do not require to

invoke demography . Although they showed the approach is robust to both the

underlying DFE and recent demographic events when selection is strong, the method

misses main scenarios: i) BGS; ii) it does not account for the presence of weakly

beneficial alleles (Tataru et al., 2017).

1.3.3 ABC-MK

Uricchio et al. (2019) presented the ABC-MK approach to overcome the main

limitation presented at the aMKT. They hypothesized that a method considering

the effect of weakly beneficial alleles could be developed by exploiting the impact

of BGS on the fixation rate. ABC-MK interrogates α as a function of BGS to

infer the rate of adaptation and strength of beneficial alleles jointly. To test pros

and cons of aMKT, the authors explored analytical theory to investigate α when

adaptation is strong and weak while accounting for BGS. They contemplate weakly

selected polymorphism segregating at the SFS, slightly deleterious alleles, BGS strength,

and weakly beneficial fixations altogether with strong beneficial alleles. The authors

demonstrate that aMKT is strongly biased when weakly beneficial alleles contribute

substantially to segregating polymorphism across the genome as a function of the

strength of BGS (Uricchio et al., 2019). Nonetheless, since demography impacts the

SFS, it is not straightforward to calculate the SFS through analytical theory, including

generalized selection, demography, and linkage models. To exploit the explored co-

variation between α and BGS from actual data, the authors performed an Approximate

Bayesian Computation (ABC) method to relax most of the analytical assumptions and

separately infer the rate and strength of adaptation (Uricchio et al., 2019). The authors

followed a generic ABC algorithm in which they i) run forward simulations with a fixed

DFE over non-synonymous mutations accounting for empirical BGS values and known

demography to simulate the model; ii) estimate informative summary statistics from

forward simulations following a biased-resampling strategy that avoids simulating the

full model for different parameter combinations; iii) supply thousands sets of summary
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statistics corresponding to parameters sampled from prior distributions into a published

ABC framework (Thornton, 2009) to infer parameters.

1.3.4 ML models of the DFE

In addition to the heuristic MKT extensions and ABC-MK, ML models of the

DFE that assume PRF framework can estimate the expected proportion of adaptive

fixations given the inferred DFE from the MKT data. In such approaches, the expected

levels of fixations and polymorphism are used to perform likelihood estimates, while

considering different evolutionary models. ML estimations of the DFE have varied

from the first models inferring constant selection parameters across all loci to including

models with continuous distributions of both positive and negative selection coefficients

(Bierne and Eyre-Walker, 2004; Eyre-Walker et al., 2006; Boyko et al., 2008; Eyre-

Walker and Keightley, 2009; Galtier, 2016; Racimo and Schraiber, 2014; Galtier, 2016;

Tataru et al., 2017; Zhen et al., 2021), correcting the aforementioned assumptions to

calculate how many non-adaptive substitutions are expected to become fixed given the

empirical DFE.

Notwithstanding, the newest and more sophisticated ML implementations

(Galtier, 2016; Tataru et al., 2017) take advantage of that proposed by Eyre-Walker

et al. (2006) and Eyre-Walker and Keightley (2009), which assumes that non-neutral

deleterious mutations arise from a DFE in the form of a Gamma distribution.

Nonetheless, unlike Eyre-Walker et al. (2006), these methods also model the effect of

weakly advantageous alleles through an exponentially distributed function, where DFE

is a mixture distribution between the gamma and exponential distributions. Therefore,

the state-of-the-art methods usually follow a standard population genetic model based

on PRF presented in Galtier (2016) and Tataru et al. (2017) to later perform ML of

the DFE.

To estimate the expected counts of polymorphism and divergence, the model

considers a Wright-Fisher panmictic population of size Ne, which diverged in a time t

where mutation occurs at a mutation rate µ, per site per generation (Galtier, 2016).

Figure 1.11 illustrate the equations defining the expected polymorphic and divergence

counts. Let consider synonymous mutation as neutral (PS) and non-synonymous
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mutation as selected (PN ), from PRF the expected counts given a frequency i is

estimated as

E[PS[i]] =
4NeµLS

i
(1.18)

E[PN [i]] = 4NeµLN

1∫
0

B(i, n, x)H(s, x)dx (1.19)

where LN and LS are the total number of synonymous and nonsynonymous sampled

alleles, B(i, n, x) is the probability of observing a mutation at frequency i in n sequences

when the true allele frequency is x

B(i, n, x) =

(
n

i

)
xi(1− x)n−i (1.20)

and H(s, x) is the time that a new semi dominant mutation with selection coefficient s

(in the heterozygous) spends between the frequency x and the frequency x + dx from

diffusion theory (Wright, 1938)

H(s, x) =
1− e−s(1−x)

x(1− x)(1− e−s)
(1.21)

Note that to obtain the expected polymorphic count given the underlying DFE

of new mutations equation (1.19) should be integrated over the full DFE. Following

(Eyre-Walker and Keightley, 2009), the underlying DFE for new deleterious mutations

is defined by expression φ

φ(s; a, b) = absb−1 e
−as

Γ(b)
(1.22)
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where a and b are scale and shape parameters from the Gamma distribution. Therefore,

the expected polymorphic count given a particular DFE is defined as:

E[PN [i]] = 2NeµLN

∞∫
−∞

1∫
0

B(i, n, x)H(s, x)φ(s;α, β)dxds (1.23)

In addition, the method proposed by Galtier (2016) makes the DFE more flexible

by considering that the most appropriate way to model the full DFE may not be

the classical Gamma distribution over negative alleles. Therefore, Galtier’s modeling

included two different versions of the Fisher’s geometric model, and a model assuming

a Beta-shaped distribution of weak effect mutations, instead of a Gamma distribution.

However, as explored further in Galtier (2016), Galtier and Rousselle (2020) and

Rousselle et al. (2020), the shifted negative modeling and the two DFE models based

on the Fisher geometric model generally do not perform well in the analysis.

Following Galtier (2016) and Tataru et al. (2017) procedure, the expected number

of synonymous (DS) and non-synonymous (DN ) substitutions can be estimated as:

DS = LSµt (1.24)

E[DN ] = 2NeµLN

∞∫
−∞

2s

1− e(−4Nes)
φ(s)ds (1.25)

The proportion of adaptive mutations (α) is estimated using the ML inference

of DFE parameters and the expected counts of non-adaptive mutations. α therefore

is estimated subtracting the non-adaptive substitutions and neutral substitutions from

the total observed divergence counts at selected sites.

α = (dN − dnaN )/dN ) (1.26)
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note that dnaN is defined following Galtier (2016). The equation decomposition is similar

to the equations shown at (Tataru et al., 2017) and (Eyre-Walker and Keightley, 2009)

dnaN =
2LNNeµ

∫ sadv
−∞

2s
1−e(−4Nes)φ(s)ds

LN
(1.27)

To estimate the non-adaptive substitutions, the approach proposed by Eyre-

Walker and Keightley (2009) and Tataru et al. (2017) integrate the DFE from −∞→ 0

(sadv = 0), taking into account the deleterious fixations and the negative nearly neutral

fixations given the DFE. Galtier (2016) considers positive sadv values to subtract nearly

neutral positive fixations given the sadv threshold too.

Figure 1.11: Expected polymorphic and divergence sites based on PRF approach. Note that
for s = 0 the equations became similar to equations (1.18) and (1.24). Adapted from Casillas
and Barbadilla (2017).

It is important to emphasize that the shape of the SFS may be biased and

differ from the previously expected values. The distortion may mainly be due to

the effect of demographic events. To account for such distortions, the different

methods usually incorporate nuisance parameters following (Eyre-Walker et al., 2006).

The nuisance parameter r modifies each frequency of the SFS individually. Thus,

r modifies the effective mutation rate at each frequency i, considering the relative

mutation rate at i with respect to the mutation rate at singletons Eyre-Walker

et al. (2006). The perturbing parameter ri considers the same amount of distortion

between nonsynonymous and synonymous SFS. Although the assumption is unrealistic,

simulations showed that the original correction proposed by Eyre-Walker et al. (2006) is

robust enough to take into account demographic effects. However, other models correct
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for demographic effects by considering explicit changes in the effective population during

the modeling process (Eyre-Walker and Keightley, 2009; Zhen et al., 2021).

Despite the efforts for modeling the DFE using polymorphic data, Booker (2020)

suggested that inferred parameters from ML approaches must be reviewed. Underlying

assumptions regarding the DFE shape, selection coefficient strengths, or population

sizes can affect the estimations and capture distinct aspects of the DFE (Booker, 2020;

Zhen et al., 2021). Such a situation is plausible in several D. melanogaster studies. For

example, Campos et al. (2017) and Keightley et al. (2016) found differences between

selection coefficients and probabilities of beneficial alleles. As extensively discussed in

Booker (2020), it is plausible due to different methodological assumptions or if the DFE

for advantageous mutations is bimodal. This latter case should be especially considered

for strongly beneficial alleles, which would be undetectable by analyzing the unfolded

SFS (uSFS) (Booker, 2020).

Messer and Petrov (2013b) compared the performance of their method -the

aMKT- and the DFE-alpha method through simulations. They claimed that DFE-

alpha correctly estimated when the model allowed for population size change, but the

demography inferred was found to be biased, mainly due to background selection acting

at linked sites. Genetic draft leaves signatures in the SFS similar to those observed under

a recent population size expansion. The DFE-alpha method inferred systematically a

population expansion even though no expansion was set in the simulation . Another

limitation of PRF approaches is that it becomes computationally intensive, especially

when a change in demographic model is applied. Since DFE-alpha can only consider

two population-size changes, it becomes insufficient for capturing the excess of rare

variants due to the complex demographic history of some populations, like the human

history (Zhen et al., 2021).

1.4 Surveys of positives selection

1.4.1 Surveys on candidate genes

Before the advent of genome-wide catalogs of variation, we had only a bunch of

clear examples of the action of natural selection in DNA sequences, and the inference

required an a priori hypotheses. Moreover, the absence of functional information

regarding the non-coding part of the genome limited such hypotheses to a few candidate

genes, where the action of natural selection was plausible usually due to the presence of
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some phenotypic evidence. Considering that the human species has been able to colonize

the globe and live in absolutely different environments, it could be assumed that the

number of selective hypotheses to test would be directly related to each population’s

differences and environmental peculiarities. However, while such a statement may

be true, it is not easy to focus on the right questions, and solving them poses the

challenge of linking a phenotypic trait to a single causal gene. Hence, the number of

candidate genes under natural selection has permanently been reduced. Despite the

lack of information regarding potential candidate genes, the appearance of molecular

data allows inferring the action of natural selection and to carry out thorough studies.

The data allows linking genetic information and phenotypic evidence and includes the

historical moment in which natural selection took place. Therefore, genetic evidence

has provided new insight into human history in conjunction with archaeological and

historical data. Classic examples include the gene associated with lactose tolerance

in adulthood and genes that reduce susceptibility to malaria infection (Tishkoff et al.,

2001; Bersaglieri et al., 2004). Both examples neatly illustrate how molecular data

allowed us to search and find evidence for the action of natural selection.

In the case of malaria, numerous genes have been described over the last decade

that would likely confer resistance to infection. In 1954, the study performed by

Allison (1954) showed the correlation between the geographical distribution of sickle

cell disease and malaria endemicity in Africa (Tishkoff et al., 2001). The sickle cell

disease is produced by an amino acid change at β-globin gene (HBB). Although the

mutation is strongly deleterious in homozygous, it is prevalent in regions where malaria

is endemic. That prevalence suggests that heterozygous carriers are protected against

Plasmodium falciparum malaria, and the mutation is maintained in the population

by the action of natural selection. The study at the population-genetic level allowed

inferring the action of selection on the malaria resistance trait. Currat et al. (2002) and

Ohashi et al. (2004) showed the first evidence of natural selection at the HBB locus.

Polymorphic data obtained from marker genotyping and chromosomal sequencing allow

both studies to prove the origins of the haplotypes carrying the sickle cell mutation in

populations of different ancestry but show unexpected patterns of linkage disequilibrium

and longer haplotypes. The results showed that mutations in the HBB groups had

recently occurred, hence the rapid increase in allele frequency, dating back 2000 years.

The first population-genomic results provided on malaria resistance candidate

genes provided a holistic perspective of the adaptation of a human trait considering

the origin of the sickle cell mutation in response to malaria (Sabeti et al., 2007).

Moreover, the estimates of the mutation age are fully compatible with theories of the
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recent expansion in the human population, whereby the advent of agriculture led to the

population densities necessary for the efficient spread of malaria (Fan et al., 2016).

Nonetheless, the survey of HBB genes is not the only example of malaria candidate

genes under natural selection. Tishkoff et al. (2001) reconstructed the evolutionary

history of the G6PD genes. Like in HBB clusters, G6PD presents highly deleterious

variants resulting in enzyme deficiency associated with specific geographic regions highly

correlated to the distribution of malaria endemicity (Tishkoff et al., 2001). The linkage

disequilibrium patterns allow the reconstruction of haplotype diversity and date the

appearance of the enzyme deficiency associated variants about 11000 and 6000 years

ago (depending on the studied haplotype).

In the case of lactase persistence, the ability to digest lactose in adulthood

varies among populations and is also genetically determined (Bersaglieri et al.,

2004). Moreover, the geographic distribution of tolerance ratios coincides with the

historical occurrence of livestock domestication across the globe, including today’s

major production regions (Beja-Pereira et al., 2003). These signals prompted early

studies and hypotheses proposing that the persistence of lactose tolerance, especially in

northern European populations, could be explained by the action of positive selection.

Bersaglieri et al. (2004) performed the first population-genetics approach to assess this

question. They surveyed the role of natural selection over 100 genotyped SNPs in

multiple populations, using an FST and an FST extension measure. The approach

showed that: i) SNPs near LCT show significant differences in allele frequencies among

populations; and ii) the putative haplotype associated to persistence is longer than

would be expected in the absence of selection (Bersaglieri et al., 2004).

These first studies surveying targets of selection using molecular data showed the

power of these data to solve evolutionary questions. High-resolution LD maps allow

detecting recent adaptation events along the human genome (Akey et al., 2002). Such

examples of genes continue to be the starting point for new studies and methodologies.

Over the years, we have succeeded in inferring the strength, direction, and causes

and effects of natural selection. Nonetheless, as extensively discussed in Akey (2009),

the study of natural selection over candidate genes has two significant issues. In

the first place, the pinpointing of candidate genes requires an a priori hypothesis.

Natural selection acts on phenotypes, which ultimately shapes the genetic variants in

populations. However, even in these cases where the hypothesis is elaborated directly

on scientific evidence on phenotypic changes, it is necessary to understand genotype-

phenotype relationships to pinpoint specific genes. In practice, only Mendelian

architecture traits are susceptible to directly linking genotype and phenotype. Such
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is the case for the lactose tolerance trait. Moreover, Mendelian architecture traits were

commonly associated with functional protein-coding genes ignoring important traits at

regulatory levels.

Second, variation in DNA may not only occur through the presence of positive

selection. There are a variety of factors that can lead to misinterpretation of putative

selection signals (Akey, 2009; Booker et al., 2020; Schrider, 2020). The interplay of

forces shaping genetic variation and natural selection can result in patterns similar to

those that a priori could be detected as natural selection. Of particular relevance is the

role of genetic drift and the demographic history of populations (Schraiber and Akey,

2015), since diversity patterns are affected by changes in population size. Nonetheless,

other factors such as nonrandom mating and admixture should be considered too

when scanning patterns of adaptation (Akey, 2009). Therefore, the genetic variation

at candidate genes has to be reviewed in their genomic context to make robust

inferences of positive selection while understanding realistic models of population

history, recombination, and other selective regimes.

1.4.2 Genome-wide catalogs of positive selection

Starting in the last decade, genomic data is allowing us to unravel the interplay

between the different forces that modulate genetic variation. Its high resolution is

especially helpful in distinguishing between demographic history and natural selection

to develop a coherent narrative of human evolutionary history. On the one hand, it has

allowed to have a clear view of the demographic history of anatomically modern humans:

the time of emergence as species (≈ 200, 000 years ago, probably in East Africa), the

routes and migratory events along our colonization of the globe (Schraiber and Akey,

2015). On the other hand, genomic data has allowed us to elucidate the action of natural

selection on classic examples of candidate genes at different levels, unraveling when and

how natural selection action took place. More importantly, genomic data allows us

for the first time to survey the genome without any a priori hypothesis searching for

positive selection patterns. This way, genome-wide scans of selection have resulted in

an extensive catalog of putatively adaptive regions.

Considering the history of anatomically modern humans, demography is especially

relevant for several reasons: i) population expansions from OoA dispersal could be

one reason for the accelerated rate of adaptation, facing humans to new selective

pressures; ii) migration and isolation can determine local events of adaptation and

population differentiation; iii) population contraction can be directly associated with



63 Abstract

selective pressure, making the two forces that shape natural variation indistinguishable

(Lohmueller and Nielsen, 2021). In addition, it is well-documented that complex

demography history can mimic variation patterns produced by hitchhiking and

background selection (Schraiber and Akey, 2015).

From early analyses accounting for very sparse maps of genetic variation (Akey

et al., 2002; Payseur et al., 2002), genome-wide scan analyses of selection exploded in

the mid-2000s. The advent of Perelegen and HapMap data (Altshuler et al., 2005; Hinds

et al., 2005) provided the opportunity for studies at different scales, from which a large

number of genome-wide catalogs of recent and ongoing selection emerged. As a result,

we now have numerous genome-wide selection scans in the human genome, including

different populations and signals, and more comprehensive datasets than Perlegen

or HapMap (Table 1.1). The identification of candidate regions has demonstrated

the ubiquity of selection along the genome. Some of the selection events detected

in humans, as in other species, are related to clear examples of selective pressure.

The genomic survey has repeatedly shown adaptive signals related to pathogens, high

altitude, toxic environments, change in diets, ultraviolet exposure, or even noninfectious

genetic diseases (Fan et al., 2016). This relationship between putatively selected

variants and identified forces of selective pressure represents an essential point for

understanding species differentiation and history because phenotypes are the primary

target of selection that alleles putatively selected are likely to have functional relevance

(Akey, 2009).

The outlier approach is a primary methodology to carry out genome-wide analysis

detecting the potential evidence of natural selection. In this type of analysis, many

loci, or the whole genome, are sampled to calculate summary statistics. Since natural

selection will act over specific regions or genes, a putative candidate will appear at

the extreme tail when constructing an empirical distribution. Thus, outlier approaches

can be a straightforward methodology to address this unsolved problem considering

candidate genes analysis because natural selection will operate under specific functional

loci, while confounding factors, such as demography, would affect variation along the

genome similarly (Akey, 2009).

Figure 1.12 represents graphically the application of the outlier approach to a

general summary statistic. A standard population genomic survey will sample i loci

to estimate a summary statistic T . Under neutrality, genetic drift is the leading force

affecting the loci i. Although other genetic forces can affect the expected patterns, such

as background selection or local recombination rates, the effect is ubiquitous along

the genome. Therefore, the Ti estimation will equally capture the forces affecting
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the surveyed loci. Nonetheless, variants under positive selection can show biased Ti

estimations, mainly enriching in the tail of the distribution. For example, in Figure 1.12,

the estimation Ti is represented by the loci genealogies of three individuals. Putative

neutral site sites would share similar topologies (gray boxes), and putatively selected

sites result in unexpected topologies (red boxes) considering whole genome distributions.

In these examples, differences in loci genealogies will be summarized in Ti estimations,

where Ti at the putatively selected alleles enrich the most extreme values (outliers) of

the empirical distributions of T .

Hence, following the Figure 1.12, the approach proceeds: i) surveying any i loci

to estimate the summary statistic T ; ii) estimating the empirical distribution of T . The

last step is to consider a cutoff in the empirical distribution under which outliers are

considered. This cutoff is usually arbitrary, and data in the 99th or 95th percentile

has been primarily used in many studies. Because the chosen percentile only represents

the distribution tails of summarized values, unexpected patterns of variation due to

confounding factors (such as demography or recombination) can mimic positive selection

patterns and the selected cutoff itself can increase the number of false positives and false

negatives obtained by this methodology.

Neutral simulations that incorporate realistic demographic models and selection

are essential for choosing a cutoff. Ultimately, outliers in the empirical distribution

only indicate an extreme variation pattern, which may be caused by other cofactors

and not by natural selection. Thus, a cutoff based on simulations can be set based

on the expected patterns under neutrality and any other cofactors resulting in robust

detection (Akey, 2009). While demographic and local recombination inferences have

been refined over the years, simulation studies are far from perfect. Most genome-

wide positive selection scans are accompanied by coalescent simulations using programs

such as discoal (Kern and Schrider, 2016), msms (Ewing and Hermisson, 2010) or

cosi2 (Shlyakhter et al., 2014). These simulations usually account for selection at a

single locus. However, other factors, such as codominance or background selection,

are not considered because of the expensive computational cost and the assumptions of

coalescence theory. Even though, in some specific cases, when they can fail to reproduce

even a classic hard sweep, simulations have repeatedly shown to be quite valuable to

establish a cutoff considering the neutrality, demography, and recombination.
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A typical population genomics study design of an outlier approach for detecting positive selection. 

Figure 1.12: Schematic view of an outlier approach. An estimator T is applied on the sample
(usually SNPs along the genome). Assuming that the entire genome will be affected by the
same confounding factors, such as demographic events, the T estimate at putatively selected
loci should be reflected as an extreme value in the empirical distribution of T . Taken from Akey
(2009).

Kelley et al. (2006) and Teshima et al. (2006) explored the performance of the

outlier approach by performing coalescent simulations. The simulations performed by

Kelley et al. (2006) anticipated several essential points. First, they found that the

number of false positives can be high even when considering ascertained data. It will

ultimately depend on the parameters that modulate selection and the fraction of loci

targeted by positive selection. However, although the authors detailed the problem

dealing with the cutoffs, Kelley et al. (2006) claimed: if the goal of a study is to identify

a restricted set of candidate selection genes to study in more detail, then our data

suggest that an outlier approach is a reasonable study design as long as one accepts

that a substantial proportion of candidates may be false positives. Nonetheless, once the

simulations incorporate accurate models in mutation rates, recombination, and selection

coefficients, the increase in variance in summary statistics due to perturbations will be

similar to that of natural populations. Therefore, the identification of outliers based on

more realistic simulations should result in more accurate inferences. The simulations by

Kelley et al. (2006) and Teshima et al. (2006) manifest that extreme outlier values arise
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under neutrality, considering the stochastic nature of evolution. However, both studies

used classical neutrality tests to measure the effect of positive selection. While such

tests have high power to identify completed or near fixed sweeps from different periods

and stages, they generally have low statistical power to detect ongoing or partial sweeps.

Although it is necessary to expand the work of Kelley et al. (2006) and Teshima et al.

(2006) regarding the outcomes of applying other methods on the outlier approach,

Enard et al. (2014) and, more recently, Booker et al. (2020) also carried out similar

analyses. The analysis performed by Enard et al. (2014) and Booker et al. (2020)

reviewed complex models of selection and recombination further than the selected cutoff

and coalescence simulations in the outlier approach, pinpointing out limitations of the

future genome-wide analysis.

As shown in table 1.2, the number of genome-wide scans of positive selection

accounts for different datasets and methodologies, testing natural selection at different

levels and populations (Haasl and Payseur, 2016; Lohmueller and Nielsen, 2021).

Overall, these studies show that up to 10% of the genome could be subject to positive

selection (Akey, 2009), being ubiquitous throughout the genome. These values may

be up to 20% higher in the case of Drosophila (Mackay et al., 2012). Nevertheless,

genome-wide approaches clearly show a pervasive effect in the studied species (Haasl

and Payseur, 2016). Interestingly, as discussed in Lohmueller and Nielsen (2021)

and Akey (2009), these studies lead to the creation of catalogs of positive selection

and show that a considerable number of human genes are subject to the action of

natural selection. Moreover, functional studies of these genes suggest that they are

consistent with previous hypothesis and studies at the gene level, showing enrichment

of signals in genes related to immunity, olfactory receptors, pigmentation, metabolic

pathways, and other cell cycle signals. However, the vast majority of studies show more

significant signal enrichment in non-genic regions. Although many of these regions

can be attributed to regulatory regions close to genes, other intergenic signals can be

attributed to distal enhancers, non-coding RNAs, or even elements related to genome

organization. For example, Enard et al. (2014) extensively observed that positive

selection signals correlate better with regulatory sequences than classical amino acid

substitutions.

Through these studies, clear examples of selection have been elucidated over the

last decades. Overlapping results is one of the simplest ways to assess confidence in

the results of the genome-wide selection. Considering the various statistics used to

measure selection strength and timing and the wide variety of data and populations, one

cannot expect concordance between false positives. However, the agreement between

results is also far from perfect. For example, the overlap between adaptive events
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results in only 14% of putatively adaptive regions (Akey, 2009). Indeed, the figure

may be worrisome, but considering there is no consensus to use a cutoff or, even more

importantly, standardization in neutral simulations, the result should not be surprising

either. Other genome-wide approaches have been performed using new methodologies,

and more accurate data. Nevertheless, even considering the results described by CMS

Grossman et al. (2013) or Johnson and Voight (2018), the agreement remains low.

Overall, it may be easy to foresee the criticisms in this type of analysis.

Among this low concordance, the studies can locate multiple constantly repeated genes

independently of data and methodologies. Among these examples, we have found new

candidates and old and clear examples, such as LCT or genes associated with resistance

to malaria. These results have given rise to the complete maps of positive selection in

the human genome to date, combining genome-wide scans with the first studies that

had an a priori hypothesis.
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Chapter 2

Objectives

The ultimate goal of this thesis is to characterize adaptation that has occurred

at different time scales in the human lineage through the analysis of the 1000 Genomes

Project (1000GP) dataset. The 1000GP represents, to date, the largest and highest

quality genome-wide dataset of human nucleotide variation, and contains a treasure

trove of information about human evolution. In particular, this thesis places special

emphasis on methods for the detection of recurrent positive selection events.

In order to achieve these objectives, the following specific objectives are proposed.

1. Perform an exhaustive genome-wide scan combining different population genetics

statistics to detect candidate regions under selection in 22 non-admixed human

populations from 1000GP. The combination of different statistics and the

pinpointing of those regions that stand out from the background genomic

variability, including abnormally long haplotypes, shifts in the Site Frequency

Spectrum (SFS), or an excess of non-synonymous substitutions, should result in

an exhaustive understanding of human genetic adaptation. In addition, because of

the lack of consistency between previous genome-wide scans of positive selection,

we aimed to construct a robust methodology, not only to detect new adaptive

events, but also to replicate genome-wide scans of positive selection to date.

2. To construct an online, user-friendly database to facilitate the thorough analysis

of candidate regions under selection in the human genome by putting together

the evidence of selection with structural and functional annotations of the regions

and cross-references to previously published articles.
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3. To develop a new, more efficient McDonald and Kreitman (MK) approach

specifically designed to improve gene-by-gene analyses. We aimed to construct

a metric that does not exclude all variants below a frequency threshold, avoiding

dropping out a large fraction of the data.

4. Reformulate the ABC-MK, an MK-based approach that incorporates linked

selection to the MK test. We aimed to extend ABC-MK theoretical and

bioinformatically to avoid the prohibitively expensive computational cost and

High Parallel Computing.

5. To develop bioinformatics tools to facilitate the analysis and integration of other

datasets or species regarding genome-wide scans of positive selection and MK test

approaches.
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PopHumanScan: the online

catalog of human genome
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Abstract

Since the migrations that led humans to colonize Earth, our species has faced

frequent adaptive challenges that have left signatures in the landscape of genetic

variation and that we can identify in our today’s genomes. Here we (i) perform an outlier

approach on eight different population genetic statistics for 22 non-admixed human

populations of the Phase III of the 1000 genomes project to detect selective sweeps at

different historical ages, as well as events of recurrent positive selection in the human

lineage; and (ii) create PopHumanScan, an online catalog that compiles and annotates

all candidate regions under selection to facilitate their validation and thoroughly

analysis. Well-known examples of human genetic adaptation published elsewhere are

included in the catalog, as well as hundreds of other attractive candidates that will

require further investigation. Designed as a collaborative database, PopHumanScan

aims to become a central repository to share information, guide future studies and help

advance our understanding of how selection has modelled our genomes as a response to

changes in the environment or lifestyle of human populations. PopHumanScan is open

and freely available at https://pophumanscan.uab.cat

Introduction

Since the split with chimpanzees, and especially since the migrations that

led humans to colonize almost every single place on Earth, our species has faced

frequent environmental and social changes that have shaped the variation patterns

of our genomes through the action of natural selection (Nielsen et al., 2017). These

environmental challenges include, for example, extreme cold temperatures in much of

the Americas and Eurasia during the last ice age, limiting exposure to sunlight as we

moved to higher latitudes, or contact with new pathogens. Part of the incorporated

genetic innovations may have been introgressed from archaic hominins that left Africa

before us, including Neanderthals and Denisovans, with whom we encountered and

interbred before they got extinct. Around 1 to 6% of any modern non-African human

genome can be traced back to the genomes of these archaic populations (Racimo et al.,

2015). Another dramatic change occurred within the past 10,000 years coinciding with

the transition from a hunting-gathering lifestyle to farming. Selection pressures for

adapting to large settlements and new diets favored genetic variants associated with

innate immune response, fatty acid metabolic efficiency, and lactose tolerance, among

others (Fan et al., 2016).
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These selection pressures left signatures in the landscape of genetic variation that

can be identified in our today’s genomes (Sabeti et al., 2006). Starting from single-

locus studies to the first large-scale catalogs of genetic variation (Hinds et al., 2005;

Altshuler et al., 2005; Consortium, 2007; Altshuler et al., 2010), dozens of targets

of positive selection have been identified, providing important insights into recent

human evolutionary history (Sabeti et al., 2007; Akey, 2009; Fan et al., 2016). Even

though genome-wide HapMap genotyping data is able to disentangle the effects of

demography and selection better than single-locus approaches, it still has the problem

of ascertainment bias, which may alter the site frequency spectrum of analyzed single

nucleotide polymorphisms (SNPs) (Kelley et al., 2006). The availability of the most

comprehensive worldwide nucleotide variation data set so far from the 1000 Genomes

Project (1000GP) (Consortium, 2012; Auton et al., 2015), based on whole-genome re-

sequencing, provides the human lineage with an abundant, ascertained variation dataset

on which to test molecular population genetics hypotheses and eventually pinpoint

targets of positive selection in one or more human populations that escape from the

background evolutionary dynamics of genetic variation (Johnson and Voight, 2018).

To gain deeper understanding of how environmental and social challenges have

shaped our genomes through the action of natural selection, here we (i) perform a

genome-wide scan of selection on the latest version of the 1000GP data by surveying

distinctive signatures of genomic variation left by different selective events, and (ii)

create an online catalog of all candidate genomic regions under selection to facilitate

their validation and thorough analysis. As far as we are concerned, dbPSHP (Li

et al., 2014) and the 1000 Genomes Selection Browser 1.0 (Pybus et al., 2014) are

the only previous online databases that compiles putative positively selected loci in

human evolution. In the dbPSHP database, regions were extracted from curated

publications based on genotyping data –instead of whole-genome re-sequencing data–

of the HapMap III (Altshuler et al., 2010) and the 1000GP Pilot 1 (Consortium, 2012),

and the last update is reported as far as May 2014. In the 1000 Genomes Selection

Browser, they use data of three populations from the 1000GP Pilot 1 (Consortium,

2012), and identify regions under selection by means of a machine-learning algorithm

that combines the results of multiple neutrality tests (Pybus et al., 2015). Here we

perform an outlier approach on the greatest number of population genetic statistics

and sampled populations available so far. This genome-wide scan of selection is able to

detect sweeps at different historical ages, as well as evidence of recurrent selection in the

human lineage since the split between our species and chimpanzees. Results have been

made available in a collaborative, online database, PopHumanScan, which is aimed

at compiling and annotating adaptation events along the human evolutionary history.
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Well-known examples of human genetic adaptation published elsewhere are included in

the catalog, as well as hundreds of other attractive candidates that will require a more

thoroughly analysis. PopHumanScan graphically represents each signature of selection

within the empirical distributions of the corresponding DNA diversity statistic across

populations. It also provides structural and functional annotations of the region, links

to external databases, and cross-references to 268 publications.

PophumanScan analysis pipeline

We have designed and implemented a custom pipeline (Figure 3.1) to perform

a genome-wide scan of selection. Specifically, the pipeline processes eight different

neutrality tests calculated either in sliding windows along the genome or for each

protein-coding gene, for 22 non-admixed human populations. The genomic regions

identified should show signatures that are compatible with natural selection having

driven the evolution of the region at one or different timescales, from recent selective

sweeps to recurrent selection since the split between our species and chimpanzees.

These candidate regions under selection are further characterized with structural and

functional annotations of that particular region. Furthermore, 268 articles reporting

evidences of natural selection in genomic regions and genes using different statistical

methods have been manually curated and cross-referenced to the candidate regions

detected with our pipeline.

Pre-processing of the PopHuman data

Population genomic data was retrieved from PopHuman (Casillas et al., 2018) for

22 non-admixed populations of the Phase III of the 1000GP (Auton et al., 2015) (see

Table A.1), mapped to GRCh37/hg19. Specifically, values for seven different neutrality

tests have been obtained for each population for 186,549 10-kb non-overlapping sliding

windows along the autosomes and the X chromosome (Figure 3.1). In addition, the

McDonald and Kreitman test (MKT) (McDonald and Kreitman, 1991), as well as the

proportion of substitutions that are adaptive (α) (Charlesworth, 1994; Smith and Eyre-

Walker, 2002), were calculated on the protein-coding genes overlapping the candidate

regions under selection identified with the other seven statistics and that showed

some variability in both polymorphism and divergence, according to gene annotations

from GENCODE release 27 (Harrow et al., 2012) and PopHuman polymorphism

and divergence data (Figure 3.1). MKT-derived calculations were performed using
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the R package iMKT (https://github.com/BGD-UAB/iMKT; last accessed: February

2018). In total, eight different neutrality tests were performed, each spanning different

timescales ranging from several million years ago to the present (Sabeti et al., 2006;

Casillas and Barbadilla, 2017).

Linkage Disequilibrium (LD) signature (< 30 kya). LD signatures were detected using

two complementary measures based on linkage disequilibrium: iHS (Voight et al., 2006)

and XP-EHH (Sabeti et al., 2007). iHS has good power to detect selective sweeps with

haplotypes at moderate frequency (50%–80%), while XP-EHH is more powerful for

detecting selective sweeps when the selected haplotype has a frequency > 80%. In the

case of XP-EHH, which analyzes pairs of populations, only pairs CEU-YRI, CEU-CHB

and YRI-CHB were considered, and the population showing the evidence of selection

was identified with the locus-specific branch length method (LSBL) (Shriver et al.,

2004).

Site Frequency Spectrum (SFS) signature(< 80 kya). Five statistics have been

considered.: One is based on population differentiation -Fst (Wright, 1950; Weir and

Cockerham, 1984)-, and the other four are based on both the allele frequency spectrum

and the levels of variability -Fay and Wu’s H (Fay and Wu, 2000), Fu and Li’s D

and F (Fu and Li, 1993), and Tajima’s D (Tajima, 1989)-. Fay and Wu’s H detects

an excess of high-frequency derived SNPs, compatible with an incomplete sweep, or

recombination breaking swept linked SNPs. Fst detects population-specific selective

events that changed the genetic composition of the affected population. It analyzes

pairs of populations. The pairs CEU-YRI, CEU-CHB and YRI-CHB were considered,

and the population showing the evidence of selection was identified with the locus-

specific branch length method (LSBL) (Shriver et al., 2004). Fay and Wu’s H detects

an excess of high-frequency derived SNPs, compatible with an incomplete sweep, or

recombination breaking swept linked SNPs.

Protein changes signatures (many millions of years). Recurrent selection since the

split between our species and chimpanzees (¡6 mya) is detected using a test based on

comparisons of polymorphism and divergence -MKT (McDonald and Kreitman, 1991)-,

and the result of the test is summarized with the estimator α (Charlesworth, 1994; Smith

and Eyre-Walker, 2002). For this calculation, we used a MKT-based methodology,

which corrects for the presence of nonsynonymous slightly deleterious segregating sites

in order to avoid underestimating α for methodological details of this method, see

(Mackay et al., 2012).
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Genome-wide scan of selection

For the parameter α of MKT, evidence of positive selection for protein-coding

genes was inferred when α > 0 and the Fisher’s Exact Test for the 22 MKT contingency

table was significant (P-value < 0.05) (Figure 3.1). Because the other seven selection

statistics have not been associated with a simple parametric distribution, candidate

windows under selection were identified as the most extreme values (within the 0.05%

tail) in the corresponding empirical distribution. These empirical distributions were

performed independently for each of the 22 populations (or three population pairs in the

case of XP-EHH and FST), and independently for the autosomes and the X chromosome

(to account for different demographic histories and the different effective population size

of the autosomes compared to the X chromosome; chromosome Y was not analyzed).

In total, 116 empirical distributions were obtained for autosomal regions, and 91 for

the X chromosome (data of iHS and XP-EHH was not available for the X chromosome

in PopHuman) (Figure 3.1). From the initial 186,549 10-kb non-overlapping windows

from PopHuman for each population and statistic, those containing < 5 segregating

sites were discarded (< 0.2%, Figure A.1). Then, an empirical P-value was assigned

to each of the remaining windows for each of the 116 combinations of population (or

population pair) and statistic, separately for the autosomes as a whole and the X

chromosome. Specifically, for each window i in a population (or population pair), p

is the quantile of that window for statistic j, that is, its empirical P-value. In the

case of Tajima’s D, Fu & Li’s D and F, and Fay and Wu’s H, two-tailed P-values were

calculated. Once the significance for each individual 10-kb window in the genome was

assessed, a candidate region under selection was defined as being a contiguous genomic

region containing at least one 10-kb significant window (P-value < 0.0005, Figure 3.2)

and spanning adjacent windows with P-values < 0.005 (Figure A.2). In addition, this

region may span stretches < 20kb of contiguous nucleotides not analyzed in PopHuman

(i.e., because they contain non-accessible bases according to the Pilot-style Accessibility

Mask of the 1000GP (Auton et al., 2015; Casillas et al., 2018)). This outlier approach

was designed to face the unique features and limitations of our PopHuman source data

and to be highly conservative defining candidate regions under selection. We expect that

it likely results in an enriched set of genomic regions that have been targets of natural

selection along the human evolutionary history (Kelley et al., 2006), and refer to the

outlier regions as candidate regions showing signatures of selection. Once candidate

selected regions (or genes) were assigned for the 22 populations (or three population

pairs) and eight statistics, they were collapsed according to their coordinates into a

joint set of 2,879 candidate regions under selection genome-wide. Of these, 20 regions

were removed because they were completely located in DAC Blacklisted regions (i.e.,
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regions of the reference genome which are troublesome for high throughput sequencing

aligners) or partially overlapped genomic gaps, as obtained from the UCSC (Casper

et al., 2018). Therefore, a total of 2,859 regions were finally considered.

Structural and functional annotations

The final 2,859 candidate regions under selection were structurally and

functionally characterized according to 15 different annotations categorized into 5

groups, extracted from the UCSC (Casper et al., 2018) and two publicly available

databases (Vernot et al., 2016; Mart́ınez-Fundichely et al., 2014) (Figure 3.1).

Sequencing. (i) Mappability was assessed as the percentage of bases in the region that

do not present any troublesome to high-throughput sequencing aligners according to

the DAC Blacklisted regions of the UCSC Casper et al. (2018). (ii) Distance to closest

GAP was computed as the distance (in Mb) to the closest gap (Casper et al., 2018).

Regulation. (iii) CpG Islands (Gardiner-Garden and Frommer, 1987) and (iv) Vista

Enhancers (Pennacchio et al., 2006) were computed as the percentage of bases in the

region that overlap these genomic elements. (v) Transcription Factor Binding Sites

(TFBSs) (Casper et al., 2018) and (vi) ORegAnno Regulatory Elements (Lesurf et al.,

2016) were calculated as the total number of elements contained in the region.

Comparative genomics. Evolutionary conservation of the regions was assessed by

considering the results of three different algorithms -phastCons, PhyloP and GERP-

on the multiple alignments of the genomes of 100 vertebrate species (Pollard et al.,

2010). (vii) PhyloP Evolutionary Conservation and (viii) GERP Constrained Elements

were assessed as the percentage of bases in the region that have a score > 2 for

the given statistic (i.e., constrained sites) (Casper et al., 2018). (ix) phastCons

Evolutionary Conservation was calculated as the percentage of bases that overlap

phastCons conserved elements (Casper et al., 2018).

Structural variation. (x) InvFEST Inversions (Mart́ınez-Fundichely et al., 2014), (xi)

DGV Structural Variants (MacDonald et al., 2014), (xii) RepeatMasker (Bao et al.,

2015), (xiii) Segmental Duplications (Bailey et al., 2002) and (xiv) TRF Simple Tandem

Repeats (Benson, 1999) were assessed as the percentage of bases in the region that

overlap these genomic elements.

Archaic introgression. (xv) Archaic introgression was assessed as the percentage of
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bases in the region that overlap either Neanderthal or Denisova introgressed haplotypes

(Vernot et al., 2016).

Published references. A total of 268 publications from 1954 to 2018 reporting either

specific loci or multiple regions from a genome-wide scan of selection in the human

genome were cross-referenced with our final 2,859 candidate regions under selection

(Figure 3.1, Table A-2 online https://doi.org/10.1093/nar/gky959). Of these, 132

publications were directly extracted from the dbPSHP database (Li et al., 2014), while

the other 136 were manually curated here. Exhaustive information from the main

text and/or supplementary figures and tables was extracted for each reported loci,

including the genomic coordinates, affected population(s), statistic(s), type of selection

and PubMed ID. Genomic coordinates were lifted over to GRCh37/hg19 using the

LiftOver tool of the UCSC (Casper et al., 2018), or deduced from protein-coding gene

location, if necessary.

https://doi.org/10.1093/nar/gky959
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Genome wide rank scores
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Figure 3.1: PopHumanScan pipeline. Starting from population genomic data retrieved from
PopHuman, 8 different neutrality tests are analyzed in 22 non-admixed human populations (or 3
population pairs). Tests are color-coded depending on the type of signature they are able to detect:
Linkage Disequilibrium (LD), Site Frequency Spectrum (SFS) and Protein Changes. The significance of
each test is assessed either with a Fisher’s exact test or a rank score, for each of the 22 populations (or
3 population pairs) independently, and independently for autosomes and the X chromosome. Finally,
candidate regions under selection are structurally and functionally annotated, and cross-referenced with
268 publications
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Overview of the PopHumanScan online catalog

In addition to the exhaustive genome-wide selection scan that has been performed,

we have also created PopHumanScan, a collaborative, online database that is aimed

at compiling and annotating adaptation events along the human evolutionary history

(Figure 3.2). PopHumanScan reports each evidence of selection with the empirical

distributions of the corresponding DNA diversity statistic across the human genome

and among populations, structural and functional annotations of the region, links to

external databases, as well as cross-references to 268 publications.

Implementation

PopHumanScan is currently running under Apache on a CentOS 7.2 Linux x64

server with 16 Intel Xeon 2.4 GHz processors and 32 GB RAM. It is mainly built on

PHP as backend framework. It also includes AJAX for specific file requests and MySQL

for data storage. The client-side is build on JavaScript and uses several JavaScript

libraries, including jQuery, the jQuery plugin DataTables, and Plotly.js, as well as a

custom Bootstrap 4 framework.

The PopHumanScan catalog

Main table. All 2,859 candidate regions under selection are displayed as rows in an

interactive table (Figure 3.2, left). The information displayed in each row includes: (i)

the genomic coordinates of the candidate locus, (ii) genes contained in or partially

overlapping the region (if any), (iii) the most extreme value for each of the eight

statistics considered (i.e., most extreme value in any 10-kb window included in the

region, for any population or population pair; green (positive) and red (negative)

values are outliers (P-value < 0.0005) in the corresponding empirical distribution),

(iv) color-coded dots depicting the type of the selection signatures (i.e., Linkage

Disequilibrium, Site Frequency Spectrum, and/or Protein Changes), (v) color-

coded dots depicting the meta-population(s) that show signatures of selection (i.e.,

European, African, South-Asian, and/or East-Asian), and (vi) the source

that contributed the candidate region under selection. At the time of writing, all

2,859 regions came uniquely from our genome-wide selection scan (i.e., source labelled

as PopHumanScan), but additional data sources by contributors from the scientific

community are expected once PopHumanScan is published (see next section). By
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clicking the + icon at the beginning of each row, detailed information of the particular

candidate region under selection is displayed, including the values for all significant

statistics in all target populations (or population pairs) and an overview of the main

structural and functional annotations and cross-referenced publications (i.e., non-gray

buttons represent overlapping annotations or cross-referenced publications), as well as

access to the complete report for the corresponding candidate region under selection.

Finally, several filters are available at the bottom of the page to narrow the search.

Complete report. A complete report for each candidate region can be accessed from the

main table (Figure 3.2, right). The first section of the report displays all the structural

and functional annotations of the region, together with links to external databases:

(i) PopHuman (Casillas et al., 2018), which complements the population genomics

information; (ii) HaploReg (Ward and Kellis, 2016), which allows the exploration

of evolutionary conservation, expression eQTSs, epigenomic data, and regulatory

annotations; and (iii) Ensembl (Zerbino et al., 2018), which allows the exploration of

the linkage disequilibrium of the region, among others. The second section lists all the

genes contained in or partially overlapping the region (if any). For each encoded gene,

a short description of the gene and associated Gene Ontology terms for the Biological

Process classification (The Gene Ontology Consortium, 2017) are provided, along with

links to external databases: Ensembl (Zerbino et al., 2018), NCBI (Brown et al., 2015),

Uniprot (The UniProt Consortium, 2017), UCSC (Casper et al., 2018), Expression

Atlas (Papatheodorou et al., 2018), OMIM (Amberger et al., 2015), Open Targets

(Koscielny et al., 2017), and HumanMine (Lyne et al., 2015). The third section contains

cross-referenced publications that support the selection evidence found in the region.

The fourth section contains an interactive graph showing recombination rate values

in cM/Mb along the chromosome in which the region is located location, calculated

from the recombination map by Bhérer et al. (2017)and extracted from PopHuman

(Casillas et al., 2018). The specific location of the candidate region under selection is

indicated with dashed vertical lines, and the solid horizontal line represents the average

recombination rate value in the candidate region. Finally, in the fifth section boxplots

show the distribution of each significant statistic in all the populations (or population

pairs). Highlighted values correspond to those in the candidate region, and those in red

are outliers of the empirical distribution (P-value < 0.0005).
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Utilities and support resources

Contributing to PopHumanScan. PopHumanScan has been devised as a

collaborative database. In order to incorporate information contributed by the scientific

community, two password-protected tools have been implemented. The first one allows

users to add additional candidate regions under selection in the catalog. All contributed

regions will be subjected to manual curation and clearly labelled with a data source tag.

The second tool allows manually cross-referencing candidate regions already present in

the database.

PopHumanScan

Catalogue

1 2 …Filters

EDAR 3.212 -5.857 NA   PopHumanScan

LCT 5.349 -6.99 0.883   PopHumanScan Report

PPARA 3.674 -7.659 0.875   PopHumanScan

FOXP2 1.671 -7.276 NA   PopHumanScan

PopHumanScan

Region and gene description

100% mappability

95.49% Neanderthal54.83% repeats

11.16%

Statistic distribution

Chr Start End

○

○
Populations:

Signature:

45.83% repeats

11.16%

Figure 3.2: Simplified representation of the PopHumanScan interface. The main
PopHumanScan table is displayed to the left, while the complete report for a particular candidate
region under selection is displayed to the right

Help and Tutorial.

This section documents the data used and the procedures implemented in

PopHumanScan, as well as instructions on how to contribute to it. Interestingly, it

also contains a complete tutorial introducing to the usage of the database through a

step-by-step worked example.

Contents of PopHumanScan

At the time of writing, the PopHumanScan database contains 2,859 candidate

regions under selection derived from the genome-wide selection scan pipeline presented

here. Regions are distributed homogeneously along the autosomes and the X

chromosome (Table 3.1, Figure A.2). Of these, 1,453 regions (50.8%) overlap

GENCODE protein-coding genes, and 1,986 regions (69.5%) are cross-referenced with

at least one publication (Table 3.1 Figure 3.3).
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A B

C D

AFR

EU
R

SAS

EAS

492

835 433

603

49 38 63

32 19

96 71 37

39 9

43

Total number of candidate 2,859 (100%)
selection regions 

GENCODE protein-coding 1,453 (50.8%)
genes 

Regulation CpG Islands 265 (9.3%)

TFBSs 2,304 (80.6%)

ORegAnno 2,586 (90.5%)

VISTA Enhancers 23 (0.8%)

Comparative PhyloP 2,135 (74.7%)

GERP 2,523 (88.2%)

phastCons 2,767 (96.8%)

Structural InvFEST 104 (3.6%)

DGV 2,632 (92.1%)

Archaic introgression 1,526 (53.4%)

Cross-referenced 1,986 (69.5%)

variants

genomics

403

0

2358
77

4 14

3

LD SFS

Protein changes

Figure 3.3: Summary of the contents of PopHumanScan. (A) Number of candidate regions under
selection unique and shared among the four meta-populations: EUR, AFR, SAS EAS. (B) Number of
candidate regions under selection unique and shared among the three different signature types: Linkage
Disequilibrium (LD), Frequency Spectrum (SFS) and Changes. (C) Number of candidate regions under
selection overlapping different structural and functional annotations. (D) Number of candidate regions
under selection cross-referenced with 0, 1, 2, 3, 4 or ≥ 5 published papers

Selection signatures in meta-populations

The total number of candidate regions showing signatures of selection in the four

meta-populations is: 831 (29.1%) in Europe, of which 413 (49.7%) overlap protein-

coding genes; 1,090 (38.1%) in Africa, of which 580 (53.2%) overlap protein-coding

genes; 791 (27.7%) in South-Asia, of which 401 (50.7%) overlap protein-coding genes;

and 884 (30.9%) in East-Asia, of which 424 (48.0%) overlap protein-coding genes (Table

1). Most of the regions (82.5%) show signatures that are unique to one single meta-

population (Figure A.3-A): 492 (17.2%) show signatures that are unique in Europe,

835 (29.2%) are unique in Africa, 433 (15.1%) are unique in South-Asia, and 603

(21.1%) are unique in East-Asia. Of the 1,090 regions showing signatures in Africa,

76.6% are unique to Africans; while a lesser percentage -59.2%, 54.7% and 68.2%- of
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the regions showing signatures in Europe, South-Asia and East-Asia, respectively, are

unique to their meta-population. About one third (29.0%) of the candidate regions

under selection are shared across populations within the same meta-population. This

percentage is higher for candidate regions showing both LD and SFS signatures (52.7%),

it is 33.6% for candidate regions showing LD signatures only, and 27.1% for candidate

regions showing SFS signatures only.

Types of selection signature

The total number of candidate regions showing distinct types of signatures of

selection is: 487 (17.0%) for Linkage Disequilibrium (LD); 2,451 (85.7%) for Site

Frequency Spectrum (SFS); and 21 (0.7%) for Protein Changes (i.e., recurrent selection

since the split between humans and chimpanzees) (Table 1). Most of the regions

(96.6%) show one single signature of selection (Figure A.3-B): 403 (14.1%) show LD

signatures only; and 2,358 (82.5%) show SFS signatures only. All genes showing

evidence of recurrent selection also show signatures in either LD and/or SFS, as only

genes overlapping candidate regions under selection detected by LD and/or SFS were

tested for α (MKT). These results would indicate that the statistics we used in our

genome-wide scan of selection look at different characteristics of the genetic variability

of the region, and that they are largely complementary.

Structural description of the regions

Region length. Most of the candidate regions under selection (63.6%) span one single

10-kb window, and the variable lengths of candidate regions follows a reversed J-shaped

distribution (Figure A.4-A).

Distance between consecutive regions. The average distance between consecutive

candidate regions is ≈ 1Mb, and the distribution of distances is also reversed J-shaped

(Figure A.4-B).

Recombination. The average recombination rate of the candidate regions is 0.71 cM/Mb,

and the distribution of recombination rates is again reversed J-shaped (Figure A.4-

C). There is a strong, negative, nonlinear association between recombination rate and

both region length (Figure A.5-A) and distance between consecutive candidate regions

(Figure A.5-B).
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Functional description of the regions

Regulation. Most of the candidate regions (90.5%) contain at least one regulatory

element annotated in the ORegAnno database, and 80.6% contain TFBSs (Figure 3.3-

C). On the contrary, VISTA enhancers are much less abundant in the genome and they

are only found in 23 of the 2,859 candidate regions (0.8%). CpG Islands are also in

shortage and they are present in 9.3% of the regions.

Comparative genomics. Nearly all (96.8%) candidate regions overlap phastCons

conserved elements. In the case of GERP and PhyloP, 88.2% and 74.7% of the regions,

respectively, overlap constrained bases with score > 2. Structural variation. The

Database of Genomic Variants (DGV) (MacDonald et al., 2014) is a very exhaustive

database of structural variants annotated in the human genome. One or more elements

annotated in this database are present in 92.1% of the candidate regions under selection.

On the contrary, only 104 regions (3.6%) overlap validated polymorphic inversions from

the manually curated InvFEST database (Mart́ınez-Fundichely et al., 2014).

Archaic introgression. A total of 1,526 of the candidate regions (53.4%) overlap

haplotypes introgressed from either neanderthals or denisovans. This percentage

is expected, as introgressed haplotypes persisting in different present-day human

individuals cover 46.7% of the reference genome (Vernot et al., 2016).

Cross-references with publications. A percentage of 69.5% of the candidate regions are

cross-referenced with at least one publication, and 36.0% are cross-referenced more than

once (Figure 3.3)

Gene Ontology analysis

Our candidate regions overlap a total of 1,447 unique GENCODE protein-coding

genes. These were functionally classified into Gene Ontology (GO) terms (The Gene

Ontology Consortium, 2017) according to the PANTHER GO-Slim annotation dataset

using the PANTHER Classification System (Mi et al., 2017) (Figure A.6). In addition,

statistically over- and under-represented functions were analyzed using the complete GO

annotation dataset (The Gene Ontology Consortium, 2017) using the same tool (Tables

S3, S4, and S5). Interestingly, among all Biological Process categories, regulation of

neuron projection development is over-represented (fold enrichment 1.88, FDR 1.23E-

02), in addition to cellular component organization (fold enrichment 1.24, FDR 1.59E-

03) (Table S4). Finally, several Cellular Component categories are statistically over-
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represented, including presynaptic membrane (fold enrichment 2.72, FDR 4.32E-02)

(Table S5). In spite of finding some statistically over-represented GO categories in our

genes list, selection signatures seem to be heterogeneous and a detailed analysis of each

candidate region is required to understand the real story under each selective event.

Pophumanscan with an example: selection at the lactase locus

The introduction of agriculture and cattle domestication in the Middle East and

North Africa ≈ 10, 000 years ago lead to strong selection pressure for the ability to

digest milk as adults. This is accomplished if the enzyme lactase that metabolizes

lactose, encoded by the LCT gene, maintains high levels into adulthood, a characteristic

that is called lactase persistence. Several variants near the LCT locus show some of

the strongest signals of selection in the human genome for those populations that have

traditionally practiced dairying, including a genetic variant in an intron of the gene

MCM6, upstream of LCT (Fan et al., 2016). The LCT locus is found inside the longest

candidate region under selection reported in PopHumanScan (≈ 1Mb). The region is

located in the long arm of chromosome 2 and contains 8 GENCODE protein-coding

genes, including LCT and MCM6 (Figure 3.4). Our genome-wide scan of selection has

detected signatures at four different statistics that span the three types of signatures:

LD (iHS and XP-EHH), SFS (Fu and Li’s D), and Protein Changes (α). LD signatures

involve basically European and African populations, while the signature of recurrent

selection is more general to the four meta-populations. The region contains thousands

of TFBSs and hundreds of ORegAnno regulatory elements, it overlaps evolutionary

constrained elements, and > 95% of the region overlaps haplotypes introgressed from

Neanderthals. It has been reported in 24 published articles (of the set of 268 that we

considered).

Conclusions

In summary, our exhaustive approach combining eight different statistics to detect

candidate regions under selection in 22 non-admixed human populations has been able

to locate distinct signatures in 2859 regions that stand out from the background genomic

variability, including abnormally long haplotypes, shifts in the SFS or excess of non-

synonymous substitutions between our species and chimpanzees. Many of these regions

probably manifest the footprints of selective sweeps that occurred at different historical

ages, or recurrent selection that has been taking place during the last millions of
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years. The PopHumanScan online database is going to facilitate the thorough analysis

of candidate regions under selection in the human genome by putting together all

these evidences of selection with structural and functional annotations of the regions

and cross-references to previously published articles. Furthermore, the database can

incorporate new data from the scientific community through specific build-in utilities.

All in all, PopHumanScan aims to become a central repository to share information,

guide future studies and contribute to the research on human genome adaptation.
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Data availability

Scripts for the PopHumanScan analysis pipeline are available as Jupyter

Notebooks at https://github.com/BGD-UAB/PopHumanScan. All data, tools and

support resources provided by the PopHumanScan database are freely available

at https://pophumanscan.uab.cat. Log-in information to contribute data to

PopHumanScan is available upon request.
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Microbiologia (UAB) [PIF to J.M-.M.]; Servei de Genòmica i Bioinformàtica de la UAB.
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Abstract

The McDonald and Kreitman test (MKT) is one of the most powerful and widely

used methods to detect and quantify recurrent natural selection in DNA sequence data.

One of its main limitations is the underestimation of positive selection due to the

presence of slightly-deleterious polymorphisms segregating at low frequencies. Although

several approaches have been developed to overcome this limitation, most of them work

on gene pooled analyses. Here we present the impMKT, a new straightforward approach

for the detection of positive selection and other selection components of the Distribution

of Fitness Effect (DFE) at the gene level. We compare impMKT with other widely-

used MKT approaches considering both simulated and empirical data. By applying

impMKT to human and Drosophila data at the gene level, we substantially increase

the statistical evidence of positive selection with respect to previous approaches (e.g.

50% and 157% compared with the MKT in Drosophila and human, respectively). We

review the minimum number of genes required to obtain a reliable estimation of the

proportion of adaptive substitution (α) in gene pooled analyses comparing impMKT

and other MKT implementations. Because of its simplicity and increased statistical

power to test recurrent positive selection on genes, we propose impMKT as a first

straightforward approach for testing specific evolutionary hypotheses at the gene level.

The software implementation and population genomics data is available at the web-

server imkt.uab.cat.

Introduction

Natural selection leaves characteristic footprints at the patterns of genetic

variation. Since the advent of next-generation sequencing, numerous statistical methods

have been proposed to analyze genomic data (Casillas and Barbadilla, 2017), allowing

the detection and quantification of molecular adaptation at different temporal scales.

The McDonald and Kreitman test (MKT) (McDonald and Kreitman, 1991) is one of the

most powerful and robust methods to detect the action of recurrent natural selection

at the DNA level. Unlike the ω ratio (Kimura, 1977), which compares the number

of synonymous (DS) and non-synonymous (DN ) divergent sites, the MKT combines

both divergence (DS , DN ) and polymorphism (PS , PN ) data. Polymorphic data allows

taking into account purifying selection on divergent non-synonymous sites, significantly

increasing the power of detecting recurrent positive selection.

The null model of the original MKT approach is the neutral theory (Kimura, 1968,

https://imkt.uab.cat
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1977; Ohta, 1973). Neutral theory assumes that positively selected (adaptive) mutations

get fixed relatively fast compared to neutral mutations, contributing almost exclusively

to divergence and not to polymorphism. Therefore, an excess of the divergence

ratio relative to the polymorphism is the signal of positive selection acting on non-

synonymous sites (DN/DS¿ PN/PS). Temporally, the MKT covers the evolutionary

period spanning from the present to the time back to divergence between the target

and the outgroup species, and it allows the estimation of the fraction of adaptive non-

synonymous substitutions (α) (Charlesworth, 1994; Smith and Eyre-Walker, 2002).

Nonetheless, the MKT, as originally formulated, has multiple drawbacks that could

bias the estimation of α. First, the MKT assumes strict neutrality on segregating

(polymorphic) sites. However, several studies in multiple species have shown an

excess of low-frequency variants (Smith and Eyre-Walker, 2002; Messer and Petrov,

2013a; Galtier, 2016). These variants are attributed to slightly deleterious mutations

(SDM), which will not usually reach fixation, contributing more to polymorphism than

divergence. SDM reduce the MKT statistical power and underestimate α (Eyre-Walker

and Keightley, 2009). Second, MKT assumes that the neutral mutation rate is constant

over time, and so is the selective constraint. However, the nearly-neutral mutation rate

depends on the effective population size (Ne) (Balloux and Lehmann, 2012; Galtier and

Rousselle, 2020; Lanfear et al., 2014; Rousselle et al., 2019) and, therefore, changes

in population size can affect the MKT considerably. SDM get fixed at higher rates

in populations with past smaller sizes, contributing to divergence and leading to an

overestimation of α (Eyre-Walker and Keightley, 2009). Besides, recent evidence

shows that weakly advantageous mutations can also be segregating within populations

(Galtier, 2016; Tataru et al., 2017; Uricchio et al., 2019). The presence of this positively

selected polymorphism, like SDM, can mask the effect of adaptive selection, since it

counteracts the excess of the divergence ratio relative to the polymorphism tested by

the MKT.

Over the last decades, several modifications of the original MKT have been

proposed to account for the potential biases in the estimation of α (Templeton, 1996; Fay

et al., 2001; Eyre-Walker and Keightley, 2009; Mackay et al., 2012; Messer and Petrov,

2013a; Galtier, 2016). Most of these extensions deal with the presence of SDM. Although

other forces affect the Site Frequency Spectrum (SFS) of segregating variants, such

as recombination, demography, ancestral population sizes or weak positive selection,

several studies have pointed out the relevance of SDM (Eyre-Walker et al., 2006; Eyre-

Walker and Keightley, 2009). SDM distort the non-synonymous SFS, and have been

repeatedly shown to be a main factor biasing α downwards (Charlesworth and Eyre-

Walker, 2008; Eyre-Walker and Keightley, 2009; Fay et al., 2001; Galtier, 2016).
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New model-based approaches for the estimation of α have benefited from the

increasing number of genomics data sets available, which allow dealing, implicitly or

explicitly, with the underlying Distribution of Fitness Effects (DFE) of new mutations,

including the presence of SDM or controlling for correlated genomic features (Eyre-

Walker and Keightley, 2009; Galtier, 2016; Messer and Petrov, 2013a; Tataru et al.,

2017; Huang, 2021; Uricchio et al., 2019). However, these advanced methodologies need

extensive data sets to fit complex parametric evolutionary models by applying maximum

likelihood (ML) inference, exponential fitting or generalized linear models and they

work properly for genome-wide analyses or on large pools of genes. In contrast, these

methodologies are rarely applicable over specific genes to test particular evolutionary

hypotheses, as the original MKT does (McDonald and Kreitman, 1991).

While more and more genome-wide analyses of evolution of protein coding

genes have been carried out through these MKT extensions, the simple G-test or the

independence chi-square test of the original MKT (McDonald and Kreitman, 1991)

is currently almost deprecated. Most MKT heuristic alternatives exclude all variants

below a frequency threshold for the minor frequency allele (MAF) (Templeton, 1996;

Akashi, 1999; Fay et al., 2001). Since the MAF distribution resembles an exponential

one, dropping this data inevitably leads to the loss of most of the polymorphic

information, consequently performing very poorly on gene-by-gene testing.

Here, we present the imputed MKT (impMKT), a modification of the Fay,

Waycoff, and Wu MKT approach (fwwMKT) (Fay et al., 2001) to improve gene-

by-gene analyses. We propose a methodology that imputes the proportion of SDM

at the SFS rather than removing all variants below a frequency threshold. The

impMKT maximizes the information to test the excess of divergence ratio relative

to polymorphism at the gene level. We compare our imputation method to previous

and recent MKT approaches, using simulated data to test its accuracy and efficiency.

Moreover, we test the impMKT on the human African lineage samples of the 1000

Genome Project (1000GP) (Auton et al., 2015) and the Zambian population of the

Drosophila Genome Nexus (DGN) (Lack et al., 2016). impMKT considerably increases

the number of statistically significant genes under positive selection in Drosophila and

humans, respectively, compared to other MKT approaches. Despite the limitations

of heuristic MKT and MKT-derived methods, the impMKT has the advantages of

simplicity, intuitiveness, ease of use, and increased statistical power to test recurrent

positive selection on genes, thus it can be used as a first straightforward approach for

testing specific evolutionary hypotheses at the gene level.
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Materials and methods

Simulated data

We used SLiM 3 (Haller and Messer, 2019) to test the accuracy and performance

of the impMKT compared to other MKT approaches on simulated data. We tested

15 different genetic scenarios following the procedure proposed by Campos and

Charlesworth (2019) and Booker (2020).

We simulated the evolution of a population of 10,000 diploid individuals

for 220,000 generations while setting a uniform population-scaled mutation and

recombination rates of 4Ner = 4Neµ = 0.001. To improve performance we re-scaled by

a factor of 10 and substitutions were recorded 14Ne generations after burn-in following

Booker (2020). Each simulation contained seven genes spaced by 8100 pb neutral

intergenic regions. For each gene, we simulated five exons of 300 pb separated by

100 pb neutrally-evolving introns. We assumed a proportion of 0.25 and 0.75 for

synonymous and non-synonymous alleles, respectively. Deleterious alleles were modeled

following a Gamma distribution, whereas beneficial alleles were modeled following a

point-mass distribution. We assumed that the Gamma distribution of deleterious alleles

followed a shape (β) parameter of 0.3, and population-scaled selection coefficients

of 2Nes− = 2000. For beneficial alleles, we assumed a population-scaled selection

coefficients 2Nes+ = 250. We solved the analytical approach described in Uricchio

et al. (2019) to obtain the fixation probabilities of beneficial alleles considering an

adaptation rate value of 0.4. Finally, we used the estimated fixation probabilities to

define the relative proportion of beneficial and deleterious alleles as pa and 0.75− pa in

our model.

We performed 2000 replicas, totalizing 14,000 simulated genes (2000 replicas ×
7 genes), sampling 20 individuals. Besides, seven parameters were modified to test

for multiple scenarios (see Table 4.1). Each scenario independently replaces a genetic

feature to identify limitations and advantages of the method regarding the underlying

DFE, the global adaptation rate, or the number of polymorphic sites.

D. melanogaster and human data

We followed the pipeline described at Murga-Moreno et al. (2019b) to retrieve

polymorphic and divergence genome data from D. melanogaster and the human lineage.
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Table 4.1: SLiM simulated parameters.

Simulations Ne n 2Nes− 2Nes+ β pa ρ θ Genes

Base 1000 20 -2000 250 0.3 0.00021 0.001 0.001 14000
2Nes+ = 500 1000 20 -2000 500 0.3 0.00012 0.001 0.001 14000
2Nes+ = 100 1000 20 -2000 100 0.3 0.00048 0.001 0.001 14000

2Nes− = 1000 1000 20 -1000 250 0.3 0.00021 0.001 0.001 14000
2Nes− = 500 1000 20 -500 250 0.3 0.00021 0.001 0.001 14000

β = 0.1 1000 20 -2000 250 0.1 0.00115 0.001 0.001 14000
β = 0.2 1000 20 -2000 250 0.2 0.00048 0.001 0.001 14000

28000 genes 1000 20 -2000 250 0.3 0.00021 0.001 0.001 28000
1000 genes 1000 20 -2000 250 0.3 0.00021 0.001 0.001 1000
ρ = 0.01 1000 20 -2000 250 0.3 0.00021 0.01 0.001 14000
ρ = 0.0001 1000 20 -2000 250 0.3 0.00021 0.0001 0.001 14000
θ = 0.01 1000 20 -2000 250 0.3 0.00021 0.001 0.01 14000
θ = 0.0001 1000 20 -2000 250 0.3 0.00021 0.001 0.0001 14000
α = 0.1 1000 20 -2000 250 0.3 0.000036 0.001 0.001 14000
α = 0.1 1000 20 -2000 250 0.3 0.00075 0.001 0.001 14000

Ne: Effective population size; n: sample size; 2Nes: population-scaled selection
coefficient; Shape parameter of the Gamma distribution; pa: Relative proportion of
advantageous mutations; ρ: population-scaled recombination rate; θ: population-
scaled mutation rate; α: proportion of adaptive mutation

In brief, for D. melanogaster we retrieved polymorphic and divergence data from

the DGN data, using the genome sequence of D. simulans as outgroup (release 2)

(Lack et al., 2016). Especifically, we subset data from 13,753 protein-coding genes from

the Zambian population (197 individuals). We binned the output SFS considering a

sample of 20 individuals. The ancestral state of each segregating site was inferred from

the sequence comparison with the outgroup species D. simulans. The D. melanogaster

genome reference sequence and annotations correspond to the 5.57 FlyBase release.

Gene-associated recombination rate estimates at 100 kb non-overlapping windows were

retrieved from Comeron et al. (2012).

For the human lineage, we retrieved polymorphic data and ancestral states for

all African populations of the 1000GP Phase III (Auton et al., 2015). We used

chimpanzee (Pan troglodytes) as the outgroup species to compute human divergence

metrics. We downloaded hg19-panTro4 alignment from PopHuman (Casillas et al.,

2018). Annotations retrieved from GENCODE (release 27) (Derrien et al., 2012) were

used to assess the functional class of each genomic position. Recombination rate values

associated with each protein-coding gene were obtained from Bhérer et al. (2017) and

correspond to the sex-average estimates. We retrieved polymorphic and divergence data

from 20,643 protein-coding genes. We binned the output SFS considering a sample of

20 individuals.
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MKT approaches

To test the performance and accuracy of the impMKT, we compared it against

four already published heuristic MKT methods: (i) the original MKT (McDonald and

Kreitman, 1991); (ii) the Fay, Wickoff and Wu correction (fwwMKT) (Fay et al., 2001);

(iii) the extended MKT (eMKT) (Mackay et al., 2012); and (iv) the asymptotic MKT

(aMKT) (Messer and Petrov, 2013a) following Haller and Messer (2017) cutoffs. In

addition, we included the Grapes software (Galtier, 2016), a Maximum-Likelihood

(ML) method fitting the DFE. We ran Grapes using the Gamma-Zero and Gamma-

Exponential DFE distributions and estimated α for 100 bootstrap datasets. We

measured α confidence interval (CI) through the boundaries for α estimation in

Grapes using α down and α up parameters independently for each bootstrapped dataset

(Galtier, 2016).

aMKT and Grapes (as well other DFE related methods) are commonly used to

estimate α using a large pool of genes or genome-wide data (Messer and Petrov, 2013a;

Rousselle et al., 2019). Both methodologies have been previously shown to perform the

most accurate estimations in the presence of SDM and demography events (Eyre-Walker

and Keightley, 2009; Messer and Petrov, 2013a). Since impMKT is specially designed

to perform gene-by-gene analyses, we tried to determine in which cases the amount of

data was large enough to perform estimations using aMKT and Grapes compared to

impMKT.

Results and discussion

imputed MKT (impMKT)

Our main goal is to devise a derived MKT approach that enhances the power to

detect selection at gene-level. To do this, we modified the approach proposed by Fay

et al. (2001) (fwwMKT), which removes all non-synonymous (PN ) and synonymous

(PS) polymorphic sites below a derived allele frequency cutoff j, assuming that SDM

segregate at low frequencies. Removing variants below a cutoff, typically 5% or 15%

(Fay et al., 2001; Mackay et al., 2012), implies losing a considerable amount of data.

Consider the example of Nielsen and Slatkin (2013) for the standard neutral coalescence

model, a 15% cutoff implies up to 44% of excluded variants of the expected SFS for

a sample of n = 10 haploid individuals. We observed the same trend considering the

D. melanogaster and human data, for which considering a virtual gene containing the
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mean polymorphic level a 15% cutoff implies up to 80% of excluded variants of the

expected SFS for D. melanogaster and up to 90% in humans. This amount of data

exclusion may make the computation of the MKT impracticable, especially in species

with low levels of polymorphism.

Here we propose a new MKT approach that modifies the fwwMKT to impute the

actual number of SDM (Pwd) segregating within PN . The resulting approach, impMKT,

just removes the imputed number of SDM instead of all polymorphism segregating below

a given threshold as fwwMKT does, thus retaining a larger fraction of the data and

increasing the power to detect positive selection.

Figure 4.1: Hypothetical SFS and fixed differences from Hahn (2018)

Consider the SFS and fixed differences of a hypothetical gene as illustrated by

Hahn (2018) (Figure 4.1). Table 4.2 shows the 2 × 2 contingency tables to perform

the original MKT, fwwMKT and impMKT. Charlesworth and Eyre-Walker (2008)

investigated how the removal of low-frequency polymorphism affects the estimation

of at MKT approaches depending on the continuous function defining the DFE for

different non-arbitrary cutoffs. To develop the impMKT, we followed Charlesworth

and Eyre-Walker (2008) results, which show that any derived allele frequency cutoff

j > 15% is a near-optimal solution to the problem of SDM segregating at the SFS

(Charlesworth and Eyre-Walker, 2008).

Consequently, considering that SDM are the main force biasing downward α

and assuming that SDM do not segregate at frequencies above 15% (Pwd → 0), we
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impute the actual proportion of SDM (Pwd) segregating below the frequency cutoff

by considering that the expected neutral polymorphism non-synonymous/synonymous

ratio is PN(j>15%)
/PS(j>15%)

. This ratio can be used to infer the number of SDM in

our data set (Pwd). If Pwd 6= 0 bellow j < 15%, then PN(j<15%)
/PS(j<15%)

exceeds

the expected polymorphic ratio because PN(j<15%)
includes Pwd. That is, PN(j<15%)

=

Pneut(j<15%)
+ Pwd(j<15%)

, where Pneut(j<15%)
refers to the number of non-synonymous

segregating sites that are effectively neutral. Accordingly, we can estimate (impute)

Pwd from expression

PN(j<15%) − Pwd(j<15%)

PS(j<15%)
=
PN(j>15%)

PS(j>15%)
(4.1)

rearranging we have

Pwd ≈ Pwd(j<15%) = PN(j<15%) −
PN(j>15%) · PS(j<15%)

PS(j>15%)
(4.2)

Considering our example in Table 4.2, Pwd is

Pwd = 7− 4 · 6
11
≈ 5 (4.3)

and thus 5 is the number of sites removed from the non-synonymous polymorphism

counts (see Table 4.2-D).

As can be seen in Table 4.2-C, the approach proposed by Fay et al. (2001) shows

that removing all low-frequency polymorphisms below a given threshold j significantly

increases the power of detection of positive selection by conducting a 2× 2 test. Thus

testing for the ratio of replacement on fwwMKT 2 × 2 contingency table through a

Fisher exact test decreases the P-value significance from 0.093 to 0.045 in our example.

Nonetheless, it implies a reduction of 46% of the analyzed data, reducing PN from

11 to 4 and PS from 17 to 11, respectively. In comparison, by simply removing the

expected number of SDM (Pwd), we reduced the data loss to only 15%, while decreasing

the P-value from 0.093 to 0.017 (see Table 4.2-D). Therefore, the impMKT allows

maximizing gene-by-gene analyses where information can be limited to a small number

of polymorphic sites.
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In addition, we can correct α, the proportion of adaptive substitutions, by

removing the expected proportion of SDM (Pwd) with the expression

αimputed = 1−
(
PN − Pwd

PS
· DN

DS

)
(4.4)

Table 4.2: Original and impMKT contigency table

A. Definition of the MKT 2× 2 contingency table.

Polymorphism Divergence

Non-synonymous
PNeutral = PN − Pwd PS

Synonymous
DN DS

B. Example of MKT 2x2 contingency table. Including all polymorphic
sites.

Polymorphism Divergence

Non-synonymous 11 15

Synonymous 17 8

2x2 Fisher exact test; P-value = 0.093

C. Example of fwwMKT 2x2 contingency table. Removing all
polymorphic sites with a derived allele frequency below 15%

Polymorphism Divergence

Non-synonymous 11 - 7 = 4 15

Synonymous 17 - 6 = 11 8

2x2 Fisher exact test; P-value = 0.045

D. Example of impMKT 2x2 contingency table. Removing the expected
SDM with a derived allele frequency below 15% (see equation (4.2))

Polymorphism Divergence

Non-synonymous 11 - 5 = 6 15

Synonymous 17 8

2x2 Fisher exact test; P-value = 0.017

Other selection regimes. The SDM imputation can be used to estimate other

selective components shaping the DFE. Let consider the model proposed by Eyre-

Walker and Keightley (2009) and nearly-neutral theory (Ohta, 1973), where selected

segregating alleles are drawn from a continuous Gamma distribution and categorized as

strongly deleterious, slightly deleterious and effectively neutral mutations. Analogous to

Mackay et al. (2012), we define the statistics d, dw and d0, which measure the different

types of purifying selection, both at genome-wide and gene levels.

Let d be the proportion of strongly deleterious mutations. We estimated d
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following Mackay et al. (2012) as the missing fraction of segregating non-synonymous

sites

d̂ = 1− PN
PS
· mS

mN
(4.5)

where mS and mN are the total number of synonymous and non-synonymous sites,

respectively.

Let dw be the fraction of slightly deleterious mutations at non-synonymous sites

d̂w =
Pwd
PS
· mS

mN
(4.6)

Lastly, the fraction of effectively neutral mutations d0 can be estimated as the

remaining fraction

d̂0 = 1− d− dw (4.7)

Properties of the impMKT estimator

We tested the accuracy and performance of the impMKT compared to other MKT

approaches at estimating the fraction of substitutions fixed by positive selection (α)

under different scenarios that were simulated using SLiM 3 (Haller and Messer, 2019).

The different scenarios considered the combined effects of different genetic features:

the level of polymorphism in terms of segregating sites (θ), the number of simulated

genes, the proportion of adaptive mutations (pa), the proportion of SDM (β), the

recombination rate (ρ) and the selection strength (2Nes) (Table 4.1). In addition to

j > 15%, we explored derived allele frequency cutoffs larger than 15% (j > 25% and

j > 35%). We also tested 5% (j > 5%) frequency cutoff as in Mackay et al. (2012).

In all simulations, the original MKT underestimates considerably the α values

(Figure 4.2) due to the presence of SDM segregating at low frequencies, excluding

simulations where the contribution of SDM is negligible. Overall, the aMKT and

Grapes performed better under the presence of SDM and achieved the best results

when considering both unbiasedness and efficiency of the estimator (minimum variance)
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(Figure 4.2, Table 4.3). While heuristic MKT approaches tend to underestimate α,

Grapes tends to slightly overestimate α in most of the scenarios, while aMKT tends to

provide slight underestimations (Figure 4.2, Table 4.3, Table B.1).

As previously shown in Charlesworth and Eyre-Walker (2008), α estimates

converge to the actual value depending mainly on the shape of the DFE (β) and

the amount of adaptive evolution (α). We considered three different values of β (0.3

(baseline), 0.2, and 0.1) to test such effect. We observed the same trend for all MKT-

derived approaches: the underestimation for the different MKTs is smaller the more

leptokurtic DFE is, which in turn implies less SDM. The same effect was found when

increasing the rate of adaptive evolution (from α = 0.1 to α = 0.7, Table 4.3, Table

B.1, Figure B.1).

For all the simulated scenarios, the fwwMKT and the impMKT behave similarly

to the MKT, mainly depending on the frequency cutoff. As expected, lower cutoffs

(i.e., 5%) resulted in minor accuracy improvements in the estimation of α compared to

the original MKT approach, except when SDM contributed little to the SFS (smaller

β and larger α values). Conversely, larger cutoffs (i.e., 15%, 25% or 35%) resulted in

better estimates of α. Specifically, a 35% cutoff is large enough to deal with SDM and

to perform estimations similar to the aMKT and Grapes in all simulations. Both the

impMKT and the fwwMKT performed very similarly due to the large amount of data

considered from the simulations. Contrarily, the eMKT was not able to deal with the

presence of SDM and higher frequency cutoffs did not improve the estimations of α

(Figure 4.2, Figure B.1, Figure B.2, Table 4.3, Table B.1; see Discussion).

In scenarios simulating low levels of polymorphism in terms of segregating sites

(i.e., reduced number of simulated genes, or reduced mutation rate θ), the accuracy and

efficiency of the aMKT and Grapes diminishes (Figure B.1, Figure B.4 and Table B.2).

Under these circumstances, the aMKT could be applied to approximately 70% of the

cases only, and provided worse estimations of α than the impMKT. We observe the same

trend when measuring the standard deviation of the estimators. impMKT provided

better results in comparison to aMKT while showing similar accuracy to Grapes (Table

B.1, Figure B.1). Similarly, the confidence intervals (CI) estimated by Grapes increased

by one order of magnitude, from range [0.01,0.06] (considering the other scenarios)

to 0.16 (for the scenario with 2000 simulated genes) and 0.19 (for the scenario with

θ = 0.0001) (Figure 4.2, Figure B.1, Figure B.3, Figure B.4).
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Baseline (α = 0.4) α = 0.1 α = 0.7

Baseline (β = 0.3) β = 0.1 β = 0.2

Baseline (2Nes- = -2000) 2Nes- = -1000 2Nes- = -500

Baseline (2Nes+ = 200) 2Nes+ = 100 2Nes+ = 500

Baseline (14K genes) 2k genes 28k genes

Baseline (θ = 0.001) θ = 0.01 θ = 0.0001

Baseline (ρ = 0.001) ρ = 0.01 ρ = 0.0001
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Figure 4.2: α MKT estimations on different SLiM simulated scenarios. ρ and θ are the
population-scaled recombination and mutation rates (ρ = 4Ner, θ = 4Neµ). 2Nes is the scaled-
population selection coefficient for beneficial and deleterious alleles. β is the shape parameter
of the gamma DFE.
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Statistical power of the impMKT at gene-by-gene analysis

We estimated α at the gene level on D. melanogaster (Zambia, ZI; 197 individuals)

and human (Africa, AFR; 661 individuals) population data. Table 4.4 shows the mean

values and the number of analyses performed considering the MKT approaches. We

removed from the analysis those genes with zero divergence or zero polymorphism,

either for synonymous or nonsynonymous sites.

Due to the amount of raw data, the original MKT was the approach that allowed

us to estimate α on the largest number of protein-coding genes: 12,024 (87%) genes in

the D. melanogaster Zambian population. The statistical significance for both positively

and negatively selected genes was determined using the Fisher’s exact test; 1,495 and

1,331 were detected under positive and negative selection, respectively. The number of

analyzable genes decreased 14% when applying the eMKT correction, from 12,024 to

10,340, but slightly increasing the number of genes under positive selection, from 1,493

to 1,571. We found a decreased of 37% when applying the fwwMKT correction, from

12,024 to 7,574 genes, as well as in the number of genes under positive selection, from

1,495 to 929. More importantly, for both approaches we found a drop in the number of

genes under negative selection, from 1,131 to 700 and 38 genes for eMKT and fwwMKT

respectively.

The impMKT was able to analyze the exact same number of genes as the fwwMKT

approach (7,588 genes), since impMKT needs data to compute the PN/PS ratio above

the threshold, as the fwwMKT. However, the number of positively selected genes

increased from 1495 in the original MKT approach or 929 in the fwwMKT to 2,244

(Figure 4.3-A). Therefore, the impMKT increased the detection of positive selection

by 50% in the D. melanogaster Zambian population compared to the original MKT

(1,495 vs 2,244 genes), by 141% compared to the fwwMKT (929 vs 2,244) and by

42% regarding eMKT (from 1,571 to 2,242). In addition, the impMKT also detected

792% more genes under negative selection than the fwwMKT correction (from 38 in

the fwwMKT to 339 genes in the impMKT). We noted a significant drop in the number

of genes under negative selection regarding the MKT and eMKT. Nonetheless, since

neither MKT nor eMKT are able to deal properly with SDM, as shown in simulations,

such trend was not unexpected.

We found similar patterns for the human dataset regarding the MKT and

fwwMKT. MKT was the methodology that estimated α on the largest number of genes

(13,078, 68%), as expected, while fwwMKT and impMKT only analyzed 3,145 genes.

Nonetheless, the increase in the number of genes under positive selection detected by



110 Abstract

the impMKT is especially significant, rising by 159% (from 79 positively selected genes

in the MKT to 203 in the impMKT) (Figure 4.3-B), and the fwwMKT only detected 18

genes under positive selection. Interestingly, contrary to D. melanogaster data eMKT

detected less genes than MKT under positive selection. Considering eMKT results from

simulations regarding SDM and the associated protein-coding DFE in humans (Booker,

2020), we determined that eMKT very sensitive to the underlying DFE.

Overall, in populations with low levels of polymorphism, the impMKT allowed

detecting genes under positive selection more efficiently than the other methodologies

because it does not remove all the data below a threshold, as the fwwMKT does. By just

removing the imputed fraction of SDM, the impMKT can maintain a reasonably good

statistical power and, contrary to the fwwMKT, is able to analyze data from datasets

with low levels of polymorphism, such as human data. We do not tested aMKT nor

Grapes since both methods are not performant or are inaccurate on single-gene sequence

data and preferably used in large pools of genes or genome-wide levels.
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A. Number of under positive selection
in D. melanogaster  ZI population
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Figure 4.3: A. Positively selected genes in the in the Drosophila Zambian population as
detected by each MKT approach. B. Positively selected genes human African population as
detected by each MKT approach.



111 Abstract

T
a
b

le
4
.4

:
G

en
e-

b
y
-g

en
e

an
al

y
si

s.
T

ot
al

n
u

m
b

er
o
f

a
n

a
ly

za
b

le
,

p
o
si

ti
ve

ly
a
n

d
n

eg
at

iv
el

y
se

le
ct

ed
g
en

es
b
y

M
K

T
a
p

p
ro

a
ch

M
K

T
eM

K
T

0.
25

fw
w

M
K

T
0.

25
im

p
M

K
T

0.
3
5

P
op

u
la

ti
on

S
et

α
N

α
N

α
N

α
N

Z
I

A
n

a
ly

za
b

le
-0

.7
21

±
(2

.8
2
3)

12
06

9
-0

.3
76

±
(1

.5
4)

75
88

-0
.0

32
±

(1
.6

6
4)

7
58

8
-0

.0
3
2
±

(1
.6

6
4
)

75
8
8

Z
I

N
eg

a
ti

ve
-4

.9
07

±
(7

.0
4
4)

11
31

-3
.5

26
±

(3
.1

2)
58

6
-1

0.
55

8
±

(1
0.

47
2)

38
-4

.6
98

±
(4

.8
8
8
)

33
9

Z
I

P
o
si

ti
ve

0.
7
62

±
(0

.1
3
5)

14
95

0.
72

8
±

(0
.1

29
)

11
36

0.
84

4
±

(0
.0

95
)

9
29

0
.7

7
5
±

(0
.1

2
1
)

2
2
4
4

A
F

R
A

n
al

y
za

b
le

-1
.6

8
8
±

(3
.1

8
8)

13
07

8
-1

.1
7
±

(2
.3

04
)

32
30

-0
.6

79
±

(2
.2

1)
32

3
0

-0
.6

7
9
±

(2
.2

1
)

32
3
0

A
F

R
N

eg
at

iv
e

-7
.4

08
±

(6
.3

2
3)

10
37

-4
.8

64
±

(4
.4

02
)

33
8

-1
2.

69
5
±

(5
.7

83
)

1
1

-5
.3

75
±

(4
.6

7
6
)

24
4

A
F

R
P

o
si

ti
ve

0.
81

6
±

(0
.1

1
6)

79
0.

75
3
±

(0
.1

73
)

21
0.

89
3
±

(0
.0

93
)

1
8

0
.7

5
9
±

(0
.1

2
1
)

2
0
5



112 Abstract

Statistical power of the impMKT in gene pooling

Next, we explored the performance of the impMKT, compared to the aMKT,

Grapes and the original MKT approach, on pooled gene data. By adding up

polymorphism and divergence data from multiple genes, this type of analysis increases

the number of polymorphic sites to estimate the SFS, which provides the statistical

power necessary to implement both the aMKT and ML approaches. We created gene

pools to obtain a reliable measure of the average α. Specifically, we first selected 3,500

random protein-coding genes from both the Drosophila and the human datasets. Then,

we resampled the genes 1,000 times with replacement to create pools of 1, 2, 5, 10, 25,

50, 75, 100, 250, 750, and 1,000 genes on which we computed the SFS and estimated α

(Table 4.5).
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Figure 4.4: Gene pooled analysis. 3500 random protein-coding genes were picked from the ZI
dataset. We pooled the genes to obtain SFS of 1, 2, 5, 10, 25, 50, 75, 100, 250, 750, and 1,000
genes by resampling them 1000 times with replacement. A. estimates by MKT correction. B.
Proportion of analysis performed by impMKT. C. Proportion of analysis performed by aMKT.
D. Proportion of analysis performed by Grapes

D. melanogaster ZI population. Resampling analysis results in the D.

melanogaster ZI population showed that estimated α converges to an average value

as more and more genes are pooled (Figure 4.4-A). First, in the case of impMKT, pools

of 5 genes or more already allowed estimating α in 90% of the cases, reaching 100%

in pools of 10 or more genes (Figure 4.4-B). Second, aMKT required larger pools to

analyze the data; pools of 50 genes or more allowed estimating in 90% of the cases,

while 500 or more genes were required to estimate α in all of the replicates (Figure

4.4-C).
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Third, MKT and Grapes could analyze the vast majority of replicates (except for

a few replicates in bins with only 1 or 2 pooled genes). Nonetheless, we noted 1.9-fold

(from 1.2 to 2.3) and 8-fold increase (from 1.2 to 9.7) in α variance regarding MKT and

Grapes compared to impMKT respectively at the first pool, showing the lack of power

on small dataset. As the number of genes grow, the mean converging value of α was

very similar for the impMKT, the aMKT and MKT, and higher for Grapes (Figure 4.4-

A), an expected result considering previous results with simulated data (see previous

section). In addition, impMKT showed similar (or higher) α values than aMKT and

was applicable to the smallest gene pools.

Human protein-coding genes. Due to the low polymorphism levels in human

protein-coding genes compared to D. melanogaster, the minimum number of genes

pooled to estimate accurate measures of α was larger, especially for aMKT (Figure

4.5). Specifically, aMKT required pools of 500 genes or more to estimate α in 90%

of the of the replicas, while more than 1000 were required to estimate α in all of the

replicates (Figure 4.5-C). In the case of Grapes, we found most of the analysis can be

performed but showing the 1.7-fold (from 3.4 to 5.8) increase in α variance regarding

impMKT estimations. impMKT could estimate most replicates with 5 or more genes

pooled, and all of the replicates with 25 or more genes pooled (Figure 4.5-B), showing

similar or higher α values than aMKT.
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Figure 4.5: Gene pooled analysis. 3500 random protein-coding genes were picked from the
human dataset. We pooled the genes to obtain SFS of 1, 2, 5, 10, 25, 50, 75, 100, 250,
750, and 1,000 genes by resampling them 1000 times with replacement. A. α estimates by
MKT correction. B. Proportion of analysis performed by impMKT. C. Proportion of analysis
performed by aMKT. D. Proportion of analysis performed by Grapes
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Discussion

Effect of slightly deleterious mutations (SDM) on α estimation

SDM segregating at low frequencies impact the power of MKT and the estimation

of α (Akashi, 1999; Fay et al., 2002; Galtier, 2016; Messer and Petrov, 2013a; Fay et al.,

2001; Templeton, 1996; Bustamante et al., 2002a, 2005; Bierne and Eyre-Walker, 2004).

As Bierne and Eyre-Walker (2004) pointed out, unless the methodology considers the

presence of SDM, estimations using D. melanogaster data are likely underestimating

α. We verify such statements by thoroughly exploring the MKT-derived approaches

using both in silico and empirical data, assessing the benefits and drawbacks of each

methodology, considering the nature of the data and the study design. Simulations

with SLiM 3 have been carried out to benchmark the performance of the four MKT

methodologies and the impMKT under different evolutionary scenarios. Predefined

α values were used to assess the closest estimation. aMKT and Grapes are the best

methods with respect to unbiasedness and efficiency of estimated values of α. However,

their performance decreases in scenarios with a small number of polymorphic variants

(shorter genomic regions or lower mutation rate) or could not even be applied due to low

variant counts. Our results are consistent with previous explorations of MKT-derived

approaches (Charlesworth and Eyre-Walker, 2008; Messer and Petrov, 2013a). Hence,

we found similar results exploring aMKT and Grapes in Drosophila and human genome

sequence data and showed similar accuracy in simulations. Overall, both approaches

allow efficient removal of SDM in all frequencies and not only below a threshold as in

fwwMKT or impMKT methods.

Strikingly, both procedures lack power when applied to individual genes or small

pooled datasets. Despite the high polymorphic and divergence levels in D. melanogaster,

it is not enough for the aMKT to fit the exponential curve and calculate α for single

genes, and the number of analyzable genes is dramatically reduced (see Table 4.4).

We showed that pooled sets of genes allow overcoming data limitations to estimate an

overall α value (Boyko et al., 2008; Eyre-Walker and Keightley, 2009). Thus we explored

the minimum number of pooled genes to perform aMKT regarding D. melanogaster and

human populations. For aMKT we found that a minimum of 500 genes is required to

perform 1000 replicas when bootstrapping a set of 3500 random genes (Figure 4.4).

Such a number increased to more than 1000 when using the human dataset (Figure

4.5). We found that Grapes can perform the estimation most of the time (only a few

negligible analyses were not performed, see Figure B.4, Figure B.5), considering gene-

by-gene analysis or pooled analysis. Nonetheless, we found extremely high variance in
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α estimates and we noted that the associated CI to α estimation for each bootstrapped

datasets is only acceptable once the analysis accounts for a minimum number of 50

genes in Drosophila and humans (see Figure B.8). The same trend is observed in those

simulated scenarios producing less polymorphism regarding the percentage of aMKT

analysis and Grapes CIs (Figure 4.2, Figures B.3). The results for both populations

can be considered as a generalized proxy, given the high levels of polymorphism in D.

melanogaster compared to humans.

Such findings show the limitation of aMKT and Grapes (and other ML methods)

when performing MKT at the gene-by-gene level or using small pooled datasets (Eyre-

Walker and Keightley, 2009; Racimo and Schraiber, 2014; Tataru et al., 2017). Among

non-ML approaches, fwwMKT and impMKT produced quite similar results. However,

only when using higher frequency cutoffs than the commonly-used 15% they showed

results close to those by aMKT and Grapes (see Table 4.2, Table 4.3) although

such statement will depends on the underlying DFE. Such cutoffs can be astringent

considering empirical data, especially in the case of fwwMKT. Instead of removing all

polymorphism at low frequencies at both synonymous and non-synonymous sites, as

fwwMKT does, the new impMKT separates PN into the number of effectively neutral

variants and the number of SDM, and only removes the latter. In this way, impMKT

allows increasing the frequency cutoff without compromising the amount of data that

much. As a result, impMKT is the most powerful method to detect selection at the

gene-by-gene level, substantially increasing the number of statistically-significant genes

under positive selection compared to other methodologies (see Figure 4.3 and Table 4.4).

In the case of pooled analyses, impMKT reduced dramatically the minimum number of

genes required to perform the analysis in both Drosophila and human datasets (5 and

10 respectively, B.3, Figure B.4).

Even though strongly deleterious (d), slightly deleterious (dw) and effectively

neutral (d0) mutations are commonly defined given DFE ranges −10 < Nes, −10 <

Nes < −1 and Nes > −1, respectively, we observed mutations segregating in the range

−10 < Nes. Hence, if d is the proportion of no segregating mutations because of strong

purifying selection, as stated above, we estimated dw including any segregating mutation

below the threshold Nes < −1. Table B.4 and Figure B.5 show impMKT unbiased

estimations of d, dw and d0 using 5% and 35% cutoffs. Similarly to α estimation,

the estimator require larger cutoff than 5-15% (Charlesworth and Eyre-Walker, 2008;

Mackay et al., 2012) to properly impute SDM and estimate dw and d0 accurately. Hence,

the new impMKT provides easier and faster estimations of d, dw and d0 than ML

approaches, representing the actual mutation proportions subject to different selection

regimes and quantitative measures of the DFE along the genome or at the gene level.
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The effect of pooling data

We showed that most MKT approaches could provide an accurate estimate of the

average α if data from a large number of genes are collected (Hahn, 2018). Therefore,

the process of pooling genes to create single evolutionary entities is a proper strategy

to overcome the problem of lacking enough polymorphism data to conduct an MKT. In

the majority of the performed analyses, this process does not seem to affect the results.

However, some caveats must be taken into account when interpreting results obtained

by this procedure.

First, pooled genes do not necessarily share the same recombination context,

GC-content, or gene density rate, which also affect the adaptive potential of genes.

Although pooling genes by one or more features at a time have been widely used to

disentangle the potential drivers of adaptation (Castellano et al., 2016; Moutinho et al.,

2019b; Soni et al., 2021; Uricchio et al., 2019), such approaches can report a spurious

association between adaptation signals and other features if they are strongly correlated

(Huang, 2021). Huang (2021) developed the so-called MK-regression to overcome biases

of pooling analyses applied to one genomic feature at a time, by jointly evaluating the

effects of correlated genomic features on α estimation. Nonetheless, MK-regression is

designed to measure the adaptation rate at the genomic level, and consequently not the

preferred approach to pinpoint individual genes neither (Huang, 2021). Interestingly,

we have noticed that MK-regression followed the strategy proposed by Fay et al. (2001)

to deal with SDM. We propose to apply our impMKT approach instead, to preserve

data and extending the implementation at the gene-by-gene level.

Second, by pooling hundreds of genes, it is more difficult to detect a signal of

positive selection if it is due to a few genes of the pool. In other words, all the

evolutionary forces acting differently on different genes contribute to the dilution of

potential biological signals.

Third, although this data pooling increases the power of detecting selection, it

could lead to the Simpson’s paradox (Simpson, 1951) if a significant trend in the 2× 2

contingency tables disappears or reverses when the data is combined into a single table

(Hahn, 2018; Stoletzki and Eyre-Walker, 2011). Regarding MKT data, this can happen

when large differences in the number of non-synonymous fixations (DN ) between genes

lead to incorrect inferences about the selection operating in different regions (Stoletzki

and Eyre-Walker, 2011).
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α estimation on the presence of recent positive selection

Several studies have showed the contribution of slightly beneficial mutations

(SBM) to the SFS at medium/high-frequency over the last years, representing a new

distortion source in the MKT approaches. These alleles can segregate in the frequency

spectrum and eventually fix in the population depending on the selective strength.

Multiple methods have been proposed to overcome this limitation (Galtier, 2016; Tataru

et al., 2017). Nonetheless, many natural patterns remain unanswered, and they can be

attributed to the effect of linked selection, since methods that incorporate weak selection

assume that sites evolve independently. Uricchio et al. (2019) proposed a new MKT

approach that incorporates background selection (BGS), estimates the fraction of weak

selection and discerns the role of linkage in α estimations.

We tested such effect following Uricchio et al. (2019) simulations to evaluate

SBM as well as BGS. We simulated the exact global adaptation rate as in the baseline

simulation and 50% of α corresponded to the contribution of weakly advantageous

alleles following a point-mass distribution with selection coefficient 2Nes = 5.

In addition to the contribution of SBM to the fixation process, one expects

a higher concentration of SBM at high frequencies, since the Hill-Robertson effect

prevents them to reach fixation due to linkage to other SBM or SDM whether BGS

is acting. Under these assumption, we modify the impMKT approach to account for

such an excess of non-neutral alleles at high frequencies. The proposed modification

would follow the main assumptions described for SDM, in this case exploring a new

frequency cutoff at high frequencies to remove SBM, while incorporating the estimated

excess to fixations. In addition, we executed Grapes using the Gamma-Exponential

model and considered adaptive mutations using 2Nes > 5 threshold.

Despite the possible excess at high frequencies, SBM may be seen to segregate

across the spectrum, depending not only on the Hill-Roberston effect but also on

selective strength, linkage disequilibrium patterns and fixation times (Figure B.6).

Assuming that SBM can segregate at any frequency, impMKT cannot deal with weak

adaptation, even imputing nearly fixed variants. Therefore our heuristic approach,

extending aMKT results from Uricchio et al. (2019), can also be affected by the presence

of SBM and BGS but also Grapes especially when BGS is acting (Figure B.7, Table

B.4). All in all, the effect of linkage and the contribution of weak selection at the gene

level remain unexplored. Thus, new approaches are needed to pinpoint genes under

weak positive selection.
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Software and availability

Human and D. melanogaster processed data and the new impMKT software

implementation are available at imkt.uab.cat (Murga-Moreno et al., 2019b). The

supporting figures as well as notebooks and code used to perform the analyses can

be found at https://github.com/jmurga/mkt comparison.

https://imkt.uab.cat
https://github.com/jmurga/mkt_comparison
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Abstract

More than a decade after genomes became available in several model species, the

question of how much genomic evolution is driven by natural selection or neutral forces

still remains to be solved in population genetics. In particular, quantifying positive

selection is a main challenge because of the multiple confounder variables. It has

become clear that approaches to quantify positive selection need to account for the

diverse shapes that positive selection can take, while also being robust to a diversity

of demographic events and other neutral and non-neutral processes. The growing

availability of population genomics data in non-model species where characterizing

past adaptation is of evolutionary interest, but with poorly characterized demographic

history (or mutational processes, or recombination patterns, etc.), makes the need for

robust approaches even more pressing. Here, we introduce an efficient Approximate

Bayesian Computation version of the McDonald-Kreitman test, called ABC-MK, to

quantify long-term protein adaptation in specific lineages of interest. Compared to

the previous implementation, the new ABC-MK runs in a few hours for the first run,

and seconds for subsequent runs on an entire proteome, instead of days required by

the previous method. This new version of ABC-MK is robust to a wide range of past

demographic perturbations and to a broad range of positive selection configurations and

strength that make it particularly useful in the context of ecological genomics analyses

of non-model species. Using ABC-MK on the human proteome, we find that RNA

viruses have driven more long-term strong adaptation than DNA-viruses.

Introduction

Genomes contain a record of the evolutionary processes that shape diversity

within and across species, and software tools that use genomic sequences to infer aspects

of the evolutionary past are now an integral part of population genetics research. Of

particular interest to evolutionary biologists are methods that can disentangle various

processes that may contribute to diversification between species, such as adaptation

and genetic drift. Such methods have the potential to resolve fundamental questions

about the evolutionary (e.g. Corbett-Detig et al. (2015); Galtier (2016); Galtier and

Rousselle (2020)) and biological (e.g. Enard et al. (2016); James et al. (2016) drivers

of diversification at the genomic level. Though numerous methods have been proposed

to this end, it remains challenging to generate accurate and unbiased methods. Studies

addressing the potential biases of the available approaches unaccounted-for evolutionary

processes and assessing evidence for genome adaptation is still an intense area of research
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in molecular population genetics (McDonald and Kreitman, 1991; Gillespie, 1994; Smith

and Eyre-Walker, 2002; Hahn, 2008; Fay, 2011; Tataru et al., 2017; Kern and Hahn,

2018; Jensen et al., 2019; Johri et al., 2020).

The development of methods that are both computationally efficient and

reasonably robust to model misspecification remains a major challenge. Most

computational approaches that infer the rate of long-term adaptation at the DNA level

derive from the McDonald and Kreitman (MKT) framework (McDonald and Kreitman,

1991) or the related Poisson Random Field (PRF) framework (Sawyer and Hartl, 1992).

Both methods use divergence and polymorphism data to estimate the proportion of non-

synonymous substitutions fixed by positive selection in coding sequences, comparing

alleles that are likely to have fitness effects (putatively selected) to those less likely

to be under selection (putatively neutral). A significant excess of fixed differences

among the putatively functional set relative to the putatively neutral set is taken as a

signal of positive selection. The rate of adaptation is often summarized by the quantity

α, which is defined as the proportion of non-synonymous (or putatively functional)

fixed differences that were under positive selection along a particular evolutionary

branch. When α is close to 1, then positive selection is the predominant determinant

of molecular divergence. If α is close to 0, then drift dominates sequence divergence.

Smith and Eyre-Walker (2002) applied a simple theoretical model of directional selection

relating polymorphism and divergence with adaptation rate, and showed that the rate

of adaptation α could be inferred with the quantity

α = 1−
(
DS

DN

PN
PS

)
(5.1)

where DS is the number of synonymous fixed differences in a sequencing sample,

DN represents nonsynonymous fixed differences, PN is the number of nonsynonymous

polymorphic sites, and PS represents polymorphic synonymous sites. This convenient

formula has been widely applied to estimate molecular adaptation, in part because

of its simplicity. Indeed, the quantities on the right hand side of equation (5.1)

are commonly inferred by comparing a population sample of sequenced individuals

(sequencing sample) to a closely related outgroup species. Although widely used, it

should be noted that MKT and PRF-based approaches have multiple drawbacks that

could bias the estimation of α. For instance, equation (5.1) relies on a null model

derived from nearly-neutral theory (Kimura, 1968; Ohta, 1974; Kimura, 1977), and

assumes that selected polymorphism, either negative or positive, is rarely observed.

Subsequent modeling and empirical studies argued that weakly selected alleles can
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attain high frequencies and may cause substantial biases in inferences that use equation

(5.1) (Balloux and Lehmann, 2012; Lanfear et al., 2014; Booker and Keightley, 2018;

Galtier and Rousselle, 2020; Rousselle et al., 2020). Though weakly deleterious alleles

are less likely to reach fixation, if they contribute to the class PN , then the neutral

mutation rate in the putatively functional class may be overestimated, which makes the

estimation of α downwardly biased (Charlesworth and Eyre-Walker, 2008). Note that

the fixation of weakly deleterious alleles could also cause overestimation of α (see Eyre-

Walker and Keightley (2009) and Section 5). Altogether, weakly selected polymorphism

could drive substantial biases in the inference of adaptation rates and strength.

The presence of slightly deleterious mutations has been addressed by MKT- and

PRF-based methods by explicitly modeling the Distribution of Fitness Effects (DFE)

for negatively selected variants (Boyko et al., 2008; Eyre-Walker and Keightley, 2009;

Messer and Petrov, 2013a; Racimo and Schraiber, 2014; Galtier, 2016). Beneficial

alleles also can be found at intermediate frequency or high frequency (Tataru et al.,

2017; Uricchio et al., 2019), especially when the rate of strongly beneficial mutations

is high (as might be expected in a large population) or weakly beneficial alleles

contribute substantially to polymorphism (as might be expected under some polygenic

selection models). Despite the development of several methods that account for weakly

selected polymorphism, some empirical observations remain challenging to explain

under existing models, such as the apparent low rate of adaptation in primates, the

constrained range of genetic diversity across species, and differences in the rate of

adaptation among taxa (Galtier, 2016; Castellano et al., 2018, 2019a). Generating a

deeper biological and evolutionary understanding of the drivers of differentiation across

species may require new methods and models that can efficiently estimate the DFE while

simultaneously accounting for many (potentially confounding) evolutionary processes.

Demographic processes (such as population contractions, expansions, and

migrations) are major potential sources of bias in the inference of selection (Jensen

et al., 2019; Johri et al., 2020), just as selection is a major potential confounder in the

inference of demography (Schrider et al., 2016; Torres et al., 2018). The developers

of robust inference methods have typically sought to account for both selection and

demographic processes simultaneously. The cost of incorporating both demography

and selection is accrued in terms of model complexity and loss of efficiency, as it

is much more challenging to compute likelihoods or summary statistics under joint

demography/selection models. There is some hope however that methods based on

the asymptotic-MKT (Messer and Petrov, 2013a) may have some inherent robustness,

since these approaches rely on summary statistics that involve ratios of functional and

(putatively) non-functional alleles. Hence, some of the effects of demography should be
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absorbed into the ratio, as both categories of alleles will be affected. Indeed, Uricchio

et al. (2019) reported that moderate levels of demographic model-misspecification

resulted in tolerable inaccuracies for parameter inference.

Here we develop an extension of the Approximate Bayesian Computation ABC-

MK method presented in Uricchio et al. (2019) that greatly improves the efficiency of

the population genetics inferences. In Uricchio et al. (2019), analytical calculations were

used to explore the effect of background selection and selective interference on weakly

beneficial alleles, but the estimation procedure employed was based on computationally

intensive forward simulations and took days even on a High Performance Computing

cluster. We developed a simpler and much more computationally efficient ABC-based

inference procedure that accounts for the DFE of deleterious and beneficial alleles and

partial recombination between selected genomic elements. We describe the inference

procedure, assess its performance and robustness to non-equilibrium demographic

scenarios and different intensities of adaptation, and apply it to human genomic data.

We show that the method is reasonably robust to non-equilibrium events or different

fitness values of adaptation, and provide additional evidence for a substantial effect of

RNA-viruses on human adaptation rates, and discuss caveats and potential extensions

of our work.

The robustness of ABC-MK to a variety of evolutionary scenarios makes it

particularly useful in the context of genomic datasets with poorly characterized past

evolution, both at the level of demography or at the level of the nature of adaptation.

Materials and Methods

Our first goal is to calculate the expected rate of fixation and the expected site

frequency spectrum (SFS) of neutral and selected polymorphism sites under a model

of directional selection with partial recombination. To do so, we follow the results of

Uricchio et al. (2019), which in turn extended the results of several earlier studies (e.g.,

Eyre-Walker and Keightley (2009); Messer and Petrov (2013b)).

Our ultimate goal is to estimate α, the proportion of nonsynonymous substitutions

fixed by positive selection (Smith and Eyre-Walker, 2002), as well as the DFE for

de novo nonsynonymous mutations. We suppose that selection is directional, with

both positively selected and negatively selected mutations. We first consider the case

where each selected locus evolves independently, and in subsequent sections we consider

cases with background selection and selective interference. As in Uricchio et al. (2019),



126 Abstract

the DFE over beneficial alleles consists of two point masses, one representing strongly

beneficial alleles and the other representing weakly beneficial alleles.

Finally, we extend the calculations by developing a random sampling scheme

that accounts for the Poisson variance in mutation and fixation rates, and allows us to

develop a simple inference pipeline avoiding forward simulations. We briefly review the

core aspects of the theoretical framework, while a more detailed summary can be found

in the Supplemental Materials of Uricchio et al. (2019).

Theoretical approximation to α

The rate of adaptation can be decomposed into weakly and strongly beneficial

components, α = αW +αS . The substitution rate for nonsynonymous alleles is denoted

as dN , with dN+ , dN− , and dN0 representing the rates for positively selected, negatively

selected, and neutral alleles respectively (note that dN = dN+ + dN− + dN0). In the

same way, we denote as dS the substitution rate of synonymous mutations, which are

assumed to be neutral. We can write α as

E[α] =
dN+

dN
=
dN − (dN− + dN0)

dN
= 1−

(dN− + dN0)dS

dSdN
(5.2)

Note that we define α as the actual proportion of positively selected substitutions

along the branch, and hence equation (5.2) is an expression for the expectation of α.

As noted by Messer and Petrov (2013a), dS can be estimated from sequence alignments

with the ratio DN/DS under the assumption that the observed number of substitutions

along a branch should be proportional to the rate. The ratio (dN− + dN0)/dS is more

complex to estimate, because it relies on partitioning substitutions by their fitness

effects. Under the assumption that polymorphic alleles are rarely selected (because

deleterious sites are removed from the population quickly and beneficial sites go to

fixation rapidly), previous work (Smith and Eyre-Walker, 2002) showed that this ratio

can be approximated by substituting PN
PS

into equation (5.2), and a point estimate of α

as

α ≈ 1−
(
PN
PS

DS

DN

)
(5.3)

However, if selected polymorphisms segregate in the sample, then PN in equation
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(5.3) will be inflated relative to the true rate of mutation for neutral nonsynonymous

alleles, which results in underestimation of α. A potential solution is to exclude alleles

with derived allele frequencies lower than some threshold from the quantities PN and

PS , since most (negatively) selected alleles should be constrained to lower frequency

(Fay et al., 2001). While this solution works well for some DFEs (for example, when all

deleterious alleles are strongly selected), weakly deleterious alleles can reach appreciable

frequencies and bias inference regardless of the selected frequency threshold. Messer

and Petrov (2013a) extended this idea by developing a very simple estimator of α that

uses all frequencies simultaneously by rewriting the estimator of Smith and Eyre-Walker

(2002) as

α ≈ 1−
(
PN(x)

PS(x)

DS

DN

)
(5.4)

where PN(x) and PS(x) are the number of non/synonymous alleles at frequency x in a

sequencing sample. They fit a simple exponential curve to the α(x) data points, and

the asymptote of this curve is taken as an estimate of α. This method improves the

quality of α estimates by using all of the frequency data simultaneously and providing

confidence intervals for α, but does not provide an estimate of the DFE and assumes that

beneficial alleles do not contribute to PN (see the Supplemental Material of Uricchio

et al. (2019) for more details).

Generic model to the expected fixation rates and frequency spectra

A complementary approach to that of Messer and Petrov (2013a) is to directly

model the effects of the DFE for beneficial and deleterious alleles on the shape of the

α(x) curve, and to infer the best fitting model parameters. Nonetheless, note that while

E[α(x)] = 1− E[
DSPN(x)

DNPS(x)
] is not straightforward to calculate because it depends on the

ratio of several random variables, the expectation of each component in equation 5.4

(PS(x), PN(x), DS , DN ) is easily calculated in a directional selection model from first

principles using diffusion theory (Evans et al., 2007). Therefore, we make a first-order

approximation

E[α(x)] ≈ 1−
E[DS ]E[PN(x)]

E[DN ]E[PS(x)]
(5.5)
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In this manuscript we assume that positively selected mutations have fitness

effects drawn from a point mass distribution (although such assumption is relaxed

in the Approximate Bayesian Computation), while negatively selected mutations

drawn from a gamma distribution. In general, our approach can be applied to

any distribution for which we can analytically solve the fixation rates and expected

frequency spectra. Brief descriptions of these calculations follow this section, while

detailed descriptions of these calculations please refer to the Supplemental Materials

of Uricchio et al. 2019 or the online documentation for our software at web address

https://jmurga.github.io/Analytical.jl/dev/.

Expected number of fixations. Considering the distribution of selection

coefficients over new mutations µs (selection coefficient underlying the mutation rate)

and the fixation probability πs, we calculate the expected number of substitutions along

a branch of time T in a locus of length L as

E[D] = LTd = LT

∫
s

2Nµsπsds (5.6)

For positively selected mutations with large selection coefficients (s > 0.01), we

follow the procedure described in Uricchio and Hernandez (2014) for determining the

probability of fixation, which treats the initial trajectory of the mutation as a Galton-

Watson process.

Expected frequency spectrum. The expected number of alleles at frequency x

is estimated from the standard diffusion theory for the site frequency spectrum in an

equilibrium population (e.g., see equation 31 of Evans et al. (2007)).

Ψ(x) =

∫
s

θs
1

x(1− x)

e4Ns(1− e−4Ns(1−x)

e4Ns − 1
ds (5.7)

where Ψ(x) is the number of alleles at frequency x in a population of size N and θs =

4Nµs is the population-scaled mutation rate for mutations with selection coefficient s.

To obtain the downsampled frequency spectrum in a finite sample of 2n chromosomes,

we convoluted equation (5.7) with the binomial distribution.

https://jmurga.github.io/Analytical.jl/dev/
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Background selection and adaptive divergence. Background selection (BGS)

(Charlesworth et al., 1993; Hudson and Kaplan, 1995; Nordborg et al., 1996) and

selective interference (e.g., Hill-Robertson interference, (Hill and Robertson, 1966))

could affect the rate of fixation of weakly deleterious or beneficial alleles. Up to this

point, we have considered only selected loci that evolve independently of all other

selected loci. In this section we will relax this assumption by exploring the effects of

selective interference on fixation rates and the frequency spectrum. Note that this will

not be a full treatment of these topics, which are active areas of research. Rather we

will follow approximations that will apply in some circumstances (in particular, when

BGS is the predominant driver of selective interference), but may fail when strongly

beneficial alleles interfere.

To explore α(x) accounting for recombination and BGS impact, we focused on a

model in which the coding locus is flanked on each side by loci of length L, which

contain deleterious alleles (see Figure 5.1). We modeled deleterious alleles with a

population-scaled selection coefficient −2Nt undergoing persistent deleterious mutation

at rate 4Nµ−. The whole flanking loci recombined at a rate r per-base, per-generation.

Previous work has shown that diversity at the coding locus (π) is decreased relative to

its neutral expectation (π0), and closed form expressions for the expected reduction in

diversity are available (Hudson and Kaplan, 1995; Nordborg et al., 1996). The effects

of BGS on fixations and frequency spectra have been subject of much theoretical work

(Charlesworth et al., 1993; Charlesworth, 1994; Hudson and Kaplan, 1995; Barton,

1995; Nordborg et al., 1996). While patterns of sequence variation induced by BGS can

be quite complex (Nicolaisen and Desai, 2013; Good et al., 2014; Torres et al., 2018,

2020), to a first approximation the effect of BGS can be thought of as a reduction in

the effective population size Ne, with Ne = N π
π0

(McVicker et al., 2009). To account

for the role of BGS on the fixation rate of deleterious alleles, we replace N in the prior

equations with Ne after accounting for BGS. We also replace N with Ne in formulae

for the frequency spectra.

For beneficial alleles, the effects of selective interference are slightly more complex.

Strongly beneficial alleles are essentially unaffected by BGS, in that their fixation

probabilities almost do not depend on the reduction in neutral diversity. Weakly

beneficial alleles can have their fixation probabilities substantially reduced by BGS.

We followed Barton (1995) to derive formulae for the reduction in fixation rate of

weakly and strongly beneficial alleles after accounting for BGS, as described in the

Supplemental Materials of Uricchio et al. (2019) (see Background selection and adaptive

divergence section). The reduction in fixation probability for a weakly beneficial allele
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with selection coefficient s under interference with deleterious alleles with selection

coefficient t is given by

φ(t, s) = e
[ −2µ

t(1+ rLt +2s
t )

]
(5.8)

where l is the distance in base pairs from the region of interest, 1 ≤ l ≤ L (see equation

17d of Barton (1995)). Multiplying across all deleterious linked sites and factoring in

flanking sequences to both the left and right of the focal site (which requires us to square

the product below), we find that the reduction in the probability of fixation relative to

the case with no linkage (Φ) is

Φ =
L∏
1

φ(t, s) = e
−2tµ(ψ[1, r+2s+L

r ]−ψ[1,
r(L+1)+2s+t

r ])

r2 (5.9)

where ψ is the polygamma function. Evidence for the adequacy of these approximations

is provided in Uricchio et al. (2019) by comparing the results to forward simulations.

However, we note that these expressions are not expected to hold under very high rates

of mutation for beneficial alleles, and will be less accurate for strongly beneficial alleles

than weakly beneficial alleles. Given these expressions, we can replace the fixation rates

for beneficial alleles in our prior formulae with the fixation rates after accounting for

selective interference.

Poisson-sampling process. The previous sections described the expectation of

fixation rates and frequency spectra under a model of directional selection and

selective interference. We now develop a simple random sampling scheme around

these expectations that accounts for sampling and process variance, linking analytical

estimation and ABC procedure for finally avoiding forward simulations. We note that

the model we explore is quite similar to the BGS model in DeGiorgio et al. (2016),

though while we are interested in the long-term accumulation of fixations, DeGiorgio

et al. (2016) is primarily interested in the non-equilibrium signature of a recent or

ongoing selective sweep. Following the Poisson Random Field model (Sawyer and Hartl,

1992), we supposed that the number of fixed differences and polymorphic sites were

Poisson random distributed variables with mean values given by the expectations in

the previous sections.

To avoid performing branch length estimations in our computation, we assumed
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BGS

Expected fixation rate:

Expected frequency spectra:

Figure 5.1: Graphical representation of the model used to estimate the fixation ratio and
frequency spectra under BGS. The coding locus follows a combination of Gamma and discrete
distributions while the non-coding locus undergoing persistent deleterious mutation at rate
4Nµ− accounting for population-scaled selection coefficient −2Nt. The expected reduction in
diversity is used to estimate the associated reduced fixation probabilites given the BGS model
described.



132 Abstract

that the empirically observed number of fixations should be proportional to the length

of the evolutionary branch of interest, T , the locus length L and mutation ration µ. We

take the observed number of fixations as a proxy for the expected number, and then

sample weakly deleterious, neutral, and beneficial substitutions proportional to their

relative rates for a fixed set of model parameters. The expected number of substitutions

for positively selected substitutions is then

λDN+
= D

E[dN+]

E[dN+] + E[dN−] + E[dS ]
(5.10)

where D is the observed number of substitutions in a dataset of interest.

It should be noted that both sampling variance and process variance affect the

number of variable alleles at any particular allele frequency in a sequencing sample. The

process variance arises the random mutation-fixation process along the branch, while

the sampling variance arises from the random subset of chromosomes that are included

in the sequencing data. We sampled a Poisson distributed number of polymorphic

alleles at frequency x relative to their rate given the expected frequency spectra. The

expected frequency spectra were downsampled using a binomial (with probability of

success given by the frequency

(
x

2n

)
in a sample of 2n chromosomes) to account for

the sampling variance. In a manner exactly analogous to fixed variants as described

above, to account for the process variance

λ[PN ] =

1∑
x=0

P(x)

E[pN+(x)] + E[pN−(x)]

E[pN+(x)] + E[pN−(x)] + E[pS(x)]
(5.11)

To account for BGS, we solved equation (5.9) using any expected B values from

McVicker et al. (2009) at each polymorphic or fixed site . We note that inferred

background selection strength is not available for most species and our software can

run without this information, but when it is available, the inference can be limited to

such values. We discount the fixation probability of deleterious alleles by the predicted

value of B at each site, and we use the predicted reduction in fixation probability given

by equation (5.9) for weakly beneficial alleles. In practice, we bin sites into B-value

ranges, such that all sites within (for example) a 2.5% B-value range of 0.675 to 0.7

experience the same Ne and the same strength of selective interference (for example

Ne = 0.675N , which is the midpoint of this B-value window).
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Computational workflow. Our ultimate goal is to infer α, αW , and αS given a

set of observed α values from a sequencing dataset. Since α in our framework is a

model output and not a parameter per se (i.e., α depends on the random number of

fixations along an evolutionary branch, which in turn depend on the parameters of the

evolutionary model), we cannot immediately obtain the corresponding fixation rates and

frequency spectra values for a given set of expected α values without first solving for the

mutation rates and fixation probabilities considering the input model (see Table 5.1).

Given the α and αW (which together uniquely determine αS), a DFE over negatively

selected alleles, a known B-value, a selection coefficient for beneficial alleles, a selection

coefficient for flanking deleterious alleles, a recombination (ρ) and mutation rate on the

coding locus (θ), we numerically solve for the probability of fixation of beneficial alleles

and the mutation rate on the flaking locus that correspond to the desired α values

given the BGS strength. This allows us to calculate rapidly the expected frequency

spectra and fixation rates that will correspond to the desired α values and generate a

sample of α(x) values following the Poisson-sampling process under the corresponding

evolutionary model.

We used a generic Approximate Bayesian Computation (ABC) algorithm to infer

the rate and strength of adaptation. ABC procedure first samples the parameter

values from prior distributions; second simulates random model calculating informative

summary statistics; and third compares the simulated summary statistics to observed

empirical data. The summary statistics producing best match to the observed empirical

data form an approximate parameter posterior distribution. Our approach used

empirical data to both perform computational workflow and Poisson-sampling scheme

described above to sample α(x) generating summary statistics corresponding to different

evolutionary scenarios and to finally compare such summary statistics to empirical α(x)

estimations. Since we do not know a priori the values of any model parameter, to

estimate summary statistics, we sample 105 sets of parameters randomly from a prior

uniform distribution, which allows for flexibility in the DFE of deleterious and beneficial

alleles. We supplied the summary statistics and empirical α(x) into ABCreg (Thornton,

2009) to estimate the empirical values of αW , αS and α while accounting for BGS in

bins of 2.5% from π
π0

= 0.1 to π
π0

= 1.

For each analysis, we used 100 bootstrapped datasets to generate summary

statistics and inputs to the ABC inference. As summary statistics, we used the value

of α(x) for x ∈ (2, 5, 20, 50, 200, 661, 925) and x ∈ (2, 5, 20, 50, 200, 500, 700) regarding

the input data. These values are similar to the ones used in Uricchio et al. (2019),

though we excluded singletons because very low frequency alleles are particularly

sensitive to sequencing errors and distortions due to demographic processes or other
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model misspecifications. We inferred posterior distributions for each bootstrapped

dataset, each one using the same 105 summary statistics as a prior. We set the

tolerance threshold in ABCreg to 0.01 such that 103 values were accepted from posterior

distributions.

Table 5.1: Model parameters

γ Population-scaled selected coefficient of deleterious alleles
sw Population-scaled selected coefficient of weakly beneficial alleles
ss Population-scaled selection coefficient of strong beneficial alleles
αw Proportion of weakly adaptive substitutions
α Proportion of adaptive substitutions
θcoding Population-scaled mutation rate at coding locus

Model parameters θ Scale parameter
β Shape parameter
B B value from McVicker et al. (2009)
N Effective population size
n Sample size
L Non-coding locus length
ρ Population-scaled recombination rate

lW Fixation probability of weakly beneficial alleles
Derived parameters lS Fixation probability of strong beneficial alleles

θnon−coding Population-scaled mutation rate at non-coding locus

Forward-in-time simulations

We used SLiM 3 (Haller and Messer, 2019) to generate simulated sequence

variation data under our model and test the predictions of our approach. We performed

three different sets of simulations accounting for demography or not, in which we

modeled the same rates of adaptation and BGS. For each set of simulations, we

considered branch length that mimics the human split from chimpanzee (estimated to

be ≈ 5.5M years ago). In simulations with realistic non-equilibrium human demography,

we added demographic events following Tennessen et al. (2012) to model the variation

in the 661 African individuals whose genomes are included in the 1000 Genome Project

(Auton et al., 2015). Each simulation represents a coding locus of 2 · 103 bp flanked

on each side by a 105 bp non-coding locus. A total of 5 · 104 genes were simulated

accounting for a total of 108bp of coding sequence. We performed the simulations

following previously estimated values of negative selection of human proteins (Boyko

et al., 2008), where the distribution of deleterious alleles follows a gamma-distribution

with scale and shape parameters of 0.184 and 0.000402 respectively, which implies a

mean fitness of 2Ns = −457 for negatively selected nonsynonymous alleles. Strongly
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and weakly beneficial alleles followed a point-mass distribution given the population-

scaled selections coefficients of 2Ns = 10 and 2Ns = 500 respectively. Our simulations

supposed that 25% of mutations in each coding locus are synonymous while and 75%

are nonsynonymous. We used a mutation within each coding locus of θ = 4Nµ = 0.001

and a mean human recombination rate in the flanking sequence of ρ = 4Nr = 0.001.

See Table 5.2 for parameter values of forward simulations.

Table 5.2: Prior values to SLiM simulations

Scenarios Nanc µcoding r µnon−coding sW sS lW lS αW α B
500 1.32e-06 5e-07 5e-07 10 500 0.0038 0.00039 0.1 0.4 0.2
500 1.32e-06 5e-07 5e-07 10 500 0.0077 0.00026 0.2 0.4 0.2
500 1.32e-06 5e-07 5e-07 10 500 0.0116 0.00013 0.3 0.4 0.2
500 7.52e-07 5e-07 5e-07 10 500 0.0038 0.00039 0.1 0.4 0.4
500 7.52e-07 5e-07 5e-07 10 500 0.0077 0.00026 0.2 0.4 0.4

Non-
demography

500 7.52e-07 5e-07 5e-07 10 500 0.0116 0.00013 0.3 0.4 0.4

500 1.83e-07 5e-07 5e-07 10 500 0.0038 0.00039 0.1 0.4 0.8
500 1.83e-07 5e-07 5e-07 10 500 0.0077 0.00026 0.2 0.4 0.8
500 1.83e-07 5e-07 5e-07 10 500 0.0116 0.00013 0.3 0.4 0.8
500 8.22e-10 5e-07 5e-07 10 500 0.0038 0.00039 0.1 0.4 0.999
500 8.22e-10 5e-07 5e-07 10 500 0.0077 0.00026 0.2 0.4 0.999
500 8.22e-10 5e-07 5e-07 10 500 0.0116 0.00013 0.3 0.4 0.999
7310 1.32e-06 3.42e-08 3.42e-08 10 500 0.0038 0.00039 0.1 0.4 0.2
7310 1.32e-06 3.42e-08 3.42e-08 10 500 0.0077 0.00026 0.2 0.4 0.2
7310 1.32e-06 3.42e-08 3.42e-08 10 500 0.0116 0.00013 0.3 0.4 0.2
7310 7.52e-07 3.42e-08 3.42e-08 10 500 0.0038 0.00039 0.1 0.4 0.4
7310 7.52e-07 3.42e-08 3.42e-08 10 500 0.0077 0.00026 0.2 0.4 0.4

Tennesen
model

7310 7.52e-07 3.42e-08 3.42e-08 10 500 0.0116 0.00013 0.3 0.4 0.4

7310 1.83e-07 3.42e-08 3.42e-08 10 500 0.0038 0.00039 0.1 0.4 0.8
7310 1.83e-07 3.42e-08 3.42e-08 10 500 0.0077 0.00026 0.2 0.4 0.8
7310 1.83e-07 3.42e-08 3.42e-08 10 500 0.0116 0.00013 0.3 0.4 0.8
7310 8.22e-10 3.42e-08 3.42e-08 10 500 0.0038 0.00039 0.1 0.4 0.999
7310 8.22e-10 3.42e-08 3.42e-08 10 500 0.0077 0.00026 0.2 0.4 0.999
7310 8.22e-10 3.42e-08 3.42e-08 10 500 0.0116 0.00013 0.3 0.4 0.999

Software and data availability

We developed user-friendly software in order to execute our model. ABC-

MK is freely available at https://github.com/jmurga/Analytical.jl. It is based

on Julia language and support multi-threading, interactive environments as well

as Command Line Interface usage. Tutorials and examples are available at

https://jmurga.github.io/Analytical.jl/dev/.

https://github.com/jmurga/Analytical.jl
https://jmurga.github.io/Analytical.jl/dev/
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Results and Discussion

Evolutionary processes affecting adaptation inference

We used our forward simulations to retrieve polymorphism and divergence data

with a priori known adaptation parameters. To input the data in our model, we pooled

the SFS and number of fixations of 5 · 104 genes. Note that this is about 2.5 times as

many genes as appear in the human genome -we use this larger number of genes such

that the trends in the simulated data will be clear and not dominated by noise, while

noting that noise may play a larger role in real datasets for some species with limited

proteome coverage. As demonstrated previously, the frequency spectrum (Tataru et al.,

2017) and α(x) (Uricchio and Hernandez, 2014) are substantially affected by the presence

of weakly beneficial alleles (Figure 1). The asymptote of the α(x) curve bends below

the true value of α(x), which is caused by an excess of high frequency nonsynonymous

variants under weak positive selection. This results in downward bias of α estimates

when aMKT (Messer and Petrov, 2013a) is applied to the data (see Table 5.2). In real

sequencing datasets we cannot a priori separate beneficial and deleterious alleles, but

in our simulated datasets we can remove the weakly beneficial alleles and test whether

this will fix the downwards bias in aMK. When removing weakly beneficial alleles we

observed an increase in α estimates from aMK which tend towards the true value of α

(see Figure 5.2, Table 5.2).

In addition, α(x) can be substantially affected by BGS, especially when weakly

beneficial alleles contribute to the frequency spectrum (see Figure 5.2). In cases where

α is dominated by strong adaptation, both asymptotic values (accounting for all alleles,

or just neutral and deleterious) tend to be similar, because strongly beneficial alleles

are not substantially impeded by selective interference with linked deleterious variation.

Similar results were reported in Uricchio et al. (2019), and we include them here for

completeness. We also tested the effect of recent demographic events with a simulation

of the Tennesen demographic model, specifically for the African continental group

(Uricchio et al., 2019). We used demographic parameters following Adrion et al.

(2020a). To improve performance we simulated the African population in isolation,

rather than including the full multi-population model –consequently our simulations do

not include the effects of migration on the frequency spectrum. We observed similar

patterns to equilibrium simulation regarding the overall shape and asymptotic values of

α(x) (Figure 5.3). Since this model includes a recent and rapid population expansion,

we observe distortions to the frequency spectrum at extremely low and high frequencies

due to the excess of rare alleles relative to an equilibrium demographic model.
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Figure 5.2: BGS worsens the distorting effect of weakly advantageous mutations on the α
curve. We simulated the effect of weakly advantageous allele and BGS effect on α(x) using SLiM

3 (Methods). Each row represents a BGS value. Each column represents a proportion of αW . We
assumed a proportion of adaptive substitutions of α = 0.4 in the absence of BGS. A. Simultions
at demographic equilibrium. B. Simulations under Tennessen et al. (2012) demographic model.
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ABC analysis

Equilibrium demography

To compare true parameter values to inferred values, we calculated the Maximum-

A-Posteriori (MAP) estimate for each posterior distribution that we obtained from

ABC-MK, following the manual of Thornton (2009). Our method can distinguish both

weak and strong adaptive contributions to α while performing reasonably accurate

estimations (Table 5.3). Table 5.3 shows inferred values and the associated error

for each parameter and simulation. In all cases, the posterior distribution overlaps

the distribution of the true values from bootstrapped datasets. Figure 5.3 presents

the simulated values and MAP estimates. Table 5.3 shows inference parameters and

associated error.
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Figure 5.3: ABC-MK inference at equilibrium. MAP distribution of 100 sets of summary
statistics per parameter value. ABC inferences were performed using ABCreg.
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Non-equilibrium demography

We tested our method using simulations performed under the demographic model

of Tennessen et al. (2012). Although these demographic events (which include an

ancient expansion in the ancestral population and a period of recent rapid growth)

affect the number of segregating sites and the shape of the SFS (which is not modeled

in our calculations), our method is reasonably robust to these distortions when we

exclude low frequency variants (DAC < 5 i.e. DAF < 0.0038; Figure 5.4). When we

include variants at which the SFS is most distorted, such as singletons and very high

frequency variants, the inference is biased towards weak selection, although the overall

value of α is not strongly affected (Figure 5.4A-C). This likely reflects the qualitative

similarity of recent growth events and weakly beneficial alleles in terms of their effects

on the SFS, as both will disproportionately increase the number of nonsynonymous

variants at low frequency relative to an equilibrium model. In Figure 5.5 we explore

a wider range of parameters, using the best performing set of summary statistics (i.e.,

excluding derived allele counts under 5). Table 5.3 shows inference parameters and

associated error.
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Figure 5.4: Summary statistics selection. ABC inference excluding low-frequency variants in
Tennessen et al. (2012) demographic simulations.
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Human viral interacting proteins

As an example of application, we estimate coding adaptation in human genes

that interact with viruses. Several studies have argued that viral infections have

driven adaptation in the human genome (e.g., Nédélec et al. (2016); Castellano et al.

(2019b)). Genomic analysis of patterns of variation within experimentally determined

Viral Interacting Proteins (VIPs) has repeatedly uncovered signals of both frequent

and strong adaptation (Enard et al., 2016; Uricchio et al., 2019). The selective pressure

imposed by virus on hosts appears to be a strong driver of adaptation during human

evolution at different time scales or adaptive regimes (Deschamps et al., 2016; Racimo

et al., 2017; Enard and Petrov, 2018).

We applied our approach to an augmented set of VIPs and non-VIPs (proteins

not known to interact with any virus) that were previously studied in Uricchio et al.

(2019) and estimated adaptation rates using our new ABC-MK implementation. We

extended this analysis by partitioning specific VIPs into interaction partners with RNA

and DNA viruses. We followed previous studies of RNA-VIPs to test at a deeper scale if

the RNA-VIPs virus exhibits stronger adaptation rates than DNA-VIPs, to test whether

our method provides any additional support to the hypothesis that RNA viruses are

important drivers of human adaptation (Enard and Petrov, 2020).

We used genomic data from the same 661 individuals of African descent that

were studied in Uricchio et al. (2019), whose genomes were sampled in the Thousand

Genomes Project, while increasing the total number analyzed of curated VIPs from

4,066 to 5,310. From this, 1,258 annotations correspond to DNA-VIPs, whereas 3,471

correspond to RNA-VIPs. In this case, we bootstrap each dataset 100 times following

the polyDFE manual Tataru et al. (2017) to get MAP estimates from posteriors

distributions following the previously described ABC scheme.

We inferred values of α, αW , and αS that were very similar to those inferred

in Uricchio et al. (2019) regarding VIPs and non-VIPs datasets, despite the increased

number of analyzed VIPs (see Figure 5.6 and Table 5.4 ) and the simplified, streamlined

ABC-MK implementation. Interestingly, when distinguishing between DNA and RNA-

VIPs, we found higher strong adaptation rates in RNA-VIPs in both α and αW (see

Figure 5.6 and Table 5.4). Uricchio et al. (2019) noted that the higher adaptation rate

for VIPs cannot be explained by the BGS effect, because VIPs undergo slightly stronger

BGS than non-VIPs. The same occurs for RNA-VIPs vs DNA-VIPs here, as the mean

BGS strength at RNA-VIPs is 0.556 compared to 0.616 for DNA-VIPs. These results
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may reflect biological differences between RNA and DNA viruses, especially in terms

of zoonosis frequency, and suggest that RNA-viruses may have played an especially

important role in human adaptation.

Non-VIPs dataset VIPs dataset
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Figure 5.6: Non-VIPs and VIPs posterior distributions. Inference was performed using human
lineage data from Uricchio et al. (2019). A total of 1301 non-VIPs and 4729 VIPs were analyzed.
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Figure 5.7: DNA-VIPs and RNA-VIPs posterior distributions. Inferences were performed
using human lineage data from Uricchio et al. (2019). A total of 1258 DNA-VIPs and 3471
RNA-VIPs were analyzed.
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Conclusions

The new ABC-MK approach works much more efficiently than the previous

procedure in Uricchio et al. (2019), it can efficiently be executed on a workstation,

while Uricchio et al. (2019) one requires the use of an HPC. Together, our analytical

procedure, computation workflow and the Poisson sampling scheme allow us to avoid the

expensive requirements of forward simulations, dramatically reducing execution time.

Therefore, while for a given empirical dataset the Uricchio et al. (2019) approach takes

several days to complete the estimation, the new procedure can be fully executed in less

than 1 hour, depending on the number of CPU threads employed. More importantly,

considering that we have made independent the analytical estimation of fixation and

polymorphic rates and the Poisson sampling scheme, once the analytical rates have

been estimated, the Poisson sampling scheme and the α inference can be performed

in a few minutes given any dataset even without parallelizing (see figure 5.8). In

addition, our software does not require a priori knowledge of B from McVicker et al.

(2009) measuring BGS strength while efficiently relaxing our model assumptions to any

selection coefficient at ABC estimations. We suggest that this new approach, as well

as the exposed results, replace the previous version of the ABC-MK (Uricchio et al.,

2019) software.
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Abstract

The McDonald and Kreitman test (MKT) is one of the most powerful and widely

used methods to detect and quantify recurrent natural selection using DNA sequence

data. Here we present iMKT (acronym for integrative McDonald and Kreitman test),

a novel web-based service performing four distinct MKT types. It allows the detection

and estimation of four different selection regimes -adaptive, neutral, strongly deleterious

and weakly deleterious- acting on any genomic sequence. iMKT can analyze both user’s

own population genomic data and pre-loaded Drosophila melanogaster and human

sequences of protein-coding genes obtained from the largest population genomic datasets

to date. Advanced options in the website allow testing complex hypotheses such as

the application example showed here: do genes located in high recombination regions

undergo higher rates of adaptation? We aim that iMKT will become a reference

site tool for the study of evolutionary adaptation in massive population genomics

datasets, especially in Drosophila and humans. iMKT is a free resource online at

https://imkt.uab.cat.

Introduction

One of the most striking evidence of the power of natural selection is the

characteristic footprints that it leaves on the patterns of genetic variation. A growing

number of statistical methods to analyze genomic data allows us to detect and quantify

adaptation and other selection regimes in the genome at different temporal scales

(reviewed in Casillas and Barbadilla (2017)).

The McDonald and Kreitman test (MKT) (McDonald and Kreitman, 1991) is

one of the most powerful and robust methods we have to detect the action of natural

selection at the DNA level. MKT tests for the presence of recurrent positive (adaptive)

selection on a gene or genome region. Unlike the ω = dN/dS ratio (Kimura, 1977), which

uses only divergence data among species to compute the quotient of the number of non-

synonymous (dN ) to synonymous (dS) substitutions, the MKT uses both polymorphic

and divergence data. Polymorphic data allows taking into account purifying selection

on divergent non-synonymous sites, significantly increasing the detection power of

recurrent positive selection. The MKT covers the evolutionary period spanning from

the divergence of the outgroup species to the present. The null model of MKT is

the neutral hypothesis (Kimura, 1968, 1983). Because infrequent adaptive mutations

fix fast relatively to common neutral mutations, they contribute almost exclusively to

https://imkt.uab.cat
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divergence and not to polymorphism; therefore, an excess of the divergence ratio relative

to the polymorphism ratio is the signal of positive selection. The fraction of adaptive

nonsynonymous substitutions (α) can be estimated from the MKT data (Charlesworth,

1994; Smith and Eyre-Walker, 2002).

The main drawback of MKT is that it assumes strict neutrality of segregating

sites. Because weak negative selection abounds in the genomes (Casillas and Barbadilla,

2017), α estimates are biased downward. Several MKT methodological extensions try to

correct the bias. In the next section, four MKT approaches are listed: (i) the standard

(original) MKT; (ii) the Fay, Wyckoff and Wu correction (fwwMKT) (Fay et al., 2001);

(iii) the extended MKT (eMKT) (Mackay et al., 2012) and (iv) the asymptotic MKT

(aMKT) (Messer and Petrov, 2013a). Each method has pros and cons are discussed,

and for the comparison of their different outputs, it would be very convenient to have

a web service to perform at once the four MKT. Existing web servers compute either

the standard MKT (Egea et al., 2008; Vos et al., 2013) or more recently the aMKT

(Haller and Messer, 2017). None of them contains pre-loaded population genomics data

of representative species as Drosophila melanogaster or humans.

Here we present iMKT (acronym for integrative McDonald and Kreitman test),

a web-based service performing the four MKT types described in the next section and

Figure 6.1. It allows the detection and estimation of four selection regimes (adaptive,

neutral, strongly deleterious and weakly deleterious) acting on protein-coding DNA

sequences. The benefit of this tool is fourfold.

1. Four MKTs, two of which were not previously available as open software packages,

can be performed at once to analyze user’s own population genomic data in a

simple interface offered by a web-based service.

2. It allows the simultaneous comparisons of the results of the different MKTs, which

behave differently according to different properties of the data.

3. Taking advantage of the copious information gathered in previous population

genome browsers, PopFly (Hervas et al., 2017) and PopHuman (Casillas et al.,

2018), it offers a fast tool to estimate the different selective regimes on thousands

of D. melanogaster and human protein-coding genes on several worldwide

populations.

4. It allows comparing the selective regimes of a set of coding genes (selected

according to the user’s criterion, such as recombination rate bins or chromosome
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localization) with those of the genome-wide distribution in both humans and D.

melanogaster.

The incessant accumulation of massive genome data makes this website a timely

resource to describe and quantify natural selection for any biological species at the

genome level.

Material and methods

MKT methodologies

McDonald and Kreitman test (MKT). The standard McDonald and Kreitman

test (MKT) (McDonald and Kreitman, 1991) was developed to be applied to protein-

coding sequences, combining both divergence (D) and polymorphism (P ) sites, and

categorizing mutations as synonymous (PS , DS) and non-synonymous (PN , DN ). If all

mutations are either strongly deleterious or neutral, then DN/DS is expected to roughly

equal PN/PS . In contrast, if positive selection is operating in the region, adaptive

mutations rapidly reach fixation and thus contribute relatively more to divergence than

to polymorphism when compared to neutral mutations, and then DN/DS > PN/PS

(Figure 6.1-A). Assuming that adaptive mutations contribute little to polymorphism

but substantially to divergence, the proportion of non-synonymous substitutions that

have been fixed by positive selection can be inferred as α = 1− (PNPS ·
DS
DN

) (Smith and

Eyre-Walker, 2002)(Figure 6.1-B). The main limitation of the test is the presence in

the population of non-synonymous slightly deleterious variants, biasing downward the

estimates of adaptive evolution (α). Below are three proposed methods to correct the

bias.

Fay, Wyckoff and Wu correction (fwwMKT). Because slightly deleterious

variants tend to segregate at lower frequencies than do neutral mutations, Fay,

Wyckoff and Wu or FWW correction (Figure 6.2-C) propose to remove low-frequency

polymorphisms from the analysis (Fay et al., 2001). α is estimated using the standard

MKT equation but considering only those polymorphic sites (for both neutral and

selected classes) with a frequency above an established cutoff. Charlesworth and Eyre-

Walker (2008) showed that even removing low-frequency variants, the estimate of α is

still downwardly biased. Only these estimates are reasonably accurate when the rate of

adaptive evolution is high and the distribution of fitness effects of slightly deleterious
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mutations is leptokurtic (because leptokurtic distributions have a smaller proportion of

polymorphisms that are slightly deleterious).

Extended MKT (eMKT). Mackay et al. (2012) proposed the extended MKT

(Figure 6.1-D). Instead of simply removing low-frequency polymorphism below a given

threshold, the count of segregating sites in non-synonymous sites is partitioned in

the number of neutral variants (using neutral sites as a proxy) and the number of

weakly deleterious variants. This increases the power of detecting adaptive selection

(as it does not remove as much data as the fwwMKT) and allows the independent

estimation of both adaptive and weakly deleterious substitutions. PN, the count of

segregating sites in the non-synonymous class, is discomposed into the number of neutral

variants and the number of weakly deleterious variants, PN = PNneutral + PNweakly del

(Mackay et al., 2012). The estimation of both numbers allows estimating positive

(adaptive) and negative selection independently. α is estimated from the standard

MKT table discounting weakly deleterious variants: PN is substituted by the expected

number of neutral segregating sites, PNneutral . The correct estimate of α is then

α = 1–(
PNneutral

PS
· DNDS ).

Asymptotic MKT (aMKT). Messer and Petrov (2013a) proposed an asymptotic

extension of MKT that takes slightly deleterious mutations into account and yields

accurate estimates of α (Figure 6.1-E). This method, named asymptotic MKT, is

robust to the presence of selective sweeps (hitchhiking) and to the segregation of slightly

deleterious substitutions (BGS). In this method, α is estimated in different frequency

intervals (x) and these values are then adjusted to an exponential function, of the form:

αfit(x) = a+ becx. The asymptotic α estimate is obtained by extrapolating the value of

this function to αasymptotic = αfit(x=1).

The asymptotic MKT has been extended to estimate both positive (adaptive)

and negative selection. aMKT requires a high volume of polymorphic data to fit the

asymptotic function, being a suitable method in the case of concatenating numerous

variants of multiple genes.

Input data

The iMKT server can analyze both user’s own population data and pre-loaded

data of D. melanogaster or human protein-coding genes.
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In the first case, the user can upload as input either polymorphism and divergence

data or aligned multi-FASTA files. For polymorphism and divergence data, the user

must upload two files: (i) a tab-delimited file containing the distribution of Derived

Allele Frequencies (DAF) (Ronen et al., 2013) of all segregating (polymorphic) variants

for two types of sites (putatively under selection and putatively neutral), and (ii) a file

containing the counts of divergent positions for the two site types. For aligned multi-

FASTA files, the user needs to enter one or more files containing aligned protein-coding

sequences for at least two sequences of the same species to estimate polymorphism

counts, and one orthologous sequence from an outgroup species to estimate divergence

and infer ancestral alleles. Examples of such files are provided at the website.

For analyzing D. melanogaster or human protein-coding genes, the user can use

the population genomic data available in the web server. In this case, the user can

either submit a list of protein-coding genes or select them from the list provided, and

select the population(s) and preferred method(s) to analyze the selective regimes on a

group of protein-coding genes.

Population genetics pipeline for D. melanogaster and human data

We have designed and implemented a custom pipeline for analyzing the Drosophila

Genome Nexus (Lack et al., 2015, 2016) and Human 1000GP Phase III (Auton

et al., 2015) data, which could potentially be escalated to any available genomic data

source. The pipeline pre-calculates the DAF and number of divergent synonymous and

nonsynonymous sites, which are needed to further perform on-the-fly MKTs. A total

of 13,753 protein-coding genes for 16 D. melanogaster populations (Lack et al., 2015,

2016) and 20,643 protein-coding genes for 26 human populations of distinct geographical

origin (Auton et al., 2015) were analyzed. Pre-calculated DAF and divergence values

are stored in the server. The complete pipeline is available as a Jupyter Notebook at

https://github.com/BGD-UAB/iMKTData to allow its reproducibility.

Data retrieval

D. melanogaster population genomic data. Variation data generated by the

Drosophila Genome Nexus, together with divergence data between D. melanogaster

and D. simulans, was retrieved from PopFly (Hervas et al., 2017) in FASTA format.

Only populations with at least four genome sequences and less than 20% of missing

or ambiguous nucleotides each (after filtering by identity by descent, admixture, and

https://github.com/BGD-UAB/iMKTData 
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Polymorphism Divergence

Non-synonymous 4 15

Synonymous 11 8

A 

P-value = 0.092
2×2 Fisher’s exact test

Standard McDonald and Kreitman test (1991)

P-value = 0.045
2×2 Fisher’s exact test

Fay, Wyckoff and Wu’s correction (2001)

Extended MKT (Mackay et al., 2012)

fneutral = PS≤0.1/PS = 6/17 = 0.35

PN neutral≤0.1 =PN × fneutral = 11 × 0.35 = 3.88 ≈4

PN neutral =PN neutral≤0.1 + PN = 4 + 4 = 8

P-value = 0.042
2×2 Fisher’s exact test

Polymorphism Divergence

Non-synonymous 11 15

Synonymous 17 8

B 

C 

D 

DAF ≤0.1 DAF > 0.1

Non-synonymous 7 4

Synonymous 6 11

Polymorphism Divergence

Non-synonymous 8 15

Synonymous 17 8

E Asymptotic MKT (Messer and Petrov 2013)

Figure 6.1: (Caption in next page)
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Figure 6.1: Comparison of the four MKT methods implemented in iMKT. (A) The
hypothetical derived allele frequency (DAF) spectrum of synonymous and non-synonymous
classes for a gene exhibiting an excess of both slightly deleterious and fixed non-synonymous
differences with n = 10 sampled chromosomes. (B) The standard MKT for this gene (
P − value = 0.09, 2x2 Fisher’s exact test). (C) The 22 table by Fay, Wyckoff and Wu’s
correction (Fay et al., 2001)) taking into account only polymorphism found on more than one
chromosome (P − value = 0.045, 2x2 Fisher’s exact test). (D) Extended MKT (Mackay et al.,
2012). The count of segregating sites in non-synonymous sites is partitioned into the number
of neutral variants and the number of weakly deleterious variants. PN is substituted with the
number of nonsynonymous polymorphisms that is neutral (P−value = 0.042, 2x2 Fisher’s exact
test). (E) Asymptotic MKT. Example of the result of asymptotic MKT usingD. melanogaster
2R chromosome and D. simulans as outgroup. The two vertical lines show the limits of the x
cutoff interval used (in the example [0,0.9]). Black dots indicate the binned values for each DAF
category. The solid red curve shows the fitted fit(x). The dashed red line is the final asymptote.
The dark gray band indicates the 95% CI around the estimation. The blue dashed line shows
the estimated using the standard MKT for comparison. For MKT methods definitions, see
Section 6. Adapted and expanded from (Hahn, 2018)

heterozygosity) were included. DAF spectrum by functional classes was estimated by

resampling a number of lines with nucleotide information (excluding undetermined sites,

N bases) at each position without replacement. This procedure maximizes the number

of informative sites to analyze. The number of lines resampled for each population

was chosen depending on the number of lines sequenced and the quality of those

sequences (Table C.1). Positions and genes without valid information for at least

this defined number of lines were discarded for the analysis. The ancestral state of

each polymorphic site was inferred from the comparison with the outgroup species

D. simulans. The genome reference sequence and annotations correspond to the 5.57

FlyBase release (Thurmond et al., 2019). Gene-associated recombination rate for 100

kb non-overlapping windows were retrieved from Comeron et al. (2012).

Human population genomic data. Genome variation data and ancestral state

of variants generated by the 1000GP Phase III (Auton et al., 2015), together with

divergence estimates between humans and chimpanzees, were retrieved from PopHuman

(Casillas et al., 2018) in Variant Call Format (VCF). The dataset included 84.4 million

variants detected across 2,504 individuals from 26 different populations, which were

mapped to the human reference genome version GRCh37/hg19. Reportedly inbred

individuals (Gazal et al., 2015) and non-accessible nucleotides (Auton et al., 2015)

were discarded following the PopHuman methodology (Casillas et al., 2018). Genome

annotations were retrieved from GENCODE (release 27). Recombination rate values

associated with each protein-coding gene were obtained from Bhérer et al. (2017) and

correspond to the sex-average estimates.
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Estimation of the number of synonymous and nonsynonymous changes

Inferring the action of natural selection on coding sequences relies on the

computation of polymorphism and divergence data on two distinct types of sites in

the genome: one putatively selected (usually non-synonymous coding sites), and one

putatively neutral (usually synonymous coding sites) (McDonald and Kreitman, 1991).

This implies assigning a selective class for each nucleotide site in the genome. This

task is not trivial when different transcripts overlap a genomic region. For example,

one nucleotide site can be a non-synonymous site for one transcript but a synonymous

site for another nested gene transcript. In these cases, we assign the most selective

constrained class to the nucleotide site. In the example, the site is considered non-

synonymous.

Exclusion of low-frequency variants

Slightly deleterious variants are mainly segregating at low frequency (Fay

et al., 2001; Templeton, 1996; Charlesworth and Eyre-Walker, 2008). These rare

polymorphisms can be excluded from the analyses by specifying one or several threshold

frequency values depending on the fwwMKT, the eMKT or the aMKT method. In

addition, the aMKT allows removing high-frequency variants that might be due to

polarization errors (Messer and Petrov, 2013a; Haller and Messer, 2017).

Statistical analysis

For analyses including several protein-coding genes, users are recommended to

select the option Concatenate genes. In this case, iMKT analyzes the selective regimes

for the whole gene set instead of for each gene separately and applies a statistical test

of heterogeneity of the selection acting among the analyzed genes (Cochran-Mantel-

Haenszel statistic). In addition, the iMKT web server allows performing statistical

enrichment analyses to assess whether a group of genes is either enriched or depleted of

positively selected genes when compared to the complete genome distribution or to a

second group of genes submitted by the user. In this case, the user should choose also

the option Compare against whole-genome distribution or Compare against a second

dataset. A resampling 95% confidence interval (CI) is generated by estimating α with

the chosen MKT test for 100 bootstrap replicates by sampling genes with replacement
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within each group. In the asymptotic MKT, 95% CI intervals around the α estimation

are already provided in the output.

Output

The output of iMKT is an extensive report displayed as an HTML page. It

contains several sections, starting with a summary table with the input parameters, a

table with descriptive statistics, and the standard MKT table. Finally, the tests selected

by the user are displayed below.

Practical guide to the iMKT website

The iMKT site allows performing four MK-derived tests as a web-based service.

The website is divided into different sections, each of which allows performing different

types of analyses.

MKT analysis

This page allows performing diverse MK-derived tests and estimating different

selective regimes in your own data. The input can either be polymorphism and

divergence data in two separate files, as described in the Methods section, or protein-

coding sequences as aligned multi-FASTA files. When a multi-FASTA file is uploaded,

the server outputs the DAF spectrum and the divergence calculations, which can be

downloaded by the user and used in subsequent analyses. Note, however, that the

former input type gives more flexibility to analyze any sort of functional site. As

an example, you might want to test for selection at nonsynonymous coding sites (N)

compared to synonymous coding sites (S) as the classical MKT was formulated, or to

test for selection at Conserved Noncoding Sequences (CNS, N) compared to non-CNS

(S) (Casillas et al., 2007), etc. The choices are unlimited according to the user’s needs.

PopFly/PopHuman data analysis

If you want to analyze D. melanogaster or human protein-coding data, iMKT

contains readily available variation data obtained from the largest genome variation
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datasets in each species (see Methods). The first step is to select the genes to

be analyzed in the table displaying all the available genes. Genes are identified

by either the Gene symbol or the FlyBase/Ensembl ID. Genes in the table can be

sorted/filtered by chromosome and recombination rate, in addition to the Gene symbol

and Flybase/Ensembl ID. In case the user needs to analyze a specific list of genes

that cannot be easily filtered from the provided table (e.g. genes related to a specific

pathway, as obtained from a search in KEGG (Kanehisa et al., 2019), a list with

those genes, were genes are identified by symbol or FlyBase/Ensembl ID, can be

uploaded. Second, one or more populations on which to perform the analysis need

to be specified. Third, one or more MK-derived methods can be chosen. Finally,

advanced options are available to analyze all the genes as a group instead of analyzing

them separately (option Concatenate genes), and to compare the results of this gene set

against all the genes of the genome (option Compare against whole-genome distribution)

or against a second group of genes provided by the user (option Compare against a

second dataset). Potential applications include analyzing a single protein-coding gene

or exploring different selective regimes in genes that are expressed tissues, anatomic

structures, or developmental stages (Salvador-Mart́ınez et al., 2018)).

Other sections of the website

The iMKT website includes extensive methodological and technical documentation

(see the section Documentation in the website), as well as a complete tutorial on the

usage of iMKT, with step-by-step examples (see the section Help and tutorial from the

main page). The website also contains sample files for each available type of analysis

and links to related resources such as PopFly, PopHuman, and the iMKT R package.

Application example of the iMKT website

The iMKT website is designed to help testing evolutionary hypotheses from

a population genetics perspective. The online tutorial, apart from guiding you in

the usage of this resource, contains some worked-out cases that can be addressed

using iMKT. In the application example developed here, we want to assess whether

recombination rate limits the adaptive potential of protein-coding genes. The specific

hypothesis is that genes located in high recombination regions undergo higher rates of

adaptation. To test the hypothesis, we start by entering the PopFly data analysis page

of iMKT. Next, we use the filtering options below the table to select 475 genes having a
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recombination rate higher than 7 cM/Mb (Min recombination rate: 7). After selecting

the genes, we select one or more populations (United States (RAL)) and an MKT test

(eMKT). Finally, we choose the option Compare against whole-genome distribution,

which compares the distribution of α for the selected 475 genes located in regions of high

recombination against the corresponding distribution for all D. melanogaster genes. As

part of an extensive output report, an illustrative box plot shows a pronounced difference

in the level of adaptation (α) between genes located in regions of high recombination

(blue; α mean = 0.602; ±SD = 0.032) and all 13,753 D. melanogaster genes (orange;

m α mean = 0.44; ±SD = 0.055) (Figure 6.2-A).

We can repeat the same procedure for the D. melanogaster ancestral population

from Zambia (Zambia (ZI)). As previously, the output report uncovers a much higher

level of adaptation (α) in genes located in regions of high recombination (blue; α mean

= 0.633; ±SD = 0.028) compared to the total 13,753 D. melanogaster genes (orange;

α mean = 0.457; ±SD = 0.053) (Figure 6.2-A).

Finally, the same analysis in humans for a colonizing population (Utah Residents

(CEU)) and an ancestral population (Yoruba (YRI)) reveals negative α adaptation

values in most cases and differences between the two groups of genes compared (Figure

6.2-B). The results of this straightforward analysis show that: (i) D. melanogaster

undergoes higher rates of adaptation than humans; and (ii) genes located in regions of

high recombination undergo higher rates of adaptation in both D. melanogaster and

humans.

The example application developed here illustrates the power of iMKT to reveal

new knowledge about evolutionary processes in Drosophila and humans without the

need for labor-intensive data retrieval and/or processing by the user. The wide range

of potential queries that can be performed using the searching capabilities of the iMKT

website remarkably facilitates comprehensive analyses of evolutionary adaptation and

constraint, even for non-bioinformaticians. As such, iMKT is a comprehensive reference

site for the study of protein adaptation in massive population genomics datasets,

especially in Drosophila and humans. Finally, we want to emphasize that the flexibility

of iMKT to input custom data allows analyzing diversity data outside protein-coding

regions. This expands, even more, the hypotheses that can be tested and makes iMKT

a key tool to test for recurrent adaptation in the genome of any species.
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B

A

Figure 6.2: iMKT graphical output of an application example. Sampling distribution of α
values for protein-coding genes located in regions of high recombination (recombination rate
> 7 cM/Mb) compared to all protein-coding genes in the genome for (A) the D. melanogaster
Raleigh (RAL) population (blue) and the D. melanogaster Zambia (ZI) population (yellow)
and (B) the human Utah Residents (CEU) population (blue) and the human Yoruba (YRI)
population (yellow). The distribution was calculated by randomly sampling 400 genes 100 times
from the two lists of genes with replacement and estimating α in each bin. Polymorphisms with
a frequency below 0.05 in the analyzed population were discarded (see main text).
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Chapter 7

Discussion

This thesis outlines and compiles the evidence of positive selection events in the

human lineage using data from the 1000 Genome Project (1000GP). The work done

can be divided into two parts. The first, a comprehensive study at the genomic and

populational level of the 1000GP data to catalog positive selection events. The second,

the creation of statistics that improve the existing methodologies for detecting recurrent

positive selection through the revision of the MKT applied at both the genetic and

genomic levels. The exhaustive review of the MKT approaches was prompted by the

scarcity of results we encountered in Chapter 3.

We brought together the collective effort of the last 15 years aiming to catalog

positive selection in the human lineage. Nevertheless, in this thesis, the processing

of the data, the statistical methodologies employed and the new extensions of the

MKT all have been carried out taking into account the current population genomic

data. Thus, both the bioinformatic framework and the theoretical framework have

been examined using not only data from the 1000GP project, but also data from

the Drosophila Genome Nexus (DGN) project. Table 1.2 shows how the number of

nucleotide variation catalogs has increased since the launch of the 1000GP and the

DGRP projects. With this in mind, we opted to make the existing methodologies

as flexible as possible. Accordingly, this thesis encompasses the largest catalogs of

nucleotide variation in order to extrapolate our analyses to other species; and while we

are aware that the methodologies presented here are unlikely to be fully transferable

(especially with regard to viruses and bacteria), our aim was not to solely focus on the

specific case of humans. Taking into account the quality and intrinsic characteristics

of the data deposited in other variation catalogs, such as 1001G (Alonso-Blanco et al.,

161
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2016), ag1000G (Miles et al., 2017), SGDP (Mallick et al., 2016) or HGPD (Bergström

et al., 2020), the pipelines and statistics of recurrent positive selection described in this

thesis should be fully reproducible on these datasets.

In addition, a significant proportion of the thesis is based on data we have

generated in silico through large-scale forward-in-time simulations. These simulations

ultimately attempt to reproduce, in the most reliable way possible, empirical data,

under complex demographic models and different modes of selection. In doing so, our

simulations assess underlying patterns of nucleotide variation beyond those exhibited

in the human and D. melanogaster genomes.

7.1 Genome-wide scan of positive selection in the human lineage

As described in the introduction (see Section 1.4.2), the outlier approach involves

an integrative search for positive selection events in which the whole genome can

be systematically examined. Thus, the analysis takes into account the genomic

context, ultimately elucidating the role of natural selection, distinguishing it from other

confounding variables, such as the population demographic history. Over the last two

decades, the number of Genome-wide Scans (GWS) has been growing steadily. Table

1.2 gives an approximate idea of the number of studies carried out, as well as the data

and methodologies used in the detection of positive selection. It is a compendium that

reviews and adds to previous studies, such as those found in Akey (2009), Haasl and

Payseur (2016), or Lohmueller and Nielsen (2021). Several important facts should be

noted from Table 1.2, as well as from the original table compiled by Haasl and Payseur

(2016).

As stated in Haasl and Payseur (2016), between 1999 and 2009, 35 of 49 (71%)

of GWSs focused on humans, while from 2010 to present, only 38 of 83 (46%) of

GWSs focused on humans, indicating an increased focus on other model and non-model

organisms. Furthermore, the trend of sequencing is likely to continue to increase, thanks

to the decreasing costs and progress of new sequencing technologies. A clear example

of this is the spatio-temporal catalog developed by Kapun et al. (2021) as a result of

advances in Pool-Sequencing. Furthermore, population genetics has shown over the last

50 years that model organisms are crucial in understanding the mechanisms promoting

natural variation in populations.

Considering this trend and the extensive search for selection patterns in humans

in the last decade, at present we have several positive selection maps pinpointing the



163 Abstract

proportion of the genome putatively selected (Voight et al., 2006; Pickrell et al., 2009;

Johnson and Voight, 2018). During the last few years, there has been a move towards

other unresolved questions in the field, including inferences of historical recombination

(Adrion et al., 2020b; Barroso et al., 2019), mutation rate (DeWitt et al., 2021; Barroso

and Dutheil, 2021), or the history and population structure of present and past human

populations (Speidel et al., 2021; Wohns et al., 2021).

Nonetheless, returning to Table 1.2, several features shared by the previous studies

should be noted. In the first place, only a small percentage (≈ 10%) of these incorporate

Whole-Genome Sequencing (WGS) data, and only. About 13% incorporate either

WGS or Whole-Exome Sequencing (WES) data. Hence, a large percentage of regions

putatively targeted to date have been identified through genotyping technologies. As

described in detail in Clark et al. (2005), genotyping techniques have led to a persistent

problem of SNPs ascertainment bias. This problem is demonstrated in the Clark et al.

(2005) study through the allele frequency distributions of the most relevant datasets,

on which most of the studies in Table 1.2 are based. For example, as shown in Figure

1 from Clark et al. (2005), in the HapMap dataset the Site Frequency Spectrum (SFS)

shows an absence of rare alleles and an overrepresentation of intermediate frequency

alleles compared to what is expected by strict neutrality or what is found in the Perlegen

dataset. Such ascertainment bias affects the inferences of natural selection, specially

those scans that rely on statistics testing distortions in the SFS, but also affects the

False Discovery Rate and coherence among GWSs’ candidate regions. In addition, as

extensively explored in Nielsen and Signorovitch (2003), ascertainment bias results in

lower apparent LD too. While these panels certainly provided the first genomic data of

human populations, we cannot ignore the fact that they were not explicitly designed to

be applied to population genetics but for testing association between common SNPs and

risk of complex disorders (Clark et al., 2005). Therefore, the description of nucleotide

variability and inference of natural selection or demography have been biased due to the

lack of randomness in the discovered SNPs. This is especially true if we consider that

genotyping techniques were biased toward identifying polymorphism within European

ancestry (Clark et al., 2005; Lohmueller and Nielsen, 2021).

The use of WGS data has overcome, at least in part, this problem, and one can

expect that:

1. We now have a more complete representation of the putatively selected regions;

2. Due to higher resolution and less biased technique, there is a greater concordance

between the events detected among different WGS studies.
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Nonetheless, again Table 1.2 shows that most studies often include the same

number of population groups incorporating one African (YRI), one European (CEU)

and one Asian (CHB+JPT) population, and none devotes any particular attention to

previous studies beyond the classic examples such as LCT, EDAR or G6DP. Therefore,

despite providing new metrics and essential conclusions, previous studies, including

WGS analysis, usually ignore how many of these events were already known, detected,

undetected or in which populations using the previous methodologies.

Our GWS of positive selection throughout the human lineage is the most

comprehensive study of positive selection events, including a total of 22 populations

from phase 3 of the 1000GP project, as well as recurrent positive selection. We show:

1. The lack of concordance between previous studies.

2. The need for a catalog that brings together these events according to the detected

selection patterns, populations studied and methodologies employed.

Finally, to the compendium included in Haasl and Payseur (2016), and more

recently in Lohmueller and Nielsen (2021), we must now add and emphasize the works

of Garud et al. (2021) and Schrider and Kern (2017). These, for the first time,

focus their analyses on the detection of selective events on standing variation and use

methodological advances that have not been included in this thesis. These developments

will be discussed in the next section.

7.1.1 Summary of statistic selection

At least three previous works have a similar scope of this thesis: Schrider and Kern

(2017), Sugden et al. (2018) and Johnson and Voight (2018). These works, together with

the one by Grossman et al. (2013), are probably the most important and comprehensive

GWSs to date. As in our case, the authors conducted their research using the 1000GP

data. In the case of Schrider and Kern (2017), the research was conducted across six

populations. Sugden et al. (2018) employs its methodology using the 1000GP phase

I data. Finally, Johnson and Voight (2018) incorporates the entire 1000GP phase III

panel. These studies were carried out almost simultaneously to the one presented in

Chapter 3.

Both Schrider and Kern (2017) and Johnson and Voight (2018) studies focus on

soft and hard sweeps detection, respectively, whereas Sugden et al. (2018) does not use
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the 1000GP phase III data. On the one hand, Schrider and Kern (2017) focuses on the

detection of complete sweeps through a machine learning method, which is also able to

classify between hard and soft sweeps. On the other hand, Johnson and Voight (2018)

focuses its research on ongoing or partial sweeps, reviewing the selection measures

provided by iHS and normalizing the calculation by the local recombination ratio.

In our analysis, not only do we examine both cases, but we also include other

statistics and other selection regimes. Clear examples are the XP-EHH and Fay and

Wu’s H statistics. Similarly to iHS, XP-EHH can detect ongoing or partial sweeps.

However, XP-EHH is of particular interest for cases where the selective sweep is

on the verge of becoming fixed, thereby increasing the power of iHS if the selected

mutation is at a frequency higher than 80% (Pickrell et al., 2009). In turn, Fay

and Wu’s H statistical test is specially designed to detect nearly or recently fixed

sweeps. So, the selection of the summary statistics used in Chapter 3 is not arbitrary.

By combining such statistics, we get a complete description of the positive selection

events in the human lineage. Hence, our study examines the main neutrality statistics

(specially designed to measure unexpected patterns of high frequency derived and rare

alleles), population differentiation, the profiles of unusually long patterns of linkage

disequilibrium, as well as recurrent positive selection signals. In this way, our study not

only explores partial or complete sweeps independently but also a broader spectrum of

adaptive signals.

It is important to note that there is no single test capable of measuring all types of

selection. Some significant attempts to provide a single measure capable of determining

a selective event, regardless of its nature, include the methodologies proposed by Sugden

et al. (2018) and Schrider and Kern (2017). These studies result from technological

advances in machine learning. Other machine learning methodologies (or classification

methodologies, which also make use of the statistics described above) have also been

proposed in the past, such as Pybus et al. (2015) (a prime example applied to the

1000GP phase I) or Ronen et al. (2013). Machine learning methodologies are becoming

particularly relevant, as they are proving tremendously helpful not only in unraveling

the characteristic genome-wide footprint of selection, but also other population genetics

events, such as introgression, demography or recombination (Kern and Schrider, 2018;

Mondal et al., 2019; Adrion et al., 2020b; Gower et al., 2021).

Most of these approaches train their models by computing a set of statistics on in

silico data, usually generated through coalescent simulations. Then, the model produces

vectors or images, through which it learns to distinguish the presence of genomic regions

subjected to selection, or between hard and soft sweeps. Although the aim of this thesis
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is not to discuss the role that machine learning is playing, neither the technical issues

of each methodology nor their application to 1000GP phase III data, given the studies

of Schrider and Kern (2017), Sugden et al. (2018) (or even more recently Torada et al.

(2019) and Hejase et al. (2021) among others), it seems almost inevitable to compare

the machine learning approaches with the selection of statistical tests employed here.

Firstly, as we did in our study, a machine learning approach may seem more

powerful than the simple analysis and cataloging of events according to each signal

described. However, most of the named methodologies use a combination of statistics

equal or very similar to the one chosen in Chapter 3. The difference, of course, is

the integration and automated learning based on the features collected from the entire

selected set. Therefore, as with ABC approaches, the selection of summary statistics is

a key factor in these methodologies. However, even simple selection can pose a problem.

Many of the early studies that used machine learning technologies or integrated different

summary statistics required the pre-calculation of all statistics in a particular region. As

stated in Sugden et al. (2018): we found that more than half of variant sites had at least

one undefined component statistic (...) This poses a particular problem when scanning

for complete sweeps, defined here as sweeps in which the beneficial allele has fixed in

the population of interest. In this case Sugden et al. (2018) refers to the probabilistic

Composite Multiple Signal methodology (Grossman et al., 2010), which will also be

discussed below. However, it applies to other methodologies such as the one presented

in Pybus et al. (2015).

On the other hand, there is the bias of the data on which the model is trained. In

most cases, in silico data is generated through coalescent simulators, including simple

positive selection models, such as msms, cosi2 or discoal. Therefore, because of

the coalescence simulator, although complex demographic models can be included, the

data can hardly replicate the characteristics of the human genome, which ultimately

introduces biases in the training. Thus, the reliance on simulations can be considered

one of the weaknesses of these methodologies. In the following sections, we will extend

the discussion about these simulations.

Despite the novelty of automatic classification and learning approach, it is

impossible not to note the similarities between machine learning methods and the

methodology proposed by Grossman et al. (2010). As with machine learning

methodologies, CMS requires simulations and the calculation of a set of tests. CMS,

employing purely statistical processing, combines the characteristics of each test, and

using the simulated data, provides the probability of finding a selective sweep in the

observed data, in the same way as other machine learning methods such as the one
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proposed by Sugden et al. (2018) do. The methodology of Grossman et al. (2010) was

reviewed and applied to the first phase of the 1000GP phase I data (Grossman et al.,

2013) and, as demonstrated by the number of citations, can be considered the most

comprehensive and complex GWS carried out to date. Thus, Grossman et al. (2013)

results continue to be the basis on which any study on positive selection in humans is

based, including the results of this thesis.

Notwithstanding, the hard work and technological advances described above, and

regardless of the debate concerning the simulations and/or the summary statistics used,

it is essential to highlight that none of these studies pay attention to recurrent positive

selection events. Hence, our choice of statistics and the rest of the chapters in this

thesis are more pertinent to describing positive selection events in their multifold facets,

independently of the nature of the signal. Thus, as expressed in Section 1.2.6 and Sabeti

et al. (2007), we can expect that the patterns captured by the summary statistics here

employed correlate with the expected fixation times and mostly overlap the periods, as

is shown in Figure 1.9. Thus, although we do not summarize the results in a single

value, our study covers the description of selective events in the human lineage starting

with the separation from the chimpanzee and including the main Out-of-Africa (OoA)

demographic events. In addition, our results also address other types of selection due to

SFS distortion, although these results are secondary to the main purpose of the thesis.

7.1.2 Outlier approach and arbitrary cutoff

Except for the evidence of recurrent positive selection events, the putative regions

evaluated in Chapter 3 were discovered following an outlier approach. We described

the basics and main features of the outlier approach in Section 1.4.2. Akey (2009)

provides a complete overview of the technique. However, as seen in Chapter 3, the

outlier approach establishes an arbitrary cutoff. This decision might increase the already

described problems related to outlier approaches. In any case, our decision to establish

a cutoff is not likely to reflect a further increase of false positives. Our study sets a

threshold P-value of 5 · 10−4, which is lowered to 5 · 10−3 in contiguous regions. Such a

constraint limits the detection of the strongest signals along the genome and leads to a

high number of false negatives, which could account for our inability to detect known

events, such as G6PD or the HBB cluster, as reported in Johnson and Voight (2018).

The outlier approach performance has been extensively examined, especially

in the studies of Kelley et al. (2006) and Teshima et al. (2006), as stated in the

Introduction. By investigating various neutrality tests and simulations in coalescence,
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both studies show that, if the purpose of the study is to identify a restricted set

of candidates for a more in-depth description, the outlier approach is the optimal

procedure. Kelley et al. (2006) suggests that an outlier approach is a reasonable study

design as long as one accepts that a substantial proportion of candidates may be false

positives or false negatives. For us, the aim is not to study certain regions in detail, but

to establish a methodology capable of creating a catalog that identifies putative regions

in new populations and recovering those already described. Since the studies carried out

by Kelley et al. (2006) and Teshima et al. (2006), the role of simulations and the cutoff

has not been revisited comprehensively. However, some studies extensively review the

role of other types of selection, especially the role of background selection (BGS) in

such approaches. This type of linked selection may increase the heterogeneity of the

statistics used, creating patterns and thus unusual distributions that could increase the

number of false positives and false negatives.

There has been much debate about how other processes, such as positive selection

or BGS, may affect the different applied summary statistics and analyzed empirical

distributions. While a model which incorporates the effect of linked selection could, in

principle, provide much more accurate cutoffs, the role of linked selection on the levels

of variation (and consequently the summary statistics) remains a significant subject

of debate. Moreover, over the last decades, it has been postulated that such a model

could even provide a solution to Lewontin’s paradox (Lewontin, 1974; Leffler et al.,

2012; Buffalo, 2021). Nevertheless, so far, none of even the most comprehensive studies

on this topic have succeeded in yielding more than a few conclusions (Corbett-Detig

et al., 2015; Buffalo, 2021). Consequently, none of the GWSs described incorporate BGS

or complex selection models through which to establish more precise threshold values.

Therefore, just as we accept that the demographic effect is ubiquitous, we accept that

the BGS effect is also ubiquitous and then unusual patterns associated with linked

selection have also to be considered in the empirical distribution.

If we adopt the neutral model in its entirety, we can obtain null distributions

through simulators in coalescence that incorporate complex demographic histories.

Furthermore, to generate these distributions, we can use simulators that include

selection models, meaning we could also discern the nature of the selective event. As

one might expect, this is the standard approach taken by all GWS of positive selection,

as well as the basis of the exploration carried out by Kelley et al. (2006) and Teshima

et al. (2006).

However, little attention has been paid to the effects of variation in recombination

rates on the distribution under the neutral model. Booker et al. (2020) discusses at
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length how GWSs discern the role of selection with regard to deviations from a null

model (nearly-neutral theory), which explains natural variation primarily by the action

of evolutionary drift. What Booker et al. (2020) points out is how variation in the

rate of recombination also has important effects on the behavior of the null model. In

their study, the exploration of various statistics according to the recombination values

shows much more spurious distributions in regions with low recombination rates and

narrower ones in regions with high recombination rates (Booker et al., 2020). To our

knowledge, only the study of Johnson and Voight (2018) incorporates the role of local

recombination. In this case, Johnson and Voight (2018) does correct the iHS values

through the estimation of the local recombination rate, but fails to correct the FST

values.

Similarly, the null model is likely to be flawed due to the simplification of the

mutation rate. Simulations commonly incorporate a fixed mutation rate. In contrast,

we have obtained empirical evidence over the past several years that the mutation rate

is a complex and dynamic process and should be considered on a time scale. This is

demonstrated by the TCC → TTC enrichment in European populations, as described

by Harris and Pritchard (2017). Among the findings obtained from the methodology of

(Spence and Song, 2019), the ARG inference was able to date such an event to 5,000-

30,000 years. This pulse in European populations is one of the great current debates.

Recently, DeWitt et al. (2021) has dated the event to 80kyears. DeWitt et al. (2021)

proposes an inference method that makes use of the genomic context, condensing the

SFS information into k-mer nucleotide context. The DeWitt et al. (2021) approach, for

the first time, shows the human mutation rate over time and associates the error in the

TTC pulse dating due to the demographic model and the de novo mutation rate values

themselves, which cannot adequately account for the observed SFS.

Briefly, synthesizing the recent breakthroughs of the Booker et al. (2020) and

DeWitt et al. (2021) studies, we would like to stress that the simple act of simplifying

both the recombination and the mutation rate in the null model leads to the biasing

of the empirical distributions produced by the simulations. Ultimately, this will affect

any window-based approach to genome scans in more general terms. By taking this

bias into account, we can determine that there is not much difference between our

approach and the approaches which determine a cutoff from the data generated by

coalescent simulations. Nonetheless, once the simulations incorporate accurate models

in mutation rates, recombination, and selection coefficients, the increase in variance in

summary statistics due to perturbations will be similar to that of natural populations.

So, the question is, can we define a cutoff that, without taking into account simulated

data, can reliably show us (at the very least) the strongest signals of adaptation?



170 Abstract

As described by Akey (2009), one way to assess the validity of the GWS results

is to examine the overlap of outlier loci between studies. This is nonetheless a simple

approach. Both Akey (2009), and ourselves were able to do so thanks to the rapid

accumulation of genomic maps of positive selection. In total, Akey (2009) identifies

5110 distinct regions in one or more studies. These regions span 4Mb of sequence (14%

of the genome) and contain 4243 genes (23% of all genes). Strikingly, only 722 regions

(14.1%) were identified in two or more studies, 271 regions (5.3%) were identified in

three or more studies, and 129 regions (2.5%) were identified in four or more studies.

In addition, the integrated positive selection map does not include several of the most

compelling genes with well-substantiated positive selection claims, such as G6PD and

DARC. Proceeding in the same way, our study, for the first time, manages to compile

70% of the detected regions, including not only the studies chosen by Akey (2009),

but also later studies that included information from the 1000GP data, as well as the

dbPSHP database (Li et al., 2014). Such results demonstrate two things. First: the

efficiency of the chosen test set, which captures most of the features produced by the

different types of selective events. Second: the importance of the quality of the initial

data and its rigorous statistical treatment. However, the reliability of our study comes

at a cost, which is that it only detects the strongest positive selection signals.

As in Akey (2009), we also found that the bulk of studies detect regions uniquely

even considering the increased number of studies exposed in Table 1.2. Nonehteless,

the number of regions detected by two or more studies increased from 21.9% to 36%.

As shown in Chapter 3, the vast majority of candidate regions are cross-referenced

with one publication, which ultimately means that only our analysis was able to detect

previous candidate signals. It is important to note that the Akey (2009) study reports

a total of 5110 regions putatively under selection, while ours is limited to a total of

2859. As mentioned above, our study sets a cutoff of 5 · 10−4, which is probably the

most astringent cutoff ever used in such a study. This value is usually set at around

99.9% percentile of the distribution, as we can see in one of the most recent studies

of this nature, which explores selection signals on the X chromosome (Villegas-Mirón

et al., 2021). As we have already stressed throughout this section, our chosen cutoff

value has somewhat constricted the scope of our study and served to incorporate a

large number of false negatives, which have prevented us from detecting some of the

most classical examples. Nevertheless, considering the purpose of our study and the

increased overlap between regions already described, PopHumanScan represents a first

step in the field towards a system in which we can maintain updated selection signals

across the genome, regardless of methodologies and datasets.

The information deposited in the database for different summary statistics
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shows consistent results regarding previous analysis not only in the overall number of

regions. As extensively described in Chapter 3, we maintained information concerning

populations, metapopulations, and signal types in creating the database. In addition,

we performed comprehensive profiling, including information regarding functional

information (especially regarding regulatory information), evolutionary conservation, as

well as archaic introgression. Thus, in line with Johnson and Voight (2018), we found

a clear overlap of signals in the regions of the candidate regions at the metapopulation

level. As stated in Chapter 3, this percentage is higher for candidate regions showing

both LD and SFS signatures (52.7%). It is 33.6% for candidate regions showing only

LD signatures and 27.1% for candidate regions showing only SFS signatures. These

results would indicate that the statistics we used in our GWS test different features of

the region’s genetic variability and are mainly complementary. Similarly, we find that

most candidate regions overlap with various regulatory elements, such as TFBS, cis-

regulatory modules, or enhancers ( 90%), results which are consistent with observations

made by Enard et al. (2014), or more recently by Villegas-Mirón et al. (2021) in the

X-chromosome analysis.

Thus, we can conclude here that:

1. It was necessary to perform another GWS of positive selection over the 1000GP

phase III.

2. The outlier approach has a high exploratory power, especially considering the

thorough treatment of the data, as well as the statistical rigor to pinpoint the

strongest positive selection signals.

3. The set of summary statistics capturing different adaptive events allows us to

represent the wide range of previously described signals of positive selection

Nevertheless, we would like to highlight what we consider to be the two major

weaknesses of the analyses performed in Chapter 3. Firstly, not including the

simulations is undoubtedly a shortcoming, even considering the arguments exposed,

the selected cutoff in the empirical distributions was arbitrary. Despite the controversy,

coalescence simulations have become one of the main tools in this type of analysis.

Forward-in-time simulators, or approaches such as the one presented by Wang et al.

(2021), are likely to be able to recreate the patterns of diversity, recombination and LD

observed in human populations. Therefore, we could establish more accurate thresholds

in combination with more complex selection models, demography, and recombination.
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Secondly, throughout this section, we have emphasized that we have provided

a catalog that collects and typifies the strongest signals of positive selection in the

1000GP data. However, no proactive search for selection signals on standing variation

(soft sweeps) has been performed in this catalog. Certainly, as we explained in the

Introduction, Garud et al. (2015) and Garud et al. (2021) describe extensively how the

strongest iHS signals overlap with the H12 approach (the primary approach to detect

soft sweeps to date). However, we believe that the non-inclusion of a statistic that

implicitly detects soft sweeps, such as H12 or nSL, limits the overall catalog presented

here.

7.2 MKT on human lineage

Three of out the four chapters of this thesis are based on the detection of recurrent

positive selection, and centered around the MKT.

The detailed review at the gene level of the MKT arises from the lack of results

in Chapter 3, in which only 21 human genes were detected under positive selection.

These results showed a lack of agreement both in number and signals concerning the

articles that map the recurrent positive selection events through the MKT or similar

methodologies such as Bustamante et al. (2005) (304 genes under positive selection),

Nielsen (2005) (top 50 genes showing evidence of positive selection), Arbiza et al. (2006)

(104 genes under positive selection) or Gayà-Vidal and Albà (2014) (241 and 24 genes

under positive selection considering Branch-site and MK-test). Likewise, we do not find

any functional enrichment applying Gene Ontology analyzes (Bustamante et al., 2005;

Nielsen, 2005; Arbiza et al., 2006), although this could simply occur due to the low

number of genes analyzed. The differences in the GO analysis and in the number of

genes detected under positive selection when comparing PopHumanScan with previous

studies can be accounted for by: i) the nature of the data used in our study; ii) the

MKT correction used.

We have studied the effect of the sample size on the number of recorded SNPs

within the 1000GP phase III data. With this purpose, we performed a resampling

analysis. Figure 7.1 shows the number of non-synonymous and synonymous SNPs

as a function of the number of individuals sampled. Similar to the extrapolation

performed by Gravel and National Heart (2014), we observed that the variable number

of SNPs follows an exponential distribution. Considering the results of Gravel and

National Heart (2014) and our analysis, we observe that the sample size at the

population level shown in Chapter 3, as well as studies like Bustamante et al. (2005)
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or Nielsen (2005), barely comprise 19% of the total non-synonymous/synonymous

polymorphism described in the 1000GP data. Therefore, we followed Uricchio et al.

(2019) and performed the analysis in Chapters 4 and 5 using the complete African

lineage data from the 1000GP, instead of specific populations. In this way, we increased

the sample size from 85 individuals (average number of individuals per population) to

661 individuals (total number of African individuals). A sample size from 85 to 661

individuals would increase the detection of the total polymorphism to 51%. Considering

the level of polymorphism in humans, the sample size could limit the statistical power

when performing the MKT at the gene level. The analysis presented in Chapter 4

(Table 4.4) using data from African lineage showed an increase in the number of genes

putatively evolving under positive selection, considering MKT and eMKT (from 21 to 72

and 66, respectively). Nonetheless, since eMKT cannot deal with slightly deleterious

(SDM) as discussed in Chapter 4, we decided to develop a new approach to MKT

specially designed for gene-by-gene analysis.
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Figure 7.1: Number of non-synonymous/synonymous sites at 1000GP data regarding the the
sample size.

As explained in depth in Chapter 4, despite the numerous corrections proposed

for the MKT, the vast majority of them overcome its limitations by using genomic

information or large gene pools (Eyre-Walker and Keightley, 2009; Messer and Petrov,

2013b; Galtier, 2016; Tataru et al., 2017; Uricchio et al., 2019). Only the original test,
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the correction by Fay et al. (2001) (fwwMKT) and the correction by Mackay et al.

(2012) (eMKT) are designed to perform the analyses at the gene-by-gene level (i.e.

allowing to test the statistical significance for each gene independently). In order to

fulfill our objectives, we discarded the original MKT due to its limitations regarding

SDM, especially relevant in humans considering the shape of the DFE inferred from

the synonymous and non-synonymous polymorphism (Boyko et al., 2008; Racimo and

Schraiber, 2014). The extensive exploration of MKT methodologies in Chapter 4

revealed the lack of results, the limitations of fwwMKT and eMKT, and the necessity

for a new MKT correction at the gene level. As shown in Table 4.4, the number of genes

under positive selection detected by both eMKT and fwwMKT is reduced compared to

the original MKT. Considering fwwMKT, the obvious explanation for such a trend is the

loss of data associated with the methodology, which makes it only capable of detecting

the strongest signals. Extending the examples presented in Chapter 4, when applying

the original MKT vs the fwwMKT over a pool of all protein-coding genes in Drosophila

and humans, we found that the non-synonymous polymorphism is reduced by 86% and

92%, and the synonymous polymorphism is reduced by 73% and 87%, respectively.

Because of the amount of data excluded by applying fwwMKT, we considered that it

is not suitable for analyzing human gene sequence data.

On the other hand, as shown in Chapter 4, the average data loss when applying

the eMKT is minimal (≈ 5%), so we would expect that the number of genes found to be

evolving under positive selection will increase, considering the amount of data used and

the characteristics of the correction. Nonetheless, we observed two anti-intuitive results

considering the eMKT: first, from simulations, we noted that the α estimate decreases

when the frequency cutoff is increased; second, the eMKT detected fewer genes under

positive selection than the original MKT. As a result, the eMKT poorly improves the

results of the original MKT. Conceptually, the impMKT and the eMKT follow the same

principles: 1) to maintain PS information, since these sites are considered neutral; and

2) to remove the proportion of SDM segregating at PN and performing the MKT using

neutral or effectively neutral polymorphism. In this way, α is summarized similarly for

both extensions. We can generalize both extensions as follows:

α = 1− DS

DN

Peffectively neutral
PS

(7.1)

Hence, the differences of both estimates differ in the calculation of the effectively

neutral polymorphism. The eMKT assumes that a continuous form of the DFE does

not drive the selected alleles. Instead, it considers a fixed proportion of nearly neutral
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variants given the expected proportion of synonymous polymorphisms to estimate SDM.

This becomes unrealistic depending on the underlying DFE and leads to the cutoff used

to be detrimental. Attending to the definition of Peffectively neutral proposed by Mackay

et al. (2012), the expected proportion of neutral polymorphism below the frequency

threshold is supposed to be determining the fraction of effectively neutral sites:

Peffectively neutral = PN · fneutral<5% = PN ·
PS(j<5%)

PS
(7.2)

nonetheless, considering that PS(j<5%)/PS converges to 1 as the frequency cutoff

increases, Peffectively neutral will be equal to PN finally providing similar estimation

to the original MKT.

In this way, in Chapters 3 and 4 we determined that eMKT underestimates the

signals of recurrent positive selection. Most of the drawbacks regarding MKT analysis

are discussed in Chapters 4 and Chapter 5, including the impact of slightly deleterious

and beneficial mutation, DFE shape, or pooled datasets. Nonetheless, a few more

aspects should be considered in MKT analysis that will be exposed in the following

sections. Finally, we are planning to add in the PopHumanScan catalog the new signals

detected through the new proposed approach, the impMKT, for gene-by-gene analyses.

7.2.1 Folded SFS vs unfolded SFS

We note that the eMKT and fwwMKT were developed using the folded

site frequency spectrum (fSFS), while the exploration presented in Chapter 4 was

performed using the unfolded site frequency spectrum (uSFS). The uSFS provides more

evolutionary information, and, as shown in Chapter 4, such information can be used

to extend the imputation for an excess of high-frequency alleles. Such extension can

be especially relevant to study genes located in regions subjected to high levels of

background selection (BGS) or low recombination, where Hill-Robertson interference

(HRi) can be significant. Thus, HRi and α estimations can be corrected by adding

the new imputed alleles to the non-synonymous divergence count. Nonetheless, uSFS

requires determined ancestral alleles to be precisely estimated. Unlike the fSFS, which

can be observed directly from the polymorphism data, the inference of ancestral states

requires genetic data for outgroup species and the application of maximum parsimony

methods. The misattribution of ancestral alleles can also affect α estimation. On

one hand, an excess of high-frequency alleles can be attributed to hitchhiking with
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linked selected substitutions or weak adaptation, which finally can affect ML methods

that infer the DFE by over-estimating the role of positive selection. On the other

hand, an excess of high-frequency allele will affect the asymptotic fit in aMKT,

under-estimating α. To date, the method proposed by Keightley et al. (2016) is the

most sophisticated approximation to estimate uSFS. The approach was extended by

Keightley and Jackson (2018) input information of more than two outgroups species,

phylogenetic tree topology, and reviewing multiple nucleotide substitution models.

Because having one or more outgroups is not always possible, we explored the impMKT

using fSFS instead of uSFS, proposing it as an alternative to eMKT and fwwMKT when

uSFS is not available.

The fSFS analysis causes a slight decrease in the mean estimates of α (see 7.2). In

addition, such a decrease is more pronounced when the frequency cutoff is increased. It

should be noticed that by applying the frequency cutoff on the fSFS, both low-frequency

and high-frequency derived alleles are removed from the analyses, which reduces the

data to estimate α and finally the statistical power. The same trend occurs when using

the fSFS in gene-by-gene analyses for both Drosophila and humans, decreasing the

number of genes found to evolve under positive selection by 25% and 44%, respectively

(see Table 7.1).

Nevertheless, using the fSFS and focusing only on the central part of the frequency

spectrum can be especially interesting in two cases. First, it is a better choice in cases

of mispolarization, a situation which would add an additional bias to SDM. The cutoff

will potentially eliminate fictitious (due to mispolarization) derivate alleles at a high

frequency that would deviate the ratio PN(j>15%)/PS(j>15%) used in the imputation.

Second, the cutoff will eliminate the accumulation of SDMs at high frequencies due to

interference between positively selected and slightly deleterious alleles.

Table 7.1: Number of detected genes under positive selection when using the fSFS.

uSFS fSFS

Population Set α N α N

ZI Analyzable -0.032 ± (1.664) 7588 -0.032 ± (1.664) 5780

ZI Negative -4.698 ± (4.888) 339 -4.698 ± (4.888) 1690

ZI Positive 0.775 ± (0.121) 2244 0.775 ± (0.121) 318

AFR Analyzable -0.679 ± (2.21) 3230 -0.679 ± (2.21) 1756

AFR Negative -5.375 ± (4.676) 244 -5.375 ± (4.676) 115

AFR Positive 0.759 ± (0.121) 205 0.759 ± (0.121) 140
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Figure 7.2: Replicas of the analysis performed in Chapter 4. We used the fSFS and the uSFS
to test the impMKT.
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7.2.2 Chosen outgroup

How the estimate of α (the adaptive evolutionary rate) can be affected by the

chosen outgroup is extensively discussed in Keightley and Eyre-Walker (2012). These

estimates can be essentially affected when the divergence time between two species is

short and the rates of adaptive evolution is high, and the bias would depend on the

strength of adaptation, the true value of α and the DFE. Despite the correction stated

in Keightley and Eyre-Walker (2012), the authors do not recommend outgroup species

whose branch lengths to the common ancestor is lesser than 10Ne generations (Keightley

and Eyre-Walker, 2012). Thus, in those analyses where this recommendation is ignored,

two things could happen: i) if α → 0, the estimation can be potentially highly over-

estimated; ii) if α > 0, the estimation can potentially be underestimated, particularly

if few SDMs contribute to nucleotide divergence. In addition, advantageous mutations

reach fixation more quickly, depending on their selection coefficients, than the neutral

ones, increasing also α in the short-branch estimates (Keightley and Eyre-Walker, 2012).

The bias introduced in these estimates may be mainly due to three reasons.

First, a misattribution of the polymorphism to divergence. Since divergence is

usually estimated using one focal outgroup, some differences can be attributed to

polymorphism but not substitutions (Keightley and Eyre-Walker, 2012), increasing the

divergence count and finally overestimating α. Second, the ancestral polymorphism that

contributes to divergence. For example, if a slightly deleterious mutation is polymorphic

at the time of the divergence between the two species, it may be lost in one lineage

but remain polymorphic in the other. Third, the fixation of this mutation will be

affected by the selection force itself, which may not be strong enough to eliminate it,

and the demographic history of both species. Thus, reducing the population’s effective

size in one of the lineages could determine that the effect of drift overpowers the force

of selection (as we explained in Section 1.2.3), finally contributing to the divergence.

Consequently, there will be a greater contribution of SDM to the divergence than

expected, which leads to an overestimation of α (Keightley and Eyre-Walker, 2012).

There are several ways to overcome the bias produced by these three situations,

considering that the correction described by Keightley and Eyre-Walker (2012) does

not resolve this bias if the divergence time is short. On the one hand, using nucleotide

variation catalogs of the outgroup species would reduce the bias associated with

polymorphisms contributing to apparent divergence or mispolarization errors. However,

polymorphism may still appear to be fixed in a sample of sequences. An example is the

use of the catalogs described in Signor et al. (2018) or de Manuel et al. (2016). The
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approach proposed by de Manuel et al. (2016) is interesting, since they provided the

Pan troglodyte nucleotide information mapped to the human reference genome. On the

other hand, the DFE inference methods proposed by Galtier (2016) and Tataru et al.

(2017) are capable of inferring α only from polymorphism data, although obviously, the

power is increased if we use divergence data Tataru et al. (2017). These approximations

suppose an alternative to estimate α that is independent of an external group.

A third possible option is to incorporate information from an ancestral species

close to the study population in addition to the outgroup. An example would be to

incorporate ancient DNA data into human analysis, an approximation that has not

yet been explored in MKT methodologies or DFE inference. In recent years, aDNA

sequencing has increased exponentially, especially in hominins. aDNA polymorphism

data can provide information on the direction and strength of selection from the split

with the outgroup, considering whether the mutation continues to be polymorphic,

derived, ancestral, or fixed in this additional population. Future studies are required

to see how to incorporate this aDNA polymorphism into MKT approaches.

7.2.3 Neutral evolving sites and the null hypothesis

All the MKT analyses carried out in this thesis have followed the initial proposal

of McDonald and Kreitman (1991), in which synonymous sites are considered neutral

mainly due to the degeneracy of the genetic code. The vast majority of the studies use

four-fold degenerate sites as a proxy for the mutation rate. However, this assumption

could affect the measure of the adaptive evolution rate under the evidence that

synonymous mutations are also subject to selection. Lawrie et al. (2013) is one

of the clearest examples of how the detection of recurrent positive selection can be

overestimated. Lawrie et al. (2013) shows that up to 22% of synonymous sites can be

under the effect of strong purifying selection. Ultimately, the constraint of these sites

will lead to assume that the number of non-synonymous substitutions is higher than

the expected neutral hypothesis, leading to a misguiding interpretation of the dN/dS

ratio.

One possible solution is to use short introns as a neutral proxy instead of

synonymous sites. This approach has been commonly used in D. melanogaster

(Keightley and Eyre-Walker, 2007; Eyre-Walker and Keightley, 2009; Castellano et al.,

2016), thanks to the studies of Parsch et al. (2010) and Halligan and Keightley (2006),

where the evolutionary characteristics and forces in the intronic structure of Drosophila

are widely described. On the one hand, Halligan and Keightley (2006) found that the
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most rapidly evolving intron sites are around bases 8-30 of the 65 bp introns. On the

other hand, Parsch et al. (2010) shows that the high divergence observed in short introns

is not due to adaptive evolution. Both findings suggest that short intron sequences may

be the most appropriate proxy for the neutral mutation rate. However, the use of short

introns is not always possible. First, while orthologous protein sequences are easy to

identify, the intronic content of genes can differ significantly. Second, one would expect

that the splicing sequences of the introns were also under the action of natural selection.

During the last few years, studies like Frigola et al. (2017) in humans or Monroe

et al. (2022) in the plant Arabidopsis thaliana have challenged the assumption of

randomness of mutations. Such studies state that the genomic mutation rate may

depend on confounding factors such as epigenomic landscape, accessibility of DNA

repair machinery, or sequence function. This proposal not only compromises the use

of introns as a neutrality proxy, explained here, but it challenges a major tenet of

population genetics. In this way, mutation rate could partially account for the role

attributed to natural selection, since a fraction of the constraint of the functional

elements could be due to the non-randomness of mutations and not exclusively to

purifying selection. Rodriguez-Galindo et al. (2020) proved that the human mutation

rate in introns and exons is unaffected in the germline considering both sequence

context and multiple histone marks. Nonetheless, Monroe et al. (2022) have found

in Arabidopsis lower nucleotide diversity around genes, lower mutation rates in coding

regions, lower mutation rates in important functional genes, as well as associations

between mutation rate, epigenomic landscape and DNA repair machinery (Monroe

et al., 2022). Although these studies do not deny the role of natural selection as a

nucleotide diversity driver, they also show a significant role of the epigenomic landscape

and the mutation rate in the explanation of patterns of genome diversity, or difference

in the DFE. Extending the computational approach proposed by Barroso et al. (2019)

to disentangle the role of demography and recombination on genome-wide, Barroso and

Dutheil (2021) incorporate the mutation rate and found that the mutation landscape

is the major driver of the distribution of diversity in D. melanogaster. Barroso and

Dutheil (2021) deeply argue about the role of mutation rate and the incorporation

of the mutational landscape into the null model, and more importantly, their debate

is not focused on the assumption of molecular population genetics, but rather in the

next questions: under what conditions can the shape of the mutation landscape itself

be selected for? (...) how conserved is the mutation landscape across species? The

study proposed by Frigola et al. (2017) and Monroe et al. (2022) pinpointed a new role

of the mutation rate and the epigenomic landscape, but further studies as required to

understand the main drivers of adaptation. Nonetheless, as discussed in Section 7.1.2,
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we need a null model that incorporates a more complex mutational landscape to better

infer the role of mutational input in population genomics (Johri et al., 2020; DeWitt

et al., 2021; Barroso and Dutheil, 2021; Johri et al., 2021).

7.2.4 Linked selection and the MKT

The estimates of the adaptive evolution rate have been carried out mainly through

extensions of the Poisson Random Field (PRF). As we explained in Section 1.3.4,

studies such as Boyko et al. (2008), Eyre-Walker and Keightley (2009), Racimo and

Schraiber (2014) or, more recently, Zhen et al. (2021), assume models in which sites

segregate independently. Uricchio et al. (2019) search for the first time if the low levels

of adaptation in humans compared to other species may be due to the role of linked

selection. BGS can lead to patterns of fixation not considered by strict neutrality due

to linkage with deleterious segregating alleles (Charlesworth et al., 1993; Charlesworth,

1994; Hudson and Kaplan, 1995; Nordborg et al., 1996; Pouyet et al., 2018). Hence,

a method that interrogates linked selection is crucial to understanding the shape of

genetic diversity and the adaptation rate

Uricchio et al. (2019) developed ABC-MK, a method that exploits the impact of

BGS on the fixation rate. BGS can be summarized by the B value (McVicker et al.,

2009) and varies across the genome. ABC-MK interrogates α as a function of BGS,

inferring not only the rate of adaptation but also the strength of beneficial alleles

(Uricchio et al., 2019). As shown in Chapter 3, we developed an extension of the

previous ABC-MK. In our approach, we avoid expensive forward-in-time simulations

benefitting from the empirically observed data through a novel sampling process and

extend the estimation using expected BGS values. The estimation of the B value is

not mandatory to perform the analyses. The B value estimation requires information

about recombination rates, which is not available for all the species. Our primary goal

in developing the ABC-MK extension was to circumvent the computational resources

required to execute the original ABC-MK on the 1000GP data, which requires running

the analyses in an HPC.

We showed that our results are consistent with the results presented in Uricchio

et al. (2019) regarding equilibrium demographic model and recent human demography

events. Nonetheless, since our extension is based on the exact diffusion approximation to

model the SFS, while accounting for BGS presented in Uricchio et al. (2019), we do not

test the effect of genetic draft in our approach (see Section 1.2.4). The impact of linked

positive selection on the frequency trajectories of linked alleles also drives systematic
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variation in diversity genome-wide. Uricchio et al. (2019) performed simulations to test

ABC-MK sensitivity to hitchhiking, scaling the strength and rate of positive selection

much higher than expected in humans. The simulation results showed that hitchhiking

can decrease α estimations. The main explanation is the increase in slightly deleterious

fixations, as well as the interference between strongly-beneficial alleles.

Nonetheless, Uricchio et al. (2019) tested the effect of recurrent hitch-hicking

at the previous ABC-MK estimations showing robust estimations. Thus, although

the basis and mechanism of BGS and draft are different, and their expected diversity

patterns highly differ (as exposed in Schrider (2020)), both processes should result in

reducing the expected π/π0 ratio due to linkage, therefore affecting allele frequency

trajectories and fixation. Although we did not simulate genetic draft in Chapter

5, our implementation can perform similar estimations in cases of strong recurrent

hitch-hicking because: i) Uricchio et al. (2019) demonstrated the negligible effect on

recurrent hitch-hiking on α inference; ii) the new ABC-MK implementation showed

similar accuracy and precision than the previous implementation; iii) the new ABC-

MK implementation can simulate virtually any expected reduction in diversity due to

the performance. In addition, as exposed Uricchio et al. (2019), only regions where the

genome experiences strong recurrent sweeps can slightly affect α inference. Nonetheless,

since ABC-MK is a software designed to input a pool of genes, it is unlikely that strong

recurrent hitch-hicking will affect all genes equally. Thus, such an effect probably should

be diluted in real, empirical data.

7.2.5 RNA-VIPs vs. DNA-VIPs

In Chapter 5, we showed that RNA Viral Interacting Proteins (VIPs) exhibit

stronger adaptation rates than DNA-VIPs. There are several examples providing

evidence that the host-pathogen race imposed by the virus is an essential driver of

human genome adaptation at different time scales or adaptive regimes (Deschamps

et al., 2016; Enard et al., 2016; Racimo et al., 2017; Enard and Petrov, 2018; Uricchio

et al., 2019; Castellano et al., 2019b). We extended the analysis by Uricchio et al.

(2019), differentiating between RNA and DNA-VIPs. As a result, we provide evidence

that RNA viruses are an essential driver of human adaptation (Enard and Petrov, 2018,

2020).

Following Uricchio et al. (2019), we note that the effect of BGS cannot explain

the higher rate of adaptation of the RNA-VIPs because the DNA-VIP pool experiences

a slightly stronger BGS effect. Although we stated that these results might reflect the
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role of RNA-viruses in human adaptation and zoonosis frequencies, a few points should

be considered. First, it should be noted that the analysis includes 3,471 RNA-VIPs

and only 1,258 DNA-VIPs. Second, although our model considers different levels of

BGS and the average recombination rate, measurements could be affected provided

that other highly-correlated characteristics with these protein sets promote adaptation.

As aforementioned in Chapter 4, the approach proposed by Huang (2021), based on

multiple regression models, can jointly evaluate the effects of these correlated genomic

features on α estimation, while showing the primary feature modulating adaptation. A

posterior analysis considering other important features involved in adaptation (such as

mutation rate, relative solvent accessibility or Protein-Protein Interaction) (Moutinho

et al., 2019b; Huang, 2021), in addition to BGS and recombination rate, can determine

whether RNA-VIPs experienced a higher rate of adaptation. Third, the higher rate

of adaptation in RNA-VIPs could be directly related to the size of the viral genome

and its mutation rate. A possible solution would be to normalize the adaptation rate

taking into account the genome size. However, RNA and DNA-VIPs are an extension

of the annotations presented in Enard and Petrov (2020) and Souilmi et al. (2021).

Although the RNA viruses are smaller than DNA viruses, we have found that the size

of DNA viruses for which VIPs were annotated is much more variable. An alternative

option, not involving highly heterogeneous genome size, would be to check if levels

of variation, together with levels of BGS, can be explained by the mutation rate of

the human genome, which ultimately could also provide information on the mutation

rate of viral genomes and the host-pathogen interaction. As aforementioned in Section

7.2.3, the method developed by Barroso and Dutheil (2021) states that mutation rate

variation mainly explains the levels of nucleotide diversity in D. melanogaster. In future

analysis, the mutation rate estimation needs to be incorporated both in our analysis

and in the approach by Huang (2021) to unravel if the adaptation levels in RNA and

DNA-VIPs can be explained by the mutation rate or not.
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Chapter 8

Conclusions

1. The outlier approach combining eight different statistics to detect candidate

regions under selection in 22 non-admixed human populations has been able to

locate distinct signatures in 2859 regions that stand out from the background

genomic variability.

2. The combination of statistics, including abnormally long haplotypes, SFS

deviations and, for the first time in conjunction with the excess of non-synonymous

substitutions between our species and chimpanzees, manifest the footprints of

selective sweeps at different historical ages, or recurrent selection that has been

taking place during the last millions of years.

3. PopHumanScan online database facilitates the thorough analysis of candidate

regions under selection in the human genome and the incorporation wiht new data

from the scientific community, while automatically putting together the evidence

of selection with structural and functional annotations of the regions and cross-

references to previously published articles.

4. Unlike the rest of positive selection GWS, our approach, although limited to the

strongest positive selection signals, detects for the first time 70% of the signals

from previous studies, also describing for the first time a total of 873 new regions.

5. The impMKT is an straightforward, unbiased and efficient approach especially

designed to test recurrent positive selection at the gene level.

6. We reviewed the number of genes under positive selection using impMKT

in the human lineage using 1000GP data, increasing the signals exposed in

PopHumanScan from 21 to 205.

185
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7. We developed three statistics measuring the components of the DFE using the

imputation of SDM, as well as a nuisance parameter testing for population

contraction, mispolarization or sequencing error.

8. The new ABC-MKT version can reproduce previous analyses in 1000GP data,

increasing the performance by several orders of magnitude, without the necessity

of an HPC

9. We found stronger signals of positive selection in RNA-VIPs than DNA-VIPs,

providing additional support to the hypothesis that RNA viruses are important

drivers of human adaptation.

10. We developed a user-friendly web server that tests recurrent positive selection in

DGN and 1000GP data. The iMKT performs analysis at the gene level, genome

level, and custom pools of genes, benefiting the heuristic MKT extensions explored

in this thesis.
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Table A.1: [

Number of lines resampled in each Drosophila population available at iMKT]Number
of lines resampled in each Drosophila population available at iMKT

Population
code

Population description Metapopulation Sample
size

CDX Chinese Dai in Xishuangbanna,
China

East-Asian (EAS) 93

CDX Chinese Dai in Xishuangbanna,
China

East-Asian (EAS) 93

CHB Han Chinese in Beijing, China East-Asian (EAS) 103

CHS Southern Han Chinese East-Asian (EAS) 105

JPT Japanese in Tokyo, Japan East-Asian (EAS) 104

KHV Kinh in Ho Chi Minh City, Vietnam East-Asian (EAS) 99

CEU Utah residents (CEPH) with
Northern and Western European
ancestry

European (EUR) 99

GBR British in England and Scotland European (EUR) 91

FIN Finnish in Finland European (EUR) 99

IBS Iberian Populations in Spain European (EUR) 107

TSI Toscani in Italia European (EUR) 107

ESN Esan in Nigeria African (AFR) 99

GWD Gambian in Western Division,
Mandinka

African (AFR) 113

LWK Luhya in Webuye, Kenya African (AFR) 99

MSL Mende in Sierra Leone African (AFR) 85

YRI Yoruba in Ibadan, Nigeria African (AFR) 108

ACB African Caribbean in Barbados African (AFR) 96

ASW People with African Ancestry in
Southwest USA

African (AFR) 61

BEB Bengali in Bangladesh South-Asian (SAS) 86

GIH Gujarati Indians in Houston, TX,
USA

South-Asian (SAS) 103

ITU Indian Telugu in the UK South-Asian (SAS) 102

PJL Punjabi in Lahore, Pakistan South-Asian (SAS) 96

STU Sri Lankan Tamil in the UK South-Asian (SAS) 102
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Table A.2: Compendium of candidate regions under selection extracted
from 268 publications. (Table in XLS format, see supplementary material
https://academic.oup.com/nar/article/47/D1/D1080/5134333).

https://academic.oup.com/nar/article/47/D1/D1080/5134333
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A

C

B

D

Figure A.1: Distribution of the number of SNPs in the 10-kb analyzed windows for four representative
populations, one of each human meta-population: (A) YRI (African), (B) CEU (European), (C) CHB
(East-Asian), and (D) GIH (outh-Asian).
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Figure A.2: Definition of candidate regions under selection. Rows represent the results of one
single variation statistic calculated along the region on a population. In this example, each of
the four populations represented corresponds to a different human meta-population: African,
European, East-Asian, and South-Asian. Squares represent 10-kb windows analyzed along this
genomic region with PopHuman, while empty regions between squares represent regions that
were not analyzed because they contain non-accessible bases (black vertical lines) according to
the Pilot-style Accessibility Mask of the 1000GP [see (Casillas et al., 2018) for details]. The
color of the squares represents the P-value of the empirical distribution for the corresponding
variation statistic and population: P-value < 0.0005 (dark red), 0.0005 < P-value < 0.005
(red), and P-value > 0.005 (gray). Rectangles spanning consecutive 10-kb windows along a
row represent candidate regions under selection for the corresponding variation statistic and
population, i.e., contiguous genomic regions containing at least one 10-kb significant window
(P-value < 0.0005) and spanning adjacent windows with P-value < 0.005. In addition, they
may span stretches <20 kb of contiguous nucleotides not analyzed in PopHuman. In the case
of the African population, the candidate region under selection does not extend to the windows
with P-value < 0.005 to the left because there is a 10-kb window in the middle with P-value
> 0.005. In the case of the European population, the candidate region under selection does
not extend to the windows with P-value < 0.005 to the right because there is a stretch >20 kb
of contiguous nucleotides not analyzed in PopHuman in the middle. On the contrary, regions
within candidate regions under selection not analyzed in PopHuman are <20-kb long. Finally,
candidate regions detected in each population are stacked to a final set of candidate regions
under selection (maroon boxes at the bottom of the figure). In this example, two different
candidate regions are detected: the first one with signals in the four meta-populations, and the
second one with signals in the East-Asian meta-population. In the PopHumanScan analysis,
empirical distributions are calculated for 7 different variation statistics and 22 populations (or
3 population pairs, depending on the variation statistic), so 116 empirical distributions are
stacked simultaneously for autosomal regions (see text for details). Cited reference: Casillas
et al. (2018)
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A

B

C

Figure A.4: Distribution of the (A) length of candidate regions under selection (bin size =
10kb), (B) distance between consecutive regions (bin size = 200kb), and (C) recombination rate
of candidate regions under selection (bin size = 0.2cM/Mb).
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A

B

Figure A.5: Recombination rate (cM/Mb) as a function of (A) region length (base pairs), and
(B) distance between consecutive regions (base pairs).
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A

B

C

Figure A.6: Functional classification of 1,447 GENCODE protein-coding genes overlapping our
candidate regions under selection, according to Gene Ontology terms. (A) Molecular Function;
(B) Biological Process; (C) Cellular Component.
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Figure B.1: Percentage of analyzed replicas and associated error bias in estimation for each
scenario and MKT approach.
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Figure B.2: impMKT α estimations using different cutoff
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Figure B.3: Effect on α estimation reducing of the amount of segregating sites (i.e., reducing
the mutation rate θ to 0.0001, and reducing the total number of simulated genes to 2000) for
different MKT approaches.
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Figure B.4: Standard deviation heatmap for each scenario and MKT approach
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Figure B.5: d, dw and d0 impMKT estimations on different SLiM simulated scenarios. ρ and
θ are the population-scaled recombination and mutation rates (ρ = 4Ner, θ = 4Neµ). 2Nes is
the scaled-population selection coefficient for beneficial and deleterious alleles. β is the shape
parameter of the gamma DFE.
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Therefore impMKT cannot deal with weak adaptation, although including another cutoff at
higher frequencies.
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Table B.3: Mean error bias for each scenario and MKT approach. Error bias were measured
through the difference of mean values of d, dw and d0 for each method and the true value
retrieved from SLiM.

Analysis ImpMKT 0.05 ImpMKT 0.05

d dw d0 d dw d0

Baseline 4.43E-10 4.53E-02 4.51E-02 3.52E-10 8.08E-03 7.89E-03

2Nes− = 1000 5.40E-10 5.67E-02 5.64E-02 2.09E-10 1.02E-02 9.93E-03

2Nes− = 500 4.98E-11 7.00E-02 6.97E-02 1.23E-10 7.50E-03 7.14E-03

2Nes+ = 100 7.12E-10 4.49E-02 4.48E-02 2.97E-10 6.04E-03 5.91E-03

2Nes+ = 500 7.04E-10 4.95E-02 4.93E-02 5.61E-10 1.15E-02 1.13E-02

2000 genes 4.04E-09 4.15E-02 5.09E-02 8.43E-10 5.11E-03 8.73E-02

28000 genes 4.47E-10 4.76E-02 4.75E-02 4.49E-10 6.86E-03 6.80E-03

ρ = 0.0001 8.83E-10 4.92E-02 4.89E-02 1.88E-10 6.91E-03 6.53E-03

ρ = 0.01 2.83E-10 4.35E-02 4.32E-02 1.33E-10 4.95E-03 4.63E-03

β = 0.1 3.67E-10 4.99E-02 4.82E-02 3.03E-10 4.53E-03 2.83E-03

β = 0.2 8.56E-11 5.42E-02 5.33E-02 3.41E-10 4.20E-03 3.23E-03

θ = 0.0001 4.93E-09 4.37E-02 1.26E-01 1.12E-08 4.31E-03 1.65E-01

θ = 0.01 3.51E-11 6.77E-02 6.77E-02 9.04E-11 2.41E-02 2.40E-02

α = 0.1 3.37E-10 4.52E-02 4.46E-02 6.15E-10 2.38E-03 1.86E-03

α = 0.7 3.14E-10 5.25E-02 5.33E-02 7.40E-12 1.53E-02 1.61E-02
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Appendix C

iMKT: the integrative McDonald

and Kreitman test -

Supplementary material

Table C.1: Number of lines resampled in each Drosophila population available at iMKT

Population Number of resampled lines

RAL 160
USI 15

USW 27
CO 9
EA 10
EF 25
EG 10
GA 7
RG 21
SP 20
SD 30
ZI 154

CHB 12
FR 70

NTH 15
AUS 14
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