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Appendix A

Theoretical modelling of phenotype specification via

VEGF-Delta-Notch signalling

The Delta-Notch signalling pathway has been widely studied from the theoretical perspective.

A review on existing mathematical models of this pathway in di↵erent biological contexts can

be found in [191]. These models (see [191] and references therein) mainly focused on investi-

gation of the contact-mediated lateral inhibition mechanism, where a cell adopting a specific

phenotype inhibits its neighbours from adopting the same cell fate. This type of cell com-

munication was shown to generate patterns of cells with alternating cell phenotypes. Most

theoretical works explored the conditions necessary for emergence of phenotype patterning

observed in living systems (e.g. phenotype specification of cells in Drosophila wings [154],

endothelial cells [154], proneural cells [190]). Here, we briefly overview several early math-

ematical models of Delta-Notch signalling and models describing Delta-Notch interactions

specific for ECs (coupled with VEGF activation, i.e. VEGF-Delta-Notch); a more detailed

review on the lateral inhibition via Delta-Notch signalling in other biological contexts is out

of the scope of this thesis.

A pioneering work on cell fate patterning via a lateral inhibition mechanism is by Collier

et al. [182]. They considered a simple mathematical model which accounted for the levels

of Notch activity and Delta ligand concentrations. The model was based on the following

assumptions: (a) Notch activity in the focal cell can be described by an increasing function
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of Delta levels in the cell’s neighbours; (b) Notch activity down-regulates Delta production

in the same cell. These assumptions constitute a negative feedback loop in gene expression of

neighbouring cells. This leads to a competition between initially ‘equal’ cells and causes them

to adopt divergent phenotypes. Collier and coworkers investigated their model analytically

and numerically to determine the necessary conditions for the emergence of patterns. They

performed simulations on a linear array of cells and on a small two-dimensional hexagonal

lattice (with nearest neighbour interactions between cells in both geometries).

Further experimental studies of the Delta-Notch interactions revealed that this ligand and

receptor can bind to each other on the membrane of the same cell; this interaction was termed

cis-binding [153]. It was discovered that Delta trans-activates Notch in neighbouring cells

(trans-binding), whereas it cis-inhibits Notch in its own cell [153]. However, the e↵ects of

Delta-Notch cis-interactions on phenotype patterning were unclear. Sprinzak and coworkers

[153] developed an experimental model to monitor the dynamics of Notch, while manipulating

the levels of cis- and trans-Delta available in the system. Their experimental results showed

that the Notch response to increasing levels of trans-Delta was a gradual change in cell

gene expression. By contrast, variations of cis-Delta levels generated an ultrasensitive cell

phenotype switch. Sprinzak et al. used these experimental data to formulate a simple

mathematical model which took into account mutual inhibition of Delta and Notch due

to cis-interactions. Their model explained how this mechanism (i.e. mutual inhibition upon

cis-binding) could generate phenotype patterning even in the absence of the Delta-Notch

trans-interaction feedback (e.g. as was done in [182]). The mechanism of mutual inactivation

was further analysed from the theoretical point of view in a follow-up paper by this research

group [154]. They explored the role of Delta-Notch cis-interactions on pattern formation. In

particular, the authors concluded that mutual cis-inhibition of Delta and Notch speeds up

pattern formation, extends the range of parameter values for which phenotype patterning is

observed and leads to pattern formation even without cooperative interactions [154].

Bentley and coworkers proposed another mechanism capable of amplifying di↵erences in
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gene expressions of neighbouring cells, thus driving phenotype patterning in endothelial cells

[218]. Specifically, they suggested that active perception of the external microenvironment

via filopodia (long, thin membrane protrusions) equips ECs with a mechanism to generate

phenotypic patterns and to speed up the patterning time. Indeed, ECs are characterised by

an abundance of VEGF receptors at their filopodia. Thus, an EC (typically, tip cell) with

filopodia can bind more VEGF, become further activated, develop more filopodia and, due

to (VEGF-induced) up-regulation of Delta, inhibit more neighbouring cells. Bentley and

colleagues used their memAgent model (overviewed in section 1.5.2) to explore the impact of

this positive feedback due to filopodia formation in ECs on phenotype di↵erentiation. Their

simulation results suggest that filopodia formation decreases the time for establishment of a

salt-and-pepper pattern (tip cell - stalk cell - tip cell). They also highlighted the importance of

adequate timing for phenotype acquisition since cell shu✏ing and proliferation during sprout

growth require dynamic re-establishment of the phenotype pattern, which directly a↵ects the

morphology of the growing vascular network.

The timing of phenotype patterning via VEGF-Delta-Notch signalling was further inves-

tigated in a mathematical model by Venkatraman et al. [157]. The model consisted of a

system of deterministic equations for two ECs interacting via the VEGF-Delta-Notch sig-

nalling pathway. Their model accounts for the filopodia-induced positive feedback in EC

VEGF sensitivity; cis-interactions of Delta and Notch are neglected. The analysis of this

model revealed the existence of an intermediate EC phenotype (with intermediate levels of

Delta and Notch as compared to stalk and tip cell stable steady state levels). Venkatraman

and coworkers quantified the time it takes for two neighbouring ECs to acquire phenotypes

in di↵erent external environments. In addition, they explored how positive (negative) mod-

ulators of Delta-Notch trans-binding which (de-) stabilise Notch activation a↵ect phenotype

patterning.

The third, intermediate, EC phenotype was also discovered in mathematical models by

Boareto and coworkers, first, in the general context of Delta-Notch lateral inhibition [155],
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and then in the particular case of VEGF-Delta-Notch signalling in ECs [156]. These models

additionally took into account (trans- and cis-) interactions of Notch with Jagged, another

Notch ligand. Notch activation was shown to inhibit Delta production (as was taken into

account in previous models, e.g. [157], [182], [218]) and, by contrast, to up-regulate Jagged

expression. Boareto and coworkers demonstrated that this asymmetric interaction of Notch

with its two ligands (Delta and Jagged) led to the existence of the third cell phenotype.

The authors referred to it as a hybrid tip/stalk phenotype (since it partially inherits the

behaviour of both tip and stalk cells). Cells were shown to adopt the hybrid phenotype in

conditions of down-regulated basal Delta production and Jagged overexpression. The authors

associated these scenarios with pathological angiogenesis which leads to the formation of

vascular networks with excessive, but thin and blind-ended, sprouts (e.g. typically observed

in cancer) [156].

Koon and coworkers investigated mechanisms responsible for the diversity of phenotypic

patterns observed in in vitro and in vivo angiogenesis [219]. In particular, most models

of Delta-Notch lateral inhibition (e.g. [155]–[157], [182], [218]) were capable of reproducing

classical ‘fine-grained’ salt-and-pepper patterns (when tip cells are separated by one or two

stalk cells). However, patterns of varied separation between tip cells were observed in bio-

logical experiments [219] which could not be explained by traditional modes of Delta-Notch

interactions (e.g. [154], [182]). Koon and colleagues demonstrated that the richness of pat-

terns can be explained by the spatial heterogeneity of Notch distribution within cells and

tension-dependent Delta-Notch trans-binding [219]. Their model considered a linear geom-

etry of connected ECs with possibly distinct Notch levels at the lateral cell borders. Notch

receptors were assumed to di↵use from one cell border to another. In addition, experimental

evidence suggested that Notch activation is a↵ected by intracellular tension due to cell-cell

adhesion. Since Delta and Notch are also implicated in cell adhesion, the authors proposed

that the Notch activation rate depends on the number of Delta-Notch complexes formed be-

tween adjacent cells (which determines adhesion, or tension, between cells). In particular,
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Notch activation was assumed optimal for the target degree of adhesion and decreased when

intracellular tension deviates from the optimum. With these two mechanisms (spatial Notch

heterogeneity and tension-dependent Notch activation), the model by Koon et al. was ca-

pable to reproduce phenotypic patterns with varied distance between tip cells. Their model

also predicts the existence of an intermediate EC phenotype.

A recent mathematical model by Debir et al. [220] investigated the e↵ects of calcium sig-

nalling on the VEGF-Delta-Notch signalling pathway. They combined the two-cell phenotype

specification model of Venkatraman and coworkers [157] with an experimentally validated

model of calcium signalling in cells [221]. Specifically, the experimental results showed that

VEGF activation of ECs induces oscillations in calcium release, which are directly connected

to the Delta-Notch signalling. VEGF-induced Ca2+ activity leads to up-regulation of Delta

production (thus favouring the tip cell phenotype), whereas downstream signalling cascades

of Notch signalling lead to inhibition of calcium activity (thus favouring the stalk cell pheno-

type). These oscillations in Ca2+ release disappear as ECs adopt the stalk phenotype. By

contrast, tip cells show periodic calcium fluctuations. The model by Debir et al. [220] was

capable of capturing these e↵ects of Ca2+ activity in EC phenotype specification. Nonethe-

less, although their simulation results show that cell phenotype depends on calcium activity,

the model predicts that it is intracellular communication that determines the final cell fate.
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Appendix B

Supplementary materials for Chapter 2

B.1 Relating simulation units to experimental units

Based on [4], [10], we approximated the correspondence between time, space and VEGF

concentration in our simulations and real experiments.

Space Since in our model we account for cell nucleus positions, we chose the voxel size such

that it approximately corresponds to the size of the nucleus of an endothelial cell. Thus, we

fixed the voxel width, h = 5 µm.

Time In experiments from [4], [10], confocal microscopy imaging was carried out with time

intervals of 15 minutes. Thus, in order to relate our simulation time to experimental time,

we fix 0.03 of simulation time = 15 minutes. Then we calibrated our model, using this time

correspondence, such that the dynamics of vascular growth in simulations and experiments

from [4], [10] are in good quantitative agreement.

VEGF concentration In [4], [10], experiments were performed with uniform VEGF con-

centrations of 0, 5, and 50 ng/ml. Using molar mass of a VEGF molecule (40 kDa), the

Avogadro constant (NA = 6.022 ⇥ 1023 mol�1) and assuming that a cell is exposed to all

VEGF molecules within a sphere of radius equal to 20 µm, simple computation yields the

following correspondence
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V = 0, external VEGF molecules ⇠ 0 ng/ml;

V = 2500, external VEGF molecules ⇠ 5 ng/ml;

V = 25000, external VEGF molecules ⇠ 50 ng/ml.

B.2 Subcellular scale: VEGF-Delta-Notch signalling pathway

The subcellular scale of our model accounts for the phenotype specification mediated by the

VEGF-Delta-Notch signalling pathway. Within a growing tumour, hypoxic regions of the tis-

sue secrete tumour angiogenic factors (TAFs), which di↵use towards the underlying vascular

bed and activate quiescent endothelial cells (ECs), thus inducing angiogenic sprouting [18],

[25]. We focus on the vascular endothelial growth factor (VEGF), the most well-studied TAF.

The canonical Delta-Notch pathway interacts with the VEGF pathway enabling a contact-

mediated communication between ECs allowing them to coordinate their decision making

processes [16], [23], [27], [38]. Specifically, ECs acquire one of the two phenotypes, tip or

stalk, which are characterised by distinct gene expression patterns (tip cells: high Delta

and VEGFR2, low Notch; stalk cell: low Delta and VEGFR2, high Notch) [9], [27], [38].

Phenotypic switching modifies EC behaviour which is manifested in cell-cell and cell-ECM

interactions [25], [32]. In our model, these interactions are accounted for at the cellular and

tissue scales. In turn, the local extracellular environment (configuration of the cellular and

tissue scales) serves as a modulator of VEGF-Delta-Notch signalling [18], [19], thus, dynam-

ical coupling between scales is maintained in both directions. In this section, we present a

more detailed description of the formulation of the subcellular scale model.

Phenotype specification via the VEGF-Delta-Notch signalling pathway has been exten-

sively investigated from the mathematical modelling perspective [5], [37], [153]–[157], [182],

[219]. Here, we combine the lateral inhibition model of the Delta-Notch signalling pathway
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developed in [153], [154] with the VEGF signalling pathway as was done in [155], [156]. We

refer to these works for a more detailed overview of the biological foundation of the model.

Figure B.1. An illustration of the kinetic reactions of the VEGF-Delta-Notch
signalling pathway for the individual cell system. The reactions are labelled by blue
circled numbers (see text for description). Next and Dext represent extracellular levels of
Notch and Delta, respectively.

Individual cell system

Let N denote the level (number of proteins) of Notch receptor in a cell, D – Delta ligand, I –

Notch intracellular domain (NICD), R2 – VEGF receptor 2 (VEGFR2) and R2⇤ – activated,

i.e. bound to VEGF, VEGFR2. We assume the focal cell is exposed to extracellular levels

of Notch and Delta, Next and Dext, respectively (which belong to neighbouring cells, whose

signalling dynamics we do not account for explicitly in the individual cell system, thus Next

and Dext are assumed to be constant). We denote by V the extracellular level of VEGF. We

assume V to be constant as maintained in many in vitro experiments (e.g. [4], [10]). The

kinetic reactions involved in our model are (see the illustration in Figure B.1):

1a N +Dext �
k
+
t

k
�
t

[NDext]!
kp

I +Dext Trans-binding/unbinding of an extracellular

Delta ligand to a Notch receptor on the focal

cell and the following cleavage of a NICD.
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1b D +Next �
k
+
t

k
�
t

[DNext]!
k
1
p

D +Next Trans-binding/unbinding of a Delta ligand

on the focal cell to an extracellular Notch

receptor on the focal cell followed by either

endocytotic recycling of the Delta ligand

(upper reaction with the rate k1p) or its

degradation (lower reaction with the rate

k2p).

&
k
2
p Next

2 ; �
bR2H

S(I;I0,�I,R2,nR2)

�

R2 NICD-dependent production of a VEGFR2 re-

ceptor and its degradation at a constant rate.

3 ; �
bNH

S(I;I0,�I,N ,nN )

�

N NICD-dependent production of a Notch receptor

and its degradation at a constant rate.

4 N +D �
k
+
c

k
�
c

[ND]!
ke

; Mutual cis-inhibition of a Delta ligand and a

Notch receptor [153], [154].

5 R2 + V !
kv

R2⇤ !
�e

; Binding of an external VEGF to a VEGFR2 and

the following degradation of the activated recep-

tor.

6 ; �
bDH

S(R2⇤;R2⇤0,�R2⇤,D,nD)

�

D Production of a Delta ligand, dependent on ac-

tivated (bound to VEGF) VEGFR2, and its

degradation at a constant rate.

7 I !
�e

; Degradation of a NICD.

Here HS (X;X0,�X,Y , nY ) is the so-called shifted Hill function:

HS (X;X0,�X,Y , nY ) =
1 + �X,Y

�
X/X0

�nY

1 + (X/X0)
nY

. (B.1)

This function represents the transcriptional regulation of gene expression of a generic gene,
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Figure B.2. An illustration of the shifted Hill function for varying parameter
�X,Y . The functional form of HS(·) is given by Eq (B.1). Here X0 = 2.0, nY = 2.

Y , in response to the signalling variable X. X0 and nY are positive parameters characterising

the activation threshold and cooperativity, respectively. For 0  �X,Y < 1 (�X,Y > 1) the

production of Y is down-regulated (up-regulated) as the amount of X increases; if �X,Y = 1

thenX has no e↵ect on production of Y (see Figure B.2). We assume that NICD signalling up-

regulates production of Notch, thus �I,N > 1.0 (reaction 3 ), whereas production of VEGFR2

is down-regulated, �I,R2 < 1.0 (reaction 2 ). Activated VEGFR2 enhances Delta production,

�R2⇤,D > 1.0 (reaction 6 ). In these reactions, prefactors of the type bP characterise baseline

production of the corresponding protein P .

We assume the same degradation rate, �, for all inactivated proteins (Notch, Delta,

VEGFR2). The half-life of activated signalling cues (NICD, activated VEGFR2) is much

shorter, thus �e > � [156]. Furthermore, we assume that complexes [Delta-Notch] once formed

release the signal or undergo endocytosis very fast compared to formation rate (i.e. k1,2p � k±
t

and ke � k±c ). Thus, denoting kp = k1p + k2p, kt = k+
t

⇣
1� k

�
t

k
�
t
+kp

⌘
, kc = k+c

⇣
1� k

�
c

k
�
c +ke

⌘
and

⌘ =
k
2
p

kp
, we can simplify reactions 1a , 1b and 4 :

1a N +Dext �!
kt

I +Dext
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1b D +Next �!
(1�⌘)kt

D +Next

&
⌘kt Next

4 N +D �!
kc

;

Reac-
tion
label,
R

Kinetic reaction(s) Transition rate(s), ↵R Stoichiometric
vector(s), ⌫R

1a N +Dext �! I +Dext ktdextN , dext = Dext/⌦ (�1, 0,+1, 0, 0)T

1b D +Next �! Next ⌘ktnextD, next = Next/⌦ (0,�1, 0, 0, 0)T

2 ;� R2
[!]⌦bR2HS(I;⌦I0,�I,R2, nR2) (0, 0, 0,+1, 0)T

[ ] �R2 (0, 0, 0,�1, 0)T

3 ;� N
[!]⌦bNHS(I;⌦I0,�I,N , nN ) (+1, 0, 0, 0, 0)T

[ ] �N (�1, 0, 0, 0, 0)T

4 N +D �! ; kc
⌦ ND (�1,�1, 0, 0, 0)T

5
R2 �! R2⇤ V R2 (0, 0, 0,�1,+1)T

R⇤
2 �! ; �eR2⇤ (0, 0, 0, 0,�1)T

6 ;� D
[!]⌦bDHS(R2⇤;⌦R2⇤0,�R2⇤,D, nD) (0,+1, 0, 0, 0)T

[ ] �D (0,�1, 0, 0, 0)T

7 I �! ; �eI (0, 0,�1, 0, 0)T

Table B.1. Details of the kinetic reactions and the corresponding transition
rates included in our full stochastic model of the VEGF-Delta-Notch signalling
pathway within an individual cell. ⌦ represents system size, which is used to scale the
transition rates [65] (in our simulations, we fix ⌦ = 200). The stoichiometric vectors
corresponding to a reaction R, ⌫R, are indexed as (N,D, I,R2, R2⇤)T . Reaction labels are
as in Figure B.1.

Given the transition rates and the corresponding stoichiometric vectors (listed in Ta-

ble B.1), we can formulate our individual cell stochastic model of the VEGF-Delta-Notch

pathway in terms of the Chemical Master Equation (CME)

@ P(X, t)

@t
=

X

R

�
↵R(X � ⌫R) P(X � ⌫R, t)� ↵R(X, t) P(X, t)

�
, (B.2)
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where X = (N,D, I,R2, R2⇤)T and P(X, t) is the probability of finding the system in state

X at time t. This CME cannot be solved analytically but can be numerically simulated via

the Gillespie algorithm (GA) [65] or the more e�cient Next Subvolume (NSV) method [64]

(for more details see Appendix B.4). The computational cost of these simulations rapidly

increases with the system size, ⌦. Furthermore, when extended to a multicellular system (see

below), the simulation time increases as the number of cells in the system increases (linearly

for the GA or logarithmically for the NSV method). Thus, high computational power is

required to perform numerical simulations for large numbers of cells (O(102)�O(103)).

To illustrate the characteristic behaviour of the individual cell system given by the kinetic

reactions 1 - 7 , we derive the associated mean-field limit equations:

dN

dt
= bNHS(I; I0,�I,N , nN )� �N � ktDextN � kcND,

dD

dt
= bDH

S(R2⇤;R2⇤0,�R2⇤,D, nD)� �D � ⌘ktNextD � kcND,

dI

dt
= ktDextN � �e I,

dR2

dt
= bR2H

S(I; I0,�I,R2, nR2)� �R2� kvV R2,

dR2⇤

dt
= kvV R2� �eR2⇤.

(B.3)

A full description and reference values of the parameters used in Eq (B.3) can be found

in Table B.7.

To facilitate the analysis of the system of equations Eq (B.3), we introduce dimensionless

variables and parameters (shown in Table B.2). The non-dimensional individual cell system

reads
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dn

dt
= �NHS(⇢N ◆; 1.0,�I,N , nN )� n� dextn� nd,

dd

dt
= �DH

S(⇢R2 r2
⇤; 1.0,�R2⇤,D, nD)� d� ⌘nextd� nd,

d◆

dt
= dextn� ⌧̂ ◆,

dr2

dt
= �R2H

S(⇢N ◆; 1.0,�I,R2, nR2)� (1 + vext)r2,

dr2⇤

dt
= vext r2� ⌧̂ r2⇤.

(B.4)

For simplicity, we omit the bar in the dimensionless time variable.

We have studied numerically how the d- and n-nullclines of the system of equations

Eq (B.4) change as we vary the (non-dimensional) external Delta concentration, dext. Fig-

ure B.3A shows that for low values of dext (Figure B.3A (1)) lateral inhibition is not strong

enough to suppress the default [16] tip phenotype. As dext increases, the system enters a

bistable regime where both phenotypes, tip and stalk cell, coexist (see Figure B.3A (2)).

Finally, for higher values of dext, the tip phenotype is suppressed and the only stable steady

state of the system of equations Eq (B.4) corresponds to the stalk cell phenotype (see Fig-

ure B.3A (3)). A general picture can be seen in a numerically computed bifurcation diagram

(Figure B.3B). The e↵ect of external VEGF, vext, on phenotype specification is to enlarge

the bistability region as its concentration increases (see Figure B.3C). On the contrary, for a

fixed value of vext, increasing concentration of the external Notch, next, reduces the size of

the bistability region (see Figure B.3D).
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Variable/
Parameter

Ref.
value

Description

N0 =
�

kt
2000.0 The characteristic level of Notch.

D0 =
�

kt
2000.0 The characteristic level of Delta.

R20 =
�

kv
2000.0 The characteristic level of VEGFR2.

⇢N = N0
I0

20.0 The ratio of the characteristic levels of Notch and NICD.

⇢R2 =
R20
R2⇤0

10.0 The ratio of the characteristic levels of unbound and bound
VEGFR2.

n = N

N0
Non-dimensional Notch receptor concentration.

D = D

D0
Non-dimensional Delta ligand concentration.

◆ = I

N0
Non-dimensional NICD concentration.

r2 = R2
R20

Non-dimensional VEGFR2 concentration.

r2⇤ = R2⇤

R20
Non-dimensional VEGF-bound VEGFR2 concentration.

�N = bNkt

�2 2.5 Non-dimensional baseline expression of Notch receptor.

�D = bDkt

�2 4.0 Non-dimensional baseline expression of Delta ligand.

�R2 =
bNkv

�2 4.0 Non-dimensional baseline expression of VEGFR2.

vext =
kv

�
V = V

R20
1.25 Non-dimensional external VEGF concentration.

dext =
Dext

D0
0.0�5.0 Non-dimensional external Delta ligand concentration.

next =
Next

N0
0.0�5.0 Non-dimensional external Notch receptor concentration.

 = kc

kt
12.0 The ratio of cis- and trans-binding for Delta and Notch.

According to [153],  > 1.

⌧̂ = �e

�
5.0 The ratio of degradation rates of activated and non-activated

receptors/ligands. Activated signals have shorter half-life,
thus ⌧̂ > 1.

t̄ = �t Non-dimensional time.

Table B.2. Non-dimensional variables and parameters of the
VEGF-Delta-Notch system. The reference values are computed according to the
dimensional parameter values listed in Table B.7. For the multicellular system external
Notch and Delta, next and dext, respectively, vary according to the configuration of the
system (see text for details).
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(A)

(B) (C) (D)

Figure B.3. Numerical simulations of the non-dimensional mean-field individual
cell VEGF-Delta-Notch system (Eq (B.4)). (A) d- and n-nullclines for varying level of
external Delta, dext. (1) For low values of dext (here dext = 0.1) there is only one (stable)
steady state of the system corresponding to the tip cell phenotype. (2) A bistability region
with two stable steady states: tip and stalk cells, occurs for intermediate values of dext
(here dext = 0.3). The unstable saddle point is indicated by a red unfilled circle. (3) For
higher values of dext (here dext = 1.0), the system is monostable with the stalk cell
phenotype as its only (stable) steady state. (B) Bifurcation diagram of non-dimensional
Notch concentration, n, as a function of external Delta ligand, dext, corresponding to the
system of equations Eq (B.4). Full lines denote stable steady states; dashed lines – unstable
steady state; yellow filled dots – saddle-node bifurcation points. (C) Phenotype diagram as
a function of external Delta, dext, and external VEGF, vext, corresponding to the system of
equations Eq (B.4). (D) Phenotype diagram as a function of external Delta, dext, and
external Notch, next, corresponding to the system of equations Eq (B.4). Parameter values
used to make the plots (except for those indicated specifically) are listed in Table B.2.



Contents

Contents

B.2. SUBCELLULAR SCALE: VEGF-DELTA-NOTCH SIGNALLING
PATHWAY 178

Multicellular system

The individual cell model can be easily extended to a multicellular one. We need to specify

the external levels of Delta and Notch (Dext and Next, respectively) to which each individual

cell is exposed. Dext and Next are given by the levels of the corresponding proteins summed

over all the neighbouring cells with which the focal cell is in contact. Since in our multiscale

model of angiogenesis we account for cell nucleus positions instead of the exact cell membrane

configurations, cell-cell interactions are assumed to be non-local, i.e. beyond their first neigh-

bours. We define an interaction radius, Rs, and assume that two cells are in contact if they

are contained (totally or partially) within a circular neighbourhood of radius Rs. Taking into

account that we use an on-lattice modelling approach with a uniform hexagonal discretisation

of the domain, we define a local neighbourhood of a cell located at the voxel with an index

k 2 R2, vk, as a set of voxels

H(k) := {vl : vl \ BRs
(k) 6= ;, l 6= k, l 2 I}, (B.5)

where BRs
(k) denotes a circular neighbourhood of radius Rs centred at the centre of voxel k,

and I is the set of all voxel indices.

The amount of Delta on a neighbour l 2 H(k) which is in contact with Notch receptors of

the cell of interest k is assumed to be proportional to the surface area of the overlap between

the circular neighbourhood of the focal cell k and the neighbour l. This is given by the

weights ↵kl (see Figure 2.3A) defined as follows

↵kl =
|vl \ BRs

(k)|
|vl|

, k, l 2 I. (B.6)

Here | · | stands for the surface area.

Thus, the external Delta (Notch) concentration, Dext (Next), for a cell situated in a voxel

vk is defined as follows:
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Dext = Dk =

X

l 2 H(k)

↵klDl

X

l 2 H(k)

↵kl

,

Next = Nk =

X

l 2 H(k)

↵klNl

X

l 2 H(k)

↵kl

.

(B.7)

We can now rewrite the kinetic reactions 1 - 7 for the multicellular system in a straight-

forward manner. For each cell in the system, positioned in voxel vk, we consider the following

kinetic reactions (numbered with Roman numerals as equivalents of the kinetic reactions of

the individual cell system numbered with Arabic numerals)

I Nk +Dl �!
↵
kl

(1�⌘)kt

Ik +Dl

l 2 H(k)&
↵
kl

⌘kt Ik

II ; �
bR2H

S(I
k
;I0,�I,R2,nR2)

�

R2k

III ; �
bNH

S(I
k
;I0,�I,N ,nN )

�

Nk

IV Nk +Dk �!
kc

;

V R2k + V !
kv

R2⇤
k
!
�e

;

VI ; �
bDH

S(R2⇤
k
;R2⇤0,�R2⇤,D,nD)

�

Dk

VII Ik !
�e

;
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Note that now the reactions 1a and 1b of the individual cell system result in the same

reaction I of the multicellular model. Reaction I is bimolecular between a Notch receptor

in voxel vk and a Delta ligand in a neighbouring cell in vl. As a result of this reaction, a

NICD is produced in the cell to which the Notch receptor belongs (voxel vk) and Delta on

the neighbour, Dl, is either degraded or endocytotically recycled.

To summarise, the subcellular scale of our model is a stochastic system given by the

multicellular system with kinetic reactions I -VII. We simulate it using a variation of

the Stochastic Simulation Algorithm (SSA), the Next Subvolume method (NSV) [64] (more

details in Appendix B.4). We list transition rates and the corresponding stoichiometric

vectors used for simulation in Table B.3.

Reac-
tion,
R

Transition rate ⌫R
k ⌫R

l

I
(1�⌘)↵klkt

⌦ NkDl (�1, 0,+1, 0, 0)T (0, 0, 0, 0, 0)T

⌘↵klkt

⌦ NkDl (�1, 0,+1, 0, 0)T (0,�1, 0, 0, 0)T

II
⌦bR2HS(Ik;⌦I0,�I,R2, nR2) (0, 0, 0,+1, 0)T (0, 0, 0, 0, 0)T

�R2k (0, 0, 0,�1, 0)T (0, 0, 0, 0, 0)T

III
⌦bNHS(Ik;⌦I0,�I,N , nN ) (+1, 0, 0, 0, 0)T (0, 0, 0, 0, 0)T

�Nk (�1, 0, 0, 0, 0)T (0, 0, 0, 0, 0)T

IV kc

⌦NkDk (�1,�1, 0, 0, 0)T (0, 0, 0, 0, 0)T

V
V R2k (0, 0, 0,�1,+1)T (0, 0, 0, 0, 0)T

�eR2⇤
k

(0, 0, 0, 0,�1)T (0, 0, 0, 0, 0)T

VI
⌦bDHS(R2⇤

k
;⌦R2⇤0,�R2⇤,D, nD) (0,+1, 0, 0, 0)T (0, 0, 0, 0, 0)T

�Dk (0,�1, 0, 0, 0)T (0, 0, 0, 0, 0)T

VII �eIk (0, 0,�1, 0, 0)T (0, 0, 0, 0, 0)T

Table B.3. Transition rates of the multicellular VEGF-Delta-Notch system. The
transition rates are appropriately scaled with the system size parameter, ⌦ (in our
simulations, we fix ⌦ = 200). ⌫Rr denotes a stoichiometric vector corresponding to a reaction
R in a cell at voxel vr indexed as (N,D, I,R2, R2⇤)T . The transition rates are calculated
for all k 2 I and l 2 H(k), where I denotes the set of voxel indices in the system.
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(A)

(B)

(C)

Figure B.4. (Caption on the next page.)
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Figure B.4. Examples of steady state patterns of the VEGF-Delta-Notch
multicellular system for di↵erent cis-inhibition parameter values. Final steady
state patterns established during single stochastic simulations of the system described by

the kinetic reactions I -VII for a uniform hexagonal lattice of 10⇥ 12 voxels.

Cis-inhibition parameter was taken as (A) kc = 6.0e� 4; (B) kc = 10.0e� 4; (C)
kc = 15.0e� 4. External VEGF level, V = 2500, and the rest of the parameter values as in
Table B.7.

When simulated in a simple two-dimensional domain, with only first-neighbour (voxels

that share an edge) interactions, the multicellular system (reactions I -VII) produces the

classical chessboard pattern [182] of alternating tip/stalk cells. However, our system amplifies

the range of possible patterns beyond the classical one. This is due to accounting for mutual

cis-inhibition of Delta and Notch within the same cell and non-locality of interactions within

the radius Rs. Specifically, increasing the cis-binding parameter, kc, allows tip cells to be

neighbours since increasing kc reduces the lateral inhibition ability of cells (see Figure B.4).

In contrast, increasing interaction radius, Rs, enhances the ability of a tip cell to inhibit more

neighbours and prevent them from acquiring the tip phenotype. Thus, the distance between

two tip cells increases as Rs grows (see Figure B.15).

For completeness, we list the mean-field limit equations corresponding to the multicellular

kinetic reactions I -VII:

dNk

dt
= bNHS(Ik; I0,�I,N , nN )� �Nk � ktDkNk � kcNkDk,

dDk

dt
= bDH

S(R2⇤
k
;R2⇤0,�R2⇤,D, nD)� �Dk � ⌘ktNkDk � kcNkDk,

dIk
dt

= ktDkNk � �e Ik,

dR2k
dt

= bR2H
S(Ik; I0,�I,R2, nR2)� �R2k � kvV R2k,

dR2⇤
k

dt
= kvV R2k � �eR2⇤

k
.

(B.8)

Here Dk and Nk are given by Eq (B.7) and k 2 I.
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Similarly, for each voxel, vk, in the lattice, the corresponding non-dimensional system of

equations reads:

dnk

dt
= �NHS(⇢N ◆k; 1.0,�I,N , nN )� nk � (dext)k nk � nk dk,

ddk
dt

= �DH
S(⇢R2 (r2

⇤)
k
; 1.0,�R2⇤,D, nD)� dk � ⌘ (next)k dk � nk dk,

d◆k
dt

= (dext)k nk � ⌧̂ ◆k, (A.9)

d (r2)
k

dt
= �R2H

S(⇢N ◆k; 1.0,�I,R2, nR2)� (1 + vext) (r2)k ,

d (r2⇤)
k

dt
= vext (r2)k � ⌧̂ (r2⇤)

k
,

(dext)k =
X

vl 2 H(k)

↵kldl,

(next)k =
X

vl 2 H(k)

↵klnl.

Here, again, cross-talk between neighbouring cells is accounted for via (dext)k and (next)k.

B.3 Computational simulations of the multiscale model of angiogenesis

Model geometry All simulations were performed on a rectangular lattice, L = {vi, i =

(ix, iy)T , ix = 1,..., Nx

I
, iy = 1,..., Ny

I
}, where vi stands for voxel indexed by i, and i denotes

the position of the voxel vi within the lattice, L. The total voxel number NI = Nx

I
Ny

I
. Nx

I

and Ny

I
vary for each type of numerical experiment and are described in Table B.10. The

non-dimensional voxel width, h = 0.04, corresponds to 5 µm (see Appendix B.1 for details).

Model parameters The parameter values used at the subcellular scale are listed in Ta-

ble B.7. These values were used in all simulation experiments except those performed with

mutant cells (for details, see below). Parameter values for the cellular and tissue scales are

given in Table B.8.
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Boundary conditions Let IB denote the set of voxels of L situated on its boundary, i.e.

IB ={(1, iy)T , iy = 1,..., Ny

I
} [ {(Nx

I , iy)
T , iy = 1,..., Ny

I
}[

{(ix, 1)T , ix = 1,..., Nx

I } [ {(ix, Ny

I
)T , ix = 1,..., Nx

I }.

As mentioned before, we assume that our simulations take place on a timescale such that

cell proliferation is negligible and sprout elongation is driven by cell migration from the

initial vascular plexus (imitating an underlying vascular bed in in vivo or a cell implant in

in vitro experiments). This is implemented as a Dirichlet boundary condition for the nucleus

distribution variable, E, for the set of voxels corresponding to the position of the vascular

plexus, IV P ,

Ei = 1 8i 2 IV P , 8t � 0.

The set IV P for each numerical experiment is listed in Table B.10. When a cell migrates

from a voxel belonging to IV P , a new cell is put in this voxel with the baseline expression of

the subcellular scale variables (its phenotype is established according to its environment in

the following simulation of the subcellular model).

For the voxels on the boundary, a no-flux boundary condition is assumed for cells: migra-

tion transitions to leave the domain are set to zero, !(i! exit L) = 0, for i 2 IB.

Since we assume that cells cannot leave the domain, we set the orientation landscape

variable components pointing outside L to zero. Mathematically, let ne denote an external

normal to L, then

lsi = 0, 8i 2 IB and 8s 2 S s.t. (s, ne) = 1,

where (·, ·) denotes the scalar product.
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The rest of the variables, namely, the variables of the subcellular scale, ECM and BM

components, c and m, respectively, do not require any specific boundary conditions.

Initial conditions Let Iinit denote the voxel indices of the initial cell positions, i.e. Ei = 1

for i 2 Iinit and Ei = 0, otherwise, at time t = 0. Given this set of indices, the variables are

initialised as shown in Table B.9.

Setups We performed several types of simulation experiments. For each type we specify

the lattice dimensions, Nx

I
and Ny

I
, the set of indices corresponding to the vascular plexus,

IV P , the initial cell nucleus positions, Iinit, the initial polarisation direction, sinit, the initial

ECM and BM concentrations, cinit and minit, respectively, and the distribution of VEGF, V .

The details are given in Table B.10.

Simulations with mutant cells Some of the simulation experiments were performed

with mutant cells with modified gene expression of VEGFR1 and VEGFR2, with the aim of

imitating the behaviour of those used in experiments reported in [9]. To do so, we modify

some of the parameters of the subcellular VEGF-Delta-Notch signalling. The details are

given below in Table B.4.

In particular, VEGFR2+/- mutant cells have down-regulated (by ⇡50%, single allele mu-

tants) gene expression of VEGFR2, thus we set its baseline expression to half of that for the

WT (see Table B.4). VEGFR1+/- mutant cells are characterised by halved gene expression of

VEGFR1. VEGFR1 is known to be a sink receptor for VEGF: it has higher a�nity for bind-

ing VEGF but low kinase activity. Hence, it competes with VEGFR2 for binding to VEGF

but it has a minor role in signal transmission. Because of this, we have not considered it in

our subcellular model of phenotype selection, and we need to account for the VEGFR1+/-

mutant in an e↵ective way. Specifically, we assume that down-regulation of VEGFR1 can

be accounted for by a higher a�nity of VEGFR2 for binding to VEGF. We set k+v = 2kv as

shown in Table B.4. Furthermore, in some of the experiments by Jakobsson et al. [9], cells
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Name [9] Shortened
name

Description Change in
parameters

VEGFR2+/egfp VEGFR2+/- Mutant cells heterozygous for
VEGF receptor 2 having half of
the amount of VEGFR2 com-
pared with the WT cells.

b+
R2 = 0.5bR2

VEGFR2+/egfp-DAPT VEGFR2+/--
DAPT

VEGFR2+/- mutant cells addi-
tionally exposed to DAPT, a �-
secretase inhibitor abolishing the
Notch signalling.

b+
R2 = 0.5bR2,
I = 0

VEGFR1+/lacz VEGFR1+/- Mutant cells heterozygous for
VEGF receptor 1 having half of
the amount of VEGFR1 com-
pared with the WT cells.

k+v = 2kv

VEGFR1+/lacz-DAPT VEGFR1+/--
DAPT

VEGFR1+/- mutant cells addi-
tionally exposed to DAPT, a �-
secretase inhibitor abolishing the
Notch signalling.

k+v = 2kv,
I = 0

WT-DAPT WT-DAPT Wild-type (WT) cells treated
with DAPT, a �-secretase in-
hibitor abolishing the Notch sig-
nalling.

I = 0

Table B.4. Description of mutant cells treated/untreated with DAPT
(�-secretase inhibitor) used in simulations. Changed parameters for mutant cells have
+ in their superscript position, compared to the wild-type (WT) cell parameters with no
such superscripts.

were treated with a potent �-secretase inhibitor, DAPT, which completely abolishes Notch

signalling (see Fig 3i in [9]). �-secretase is a protease that carries out the second cleavage

releasing the active NICD. Therefore, when exposed to DAPT, the Notch receptor and its

ligand should have the same dynamics as without DAPT, only NICD is not being produced.

To introduce DAPT into our simulations, we set I = 0 for all cells in the simulation (both

WT and mutant), leaving all other parameters unchanged (see Table B.4).
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Multiscale simulation algorithm For the formulation of the algorithm we use the fol-

lowing notation:

I The set of voxel indices in the lattice, L.

NI The total number of voxels in the lattice, L.

Cs = (N ,D, I,R2,R2⇤) The full-lattice configuration of the variables of the sub-

cellular scale: Notch, N = (N1, ... , NNI
); Delta, D =

(D1, ... , DNI
); NICD, I = (I1, ... , INI

); VEGFR2, R2 =

(R21, ... , R2NI
); activated (bound to VEGF) VEGFR2,

R2⇤ =
⇣
R2⇤1, ... , R2⇤

NI

⌘
.

Cs

i
= (Ni, Di, Ii, R2i, R2⇤

i
) The configuration of the variables of the subcellular scale

in voxel vi.

Cc = (E,D, c,m, l) The full-lattice configuration of the following variables:

cellular scale cell distribution, E = (E1, ... , ENI
); sub-

cellular Delta, D = (D1, ... , DNI
), used as a proxy to

define cell phenotype; tissue scale ECM concentration,

c = (c1, ... , cNI
); tissue scale BM component concentra-

tions, m = (m1, ... ,mNI
); tissue scale orientation land-

scape variable of ECM fibril alignment, l = (l1, ... , lNI
).

!(i! j) Transition rate for a migration event from voxel vi to voxel

vj .

⌧ij Time step corresponding to the transition !(i! j).

⌧ Time step of the next transition to occur.
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swap(Ai, Aj) A swap operator for the variable A exchanging its values

corresponding to voxels vi and vj , respectively.

t Simulation time.

Tmax Final simulation time.

NR Number of realisations.

For clarity, we add a few comments to the pseudocode Algorithm 1.

line 1 Simulation setup is defined by specifying the lattice dimensions, Nx

I
and Ny

I
, the set of

indices corresponding to the vascular plexus, IV P , the initial cell nucleus positions, Iinit,

the initial ECM alignment, sinit, the initial ECM and BM component concentrations,

cinit and minit, respectively, the distribution of VEGF, V , and the final simulation time,

Tmax. In our simulations, we used 4 di↵erent simulation setups, as listed in Table B.10.

line 5 Initialisation of all variables is done as specified in Table B.9.

line 6 In this line we set ⌧ = 1.0. This is used as the final simulation time for the first

simulation of the subcellular VEGF-Delta-Notch system, i.e. for the initial phenotype

patterning. Initial pattern stabilisation from a uniform configuration set in the initial-

isation takes longer than when a pre-pattern exists and only several cells change their

positions. Thus a value of 1.0 was chosen as a value su�ciently larger than a typical

time step for a migration event (defined in line 8 ).

line 8 The subcellular VEGF-Delta-Notch system is simulated using the Next Subvolume

(NSV) method with the final time given by the time step of the last migration transition,

⌧ (except for the first iteration step in which we use ⌧ = 1.0).
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Algorithm 1. Pseudocode algorithm of multiscale model simulations.

1: Specify simulation setup.

2: Nullify the realisation counter, countR = 0.

3: while countR < NR do

4: countR = countR + 1.

5: Initialisation.

6: Set t = 0, ⌧ = 1.0.

7: while t < Tmax do

8: Obtain Cs by simulating the subcellular VEGF-Delta-Notch multicellular system with

the final simulation time, ⌧ .

9: Given Cc, compute migration transition rates, !(i! j), (see Eq (2.7)

of the main text) for all i, j 2 I.

10: Sample waiting times for each transition from the exponential distribution with

the intensity given by the corresponding transition rate, ⌧ij = Exp(!(i! j)),

for all i, j 2 I such that !(i! j) > 0.

11: Find the migration event with the minimum waiting time: ⌧ = ⌧īj̄ = min
i,j

⌧ij .

Set the jump direction vector, s = h�1(qj̄ � qī), where h is the voxel width.

12: Perform the migration event: swap(Eī, Ej̄) and swap(Cs
ī , C

s
j̄ ).

13: Update the orientation landscape due to traction forces generated by the migration

event according to Eq (2.16) (of the main text) with i = ī and j = j̄ and

the migration direction, s.

14: Do a general update of the tissue scale variables with the final time, ⌧ :

fibrils relaxation, l, (Eq (2.17) of the main text); ECM concentration, c,

(Eqs (2.18)-(2.19) of the main text); BM component concentration, m,

(Eqs (2.20)-(2.21) of the main text).

15: Increment the simulation time: t = t+ ⌧ .

16: [Optional] Calculate statistics.

17: end while

18: [Optional] Post-processing and statistical analysis.

19: End of the current realisation.

20: end while

21: End of simulation.
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line 10 An equivalent procedure to sample a number, x, from the Poisson distribution with

intensity � is x = 1/� log
�
1/Unif[0,1]

�
, where Unif[0, 1] is the uniform distribution on

[0, 1].

line 12 The swapping events account for both a simple migration event, when the destination

voxel vj̄ is free and the cell from voxel vī is just put in a new position (voxel vj̄), and

a switching event, when the destination voxel vj̄ is occupied and cells exchange their

positions (the values of the subcellular scale).

B.4 Next Subvolume (NSV) method

The Next Subvolume (NSV) method is one of the modifications of the standard Stochastic

Simulation Algorithm (SSA) [65], introduced in [64]. For reaction-di↵usion systems, it is

more e�cient than the SSA since the computational e↵ort grows as the logarithm of the

number of voxels (subvolumes in 3D) instead of the linear dependency exhibited by the SSA.

In the SSA the time step for the next reaction to occur is generated from the Poisson

distribution with the intensity equal to the total propensity for all voxels in the system.

Then the reaction is chosen probabilistically according to the weight given by the local (for

each voxel separately) propensities of each reaction. A major advantage of the NSV method

is that time steps for the next reaction are generated for each voxel separately and stored

in a sorted way according to the next time for a reaction to occur. Implementation of this

algorithm is usually done by utilising a data structure called “priority queue” for which many

e�cient algorithms exist. This decreases the overall complexity of the simulating algorithm

from linear (for the SSA) to logarithmic (for the NSV method) of the total number of voxels.

B.5 Metric definitions

Here we provide more details on definitions of and computational algorithms for the metrics

used for model calibration. Firstly, we recall some of the notation used in the main text.
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I Total set of voxel indices.

vi A voxel indexed by i 2 I.

E = (E1, ... , ENI
) Distribution of cell nuclei. Here NI denotes cardinal of I.

Tmax Final simulation time in a single realization of our model.

◆ A cell label.

We introduce a partitioning of a simulation time interval [0, Tmax] with a uniform step �

as follows:

T (�) =

⇢
tk = �k, k = 0, ... ,K, K =

�
Tmax

�

⌫�
, (B.10)

where bxc denotes the largest integer less than or equal to x 2 R.

The pseudocode algorithms shown below should be considered as complementary to the

general algorithm of multiscale simulations, Algorithm 1.

We also note that since the simulations we perform are stochastic, the statistic corre-

sponding to tk 2 T (�) is calculated at time t̄ such that t < tk < t̄, where t and t̄ are time

moments corresponding to two consecutive times of migration events at the cellular scale of

the multiscale simulation.

Displacement The displacement statistic characterises the average displacement a cell

makes in �disp time. In our simulations, �disp is taken such that it corresponds to 15

minutes, in order to be able to compare to the data in [10]. However, in general, �disp can

be chosen arbitrary.

The general algorithm to compute this statistic is given in Algorithm 2. Therein, the

concatenation operator, · _ ·, is defined as v1 _ v2 =
�
v11, ... v

1
N1

, v21, ... v
2
N2

�
for vectors v1 =

�
v11, ... v

1
N1

�
and v2 =

�
v21, ... v

2
N1

�
.
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Algorithm 2. Pseudocode algorithm for computing the displacement statistic.

1: Specify the length of the displacement interval, �disp.

2: Create an empty vector of displacements, Vdisp = ;.

3: for each realisation do

4: Nullify the simulation time, t = 0.

5: k = 1.

6: V 1 = (0, ... , 0) 2 Rmax cell, where max cell =
X

i2I
Ei(t).

7: while t < Tmax do

8: Obtain time step, ⌧ , for the next migration event, !(i! j), (see Algorithm 1).

9: Identify labels of cells whose nuclei are in voxels vi and vj , ◆i and ◆j , respectively, (if

Ej(t) = 0, i.e. vj is empty, then only ◆i).

10: Increment the components of the displacement vector, corresponding to the labels of

migrating cells, V k
◆i = V k

◆i + h and V k
◆j = V k

◆j + h, where h is the voxel width (if

Ej(t) = 0, i.e. vj is empty, then only increment V k
◆i ).

11: t = t+ ⌧ .

12: if t > �dispk then

13: Vdisp = Vdisp _ V k.

14: k = k + 1.

15: V k = (0, ... , 0) 2 Rmax cell, where max cell =
X

i2I
Ei(t).

16: end if

17: end while

18: end for

19: The output vector, Vdisp, is a sample of cell displacements during all time intervals of length

�disp for all cells in all realisations. We use it to compute a probability density function of

displacement in �disp time (as in Figure 2.10A of the main text).

Orientation This statistic is used to characterise persistence of cell migration. The follow-

ing procedure is used for its computation.

Each individual cell in a single realisation is associated with a label, ◆. We record its
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trajectory within the lattice during the simulation, p(◆, t) 2 R2, where t 2 [0, Tmax].

Each p(◆, t) (or any sample extracted from it) is a polygonal chain, since cells perform

jumps at discrete time moments and are assumed to be motionless between them. We define

the length of a polygonal chain p(◆, t) given the time partitioning, T◆, as follows

l(p(◆, t) | T◆) =
X

k

kp(◆, tk+1)� p(◆, tk)k, tk 2 T◆.

Here k·k is the Euclidean norm in R2.

We denote by T r
◆ = {tk}k the ascending sequence of time moments of migration events of

the cell with label ◆. Thus, T r
◆ defines the real trajectory of the cell ◆ (see Figure B.5A).

We also define a partitioning of the simulation time interval, defining the smoothed tra-

jectory (see Figure B.5B), as T s
◆ = T (�orient) (using Eq (B.10)), where �orient is a uniform

time step. In order to be able to compare our simulation results with experimental data from

[4], �orient was chosen such that it corresponds to 20 minutes. However, in general, �orient

can be arbitrary provided that it is greater than a typical waiting time between migration

events in our multiscale simulation algorithm.

Then the orientation quantity, O◆, is defined as

O◆ =
l(p(◆, t) | T s

◆ )

l(p(◆, t) | T r
◆ )

.

When O◆ is close to 1.0, the cell ◆ is characterised as persistent. Lower values of O◆

correspond to trajectories in which cells performed many backward jumps (in the direction

opposite to the elongation direction of a sprout).

The quantities O◆ are computed for each individual cell in each realisation. The overall

sample of these quantities is used to produce box plots of the type shown in Figure 2.10C of

the main text.
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(A) (B)

Figure B.5. Illustrations of real and smoothed trajectories for an individual cell
in a single realisation. (A) Unmodified (real) trajectory of an individual cell with a
label, ◆, in a single realisation, p(◆, t), t 2 [0, Tmax]. (B) The smoothed trajectory is
obtained from the real trajectory, p(◆, t), by extracting a sample p(◆, tk) such that
tk+1 � tk ⇡ �orient. The colourbar indicates the trajectory length.

Directionality The directionality statistic provides a breakdown of migration events by

their direction with respect to the direction of sprout elongation. We account for three types

of movement: anterograde, retrograde and no movement (still). Since in our simulations ECs

polarise according to the alignment of ECM fibrils (orientation landscape variable) which

defines the direction of sprout elongation, any movement of a cell from the voxel of origin

is considered anterograde. In contrast, if there is a cell in the voxel of destination of the

migration event, then this cell is overtaken and is displaced to the voxel of origin. Thus, this

is a retrograde movement. To define cells that stay still, we introduce a parameter, �still. A

cell is assumed to be still if it has not moved in �still time (in our simulations this parameter

corresponds to 20 minutes). A pseudocode for computing the directionality statistic is shown

in Algorithm 3.
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Algorithm 3. Pseudocode algorithm for computing the directionality statistic.

1: Specify length of a time interval to define ‘no movement’ events, �still.

2: Introduce counters for anterograde movement, counta = 0, retrograde movement, countr =

0, and ’no movement’ events, counts = 0.

3: for each realisation do

4: Nullify the simulation time, t = 0.

5: Create an empty array, A = ;, to record labels of cells which moved during �still.

6: k = 1.

7: while t < Tmax do

8: Obtain time step, ⌧ , for the next migration event, !(i! j), (see Algorithm 1).

9: Identify labels of cells whose nuclei are in voxels vi and vj , ◆i and ◆j , respectively, (if

Ej(t) = 0, i.e. vj is empty, then only ◆i).

10: counta = counta + 1.

11: A = A
S
{◆i}.

12: if Ej(t) = 1 then

13: countr = countr + 1.

14: A = A
S
{◆j}.

15: end if

16: Perform the migration event.

17: t = t+ ⌧ .

18: if t > �stillk then

19: counts = counts + (max cell � Size (Unique(A))), where max cell =
X

i2I
Ei(t).

20: A = ;.
21: k = k + 1.

22: end if

23: end while

24: end for

25: The output is given by three counters for each type of cell movement: counta, countr and

counts, which we use to make histograms of the directionality statistic (as in Figure 2.10E

of the main text).

In Algorithm 3, the routine Unique(·) returns an array of unique cell labels in a given set;

the routine Size(·) returns the cardinal of a given set.
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Tip cell proportion This metric, Rtips(t), is defined as the ratio of cells with tip cell

phenotype to the total number of cells in the system at a predetermined time, t. To compute

its average over a number of realisations, we define a partitioning of the simulation time

interval, Ttips = T (�tips), where �tips is a uniform partitioning step.

We recall that we use the parameter characterising the baseline gene expression of Delta,

bD, as a threshold to define a cell’s phenotype (see Eq (2.3) in the main text). Thus, Rtips(t)

in a single realisation is computed as follows:

Rtips(t) =
Number of tip cells

Total number of cells
=

X

i2I: Di(t)�bD

Ei(t)

X

i2I
Ei(t)

. (B.11)

The pseudocode for computing the tip cell proportion statistic, Rtips(t), is shown in Al-

gorithm 4.

Algorithm 4. Pseudocode algorithm for computing the tip cell proportion statistic.

1: Specify the partitioning of the time interval, Ttips.
2: Nullify the realisation counter, r = 0.

3: while r < NR do

4: r = r + 1.

5: Nullify the simulation time, t = 0.

6: Set k = 0.

7: while t < Tmax do

8: Obtain time step, ⌧ , for the next migration event (see Algorithm 1).

9: if t < tk < t+ ⌧ then

10: Compute Rr
tips(tk) as in Eq (B.11).

11: k = k + 1.

12: end if

13: end while

14: end while

15: Average the statistic over the performed realisations, Rtips(tk) =
1

NR

NRX

r=0

Rr
tips(tk),

for each k = 0, ... ,K.
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B.6 Mixing measure

A general definition of the mixing measure, M(t), is given by Eqs (2.22)-(2.23) of the main

text (see also Figure 2.6 of the main text for an illustration). In order to fully determine

M(t), we need to specify the distance function, d(·, ·, ·). Since ECs migrate within empty

sleeves of vascular guidance tunnels created due to ECM proteolysis [32], we convert the

simulated network into a directed graph based on the configuration of the ECM-free tunnels

(defines the set of graph vertices) and the ECM fibril orientation (defines the set of edges).

Pairwise distances between cells are thus computed as the shortest possible paths within the

graph. Specifically, we use the classical Dijkstra algorithm with Manhattan distance function

[222]. Likewise, the maximum distance, dmax, used as a normalisation constant in Eq (2.22)

of the main text, is the maximum Dijkstra distance in the generated graph.

We now proceed to provide a more detailed description of the numerical procedure used to

convert a simulated vascular network into a graph, compute distances between the vertices of

this graph, define a set of indices, Icluster, and compute the temporal evolution of the mixing

measure in a single numerical realisation.

Generating a graph from a simulated network

The algorithm for converting a simulated vascular network into a directed graph, G(N , E), is

based on the following.

I. After reaching the final simulation time, Tmax, in a single realisation, we consider the

final state of the distribution of ECM concentration, c. Based on this quantity, we

determine the voxels that were explored by cell migration (thus generating the vascular

guidance tunnels). Initially ci(t = 0) = cmax for i 2 I \ Iinit (see Table B.9). Since

during cell migration the ECM is degraded (see Eqs (2.18)-(2.19) in the main text),

voxels vi, which have been visited by a cell are such that ci(t = Tmax) < cmax. This

allows us to define the so-called explored network, N , as a subset of voxel indices such
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that

N = {i 2 I such that ci < cmax} . (B.12)

The voxels with indices in N constitute the set of vertices in the graph, G(N , E), to be

constructed. Instead of using 2D indices, for simplicity, we label them in an arbitrary

order.

II. To determine the set of edges, E , we look at the config-

uration of the ECM fibril orientation, l (orientation land-

scape (OL) variable). Vertices corresponding to the voxels

vi and vj , i, j 2 N are connected if the OL of voxel of origin,

li = {ls̄
i
}s̄2S , possesses a component s 2 S greater than the

initialisation value, �init. Here s is a unit vector connecting

the centres of vi and vj (see Figure B.6). The rationale for

this rule is that this condition implies that the direction s

has been explored by a migration event from voxel vi to vj

during simulation (see Eq (2.16) in the main text). Mathe-

matically, it reads

Figure B.6.
Illustration of
the direction
vector, s. s =
h�1(qdest � qorigin),
where qk 2 R2

denotes a vector of
coordinates of the
centre of a voxel
with index k and h
is the voxel width.

(i) there is an edge eij , i, j 2 N if ls
i
> �init, s = h�1(qj � qi) 2 S.

In the example shown in Figure B.7, condition (i) is satisfied for the pairs of vertices

with indices 1! 2 and 3! 4.

III. In most simulated networks, we find sprouts of width of more than one cell (for example,

as shown in Figure B.7A). To avoid infinite distances between first-neighbour voxels

which belong to the same sprout and do not point towards each other but rather are

aligned in the same direction, we connect these vertices if the corresponding voxels

exhibit the same explored direction, s̄. This reads as follows
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(ii) there is an edge eij , i, j 2 N if there exists s̄ 2 S such that ls̄
i
> �init and

ls̄
j
> �init.

In Figure B.7A, voxels (vertices) 1 and 3 are neighbouring, but do not point towards

each other. Nonetheless, in a generated graph (Figure B.7B) they are connected, since

they both have explored the rightward OL direction (s̄ = r). The same argument holds

for the pairs of vertices 2$ 4, 1$ 4, 2! 1, 1! 3 and 4! 3.

IV. We assume that all edges of the graph have the same weight equal to unity.

(A) (B)

Figure B.7. (A) A simple example of a simulated network with | N |= 4. The green colour
corresponds to tip cell phenotype, red colour to stalk phenotype. Since there are cells in
these voxels, the ECM concentration is less than cmax. Thus, these voxels form the explored
network, N (numbering is done in an arbitrary fashion). Explored OL variable directions
are indicated by arrows. (B) The graph corresponding to the simulated network from (A).

We thus formulate a general algorithm, Algorithm 5, for converting a simulated vascular

network into a graph.

We illustrate Algorithm 5 step by step with a simple example based on the small simulated

vascular network in Figure B.8. The final configuration of the explored network is shown in

Figure B.8A (explored vascular guidance tunnels with collagen concentration less than 1.0).

The OL configuration is shown by arrows on this plot. The voxels corresponding to the

explored network, N , are then labelled by numbers in Figure B.8B. They form the set of
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vertices of the graph. Applying Algorithm 5 to it, the simulated network is transformed into

a graph (see Figure B.8C and B.8D, all edges are bidirectional).

Algorithm 5. Pseudocode algorithm to generate a graph from a simulated network.

1: function Network To Graph ( c, cmax, l, �init, I, S)
2: Create set of graph vertices N  {i 2 I such that ci < cmax} . I.

3: Create an empty set of edges E  { }
4: for i 2 N do

5: for s 2 S do

6: j 2 I such that qj = qi + hs . Figure B.6

7: if such j does not exist or j /2 N then

8: continue

9: end if

10: if there exists s̄ 2 S such that either
⇥
ls̄i > �init & s̄ = s

⇤

11: or
⇥
ls̄i > �init & ls̄j > �init

⇤
then

12: Add an edge from vertex i to j, ei,j , to the set of edges E . II., III., Figure B.7

13: end if

14: end for

15: end for

16: Create a graph G(N , E) with all edge costs equal to 1 . IV.

17: return G(N , E)
18: end function

Distances in a graph

The output of Algorithm 5 is an unweighted directed graph G(N , E). We can use it to

compute a matrix of shortest distances in a graph for each pair of vertices (i.e. explored

voxels) in N . To do so, we use the classical Dijkstra algorithm [222]. This algorithm takes

as input a directional graph with non-negative edge weights (for example, the one shown in

Figure B.8D) and computes a matrix of shortest paths between each pair of vertices, using

edge costs. The distance of a path is calculated simply by adding up the weights of all edges

constituting the path. Continuing with the example from Figure B.8, the matrix of shortest

path distances for the graph from Figure B.8D is shown in Table B.5. The quantity dmax in
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(A) (B)

(C) (D)

Figure B.8. An example of converting a simulated network into a graph. (A)
The final configuration of the ECM concentration, c. Here cmax = 1.0, thus the explored
network, N , corresponds to all voxels vi with ci < 1.0. The colour bar indicates collagen
concentration. Arrows correspond to the explored OL configuration (ECM fibril alignment).
(B) Labelling (in an arbitrary fashion) the explored network, N (see Eq (B.12)). Voxels,
indices of which belong to it, are coloured in yellow. (C) Applying Algorithm 5 to generate
a directed graph from the network. Edges between vertices are shown in red (all
bidirectional). (D) The final graph (all edges are bidirectional, arrows are omitted for
simplicity) that is provided as an input to the Dijkstra algorithm to compute shortest paths
between graph vertices. All edges have equal weights of 1.
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Eq (2.23) in the main text is then the maximum value in this matrix.

0 1 6 5 1 1 4 3 2 2 2 4 3 3 4 4 5 5 5 6 7 6 6 7

1 0 7 6 2 1 5 4 3 3 2 5 4 3 5 4 5 6 5 6 7 7 6 7

6 7 0 1 5 6 2 3 4 6 6 5 7 7 8 8 9 9 9 10 11 10 10 11

5 6 1 0 4 5 1 2 3 5 5 3 6 6 7 7 8 8 8 9 10 9 9 10

1 2 5 4 0 1 3 2 1 1 1 3 2 2 3 3 4 4 4 5 6 5 5 6

1 1 6 5 1 0 4 3 2 2 1 4 3 2 4 3 4 5 4 5 6 6 5 6

4 5 2 1 3 4 0 1 2 4 4 2 5 5 6 6 7 7 7 8 9 8 8 9

3 4 3 2 2 3 1 0 1 3 3 1 4 4 5 5 6 6 6 7 8 7 7 8

2 3 4 3 1 2 2 1 0 2 2 2 3 3 4 4 5 5 5 6 7 6 6 7

2 3 6 5 1 2 4 3 2 0 1 4 1 1 2 2 3 3 3 4 5 4 4 5

2 2 6 5 1 1 4 3 2 1 0 4 2 1 3 2 3 4 3 4 5 5 4 5

4 5 5 3 3 4 2 1 2 4 4 0 5 5 6 6 7 7 7 8 9 8 8 9

3 4 7 6 2 3 5 4 3 1 2 5 0 1 1 1 2 2 2 3 4 3 3 4

3 3 7 6 2 2 5 4 3 1 1 5 1 0 2 1 2 3 2 3 4 4 3 4

4 5 8 7 3 4 6 5 4 2 3 6 1 2 0 1 2 1 1 3 4 2 2 3

4 4 8 7 3 3 6 5 4 2 2 6 1 1 1 0 1 2 1 2 3 3 2 3

5 5 9 8 4 4 7 6 5 3 3 7 2 2 2 1 0 3 1 1 2 4 3 4

5 6 9 8 4 5 7 6 5 3 4 7 2 3 1 2 3 0 1 4 5 1 1 2

5 5 9 8 4 4 7 6 5 3 3 7 2 2 1 1 1 1 0 3 4 2 1 2

6 6 10 9 5 5 8 7 6 4 4 8 3 3 3 2 1 4 3 0 1 5 4 5

7 7 11 10 6 6 9 8 7 5 5 9 4 4 4 3 2 5 4 1 0 6 5 6

6 7 10 9 5 6 8 7 6 4 5 8 3 4 2 3 4 1 2 5 6 0 1 1

6 6 10 9 5 5 8 7 6 4 4 8 3 3 2 2 3 1 1 4 5 1 0 1

7 7 11 10 6 6 9 8 7 5 5 9 4 4 3 3 4 2 2 5 6 1 1 0

Table B.5. The matrix of lengths of shortest paths between each pair of vertices in the
graph shown in Figure B.8D. Zero entries on the main diagonal indicate that there are no
self-loops in the graph.

Using Algorithm 5 to generate a graph from the simulated network and the Dijkstra

algorithm as a distance function between its vertices, we complete the definition of the mixing

measure, M(t), Eq (2.22) of the main text.
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Defining the time moments to compute the mixing statistic

To obtain the time evolution of the mixing measure averaged over a number of realisations,

we need to partition the time interval of our simulations and compute M(·) for each time

instant belonging to the partition over all performed stochastic realisations. Two important

issues need to be addressed:

I. M(t) is calculated as a normalised di↵erence between the distance among cells in the

cluster at some time, t, and the distance between the same cells at later time (t+ tm).

Thus, if Tmax is the final simulation time, then the last time moment for computing

the mixing quantity is (Tmax � tm).

II. Our simulations are stochastic. Consequently, time steps of events are not known a pri-

ori but rather sampled during each individual realisation. If we decide to partition the

simulation time in some predetermined way for all realisations, T =
n
⌧k = �mixk, k =

1,K, K =
j
Tmax�tm

�mix

ko
(where �mix is a uniform partitioning step), then we will not

be able to calculate the mixing quantity at exactly that time instant. The time steps of

the stochastic simulations are usually much smaller than the chosen partitioning time

step, �mix. Therefore, if the current simulation time is t such that t < ⌧k < Tmax � tm

and next event will happen at time, t̄, ⌧k < t̄ < Tmax� tm, then we compute the mixing

measure at the time moment t̄, i.e. as soon as the next partitioning time has been

passed.

Defining the voxel cluster

The setup of the numerical simulations is such that we assume there is a set of voxel in-

dices, IV P , corresponding to a vascular plexus from which the cells are migrating (see Ap-

pendix B.3). A Dirichlet boundary condition of a constant cell number is maintained at these

voxels, i.e. if a cell migrates from one of these voxels, a new one immediately appears. Thus,

choosing IV P ⇢ Icluster guarantees that there are always cells present in these voxels, and
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the mixing measure makes sense at all times. However, Icluster can be any set of indices of

the lattice. Choosing a random position for the voxel cluster might lead to a situation when

there are no cells present at the cluster location and we cannot compute the mixing quantity.

We set C =| Icluster |, predetermined cluster size. In the main text, Icluster = Iinit (Setup 1

from Table B.10) was used, thus C = 4.
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Algorithm 6. Pseudocode algorithm for computing the mixing measure in a single
stochastic realisation of the model.

1: Define predetermined partitioning of the time interval T = {⌧k}K1 .

2: Create two empty arrays of size K⇥C to record cell indices, Aid, (see Figure B.9A)

and their final positions, P , (see Figure B.9B) for each time moment of the partition

T .

3: Start stochastic simulation of the multiscale model. Let t denote the current simu-

lation time.

4: Whenever simulation time t > ⌧k for some k that has not been computed yet, record

in Aid cell indices positioned at voxels with indexes Icluster, track positions of these

cells and record their locations in the lattice at time (t + tm) and save them in the

array P (in the corresponding kth row).

5: When t � Tmax terminate the simulation.

6: Convert the final simulated network into a graph using Algorithm 5.

7: Compute the initial distance between cells in the cluster, dinit, that is the same

for all k (since cells are taken from the same lattice locations, Icluster), using the

generated graph and vertices corresponding to Icluster voxels.

8: For each k in 1,K, compute the sum of the pair-wise distances in the graph between

cells with indices from the kth row of Aid taking their recorded final locations from

the kth row of the array P . Denote this quantity as dk.

9: Find the distance of the longest path in the graph, dmax, as the maximum entry in

the matrix of Dijkstra shortest paths.

10: Compute the mixing quantity for each k in 1,K using Eq (2.22) of the main text

which, in the notation of this algorithm, corresponds to mk = dk�dinit

C dmax
.

11: Record in the output file the mixing quantities, mk, for all k = 1,K.

Whenever we decide to compute the mixing measure, we look at the labels of the cells

located in the voxels in Icluster. We then track position of these cells and compute the

mixing quantity using Eqs (2.22)-(2.23) in the main text. Icluster is fixed over all performed

realisations, whereas labels of cells positioned in it for each desirable time moment change.
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Mixing measure

In Algorithm 6 we lay out the general procedure for computing M(t) for a single realisation.

The mixing statistic is computed as a mean value of the mixing quantities for each moment

of the time partition, T , over all performed realisations.

B.7 Quantification of simulated vascular networks

To quantify in a rigorous way the branching structure of simulated vascular networks, we

developed an algorithm to extract:

• vascular network area;

• number of branching points per 100 µm2 area of vascular network;

• number of vessel segments;

• length of vessel segments.

We define a vessel segment as either a part of vascular network between two branching

points or free sprouts, i.e. between a branching point and the leading edge of this sprout.

The orientation landscape variable and graph representation of the simulated network

used to compute the mixing measure give us a direct way to perform vascular network

quantification. Briefly, starting with the graph representation given by Algorithm 5 (see

Figure B.10B), we reduce sprouts of width of more than one voxel to single-voxel sprouts.

This gives us the ‘skeleton’ of the vascular network (see Figure B.10C). From this representa-

tion, it is straightforward to identify branching points as all vertices of degree greater than 2

and vessel segments are obtained by splitting the skeleton graph at the vertices of branching

points (see Figure B.10D). We lay out the general procedure for extracting these statistics in

Algorithm 7.
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(A)

(B)

Figure B.9. Array structures used in Algorithm 6. (A) A schematic of the structure
of the array of cell indices, Aid. (B) A schematic of the structure of the array of final cell
positions, P .
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Algorithm 7. Pseudocode algorithm for extracting network quantification statistics
in a single stochastic realization of the model.

1: Get graph representation of the vascular network, G(N , E), from Algorithm 5.

2: Define a graph of the network skeleton, Gs(Ns, Es) = G(N , E).
3: Network area, A, is equal to the number of vertices in the graph Gs, | Ns |, multiplied by

the area of a single voxel (0.5
p
3h2, in case of hexagonal voxel of width h [µm]).

4: Create an empty set of pairs of vertices of Gs to be merged, Nmerge.

5: for i 2 N do

6: for s 2 S do

7: j 2 I such that qj = qi + hs . Figure B.6

8: if such j does not exist or j /2 N then

9: continue

10: end if

11: if there exists s̄ 2 S such that
⇥
ls̄i > �init & ls̄j > �init

⇤
then

12: Add the pair of vertices (i, j) to the set Nmerge

13: end if

14: end for

15: end for

16: for (i, j) 2 Nmerge do

17: Merge vertex i with vertex j, i.e. delete from Es the edges ei,j and ej,i

and all edges of type ej,· (e·,j) become ei,· (e·,i).

18: end for

19: Delete all vertices of degree 0 from Ns.

20: Delete repeated edges in Gs(Ns, Es).
21: Identify branching points as the set of vertices of degree greater than 2,

Nbranch = {i 2 Ns s.t. deg(i) > 2}. . Figure B.10C

22: Number of branching points per 100 µm2 of vascular network area, Nb =
|Nbranch|·100µm2

A .

23: The graph of vessel segments, Gvessels, is obtained from Gs by duplicating each vertex in

Nbranch by its degree and splitting the graph, Gs, at these points. . Figure B.10D

24: Number of vessel segments is given by the number of connected components in the graph

Gvessels.

25: Vessel segment lengths are given by the number of edges in each connected component of

Gvessels multiplied by the voxel width, h [µm].
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(A) (B)

(C) (D)

Figure B.10. An example of branching structure quantification on a single
simulated vascular network. (A) The final configuration of the ECM concentration, c,
of a simulated vascular network. Arrows correspond to the explored OL configuration
(ECM fibril alignment). (B) The graph representation of the vascular network from (A)
obtained by applying to it Algorithm 5. (C) Vascular network ‘skeleton’, Gs, obtained by
reducing multiple-voxel vessels to single-voxel sprouts (see Algorithm 7). Branching points
(defined as vertices of degree greater than 2) are highlighted by a di↵erent colour. (D)
Splitting the network ‘skeleton’ at the branching points to obtain vessel segments graph,
Gvessels (see Algorithm 7).
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B.8 Sensitivity analysis

Since our subcellular scale model was based on the previous works [153]–[156], we consider the

parameters of this scale to be fixed (see Table B.7). By contrast, our implementation of cell

migration and cell-ECM interactions is novel. Thus, we performed an extensive sensitivity

analysis for the parameters corresponding to the cellular and tissue scales of our model (listed

in Table B.8).

We define the set of baseline parameter values as:

p̄ ={K, km, kD, ⌘max, sc, Dc, �max, sm, Dm, pmax, sp, Dp, EF1, EF2, sF1, sF2, Rc, D!, ⌘l, cmax, a,�l}.

Brief interpretations of these parameters and references to the corresponding equations are

given in Table B.6. Baseline parameter values, calibrated by comparing our model to exper-

imental data from [4], [10], [126], are listed in Table B.8.

Parameters Interpretation Reference

K, km, kD cell exploratoriness Eq (2.14)

⌘max, sc, Dc ECM proteolysis Eqs (2.18)-(2.19)

�max, sm, Dm BM assembly Eqs (2.20)-(2.21)

pmax, sp, Dp probability of cell overtaking Eqs (2.10)-(2.11)

EF1, EF2, sF1, sF1, sF2 cell-cell interaction Eq (2.9)

Rc cellular scale cell-cell interaction radius Table 2.1, EN

D! di↵usion coe�cient Eq (2.7)

⌘l ECM relaxation rate Eq (2.17)

cmax maximum ECM concentration Eq (2.8)

a polarity vector parameter Eq (2.13)

�l orientation landscape update increment Eq (2.16)

Table B.6. Parameters of the cellular and tissue scales used for sensitivity
analysis. Equation references are for the main text.
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We define pi as a vector of parameter values as in p̄ except for the parameter at position

i which is incremented (or decremented) as indicated. For each of these parameter sets,

we perform 100 realisations of our model using simulation Setup 1 from Table B.10. The

parameters of the subcellular scale are fixed for all experiments (see Table B.7). From these

data we extract the following quantification metrics:

• anterograde cell proportion (directionality statistic);

• orientation;

• displacements;

• number of branching points per 100 µm2 of vascular network area;

• number of vessel segments;

• vessel segment lengths.

In order to compare these metrics for modified parameter sets, pi, to the baseline param-

eters, p̄, we compute:

• Kolmogorov-Smirnov statistic:

D⇤ = max
x

| F̂p̄(x)� F̂pi
(x) | .

Here F̂p̄(x) and F̂pi
(x) are empirical cumulative distribution functions corresponding to

the chosen metric for the sets of parameters p̄ and pi, respectively. D⇤ 2 [0, 1], where

values close to 0 indicate that the corresponding cumulative distributions are similar

and values close to 1 indicate that F̂p̄(x) and F̂pi
(x) di↵er significantly.

• Relative mean change:

µpi
� µp̄

µp̄

,
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where µpi
and µp̄ are the mean values of the chosen metric for p̄ and pi, respectively.

• Relative change of standard deviation:

�pi � �p̄
�p̄

,

where �pi and �p̄ are the standard deviations of the chosen metric for p̄ and pi, respec-

tively.

We performed experiments for ±0.1%, ±1%, ±5%, ±5%, ±10%, ±15% and ±20% change

in the parameter values. The results for ±10% change are shown in Figures B.11-B.13 for the

Kolmogorov-Smirnov statistic, relative change of mean and relative change of standard devi-

ation, respectively. From these plots, it can be seen that cell behaviour (such as anterograde

cell proportion, orientation of cell trajectory and cell displacements) and branching struc-

ture of the simulated networks (number of branching points, number and length of vessel

segments) are a↵ected the most by variations in parameters Dc and Dm characterising ECM

proteolysis and BM deposition rates, respectively. Less significant change in the metrics is

seen for cell exploratoriness parameters, K and kD, and cell-cell adhesion parameters, EF1

and EF2. We also note that individual cell behaviour is less a↵ected than the overall vascular

network structure.

The results of the sensitivity analysis for ±10% for the final value of mixing measure

(the last value in the time evolution of the mixing measure extracted from the numerical

simulations, M(t � tm)) are shown in Figure B.14. This metric is more robust than the

metrics considered in Figures B.11-B.13. Interestingly, variations in majority of parameters

(both positive and negative) induce a decrease in the final value of the mixing measure.
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(A)

(B)

(C)

(D)

(E)

(F)

Figure B.11. Sensitivity analysis results for Kolmogorov-Smirnov distance for
the following metrics: (A) anterograde cell proportion, (B) orientation, (C)
displacements, (D) number of branching points per 100 µm2 of vascular network area, (E)
number of vessel segments, (F) vessel segment lengths. Simulations were performed using
Setup 1 from Table B.10 and the parameter values as listed in Table B.8 except for the
parameter indicated at Ox-axis which was incremented (decremented) by 10%. For each set
of parameters 100 realisations were performed.
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(A)

(B)

(C)

(D)

(E)

(F)

Figure B.12. Sensitivity analysis results for relative mean change for the
following metrics: (A) anterograde cell proportion, (B) orientation, (C) displacements,
(D) number of branching points per 100 µm2 of vascular network area, (E) number of
vessel segments, (F) vessel segment lengths. Simulations were performed using Setup 1
from Table B.10 and the parameter values as listed in Table B.8 except for the parameter
indicated at Ox-axis which was incremented (decremented) by 10%. For each set of
parameters 100 realisations were performed.
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(A)

(B)

(C)

(D)

(E)

(F)

Figure B.13. Sensitivity analysis results for relative change of standard
deviation for the following metrics: (A) anterograde cell proportion, (B) orientation,
(C) displacements, (D) number of branching points per 100 µm2 of vascular network area,
(E) number of vessel segments, (F) vessel segment lengths. Simulations were performed
using Setup 1 from Table B.10 and the parameter values as listed in Table B.8 except for
the parameter indicated at Ox-axis which was incremented (decremented) by 10%. For each
set of parameters 100 realisations were performed.
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(A)

(B)

(C)

Figure B.14. Sensitivity analysis results for final value of mixing measure: (A)
Kolmogorov-Smirnov distance, (B) relative mean change, (C) relative change of standard
deviation. Simulations were performed using Setup 1 from Table B.10 and the parameter
values as listed in Table B.8 except for the parameter indicated at Ox-axis which was
incremented (decremented) by 10%. For each set of parameters 100 realisations were
performed.
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B.9 Supplementary movies, figures and tables

Movie 2.1 An example of an individual vascular network generated by wild type

ECs during simulation of our model with uniform VEGF = 50 ng/ml. The leftmost

panel shows the concentration of Delta, D. The colour bar indicates level of Delta, D, (green

colour corresponds to tip cells, red – to stalk cells). Arrows indicate the configuration of the

orientation landscape, l. The central panel indicates the concentration of the ECM, c. The

rightmost panel – the polarity angle, µ, variable. A circular colour bar indicates the value

of µ. The simulation was performed using Setup 1 from Table B.10 with final simulation

time, Tmax = 2.5. Parameter values are listed in Tables B.7 and B.8 for subcellular and

cellular/tissue scales, respectively. The movie is available for download at https://github.

com/daria-stepanova/PhD_thesis_supplementary_materials.

Movie 2.2 Cell migration from a cell bead in substrates of di↵erent collagen

density. Single realisations of angiogenic sprouting from a cell bead in substrates of di↵erent

collagen densities (reproducing the results of the polarisation experiment in [126]). Maximum

collagen density (A) cmax = 0.1, (B) cmax = 1.0, (C) cmax = 1.7, (D) cmax = 3.0. The

VEGF linear gradient starts with 0 ng/ml at y = 0 and increases up to 5 ng/ml at y = 125 µm.

Central bead initial and basement membrane conditions, IBM = Iinit, are outlined by a black

thick line on each plot. Colour bars indicate the level of Delta ligand. The simulations were

performed using Setup 3 from Table B.10. Parameter values are listed in Tables B.7 and B.8

for subcellular and cellular/tissue scales, respectively. The movie is available for download

at https://github.com/daria-stepanova/PhD_thesis_supplementary_materials.

Movie 2.3 Single realisations of cells shu✏ing within a linear sprout when two

given cell lines are mixed 1:1 (50% to 50%). The cell lines used in each realisation

are indicated in the titles. In the top row, no treatment with DAPT inhibitor was applied

to cells; in the bottom row, all ECs were treated with DAPT. The leading edge corresponds

https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
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to two rightmost voxels of each sprout. The colour bar for Delta level of the WT goes from

red colour (stalk cell) to green (tip cell), whereas for the mutant cells the bar goes from

purple colour (stalk cell) to yellow (tip cell). The simulations were performed using Setup 4

from Table B.10. Parameter values are listed in Tables B.7 and B.8 for subcellular and cellu-

lar/tissue scales, respectively, except for the changed parameters for the mutant cells listed

in Appendix B.3. Final simulation time, Tmax = 50.0. The movie is available for download

at https://github.com/daria-stepanova/PhD_thesis_supplementary_materials.

Movie 2.4 Examples of an individual vascular networks generated by wild type

and mutant (VEGFR2+/- and VEGFR1+/-) ECs during simulation of our model

with uniform VEGF = 5 ng/ml. The cell line is indicated in the title of each panel. The

colour bar indicates levels of Delta, D, (green colour corresponds to tip cells, red – to stalk

cells). Arrows indicate the configuration of the orientation landscape, l. Numerical simula-

tion was performed using Setup 1 from Table B.10 with final simulation time, Tmax = 2.5.

Parameter values are listed in Tables B.7 and B.8 for subcellular and cellular/tissue scales, re-

spectively, except for the changed parameters for the mutant cells listed in Appendix B.3. The

movie is available for download at https://github.com/daria-stepanova/PhD_thesis_

supplementary_materials.

https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
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(A)

(B)

(C)

Figure B.15. Examples of steady state patterns of the VEGF-Delta-Notch
subcellular model for di↵erent interaction radii. Final steady state patterns
established during single stochastic simulations of the system described by the kinetic
reactions outlined in Figure 2.3D for a uniform hexagonal lattice of 10⇥ 12 voxels. (A)
Rs = 1.0h, (B) Rs = 2.0h, (C) Rs = 3.0h and the rest of the parameter values as in
Table B.7.
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(A) (B)

(C) (D)

(E) (F)

Figure B.16. (Caption on the next page.)
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Figure B.16. Sensitivity analysis: orientation vs. anterograde cell proportion.
We performed simulations of our model by varying one of the parameters of the cellular and
tissue scales at a time by a fixed per cent and keeping default values for the rest of the
parameters (as in Table B.8). Each parameter was varied by ±0.1%, ±1%, ±5%, ±10%,
±15% and ±20%. For each numerical experiment, several quantitative metrics were
computed. The results are represented as scatter plots of mean cell trajectory orientation
vs. mean anterograde cell proportion with colouring indicating mean (A) cell number; (B)
vascular network area; (C) vessel segment length; (D) number of branching points per
100 µm2 of vascular network area and (E) displacements. On these plots, dashed magenta
lines indicate the point corresponding to the default parameter values; magenta highlights
the region of the main point clustering. The grey-coloured outlier region corresponds to
vascular networks with less persistent, twisted vessels, whereas the brown outlier region is
characterised by longer straight vessel segments. Variations of the parameters that push the
system towards one of the outlier regions are indicated on each plot. Panel (F) provides a
general summary of these results. Simulation setup as in Setup 1, Table B.9, with
Tmax = 2.5. The results are averaged over 100 realisations. The subcellular parameters were
fixed at their default values in all experiments (see Table B.7).
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(A)

(B)

(C)

Figure B.22. Temporal evolution of mixing measure and tip cell proportion in
simulated vascular networks. Left column plots show the mixing measure, M(t), as a
function of time (the mean value is indicated by a thick line and standard deviation is
shown by a band with corresponding colour). Right column plots demonstrate the evolution
of tip cell proportion. Simulations were done for networks formed by (A) WT cells; (B)
VEGFR2+/- mutant cells; and (C) VEGFR1+/- mutant cells. Numerical simulation setup
used is Setup 1 from Table B.10 with final simulation time Tmax = 2.5. Parameter values
are listed in Tables B.7 and B.8 for subcellular and cellular/tissue scales, respectively,
except of those changed for mutant cells (see Appendix B.3). Results are averaged over 100
realisations for each experimental scenario.
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Figure B.23. Mixing measure steady state for VEGF = 0 ng/ml. Plots of mixing
measure, M(t), as a function of time for WT, VEGFR2+/- and VEGFR1+/- mutant cells
for VEGF=0 ng/ml (the mean value is indicated by a thick line and standard deviation is
shown by a band of the corresponding colour). At this concentration of external VEGF,
there is no e↵ective sprout elongation, thus cells perform proteolysis-free random shu✏ing
within already existing sprouts [32]. This leads to a steady state of the mixing measure for
all cell lineages. Mean values are 0.39, 0.39 and 0.38 for WT, VEGFR2+/- and VEGFR1+/-

cells, respectively. Numerical simulations were performed using Setup 1 from Table B.10
and Tmax = 2.5. Parameter values are listed in Tables B.7 and B.8 for subcellular and
cellular/tissue scales, respectively, except of those changed for mutant cells (see
Appendix B.3).
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Para-
meter

Units Description Value used in simu-
lations

Ref.

Rs µm Interaction radius. 15 estim.,
[11], [34]

bN molec · time�1 Baseline Notch receptor
expression.

500 [155],
[156]

bD molec · time�1 Baseline Delta ligand ex-
pression.

800 [155],
[156]

bR2 molec · time�1 Baseline VEGFR2 expres-
sion.

800 [156]

I0 molec Activation threshold for
NICD.

100 [156]

R2⇤0 molec Activation threshold for
activated VEGFR2.

200 [156]

�I,N dimensionless Weight factor characteris-
ing fold change of the pro-
duction rate of Notch re-
ceptor depending on the
NICD concentration.

4.0 [155],
[156]

�R2⇤,D dimensionless Weight factor characteris-
ing fold change of the pro-
duction rate of Delta lig-
and depending on the acti-
vated VEGFR2 concentra-
tion.

2.0 [156]

�I,R2 dimensionless Weight factor characteris-
ing fold change of the pro-
duction rate of VEGFR2
depending on the NICD
concentration.

0.0 [156]

nN dimensionless Cooperativity parame-
ter for Hill function for
NICD-dependent Notch
up-regulation.

2 [154]

nD dimensionless Cooperativity parameter
for Hill function for acti-
vated VEGF-dependent
Delta up-regulation.

1 [154]

nR2 dimensionless Cooperativity parameter
for Hill function for NICD-
dependent VEGFR2
repression.

1 [154]
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V molec External VEGF. 2500 (Figure 2.3E);
0 � 2500 (Figure 2.3F);
{0, 2500, 25000} (in the
rest of the simulations)

[155],
[156]

Dext molec External Delta ligand. 0 � 3000 (Figures 2.3E
and 2.3F); calculated
from adjacent cells (in
the rest of the simula-
tions)

[155],
[156]

Next molec External Notch receptor. 1000 (Figures 2.3E and
2.3F); calculated from
adjacent cells (in the
rest of the simulations)

[155],
[156]

kt molec�1 · time�1 Trans-binding rate for
Notch receptor and Delta
ligand.

5.0e� 5 [154]

kc molec�1 · time�1 Cis-interaction rate for
Notch receptor and Delta
ligand.

6.0e� 4 [154]

kv molec�1 · time�1 Binding rate for VEGFR2
and external VEGF.

5.0e� 5 [156]

⌘ dimensionless Endocytic regulation of
Notch signalling.

0.5 estim.,
[223]

� time�1 Degradation rate of pro-
teins.

0.1 [156]

�e time�1 Degradation rate of acti-
vated receptors.

0.5 [156]

Table B.7. Baseline parameter values for the VEGF-Delta-Notch subcellular
model. Description and reference values used in simulations of the subcellular
VEGF-Delta-Notch signalling.

Parameter Value Parameter Value Parameter Value Parameter Value

Rc 1.5h D! 1.0 cmax 1.0 �l 0.01
EF1 0.25 EF2 0.7 sF1 35.0 sF2 10.0
pmax 0.26 sp 0.0015 Dp 1500 a 7.0

n 2 K 20.0 km 2.6 kD 0.0002
⌘l 0.1 ⌘max 12.5 sc 0.003 Dc 4200

�max 17.0 sm 0.003 Dm 4200

Table B.8. Parameter values of the cellular and tissue scales used in our
simulations.
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Variable Indexes Description

Ei = 1 i 2 Iinit
Initial distribution of cell nuclei.

Ei = 0 i 2 I \ Iinit
Ni = DUnif[(1� ⇠)bN , (1 + ⇠)bN ]

i 2 Iinit

Cells are initialised with
ligand/receptor numbers
corresponding to their baseline
gene expression with a correction
for random fluctuations included
via the parameter ⇠. At the voxels
where there is no cell nucleus,
subcellular variables are initialised
with the value zero.

Di = DUnif[(1� ⇠)bD, (1 + ⇠)bD]

Ii = DUnif[(1� ⇠)I0, (1 + ⇠)I0]

R2i = DUnif[(1� ⇠)bR2, (1 + ⇠)bR2]

R2⇤
i
= DUnif[(1�⇠)R2⇤0, (1+⇠)R2⇤0]

Ni = Di = Ii = R2i = R2⇤
i
= 0 i 2 I \ Iinit

lsinit

i
= 2�init i 2 Iinit

The alignment of ECM fibrils for
voxels where cells were initially
placed in the direction sinit 2 S.

ls
i
= Unif[0,�init] i 2 I \ Iinit,

8s 2 S
The alignment of ECM fibrils for
the rest of the voxels is initialised
with a small random value in a
given range, [0,�init], imitating
random orientation of fibrils prior
to their realignment due to cell
migration.

ls
i
= Unif[0,�init] i 2 Iinit,

8s 6= sinit 2
S

ci = cinit i 2 Iinit The ECM concentration at the
voxels with cells is equal to
cinit 2 [0, cmax] (specified for each
numerical experiment). For other
voxels, the ECM is assumed to be
unchanged, thus equal to the
maximum ECM concentration,
cmax.

ci = cmax i 2 I \ Iinit

mi = minit i 2 Iinit The concentration of BM
components at the voxels with cells
is equal to minit 2 [0, 1] (specified
for each numerical experiment).
For other voxels, no BM
components have been deposited,
thus the concentration is set to
zero.

mi = 0 i 2 I \ Iinit

Table B.9. (Caption on the next page.)
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Table B.9. Initial conditions for numerical simulations. Here I is the set of all
voxels; S is the set of all possible migration directions. DUnif[a, b] is a discrete uniform
distribution over all integer numbers lying within the interval [a, b]; Unif[a, b] is the uniform
distribution on the interval [a, b]. Baseline gene expression parameters for the
VEGF-Delta-Notch signalling are listed in Table B.7. �init = 1.0 for all numerical
simulations (this value, as, in general, for the value of the OL variable, is non-dimensional).
The fluctuation parameter, ⇠, is set to 0.1 in all numerical simulations. The exact values for
cinit and minit are given for each numerical experiment in Table B.10, as well as the set of
initial cell positions, Iinit. For the description of model variables see Table 2.1 in the main
text.
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Set-
up

Specifications Figures
S
et
u
p

1
:
In
d
iv
id
u
al

sp
ro
u
t Nx

I
= 25, Ny

I
= 29 For WT cells:

Figures 2.7, 2.8,
2.10, 2.13, 2.14,
B.21-B.23. For
mutant cells:
Figures 2.15,
B.17-B.23.

Iinit = {i = (ix, iy)T : ix = 1, 2, iy = 14, 15}
IV P = {i = (1, iy)T : iy = 14, 15}
sinit = r

cinit = 0.0, minit = 1.0

V 2 {0, 2500, 25000}, uniform distribution over the lattice,
which correspond to 0, 5 and 50 ng/ml VEGF concentration,
respectively. The exact value specified in the text.

Simulations with this setup are performed with WT and
mutant cells (see Table B.7 and Appendix B.3, respectively).

S
et
u
p

2
:
V
es
se
l
in

V
E
G
F

gr
ad

ie
nt

Nx

I
= 25, Ny

I
= 29 Figure 2.9

Iinit = {i = (ix, iy)T : ix = 12, 13, iy = 1,..., 29}
IV P = Iinit
sinit - not specified

cinit = cmax, minit = 0.0

V (ix, iy) = 2500 iy

N
y

I

. This corresponds to a VEGF gradient

linearly increasing from 0 to 5 ng/ml along the y-axis.

Simulations with this setup are performed with WT cells
(see Table B.7).

S
et
u
p

3
:
C
el
l
b
ea
d

Nx

I
= 25, Ny

I
= 29 Figure 2.11

Iinit = {i = (ix, iy)T : (ix � 13)2 + (iy � 9)2  5, i 2 I}
IV P = Iinit
sinit - not specified

cinit = cmax, minit = 0.0

V (ix, iy) = 2500 iy

N
y

I

. This corresponds to a VEGF gradient

linearly increasing from 0 to 5 ng/ml along the y-axis.

Simulations with this setup are performed with WT cells
(see Table B.7).

S
et
u
p

4
:
L
in
ea
r
sp
ro
u
t Nx

I
= 25, Ny

I
= 2 Figure 2.12,

Table 2.3Iinit = {i = (ix, iy)T : ix = 1,..., 25, iy = 1, 2}
IV P = Iinit
sinit = r

cinit = 0.0, minit = 1.0

V = 15000, corresponding to a constant uniform distribu-
tion of VEGF at the concentration 30 ng/ml (used in [9]).

Simulations with this setup are performed with mutant cells
(Appendix B.3).

Table B.10. (Caption on the next page.)
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Table B.10. Setups of simulation experiments. For each setup of numerical
simulation we specify the lattice dimensions, Nx

I
and Ny

I
; the set of indices corresponding to

the vascular plexus, IV P ; the initial cell nuclei positions, Iinit; the initial polarisation
direction, sinit; the initial ECM and BM concentrations, cinit and minit, respectively; the
VEGF distribution over the lattice, V ; and cell line used in simulations.
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Appendix C

Supplementary materials for Chapter 3

C.1 Geometric minimum action method (gMAM)

The geometric minimum action method (gMAM) was developed in [181] as a technique for
e�cient numerical computation of the minimum action path (MAP) and the corresponding
quasipotential (given as the minimum of the action functional) of a rare event. Briefly,
starting with the geometric representation, bS(�) (Eq (3.6)), the Euler-Lagrange equation
associated with the minimisation of bS(�) is derived, assuming ✓̂(�,�0) is known. Then a (pre-
conditioned) steepest descend algorithm can be used to solve this Euler-Lagrange equation,
maintaining the standard arc length parametrisation of �. If no explicit formula for ✓̂(�,�0)
is available, then ✓̂(�,�0) is computed in the inner loop of the algorithm, as a solution to the
system

H(x, ✓̂) = 0 (C.1a)

@H(x, ✓)

@✓
= ��0 (C.1b)

for some �.
For a di↵usion process of type Eq (3.1), there are explicit expressions for the Lagrangian

and the corresponding Hamiltonian

L(x, y) = hy � b(x), a�1(x)(y � b(x)) = ky � b(x)k2
a
, (C.2a)

H(x, ✓) = hb(x), ✓i+ 1

2
h✓, a(x)✓i, (C.2b)

where kpk2
a
= hp, a�1(x) pi is a norm induced by the di↵usion tensor, a(x). This allows us

to explicitly derive the action functional in its geometric reformulation [181],

bS(�) =
✓Z 1

0

���0��
a
kb(�)k

a
� h�0, a�1(�)b(�)i

◆
d↵,
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and the solution to the system of equations Eq (C.1):

✓̂(x, y) = a�1(x)

✓
kb(x)k

a

kyk
a

� b(x)

◆
, (C.3a)

�(x, y) =
kb(x)k

a

kyk
a

. (C.3b)

For a general birth-death CTMC of type Eq (B.2) with transition rates, ↵R(x), and the
corresponding stoichiometric vectors, ⌫R, the Hamiltonian reads:

H(x, ✓) =
X

R

↵R(x)
�
exp

�
h✓, ⌫Ri

�
� 1

�
. (C.4)

In this case, there is no explicit solution to the system given by Eq (C.1) but it can be
computed in the inner loop of the gMAM [181].

For the convergence of the gMAM for an SDE, a and b must be bounded and uniformly
continuous, and a has to be uniformly elliptic, whereas, for a CME, the rate functions, ↵R,
must be uniformly bounded away from 0 and +1 [181].

For alternative numerical methods to compute minimum action paths (MAPs) we refer
the reader to [180], [185] and references therein.

C.2 System of stochastic di↵erential equations of the VEGF-Delta-Notch model
(individual cell)

Let x✏ = (n✏, d✏, ◆✏, r2✏, r2⇤✏)T . Then, the SDE for the stochastic VEGF-Delta-Notch system
reads:

dx✏(t) = b(x✏)dt+
p
✏�(x✏)dW. (C.5)

Here the drift vector, b(x✏) 2 R5, is given by Eq (C.6), the di↵usion tensor, a(x✏) =
(��T )(x✏) 2 R5⇥5, and �T (x✏) 2 R12⇥5 is given by Eq (C.7). The level of noise is con-
trolled by ✏ = ⌦�1. Finally, W is a Wiener process in R12.

b(x✏) =

0

BBBB@

�NHS(⇢N ◆✏; 1.0,�I,N , nN )� n✏ � dextn✏ � n✏d✏

�DHS(⇢R2 r2
⇤✏; 1.0,�R2⇤,D, nD)� d✏ � ⌘nextd✏ � n✏d✏

dextn✏ � ⌧̂ ◆✏

�R2HS(⇢N ◆✏; 1.0,�I,R2, nR2)� (1 + vext)r2✏

vext r2✏ � ⌧̂ r2⇤✏

1

CCCCA
. (C.6)

Here the shifted Hill function, HS(p; p0,�, n) =
1+�(p/p0)

n

1+(p/p0)
n .

The matrix �T (x✏) takes the form:
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�T (x✏) =

✓
S1(x✏) 08⇥2

04⇥3 S2(x✏)

◆
, (C.7)

where 0n⇥m is a zero block matrix of size n ⇥ m, and block matrices S1(x✏) 2 R8⇥5 and
S2(x✏) 2 R4⇥2 are defined as

S1(x
✏) =

0

BBBBBBBBBBB@

p
�NHS(⇢N ◆✏; 1.0,�I,N , nN ) 0 0

�
p
n✏ 0 0

0
p

�DHS(⇢R2 r2⇤✏; 1.0,�R2⇤,D, nD) 0
0 �

p
d✏ 0

�
p
dextn✏ 0

p
dextn✏

0 �
p
⌘nextd✏ 0

0 0 �
p
⌧̂ r2⇤✏

�
p
n✏d✏ �

p
n✏d✏ 0

1

CCCCCCCCCCCA

,

S2(x
✏) =

0

BB@

p
�R2HS(⇢N ◆✏; 1.0,�I,R2, nR2) 0

�
p
vext r2✏ �

p
vext r2✏

�
p
r2✏ 0
0 �

p
r2⇤✏

1

CCA .

C.3 Minimum action path (MAP) for the VEGF-Delta-Notch system in indi-
vidual cell

Using the SDE for the VEGF-Delta-Notch system (Eqs (C.5), (C.6) and (C.7)), we imple-
mented the gMAM to compute the minimum action path (MAP) and the corresponding
quasipotential (using explicit expressions for the Hamiltonian and the momentum, Eqs (C.2)
and (C.3)). An illustration of the MAPs for transitions between phenotypes for a fixed set
of parameters (Table C.1) is shown in Figure C.1. In addition, Figure C.2 demonstrates
the tubular neighbourhoods around these MAPs (the transition tubes within which pheno-
type transitions occur) for di↵erent values of the noise level. It can be seen that transition
paths can diverge more from the corresponding MAP in higher noise levels (✏ ⇡ 0.014 in
Figure 3.4A) than in lower ones (✏ ⇡ 0.002 in Figure 3.4B).
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(A) stalk cell ! tip cell (B) stalk cell ! tip cell

(C) tip cell ! stalk cell (D) tip cell ! stalk cell

Figure C.1. Minimum action paths. Projections (3D, left panels; 2D, right panels) of
the MAPs computed using the gMAM (dotted magenta lines) for transitions from (A)-(B)
stalk cell ! tip cell; (C)-(D) tip cell ! stalk cell. Streamlines associated with the
mean-field model are drawn in grey. Stable steady states corresponding to tip (stalk) cell
phenotype are indicated by filled green (red) circles; unstable saddle points are indicated by
unfilled blue circles. Heteroclitic orbits, connecting steady states, are indicated by thick
black lines.
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(A) system size, ⌦ = 70 (noise level, ✏ = 1/⌦ ⇡ 0.014)

(B) system size, ⌦ = 450 (noise level, ✏ = 1/⌦ ⇡ 0.002)

Figure C.2. An illustration of the transition tubes for stochastic sample paths
of transitions between the cell phenotypes. This figure corresponds to Figure 3.4 of
the main text. Here, we additionally plotted in orange 100 transition paths for the
corresponding trajectories from (A) stalk to tip cell and (B) tip to stalk cell. Thus, the
regions shaded in orange indicate the transition tubes around the MAPs (indicated by the
dotted magenta lines) for the corresponding noise level. Representative stochastic sample
paths (identical to the ones shown in Figure 3.4) obtained by simulating the full stochastic
CTMC model (Table B.1) with the system sizes (A) ⌦ = 70, (B) ⌦ = 450, are plotted in
black. The thin grey lines indicate streamlines of the corresponding mean-field system
(Eq (B.4)). The tip (stalk) cell stable steady state is indicated by a green (red) filled circle;
the unstable saddle by a blue unfilled circle. The plots represent three-dimensional
projections of the full five-dimensional system as defined by Eq (B.4). Parameter values are
fixed as indicated in Table C.1.
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C.4 Pseudocode algorithm for simulating the multi-agent CG model of a system
with a region of multistability

Algorithm 8. Pseudocode algorithm for simulating the multi-agent CG model of a
system with a region of multistability.

1: Specify final simulation time, Tfinal, and the system size, ⌦.

2: Given a discretisation, {uj}j , of the external (bifurcation) variables, read look-up

tables for steady states, quasipotential and prefactor values.

3: For each uj , compute CG transition rates, !xk!xl
, k, l = 1 ...K, k 6= l, defined by

Eq (3.7) for the specified ⌦. Here {xk}Kk=1 is a set of stable steady states.

4: Initialise interpolation routines to establish an input-output relationship between an

arbitrary u 2 U and the CG transition rates, !xk!xl
.

5: Initialise the system with a pre-pattern by using the original stochastic model or its

mean-field limit (preferable).

6: Set the simulation time, t = 0.

7: while t < Tfinal do

8: Set total propensity, P = 0.

9: for each entity, e, do

10: Compute its external variables, ue.

11: for k, l = 1 ...K, k 6= l, do

12: Interpolate !e
xk!xl

for the given ue.

13: P = P + !e
xk!xl

.

14: end for

15: end for

16: Sample the waiting time for the next transition to occur, ⌧̄ ⇠ Exp(1/P ), where

Exp(�) is an exponential distribution of intensity �.

17: Probabilistically (as in the Gillespie algorithm), decide which transition occurs

(in which entity, ē, and between which stable steady states).

18: For this entity, compute again uē and interpolate its new steady state after

the transition.

19: Update the simulation time, t = t+ ⌧̄ .

20: end while

21: End of simulation.
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C.5 Quantification metrics

We used the following metrics to compare our models.

Tip cell proportion This metric is defined as in Appendix B.5 with a di↵erence that here
we use the non-dimensional Delta levels as a proxy to determine cell phenotype. Thus, the
number of tip cells is given by the number of cells whose (non-dimensional) Delta level exceeds
the threshold dtip = 0.1�D. Then the tip cell proportion at time, t, can be computed as the
ratio of the number of tip cells to the total number of cells. Here, �D is the characteristic
expression of Delta in a cell (see Table C.1).

Tip cell cluster distribution Depending on the parameter values, in the final spatial
pattern (at a fixed final simulation time), tip cells can form small clusters, i.e. be adjacent
(see Figure C.3). We extracted the distribution of the cluster sizes for final configurations of
the spatial phenotype pattern.

(A) (B)

Figure C.3. Simulation results showing how the long time distribution of tip
cell clusters in a small monolayer of cells changes as the cell-to-cell interaction
radius varies. Cell interaction radius (A) Rs = 5µm (B) Rs = 15µm. Each group of tip
cells (a cluster) is coloured by a distinct colour (randomly chosen). Stalk cells are left white.

Computational cost Computational cost is defined to be the mean CPU times (in sec-
onds) required to perform a single realisation of a model simulation. Technical specifications
of computers used to perform the simulations are indicated in File 3.1.
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C.6 Supplementary files, movies, figures and tables

File 3.1 Technical specifications of the computers used to perform simulations in this work.
The file is available for download at https://github.com/daria-stepanova/PhD_thesis_
supplementary_materials.

Movie 3.1 A simulation movie showing di↵erent pattern configurations explored
by the CG system in a small 2D cell monolayer. The movie is the complete animation
of the simulation snapshots shown in Figure 3.9 of the main text. This movie demonstrates
how the spatial distribution of cells with two phenotypes changes over time in the CG system
due to phenotype switches in individual cells. The colour bar indicates the levels of Delta.
For this simulation, the interaction radius and system size were fixed at Rs = 15µm and
⌦ = 100, respectively; the values of the remaining parameters were fixed at the values given in
Table C.1. The movie is available for download at https://github.com/daria-stepanova/
PhD_thesis_supplementary_materials.

Movie 3.2 A simulation movie showing the emergence of robust pattern con-
figurations in simulations of the CG system. The movie is the complete anima-
tion of the simulation snapshot shown in Figure 3.10 of the main text. This movie illus-
trates the emergence of a robust spatial pattern in the dynamics of the CG system at long
times. Due to the exploration of di↵erent pattern configurations, the CG system settles
on a configuration whose total propensity, P , is small. Thus, the mean waiting time for
a phenotype switch for this pattern (given by 1/P ) tends to infinity and it becomes ro-
bust to any further phenotype switches. The lattice site highlighted in cyan indicates the
position of a cell whose dynamics are shown in Figures 3.10C and 3.10D. The colour bar
indicates the levels of Delta. For this simulation, the interaction radius and system size
were fixed at Rs = 15µm and ⌦ = 1000, respectively; the values of all remaining param-
eters were fixed at the values given in Table C.1. The movie is available for download at
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials.

Movie 3.3 A simulation movie showing di↵erent pattern configurations explored
by the CG system in a branching network. The movie is the complete animation
of the simulation snapshots shown in Figure C.7. It illustrates the evolution of the CG
system simulated on a branching network. The colour bar indicates the levels of Delta.
For this simulation, the interaction radius and system size were fixed at Rs = 15µm and
⌦ = 100, respectively; the values of the remaining parameters were fixed at the values given in
Table C.1. The movie is available for download at https://github.com/daria-stepanova/
PhD_thesis_supplementary_materials.

https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
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(A) Rs = 5µm (B) Rs = 10µm

(C) Rs = 15µm (D) Rs = 20µm

Figure C.4. A series of plots showing how the spatial patterns, generated by
the VEGF-Delta-Notch signalling in a cell monolayer, become more clustered
as the interaction radius, Rs, increases. For these simulations, the interaction radius is
fixed at (A) Rs = 5µm; (B) Rs = 10µm; (C) Rs = 15µm; (D) Rs = 20µm. The system
size is fixed at, ⌦ = 100; the rest of the parameter values were fixed as indicated in
Table C.1. The colour bar indicates the levels of Delta, d, in each cell.
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Figure C.5. Initial configuration of a cell monolayer for numerical simulation.
The size of the monolayer is 25⇥ 29 voxels. The colour bar indicates the initial levels of
Delta, d, in each cell.

Figure C.6. Initial setup configuration of a branching network for numerical
simulation. We extracted this configuration from a simulation of the angiogenesis model
(Chapter 2). The colour bar indicates the level of Delta, d. Voxels without cells are left
white in the plot.
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(A) (B)

(C) (D)

Figure C.7. A series of plots illustrating the time evolution of the phenotype
patterning in a branching network in a typical simulation of the CG system for
the multicellular VEGF-Delta-Notch signalling pathway. Time points (indicated in
the title of each plot) are (A) t = 0, (B) t = 42, (C) t = 260, (D) t = 412 minutes. The
colour bar indicates the levels of Delta, d, in each cell. For these simulations, the interaction
radius and system size were fixed at Rs = 15µm and ⌦ = 100, respectively. The remaining
parameter values were fixed as indicated in Table C.1.
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(A)

(B)

Figure C.8. Comparison of the dynamics of the multicellular
VEGF-Delta-Notch model simulated on a branching network using the full
stochastic (CTMC), CG, and mean-field descriptions. (A) The tip cell proportion
as a function of the cell-to-cell interaction radius, Rs, for varying noise amplitude, ✏ = 1/⌦
(the value of ⌦ is indicated in the title of each plot), for the full stochastic CTMC (black),
CG (blue) and mean-field (red) descriptions. (B) A series of bar plots showing how the
long-time distribution of tip cell clusters changes as the interacton radius, Rs, varies for the
full stochastic CTMC (left panel), CG (middle panel), and mean-field (right panel) systems.
The number of single tip cells in the final pattern (i.e. at a fixed final simulation time) is
shown in blue; the number of clusters with 2, and 3 adjacent tip cells is shown in yellow and
green, respectively. For these simulations, we fixed ⌦ = 1000 (✏ = 0.001). The results are
averaged over 100 realisations. The remaining parameter values were fixed as indicated in
Table C.1.
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Parameter Value

�N 2.5, fixed in all figures.

�D 4.0, fixed in all figures.

�R2 4.0, fixed in all figures.

⇢N 20.0, fixed in all figures.

⇢R2 10.0, fixed in all figures.

�I,N 4.0, fixed in all figures.

�I,R2 0.0, fixed in all figures.

�R2⇤,D 2.0, fixed in all figures.

nN 2, fixed in all figures.

nD 1, fixed in all figures.

nR2 1, fixed in all figures.

⌘ 0.5, fixed in all figures.

⌧ 5.0, fixed in all figures.

 4.0 for Figures 3.4, 3.5, 3.6 and C.1; 12.0 for all other figures and simulations.

vext 0.1 for Figures 3.4, 3.5,3.6, C.1; 1.25 for all other figures and simulations.

dext 0.2 for Figures 3.4, 3.5, 3.6 and C.1; dext 2 [0.0, 4.0] and the exact value is
determined during the simulations (depending on the neighbourhood of each
cell) for all other figures.

next 0.5 for Figures 3.4, 3.5, 3.6 and C.1; next 2 [0.0, 4.0] and the exact value is
determined during the simulations (depending on the neighbourhood of each
cell) for all other figures.

voxel width, h 5 µm in all multicellular simulations (hexagon width).

Rs 15 µm in Figures 3.9, 3.10 and C.7; for all other multicellular simulations Rs

is indicated in the text and/or figure captions.

final simu-
lation time,
Tfinal

12000 mins for Figures 3.9 and C.4; 5 · 1023 mins for Figure 3.10; 1500 mins
for Figures 3.11, C.8 and 3.12; 9000 mins for Figure C.7.

Table C.1. Non-dimensional parameters of the VEGF-Delta-Notch system.
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Appendix D

Supplementary materials for Chapter 4

D.1 Details on computational simulations

We used the non-dimensional VEGF-Delta-Notch system to coarse-grain the subcellular sig-
nalling of ECs (see Chapter 3). Thus, in this chapter, we use non-dimensional subcellular
variables and parameters (see Table B.2). In Chapter 2, we used (dimensional) Delta levels
to distinguish between tip and stalk cell phenotypes, which further determined the migration
transition rate in Eq (2.7) and updates at the tissue scale (Eqs 2.16, (2.19) and (2.21)). Using
the conversion factor indicated in Table B.2, we transformed these expressions (Eqs (2.7),
2.16, (2.19) and (2.21)) to non-dimensional Delta level, d. We performed a similar conversion
procedure for the initial conditions of the subcellular proteins for each cell in simulations of the
angiogenesis model (initial conditions for the dimensional variables are listed in Table B.9).
We kept the rest of the parameters unchanged.

We performed simulations using two numerical setups described in Table D.3 and illus-
trated in Figure D.1. The values of the parameters specific to Chapter 4 are indicated in
Table D.1. In addition, parameter values for the considered proliferation setups are shown in
Table D.2.

D.2 Supplementary movies, figures and tables

Movie 4.1 Evolution of the quasipotential surface for the transition from stalk
cell to tip cell for increasing levels of VEGF from 0 to 50 ng/ml ([0,12.5] in non-
dimensional values). The monostability region in which the unique stable steady state
corresponds to a tip (stalk) cell is coloured green (red) and the corresponding quasipotential,
Q(stalk,tip) = 0 (Q(stalk,tip) = 1). The colour bar indicates the value of the quasipoten-
tial. The movie is available for download at https://github.com/daria-stepanova/PhD_
thesis_supplementary_materials.

Movie 4.2 Comparison of vascular networks generated by single realisations of
the original and CG phenotype models for VEGF level of 5 ng/ml. Left panel: the
original model; right panel: CG phenotype model. The colour bar indicates non-dimensional
Delta levels, d, (green colour corresponds to tip cells, red – to stalk cells). Arrows indicate
the configuration of the orientation landscape, l. The numerical simulation was performed

https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
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(A) Large-scale setup 1 (B) Large-scale setup 2

Figure D.1. Initial conditions for large-scale simulations. Initial placement of cells
in (A) large-scale setup 1 and (B) large-scale setup 2 from Table D.3.

using Setup 1 from Table B.10 with final simulation time Tmax = 2.5. Parameter values
are listed in Tables B.7 and B.8 for subcellular and cellular/tissue scales, respectively. The
movie is available for download at https://github.com/daria-stepanova/PhD_thesis_

supplementary_materials.

Movie 4.3 A large-scale simulation movie showing the growth of a vascular net-
work at low proliferation rate. A single realisation of our large-scale model on a domain
of 10002 µm2 with linear VEGF gradient of 1� 10 ng/ml increasing in the direction of the x-
axis. The movie is the complete animation of the simulation snapshot shown in Figure 4.9A
of the main text. The colour bar indicates non-dimensional Delta levels, d, (green colour
corresponds to tip cells, red – to stalk cells). We used proliferation setup 1 (slow cell cycle of
30-90 hours, see Table D.2). The numerical simulation was performed using large-scale setup
1 from Table D.3. Parameter values are listed in Table D.1 and final simulation time was fixed
at Tmax = 72.0 (equivalent to 25 days in real time units). The movie is available for download
at https://github.com/daria-stepanova/PhD_thesis_supplementary_materials.

Movie 4.4 A large-scale simulation movie showing the growth of a vascular net-
work at high proliferation rate. A single realisation of our large-scale model on a domain
of 10002 µm2 with linear VEGF gradient of 1� 10 ng/ml increasing in the direction of the x-
axis. The movie is the complete animation of the simulation snapshot shown in Figure 4.9H
of the main text. The colour bar indicates non-dimensional Delta levels, d, (green colour
corresponds to tip cells, red – to stalk cells). We used proliferation setup 8 (short cell cycle of
12-20 hours, see Table D.2). The numerical simulation was performed using large-scale setup
1 from Table D.3. Parameter values are listed in Table D.1 and final simulation time was fixed

https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
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at Tmax = 72.0 (equivalent to 25 days in real time units). The movie is available for download
at https://github.com/daria-stepanova/PhD_thesis_supplementary_materials.

Movie 4.5 A large-scale simulation movie showing the growth of a vascular net-
work with an initial condition of three main sprouts. A single realisation of our
large-scale model on a domain of 1000 ⇥ 1500 µm2 with a linear VEGF gradient of 1 � 10
ng/ml increasing in the direction of the x-axis. The colour bar indicates non-dimensional
Delta levels, d, (green colour corresponds to tip cells, red – to stalk cells). We used prolif-
eration setup 8 (short cell cycle of 12-20 hours, see Table D.2). The numerical simulation
was performed using large-scale setup 2 from Table D.3. Parameter values are listed in Ta-
ble D.1 and final simulation time was fixed at Tmax = 58.0 (equivalent to 20 days in real time
units). The movie is available for download at https://github.com/daria-stepanova/

PhD_thesis_supplementary_materials.

https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
https://github.com/daria-stepanova/PhD_thesis_supplementary_materials
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(A) (B)

(C) (D)

Figure D.2. An illustration of the evolution of the quasipotential surface for the
transition from tip to stalk cell for increasing levels of VEGF. Quasipotential
surfaces, Q(tip, stalk), for VEGF levels equal to (A) 0, (B) 1, (C) 5 and (D) 50 ng/ml (for
simplicity of interpretation we indicate here dimensional values of the VEGF levels). The
monostability region in which the unique stable steady state corresponds to a tip (stalk) cell
is coloured green (red) and the corresponding quasipotential, Q(tip,stalk) =1
(Q(tip,stalk) = 0). The colour bar indicates the value of the quasipotential.
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(A) (B)

(C) (D)

Figure D.3. Comparison of statistics extracted from simulations of original and
CG phenotype models for VEGF = 50 ng/ml. (A) Histograms of cell displacements
during a 15 minute time period for VEGF level of 50 ng/ml. The black histogram
corresponds to the experimental data taken from the Supplementary Material of [10], the
red (green) line corresponds to the displacement curves for simulations of the original (CG
phenotype) model. (B) The directionality statistics for simulations of both models (left
panel); the directionality statistics extracted from the experimental data in [4] (right panel).
(C) Box plots of the orientation statistic extracted from simulations of both models. Red
crosses indicate box plot outliers. Orientation statistics obtained from the experimental
data from [4] are shown by blue stars on each box plot. (D) Temporal evolution of mixing
measure, M(t), as a function of time (the mean value is indicated by a thick line and
standard deviation is denoted by a colour band). All statistics were computed for 100
realisations. Numerical simulations were performed using Setup 1 from Table B.10 and
Tmax = 2.5. Parameter values are listed in Tables B.7 and B.8 for subcellular and
cellular/tissue scales, respectively.
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(A) (B)

(C) (D)

Figure D.4. Comparison of metrics for quantification of vascular network
structure for the original and CG phenotype models for VEGF level of 50
ng/ml. (A) Number of vessel segments. (B) Vessel segment length (µm). (C) Vascular
network area (µm2). (D) Number of branching points per 100 µm2 of vascular network
area. Details of the definitions of these metrics can be found in Appendix B.5. In each box
plot, the central line indicates the median, and the horizontal edges of the box represent the
25th and 75th percentiles (for the bottom and top edges, respectively). The outliers are
indicated by the red cross symbols. Numerical simulation setup used is Setup 1 from
Table B.10 with final simulation time, Tmax = 2.5. Parameter values are listed in Tables B.7
and B.8 for subcellular and cellular/tissue scales, respectively. Results are averaged over
100 realisations.
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(A) (B)

(C)

Figure D.5. An illustration of a cell division event in a simulation of our model
on a small lattice. (A) Original configuration of the vascular network prior to cell
division. A cell proliferation event occurs in a voxel highlighted in blue (parent cell). (B)
Division direction, sdiv, in this event coincides with the vessel elongation direction
(downward-right). Since the voxel in this direction is occupied by a neighbouring tip cell
(outlined in magenta), this tip cell is pushed forward in the same direction, freeing a voxel
for cell division. (C) Cell division occurs and two daughter cells (highlighted in cyan) are
placed in the lattice.
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(A) cell cycle: 30� 90 h (B) cell cycle: 30� 60 h

(C) cell cycle: 20� 50 h (D) cell cycle: 20� 40 h

(E) cell cycle: 20� 30 h (F) cell cycle: 15� 25 h

Figure D.6. (Continuation on the next page.)
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(G) cell cycle: 12� 25 h (H) cell cycle: 12� 20 h

Figure D.6. E↵ects of cell proliferation on vasculature expansion. Single
realisations of our model on a large domain of 10002 µm2 with a linear VEGF gradient of
1� 5 ng/ml increasing in the direction of the x-axis. Proliferation setups (see Table D.2)
determining cell cycle duration are indicated in the title of each panel. The numerical
simulations were performed using large-scale setup 1 from Table D.3. Parameter values are
listed in Table D.1 and final simulation time was fixed at Tmax = 72.0 (equivalent to 25
days in real time units).



Contents

Contents

D.2. SUPPLEMENTARY MOVIES, FIGURES AND TABLES 257

(A) (B)

(C) (D)

Figure D.7. Proliferation contribution to the overall cell supply into the
network for simulations in VEGF gradient, where VEGF level increases from 1
to 5 ng/ml. The bar plot provides a breakdown of cell supply into growing vasculatures
due to migration from the sprout base (shown in green) and cell proliferation (shown in red)
at (A) 10 days; (A) 15 days; (A) 20 days; (A) 25 days. The black error bars indicate
standard deviation for the proliferation contribution. The vertical axis indicates
proliferation setups (see Table D.2); the horizontal axis shows mean cell number. All results
are averaged over 100 realisations. The numerical simulations were performed using
large-scale setup 1 from Table D.3. Parameter values are listed in Table D.1.
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(A) (B)

(C) (D)

Figure D.8. Network quantification metrics for large-scale simulations in VEGF
gradient, where VEGF level increases from 1 to 5 ng/ml. (A) Number of vessel
segments. (B) Vessel segment length (µm). (C) Vascular network area (µm2). (D)
Number of branching points per 100 µm2 of vascular network area. Details of definitions of
these metrics can be found in Appendix B.5. In each box plot, the central line indicates the
median, and the horizontal edges of the box represent the 25th and 75th percentiles (for the
bottom and top edges, respectively). The outliers are indicated by the red cross symbols.
All results are averaged over 100 realisations. Proliferation setups are listed in Table D.2.
The numerical simulations were performed using large-scale setup 1 from Table D.3.
Parameter values are listed in Table D.1 and final simulation time was fixed at Tmax = 72.0
(equivalent to 25 days in real time units).
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(A) (B)

(C) (D)

(E) (F)

Figure D.9. (Caption on the next page.)
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Figure D.9. A comparison of distributions of distances between cell nuclei
obtained from experimental data. Colour code: experimental 1 (green): Fig. 3c
(control) [3], 135 cells; experimental 2 (red): Fig. 1f (control) [212], 151 cells; experimental
3 (orange): Fig. 1a (control) [45], 881 cells; experimental 4 (blue): Figure 4 B (control)
[213], 114 cells. The panels correspond to the distance to the (A) nearest; (B) 2nd nearest;
(C) 3rd nearest; (D) 4th nearest; (E) 5th nearest; (F) 6th nearest neighbouring cell from a
focal cell.
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(A) (B)

(C) (D)

(E) (F)

Figure D.10. (Caption on the next page.)
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Figure D.10. A comparison of distributions of distances between cell nuclei
obtained from simulations of our model, with the initial condition of three main
sprouts, and experimental data. The distributions of distances extracted from our
simulations are indicated in blue, while those corresponding to experimental data (obtained
from Fig. 3c (control) in [3]) are shown in green. The panels correspond to the distance to
the (A) nearest; (B) 2nd nearest; (C) 3rd nearest; (D) 4th nearest; (E) 5th nearest; (F) 6th

nearest neighbouring cell from a focal cell. Simulation results are averaged over 5
realisations. The experimental results obtained from [3] are averaged over 135 cells. The
numerical simulations were performed using large-scale setup 2 from Table D.3 and
proliferation setup 8 from Table D.2 (see Movie 4.5 for an animation of a representative
simulation). Parameter values are listed in Table D.1 and final simulation time was fixed at
Tmax = 58.0 (equivalent to 20 days in real time units).
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Parameter Value Interpretation

rcycle
act

0.1

Cell cycle duration, Eq (4.1).

rcycle
deact

0.3

sact 30.0

sdeact 40.0

T cycle

min
, T cycle

min
Specified in Table D.2.

sBM 30.0
BM inhibition of cell cycle, Eq (4.2).

mBM 0.9

Dmin 0.2
BM inhibition of cell migration, Eq (4.8).

Dmax 0.5

�min 0.3 Baseline BM assembly, Eq (4.7).

Table D.1. Parameter values used in large-scale simulations. Here we list only
parameter values used for the model extension to large-scale simulations (introduced in
Chapter 4). The rest of the model parameters are fixed as in the previous simulations
(parameter values of the subcellular scale are indicated in Table C.1; parameter values of
the cellular and tissue scales are listed in Table B.8).

Proliferation
setup

T cycle

min
T cycle
max

1. 30 90

2. 30 60

3. 20 50

4. 20 40

5. 20 30

6. 15 25

7. 12 25

8. 12 20

Table D.2. Proliferation setups. Minimum and maximum cell cycle durations (see
Eq (4.1)). All values are indicated in hours.
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Set-
up

Specifications Figures

la
rg

e-
sc
a
le

se
tu

p
1

Nx

I
= 200, Ny

I
= 231 Figures 4.8,4.9,

4.10, 4.11, 4.12,
D.6, D.7, D.8.

Iinit = {i = (ix, iy)T : ix = 1, 2, iy = 115, 116}
IV P = {i = (1, iy)T : iy = 115, 116}
sinit = r

cinit = 0.0, minit = 1.0

VEGF gradient of 1-5 ng/ml: vext(ix, iy) = 0.25 + 1.0 ix

N
x

I

;

VEGF gradient of 1-10 ng/ml: vext(ix, iy) = 0.25 + 2.25 ix

N
x

I

.

This corresponds to a linear VEGF gradient increasing along
the x-axis.

la
rg

e-
sc
a
le

se
tu

p
2

Nx

I
= 200, Ny

I
= 347 Figure D.10.

Iinit = {i = (ix, iy)T : ix = 1, 2,

iy = 118, 119, 158, 159, 198, 199}
IV P = {i = (1, iy)T : iy = 118, 119, 158, 159, 198, 199}
sinit = r

cinit = 0.0, minit = 1.0

VEGF gradient of 1-10 ng/ml: vext(ix, iy) = 0.25 + 2.25 ix

N
x

I

.

This corresponds to a linear VEGF gradient increasing along
the x-axis.

Table D.3. Setups of large-scale simulation experiments. For each numerical
simulation setup we specify the lattice dimensions, Nx

I
and Ny

I
; the set of indices

corresponding to the vascular plexus, IV P ; the initial cell nuclei positions, Iinit; the initial
polarisation direction, sinit; the initial ECM and BM concentrations, cinit and minit,
respectively; the VEGF distribution over the lattice, vext. Figure D.1 illustrates the initial
conditions for the placement of cells for both setups.
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[102] N. Hill and D.-P. Häder, “A biased random walk model for the trajectories of swimming micro-
organisms”, Journal of Theoretical Biology, vol. 186, no. 4, pp. 503–526, 1997.

[103] M. A. Chaplain, “Mathematical modelling of angiogenesis”, Journal of Neuro-Oncology, vol. 50, no. 1,
pp. 37–51, 2000.

[104] S. R. McDougall, A. Anderson, M. Chaplain, and J. Sherratt, “Mathematical modelling of flow through
vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies”, Bul-
letin of Mathematical Biology, vol. 64, no. 4, pp. 673–702, 2002.

[105] A. Stephanou, S. R. McDougall, A. R. Anderson, and M. A. Chaplain, “Mathematical modelling of flow
in 2d and 3d vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies”,
Mathematical and Computer Modelling, vol. 41, no. 10, pp. 1137–1156, 2005.

[106] S. R. McDougall, A. R. Anderson, and M. A. Chaplain, “Mathematical modelling of dynamic adaptive
tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies”, Journal of
Theoretical Biology, vol. 241, no. 3, pp. 564–589, 2006.
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[214] D. Antfolk, M. Sjöqvist, F. Cheng, K. Isoniemi, C. L. Duran, A. Rivero-Muller, C. Antila, R. Niemi,
S. Landor, C. V. Bouten, et al., “Selective regulation of notch ligands during angiogenesis is mediated
by vimentin”, Proceedings of the National Academy of Sciences, vol. 114, no. 23, E4574–E4581, 2017.

[215] T.-Y. Kang, F. Bocci, M. K. Jolly, H. Levine, J. N. Onuchic, and A. Levchenko, “Pericytes enable
e↵ective angiogenesis in the presence of proinflammatory signals”, Proceedings of the National Academy
of Sciences, vol. 116, no. 47, pp. 23 551–23 561, 2019.

[216] D. Nagata, M. Mogi, and K. Walsh, “Amp-activated protein kinase (ampk) signaling in endothelial cells
is essential for angiogenesis in response to hypoxic stress”, Journal of Biological Chemistry, vol. 278,
no. 33, pp. 31 000–31 006, 2003.

[217] H.-J. Park, Y. Zhang, S. P. Georgescu, K. L. Johnson, D. Kong, and J. B. Galper, “Human umbilical
vein endothelial cells and human dermal microvascular endothelial cells o↵er new insights into the
relationship between lipid metabolism and angiogenesis”, Stem Cell Reviews, vol. 2, no. 2, pp. 93–101,
2006.

[218] K. Bentley, K. Harrington, and E. Regan, “Can active perception generate bistability? heterogeneous
collective dynamics and vascular patterning”, in Artificial Life Conference Proceedings 14, MIT Press,
2014, pp. 328–335.



Contents

Contents

BIBLIOGRAPHY 277

[219] Y. L. Koon, S. Zhang, M. B. Rahmat, C. G. Koh, and K.-H. Chiam, “Enhanced delta-notch lateral
inhibition model incorporating intracellular notch heterogeneity and tension-dependent rate of delta-
notch binding that reproduces sprouting angiogenesis patterns”, Scientific Reports, vol. 8, no. 1, pp. 1–
15, 2018.

[220] B. Debir, C. Meaney, M. Kohandel, and M. B. Unlu, “The role of calcium oscillations in the phenotype
selection in endothelial cells”, Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021.

[221] A. Atri, J. Amundson, D. Clapham, and J. Sneyd, “A single-pool model for intracellular calcium
oscillations and waves in the xenopus laevis oocyte”, Biophysical Journal, vol. 65, no. 4, pp. 1727–
1739, 1993.

[222] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. MIT press, 2009.

[223] M. E. Fortini and D. Bilder, “Endocytic regulation of notch signaling”, Current Opinion in Genetics
& Development, vol. 19, no. 4, pp. 323–328, 2009.


	Títol de la tesi: Mathematical modelling of angiogenesis
as an integrated multicellular process

APPENDICES
	Nom autor/a: Daria Stepanova


