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Abstract 

Exposure to environmental risk factors during in utero life or 

childhood has been linked to an increased risk of developing several 

diseases. However, the underlying biological mechanisms are poorly 

understood. The main aim of this doctoral Thesis is to investigate 

how early-life environmental exposures can affect molecular markers 

related to inflammation and biological aging in children. 

On one hand, biological aging was assessed by measuring epigenetic 

age acceleration in two tissues: blood and placenta. In blood and in 

the context of the exposome, which included more than 100 

exposures measured during the first years of life, it was observed that 

exposure to tobacco smoke during pregnancy and in childhood, and 

exposure at home to PMabs  in childhood were associated 

with increased epigenetic aging. In contrast, in the placenta, 

ambient air pollution and maternal smoking did not seem to 

affect epigenetic aging.  

On the other hand, the inflammatory response to short- (1 day and 1 

week) and medium- (1 year) term exposure to air pollution was 

examined by quantifying the levels of 36 proteins (adipokines, 

cytokines or apolipoproteins) in the children’s plasma. Short-term 

exposure to different air pollutants during childhood was associated 

with increased levels of hepatocyte growth factor (HGF), which is 

involved in tissue reparation, and interleukin-8 (IL8), which activates 

inflammation. Furthermore, the results suggested that HGF might be 



 xiv 

involved in the association between air pollution and systolic blood 

pressure, although further studies are needed to investigate its 

causality. 

Finally, given the relevance of air pollution exposure in early life 

for child health, we aimed to identify the determinants of home-

indoor and personal NO2 levels in pregnant women. We found 

that non-European ancestry, the use of a gas cooker, outdoor 

levels of NO2 and, exposure before Covid-19 pandemics 

increased home-indoor and personal NO2 levels.  

In conclusion, the results suggest accelerated biological aging and 

increased inflammation in children exposed to tobacco smoke and air 

pollution. These biological mechanisms may partly explain the 

effects on children’s health, including increased systolic blood 

pressure. Future research on the molecular mechanisms of the early 

life exposome may help to give plausibility to the epidemiological 

associations and thus lead to further public interventions. 
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Resum 

L'exposició a factors de risc ambientals durant la vida intrauterina o 

la infància ha estat relacionada amb un major risc a desenvolupar 

diverses malalties. Tot i això, els mecanismes biològics subjacents 

són poc coneguts. L'objectiu principal d'aquesta Tesi doctoral és 

investigar com les exposicions ambientals durant l’inici de la vida 

poden afectar diversos marcadors moleculars relacionats amb la 

inflamació i l'envelliment biològic en els infants. 

D'una banda, es va avaluar l'envelliment biològic mesurant 

l'acceleració de l’edat epigenètica en dos teixits: sang i placenta. En 

sang i en el context de l’exposoma, el qual incloïa més de 100 

exposicions mesurades durant els primers anys de vida, es va 

observar que l'exposició al fum del tabac durant l'embaràs i en la 

infància, i l'exposició dins la llar a PMabs durant la infància 

s'associaven a un major envelliment epigenètic. En canvi, en la 

placenta, la contaminació atmosfèrica i el tabaquisme matern no 

semblaven afectar l'envelliment epigenètic. 

D'altra banda, es va examinar la resposta inflamatòria a la 

contaminació atmosfèrica a curt (1 dia i 1 setmana) i mitjà termini (1 

any) a través de la quantificació dels nivells de 36 proteïnes 

(adipoquines, citocines o apolipoproteïnes) en el plasma dels infants. 

Es va veure que l'exposició a curt termini a diferents contaminants 

atmosfèrics durant la infància s'associava a un augment dels nivells 

del factor de creixement dels hepatòcits (HGF), que participa en la 



 xvi 

reparació dels teixits, i de la interleucina 8 (IL8), que activa la 

inflamació. A més, els resultats suggerien que l'HGF podria estar 

involucrat en l’associació entre la contaminació atmosfèrica i la 

pressió arterial sistòlica, encara que calen més estudis per investigar-

ne la causalitat. 

Finalment, atesa la importància de la contaminació atmosfèrica en els 

primers anys de vida per a la salut infantil, ens vam proposar 

identificar els determinants dels nivells personals i dins la llar de NO2 

en dones embarassades. Vam trobar que l’origen ètnic no europeu, 

l’ús d’una cuina de gas, els nivells de NO2 a l’exterior de casa i, 

l’exposició abans de la pandèmia de la Covid-19 augmentaven els 

nivells personals i dins de la llar de NO2. 

En conclusió, els resultats suggereixen un envelliment biològic 

accelerat i major inflamació en els infants exposats al fum del tabac 

i a la contaminació atmosfèrica. Aquests mecanismes biològics 

podrien explicar, en part, els efectes sobre la salut infantil, inclòs 

l'augment de la pressió arterial sistòlica. Futures investigacions sobre 

els mecanismes moleculars de l'exposoma durant els primers anys de 

vida poden ajudar a donar versemblança a les associacions 

epidemiològiques i així incidir en millores de salut pública.  
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Preface 

The research described in this Thesis has been carried out at the 

Barcelona Institute of Global Health (ISGlobal), Barcelona, Spain, 

between September 2018 and June 2022. It was conducted under the 

supervision of Dr. Mariona Bustamante and Prof. Dr. Jordi Sunyer. 

The present Thesis complies with the procedures and regulations of 

the Biomedicine PhD program of the Department of Medicine and 

Life Sciences of the University Pompeu Fabra, Barcelona, Spain.  

The main aim of the thesis was to provide further knowledge on the 

underlying biological mechanisms of early life 

environmental exposures, with a special focus on maternal 

smoking and air pollution. In particular, the present thesis 

contributes to the understanding of 1) the influence of early 

life exposome on epigenetic age acceleration in children, 2) the 

influence of NO2 and PM2.5 exposure and active maternal 

tobacco smoking during pregnancy on placental epigenetic age 

acceleration, 3) the medium and short term effects of NO2, PM10 

and PM2.5 exposure during childhood on blood plasmatic proteins 

and blood pressure, and 4) the determinants of indoor and personal 

NO2 air pollution levels during pregnancy. 

This Thesis contains four original research papers first authored by 

the PhD candidate (2 published, 2 in preparation). For all the 
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methylation in offspring within the framework of the Pregnancy and 

Childhood Epigenetics (PACE) consortium (Taeubert et al. 2022). 
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on air pollution and lung function within the framework of the PACE 

consortium.  
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general standard operating procedures (SOPs) for the BiSC 

fieldwork, developed tasks as a laboratory technician within the BiSC 
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participated in the Covid-19 BiSC study to evaluate the effect of the 

pandemics on mental health, and have been responsible of the news 

section of the BiSC website 
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candidate attended several national and international conferences, 
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1. INTRODUCTION

1.1 Environmental exposures 

1.1.1  Demographic challenges in the 21st century: aging 

and urbanization 

The current world is experiencing two demographic challenges that 

can be considered as major forces to shape quality of life in 21st 

century: population aging and urbanization. On one hand, according 

to a recent report from the United Nations, between 2015 and 2050, 

the proportion of the world’s population over 60 years will increase 

from 12% to 22% (Figure 1) (Nations Department of Economic et al., 

2020). Therefore, healthy aging has become a public health priority 

worldwide, within which we need to consider not just elderly 

population, but also children as the aging processes starts early in life 

(Jagust, 2016).  

Figure 1. Percentage of population aged 60 years or over by region, from 1980 to 

2050 (United Nations Organization, 2017). 
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On the other hand, the process of urbanization can be described as a 

massive movement of population from rural to urban areas, 

accompanied with all the physical changes in the urban settings 

(Kuddus et al., 2020). A recent study estimated that in 2019 more 

than half of the population was living in urban areas (4.2 billion 

people) and that this will increase to 6 billion people by 2041 (United 

Nations, 2018) (Figure 2).  
 

Figure 2. Urban and rural population of the world, 1950-2050 (United Nations 

Organization, 2018). 

 

Throughout history, urbanization has been linked to human 

development and progress, as cities have been mainly associated with 

the evolution of ideas of public health and practice, and they have 

been also considered as sources of creativity and technology, and the 

engines for economic growth (McMichael, 2000). However, 

urbanization is also related with poverty, inequality and non-

communicable diseases (Bettencourt et al., 2007; McMichael, 2000).  
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A rapid and unplanned urbanization within the developing world is 

known to be at the root of many of the environmental problems that 

cities currently face. Among these problems we must highlight an 

increase in urban transport, higher levels of air and noise pollution, 

direct loss in vegetation biomass and biodiversity, an increase in 

energy consumption, or impaired water quality (Moore et al., 2003; 

Yang et al., 2014). Consequently, most of the population is exposed 

to a few detrimental environmental risk factors. For example, in 

2019, 99% of the world population was living in areas where the 

levels of air pollution were above the limits recommended by the 

World Health Organization (WHO) guidelines (World Health 

Organization, 2021a). Hence, in the last decades, the field of 

environmental health has expanded and updated the amount of 

evidence linking the environment to human health.  

1.1.2 Environment and health 

Environmental hazards, linked to urbanization, are responsible for a 

substantial fraction of human diseases. In 2012, a study estimated that 

a total of 12.6 million global deaths, which refers to a 23% of the 

worldwide deaths, were attributable to environmental stressors 

(Neira and Prüss-Ustün, 2016). Moreover, in children below age 5, if 

environmental risks were removed, up to 26% of the total deaths 

could be prevented (Neira and Prüss-Ustün, 2016). In line with this, 

it was also predicted that air pollution exposure and second-hand 

smoking (SHS) were responsible for a total of 52 million lower-
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respiratory diseases each year, which represents 35% of the global 

cases. Furthermore,  chemicals, SHS and air pollution exposure were 

responsible for 49 million cancers, 32 million chronic respiratory 

diseases, and 119 million cardiovascular diseases each year (Neira 

and Prüss-Ustün, 2016). In addition, a recent study published in 2020, 

provided estimates of the number of deaths per year attributed to 

three group of risk factors: metabolic factors such as high systolic 

blood pressure, behavioural factors as tobacco smoking or 

environmental factors as outdoor and indoor air pollution exposure 

(Abbafati et al., 2020). High blood pressure, smoking and air 

pollution are considered the main risk factors (Figure 3).  

 

 

Figure 3. Number of worldwide deaths by risk factor (Our World in Data, 2022). 
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1.1.3 The relevance of the early-life period 

 

The impact of environmental factors on human health may differ 

based on the vulnerability of the population subgroup exposed (Poore 

et al., 2017). Current evidence shows that early-life, including 

prenatal and early postnatal periods, are important windows of 

susceptibility to environmental exposures (Wright, 2017). 

Throughout history we find several examples of how exposure to 

certain environmental factors during pregnancy or early life is a risk 

to human health: 

 

o The "Hunger Winter" in the Netherlands is also a well-known 

historical event. The Dutch population experienced a period 

of widespread starvation during the winter of 1944-1945, 

which "naturally" created a cohort of babies who were 

conceived during this period and who were exposed to an 

energy-poor environment during gestation. These children 

were found to have an increased risk of obesity, glucose 

intolerance and cardiovascular disease compared to those 

born before the famine period. Moreover, infants who had 

been exposed to famine during the prenatal period were found 

to have an increased risk of schizophrenia in adulthood. 

 

o In the late 1950s in a fishing village in Japan, Minamata, there 

was an epidemic of persistent mental retardation and spastic 
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palsy1 in children. It was noted that in all cases the children's 

mothers had eaten seafood contaminated with methylmercury 

discharged from a factory located in Minamata Bay. 

o In France during the 1960s it was observed that it was very

common for babies born to mothers who drank alcohol

continuously during pregnancy to be mentally retarded. These

observations helped to identify the well-known foetal alcohol

syndrome, which is characterized by chronic mental health

and developmental disorders in the offspring.

Pregnancy and first years of life are characterized by a rapid 

development and body growth, in which a great number of 

physiological changes occur (Davis and Narayan, 2020). First, it is a 

period known for its unique developmental plasticity as cells are 

differentiating and tissues are developing. This plasticity is part of 

the organism’s adaptability to the environment which promotes an 

optimal functioning when the individual is exposed. However, this 

adaptation process can induce modifications and changes in the 

human body that may persist over time resulting in maladaptation to 

the later environment (Hochberg, 2011). Second, the organism might 

not be able to counteract the effect of the exposures, which can 

interfere directly with the proper development. Moreover, the 

1Spastic palsy or spastic cerebral palsy is a condition in which affected people 
find it difficult to control some or all the muscles in their body, which tend to 
stretch or weaken. 
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susceptibility of children can differ from that of adults as they have 

immature detoxification processes and are still developing.  

Consequently, being exposed to different environmental risk factors 

during in utero life or childhood might permanently change the 

body’s structure, metabolism, and physiology, and hence promote 

health or diseases in later stages of life (Barouki et al., 2012) (Figure 

4).  This idea is enclosed on the Developmental Origins of Health and 

Diseases paradigm (DOHaD), which was proposed in 1990 by a 

British epidemiologist called David Barker (Barker, 1990).  

Figure 4. Environmental exposures during pregnancy and early-life could 

influence health later in life (DOHaD paradigm). 

Based on this paradigm, an increasing number of studies evaluating 

the association between environmental exposures early in life, even 

before birth, and diverse health outcomes have been published during 

the last years. Their aim is to define whether and how being exposed 
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to environmental risk factors during early life can induce permanent 

changes and increase risk of morbidity later in life. 

The placenta is a crucial organ during pregnancy as it acts as the 

interface between maternal and foetal circulations, it serves as a 

barrier,  and it helps to create the in utero environment, in which a 

complex sequence of interactions between maternal and foetal cells 

happen to regulate the exchange of nutrients and gas, and to produce 

and secrete hormones to control foetal growth and development 

(Fowden et al., 2008; Vlahos et al., 2019). It has been observed that 

an impaired placental structure or function leads to the majority of 

adverse pregnancy outcomes such as preeclampsia, placental 

abruption, foetal growth restriction, or an increased risk of stillbirths 

(Heazell, 2015; Lean et al., 2017). Moreover, a recent experimental 

study with 103 mouse knockout lines found that placental defects 

correlated with abnormal brain, heart, and vascular development. 

This highlighted the importance of studying placental functioning in 

its relation with adverse health outcomes (Perez-Garcia et al., 2018).  

1.1.4 The exposome concept and adverse health outcomes 

The exposome is a holistic concept that involves all non-genetic risk 

factors that can be experienced during an individual’s life and their 

link with the biological responses that occur to maintain homeostasis 

(Santos et al., 2020). The exposome was firstly described as “the 

totality of human environmental exposures from conception 



9 

onwards, complementing the genome” (Wild, 2012). For instance, it 

provides to the environmental field the chance to move to a more 

comprehensive analyses of the exposures and their effects over the 

life course.  

Measuring the exposome can be challenging as individual’s 

exposome is dynamic. First, as it has been commented in the previous 

section, there are several critical life stages, such as the in utero life, 

in which some exposures can have a greater impact to future diseases. 

Second, throughout life the levels and the group of exposures to 

which the individuals are exposed may vary. For example, during life 

in utero exposures are mainly due to diet, pharmaceutical use or 

environmental exposures, however occupational exposures occur 

mainly during working years and exposure to pharmaceuticals might 

be related with age as the use of them tends to increase with it. Third, 

some chemical compounds have the property to bioaccumulate, 

which might lead to a higher body burden with age (DeBord et al., 

2016). Fourth, human health status is the product of a complex 

system of interactions, in which the genetic factors are also involved 

and can influence.  Hence, the study of the interaction between the 

genome and the exposome needs to be considered and studied to 

protect and promote health. Fifth, the length of exposure is also 

important, distinguishing between acute and chronic exposures. The 

magnitude of the estimated effects depending on the length of 

exposure is still unclear (Pope, 2007). Finally, determining the time 

scale over which the adverse health outcome is more probable to 

appear is essential for policy makers. Thus, disentangling between 
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short and long-term effects is essential to interpret and estimate the 

influence of risk factors and also understand the benefits of reducing 

their exposure (Beverland et al., 2012; Künzli, 2005).  

 

The exposome concept has evolved during the last decades 

integrating new dimensions. Nowadays, it can be divided in the 

external and the personal exposome depending on whether the 

exposure is related to the environment in which the individual live 

(external), or if the exposure is directly related to the diet, lifestyle, 

toxic chemicals, or social factors (personal). The exposome concept 

also includes the different biological functions that take place in the 

body in response to exposure to maintain homeostasis (Figure 5). 

These biological responses are the link with later health outcomes. 

 

 

 

 

 

 

Figure 5. The exposome: Understanding the Effect of the Environment on Our 

Health (ISGlobal, 2020). 
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The external and personal exposures can be divided in families, 

which are briefly described below. 

 

A. Outdoor and urban exposures  

 

This family of exposures includes air pollution, natural and blue 

spaces, built environment, traffic and road traffic noise.  

 

Ambient air pollution corresponds to the outdoor air pollution, which 

is principally originated from different natural and anthropogenic 

sources and it collects information on the levels of exposure to which 

the individual can be exposed when they are not at home, work, 

school or other indoor buildings (Fromme, 2019). In contrast indoor 

air pollution includes gases or particles that contaminate the air inside 

buildings such as home or workplace, and their main determinants 

are outdoor air pollution, building conditions such as the windows 

frame, the season of the year or socioeconomic status (SES) 

(Vardoulakis et al., 2020).  

 

Air pollution comprises different groups of pollutants as particulate 

matter (PM) or gaseous pollutants. PMs resulting from different 

chemical reactions, can be classified according to their size: (a) 

particulate matter with an aerodynamic diameter of fewer than 10 μm 

(PM10); (b) particulate matter with an aerodynamic diameter of fewer 

than 2.5 μm (PM2.5) and (c) ultrafine particles with an aerodynamic 

diameter of 0.1 μm (UFPs) (Figure 6).  
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Figure 6. Size of particulate matter (US EPA, 2021) 

 

The penetration of PMs through the respiratory tract to the human 

body depends on the particle size (Manisalidis et al., 2020): PM10 

affects mainly the upper respiratory tract, PM2.5 can reach the lungs 

altering the lower respiratory tract and the alveoli and UFP which 

have the potential to cross bodily barriers, even the blood-brain 

barrier (Danel, 2022). Moreover, it  has been seen that the toxic 

effects of PMs may differ according to their physical and chemical 

properties (Cheung et al., 2011). During pregnancy, it is important to 

consider that PM can be transferred and cross the placenta throughout 

maternal blood (Ghazi et al., 2021) and therefore, influence its 

functioning. Previous studies have already proved the presence of 

pollutant particles in placental tissues (Bové et al., 2019; Liu et al., 

2021).  

 

Besides particulate matter, other air pollutants are considered 

harmful for human health, such as nitrogen dioxide (NO2), which is 

a gaseous air pollutant mainly used as a marker for traffic-related air 
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pollution (WHO, 2003). Based on a recent review, there is consistent 

evidence on the relationship between ambient air pollution exposure 

and children’s health, mainly with the respiratory system, and birth 

or neurodevelopment adverse health outcomes (Leung, 2015). Indoor 

air pollution exposure have also been related with adverse health 

outcomes during childhood in a recent report, mainly with 

respiratory, skin and neurological effects (Royal College of 

Paediatrics and Child Health (RCPCH), 2020).  

 

Apart from air pollution, the urban exposome includes natural or blue 

spaces, noise or factors related with the physical parts of where we 

live and work, including access to infrastructures or open spaces, 

which is known as built environment. Previous studies established 

that green space exposure is associated with reduced birth weight  

(Nieuwenhuijsen et al., 2019); that noise, air pollution, ambient 

temperature and different features of the built environment are related 

with increased blood pressure (BP) (Warembourg et al., 2021); and 

that greenness exposure, ambient air pollution and connectivity 

density are linked to impaired cognitive and motor function (Binter 

et al., 2022). 

 

B. Contaminant exposure biomarkers 

 

This family includes a wide range of toxic chemicals or their 

metabolites. The most relevant due to their public health concern are 

metals, persistent organic compounds, organophosphates, phthalates, 

and phenols.  
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- Metals are natural chemical compounds which can be found at 

different levels of the environment such as water or soil. Due to 

human activities such as industry or farming, metals can also be 

found in food (Masindi and Muedi, 2018). Therefore, humans can 

be exposed to these compounds through the environment or by 

the ingestion of contaminated food or water. Some of them are 

essential for the functioning of the organism, however, when their 

concentrations in the human body are high, they become toxic 

and dangerous. Mercury, lead, cadmium, and arsenic are 

considered as one of the top health menacing metals, and it has 

been shown that its exposure during pregnancy might lead to 

neurodevelopmental deficits and related disorders during 

childhood (Tran and Miyake, 2017).  

 

- Persistent organic compounds, also known as POPs, are a group 

of chemical substances characterized by its ability to remain in 

the environment for long periods of time as they are resistant to 

degradation. They also have the capacity to accumulate in the 

adipose tissue and be incorporated into trophic chains, a 

phenomenon known as bioaccumulation. These POPs are 

generated in the process of manufacturing, use and disposal of 

organic chemicals such as pesticides or agrochemicals, and by the 

emission of smoke from cars and tobacco. POPs can be divided 

in different subfamilies: (1) organochlorine compounds, such as 

polychlorinated biphenyls (PCBs) mainly found in electronic 

products, or dichlorodiphenyltrichloroethane (DDT) and 

dichlorodiphenyldichloroethylene (DDE), which are used as 
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pesticides, (2) perfluoroalkylated substances (PFASs or PFOAs) 

found in food packaging, drinking water or commercial 

household products, and (3) polybrominated diphenyl ethers 

(PBDEs) found in various products such as old televisions or 

computers, in furniture or textile clothing. Previous evidence has 

shown that POPs influence in different aspects of the pre- and 

postnatal development such as birthweight or gain weight 

(Krönke et al., 2022), and they are associated with adverse effects 

on growth, metabolism, neurodevelopment and sexual 

development and reproduction (World Health Organization, 

2010).  

 

- Organophosphates (OPs) are organic compounds used as 

pesticides. Individuals can be exposed to them in their workplace, 

from the environment if living in communities where there is an 

intensive agricultural production, and through diet in the general 

population. Published studies have found a relationship between 

exposure to OPs and impaired neurodevelopment (Hertz-

Picciotto et al., 2018; Sapbamrer and Hongsibsong, 2019).  

 

- Phthalates or phenols are found in cosmetic products, plastics, 

carpets, or toys and medical or cleaning products such as 

bisphenol A (BPA) (Wang and Qian, 2021).  These chemicals are 

difficult to assess as they have a short-half-life, are quickly 

excreted from the body, and show a high intra-individual 

variability. However, recent studies have shown that the exposure 

to these chemicals can be associated with respiratory health 
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(Abellan et al., 2022; Vindenes et al., 2021), cardiovascular 

diseases (Montazeri et al., 2022) or neurodevelopment (Braun et 

al., 2017).  

 

C. Water disinfection by-products (DBPs)  

 

One of the main public health practices to protect population from 

water-borne infections is the disinfection of public drinking water 

supplies. This process, however, leads to the formation of a group of 

chemical substances that can be toxic for humans (Villanueva et al., 

2015). General population is daily exposed to them through ingestion 

(main route), dermal and respiratory intake. It has been seen that 

exposure to DBPs is related to adverse reproductive outcomes (Lewis 

et al., 2006; Wright et al., 2003) and bladder cancer (Villanueva et 

al., 2004).  

 

D. Lifestyle 

 

Finally, the exposome concept also includes variables related with 

lifestyle and SES. This group of variables is challenging as 

information on them is mainly collected via questionnaires. Life-

style variables include a wide range of exposures, that go from 

dietary patterns to physical activity, social relations, stress and 

alcohol and tobacco consumption. This last one is one of the most 

threatening stressors known for many years. Tobacco smoke is a 

reactive mixture that contains an estimated amount of 5,000 

chemical, of which 90 of them have already been identified as 
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harmful (Hwang et al., 2012). Indeed, several compounds contained 

in tobacco smoke have been found in placental samples (Mohammadi 

et al., 2017). Besides own smoking that increases the risk of several 

diseases especially lung cancer, maternal smoking and SHS have 

many implications for the foetus and children.  On one hand, maternal 

smoking has been related to lower birth weight and higher risk for 

cardiovascular diseases later in life, furthermore smoking during 

pregnancy have resulted in more than 1,000 infants deaths annually 

(Everson et al., 2021; Taylor et al., 2021). On the other hand, SHS 

have been linked to numerous health problems in children such as 

asthma attacks, respiratory infections, or ear infections (United States 

Department of Health and Human Services, 2014). Moreover, 

passive smoking was estimated to be responsible for 50.000 deaths 

and 4.500.000 disability-adjusted life years in children under the age 

of 14 (Alla, 2021).  

 

1.2 Biological functions 

 

Published evidence has revealed the contribution of the external and 

the personal exposome to more than 100 adverse health outcomes 

(Prüss-Üstün and Corvalán, 2006). Before clinical manifestation 

there are several biological responses that take place in the body. 

Understanding these biological responses provides knowledge to 

improve and develop new biomarkers of exposure or disease risk. In 

addition, the identification of the environmental factors responsible 

and the comprehension of how adverse health effects are triggered 
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provides biological plausibility. This is essential to influence the 

decision-making process of authorities with the main aim of 

mitigating adverse health effects and protecting public health.  

1.2.1 From classical biomarkers to omics profiles 

1.2.1.1 Classical biomarkers 

Biomarkers have been traditionally defined in the epidemiology field 

as those measurable events or measures of a physiological state that 

occurs in a biological system such as the human body (Grandjean, 

1995). They can be divided into three groups: (1) biomarkers of 

exposure, (2) biomarkers of effect and, (3) biomarkers of 

susceptibility (Owen et al., 2008). First one refers to the exposure 

itself, and it corresponds to a substance found in the human body after 

exposure to an environmental factor, which can be measured in 

different biological samples such as blood, saliva, urine, or hair. A 

biomarker of effect refers to a measurable biological alteration 

observed in the human body that is consequence of an exposure, 

which can also be assessed in biological samples. Finally, biomarkers 

of susceptibility, such as genetic polymorphisms or metabolic 

phenotypes, are used to identify individuals with higher sensitivity to 

an environmental exposure (Zare Jeddi et al., 2021). 
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1.2.1.2 High-throughput platforms 

 

Biomarkers have been applied in the epidemiology field over the last 

decades, and its use has been widespread throughout the 21st century 

due to the development of high-throughput omics technologies 

available for generating large-scale molecular-level measurements 

(Paniagua - Michel and Olmos Soto, 2016). The opportunity to 

measure different components of a biological system from an omics 

scale approach have totally transformed the way in which we 

understand networks and systems involved in the biological 

processes (Goerdten and Floegel, 2021). These techniques are 

allowing us to develop more accurate biomarkers to enhance the 

existing ones. Furthermore, their study could provide a better 

interpretation on the underlying molecular mechanisms through 

which the environmental exposures can be involved in the 

development of disease or impaired health conditions. In addition, 

these altered molecular markers might be more sensitive than the 

final clinical endpoints, therefore sensitivity of environmental 

epidemiologic studies could improve (Mayeux, 2004).  

 

1.2.1.3 The epigenome and other molecular layers 

 

High-resolution omics platforms allow us to measure different 

molecular layers: the epigenome, the transcriptome, the proteome or 

the metabolome (Kim and Hong, 2017) (Figure 7).   
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Figure 7. Molecular layers potentially influenced by the exposome. 
 

The epigenome involves all the chemical modifications that alter the 

expression of genes within the genome without changing the DNA 

sequence (Morgensztern et al., 2018). These chemical modifications 

are known as epigenetic marks since when they are attached to the 

DNA sequence, they “mark” the genome changing the way in which 

the DNA instructions will be read. These marks can pass from cell to 

cell. The most investigated mark is called DNA methylation (DNAm) 

and it consists of a methyl group onto the C5 position of a cytosine 

which leads to the formation of a 5-methylcystosine (Wang and 

Ibeagha-Awemu, 2021) (Figure 8). The addition of this methyl group 

mainly occurs in specific regions known as CpGs sites, which are 

regions of the genome with a cytosine followed by a guanine (Lim et 

al., 2019). Briefly, the addition of the methyl group to the DNA 

sequence helps to regulate gene expression as it promotes the 

recruitment or inhibition of transcription factors’ binding to DNA. 

DNAm is a crucial process during the development and tissue 

differentiation, and chromosome X inactivation (Moore et al., 2013). 

 
 

   
 

 

 

 

Some metabolites can also 
come from outside the 

human body 
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DNAm is determined by genetic and environmental factors, as 

summarized elsewhere (Everson et al., 2021; Nakamura et al., 2021). 

The second group of epigenetic marks are the modifications 

occurring in the histones, structures responsible for packaging DNA 

(Figure 8). Histone marks include methylation, acetylation, 

phosphorylation, ADP-ribosylation and ubiquitylation (Stein, 2012). 

These modifications alter chromatin condensation, therefore, they 

can control chromatin structure and gene transcription (Molina 

Serrano et al., 2019).  

The transcriptome is defined as “all coding and non-coding RNAs, 

that can be present in various physiological conditions or 

transcribed at specific developmental stages in a cell type or a tissue” 

(Gunes and Mahmutoglu, 2018). Therefore, it includes ribosomal 

RNA (rRNA), messenger RNA (mRNA), transfer RNA (tRNA) and 

non-coding RNA (ncRNA) (Hasin et al., 2017). ncRNAs are part of 

the epigenome (Figure 8) and they can be separated into two groups: 

housekeeping ncRNAs and regulatory ncRNAs. The later are divided 

depending on their size in short ncRNAs, which include small 

interfering RNAs (siRNAs), micro RNAs (miRNAs), and piwi-

interacting RNAs (piRNAs), and long-coding RNAs (Wei et al., 

2017).  
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Figure 8. Epigenetic mechanisms that regulate gene expression (Yan et al., 

2010). 

 

The proteome corresponds to the complete set of proteins expressed 

by an organism, it can also be used to describe the number of proteins 

that are produced in a specific period of time in a particular cell or 

tissue by an individual (Wecker and Krzanowski, 2007). The 

proteome informs about the levels, modifications, or structures of the 

proteins in response to internal and extern stimuli.  

 

Finally, the metabolome refers to the set of metabolites which can be 

divided into exogenous or endogenous. The former are metabolic 

compounds that can be acquired from the exposome (i.e., diet or 

cotinine from smoking exposures) and the later are produced through 

metabolic processed conducted in the human body.  

 

Overall, the aim of studying molecular profiles is to identify, 

characterize and quantify the biological molecules that are 

comprehended in the structure, function and dynamics of the cell, 
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tissues, and the whole organism. Nonetheless, their study is 

challenging because they are dynamic over time, as they regulate 

developmental and physiological processes, they are tissue-

dependent, they rely upon the genetic background and they also 

respond to environmental factors, which as we exposed before, are 

changeable. 

1.2.2 Influence of environmental factors on molecular 

profiles and biological functions 

As mentioned in previous sections, environmental exposures can 

impact different molecular layers leading to activation or 

deactivation of biological functions. In this Thesis we will focus on 

two biological pathways that have been proposed to mediate the 

effects of environmental factors on adverse health outcomes: aging 

and inflammation (Figure 9). They are two of the “hallmarks of 

environmental insults” among other cellular and molecular processes 

such as endocrine disruption, mitochondrial dysfunction, altered 

microbiome and intercellular communication, impaired nervous 

system function, genomic alterations and mutations, oxidative stress, 

and epigenetic alterations (Peters et al., 2021). Below we introduce 

the main evidence about the alteration of these biological pathways 

as well as about the epigenome in response to the exposome. 
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Figure 9. Molecular layers and biological pathways investigated in this Thesis. 

 

1.2.2.1 Epigenome 

 

Previous studies have shown that exposure to some environmental 

factors produces changes in the epigenome which may mediate 

specific mechanisms of toxicity (Baccarelli and Bollati, 2009).  

Within the framework of the Pregnancy and Childhood Epigenetics 

(PACE) consortium several studies have been conducted in relation 

to the epigenome. One found that maternal smoking was associated 

with substantial changes of DNAm in cord blood of the offspring 

(Joubert et al., 2016). These associations have been seen to persist 

into childhood, adolescence and even adulthood (Vives-Usano et al., 

2020). A more recent one showed that maternal smoking affects 
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placental DNAm, however the overlap of smoking-sensitive CpGs 

between cord blood and placenta was low (Everson et al., 2021). In 

contrast, both tissues highlighted a series of common biological 

processes altered in response to tobacco smoke, which were related 

to proinflammatory response and growth factor signalling (Joubert et 

al., 2016).   

Air pollution exposure has also been seen to be associated with 

alterations in DNAm patterns. A study from PACE found that 

exposure to PM10, PM2.5 and NO2 during pregnancy was significantly 

associated to differentiated DNAm of CpGs in new-borns which were 

annotated to genes previously associated with lung-related outcomes 

or antioxidant defence pathways (Gruzieva et al., 2017b, 2019). 

Recently, air pollution has also been seen to affect placental DNAm 

(Abraham et al., 2018).  

Many other environmental factors have also been associated with 

alterations in DNAm patterns such as metals (Dolinoy et al., 2007b; 

Fry et al., 2007; Hu et al., 1997), endocrine disruptors (Dolinoy et al., 

2007a; Rusiecki et al., 2008), diet, social factors or lifestyle (Lee et 

al., 2009; McGowan et al., 2011; Roth et al., 2011; Weaver et al., 

2004; Xiang et al., 2008; Yan et al., 2011). An inventory of these 

associations can be found in online databases such as the EWAS 

Atlas (https://ngdc.cncb.ac.cn/ewas/atlas) or the EWAS Catalog 

(http://ewascatalog.org/). 

https://ngdc.cncb.ac.cn/ewas/atlas
http://ewascatalog.org/
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1.2.2.2 Inflammation 

 

Inflammation has been proposed as one of the underlying biological 

mechanisms behind the association between several families of 

environmental factors and adverse health outcomes. This mechanism 

is a biological response triggered by an infection or an injury, hence 

it is one of the defence mechanisms of the human body to harmful 

stimuli (Chen et al., 2018). In addition, it is closely related to 

oxidative stress, which results of the presence of reactive oxygen 

species (ROS) (Peters et al., 2021; Salminen et al., 2012). ROS are 

involved in the initiation, progression and resolution of the 

inflammatory process (Chelombitko, 2018). Both inflammation and 

oxidative stress, are considered as necessary mechanisms for the 

adequate human body functioning, however when they are persistent, 

they can lead to tissue damage and disease. It has been proposed that 

when being exposed to detrimental factors, the cell response in the 

following phases: tolerance, adaptation, inflammation, and cell death 

(Peters et al., 2021) (Figure 10). Inflammatory response can be 

assessed through the analyses of different markers such as 

chemokines, cytokines, T helper cells and oxidative stress markers. 
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Figure 10. Proposed cell phases occurring when being exposed to environmental 

factors (Peters et al., 2021).  

 

One of the top health menacing exposures known to produce 

inflammation is air pollution. For instance, previous evidence have 

revealed that inflammation might contribute to the development of 

cardiovascular, respiratory and central nervous system affections 

attributed to this detrimental exposure  (Arias-Pérez et al., 2020). 

However, the specific mechanisms occurring are not yet entirely 

understood (Arias-Pérez et al., 2020). Most of the epidemiological 

studies have investigated a few specific inflammatory proteins such 

as interleukins (interleukin 1 (IL1), interleukin 6 (IL6), interleukin 8  

(IL8), or interleukin 10 (IL10)), tumour necrosis factor-alpha (TNF-
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α), C-reactive protein (CRP) (Yang et al., 1017), and adipokines 

(leptin or adiponectin, which are produced by the adipose tissue) 

(Dauchet et al., 2018). Furthermore, most of the studies have 

investigated either short- or long-term exposure to air pollution, but 

not both, and the majority of the evidence of biological mechanisms 

refers to the adult population (Elbarbary et al., 2021; Fiorito et al., 

2018; Pilz et al., 2018; Riggs et al., 2020; Su et al., 2017; Sun et al., 

2020; Tsai et al., 2019; Zhang et al., 2020), with only a few studies 

available in children (Alderete et al., 2018; Gruzieva et al., 2017a; Li 

et al., 2019). Thus, there is a paucity of studies considering multiple 

windows of exposure, different air pollutants, and multiple 

inflammatory proteins in children.  

1.2.2.3  Aging 

Aging, is a natural process characterized by a progressive decrease in 

physiological capacity and a reduction of the ability to respond to 

environmental factors, that leads to an increased susceptibility and 

vulnerability to diseases (Troen, 2003). Aging leads to changes in 

body composition, imbalance between energy availability and 

demand, dysregulated signalling networks and neurodegeneration 

with impaired neuroplasticity (Bektas et al., 2018). 

The biology of aging is incredibly complex as it is the centre of a 

large network of processes that can influence on the molecular, 

cellular, organismal and even at population levels (Poole et al., 2020). 

Recently, a set of fundamental and connected biological processes 
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involved in aging has been recently described as the “hallmarks of 

aging” (Figure 11). They include oxidative stress and inflammation 

which is known as “inflammaging”, and  some other critical 

processes such as genomic instability, epigenetic alterations such as 

DNAm changes, loss of proteostasis, altered metabolism, 

mitochondrial dysfunction, cellular senescence, stem cell exhaustion 

and altered intercellular communication, and telomere attrition 

(López-Otín et al., 2013). In relation to the latter one, telomeres are 

specialized structures located at the ends of the human chromosomes 

to protect their integrity and avoid loss of genetic information 

(O’Sullivan and Karlseder, 2010). Their shortening is associated with 

age and with a higher risk of developing different adverse health 

outcome and age-related diseases (Haycock et al., 2014).  

Figure 11. Hallmarks of biological aging (López-Otín et al., 2013). 
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Previous studies have observed that being exposed to environmental 

stressors, mainly those affecting inflammation and metabolism, is 

associated with an increased risk of accelerated aging (Franceschi et 

al., 2018). The most studied and established environmental factors 

related with aging are air pollution, tobacco smoking, heavy metals, 

and pesticides. All of them have been linked to different aging related 

adverse health outcomes such as cancer (Nawrot et al., 2006), 

neurological disorders (Power et al., 2014), cardiometabolic diseases 

(James et al., 2015; Lentini et al., 2017) or all-cause mortality (Gellert 

et al., 2012). 

 

As shown in Figure 11, epigenetic alterations are considered as one 

of the biological processes that can change with age. They can also 

be affected by environmental exposures and  influence health and 

lifespan (Malecki et al., 2022).  A previous study have found that 

changes in DNAm patterns can occur throughout lifetime, even 

before birth, so they can be used to quantify age (Jones et al., 2015). 

Based on this, in the last decade, different epigenetic clocks have 

been developed to predict biological age using DNAm information. 

These clocks are built based on an informative and sparse set of 

methylation values of tens to hundreds of CpGs identified through 

supervised machine learning methods such as penalized regression 

(e.g., lasso or elastic net) and trained against chronological age (Bell 

et al., 2019; Oblak et al., 2021). Subsequently, the coefficients 

obtained in the prediction models can be used to calculate DNAm age 

and epigenetic age acceleration, which is a measure of whether the 

individuals’ are biologically younger or older than their 
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chronological age in other datasets (Gibson et al., 2019; Horvath and 

Raj, 2018; White et al., 2019). However, it is still unclear which 

aspects of the aging process are captured with these epigenetic 

clocks. Previous evidence have observed that epigenetic age was 

associated to nutrient sensing, mitochondrial activity and stem cell 

composition, but not with telomere attrition, genomic instability or 

cellular senescence (Breitling et al., 2016; Kabacik et al., 2022; 

Vetter et al., 2022)   

There are a number of epigenetic clocks available (Hannum et al., 

2013; Horvath, 2013; Horvath et al., 2018; Levine et al., 2018) with 

a few ones suitable for children (McEwen et al., 2020; Wu et al., 

2019a) or applicable to predict gestational age (Bohlin et al., 2016; 

Knight et al., 2016; Lee et al., 2019; Mayne et al., 2017). Each clock 

has been trained with samples from different tissues and considering 

different age ranges (Table 1). 

Previous evidence has linked epigenetic age acceleration to age-

related conditions such as cancer (Ambatipudi et al., 2017; Dugué et 

al., 2018; Zheng et al., 2016) or mortality (Chen et al., 2016; 

Christiansen et al., 2016; Horvath and Raj, 2018; Perna et al., 2016). 

Moreover, recent evidence has shown that different environmental 

factors, such as air pollution (Nwanaji-Enwerem et al., 2017, 2016; 

White et al., 2019), tobacco smoke (Yang et al., 2019) or cadmium 

exposure (Demanelis et al., 2017), can increase epigenetic age 

acceleration (Martin and Fry, 2018; Simpkin et al., 2016). However, 

the evidence available is still scarce and not consistent, and most of 
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the studies evaluated the impact on adults (Gao et al., 2016; Wu et 

al., 2019b) and elderly populations (Ward-Caviness et al., 2016; 

Yang et al., 2019), with few studies available on such an impact on 

children (Javed et al., 2016; Simpkin et al., 2017).  

Table 1. Summary of the DNAm estimated biological clocks available. 

Note: GA = Gestational age. 

Paper Number 
of CpGs Tissue Variable 

Age range / 
Weeks of 
gestation 

Comments 

Horvath et al., 2013 352 Multi-tissue DNAmAge 0-centenarians - 

Hannum et al., 2013 71 Blood DNAmAge 19 – 101 years - 

Levine et al., 2018 513 Blood DNAmAge 21 – 100 years - 

Horvath et al., 2018 391 Skin and 
blood 

DNAmAge 0-85 years - 

McEwen et al., 2019 84 
Buccal 

epithelium DNAmAge 0-20 years - 

Wu et al., 2019 111 Blood DNAmAge 1-18 years - 

Knight et al., 2016 148 
Cord blood 
and blood 

spot 
DNAmGA 24-44 weeks - 

Bohlin et al., 2016 353 Cord blood DNAmGA - - 

Mayne et al., 2017 62 Placenta DNAmGA 8-42 weeks - 

Lee et al., 2019 558 Placenta DNAmGA 5-42 weeks

Robust placental clock (RPC): 
placental samples from a 

variety of pregnancy 
complications in the training 

data (e.g., hypertension or 
diabetes) or congenital 

abnormalities (e.g., trisomy 13, 
18 and 21). 

Lee et al., 2019 546 Placenta DNAmGA 5-42 weeks
Control placental clock (CPC), 
tailor-made for measuring GA 

in normal pregnancies. 

Lee et al., 2019 396 Placenta DNAmGA 36-42 weeks

Refined robust placental clock 
(refRPC) which is like RPC but 
only including uncomplicated 

term pregnancies. 
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2. RATIONALE 

 
In the last decades, the world has been experiencing two major 

demographic changes: increase of urban areas and population aging. 

The process of urbanization implies that a large percentage of the 

world’s population is now exposed to different environmental 

stressors than before. In addition, the aging of the population makes 

the promotion of healthy aging a public health priority, not only in 

the elderly population, but also in children as this process begins in 

early-life. Indeed, pregnancy and first years of life are considered 

critical periods for development and growth, so that some exposures 

can induce short- and long-term biological disturbances, which can 

lead to increased risk for diseases throughout adulthood.  Therefore, 

understanding the influence that different environmental factors may 

have on population health throughout life, especially in in utero and 

early life, is essential to promote public policies and raise social 

awareness.  

 

Recently, the exposome has emerged as a more holistic view of how 

to assess the impact of a wide range of environmental exposures 

across the life. It involves the study of both external and personal 

exposures throughout life, and of the underlying biological 

mechanisms. The recent development of high-throughput 

technologies provides the opportunity to measure different 

components of a biological system from an omics scale approach. 

They have highly impacted the field of the exposome adding 
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biological plausibility to the epidemiological studies and helping to 

create new biomarkers of effect and exposure. 

 

Inflammation and aging are two of the main biological processes that 

are affected across diseases in response to diverse environmental 

factors. Both processes have already been associated with the 

exposure to air pollution and tobacco smoking, considered two of the 

top health menacing exposures worldwide. However, most of the 

studies linking these processes to exposures and diseases have been 

conducted in adult and elderly population, with a few studies 

available in children. Moreover, there is a paucity of studies 

considering the exposome, including a wide range of environmental 

exposures and multiple windows of exposure. Consequently, further 

research is needed to elucidate the role of exposure to different 

environmental factors during pregnancy and early-life, especially air 

pollution and maternal tobacco smoking, on markers related to 

inflammation and aging. 
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3. OBJECTIVES

The overall aim of this Thesis is to investigate how early life 

environmental exposures affect molecular markers in children. 

This is addressed through the following specific objectives: 

1. To assess the association between the early life exposome and 

epigenetic age acceleration in children from the Human 

Early-Life Exposome (HELIX) project (Paper I).

2. To evaluate the association of prenatal ambient air pollution 

exposure to NO2 and PM2.5 and active maternal smoking 

during pregnancy with placental epigenetic age acceleration 

in the INfancia y Medio Ambiente (INMA – Environment and 

Childhood) cohort (Paper II).

3. To assess the relationship of residential and school short- and 

medium- term (1 day, 1 week, and 1 year) outdoor air 

pollution exposure to NO2, PM2.5, PM10, and indoor 

particulate matter absorbance (PMabs) with 36 plasmatic 

protein levels and their mediating roles on blood pressure in 

children from the HELIX project (Paper III).

4. To conduct a descriptive analysis of the NO2 concentrations 

during pregnancy, including, indoor, personal, and outdoor 

levels, and to investigate determinants of indoor and personal 

NO2 levels in the BiSC cohort (Paper IV).
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4. METHODS

This section provides a general overview of the study design, study 

population, and the exposure and outcome assessment used in this 

Thesis. A more detailed and specific description of the methods used, 

and the analyses followed is given in each of the papers included in 

section 5.  

4.1 Study design and population 

This Thesis has used data from different population-based birth 

cohorts in Europe. The Human Early-Life Exposome (HELIX) 

project that includes 1,301 children from six European on-going 

cohorts, the Sabadell, Valencia and Gipuzkoa subcohorts from the 

INfancia y Medio Ambiente – Environment and Childhood (INMA) 

project, and the Barcelona Life Study Cohort (BiSC) (Figure 12). 
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Figure 12. Study populations included in each paper of this Thesis. 

4.1.1 The Human Early – Life Exposome (HELIX) 

The HELIX project (http://www.projecthelix.eu/index.php/en) is a 

collaborative project that comprises six established ongoing 

longitudinal population-based birth cohort studies from six different 

European countries (Greece – RHEA Mother Child cohort study, 

Lithuania – Kaunus cohort (KANC), Norway – The Norwegian 

Mother and Child Cohort Study (MoBA), Spain – INfancia y Medio 

Ambiente (INMA), UK – Born in Bradford (BiB) and France - Étude 

des Déterminants pré et postnatals du développement et de la santé 

de l’Enfant (EDEN)). The aim of the project was to assess and 

http://www.projecthelix.eu/index.php/en
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describe multiple environmental exposures during pregnancy and 

first years of life and relate them with different molecular omics 

signatures and health outcomes. The project uses a multilevel study 

design, with an entire study population of 31,472 mother-child pairs 

recruited during pregnancy, a subcohort of 1,301 mother-child pairs 

in which the measurement of biomarkers, omics signatures and health 

outcomes was obtained at age 6-11 years and, repeat-sampling panel 

studies with around 150 children and pregnant women with personal 

exposure data. Recruitment of pregnant women was conducted 

between 1999 and 2010. Specifically, INMA, KANC and RHEA 

recruited pregnant women during the first trimester of pregnancy 

between 2003 to 2008, EDEN and MoBA through the first and 

second trimester through 1999 to 2008, and BiB between weeks 26 

and 28 of gestation between 2007 and 2010 (Maitre et al., 2018).  For 

the HELIX subcohort (N=1,301) the six cohorts applied common 

standardized protocols for collecting biological samples, measuring 

exposure biomarkers and omics signatures and for assessing child 

health (Maitre et al., 2018). In this Thesis we used data from HELIX 

to elaborate papers I and III.  

4.1.2 INfancia y Medio Ambiente – Environment and 

Childhood (INMA) 

The INMA project (http://www.proyectoinma.org) is an ongoing 

population-based birth cohort study that was created with the aim of 

evaluating the role of different environmental pollutants in water, air, 

and diet during pregnancy and first years of life in relation to child 

http://www.proyectoinma.org/
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development and growth. Nowadays, INMA project includes more 

than 3,000 mother-child pairs from seven Spanish cohorts located in 

different geographical areas: Gipuzkoa, Asturias, Granada, Menorca, 

Ribera d’Ebre, Valencia and Sabadell (Guxens et al., 2012). Pregnant 

women were recruited between 2003 and 2008 at first prenatal visit 

in the main health centre or public hospital of their region. Different 

follow-ups were carried out at birth, 1.5, 4, 7, 9 and 11 years.   In this 

Thesis we used data from three cohorts: Valencia, Gipuzkoa and 

Sabadell, as they had information on the exposure and the outcome 

assessed in paper II and III.  

4.1.3 Barcelona Life Study Cohort (BiSC) 

The BiSC project (https://www.projectebisc.org/en/home/) is an 

ongoing population-based prospective birth cohort study of pregnant 

women, their offspring, and partners in Barcelona city, Spain, 

including three of the major hospitals of the area; “Sant Joan de 

Déu”, “Maternitat-Clínic”, and “Santa Creu i Sant Pau”. The aim of 

the study is to evaluate the influence of prenatal exposures on child 

health, with a special focus on urban air pollution exposure and 

neurodevelopment during pregnancy and first years of life. Finally, a 

total of 1,086 pregnant women and their offspring were recruited 

from October 2018 to April 2021. In paper IV of this Thesis, we used 

data from BiSC.  

https://www.projectebisc.org/en/home/)
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4.2 Exposure assessment 

4.2.1 Early-life exposome in HELIX (Paper I) 

 
We evaluated a broad range of environmental exposures, including 

83 during the pregnancy period and 103 during childhood in paper I. 

Environmental exposures were encompassed in four groups of 

exposures: (1) outdoor and urban exposures, (2) water disinfection 

by-products (DBPs) and indoor air pollution, (3) contaminant 

exposure biomarkers and, (4) lifestyle and others. Below we briefly 

describe the exposure assessment of these families, but an extensive 

explanation can be found in the Supplementary Material of this 

Thesis (found in the following link), in  Supplementary Material of 

paper I and in previous HELIX publications (Tamayo-Uria et al., 

2019; Warembourg et al., 2021).  

 

A. Outdoor and urban exposures 

 

Urban exposures include air pollution, natural and blue spaces, built 

environment, traffic and road traffic noise, and they were assessed 

using geographic information systems (GIS) and land use regression 

(LUR) models. Exposures were assessed at the geocoded residential 

address at recruitment of each pregnant woman and at the time of the 

subcohort visit.  

 

 

 

 

https://drive.google.com/drive/folders/1ejM7-Yc5JvkOM3qkHCaPl5wCiMbzwCuU?usp=sharing
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• Air pollution 

 

Briefly, different atmospheric pollutants were evaluated: NO2, PM10, 

PM2.5 and PMabs. They were assessed using land use regression 

(LUR) modelling. LUR is a popular method used to estimate outdoor 

pollution concentrations based on participants addresses in large 

epidemiological studies. They are developed based on regression 

models in which a link is established between the air pollution 

concentrations observed and the most predictive environmental 

characteristics mainly derived from geographic information systems 

(GIS) (Eeftens et al., 2016). In the HELIX cohort, the models were 

temporally adjusted to measurement made in local background 

monitoring stations and afterwards averaged over the periods of 

interest. Site-specific LUR models developed in the context of the 

European Study of Cohort of Air Pollution Effects (ESCAPE) project 

were used in most of the cohorts (Beelen et al., 2009; Cyrys et al., 

2012; Eeftens et al., 2012a, 2012b; Sellier et al., 2014). Estimates on 

air pollutants were assigned to each subcohort individual within GIS 

techniques considering their residential geocoded addresses. For 

paper I we selected for the pregnancy analyses the averaged 

measurement over pregnancy, and for the childhood period the 

averaged measurement over the year before childhood follow-up. 

 

• Built environment 

 

A wide range of built environment indicators were calculated from 

topological maps acquired from the local authorities or from Europe-
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wide sources: building density, population density, street 

connectivity, facility richness index, facility density index, and the 

land use Shannon’s Evenness Index (SEI) (Shannon, 1948), which is 

an indicator of walkability and accessibility.  

 

• Traffic 

 

Different density indicators such as inverse distance to nearest road, 

total traffic load of all roads in 100 m buffer, total traffic load of 

major roads in 100 m buffer (only in childhood) and traffic density 

on nearest road from home address, were calculated from road 

network maps following the ESCAPE protocol (Beelen et al., 2013; 

Eeftens et al., 2012a).   

 

• Natural and Blue Spaces 

 

Surrounding greenness was abstracted as the average of normalized 

differentiation vegetation index (NDVI) within buffers of 100 m 

around residential geocoded addresses. The presence of a major 

green spaces such as grass, trees or vegetation, and the presence of a 

blue space (i.e., visible water) within 300 m from the residential 

address was also evaluated.  NDVI measures used to determine the 

surrounding greenness were obtained from the Landsat 4–5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), 

and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared 

Sensor (TIRS) with a 30x30m resolution. 
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• Traffic noise 

 

Noise levels were assessed based on day-evening-night noise level 

(Lden) and night noise (Ln) indicators. Both indicators were obtained 

from a different noise map produced in each local municipality under 

the European Noise Directive (EC Directive 2002/49/EC)(EUR-Lex, 

n.d.). In this Thesis Lden during pregnancy and childhood was 

assessed at residential addresses, and Ln was only evaluated during 

childhood period.  

 

B. Contaminant exposure biomarkers 

 

In HELIX, different chemical contaminants were evaluated within 

the framework of the early life exposome investigated in paper I. For 

the pregnancy period, several chemicals were already measured in 

some cohorts before HELIX project was created and their results 

were used. In the childhood period, the sample collection was 

performed based in a harmonized and standard protocol in all the six 

cohorts. Biological sample collection consisted in urine and blood 

samples. Briefly, two spot urine samples were collected (one first 

morning and one before bedtime), and they were stored at -4ªC and 

afterwards aliquots were made, and samples were frozen at -80ªC. 

Moreover, a total of 18 ml of blood were collected at the end of the 

clinical examination using a ‘butterfly’ vacuum clip and processed 

into a variety of sample matrices. It included EDTA Vacutainers, 

tempus tubes for RNA isolation, and plastic silica Vacutainers. Once 

processed, samples were frozen at -80ªC and after performing the 
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analyses, samples remained in storage for the subcohort children. The 

determination of the biomarkers was performed at the Department of 

Environmental Exposure and Epidemiology at the Norwegian 

Institute of Public Health, in Norway or in their contract laboratories. 

A summary of the assessment methods can be found in the table 

attached below (Table 1).  
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C. Water disinfection by-products (DBPs) and indoor air pollution 

 

• Water disinfection by products 

 

For all the cohorts of HELIX, we obtained data on routine 

measurements of DBPs in water from water companies for the 

pregnancy period. A previous project called the HiWate project 

(Jeong et al., 2012) modelled exposure levels in the water supply of 

the residence of each participating mother-child pair for the KANC, 

BiB, INMA and RHEA cohorts. New DBP measurements were 

acquired for MoBA and EDEN following the protocol developed for 

HiWate project (Jeong et al., 2012). In conclusion, total concentration 

of trihalomethanes (THMs), and chloroform and brominated THMs 

was estimated for the pregnancy period.  

 

• Indoor air 

 

A subgroup of HELIX children was selected as the panel study 

(N=157), and measurements of indoor NO2, benzene and toluene, 

ethylbenzene, and xylene (TEX) was conducted in their homes for all 

the cohorts except MoBA. The sampling for NO2, benzene and TEX 

lasted 7 days, however for PM2.5 and PMabs the sampling lasted 24 

hours. The combination of the previous measurements with 

questionnaire data obtained from the children encompassed in the 

panel study was used to create a prediction model to estimate indoor 

air concentrations of the mentioned pollutants in the whole 

subcohort. The variables that were included were related to number 
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of people living at home, presence of a garage or car property, 

exposure to environmental tobacco smoke, cooking and heating 

methods at home, cleaning products. 

 

D. Lifestyle and other exposures 

 

Different variables related with lifestyle were assessed within the 

exposome context mainly via questionnaires. Within the context of 

the exposome, information on diet, breastfeeding duration, alcohol 

intake, physical activity and allergens exposure was assessed. Data 

on different variables related with socio-economic status were 

included in the childhood exposome such as Family Affluence Score 

(FAS), house crowding (number of persons living in the house with 

the child), social participation (membership of organization), contact 

with friends and family, and maternal stress.  

 

Finally, for tobacco smoking exposure, the assessment was 

conducted during pregnancy and childhood via questionnaires to 

collect active and passive smoking, and via cotinine measurements.  

Concentrations of cotinine were measured in urine and the limit of 

detection (LOD) was 3.03μg/L and 1.21μg/L for cotinine in maternal 

urine samples from INMA. For maternal smoking a categorical 

variable was created based on the urinary cotinine levels (non-

smokers, second hand-tobacco smokers and smoker), and in children 

samples a dichotomic variable was created (detected and non-

detected) based on the LOD. The following variables were created 

based on questionnaire data: any maternal smoking during pregnancy 
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(Yes/No), childhood exposure to SHS based on paternal smoking 

during childhood (Neither/One parent/Both parents) and maternal 

tobacco smoking during pregnancy in five categories (No exposure/ 

Only passive exposure/ Non-sustained smokers/ Sustained smokers 

at low dose (=< 9 cigarettes)/ Sustained smokers at high dose (>9)) 

to evaluate dose and duration.  

 

4.2.2 Ambient air pollution and active maternal tobacco 

smoking exposure during pregnancy in INMA (Paper II) 

 
• Ambient air pollution 

 

In INMA cohort exposure levels of NO2 and PM2.5 were predicted 

from land use regression (LUR) models developed within the 

framework of the European Study of Cohorts for Air Pollution 

Effects (ESCAPE). To obtain the estimates a temporal adjustment 

was conducted using information from the background routine 

monitoring stations. For each study participant, exposure levels to 

each air pollutant was temporally adjusted following ESCAPE 

guideline, by which the LUR spatial estimates of pollutants for their 

residential geocode was combined with a temporal adjusting factor 

obtained from the monitoring stations (Beelen et al., 2013; Eeftens et 

al., 2012a).  An average value (extrapolated back in time using ratio 

method) during pregnancy, first trimester, second trimester and third 

trimester was obtained for each pollutant. Within GIS tools an 

estimate was assigned to each pregnant woman based on their 

geocoded residential addresses collected at each period of interest.  
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• Tobacco smoke 

 

In relation to active maternal tobacco smoking exposure, data was 

obtained through questionnaires. A total of four variables related to 

maternal tobacco smoking have been evaluated: active maternal 

smoking at week 12 of pregnancy (Yes/No), active maternal smoking 

at week 32 of pregnancy (Yes/No), any active maternal smoking 

during pregnancy (Yes/No) defined as smoke at any time point 

during pregnancy (beginning, 12weeks or 32 weeks), and active 

maternal sustained smoking (No smoking/Non-sustained 

smoking/Sustained smoking) which was defined as smoking at 12 

weeks and 32 weeks.  

 

4.2.3 Ambient air pollution childhood exposure in HELIX 

(Paper III) 

 
In paper III the following atmospheric pollutants (NO2, PM2.5 and 

PM10, and PMabs) were assessed in HELIX subcohort during 

childhood. Briefly, outdoor air pollution exposures were assessed 

using estimates based on LUR modelling approach developed within 

the framework of the ESCAPE project (Beelen et al., 2009; Cyrys et 

al., 2012; Eeftens et al., 2012a, 2012b; Sellier et al., 2014). Estimates 

on air pollutants were assigned to each individual using GIS 

techniques considering their residential and school geocoded 

addresses, which was collected through the last available follow-up 

survey for each cohort. Different time windows were calculated for 

the evaluated air pollutants by averaging them over 1 day, 1week and, 
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1 year before the clinical and molecular assessment. A more 

extensive explanation of the air pollution exposure assessment can be 

found in Supplementary material (Appendix A, section S1) from 

paper III.  

 

In HELIX cohorts that had air pollution measurements, missing 

values were imputed following a process previously described 

(Tamayo-Uria et al., 2019). Imputed values represented a maximum 

of 2% of the values within each cohort.  

 

4.2.4 NO2 concentrations during pregnancy in BiSC and its 

determinants (Paper IV)  

 

In paper IV, we measured home-indoor, home-outdoor, and personal 

NO2 concentrations during one week at first trimester (approximately 

week 12 of pregnancy) and third trimester (approximately week 32) 

with Gradko Environmental passive dosimeters. All the 

measurements obtained were subjected to a quality control and 

assurance procedure. In addition, to compare the concentrations of 

the pollutants with those from the NO2 monitors operated by the 

Department of the Environment of Catalonia we installed one week 

per month a tube at the background reference station of Palau Reial, 

which is in the southwest of Barcelona.  

 

The determinants of indoor and personal NO2 levels were evaluated 

in paper IV. Data on socioeconomic, behaviour and home 
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characteristics was gathered throughout several questionnaires which 

were self-reported or conducted by the fieldworkers at 12 or 32 weeks 

of gestation. For those individuals that changed residence at 2nd or 

3rd trimester data was collected twice, for the rest of the individuals 

we assumed that they did not made changes at their home. 

Due to the Covid-19 pandemic we were forced to change the 

assessment protocols and the collection of information. A more 

detailed explanation can be found in the section of Materials and 

Methods of paper IV. 

4.3 Outcome assessment 

4.3.1 Epigenetic age acceleration (Paper I and II) 

Epigenetic age was estimated using different clocks implemented in 

the methylclock R package (Gonzalez and Pelegí-Sisó, 2021; Pelegí-

Sisó et al., 2020), as described below. We estimated blood epigenetic 

age in HELIX children (paper I) and placental epigenetic gestational 

age in INMA samples (paper II) based on DNAm data. A detailed 

explanation can be found in the materials and methods section of 

paper I and II. Briefly, for each clock we obtained different measures: 

i) DNA methylation predicted age (DNAm age) in years, ii) ageAcc, 

difference between DNAm and chronological age in years; iii) 

ageAcc2, residuals obtained after regressing chronological age on 

DNAm age, and iv) ageAcc3, residuals obtained after regressing 

chronological age and blood cell type proportions on DNAm age. We
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estimated blood cell type proportion (CD4T, CD8T, Monocytes 

(Mono), B lymphocytes (Bcell), Natural killer (NK), Neutrophil 

(Neu) and Eosinophil (Eos)) using the Reinius et al. (2012) reference 

panel as implemented in meffil package (Min et al., 2018) for blood 

epigenetic clocks. When evaluating placental epigenetic clocks we 

estimated cell type composition from placental DNAm array data 

using the R package planet, which includes placental cells from third 

trimester (trophoblasts, stromal, Hoffbauer, endothelial, nucleated 

red blood cells (nRBC) and syncytiotrophoblast) (Yuan, 2022; Yuan 

et al., 2021). 

 

4.3.1.1  Blood epigenetic clocks in HELIX (Paper I) 

 

In HELIX subcohort children blood samples were collected at a mean 

age of 8.1 years (Maitre et al., 2018), and  DNA was extracted from 

buffy coat. DNAm was measured using the Illumina Infinium 

HumanMethylation450 beadchip at the University of Santiago de 

Compostela – Spanish National Genotyping Center (CeGen-USC, 

Spain). Within each batch (slide), all the samples were randomized 

and balanced by cohort and sex. Then, data was normalized and we 

checked sex consistency (Fortin et al., 2014), genetic consistency of 

technical/biological duplicates and other samples making use of the 

genotype probes of the array and the genome-wide genotyping data 

when available. Batch effect (slide) was corrected using the ComBat 

R package (Johnson et al., 2007). Control probes, probes in sexual 

chromosomes, probes designed to detect single nucleotide 

polymorphisms (SNPs) and probes to measure methylation levels at 
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non-CpG sites were removed, giving a final number of 386,518 

probes. Finally, CpGs were annotated using the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 R package    

(Hansen and Aryee, 2012).  

 

A total of four blood epigenetic clocks were used: Horvath’s All 

Tissue clock (Horvath, 2013), Horvath’s Skin and Blood clock 

(Horvath et al., 2018), the Paediatric-Buccal-Epigenetics’ (PedBE) 

clock (McEwen et al., 2020)) and Wu’s methylation-based age 

prediction model (Wu et al., 2019a).   

 

4.3.1.2  Placental epigenetic clocks in INMA (Paper II) 

 
Briefly, biopsies of approximately 5 cm3 were obtained from the 

inner region of the placenta, approximately 1.0-1.5 cm below the 

foetal membranes, corresponding to the villous parenchyma, and at 

~5 cm from site of cord insertion. Genomic DNA from placenta was 

isolated using the DNAeasy® Blood and Tissue Kit, (Qiagen, CA, 

USA). DNAm was assessed with the Infinium MethylationEPIC 

BeadChip from Illumina, following manufacturer’s protocol in the 

Erasmus Medical Centre core facility. Three technical duplicates 

were included. Samples were randomized considering cohort and 

sex. The methylation data was pre-processed using the 

PACEAnalysis R package (v.0.1.7).  Dye-bias and Noob background 

correction, implemented in minfi R package, were applied followed 

by normalization of the data with the functional normalization 

method.  To correct for the bias of type-2 probes values the beta-
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mixture quantile normalization was applied. SentrixID (array) batch 

effect was controlled with the ComBat method (Johnson et al. 2007). 

Finally, to correct for the possible outliers, we winsorized the 

extreme values to the 1% percentile (0.5% in each side), The final 

dataset consists of 379 samples and 811,990 probes.  

 

A total of four placental epigenetic clocks were used: control 

placental clock (CPC), robust placental clock (RPC), refined robust 

placental clock (refRPC) (Lee et al., 2019) and Mayne’s clock 

(Mayne et al., 2017). The CPC was constructed using placental 

samples (N=963) from pregnancies that did not have any placental 

pathology, the RPC (N=1,102) was constructed considering 

pregnancy conditions as preeclampsia or gestational age, and the 

refRPC was specifically trained (N=733) for uncomplicated term 

pregnancies. The clock by Mayne et al. was trained on a small set 

(n=170), and it seems that it under/overestimated gestational age 

(GA) according to pregnancy conditions (Mayne et al., 2017).  

 

4.3.2 Plasmatic proteins in HELIX (Paper III) 

 
During the clinical examination, blood samples were collected from 

HELIX subcohort children at a mean age of 7.4 years (Maitre et al., 

2018). Plasma was obtained through blood centrifugation. Three 

Luminex kits commercially available from Life Technologies and 

Millipore, were selected to assess plasma proteins: Cytokines 30-plex 

(Cat #. LHC6003M), Apolipoprotein 5-plex (LHP0001M), and 

Adipokine 15-plex (LHC0017M). Plasma analyses were performed 
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following the standard protocol defined by the vendor. Raw 

intensities obtained with the xMAP and Luminex system for each 

plasma sample were converted to pg/ml (5, 15 and 30-plex kits) using 

the calculated standard curves of each plate and accounting for the 

dilutions that were made prior measurement. Among the quality 

control process, the % of coefficients of variation for each protein 

were estimated by plate and then averaged. The LOD was determined 

for each protein as well as the lower and upper quantification limit. 

Seven proteins were measured in two different plex and the measure 

with the lower quality was excluded. Those samples that were below 

the LOD or above the upper limit of quantification were excluded. 

Finally, for those proteins that passed the quality control mentioned 

above, data was log2 transformed to reach normal distribution. A 

final dataset with the log2-transformed, imputed, and normalized 

levels for 36 proteins of the HELIX subcohort was obtained. A more 

detailed explanation can be found in the materials and methods 

section and, in the Supplementary material (Appendix B) of paper III.  

 

4.3.3 Blood pressure in HELIX (Paper III) 

 
Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 

were assessed using a standardized protocol during the clinical 

examination in HELIX subcohort (mean age 7.4 years). After 5 

minutes of rest in the sitting position, 3 consecutive measurements, 

separated by 1-min intervals, were taken using an oscillometer device 

(OMRON 705-CPII, Omron, Kyoto, Japan). The children were in a 

pre-defined posture and the right arm was used preferably. The cuff 
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sizes were chosen considering each child’s arm length and 

circumference. Each measurement of SBP and DBP was recorded, 

and the mean of the second and third measurements was calculated.
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5. RESULTS 

 
 

Paper I: The early-life exposome and epigenetic age acceleration in 

children. 

 

Paper II: Association between ambient air pollution and active 

maternal smoking exposure during pregnancy and placental 

epigenetic age acceleration.  

 

Paper III: Short- and medium-term air pollution exposure, plasmatic 

protein levels and blood pressure in children.  

 

Paper IV: Determinants of indoor and personal NO2 concentrations 

during pregnancy in BiSC cohort. 
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Pregnancy 
Childhood 
Environmental exposures 

was calculated based on Horvath’s Skin and Blood clock using child blood DNA methylation measured by 
Infinium HumanMethylation450 BeadChips. We performed an exposure-wide association study between prenatal 
and childhood exposome and age acceleration. Maternal tobacco smoking during pregnancy was nominally 
associated with increased age acceleration. For childhood exposures, indoor particulate matter absorbance 
(PMabs) and parental smoking were nominally associated with an increase in age acceleration. Exposure to the 
organic pesticide dimethyl dithiophosphate and the persistent pollutant polychlorinated biphenyl-138 (inversely 
associated with child body mass index) were protective for age acceleration. None of the associations remained 
significant after multiple-testing correction. Pregnancy and childhood exposure to tobacco smoke and childhood 
exposure to indoor PMabs may accelerate epigenetic aging from an early age.   

1. Introduction

Current evidence shows that early-life, including prenatal and early
postnatal periods, could be considered as an important window of sus
ceptibility to environmental exposures (Wright, 2017). Being exposed 
during these stages might permanently change the body’s structure, 
metabolism, and physiology, and hence promote health or diseases in 
later stages of life (Barouki et al., 2012). Determining which exposures 
could be beneficial or detrimental for human health, and identifying the 
underlying biological mechanisms, could provide important evidence 
for reducing or enhancing exposure to them during early life (Buck Louis 
et al., 2017; Logan et al., 2018). 

Aging is a gradual and multifactorial process, which is characterized 
by the physiological deterioration of the human body over time (López- 
Otín et al., 2013). At the molecular level, aging is described as the 
accumulation of cellular damage, which leads to structural and func
tional abnormalities and the decrease in the regenerative capacity of the 
cells (Carmona and Michán, 2016). Biological aging is reported to be a 
risk factor for the development of age-related diseases such as cancer, 
diabetes, cardiovascular, and neurodegenerative diseases as well as 
increased mortality (Kumar et al., 2017). In this context, aging could be 
considered as a continuous process already starting in early-life. 
Consequently, evaluating aging during this period might provide new 
evidence to slow down this process from the beginning and, prevent or 
delay the development of adverse health outcomes during adulthood 
and elderly (Benetos et al., 2013; Martens et al., 2019). 

The evaluation of aging at the molecular level can be carried out 
using a series of biomarkers including epigenetic clocks (Horvath, 2013; 
Horvath et al., 2018; McEwen et al., 2019; Wu et al., 2019a), which 
predict DNA methylation age of an individual from its DNA methylation 
levels (Horvath and Raj, 2018). The property of DNA methylation to 
change with age is used by these clocks to identify a subset of cytosine- 
phosphate-guanine sites (CpGs) that can predict chronological age. 
There are a number of epigenetic clocks available with a few ones 
applicable to children (McEwen et al., 2019; Wu et al., 2019a). From 
these clocks, we can calculate epigenetic age acceleration, a measure of 
whether the individuals’ are biologically younger or older than their 
chronological age (Gibson et al., 2019; Horvath and Raj, 2018; White 
et al., 2019). Although, DNA methylation is just one of the pathways by 
which epigenetics affect gene expression, besides histone modification 
or non-coding RNA, we will be referring to the rest of the text to DNA 
methylation age as epigenetic age. Epigenetic age acceleration has been 
linked to age-related conditions such as cancer (Ambatipudi et al., 2017; 
Dugué et al., 2018; Zheng et al., 2016), cellular senescence (Lowe et al., 
2016), and mortality (Chen et al., 2016; Christiansen et al., 2016; Perna 
et al., 2016), among others (Horvath and Raj, 2018). 

Recent evidence has shown that different environmental factors such 
as air pollution (Nwanaji-Enwerem et al., 2017; 2016; White et al., 
2019), tobacco smoke (Yang et al., 2019) or cadmium exposure 
(Demanelis et al., 2017) can increase epigenetic age acceleration 
(Martin and Fry, 2018; Simpkin et al., 2016). However, the evidence 
available is still scarce and not consistent, and most of the studies 
evaluated the impact on adults (Gao et al., 2016; Wu et al., 2019b) and 
elderly populations (Ward-Caviness et al., 2016; Yang et al., 2019), with 

few studies available on such an impact on children (Javed et al., 2016; 
Simpkin et al., 2017). Moreover, most of the studies have investigated 
one environmental exposure, and there is a paucity of studies consid
ering multiple exposures. This study aimed to investigate the association 
between the early life exposome (covering prenatal and childhood 
period) and epigenetic age acceleration in children from the Human 
Early-Life Exposome (HELIX) project. 

2. Materials and methods

2.1. Study population

This study was conducted in the context of the HELIX project, which 
was based on six on-going longitudinal population-based birth cohorts 
established in six countries across different parts of Europe (Born in 
Bradford [BiB; UK], Étude des Déterminants Pré et Postnatals du 
Développement et de la Santé de l’Enfant [EDEN; France], Infancia y 
Medio Ambiente [INMA; Spain], Kaunas Cohort [KANC; Lithuania], 
Norwegian Mother, Father and Child Cohort Study [MoBa; Norway], 
and Mother-Child Cohort in Crete [RHEA; Greece]) (Magnus et al., 2016; 
Maitre et al., 2018; Vrijheid et al., 2014). Prior to the start of HELIX, all 
six cohorts had undergone the required evaluation by national ethics 
committees and obtained all the required permissions for their cohort 
recruitment and follow-up visits. Each cohort also confirmed that rele
vant informed consent and approval were in place for secondary use of 
data from pre-existing data. The work in HELIX was covered by new 
ethic approvals in each country and at enrolment in the new follow-up, 
participants were asked to sign a new informed consent form. For this 
study we sub-selected 1,173 children which had information on the 
exposome, and blood DNA methylation. 

2.2. Exposome assessment during prenatal and early childhood 

A broad range of environmental exposures was evaluated (Tamayo- 
Uria et al., 2019), including 83 prenatal and 103 childhood exposure 
variables (Table S1). Detailed exposure assessment was previously 
explained elsewhere (Tamayo-Uria et al., 2019). Briefly, geospatial 
models, monitoring stations, satellite data and land use databases were 
used to estimate the urban exposome and air pollution. An estimated 
exposure value was assigned to each study participant separately for 
their geocoded addresses of home through GIS platforms (Robinson 
et al., 2018). During pregnancy, at birth or during childhood, maternal 
and children blood and urine samples were collected by each cohort to 
assess chemical exposures: organochlorine compounds (OCs), organo
phosphate pesticides (OPs) metabolites, polybrominated diphenyl 
ethers (PBDEs), per- and polyfluoroalkyl substances (PFASs), essential 
minerals, non-essential minerals, phenols, phthalate metabolites, and 
cotinine (Robinson et al., 2018). During pregnancy, exposure to water 
disinfection by-product (DBPs) was also assessed based on models for 
the water supply according to their residency (Jeong et al., 2012). In
door exposure to air pollutants including particulate matter absorbance 
(PMabs), which is a proxy of elemental/black carbon as it measures the 
blackness of PM2.5 filters, NO2, benzene and TEX-toluene, ethylbenzene 
and xylene, was estimated through a prediction model trained in a 
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subgroup of children (n = 157) using home personal measurements and 
questionnaire data including parental smoking behaviour, among other 
variables (Tamayo-Uria et al., 2019). Questionnaires were used to 
gather information on active and/or passive tobacco smoking, socio
economic capital of the family, social participation, social contact, house 
crowding, and other lifestyle factors as maternal and children diet, 
physical activity and sleep duration. 

An imputation process was performed for missing data of all expo
sures and covariates, resulting in 20 imputed databases (Tamayo-Uria 
et al., 2019). For comparability, continuous exposure variables were 
standardised by the interquartile range (IQR). 

2.3. Methylation data collection 

Blood samples were collected from HELIX subcohort children at a 
mean age of 8.1 years (Maitre et al., 2018). DNA was extracted from 
buffy coat using the Chemagen kit (Perkin Elmer). DNA concentration 
was determined in a NanoDrop 1000 UV–Vis Spectrophotometer 
(Thermo Fisher Scientific) and with Quant-iT™ PicoGreen® dsDNA 
Assay Kit (Life Technologies). Blood leukocyte DNA methylation was 
measured using the Illumina Infinium HumanMethylation450 beadchip 
at the University of Santiago de Compostela – Spanish National Geno
typing Center (CeGen-USC, Spain). Briefly, 700 ng of DNA were 
bisulfite-converted using the EZ 96-DNA methylation kit following the 
manufacturer’s standard protocol, and DNA methylation measured 
using the Infinium protocol. Within each batch (slide), all the samples 
were randomized and balanced by cohort and sex. DNA methylation 
data was pre-processed using minfi R package (Aryee et al., 2014). Two 
samples were filtered due to overall quality: one had a call rate < 98% at 
detection p-value threshold < 1.0x10− 16 (Lehne et al., 2015) and the 
other did not pass general quality control parameters (Van Iterson et al., 
2014). Then, data was normalized with the functional normalization 
method with Noob background subtraction and dye-bias correction (J.- 
P. Fortin et al., 2014). Then, we checked sex consistency (J. P. Fortin
et al., 2014), genetic consistency of technical/biological duplicates and
other samples making use of the genotype probes of the array and the
genome-wide genotyping data when available. In total four samples
were excluded, two with discordant sex and two with discordant geno
types. Batch effect (slide) was corrected using the ComBat R package
(Johnson et al., 2007). Control probes, probes in sexual chromosomes,
probes designed to detect single nucleotide polymorphisms (SNPs) and
probes to measure methylation levels at non-CpG sites were removed,
giving a final number of 386,518 probes. Finally, CpGs were annotated
using the IlluminaHumanMethylation450kanno.ilmn12.hg19 R package
(Hansen and Aryee, 2012).

2.4. Calculation of epigenetic age with different clocks 

Child epigenetic age based on different clocks (Horvath’s All Tissue 
clock (Horvath, 2013), Horvath’s Skin and Blood clock (Horvath et al., 
2018), the Paediatric-Buccal-Epigenetics’ (PedBE) clock (McEwen et al., 
2019)) and Wu’s methylation-based age prediction model (Wu et al., 
2019a) was calculated using the methylclock R package (Gonzalez and 
Pelegí-Sisó, 2021; Pelegí-Sisó et al., 2020). Briefly, from normalized and 
batched corrected methylation data, the package extracts methylation 
levels of CpGs included in each clock (Table S2). Subsequently, the co
efficients obtained through elastic net in the prediction models of each 
of the clocks in the original papers are used to calculate DNA methyl
ation age and epigenetic age acceleration. Therefore, for each clock we 
obtained: i) DNA methylation predicted age (DNAm age) in years, ii) 
ageAcc, difference between DNAm and chronological age in years; iii) 
ageAcc2, residuals obtained after regressing chronological age on 
DNAm age, and iv) ageAcc3, residuals obtained after regressing chro
nological age and blood cell type proportions on DNAm age. We esti
mated blood cell type proportion (CD4T, CD8T, Mono, Bcell, NK, Neu 
and Eos) using the Reinius et al. (2012) reference panel as implemented 

in meffil package (Min et al., 2018). 
Additionally, we retrieved the same variables for the Horvath All 

Tissue clock through the Horvath’s online calculator (Horvath, n.d.), 
which starts from raw data (IDAT files) and implements a normalization 
based on re-purposing the beta-mixture quantile (BMIQ) method 
(Teschendorff et al., 2013). 

2.5. Gene expression data collection 

RNA was extracted from whole blood collected in Tempus tubes with 
the MagMAX for Stabilized Blood Tubes RNA Isolation Kit (Termo
Fisher). The quality of RNA was evaluated with a 2100 Bioanalyzer 
(Agilent) and the concentration with a NanoDrop 1000 UV–Vis Spec
trophotometer. Gene expression was assessed with the Affymetrix 
Human Transcriptome Array 2.0 ST arrays (HTA 2.0) at the University of 
Santiago de Compostela (USC, Spain), following manufacturer’s rec
ommendations. Samples were processed in two different rounds. In each 
round, several batches of 24–48 samples were processed. Samples were 
randomized per batch taking into account sex and cohort. Raw data 
were extracted with the AGCC software (Affymetrix) and stored into CEL 
files. The GCCN (SST-RMA) algorithm was applied to normalize data at 
gene level. After normalization four samples with discordant sex were 
excluded. The HTA-2_0 Transcript Cluster Annotations Release na36 
(hg19) was employed to annotate transcript clusters (TCs) to genes. A TC 
is defined as a group of one or more probes covering a region of the 
genome reflecting all the exonic transcription evidence known for the 
region and corresponding to a known or putative gene. Control probes 
and probes in sexual chromosomes or probes without chromosome in
formation were excluded. Probes with a DABG (Detected Above Back
ground) p-value < 0.05 were considered to have an expression level 
different from the background, and they were defined as detected. 
Probes with a call rate < 1% were excluded from the analysis. The final 
dataset consisted of 58,254 TCs. Gene expression values were log2 
transformed and batch effect was controlled by residualizing the effect 
of surrogate variables calculated with the sva method (Leek and Storey, 
2007) while protecting for main variables in the study (cohort, age, sex, 
and blood cellular composition). 

2.6. Covariates 

During pregnancy and in the childhood follow-up examination in
formation on the following key covariates was collected: cohort (BIB, 
EDEN, INMA, MOBA, KANC and RHEA), self-reported maternal educa
tion (primary school, secondary school and university degree or higher), 
maternal age at conception (continuous in years), self-reported ancestry 
(European, Asian and Pakistani, or other), self-reported maternal pre- 
pregnancy body mass index (BMI) (continuous in kg/m2), birth weight 
(<2500 g, >=2500–3500 g, >=3500–4000 g, or >=4000 g), gestational 
age at delivery (continuous in weeks) and child’s BMI z-score (contin
uous in kg/m2) (De Onis et al., 2007; “WHO | BMI-for-age (5–19 years),” 
n.d.). A bivariate analysis was conducted through linear regression
models to determine the crude relationship between the covariates and
the outcome of our study (Table S3),

2.7. Statistical analyses 

2.7.1. Descriptive analyses and correlations 
For continuous variables, we calculated median and interquartile 

range (IQR) and for categorical variables, frequency and percentage. 
Pearson’s correlation was used to test the correlation between DNA 
methylation age, calculated with different epigenetic clocks, and chro
nological age. 

2.7.2. Exposome-wide association study of epigenetic age acceleration 
To assess the association between the prenatal and childhood expo

some and age acceleration we performed an exposome-wide association 
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study (ExWAS) using the rexposome R package (Hernandez-Ferrer and 
Gonzalez, 2019). The ExWAS approach consists of an exposure-by- 
exposure estimation of the association between each exposure and the 
outcome adjusting for potential confounders through independent linear 
regression models (Patel et al., 2010). It was performed separately for 
the prenatal and childhood exposome. Results from the 20 imputed 
datasets were aggregated as described before (Hernandez-Ferrer and 
Gonzalez, 2019). Results of the ExWAS analyses were expressed as β 
coefficients and 95% confidence intervals (CIs), that were reported for 
each IQR increase for continuous exposures or relative to the reference 
category for binary and categorical exposures. Nominal significance was 
established at nominal p-value < 0.05. For multiple hypothesis testing 
correction, we adapted the Bonferroni procedure to handle correlated 
exposures: we estimated the number of truly independent tests observed 
according to the correlation structure of the prenatal and childhood 
exposome (ENT), as ENT =

∑M
i=1[I(λi > 1)(λi − 1)], where I(x) is an in

dicator function and λi are the eigenvalues of the matrix of correlations 
between M exposures (adapted from Li et al. 2012 and Li, 2005 (Li and 
Ji, 2005; Li et al., 2012)) and then we divided the nominal significance 
by these calculated effective number of tests. This gave the following p- 
value thresholds (TEF): 1.01x10− 3 and 8.39x10− 4 for the prenatal and 
childhood exposome, respectively). 

In the main analyses we evaluated the association between prenatal 
or childhood exposome and age acceleration adjusted for blood cell type 
proportions. Models for both periods were adjusted for a common set of 
confounders identified a priori based on literature and covariate selec
tion through the DAGitty tool (Textor and Hardt, 2011) (Figs. S1 and 
S2): (i) child’s sex, (ii) cohort, (iii) self-reported maternal education, (iv) 
self-reported ancestry and (v) maternal age at conception. We also fitted 
models further adjusted for maternal pre-pregnancy BMI, birthweight 
(grams) and gestational age at delivery (weeks) in pregnancy exposome 
models, and maternal pre-pregnancy BMI, birthweight (grams) and 
child’s BMI z-score (De Onis et al., 2007; “WHO | BMI-for-age (5–19 
years),” n.d.) in childhood models. 

2.7.3. Additional insights on main exposure – epigenetic age acceleration 
associations 

For nominally significant exposure - epigenetic age acceleration as
sociations we did further analyses. Firstly, we investigated dose and 
duration of the maternal smoking exposure during pregnancy and 
parental smoking behaviour in childhood. Second, to assess the potential 
window of susceptibility for smoking effect, we ran additional mutually 
adjusted models: maternal tobacco smoke during pregnancy adjusted for 
parental smoking in childhood, and vice-versa. The correlation between 
exposure to tobacco smoke in both exposure periods was calculated 
using the polychoric correlation test (Revelle, 2017). Third, we evalu
ated the association between childhood exposure to indoor PMabs and 
age acceleration adjusted for maternal tobacco smoke during pregnancy 
or for parental smoking in childhood. Forth, we tested the association 
between log2 concentration levels of urinary hippurate obtained by 
1HNMR spectroscopy, which is a metabolite marker of fruits and vege
tables consumption (Lau et al., 2018), and epigenetic age acceleration to 
determine whether the potential association found between OP pesti
cides and epigenetic age acceleration could be explained by a high fresh 
fruit and vegetables consumption (Papadopoulou et al., 2019). 
Furthermore, we ran additionally adjusted models: OP pesticides (un
detected/detected) adjusted for fruit intake, vegetable intake or hippu
rate concentrations, besides the common set of confounders identified a 
priori. 

2.7.4. Sensitivity analyses 
We repeated the main and further adjusted models of the ExWAS 

evaluating the association between the prenatal and childhood expo
sures and age acceleration non-adjusted for blood cell type proportions. 
Moreover, we repeated the analysis restricted to European ancestry 

children (n = 1,048) to determine if the ancestry had any influence. We 
also conducted a cohort-by-cohort analysis for each association with a 
nominal p-value < 0.05, in the main model, to check the pattern of as
sociation within each cohort. The meta R package (Schwarzer, 2007) 
was used to conduct the fixed effect meta-analyses based on the esti
mates and standard errors of the associations. We looked at the I2 sta
tistics to describe the percentage of variation across the different cohorts 
that is due to heterogeneity. 

2.7.5. Expression quantitative trait methylation (eQTM) 
To provide further biological insight into the “Horvath’s Skin and 

Blood clock”, we performed pathway enrichment analyses with the 
genes associated with the methylation levels of the CpGs used to 
construct the clock. We conducted a cis eQTM analysis using data from 
874 HELIX children of European ancestry (https://helixomics.isglobal. 
org/) (Ruiz-Arenas et al., 2020). First, we linked each one of the 391 
CpGs in the “Horvath’s Skin and Blood clock” to the nearby genes (1 Mb 
window from the CpG and the transcription start site). Then, we tested 
the association between DNA methylation and gene expression levels of 
the 12,208 identified CpG-gene pairs through linear regression models 
adjusted for cohort, child’s age and sex. After, multiple-testing correc
tion through a permutation processes, we identified 129 unique genes 
associated with the methylation of 72 of the 391 CpGs in the “Horvath’s 
Skin and Blood clock”. Finally, we performed a pathway enrichment 
analysis of these 129 genes using the over-representation method of the 
ConsensusPath tool (Kamburov et al., 2011) and three different databases 
(Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome and 
BioCarta). We accepted as significant those pathways with a minimal 
overlap of 2 genes and a cut-off at q-value of 0.025. 

The statistical framework R (version 3.6.0) was used to perform all 
the analyses (R Core Team, n.d.). 

3. Results

3.1. Study population

The study included 1,173 children from the HELIX project, aged 
between 6 and 11 years old that had information on DNA methylation 
and on the exposome. Of these children 89.3% were of European 
ancestry, 54.9% were males, a 20.9% were overweight or obese, and 
50.7% were born from mothers with a university degree or higher ed
ucation level (Table 1). 

3.2. Selection of the best epigenetic clock for children 

We calculated epigenetic age using different clocks: “Horvath’s All 
Tissue clock” (with methylclock R package and Horvath’s online calcu
lator), “Horvath’s Skin and Blood clock”, “PedBe’s clock” and Wu’s 
methylation-based age prediction model (with methylclock R package) 
(Table S2). The correlations of the epigenetic age (DNAmAge) calculated 
from each clock vs. chronological age measured in years are presented in 
Fig. 1. We found that “Horvath’s Skin and Blood clock” showed the 
strongest correlation with chronological age (R = 0.85, p < 2.2x10− 16). 
The methylation-based age prediction model by Wu et al., and “Hor
vath’s All Tissue clock”, obtained from methylclock R package showed a 
slightly weaker correlation (R = 0.75, p < 2.2x10− 16; R = 0.72, p <
2.2x10− 16, respectively). However, slightly stronger than the one ob
tained from “Horvath’s online calculator” (R = 0.61, p < 2.2x10− 16). 
The “PedBE’s clock”, although trained in DNA methylation from buccal 
cells in children (from 0 years to 20 years), showed the lowest correla
tion (R = 0.53, p < 2.2x10− 16). 

Considering that DNAm data was obtained from blood and observing 
Pearson’s correlation results between epigenetic age and chronological 
age in our study population, we decided to continue the analyses with 
the “Horvath’s Skin and Blood epigenetic clock”, using age acceleration 
adjusted for blood cell type proportion as the main outcome. This clock 
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was created and trained on a sample size of 1206 individuals from 0 to 
75 years old and it is widely used in the aging field as marker of bio
logical aging. 

3.3. Exposome-wide association study (ExWAS) 

For the prenatal exposome, the ExWAS identified that maternal to
bacco smoke during pregnancy was associated with increased epigenetic 
age acceleration (β = 0.14, 95% CI = 0.02 to 0.26) although it did not 
pass multiple testing correction (p < 1.01x10− 3 for the pregnancy 
exposome) (Table 2, Fig. S4A). Moreover, this association remained 
similar when the model was further adjusted for maternal pre-pregnancy 
BMI, birthweight, and gestational age at delivery (no vs. yes; β = 0.13, 
95% CI = 0.01 to 0.25) (Table S4 and Fig. S5A; Supplementary Material 
2 for the full set of results: Excel Tables S1-S2). 

With regard to the childhood exposome, the ExWAS identified two 
exposure variables that were associated with an increase in age accel
eration (p < 0.05): indoor particulate matter absorbance (PMabs) (β =
0.07, 95% CI = 0.02 to 0.12) and parental smoking (neither vs. both 
parents; β = 0.15, 95% CI = 0.01 to 0.29) (Table 2, Fig. S4B). Moreover, 
two other variables were inversely associated with age acceleration (p <
0.05): the organic pesticide (OP) dimethyl dithiophosphate (DMDTP) 
(undetected vs. detected; β = − 0.13, 95% CI = − 0.24 to − 0.02) and of 
the persistent pollutant polychlorinated biphenyl-138 (PCB-138) (β =
− 0.07, 95% CI = − 0.14 to − 0.01) (Table 2, Fig. S4B). None of these 
associations passed multiple testing correction (p < 8.39x10− 4 for the 
childhood exposome). After further adjustment of the models for 
maternal pre-pregnancy BMI, birthweight and child’s z-score BMI, in
door PMabs (β = 0.06, 95% CI = 0.01 to 0.11) and DMDTP (undetected 
vs. detected; β = − 0.12, 95% CI = − 0.24 to − 0.02) were the only two 
exposures that remained significant (p < 0.05) (Table S4 and Fig. S5B). 
Furthermore, in the fully adjusted model, the N-butyl paraben (BUPA) 
was also nominally associated with age acceleration (p < 0.05) (β =
0.04, 95% CI = 0.01 to 0.08) (Table S4 and Fig. S5B; Supplementary 

Table 1 
Characteristics of the study population (n = 1,173).  

Variable n (%) or median (IQR) 

Cohort  
BIB 203 (17.3) 
EDEN 146 (12.4) 
INMA 215 (18.3) 
KANC 198 (16.9) 
MOBA 212 (18.1) 
RHEA 199 (17) 

Self-reported ancestry  
Asian and Pakistani 98 (8.4) 
European 1047 (89.3) 
Other 27 (2.3) 

Maternal age (years) 31 ± 6.8 
Maternal education  

Primary school 176 (15) 
Secondary school 402 (34.3) 
University degree or higher 595 (50.7) 

Maternal pre-pregnancy BMI (kg/m2) 24.1 ± 5.9 
Sex of the child  

Female 529 (45.1) 
Male 644 (54.9) 

Birthweight  
<2500 g 40 (3.4) 
>=2500–3500 g 662 (56.4) 
>=3500–4000 g 357 (30.4) 
>=4000 g 114 (9.7) 

Gestational age (weeks) 40 ± 2 
Child z-score BMI (kg/m2) 0.3 ± 1.5 
Child BMI (WHO categorization)  
Grade 1/2/3 thinness and Normal weight 927 (79.1) 
Overweight or Obese 246 (20.9) 
Age at blood collection (years) 7.2 ± 2.4 

Note: BIB = Born in Bradford; EDEN = Étude des Déterminants Pré et Postnatals 
du Développement et de la Santé de 
l’Enfant; INMA = Infancia y Medio Ambiente; KANC = Kaunas Cohort; MoBa =
Norwegian Mother, Father and Child Cohort Study; RHEA = Mother-child 
Cohort in Crete; BMI = Body Mass Index. 

Fig. 1. Pearson’s correlations between DNA methylation age, calculated with different clocks, and chronological age. Each graph shows a different epigenetic clock: 
(A) Horvath’s All Tissue clock (methylclock. R package); (B) Horvath All Tissue clock (Horvath’s online calculator); (C) Horvath’s Skin and Blood clock (methylclock R
package); (D) Wu’s clock (methylclock R package); (E) PedBE’s clock (methylclock R package); (F) Summary table of the mean and standard deviation (sd) of the
clocks evaluated.
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Material 2 file for the full set of results: Excel Tables S1 and S2). 

3.4. Additional insights on main exposure – epigenetic age acceleration 
associations 

Firstly, we tested the effect of dose and duration of the maternal 
exposure to tobacco smoking during pregnancy, through linear regres
sion models (Table S5), that suggested a slightly positive trend. Child
hood exposure to second-hand tobacco smoke due to parental smoking 
(classified as: none, one parent, or both parents) also showed a linear 
trend (Table S5). Secondly, we assessed the effect of the exposure win
dow to tobacco smoke, by running mutually adjusted models. The effect 
estimates of maternal tobacco smoke during pregnancy adjusted for 
childhood parental smoking were smaller (28.57% β reduction) 
(Table S6). A similar pattern was observed when adjusting parental 
smoking in childhood for maternal tobacco smoke during pregnancy 
(40% β reduction) (Table S6). To determine if we could disentangle 
prenatal and childhood smoking exposure, we calculated their correla
tion. Indeed, a strong positive correlation was shown between exposure 
to tobacco smoke in both exposure periods (polychoric coefficient =
0.72, prenatal vs. childhood exposure). 

In regards to indoor PMabs, we evaluated the influence of parental 
smoking behaviour and also maternal smoking during pregnancy on the 
association between indoor PMabs and epigenetic age acceleration as 
indoor PMabs was estimated through a prediction model trained in a 
subgroup of children (n = 157) using home personal measurements and 
questionnaire data including parental smoking behaviour, among other 
variables (Tamayo-Uria et al., 2019). After adjustment for prenatal or 
childhood exposure to tobacco smoke, no differences in the estimate 
coefficients of PMabs were observed (0% β change), suggesting inde
pendent effects (Table S7). 

Furthermore, given that OP pesticides are present in fruit and veg
etables, we speculated that they could be a proxy of fresh fruit and 
vegetable intake in the study. However, fruit and vegetable intake, were 
not associated with age acceleration (Supplementary Material 2 file for 
the full set of results: Excel Table S2) and the effect size of the models of 
DMDTP additionally adjusted for vegetable or fruit intake did not 
change substantially (7.14% β increase for vegetables and 0% β change 
for fruit) (Table S9). Given that food frequency questionnaire data has 
some misclassification issues, we also adjusted the model of DMDTP for 
urinary hippurate, which is a metabolite marker of fruits and vegetables 
consumption (Lau et al., 2018; Pallister et al., 2017). Again, the effect 
size did not change (0% β change) (Table S9), although hippurate was 
higher in those children with DMDTP over the limit of detection (mean 
difference = 0.211, p-value < 2x10− 16). 

Finally, when evaluating the childhood model further adjusted for 
birthweight, maternal pregnancy body mass index and child z-score 
body mass index, the effect size of the association between PCB-138 and 
epigenetic age acceleration was drastically attenuated (53.16% β 
reduction) (Supplementary Material 2 file for the full set of results: Excel 

Table S2). In our data, as in other studies (Huang et al., 2019), we 
observed a positive association between child z-score BMI with age ac
celeration (β = 0.08, 95% CI = -0.05 to 0.12, not adjusted for cell type 
proportions; β = 0.07, 95% CI = -0.03 to 0.10, adjusted for cell type 
proportions). Thus, the association of child’s BMI with PCB-138 and 
with epigenetic age acceleration could explain this reduction. 

3.5. Sensitivity analyses 

When assessing the association between the prenatal and childhood 
exposures and epigenetic age acceleration non-adjusted for blood cell 
type proportions we detected all the associations described above for the 
main model (Fig. S7). However, additional childhood exposures of the 
same exposure families identified in the main model reached nominal 
significance (PCB-153, PCB-170, PCB-180, Diethyl thiophosphate 
(DETP)), as well as of new exposure families (Perfluorooctane sulfonate 
(PFOS), Hexachlorobenzene (HCB) and Oxybenzone (OXBE)) (Fig. S7B). 
None of these associations passed multiple testing correction (Supple
mentary Material 2 file for the full set of results: Excel Tables S1 and S2). 

We repeated the prenatal and childhood ExWAS restricting the an
alyses to European ancestry children and similar results were obtained 
(Supplementary Material 2 file for the full set of results: Excel Tables S3 
and S4). For the significant exposure – epigenetic age acceleration as
sociations described above, the absolute percent change in the co
efficients (β) between the whole study sample and the subset of 
European ancestry sample was < 12%. 

Finally, we conducted fixed effects inverse variance weighted meta- 
analysis of results by cohort of the top exposure – epigenetic age ac
celeration associations (Fig. S8). For maternal tobacco smoking during 
pregnancy and childhood indoor PMabs estimated effects were consistent 
across cohorts (Figs. S8A, S8D). For the other associations the pattern 
was slightly more heterogeneous with some cohorts going in the oppo
site direction (Figs. S8B, S8C, and S8E). The statistic I2 was lower than 
was 41% for all exposures. 

3.6. eQTM analyses 

To interpret the biological meaning of epigenetic age, we searched 
the genes whose expression was associated with the methylation levels 
of the CpGs included in the “Horvath’s Skin and Blood clock” in HELIX. 
72 CpGs out of the 391 (18.41%) in “Horvath’s Skin and Blood clock” 
were associated with the expression of 151 unique transcript clusters 
(TCs, or genes), which were annotated to 129 unique gene symbols 
(Supplementary Material 2 file: Excel Table S5). 122 out of 129 genes 
were mapped in ConsensusPathDB and were enriched for the following 
biological pathways (q-value < 0.025): i) Adaptive and innate immune 
system, ii) Apoptosis, cell cycle and cancer, and iii) Detoxification of 
xenoestrogens (Supplementary Material 2 file: Excel Tables S6 and S7). 

Table 2 
ExWAS* of prenatal and childhood exposures vs. age acceleration adjusted for blood cell type proportions (main model).      

ExWAS*  

Exposure Exposure family Units Estimate (95% CI) a P-value 

Prenatal Maternal tobacco smoking Tobacco smoke No vs. Yes 0.14 (0.02, 0.26)  0.025 
Childhood Indoor PMabs Indoor air ug/m3 0.07 (0.02, 0.12)  0.003 

Parental smoking Tobacco smoke Neither vs. Both 0.15 (0.01, 0.29)  0.036 
Dimethyl dithiophosphate (DMDTP) OP Pesticides Undetected vs. Detected (adjusted for creatinine) − 0.13 (− 0.24, − 0.02)  0.017 
Polychlorinated biphenyl-138 (PCB-138) OCs ng/g (adjusted for lipids) − 0.07 (− 0.14, 0.01)  0.037 

Note: ExWAS = exposome-wide association study; PMabs = Particulate Matter Absorbance, DMDTP = Dimethyl dithiophosphate; OP Pesticides = Organophosphate 
Pesticides; PCB-138 = Polychlorinated biphenyl-138; OCs = Organochlorine compounds; IQR = Interquartile range. *Results are presented only for the exposures with 
nominal significance (p value < 0.05) in the ExWAS adjusted for: child’s sex, cohort, self-reported maternal education, self-reported ancestry and maternal age in years. 
The analyses were conducted in 1,173 children from the HELIX subcohort. aCoefficient estimates are given in age acceleration effect change for each IQR increase in 
continuous exposure variables, or relative to the reference category in binary and categorical variables. 
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4. Discussion

This is the first study to evaluate associations between a wide range
of prenatal and childhood environmental exposures (the early-life 
exposome) and the epigenetic age acceleration in children. 

We observed a positive association between maternal tobacco smoke 
during pregnancy and exposure to parental smoke through childhood 
and age acceleration in childhood, in line with previous studies (Javed 
et al., 2016; Simpkin et al., 2016; Wu et al., 2019b; Yang et al., 2019). 
For instance, in adult and elderly populations, active smoking has been 
correlated with increased epigenetic age acceleration (Gao et al., 2016). 
Others, using the “Horvath’s All tissue clock” clock, have found that 
maternal smoking increases epigenetic age acceleration as early as at 
birth (Javed et al., 2016) and that effect is persistent at least until 
childhood (Simpkin et al., 2016). We also observed that childhood 
exposure to second-hand smoke (SHS) was associated with increased age 
acceleration in children. Adjustment for maternal smoking during 
pregnancy attenuated the association, and considering that pregnancy 
active smoking implies a higher dose than childhood passive smoking 
and that smoking effects on blood DNA methylation seem to be persis
tent (Vives-Usano et al., 2020), these results suggest that the SHS asso
ciation may have been partly confounded by the exposure during the 
pregnancy period. Prior research described that maternal tobacco 
smoking was associated with cord blood DNA methylation at >6,000 
CpG sites (Joubert et al., 2016). However, none of these CpGs over
lapped with the CpGs used in the Horvath’s Skin and Blood clock, thus 
suggesting different mechanisms. Moreover, we observed a dose 
dependent effect regarding exposure to tobacco smoke during preg
nancy and childhood, in which a higher dose or a longer duration of the 
exposure was related with increased estimates. What we observed is 
biologically plausible and is consistent with previous evidence related to 
other health outcomes (Banderali et al., 2015; Vives-Usano et al., 2020; 
Zhuge et al., 2020). 

In relation to air pollution, we found a positive association between 
epigenetic age acceleration and childhood indoor PMabs, which is used 
as a proxy of elemental/black carbon (EC or BC) in the HELIX project. 
Both pollutants are particles coming from the incomplete combustion of 
fossil fuels, biofuels, and biomass (Briggs and Long, 2016). Adjustment 
for childhood SHS exposure did not change this association suggesting 
that the association observed was led by other sources of PM. Two 
longitudinal cohort studies, one in adult women and the other in adult 
men, found that exposure to outdoor BC and ambient PM2.5 were asso
ciated with increased age acceleration (Nwanaji-Enwerem et al., 2016; 
Ward-Caviness et al., 2016). Also, a recent study observed that different 
clusters defined by outdoor PM2.5 component profiles were related to 
accelerated aging in women (White et al., 2019). As far as we know there 
are no studies of the air pollution effects on epigenetic age in children, 
neither for indoor nor outdoor levels. Thus, further exploration in chil
dren is needed. 

In this study, we observed an association between higher DMDTP 
exposure and decreased age accelerations, which is contrary to what we 
would expect as DMDTP exposure could be considered as a risk factor for 
age-related diseases (mainly neurodegenerative (Hayden et al., 2010)). 
We tried to explain the results that we obtained by looking at the 
possible association reported before between DMDTP exposure and 
fruit/vegetable intake (Pallister et al., 2017), in which a higher con
sumption of fruit/vegetable intake was associated with higher concen
trations of DMDTP. As our data on fruit and vegetable intake was 
obtained by a food frequency questionnaire in which we might be facing 
misclassification issues, we evaluated a urinary metabolite called hip
purate, which is accepted as a metabolite marker of fruits and vegetables 
consumption. Thus, here hippurate is a biomarker of fruit and vegetables 
intake, and it might be associated with OPs. However, the role of 
DMDTP reflecting the effects of fruit and vegetable intake needs further 
investigation in other studies. 

PCBs are widely present in the environment, although whose 

production was banned in 2001 due to their toxicity and persistence in 
health (Sun et al., 2005). In our study, we observed a protective effect of 
PCB-138 on epigenetic age acceleration. When we additionally adjusted 
the model for child BMI z-score, the association was largely attenuated, 
suggesting that z-score BMI could explain a notable part of the associ
ation. It has been previously reported an inverse association between 
PCB-138 and child z-score BMI or BMI as these chemicals are highly 
lipophilic and are stored in fat tissues (Agudo et al., 2009; Dirinck et al., 
2011; Domazet et al., 2020; Vrijheid et al., 2020). We thus hypothesize 
that the association we observed for PCBs might be capturing the rela
tionship between epigenetic age acceleration and body mass index, 
instead of PCBs exposure. Future studies should address this issue by 
considering adipose tissue and BMI distinctly, and incorporating tox
icokinetic models of PCBs during childhood (Cadiou et al., 2020; Jack
son et al., 2017; Vrijheid et al., 2020; Wood et al., 2016). 

When evaluating epigenetic age acceleration non-adjusted for blood 
cell type proportions we detected the same associations as in the main 
model adjusted for cellular composition plus additional associations 
with lipophilic chemical compounds. These compounds tend to accu
mulate in lipid-rich tissues, and their serum levels depend on child’s 
adipose tissue content. At the same time child’s adipose tissue content (i. 
e., obesity) leads to an inflammatory state and an imbalance of the blood 
cellular percentages. Thus, we hypothesize that when not considering 
blood cell type proportions we might be capturing the effects of BMI on 
epigenetic age acceleration, and in turn confounded associations with 
the lipophilic chemical compounds. In this sense, most of these associ
ations disappeared in models further adjusted for child’s BMI. 

Aging is a multi-factorial process which involves multiple and com
plex interactions between biological mechanisms (Borup et al., 2008; 
Weinert and Timiras, 2003). Aging is related to increased oxidative 
stress and inflammation, increased DNA damage due to reduced DNA 
repair, and decreased immune response to external agents and tumori
genic cells (Franzke et al., 2015; Lovell and Markesbery, 2007; Sadighi 
Akha, 2018). We found that part of the CpGs of the Horvath’s Skin and 
Blood clock were related to the expression of genes involved in pathways 
relevant for aging processes such as immune response, cell cycle and 
apoptosis, and detoxification, suggesting that they might mediate the 
effects of exposure to tobacco smoke, indoor PMabs, and BMI (Camous 
et al., 2012; Horstman et al., 2012; Kuba and Raida, 2018; Leandro et al., 
2015; Weng, 2006). 

Major strengths of the present study encompass detailed and 
comprehensive assessment of the early-life exposome in six populations 
across Europe with different cultures and settings. We were able to 
characterize a broad range of environmental exposures for a relatively 
large sample size in two separate periods of time, pregnancy and 
childhood, which can be considered as critical periods of vulnerability 
for children’s development (Wright, 2017). Moreover, the environ
mental exposures that shown an association with epigenetic age accel
eration were not correlated among them revealing a non-linear 
relationship. We have conducted a screening analyses of single expo
sures using the ExWAS approach, which was characterized by its high 
sensitivity, but also high false positive rate (Holme et al., 2016). In 
addition, we have published all the estimates obtained for each 
exposure-epigenetic age acceleration association to avoid selective 
reporting bias (Reid et al., 2015). Finally, we have conducted several 
sensitivity analyses, which did not result in a notable change in our 
findings. 

Nevertheless, our results should be interpreted in the context of its 
limitations. First, the “Horvath’s Skin and Blood clock” used in this study 
was trained considering all ages and it is not specific for children, which 
could lead to less precision in assessing epigenetic age. However, one of 
the known epigenetic clocks based on children population used buccal 
cells, which gave lower correlations with chronological age likely due to 
the major differences between tissues than among age ranges. A more 
robust and improved epigenetic clock within the range of age of children 
based on blood cells is needed as the one evaluated in this study (Wu 
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et al., 2019a) was as based on a smaller sample size and it was not widely 
validated. Second, we acknowledge that we cannot directly contrast the 
effect size and significance levels between exposures as the exposures 
evaluated in this study were measured with different measurement er
rors. Third, when evaluating the childhood exposome our study had a 
cross-sectional design, and we could not establish a causal link between 
the environmental exposures and the epigenetic age acceleration. 
Moreover, although we have adjusted the models for several variables, 
there can still be residual confounding. In our analyses we evaluated a 
wide range of prenatal and childhood environmental exposures, how
ever we could not include all factors affecting age acceleration and cover 
a complete exposome. Therefore, we encourage future studies to further 
investigate the factors not considered in our analyses. Fourth, the sta
tistical power of our study was relatively limited, because of our sample 
size. 

5. Conclusions

In summary, our study found that prenatal and childhood exposure
to tobacco smoke and childhood indoor PMabs are associated with 
accelerated epigenetic aging. Epigenetic modifications in pathways 
involved in inflammation, detoxification and cell cycle control may be 
mechanisms by which these environmental exposures can impact 
human health from early life onward. As aging is considered a public 
health issue worldwide, new evidence in child populations might drive 
new policies to reduce environmental exposures and promote a “healthy 
aging” from early stages of life. 
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Dugué, Pierre-Antoine, Bassett, Julie K., Joo, JiHoon E., Jung, Chol-Hee, Ming Wong, Ee, 
Moreno-Betancur, Margarita, Schmidt, Daniel, Makalic, Enes, Li, Shuai, 
Severi, Gianluca, Hodge, Allison M., Buchanan, Daniel D., English, Dallas R., 
Hopper, John L., Southey, Melissa C., Giles, Graham G., Milne, Roger L., 2018. DNA 
methylation-based biological aging and cancer risk and survival: Pooled analysis of 
seven prospective studies. Int. J. Cancer 142 (8), 1611–1619. https://doi.org/ 
10.1002/ijc.31189. 

Fortin, J.-P., Labbe, A., Lemire, M., Zanke, B.W., Hudson, T.J., Fertig, E.J., 
Greenwood, C.M., Hansen, K.D., 2014a. Functional normalization of 450k 
methylation array data improves replication in large cancer studies. Genome Biol. 
15, 503. https://doi.org/10.1186/s13059-014-0503-2. 

Fortin, J.P., Fertig, E., Hansen, K., 2014. shinyMethyl: Interactive quality control of 
Illumina 450k DNA methylation arrays in R. F1000Research 3. https://doi.org/ 
10.12688/f1000research.4680.2. 

Franzke, Bernhard, Neubauer, Oliver, Wagner, Karl-Heinz, 2015. Super DNAging-New 
insights into DNA integrity, genome stability and telomeres in the oldest old. Mutat. 
Res. - Rev. Mutat. Res. 766, 48–57. https://doi.org/10.1016/j.mrrev.2015.08.001. 

Gao, X., Zhang, Y., Breitling, L.P., Brenner, H., 2016. Relationship of tobacco smoking 
and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 
7, 46878–46889. https://doi.org/10.18632/oncotarget.9795. 

Gibson, Jude, Russ, Tom C., Clarke, Toni-Kim, Howard, David M., Hillary, Robert F., 
Evans, Kathryn L., Walker, Rosie M., Bermingham, Mairead L., Morris, Stewart W., 
Campbell, Archie, Hayward, Caroline, Murray, Alison D., Porteous, David J., 
Horvath, Steve, Lu, Ake T., McIntosh, Andrew M., Whalley, Heather C., 
Marioni, Riccardo E., Greally, John M., 2019. A meta-analysis of genome-wide 
association studies of epigenetic age acceleration. PLOS Genet. 15 (11), e1008104. 
https://doi.org/10.1371/journal.pgen.1008104. 
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Vrijheid, Martine, Slama, Rémy, Robinson, Oliver, Chatzi, Leda, Coen, Muireann, van 
den Hazel, Peter, Thomsen, Cathrine, Wright, John, Athersuch, Toby J., 
Avellana, Narcis, Basagaña, Xavier, Brochot, Celine, Bucchini, Luca, 
Bustamante, Mariona, Carracedo, Angel, Casas, Maribel, Estivill, Xavier, 
Fairley, Lesley, van Gent, Diana, Gonzalez, Juan R., Granum, Berit, 
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Abstract 

Air pollution exposure and active maternal tobacco smoke during pregnancy are considered as two of the top 

health menacing exposures worldwide which might be linked to pregnancy complications, such as lower birth 

weight or reduced gestational age. The human placenta is a complex organ with a key role during pregnancy. It 

has been found to be susceptible to maternal environmental factors which can alter its formation, functioning 

and biological aging. Here, we investigated the association between exposure to ambient air pollution and active 

maternal tobacco smoking during pregnancy and placental epigenetic age acceleration in 379 individuals of the 

INfancia and Medio Ambiente (INMA) cohort. Different air pollutants (NO2 and PM2.5) were estimated for the 

pregnancy period based on residential addresses. Active maternal tobacco smoking was self-reported at 12 and 

32 weeks of gestation. Placental DNA methylation was measured with the Illumina EPIC array. Epigenetic age 

acceleration was calculated with four different clocks. For downstream analysis we used the control placental 

clock previously developed by Lee et al., as it showed the highest correlation with chronological age. We fitted 

linear regression models for each exposure (air pollutant or maternal tobacco smoking) and each outcome (birth 

weight, gestational age or and placental epigenetic age acceleration), adjusting for covariates. Sustained 

maternal smoking was related to lower birth weight, but not with gestational age. Air pollution variables were 

not related to any reproductive outcome. None of the pregnancy exposures, air pollution or maternal smoking, 

were associated with epigenetic age acceleration in the main analysis or in the several sensitivity analyses. As 

healthy aging is considered a public health issue worldwide, further research with a more accurate exposure 

assessment in larger samples sizes is needed to elucidate which is the role of environment in placental biological 

aging. 

Keywords 

Aging; Placental epigenetic age; DNA methylation; Pregnancy; Environmental exposures; Maternal smoking; 

Air pollution 
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INTRODUCTION 

The human placenta is a multifunctional organ with a key role during pregnancy as it acts as the interface 

between the mother and the foetus, and it serves as a physical barrier for toxic compounds. It is responsible for 

a variety of critical functions such as gas exchange, transfer of nutrients and waste products between the mother 

and the foetus, transfer of immune factors, and secretion of hormones essential for the foetal growth and 

development (Griffiths and Campbell, 2015). It has been observed that during pregnancy, placenta experiences 

physiologic aging: the organ grows rapidly throughout the period of gestation and matures within a limited time 

(Cox and Redman, 2017). An adequate timely ageing is needed for the placenta to reach an optimal foetal 

growth and development as it has been seen that accelerated placental aging could be a risk factor for a variety 

of adverse health outcomes such as early onset preeclampsia (Mayne et al., 2017), late-onset foetal smallness 

(small for gestational age (SGA) and foetal growth restriction (FGR)) (Paules et al., 2019) or higher risk of still 

birth (Maiti et al., 2017).  

During development, the placenta is the first complex organ to form, therefore, it is susceptible to maternal 

environmental factors from earliest stages, which can influence its formation, functioning and aging (Marsit, 

2015). Two of the top health menacing worldwide exposures, which are air pollution and maternal tobacco 

smoking, have already been related with adverse pregnancy and birth outcomes such as lower birthweight, 

reduced gestational age at delivery, higher risk for small for gestational age or foetal growth restriction 

(Glassman et al., 2020; Ko et al., 2014; Leonardi-Bee et al., 2008; Maisonet et al., 2004; Marufu et al., 2015; 

Qiu et al., 2020; Salmasi et al., 2010; Taylor et al., 2021; Yuan et al., 2020, 2019). Previous studies have detected 

the presence of air pollution particles and toxic compounds from tobacco in placental samples (Bongaerts et al., 

2020; Bové et al., 2019; Mohammadi et al., 2017; Raia-Barjat et al., 2020; Suter et al., 2019).  

Besides direct translocation of toxic particles into the placenta and fetus, these exposures also produce  systemic 

and placental inflammation and oxidative stress (Romero et al., 2007) (Bangma et al., 2021; Núñez Estevez et 

al., 2020; Zavatta et al., 2022). In turn, both processes can interfere with the physiological aging process of the 

placenta (Manna et al., 2019; Menon, 2014). Finally, it has been seen that exposure during pregnancy to 

environmental risk factors such as air pollution or tobacco smoking are related to placental DNA methylation 

alterations (Abraham et al., 2018; Everson et al., 2021; Saenen et al., 2019; Suter and Aagaard, 2020). DNA 

methylation is considered as an epigenetic mark that consists of transferring a methyl group onto the C5 position 

of a cytosine which leads to the formation of a 5-methylcystosine (Wang and Ibeagha-Awemu, 2021) which 

helps to regulate gene expression (Moore et al., 2013). In most tissues, DNAm is relatively stable within cell 

types, however during gestation placental DNAm is subject to extensive alterations due to changes in cell 

composition to start the formation of the placenta, the correct functioning of this tissue and the need to adapt to 

in utero stressors (Del Gobbo et al., 2019; Hogg et al., 2012; Novakovic et al., 2011; Rondinone et al., 2021). 

Differently from adult somatic tissues which the vast majority of the genome is highly methylated (>70%), 37% 
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of the placenta genome is covered by partially methylated domains (PMDs), regions with low methylation levels 

(Schroeder et al., 2013). PMDs are stable through gestation and between individuals, and the expression of the 

genes in these regions tend to be repressed.  

Chronological aging of the placenta can be measured as gestational age which is estimated  from ultrasound 

measures or the last menstrual period (Lynch and Zhang, 2007). However, new molecular estimators have been 

proposed to evaluate biological GA, in contraposition to chronological GA. Some of them, known as placental 

epigenetic clocks, are based on DNA methylation data from placental tissue, and they can be used to predict 

GA and the difference between placental epigenetic age and chronological GA at delivery, which is known as 

placental epigenetic age acceleration. When placenta ages faster than expected, this age acceleration takes 

positive values, compared to when the organ ages slower that the measure is negative. To our knowledge, two 

different placental epigenetic clocks with high placental age prediction accuracy exist (Lee et al., 2019; Mayne 

et al., 2017). One of them has already been associated with early onset preeclampsia (Mayne et al., 2017). 

Although, DNA methylation is just one of the pathways by which epigenetics affect gene expression, besides 

histone modification or non-coding RNA, we will be referring to the rest of the text to placental DNA 

methylation age as placental epigenetic age. 

In this study we aimed to evaluate the association between exposure to ambient air pollution and active maternal 

tobacco smoking during pregnancy and placental epigenetic age acceleration in the INfancia and Medio 

Ambiente (INMA) cohort.  

MATERIALS AND METHODS 

Study population 

This study was conducted in the context of the INMA - INfancia y Medio Ambiente - (Environment and 

Childhood) Project, which is an ongoing population-based birth cohort established in different cities of Spain. 

The project includes more than 3,000 mother-child pairs from seven Spanish cohorts located in different 

geographical areas: Granada, Menorca, Ribera d’Ebre, Gipuzkoa, Asturias, Valencia, and Sabadell. The last 

four cohorts shared common protocols based on the experience in Granada, Menorca, and Ribera d’Ebre, and 

their recruitment was done between 2003 and 2008 (Guxens et al., 2012). Pregnant women were recruited at 

first prenatal visit at primary health care centres or public hospital of their region if they fulfilled the following 

inclusion criteria: singleton pregnancy, intention to deliver at the reference hospital, ≥16 years of age, no 

problems of communication and no assisted conception. Afterwards, different follow-ups of the offspring were 

carried out at birth, 1.5, 4,7,9, and 11 years of age. The work in INMA was covered by a study approval obtained 

from the ethics committees of each participating centre and informed consents from the mothers were collected. 
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The present analysis uses data from three INMA cohorts: Valencia (n=67), Gipuzkoa (n=155) and Sabadell 

(n=157), of which information on the exposure and the outcome assessed was available (total = 379).  

Exposure assessment 

Ambient air pollution exposure assessment 

The following atmospheric pollutants were assessed for different time windows in all the cohorts: NO2 and 

PM2.5. A detailed exposure assessment on NO2 exposure was previously explained elsewhere (Iñiguez et al., 

2009). Briefly, passive samplers were used to measure NO2 levels. In four sampling campaigns, one-week 

measurements were carried out at each sub-cohort area according to geographic criteria, expected pollution 

gradients and population density. Afterwards, temporally adjusted land-use regression (LUR) models were 

developed to estimate exposure to NO2 in different time windows: trimester 1 (1–13 weeks), trimester 2 (14–

28 weeks), trimester 3 (29 weeks to delivery), and for the entire pregnancy. LUR models temporally adjusted 

to measurements of local background monitoring stations and averaged over the trimesters of pregnancy and 

the whole pregnancy period were used to assess PM2.5 exposure. The site-specific LUR model developed in the 

context of the ESCAPE project (Eeftens et al., 2012) was used for Sabadell, and the ESCAPE European-wide 

LUR model was applied for Gipuzkoa and Valencia (Wang et al., 2014). In this study the main analyses have 

been conducted evaluating the NO2 and PM2.5 exposure regarding the entire pregnancy.  

Active maternal tobacco smoking exposure assessment 

Information on active maternal smoking during pregnancy was collected via questionnaires administered by 

trained interviewers and answered by the pregnant women at 12 and 32 gestational weeks. A total of four 

variables have been evaluated: active maternal smoking at week 12 of pregnancy (Yes/No), active maternal 

smoking at week 32 of pregnancy (Yes/No), any active maternal smoking during pregnancy (Yes/No), and 

active sustained maternal smoking (Non-smokers/Non-sustained smoking/Sustained smoking), where sustained 

means that the pregnant woman had smoked, at least, in the 1st and in the 3rd trimester. In this study the main 

analyses have been conducted evaluating the variables related to any active maternal smoking during pregnancy 

and active sustained maternal smoking.  
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Outcome assessment 

Reproductive outcomes 

The self-reported last menstrual period collected via questionnaires was used to define gestational age in weeks 

and it was confirmed using ultrasound examination in 12 weeks of gestation. We performed a rank-based inverse 

normal transformation of gestational age in weeks to evaluate its relationship with air pollution and active 

maternal tobacco exposure. Different anthropometric measurements were done at birth, such as birthweight, 

which was measured by midwifes and is evaluated in grams.  

Placental methylation data collection 

Briefly, biopsies of approximately 5 cm3 were obtained from the inner region of the placenta, approximately 

1.0-1.5 cm below the foetal membranes, corresponding to the villous parenchyma, and at ~5 cm from site of 

cord insertion. Genomic DNA from placenta was isolated using the DNAeasy® Blood and Tissue Kit, (Qiagen, 

CA, USA). DNA methylation was assessed with the Infinium MethylationEPIC BeadChip from Illumina, 

following manufacturer’s protocol in the Erasmus Medical Centre core facility. Three technical duplicates were 

included. Samples were randomized considering cohort and sex. The methylation data was pre-processed using 

the PACEAnalysis R package (v.0.1.7).  Dye-bias and Noob background correction, implemented in minfi R 

package, were applied followed by normalization of the data with the functional normalization method.  To 

correct for the bias of type-2 probes values the beta-mixture quantile (BMIQ) normalization was applied. 

SentrixID (array) batch effect was controlled with the ComBat method (Johnson et al. 2007). Finally, to correct 

for the possible outliers, we winsorized the extreme values to the 1% percentile (0.5% in each side), The final 

dataset consists of 379 samples and 811,990 probes.  

Calculation of epigenetic age with different clocks 

Placental epigenetic age and age acceleration through different clocks were calculated with methylclock R 

package (Pelegí-Sisó et al., 2020) based on placental DNA methylation data using the Lee’s clock and the 

Mayne’s clock: control placental clock (CPC), robust placental clock (RPC), refined robust placental clock 

(refRPC) (Lee et al., 2019), and Mayne’s clock (Mayne et al., 2017). Briefly, from normalized and batched 

corrected methylation data, the package extracts methylation levels of CpGs included in each clock (Table S1). 

Subsequently, the coefficients obtained through elastic net in the prediction models of each of the clocks in the 

original papers are used to calculate placental epigenetic age and age acceleration. Therefore, for each clock we 

obtained different measures: i) DNA methylation predicted age (DNAm age) in weeks, ii) difference between 

DNAm and chronological age in weeks (ageAcc); iii) residuals obtained after regressing chronological age on 

DNAm age (ageAcc2), and iv) residuals obtained after regressing chronological age and placental cell type 
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proportions on DNAm age (ageAcc3). We estimated cell type composition from placental DNA methylation 

array data using the R package planet, which uses as reference DNA methylation levels from cells isolated from 

third trimester placentas (trophoblasts, stromal, Hoffbauer, endothelial, nucleated red blood cells (nRBC) and 

syncytiotrophoblast) (Yuan, 2022; Yuan et al., 2021). 

Covariates 

Detailed information about covariates was obtained through questionnaires administered at week 12 and 32 of 

pregnancy, except for BMI that was collected at 12 weeks, and it refers to the pre-pregnancy period. The 

following key covariates were considered to gain precision or as potential confounders a priori: cohort 

(Gipuzkoa, Valencia and Sabadell), child’s sex (female, male), child’s ethnicity (European, other), maternal age 

at recruitment in years, maternal education (primary school secondary school, university degree or higher), 

maternal pre-pregnancy BMI in kg/m2. Other covariates were used to describe the study population or for the 

sensitivity analyses: gestational age (in weeks), preterm delivery, type of delivery (vaginal, caesarean), labour 

initiation (spontaneous, caesarean elective, induced), type of delivery in three categories (eutocic, caesarean, 

instrumental), preterm birth (Yes/No), birthweight in grams, parity (0,1, 2 or more), ever active maternal 

smoking during life (Yes/No), active maternal smoking at the beginning of pregnancy (Yes/No) and paternal 

smoking during pregnancy (Yes/No).  

Statistical analyses 

Descriptive analyses and correlations 

For categorical variables, we calculated frequency and percentage; and for continuous variables, we calculated 

median and interquartile range (IQR). We used Spearman’s correlation coefficients to quantify the correlation 

between chronologic GA and placental epigenetic age, the correlation between NO2 and PM2.5 exposure, 

including 1st trimester, 2nd trimester, 3rd trimester and the whole pregnancy period by cohort.  

Main analyses 

Ambient air pollution exposures and active maternal tobacco smoking and reproductive outcomes 

To assess the association between ambient air pollution exposures during pregnancy and active maternal 

tobacco smoking with gestational age and birthweight we applied linear regression models adjusting for 

potential confounders using the lm function from the stats R package. Each air pollutant exposure (NO2 and 

PM2.5) during the whole period of pregnancy and each variable related to active maternal tobacco smoking was 

tested versus gestational age (weeks) and birthweight (grams). Models were adjusted for a common set of 

covariates identified a priori based on literature and its availability in INMA cohort: child’s sex, maternal 
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education, maternal age, cohort, and child’s ethnicity. We conducted complete case analyses and the results of 

the linear regression models were expressed as β coefficients and p-value, that were reported for each IQR 

increase of air pollutant exposure and relative to non-smokers when evaluating maternal tobacco smoking. 

Nominal significance was established at nominal p-value < 0.05.   

Ambient air pollution exposures and placental epigenetic age acceleration 

To assess the association between the ambient air pollution exposure during pregnancy and placental epigenetic 

age acceleration we applied linear regression models adjusting for potential confounders using the lm function 

from the stats R package. Each air pollutant exposure (NO2 and PM2.5) during the whole period of pregnancy 

was tested versus placental epigenetic age acceleration adjusted for placental cell type proportions. In the main 

analyses, models were adjusted for a common set of covariates identified a priori based on literature and its 

availability in INMA cohort: child’s sex, maternal education, maternal age, cohort, and child’s ethnicity. We 

conducted complete case analyses and the results of the linear regression models were expressed as β 

coefficients and p-value, that were reported for each IQR increase of the exposure. Nominal significance was 

established at nominal p-value < 0.05.   

Active maternal tobacco smoking exposure and placental epigenetic age acceleration 

To assess the association between active maternal tobacco smoking during pregnancy and placental epigenetic 

age acceleration we fitted linear regression models adjusting for potential confounders using the lm function 

from the stats R package. Each variable related to active maternal tobacco smoking was tested versus placental 

epigenetic age acceleration adjusted for placental cell type proportions. In the main analyses, models were 

adjusted for a common set of covariates identified a priori based on literature and its availability in INMA 

cohort: child’s sex, maternal education, maternal age, cohort, and child’s ethnicity.  We conducted complete 

case analyses and the results of the linear regression models were expressed as β coefficients and p-value, that 

were reported relative to non-smokers. 

Sensitivity analyses 

We conducted several sensitivity analyses. First, we further adjusted main models for maternal pre-pregnancy 

BMI or mean temperature during pregnancy. Second, we repeated the main analyses evaluating the association 

between air pollution exposure or active maternal tobacco smoking and placental epigenetic age acceleration 

non-adjusted for placenta cell type proportions. Third, we also evaluated the different time windows of ambient 

air pollution exposure and active maternal tobacco smoking exposure (1st, 2nd, and 3rd trimester of pregnancy). 

Fourth, as tobacco smoking can be considered as one of the compounds of ambient air pollution exposure, we 

further adjusted the models of air pollution for the variable of any smoking during pregnancy. Fifth, for air 
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pollution and maternal tobacco smoking exposures we repeated the analyses stratifying by cohort. Finally, we 

restricted the analyses considering not preterm deliveries.  

Pathway enrichment analyses 

To provide further biological insight into the control placental clock, we performed pathway enrichment 

analyses with the genes associated with the methylation levels of the CpGs used to construct the clock. We 

annotated each one of the 548 CpGs in the clock to the nearby genes through the library from the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 R package (Ref.). The CpGs used for developing the 

placental epigenetic clock were mapped to 431 unique genes. Finally, we performed a pathway enrichment 

analysis of these 431 genes using the over-representation method of the ConsensusPath tool (Kamburov et al., 

2011) and three different databases (Kyoto Encyclopaedia of Genes and Genomes 

(KEGG), Reactome and BioCarta), and 382 out of the 431 genes were identified. We accepted as significant 

those pathways with a minimal overlap of 2 genes and a cut-off at q-value of 0.025.  

The statistical framework R (version 4.1.1) was used to perform all the analyses (R Core Team, 2021). 

RESULTS 

Study population 

The study included 379 pregnant women from the INMA project that had information on the exposures and the 

outcome. Of these women, 40.9% were from Gipuzkoa cohort, 41.4% from Sabadell and 17.7% from Valencia, 

and 34.8% had a university degree or higher. The median gestation age among the study population was 39.9 

weeks, 3.2 % were preterm births, and an 13.5 % had a caesarean delivery (Table 1).  

A total of 111 of the pregnant women in our study (29.3%) had smoked during the pregnancy period, and 53 

(14.2%) were classified as sustained smoking (Table 1). In relation to air pollution, NO2 exposure during 

pregnancy was slightly correlated with PM2.5 during pregnancy (Figure S3) (R = 0.72). A graphical display of 

the correlations between air pollution exposures is shown in Figure S3 considering both pollutants and each 

time window. Higher levels of NO2 during pregnancy were found in Sabadell (median = 39.4 ug/m3) and 

Valencia (median = 26.5 ug/m3) compared to Gipuzkoa (median = 14.5 ug/m3). However, levels of PM2.5 were 

similar in the three cohorts and the median ranged between 12.9 to 15.1 ug/m3 (Table S4).  
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Table 1. Baseline characteristics of the study population (N=379)

Variable n (%) or median (IQR) 
Cohort 

Gipuzkoa 155(40.9 %) 
Sabadell 157(41.4 %) 
Valencia 67(17.7 %) 

Sex of the child 
Female 191(50.4 %) 
Male 188(49.6 %) 

Child’s ethnicity 
European 344(90.8 %) 
Other 30(7.9 %) 
Missings, N 5(1.3 %) 

Gestational age, in weeks 39.9±1.6 
Type of delivery 

Vaginal 326(86 %) 
Cesarean 51(13.5 %) 
Missings, N 2(0.5 %) 

Labour initiation 
Spontaneous 282(74.4 %) 
Elective cesarean 18(4.7%) 
Induced 67(17.7 %) 
Missings, N 12(3.2 %) 

Type of delivery  
Eutocic 249(65.7 %) 
Cesarean 51(13.5 %) 
Instrumental 77(20.3 %) 
Missings, N 2(0.5 %) 

Preterm birth 
No 366(96.6 %) 
Yes 12(3.2 %) 
Missings, N 1(0.3 %) 

Birthweight, in grams 3255±532.5 
Low weight at birth (<2500 g) 

No 361(95.3 %) 
Yes 18(4.7 %) 

Maternal pre-pregnancy BMI 22.6±4.2 
Maternal age at recruitment, in years 31±5 
Maternal education 

Primary school 70(18.5 %) 
Secondary school 177(46.7 %) 
University degree or higher 132(34.8 %) 

Parity 
0 213(56.2 %) 
1 138(36.4 %) 
2 or more 28(7.4 %) 

Ever active maternal smoke during life 
No 178(47 %) 
Yes 196(51.7 %) 
Missings, N 5(1.3 %) 

Active maternal smoke at the beginning of pregnancy 
No 268(70.7 %) 
Yes 106(28 %) 
Missings, N 5(1.3 %) 

Active maternal smoke at week 12 of pregnancy 
No 315(83.1 %) 
Yes 59(15.6 %) 
Missings, N 5(1.3 %) 

Active maternal smoke at week 32 of pregnancy 
No 321(84.7 %) 
Yes 53(14 %) 
Missings, N 5(1.3 %) 

Any active maternal smoking during pregnancy 
No 268(70.7 %) 
Yes 106(28 %) 
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Note: BMI = Body Mass Index 

Association of ambient air pollution and active maternal tobacco smoking with reproductive outcomes 

Results from linear and logistic regression models with ambient air pollution during pregnancy or active 

maternal tobacco smoking during pregnancy as exposure, and reproductive outcomes can be found in Table S1. 

One statistically significant association was observed between maternal sustained smoking during pregnancy 

and lower birthweight (β = -231.48, p value = 0.001). None statistically significant associations were found for 

the other exposures and outcomes. 

Selection of the best placental epigenetic clock 

We calculated placental epigenetic age with the control placental clock (CPC), robust placental clock (RPC), 

refined robust placental clock (refRPC) (Lee et al., 2019), and Mayne’s clock (Mayne et al., 2017). The 

Spearman’s correlations between the placental epigenetic age (DNAmGA) calculated from each clock and 

chronological GA measured in weeks are presented in Figure 1 (lower panel). The distribution of each clock 

through histograms and the correlation plots by cohort can be also found in Figure 1. We found that “Mayne’s 

clock” showed the lower correlations with GA measured in weeks (R= 0.22) and with the rest of the placental 

epigenetic clocks (vs. RPC: R = 0.33, vs CPC: R = 0.35 and, vs. refRPC: R= 0.29). All clocks obtained from 

Lee et al., 2019 showed strong correlations among them that ranged between 0.79 to 0.89. However, the CPC 

clock showed the strongest correlation with GA (R = 0.57) compared to RPC (R = 0.56) or refRPC (R = 0.51).  

Missings, N 5(1.3 %) 
Maternal sustained smoking 

No smoking 268(70.7 %) 
Non sustained smoking 53(14 %) 
Sustained smoking 53(14 %) 
Missings, N 5(1.3 %) 

Paternal Smoking during pregnancy 
No 268(70.7 %) 
Yes 106(28 %) 
Missings, N 5(1.3 %) 
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Figure 1. Spearman’s correlation between gestational age chronological and placental epigenetic age by cohort. Note: The lower panel 
shows the Spearman’s correlation results, the upper panel shows the correlation plot between each variable of epigenetic gestational age 
by cohort and the diagram panel shows the histogram of each variable and the density line in red. 

Considering this correlation and that INMA is a birth cohort from the general population, we decided to continue 

the analyses with the CPC clock. This clock was trained on placental samples of pregnancies that did not have 

any placental pathology such as gestational diabetes, preeclampsia or chorioamnionitis (Lee et al., 2019). 

Among the different epigenetic age acceleration variables, we focused on the one adjusted for placental cell 

type proportions as the main outcome.  

Association of ambient air pollution and active maternal tobacco smoking with placental epigenetic 

gestational age 

Results from linear regression models with ambient air pollution during pregnancy or active maternal tobacco 

smoking during pregnancy as exposure, and placental epigenetic age acceleration are shown in Table 2. No 

statistically significant associations were found between any of the models (Table 2). However, we observed 

that increased placenta epigenetic age acceleration was linked to exposure to NO2 during pregnancy (β = 0.0151, 

p value = 0.618) and maternal sustained tobacco smoking during pregnancy (No smoking vs. non-sustained 

smoking, β = 0.0149, p value = 0.896). In contrast, the other exposures were related to decreased placental 

epigenetic age acceleration: PM2.5 during pregnancy (β = -0.0044, p value = 0.939), any maternal tobacco 

smoking during pregnancy (β = -0.0041, p value = 0.964) and maternal sustained tobacco smoking during 

pregnancy (No smoking vs. sustained smoking, β = -0.0252, p value = 0. 832).   
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Table 2. Linear regression main models of the association between ambient air pollution and maternal active 

tobacco smoking and placental epigenetic age acceleration adjusted for placental cell type proportions. 

NO2 = Nitrogen dioxide; PM2.5 = Particulate matter with an aerodynamic diameter of less than 2.5 μm. The main model was adjusted 

for: child’s sex, maternal education, maternal age, cohort, and child’s ethnicity. In each model the samples sizes differ as there are 

missing in some of the covariates by which the model was adjusted. 

Sensitivity analyses 

We run several sensitivity analyses. Models further adjusted for pre-pregnancy BMI or for mean ambient 

temperature during pregnancy, resulted in slightly similar β estimates with no statistically significant results 

(see Supplementary excel, Table S2). Moreover, models not adjusted for placental cell type proportions, gave a 

similar trend on the size and direction of the β estimates in most of the associations (see Supplementary Excel, 

Table S3).  

When evaluating different time windows of exposure, including NO2 exposure in 1st, 2nd and 3rd trimester or 

active maternal smoking at 12 and 32 weeks, none of the associations were statistically significant (see 

Supplementary Excel, Table S3). When further adjusting the air pollution models for any active maternal 

smoking during pregnancy, β estimates remained similar. In addition, when stratifying the analyses by cohort 

we found inverse results when comparing Gipuzkoa and Sabadell with Valencia for PM2.5 and maternal tobacco 

smoking exposures (see Supplementary Excel, Table S6). Maternal tobacco exposure in Valencia seemed to be 

positively associated with placental age acceleration contrary to the results obtained for Gipuzkoa and Sabadell. 

Moreover, in Gipuzkoa and Sabadell PM2.5 exposure was related with an increased placental epigenetic age 

Exposure Units Estimate SE P-value N 

NO2 during pregnancy ug/m3 0.0151 0.1031 0.884 374 

PM2.5 during pregnancy ug/m3 -0.0044 0.0581 0.939 374 

Any active maternal tobacco 

smoking during pregnancy 

Non-smokers vs. Any 

smokers 
-0.0041 0.0894 0.964 374 

Maternal sustained tobacco 

smoking during pregnancy 

Non-smokers vs. Non-

sustained smoking 
0.0149 0.1139 0.896 369 

Non-smokers vs. 

Sustained smoking 
-0.0252 0.1191 0. 832 369 
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acceleration which was contrary to the results obtained for Valencia that show a negative β coefficient (see 

Supplementary Excel, Table S6).  

Finally, we restricted the main analyses to non-preterm birth and contrary to the analyses with the whole sample 

population, any maternal smoking during pregnancy and sustained smoking shown positive estimates on 

placental epigenetic age acceleration (see Supplementary Excel, Table S7). Overall, none of the sensitivity 

analyses results in substantial changes compared to the main analysis.  

Pathway enrichment analyses 

To interpret the biological meaning of placental epigenetic age, we annotated CpGs of the clock to a total of 

431 unique genes.  Functional enrichment through ConsensusPathDB identified 23 biological pathways related 

to embryonic and perinatal development, neuronal system and neurodegenerative diseases, signal transduction, 

gene expression or diseases of programmed cell death. However, none of the associations surpassed the multiple 

testing (see Supplementary Excel, Table S8).  

DISCUSSION 

To our knowledge, this is the first study on the association between ambient air pollution and active maternal 

tobacco smoking during pregnancy and placental aging using an epigenetic clock based on placental 

DNAm data. In both the main analyses and the sensitivity analyses, we did not observe any statistically 

significant associations between the exposures of interest and placental epigenetic age acceleration. However, 

NO2 provided positive associations and PM2.5 and smoking inverse associations. Placental epigenetic age was 

estimated using the two existing placental clocks: Mayne’s clock (Mayne et al., 2017) and Lee’s clock (Lee et 

al., 2019). From the second one we selected the control placental clock (CPC) as it was trained on placental 

samples that were designated as “control” without placental pathologies such as gestational diabetes, 

preeclampsia or chorioamnionitis, similarly to our study. Although not shown here, we also tested the other 

clocks, and no associations were observed.  

We also tested the association of these exposures versus reproductive outcomes, and we did not observe any 

statistically significant relationship, except for an inverse association between sustained maternal smoking and 

birthweight. The association between maternal sustained smoking during pregnancy and lower birthweight has 

extensively been reported in the literature (Di et al., 2022; Pereira et al., 2017). In contrast, we have not been 

able to replicate the relationship between air pollution exposure during pregnancy and lower birth weight (Chen 

et al., 2018; Fleischer et al., 2014; Pedersen et al., 2013; Sarizadeh et al., 2020; Stieb et al., 2012). Moreover, 

we did not find any significant association between air pollution or maternal tobacco smoking and gestational 
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age. Lack of association could be due to the small sample size of our study in combination with the relatively 

small effects of the exposures, except for sustained smoking.  

Due to the lack of studies on the association of environmental factors with placental epigenetic age, we cannot 

compare our null findings with other studies. So far, only one study has evaluated the association between 

residential NOx exposure during 1st trimester of pregnancy and placental aging (Engström et al., 2021). This 

study included placentas from a total of 111 women, of which 29 were preeclamptic (PE) cases and 82 were 

controls, and they have observed that early exposure to high levels of NOx on PE cases was associated with 

placental deceleration, however non conclusive results were found in control cases (Engström et al., 2021).  

Differently from our findings in placenta, other studies have found that these exposures are related to increased 

epigenetic age acceleration in blood at birth. There are two epigenetic clocks designed to predict epigenetic 

gestational age in neonates, which are Bohlin’s clock (based on cord blood) and Knight’s clock (based on cord 

blood and neonatal blood) (Bohlin et al., 2016; Knight et al., 2016). Gestational epigenetic age acceleration 

measured with these clocks have been related to different environmental factors (Wang and Zhou, 2021) 

including pregnancy air pollution levels and maternal tobacco smoking. In particular, outdoor exposure to NO2 

during the first trimester of pregnancy and any maternal smoking during pregnancy were associated with 

increased gestational epigenetic age (Dieckmann et al., 2021; Sbihi et al., 2019) 

Other clocks have been develop to estimate epigenetic age from blood or buccal samples collected at later ages, 

from children to adulthood (Horvath, 2013; Horvath et al., 2018; McEwen et al., 2020; Wu et al., 2019). These 

include the paediatric clocks (0-20 years) by Wu’s (trained in blood) (Wu et al., 2019) and the PedBe’s clock 

(trained in buccal samples)(McEwen et al., 2020); and the all age range clocks by Horvath (trained using data 

from multiple tissues) (Horvath, 2013; Horvath et al., 2018). Within the framework of the Human Early-Life 

Exposome (HELIX) project we found that maternal smoking during pregnancy, exposure to second-hand smoke 

in childhood and indoor particulate matter absorbance (PMabs) also in childhood were linked to an increase in 

epigenetic age acceleration in children’s blood (de Prado-Bert et al., 2021). This goes in line with previous 

studies of maternal smoking during pregnancy and cord blood epigenetic age acceleration (Simpkin et al., 2017).  

Also in adults own smoking is related to accelerated epigenetic aging for several clocks (Cardenas et al., 2022; 

Gao et al., 2016). Accelerated aging in adults and elderly was also related with long-term exposure to different 

air pollutants such as PM2.5 (Nwanaji-Enwerem et al., 2016; Ward-Caviness et al., 2016). Thus, overall exposure 

to tobacco smoke, either through maternal smoking in pregnancy, own smoking or second-hand smoking, 

prenatal and postnatal air pollution seem to affect blood epigenetic age at birth or later. 

Several explanations can be found to explain the discrepancy between the significant associations of 

environmental exposures and epigenetic age acceleration in blood but not in placental tissue. One could be the 

limited statistical power of our study. Besides this, other explanations are plausible. First, we need to consider 
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that aging is a multifactorial process that involves a large network of interconnected processes including 

genomic instability, altered metabolism, mitochondrial dysfunction, telomere attrition, cellular senescence, 

macromolecular damage and inflammation (López-Otín et al., 2013). The placental epigenetic clock might be 

capturing information about specific biological processes related to aging, and it could be that the ones captured 

are not affected by our exposures of interest. Genes annotated to the CpGs included in the placenta epigenetic 

clock were related to development and neuronal process, which do not seem very relevant for aging. In contrast, 

CpGs used to develop blood epigenetic clocks have been shown to be linked to genes enriched for biological 

pathways related to immune response, detoxification, cell differentiation, cell aging and cellular senescence (de 

Prado-Bert et al., 2021; Wang and Zhou, 2021). Third, in this study epigenetic placental age acceleration was 

calculated based on placental DNAm data. It is known that placenta is a complex tissue that presents a unique 

methylation profile, in which the observed changes in DNAm may be attributed to variation in cell composition 

rather than changes happening in the constituent cell populations. Thus, differences between the cellular 

composition of the samples in the training clock and in the INMA study might have affected the estimation of 

epigenetic age.  Moreover, a recent study found that epigenetic age differed between tissues (chorionic villi, 

placental tissue and cord blood) of the same person, which could indicate that epigenetic age is an specific 

characteristic of each tissue more than a general characteristic of the individual (Dieckmann et al., 2021). Forth, 

as the aging process might not happen simultaneously in all the zones of placenta, it could be important to know 

for future studies, from which side where placental samples taken to create the placental clocks and in the study 

population that is going to be evaluated. Indeed, in our study the correlation between placental epigenetic age 

with chronological gestational age was high, which may indicate that somehow the placental clock is related 

with placental age. Finally, within the biological interpretation we need to consider that there is still controversy 

whether the epigenetic clocks in general are the result of specific phenotypes, or they are the markers of specific 

health outcomes or phenotypes.  

Our study also presents other limitations, besides the ones commented above. First, in our analyses we only 

evaluated ambient air pollution exposure based on LUR models and considering their residential addresses. 

Nonetheless, it has been seen that outdoor exposure do not highly correlated with the real exposure to which 

the individuals are exposed in their day-to-day life. Therefore, we encourage future studies to evaluate indoor 

and personal exposure as they could provide more precision on the exposure levels of the pregnant woman. 

Third, active maternal tobacco smoking was assessed based on questionnaire data which could lead to social 

desirability bias. Hence, evaluating maternal smoking based on biomarkers of exposure could be suggested for 

next studies. Finally, studying placenta is considered a high-top priority as it is a key organ during pregnancy 

which provides loads of information regarding the development process and the in utero environment. However, 

further studies are needed to determine how the placental aging process occurs, which are the most accurate and 

precise approaches to measure this complicated process, and which are the molecular mechanisms behind each 

marker of aging, especially for epigenetic clocks. 
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CONCLUSIONS 

In summary, we have conducted one of the first studies that evaluated the influence of ambient air pollution 

exposure and active maternal tobacco smoking during pregnancy on placental epigenetic age acceleration based 

on DNAm data. We did not find any statistically significant results in our study population. Further research 

with a more precise exposure assessment in larger samples sizes is required to elucidate which is the role of 

environment in placental biological aging.  

Acknowledgments 

The INMA-Valencia cohort was funded by Grants from UE (FP7-ENV-2011 cod 282957 and 

HEALTH.2010.2.4.5-1), Spain: ISCIII (Red INMA G03/176, CB06/02/0041; FIS-FEDER: PI03/1615, 

PI04/1509, PI04/1112, PI04/1931, PI05/1079, PI05/1052, PI06/1213, PI07/0314, PI09/02647, PI11/01007, 

PI11/02591, PI11/02038, PI13/1944, PI13/2032, PI14/00891, PI14/01687, PI16/1288, and PI17/00663; Miguel 

Servet-FEDER CP11/00178, CP15/00025, and CPII16/00051), Generalitat Valenciana: FISABIO (UGP 15-

230, UGP-15-244, and UGP-15-249), and Alicia Koplowitz Foundation 2017. The INMA-Gipuzkoa cohort was 

funded by grants from Instituto de Salud Carlos III (FIS-PI06/0867, FIS-PI09/00090, FIS-PI13/02187 and FIS-

PI18/01142 incl. FEDER funds), CIBERESP, Department of Health of the Basque Government (2005111093, 

2009111069, 2013111089 and 2015111065), and the Provincial Government of Gipuzkoa (DFG06/002, 

DFG08/001 and DFG15/221) and annual agreements with the municipalities of the study area (Zumarraga, 

Urretxu , Legazpi, Azkoitia y Azpeitia y Beasain). The INMA-Sabadell cohort was funded by grants from 

Instituto de Salud Carlos III (Red INMA G03/176), Generalitat de Catalunya-CIRIT 1999SGR 00241. We 

acknowledge support from the Spanish Ministry of Science and Innovation and the State Research Agency 

through the “Centro de Excelencia Severo Ochoa 2019-2023” Program (CEX2018-000806-S), and support from 

the Generalitat de Catalunya through the CERCA Program. The authors are grateful to all the participating 

families in the three cohorts who took part in INMA and to all the fieldworkers for their dedication and 

efficiency. 

93 



References 

Abraham, E., Rousseaux, S., Agier, L., et al., 2018. Pregnancy exposure to atmospheric pollution and 
meteorological conditions and placental DNA methylation. Environ. Int. 118, 334–347. 
https://doi.org/10.1016/j.envint.2018.05.007 

Bangma, J.T., Hartwell, H., Santos, H.P., et al., 2021. Placental programming, perinatal inflammation, and 
neurodevelopment impairment among those born extremely preterm. Pediatr. Res. 
https://doi.org/10.1038/s41390-020-01236-1 

Bohlin, J., Håberg, S.E., Magnus, P., et al., 2016. Prediction of gestational age based on genome-wide 
differentially methylated regions. Genome Biol. 17, 1–9. https://doi.org/10.1186/s13059-016-1063-4 

Bongaerts, E., Nawrot, T.S., Van Pee, T., et al., 2020. Translocation of (ultra)fine particles and nanoparticles 
across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part. 
Fibre Toxicol. https://doi.org/10.1186/s12989-020-00386-8 

Bové, H., Bongaerts, E., Slenders, E., et al., 2019. Ambient black carbon particles reach the fetal side of human 
placenta. Nat. Commun. 10, 1–7. https://doi.org/10.1038/s41467-019-11654-3 

Cardenas, A., Ecker, S., Fadadu, R.P., et al., 2022. Epigenome-wide association study and epigenetic age 
acceleration associated with cigarette smoking among Costa Rican adults. Sci. Rep. 12, 1–13. 
https://doi.org/10.1038/s41598-022-08160-w 

Chen, G., Guo, Y., Abramson, M.J., et al., 2018. Exposure to low concentrations of air pollutants and adverse 
birth outcomes in Brisbane, Australia, 2003–2013. Sci. Total Environ. 622–623, 721–726. 
https://doi.org/10.1016/J.SCITOTENV.2017.12.050 

Cox, L.S., Redman, C., 2017. The role of cellular senescence in ageing of the placenta. Placenta 52, 139–145. 
https://doi.org/10.1016/j.placenta.2017.01.116 

de Prado-Bert, P., Ruiz-Arenas, C., Vives-Usano, M., et al., 2021. The early-life exposome and epigenetic age 
acceleration in children. Environ. Int. 155, 106683. https://doi.org/10.1016/j.envint.2021.106683 

Del Gobbo, G.F., Konwar, C., Robinson, W.P., 2019. The significance of the placental genome and methylome 
in fetal and maternal health. Hum. Genet. 2019 1399 139, 1183–1196. https://doi.org/10.1007/S00439-
019-02058-W

Di, H.K., Gan, Y., Lu, K., et al., 2022. Maternal smoking status during pregnancy and low birth weight in 
offspring: systematic review and meta-analysis of 55 cohort studies published from 1986 to 2020. World 
J. Pediatr. 18, 176–185. https://doi.org/10.1007/S12519-021-00501-5

Dieckmann, L., Lahti-Pulkkinen, M., Kvist, T., et al., 2021. Characteristics of epigenetic aging across 
gestational and perinatal tissues. Clin. Epigenetics 13, 1–17. https://doi.org/10.1186/s13148-021-01080-y 

Eeftens, M., Beelen, R., De Hoogh, K., et al., 2012. Development of land use regression models for PM2.5, PM 
2.5 absorbance, PM10 and PMcoarse in 20 European study areas; Results of the ESCAPE project. Environ. 
Sci. Technol. 46, 11195–11205. https://doi.org/10.1021/es301948k 

Engström, K., Mandakh, Y., Garmire, L., et al., 2021. Early pregnancy exposure to ambient air pollution among 
late-onset preeclamptic cases is associated with placental DNA hypomethylation of specific genes and 
slower placental maturation. Toxics 9, 338. https://doi.org/10.3390/toxics9120338 

Everson, T.M., Vives-Usano, M., Seyve, E., et al., 2021. Placental DNA methylation signatures of maternal 
smoking during pregnancy and potential impacts on fetal growth. Nat. Commun. 12, 1–13. 
https://doi.org/10.1038/s41467-021-24558-y 

Fleischer, N.L., Merialdi, M., van Donkelaar, A., et al., 2014. Outdoor Air Pollution, Preterm Birth, and Low 
Birth Weight: Analysis of the World Health Organization Global Survey on Maternal and Perinatal Health. 
Environ. Health Perspect. 122, 425. https://doi.org/10.1289/EHP.1306837 

Gao, X., Zhang, Y., Breitling, L.P., et al., 2016. Relationship of tobacco smoking and smoking-related DNA 
methylation with epigenetic age acceleration. Oncotarget 7, 46878–46889. 
https://doi.org/10.18632/oncotarget.9795 

94 



Glassman, D.C., Schuster, M., Ananth, C. V., 2020. 286: Maternal smoking and small for gestational age births 
in the US. Am. J. Obstet. Gynecol. 222, S193–S194. https://doi.org/10.1016/j.ajog.2019.11.302 

Griffiths, S.K., Campbell, J.P., 2015. Placental structure, function and drug transfer. Contin. Educ. Anaesthesia, 
Crit. Care Pain 15, 84–89. https://doi.org/10.1093/bjaceaccp/mku013 

Guxens, M., Ballester, F., Espada, M., et al., 2012. Cohort Profile: The INMA—INfancia y Medio Ambiente—
(Environment and Childhood) Project. Int. J. Epidemiol. 41, 930–940. https://doi.org/10.1093/ije/dyr054 

Hogg, K., Price, E.M., Hanna, C.W., et al., 2012. Prenatal and perinatal environmental influences on the human 
fetal and placental epigenome. Clin. Pharmacol. Ther. 92, 716–726. https://doi.org/10.1038/clpt.2012.141 

Horvath, S., 2013. DNA methylation age of human tissues and cell types. Genome Biol. 14. 
https://doi.org/10.1186/gb-2013-14-10-r115 

Horvath, S., Oshima, J., Martin, G.M., et al., 2018. Epigenetic clock for skin and blood cells applied to 
Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany. NY). 10, 1758–1775. 
https://doi.org/10.18632/aging.101508 

Iñiguez, C., Ballester, F., Estarlich, M., et al., 2009. Estimation of personal NO2 exposure in a cohort of pregnant 
women. Sci. Total Environ. 407, 6093–6099. https://doi.org/10.1016/j.scitotenv.2009.08.006 

Kamburov, A., Pentchev, K., Galicka, H., et al., 2011. ConsensusPathDB: toward a more complete picture of 
cell biology. https://doi.org/10.1093/nar/gkq1156 

Knight, A.K., Craig, J.M., Theda, C., et al., 2016. An epigenetic clock for gestational age at birth based on blood 
methylation data. Genome Biol. 17, 1–11. https://doi.org/10.1186/s13059-016-1068-z 

Ko, T.J., Tsai, L.Y., Chu, L.C., et al., 2014. Parental smoking during pregnancy and its association with low 
birth weight, small for gestational age, and preterm birth offspring: A birth cohort study. Pediatr. Neonatol. 
55, 20–27. https://doi.org/10.1016/j.pedneo.2013.05.005 

Lee, Y., Choufani, S., Weksberg, R., et al., 2019. Placental epigenetic clocks: Estimating gestational age using 
placental DNA methylation levels. Aging (Albany. NY). 11, 4238–4253. 
https://doi.org/10.18632/aging.102049 

Leonardi-Bee, J., Smyth, A., Britton, J., et al., 2008. Environmental tobacco smoke and fetal health: Systematic 
review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/adc.2007.133553 

López-Otín, C., Blasco, M.A., Partridge, L., et al., 2013. The hallmarks of aging. Cell. 
https://doi.org/10.1016/j.cell.2013.05.039 

Lynch, C.D., Zhang, J., 2007. The research implications of the selection of a gestational age estimation method. 
Paediatr. Perinat. Epidemiol. 21, 86–96. https://doi.org/10.1111/J.1365-3016.2007.00865.X 

Maisonet, M., Correa, A., Misra, D., et al., 2004. A review of the literature on the effects of ambient air pollution 
on fetal growth. Environ. Res. 95, 106–115. https://doi.org/10.1016/J.ENVRES.2004.01.001 

Maiti, K., Sultana, Z., Aitken, R.J., et al., 2017. Evidence that fetal death is associated with placental aging. 
Am. J. Obstet. Gynecol. 217, 441.e1-441.e14. https://doi.org/10.1016/j.ajog.2017.06.015 

Manna, S., McCarthy, C., McCarthy, F.P., 2019. Placental ageing in adverse pregnancy outcomes: Telomere 
shortening, cell senescence, and mitochondrial dysfunction. Oxid. Med. Cell. Longev. 
https://doi.org/10.1155/2019/3095383 

Marsit, C.J., 2015. Placental Epigenetics in Children’s Environmental Health. Semin. Reprod. Med. 34, 36–41. 
https://doi.org/10.1055/s-0035-1570028 

Marufu, T.C., Ahankari, A., Coleman, T., et al., 2015. Maternal smoking and the risk of still birth: systematic 
review and meta-analysis. BMC Public Health 15. https://doi.org/10.1186/S12889-015-1552-5 

Mayne, B.T., Leemaqz, S.Y., Smith, A.K., et al., 2017. Accelerated placental aging in early onset preeclampsia 
pregnancies identified by DNA methylation. Epigenomics 9, 279–289. https://doi.org/10.2217/epi-2016-
0103 

McEwen, L.M., O’Donnell, K.J., McGill, M.G., et al., 2020. The PedBE clock accurately estimates DNA 
methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci. U. S. A. 117, 23329–23335. 
https://doi.org/10.1073/pnas.1820843116 

95 



Menon, R., 2014. Oxidative stress damage as a detrimental factor in preterm birth pathology. Front. Immunol. 
https://doi.org/10.3389/fimmu.2014.00567 

Mohammadi, S., Domeno, C., Nerin, I., et al., 2017. Toxic compounds from tobacco in placenta samples 
analyzed by UPLC-QTOF-MS. J. Pharm. Biomed. Anal. 145, 331–338. 
https://doi.org/10.1016/J.JPBA.2017.06.028 

Moore, L.D., Le, T., Fan, G., 2013. DNA methylation and its basic function. Neuropsychopharmacology. 
https://doi.org/10.1038/npp.2012.112 

Novakovic, B., Yuen, R.K., Gordon, L., et al., 2011. Evidence for widespread changes in promoter methylation 
profile in human placenta in response to increasing gestational age and environmental/stochastic factors. 
BMC Genomics 12, 1–14. https://doi.org/10.1186/1471-2164-12-529 

Núñez Estevez, K.J., Rondón-Ortiz, A.N., Nguyen, J.Q.T., et al., 2020. Environmental influences on placental 
programming and offspring outcomes following maternal immune activation. Brain. Behav. Immun. 83, 
44–55. https://doi.org/10.1016/j.bbi.2019.08.192 

Nwanaji-Enwerem, J.C., Colicino, E., Trevisi, L., et al., 2016. Long-term ambient particle exposures and blood 
DNA methylation age: Findings from the VA normative aging study. Environ. Epigenetics 2. 
https://doi.org/10.1093/eep/dvw006 

Paules, C., Dantas, A.P., Miranda, J., et al., 2019. Premature placental aging in term small-for-gestational-age 
and growth-restricted fetuses. Ultrasound Obstet. Gynecol. 53, 615–622. 
https://doi.org/10.1002/UOG.20103 

Pedersen, M., Giorgis-Allemand, L., Bernard, C., et al., 2013. Ambient air pollution and low birthweight: a 
European cohort study (ESCAPE). Lancet Respir. Med. 1, 695–704. https://doi.org/10.1016/S2213-
2600(13)70192-9 

Pelegí-Sisó, D., de Prado, P., Ronkainen, J., et al., 2020. methylclock: a Bioconductor package to estimate DNA 
methylation age. Bioinformatics. https://doi.org/10.1093/bioinformatics/btaa825 

Pereira, P.P. da S., Da Mata, F.A.F., Figueiredo, A.C.G., et al., 2017. Maternal Active Smoking During 
Pregnancy and Low Birth Weight in the Americas: A Systematic Review and Meta-analysis. Nicotine 
Tob. Res. 19, 497–505. https://doi.org/10.1093/NTR/NTW228 

Qiu, X., Fong, K.C., Shi, L., et al., 2020. Prenatal exposure to particulate air pollution and gestational age at 
delivery in Massachusetts neonates 2001–2015: A perspective of causal modeling and health disparities. 
Environ. Epidemiol. 4, e113. https://doi.org/10.1097/EE9.0000000000000113 

R Core Team, 2021. R: A Language and Environment for Statistical Computing. 
Raia-Barjat, T., Prieux, C., Leclerc, L., et al., 2020. Elemental fingerprint of human amniotic fluids and 

relationship with potential sources of maternal exposure. J. Trace Elem. Med. Biol. 60, 126477. 
https://doi.org/10.1016/J.JTEMB.2020.126477 

Romero, R., Gotsch, F., Pineles, B., et al., 2007. Inflammation in Pregnancy: Its Roles in Reproductive 
Physiology, Obstetrical Complications, and Fetal Injury. Nutr. Rev. 65, S194–S202. 
https://doi.org/10.1111/j.1753-4887.2007.tb00362.x 

Rondinone, O., Murgia, A., Costanza, J., et al., 2021. Extensive Placental Methylation Profiling in Normal 
Pregnancies. Int. J. Mol. Sci. 22, 1–19. https://doi.org/10.3390/IJMS22042136 

Saenen, N.D., Martens, D.S., Neven, K.Y., et al., 2019. Air pollution-induced placental alterations: An interplay 
of oxidative stress, epigenetics, and the aging phenotype? Clin. Epigenetics. 
https://doi.org/10.1186/s13148-019-0688-z 

Salmasi, G., Grady, R., Jones, J., et al., 2010. Environmental tobacco smoke exposure and perinatal outcomes: 
a systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 89, 423–441. 
https://doi.org/10.3109/00016340903505748 

Sarizadeh, R., Dastoorpoor, M., Goudarzi, G., et al., 2020. The Association Between Air Pollution and Low 
Birth Weight and Preterm Labor in Ahvaz, Iran. Int. J. Womens. Health 12, 313. 
https://doi.org/10.2147/IJWH.S227049 

96 



Sbihi, H., Jones, M.J., MacIsaac, J.L., et al., 2019. Prenatal exposure to traffic-related air pollution, the 
gestational epigenetic clock, and risk of early-life allergic sensitization. J. Allergy Clin. Immunol. 144, 
1729-1731.e5. https://doi.org/10.1016/j.jaci.2019.07.047 

Schroeder, D.I., Blair, J.D., Lott, P., et al., 2013. The human placenta methylome. Proc. Natl. Acad. Sci. U. S. 
A. 110, 6037–6042. https://doi.org/10.1073/PNAS.1215145110/SUPPL_FILE/SD03.XLS

Simpkin, A.J., Howe, L.D., Tilling, K., et al., 2017. The epigenetic clock and physical development during 
childhood and adolescence: longitudinal analysis from a UK birth cohort. Int. J. Epidemiol. 46, 549–558. 
https://doi.org/10.1093/IJE/DYW307 

Stieb, D.M., Chen, L., Eshoul, M., et al., 2012. Ambient air pollution, birth weight and preterm birth: A 
systematic review and meta-analysis. Environ. Res. 117, 100–111. 
https://doi.org/10.1016/J.ENVRES.2012.05.007 

Suter, M.A., Aagaard, K.M., 2020. The impact of tobacco chemicals and nicotine on placental development. 
Prenat. Diagn. 40, 1193. https://doi.org/10.1002/PD.5660 

Suter, M.A., Aagaard, K.M., Coarfa, C., et al., 2019. Association between elevated placental polycyclic 
aromatic hydrocarbons (PAHs) and PAH-DNA adducts from Superfund sites in Harris County, and 
increased risk of preterm birth (PTB). Biochem. Biophys. Res. Commun. 516, 344. 
https://doi.org/10.1016/J.BBRC.2019.06.049 

Taylor, E.J., Doh, P., Ziauddeen, N., et al., 2021. Maternal smoking behaviour across the first two pregnancies 
and small for gestational age birth: Analysis of the SLOPE (Studying Lifecourse Obesity PrEdictors) 
population-based cohort in the South of England. PLoS One 16, e0260134. 
https://doi.org/10.1371/journal.pone.0260134 

Wang, J., Zhou, W.H., 2021. Epigenetic clocks in the pediatric population: when and why they tick? Chin. Med. 
J. (Engl). https://doi.org/10.1097/CM9.0000000000001723

Wang, M., Beelen, R., Bellander, T., et al., 2014. Performance of multi-city land use regression models for 
nitrogen dioxide and fine particles. Environ. Health Perspect. 122, 843–849. 
https://doi.org/10.1289/ehp.1307271 

Wang, M., Ibeagha-Awemu, E.M., 2021. Impacts of Epigenetic Processes on the Health and Productivity of 
Livestock. Front. Genet. https://doi.org/10.3389/fgene.2020.613636 

Ward-Caviness, C.K., Nwanaji-Enwerem, J.C., Wolf, K., et al., 2016. Long-term exposure to air pollution is 
associated with biological aging. Oncotarget 7, 74510–74525. https://doi.org/10.18632/oncotarget.12903 

Wu, X., Chen, W., Lin, F., et al., 2019. DNA methylation profile is a quantitative measure of biological aging 
in children. Aging (Albany. NY). 11, 10031–10051. https://doi.org/10.18632/aging.102399 

Yuan, L., Zhang, Y., Gao, Y., et al., 2019. Maternal fine particulate matter (PM 2.5) exposure and adverse birth 
outcomes: an updated systematic review based on cohort studies. Environ. Sci. Pollut. Res. Int. 26. 
https://doi.org/10.1007/S11356-019-04644-X 

Yuan, L., Zhang, Y., Wang, W., et al., 2020. Critical windows for maternal fine particulate matter exposure and 
adverse birth outcomes: The Shanghai birth cohort study. Chemosphere 240. 
https://doi.org/10.1016/J.CHEMOSPHERE.2019.124904 

Yuan, V., 2022. Placental DNA methylation analysis tools [WWW Document]. https://doi.org/doi: 
10.18129/B9.bioc.planet 

Yuan, V., Hui, D., Yin, Y., et al., 2021. Cell-specific characterization of the placental methylome. BMC 
Genomics 22. https://doi.org/10.1186/s12864-020-07186-6 

Zavatta, A., Parisi, F., Mandò, C., et al., 2022. Role of Inflammaging on the Reproductive Function and 
Pregnancy. Clin. Rev. Allergy Immunol. 2021 1, 1–16. https://doi.org/10.1007/S12016-021-08907-9 

97 



 

 



99 
 

5.3 Paper III 

 

 

de Prado-Bert P, Warembourg C, Dedele A, Heude B, Borràs E, 

Sabidó E, Aasvang G.M, Lepeule J, Wright J, Urquiza J, Gützkow 

K.B, Maitre L, Chatzi L, Casas M, Vafeiadi M, Nieuwenhuijsen M.J, 

de Castro M, Grazuleviciene R, McEachan R.R.C, Basagaña X, 

Vrijheid M, Sunyer J, Bustamante M.   

 

Short- and medium-term air pollution exposure, plasmatic protein 

levels and blood pressure in children 

 

Environ Res. 2022; 2011:113109 

 
 
 
*Supplementary material of this manuscript can be found in the 
following link.  

https://www.sciencedirect.com/science/article/pii/S0013935122004364
https://www.sciencedirect.com/science/article/pii/S0013935122004364
https://drive.google.com/drive/folders/1ejM7-Yc5JvkOM3qkHCaPl5wCiMbzwCuU?usp=sharing




Environmental Research 211 (2022) 113109

Available online 12 March 2022
0013-9351/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Short- and medium-term air pollution exposure, plasmatic protein levels 
and blood pressure in children 

Paula de Prado-Bert a,b,c, Charline Warembourg a,b,c,d, Audrius Dedele e, Barbara Heude f, 
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A B S T R A C T

Exposure to air pollution influences children’s health, however, the biological mechanisms underlying these 
effects are not completely elucidated. We investigated the association between short- and medium-term outdoor 
air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6–11 
years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school 
addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular 
assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in chil
dren’s plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a 
standardized protocol. We performed an association study for each air pollutant at each location and time 
window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte 
growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to 
some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The 
mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but 
other study designs are needed to prove the causal directionality between HGF and blood pressure.   

1. Introduction

Air pollution is extensively known as a key contributor to the global
burden of mortality and disease (Cohen et al., 2017). Nowadays, 

approximately 91% of the worldwide population is living in places 
where the levels of air quality exceed guideline limits established by the 
WHO (World Health Organization, 2021). Air pollution comprises 
different types of pollutants such as particulate matter (PM) or gaseous 
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pollutants. PM can be classified according to their size: (a) particulate 
matter with an aerodynamic diameter of fewer than 2.5 μm (PM2.5); (b) 
particulate matter with an aerodynamic diameter of fewer than 10 μm 
(PM10). Besides particulate matter, other air pollutants are considered 
harmful for human health, such as nitrogen dioxide (NO2), which is a 
gaseous air pollutant mainly used as a marker for traffic-related air 
pollution (WHO, 2003). These air pollutants together with sulphur di
oxide (SO2), carbon monoxide (CO), ozone (O3), and organic com
pounds are considered as the top health-menacing air pollutants. 

Previous evidence has shown that short- (=< 1week), medium- (>1 
week, but =<1year), and long-term (>1year) air pollution exposure is 
related to a wide range of acute and chronic adverse health effects such 
as cardiovascular diseases in adults (Rajagopalan et al., 2018). Nowa
days, cardiovascular diseases are one of the leading causes of death, 
responsible for more than 18 million deaths each year (Roth et al., 
2018). Different modifiable risk factors for cardiovascular diseases are 
known such as smoking, diabetes, lipid abnormalities, or hypertension, 
which is one of the major contributors to cardiovascular diseases (Fuchs 
and Whelton, 2020). Emerging evidence, mainly in adults, has shown 
that short- and long-term exposure to air pollution can lead to higher 
blood pressure (BP) (Brook et al., 2011; Choi et al., 2019; Foraster et al., 
2014). The early-life period is an important window of susceptibility to 
environmental exposures, and any alterations during pregnancy and 
childhood might permanently change the body’s structure, metabolism 
and physiology (Barouki et al., 2012; Wright, 2017). In children, only a 
few studies have evaluated both short-, medium- and long-term effects 
of air pollutants on BP. However, the available studies in children reach 
similar conclusions to studies in adults (Huang et al., 2021; Sanders 
et al., 2018; Zhang et al., 2019). A recent meta-analysis concluded that 
both short-term (5 studies) and long-term (10 studies) exposure to 
ambient air pollution exposure can be associated with elevated BP in 
children (Huang et al., 2021). These are important findings as recent 
evidence found that children with higher BP are more likely to develop 
cardiovascular diseases during adulthood (Lurbe et al., 2009; Yang et al., 
2020). Moreover, hypertension in children is related to other risk factors 
for cardiovascular diseases such as insulin resistance or hyperlipidemia 
(Martino et al., 2013). 

Different underlying biological mechanisms have been proposed to 
mediate the effect of air pollution and adverse health outcomes such as 
oxidative stress and systemic inflammation (Clemente et al., 2017; 
Johnson et al., 2021; Z. Li et al., 2019b). It is known that circulating 
proteins such as adipokines and cytokines are related to inflammation 
processes and their levels can be increased by air pollution exposure 
(Dadvand et al., 2014; Yang et al., 2017). In general, epidemiological 
studies have focused on a few specific proteins such as interleukins (IL1, 
IL6, IL8, or IL10), tumor necrosis factor-alpha (TNF-α), C-reactive pro
tein (CRP) (Yang et al., 2017), and adipokines (leptin or adiponectin) 
(Dauchet et al., 2018). Moreover, most of the studies have investigated 
either short- or long-term exposure to air pollution. Thus, there is a 
paucity of studies considering multiple windows of exposure and air 
pollutants, and multiple plasmatic proteins. Finally, the majority of the 
evidence of biological mechanisms refers to the adult population 
(Elbarbary et al., 2021; Fiorito et al., 2018; Pilz et al., 2018; Riggs et al., 
2020a; Su et al., 2017; Sun et al., 2020; Tsai et al., 2019; Zhang et al., 
2020a), with only a few studies available in children (Alderete et al., 
2018; Gruzieva et al., 2017; X. Li et al., 2019a). 

Within the framework of the HELIX project, we have shown that 
short- and medium-term air pollution exposure during the childhood 
period was related to higher diastolic blood pressure (DBP) at age 4–5 
years (Warembourg et al., 2021), and a similar not statistically signifi
cant trend was observed for systolic blood pressure (SBP) at the age of 8 
years (Warembourg et al., 2019). In this study, we expanded previous 
association studies to additional exposure windows and locations in 
1170 HELIX children aged 6–11 years and explored potential biological 
mechanisms. In particular, we aimed to investigate the relationship of 
residential and school short- and medium-term (1 day, 1 week, and 1 

year) outdoor air pollution exposure to NO2, PM2.5, PM10, and absor
bance of PM2.5 filters (PMabs) with 36 plasmatic protein levels 
(including cytokines, apolipoproteins, adipokines and other proteins 
such as growth factors) and blood pressure in HELIX children, and to 
evaluate the potential mediating role of selected proteins. 

2. Materials and methods

2.1. Study population

This study was conducted in the context of the HELIX project, which 
was based on six on-going longitudinal population-based birth cohorts 
established in six countries across different parts of Europe (Born in 
Bradford [BiB; UK](Wright et al., 2013), Étude des Déterminants Pré et 
Postnatals du Développement et de la Santé de l’Enfant [EDEN; France] 
(Heude et al., 2016), Infancia y Medio Ambiente [INMA; Spain](Guxens 
et al., 2012), Kaunas Cohort [KANC; Lithuania](Grazuleviciene et al., 
2009), Norwegian Mother, Father and Child Cohort Study [MoBa; 
Norway](Magnus et al., 2016), and Mother-Child Cohort in Crete 
[RHEA; Greece](Chatzi et al., 2017)). Before the start of HELIX, all six 
cohorts had undergone the required evaluation by national ethics 
committees and obtained all the required permissions for their cohort 
recruitment and follow-up visits. The work in HELIX was covered by 
new ethic approvals in each country and at enrolment in the new 
follow-up, participants were asked to sign a new informed consent form. 
The HELIX project included 31,472 mother-child pairs of which 1301 
children, around 200 from each of the cohorts, were selected to create a 
subcohort based on some criteria of eligibility explained elsewhere 
(Warembourg et al., 2019). A clinical examination, a computer-assisted 
interview with the mother, and the collection of additional biological 
samples were carried out during the second follow-up in 2014–2015 of 
the HELIX subcohort. For this study, we sub-selected 1170 children from 
the subcohort aged between 6 and 11 years (mean age of 7.4 years) 
which had information on air pollution exposure, plasmatic proteins, 
and blood pressure (Figure A 1). 

2.2. Childhood outdoor air pollution exposure assessment 

The following atmospheric pollutants were assessed for different 
locations and time windows: NO2, PM2.5 and PM10, and PMabs. A 
detailed exposure assessment was previously explained elsewhere 
(Tamayo-Uria et al., 2019; Warembourg et al., 2019). Briefly, outdoor 
air pollution exposures were assessed using estimates based on land use 
regression (LUR) modelling approach developed within the framework 
of the European Study of Cohorts for Air Pollution Effects (ESCAPE) 
(Beelen et al., 2009; Cyrys et al., 2012; Eeftens et al., 2012a, 2012b; 
Sellier et al., 2014), which were temporally adjusted to measurements 
made in local background monitoring stations (Tamayo-Uria et al., 
2019). Estimates on air pollutants were assigned to each subcohort in
dividual within GIS techniques considering their residential and school 
geocoded addresses, which was collected through the last available 
follow-up survey for each cohort. Moreover, different time windows 
were calculated for the evaluated air pollutants by averaging them over 
1 day, 1week and, 1 year before the clinical and molecular assessment 
(see Supplementary material for a more extensive explanation of the air 
pollution exposure assessment, appendix A, section S1). 

Some air pollutants could not be assessed in some cohorts because 
land use regression (LUR) models were not available. In those cohorts 
that had air pollution measurements, missing values were imputed 
following a process previously described (Tamayo-Uria et al., 2019). 
Imputed values represented a maximum of 2% of the values within each 
cohort. Sample sizes after imputation were: (a) 1170 individuals for NO2 
and PM2.5 models; (b) 1020 individuals for PM10 models (missing in 
EDEN cohort); and (c) 828 individuals for PMabs models (missing in 
EDEN and RHEA cohorts). To enable the comparison of results between 
different pollutants, air pollution exposure variables were standardized 
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by their interquartile range (IQR). 

2.3. Measurement of plasmatic proteins levels 

Blood samples were collected from HELIX subcohort children at a 
mean age of 7.4 years during the clinical examination, thus simulta
neously to the blood pressure measurement (Maitre et al., 2018). Plasma 
samples were analysed to detect and quantify a panel of relevant pro
teins. Three Luminex kits commercially available from Life Technologies 
and Millipore were selected, which assessed a total of 50 measurements 
(43 unique proteins): Cytokines 30-plex (Cat #. LHC6003M), Apolipo
protein 5-plex (LHP0001M), and Adipokine 15-plex (LHC0017M). 
Plasma analyses were performed following the standard protocol 
defined by the vendor. The % of coefficients of variation (% CV) for each 
protein estimated by plate and then averaged ranged from 3.4% to 36%. 
For each protein, the limit of detection (LOD) was determined and the 
lower and upper quantification limits (LOQ1 and LOQ2, respectively) 
were obtained from the calibration curves. For those proteins that 
passed the quality control, data were log2 transformed to reach normal 
distribution. Afterwards, the plate batch effect was corrected by sub
tracting for each individual and each protein the difference between the 
overall protein average minus the plate-specific protein average. Finally, 
values below LOQ1 and above LOQ2 were imputed using a truncated 
normal distribution implemented in the truncdist R package (Nadarajah 
and Kotz, 2006) (see details on the QC in the Supplementary material 
(Appendix A, section S2)) and a descriptive table of the proteins eval
uated in the study in Supplementary Excel (Appendix B) file (Table B 1)). 
A final dataset with the log2-transformed, imputed, and normalized 
levels for 36 proteins of the 1170 individuals of the HELIX subcohort. 

2.4. Blood pressure measurement 

A standardized protocol was followed to measure BP during the 
clinical examination. After 5 min of rest in the sitting position, 3 
consecutive measurements, separated by 1-min intervals, were taken 
using an oscillometric device (OMRON 705-CPII, Omron, Kyoto, Japan). 
The children were in a pre-defined posture and the right arm was used 
preferably. The cuff sizes were chosen considering each child’s arm 
length and circumference. Each measurement of systolic blood pressure 
(SBP) and diastolic blood pressure (DBP) was recorded, and the mean of 
the second and third measurements was calculated and used in further 
analyses. In the following manuscript measures of 1167 individuals were 
evaluated. 

2.5. Covariates 

During pregnancy and in the childhood follow-up examination in
formation on the following key covariates was collected: self-reported 
maternal education (primary school, secondary school and university 
degree or higher), self-reported ancestry (European, Asian and Pak
istani, or other), child age at blood sample collection (continuous in 
years), self-reported maternal pre-pregnancy body mass index (BMI) 
(continuous in kg/m2), child’s BMI z-score (based on continuous BMI in 
kg/m2) (De Onis et al., 2007; WHO), child’s height (continuous in me
ters), maternal smoking during pregnancy (no smoker, only passive 
smoker, or smoker), smoking status of parents during childhood (none, 
one, or both), mean outdoors temperature (one day, one week and one 
month before blood and protein measurements) at residential and at 
school addresses (continuous in ◦C), exposure to outdoor air pollution 
during pregnancy (NO2, PM10, PM2.5 and PMabs as an average of the 
whole pregnancy period estimated at maternal residential addresses). 
Missing values in covariates (<3%) were imputed as described above. 

2.6. Statistical analyses 

2.6.1. Descriptive analyses and correlations 
For categorical variables, we calculated frequency and percentage; 

and for continuous variables, we calculated median and interquartile 
range (IQR). We used Spearman’s correlation coefficients to quantify the 
correlation between plasmatic proteins data and Pearson’s correlation 
coefficient to quantify the correlation between the different air pollutant 
measurements. 

2.6.2. Outdoor air pollution exposures and plasmatic proteins analyses 
We assessed the association between childhood outdoor exposure to 

air pollution and protein levels using the omicRexposome R package 
(Bioconductor - omicRexposome,). Each air pollutant exposure (at 
different locations, windows, and pollutants) was related to the plas
matic levels of each protein through linear regressions adjusted for 
covariates using the omicRexposome based on limma R package (Ritchie 
et al., 2015). Models were adjusted for a common set of confounders 
identified a priori based on literature: child’s sex, cohort, self-reported 
maternal education, self-reported ancestry child’s age and mean out
doors temperature of each participant at residential or school addresses. 
The effect size was expressed as log2 fold change (log2FC) in protein 
levels per IQR change of the exposure. Nominal significance was 
established at nominal p-value <0.05. Multiple testing correction was 
addressed by applying the effective number of tests (ENT) (Li et al., 
2012) method, which estimates the number of independent tests 
considering the correlation among proteins: ENT = 31.54, p-value 
threshold = 0.0016. 

2.6.3. Sensitivity analyses 
We conducted several sensitivity analyses. First, we run additional 

models adjusted for other covariables that could be confounding the 
associations. Models were further adjusted for: (i) maternal smoking and 
outdoor air pollution exposure during pregnancy, or (ii) for parental 
smoking during childhood and child BMI z-score. Second, for the air 
pollutants that survived multiple-testing correction, we ran mutually 
adjusted models (NO2 models were further adjusted for PM2.5, and vice 
versa) to determine if the estimated effects remained statistically sig
nificant. We selected NO2 and PM2.5 as they were not strongly correlated 
(Figure A 6) and had data available in the whole sample (n = 1170 in
dividuals). Third, we conducted a cohort-by-cohort analysis for each 
statistically significant association in the main model, to check the 
pattern of association within each cohort. The meta R package 
(Schwarzer, 2007) was used to conduct the fixed-effects inverse variance 
weighted meta-analyses based on the estimates and standard errors of 
the associations. We looked at the I2 statistics to describe heterogeneity 
across cohorts. 

2.6.4. Mediation analyses 
We hypothesized that part of the association between exposure to air 

pollution and blood pressure could be mediated by the change in protein 
levels. Therefore, first, linear regression models were conducted to 
examine the associations between each of the childhood outdoor air 
pollution exposures (different locations, windows, and air pollutants) 
and SBP and DBP, respectively. Models were adjusted for a common set 
of confounders identified a priori based on literature: child’s sex, cohort, 
self-reported maternal education, self-reported ancestry, mean temper
ature of each participant at residential or school addresses, child’s age, 
and child’s height. Effect size is reported as the change in blood pressure 
(millimeters of mercury (mmHg)) by IQR of exposure levels. Then, we 
investigated the potential mediating role of selected proteins in the as
sociation between air pollutants and blood pressure. This was restricted 
to statistically significant associations between air pollutants and pro
teins and blood pressure. To do so, we conducted a formal mediation 
analysis using the function ‘mediate’ from the R package mediation 
(Tingley et al., 2014). This package allows the calculation of various 
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quantities: the total effect, the average direct effect (ADE), indirect effect 
or average causal mediation effects (ACME), and the proportion medi
ated (Imai et al., 2010). 

The statistical framework R (version 3.6.0) was used to perform all 
the analyses (R Core Team, 2021). 

3. Results

3.1. Study population

Descriptive statistics of the sociodemographic characteristics of the 
study participants are presented in Table 1. From the 1170 participants 
included in the study, the median age at the clinical examination was 7.4 
(2.4) years old. Of these children 89.6% were of European ancestry, 
45.4% were female, and 50.6% were born from mothers with a uni
versity degree or higher education level. The median average SBP and 
DBP was 98 (15) and 57 (10) mmHg, respectively. 

Within each pollutant and time window, correlations between home 
and school were very high (r > 0.772) (Figure A 2-A 5). Regarding time 
windows, higher correlations were detected between 1- day and 1-week 
than for 1-week and 1-year within each pollutant. For instance, for the 
exposure to PM2.5 at home, the correlation between 1-day and 1-week 
was r = 0.665, while for 1-week and 1-year it was r = 0.591. Finally, 
we found higher correlations among PM2.5, PM10 and lower correlations 
or no correlation between PMs subtypes and NO2. For instance, the 
correlation between 1-week exposure at home to PM2.5 and to PM10 was 
r = 0.835, however, its correlation with NO2 was r = − 0.051. A 
graphical display of the correlation matrix between all air pollution 
exposures is shown in Figure A 6. 

Plasmatic proteins were classified into 4 groups according to their 
function: adipokines, apolipoproteins, cytokines, and other proteins, 
including growth factors, hormones, and the C-reactive protein (CRP) 
(See Supplementary Excel (Appendix B) for further information, Table B 
1). Their average concentrations can be found in Table B 1, and their 
pair-wise correlation is shown in Figure A 7. The heatmap suggests 4 
clusters, which are mostly consistent with the four groups of proteins 
previously created based on their biological function. Higher correla
tions can be found within most of the cytokines, adipokine PAI1(Plas
minogen activator inhibitor-1) and some growth factors (EGF 
(Epidermal growth factor), GSCF (Granulocyte colony-stimulating fac
tor), and FGFBasic (Basic fibroblast growth factor)), all of them related 
with inflammatory processes. The group of apolipoproteins was corre
lated between them and with adiponectin and CRP. Moreover, leptin, 
interleukin-1 beta (ILbeta), interleukin-6 (IL6), all produced by the fat 
tissue, and insulin were quite correlated among them. Finally, we 
observed correlations within a smaller group of cytokines (Interleukin-8 
(IL8), tumor necrosis factor alfa (TNF-α) and monocyte chemoattractant 
protein-1m (MCP1)), the B-cell activating factor (BAFF) which is an 
adipokine, the hepatocyte growth factor (HGF) and one hormone 
(Cpeptide), all of them with anti-inflammatory properties. 

3.2. Outdoor air pollution exposures and plasmatic proteins analyses 

Higher 1-week NO2, PM2.5, and PM10 home levels were associated 
with increased levels of HGF (Table 2). In addition, higher 1-week PM2.5 
and PM10 school levels were also related to increased levels of HGF. 
Finally, exposure to 1-week PM10 at home and school was associated 
with higher IL8 concentration (Table 2). The beforementioned associa
tions are the ones that passed the multiple testing correction threshold 
(p < 0.0016) based on the effective number of tests (ENTs) considering 

Table 1 
Characteristics of study population (N = 1170).  

Variable N (%) or median (IQR) 

Cohort 
BIB 196 (16.8%) 
EDEN 150 (12.8%) 
INMA 210 (17.9%) 
KANC 199 (17%) 
MOBA 223 (19.1%) 
RHEA 192 (16.4%) 

Ethnicity 
Asian and Pakistani 95 (8.1%) 
European 1.048 (89.6%) 
Other 27 (2.3%) 

Sex of the child 
Female 531 (45.4%) 
Male 639 (54.6%) 

Child age at blood collection, in years 7.4 ± 2.4 
Child z-score BMI 0.3 ± 1.5 
Child SBP, mmHg* 98 ± 15 
Child DBP, mmHg* 57 ± 10 
Maternal age, in years 31 ± 6.8 
Maternal pre-pregnancy BMI 24 ± 5.9 
Maternal education 

Primary school 172 (14.7%) 
Secondary school 406 (34.7%) 
University degree or higher 592 (50.6%) 

Maternal smoking during pregnancy 
No smoker 633 (54.1%) 
Only passive smoker 363 (31%) 
Smoker 174 (14.9%) 

Parental smoking during childhood 
Neither 721 (61.6%) 
One parent 322 (27.5%) 
Both parents 127 (10.9%) 

Note: BIB = Born in Bradford; EDEN = Étude des Déterminants Pré et Postnatals 
du Développement et de la Santé de l’Enfant; INMA = Infancia y Medio Ambi
ente; KANC = Kaunas Cohort; MoBa= Norwegian Mother, Father and Child 
Cohort Study; RHEA = Mother-child Cohort in Crete; BMI = Body Mass Index; 
SBP = Systolic Blood Pressure; DBP = Diastolic Blood Pressure. *For systolic and 
diastolic blood pressure the sample size was 1167 individuals. 

Table 2 
Results of the association between outdoor air pollution exposures and plasmatic 
proteins levels (main model).  

Exposure Outcome N log2FC 
(95%CI) a 

P-value Adjusted p- 
value 

NO2 home exposure 
(1 week) (IQR =
0.57) 

HGF 1170 0.06 
(0.02, 
0.10) 

0.001 0.036 

PM2.5 home 
exposure (1 week) 
(IQR = 6.89) 

HGF 1170 0.04 
(0.01, 
0.06) 

0.001 0.035 

PM2.5 school 
exposure (1 week) 
(IQR = 6.78) 

HGF 1170 0.04 
(0.01, 
0.06) 

0.001 0.036 

PM10 home 
exposure (1 week) 
(IQR = 15.28) 

HGF 1020 0.04 
(0.02, 
0.06) 

8.08 ×
10− 05 

0.003 

PM10 school 
exposure (1 week) 
(IQR = 15.15) 

HGF 1020 0.04 
(0.01, 
0.06) 

0.001 0.027 

PM10 home 
exposure (1 week) 
(IQR = 15.28) 

IL8 1020 0.05 
(0.02, 
0.07) 

1.74 ×
10− 04 

0.005 

PM10 school 
exposure (1 week) 
(IQR = 15.15) 

IL8 1020 0.05 
(0.02, 
0.08) 

0.001 0.006 

NO2 = Nitrogen dioxide; PM2.5 = Particulate matter with an aerodynamic 
diameter of less than 2.5 μm; PM10 = Particulate matter with an aerodynamic 
diameter of less than 10 μm; HGF = Hepatocyte growth factor; IL8 = Interleukin 
8; log2FC = log2 fold change of protein levels by IQR or air pollutant; IQR =
Interquartile range. Results are presented only for the exposure-protein associ
ations that surpassed the multiple testing correction threshold considering 
correlated proteins (ENT = 31.54). The main model was adjusted for: child’s sex, 
cohort, self-reported maternal education, self-reported ancestry, and mean 
temperature. The analyses were conducted in 1170 children from the HELIX 
subcohort for the NO2 and PM2.5 models and in 1020 for the PM10 models. 
exposure. 
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all the proteins. The rest of the associations are shown in the supple
mentary information (see Supplementary Excel for the full set of results, 
Table B 4-B.7). 

When further adjusting the models for maternal smoking and out
door air pollution exposure during pregnancy and, for parental smoking 
during childhood and child BMI z-score plus the main covariates 
considered before, the associations remained significant and still passed 
the multiple testing correction threshold (see Supplementary Excel 
(Appendix B) file for the full set of results, Table B 4-B 6). Then, in the 
mutually adjusted models, the associations were not statistically sig
nificant anymore, however effect sizes were only slightly smaller, and all 
maintained the same direction (see Supplementary Excel (Appendix B) 
file for the full set of results, Table B 4- B.5). Finally, we conducted fixed- 
effects inverse variance weighted meta-analyses of the results by the 
cohort of the exposure-omics associations that passed the multiple 
testing correction (Figure A 8). For 1-week NO2 exposure estimated ef
fects were consistent across cohorts (Figure A 8A). For the other asso
ciations the pattern was slightly more heterogeneous with some cohorts 
going in the opposite direction (Figure A 8B, A 8C, and A 8D). Never
theless, the statistic I2 was equal to 0 for all exposure variables. 

3.3. Mediation analyses 

Linear regression models adjusted for covariates showed marginally 
significant associations between 1-week exposure to NO2 at home and 
school and higher SBP (beta = 1.21, p-value = 0.091; and beta = 1.24, p- 
value = 0.081, respectively), and for 1-year exposure to NO2 and to 
PMabs at school (beta = 1.77, p-value = 0.063; and beta = 1.91, p-value 
= 0.079, respectively). For the other air pollutants and regards to DBP 
non-significant associations were found (see Supplementary Excel (Ap
pendix B) file for the full set of results, Table B 8-B 9). 

Associations between air pollution and BP did not change substan
tially after further adjusting the models for (a) maternal smoking and 
outdoor air pollution exposure during pregnancy, and for (b) parental 
smoking during childhood and child BMI z-score (see Supplementary 
Excel (Appendix B) file for the full set of results, Table B 8-B 9). The only 
exception was the association between 1-week NO2 exposure at home 
and SBP, where a statistically significant effect was observed when 
further adjusting the models for variables related to pregnancy (beta =
1.53, p-value = 0.040). In the mutually adjusted models, stronger esti
mates were observed between NO2 exposure and higher SBP; on the 
contrary, PM2.5 exposure was related to a decrease in SBP (see Supple
mentary Excel (Appendix B) file for the full set of results, Table B 8-B 9). 

Finally, we conducted mediation analyses for those exposures, pro
teins, and outcomes that were involved in marginally significant asso
ciations, namely 1-week NO2 exposure at home, HGF, and SBP. The 
results of the mediation analyses showed that 19% of the effect of the 
exposure to 1-week NO2 levels at home on SBP could be partly mediated 
via the HGF concentrations (see Table B 10). 

4. Discussion

To our knowledge, this is one of the first studies to simultaneously
evaluate the possible influence of different time windows of air pollution 
exposure (1-day, 1-week, and 1-year) and various pollutants on the 
levels of various cytokines, apolipoproteins, adipokines, and other pro
teins such as growth factors in children, and their link with blood 
pressure. We showed that higher levels of 1-week exposure to NO2, 
PM2.5, and PM10 at home or school were associated with higher levels of 
HGF. A similar association, but only for PM10 was observed for IL8. 
Finally, higher levels of 1-week exposure to NO2 were related to higher 
SBP, and the mediation analysis suggests that HGF might be implicated 
in this link. 

Inflammation and oxidative stress are known to be the main bio
logical mechanisms by which air pollution induces health effects, which 
might be translated to an inflammation cascade, and oxidation stress 

process in the lung, vascular, or heart tissue (Lodovici and Bigagli, 
2011), together with dysfunction of vascular endothelium (Araujo and 
Nel, 2009; Brook et al., 2009; Zhong et al., 2015). In line with previous 
studies, we have shown a positive association between IL8 levels and 
PM, specifically, PM10. IL8 is a chemotactic factor that can be produced 
by a wide range of cells such as epithelial, fibroblasts endothelial, 
macrophages, or lymphocytes in response to inflammation (Benakana
kere et al., 2016). It is considered a pro-inflammatory mediator that 
intermediates in host responses to tissue damage and inflammation 
(Mehrbani et al., 2016). In particular, it is involved in mitogenesis, in
hibition of angiogenesis, chemotaxis, neutrophil degranulation, calcium 
homeostasis, and leukocyte activation (Brennan and Zheng, 2007). Two 
observational studies in adults have shown that short-term exposure to 
PM2.5 increased levels of circulating MCP1, IL8, and TNF-α (Zhang et al., 
2020b), and also of IL6 (Pope et al., 2016). A study carried out with 
children (8- to 10-year-old) found higher levels of saliva IL8 in a region 
with higher air pollution (Mehrbani et al., 2016). In vitro studies using 
primary human bronchial epithelial cells (HBECs) exposed to PM10 have 
confirmed an increase in IL8 concentrations in 24h after exposure, 
which goes in line with our results (Fujii et al., 2001). Moreover, in 
response to air pollution exposure it has been seen that IL8 gene 
expression increases in the macrophages located in the pulmonary 
alveoli (Drumm et al., 1999). An elevated expression of this cytokine has 
been previously associated with some conditions as hypertension 
(Martynowicz et al., 2014), carcinogenesis (Gales et al., 2013) or 
chronic obstructive pulmonary diseases (Gilowska, 2014). Thus, 
elevated IL8 levels in response to air pollution might lead to other 
adverse health effects, besides blood pressure. However, in our study 
PM10 exposure, which was associated with IL8, was not related to BP, 
therefore, we did not conduct a formal mediation analysis between this 
exposure and BP. 

In relation to HGF, we found that plasma levels of this protein were 
related to 1-week exposure to NO2, PM10, and PM2.5. Results were 
consistent across cohorts and not modified when adjusting for other 
covariates, which suggests a robust association. However, there is scarce 
evidence regarding the influence of air pollution on HGF levels. One of 
the available studies so far, found a positive association between short- 
term exposure to NO2 and HGF in the adult population (Dadvand et al., 
2014). In contrast, another study in adults did not find any association 
between short-term exposure to PM2.5 and HGF (Riggs et al., 2020b). 
HGF is not usually considered as an inflammatory marker, and it was 
first described as a liver-regenerative circulating factor. Currently, it is 
thought to be an angiogenic growth factor by its participation in the 
HGF/c-Met signaling cascade (Neuss et al., 2004). This cascade regulates 
proliferation, differentiation, survival, and mitogenesis of endothelial 
cells that are linked to the reparation of tissues in different organs such 
as the heart (Mungunsukh et al., 2014; Oliveira et al., 2018). Previous 
evidence has shown positive associations between HGF and BP(Hayash 
et al., 2002). In our study, we ran a mediation analysis between air 
pollution, HGF levels, and blood pressure. We found that 19% of the 
effect of air pollution on SBP could be mediated through HGF. However, 
we need to interpret the results cautiously as the direction of the rela
tionship between HGF and BP is uncertain. In vitro models, suggest that 
HGF could be a downstream product of increased blood pressure 
(Nakamura et al., 1996). Other studies in humans suggest that HGF 
would be produced to counteract the endothelial damage induced by 
hypertension (Morishita et al., 1998, 2002; Shimizu et al., 2016) as 
HGF/c-Met pathway could have a role in cardiovascular remodeling 
after tissue injury (Gallo et al., 2015). Thus, further studies should 
address the causal connection between HGF and blood pressure in the 
context of air pollution. 

Finally, we did not find any association between short- and medium- 
term exposure to air pollutants and CRP, PAI1, TNF-α, IL6, and IL10, 
previously related to air pollution in other studies (Liu et al., 2019; Tang 
et al., 2020; Wu et al., 2012). A meta-analyses of 40 studies conducted in 
adults confirmed a positive association between being exposed to PM2.5 
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or PM10 and levels of circulating CRP, with stronger associations when 
considering long-term exposures (more than 6 months) (Liu et al., 
2019). In children, it was found that exposure to traffic-related pollut
ants (PM10 and NO2) during the first year of life was associated with the 
levels of IL6 and IL10 measured at 8 years of age (Gruzieva et al., 2017). 
Besides measurement error problems, which do not seem to be the case, 
the lack of replication of some air pollution-protein associations in our 
study might have other explanations. First, our levels of air pollution 
could be lower compared to other studies. Previous evidence have 
shown that the production of some pro-inflammatory mediators such as 
IL8 could be more sensitive to air pollution exposure than others 
(Mehrbani et al., 2016), which might explain why we found an associ
ation between PM and IL8, and not with IL6. Second, existing evidence 
have also found that exposure to PM was associated with an increased 
production of inflammatory mediators (IL6 or CRP) by stimulated im
mune cells, but not with their circulating levels (Tripathy et al., 2021), 
and in our study circulating protein levels in plasma were considered as 
the outcome. Additionally, the influence on protein concentrations 
might not be just affected by PM levels, but also by the proportion of 
each chemical component found in PM, as it has been seen that the effect 
of each component can differ (Li et al., 2020; Xu et al., 2020). According 
to it, future studies should determine the chemical composition of PM to 
clearly evaluate which are the components with a higher impact in 
protein levels. Third, most of the studies have been conducted in adults 
and our study is based on children, which might develop a different 
response to this risk factor as their inflammatory response could be 
lower due to the chronic exposure is lower compared to adults. Finally, 
based on our results, we observed that stronger associations are found 
within one-week of exposure before the clinical and molecular assess
ment, thus suggesting acute effects of air pollution on these traits. In the 
way our exposure was assessed, the 1-year average exposure to air 
pollution is not collecting information on the 1-day or 1-week peaks of 
air pollution through that period, which could be the main contributors 
to the increased levels of protein or BP measurements. Therefore, the 
evaluation of these peaks of air pollution and, the potential chronical 
influence on health outcomes would require further analyses based on 
longitudinal studies. 

The main strengths of our study are the comprehensive assessment of 
the air pollution exposure in six populations across Europe with different 
cultures and settings, the evaluation of different air pollutants and time 
windows in the same analyses, the harmonized protocols used for the 
measurement of blood pressure and plasmatic proteins levels, and the 
adjustment of the statistical models for covariates. Moreover, the ana
lyses investigated the influence of air pollution exposure in children, 
which are considered as one of the most vulnerable population groups. 
Finally, we reported the estimates obtained through the analyses of each 
exposure-protein association to avoid selective reporting bias. 

However, our results should be interpreted in the context of its 
limitations. First, we were not able to consider children’s behavior 
throughout day-to-day life as we have only estimated air pollution 
values at home and school. Second, we need to consider that the sources 
of the different air pollutants are unknown and might be different from 
cohort to cohort, and that we were not able to determine the chemical 
composition of PM. Moreover, we cannot clearly identify which are the 
most sensitive windows of exposure because of the low within-subject 
variability. Third, we have evaluated only thirty-six plasmatic pro
teins, which is limited considering all the circulating proteins that are 
present in the human body. However, within the sample of proteins 
investigated, we have considered acute phase proteins and the most 
involved in systemic inflammation. Finally, we acknowledge that our 
study had a cross-sectional design, and we cannot establish a causal link 
between protein levels and blood pressure. Importantly, the mediation 
analyses do not imply causality as the relationship could be due to 
reverse causation. We believe that future studies should investigate the 
molecular and cellular response to air pollution to elucidate underlying 
biological mechanisms involved in the relation between air pollution 

and health outcomes. 
Overall, we found that short-term exposure to air pollutants was 

related to increased levels of HGF, IL8, and systolic blood pressure. HGF 
seems to be connected to higher blood pressure in the context of air 
pollution, but direct causation is not proven. These findings reinforce 
the adverse cardiovascular effects of air pollution in children, a poten
tially susceptible group. Moreover, considering that elevated blood 
pressure during childhood impacts on health across the lifespan, 
reducing the exposure to this environmental risk factor could be also an 
important prevention strategy. Considering all the above, this study 
might provide more evidence to promote and implement new strategies 
and public policies to reduce exposure to air pollution. 
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2013. Hypertension in children and adolescents attending a lipid clinic. Eur. J. 
Pediatr. 172, 1573–1579. https://doi.org/10.1007/s00431-013-2082-8. 

Martynowicz, H., Janus, A., Nowacki, D., Mazur, G., 2014. The role of chemokines in 
hypertension. Adv. Clin. Exp. Med. https://doi.org/10.17219/acem/37123. 

Mehrbani, S.P., Babaloo, Z., Jamali, Z., Abdollahian, T., Eslami, H., Sobhani, N., 2016. 
Effect of air pollution on salivary interleukin-8 levels in children. World J. Dent. 7, 
175–178. https://doi.org/10.5005/jp-journals-10015-1390. 

Morishita, R., Nakamura, S., Hayashi, S., Aoki, M., Matsushita, H., Tomita, N., 
Yamamoto, K., Moriguchi, A., Higaki, J., Ogihara, T., 1998. Contribution of a 
vascular modulator, hepatocyte growth factor (HGF), to the pathogenesis of 
cardiovascular disease. J. Atherosclerosis Thromb. https://doi.org/10.5551/ 
jat1994.4.128. 

Morishita, R., Aoki, M., Yo, Y., Ogihara, T., 2002. Hepatocyte growth factor as 
cardiovascular hormone: role of HGF in the pathogenesis of cardiovascular disease. 
Endocr. J. https://doi.org/10.1507/endocrj.49.273. 

Mungunsukh, O., McCart, E.A., Day, R.M., 2014. Hepatocyte growth factor isoforms in 
tissue repair, cancer, and fibrotic remodeling. Biomedicines. https://doi.org/ 
10.3390/biomedicines2040301. 

Nadarajah, S., Kotz, S., 2006. R programs for truncated distributions. J. Stat. Softw. 16, 
1–8. https://doi.org/10.18637/JSS.V016.C02. 

Nakamura, Y., Morishita, R., Nakamura, S., Aoki, M., Moriguchi, A., Matsumoto, K., 
Nakamura, T., Higaki, J., Ogihara, T., 1996. A vascular modulator, hepatocyte 
growth factor, is associated with systolic pressure. Hypertension 28, 409–413. 
https://doi.org/10.1161/01.HYP.28.3.409. 
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Abstract 

Nitrogen dioxide (NO2) is known to be one of the main contributors to air pollution associated with a 

negative impact on health. Most of the studies have assessed outdoor levels, however it is essential to 

measure indoor and personal NO2 concentrations as they might reflect individual’s actual exposure 

more accurately. Within the framework of the BiSC cohort, we conducted the largest monitoring 

campaign of personal, home-indoor, and home-outdoor exposure to NO2 in pregnant women, which 

included 1,086 participants and 4646 samples of NO2. The main aim of the study is to evaluate 

indoor and personal NO2 concentrations during pregnancy and its main determinants. To this end, 

passive dosimeters were used to measure home-indoor, home-outdoor, and personal NO2 

concentrations during one week at first trimester and third trimester. In addition, information on 

socioeconomic, maternal behaviour and home characteristics factors was collected through 

questionnaires. Higher concentrations of personal NO2 were observed compared to indoor NO2 

(median = 27.23 vs. 22.57 µg/m3), and concentrations before Covid-19 were higher to the ones 

observed after Covid-19 (indoor, median = 24.62 vs. 20.27 µg/m3; personal, median = 29.77 vs. 

24.29 µg/m3; outdoor, median = 42.51 vs. 32.80 µg/m3). Linear Mixed-Effects regression models 

showed that major determinants of indoor NO2 concentrations were outdoor NO2 concentrations, 

the use of gas for cooking and non-European ancestry, and of personal NO2  were indoor and outdoor 

NO2 concentrations. All the models were stratified by season (Spring-Summer vs. Autumn-Winter), 

as outdoor NO2 concentrations are subjected to seasonal variability, and the ventilation rate and 

infiltration differs between seasons. A sensitivity analysis stratifying also for pre- or post-Covid-19 

period showed different estimates between periods only for personal NO2 models. Our findings 

reinforce the importance of studying personal and indoor determinants among vulnerable 

groups, and further studies considering other pollutants and their chemical composition, as well as 

the influence of Covid-19 in pollution levels and lifestyle are needed. 

.  
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INTRODUCTION 

Nitrogen dioxide (NO2) is known to be one of the main contributors to air pollution as a primary 

pollutant and as a precursor to ozone and fine particulate matter (PM) production (Cooper et al., 2022). 

Exposure to this air pollutant has been widely considered as an important worldwide public health issue 

(Hamra et al., 2015). Recent systematic reviews and meta-analyses have observed that short and long-

term exposure to NO2 can be related to all-cause and cause-specific mortality (Huangfu and Atkinson, 

2020; Orellano et al., 2020). The impact on human health when being exposed to this air pollutant 

differs depending on the stage of life in which the individual is exposed. In addition, pregnancy has 

been considered as one of the most sensitive periods, as the embryo and the foetus are extremely 

susceptible to NO2 exposure (Shang et al., 2020). Exposure to NO2 during pregnancy has been related 

to different birth outcomes such as low birth weight, preterm birth, stillbirth, or intrauterine growth 

restriction (Chen et al., 2021; Glinianaia et al., 2004; Sarovar et al., 2020). It is well-known that NO2 

exposure has a negative impact on health, however the effects and threshold levels are still under debate. 

This uncertainty can be related with the issue of correctly estimating individual exposure to air pollutant 

in large-scale epidemiological studies, which are scarce, and also to the challenge of assessing health 

effects in a large number of people (Stroh et al., 2012).  

NO2 is a gaseous air pollutant, that can be released to the atmosphere from natural and human-generated 

sources. It is mainly created when oxygen combines with nitrogen during high-temperature combustion 

in the atmosphere (Brusseau et al., 2019). Based on this, outdoor NO2 exposure is mainly consequence 

of combustion processes, and the principal source is known to be road traffic converting NO2 into a 

good marker of traffic-related pollution (Yan et al., 2020). Even though outdoor air pollution has been 

widely studied and was the first to draw public attention to the health effects of air pollution, it has been 

observed that indoor exposure could have the greatest impact on children’s health and be considered as 

a top public health problem (Morales et al., 2009). The most important known sources of indoor NO2 

include burning appliances as stoves, ovens, heaters and fireplaces, and tobacco smoke (Arbex et al., 

2007). In addition, levels of NO2 can be significantly influenced by outdoor NO2 concentrations due to 

the exchange between the indoor and outdoor air through mechanical or natural ventilation and, 

infiltration (Hu and Zhao, 2020).  

With the popularization of land use regression (LUR) models, that allow to estimate exposure levels for 

almost any individual based on their geocoded residential or working addresses, concentrations and 

determinants to outdoor NO2 have been widely investigated (Yang et al., 2017). Those studies have 

been mainly conducted in urban areas as they are known to be regions with a higher population density 

closer to traffic and therefore, more exposed to traffic-related pollutants such as NO2 (Degrauewe et al., 

2019). However, since most of the people tend to spend an estimated 90% of their time indoors, it is 
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essential for the NO2 assessment to measure indoor levels, as outdoor exposure might not accurately 

reflect individual’s actual exposure (Klepeis et al., 2001). Besides indoor exposure, through personal 

monitoring techniques we can evaluate personal exposure to air pollutants. Measurements obtained 

through this techniques seem to produce less uncertainty in estimating concentrations over the time 

period of measurement (Cherrie, 2002). High correlations between levels of indoor and personal 

exposure have been observed in previous studies (Woo et al., 2011). However, sources of indoor and 

personal exposure to NO2 may be distinct, therefore determinants of both exposures can vary. Published 

evidence considering adult population observed that indoor NO2 exposure was linked to time spend at 

home, outdoor NO2 levels, indoor NO2 sources such as cooking activities at home (time of cooking, 

presence of exhaust fan or type of stove), tobacco smoking, emissions from appliances or housing 

conditions (ventilation, infiltration, or fan use), and other variables as season of the year or 

socioeconomic status (SES) (Ferguson et al., 2021; Lai et al., 2006; Vardoulakis et al., 2020; Woo et 

al., 2011). Studies considering NO2 indoor exposure during pregnancy and first year of life observed 

also a relation with parental tobacco smoking, country of origin and educational level (Esplugues et al., 

2010; García Algar et al., 2004; Valero et al., 2009). Scarce evidence has been published in relation to 

personal NO2 determinants. To our knowledge, only one study on pregnant women (N=108) found that 

outdoor NO2, indoor NO2, time spent in outdoor environment and time exposed to a gas cooker were 

strongly correlated with personal exposure (Valero et al., 2009).  

Measuring indoor and specially personal exposure to air pollutants is challenging as it has a high cost 

of implementation and it is hard to collect repetitive measures on the same group of the population 

(Liang et al., 2019). Moreover, individual exposure in urban areas is the result of a dynamic process 

between the individual and urban air, and at the end of the day each individual have a unique personal 

exposure based on indoor and outdoor environments, which makes the quantifying process more 

complex (Dias and Tchepel, 2018). Previous studies investigating the concentrations and determinants 

of indoor and personal exposure to NO2 examined small populations, with just one large-scale 

population-based study of urban adult population assessing 413 individuals within six European cities 

(Lai et al., 2006). Therefore, within the framework of Barcelona Life Study Cohort (BiSC) that involved 

1086 participants and 4646 samples of NO2, we conducted the largest monitoring campaigns of personal 

and home-indoor exposure to NO2 in pregnant women. The aim of the following study is to evaluate 

indoor and personal NO2 concentrations during pregnancy and its main determinants in BiSC cohort.  

116 



MATERIALS AND METHODS 

Period, population, and area of study 

The Barcelona Life Study Cohort (BiSC, www.projectebisc.org) is an ongoing mother-child cohort. A 

total of 1,086 participants were recruited during their first trimester of pregnancy and were followed-

up twice during their pregnancy to assess their exposure to NO2. Data was collected from October 2018 

until September 2021. Participants of the BiSC study were recruited within the caption are of 3 major 

hospitals in the metropolitan area of Barcelona: the BCNatal consortia (Hospital Sant Joan de Déu and 

Hospital Clínic) and Hospital de la Santa Creu i Sant Pau. Thus, the area of study includes participants 

mostly from Barcelona, Esplugues de Llobregat, Cornellà de Llobregat, Hospitalet de Llobregat, Sant 

Just Desvern and Sant Joan Despí.  

Home visits for NO2 measurements 

We measured home-indoor, home-outdoor, and personal NO2 concentrations during one week at first 

trimester (approximately week 12 of pregnancy) and third trimester (approximately week 32) with 

Gradko Environmental passive dosimeters. Indoor NO2 tubes were placed in the participant’s room, in 

their bed’s side area. The tube measuring home outdoor air was attached to the most exposed façade 

through a window or balcony. The tube for personal measurements were worn by the participants either 

in a necklace or attached to backpack straps close to the breathing zone. While at home, participants 

were allowed to leave the tube in the living room or bedroom (hanging at a minimum height of 1.5 m) 

and were asked to wear it any time they leave their home. The participants were informed about the 

importance of not covering the tube with their hair or clothes.  

Before the lockdown derived from the Covid-19 pandemic, a trained fieldworker visited the 

participant’s home and installed the indoor and outdoor tubes and instructed face-to-face the participant 

on how to wear the personal tube. During the partial lockdowns and during periods of high incidence 

of Covid-19 the fieldworkers did not enter the participant’s home but, instead, delivered at their doors 

the NO2 tubes with a very detailed instructions on how to install the three tubes. Once installed by the 

participants, the participants sent a picture to the fieldworker to ensure a proper installation of the tubes. 

In case of any doubt, the participants could easily contact our fieldworkers by phone call or through 

common messaging phone applications.   

Quality control and assurance procedures were put in place. Besides the laboratory blank, we included 

at least 2 blank tubes in each batch sent to the laboratory. Those tubes were kept on the fridge properly 
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sealed in plastic bags. Moreover, one week per month we installed a tube at the urban background 

reference station of Palau Reial, located in the southwest of Barcelona city (41° 23′ 14″ N, 02° 06′ 56″ 

E, 80 m a.s.l.) to compare the concentrations with those from the NO2 monitors (Thermo Scientific 

model 42i) operated by the Department of the Environment of Catalonia. We obtained a good agreement 

between the passive tubes and the reference NO2 monitor, with an R2=0.88. 

Questionnaires and covariates 

Several questionnaires were answered by the volunteers included in the study at approximately 12w 

and 32w of gestation. Throughout them we were able to collect information on socioeconomic, 

behaviour and home characteristics factors, that were used as probable determinants of indoor and 

personal NO2 levels.  

At 1st trimester information on maternal age (in years), self-reported ethnicity (European ancestry, Latin 

American and others), maternal education (primary, secondary and university or higher), maternal 

tobacco smoking use at 12w (does not smoke at present but before smoked, non-smokers, active 

smoking) and 32w (non-smokers and active smoking) was collected. Furthermore, some variables 

related to maternal behaviour were also gathered through self-reported questionnaires: : use of candles 

or incense at home (never, less than once a week and more than once a week), hours during the whole 

week inside home, hours during week inside home, hours during weekend inside home, age of the home 

(<30, 31-50, >50 years), hours per week with the windows of the parents’ bedroom or kitchen opened, 

hours per day cooking, extractor in the kitchen (yes, no), use of the extractor while cooking (always, 

sometimes and never), opening the window while cooking (always, sometimes, never and there is no 

window), and time on foot, cycling, bus or tram, subway or train, car or moto during the week for go 

and to come from work. Finally, when fieldworkers were doing the home visit, they filled in a home 

characterization questionnaire in which they collect information on: location of the cuisine (interior and 

open, interior and separate and others), type of cuisine (gas, electric and others), central heating (yes, 

no), central water boiler (yes, no) type of water boiler (gas, electric and others), mother’s room faces 

the street (not, yes directly on the street, yes it turns aside a street, yes but it’s far), windows frames 

material (wood, synthetic material and metal), presence of gaskets (yes, no), quality of closing of the 

windows (okay, regular and bad), and type of window glass (single-glazed, double-glazed and triple-

glazed). This information was only collected at 3rd trimester for those individuals that change residence 

at 2nd or 3rd trimester, for the rest of the individuals we assumed that they had the same data for each 

variable. Moreover, when fieldworkers were not available to carry out the home visit due to Covid-19, 

a short questionnaire was handled to the pregnant women, and they answered it.  
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When conducting the multivariate analyses, some of the variables included as predictors were 

recategorized due to a low number of individuals in each category, or to collect information from two 

variables in one: 

- The use of candles or incense at home (yes, no) was based on the previous variable collected

through the questionnaire. All the individuals which answered more than once a week or less

than once a week, were included in the yes category, and the ones who answered never were

included in the no.

- The use of the extractor (yes, no) was based on the variables of extractor in the kitchen and use

of the extractor while cooking. All the individuals that answered always or sometimes were

classified at the yes category, and all the individuals that answered never or that they do not

have an extractor were classified in the no category.

- A new variable gathering information on the windows characteristics was created. It was

obtained by mixing information on windows frames’ material and presence of gaskets. New

categories were synthetic material and gaskets, metal and gaskets or no gaskets, wood and

gaskets and wood and no gaskets.

Finally, variables related to Covid-19, and season were created based on the assessment day of each 

NO2 measurement. We considered pre-Covid-19 period all the measurements before March 2020, and 

post- Covid-19 to all the measurements after March 2020. A variable to identify if the measurement 

was conducted in the total lockdown was created (yes, no), we considered the total lockdown period 

from March 2020 to June 2020. Season variable was divided in two; Spring-Summer (for measurements 

done from March to August) and Autumn-Winter (from September to February). 

Statistical analyses 

Descriptive analyses and correlations 

A descriptive analysis was carried out for the socioeconomic, demographic and behaviour factors, and 

for the characteristics of the home. For categorical variables, we calculated frequency and percentage; 

and for continuous variables, we calculated mean and standard deviation (SD).  To describe NO2 indoor, 

personal, and outdoor levels within the BiSC cohort, we obtained a boxplot of each exposure expressed 

as µg/m3 by the season of the measurement assessment (Autumn and Winter vs. Spring and Summer) 

and differentiating between pre- or post-Covid-19 situation. We further used Spearman’s correlation 

coefficients to quantify the correlation between the different air pollutant measurements.  
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Bivariate analyses 

We also evaluated the distribution of NO2 indoor and personal levels of pregnant women at 12 and 32 

weeks of gestation in relation to socioeconomic and demographic factors, and for the characteristics of 

the home. A bivariate analysis was conducted to determine if the NO2 levels were significantly different 

among the socioeconomic, demographic, and housing characteristics. For the categorical variables, the 

median of the exposure was expressed in µg/m3 and to evaluate any statistically significant difference 

among groups, a t-test was used when the variable was dichotomous, and an ANOVA was used when 

the variables had more than two categories. For continuous variables, a linear regression model was 

developed between the exposure and the covariate.  

Linear Mixed-Effects Regression models 

To assess the effect on indoor and personal levels of NO2 at 12 and 32 weeks of gestation of different 

socioeconomic, behaviour and home characteristics, different linear mixed-effects regression (LMM) 

models were performed to account for repeated NO2 measurements (with the participant as random 

effect). Based on the bivariate analyses and previous literature the models constructed considered as 

dependent variables the indoor or personal NO2 concentrations (both 12w and 32w) on continuous 

(µg/m3) with the individual as a random effect. Furthermore, the models were made based on those 

factors that were found to be significant in the bivariate analyses (p-value < 0.001) and with less than 

30% of missing values in the study population. Therefore, for the indoor NO2 models the variables were 

outdoor NO2 concentration (µg/m3) at 12w and 32w, period of exposure assessment (pre- or post- 

Covid-19), location of the kitchen, type of kitchen, use of the extractor, use of incense or candles and 

ethnicity. For the personal NO2, we considered as variables indoor NO2 concentration at 12w and 32w, 

outdoor NO2 concentrations at 12w and 32w, and period of exposure assessment. All the models were 

stratified by season (Autumn and Winter vs. Spring and Summer).  

Sensitivity analyses 

We conducted several sensitivity analyses; a) adding maternal education, and b) adding time inside 

home during the week (5 working days), type of water boiler and windows characteristics, besides the 

variables considered in the main model to the NO2 indoor LMERs. Finally, we repeated the main models 

for both indoor and personal NO2 levels but separately for those measurements that were done before 

or after March 2020, which was considered the beginning of the Covid-19 pandemics. 

The statistical framework R (version 4.1.1) and the package lme4 (Pinheiro and Bates, 2022) was used 

to perform all the analyses (R Core Team, 2021). 
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RESULTS 

Descriptive analyses and correlations 

Descriptive statistics of the sociodemographic, behavioural, and home characteristics of the 

study participants are presented in Table 1. From the 919 pregnant women included in the 

study, the mean age at recruitment was 34.29 (4.6) years old, a 74.7% were European ancestry, 

and a 71.8% had a university degree or a higher educational level. Furthermore, at 12w and 

32w a 45.2% and a 40.7%, respectively had a gas cooker, a 34.7% and a 29.6% always used 

the extractor while cooking, and 64.6% and a 57.9% had an interior and separate kitchen.  

Table 1. Baseline socio-demographic, behaviour, and home characteristics of BiSC cohort (N=919). 

Socio-demographic, behaviour, and 

home characteristics 
Categories Mean (SD) or N (%) 

Age, in years (continuous) - 34.29 (4.6) 

Self-reported ethnicity 

European ancestry 686 (74.7 %) 

Latin American 201 (21.9 %) 
Other (including Arabian, Sub-
Saharan Africa, Far East Asia, 

South Asia and Other) 
32 (3.5 %) 

Maternal education 

Primary or less 38 (4.1 %) 

Secondary 221 (24 %) 

University 659 (71.8 %) 

Missing values 1 (0.1%) 

NO2 samples at 12w collected during 
lockdown* 

No 758 (82.5 %) 

Yes 61 (6.6 %) 

Missing values 100 (10.9%) 

NO2 samples at 32w collected during 
lockdown* 

No 727 (79.1 %) 

Yes 54 (5.9 %) 

Missing values 138 (15.0%) 

Maternal tobacco smoking at 12w 

Does not smoke at present but 
before smoked (daily or not 

daily) 
320 (34.8 %) 

Non smokers 397 (43.2 %) 

Active smoking 5 (0.5 %) 

Missing values 197 (21.5%) 

Maternal tobacco smoking at 32w 

Non smokers 603 (65.6 %) 

Active smoking 10 (1.1 %) 

Missing values 306 (33.3%) 
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12w 32w 

Season assessment 

Autumn 244 (26.6 %) 192 (20.9 %) 

Winter 238 (25.9 %) 176 (19.2 %) 

Spring 155 (16.9 %) 166 (18.1 %) 

Summer 182 (19.8 %) 247 (26.9 %) 

Missing values 100 (10.9%) 138 (15.0%) 

Outdoor NO2 concentrations in µg/m3 - 40.44 (12.81) 37.69 (13.12) 

NO2 samples collected pre or post the 
beginning of Covid-19 pandemics 

Post-COVID1 353 (38.4 %) 431 (46.9 %) 

Pre-COVID2 466 (50.7 %) 350 (38.1 %) 

Missing values 100 (10.9%) 138 (15.0%) 

Use candles or incense at home 

Never 388 (42.2 %) 334 (36.3 %) 

Less than once a week 226 (24.6 %) 184 (20 %) 

More than once a week 63 (6.9 %) 58 (6.3 %) 

Missing values 242 (26 %) 343 (37.3%) 

Use the extractor while cooking during 
pregnancy 

Always 319 (34.7 %) 272 (29.6 %) 

Sometimes 279 (30.4 %) 235 (25.6 %) 

Never 75 (8.2 %) 64 (7 %) 

Missing values 246 (26.8 %) 348 (37.9%) 

Location of cuisine 

Interior and open 167 (18.2 %) 166 (18.1 %) 

Interior and separate 594 (64.6 %) 532 (57.9 %) 

Others 22 (2.4 %) 19 (2.1 %) 

Missing values 136 (14.8%) 202 (21.9%) 

Type of cuisine 

Gas 415 (45.2 %) 374 (40.7 %) 

Electric 358 (39 %) 336 (36.6 %) 

Others 6 (0.7 %) 5 (0.5 %) 

Missing values 140 (15.3%) 204 (22.2%) 

Type of water boiler 

Gas 346 (37.6 %) 361 (39.3 %) 

Electric 110 (12 %) 27 (2.9 %) 

Others 5 (0.5 %) 5 (0.5 %) 

Missing values 485 (49.8%) 526 (57.2%) 

Windows frames material 

Wood 272 (29.6 %) 248 (27 %) 

Synthetic material 81 (8.8 %) 70 (7.6 %) 

Metal 127 (13.8 %) 105 (11.4 %) 

Missing values 439 (47.8%) 496 (54.0% 

Presence of gaskets in the window 

Yes 364 (39.6 %) 325 (35.4 %) 

Not 110 (12 %) 93 (10.1 %) 

Missing values 445 (48.4%) 501 (54.5%) 
*Levels measured at March, April, and June of 2020 
1Post-COVID refers to the measurements done after March 2020.
2Pre-COVID refers to the measurements done before March 2020.
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The distribution of indoor, personal, and outdoor NO2 concentrations by season of assessment are 

reported in Figure 1. Considering the whole assessment period of BiSC, higher concentrations of 

personal NO2 were observed compared to indoor NO2 (median = 27.23 vs. 22.57 µg/m3). Moreover, 

slightly higher concentrations of outdoor NO2 can be observed during Autumn-Winter compared to 

Spring-Summer season (median = 40.65 vs. 34.16 µg/m3), while indoor and personal levels remained 

similar across seasons (indoor, median = 22.21 vs. 23.01 µg/m3; personal, personal, median = 27.84 vs. 

26.63 µg/m3). The boxplot is coloured to indicate if the concentration was assessed before or after Covid-

19 pandemics started. For instance, concentrations before Covid-19 were higher to the ones observed 

after Covid-19 (indoor, median = 24.62 vs. 20.27 µg/m3; personal, median = 29.77 vs. 24.29 µg/m3; 

outdoor, median = 42.51 vs. 32.80 µg/m3). Finally, spearman’s correlations can be found in Figure S1, 

in which a higher correlation can be observed between indoor and personal concentrations in both 12w 

and 32w assessment (12w indoor vs personal: r = 0.75; 32w indoor vs. personal; r = 0.77) than between 

indoor or personal with outdoor concentrations (r ≤ 0.41). 

Figure 1. Median concentrations of indoor, personal, and outdoor NO2 (pre- or post-COVID) by season of 
assessment with 25th and 75th percentiles in BiSC cohort.  

Exposure assessment before or after Covid-19 

1Pre-COVID refers to the measurements done before March 2020. 
2Post-COVID refers to the measurements done after March 2020. 

*For personal NO2 during Spring-Summer, two measurements are 
not show as they had a concentration higher than 120 µg/m3.
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Bivariate analyses 
Mean indoor, personal, and outdoor NO2 concentrations by selected socio-demographic baselines 

characteristics can be found in Supplementary material (Supplementary Excel, Table S2). Higher 

concentrations of NO2 at 12w and 32w were found among pregnant women with a Latin American 

ethnic origin, moreover, indoor, and personal NO2 concentrations at 12w were found to be larger in 

pregnant women with a primary or less educational level (Supplementary Excel, Table S2). 

Additionally, mean indoor and personal NO2 concentrations by selected behaviour and home 

characteristics variables can be found in Table S3 (12w) and S4 (32w) of the Supplementary excel. The 

use of candles or incense at home seemed to be related to higher levels of indoor NO2. Moreover, lower 

concentrations of indoor and personal NO2 at 12w and 32w were observed when using the extractor 

while cooking, higher concentrations of indoor and personal NO2 when using gas for cooking, and the 

presence of gaskets and windows frame made of wood were related to lower concentrations of indoor 

and personal NO2. Finally, higher concentrations of indoor and personal NO2 were observed in those 

groups with higher outdoor NO2 concentrations (Supplementary excel, Table S2).   

Linear Mixed-Effects Regression models 
After adjustment for several potential predictors, outdoor NO2 concentrations, the use of gas for cooking 

and Latin American ethnicity were the major statistically significant determinants of indoor NO2 

concentrations in BiSC cohort (Table 1). Levels of indoor NO2 were slightly higher in Autumn-Winter 

(constant = 8.76 (95% confidence interval, CI = 5.4,12.12), p-value, p < 0.001) than in Spring-Summer 

(constant = 8.17 (CI = 5.49,10.84), p < 0.001). Homes with a gas cooker had an increase of 6.39 µg/m3 

(CI = 4.68,8.1), p < 0.001) in Autumn-Winter and of 4.84 µg/m3 (CI = 3.31,6.36), p < 0.001) in Spring-

Summer of indoor NO2 compared to those with an electric cooker. Pregnant women who reported to 

have a Latin American ethnic origin had an increase of 3.85 µg/m3 (CI = 1.54,6.15), p = 0.0012) in 

Autumn-Winter and of 2.10 µg/m3 (CI =0.17,4.03), p = 0.003) of indoor NO2 compared to women with 

a European ancestry. Finally, for each increase of 1 µg/m3 of outdoor NO2 we observed an increase of 

0.22 µg/m3 (CI = 0.15,0.29), p < 0.001) in Autumn-Winter and of 0.33 µg/m3 (CI = 0.27,0.4), p < 0.001) 

in Spring-Summer of indoor NO2.   

For personal NO2 models we considered that indoor NO2 concentrations already included the 

beforementioned determinants, therefore the predictors of personal levels considered in the present 

study were indoor and outdoor NO2 concentrations and period of exposure assessment regarding Covid-

19. Results of the LMMs can be found in Table 2. Base levels of personal NO2 were higher in Autumn-

Winter (constant = 9.038 (CI = 7.28,10.79), p < 0.001) than in Spring-Summer (constant = 6.22 (CI = 

3.86,8.58), p < 0.001). Moreover, for each increase of 1 µg/m3 of indoor NO2 there is an increase of 

0.73 µg/m3 (CI = 0.68,0.77), p < 0.001) in Autumn-Winter and of 0.79 µg/m3 (CI = 0.7,0.87), p < 0.001) 

124 



in Spring-Summer of personal NO2. Additionally, for each increase of 1 µg/m3 of outdoor NO2 an 

increase of 0.04 µg/m3 (CI = 0,0.08), p = 0.0459) in Autumn-Winter and of 0.08 µg/m3 (CI = 0,0.15), p 

= 0.0389) in Spring-Summer of personal NO2 was observed. 

The period of exposure assessment regarding Covid-19 pandemics was also considered as a predictor 

variable in indoor and personal NO2 concentration models. However, statistically significant results 

were only obtained for indoor NO2 concentrations in Spring-Summer season. Regarding those 

measurements done before Covid-19 an increase of 2.36 µg/m3 (CI = 0.8,3.92), p = 0.0032) of indoor 

NO2 was observed compared to those conducted after Covid-19. For personal NO2 concentration in 

Autumn-Winter season, an increase of 1.75 µg/m3 (CI = 0.71,2.8), p = 0.0010) of personal NO2 was 

observed compared to those conducted after Covid-19.
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Sensitivity analyses 
As maternal education is widely considered an important variable to assess socioeconomic status, we 

added it as a predictor in the model of indoor NO2, however results did not change (Supplementary 

Excel, Table S5). In the subset (number of observations: Autumn-Winter = 326 and Spring-Summer = 

245) for which we had more detailed information on home characterization (i.e., type of water boiler

and windows characteristics), we added as predictors time inside home during the week, the type of 

water boiler used, and the new self-created variable with information on windows characteristics 

(Supplementary Excel, Table S6). The base levels of indoor NO2 are strongly lower in Spring-Summer 

season compared to the main model (constant = 2.841 (CI = -3.78,9.47), p < 0.4016), however similar 

results in relation to its determinants were obtained.  

Finally, when performing the main model but separating the observations in measurements done before 

Covid-19 and after Covid-19, the estimates were similar, but in the post-Covid-19 group, ethnicity and 

outdoor NO2 concentrations did not show a statistically significant effect on indoor and personal NO2 

concentrations, respectively (Supplementary Excel, Table S7). 

DISCUSSION 

Pregnancy is considered as one of the most sensitive windows of susceptibility to environmental threats. 

It is widely known that being exposed during this period to several environmental risk factors such as 

air pollution may lead to permanent changes in the human body and an increase risk of disease later in 

life (Barouki et al., 2012). For improving the exposure assessment among epidemiological studies 

aimed to study adverse health outcomes related to air pollution exposure is essential to characterize the 

relationship between home-indoor and personal exposure in pregnant woman. Furthermore, a better 

understanding of the different sources of home-indoor and personal air pollution could help promoting 

more effective preventive strategies to reduce their exposure.  

In urban settings, NO2 is widely known as a traffic-related pollutant as it is generated during combustion 

processes. Exposure to NO2 can also occur in indoor environments not only because of the infiltration 

of outdoor NO2, but also because the existence of combustion indoor sources of this pollutant such as 

cooking appliances (Vardoulakis et al., 2020). As people tend to spend most of their time in indoor 

environments, assessing indoor levels might better reflect individual’s actual exposure than relying on 

outdoor concentrations. In addition, personal assessment of NO2 could be considered the gold standard, 

as it considers all the possible microenvironments (including commuting) and the fraction of time spent 

on each. So far, most of the studies assessed the exposure to home-outdoor and home-indoor NO2 

concentrations in adult general population, and scarce evidence is available for pregnant woman and 

their personal levels of NO2 (Nethery et al., 2008; Schembari et al., 2013; Valero et al., 2009). For 
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instance, previous studies assessing home-indoor or personal exposure concentrations included limited 

samples sizes which ranged from 50 to 108 pregnant women (Nethery et al., 2008; Schembari et al., 

2013; Valero et al., 2009). To our knowledge our study comprises the largest monitoring campaign of 

personal and home-indoor and -outdoor exposure to NO2 in pregnant women conducted in an urban 

area, in which measurements were done simultaneously. In our population, we observed higher 

correlations between personal and indoor than with ambient levels at home location, which is consistent 

with previous studies conducted in pregnant woman (Nethery et al., 2008; Schembari et al., 2013; 

Valero et al., 2009). To note, the personal, indoor, and outdoor weekly average levels observe in our 

study are higher than the guideline limits stablished by the WHO (24-hours average limit = 24 μg/m3) 

(World Health Organization, 2021) and below the annual mean average set by the European Union 

legislation (annual average limit = 40 μg/m3) (Directive 2008/50/EC).

The findings of our study show that the use of a gas cooker, ethnicity, home-outdoor NO2 levels, and 

whether the assessment of the exposure was conducted before or after Covid-19 pandemics are the main 

determinants of indoor NO2 in BiSC cohort. Previous studies have already observed higher 

concentrations of indoor NO2 in homes with gas cookers in comparison with those with an electric 

cooker and an influence of outdoor NO2 levels to indoor NO2 concentrations. One of them, was a study 

conducted in Valencia and Sabadell (Spain) with 108 pregnant women, in which it was found that 

indoor NO2 variability could be explained by the use of gas appliances (Valero et al., 2009). Similar 

results were found in another study developed in Barcelona with 54 pregnant women in which they 

observed that the type of the kitchen was the main determinant of indoor NO2 levels (Schembari et al., 

2013). These results support previous evidence in which other population groups such as children were 

evaluated (Esplugues et al., 2010). Another predictor of indoor NO2 levels found in pregnant woman 

and general population was outdoor NO2 concentrations (Valero et al., 2009; Vardoulakis et al., 2020). 

This can be explained because of the high outdoor NO2 concentrations found in urban areas, which are 

characterised by a high combustion motor vehicles volume and population density (Salonen et al., 

2019). Outdoor NO2 may enter the indoor environment through open windows but also by infiltration 

through cracks and leaks in the building (Chen and Zhao, 2011). The latter will depend on several 

building conditions such as age of the building and type and features of the windows. However, in our 

study we were not able to evaluate age of the building due to the percentage of missing values on this 

variable was higher than 30%. Moreover, due to the Covid-19, those variables related to windows 

characteristics were only available for a subset of our population. In this subset we performed the main 

model adding new variables: time inside home during the week, type of water boiler and a self-created 

variable gathering information on windows characteristics. More isolating windows (Synthetic material 

instead of wood) could be better barriers for infiltration, for instance, a previous study found that an 

increase of indoor NO2 for wood framed windows (Rivas et al., 2015), however we could not replicate 

this in our study population. 
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In relation to maternal self-reported ethnicity, higher levels were observed among non-European 

ancestry individuals. Previous studies have shown that socioeconomic status vary according to ethnic 

group. This leads to the emergence of social and economic inequalities which can be translated into 

poorer housing conditions (Braubach and Savelsberg, 2009). A recent study investigated systemic 

inequalities in indoor air pollution exposure in a city from a high-income country (London), and they 

discussed different reasons to explain why groups with a low SES are exposed to greater levels of indoor 

air pollution (Ferguson et al., 2021). They have hypothesized that 1) an inadequate housing might be 

linked to a lower capacity of dispersion of air pollutants at home and lower ventilation rates; 2) air 

infiltration rate differs and lower-income households experience higher levels of indoor air pollution 

from outdoor sources; 3) concentrations of indoor pollution from indoor sources are also higher among 

these group of population mainly because of their lifestyle (i.e., cooking practices and time of cooking) 

as well as they tend to spend more time at home. However, further studies are needed in other urban 

cities located in different geographical regions than London. Other factors that show significant 

associations in the bivariate analyses such as the use of the extractor, the location of the kitchen, the use 

of candles or incense, or maternal education, were not associated with indoor NO2 levels in the 

multivariate analyses, which might indicate that the other variables included in the LMM had a stronger 

influence on indoor levels.  

In the present study we also found that home-outdoor NO2 concentrations, home-indoor NO2 

concentrations and whether the assessment of the exposure was carried out before or after Covid-19 

pandemics are the main determinants of personal NO2 concentrations. Furthermore, we observed that 

indoor NO2 levels had a stronger influence than outdoor NO2 levels on personal NO2 levels, which goes 

in line with previous studies (Ramirez-Aguilar et al., 2011; Valero et al., 2009). This is consistent with 

the fact that people spend most of daily time indoors, and particularly pregnant women, however the 

addition of time inside home during the week was not related with personal NO2 (data not shown). One 

explanation could be that, even people spend most of their time indoors, in our study we have only 

information on home-indoor levels, and other indoor microenvironments would need to be considered. 

Other variables that were associated in the bivariate analyses with personal levels were not considered 

as we hypothesized that indoor NO2 levels were already capturing them, and we wanted to avoid over-

adjusting the model.  

The ventilation rate is known to be higher during the warm season than in the cold season, due to people 

usually having their windows opened for longer times during that period. This tendency is reported in 

our study, in which the mean of hours that the window from parent’s room or from the kitchen is opened 

for ventilation is higher at summer compared to winter. Consequently, the air exchange is higher in the 

warm season compared to the cold season which might cause a higher contribution of outdoor NO2 

concentrations to indoor and personal NO2. Furthermore, a seasonal variability can be specifically 
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observed for outdoor NO2. Therefore, because of the infiltration process, the influence of outdoor NO2 

to indoor and personal NO2 levels directly depends on the outdoor concentrations which can also differ 

across seasons (Dėdelė and Miškinytė, 2016). Hence, all our models were stratified by season. For 

indoor NO2 concentrations, a stronger influence by outdoor NO2 is observed in the warm season 

compared to the cold season which goes in line with the hypothesis that during this season ventilation 

rate is higher compared to autumn and winter. The influence of using a gas cooker is higher during the 

cold season which might be explained by the lower ventilation rates and the less dispersion of the 

pollutants generated indoor or might indicate that people tend to cook less in the warm season compared 

to the cold one. Nonetheless, similar levels of indoor NO2 are observed within both seasons, but we find 

higher personal NO2 levels in the warm season, which might indicate that less time is spend inside home 

during that period. This is also linked to the finding of the influence of indoor NO2 levels to personal 

concentrations not changing across the year, while the influence of home-outdoor NO2 levels to 

personal concentrations is stronger when evaluating the spring-summer months.  

Our study was conducted from September 2018 to February 2022; hence, half of the study was carried 

out under Covid-19 pandemics. In relation to this, we find that an increase of indoor and personal NO2 

levels occurred when evaluating measurements assessed before March 2020 compared to those 

measures obtained after March 2020. Therefore, we stratified our analyses both for season and pre- or 

post-Covid-19 situation to investigate whether the influence on indoor or personal levels of the previous 

commented determinants varied. Interestingly, our analyses show that for indoor NO2 levels the 

variability caused by outdoor levels, type of kitchen and ethnicity did not change when comparing pre- 

and post-Covid-19. However, the influence of outdoor NO2 levels during spring-summer on personal 

levels is lower in post-Covid-19 than in pre-Covid-19, contrary to indoor levels that have a higher 

influence on personal levels in post-Covid-19 than in pre-Covid-19. This could be explained because, 

levels of outdoor NO2 post-Covid-19 are lower, and people during post-Covid-19 tended to be more 

time inside home. Nonetheless, further studies are required to confirm our results.  

One of the main strengths of our study is the much larger number of NO2 measurements assessed in 

pregnant women compared to previous studies. Another strength is the fact that we measured 

simultaneously home-outdoor, home-indoor, and personal concentrations of NO2. Most of the published 

studies assessed home-outdoor exposure, however as the number of studies evaluating the adverse 

health outcomes related to environmental risk factors during pregnancy has exponentially increased, a 

more sensitive and accurate assessment of the exposure levels, including home-indoor and personal 

exposure, is needed. In addition, 1-week measurements were conducted at two different points during 

gestation (12w and 32w), which allowed us to have data on different seasons for the same individual. 

Finally, we studied indoor and personal NO2 determinants, including 1st and 3rd trimester, as we were 
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able to gather information on several factors related different dimensions such as socioeconomic status, 

maternal behaviour, and home characteristics.  

However, our results should be interpreted in the context of its limitations. First, the Covid-19 

pandemics have clearly influenced the study. We were forced to change the NO2 assessment protocols 

and the way in which we collected further information regarding socioeconomic, behaviour and home 

characterization variables through questionnaires. Consequently, we had a loss of information on 

several variables, specially from home characterization questionnaires as the fieldworkers were not able 

to enter the houses and a reduced version to collect essential data was handled to the volunteers. 

Moreover, during the complete lockdown from March 2020 to June 2020 we were not able to collect 

any NO2 measurement. Second, in the present study we assessed in the bivariate analyses the number 

of hours the volunteer reported spending indoors over a week and the total time spent going to and from 

work, as well as how she got there (i.e., walking or by car, among others), non-conclusive results were 

found. Hence, it would also be interesting to investigate the influence on personal NO2 concentrations 

of the total time spent outside home (i.e., at work or other outdoor environment) as well as the time 

spent cooking and the actual time and type spent in commuting (i.e., from specific time-activity diaries 

for the days of measurements instead of using the average commuting time reported in questionnaires 

for the full trimester of pregnancy). Third, we observed that the use of a gas cooker was a determinant 

of indoor NO2 levels, however determining which type of cooker is (i.e., propane, methane, or butane) 

could also be of interest. Finally, most of the data was collected in our study through questionnaires 

which is an easy and simple way to gather information. However, some of them were self-reported 

which can be related to different types of biases such as self-reported bias (i.e., social desirability bias 

or recall bias), measurement error bias or confirmation bias.  

CONCLUSIONS 

Overall, we conducted the largest monitoring campaign of personal and home-indoor exposure to NO2 

during pregnancy in an urban area. Our results provide a better understanding of the relationship 

between indoor and personal NO2 exposure levels, which is still scarce. For instance, the use of gas 

cooker, outdoor NO2 levels, not being of European ancestry and exposure before Covid-19 pandemics 

were related to home-indoor NO2 concentrations. Moreover, indoor, and outdoor NO2 levels, and 

exposure before Covid-19 pandemics were suggested to be predictors of personal NO2. These findings 

reinforce the importance of assessing indoor and personal air pollution exposure and their determinants 

among vulnerable groups as being exposed to this harmful pollutant can come from other sources 

besides traffic emissions. Future research evaluating the chemical composition of other pollutants and 

their toxicity, as well as the influence of Covid-19 pandemics to air pollution levels and lifestyle among 

pregnant women are needed.  
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6. DISCUSSION

In this Thesis, we investigated the effect of several environmental 

factors on child molecular traits using data from longitudinal birth 

cohorts. We have presented and discussed the results of the different 

studies in the Chapter 5 of this Thesis. The Chapter 6 aims to provide 

a summary of the main findings and the contribution to the current 

evidence in the field, a general discussion of the methodological 

considerations of the study, including the exposure assessment, the 

biological functions, the study design, and some statistical 

considerations, and it also comprises different suggestions for future 

research, and the implications for public health.  

6.1 Main findings and contribution to evidence 

In concordance to the different objectives proposed in the present 

Thesis, the studies carried out have contributed to the understanding 

of: 1) the influence of early life exposome on epigenetic age 

acceleration in children, 2) the influence of ambient NO2 and PM2.5 

exposure and active maternal tobacco smoking during pregnancy on 

placental epigenetic age acceleration, 3) the effects of ambient NO2, 

PM10 and PM2.5 exposure during childhood on blood plasmatic 

proteins and blood pressure, and 4) the indoor and personal NO2 

determinants during pregnancy in the new BiSC cohort.  
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6.1.1 Influence of environmental exposures on biological 

aging         

 

The study presented in paper I, is one of the first to evaluate the link 

between a wide range of pregnancy and childhood environmental 

exposures and epigenetic age acceleration in children. We observed 

a positive association between maternal tobacco smoking during 

pregnancy and exposure to parental smoke in childhood and 

epigenetic age acceleration. In addition, a positive association was 

found between childhood indoor PMabs and epigenetic age 

acceleration. Finally, a relationship was observed between higher 

DMDTP and PCB exposure and decreased age acceleration.  

 

Our results of the effect of maternal smoking during pregnancy and 

parental tobacco smoking during childhood on increased accelerated 

epigenetic age were in line with previous evidence in children (Javed 

et al., 2016; Simpkin et al., 2016; Wu et al., 2019b; Yang et al., 2019). 

Equivalently, active smoking in adult and elderly populations was 

also linked to an increased epigenetic age acceleration (Yang et al., 

2019). In our study we also observed that SHS was associated with 

increased age acceleration in children. However, this association may 

have been partly confounded by the exposure during the pregnancy 

period, as when adjusting the model for maternal smoking during 

pregnancy the association was attenuated. Additional support to this 

is the fact that pregnancy active smoking implies a higher dose than 

childhood passive smoking and that smoking effects on blood DNAm 

are known to be persistent (Vives-Usano et al., 2020). We also 
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studied the dose dependent effect of tobacco smoke during pregnancy 

and childhood, and we observed that a longer duration or a higher 

dose of the exposure increased the estimates, which is consistent with 

previous evidence linked to other health outcomes (Vives-Usano et 

al., 2020; Zhuge et al., 2020).  

 

As far as we know there are no studies of the indoor PMabs effects on 

epigenetic age in children, thus we were not able to compare the 

positive association observed between epigenetic age acceleration 

and childhood indoor PMabs as a proxy of elemental/black carbon (EC 

or BC). However, two longitudinal studies conducted in adults, found 

that outdoor BC and ambient PM2.5 were associated to increased age 

acceleration (Nwanaji-Enwerem et al., 2016; Ward-Caviness et al., 

2016). We knew that tobacco smoking can be one of the sources of 

indoor PM, however, the association observed in our study did not 

change after adjusting the models for childhood SHS based on 

parental smoking, which implies that other sources of PM were 

involved.  

 

Besides the associations observed with air pollution and tobacco 

smoke, we also found that a higher exposure to DMDTP and PCB-

138 was associated with decreased age acceleration, despite both 

exposures are considered as risk factors for human health. On one 

side, we hypothesized that DMDTP exposure was related to 

fruit/vegetable intake, which could be a protective exposure. We 

tested the association between levels of a urinary metabolite called 

hippurate, which is a marker of fruits and vegetables consumption, 
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and epigenetic age acceleration to determine if the association found 

between DMDTP and epigenetic age acceleration was explained by 

a higher intake of fruit and vegetables. However, no significant 

results were obtained although the hippurate levels where higher in 

those children with DMDTP over the limit of detection. On the other 

side, we hypothesized that the association observed for PCBs was 

capturing the relationship between epigenetic age acceleration and 

BMI. PCBs are highly lipophilic and are stored in fat tissues 

(Domazet et al., 2020). When we additionally adjusted the models for 

child BMI the association was largely attenuated. Based on 

beforementioned, further investigation is needed to elucidate the role 

of DMDTP as a proxy of fruit and vegetables intake, and future 

studies should consider separately BMI and adipose tissue in the 

association models.  

 

Due to the findings of the first paper, we decided to further evaluate 

the association between active maternal tobacco smoking and 

ambient air pollution exposure during pregnancy and placental age 

acceleration, as indoor exposure was not available in INMA cohort. 

However, we did not obtain any statistically significant associations. 

Placental epigenetic age was estimated using the CPC developed by 

Lee et al., 2019. To our knowledge this study was the first one to 

evaluate this association, and due to the lack of studies we were not 

able to compare our null results with others. Only one study evaluated 

residential NOx exposure during 1st trimester of pregnancy and 

placental aging. They observed that early exposure to high levels of 
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NOx in women with preeclampsia was associated with placental 

epigenetic aging (Domazet et al., 2020).  

 

Overall, we conducted a screening of the association of the early life 

environmental exposures with biological aging in two tissues (blood 

and placenta) calculated using epigenetic clocks in two highly 

vulnerable periods throughout life: in utero and childhood.  

 

6.1.2 Influence of environmental exposures on inflammation      

  

In paper III, we undertook one of the first studies that simultaneously 

evaluated the associations between several time windows (including 

1-day, 1-week, and 1-year) of different air pollutants and levels of 

various cytokines, apolipoproteins, adipokines and growth factors in 

children. Moreover, we studied their relationship with blood pressure 

(BP). In our study we found that higher levels of 1-week exposure to 

NO2, PM2.5 and PM10 both at school and at home were associated 

with higher levels of hepatocyte growth factor (HGF). Another 

positive relationship was observed between 1-week PM10 exposure 

and levels of interleukin 8 (IL8). Levels of 1-week NO2 exposure 

were also linked to higher SBP, and the statistical mediation analyses 

suggested that HGF might be implicated within this relationship.  

 

On one side, IL8 is a pro-inflammatory factor that can be produced 

by a wide range of cells such as macrophages, epithelial, endothelial 

or lymphocytes in response to inflammation (Benakanakere et al., 
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2016). It is involved in mitogenesis, inhibition of angiogenesis, 

chemotaxis, neutrophil degranulation, calcium homeostasis and 

leukocyte activation (Brennan and Zheng, 2007). In line with our 

study, previous evidence has found a positive association between 

IL8 levels and PM. Two studies in adults observed increased levels 

of IL8 among other proteins (MCP1, TNF- and IL6) in relation to 

short-term exposure to PM2.5 (Pope et al., 2016; Zhang et al., 2020). 

Another study found that children living in a region with higher air 

pollution levels had higher levels of salivary IL8 (Mehrbani et al., 

2016). Furthermore, increased IL8 concentrations in primary human 

bronchial epithelial cells were detected after 24h of exposure to PM10 

(Mehrbani et al., 2016). Moreover, IL8 gene expression is  increased 

in macrophages located in the pulmonary alveoli in response to air 

pollution exposure (Drumm et al., 1999). Finally, an elevated 

expression of this cytokine has been previously related to 

hypertension (Martynowicz et al., 2014), and chronic obstructive 

pulmonary disease (Gilowska, 2014).   

On the other side, levels of HGF were associated with short-term 

exposure to NO2, PM10 and PM2.5. When adjusting the models for 

other covariates results did not change and were consistent across 

cohorts, which suggests a robust association. Scarce evidence has 

been published on the influence of air pollution on HGF levels. One 

study found a positive association between short-term exposure to 

NO2 and HGF in adult population (Dadvand et al., 2014), and another 

one did not find any association with PM2.5 (Riggs et al., 2020).  HGF, 

is not considered a canonical inflammatory marker, however, 
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recently it has been seen that is involved in different functions such 

as anti-inflammation or anti-apoptosis in vascular endothelial cells, 

myocardial cells, and other types of cells (Naito et al., 2018). 

Moreover, it is known to be involved in the HGF/c-Met signalling 

axis  that regulates proliferation, differentiation, survival and 

mitogenesis of endothelial cells which are linked to the reparation of 

tissues in different organs such as heart (Neuss et al., 2004; Oliveira 

et al., 2018). Previous evidence has shown a possible relationship 

between HGF and BP. The mediation analyses found that 19% of the 

effect of air pollution on SBP could be explained through HGF levels. 

Nonetheless our results need to be interpreted cautiously as the 

direction for the association is still uncertain. In vitro models suggest 

that HGF could be a downstream product of increased blood pressure 

to counteract the endothelial damage caused by hypertension 

(Nakamura et al., 1996; Shimizu et al., 2016) Consequently, further 

studies are needed to elucidate the causal connection between HGF 

and BP within air pollution exposure.  

 

Finally, only two out of the thirty-six proteins showed statistically 

significant associations. However, previous literature relates short- 

and medium-term exposure to air pollution to increased levels of 

CRP, plasminogen activator inhibitor-1 (PAI1), TNF-, IL6 and 

IL10. A meta-analysis of 40 studies carried out in adults confirmed 

higher levels of circulating CRP and, long- and short-term exposure 

to PM2.5 and PM10 (Liu et al., 2019). Moreover, long-term exposure 

to traffic related pollutants during first year of life was related to high 

levels of IL6 and IL10 measured at 8 years old (Gruzieva et al., 
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2017a). The lack of replication of these associations in our study 

could have different explanations, which are extensively developed 

in section 6.2 and 6.3, where we discuss the limitations of the present 

Thesis.  

 

Overall, our study provides further evidence that especially short-

term exposure to air pollution could increase levels of SBP and of the 

circulating proteins, IL8 and HGF. The direct causation between 

HGF and higher BP in the context of air pollution needs further 

investigation, but our findings reinforce the adverse cardiovascular 

effects of air pollution in children. Importantly, higher BP during first 

years of life can impact on health across the lifespan.  

 

6.1.3 Determinants of home-indoor and personal NO2 

concentrations during pregnancy 

 

To the best of our knowledge, paper IV comprises the largest 

monitoring campaign conducted in an urban area of personal, home-

indoor, and home-outdoor NO2 levels in pregnant women within the 

framework of the BiSC cohort. Previous studies included limited 

samples sizes which ranged from 50 to 108 pregnant women 

(Nethery et al., 2008; Schembari et al., 2013; Valero et al., 2009), in 

comparison to our study population that included 919 individuals and 

4646 samples of NO2 (including personal, home-indoor and home-

outdoor).  
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Although not directly comparable due to different averaging periods, 

in our study, personal, indoor and outdoor weekly average levels 

were higher than the guideline limits established by the WHO (24-

hours average limit = 24 μg/m3) (World Health Organization, 2021b) 

and below the annual mean average which is set by the European 

Union legislation (annual average limit = 40 μg/m3) (Directive 

2008/50/EC). In consistence with previous studies, higher 

correlations were observed between personal and indoor 

concentrations than with ambient levels at home, which goes in line 

with the fact that people tend to spend most of their daily time at 

home and other indoor environments. We evaluated the determinants 

of home-indoor and personal NO2 levels during pregnancy in BiSC 

cohort. The former was linked to the use of gas cooker, ethnicity, 

home-outdoor NO2 and whether the assessment of the exposure was 

conducted before or after Covid-19 pandemics, and the latter was 

mainly related to home-outdoor and -indoor NO2 concentrations, and 

consequently to all their determinants.  

In regard to indoor NO2 levels, our results are in line with those 

reported in previous studies including pregnant women in which the 

authors have observed higher indoor NO2 concentrations in those 

homes with gas cookers compared to those with an electric cooker 

(Valero et al., 2009). This is also consistent with other evidence 

published considering pregnant women or other population groups 

such as children (Esplugues et al., 2010; Schembari et al., 2013). 

Outdoor NO2 concentrations were also considered as a predictor 

variable of indoor NO2 levels, which is consistent with other studies 
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(Valero et al., 2009; Vardoulakis et al., 2020). This could be 

explained because outdoor NO2 can enter the indoor environment 

through ventilation and infiltration, which are related to the number 

of hours that windows are open and housing characteristics such as 

the type or features of windows. However, in our study we did not 

find any significant association between the number of hours that 

participant’s windows were open or windows characteristics. 

Maternal self-reported ethnicity was also linked to indoor levels, we 

found that individuals with a non-European ancestry were exposed to 

higher concentrations of NO2. SES can vary among ethnic groups, 

causing social and economic inequality, which can be translated to 

poorer housing conditions. Several reasons have been proposed for 

explaining why low SES groups are exposed to greater levels of 

indoor air pollution (i.e., inadequate housing implies less dispersion 

and ventilation of air pollutants, a higher infiltration rate may occur 

and more outdoor NO2 can enter or higher emissions from indoor 

sources mainly due to their lifestyle) (Ferguson et al., 2021). Finally, 

other variables such as the use of the extractor, location of the kitchen 

or maternal education seemed to have less influence on indoor levels. 

In relation to personal levels, only few studies have evaluated this 

exposure and investigated its determinants (Ramirez-Aguilar et al., 

2011; Valero et al., 2009). In our study, we found that indoor NO2 

levels had a stronger influence on personal NO2 concentrations 

compared to outdoor NO2. This is consistent with other studies, and 

with the fact that people tend to spend most of their daily time in 

indoor environments. However, we did not find any association 
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between time spend inside home during the week and personal NO2. 

In future studies, it would be of interest to also consider data of other 

indoor microenvironments besides home. Apart from home-indoor 

and -outdoor NO2 levels, in the bivariate analyses other variables 

showed an association with personal NO2 levels, however we 

hypothesized that indoor NO2 was already capturing them, and we 

wanted to avoid over-adjusting our models. 

On one hand, the ventilation rate differs between the warm and the 

cold season, and the levels of outdoor NO2 are subjected to a seasonal 

variability. Consequently, all our models were stratified by season. 

Similar levels of indoor NO2 were observed within both seasons, but 

slightly higher levels of personal NO2 were found in the warm season, 

indicating that participants could be spending less time inside home 

during that period. In addition, the influence of indoor NO2 to 

personal concentrations did not differ across the year, however the 

influence of home-outdoor NO2 levels was stronger when 

considering the warm season. On the other hand, we found higher 

levels of home-indoor and personal NO2 levels when the 

measurement was obtained before March 2020 compared to those 

values obtained after March 2020, which is the beginning of the 

Covid-19 pandemics. Therefore, as a sensitivity analyses, models 

were also stratified by pre- or post-Covid-19. Our findings showed 

that for indoor NO2 levels the influence of outdoor NO2, type of 

kitchen and ethnicity did not change between pre- and post-Covid-

19. However, when evaluating personal NO2, the influence of

outdoor levels on personal concentrations was lower in post-Covid-
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19 than in pre-Covid-19 during the warm season, which was contrary 

to indoor levels that had a stronger influence during post-Covid-19 

than in pre-Covid-19. Further studies are required to confirm our 

results; however, we have hypothesized that one explanation could 

be that outdoor NO2 concentrations during post-Covid-19 are lower, 

and that people during this period also tends to spend more time 

inside home.  

Overall, our findings highlight the importance of assessing home-

indoor and personal levels of air pollution among vulnerable groups 

such as pregnant women in urban areas. Moreover, studying its 

determinants provides a better understanding on those indoor sources 

which are less known. Future studies would need to focus on the 

chemical composition of other pollutants, and study in more depth 

the influence of Covid-19 pandemics.  

6.2 Exposure assessment 

6.2.1 Early-life exposome 

In paper I, a detailed and comprehensive assessment of the early-life 

exposome in six cohorts across Europe was evaluated. We were able 

to assess a wide range of environmental exposures in a relatively 

large sample size in two different periods of time considered as 

vulnerability windows for children’s development, which are 

pregnancy and childhood. Different methods were used to assess 

each environmental exposure, with their specific strengths and 
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limitations. Consequently, we cannot directly contrast the effect sizes 

and significance levels, and thus results should be interpreted 

cautiously. Furthermore, following standardized protocols should be 

a priority in future research to be able to compare the results within 

cohorts and previous published evidence. Moreover, in those 

epidemiological studies investigating the exposome, an improvement 

of the exposure assessment is required. To achieve that, we suggest 

using more sensitive and precise GIS tools complemented with data 

from personal sensors and behaviour information. Additionally, 

considering more high-throughput metabolomics would improve the 

measurement of toxic chemicals.  

6.2.2 Air pollution exposure during pregnancy and childhood 

In this Thesis, ambient, indoor, and personal air pollution exposure 

were assessed during pregnancy or childhood.  

Regards to ambient air pollution, different outdoor atmospheric 

pollutants were estimated based on LUR models developed within 

the framework of the ESCAPE project. All these models were 

temporally adjusted to measurements made in local background 

monitoring stations, which limited measurement error. The final 

estimates of each air pollutant were assigned to each individual of the 

cohort based on residential (Paper I, II and III) and school geocoded 

addresses (Paper III). The exposure estimated through the whole 

period of pregnancy and childhood was used as the main exposure in 
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paper I and II. However, in paper III different time windows of 

exposure during childhood were also obtained for the evaluated air 

pollutants by averaging them over 1-day, 1-week, and 1-year before 

the clinical and molecular assessment. Nonetheless, results when 

evaluating these windows of exposure did not change from the main 

analyses. For effective interventions in public health, calculating 

different time windows is essential to evaluate whether there are any 

differences on the effect depending on the length of exposure and on 

the specific time in which the individual was exposed. Nevertheless, 

due to the low within-subject variability observed in our study we 

were not able to clearly identify which were the most sensitive 

windows of exposure because high correlations were found between 

1-day and 1-week exposures.  

 

Despite the strengths mentioned above, there also some limitations. 

First, most of the exposures were assessed as the mean levels of 

exposure during the whole pregnancy and childhood period which 

was estimated at the residential address of the mothers and the 

offspring. However, the exposure to other microenvironments such 

as workplace, school, indoor environments, or during commuting 

was not considered, hence we might not capture the real exposure of 

the mother and their offspring during the period of interest. The 

individual exposure in urban areas is the result of a dynamic process 

between the individual’s behaviour and urban air, therefore the 

quantifying and assessment process is complex. Consequently, 

conducting large-scale population-based studies collecting 

information through sensors related to personal monitoring exposure, 
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indoor exposure at home or school, exposure in other 

microenvironments or during commuting routes as well as time spent 

indoors are needed to provide a more accurate and precise exposure 

assessment. Furthermore, gathering data on physical activity 

behaviour could help to better understand the impact of air pollution 

in health in urban environments. Previous studies have found that in 

highly polluted locations, air pollution could negate the beneficial 

effects of physical activity (Li et al., 2015; Si and Cardinal, 2017), 

and that active travel increases the intake of air pollution which can 

trigger to negative health consequences (Tainio et al., 2021). Second, 

we need to consider that the sources of the different air pollutants are 

unknown in our studies, and they might be different across cohorts. 

Third, we were not able to identify the chemical compounds of PM, 

that might be more important to evaluate rather than the overall 

concentration of PM to which the individuals are exposed. Finally, in 

our study we found stronger associations within one-week exposure 

which might imply acute effects of air pollution on the evaluated 

traits. However, our exposure assessment of 1-year average 

exposures to air pollution did not collect information on peaks of air 

pollution during that year, and those peaks could be the main 

contributors to the increased levels of proteins or BP measurements. 

Determining whether air pollution peaks are more harmful than 

annual levels may be important for public health, as it can help to 

target prevention campaigns directly when such peaks exist.  

In HELIX subcohort, indoor PMabs exposure during childhood was 

also evaluated. It was estimated through a prediction model trained 
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in a subgroup (n=157) of children using home personal 

measurements and questionnaire data about indoor sources such as 

cooking, heating, cleaning, and ventilation. A more comprehensive 

assessment of home- outdoor, home-indoor, and personal exposure 

to NO2 during pregnancy was carried out within the framework of the 

BiSC cohort in paper IV. Measurements were done during one week 

at first trimester and third trimester with an environmental passive 

dosimeter. The dosimeter was placed in the participant’s room 

(indoor), in the most exposed façade (outdoor) and it was worn by 

the participant in a necklace or attached to the backpack (personal). 

All measurements were done simultaneously and at two different 

points during gestation, which allowed us to have data on different 

seasons from the same individual. Moreover, throughout 

questionnaires several data on different dimensions such as SES, 

maternal behaviour and home characteristics was collected, and we 

could investigate if they were determinants of indoor and personal 

NO2 levels. Our study is one of the largest assessing home-indoor and 

personal NO2 concentrations in pregnant women. However, some 

limitations need to be mentioned. First, because of the Covid-19 

pandemic, the assessment protocol was modified as fieldworkers 

could not enter to the participants’ home and the tubes had to be 

installed by the participants. Furthermore, during that period a short 

questionnaire to collect essential data was handled to the participants, 

and we loss information on several variables mainly related to home 

characterization. Second, we did not collect information on the type 

of gas cooker (i.e., propane, methane, or butane), the number of hours 

that they spent cooking weekly, the total time spent outside home as 



151 

well as the actual time and type spent in commuting, which could be 

of interest for future studies. Finally, we assessed only NO2, which is 

one of the pollutants found in urban areas, however, other pollutants 

with a higher toxicity need to be considered.  

Overall, future studies, would need to measure concentrations of the 

different chemical compounds found in PM, develop techniques to 

clarify the possible sources of each pollutant, investigate the 

determinants of indoor and personal exposure in different settings 

and across cohorts, and evaluate peaks of air pollution.   

6.2.3 Exposure to tobacco smoke 

Active maternal smoking during pregnancy and childhood SHS was 

assessed based on self-reported questionnaire data during one or 

several times in pregnancy and childhood. This is a relatively simple, 

easy, and less expensive way to collect data from a large population 

sample. However, it is accompanied by different types of biases such 

as self-reported bias (i.e., social desirability bias or recall bias), 

measurement error bias or confirmation bias. To reduce exposure 

misclassification, future studies might also evaluate maternal 

smoking based on biomarkers of exposure such as cotinine, which is 

a metabolite of nicotine that can be measured in urine, saliva, and 

plasma samples. However, this metabolite only accounts for short 

term exposure to smoking as its average half-life ranges from 16 to 

19 hours and it is mainly used to quantify recent smoking exposure 
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(Fernandes et al., 2020). Thus, repeated measurements during 

pregnancy, at least at 1st and 3rd trimester, should be taken for an 

accurate assessment. Another possibility would be to predict 

pregnancy exposure to tobacco smoke through an epigenetic score 

based on DNAm data (Rauschert et al., 2020).  

 

6.3 Biological functions 

 

The present Thesis mainly focuses on two biological pathways 

common to several environmental exposures, including smoke and 

air pollution, which are aging and inflammation. In the following 

section we comment on methodological considerations and future 

directions within this field.  

 

6.3.1 Blood and placental epigenetic clocks as markers of 

aging 

 
In paper I and II, biological aging was calculated through different 

epigenetic clocks using DNAm data measured in blood or placental 

samples with the methlyclock R package.  

 

On one side, blood epigenetic age was estimated in HELIX children 

(mean age = 8.1 years) using four different clocks: Horvath’s All 

Tissue clock, Horvath’s skin and Blood clock, the Paediatric-Buccal-

epigenetics’ (PedBE) clock and Wu’s methylation-based age 

prediction model (Horvath, 2013; Horvath et al., 2018; McEwen et 
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al., 2020; Wu et al., 2019a),  but the main analyses was conducted 

with the Horvath’s Skin and Blood clock as showed the strongest 

correlation with chronological age. The Horvath’s Skin and Blood 

epigenetic clock assessed was trained using samples with a wide 

range of ages, thus, we need to be aware that it was not specific for 

children. The only epigenetic clock covering children’s age range (0-

20 years) was trained on buccal epithelial cells, and its correlation 

with chronological age in our study was lower compared to the other 

clocks. Hence, it seems that clocks are less portable across tissues 

than across age ranges. It could be of interest the development of an 

improved epigenetic clock for children based on blood cells to 

decrease measurement error. 

On the other side, placental epigenetic age and age acceleration were 

calculated in the INMA study using four different clocks: Mayne’s 

clock, RPC, CPC and refRPC (Lee et al., 2019; Mayne et al., 2017). 

However, we conducted the main analyses with CPC developed by 

Lee et al., 2019 as it showed the strongest correlation with gestational 

age in our sample. This clock was trained on placental samples that 

were designated as “control” and without placental pathologies such 

as gestational diabetes or preeclampsia. While blood clocks have 

already been used in epidemiological studies and there is existing 

literature on them, there are no studies on placental epigenetic age for 

comparison.  

While the tobacco smoke and indoor air pollution was related to 

epigenetic age in blood, we did not find any effect in placenta. This 
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discrepancy has different potential explanations. First, the study in 

placenta had lower statistical power than the study in blood (379 

placentas vs. 1,173 samples for blood). Second, the accuracy of the 

clocks might be different due to the training sets used to develop both. 

Thus, development of new and more accurate clocks for placenta 

based on larger samples might be necessary. Third, aging is a 

multifactorial and complex process that is related to different 

biological mechanisms which might differ across organs and life 

stages (López-Otín et al., 2013). Hence, each clock in each tissue 

might be capturing one of these specific aging processes. Indeed, we 

found that genes annotated to the CpGs included in the placental 

epigenetic clock were related to processes such as development and 

neuronal process, whereas CpGs of the epigenetic clock in blood 

were linked to genes enriched for cell cycle and apoptosis, 

detoxification, and immune response. In this line, a recent study 

observed that epigenetic gestational age of the same individual 

differed depending on the tissue that was used to estimate it: Lee’s 

clock for placenta and another clock known as Bohlin’s for cord 

blood (Bohlin et al., 2016). Hence epigenetic age might be specific-

tissue characteristic more than a general characteristic of the 

individual (Dieckmann et al., 2021). Finally, although both placenta 

and blood are heterogenous in terms of their cell types, blood can be 

homogenized before obtaining DNAm thus getting a good 

representation of it, while for placenta obtaining identical biopsies 

across samples is quite difficult. Therefore, the disparity between 

placenta training samples and the testing samples in terms of cell 

composition might explain the lower performance of this clock. 
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Moreover, placenta shows a higher variation in cell composition 

during gestation in comparison to blood. We think that the location 

of the placental biopsy collection is critical and difficult to 

harmonize, thus, we are a bit reluctant that placental clocks will be as 

powerful as blood clocks. In our study the correlation between 

Horvath’s Skin and Blood clock and chronological age was 0.85, and 

between CPC and gestational age was 0.57.  Similarly, estimation of 

chronological gestational age, even if assessed through last menstrual 

period and ultrasounds, is less accurate than postnatal life 

chronological age.  

Overall, an improvement of future studies using epigenetic clocks 

might address the following key points. First, the actual epigenetic 

clocks are mainly based on DNAm data which reflect the average in 

different populations of cells within the tissue. In our study we have 

evaluated epigenetic age acceleration adjusted and non-adjusted for 

cell type proportions and results did not differ, however, further 

investigation is required in relation to the known cell-to-cell 

heterogeneity. Second, it has been observed that the tissues within an 

individual can age at different relative rates, therefore the 

development of tissue specific epigenetic clocks might provide more 

accurate information. However, in the epidemiological field the 

access to tissues other than blood or placenta is quite limited. 

Therefore, when evaluating aging through epigenetic clocks, we 

might need to consider multi-tissue epigenetic clocks or if using 

tissue-specific clocks we need to clarify that the aging process is 

investigated in that tissue. Third, the epigenetic clocks are trained on 
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chronological age, and they show a high accuracy at predicting age, 

thus they might not be ideal for measuring biological age 

acceleration. In relation to this, a new era of biological clocks based 

on DNAm has appeared. One of them is PhenoAge, that to predict 

chronological age uses blood DNAm plus information on nine 

markers related to tissue function and immune function (Levine et 

al., 2018). Forth, more studies focusing on a better understanding of 

the biological mechanisms captured by epigenetic clocks are 

essential (Field et al., 2018). Finally, it would be advisable in future 

studies to investigate in the same population several markers of aging 

(i.e., epigenetic age and telomere length) as they capture different 

aspects of the aging process.  

 

6.3.2 Plasmatic protein levels as markers of inflammation 

 
In paper III, we assessed plasmatic levels of a total of 36 proteins of 

the 1,170 individuals of the HELIX subcohort. During the clinical 

examination of the HELIX children follow-up, blood samples were 

collected. Afterwards, plasma samples were analysed to quantify 

levels of various cytokines, apolipoproteins, adipokines and other 

proteins such as growth factors. Previous epidemiological studies 

have focused on a few specific proteins such as interleukins, CRP, or 

adipokines. Therefore, one of the strengths of our study was the 

evaluation of multiple proteins.   

 

The collection of blood samples and the analyses of protein levels 

was conducted following harmonized protocols across the six 
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cohorts, which implies less measurement error. To quantify protein 

levels, we used the Luminex technique. This technique is a bead-

based immunoassay that allows to detect up to 100 analytes 

simultaneously and is based on the detection of antibodies through 

fluorescence. However, we are aware that in the end only 36 proteins 

could be evaluated in our study, which is still limited if you consider 

all the circulating proteins that can be found in the human body. At 

the beginning of our study, a set of 43 proteins were chosen based on 

the literature and the Luminex kits commercially available. A total of 

three kits were selected which assessed a total of 50 measurements 

that represented 43 unique proteins, as 7 proteins were repeated 

between two kits. The protein measurements obtained were subjected 

to a quality control process. However, protein quantification methods 

with less measurement error and higher throughput are needed such 

as Olink, which is based on a multiplex immunoassay-PCR that 

increases the number of proteins per assay and its sensitivity.  

Additionally, the proteome is known to be complex and dynamic, 

therefore we need to interpret our results cautiously as the 

measurement of the protein levels at one particular time point can 

result in poor replicability of the results (Guo et al., 2021). 

Longitudinal studies could be the best approach to determine if the 

association between air pollution exposure and inflammation 

biomarkers is causal. Measuring plasmatic protein levels in different 

follow-ups could provide more accurate information regarding the 

influence of the short-, medium- and long- term exposure to 

environmental risk factors and would help to elucidate if the effects 
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on health are acute or chronic. Besides inflammatory proteins, studies 

could be complemented with other biomarkers of the chronic 

inflammation  such as mitochondrial DNA content (Knez et al., 2017) 

Finally, most of the previous evidence was carried out in adults while 

we studied children, in which the inflammatory response to the 

environmental factors might differ and be lower compared to adults. 

However, evaluating children’s response might be relevant to prevent 

early life consequences of systemic inflammation.  

To conclude with, future studies should extend their investigations to 

other biological processes, besides inflammation and aging, that may 

also be sensitive to environmental exposures. Those studies should 

also assess the mediating role of these biological process within the 

association between the exposure and the occurrence of adverse 

health outcomes.  

6.4 Study design and statistical considerations 

6.4.1 Study design and causality 

The four studies presented in this Thesis were based on prospective 

population-based birth cohorts. Longitudinal cohorts are considered 

as one of the most powerful observational designs because of their 

prospective nature. This design helps to establish causal relationships 

between potential risk factors during pregnancy or early life, and 

adverse health outcomes in childhood or later life. However, this 

design has some limitations. Firstly, creating and establishing a birth 
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cohort is costly and time-consuming, which implies that the sample 

size of the cohorts is usually not very large compared to cross-

sectional designs. Future research within this field should be directed, 

in the first instance, to encourage collaboration between cohorts to 

pool information and resources to achieve studies with larger 

population samples from which even small effects can be identified. 

Secondly, some of the information related to covariates, outcomes 

and in some cases to exposure variables is collected via 

questionnaires, which might imply self-reported bias (i.e., social 

desirability bias or recall bias), measurement error bias or 

confirmation bias. In consequence, new techniques should be 

addressed to reduce biases in the collection of self-reported data.  

Finally, birth cohorts are exposed to the risk of the loss of subjects to 

follow-up leading to possible selection bias and a reduced statistical 

power of the study over time. Therefore, the promotion and care of 

individuals involved in the cohort is essential to ensure that losses 

through follow-ups are kept to a minimum.  

 

In the present Thesis, we must consider that although our studies 

were based on birth cohorts, papers I (childhood exposome), II and 

III were cross-sectional epidemiological studies. Therefore, we 

studied the exposure and the outcome of the individuals at one 

specific point of time, very closely to the molecular and clinical 

assessment. Thus, further longitudinal studies are required assessing 

the associations observed through this Thesis to elucidate the 

possible causal link between the exposure and the outcome. 
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6.4.2 ExWAS approach, confounding, and multiple testing 

In paper I, to assess the association between the environmental 

exposures and health outcome an ExWas was conducted. The 

ExWAS is a single exposure approach which allows to evaluate the 

association between different outcomes and many environmental 

exposures successively and independently. In paper I we did this 

through the rexposome package in the R software. Although, the 

ExWAS enables to present results for many different exposures at 

once, this approach is limited in terms of confounding and multiple 

testing correction.  

First, when conducting an ExWAS all the models are adjusted for the 

same set of confounders, which is not ideal, as depending on the 

exposure we might consider different variables as confounders. In 

epidemiological studies, the existence of other factors that can be 

associated with the exposure and with the outcome can alter the 

observed association. They are known as confounder variables and 

its effect can be limited to some extent adjusting the statistical models 

for these potential confounders. In our analyses, we have adjusted our 

models for a set of variables related to socio-economic factors 

besides other covariates such as sex, cohort, age, or ethnicity. 

However, we acknowledge that residual confounding might still be 

present. 
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Second, given the large number of exposures embedded in the 

exposome we need to correct for multiple comparison to limit false 

positive results. Hence, an adaptation of the Bonferroni procedure 

was applied. This adaptation was done because the Bonferroni 

procedure assumes that the exposures are independent, and this 

assumption is questionable in the exposome context (Santos et al., 

2020).  

 

Third, the correlation structure of the exposome makes difficult to 

identify the causal relationship. For instance, in our study as we found 

that maternal tobacco smoke during pregnancy and childhood 

parental smoking were both related to the outcome response, we run 

mutually adjusted models to disentangle the effect between both 

exposures. The effect estimates in both cases were slightly smaller. 

Furthermore, in relation to the other significant association with 

indoor PMabs, to ensure that the association was not confounded by 

parental smoking behaviour or maternal smoking during pregnancy, 

we further adjusted the model for each of these variables, and no 

differences in the estimate coefficients were found, which suggested 

independent effects. Within the context of the exposome, other 

statistical approaches could be interesting to apply in future studies 

to select a subset of exposure variables such as the deletion-

substitution-addition (DSA) algorithm, the elastic net (ENET), the 

graphical unit evolutionary stochastic search (GUESS) algorithm 

(Santos et al., 2020) or the Bayesian kernel machine regression 

(BKMR) (Bobb et al., 2018). However, it is still under debate which 
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is the more accurate strategy to study the estimated effects of the 

exposome in relation to health.  

 

6.4.3 Mediation  

 

Mediation models are constructed to identify whether a variable 

known as a mediator can explain partially or totally an observed 

association between an exposure and an outcome. In paper III, a 

mediation study was conducted to determine if protein levels of HGF, 

that were related to higher exposure to air pollution, were somehow 

mediating the association between air pollution and SBP. Although 

we found the potential effect by HGF, however, due to the cross-

sectional nature of our study we were not able to prove the causal 

directionality of the relationship. Future research using in vitro or in 

vivo models, interventions or Mendelian randomization should be 

applied to disentangle this, and indeed environmental 

epidemiologists should work closely with molecular biologists and 

toxicologists to address causality. 

 

6.4.4 Heterogeneity and representativeness  

 

This Thesis has used data from different cohorts. Studying distinct 

populations that are living in different geographical zones, belonging 

to different cultures and settings, allowed us to capture how the 

exposure levels, the outcomes, and the background population 

characteristics diverge across regions. To identify common effects 
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across population we conducted a pooled analyses adjusted by 

cohort. Then, we checked heterogeneity across cohorts by carrying 

out cohort-by-cohort analyses for the statistically significant 

associations found in paper I and III. In general, for the main findings 

no significant differences were found among cohorts.  

 

Another point to consider is representativeness. Although the cohorts 

are population-based, we must be aware that they do not represent 

the wider population, as usually vulnerable groups (i.e., ethnic 

minorities or lower SES) are underrepresented. Consequently, 

depending on how representative our sample is of the general 

population, the results may or may not be generalized. Further 

investigations considering other settings, involving rural and urban 

populations, promoting the participation of vulnerable groups, and 

stimulating research on low- and middle-income countries are 

needed.  

 

6.4.5 Publication bias and replication studies 

 

To avoid selective reporting bias, we have reported all the estimates 

without selecting them based on their nature or direction, even null 

results were shown. Publishing them supplies all the information 

obtained through the study, and this can be useful for other 

researchers when planning and conducting other investigations as it 

can avoid a waste of resources and time.  
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Finally, the replication of the different studies conducted within this 

Thesis in other birth population-based cohorts is necessary to provide 

robust knowledge. Especially the study conducted in placenta as the 

outcomes assessed have not yet been widely used and our sample size 

was smaller.  

6.5 Implications for public health 

Living in safe, healthy, and sustainable environments is recognized 

as a human right since 2021 by the United Nations Human Rights 

Council.  Consequently, ensuring the existence of such environments 

for the entire population should be a top public health priority. Public 

health is based on the promotion and protection of health, as well as 

the prevention of diseases or adverse health effects. Therefore, one 

of the prevention strategies that need to be implemented and 

defended is the reduction of the levels of exposure to certain 

environmental factors which are already known to be risk factors. 

Consequently, increasing evidence on the influence of these risk 

factors on human health is also enforced.  

In the present Thesis we have focused on two environmental 

exposures which are already widely accepted as global public health 

problems, air pollution and tobacco smoke exposure mainly during 

pregnancy. On one side, 99% of the population is breathing polluted 

air. On the other side, maternal smoking during pregnancy is still 

high: the estimated prevalence of smoking during pregnancy was 

found to be 8.1% in Europe (Lange et al., 2018). Besides these two 
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exposures, we also analysed the early life exposome, which includes 

many factors related with urban life, such as green spaces or air 

pollution. Data obtained through this study it is an important step to 

be aware of the day-to-day exposure levels in an urban setting regards 

to a vulnerable group of the population. In addition, the latest study 

has allowed us to unravel some of the sources of indoor and personal 

levels of air pollution in one of the most polluted cities worldwide, 

as we have been able to investigate the determinants of the observed 

air pollution concentrations. The results of the study highlighted the 

importance of assessing the personal and home-indoor exposure 

among pregnant women following a more accurate methodology.  

 

Beforementioned exposures are of global concern; however, a 

national and local approach is needed. In most of the cases, it is local 

legislation that has the greatest impact on people's lives. In addition, 

these legislations must be linked to long-term changes, as long-

lasting actions may be the only way to bring about real changes and 

healthier effects. Finally, the fact that the entire population is exposed 

to some of the environmental factors implies that any action in favour 

of their elimination not only promotes health among vulnerable 

groups, such as pregnant women or children, but also among the 

general population.  

 

Additionally, this Thesis contributes not only to the existing evidence 

in relation to the clinical health outcomes associated with 

environmental exposures, but also provides evidence on the 

underlying biological mechanisms, which reinforces epidemiological 



166 
 

studies with biological plausibility. Promoting studies that include 

the molecular process can contribute to the existing evidence and 

provide further information to keep completing the complex picture 

of how the environment affects health as commented below. First, 

the process of aging is considered as a public health issue worldwide, 

thus new evidence on how this is related to environment might drive 

new policies to reduce environmental exposures and promote 

“healthy aging” from early stages of life, which afterwards would 

have a direct impact in society. Further investigation is required to 

clearly understand which aging biological processes captured by the 

epigenetic clocks. Second, we investigated inflammation and its 

possible relationship with BP. Hypertension is known to be one of 

the major contributors to cardiovascular diseases, which are 

considered as one of the leading causes of mortality and disability 

worldwide. In addition, it is known that children with higher blood 

pressure are more likely to develop cardiovascular diseases during 

childhood. Moreover, we found that that short-term exposure to air 

pollution increases SBP. Therefore, our findings might promote 

further strategies and public policies to reduce exposure to air 

pollution as an important prevention strategy to decrease the 

incidence of cardiovascular diseases.  

 

Furthermore, one of the main implications in public health of this 

Thesis is the increased awareness not just in the academic world but 

also in general population. Some of the results presented in this 

Thesis were divulgated through media communication, the obtained 

results reached the general population and somehow, we managed to 
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attract their attention. However, there is still a long way to go in the 

field of scientific communication. In relation to this, the involvement 

of the general population is fundamental for the promotion and 

creation of new policies driven to reduce environmental exposures. 

Therefore, without their involvement it will be more complicated to 

make a definitive change. One of the priority objectives for the 

scientific world would be to build bridges with society and achieve 

an organised, inclusive, and accessible dissemination that might 

allow the citizens to actively participate in science, facilitate critical 

thinking, and understand the world we live in.  

To conclude with, population health is the result of a complex 

network of connections and interrelationships between a wide range 

of factors related to environment, society, culture, and economics, 

among others. In most of the cases they cannot be considered 

simultaneously. However, when doing research within the field of 

public health we must be aware of this complexity and consider each 

study as a small part, but strongly essential, of the whole picture, 

since as Rachel Carson stated, "In nature nothing exists alone".  
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7. CONCLUSIONS

Main conclusions of the analyses of the effects of the environmental 

factors on epigenetic aging:  

• In the context of the early life exposome, pregnancy and

childhood exposure to tobacco smoke and childhood

exposure to indoor PM2.5 were associated with accelerated

epigenetic aging in blood of children from 6 European birth

cohorts.

• In contrast, DMDTP and PCB-138 exposure during

childhood were associated with decreased epigenetic aging in

children’s blood, likely due to the link between DMDTP

exposure and fruit or vegetable intake, and the lipophilic

character of PCBs that might partially capture the relationship

between body mass index and epigenetic age.

• Regarding placenta, neither ambient air pollution nor active

maternal tobacco smoking during pregnancy were related to

epigenetic gestational aging of new-borns from three Spanish

birth cohorts.

• CpG sites of the blood epigenetic clocks were functionally

annotated to genes involved in immune response, cell cycle

and apoptosis, and detoxification; while CpG sites of

placental epigenetic clocks were annotated by proximity to

genes involved in development and neuronal processes.
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Main conclusions of the analyses of the effects of short- and medium-

term exposure to air pollution on blood pressure and plasmatic 

proteins:  

• Short-term exposure to NO2, defined as 1 week before

outcome measurement, was associated to increased systolic

blood pressure in children from 6 European birth cohorts. No

effects were observed on diastolic blood pressure.

• Moreover, short-term exposure to NO2, PM10 or PM2.5 was

related to increased levels of hepatocyte growth factor (HGF),

a growth factor involved in tissue reparation; and PM10

exposure to increased levels of the pro-inflammatory protein

interleukin 8 (IL8).

• Statistical analyses suggested that hepatocyte growth factor

(HGF) levels could be mediating the effect of air pollution on

blood pressure, however further studies are needed to prove

the direction of the causal relationship.

Finally, in relation to the analyses of the determinants of indoor and 

personal NO2 levels in BiSC: 

• The use of gas cooker, outdoor NO2 levels, not being of

European ancestry and exposure before Covid-19 pandemics

were related to home-indoor NO2 concentrations.

• Moreover, indoor, and outdoor NO2 levels, and exposure

before Covid-19 pandemics were suggested to be predictors

of personal NO2.
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• Our findings reinforce the importance of assessing indoor and

personal air pollution exposure among vulnerable groups as

indoor and personal levels come from different sources

besides traffic emissions.
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2nd call for Research Proposals of the Planetary Wellbeing Initiative 

2020. University Pompeu Fabra 

 

Award for the 3rd best oral presentation. ISGlobal PhD Symposium 

2021. 
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C. Presentations and attendance at scientific conferences 

 

The PhD Candidate has participated in different National and 

International scientific conferences and meetings, presenting the 

work conducted during her PhD. 

 

Attendance: 

 

Attendance to the "15a Jornadas Científicas INMA 2018", held in 

Donostia-San Sebastian, Spain during the 14th and 15th of November 

2018. 

 

Attendance to the European Society of Human Genetics 2020. 

 

Poster and attendance: 

 

Poster presentation to the fifth ISGlobal PhD Symposium 2018. 

“Air pollution and green spaces exposure and telomere length in 

primary schoolchildren”. 

 

Poster and video presentation to the Epigenomics of common 

Diseases 2020. “The early-life exposome and epigenetic age 

acceleration in children”. Video available at: 

https://www.youtube.com/watch?v=MvPsqlxbJS4 

 

Chalk talk at the sixth ISGlobal PhD symposium 2019. “The early-

life exposome and epigenetic age acceleration in children“. 

https://www.youtube.com/watch?v=MvPsqlxbJS4
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Oral presentation and attendance: 

 

Oral presentation to the 31st annual conference of the International 

Society for Environmental Epidemiology (ISEE 2019)", in Utrecht. 

“Green Spaces and telomere length in preschool children”. 

 

Oral presentation to the “16a Jornadas Científicas INMA 2020”. 

“Early Life exposome and epigenetic age in HELIX subcohort”. 

 

Oral presentation to the Young International Society for 

Environmental Epidemiology (ISEE young 2021). “Early Life 

exposome and epigenetic age in HELIX subcohort”. 

 

Oral presentation to the seventh ISGlobal PhD Symposium 2021. 

“Short- and medium-term air pollution exposure, plasmatic protein 

levels and blood pressure in children”. 

 

Oral presentation to the “17a Jornadas Científicas INMA 2021”. 

“Short- and medium-term air pollution exposure, plasmatic protein 

levels and blood pressure in children”. 

 

D. Workshops and training activities 

 

Attendance to the course of "How to write a scientific article" of the 

PRBB Intervals - CÍCLIKS, held at the PRBB (November 2018). 
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Attendance to the online course "COVID-19: Tackling the novel 

coronavirus" from the London School of Hygiene & Tropical 

Medicine and UK Public Health Rapid support team, for 3 weeks, 4 

hours per week.  

 

Attendance to the online course organized by the Bristol University 

regarding Basic Epigenetic Epidemiology and Advanced Epigenetic 

Epidemiology (a 3-day and a 1-day online course, respectively). 

 

Attendance to the PRBB intervals course related with Sharpen your 

Reasoning skills (October 2020).  

 

Attendance to the Exposome Boot Camp: Measuring exposures on 

an omics scale by Columbia University (July 2021).  

 

E. Reviews for Peer-Reviewed Scientific journals 

 

A. Environmental Health (2x) 

B. Epigenetics Communications (1x) 

 

F. Supervision of students 

 

October 2021 – June 2022: Mariona Isern. “Association between 

noise perception and cortisol levels in pregnant women”. Degree of 

Biomedical Sciences, Barcelona University (UB), Barcelona, Spain. 
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- Wrting posts at ISGlobal blog: 
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- Media dissemination based on published manuscripts: 

 

https://s.kmni.eu/t/tpnqrNiT-DqokKoNFwEa5sIdGogBHmg-pdf-

zC/Ara_20210825100000  

 

https://www.ccma.cat/324/lexposicio-al-fum-de-tabac-durant-

lembaras-i-la-infantesa-accelera-lenvelliment/noticia/3115445/  

 

https://medicalxpress.com/news/2021-08-exposure-tobacco-early-

life-biological.html 
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https://medicalxpress.com/news/2021-08-exposure-tobacco-early-life-biological.html
https://medicalxpress.com/news/2021-08-exposure-tobacco-early-life-biological.html
https://www.isglobal.org/-/exposicion-tabaco-infancia-envejecimiento-biologico
https://www.lavanguardia.com/vida/20210825/7680253/exponer-humo-tabaco-bebes-ninos-acelera-envejecimiento-biologico.html
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H. Other activities 

 

Within the PhD Programme, the PhD candidate has been in charge 

of: (i) the organization of internal weekly ISGlobal seminars, from 

September 2020 to April 2021, (ii) the creation of the video “The 

magical clock” for the Open PRBB 2020 (available here: 

http://y2u.be/PvP5iN2I2Yg), and (iii) the organization of the 7th 

ISGlobal PhD Symposium (September 2021) with the creation of the 

opening video regarding women in science (available here: 

http://y2u.be/0S0ig554vrE). She also participated as a volunteer in 

the "The Global Forum on Childhood Pneumonia" held at 

Cosmocaixa, Barcelona, between the 29-31 of January 2020. 

 

Finally, she was involved on the last edition of “100tífiques” 

programme carried out on February 11th (International Day of 

Women and Girls in Science) conducting a talk at Nou Patufet School 

in Barcelona.  

http://y2u.be/PvP5iN2I2Yg
http://y2u.be/0S0ig554vrE
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