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Resumen

1 Introducción

Desde el origen de la humanidad, la exploración del entorno que le rodea ha
sido una de sus caracterı́sticas que la han convertido en una especie diferente. Desde
los primeros homı́nidos que se pasearon por las sabanas africanas hasta Neil Am-
strong que puso su pie en la luna en 1969, la humanidad ha usado su habilidad para
explorar y superar los lı́mites que le impone el entorno. Estos logros han sido princi-
palmente debidos a su capacidad de percibir, imaginar y crear con el fin de adaptarse a
los diferentes entornos donde otras especies son incapaces de hacerlo. Esta carac-
terı́stica podrı́a definirse de muchas maneras, una de las más comunes es denominarla
inteligencia.

El concepto de inteligencia es tan amplio como el número de campos del conoci-
miento donde se usa y por lo tanto afirmar que la inteligencia es sólo la habilidad que
poseen los seres vivos de adaptarse al entorno, probablemente no es del todo preciso.

En robótica, la exploración y la inteligencia van de la mano, si el robot no es
capaz de percibir de manera correcta el entorno será difı́cil que puede adaptarse a los
cambios que se producen en él y por lo tanto presentará un comportamiento a todas
luces poco inteligente.

Hoy en dı́a existe un plausible incremento de la necesidad de sistemas robóticos
inteligentes que mejoren las condiciones de vida de la sociedad en un amplio rango
de campos, desde los sistemas de transportes autónomos a los que ejecutan tareas
médicas.

Esta tesis intenta entender las lecciones que nos proporciona la Naturaleza,
aplicada al campo de la robótica y en especial a los movimientos sacádicos de los ojos,
como una herramienta que nos permite la exploración activa del mundo a través de la
visión. Este trabajo deja a un lado, la mera implementación de un comportamiento en
un sistema robótico especı́fico, para estudiar la manera de generalizarlo para cualquier
robot similar, dándole una nueva aplicación práctica que establece semillas para nuevos
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campos de estudio y contribuyendo a la Industria 4.0 para mejorar la sociedad.

2. Motivación

2.1 Bioinspiración

Unos de las principales factores que contribuyen al progreso cientı́fico, es sin
duda la observación de los fenómenos naturales. Por ejemplo, Nicolas Copérnico fue
capaz de inferir de la observación de los movimientos planetarios que la tierra no era el
centro del Universo, o Alexander Fleming observó cómo el crecimiento de un hongo
(Penicilium notatum) eliminaba las bacterias presentes en un cultivo. Es razonable,
por lo tanto asumir, que para poder crear sistemas inteligentes, se podrı́a partir de la
observación de las entidades consideradas como tales.

Desde esta perspectiva el estudio y observación de los organismos vivos puede
aportar conocimiento que puede ser aplicado a otros campos. En este sentido, la
bioinspiración se puede entender como la aplicación de los modelos biológicos a otros
campos diferentes al de la biologı́a. Ahora bien, este concepto no es nada novedoso,
ya en tiempo de Leonardo Da Vinci en pleno Renacimiento, el modelado del vuelo de
los pájaros le inspiró para crear máquinas voladoras.

En general, los modelos biológicos que se emplean suelen referirse a materiales,
morfologı́as o funcionalidades, sin embargo, cuando se consideran factores extrı́nsecos
como el entorno, la adaptabilidad de los seres vivos se convierte en un factor relevante.
Los complejos sistemas biológicos actuales con sus capacidades, son el resultado de
miles de millones de años de evolución donde la Naturaleza ha realizado un trabajo de
mejora que puede servir como base para el desarrollo de sistemas robóticos con sus
morfologı́as particulares que intentan desempeñar las mismas funciones.

El sistema visuo-oculomotor es probablemente el principal mecanismo con el
que los seres humanos percibimos y exploramos el mundo. El considerarlo como
objeto de estudio tiene ciertas ventajas, entre otras que es uno de los sistemas más
estudiados en el campo de la neurobiologı́a y medicina. En consecuencia existen
numerosos modelo biológicos que tratan de explicar su funcionamiento. Por otro lado, el
sistema visuo-oculomotor contiene todo los elementos que están presentes en el ciclo
perceptual, presentado por Uexküll (1926): percepción del estı́mulo, procesamiento
de la información y generación de una respuesta, que se ajustan perfectamente a los
mecanismos de operación de un sistema robótico.

El replicar la morfologı́a o funcionalidad del sistema visuo-oculomotor no ne-
cesariamente es suficiente y por lo tanto se debe considerar la adaptabilidad con el
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objetivo de generar verdaderos sistemas inteligentes. Es en este punto, la bioinspir-
ación juega de nuevo un importante rol proporcionando un modelo para crear redes
neuronales artificiales que son las herramientas matemáticas para lograr el aprendizaje
y la implementación de comportamientos adaptativos en los sistemas robóticos.

Los modelos biológicos pueden aplicarse a los sistemas robóticos para la explo-
ración visual para intentar que sean funcionales, adaptativamente y morfológicamente
equivalentes. En robótica, a diferencia del mundo de la biologı́a, es habitual trabajar
con sistemas únicos o en el mejor de los casos con robots del mismo fabricante. Este
hecho complica la generalización y comparación de resultados. En biologı́a, por el
contrario, los individuos comparten los rasgos morfológicos, funcionales y adaptativos
con otros individuos. Los individuos biológicos comparten esta información de tal ma-
nera que les permite replicar comportamiento comunes, a pesar que tengan diferentes
caracterı́sticas. Este es un modelo que puede aplicarse también en el campo de la
robótica.

En definitiva, este trabajo se basa en el estudio de ciertos modelos biológicos
como son las redes neuronales, el sistema visuo-oculomotor, ciclo de percepción,
relación entre el genotipo, fenotipo y entorno, el proceso de fijación visual, estudiando
como trasladarlos a un sistema robótico para incrementar su percepción interactiva.

2.2 Industria 4.0

La introducción de robots colaborativos en la industria han producido un cambio de
paradigma. Ahora ya no es necesario separar las zonas de trabajo de personas y robots.
Por el contrario se promueve la colaboración entre ambos para mejorar los procesos
industriales. Este cambio en la forma de proceder contribuye de manera decisiva a la
implantación de Industria 4.0. Este concepto fue introducido por el gobierno alemán en
2011 y engloba el conjunto de estrategias relacionadas con la implementación de alta
tecnologı́a en la industria. Uno de los cuatro principios fundamentales que identifica a
la Industria 4.0 es la asistencia in-situ. Lo sistemas automáticos deberı́an asistir a los
humanos en los procesos de toma y ejecución de decisiones o ayudarlos con tareas
difı́ciles o peligrosas. En este contesto el robot no es ya una máquina que trabaja de
manera independiente sino que es un sistema ciberfı́sico que trabaja en red dotado con
interoperatividad (Khaitan and McCalley, 2015) y por lo tanto debe poseer la capacidad
de conectarse y comunicarse con otros dispositivos a través de Internet (Hermann
et al., 2016). Ası́ por ejemplo, Wan et al. (2016) y Kehoe et al. (2015) introducen el
concepto de cloud robotics que trata de obtener un mejor rendimiento de sistemas
robótico individuales a través del conocimiento compartido entre múltiples sistemas
robóticos.
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Proyectos como RoboEarth (Waibel et al., 2011), recopilan almacenan y com-
parten datos independientemente de las plataformas robóticas utilizadas. Estructurar
los datos resultantes del aprendizaje de un robot dado en un entorno para mejorar el
comportamiento de robots similares en este mismo entorno, contribuye a compartir el
conocimiento que requiere la Industria 4.0.

Una vez más, la Naturaleza ya ha resuelto la forma de compartir información entre
los individuos de una especie. Ası́ todo organismo vivo comparte información con las
formas vivas que lo precedieron a través de los genes. Una de las motivaciones subya-
centes en este trabajo es el uso de este mecanismo como fuente de inspiración para
aplicarlo a un conjunto de robots interconectados de tal forma que puedan compartir
conocimiento e incluso mejorar su adaptación a diferentes entornos.

2.3 Impacto en la sociedad

En los últimos 10 años la robótica ha experimentado un impulso debido al gran
número de avances que han permitido mejorar sus capacidades e incrementar el interés
por la misma.

• La mejora en los sensores, especialmente en el campo de la visión, con la
inclusión de los sensores RGBD que ha permitido a los robots interactuar y
percibir su entorno de una manera más precisa al incluir la tercera dimensión.

• La aparición de los robots colaborativos ha permitido la incorporación de la
robótica en procesos de cooperación y asistencia a los operadores humanos.
Pero este tipo de sistemas también ha permitido en la robótica de servicios
originar un conjunto innumerable de aplicaciones que tienen efectos en nuestra
vida cotidiana.

• Desde el punto de vista de la educación, la aparición de las mini computadoras
como la Raspberry Pi ha facilitado la expansión de la robótica debido a las posibil-
idades que ofrece a la creación de sistemas robóticos de bajo coste permitiendo
y promocionando el aprendizaje de la programación y de los principios básicos
de la robótica.

• Finalmente, el desarrollo del Deep Learning ha tenido un impacto en todas las
áreas relacionadas con el aprendizaje automático. Aunque la aplicación genérica
de estas técnicas a la robótica conlleva una serie de inconvenientes, sobre todo a
la hora de generalizar la soluciones, para la resolución de problemas particulares
están funcionando de manera muy eficiente.
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Todos estos avances han llevado a la robótica a estar cada vez más presente en
nuestra vida, desde el robot aspirador, al brazo robótico que nos sirve una cerveza en la
barra de un bar. Sin olvidar que hay lugares en el mundo donde los coches autónomos
ya son una realidad.

Cualquiera que sea su funcionalidad, los robots necesitan obtener información del
entorno con el objetivo de ejecutar sus tareas eficientemente. Este trabajo contribuye a
mejorar este aspecto, usando modelos biológicos como fundamento para el desarrollo
de algoritmos que permiten a los sistemas robóticos mejorar sus capacidades de per-
cepción y adaptación a diversos entornos y por lo tantos convertirlos, en cierta manera
en más inteligentes. De esta forma se incrementa su confiabilidad, contribuyendo a una
mayor integración de estos sistemas en la sociedad para resolver tareas más complejas
o peligrosas.

3. Objetivos

Esta tesis se centra en extender las capacidades de exploración y adaptabilidad
de un sistema robótico autónomo con objeto de reproducir los movimientos sacádicos
propios de los primates para una percepción interactiva. Para conseguir este objetivo
se deben cumplir los siguientes hitos:

• A partir del estudio del modelo biológico del sistema visuo-oculomotor, pro-
poner un modelo aplicable a la robótica que permita reproducir los movimientos
sacádicos de una manera adaptativa a través de la exploración y el aprendizaje
autónomo.

• Investigar cómo mejorar la adaptabilidad de los sistemas robóticos que reproducen
los movimientos sacádicos en base a la información generada por otros sistemas
que previamente ya han aprendido a operar de manera adecuada en un entorno
determinado.

• Usar la capacidad de reproducir los movimientos sacádicos para mejorar ciertos
aspectos de la percepción interactiva de un sistema robótico.

4. Metodologı́a

A partir de de una serie de modelos biológicos que permiten a los seres vivos
resolver un conjunto de problemas que tienen interés desde el punto de vista de la
robótica, se elaboran diversos modelos matemáticos. Estos modelos son probados
primero en simulación de una forma genérica y posteriormente comprobados de una
forma más especı́fica en un sistema robótico real:
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• En primer lugar, se busca una solución desde el punto de vista biológico a un
problema de relevancia en el campo de la robótica. Normalmente hay un modelo
biológico que lo describe. En este trabajo los modelos biológicos considerados
son:

– Movimientos sacádicos de los ojos. Los movimientos sacádicos usados
por los primates para explorar el mundo son un fuente de inspiración para
implementar sistemas de visión activa en un sistema robótico.

– La relación entre genotipo, fenotipo y entorno en los sistemas biológicos.
Cuando un nuevo ser vivo nace, en su ADN, codifica toda la información que
posteriormente, condicionada por el entorno, definirá su comportamiento y
capacidades. Cuando se construye un sistema robótico, todos sus contro-
ladores y propiedades se ajustan para obtener un cierto comportamiento
desde cero, sin considerar ningún conocimiento previo. Esto implica que
no se reutilizan las experiencias que otros sistemas robóticos similares que
realizan la mismas tareas han desarrollado previamente. Los patrones con
los que la naturaleza transmite la información entre sucesivas generaciones
pueden ayudar a mejorar esta circunstancia.

– La ejecución de mecanismos y procesos complejos generados en los seres
vivos, tal como el procesos de fijación visual, incrementa la información
disponible en el cerebro para procesar el entorno que les rodea. Por lo tanto,
la transferencia de estos mecanismos a un sistema robótico deberı́a mejorar
sus capacidades perceptuales.

• Los sistemas biológicos con sus miles de millones de años de evolución son
tan complejos, que replicarlos puede convertirse en una tarea inalcanzable.
Afortunadamente, gracias a la abstracción, es posible simplificar las partes es-
enciales de estos sistemas y modelarlos matemáticamente. Para este fin, es
necesario desarrollar una serie de hipótesis que permitan la creación de modelos
matemáticos simplificados.

• Como paso previo a la implementación de estos modelos, deben ser comprobados
en simulación. En algunos casos, la imposibilidad de disponer de suficientes
robots reales para testear estos modelos genera que la simulación sea el único
sistema hábil para hacerlo. En la simulación, las hipótesis realizadas para el
desarrollo de los modelos simplificados son validadas.

• Si las hipótesis desarrolladas en el diseño de los modelos bio-inspirados se
validan en simulación, se implementan en un sistema robótico real, verificando
que exhibe los mismos comportamientos que se habı́an obtenido en simulación.
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Los resultados numéricos obtenidos —tanto en las simulaciones como en los
sistema robóticos reales usados en este trabajo— se comparan, o bien con otros
métodos que permiten su estimación utilizando la literatura existente, o con la simulación
de ciertos parámetros que nos permiten evaluar su rendimiento.

En cada modelo propuesto, se ha utilizado la misma metodologı́a para su desa-
rrollo e implementación, cambiando la forma de comparar los resultados o los sistemas
robóticos utilizados. En algún caso especı́fico ha sido necesario el diseño y desarrollo
de un sistema robótico para poder verificar los resultados.

5. Contenido

Esta tesis se estructura en varios capı́tulos. Ası́, los capı́tulos 2 y 3 describen
respectivamente el modelo biológico para la generación de sacadas y los modelos
matemáticos para tratar el problema de la adaptación. El resto de capı́tulos describen
el trabajo realizado para desarrollar e implementar los modelos bioinspirados como
posibles soluciones a varios problemas en el campo de la robótica. En cada capı́tulo, los
objetivos que se establecen y los resultados que se obtienen contribuyen a la solución
de dichos problemas.

El primer apéndice propone una aplicación derivada de los modelos desarrollados.
Usando los conceptos de percepción interactiva y técnicas de aprendizaje profundo
se ofrece una posible solución al problema de la estimación de la profundidad con
una sola cámara. El segundo apéndice describe la arquitectura software que hemos
desarrollado especı́ficamente para la implementación de todo este trabajo en varios
sistemas robóticos.

En el capı́tulo 2 se presenta la base biológica de los movimientos sacádicos de
los ojos. Estos movimientos son el núcleo sobre el que gira todo el trabajo desarrol-
lado y que claramente tiene una fuerte bioinspiración. Hay modelos en biologı́a que
describen cómo los seres humanos generamos movimientos sacádicos para explorar
de forma activa el mundo. Este capı́tulo, de manera resumida, describe cómo nuestros
cerebros generan los comandos para producir los movimientos sacádicos a partir de
la percepción de un estı́mulo. Estos movimientos son la base para los modelos que
se describirán en capı́tulos posteriores. De igual manera, en este capı́tulo se detalla
brevemente la morfologı́a del sistema visuo-oculomotor que permitirá, en capı́tulos
posteriores, ofrecer diferentes alternativas morfológicas aplicables a un sistema robótico
que desee replicar este comportamiento sacádico.

El entorno, entendido como todo aquello exógeno al sistema objeto de estudio,
suele ser el gran olvidado de la robótica, sin embargo, es un factor que se ha tenido
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presente a lo largo de todo este trabajo. La idea de adaptabilidad llevada a un sistema
robótico —entendida como la capacidad de los seres vivos de adecuarse e interaccionar
con el entorno— es uno de los pilares para la generación de sistemas más inteligentes.
Existen herramientas matemáticas que permiten, en cierto modo, representar el modelo
interno de los sistemas robóticos para adaptarse a los cambios que se producen
en el entorno. Se da la circunstancia que este modelos matemáticos son también
bioinspirados, especı́ficamente en las redes neuronales que conforman los sistemas
nerviosos de los seres vivos. El concepto de aprendizaje adaptativo hace referencia a
la capacidad de el sistema de aprender de los cambios en el entorno, con el objetivo
de mejorar su rendimiento. En el capı́tulo 3 se realiza una pequeña introducción a los
modelos de redes neuronales artificiales que permiten en cierta manera la adaptabilidad,
ası́ como los fundamentos matemáticos requeridos para su implementación.

En el capı́tulo 4 se describen las principales morfologı́as de cabezas robóticas
que pueden imitar los movimientos generados por el sistema visuo-oculomotor descrito
en el capı́tulo 2. Seleccionamos la morfologı́a tipo Helmholtz con objeto de construir el
sistema robótico para la ejecución de movimientos sacádicos, detallando los parámetros
morfológicos que la describen. A continuación, se estudia cómo la integración de las
dos señales visuales es de utilidad para generar movimientos sacádicos más precisos
a partir de la interacción perceptual. Finalmente, se proponen dos arquitecturas de
controladores para la ejecución de estos movimientos. Estas son comparadas con otros
tipos de modelos desarrollados en robótica para la ejecución de estos movimientos
exploratorios.

Una vez tenemos varios métodos descritos en el capı́tulo 4 para la ejecución de
movimientos sacádicos basados en técnicas de aprendizaje adaptativo, en el capı́tulo
5 proponemos reutilizar, en cierta manera, la información de cómo un sistema ha
aprendido a adaptarse a un entorno especı́fico para mejorar el aprendizaje de otros
sistemas similares. Esta relación entre las propiedades especı́ficas de un sistema que
constituyen parcialmente su morfologı́a y los parámetros que le permiten adaptarse al
entorno, nos ha llevado a proponer un modelo artificial basado en el triángulo genotipo,
fenotipo y entorno descrito en los organismos biológicos. El objetivo final ha sido crear
un modelo de tal forma que la morfologı́a de un sistema robótico y su modelo interno
pueden transmitirse de un sistema robótico a otro de la misma manera que se produce
en un sistema biológico.

Finalmente, los movimientos sacádicos descritos en el capı́tulo 2 y modelados en
el capı́tulo 4 para la exploración visual, tienen implicaciones en otros comportamientos
biológicos como es el caso del proceso de fijación visual. En el capı́tulo 6 se explora el
alcance e importancia de los movimientos sacádicos en este proceso de fijación para
conseguir la información de profundidad en un entorno. Por otro lado, en este capı́tulo
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se describe brevemente el sistema robótico desarrollado especı́ficamente para testear
los algoritmos propuestos.

6. Conclusiones

Como resultado de la aplicación de la metodologı́a presentada en el capı́tulo 1, se
han descrito brevemente diversos modelos biológicos que nos han permitido elaborar
propuestas de modelos matemáticos para la ejecución de los movimientos sacádicos
como eje central de este trabajo. A partir de la implementación de dichos movimientos
se han desarrollando y explorando diversas aplicaciones en el campo de la robótica.
En el capı́tulo 2 se ha descrito el sustrato biológico, tanto fisiológico como neurológico,
que permite la generación de movimientos sacádicos en el ser humano.

Una cualidad innegable de los seres vivos es su capacidad de adaptación al
entorno. Normalmente, en robótica, el entorno es algo siempre considerado como un
inconveniente para nuestros algoritmos. En el caso de los seres vivos, el entorno es
un elemento más de su evolución. Por ello, en este trabajo hemos tenido presente en
todo momento el entorno. Hemos optado por emplear redes neuronales adaptativas,
que aprenden a medida que se dispone de información, para emplear las herramien-
tas adecuadas que nos permitan simular la adaptación de un modelo artificial a un
entorno determinado. Estas herramientas matemáticas, ası́ como sus fundamentos
matemáticos, se describen en el capı́tulo 3. En particular, el uso de redes neuronales
de una sola capa oculta, que emplean el aprendizaje supervisado, son la herramienta
básica elegida como núcleo de los modelos desarrollados en el capı́tulo 4 para imple-
mentar los movimientos sacádicos en un sistema robótico. En el capı́tulo 3 se proponen
dos algoritmos para adaptar estas redes neuronales, como son los basados en el filtro
de Kalman o en regresiones incrementales de procesos gausianos dispersos.

Después de un análisis de las dos configuraciones más comunes (Flick y Helm-
holtz) para reproducir lo movimientos de los ojos humanos en un sistema robótico,
seleccionamos la configuración de Helmholtz que permite una aproximación suficiente
a los movimientos del ojo y tiene la ventaja sobre la configuración de Fick que requiere
de un motor menos y por lo tanto un grado de control menos. Una vez se ha establecido
la configuración del sistema robótico, procedemos a sus caracterización paramétrica.
Este proceso de parametrización pretende ir más allá de un sistema robótico especı́fico,
describiendo la morfologı́a de estos sistemas de una manera genérica. Ası́, por ejemplo,
la configuración de Helmholtz de un sistema robótico capaz de generar movimientos
sacádicos está formada por dos cadenas cinemáticas que comienzan en la base del
sistema y finalizan en cada una de las cámaras que realizan la función de visualizar el
entorno. La longitud de los links entre cada joint de estas cadenas es un parámetro que
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puede variar de un sistema robótico a otro y definen la morfologı́a final del sistema. En
robótica, la parte cinemática se suele diferenciar del resto para realizar la descripción
paramétrica de un sistema robótico. En este caso, hemos incluido el sistema de visión
como un elemento más en la definición morfológica del sistema. De esta manera, el
sistema robótico se ve como un todo, donde su morfologı́a no está definida sólo por su
perceptible forma externa, sino también por todos los parámetros diferenciales de otros
sistemas similares.

Una vez definida la morfologı́a del sistema robótico capaz de mimetizar los movimi-
entos sacádicos, estudiamos cómo implementar el comportamiento sacádico. Primero,
se observa que la codificación binocular del estı́mulo mejora la precisión en la gene-
ración de las sacadas de un sistema robótico. Se proponen dos arquitecturas para
generar las acciones de control necesarias para focalizar un estı́mulo en un sistema
binocular por medio del movimiento sacádico: Feedback error learning y Recurrent
architecture. Los resultados obtenidos en la simulación y el robot real arrojan ratios de
error por debajo del 1% para ambos controladores teniendo presente la resolución de
las cámaras utilizadas. También se ha observado que los datos experimentales del
conjunto de test se ajustan bastante bien a una distribución de probabilidad de valor
extremo.

El rendimiento obtenido con estas dos arquitecturas las convierte en claras candi-
datas para la implementación del comportamiento sacádico en nuestro sistema robótico.
Mientras que la Recurrent architecture presenta mejores resultados de precisión en los
movimientos, la velocidad de ejecución de la arquitectura Feedback error learning la
convierte en favorita para muchos de los experimentos y algoritmos que son descritos
a lo largo de este trabajo.

De esta manera, se define un sistema robótico con cierta morfologı́a (configuración
de Helmholtz) y capaz de ejecutar el comportamiento sacádico basándose en la
arquitectura Feedback error learning o Recurrent architecture. Sin embargo, el entorno
modifica y condiciona su comportamiento: por lo tanto, se introduce su definición
y parametrización. De esta manera, el entorno es considerado como la región del
espacio delimitada por 6 planos que definen un paralelepı́pedo donde un conjunto de
estı́mulos puntuales se distribuyen aleatoriamente y con los que el sistema robótico
interactúa. Los parámetros que lo definen son sus dimensiones volumétricas y su
centro geométrico.

De este modo, siempre que aparezcan los estı́mulos adecuados, el sistema
robótico puede desarrollar el comportamiento sacádico en el entorno definido. Sin
embargo, para conseguirlo es necesario entrenar el sistema desde cero. Cuando un
ser vivo nace, hay una serie de comportamientos preprogramados que permiten al
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organismo adaptarse al nuevo entorno en lugar de aprender. Estos comportamientos
preprogramados están grabados por miles de millones de años de evolución en el
código genético de los seres vivos. En cambio, en la robótica los sistemas suelen tener
pocas evoluciones en el mejor de los casos, siendo entidades únicas.

En el capı́tulo 5, sugerimos cómo se puede aprovechar la relación entre el modelo
interno, capaz de generar un determinado comportamiento, y la morfologı́a de un con-
junto de sistemas robóticos para acelerar la adaptación de nuevos sistemas robóticos a
un entorno determinado en lugar de partir de cero. Para lograr este objetivo, ha sido
necesario utilizar diversas herramientas matemáticas para aprender la relación entre el
modelo interno y la morfologı́a.

Para disponer de una población de sistemas robóticos lo suficientemente grande
como para aprender esta relación, se han entrenado desde cero unas 45.000 cabezas
robóticas con el mismo número de parámetros morfológicos pero con valores aleatorios
dentro de ciertos rangos. De las tres arquitecturas de redes neuronales probadas, la
red neuronal paralela es la que mejores resultados ha dado a la hora de predecir el
modelo interno de un sistema conociendo los parámetros morfológicos que lo definen.
Una aplicación práctica que se desprende de los resultados obtenidos es que con un
conocimiento parcial de la morfologı́a es posible mejorar el aprendizaje de un nuevo
sistema.

Utilizando de nuevo la herramienta de la bioinspiración, se ha formulado un
genotipo artificial que caracteriza en cierta manera a cada individuo de una especie de
sistemas robóticos. Tiene una parte especı́fica del sistema robótico y otra común a la
especie a la que pertenece. Se define a partir del conocimiento obtenido de la relación
entre la morfologı́a y el modelo interno de todos los individuos de la especie. Una vez
inicializado, este genotipo puede evolucionar para adaptarse a otros entornos. Este
desarrollo tiene implicaciones directas en la Industria 4.0: los nuevos robots pueden
utilizar el conocimiento adquirido por otros robots de la misma especie relativo a cómo
interactuar en un entorno determinado para desarrollar sus capacidades. Todo ello sin
olvidar que la adaptación al entorno local donde tendrán que operar puede modificar su
comportamiento a través del proceso de adaptación.

Para observar si este modelo es análogo al propuesto por la genética analı́tica
para relacionar fenotipo, entorno y genotipo, se utiliza el concepto de norma de reacción
trasladado a un conjunto de sistemas robóticos que presentan un comportamiento
sacádico y cuyo genotipo artificial se ha obtenido previamente. Los resultados muestran
que existe una variación fenotı́pica análoga a la que producen los organismos vivos en
un entorno biológico.

En la última parte de este trabajo (capı́tulo 6), se modeló el proceso de fijación
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en el que los movimientos sacádicos juegan un papel importante pero biológicamente
poco claro en el ser humano. A partir de una serie de hipótesis sobre los movimien-
tos sacádicos generados, definidos en el capı́tulo 4, se diseñó un algoritmo para la
estimación de la imagen de profundidad alrededor del punto de fijación.

La idea desarrollada para proponer este algoritmo se basa principalmente en que
los movimientos microsacádicos y de la cabeza generan pequeños desplazamientos de
la retina que combinados con la señal de variación de la posición del ojo o de la cámara
permiten obtener más información del entorno. Cada pı́xel de la imagen se convierte
en un problema de minimización independiente: entre el desplazamiento óptico real y el
predicho por el desplazamiento retiniano calculado a partir de la variación de posición
de la cámara y considerando que el objeto que ilumina ese pı́xel está a una determinada
distancia. Mediante la minimización de la diferencia entre los flujos ópticos predichos
por el desplazamiento fı́sico y los flujos obtenidos por la diferencia de imágenes, se
puede ir variando la estimación de la distancia de cada pı́xel.

Como en el proceso de fijación se combinan los movimientos sacádicos y los
movimientos del cuello, se ha desarrollado una simulación para evaluar su rendimiento
en relación con dos referencias: la imagen de profundidad estimada en la simulación
y un conjunto de marcadores (marcadores Aruco) colocados estratégicamente en el
campo de visión para determinar la distancia de estas regiones a la cámara. Estos
últimos son decisivos para evaluar el algoritmo en el robot real.

Las pruebas de simulación han demostrado que el algoritmo funciona de manera
correcta, aunque es bastante sensible al error en la estimación de la posición de la
cámara. También se ha observado que las micro-sacadas, inherentes al proceso
de fijación, pueden tener relevancia para dar cierta estabilidad a la estimación de la
profundidad. Las pruebas realizadas con objetos semitransparentes en simulación
dieron buenos resultados que posteriormente se confirmaron en el robot real.

Para reforzar el comportamiento bioinspirado del algoritmo se estudia cómo
funciona frente a la ilusión de Ouchi, produciendo una diferenciación de zonas de
profundidad similar a la obtenida en el caso biológico.

Para realizar los experimentos en un robot real, necesitamos de un sistema que
permitiera la ejecución de los movimientos sacádicos definidos en capı́tulo 4. Sin
embargo, también es necesario un cuello con 6 DOF. Por este motivo, se diseña y
construye un prototipo de sistema robótico basado en la conjunción de una plataforma
Stewart rotatoria y un generador de sistemas sacádicos basado en la configuración de
Helmholtz.

Los experimentos realizados con este sistema robótico confirman el rendimiento
del algoritmo y sus limitaciones. Su principal limitación radica en la necesidad de
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disponer de una adecuada precisión en la estimación del desplazamiento de la cámara.
Por otro lado, uno de sus mayores puntos fuertes es la capacidad de detección de la
profundidad en objetos transparentes, para los que las cámaras RGBD no funcionan
de manera correcta.

En resumen, se han desarrollado tres modelos bioinspirados basados en tres
procesos biológicos centrados en la generación de movimientos sacádicos para su
implementación en sistemas robóticos, permitiendo:

• Aumentar su capacidad de visión y exploración activa a través de la percepción
interactiva.

• Emplear el conocimiento de cómo otros sistemas robóticos han aprendido a
adaptarse a un entorno determinado para mejorar y acelerar el aprendizaje de
nuevos sistemas robóticos

• Aumentar la capacidad de percepción de un sistema robótico mediante la com-
binación de movimientos inspirados en el proceso de fijación visual.

7. Contribuciones

El trabajo descrito en esta tesis contribuye al desarrollo de varios modelos útiles y
aplicables en el campo de la robótica y especı́ficamente en la visión activa:

1. Proponemos dos arquitecturas bioinspiradas para la generación de movimientos
sacádicos para la exploración activa del entorno basada en la percepción inte-
ractiva. Además, parametrizamos un sistema robótico capaz de generar estos
movimientos, trascendiendo la mera descripción de las cadenas cinemáticas que
lo componen, y considerando los elementos que constituyen el sistema de visión
como parte del conjunto que define la morfologı́a del robot.

2. Desarrollamos el concepto de genotipo artificial para describir un conjunto de sis-
temas robóticos con caracterı́sticas morfológicas comunes y que interactúan con
un mismo entorno. Este genotipo se inicia a partir de la metodologı́a desarrollada
para determinar la relación entre el modelo interno y la morfologı́a de un sistema
robótico. Podemos obtener esta relación utilizando redes neuronales de una sola
capa oculta trabajando en paralelo.

3. Basándonos en la hipótesis de que los movimientos microsacádicos pueden
desempeñar un papel especı́fico en el proceso de fijación en los seres humanos,
desarrollamos un algoritmo para estimar una imagen de profundidad utilizando
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una sola cámara minimizando la diferencia entre el desplazamiento óptico de la
imagen debido a los movimientos de fijación y el desplazamiento óptico esperado
a partir del cambio de posición de la cámara.

4. Diseñamos y construimos un sistema robótico que permite generar movimien-
tos sacádicos y movimientos coordinados del cuello. Este sistema se basa en
una plataforma Stweart rotatoria combinada con un sistema Helmholtz. Hemos
desarrollado los controladores de software para el control de este sistema.

5. Los modelos desarrollados basados en los movimientos microsacádicos y la
percepción interactiva, nos han permitido generar y mejorar redes neuonales de
Deep Learning para la estimación de la imagen de profundidad con una sóla
cámara (Apéndice A).

6. Para la implementación de todos los algoritmos propuestos en los sistemas
robóticos empleados, desarrollamos una arquitectura de software (Apéndice B)
que nos permite la programación modular y la ejecución de procesos en paralelo.

8. Trabajo futuro

El trabajo expuesto en esta tesis puede ser el inicio de futuras lı́neas de investi-
gación y propone preguntas abiertas que mejorarı́an y ampliarı́an el trabajao realizado.

1. Una de las lı́neas de investigación puede establecerse a partir del concepto de
genotipo artificial introducido en este trabajo. Estudios recientes en el campo de la
biologı́a corroboran que la plasticidad del desarrollo juega un papel fundamental
en la diversificación y especialización de los organismos. Estamos convencidos
de que esta área emergente de investigación en biologı́a puede contribuir a un
nuevo paradigma en la robótica evolutiva. La idea fundamental que subyace es
la de superar las limitaciones actuales de la robótica evolutiva en cuanto a la
decodificación genotipo-fenotipo, que en la inmensa mayorı́a de los casos se
plantea como una correspondencia uno a uno, es decir, que los genes determinan
de forma exclusiva los fenotipos de tal manera que la influencia del entorno se
limita a su utilización como simple banco de pruebas para evaluar la aptitud del
fenotipo. Esto contrasta con los conocimientos actuales de la biologı́a evolutiva,
según los cuales los genotipos de los organismos muestran una capacidad para
expresar una serie de fenotipos diferentes en respuesta a las distintas condiciones
ambientales. Esto se conoce como plasticidad fenotı́pica o de desarrollo y puede
visualizarse mediante el uso de normas de reacción, que representan valores de
un rasgo fenotı́pico especı́fico para un conjunto de entornos.
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A partir del modelo de genotipo artificial propuesto, hemos podido estimar una
norma de reacción para una especie de sistemas robóticos. Los resultados obten-
idos simulan el proceso en función de un genotipo para un sistema robótico que
se desarrolla en diferentes entornos que conducen a la expresión de diferentes
fenotipos, mostrando un comportamiento similar al de los organismos vivos en
términos de su norma de reacción.

Un posible punto de partida, apoyado por varios estudios recientes en biologı́a
evolutiva, es la incorporación de mecanismos de plasticidad en el desarrollo de
robots mediante un enfoque evolutivo, lo que podrı́a ser beneficioso para obtener
sistemas robóticos autónomos con mayor capacidad de adaptación al entorno.
Dado que la selección natural no sólo selecciona entre genotipos, sino también
entre fenotipos, el fenotipo y la variación entre fenotipos, puede jugar un papel
importante en la evolución artificial de los robots, de forma que el entorno no sólo
puede servir para seleccionar entre las variaciones producidas genéticamente,
sino también para crear variación fenotı́pica y seleccionar entre esa variación.
Para ello, nuestro modelo de genotipo artificial puede proporcionar este punto de
partida.

La idea es que, en lugar de buscar un diseño de robot (genotipo) que puntúe más
alto en una determinada función de aptitud bajo unas condiciones ambientales
concretas, el diseño ganador será el que muestre la mayor plasticidad en su feno-
tipo y, por tanto, será más adaptable a las circunstancias ambientales cambiantes.
Este resultado tendrá importantes implicaciones para las aplicaciones prácticas
de los sistemas robóticos autónomos, ya que esta plasticidad o capacidad de
adaptación permitirá al sistema modificar rápidamente su comportamiento ante
nuevas circunstancias de su entorno para las que no fue explı́citamente diseñado
o, en el caso de la plasticidad morfológica, rediseñarlo de forma mucho más
eficiente en función de su norma de reacción, lo que nos ayudará a predecir los
rasgos óptimos que debe tener el nuevo fenotipo.

2. Otras posibles lı́neas de investigación surgen de las aportaciones realizadas en
el capı́tulo 6:

• Perfeccionamiento del algoritmo de estimación de profundidad propuesto
para hacer frente a los problemas que plantea el ruido en la estimación
de la variación de la posición de la cámara. Se podrı́a extender su uso a
situaciones en las que el sistema robótico experimenta oscilaciones incon-
troladas en torno a un punto inicial, por ejemplo un dron que planea, donde
podemos determinar su desplazamiento relativo respecto a una posición
inicial y utilizar este desplazamiento para generar la imagen de profundidad.
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• La percepción de la profundidad en los seres humanos proviene de la in-
tegración de varias señales. Los experimentos con el prototipo ad-hoc
desarrollado para replicar los movimientos de fijación nos han permitido
estimar la imagen de profundidad de forma independiente para cada cámara.
Pero esta señal, podrı́a integrarse con la estimación de la profundidad utili-
zando la disparidad generada entre la imagen izquierda y la derecha. Una
posible lı́nea de investigación serı́a la integración de estas tres señales para
obtener una imagen de profundidad más precisa del entorno que rodea al
sistema robótico.

• El uso de la aproximación geométrica para modelar el movimiento de fijación
ha permitido diseñar e integrar una serie de modelos de deep learning
para determinar la imagen de profundidad a partir de la variación de la
imagen producida por un desplazamiento de la cámara (Apéndice A). El
perfeccionamiento de estos modelos de aprendizaje profundo a partir de
la integración del sistema binocular podrı́a ser una posible lı́nea de investi-
gación.

• El resultado obtenido con la ilusión de Ouchi puede iniciar una lı́nea de
investigación para probar el sistema robótico construido con otros tipos de
ilusiones ópticas, incluso parametrizarlos y confirmar que su comportamiento
es similar al biológico, lo que permitirı́a validar el modelo propuesto y apli-
car las hipótesis establecidas como punto de partida para posibles nuevos
modelos biológicos.
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Abstract

Billions of years of evolution have generated highly complex systems that allow them
to adapt to their environments and generate a series of behaviours. Starting from
this premise, it seems reasonable to assume that for building adaptive and somewhat
intelligent robotic systems, it should be essential to observe biological systems exhibiting
such properties. Then, the bio-inspiration concept could be a helpful tool. This thesis is
based on the study of the biological model for the generation of saccadic eye movements
in humans, which is one of the fundamental pillars for exploring the world around us,
and an essential part of the concept of active vision. The adaptation process that guides
the learning of this model in a robotic system is based on interactive perception.

The morphological characterisation of a robotic system for the execution of this
type of movement, along with the development of several internal model proposals
allowing the replication of this biological behaviour in a robotic system are some of the
main axes of this work. The morphology selected is based on the Helmholtz setup
model. This configuration is a binocular system that is a simplified replica of the primate
visuo-oculomotor system. Therefore, we perform a preliminary analysis regarding the
necessity of encoding the stimulus using binocular or monocular vision. Our result
suggest that using the cues from both cameras notably increases the precision of the
saccadic movements.

The internal model enabling the generation of behaviour from the information com-
ing from the environment through the sensors is described by two different architectures:
Feedback error learning and Recurrent architecture. These architectures are based on
the principles of interactive perception. Several experiments are conducted to evaluate
the characteristics of both architectures, concluding that although the Recurrent archi-
tecture offers better performance concerning the accuracy, the time needed to adapt it
is a limitation that the feedback error learning architecture does not present. In either
case, they are both more precise than suggested in some literature systems and have
the quality of being adaptive. In this way, the evolution of the system through interactive
perception turns the environment into a fundamental actor in the process, ultimately
defining the behaviour of the robot.

xx
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The estimation of the internal model associated with a given morphology emerges
from the interaction with the environment. The adaptive supervised learning techniques
presented in this work have an important limitation once the internal model has been
learned: any change in morphology or environment involves a learning process.

In this thesis, we propose a model to obtain the correlation between morphology
and internal model parameters so that a new internal model can be predicted when
morphological parameters are modified. Furthermore, we suggest different neural
network architectures to address this dimensionally severe regression problem. Using
the studied robotic system for generating saccade eye movements, we evaluate the
performance of each approach. The best results are achieved for an architecture with
parallel neural networks. Our results can be instrumental in state-of-the-art trends such
as self-reconfigurable robots, reproducible research, cyber-physical robotic systems, or
cloud robotics. Furthermore, internal models would be available as shared knowledge
so that robots with different morphologies can readily exhibit a particular behaviour in a
given environment.

In nature, the transmission of information between generations through genes
solves the problem of starting from scratch. Thus, when a living being is born, it does
not need to generate its entire internal model to display its behaviours. Instead, it
starts from a model encoded by its genes, subsequently modified and adapted by the
various environments in which the living being is developing. Based on this premise,
the procedure and the machine learning tools used to predict the internal model from
morphology allow us to establish the concept of artificial genotype, proposing what
an individual and a species are from the point of view of robotics. Finally, we suggest
this model exhibits a behaviour that is similar to that of living organisms regarding the
concept of reaction norm.

To conclude, an algorithm based on microsaccades and head movements dur-
ing visual fixation is presented. It combines the images generated by these micro-
movements with the ego-motion signal in order to compute the depth map. Depth
estimation is a challenge for robots and living organisms in their adaptation to evolving
environment. We propose a model that abstracts head microdisplacements and mi-
crosaccadic movements. A depth map of the initial image can be obtained using the
stream of images produced in the visual fixation process as a disturbance in the initial
image of the fixation point. The algorithm is tested in a robot eye-in-hand simulation, and,
in light of the results obtained, it can satisfactorily estimate the depth map. Also, they
corroborate the fact that microsaccades are instrumental in stabilising this estimation.
In order to implement this algorithm in a real robotic system, we designed and built
a visuo-oculomotor system with a Helmholtz distribution and mounted it on a rotating
Sterwart platform enabling us to perform the neck functions. By replicating the fixation
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movements, we obtained the depth image in both cameras based on the algorithm.

In summary, throughout this thesis, we present various algorithms and meth-
odologies with a solid biological inspiration improving the perception and adaptation
capabilities of robotic systems in general, being the environment the force that allows
the systems to improve their performance.

Keywords: saccadic eye movements, monocular depth estimation, bioinspiration,
genotype, phenotype, norm of reaction, morphology, internal model, adaptive neural
networks, visual learning, microsaccades, sensorimotor development.
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Chapter 1

Introduction

Do, or do not. There is no try.

Yoda. Star Wars: Episode V
The Empire Strikes Back (1981)

Indeed, since the origins of humanity, exploring the environment around has been
one of its characteristics. From the first hominids in Africa who left the savannah to Neil
Armstrong, who set foot on the moon in 1969, human beings have used their ability to
explore and go beyond the established limits of the environment. These achievements
have been mainly the result of the ability of human beings to perceive, imagine, and
create with the aim of adapting to environments where other species are unable to do
so. This ability could be defined in many ways, one of the most common is to call it
intelligence..

The concept of intelligence is as broad as the fields where it is applied. Therefore,
to say intelligence is just an ability of living beings to adapt to their environment is prob-
ably inaccurate. However, adaptive capacity has a considerable bearing on intelligence
behaviour.

In robotics, exploration and intelligence go hand in hand. If the robot cannot
perceive the environment correctly, it will be difficult for it to adapt to the changes
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occurring there, and it will therefore appear unintelligent.

Interactive perception blurs the barrier between perceiving the environment and
acting on it, allowing the robotic system to adapt through interaction with the environment.
Interactive perception is an evolution of the concept of active perception, which Bajcsy
et al. (2018) defines as:

“An agent is an active perceiver if it knows why it wishes to sense, and
then chooses what to perceive, and determines how, when and where to
achieve that perception.”

The concept of interactive perception embraces the concept of active perception
because the agent not only explores the environment but also monitors the executed
motor actions.

These days there is an apparent increase in the need for intelligent robotic systems
that improve society’s living conditions in a wide range of fields, from autonomous
transport systems to robotic systems for medical tasks.

This thesis attempts to understand the lessons of Nature applied to robotics, spe-
cifically to the saccadic movements underlying active exploration and vision through
interactive perception. This work leaves aside the exclusive development of control-
lers to reproduce the saccadic behaviour in a particular robotic system, studying how
to generalise it to any similar robot and giving it practical applications, suggesting
new fields of study contributing to Industry 4.0 and improving society.

1.1 Motivation

1.1.1 Bio-inspiration

The study of natural phenomena is one of the main components of scientific
advances, e.g. Nicolaus Copernicus was able to deduce from his observations of
planetary movements that the Earth was not the centre of the Universe. In turn,
Alexander Fleming observed how the growth of a fungus (Penicillium notatum) in
cultivation eliminated the bacteria present. Therefore, it is reasonable to assume that
to create intelligent systems, one must observe entities considered as such. From
this perspective, the observation and study of living organisms can provide knowledge
that can apply to other fields. Thus, Bio-inspiration is understood as the application of
biological models in fields beyond biology. This way of modelling is not really a new
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concept, as back in the Renaissance, Leonardo Da Vinci studied the anatomy of birds
in an attempt to create flying machines.

In general, the biological models considered refer to materials, morphology or
functionality. However, when contemplating extrinsic factors such as the environment,
the adaptability of living beings is relevant. Furthermore, the present complex biological
systems with their capabilities result from millions of years of evolution. Therefore,
Nature has done an improvement work that may serve to develop robotic systems with
a particular morphology intended to perform the same functions.

The visuo-oculomotor system is probably the primary mechanism for humans
to explore and perceive the world. Considering it has several advantages, among
others being one of the most studied systems in neurobiology and medicine, numerous
biological models try to explain its functioning. In addition, the visuo-oculomotor system
contains all the elements of the perceptual cycle presented by Uexküll (1926): perception
of the stimulus, processing of the information and generation of a response, fitting the
basic mechanisms of operation of robotic systems.

On the other hand, it is not enough to mimic the morphology or functionality of
the visuo-oculomotor system, and it is necessary to consider adaptability to create real
intelligent systems. At this point, bio-inspiration also plays an essential role in providing
the model inspiring the artificial neural networks that are the mathematical basis for
learning and implementing adaptive behaviours and interactive perception in robotic
systems.

Biological models can be applied to a robotic system for visual exploration to
attempt to be functional, adaptive and morphologically equivalent. In robotics, unlike in
the biological world, it is usual to work with individual systems or at best with robots from
the same manufacturer. This approach complicates the generalisation and comparison
of results. In biology, on the other hand, individuals share morphological, functional and
adaptive traits with other individuals (species). Furthermore, biological individuals share
this information in a fashion that allows them to replicate common behaviours, albeit
with different traits. Such a course of action can also be applied to the field of robotics.

Therefore, this work is based on certain biological models, such as: neural net-
works, visuo-oculomotor system, perception cycle, gene-phenotype-environment re-
lationship, visual fixation process, and it studies its translation into robotic systems to
improve their capabilities through interactive perception.
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1.1.2 Industry 4.0

The introduction of collaborative robots in the industry has represented a paradigm
shift. It is now no longer necessary to separate the work areas of people and robots,
fostering collaboration between both to perform tasks. This change makes a decisive
contribution to Industry 4.0. The German government introduced this concept in 2011
to name a set of strategies related to implementing high technology in the industry.

One of the four principles that identify Industry 4.0 is on-site support. Therefore,
automated systems should assist humans in decision-making processes or help with
complex or risky tasks. In this context, a robot is no longer regarded as a standalone
machine, but rather as a networked Cyber Physical System (Khaitan and McCalley,
2015) endowed with interoperability, i.e., the ability to connect and communicate with
other devices via the Internet (Hermann et al., 2016).

Wan et al. (2016) and Kehoe et al. (2015) introduce the concept of cloud robotics
so that, rather than attempting to increase the performance and functionality of isolated
robotic systems, knowledge is reused through the shared memory of multiple robots.

Projects such as RoboEarth (Waibel et al., 2011) collect, store and share data
independently of the robotic platform used. Structuring all the data resulting from the
learning of a given robot in one environment improves the behaviour of similar robots in
the same environment, and contributes to the knowledge sharing that is needed within
Industry 4.0.

Once again, this aspect is brilliantly solved by Nature. Every living organism
shares information with the living forms that preceded it through its genes. One of the
motivations behind this work is to use this model as a source of inspiration to apply
it to interconnected robots allowing them to share knowledge or even improve their
adaptation to different environments.

1.1.3 Impact on society

Over the last ten years, robotics has been boosted by several advances that have
significantly improved its capabilities:

• Improvements in sensors, especially in the field of vision, have enabled robots to
perceive their environment more accurately. For example, expanding RGB sensors
to RGBD has become a standard. This improvement has let robots apprehend
their environment in three dimensions.
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• The introduction of collaborative robots, not only in industry but also for service ro-
botics applications, has generated an innumerable set of applications contributing
to turn robotics into an element of people’s daily lives.

• At the educational level, the appearance of mini-computers such as the Raspberry
Pi has facilitated the popularisation of robotics by enabling the creation of low-cost
robotic systems, allowing and promoting the learning of programming and the
basic principles of robotics.

• Finally, the development of Deep Learning has impacted all areas related to
machine learning. Although it remains to be seen whether these techniques will
be applicable to robotics in a generic way, it has made it possible to solve some
particular problems efficiently.

All these advances have led robotics to be more and more present in our lives,
from the vacuum cleaner hoovering the house, to the robotic arm that serves us a beer
in a bar; without forgetting that there are some places in the world where autonomous
cars are already a reality.

Whatever their functionality, robots need to obtain information from the environment
to perform their tasks efficiently. This work contributes to improving this aspect by using
biological models to develop algorithms that allow robots to better perceive and adapt to
their environment and make them more intelligent. This improvement increases their
reliability and further integrates robotic systems into society to solve more complicated
tasks.

1.2 Aims and scope

This thesis focuses on extending the exploration and adaptability capabilities of an
autonomous robotic system in order to reproduce primate-like saccadic movements for
interactive perception.

In order to achieve this aim, several milestones need to be accomplished:

• From the study of the biological model of the human visuo-oculomotor system,
propose a model applicable to robotics that allows us to generate saccadic move-
ments adaptively through exploration and autonomous learning.

• Improve the adaptability of robotic systems that generate saccadic movements
by using the information generated by other systems that have already learned to
operate appropriately in a certain environment.
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• Exploit the ability to reproduce saccadic movements to improve certain aspects of
interactive perception in robotic systems; particularly, capturing the third dimen-
sion.

1.3 Methodology

We elaborate mathematical models in order to reach the proposed aims, based
on a series of biological models that allow living beings to solve a series of problems
relevant to robotics. They are first examined in simulation in a general fashion and then
experimented in a particular way in a real robotic system (figure 1.1):

• First, a problem of relevance to the field of robotics is selected, and a biological
solution to the problem is sought. Usually, a biological model describes it. In this
work, the following biological models are considered:

– Saccadic eyes movements. The saccadic movements that humans use to
explore the world are a source of inspiration for implementing active vision in
a robotic system.

– The relationship between genotype, phenotype and environment in living
beings. When a new living being comes to life, its DNA strands encode all
the information that later, conditioned by the environment, will give rise to
its behaviour and capabilities. On the other hand, when a robot system is
created, all its controllers and properties are adjusted to generate a particular
behaviour from scratch without prior knowledge. Hence, there is no reuse of
the experiences that other robots performing the same task have previously
acquired. Nature’s pattern of transmission of information between successive
generations can help improve this issue.

– The execution of complex mechanisms and processes produced in living be-
ings, such as the visual fixation process, increases the information available
to the brain to process the surrounding environment. Therefore, transfer-
ring these mechanisms to a robotic system should improve its perceptual
capabilities.

• Biological systems with billions of years of evolution are so complex that replicating
their models becomes an unachievable task. Fortunately, thanks to abstraction, it
is possible to simplify the essential parts of these systems and model them math-
ematically. For this purpose, it is necessary to establish a series of hypotheses
allowing these simplified mathematical models to develop.
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• Before these models can be implemented in a real robotic system, they are tested
in simulation. In some cases, the unavailability of sufficient real robotic systems
renders simulation the unique means of testing them. In the simulation, the
assumptions for the development of models are tested to exhibit similar behaviours
to biological models.

• If the hypotheses developed in the design of the bio-inspired models are verified
in simulation, the implementation in a real robotic system takes place, verifying
that the robot exhibits the behaviours obtained in the simulation.

The numerical results obtained —either in the simulations or in the real robotic systems
used in this work— are compared either with other methods that allow their estimation
using the existing literature, or with the simulation of certain parameters that allow us to
evaluate their performance.

The same methodology has been applied to develop each proposed model, chan-
ging how the results are compared or the robotic systems used. In some specific cases,
a robotic system has been designed and implemented specifically to verify the results.
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Figure 1.1: Outline of the methodology followed in this research work.
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1.4 Outline

We structured this thesis in several chapters. Chapters 2 and 3 describe the
biological model for saccadic generation and the mathematical models to deal with the
adaptation problem respectively. The remaining chapters describe the work performed to
develop and adapt various biological models, suggesting solutions to various problems
in the field of robotics. In each chapter we propose some partial objectives and obtain
results to solve the posed problems. The first appendix introduces an application derived
from the developed models using deep learning techniques to solve the problem of depth
estimation. The second appendix describes the software architecture we specifically
developed to implement all this work in the various robotic systems.

• Chapter 2. Saccadic eye movements. The biology of saccades is presented
here, since they are the core around which all our work revolves, providing it with a
strong bio-inspiration. There exist models describing how human beings generate
saccadic movements to explore the world actively. This chapter briefly attempts to
detail how our brains generate saccadic movements as a basis for the models that
will be described in subsequent chapters. Similarly, introducing the morphology of
the oculomotor system here will allow us to discuss later on the different ways in
which robotic modelling of the oculomotor system has been attempted.

• Chapter 3. Adaptive learning in neural networks. The environment is a factor
that has been present throughout this work. The ability of living beings to adapt
to the environment is one of the most desired qualities in robotics. A set of
mathematical tools allows, in a certain way, to represent the internal model of
robotic systems in an adaptive fashion, so that they can respond to the changes
occurring in the environment. These mathematical models are also bio-inspired,
specifically in the neural networks conforming to the nervous systems of living
beings. The concept of adaptive learning refers to the ability of the system to learn
from changes in the environment in order to improve its performance. This chapter
introduces these artificial neural network models, that allow for some adaptability,
along with the mathematics required to implement them.

• Chapter 4. Robotic systems for visual exploration by means of saccadic
movements. This chapter describes the main types of morphology for robotic
heads that allow them to imitate the movements generated by the human oculo-
motor system described in chapter 2. A Helmholtz setup morphology is selected
for implementing the robotic system to execute saccades, and the morphological
parameters describing it are detailed. Afterwards, we study how integrating the
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two visual signals is useful for generating more accurate saccadic movements.
Finally, two controller architectures for the execution of these movements are pro-
posed. These are evaluated and compared with other types of models developed
in robotics to execute these exploratory movements.

• Chapter 5. Predicting the internal model of a robotic system from its mor-
phology. Once we have several methods described in the previous chapter for
the execution of saccadic movements based on adaptive learning methods, this
chapter proposes to reuse, in a certain way, the information of how a robotic
system has learned to adapt in a specific environment to improve the learning of
other similar robotic systems. This relationship between the specific properties
of a robotic system —partially constituting its morphology— and the paramet-
ers allowing it to adapt itself to the environment, led us to propose an artificial
model based on the triangle genotype, phenotype, environment, as described for
biological organisms. Thus, the morphology of a robotic system and its internal
model can be transmitted from one robot to another in the same way it occurs in a
biological system.

• Chapter 6. Saccadic behaviour for depth estimation. The saccadic move-
ments described in chapter 2, and modelled in chapter 4 for visual exploration,
have implications for other biological behaviours such as the visual fixation pro-
cess. We exploit the involvement of saccades in this fixation process to acquire
depth information from the environment. This chapter also briefly describes the
robotic system we have specifically developed to test the proposed algorithms.

10



Chapter 2

Saccadic eye movements

Exploration is wired into our brains. If we can see the horizon, we want to know
what’s beyond.

Aldrin and Abraham (2009)

2.1 Introduction

There is no doubt that the visual stream plays an important role in the way humans
explore the world around them. Nature has endowed us with a system that generates a
signal from electromagnetic radiation that —after been processed in a convenient way
—produces a response in the organisms for their interaction with the surroundings.

As (Uexküll, 1926) suggests, there is a relationship between the perceived signal
(stimulus), the actions carried out by the organisms and a part of the world called the
environment. The meaning of a stimulus for a particular organism can be inferred from
the behaviour it exhibits as a response.

These elements can be represented in a diagram (figure 2.1) where arrows
symbolize the flux of information between them. The senses capture data from the
environment; however, that data can be altered depending on the inner conditions of the
organism. Actions are executed by the organism through its effectors after information
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processing in the central nervous system —or more directly in the case of reflexes.
These actions somehow modify the environment, with possibly a change in the signal
perceived by the sensors as a result. These actions need not necessarily result in
an actual physical change: any action that modifies the perceived signal coming from
the environment —e.g. by moving the sensory organs— can also de considered as a
change in the environment from the point of view of the organism.

The concept of interactive perception (Bohg et al., 2017) turns the cycle proposed
in figure 2.1 into an interactive process so that, to some extent, the environment guides
the cognitive process.

Efectors Senses

Cognition

Environment

Figure 2.1: Perception and action cycle

Visual perception in humans fits this
cycle perfectly. In addition, the physiolo-
gical and functional model of the oculo-
motor system has been described almost
in its entirety (Kandel et al., 2000). This
knowledge about the functioning of the
primate oculomotor system, and its ad-
aptability and precision capabilities, has
led to the translation of biological models
into robotic systems. This adaptation of
models has been carried out to solve com-
plex problems in the field of robotics. This
chapter aims to describe the biological
visual system that allows the execution of
this cycle for humans. In order to obtain
models that could be transferred to robot-

ics, not only the physiological and anatomical descriptions that can be found in manuals
for medical professionals are necessary, but also those proposed by neuroscience
(Squire et al., 2012) (Rolls and Deco, 2001), experimental psychology (Wixted et al.,
2018), and computer science (Mallot et al., 2000).

The oculomotor system is a part of the primates’ central nervous system that is in
charge of eye movements. It is composed of pathways that connect various regions of
the cerebellum, brain stem, and eye nucleus, using multisynaptic joints.

A number of systems in robotics have taken inspiration for their design and control
in both the visual oculomotor system, and the proposed cycle of perception and action
(Murray et al., 1992; Sharkey et al., 1993; Truong et al., 2000).

Oculomotor control is also an important research area in computational neuros-
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Saccadic eye movements Introduction

cience since the primate oculomotor system can generate a rich set of behaviours
in spite of been relatively simple (Shibata et al., 2001). Furthermore, applying the
knowledge acquired in this area to the field of humanoid robotics allows the validation
of models developed by neuroscience, providing practical and straightforward solutions
to highly complex problems (Rucci et al., 2007).

If the visuo-oculomotor system is isolated from the rest of a complex human being,
its behaviour can be characterized by how it acts in the presence of a stimulus, and
conditioned by the environment and by the body itself.

The visual oculomotor system typically generates a series of eye movements in
response to different stimuli, or as a functional part of cognitive processes. As it is well
known, the fovea is the area of the retina where the receptor concentration is highest
and, consequently, it yields the highest resolution. Therefore, depending on whether the
behaviour of the eye is to maintain the projection of the stimulus within the fovea or to
bring it onto the fovea, the eye movements can be classified into two large groups:

1. Movements that bring a stimulus of interest onto the fovea:

• Saccadic movements. These are swift eye movements that immediately
change the direction of gaze. They bring the image of interest to the fovea
in the shortest possible time. They are conjugated movements, i.e. in which
both eyes participate in a coordinated manner. This kind of movement can
reach speeds of 20 − 600 degrees per second. The saccades have two
properties that make them singular compared with the other eye movements:
they can be voluntary and suppressed.

• Quick phase of Nystagmus. It resembles a saccade. Its purpose is to reset
the oculomotor system during a long rotation. In a way, it prevents the eye
from being blocked in an extreme position.

• Vergence movements. They are in charge of bringing the image of in-
terest to both foveas, mediating stereoscopic vision. They are slower than
saccades..

2. Movements that maintain the images of interest on the fovea:

• Vestibular movements. They maintain a fixed image on the retina during
short, rapid rotations of the head.

• Optokinetic movements. They maintain a stable image when objects move
in the periphery while the head is stationary (Cohen, 2011). The combin-
ation of vestibular and optokinetic movements allows us to see and move
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at the same time. In practice, although they depend on different neuronal
systems, both movements are so closely related to each other, that it could
be considered as a vestibular-optokinetic system.

• Smooth pursuit movement. It maintains a mobile object on the fovea. It
is a tracking movement and can reach 20− 30 degrees per second. When
the speed of the object is too high or changes rapidly, saccadic movements
intervene.

• Fixational eye movements. When the axis of vision of the two eyes are
directed to one point, and this point of interest is in the centre of both fo-
veas, several movements are produced to maintain this situation. The most
important are: the microsaccades, the eye’s tremor and drift.

Each movement has a particular function and its neural substrate. Among all these
types of eye movements, this work focuses on saccadic movements. Saccades allow
us to explore the world and focus our interest on a particular voluntary or involuntary
stimulus. Exploring the world involves paying attention to some things and disregarding
others, the saccades being the basis of such exploration. Understanding the mechan-
isms governing the generation of these movements allows us to design artificial systems
imitating these behaviours.

This chapter is developed following the idea expressed in figure 2.1. First, the
eyes —considered as the effectors of the visual system— are briefly described in
section 2.3. Second, the concept of sensor applied to the human visual system cannot
be circumscribed to the retina only because, as described in section 2.4, the image
captured by the retina is projected to different brain areas which process it and generate
the signals that trigger the resulting cognitive processes. Finally, the generation of a
saccade involves many brain areas that do not act sequentially but instead in a parallel
fashion; they are briefly described in section 2.5.

2.2 Objectives

This work is developed in the context of bio-inspiration; specifically, a class of eye
movements involving the exploration, perception and action on the environment, as is
the case of saccadic movements. For this reason, it is appropriate to briefly describe
the biological processes involved in the execution of these movements. They have
already been modelled from the point of view of medicine, neuroscience and cognitive
psychology.
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2.3 Eye muscles: Visual system effectors

The effectors of the visual-oculomotor human system are the eye muscles. They
can be grouped into three pairs for each eye. Unlike the rest of the body, the eye
muscles are not segmented and, therefore, they are composed of whole fibres. This
property facilitates the understanding and analysis of eye movements.

In a simplified manner, they can execute eye rotation and translation movements
as shown in the diagram in figure 2.2. The eye muscles are controlled by three of the

Rectus
Superior

Rectus
Inferior

Rectus
Medialis

Rectus
Lateralis

Obliquus
Inferior

Obliquus
superior

Figure 2.2: Schema of eye movements

twelve cranial nerves. The signals travelling through these nerves come from various
areas of the brainstem. The discharge rate in neurons of that final common path
is proportional to the angular deviation of the eye. The movement is executed by a
combination of contraction and relaxation of each pair of muscles; therefore, it is far from
pure translation and rotation. Although the human eye is inside a spherical cavity called
a Tenon capsule, the centre of the eye’s rotation can be displaced by 1 to 2 mm with
each movement. Therefore, the centre of rotation of the eye sphere is usually between
13-15 mm behind the cornea. However, Dutch ophthalmologist Franciscus Cornelius
Donders in 1846 established the so-called Donders’ law. He stated that the eye always
assumes the same position for any head position and any direction of gaze, resulting in
the fixation point being focused on the fovea.

In addition, the mathematician Johann Benedict Listing described how the eye
moves, the so-called Listing’s law. The roll angle of the eye is always the same as if it
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had turned the shortest possible way from all other positions into the current position.
This fact suggests that the eye should execute compensatory movements on the roll
angle. These are not a consequence of the geometry or muscles of the eye; on the
contrary, it has a neural background. These two laws applied to a biological system,
such as the human eyes, are important to implement eye movements in a robotic system
since they define a set of design limitations.

It is noticeable that the eyes can turn in the same direction or in opposite directions.
In the first case we speak of version movements. On the other hand, when the direction
of the eyes is opposite, these movements are called vergence. The German physiologist
Ewald Hering in the late nineteenth century, postulated his law in reference to the
direction in which the eyes move, stating the conjugacy of saccadic eye movement
in stereoptic animals —i.e. both eyes must move symmetrically by equal amounts—
regardless of physiological and anatomical differences between the two eyes. He
thought this property was innate, contradicting contemporaries like Helmholtz, who
believed this coordination was learned. Today it seems that both of them were right:
our eyes are yoked together at birth, but the yoke can be modified depending on the
environment.

Vergence
angle

Version
angle

Gazed
point

γL γR

Vergence
angle

Version
angle

Gazed
point

γL

γR

Eyes in vergence Eyes in version

Figure 2.3: Schema of the eye vergence and version movements

These movements can be represented on a plane, giving them an angular in-
terpretation, as it can be seen in figure 2.3 where γL and γR are the angles between
the direction of each eye and the perpendicular line to the segment joining them. The
version angle is the mean of both angles and corresponds geometrically to the angle
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shown in figure 2.3.

version =
γR + γL

2
(2.1)

On the other hand, vergence is defined as the difference between both angles:

vergence = γL − γR (2.2)

From the point of view of engineering, the motor system of the eyes has a series
of properties that make difficult their artificial replication with current materials and
technologies:

• Eyeballs have low inertia.

• Muscle drive is reliable.

• The entire motor system has very low friction and therefore low energy dissipation.

• The oculomotor system has a high power/size ratio.

• It is a system that can reach high accelerations.

• The control mechanisms are far from being linear.

2.4 Retina and visual cortex: Visual sense

Unlike the previous case, where the eye muscles are directly assimilated to the
effectors, qualifying the eyeball and the retina as the sensory system is a simplification,
which is not entirely accurate. Human beings do not form the images in the retina but
in particular areas of the brain. So these areas can also be considered as part of the
visual sensory system.

The eye in primates is the gateway to the signal from the environment triggering
the stimuli, and different parts of the visual system process them. Therefore, the eye is
an adaptive optical mechanism that can be modelled. In 1911, Gullstrand presented his
scheme of the human eye in “Einführung in die Methoden der Dioptrik des Auges des
Menschen”. Gullstrand won the Nobel Prize in 1911 for this work. In this way, given a
point source of light and using the geometric interpretation of the proposed ocular model
(Vojniković and Tamajo, 2013), it is possible to determine the position of the projection
of that point on the retina.

In primates, the vision system perceives the observed scene through 2D projec-
tions on the left and right retinas. The retinal ganglion cells are connected to the lateral
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Figure 2.4: Areas of the brain in-
volved in the sensory part of the
visuo-oculomotor system

geniculate nucleus in the thalamus, which projects directly to the primary visual cortex
(V1).

This area is characterized by simple and complex cells. Both types of cells have
small receptive fields and are sensitive to monocular and binocular visual stimuli, such
as oriented edges, moving bars or gratings, and binocular disparities (Ohzawa et al.,
1990; Prince et al., 2002).

From a practical point of view, V1 can be seen as the substrate that encodes
the basic binocular information provided by the retinas into a feature-based space.
Downstream from V1, visual processing splits into two parallel streams.

The ventral stream performs object recognition and courses through visual cortical
areas V1, V2, V4 and IT. Each of these areas is sensitive to specific features that get
increasingly complex and invariant against affine transformations. While the ventral
stream detects target objects, the dorsal stream estimates their spatial location and their
size. The dorsal stream is also in charge of planning eye movements such as vergence
and saccades, computing the pertinent sensorimotor transformations.

Although the processing stream is divided in two, both signals are somehow
integrated into specific brain areas to generate motor movements. These two cues are
produced by the excitation of the retinal cells that cause the activation of the visual cortex.
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In addition, these two streams are used by other brain areas to generate cognitive and
non-cognitive responses (Chinellato and del Pobil, 2016).

2.5 Saccades: Visual system behaviour

Saccades are fast, ballistic movements that are used to bring a visual stimulus
to the centre of the field of view (named fovea in primates) and therefore, eye version
and vergence are both changed (Enright, 1984). The movement can be as fast as 900
deg/s and the control of its execution is not altered by visual perception. Due to the
internal model of the visual-oculomotor system, the movement of the eye is accurate
(Chen-Harris et al., 2008). This internal model shows certain plasticity, as demonstrated
by its ability to adapt to small changes in the oculomotor system (Lappe, 2008). While,
in general, the target can be provided with both auditory and visual stimuli, herein the
visual ones is only referred to in this work. From a behavioural point of view, once a
target is detected, the oculomotor system triggers an eye movement to bring it to the
centre of the visual field. The target of a saccade emerges from the interconnectivity
between several cortical areas, such as the superior colliculus (Munoz and Wurtz,
1995), the basal ganglia, the posterior parietal cortex, the frontal eye field (FEF), the
cerebellum and the brainstem.

Multiple models (Girard and Berthoz, 2005) have been developed to explain the
flow of information and the pathways through the different brain areas. From a modelling
point of view, sequencing the different events and processes occurring in the brain
areas involved is the most straightforward fashion to interpret the experimental results.
However, the neural processes responsible for target selection and execution of the
saccade occur concurrently in an interconnected network throughout the brain from
front to back and top to bottom(Chalupa and Werner, 2004)(Chapter 92). In figure 2.5,
a schema with the central relationships between different areas of the brain involved in
the saccade generation is presented.

There is an area playing a central role in saccadic triggering: the superior colliculus
(SC). It is one of the brain regions that has experienced the most significant changes
throughout evolution. This structure performs an initial visual analysis and generates
response commands in the simplest animals such as fish or amphibians. In these
species, the motor commands generated by the SC not only involve eye movements,
which are a fraction of the total number of actions performed by the SC. With the
increase in size of the cerebral cortex as a result of evolution in primates, some of the
functions of the SC have been extended to new cortical areas. In monkeys and humans,
the SC is relatively small compared to other zones but is still a significant structure. It

19



Saccadic eye movements Saccades: Visual system behaviour

SN

BG

BS

V1V1

SC

V2

Retina

V4

Ventral
Stream

Dorsal
Stream

FEF

LIP

V6A

SBG

Figure 2.5: Schema of the main brain areas involved in saccadic behaviour

has been suggested that this area is responsible for involuntary saccades in primates
(Bell and Munoz, 2008).

Signals from the retina and the visual cortex are received by the superior colliculus
(SC). This region has a layered structure. A retinotopic map is located in the upper
layers of neurons in this region. Unlike those in the V1 region, these cells are sensitive
to small stimuli but are invariant to other characteristics such as shape and colour. The
activation in this retinotopic area of the SC arises where there are potential targets to
execute a saccade. An exciting feature of the layered structure of the SC is that there is
little interaction between them, but each one has a remarkable relationship with other
areas of the brain. The entry signals come from the retina directly to the most superficial
layer of the SC through neurons called W neurons. On the other hand, from the fifth
layer of neurons of the visual cortex V1, some neuronal structures project the visual
signal onto the intermediate layers of the SC.

The deep layers of neurons in the SC express sensitivity to sensory stimuli from
several modalities (e.g., vision, audition, somatosensation), and another overlapping
group of neurons discharges a vigorous premotor burst during the orienting movement
(Gandhi and Katnani, 2011). This signal is processed by the cerebellum and the
saccadic burst generators (SBG) in the brainstem (BS). The cerebellum has an adaptive
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modulation function since it is where the internal models of the motor apparatus are
stored (Wolpert et al., 1998).

A saccade is generated by computing the direction and size of the saccadic
vector needed to null the retinal error between the present and intended eye position
(Moschovakis, 1996; Poletti et al., 2020). This procedure is the basic coding principle in
the SC (Gandhi and Katnani, 2011). The execution of a saccade by the SC is produced
with a slight error when the saccade vector is short. As the size of the saccade vector
increases, it is necessary to perform a second correction saccade.

During maintained fixation, very small saccades (microsaccades) are generated
with variable frequency and amplitude. Even though microsaccades and saccades
exhibit similar motor characteristics and share a common neural substrate (Ko et al.,
2010), there has been a long controversy over the visual functions of these movements.
Recent studies show that these microsaccades are precisely directed and play a
fundamental role in enhancing visual acuity (Intoy and Rucci, 2020)

Attending to studies about the generation of microsaccades indicate to be similar
to the saccades at the level of Superior Colliculus and downstream of it, in pre-motor
and motor brainstem circuits (Hafed, 2011; Thier et al., 2015). A microsaccade involves
significant suppressive influences on neural activity in the Superior Colliculus. This is
complementary to the fact that these eye movements, along with larger saccades and
movements of the head and body, contribute to retinal image motion and, therefore, can
help prevent fading when no other sources of image motion exist (Hafed and Krauzlis,
2010).

The cue that induces the generation of saccadic movement produced in the SC is
conditioned by activity in other brain areas. These areas process simultaneously the
signal received in the retina following the circuits described in section 2.4.

Signals from both the ventral and dorsal streams converge in the frontal field eye
area FEF. The group of neurons in this region contains a retinotopically organized
map of visual, visuo-movement and movement cells (Schall, 1991). While the visual
cells respond to the onset of visual stimuli, the movement cells respond to the onset
of a saccade and thereby encode the expected landing position of the eyes after a
saccade. The FEF is bidirectionally connected to area V4 (ventral stream)(Hamker,
2005b; Szczepanski and Saalmann, 2013) and to the lateral interparietal area (LIP) in
the dorsal stream. From these areas, it receives information regarding visual features of
the target (V4) and its spatial location (parietal regions as V6A (Buneo et al., 2002)).
These interactions are not limited to eye movements but to reentrant processing in
general, e.g. to the deployment of visual attention (Hamker, 2005a). In this way, the
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visual system maintains a consistent object representation in all cortical areas (frontal
eye field, ventral and dorsal streams).

The dorsal stream is also in charge of computing the sensorimotor transformations
required to control eye movements. These transformations are likely to be performed
through the gain field effect of neurons in the posterior parietal cortex (PPC). In
particular, neurons in the V6A area have been found to contextually encode different
representations of the target position, allowing for easy reference frame transformations.
In addition, neurons in V6A with retinotopically organized fields are modulated by gaze
direction to encode spatial positions (Marzocchi et al., 2008; Bosco et al., 2010).

The processed cues from both the dorsal and ventral streams generate signals
that reach several neural structures located in the area of Basal Ganglia BG. This
region, in turn, controls a group of neurons in the area known as Substantia Nigra SN
which is one of the primary circuits generating an inhibitory signal in the SC. In this
way, when the visuo-oculomotor system is used to explore the environment, hundreds
of stimuli appear on the retina. However, thanks to these inhibitory circuits, only one of
these stimuli reaches the lower layers of the SC and generates a saccadic movement.

2.6 Conclusion

Beyond the sea of acronyms, this chapter attempts to describe which parts of
the human brain and body are involved in performing a saccadic movement that, as
indicated, allows us to direct our visual attention. In summary, for perceiving the world
around us, not only the eyes are used, but there are many areas of the brain involved
(V1, V2, V4, LIP, IT,...). After the description of theses different cerebral regions, we
can conclude that visual signal processing is done in a parallel and redundant fashion;
in fact, this is a general principle in biological computation. As it can be seen throughout
this work, bioinspiration is the basis of our goal: developing complex behaviours in a
robot for the exploration of the surrounding environment.

2.7 Publications supporting this chapter

• Antonelli, M., Gibaldi, A., Beuth, F., Duran, A.J., Canessa, A., Chessa, M.,
Solari, F., del Pobil, A.P., Hamker, F., Chinellato, E., Sabatini, S.P., 2014, ”A
hierarchical system for a distributed representation of the peripersonal space of a
humanoid robot”, IEEE Transactions on Autonomous Mental Development, Vol. 6,
No. 4, pp. 259-273. DOI: 10.1109/TAMD.2014.2332875.
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Chapter 3

Adaptive learning in neural networks

Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from a population of similar
tasks more effectively the next time.

Herbert A. Simon (1983)

3.1 Introduction

In a real scenario, where a robot agent has to develop its activity, the interchange
of data with the environment constantly varies over time. Machine learning techniques
play a central role in this landscape (Esposito et al., 2004). In a way, the robotic system
should predict and model its surroundings to adapt to these changes. In this chapter, a
set of machine learning tools are presented to deal with the adaptation problem.

Classical classification of machine learning techniques regarding the type of
problem to be solved is shown in figure 3.1. However, the issue is not so much the
problem that these tools want to solve, but how the problem is solved.

One of the main objectives of this work is to reproduce the saccade movement of
the eyes in primates in a robot head based on detecting a visual stimulus and generating
the ocular movement to centre the stimulus on a retinotopic image. This movement
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Figure 3.1: Schema of the machine learning types depending on the kind of problem to be
solved.

involves a transformation from visual coordinate space to motor coordinate space.
Therefore, learning this visuo-oculomotor transformation can be treated as a function
approximation problem. However, in order to strengthen the biological plausibility, the
saccade control is learned through the interaction with the surrounding space (Chinellato
et al., 2011). Consequently, among all the techniques proposed in the classification in
figure 3.1, this work is focused on supervised learning for the resolution of regression
problems. In this category, there are many different techniques, among other: decision
trees, support vector regression, linear and bridge regression, ensemble methods,
gaussian process and neural networks.

As a consequence of the aforementioned biological inspiration, the choice of
artificial neural networks seems a natural consequence. The primary foundation of
these particular machine learning tools was the modelling and abstraction of their
biological counterparts. However, the model has currently evolved beyond biological
behaviour to focus more on its practical application.
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3.1.1 Definition of artificial neural networks

When one wants to give a precise and simple definition of what a neural network
consists of, it is simply not possible to find it because the definitions given in the literature
are made within a given context. Here are some examples:

• “An artificial neural network is an information-processing system that has certain
performance characteristics in common with biological neural networks.”(Fausett,
1994)

• “Artificial neural networks are parallel computational models, comprising densely
interconnected adaptive processing units.”(Hassoun, 1995)

• “Neural networks are mathematical models developed in an attempt to emulate
human neural systems.” (Chen and Dong, 1998)

• “A neural network is an interconnected assembly of simple processing elements,
units or nodes, whose functionality is loosely based on the animal neuron. The
processing ability of the network is stored in the interunit connection strengths, or
weights, obtained by the process of adaptation to or learning from a set of training
patterns.” (Gurney, 1997)

• “A neural network is a massively parallel distributed processor made up of simple
processing units that has a natural propensity for storing experiential knowledge
and making it available for use. It resembles the brain in two respects: Knowledge
is acquired by the network from its environment through a learning process;
Interneuron connection strengths, known as synaptic weights, are used to store
the acquired knowledge.” (Haykin et al., 2009)

• “An artificial neuron is a model of a biological neuron. Each artificial neuron
receives signals from the environment, or other artificial neurons, gathers these
signals, and when fired, transmits a signal to all connected artificial neurons. An
artificial neural network is a layered network of artificial neurons.” (Eberhart and
Shi, 2011)

The issue shared by almost all of the above definitions is biological inspiration.
However, after careful comparison, the relevance of other concepts can be observed:
parallel and distributed computation, adaptation and learning process.
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3.1.2 Parallel and distributed computation in biology

The computational load in the brains of living beings is distributed among the
units that form their nervous system called neurons. Therefore, a processing unit of an
artificial neural network models its biological counterpart. Neuronal computing takes
place in the cell body of the neuron, where the nucleus is located. The diffusion of ions
across the cell membrane is the motor causing the transport of charge along the neuron.
The neuron membrane has ion channels allowing the charge interchange between the
cell and its environment. In addition, neurotransmitters regulate this flux. Thus, the
charge movements produce a difference of electric potential between the inside and
outside of the neuron. When this potential difference exceeds a certain threshold, at this
point, a phenomenon called depolarization occurs, and an electrical signal is generated
(action potential).

Neuronal activity flows from one neuron to another in terms of electrical impulses
that travel along the neuronal axon through voltage-dependent processes of ion ex-
change along the axon and diffusion of neurotransmitter molecules across the cell
membrane within the synaptic space between neurons. This space is called the syn-
aptic cleft. Signal transmission in that space depends on the neurotransmitters that the
presynaptic neuron has released when the action potential has been triggered and the
pre-existing chemicals in the synaptic cleft. Modelling these electrochemical processes
is highly complex when a low level of abstraction and multiple neurons are considered.
A simple example of a biological neural network is shown in figure 3.2.

To define an abstract representation of a biological neural network from a compu-
tational point of view, each neuron is considered as a node in a directed graph. These
nodes have particular properties in this schema that depend on their function within the
network.

The input nodes symbolize the presynaptic neurons. The signals prior to these
neurons triggered by their depolarization are not considered, what matters is the numer-
ical value representing the action potential (x1, x2, x3 in figure 3.2). A single number or
weight embodies how the synapse process modified the signal from the presynaptic
neurons (w1,1, w2,1, w3,1 in figure 3.2). Next, the integration of all these modified signals
in the dendrites determines the activation of a neuron. When it exceeds a certain
threshold, it is depolarized, transmitting the signal forward in the network. A non-linear
function of the integration of the input signals (φ1 in figure 3.2) represents the activation
of the neuron. In a directed graph, this kind of processing unit is symbolized by an
activation node. The signal generated in the processing units is transmitted forward
in the network and modified by the synapses of the subsequent neurons (W1,1,W1,2 in
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Figure 3.2: Biological concepts of synapse and information transmission are abstracted from a
biological neural network, to generate the model of an artificial neural network and a mathemat-
ical model that describes it.

figure 3.2)).

This highly abstract model is probably very distant from the actual biological
schema because it merely attempts to imitate its functional behaviour. Even so, it has
demonstrated its ability to solve countless problems which otherwise would not have
been possible to address.

3.1.3 Feedforward neural networks

In biology, two key elements of nerve tissue contribute to signal processing and
the generation of responses to a dynamic environment: the neural connections and the
synapses established between them. These elements can also be found in the artificial
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neural network model, which also defines their behaviour. One factor is the network
topology, and quite another is the algorithm used to adapt its weights.

The concept of a layer of neurons is often used to represent the topology of a
neural network. Each of these layers groups a set of neurons with the same processing
function, e.g. the input layer gathers the neurons which generate a signal but do not
receive signals from any other neuron. Similarly, the output layer consists of the neurons
that do not transmit signals to other neurons, but only receive them. The hidden layers
are formed by a set of neurons that share the same activation function. The term
“hidden” refers to the fact that this layer is not directly connected to either the input or
the output of the neural network. Instead, these neurons behave as processing units
that modify their input signal by generating an output signal.

The simplest network is composed of an input layer and an output layer. The
connections go from the inputs to the outputs but not vice versa. This kind of neural
network is called feedforward single-layer. The left-hand side of figure 3.3 shows the
topology of a single-layer neural network.

w

w

Input Layer

Output Layer

Hidden 
Layer

Figure 3.3: Different schematic representations of a single-layer network.

A neural network is considered as multilayer feedforward (MFN) when one or more
hidden layers are present. However, this definition can lead to confusion with some
graphic representations of a neural network. For example, in the network on the right of
figure 3.3. In this case, the defined hidden layer has a special connection to the input
layer. It can be seen that the synaptic weights between the input layer and the hidden
layer are not indicated. The hidden layer acts as a predefined spatial transformation
of the inputs taking into account the value of all inputs. The arrows between the input
neurons and the hidden layer units indicate that these transformations are dependent
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on all input units. This layer has no actual activation functions. The synaptic weights
are set between the hidden layer and the units of the output layer. This scheme is still a
single-layer neural network.

This work will mainly focus on this second type of network (right-hand of figure 3.3),
although MFN will also be used on some occasions.

3.1.4 Adaptation and learning process

In living beings with a central nervous system, the role of the brain is to process
information from the environment and generate behaviour in response. However, the
environment is always dynamic, and therefore the brain must change how it processes
the received information to adapt to this dynamism. Biology and neuroscience suggest
that the reason for this ability to adapt is the plasticity of the synaptic processes occurring
in the brain. At least two mechanisms are available that enable that adaptation: (i)
Rebuilding the neural network connections by destroying and generating synapses. (ii)
Strengthening and weakening previous synaptic connections and altering the information
fluxes that circulate through the neural networks in the brain.

In artificial neural networks, the topology refers to the combination of nodes and
connections that are established. Therefore, changing it by adding or removing nodes
and connections depending on the inputs and outputs of the network is a form of
abstraction for the implementation of neural plasticity. This problem has been addressed
by pruning and growing algorithms from an initial model of the network. Nowadays,
pruning techniques are becoming more popular because of their application to problems
addressed by deep learning (Molchanov et al., 2019; Anwar et al., 2017; Zhu and Gupta,
2018). Initially, an adapted topology for a specific problem is formulated, and then
through pruning techniques, the model size is reduced to optimise the learning process.
This reduction is generally based on eliminating nodes with lower synaptic weights or
which contribute less to the network performance. On the other hand, growing methods
are less widespread and are often based on combinations with heuristics, genetic
algorithms or reinforcement learning to add new nodes to the network.

The most widely used approach to plasticity in artificial neural networks is not
based on changing the topology but on varying the synaptic weights according to the
expected inputs and outputs. In the proposed abstraction, the synaptic weights are
represented by a value. The critical question is how these values should be modified so
that the network works as expected and adapts to the data coming from the environment.

Two approaches can be considered to manage this problem: the classical batch
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approach and incremental techniques. The former option is currently the most widely
used due to the rise of deep learning techniques. However, it entails the need to adapt
the whole model, considering the current sample and previous ones. Moreover, this
method can cause inefficiency in the adaptation process when the information gained
with the new sample is irrelevant in regard to the information stored in the proposed
model.

The model obtained through the learning process should show two main charac-
teristics apparently in conflict: on the one hand, stability in order to keep significant
knowledge and, on the other hand, plasticity to update the model when new relevant
information is available (Pérez-Sánchez et al., 2018). The ideal scenario is that the
environment guides the learning of the system by sequentially providing relevant data
so that the most recent signals are more important than the oldest ones (Kubat et al.,
2004).

This chapter is centred on describing several approaches to this incremental
learning. Depending on the field of knowledge considered, the name that defines this
concept may be different: on-line learning, adaptation, incremental or sequential models
are terms used to describe this issue. In this way, weight learning in neural networks
will be focused on estimating the parameters of a mathematical model that describes
the behaviour of the network.

Our aim is not to present a treatise on mathematics, but rather, to enumerate a
series of concepts that allow the introduction of the mathematical nomenclature that
will be used throughout this work. In addition, appendix C briefly summarises the
mathematical foundations and concepts that are prerequisites for a better understanding
of the techniques developed in this chapter.

3.2 Objectives

One of the proposed objectives is to learn the visuo-oculomotor transformations
for the execution of saccadic movements. After millions of years of evolution, living
beings can provide clues on how to deal with this problem so that a system can adapt
to changes in its environment in an efficient way. Based on biological systems, one of
the tools available within Machine Learning are artificial neural networks. Due to the
nature of the problem to be addressed, supervised learning algorithms are presented,
where the teacher is the environment that generates the signals to adapt the synaptic
weights incrementally. In this chapter, a series of neural network topologies (section 3.3
and section 3.4) and some adaptive algorithms (section 3.5) are presented for further
development of the objectives of this work.

30



Adaptive learning in neural networks Supervised linear learning

3.3 Supervised linear learning

Linear models can approximate many processes in real environments. Even
when the real model is complex, local linear approximations can be made. One of the
main advantages of linearizing problems is that they can be solved analytically. The
most straightforward neural network that can be considered is formed by a single layer
corresponding to the output neurons. In figure 3.4, a scheme with the nomenclature and
topology of this kind of network is shown. As discussed in the introduction (section 3.1),
this contribution focuses on the use of supervised learning. Two different states can be
distinguished in this type of learning: training state and prediction state.
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Figure 3.4: Linear single layer neural network schema.

In the former, the synaptic network weights are adapted from the difference
between the expected and actual output corresponding to a known input. Given a new
input that was not previously used for the training process and thanks to the model
parameters estimated during this phase, it is possible to estimate a value for the output
in the prediction state.
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3.3.1 Linear model

Consequently, looking at figure 3.4, and given a training set with n instances of
input-output pairs {XXX1:n,YYY 1:n} where each input xxx∗i ∈ Rd is a vector with d attributes
(xxx∗i = {x1,i, x2,i, . . . , xd,i}T ) and yyyi ∈ Rj is a vector with the network outputs associ-
ated with each input (yyyi = {y1,i, y2,i, . . . , yj,i}T ), it is possible to define a linear model
(equation (3.1)) between the inputs and outputs.

yyyi = WWWxxx∗i + bbb (3.1)

A trick can be done to avoid considering the term bbb. If the number of attributes of
the input vector is extended to one more attribute with value of just 1 so that xxxi =

{1, x1,i, x2,i, . . . , xd,i}T , the equation (3.1) is simplified to equation (3.2)

yyyi = WWWxxxi (3.2)

Where:

WWW =


w1,1 w1,2 . . . w1,d+1

w2,1 w2,2 . . . w2,d+1

...
... . . . ...

wj,1 wj,2 . . . wj,d+1

 (3.3)

Moreover, they represent the weights of the network. After the training process, if n
tends to infinity, the set of obtained weights should fit the model perfectly as long as
the modelled process was linear. Because n is finite, the resulting weights are at best
an approximation (ŴWW ) to the real model. Therefore, the value of ŷyyi obtained with the
trained weights (ŴWW ) according to equation (3.2) is an estimation of the true yyyi. Based
on this difference, an error parameter can be defined:

εiεiεi = yyyi − ŷyyi = yyyi − ŴWWxxxi (3.4)

3.3.2 Learning linear model parameters

Depending on the field in science in which the linear model is considered, the way
to obtain the parameters that define it can be approached from different points of view.
Two possible methods that converge to the same solution are presented below.

3.3.2.1 Optimization aproach

Equation (3.4) is the error for input i, if the mean square error (MSE) for the whole
dataset is considered, the resulting expression can be written as:

EEE =
1

n

n∑
i=1

(
yyyi − ŴWWxxxi

)T (
yyyi − ŴWWxxxi

)
(3.5)
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Using the procedures to compute the minimum of a function it is possible to obtain
the values of the weights that minimizes this error:

ŴWW = YYYXXXT
(
XXXXXXT

)−1 (3.6)

This equation can present certain problems when the inverse of the matrix is cal-
culated, for example in the case that the resulting system of equations is ill-conditioned.
One way to avoid this situation, is to add a small penalty or regularization term to ensure
a good conditioning of XXXXXXT :

ŴWW = YYYXXXT
(
XXXXXXT + δ2III

)−1 (3.7)

where III is a diagonal matrix of size d and δ2 is a scale factor to graduate the penalty
term. This technique is called ridge regression or Tikonov regularization and is the
solution for a quadratic cost equation like:

EEE =
1

n

n∑
i=1

(
yyyi − ŴWWxxxi

)T (
yyyi − ŴWWxxxi

)
+ δ2

∥∥∥ŴWW∥∥∥2

f
(3.8)

The term
∥∥∥ŴWW∥∥∥2

f
is the squared Frobenius norm of the matrix of weights.

3.3.2.2 Maximum likelihood estimation for linear model

From the point of view of probability, it is possible to assume that each of the
outputs of the neural network proposed in figure 3.4 corresponds to a random variable yyyi
that has a probability density distribution that follows a multivariate Gaussian model. The
mean of that distribution should be WWWXXX and we assume that every point has the same
covariance mmtΣ. As stated in appendix C.11, it can be written as: YYY ∼ N (WWWXXX,ΣΣΣ).
Following equation (C.23), the likelihood function can be written as:

L(WWW,ΣΣΣ) = p(YYY |XXX,WWW,ΣΣΣ) = |2πΣΣΣ|−
1
2 e−( 1

2
(YYY−WWWXXX)TSIGMASIGMASIGMA−1(YYY−WWWXXX)) (3.9)

Acoording to the procedure for calculating the MLE (appendix C.8), the support
function is defined as the logarithm of equation (3.9):

l(WWW,ΣΣΣ) =
−1

2
log(|2πΣΣΣ|)− 1

2
(YYY −WWWXXX)TΣΣΣ−1(YYY −WWWXXX) (3.10)

By calculating the derivative with respect to the weights of the linear model and equalling
zero, the maximum likelihood estimator of the weights is obtained:

∂l(WWW,ΣΣΣ)

∂WWW
= 0→ Ŵ̂ŴWMLE = YYYXXXT (XXXXXXT )−1 (3.11)
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The result is analogous to that obtained by approaching the problem from the
point of view of optimization (equation (3.6)). However, this method has an advantage
in terms of calculating not only the maximum likelihood estimator for the weights, but
also, for the covariance.

∂l(WWW,ΣΣΣ)

∂ΣΣΣ
= 0→ ΣΣΣMLE =

1

n

n∑
i=1

(yyyi −WWWxxxi)
T (yyyi −WWWxxxi) (3.12)

The usefulness of ΣΣΣMLE lies in indicating the uncertainty of the obtained values.
Given a training set D = {XXX,YYY }, and once the maximum likelihood estimators of the
weights (Ŵ̂ŴWMLE) and covariance (ΣΣΣMLE) have been obtained, it is possible to predict, for
a given new unknown value XXX∗, the probability distribution of the neural network output:
p(ŶYY |XXX∗,DDD) = N (YYY |WWWXXX∗,ΣΣΣ).

3.3.2.3 Bayesian learning approach

In this case, the procedure described in appendix C.9 is followed to determine the
parameters of the model. To do this, a dataset D = {XXX,YYY } is the starting point.

1. Then, define the likelihood function that the neural network outputs in figure 3.4
are assumed to have. That is, a probability model is proposed to obtain YYY from
WWWXXX and also to consider that there is any uncertainty in this estimate represented
by a covariance Σ. Under these conditions, it can be assumed that the output of
the neural network, given parameters, input values and uncertainty, could follow a
Gaussian distribution:

L(YYY |WWWXXX,ΣΣΣ) = N (YYY |WWWXXX,ΣΣΣ) (3.13)

Considering the network outputs as independent variables, N (YYY |WWW,XXX,ΣΣΣ) can be
written as the joint probability of multiple normal distributions for each obtained yyyi:

N (YYY |WWW,XXX,Σ) =
n∏
i=1

1

(2πσ
1
2 )
e−

1
2σ2

(yyyi−WWWxxxi)
2

=
1

(2πσ
n
2 )
e−

1
2σ2

∑n
i=1(yyyi−WWWxxxi)

2

(3.14)

2. To assign a priori probability to the parameters. When they are estimated in the
training process, they must follow a probability model. Assuming that the exact
parameters that would describe the model are the weights WWW 0, it can be stated
that the estimation of WWW would be associated with an uncertainty VVV 0. Therefore,
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a proper probability density distribution of the estimation of the parameters can
defined:

p(WWW ) = N (WWW |WWW 0,VVV 0) (3.15)

The weights obtained in the training process follow a distribution that can be
considered as a Gaussian over the exact weights, with a particular covariance.

3. Applying Bayes’ theorem for the estimation of the a posteriori probability:

P (WWW |XXX,YYY ,ΣΣΣ) ∝ N (YYY |WWWXXX,ΣΣΣ)N (WWW |WWW 0,VVV 0) (3.16)

To develop this equation, the result obtained in Marginal and conditional Gaussians
(appendix C.11.4) can be considered. Thus, the a posteriori probability is a
Gaussian N (WWW |WWW n,VVV n) where:

WWW n =
(
VVV −1

0 WWW 0 + βYYYXXXT
)
VVV T
n (3.17)

VVV −1
n = VVV −1

0 + βXXXTXXX (3.18)

In the particular case that the prior probability of WWW is a zero-mean isotropic
Gaussian governed by a single precision parameter α so that: p(WWW ) = p(WWW |α) =

N (WWW |0, α−1I). The corresponding posterior distribution over WWW is simplified to:

WWW n = βYYYXXXTVVV T
n (3.19)

VVV −1
n = αI + βXXXTXXX (3.20)

By combining these expressions and grouping the parameters, the next equation
is obtained:

WWW n = YYYXXXT
(
αβ−1I +XXXXXXT

)−1 (3.21)

If equation (3.21) and equation (3.7) are compared, it can be seen that the result
obtained is analogous to the approach taken for the ridge regression. However,
an estimation of the uncertainty defined by equation (3.20) is now available.

3.3.3 Linear prediction

3.3.3.1 Output predictions

In general, known the trained weights, the output values of a network, such as the
one shown in figure 3.4, can be calculated using the expression:

ŷk,i =
d∑

m=0

ŵk,mxm,i (3.22)

where:
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• ŷk,i is the predicted output of neuron k for the input xxxi;

• ŵk,m are the trained weights corresponding to all the inth inputs related to the
neuron k.

• xm,i represents the mnth feature of the inth input vector; it could be assumed that
x0,i = 1 and therefore, the value of ŵk,0 could be considered as the bias or offset.

In particular, for a new input xxx∗ not previously used to estimate ŴWW , the value
generated at the output of the neural network according to equation (3.1) should be:

yyy∗ = ŴWWxxx∗ (3.23)

3.3.3.2 Probabilistic prediction

Using equation (3.21) to estimate the weights of the neural network by Bayesian
learning approach, equation (3.23) can be rewritten as:

yyy∗ = WWW nxxx∗ =
[
YYYXXXT

(
αβ−1I +XXXXXXT

)−1
]
xxx∗ (3.24)

We assume that the parameters α and β are fixed and known in advance, applying
the predictive posterior distribution definition (equation (C.16)):

f(yyy∗|xxx∗, D) =

∫
f(yyy∗|xxx∗,WWW,α, β)f(WWW |D)dWWW (3.25)

Using the Gaussian notation defined in section 3.3.2.3, that expression is trans-
formed:

f(yyy∗|xxx∗, D) =

∫
N (yyy∗|WWWxxx∗,Σ))N (WWW |WWW n,VVV n)dWWW

= N
(
yyy∗|WWWxxx∗,Σ + xxxT∗VVV n ∗ xxx∗

) (3.26)

As seen with this approach, the whole space of the weights that have been evolving
during the training is considered.

The probability distribution followed by the network output and calculated using
only the MLE approach (equation (3.11) and equation (3.12)) can be defined as:

f(yyy∗|xxx∗, D) = N (yyy∗|WWWMLExxx∗,ΣMLE) (3.27)

While the Bayesian learning approach considers the whole parameter space, the
estimation using MLE only grants a value for WWWMLE that is the one that maximises the
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probability. Furthermore, while the covariance in the case of the Bayesian approach
varies depending on the input of the network during the training and prediction process,
in the case of the MLE it is constant.

3.4 Supervised non-linear learning using basis
functions

3.4.1 Basis functions
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Figure 3.5: Schema of linear single layer neural network with generic basis function.

Basis functions are a set of standard mathematical functions:

Φ(xxxi) = {φ1(xxxi), φ2(xxxi), . . . , φt(xxxi)} that are linearly independent and they can be
combined to estimate any function yyyi(xxxi,WWW ):

yyyi = WWWΦ(xxxi) (3.28)

Where WWW are the parameters of the model. In the particular case that Φ(xxxi) = xxxi

and φ1(xxxi) = 1 the above expression is transformed into a simple linear model as shown
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Table 3.1: Some of the most used standard basis functions

Type of basis φt(xxxi)

Polynomial functions xxxti

Gaussians or radial functions exp
(
− (xxxi−µt)2

2σ2

)
Sigmoidal functions 1

1+e−a

(
xxxi−µt
σ

)
Fourier functions φ2t−1 = sin(2πtxxxi);φ2t = cos(2πtxxxi)

in equation (3.2). Sometimes it is useful to employ the transposition of equation (3.28):

yyyT = Φ(xxxi)
TWWW T → γγγ = Φ(xxxi)

TWWW (3.29)

where γγγ is yyyT andWWW = WWW T .

A single-layer neural network schema described by this model is shown in fig-
ure 3.5.

The objective of the basis functions is to make a change of space in such a way
that the non-linear relationship between yiyiyi and xxxi is transformed into linear when the
basis function is applied to xxxi. In this way, all the available techniques for estimating the
parameters that define this new linear relationship can be used.

The choice of the type of basis function depends on the type of model to be
addressed. There are standard and widely used sets of these functions (table 3.1). All
these basis functions depend on specific parameters that must be set before starting
the learning process. In some cases, approximation or prior unsupervised learning of
these parameters can be done from an initial dataset.

The estimation of the weights of a neural network like the one shown in figure 3.5,
with a hidden layer in which the activation function is one of these basis functions, can
be done by any of the approaches seen in the previous section. Thus, for example,
using Bayesian learning, equation (3.21) can be rewritten using basis functions as:

WWW n = YYY Φ(XXX)T
(
αβ−1I + Φ(XXX)Φ(XXX)T

)−1 (3.30)

3.4.2 Radial basis function neural network

A radial basis function neural network (RBFNN) has the topology of a full connected
single-layer network. Their particularity is the presence of a hidden layer that transforms
the inputs using a radial basis function (RBF). Radial basis function networks can
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potentially approximate any function with the desired precision (Park and Sandberg,
1991). They were actually introduced to interpolate functions (Powell, 1987). It was
precisely this concept of interpolation that related radial basis functions to neural
networks (Broomhead and Lowe, 1988).

Given an input xxx ∈ Rn, a RBF is a radially symmetric function, i.e. it is a real-valued
function whose value depends only on the distance from some other point ccc ∈ Rn, called
a center, φ(xxx) = f(‖xxx− ccc‖). Typically, the Gaussian is used as a RBF:

φ(xxx) = e

(
− (xxx−µ)2

2σ2

)
(3.31)

Where µ and σ are the centre and radius of the RBF. For a particular neuron i of the
hidden layer, the centre µ represents the centre of a cluster that is used as a basis for
comparison. The standard deviation σ for this cluster defines the range of the RBF. The
choice of σ and µ for each neuron determines a partition of the input space. As it is
the case for other paramenters, this choice conditions the network performance and its
learning ability. The values of the centres can be chosen randomly (Broomhead and
Lowe, 1988). However, unsupervised methods —such as k-means— can be used to
estimate the RBF centres (Moody and Darken, 1989).

Therefore, the model that describes a RBF neural network with RBFs as activation
functions in its hidden layer can be expressed, with the nomenclature of figure 3.5, as:

yk,i =
t∑
l=1

wk,lφl(xi) (3.32)

where, in this case, the activation function φl is defined as a Gaussian:

φl(xxxi) = exp

(
−

d∑
m=1

(xm,i − µm,l)2

2σ2
l

)
(3.33)

3.4.3 Trigonometric basis functions neural network

From the theory of Fourier series, any continuous function f(x) can be decom-
posed as follows:

f(x) = c+
∞∑
l=1

alcos(lx) +
∞∑
l=1

blsin(lx) (3.34)
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If we accept an error in this approximation, and only use a finite number of terms,
the trigonometric functions defined in the above expression can act as basis functions.
Thus, the higher the maximum value of l, the better the obtained accuracy. Moreover,
the use of these trigonometric functions avoids to some degree the requirement for
normalising the inputs.

A particular model based on the application of this kind of trigonometric basis
functions is defined by Lázaro-Gredilla et al. (2010).

f(xixixi) =
t∑
l=1

alcos(2πΩT
l xixixi) + blcos(2πΩT

l xixixi) (3.35)

Where Ωl represents a vector of spectral frequencies that is shared by each pair
of trigonometric functions. The values of these frequencies are previously predefined,
whereas the amplitudes al and bl are considered as independent parameters that follow
a particular Gaussian distribution:

al ∼ N
(

0,
σ2

0

t

)
; bl ∼ N

(
0,
σ2

0

t

)
(3.36)

where σ2
0 is the variance of the prior distribution that it is independent of the inputs. In

this way, it is possible to define a set of pairs of trigonometric functions that compose
the basis functions of the neural network:

φ(xxxi) =
[
cos(2πΩT

1xixixi)sin(2πΩT
1xixixi), . . . , cos(2πΩT

t xixixi)sin(2πΩT
t xixixi)

]
(3.37)

3.5 Supervised and adaptive learning algorithms

The use of basis functions as indicated in section 3.4 implies that a neural network
can approximate any function. Its main advantage is that once the basis transformation
has been carried out, the problem of estimating the model parameters has an analytical
solution, so long as a sufficient and consistent number of data is provided. Nevertheless,
as stated in section 3.1.4, our aim is to adapt the learning to the changes in the
environment; for this reason, the direct use of the analytical solution for the estimation
of the weights of the neural network is not practical because it requires gathering
information beforehand about the environment to estimate its model. This is, however,
not always possible since the information coming from the environment is a stream
that must be processed as it is received. Moreover, it modifies and conditions what is
learned about the environment.

Two different approaches to solve this problem are presented below. They are
based on the scheme in figure 3.5, considering a generic type of basis function.
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3.5.1 Kalman filter for neural network adaptive training

In the context of linear dynamical systems, the Kalman filter is a fundamental tool to
resolve recursively linear optimal filtering problems in both stationary and non-stationary
environments (Haykin, 2001). The Kalman filter incrementally updates the network state,
represented by the weights, each time the training point is available. Therefore, the
expressions that describe the transfer between the states (weights) and the observation
of the effects of this transfer can be defined, given a neural network whose model is
described by equation (3.28).

The state space model of the neural network can be expressed by this equation:

WWW i = ΓΓΓWWW i−1 + ρ (3.38)

And the observation of the network state is given by:

yyyi = WWW iφ(xxxi) + ε (3.39)

Where:

• ΓΓΓ is the transition model matrix between the network states.

• ρ is a white noise associated with the confidence in the transition between the
states, so ρ ∼ N (0,QQQ). Where QQQ is the variance matrix of this Gaussian noise.

• ε is the white noise regarding the measure of the state: ε ∼ N (0, σ2
n).

• WWW i represents the neural weights at iteration i.

• φ(xxxi) is a basis function transform over the input in the current iteration xxxi.

• yyyi is the output of the neural network at current i iteration.

The goal of training is to update the weights given the past and current obser-
vations. At any time i > 1 the sequence of observations Di−1 = {yyyi−1, yyyi−2, . . . , yyy1}
can be defined. From this point, it is possible to consider a conditional prior probability
distribution f(WWW i|Di−1). This term depends on the previous observations and the current
state. Applying equation (C.16) to this conditional probability:

f(WWW i|Di−1) =

∫
f(WWW i|WWW i−1Di−1)f(WWW i−1|Di−1)dWWW i−1 (3.40)

using the Chapman-Kolmogorov expansion this equation is transformed to:

f(WWW i|Di−1) =

∫
f(WWW i|WWW i−1)f(WWW i−1|Di−1)dWWW i−1 (3.41)
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f(WWW i|WWW i−1) is defined by equation (3.38) as a Gaussian distribution with mean
ΓWWW i−1 and variance QQQ, i.e. f(WWW i|WWW i−1) = N (ΓWWW i−1,QQQ). Due to recursion, as it will be
seen below, the term f(WWW i−1|Di−1) would correspond to the prior probability calculated
in the previous step of the iteration. For now, we assume that this probability is a Gaus-
sian distribution with a mean µµµi−1 and ΣΣΣi−1 covariance: f(WWW i−1|Di−1) ∼ N (µµµi−1,ΣΣΣi−1).
The above integral does not need to be calculated numerically if certain properties of
Gaussians are used. Considering the joint distribution (f(WWW i−1, |Di−1), f(WWW i|(WWW i−1, |Di−1))

and using equation (C.37):

[
f(WWW i−1, |Di−1)

f(WWW i|(WWW i−1, |Di−1))

]
∼ N

([
µµµi−1

ΓΓΓµµµi−1

]
,

[
ΣΣΣi−1 ΣΣΣi−1ΓΓΓ

T

ΓΓΓΣΣΣi−1 ΓΓΓΣΣΣi−1ΓΓΓ
T +QQQ

])
(3.42)

Therefore, the marginal distribution of f(WWW i|Di−1) is:

f(WWW i|Di−1) ∼ N
(
ΓΓΓµµµi−1,PPP i = ΓΓΓΣΣΣi−1ΓΓΓ

T +QQQ
)
. (3.43)

On the other hand, the network model defines the probability of obtaining its output
yyy from the weights of the network: f(yyyi|WWW i,Di−1) = f(yyyi|WWW i) ∼ N (WWW iφ(xxxi), σ

2
n). Using

equation (C.37) again, the joint distribution of yyyi and WWW i conditioned by previous steps
can be written as:

[
f(WWW i, |Di−1)

f(yyyi|(WWW i, |Di−1))

]
∼ N

([
ΓΓΓµµµi−1

ΓΓΓµµµi−1φ(xxxi)

]
,

[
PPP i PPP iφ(xxxi)

φ(xxx)Ti PPP i φ(xxxi)
TPPP iφ(xxxi) + σ2

n

])
(3.44)

Renaming the variance of f(yyyi|(WWW i, |Di−1)) as:

SSSi = φ(xxxi)
TPPP iφ(xxxi) + σ2

n (3.45)

And using equation (C.31) and equation (C.32) from appendix C.11.3 to calculate the
joint distribution of two Gaussian that are conditioned: f(WWW i|yiDi−1) ∼ N (µµµi,ΣΣΣi)

µµµi = ΓΓΓµµµi−1 +PPP iφ(xxxi)SSS
−1
i (yyyi −ΓΓΓµµµi−1φ(xxxi))

ΣΣΣi = PPP i −PPP iφ(xxx)iSSS
−1
i φ(xxxi)

TPPP i

(3.46)

The term PPP iφ(xxxi)SSS
−1
i represents the linear coefficient of recursion:

KKKi =
µµµi −ΓΓΓµµµi−1

(yyyi −ΓΓΓµµµi−1φ(xxxi))
= PPP iφ(xxxi)SSS

−1
i (3.47)
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Algorithm 1 Adaptive algorithm to train a neural network based on Kalman filter

Require: WWW 0,PPP 0,QQQ, σ
2
n,ΓΓΓ ;

i← 1;
while i < n do
WWW i ← ΓΓΓWWW i−1;
PPP i ← ΓΓΓPPP i−1ΓΓΓ

T +QQQ;
SSSi ← φ(xxxi)

TPPP iφ(xxxi) + σ2
n;

KKKi ← PPP iφ(xxxi)SSS
−1
i

WWW i ←WWW i +KKKi (yyyi −WWW iφ(xxxi)) ;

PPP i ← PPP i (III −KKKiφ(xxxi))
T ;

i← i+ 1

end while

Below, algorithm 1 shows how these equations can be expressed and sequenced
in algorithmic form.

Although the deduction of the recursive least squares algorithm (RLS) can be
made independently of the Kalman filter, an exciting result is that for Γ = I and QQQ = 0,
i.e. no variability is assumed to the regression parameters, the Kalman filter algorithm is
equivalent to the recursive least squares algorithm (Teixeira and Rodrigues, 1997) (see
algorithm 2).

Algorithm 2 Adaptive algorithm to train a neural network based on Recursive Least
Squares
Require: WWW 0,PPP 0 ;
i← 1;
while i < n do
SSSi ← 1 + φ(xxxi)

TPPP i−1φ(xxxi);
KKKi ← PPP i−1φ(xxxi)SSS

−1
i

WWW i ←WWW i−1 +KKKi (yyyi −WWW iφ(xxxi)) ;

PPP i ← PPP i−1 −KKKiφ(xxxi)
TPPP i−1;

i← i+ 1

end while
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3.5.2 Incremental sparse Gaussian process regression for neural
network adaptive training

This method was proposed by Rasmussen (2003), and it is based on the linear
model expressed by equation1:

γγγ = φ(xxx)TWWW + ε (3.48)

The additive noise ε is an identically distributed Gaussian distribution with zero
mean and variance σ2

n: ε ∼ N (0, σ2
n) —as in section 3.5.1. Therefore, the prior likelihood

f(γγγ|WWW , φ(xxx)T ) can be described by a Gaussian distribution with mean φ(xxx)TWWW and
variance σ2

n: f(γγγ|WWW , φ(xxx)) ∼ N
(
φ(xxx)TWWW , σ2

n

)
.

The prior distribution over the weights is considered a Gaussian with zero mean
and variance Σp: WWW ∼ N (0,ΣΣΣp). Under these conditions, it is possible to use Bayes’
theorem and the posterior probability f(WWW|γγγ,xxx) can be estimated. Using the Gaussian
properties developed in appendix C.11.4, applying equation (C.34) and equation (C.35)
to the proposed neural network model:

ΣΣΣW|γ = ΣΣΣ−1
p + σ−2

n φ(xxx)φ(xxx)T (3.49)

µµµW|γ = σ−2
n ΣΣΣ−1

W|γφ(xxx)γγγ (3.50)

If the transformation AAA = φ(xxx)φ(xxx)T + σ2
nΣΣΣ
−1
p is considered:

f(WWW|γγγ,xxx) = N
(
AAA−1φ(xxx)γγγ, σ2

nAAA
−1
)

= N
(
ŴWW , σ2

nAAA
−1
)

(3.51)

where ŴWW = AAA−1bbb and bbb = φ(xxx)γγγ.

Once a set of samples has been used to estimate the network weights and their
variance using the above equations, the predictive posterior distribution for a new test
sample (φ(xxx∗), γγγ∗) is:

f(γγγ∗|φ(xxx∗), φ(xxx), γγγ) = N
(
φ(xxx∗)

TAAA−1φ(xxx)γ, σ2
n(1 + φ(xxx∗)AAA

−1φ(xxx∗)
T
)

(3.52)

Let (xxxi, γγγi) be a new sample in i iteration, matrix AAA can be formulated recursively
((Gijsberts and Metta, 2013)) as:

AAAi = AAAi−1 + φ(xxxi)φ(xxxi)
T (3.53)

1This model is expressed in this way based on equation (3.29) that defines the neural network model
in figure 3.5
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Furthermore, if the term φ(xi)γγγi is named bbbi, a recursion can be defined as:

bbbi = bbbi−1 + φ(xxxi)γi (3.54)

The initial configuration for recursion is defined by AAA0 = σ2
nΣΣΣ
−1
p and bbb0 = 0. From

equation (3.51), it is possible to write:

AAAiŵwwi = bbbi (3.55)

The network weights in each iteration can be obtained from this system of linear
equations, but it is necessary to compute the inverse of matrix AAAi. Since this is a
covariance matrix, anyway, it fulfils the properties mentioned in appendix C.11.2, and
it can be transformed using Cholesky decomposition. Let RRRi be an upper triangular
Cholesky factor resulting from AAAi decomposition: AAAi = RRRT

i RRRi, equation (3.53) can be
transformed using Cholesky decomposition as:

RRRT
i RRRi = RRRT

i−1RRRi−1 + φ(xxxi)φ(xxxi)
T (3.56)

An efficient way to estimate RRRi is to use Cholesky rank-1 update, as proposed by
(Gijsberts and Metta, 2013). In any case, the network weights can be computed from
matrix RRRi :

ŴWW i = RRR−1
i

(
RRRT
i

)−1
bbbi (3.57)

Algorithm 3 Adaptive algorithm to train a neural network based on iterative Gaussian
Process and Cholesky rank-1 update
Require: RRR0,WWW0, bbb0 ;
i← 1;
while i < n do
γγγi ← φ(xxxi)

TŴWW i−1;
bbbi ← bbbi−1 + φ(xxxi)γγγi;
RRRi ← CholeskyUpdate(RRRi, φ(xxxi));
ŴWW i ← RRR−1

i

(
RRRT
)−1

bbbi;

i← i+ 1

end while

By ordering all these equations and considering the initial values, it is possible to
develop an adaptive algorithm 3.
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3.6 Conclusions

The biochemical and signal transport processes in biological neurons are far
more complex than the abstractions resulting from the models described in this chapter.
However, they replicate several fundamental aspects of the biological reality, that are
instrumental in creating artificial models. This chapter introduced some mathematical
tools that allow a simple artificial neural network to adapt its model as new information
becomes available. This ability is particularly relevant in a robot attempting to operate
in a changing environment. In this way, adaptive artificial neural networks become the
basis for defining the internal models of robotic systems and for processing information
from the environment, adapting their response accordingly. Since most of the algorithms
proposed in this work are based on this concept of adaptability, we have introduced it
here from a mathematical point of view.

3.7 Publications supporting this chapter

• Antonelli, M., Duran, A.J., del Pobil, A.P., 2013, ”Application of the Visuo-
Oculomotor Transformation to Ballistic and Visual-Guided Eye Movements”, in
Proc. International Joint Conference on Neural Networks (IJCNN 2013), Dallas,
Texas, USA, pp. 813-820. ISBN: 978-1-4673-6129-3/13.
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Chapter 4

Robotic systems for visual exploration
by means of saccadic movements

We have to accept that we are just machines. That’s certainly what modern
molecular biology says about us.

Rodney Brooks

4.1 Introduction

Due mainly to its sensory information-cost ratio, one of the standard sensors
that a robot can be endowed with is a camera in any of its variations. Although some
cameras can cover spherical fields of vision of almost 360 degrees, most of them have
a field of vision of a few tens of degrees. Therefore, if they cannot move, it is not
possible to perceive other areas of the environment that surround them. As described
in section 2.1, living beings have developed mechanisms to perform visual exploration
of their environment based on eye movements. One of the most important is saccadic
movement (section 2.5). The desired goal is to design a robotic system that performs
exploratory movements to acquire information from the environment to respond and
adapt to change, using saccadic movement as a source of inspiration.
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Developing a robotic mechanism that imitates the human oculomotor system is
a very complex task due to the mechanical and physical properties of the biological
system (section 2.3). Of necessity, reducing the problem is called for. The first approach
is to consider that the displacement of the eyes is a pure rotation with no translation.
In this way, the six degrees of freedom are simplified to three. Moreover, if Donders’
law is considered, the eye exploits only two of these degrees of freedom. Under these
conditions, the displacement of the two eyes can be expressed as three rotations per
eye: the first rotation around the horizontal axis that is common to both, and the second
rotation around the vertical axis. Finally, the third rotation would be around the line-
of-sight/optic axis. This model is called Helmholtz coordinates and it has served as
basis for the development of a number of robotic systems. In this case, the cameras tilt
up and down about a common elevation platform and verge independently about axes
perpendicular to the elevation plane (figure 4.1).

Figure 4.1: Conceptual design of a robot oculomotor system based on Helmholtz configuration

There is an alternative model to the one based on Helmholtz’s angles. This model
is called Fick and is based on two grouped systems with four degrees of freedom in which
the horizontal axis of rotation is common to both but can be actuated independently
(figure 4.2). From the point of view of vision algorithms in robotics, there is no clear
advantage of one model with respect to the other (Murray et al., 1992); for this reason,
the configuration of choice is usually the one with the lowest cost and requiring only
three actuators, i.e. the model based on Helmholtz configuration.

A robotic system based on the design in figure 4.1 needs a series of components
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Figure 4.2: Conceptual design of a robot oculomotor system based on Fick configuration

such as motors, cameras and sockets. They are organised to replicate the Helmholtz
configuration. That is, all the components are assembled according to the three axes as
defined in this configuration. In biology, the study of the structure conditioned by the
size and shape of animals, plants, and microorganisms and of the relationships of their
constituent parts is referred to as morphology (Vilee, 2019). Translating this concept
to the world of robotics, we can speak of the morphology of a robot when referring to
the structure of the elements that constitute the proposed conceptual configurations,
along with their specific design parameters that define the relationships between the
components.

In engineering, the rotations defined in the previous models must be implemented
by some design that incorporates an actuator, the simplest case being a motor. The
sensing part that would imitate the operation of the eyes would be composed of two
cameras that must be integrated into the design.

The use of a camera to replicate the behaviour of the eye, when the pinhole model
is also used to operate it, is not entirely correct since the model of the eye proposed by
Gullstrand (section 2.4) considers the crystalline to be a real lens and therefore with two
nodal points. Besides, the retina has a particular curvature and CCD or CMOS sensors
in cameras are usually flat matrices. In any case, our objective is not to precisely
replicate the eye morphology, but rather to understand how the biological design works
in order to develop a robotic system that performs similar functions.
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Both commercial humanoid robots and robotic platforms built from off-the-shelf
components often incorporate a vision system. Not all platforms count with specific
mechatronics to imitate a visual configuration such as that of the human oculomotor
system, as table 4.1 shows. The more complex humanoid robots focus on the control of
bipedal and manipulation parts. On the other hand, vision mechanisms are elementary
systems based on stereo or RGB-D cameras in most cases, and their movement is
included in the body kinematics of the robot.

Table 4.1: Visual systems integrated in high-end robotic platforms.

Robot Platform Assembler or manufacturer Comment
Asimo Honda R&D Co.Ltd Stereoscopic cameras fixed to the

head. Its movements are achieved
through the rotation of the joints that
compose the robot body (Sakagami
et al., 2002).

Armar III University of Karlsruhe This robot has distributed cameras
with a Helmholtz configuration moun-
ted on the head (Asfour et al., 2006).

iCub Italian Institute of Technology
and University of Genova

This robot is specialised in bioinspired
cognitive studies and features a head
where two cameras with a Helmholtz
configuration are placed (Metta et al.,
2008).

Baxter Rethink Robotics Although this robot platform has three
cameras, only one is mounted on the
head which only has two degrees of
freedom. (Cremer et al., 2016)

HRP-4 Institute of Advanced Indus-
trial Science and Technology
(AIST)

Humanoid robot focused on replicating
human appearance. Its visual system
is based on two fixed cameras which
can be moved with the two degrees
of freedom of the head (Kaneko et al.,
2011)

Rollin’ Justin DLR - German Aerospace
Center

This robot has two stereo cameras
placed on a 2-DOF head (Fuchs et al.,
2009).

Continued on next page
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Table 4.1 – continued from previous page
Robot Platform Assembler or manufacturer Comment

Talos PAL-Robotics This robot has a head with two de-
grees of freedom and can mount either
an RGB-D camera or a stereoscopic
camera. (Stasse et al., 2017)

Nao Aldebaran-Robotics This small humanoid robot has a 2-
DOF head; the two cameras are fixed
but, in contrast to other robots, they
are not placed in the apparent eyes
and have different orientations. (Sham-
suddin et al., 2011)

Tombatossals Jaume I University It is a multipurpose humanoid torso for
research in autonomous grasping and
manipulation. The head is composed
of a TO-40 pan-tilt-vergence system
with two RGB cameras and one RGB-
D sensor. The configuration of the
cameras is based on the Helmholtz
model. (Felip et al., 2015)

In any case, the three implemented systems (Armar III, iCub and Tombatossals)
that have independent control over the degrees of freedom of each camera are con-
figured according to the Helmholtz model.

In table 4.1, the term head is mentioned several times, but in most cases, the
function of the head is just to incorporate the vision sensors. Since often the only
purpose of the head is to hold the visual system, we will refer to the ”robotic head” as a
synonym of the visuo-oculomotor system.

In addition to the above set of robots, a number of more specific systems have
been prepared to imitate and study eye movements and their application to the field of
robotics (Rucci et al., 1999, 2000, 2007).

Following the cycle of perception and action in living beings (figure 2.1), the
concept of morphology and configuration of the visuo-oculomotor system relates the
effectors (motors) and the sensors (cameras). If the models developed in robotics
pursue to imitate this cycle, it is necessary to consider two more components: the
environment and cognition. The concept of environment has a relative character and
fuzzy limits. The definition of environment is usually made according to what is not
the system. However, the environment of living beings played an essential role in
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Objectives

developing the theory of evolution. The adaptation to the environment induced changes
and selected individuals causing their evolution. In robotics, there is a more robo-centric
view of the environment and especially when it is unstructured. The environment is
everything that is not a robot and interacts with it. However, the environment can be
seen as an obstacle because it prevents or complicates the robot operating function.
The environment is constantly changing and indeterminate; it is challenging to consider
all possible states when a deterministic approach is followed.

Cognition in living beings is the mental process of modelling and understanding the
environment through interaction, experience, and perception. A third observer perceives
this modelling as a behaviour of the analyzed system. Saccadic behaviour is the result
of processes (section 2.5) that allow us to receive information from the environment
in the form of stimuli and triggering a series of neurophysical processes, provoking
an active response from the oculomotor system. In robotics, this problem involves
developing a controller to process the visual input and generate the motor command.

The concepts of morphology, behaviour and environment are elaborated in this
chapter. Our purpose is to design a robotic system that is able to execute saccadic
movements to actively explore the world.

The first part of this chapter (section 4.3) deals with the description of a character-
istic morphology of a robot head and how to parameterize it generically, abstracting from
particular configurations. The next section 4.4 deals with implementing the behaviour
of the robotic system. Two adaptive control architectures are proposed, and both are
evaluated in simulation and then with a real system. A brief overview of the concept of
environment is given in the last part of the chapter (section 4.5) to complete the three
above-mentioned aspects . This part is dealt with in more detail in further chapters.

4.2 Objectives

One of the objectives of this work is to study saccadic behaviour and implement
it in a robotic system. Therefore, this chapter aims to describe a robotic system in
a generic way by using the parameters corresponding to a Helmholtz configuration,
and allowing the implementation of saccadic behaviour within a specific environment.
Furthermore, the different components must also be defined within a generic approach,
so that the conclusions derived from its study can be extended beyond a particular
case.
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Morphology of a robot system for executing
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4.3 Morphology of a robot system for executing
saccadic movements

The proposed system is based on a Helmholtz configuration. We use two kinematic
chains (left and right) to describe the geometry of the robotic head where the end
effectors are the cameras forming the vision system. These chains have the particularity
that they share a joint, which corresponds to the angle of rotation of the neck.

This system presents morphological parameters corresponding to actuators and
sensors since it comprises two cameras and three controlled DOF. Furthermore, eight
additional prismatic joints are defined in the model so that changes in the head morpho-
logy can be introduced, resulting in a total of eleven DOF (figure 4.3).

The Denavit-Hartenberg model for the left-hand side of the head is specified in
table 4.2; the right-hand side has an identical description, and both share the first joint
ρt.

Figure 4.3: Example of the head model. In this schema, there are two overlapping kinematic
chains. Purple cylinders represent the three revolute joints. Joint number one is shared by both
chains. Parallelepipeds represent prismatic joints that modify the head morphology; the two
colors blue and orange correspond to the two sides of the head.

The prismatic joints {q2, q3, q4, q6}left and {q2, q3, q4, q6}right define the geometry of
the head and do not modify their values while the head is executing a task.

The value of joint q2 would represent the height of the neck with respect to the tilt
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Table 4.2: Denavit-Hartenberg model of the left side of the head. ρp, ρt are the revolute joints
for the pan and common tilt motors. The model for the right-hand side is the same, and it shares
the ρt joint

.
joint ρ(rad) r(m) a(m) α(rad) Offset Type
q1 ρt 0 0 π/2 π/2 R
q2 0 0 0 -π/2 0 P
q3 π/2 0.055 0 π/2 0 P
q4 π/2 0.055 0 π/2 0 P
q5 ρp 0 0 π/2 π R
q6 0 0.01 0 π/2 0 P

angle of the neck. As defined, the system q2 can be different for the right or left chain.
Although this configuration does not seem to have an equivalent in the biological world,
from a system engineering design point of view it might be possible.

The joint q3 sets for both the right and left chain the value of the distance of each
camera to the geometric centre of the system defined by the neck axis. As in the case
of q2 this distance can be different for each kinematic chain and thus, the symmetry of
the system is regulated.

The joints q4 and q6 apparently generate a displacement in the same direction, i.e.
perpendicular to the plane containing the joints q2 and q3. The joint q4 represents the
displacement of the cameras in relation to the plane containing q2 and q3. In this case,
as in the previous ones (q2 and q3), it is possible to establish a differential configuration
for each kinematic chain.

The joint q6 is defined in the kinematic chains after q5, so even if the displacement
occurs in the same direction as q4, the effective value of this displacement is affected
by the value of q5. The value of q6 for each chain represents the distances from the
planes of projection of the cameras to their axis of rotation. This is equivalent to the
nodal distance.

The values of these eight parameters (Γ(a) ∈ R8) describe the robot morphology
in terms of head actuators. It is assumed that the movement of the joints are precise
enough so that noise does not need to be added to the model.

The system is completed with two camera sensors, and the pinhole model is
taken to simulate their behavior. Each camera can be described by using at least four
parameters: focal length (f ), pixel size (s) (supposed squared), width (w) and height
(h) of the images. Therefore, the parameters {f, s, , w, h}left and {f, s, , w, h}right are
regarded as the morphological sensor parameters (Γ(s) ∈ R8 ). Thus, there are a total
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(a) Robotic head setup with Γ
(m)
1 morphological parameters (b) Robotic head setup with Γ

(m)
2 morphological parameters

Figure 4.4: Two examples of how the morphologies of the robot heads change by varying their
morphological parameters.

of 16 morphological parameters for each robotic head configuration (Γ(m) ∈ R16). By
varying these 16 Γ(m) parameters infinite vision system setups based on the Helmholtz
configuration can be obtained. Many of them would not make any physical sense.
Variation intervals can be defined for each parameter to avoid this problem, so that the
resulting systems, although still infinite, have a greater physical sense. For example,
in figure 4.4, two different configurations can be seen. Each of them has a set of
parameters that define it morphologically. The configuration in figure 4.4a is equivalent
to that in figure 4.1. The parameters {q2, q3, q4, q6}left and {q2, q3, q4, q6}right for this case
are {0,−a, 0, 0}left and {0, a, 0, 0}right; where a is the distance between the geometric
centres of the cameras divided by 2. In contrast, figure 4.4b shows how the cameras
are now slightly moved forward. The morphological parameters for this head are
{0,−a, b, 0}left and {0, a, b, 0}right; where b is the magnitude of the forward displacement
of the cameras.

4.4 Saccadic behaviour

Performing an accurate saccade requires converting the visual position of the
target into a shift of the eye position and to generate an eye movement to get the desired
eye position. Beyond optimally solving the control problem that this transformation of
signal into control action entails, we assume that the revolute joints that have been
introduced in section 4.3, have a control system precise enough to reach a particular
position reliably and accurately. This work is focused on the transformation that links the
visual position of the stimulus with a target position of the eye. The retinotopic position
of the stimulus —i.e. its position on the image captured by the camera— has to be
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converted into a shift of the eye (camera) position. These saccadic gaze shifts are
planned in 3D space. Therefore, from the robot point of view, generating a saccade
requires solving an inverse control problem. In this saccadic behaviour, the visual
position of the stimulus in relation to a target position of the eyes is an open loop with
respect to vision. Learning this transformation requires learning the inverse kinematic
model of the robot head. Several strategies have been proposed for learning this model.
An early proposed strategy is the direct inverse modelling (Kuperstein, 1988). In its
original formulation, direct inverse modelling performs random movements and then
learns the inverse association between the motor command and its perceptual outcome.
This technique was employed for learning saccade control in several works together
with some ad hoc strategies to reduce the exploration process (Schenck and Möller,
2006; Chao et al., 2010; Antonelli et al., 2013b). This approach has two shortcomings:
it does not consider redundant systems, and it is not goal-directed. In the proposed
morphology (section 4.3), there is no redundancy, so this factor would not be a problem
for the use of this method. However, in view of empirical evidence that infants perform
goal-directed action right from the outset of motor learning (Rohde et al., 2019), the
visuomotor transformations should be adapted as they occur in order to have a greater
biological plausibility. If a saccade of a particular direction and size consistently fails to
reach the intended target, the transformation parameters in the brain internal model are
adjusted; this phenomenon is known as saccadic adaptation (Lappe, 2009).

Feedback error learning (FEL) (Kawato, 1990) is an attempt to overcome these
limitations. This controller has been used for both saccadic control (Bruske et al., 1997)
and smooth pursuit (Shibata et al., 2001) in robotics.

Furthermore, there is a computer model of the cerebellum that has been tested in
various simulations (Porrill and Dean, 2007) and in a robotic system (Lenz et al., 2008)
that allows to learn the visuo-oculomotor transformations. The version of this controller
presented by Porrill et al. (2004) is based on a recurrent architecture (RA).

4.4.1 Monocular vs. binocular encoding

4.4.1.1 Introduction

In the morphological definition of the visuo-oculomotor system in section 4.3, we
can consider the two kinematic chains as independent since they only have one shared
joint. Therefore, if the position of the stimulus in one of the cameras is considered
as input, then —using the appropriate methodology— it is possible to determine the
position increment that should be applied to the joints of this chain to bring the stimulus
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to the centre of the image. This procedure represents a monocular approach, and
several works have elaborated on it (Marjanovic et al., 1996; Chao et al., 2010; McBride
et al., 2010).

In contrast, if the stimulus information from the two cameras is used to estimate
the motor commands to produce the appropriate displacements in the system for a
saccadic behaviour, then we would be following a binocular approach (Hoffmann et al.,
2005; Schenck and Möller, 2006; Forssén, 2007; Nori et al., 2007; Rucci et al., 2007).

In principle, we assume that the binocular option is more precise than the mon-
ocular one because it implicitly encodes the distance to the stimulus. In addition, it is
necessary to somehow consider depth information since in our morphology the camera
nodal point may not lie in the centre of the camera rotation axis. In the following sections,
this problem will be addressed: the formulation of this hypothesis will be tested to
calculate the visuomotor transformations for the generation of saccadic behaviours.

4.4.1.2 Simplified robot head model

The proposed model for the robotic head system presented in section 4.3 starts
from the kinematic description of the system using two kinematic chains that share
the same tilt joint. Simplifying all the possible combinations possible to be generated
with the proposed model, we assume that the two cameras lie on the same plane
parallel to the axis of rotation of the tilt joint. This configuration matches the one
shown in figure 4.4a. Taking this plane for a given tilt angle, the problem becomes
two-dimensional (figure 4.5) and therefore, the transformations defined in equation (2.1)
and equation (2.2) apply (compare figure 4.5 with its biological counterpart in figure 2.3.
Three classes of magnitudes are represented in figure 4.5:

1. The variation in the normalized visual shift, represented in figure 4.5 by ur and ul.
The normalizing factor is the width of the image in pixels.

2. The angular position of both the right (θr) and left (θl) camera in relation to their
axes of rotation perpendicular to the plane.

3. γl and γr represent the desired angular positions of the left and right cameras
when the robot is gazing at the target.

Therefore, the starting points are: an angular position represented by θθθ = [θr, θl]
T , and

a projection of the stimulus on the images uuu = [ur, ul]
T . The goal is to come up with

the values γγγ = [γr, γl] that would bring the gaze point at the target point, performing the
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Figure 4.5: 2D model of the robot head.

desired saccade. In this way it is possible to define the monocular visuo-oculomotor
transformation as:

γ{l|r} = TMv→o(u{l|r}, θ{l|r}) (4.1)

In contrast, the binocular approach can be formulated as follows:

γγγ = TBv→o(uuu,θθθ) (4.2)
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Table 4.3: RBFNN setups to learn the visuo-oculomotor transformations

Transf. Inputs Outputs Units in hidden layer
TMv→o(u{l|r}, θ{l|r}) u{l|r}, θ{l|r} γ{l|r} 24(6x4)
TBv→o(uuu,θθθ) ul, ur, θl, θr γl, γr 576(6x6x4x4)

4.4.1.3 Radial basis function to compute the visuo-oculomotor
transformations

The models defined by equation (4.1) and equation (4.2) represent a visuo-
oculomotor transformation that must be learned by the system and adapted to each
interaction with the environment to have some biological plausibility. As seen in sec-
tion 3.4.2, RBFNN can potentially approximate any function with sufficient precision.
Moreover, in section 3.5 several algorithms have been proposed for adaptive learning
of these networks. A RBFNN for each approach is implemented. The input signal is
encoded with a fixed number of the basis functions. Accordingly, six units are required to
code the visual inputs, and four units are assigned to four proprioceptive cues. Consider-
ing this configuration, the definition of each RBFNN used to learn each transformation is
shown in table 4.3. The centres determining each unit of the hidden layer are regularly
distributed within the normalised space of the input variables. The variance defining
the radii of these radial functions is three times the value of the distance between two
consecutive centres. The projection in the plane of the input variables of the radial
functions in the case of the monocular transformation can be seen in figure 4.6.

The algorithm used to adapt the weights of these networks is the recursive least-
squares (RLS)(algorithm 2, section 3.5.1). The state matrix PPP is initialized to 103III where
III is the identity matrix and the weights are initialized to zero.

4.4.1.4 Training and testing datasets

A dataset must be generated to train the proposed RBFNNs. This dataset com-
prises a series of virtual points in the 3D space in front of the robotic system. Generating
this dataset using random points that ensure that the stimulus appears in both cameras
simultaneously at the current position of the cameras implies that many attempts must
be made to get a single point. For this reason, to avoid this problem, the reverse
situation is proposed. The points are generated by giving random values of version and
distance from the midpoint between the cameras. This way, it is ensured that any of
these points can appear in both images simultaneously if the cameras are placed at the
appropriate angles. The dataset is built using 30 values for distance and 13 for version.
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Figure 4.6: Radial basis function space partition in monocular transformation neural network

The graphical representation of this dataset is shown in figure 4.7.

At the same time, a smaller space of 200 random points is created with the version
and distance values (red circles). These points represent the gaze points; hence they
are the starting position of the head. From these points, saccades are executed to
all the points appearing in the images of the two cameras. As the generation of this
dataset is proposed, it is impossible to transfer it to a real robotic system because it is
challenging to produce stimuli with this distribution and know its exact position. However,
in order to check if the monocular or binocular option is better at the simulation level, it
is enough.

Once trained, the neural networks are tested with another dataset generated
similarly to the training one. In this case, 20969 input-output pairs have been generated.

4.4.1.5 Comparison monocular vs. Binocular encoding

As indicated in the previous section, the neural networks (table 4.3) are adaptively
trained using RLS algorithm. The corresponding training curves can be seen in figure 4.8.
The behaviour of the network for the monocular case is better in the early iterations;
however, it reaches around 2000 iterations that stabilise and even suffer an overtraining
effect. In contrast, the network designed for the binocular case requires more effort to
achieve the results obtained in the monocular model. However, once the monocular
networks are stabilised, the binocular network performance improves and remains so
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Figure 4.7: Generated dataset to train the RBFNNs.

for the successive 3000 iterations. This behaviour is consistent with the design and
complexity of both networks. However, the monocular network is more straightforward,
and its training behaviour shows that there is a point where it is not possible to learn
more, but rather the opposite. On the other hand, the neural network that models
the binocular transformation is more complex, and therefore it takes longer to adapt
its weights to obtain similar results; however, it continues improving these once the
monocular limit has been reached. The trained networks are used to estimate the
visuo-oculomotor transformation of the test dataset to evaluate these two models. This
transformation is then executed, and the stimulus’s new visual position in the cameras’
images is obtained. The euclidean distance to the centre of the image reflects the visual
error of the transformation. From the tests performed, a histogram like the one shown in
figure 4.9 is built, giving an idea of which is the probability density distribution that these
results follow. The results obtained suggest the difference between using the monocular
and binocular models.

From the qualitative point of view, it can be seen in figure 4.9 that both distributions
are pretty symmetric and have a maximum central value. However, there is a clear
difference in the dispersion of the results. Whereas there is a great dispersion in
the monocular case, the values are concentrated around zero in the binocular model.
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Figure 4.8: Learning neural networks curves for the proposed neural networks comparing the
binocular and monocular training behaviour.

Initially, this distribution was adjusted to a Gaussian model so that it could give an
approximation of the most probable value of visual error made by each model. Later, the
fit to a Gaussian distribution was inaccurate because the data are more concentrated
around the central value than in a Gaussian distribution. Finally, after performing the
successive tests with different distributions, it is concluded that the data resulting from
the simulation with the test dataset fit better to a Lévy alpha-stable probability distribution
(Mandelbrot, 1960).

The mean value is obtained in -0.025 pixels with a standard deviation of 1.687
pixels for binocular case truncating this distribution in the range [-10,10] pixels. On
the contrary, the maximum expected value for the monocular model is -0.096 pixels
with a standard deviation of 10.028 pixels. The enormous dispersion of results in the
monocular experimental distribution suggests that it does not adequately model the
problem.

These results are confirmed when the estimation of the Euclidean distance
between the Cartesian points used to generate the test dataset and the points projected
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Figure 4.9: Results comparison obtained for the test dataset using as a reference measure the
distance to the center of the image (maintaining the sign). The lines represent the probability
density distribution that best fits the experimental data in the working range. In this case, it is a
Lévy alpha-stable distribution

from the camera positions after executing the transformation using the proposed neural
networks are considered (figure 4.10). In this case, the probability density distribution
that best fits the data obtained from the test set evaluation is a Birmbaum-Saunders
distribution (Birnbaum and Saunders, 1969). After comparing the experimental data
with the model that generates this distribution using the Kolmogorov-Smirnov test (De
Leeuw, 2009), the equivalence is concluded with a significance level of 5%. Considering
these distributions, the monocular model has an average error value of 46.0 mm with
a standard deviation of 66.9 mm. This error is reduced to 8.5 mm with a standard
deviation of 10.9 mm in the binocular case.

The worst performance of the monocular approach concerning the binocular one
is mainly due to the lack of depth cues. These are necessary because the centre of
rotation of the camera does not lie on the optical centre of the camera. Using the test
dataset and grouping the points by distance, the visual error is computed as a function
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Figure 4.10: Results comparison obtained for the test dataset using as a reference measure
the Euclidean distance between the projected point using the final camera angle position and
the corresponding simulation point created in test dataset. The lines represent the probability
density distribution that best fits the experimental data in the working range. In this case, it is a
Birnbaum–Saunders distribution

of this parameter for each approach. figure 4.11 shows the results obtained. For the
binocular approach, the gazing error tends to increase with the distance of the target,
and this is expected because the binocular disparity, like other visual cues, are inversely
proportional to the distance. In the monocular case, the tendency to gaze error with
distance is noted as well, though with a more significant variation.

4.4.1.6 Conclusion

As in the biological world, the binocular model implicitly considers the distance
to the target, this information is also coded in the case of the artificial binocular model
using neural networks, and therefore the saccadic behaviour cannot be implemented
independently for each camera, but both should be considered together.
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Figure 4.11: Gazing error of the monocular and binocular encoding as a function of the target
distance.

4.4.2 Recurrent architecture vs. Feedback error learning

In section 4.4.1, saccadic behaviour has been implemented by learning the visuo-
oculomotor transformation directly. This is possible because the calculations are done
in simulation, and therefore, the environment is known completely. The experiments are
designed so that the target is always in the desired visual range, and only two degrees
of freedom in the motor system are considered. This section describes two kinds of
saccadic controllers: Feedback error learning (FEL) and recurrent architecture (RA).
The main goal is to maintain biological plausibility and to be able to implement saccadic
behaviour in a Helmholtz design. Therefore, from a control engineering point of view,
the objective is to convert a visual target ttt and the current system state eee into a change
of state ∆eee, which brings the stimulus to the centre of the visual field.

Both approaches are composed by a fixed controller BBB and a non-linear adaptive
controller CCCx. In this work, BBB is considered as a linear inverse model of the plant
(PPP ).Even if using BBB alone is enough to drive the eyes toward the target, the execution of
a ballistic movement does not provide a precise saccade. Due mainly to the non-linearity
of the system, the controller cannot have adequate results. The intervention of the
adaptive controller (CCCx) allows to compensate for this poor performance of the linear
controller. The difference between the two control schemes is how the controllers
BBB and CCCx are interconnected, and the role of the adaptive controller CCCx, which is an
inverse model (CCCf ) in the FEL and a forward model (CCCr) in the RA.
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Figure 4.12: FEL schema. The visual position of the stimulus (ttt) and the current eye position eee
are converted into a motor command ∆eee by summing up the contribution of a fixed element BBB
and adaptive element (CCCf ).

4.4.2.1 Feedback error learning

With this operating scheme, the fixed feedback controller (BBB) slowly drives the
system toward the target and provides a learning cue to a second adaptive controller
(CCCf ) (figure 4.12). The output of BBB is rectified by the adaptive controller that provides an
inverse model of the plant (robotic head). The inputs of the FEL controller are the visual
target (ttt) and the position of the current camera described by the Helmholtz angles (eee).
The saccade commands ∆eee are the output of the controller and are sent to the head
actuators to move the eyes accordingly. As it can be seen in algorithm 4, it is a unique
adaptation loop where the movement of the head generates the signals necessary to
modify adaptive controller functions. After the movement, the new visual position of
the stimulus ttt′ is converted into a motor error to adapt the inverse controller (CCCf ). The
adaptive filter learns to compensate for the poor response of the fixed feedback control
using this approach. According to (Porrill and Dean, 2007) this behavior is similar to the
expected response of the cerebellum CCCf = PPP−1 −BBB.

The performance of the system is evaluated by the visual error after a saccadic
movement. The visual stimulus should be centered in the image after a saccade, but
the approximation PPP−1(ttt′) ≈ BBBttt′ introduces an error in the model (see figure 4.12), even
though the noise in the visual stimulus is not considered.

4.4.2.2 Recurrent architecture

Similar to FEL, in RA, an inverse linear model (BBB) is used. However, its function is
not the same. In this case, the adaptive controller (CCCr) provides a signal of correction to
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Figure 4.13: RA schema. The visual stimulus cue is processed by the fixed controller BBB
generating a motor command ∆eee. The inputs of the adaptive controller CCCr are provided by the
generated motor command ∆eee, the visual target position (ttt) and the current cameras angular
position (eee). The output of the adaptive controller (CCCf ) is the correction of the input to the fixed
controller BBB generating a recursively process.

Algorithm 4 Feedback error learning adaptation algorithm
Require: BBB0, gf , FEL ; {FEL is an adaptive neural network}

while True do
eee← getHeadPosition();
ttt← getStimulus();
CCCf ← FEL.feedforward(eee, ttt);
∆eee← gfBBBttt+CCCf ;
moveToHeadPosition(eee+ ∆eee);
ttt′ ← getStimulus();
FEL.adaptWeights(gfBBBttt

′ +CCCf );
end while

the input of the inverse linear controller. A new motor command shift (∆eee) is produced
by the fixed controller fed by the adaptive correction. This signal has dual functionality, it
is sent to the plant to generate the change in the system, and it is in turn used as input
in the adaptive controller in conjunction with the visual signal (ttt) and the current state of
the motors (eee).

The response of the plant is the teaching signal to adapt CCCr. As it can be seen
in figure 4.13 and algorithm 5 a loop between the fixed and adaptive elements is
created. This loop terminates when the motor command converges to a stable value
(CCCr ≈ BBB−1−PPP ). One of the main advantages of using this approach is that the teaching
signal is provided by the sensory error ttt′, without needing an additional transformation
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as in the case of FEL.

Algorithm 5 Recurrent architecture adaptation algorithm
Require: BBB0, gf , err,nmax,RA ; {RA is an adaptive neural network}

while True do
eee← getHeadPosition();
ttt← getStimulus();
CCCr(0)← 0;
∆eee← gfBBBttt;
i← 1;
while i < nmax AND CCCr(i)−CCCr(i− 1) < err do
CCCr(i)← RA.feedforward(eee, ttt,∆eee);
∆eee← gfBBB(ttt+CCCr(i));
i← i+ 1

end while
moveToHeadPosition(∆eee);
ttt′ ← getStimulus();
RA.adaptWeights(ttt+CCCr(i));

end while

4.4.2.3 Inverse linear controller

The previous sections described the controllers that will be considered to execute
the saccadic behaviour in a robotic head. Both FEL and RA base their operation on
two more basic types of controllers that interact with each other to generate the desired
behaviour.

The inverse linear controller is shared to FEL and RA and depends on the type
of coding chosen to describe the state of the system. As seen in section 4.4.1.5, the
binocular encoding is suggested to be better adapted to saccadic behaviour.

Among the possible alternatives to deal with binocular visual information, the
cyclopean image representation is based on combining the information of the position
of the stimulus of both images in three coordinates. Two of them (cx, cy) are the average
values of the stimulus position in each image, and the third is the disparity (d). Thus, it is
possible to obtain the coordinates [cx, cy, d]T by the following linear transformation from
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the stimulus coordinates in the left (ul, vl) and right (ur, vr) images (see equation (4.3)).

cycx
d

 =

 0 0 0.5 0.5

0.5 0.5 0 0

1 −1 0 0



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ur

vl

vr

 (4.3)

In addition, the angular position of the system can be described for the binocular system
using the definitions of vergence (θvg) and version (θvs) in section 2.3. Thus, given the
pan (θl, θr) and tilt (θt) angles of the system and using equations (2.1) and (2.2) the
following linear transformations can be defined: θtθvs

θvg

 =
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The inverse linear controller according to the diagrams in figures 4.12 and 4.13
receives the visual signal as an input and generates an actuation command for the plant.
Then, using the nomenclature described by the above transformations, the inverse linear
model (BBB) is the proportionality factor between the visual information and the increment
in the angular position of the system expressed by the following equation:∆θt

∆θvs

∆θvg

 = BBB3x3

cycx
d

 (4.6)

Using this coordinate system to define the transformations ensures that BBB is a 3x3
square matrix, allowing for easy handling. As it will be seen afterwards, there is the
option of directly correlating the visual information without any previous transformation
with the motor action, being in this case BBB a non-square matrix of 3x4 shape.

∆θt

∆θl

∆θr

 = BBB3x4


ul

ur

vl

vr

 (4.7)

Choosing as ttt = [cy, cx, d]T and ∆eee = [∆θt,∆θvs,∆θvg]
T , the value of BBB can be

previously calculated by the following procedure.
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1. Place a stimulus in the center of the image of each camera.

2. Generate a motor babbling (Saegusa et al., 2008).

3. Record the angular increment produced in the motors (∆eee) and the apparent
gain in the position of the stimulus in both images and perform the described
transformations (∆ttt).

4. Repeat this process n times.

After n iterations a set of n pairs {ttt,∆eee} is defined so that it is possible to build the
arrays: VVV mxn = {ttt1, ttt2, · · · , tttn} and ∆ΘΘΘ3xn = {∆eee1,∆eee2, · · · ,∆eeen}. Depending on the
visual stimulus encoding m can be 3 or 4.

Under these conditions, the variation of the visual target position (∆ttt = ttt) in
the images can be correlated with the motor command (∆eee) generated by the motor
babbling. To do this, and considering a linear relationship exists between both terms, it
is possible to use a linear regression (section 3.3.2) and directly determine the value of
BBB (equation (3.6)).

BBB = ∆ΘΘΘVVV T
(
VVV VVV T

)−1 (4.8)

4.4.2.4 Adaptive controller

The number of outputs and inputs of each adaptive controller, according to the
schemes proposed in figures 4.12 and 4.13, is different. However, the method of
implementing them is the same. If the adaptive controller were linear, it would probably
not be necessary because the fixed controller would be sufficient to model the problem.
Therefore the tool used to learn this controller from the dynamic interaction with the
environment is based on adaptive networks. (section 3.4). A feedforward single-layer
neural network is used to implement these controllers. The activation functions shaping
the hidden layer of this network are trigonometric basis functions (section 3.4.3).

The number of inputs and outputs of each controller is different, as can be seen
in the diagrams of figures 4.12 and 4.13. Therefore, even if the type of network is the
same, the structure defined by the inputs and outputs and the units in the layer is not. In
the case of FEL, Cf has a six-dimensional input composed of the visual stimulus (ttt) and
the current eye position (eee). It is the case as long as the cyclopean representation of the
visual stimulus is applied (equation (4.3)). If the stimulus coordinates are directly used
in each image, the number of inputs in the network would be 7. This high dimensionality
precisely defines the type of structure that the hidden layer of the network should have.
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Table 4.4: Tombatossals head parameters setup according to morphology definition in sec-
tion 4.3

Left Right

q2 q3 q4 q6 q2 q3 q4 q6

0 13.5 cm 0 -4.8 cm 0 -13.5 cm 0 -4.8 cm

f s w h f s w h

5 mm 4.65 µm 1024 px 768 px 5 mm 4.65 µm 1024 px 768 px

Using an RBFNN, with a distribution of neurons in the hidden layer similar to that used
in the comparison between monocular and binocular coding (table 4.3), the number of
neurons in the hidden layer would rise to 77 = 823543 in the worst case and 37 = 729 at
best. This high number of neurons is one of the main reasons radial base functions are
not used and are replaced by trigonometric base functions. It is enhanced when the
adaptive controller for the case of RA is considered. Cr has a nine-dimensional input
composed of the stimulus cue (ttt), the current eyes position (eee) and the upcoming eyes
movement (∆eee).

In the case of both FEL and RA, the number of neural network outputs is three.
Therefore, apart from the number of hidden layer neurons and the algorithm for adapting
the weights, the architecture of the neural networks of the adaptive controllers of both
proposals are defined.

4.4.2.5 Experimental setup to estimate FEL and RA controllers

A set of experiments are performed to extract the advantages and disadvantages
of using the two proposed controllers to implement saccadic behaviour in a robotic head.
One of the available robotic systems in our laboratory called Tombatossals is used to
accomplish these tests. Tombatossals is a humanoid torso endowed with a mechatronic
figure 4.15a head 1 and two multi-joint arms Mitsubishi PA10 (Bompos et al., 2007).

Two cameras 2 with a resolution of 1024x768 pixels are mounted. These cameras
allow the capture of colour images at a rate of 30 Hz. Comparing figures 4.4a and 4.15b
it is clear that the configuration of this robotic head follows a Helmholtz design; therefore,
its morphology can be defined according to the parameters provided in section 4.3. The
values of these parameters can be seen in table 4.4.

1The robotic head model is Robosoft TO40
2 The camera model is Imaging Source DFK31AF03-Z2
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Figure 4.14: Tombatossals Robot.

In the head of Tombatossals, Microsoft Kinect® is installed as a supplementary
vision system. The cameras can be actively operated employing a joint that rotates the
whole system called pan, which will not be used. All other active joints are equivalent to
the Helmholtz configuration arrangement: a common tilt (θt) and two independent pan
motors (θl) and (θr). The rotation detail of these joints can be seen in figure 4.15b.

The baseline between the cameras is about 27 cm. The centre of rotation of
the camera does not coincide with the projection plane. Therefore, when the head is
moved, there is a rotation-translation of the projection plane of the camera. Due to
this translational component, the visuo-oculomotor transformation depends on the focal
length of the camera, and it is present virtually in every robotic system and also in the
human eyes (Chinellato et al., 2012b). This circumstance is reflected in the morphology
of the head through the parameter q6 (table 4.3), and the estimation of its value is
performed in an experimental approach.

The proposed controllers FEL and RA are compared using the 3D simulation
of Tombatossals’ robotic head. Nevertheless, first, a dataset is generated following
the procedure described in section 4.4.1.4. In this case, 8205 points are considered.
The projection of the spatial distribution of these points can be seen in figure 4.16.
In table 4.5, the maximum and minimum values of the variables used to adapt these
controllers are shown.

Secondly, the value of the inverse linear controller (BBB) has been determined for
both architectures following the procedure described in section 4.4.2.3. This value
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(a) Tombatossals’ robotic head setup.
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(b) Joint details. The Tombatossals robot has
been implemented in Openrave simulator (Di-
ankov, 2010).

Figure 4.15: Tombatossals’ visual robotic system details.
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Figure 4.16: Distribution of the initial fixation points (black crosses) and target points (black
dots) used for creating the dataset.

is multiplied by a factor gf , which takes different values in a range of [0.5,1.4] and
helps to know the influence of the inverse linear controller on the performance of both
architectures. In this particular case, BBB is expressed in cyclopean coordinates and has
a value of:
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BBB =

0.4887 −0.0002 0.0009

0.0012 0.4292 −0.0007

0.0016 0.0005 0.4294


Table 4.5: range and distribution of the input data provided by the dataset.

Input Min. Value Max. value Mean Std. Dev.
cy [pixels] −382.6 372.6 −1.4 180.91

cx [pixels] −503.4 507.7 7.3 240.8

d [pixels] −560.4 625.1 −17.1 204.9

θt [degrees] −70.25 70.25 −0.33 23.91

θvs [degrees] −70.21 70.22 −0.50 24.62

θvg [degrees] 3.50 38.19 17.39 8.87

In these experiments, the neural networks are trained by adopting an online
approach that can be replicated in the robot. Specifically, the incremental sparse
spectrum Gaussian process regression (ISSGPR) described in section 3.5.2 is used.
For each sample of the training, the eye displacement (∆eee) is calculated by multiplying
the visual position of the stimulus (ttt) by the matrix gain (BBB). The adaptive controller CCCx

corrects this achieved eye shift. This correction is direct in the case of FEL; however, in
the case of RA, there is an adaptation loop that uses the corrected estimation of the
displacement of the cameras together with the initial visual stimulus and position to
adapt the controller iteratively. It is considered a stopping criterion either the visual error
achieved by less than one pixel or when 30 iterations are reached.

The hidden layer of the neural networks composing the adaptive controllers is
formed by 500 random features (section 3.4.3). The weights are adapted using the
ISSGPR algorithm (section 3.5.2 ).

K-Fold cross-validation with K=5 is used to train and test both architectures. In
particular, the training set consists of 6564 (4/5 of 8205) and the test set has 1641
(1/5 of 8205) elements. These elements are chosen randomly in each pass of the
cross-validation, although it should be noted that none of the elements of the test set
has been previously used to generate the training set.

Although the controllers have been trained and tested in cyclopean coordinates to
express the results and analyse them in a more intuitive way, the transformations ex-
pressed in section 4.4.2.3 has been used to convert the different errors in the Euclidean
visual distance of the target projection to the center of the image after the saccade.

MRVE =

√
u2
r + v2

r +
√
u2
l + v2

l

2
(4.9)
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Figure 4.17: Diagram of the process followed to generate the data used to compare the
performance of the FEL and RA controllers.

This magnitude is used to show the progress of the training process and also to
obtain the distribution of the saccade prediction error in the test dataset.

As it can be seen in the scheme of figure 4.17, the procedure for generating a
result that serves to compare both controllers is based on the selection of a gain factor
that is used with the training set to generate two trained controllers. The evolution of this
training is represented by the learning curves, where the evolution of the accumulated
mean visual error obtained to adapt the controller in each iteration is evaluated. Thus,
given the MRVE in iteration i calculated from the output of the neural network that
constitutes the adaptive part of the controller, the training curve for each iteration i is
obtained with the following expression:

lc(i) = MRVEi−1 +
MRVEi −MRVEi−1

i
(4.10)

Once the controllers have been trained, their ability is evaluated using the dataset
test. For each stimulus and initial position of the head, a saccade is performed. The
obtained MRVE after the saccade movement is checked. This error should ideally be
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zero. From these MRVE values, it is possible to construct a frequency histogram. These
frequencies are used to obtain the approximate probability density function and the
cumulative probability.

4.4.2.6 Simulation results

A summary of the results obtained in the training process using the FEL controller
can be seen in figure 4.18a. The value of gf influences the learning behaviour. When it
is closer to 1.0, the training process evolves to lower error values. If only the learning
curve were considered, the best value of gf would be 1.0. Nevertheless, when the
trained system is checked with a test dataset, the probability density distribution of the
visual error obtained (figure 4.18b) suggests that the best value of gf is 1.2 instead of
1.0.

On the contrary, in the case of RA, the behaviour of the controller trained with the
test dataset (figure 4.19b) confirms the trend shown in the training curves (figure 4.19a)
where the best results are obtained for a value of gf equal to 1. Thus, from the
observation of the training curves in the RA controller, it can be deduced that the factor
gf affects strongly this architecture.

The first intuitive approach to compare these two controllers is to compute the
average visual error for each test dataset and to study how this error varies with the
value of the factor gf . These results can be seen in figure 4.20a. The mean visual
error suggests that the choice of the factor gf affects the FEL controller significantly; in
contrast, the RA controller has a lower sensitivity to this value. However, this difference
is not so marked when the dispersion of results is considered.

Using FEL controller, the best performance was achieved with gain factor set
to 1.2. In this condition, the mean error was (1.07 ± 1.57) pixels.In the RA, the best
performance was reached with a gain factor set to 1.0. In this context, the mean error
was (0.47± 0.72) pixels.

Although these values seem to suggest that RA performs better than FEL, the
probability density distribution of the error obtained for each method needs to be as-
sessed in detail to establish a valid conclusion. Figure 4.20b reveals that the probability
density function obtained for FEL and RA is at best far from a Gaussian distribution
(figure C.1). Therefore, considering the mean and standard deviation only does not
seem to be the most appropriate option for comparing both distributions.

According to figure 4.20b, the most probable values of the visual error obtained
are 0.08 pixels in the case of RA and 0.10 pixels in the case of FEL. Therefore, the
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(a) Training curves for different values of the BBB factor (gf ) using FEL architecture. Each curve is the mean of the five training
curves for each K-Fold iteration. In order to simplify the visualization, only the first 3000 iterations have been considered, although
the trend has hardly changed up to 6500.
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(b) Probability density distribution of the visual error generated from the testing dataset using the trained FEL controller. The visual
error is limited to 1 pixel on the x-axis for visualization purposes. The area under each curve considering the full range of x is 1

Figure 4.18: Training and testing curves fro FEL controller
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(a) Training curves for different values of theBBB factor (gf ) using RA architecture. Each curve is the mean of the five training curves
for each K-Fold iteration. In order to simplify the visualization, only the first 3000 iterations have been considered, although the
trend has hardly changed up to 6500.
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(b) Probability density distribution of the visual error generated from the testing dataset using the trained RA controller. The visual
error is limited to 1 pixel on the x-axis for visualization purposes. The area under each curve considering the full range of x is 1

Figure 4.19: Training and testing curves fro RA controller
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Performance of FEL and RA
as a function of the gain factor
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(a) Mean visual error of FEL and RA depending on the gain
factor applied to alter the inverse linear controller. The areas
represent the standard deviation of the visual error. Both areas
have as their lower limit the zero of the y-axis.
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(b) Probability density distribution of the visual error generated
from the testing dataset for the two better results of FEL and RA
controllers according to gf variation
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(c) Comparison of the cumulative probability of the visual error distribution obtained from using the FEL and RA controllers with
the test dataset. The maximum values of the probability density distribution are marked for each controller and the corresponding
accumulated probability at these points

Figure 4.20: Comparative between FEL and RA controllers
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Figure 4.21: The UJI humanoid torso: Tombatossals. Blue cylinders represent the four joints
of the head. The configuration of the head creates an implicit representation of the fixation
target (FP) that can be made explicit through triangulation (red lines). Reaching a target (RP)
requires converting the gaze direction into a 3D point of the Cartesian space centred in the
arm’s shoulder.

value of the arithmetic mean of the visual errors overestimates the most likely error.
Furthermore, this result —considering the maximum of the probability density curve of
each system— does not suggest a clear difference in the goodness of RA versus FEL.

A representation of the cumulative probability of the two cases (figure 4.20c)
is necessary to appreciate a difference. As it can be seen in figure 4.20c, the FEL
controller approximately 20% of visual error obtained in the estimation is below the
maximum probability, whereas this value rises to 40% in the case of RA. In addition, this
curve allows to compare the probability to obtain a visual error below 1 pixel, indicating,
in the FEL controller, it is approximately 88%, and it is almost 99% in RA. These results
suggest that at least in simulation, the RA controller performs better than the FEL
controller. However, both give very precise approximations bearing in mind the image
size, which is 1024 x 720 pixels.
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Sticker parallel to the 
projection plane of the 

camera

(a) Different perspectives of the sticker projection. The geomet-
rical center of the sticker is used to estimated the visual stim-
ulus. There is not variation of this value for small perspective
changes.

(b) Comparison of how distance affects the information provided
by the marker and the blob for detection. While the former barely
sees the lines and therefore the detection algorithm is not cap-
able of determining its position, the blob can still be detected by
means of segmentation with enough precision.

Figure 4.22: Different types of real stimulus

4.4.2.7 Robots results

It is necessary to solve several previous problems not considered in the simulation
to replicate experiments in the real robot. In the simulation, the environment and the
stimuli generating the saccades are created simply from virtual points in the surrounding
space of the robot. The position and location of these points are as precise as required.
In contrast, in the real robot, the points of attention are physical and therefore subject to
external factors that condition their precision. Fortunately, thanks to the robot’s arms,
it has accurate access to the surrounding environment (figure 4.21). Therefore, a red
circular sticker with a diameter of 2 cm is placed at a known point in the kinematic chain
of one of the arms to generate the stimuli and then trigger the saccades’ execution. This
reference point is the fingertip of one of the hands (red dot in figure 4.21). In this way, it
is possible to solve the inverse kinematics to move this point along a Cartesian space in
front of the robot. During this displacement, the pose of the end effector (robot’s finger)
where the sticker is fixed, is kept in such a way that the plane of the sticker is parallel
to the plane of the cameras planes as much as possible to minimise the change of
perspective.

A blob detector is used to perceive the sticker. It provides the projection area of
the sticker within each image. The input of the proposed controllers is two coordinates
for each image of the stimulus. The geometrical centre of the projected circle is used to
select these. The error introduced by this approach should not be significant as long as
there is not a considerable variation in perspective (figure 4.22a). First, an attempt was
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made to use a marker belonging to the Artoolkit 3 library, which offers more precision.
However, due to the requirements defined by the robot’s finger dimensions, the marker
size could not exceed 2 cm.

Nevertheless, with this size, because of the decrease in the resolution of the lines
with distance, the marker’s detection capacity was considerably reduced (figure 4.22b).
On the other hand, although with more significant noise, detection could be maintained
with the blob. The distances considered are defined by the range of the robotic arm with
the appropriate arrangement to display the marker in front of the cameras. In this case,
the maximum distance is 1.16 m. The Cartesian positions of the arm are distributed on
a grid of 0.4x0.4x0.3m.

For both control architectures, the adaptive networks are trained using the same
procedure applied in simulation. The stimulus (red sticker in the robot fingertip) is placed
in 125 positions of the defined Cartesian space. These points are the seed to start in 26
different gaze directions. From each position of the head, the robot performed a saccade
toward the target and then used the post-saccadic visual error to train the network. The
total number of points acquired was 3250. After training, the controllers are tested with
1000 randomly generated points within the defined Cartesian space. The same value of
BBB has been used as in the simulation for both the training and the test procedure. In
addition, the value of gf = 1.0 and gf = 0.5 are tested to confirm whether the gain factor
gf affects the result in the same way as it does in simulation. Finally, the post-saccadic
visual error is used as it had been previously done in simulation (equation (4.9)) to
evaluate the outcomes, thus enabling a comparison of both results.

In figure 4.23, the visual error histograms for the test dataset for each controller
and gain factor can be seen. In addition, the data obtained by grouping the visual error
in the histograms have been adjusted using a known probability density distribution.
This function is generalized extreme value distribution (GVA) (De Haan and Ferreira,
2007). This distribution can be used because there is a set of identical and distributed
random variables such as the visual error that when the number of iterations tends to
infinity, the value of visual error should tend to a minimum, in this case, zero. As can
be seen in figures 4.23a to 4.23d the fitting is suitable enough to represent the pattern
of visual error behaviour in this particular case. Using these curves to represent the
results allows determining the value where the visual error presents a higher density of
probability for each of the cases. As can be seen in (figure 4.24a), the better results
are obtained for RA controller with gain factor 1.0. As has been done in simulation,
it is possible to build cumulative probability curves for each one of these distributions
(figure 4.24b). This type of function can also explain the distribution of the results beyond

3http://www.hitl.washington.edu/artoolkit/
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(a) FEL controller, gf = 0.5
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(b) FEL controller, gf = 1.0
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(c) RA controller, gf = 0.5
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(d) RA controller, gf = 1.0

Figure 4.23: Histograms generated from the visual error obtained by using the controllers
learned in the robot applied to the testing space. The curves represent the probability density
distribution fitted to the results obtained using the generalized extreme value distribution as
model.
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Figure 4.24: Probability density distribution and cumulative probability curves of the visual error
estimated with the robot results

Table 4.6: Summary of the results in the robot extracted from the analysis of the fitting curves
obtained

Controller MRVEmax P(MRVE < MRVEmax) P(MRVE < x) < 0.5

FEL gf = 1.0 3.408 0.399 4.175
FEL gf = 0.5 4.558 0.361 5.708
RA gf = 1.0 2.258 0.322 3.024
RA gf = 0.5 3.024 0.305 4.175

the maximum probability density value.

In table 4.6, some of the information gathered from these curves is summarised.
The value of the visual error in which the probability density is maximum is shown for
each controller in the first column. As can be seen, the results for both FEL and RA are
in accordance with the trend of those obtained in simulation. Although the numerical
result is ostensibly more significant in the real robot, the sorting by performance is the
same. Thus, according to this value, FEL with half the gain value has worse results
since the gain value has more influence than in the case of the RA controller. On the
contrary, the RA controller with a gain value of 1 has better results. This arrangement
can be seen graphically in figure 4.24a.

In either case, both FEL and RA with gain 1 have a similar behaviour, being the
accumulated probability for a lower error of 7 pixels around 0.8.
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Table 4.7: Performance of the binocular visual-oculomotor transformation in the literature. This
information has been gathered from the corresponding reference

Approach Resolution Error (pixels) % Err.

FEL 1024x768 4.32± 2.34 0.48%

RA 1024x768 3.70± 2.75 0.56%

(Forssén, 2007) 640x480 5.50 1.15%

(Bruske et al., 1997) 512x512 2.50 0.49%

(Schenck and Möller, 2004) 1x1 0.06 6.00%

In the literature, several studies are available where this visual error is estimated
for different controllers. However, the distribution of visual error is usually not considered,
and an average value is used to estimate its performance. Therefore, in order to be
able to compare these cases, the average value is calculated for both controllers. The
comparative results with other approaches can be seen in table 4.7.

This comparison is merely indicative since the distribution of error obtained in the
different approaches is not available. In addition, other factors must be considered,
such as the distance between the cameras that, in the particular case of Tombatossals,
usually double the standard value for this type of head, which are not taken into account.
Nevertheless, as each robotic system has been tested with different cameras, in the
absence of more data, it is possible to calculate (last column of table 4.7) a ratio between
the average visual error obtained in the different tests and the value of the resolution of
the smaller dimension of the image. This ratio allows us to compare the results obtained
by abstracting them from the specificity of the cameras.

4.4.2.8 Conclusion

Two adaptive controllers have been proposed and tested in the preceding sections
to generate saccadic behaviour in a robotic binocular system. The results obtained
in the simulation and the real robot achieve rates of less than 1% of visual error for
both controllers, bearing in mind the cameras’ resolution. Furthermore, it has been
found that the experimental data visual error in the test set approximates a generalised
extreme value distribution. Although this point does not seem to have been taken into
account, the comparative results with other methods of solving this problem that exists
in the literature suggest that RA gives better experimental results in the robot. The
improvement of RA concerning FEL is achieved by the estimation loop that uses RA
to boost the results of the adaptive controller. This loop makes this architecture very
stable about the fixed controller estimation as it can be seen in figure 4.20a but at the
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Figure 4.25: Number of loops (mean and standard deviation) in the RA as a function of the gain

cost of increasing the number of iterations of this loop as it is shown in figure 4.25. The
controller learns this factor is less important because the number of iterations tends to
be 1 when the controller is trained. However, the training time varies depending on the
value and the precision of the gain estimation. However, this is not the case with the
FEL controller that is more sensitive to the value of the gain because just one pass is
given in each iteration loop, allowing a constant time calculation.

In any case, the results in simulation and the robot suggest that both proposed
controllers can generate the desired saccadic behaviour. Furthermore, as indicated
in (Porrill et al., 2004), the design of these controllers is bio-inspired by the behaviour
of the cerebellum, which is essential for triggering eye movement during saccades
(section 2.5).

4.5 Environment

In section 2.1, when the cycle of perception and action is described, a reference
is made to the environment. Intuitively, from the point of view described there, the
environment was an entity outside the system considered a source of information and
a receiver of actions modifying its state. In a system with a predefined model of the
environment, the way it is adapted is decided when the model is created. The changes
that may occur in this environment and the established model has not foreseen may
lead to inappropriate responses or actions towards the environment. The proposed
saccadic system is intended to adapt to environmental conditions and modify its internal
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model to suit these circumstances. The environment, therefore, plays an important role,
and it is necessary to define and characterize it in some way outside the robotic system
in question.

Prismatic Joints

Control Joints

Cameras

Environment 1 Environment 2 Environment 3

Figure 4.26: Example of how the environment can be established in various forms.

4.5.1 Environment definition

A first attempt to define the environment would be everything that is not the system.
This definition, however, is too general. For example, if the points in the plane proposed
in figure 4.16 are considered, everything that is not the system would be the infinite
points that are in all directions where the robot can perform a saccade. However, the
space for the positions of the visual stimuli where a saccade can be triggered is limited.

The limits defining the environment are its distinguishing characteristics. For
example, in figure 4.26, a set of virtual stimuli can generate multiple environments that
present different properties affecting in different ways the ability of the robotic system to
adapt.

In conclusion, the environment has its entity and therefore, the parameters that
define it must be established in order to determine how changing these factors affects
the robotic system that is adapting to it.
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Figure 4.27: Parallelepiped region defined as environment.

4.5.2 Parameters defining the environment

In this case, the environment is defined by a three-dimensional region, where the
visuo-oculomotor system can capture stimuli enabling it to perform saccadic movements.
This portion of the space can be delimited. The boundaries establish the area where a
stimulus can be captured. This volume can be defined in multiple ways, from an irregular
volume to a set of parallel planes defining a parallelepiped (figure 4.27).

For simplicity, this is how the environment is defined for the proposed robotic
system. A set of parallel planes delimit the region in front of the robotic head in which
the saccadic behaviour is to be implemented. In addition, a centroid is defined that
corresponds to the average value of the stimuli that can be generated within this volume
(figure 4.27).
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4.6 Conclusion

Transferring the perceptual model of living beings to a robotic system involves
describing three component factors constituting it:

The morphology of the robotic system in which a widely used configuration typology
(Helmholtz) has been started and parameterized in a systematic way to be able to
generalize the concepts that are developed for a particular robotic system to a broader
set of systems that can follow this configuration.

The second aspect is the implementation of the behaviour. Throughout this chapter,
several ways of implementing and characterizing the saccadic behaviour from the robotic
point of view have been presented, performing tests in a particular robot suggesting the
adequacy of the results obtained in simulation.

Finally, the environment factor in an adaptive system is highlighted in the corres-
ponding section of this chapter, describing what should be understood by the environ-
ment and how the parameters describing it are defined.
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Chapter 5

Predicting the internal model of a
robotic system from its morphology

Work of each individual contributes to a totality and so becomes undying part of
a totality. That totality is human life. Past and present and to come forms a tapestry
that has been in existence now for many tens and thousands of years. And has
been growing more elaborate, and on the whole more beautiful.

Isaac Asimov, Robots and Empire

5.1 Introduction

The perceptual loop exposed in the section 2.1 relates three elements that can be
transferred to the field of robotics. First, from the engineering point of view, cognition
concerns the internal model generated by the robot to develop tasks within a particular
environment. Second, the sensors and effectors pertsin to the morphology. Finally, the
environment is the glue that cements the whole set. Its morphology and internal model
characterize a robot system interacting with a particular environment. The morphology
could be considered as a representation of the physical properties of the robotic system.
Most of these properties can be measured. In turn, the internal model represents the
interaction between the robot system and the environment. Different research areas
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within Robotics have been established that differ in how the relations among these three
elements are handled.

• (Bongard et al., 2006) point out that the interaction with the environment can
determine the morphology of the robot.

• (Vaughan and Zuluaga, 2006) suggest that the simulation of the environment and
incomplete self-knowledge model the robot behaviour and, therefore, its internal
model

• Based on the maxim that knowledge comes from experience, the estimation of the
internal model can be obtained from the robot’s interaction with the surrounding
environment. These model learning approaches typically consider the relation-
ships between states and actions exclusively, and the information about the states
and actions of the past, present and even the expected future is needed to model
the robot behaviour. The process of learning is a regression problem where the
training samples are obtained from the state and controls of the plant along with
time (Sigaud et al., 2011). Internal-model-based control theory is well established,
but internal models are typically expressed as mathematical models of the plant,
normally employing a set of differential equations (Isidori et al., 2003).

Classical robotics relies on a previous generation of models, for example, per-
forming a series of reality simplifications that make it possible to generate behaviour
in a controlled environment. However, a cognitive and autonomous robot must be
able to generate its models from the information streams and the interaction with the
environment (Nguyen-Tuong and Peters, 2011). Two approaches can be considered to
implement this model learning using the environment as guidance operationally:

• From an engineering point of view, by using online parametric identification (Sicili-
ano and et al., 2008).

• From a machine learning point of view, by using the tools described in chapter 3.
In chapter 4, we decided to use machine learning as a working tool, mainly
supervised learning. In this way, it is not necessary to make a-priori assumptions
about the structure of the model and we can include all relevant phenomena in a
general function built out of experimental data.

In any case, according to (Pfeifer et al., 2007), a relationship always exists between
the internal model and the morphology. Moreover, they are inseparable because both
affect how information is processed in the robotic system. In the previous chapter, an
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internal model (behaviour) has been implemented without considering how the morpho-
logy of the robotic system affects it. The proposed approached was was based on the
adaptation of the robotic system to the environment perspective. The morphological
parameters defining the robotic head were preset, and from this point and through an
adaptation process, the internal model defining the behaviour was modelled. As in the
natural world, where the morphological characteristics of a living being condition its
adaptation to the environment, it is appropriate to introduce a method for relating this
part of the congenital cycle to the other two (internal model and environment) in order
to have a more general view of the behaviour under study.

The reference is going to be changed to achieve this objective. In the previous
chapter, morphology was considered constant and we studied how the internal model
adapted to the environment. Therefore, a robotic system and variations of the environ-
ment served as a guide to learn the relationship between both. On the contrary, now
the environment remains constant, and there are multiple robotic systems with different
morphologies interacting with the same environment to determine their internal model.
In this way, it is feasible to study how these robotic systems’ morphology and the internal
model are related.

Since this relationship is unknown, we propose an approach based on neural
networks to learn it. These methods are instrumental in solving problems when a
complete formulation is not known, or a mathematical representation is not explicitly
available (Hudson and Cohen, 2000).

The ability to predict the internal model of a robot from its morphology has a
great interest in the current state of the art in robotics research and applications. So-
called morphofunctional machines can change their functionality by modifying their
morphology and some modular self-reconfigurable robots can morph (Pfeifer et al.,
2007) . The rationale is that much of the functionality of a robot is due to its particular
morphology, and by altering it depending on the task, its performance, adaptivity and
versatility, will substantially improve.

In the last decade, there has been a growing concern in the community regarding
how to progress in robotics research has been hampered due to differences in hardware
that make it difficult to compare alternative approaches, apply benchmarks, or replicate
results (Bonsignorio and del Pobil, 2015). The problem is that robots with a similar
design still have differences in their morphological parameters. A possible solution is to
make knowledge transferable to different embodiments or morphologies. For instance,
Felip et al. (Felip et al., 2013) proposed a methodology based on abstract state machines
that are automatically translated to embodiment-specific models. Getting the internal
model directly from the morphology will contribute to progress in this direction.
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Arguably, this research can have a high potential for impact in the 4th industrial
revolution, the so-called Industry 4.0. In this context, a robot is no longer regarded
as a standalone machine, but rather as a networked Cyber Physical System (Khaitan
and McCalley, 2015; del Pobil, 2018) endowed with interoperability, i.e., the ability to
connect and communicate with other devices via the Internet (Hermann et al., 2016). In
this sense, the rationale of so-called Cloud Robotics (Wan et al., 2016)(Kehoe et al.,
2015) is that instead of trying to increase the performance and functionality of isolated
robot systems, knowledge is reused through the shared memory of multiple robots.
Endeavours such as RoboEarth (Waibel et al., 2011) collect, store, and share data
independent of specific robot hardware. However, internal models should be available
online so that different robots can exhibit the same behaviour in a given environment for
this to be fully operational. This chapter aims to verify how the internal model built by
the robot from its adaptation process to the environment is related to its morphology
for saccade execution behaviour. Therefore, this chapter is structured with an initial
part where a model and a computation methodology to elucidate this relationship is
presented.

Next, several methods for implementing the model defining the relationship between
the internal model and the morphology are compared. In order to evaluate them properly,
it is necessary to generate a dataset based on the typology of the robotic system de-
scribed in the previous chapter, exhibiting a particular saccadic behaviour. Finally, after
evaluating the proposed tools for learning the suggested model, the best performing
method is used to describe several applications in robotics.

In the last part of the chapter, it is argued that understanding the relationship
between morphology and internal modelling involves exploiting the way previous sys-
tems have learned to adapt to a given environment. This procedure has an unmistakable
resemblance to the concept of gene and phenotype in the genetics of living organisms.
When a living being is born, it does not start from an absolute lack of knowledge; on
the contrary, the programming of its genes allows it to adjust its behaviour to adapt to
the different environments in which it develops. The last section presents an artificial
genotype model related to the relationship between morphology and internal parameters
of a robotic family.

5.2 Objectives

Discovering the relationship between the internal model and the morphology of a
robotic system able to execute a saccade movement is the aim of this chapter- To do
so, we generalise the particular result of the previous chapter to any robotic head by
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means of a parameter range established by the morphology. Correlating the morphology
and the internal model facilitates this generalisation. Several techniques for learning
are tested to discover the searched relationship. Their performance is compared and
evaluated. Finally, various applications of the presented model are presented.

5.3 The relationship between morphological and
internal model parameters

The starting point for systematically describing a mathematical model to achieve
the proposed objectives is the cognitive loop shown in figure 2.1. For this purpose, an
analogous loop for a robotic system is presented in figure 5.1.

Actuators Sensors

(i) robotic 
system

Γi
(a)

Γi
(s)

Environment

E
X

E
y

Γi
(p)

Process

Figure 5.1: Schema showing the information fluxes and transformations among the different
system components and the environment.

A robotic system (i) immersed in a particular and stable environment is con-
sidered. Each information flow exchanged by the robot with the environment is analysed.
Nevertheless, this discussion is made from two different points of view:

95



Predicting the internal model of a robotic system
from its morphology Morphology and Internal Model

• From the robot point of view. This is a classical approach where the sensors and
actuators of the robot are part of it, and the whole system is somehow separated
from the surrounding environment (solid green line in figure 5.1). The flow of
information through the various elements of the system can be decomposed into
the following stages:

– The sensors of the robotic system transform the data flux (Ex) from the
environment and generate an input (Xi) for the robot internal model. The flux
Ex only depends on the environment state, however the Xi input depends on
the robot morphology (generally on the sensor parameters (Γ(s)

i ) and Ex.

– The internal model processes the inputs and generates the outputs (Yi) to the
robot actuators. The input flux Xi is processed by the internal model (f ) which
takes into account the internal model parameters Γ

(p)
i =

{
γ

(p)
i,1 , γ

(p)
i,2 , ..., γ

(p)
i,k

}
,

where k is the number of internal parameters for (i) system. The function f
embodies (figure 5.1) everything there is to know about the relationship Xi

and Yi through the internal model parameters.

– The actuators of the robot modify the state of the environment. This fact can
be represented by an output data flux (Ey) in some way. This flux is a function
of the parameters of the robot actuators (Γ(a)

i ).

– The set Γi = {Γ(s)
i ∪ Γ

(p)
i ∪ Γ

(a)
i } represents the parameters of the robotic

system, both morphological and those of the internal model. The set Γ
(m)
i =

{Γ(s)
i ∪ Γ

(a)
i } = {γ(m)

i,1 , γ
(m)
i,2 , ..., γ

(m)
i,h } contains the morphological parameters of

the system, and h is the total number of sensor and actuator parameters.

• From the environment point of view: Now, focusing on the environment and
defining new limits, the set formed by the environment, sensors and actuators are
considered excluding the internal model as a new system (dotted green line in
figure 5.1). The information streams can be decomposed into the elements of the
considered system, as in the previous case:

– The input flux of the considered system is the output flux of the internal model
(Yi).

– As in the previous case, the actuators modify or transform the information
generating changes in the environment (Ey).

– In the environment, there is an inherent relationship (e) to the model that
governs it, regulating the changes that can occur in it, generating signals that
are captured by the sensors of the robotic system. This can be formulated as
Ey = e(Ex) or the inverse function Ey = e(−1)(Ex) .

96



Predicting the internal model of a robotic system
from its morphology Morphology and Internal Model

– The output stream of the environment is the input flow to the sensors that
modify it, generating the output flux of the new system under consideration
Xi.

From the environment point of view the relationship (e) between Yi and Xi depends
only on the morphological parameters of the system (Γ

(m)
i ) and Xi. Whereas from the

system point of view, the relationship between Yi and Xi is only a function of the internal
model parameters (f (Γ(p)

i ,Xi)).

However, it is necessary to define which of the two systems is the adaptive one.
The nature of the environment yields the model as defined by the functional relationship
(e). In a stable environment like the one considered in this function, the inputs and
outputs should vary, but not the type of function. On the contrary, the internal model
defined by the functional relation (f ) receives some input signals and generates an
output when exposed to this environment. If the information reaching the environment
generated by the internal model produces the expected changes, in this case, it is
possible to consider that the system is well adapted to the environment.

For a suitable interaction with the environment, the internal model (f ) must be
an approximation of the real model of the environment (e). The correlation between
the morphological and internal model parameters is given by the following functional
relationships (figure 5.1):

Γ
(p)
i = g(Γ

(m)
i ) (5.1)

This statement will be true if the internal model is properly learned and the mor-
phological parameters satisfy:

∂Γ
(s)
i

∂Ex

∣∣∣∣∣
i

=
∂Γ

(a)
i

∂Ey

∣∣∣∣∣
i

= 0 (5.2)

This equation (5.2) defines the notion of morphological parameters in our formal-
ism, in the sense that they must accomplish the condition that they are independent of
the input and output data fluxes from and to the environment for the system (i). Thus,
for example, the camera’s focal length is considered a morphological parameter if its
value does not vary with the input information; i.e., it is not in autofocus mode.

As shown in the previous chapter, the relationship defined by function f, is es-
timated using the inputs (Xi) and outputs (Yi) of the system, and the g transformation
is embodied in the environment data flux transformations. The inputs Xi and out-
puts Yi are represented by a sequential set of vectors Xi = {xi,1,xi,2, ...,xi,u} and
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Yi = {yi,1,yi,2, ...,yi,u} where u is the number of samples (Di = {Xi,Yi}). We assume
that each pair of components of Di are independent measures of the system.

In model learning frameworks, the optimal model structure should be obtained
from training data Nguyen-Tuong and Peters (2011), and the model can be fitted into
the following function:

Yi = f(Xi,Γ
(p)
i ) + εi; f(Xi,Γ

(p)
i ) = φ(Xi)

TΓ
(p)
i (5.3)

From a probabilistic point of view, f(Xi,Γ
(p)
i ) can be considered as a conditional expect-

ation E(Yi | Xi), therefore εi is an expectational error term that can be expressed as
εi ≡ Yi − E(Yi|Xi).

The model is defined by the value of the internal model parameters Γ
(p)
i . Due to

the independence of the measures in Di, the likelihood function for Γ
(p)
i is:

Lu(Γ(p)
i | Di) =

1

u

u∑
s=1

log(p(Di,s | Γ(p)
i ) (5.4)

Maximizing the function Lu(Γ(p)
i | Di), we obtain the maximum likelihood estimator (MLE)

for Γ
(p)
i as:

Γ̂
(p)
i ∈ argmax

Γ
(p)
i

Lu(Γ(p)
i | Di) (5.5)

There exist many optimisation procedures to solve this equation (5.5). However,
the above definition is not complete because there is no guarantee that such a maximum
exists or, when it does exist, it is unique. That is, the proposed system is not able to
properly learn the environment model. Depending on the similarity between the real
model of the environment and the model proposed by equation (5.3), this statement
will be valid. In this work, the supposition that all proposed systems can learn the
environment model is considered. As a result of equation (5.5), two properties are
satisfied:

• MLE for Γ
(p)
i is consistent, that is, when u is large enough, the estimator Γ̂

(p)
i

converges into Γ
(p)
i :

lim
u→∞

p
(
| Γ̂(p)

i − Γ
(p)
i |> δ

)
→ 0 (5.6)

From this expression can be concluded that the value of Γ̂
(p)
i can be considered

constant when u is large enough. That is, there exists a unique set of optimum
parameters Γ̂

(p)
i , that leads to the best approximation of the true function by a

certain model.
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• The maximum likelihood estimator is asymptotically normal. That is, as u becomes
large, Γ̂

(p)
i converges to a multivariate normal random variable whose variance is

a diagonal matrix. The asymptotic normality of the maximum likelihood estimator
is expressed as: √

u
(

Γ̂
(p)
i − Γ

(p)
i

)
d−→ N

(
0, σ2

MLI
)

(5.7)

where σ2
ML is called the asymptotic variance of the estimate Γ̂

(p)
i . Asymptotic

normality says that the estimator not only converges to the unknown parameter
Γ

(p)
i , but it converges fast enough, at a rate 1/

√
u.

5.4 Extracting knowledge from multiple robotic
systems

If instead of only one system (i), v similar systems with different morphologies1 are
considered, and each one has an internal model whose properties are fitted into (5.3),
the result is a set of pairs {Γ̂(p),Γ(m)} = {{Γ̂(p)

i ,Γ
(m)
i }∀i ∈ [1, v]}. From a statistical point

of view, both variables are considered as random because we randomly define Γ(m) as
the system morphology in a particular range of values and each Γ̂

(p)
i was obtained from

independent trials. Therefore, a regression model such as (5.3) can be used to learn
the relationship between them:

Γ̂(p) = g(Γ(m),W) + ξ; g(Γ(m),W) = Φ(Γ(m))TW (5.8)

As in the previous case, a maximum likelihood estimator for Ŵ can be used
for fitting the values of morphological parameters —obtained for each system— to
Γ̂(p). Once the value of Ŵ is calculated, a prediction model can be used to obtain an
estimation of Γ̂

(p)
i from the specific morphological parameters. Given a new system

(j) —defined by its morphological parameters— its internal model parameters can be
estimated as:

Γ̂
(p)∗
j = Φ(Γ

(m)
j )TŴ (5.9)

If equation (5.9) is compared with equation (3.28), it is possible to elucidate that
the techniques described in section 3.4 can be valid for addressing the learning problem.

The problem posed by equation (5.1) is to find the function g to map the morpholo-
gical parameters and the internal model parameters. For this, v robotic systems are
needed. Each one of these v systems will have previously interacted with the same
environment in order to obtain its set of internal model parameters Γ

(p)
i .

1Same number and kind of morphological parameters but different values
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The size of this set depends on the number of inputs and outputs of the robotic
system and the adaptation solution used for estimating the internal model. In turn, the
size of Γ

(m)
i is related to the complexity of the system morphology, and the number of

morphological parameters is usually substantially smaller than the number of internal
model parameters Γ

(p)
i .

In order to contextualise this problem in the scope of this work, it is necessary to
have v robotic heads —characterised by a variable morphology within a range— that
interact with the same environment and develop the same behaviour: the saccadic
movement. In the previous chapter, these points have been defined for a single robotic
head; now, we will vary the parameters that define the morphology of the head defined
in section 4.3, allowing the system to adapt to an environment that is common to all
systems, by using the learning algorithms described in section 4.4.2.

5.4.1 Morphology of the robotic systems to predict the internal
model

A set of robotic heads with a Helmholtz-type design needs to be defined. For
this purpose, the parameters defined in section 4.3 are used. This system presents
morphological parameters that correspond both to actuators and sensors. According to
section 4.3, a range for each parameter can be defined. Table 5.1 shows this range of
values that each morphological parameter can take. If the limits had been defined totally
randomly, many of the configurations obtained would probably have been unviable.
Therefore, the range of the parameters on the right side is defined according to the
range on the left side to avoid this situation as much as possible. Examples of different
morphologies generated using these parameter ranges can be seen in figure 5.2. In
these examples, the variations in the camera’s parameters should also be considered.

For further use in learning, the values corresponding to the set of morphological
parameters are transformed to maintain a homogeneous scale across all inputs. For
example, as shown in section 4.3, the camera resolution is in pixels. Therefore, the
image dimensions are transformed to decimetres using the pixel size value and are thus
of the same scale as the rest of the morphological parameters. In turn, the pixel size
values are also converted from metres to decimetres to maintain the homogeneity of
the set.

100



Predicting the internal model of a robotic system
from its morphology Extracting knowledge from multiple robotic systems

Table 5.1: Morphological parameters to generate a set of robotic systems.

Prismatic joints (cm)

Left side Right side

Γp
i,1 = q2 ∈ [−0.054, 0.054] Γp

i,2 = q2 = Γp
i,1 + [0, 0.01]

Γp
i,3 = q3 ∈ [0, 0.07] Γp

i,4 = q3 = Γp
i,3 + [0.035, 0.07]

Γp
i,5 = q4 ∈ [−0.02, 0.054] Γp

i,6 = q4 = Γp
i,5 + [0, 0.02]

Γp
i,7 = q6 ∈ [0, 0.01] Γp

i,8 = q6 = Γp
i,7 + [0, 0.01]

Cameras parameters: f (px); s(m/px);w(px);h(px)

Left camera Right camera

Γp
i,9 = fl ∈ [340, 1920] Γp

i,10 = fr = Γp
i,9 + [0, 200]

Γp
i,11 = sl ∈ [3. 10−6, 7. 10−6] Γp

i,12 = sr ∈ [3. 10−6, 7. 10−6]

Γp
i,13 = hl ∈ [340, 1920] Γp

i,14 = hr = Γp
i,13 + [0, 200]

Γp
i,15 = wl ∈ [340, 1920] Γp

i,16 = wr = Γp
i,15 + [0, 200]

if Γp
i,13 > Γp

i,15, swap(Γp
i,13,Γ

p
i,15) if Γp

i,14 > Γp
i,16, swap(Γp

i,14,Γ
p
i,16)

5.4.2 Defining an environment to adapt robotic systems

All robotic systems described by the morphological parameters considered in the
previous section must interact with a single environment. The environment had been
defined in section 4.5.1, a prismatic region determined by six planes and a centroid.
From a theoretical point of view, any point within this space could be a stimulus that
triggers the saccade in a certain robotic system. However, from a practical point of view,
it is not such an easy problem to solve.

The stimulus must appear in both cameras of the robotic system simultaneously
to execute the saccadic movement. A first solution to solve this situation would be to
generate a cloud of random points uniformly distributed that would act as stimuli within
the region defined as the environment. Depending on the density of points per unit of
volume, there would be more or less probability that the projection of some of them
on the image planes of each camera would fall within the limits of the image size. In
addition, the point chosen should have the projection on both images. For example,
considering 5000 points distributed within the space that defines the environment, it
would be necessary to calculate the projections of these 5000 points on the planes of
each camera and look for the ones that are within both. All this computation effort is only
to determine a unique, valid stimulus. Bearing in mind, as suggested in section 4.4.2.7
that it was necessary to execute about 400 movements, the total number of projections
that should be computed could rise to 200000 to train a single robotic system.
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Figure 5.2: Different morphologies of robotic systems generated from the ranges defined in
table 5.1

A computer graphics technique (frustrum culling) is used to circumvent this prob-
lem and reduce the number of projections and calculations that have to be made for
the process of adapting the robotic system to the environment. In figure 5.3, the paral-
lelepiped defined as environment is represented and contains all possible stimuli that
can be generated within this environment (red points). These stimuli are generated once
and they are characteristic of the environment. Therefore all robotic systems interact
with the same stimuli. In figure 5.3, the three-volume intersection is also represented.
The volume of the environment is intersected with the frustrum defined by each camera’s
near and distant plane so that only the points within these three volumes are possible
stimuli that can trigger a saccade in the current position of the cameras. The equations
of the planes defining the environment are always the same if the base of the robotic
system is taken as the origin reference frame. However, the planes forming the frustrum
of the cameras must be recalculated when the cameras are moved.

If the cameras are moved by giving angular position values to the joint motors at
random, it can be the case that the frustrum of cameras never intersect, and therefore
many calculations are wasted. In a biological system, the eyes act in a coordinated
manner. If instead of using the angular positions of the robotic system directly, random
values of vergence and version are calculated; then, from equations (2.1) and (2.2), the
angular positions for each motor are easily obtained from:

γR =
2version− vergence

2
(5.10)
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Figure 5.3: Environment and frustrum of the cameras intersecting

γL = vergence+ γR (5.11)

This aspect does not apply to the tilt angle position since it is common to both cameras
and is directly calculated randomly.

Considering this calculation method, the obtained angular positions ensure that
the frustrums of the cameras have an intersecting space at some point. Therefore,
the same environment is maintained instead of positioning the stimuli in front of the
robotic systems to be adapted, although the robotic system moves. This movement is
performed in the space of vergence and version of each system.

The normals defining the planes forming the environment and the cameras’ frust-
ums point towards the centre of each volume. Thus, to determine whether a point (x,y,z)
is inside or outside the region bounded by these planes, a dot product of the coefficients
defining these planes and the coordinates of the point must be calculated. A result
greater than zero implies that the point is defined within the volume.

The main advantage of this method is that by performing this calculation for one
of the cameras, many points are discarded that no longer need to be considered for
the other camera. Thus, this procedure speeds up the process of obtaining a set of
candidate stimuli that are present in both images.
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5.4.3 One behaviour for multiple robotic systems

In the previous chapter, two architectures were presented to implement saccadic
movements: feedback error learning FEL and the recurrent architecture RA. Both yield
positive results (section 4.4.2.8), with RA being better in the final performance, but
at the cost of execution time. This time factor is definitive in the selection of the FEL
architecture to implement the robotic systems used to achieve the objectives of this
chapter.

In any case, both proposals have in common that they need a fixed controller
to guide the initial movements in the adaptation process. The fixed controller (B)
slowly drives the system toward the target and provides a learning cue to an adaptive
controller (Cf ). Depending on the chosen coordinate system, the fixed controller is a
transformation matrix as indicated in equation (4.3).

Before starting the adaptation process, regardless of the chosen architecture, an
a priori estimation of B is needed to convert the visual target into a movement of the
eyes. The procedure to estimate the fixed controller is based on the fixation of the
stimulus in the center of the camera images. Afterwards, motor babbling is generated
Saegusa et al. (2008). Under these conditions, the variation of the visual target position
(∆t = t) in the images can be correlated with the motor command (∆e). Therefore, if
a set of b pairs {ti,∆ei} = {{ti,j,∆ei,j} ∀j ∈ [1, b]} for a particular robotic system (i) is
generated by motor babbling, Bi can be directly obtained from least squares regression
(see equation (4.8)):

Bi = ∆etTi
(
titTi
)−1 (5.12)

Once the controller FEL is chosen to perform the process of adaptation, it is
necessary to comprehend the learning as a process of transmission of information
that flows from the environment to the robotic system in such a way that, using this
information, the robot can discover the model that governs the environment and therefore
interact with it.

From a practical point of view, learning using the proposed FEL controller is
equivalent to adapting the weights of a neural network (section 4.4.2.4).

From equation (5.3), to learn the relation between the signals that arrive at the
system and those that it generates to interact with the environment is to discover for a
given architecture (φ(XXX i)

T ) the parameters of the internal model Γ
(p)
i .

Therefore, the weights of the neural network are an essential part of the parameters
of the internal model (Γ(p)

i ) described in equation (5.3). Hence, the term φ(XXX i)
T is the
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one corresponding to the neural network architecture used by the FEL controller.

These weights store the information from the interaction of the system with the
environment. Both the fixed controller parameters Bi and the adaptive controller para-
meters (the neural network weights θi) represent the internal model of the robotic system
in this example Γ̂

(p)
i = {Bi, θi}.

5.5 Generating one robotic head with saccadic
behaviour

As it is indicated in section 5.4, to learn the relationship between the internal model
and the morphology of a robotic system, it is not enough to consider one case; it is also
necessary to generate v robotic systems. In order to produce one of these systems,
it is necessary to follow a scheme like the one shown in figure 5.4. As can be seen in
figure 5.4, the generation process is divided into three main phases:

1. Robotic system generation: A robot head is created from the ranges defined for
each morphological parameter described in table 5.1 (Γ(m)

i ∈ R16). However, it is
also necessary to initialize the two components of the internal model.

• In the case of the internal model corresponding to the fixed controller Bi, it is
necessary to perform an estimate prior to the adaptation process as indicated
in the previous section. In order to obtain an adequate precision in the
estimation of the fixed controller, the number of movements (b) in the motor
babbling process that are necessary to execute for each robotic system must
be taken into account. As a result, a set of pairs {tj,∆ej}∀j ∈ [1, b] is obtained
and using equation (5.12), Bi can be estimated. To avoid unnecessary
calculations for each robotic system, a previous study is performed to estimate
a value of b to give satisfactory results without having to increase excessively
the iterations to generate them.

A number of head setups (1000) were chosen randomly. The values in
Bi were estimated by varying the number of iterations (b) for the selected
robot heads. Afterwards, the calculated Bi is used to predict the visual
stimulus position after a movement. The mean square error between the real
stimulus position variation in the images and the predicted position shift can
be considered as a quality measure for Bi. Figure (5.5) illustrates the high
stability of Bi estimation after some 500 iterations. Therefore, a value of b
greater than 500 (b = 600) is selected.
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Figure 5.4: Schema describing the generation of one of the robotic heads needed to learn the
relationship between the internal model and the morphology
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Figure 5.5: Mean square error for Bi estimation with 1000 robot head setups versus the number
of iterations

• In the case of the internal model corresponding to the adaptive controller,
a neural network with a single hidden layer was used, keeping the same
architecture for all the setups. Namely, an input layer with seven neurons:
four neurons for stimulus position in the image (t) and three for the head
motor commands (e); the output layer has three neurons according to the
control command variations (∆e). Gaussian activations using random sparse
features (section 3.5.2) are used for the hidden layer. The randomness of
these features allows us to use this set of features for all neural networks. In
this way, these features are considered as a component of the neural network
architecture. A unique set of random sparse features is generated (Ωm), and
they are used for the training and validation processes. Incremental sparse
spectrum Gaussian process regression is used for adapting the weights of the
neural network. The parameters of the training algorithm have been previously
tuned (Gijsberts and Metta, 2013): variance of the model (σ2

n = 0.1), signal
variance (σ2

f = 1.0) and number of projections (D=300), therefore Ωm ∈ R600.
Each neural network used for learning the adaptive controller of each head
setup is initialised using random weights (θ0

i ). As indicated in section 3.5.2, a
covariance matrix (A) and a vector (b) are needed to train the neural network
using a gaussian process. The weights of the networks are adapted using
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(A) and (b). Once the network is trained, these two elements are not used
to estimate the network’s output. The mapping between inputs and outputs
is given solely by the trained weights θi, regardless of how the weights were
learned.

2. Iteration loop. Once the robotic system has been configured, it must be exposed
to the environment. This procedure is common to all the generated robotic
systems, and it is defined as indicated in section 5.4.2. For adapting, the cameras
are moved randomly in vergence and version mode, a random virtual object
placed in both images is selected as a stimulus, the cameras of the i robot head
acquire the images, and the visual position of the object is estimated. Using the
current output of the neural network (Cf i) and the value provided by the fixed
controller, previously calculated (Bi), an incremental control action for the head
motors is generated. The head moves according to these control commands,
and the cameras acquire the new visual stimulus position on the images. The
neural network is adapted using the visual error in this position. After a number of
iterations, the neural network weights converge to stable values, and the visual
error is stabilised. To ensure convergence is reached, and considering the time
consumption of the training process, each robot head is trained for 1000 iterations.
This training process has been repeated three times for each head setup, and the
final θi values are taken as the mean of the three trials.

3. Final robotic system. At this point, the resulting weights of each neural network
representing an adaptive controller are considered as part of the internal model
parameters, since they partially determine the system’s behaviour. Each trained
weight matrix is represented by θi ∈ R600×3.Together with the fixed controller
parameters, they constitute the set of characteristic internal model of each robotic
system Γ

(p)
i = {Bi ∈ R3×4, θi ∈ R600×3}. After the training process, the estimated

Cf and B are used for executing saccadic movements. In particular, to estimate
the error in the adaptation process, each robot head setup is tested using 500
random saccades.

5.6 Generating multiple robotic heads with saccadic
behaviour

The previous section described how a robot head is generated and adapted to
a particular environment to develop a saccadic behaviour. This process must now be
repeated as many times as required to obtain sufficient data to learn the relationship
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Figure 5.6: Visual error probability density functions for the 44271 trained head setups using
the estimated B and Cf for each one. The error for the two cameras and the average is shown.
The considered measure of the final visual error is the mean visual distance in pixels between
the stimulus position and the gaze point for each camera. Thus, these three curves represent
the visual error after training for the proposed set of morphologies. These probability density
functions fit fairly well into a log-normal distribution. The estimation of their parameters expressed
in pixels are: for the mean (µ = 4.6,σ = 2.26); left camera (µ = 4.3, σ = 2.08); right camera
(µ = 4.9 and σ = 2.4).

between the internal model and the morphology. Through simulation, 44271 robotic
systems are generated and adapted in the same environment.

After this intensive calculation process, the result is a dataset D composed by
a set of pairs Γ

(m)
i ∈ R16,Γ

(p)
i = {Bi ∈ R3×4, θi ∈ R600×3} | i ∈ [1, v = 44271] and an

average performance in the final execution of the saccade behaviour for each generated
robotic system. Figure 5.6 shows the probability density function for the visual mean
error based on performed tests for the 44271 robotic heads.

It should be noted that the values of the covariance matrixRRRi and the term bbbi in the
algorithm 3 are not stored in the dataset based on the idea that both elements depend
on the adaptation process and represent the uncertainty in that process. In contrast,
the final weights are the terms that contain the knowledge acquired in the learning
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procedure.

5.7 Machine learning problem

A machine learning tool is needed to approximate equation (5.8). This tool should
be flexible, and sometimes it will have to manage a significant number of components for
Γ

(p)
i and Γ

(m)
i . An approach based on neural networks is feasible due to the scalability

of the resulting architectures. Since typically the number of components in Γ
(p)
i is large,

the high dimension of the neural network output is a challenging problem (L’Heureux
et al., 2017) and several approaches to solve it are tested.

Fortunately, the problem formulated in (5.8) can be decomposed into two parts for
the proposed case study: on the one hand B̂ = g1 (Γm):

B = g1

(
Γ(m),W1

)
+ ξ1; g1

(
Γ(m),W1

)
= Φ1

(
Γ(m)

)T
W1 (5.13)

and on the other hand θ̂ = g2 (Γm):

θ = g2

(
Γ(m),W2

)
+ ξ2; g2

(
Γ(m),W2

)
= Φ2

(
Γ(m)

)T
W2 (5.14)

These equations represent the two regression problems that must be solved to
learn the relationship between morphology and the internal model in this set of robotic
systems.

5.7.1 Solving the regression problem for the fixed controller

Given a dataset D generated from the interaction with an environment of many
robotic systems, a machine learning approach can be used to solve the regression
problem posed by the equation 5.13. The dataset (D) is split into three partitions to
reduce potential bias in the data as much as possible: 26500 items for training, 4500
items for validation and 13271 items for testing.

The regression problem in equation (5.13) can be solved using a basic single layer
neural network as show in figure 3.5. Bearing in mind these aspects:

• The number of neurons in the hidden layer(h) is undoubtedly one of the foremost
parameters to be modified in this type of neural network.

• The input layer contains 16 neurons corresponding to the 16 morphological para-
meters. In turn, there are 12 neurons in the output for 3x4 B parameters.
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• The hyperbolic tangent function was used for the hidden layer, and the output layer
was linear.

• The algorithm used to train the network was scaled conjugate gradient back-
propagation (SCG) Møller (1993).

A schema of this networks can be seen in figure 5.7. Several variations of the
same neural network schema have been trained by changing the number of hidden
layer units (h) in order to identify the most optimal parameter D and the proposed
network architecture. The training process and its posterior test have been repeated
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Figure 5.7: Schema of the single layer feedforward neural network proposed for learning the
relation between the BBB matrix of the fixed controller and the morphological parameters.

three times splitting randomly each time D in the proposed subsets. Figure 5.8
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Figure 5.8: Mean square error obtained by different neural network hidden layer setups. The
red line represents the standard deviation for three repetitions of the training

shows the obtained results for the mean and standard deviation of the mean square
error for B estimation after training. From these results, the best performance for this
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Figure 5.9: The learning curve for B and Γ(m) regression

dataset is reached using 20 neurons in the hidden layer. Therefore, the best training
performance for the estimation of BBB is reached for 20 neurons in the hidden layer with a
MSE = (0.763 ± 0.043)10−3). The training and validation curve with the defined data
sets and a hidden layer with 20 units can be seen in figure 5.9

5.7.2 Solving the regression problem for adaptive controller

Solving equation (5.14) can be challenging due to the curse of dimensionality, with
16 input neurons and 1800 output neurons. When the dimensionality of the inputs is
increased, the number of training samples needs to be increased exponentially for a
nonparametric model regression (Kohler et al., 2009). The following sections present
three neural network architectures for dealing with this problem. The purpose is to
evaluate their performance as methods for learning the relationship between the internal
model and the morphological parameters. The selection of the best neural network
model to solve this learning problem can be treated as a model selection problem,
noting that these three architectures are really different. Two strategies are applied to
the three approaches.

• The first strategy is based on using a sequential test. A huge amount of morpho-
logies are used for training in order to be in a data-rich situation. Therefore, the
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best approach to model selection, according to Hastie et al.(Hastie et al., 2009)
is to divide the dataset into three parts, a training set, a validation test and a test
set. The first two are used for the training process, while the test set is employed
to assess the generalisation error of the final chosen model. This procedure is
repeated three times. The average of the mean square error (MSE) of each trial
for each neural network is estimated to compare the different models.

• The second strategy is based on information criteria. Whereas the network com-
plexity is not explicitly considered in the case of sequential tests; the information
criteria addresses the model complexity through generalised degrees of freedom
(GDF) (Ye, 1998). This second strategy is usually applied to compare the different
approaches only when the final network architecture for each approach has been
decided.

5.7.2.1 Single layer feedforward neural network option

A classic single-layer network is proposed to solve the problem of regression
between the 16 parameters conforming to the morphology of the robotic system (Γ(m))

and the 1800 parameters representing the internal model parameters (θ) of the trained
adaptive controller. This network is similar to the one proposed for learning the fixed
controller.

The elements of the network topology remain the same as in the case of the
fixed controller, i.e., the activation functions of the neurons in the hidden layer are the
hyperbolic tangent, and the output layer is a linear function (figure 5.10). The algorithm
used for training the network is also SCG. However, in this case, the number of units of
the hidden layer must be greater. Because a priori, this value is not known, tests varying
the number of hidden layer neurons are performed. Three scenarios are considered:
500 units (SL1), 1000 units (SL2) and 2000 units (SL3) in the hidden layer.
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Figure 5.10: Schema of the single-layer feedforward neural network proposed for learning the
relationship between the weights of the adaptive controller and the morphological parameters.
The value h is the number of units in the hidden layer

As will be seen below, the aim of these experiments is not to obtain an exact value
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of neurons in the hidden layer in order to achieve the best result for this type of neural
network, but rather the goal is to reach a certain order of magnitude of MSE by means
of the proposed architecture.

Taking as inputs the morphological parameters of each robotic system and, as the
desired output, the value of the adaptive controller weight matrix, an off-line training of
these networks was performed using for this purpose the dataset partitions proposed in
section 5.7.1. The results for the test set, using the trained networks and considering
the repetition of the partitioning and training processes three times, can be seen in
table 5.2.

Table 5.2: Results for the test set of the three proposed single layer networks

Id
Hidden layer

(h)
MSE

SL1 500 (1.064± 0.034)10−3)

SL2 1000 (1.259± 0.046)10−3)

SL3 2000 (2.163± 0.056)10−3)

The MSE values obtained have no meaning per se. They are used as a reference
for comparing the different methods. Afterwards, the process of adapting the robotic
system to the environment will be used to assess whether the predictions performed by
these trained networks are more or less adequate.

5.7.2.2 Deep neural network option

A deep neural network architecture combining two stacks of autoencoders is
presented in this section to deal with the stated regression problem defined in equa-
tion (5.14).

An autoencoder (AE) is a simple learning circuit that aims to transform inputs into
outputs with the least possible amount of distortion (Baldi, 2012). The autoencoder
neural network is an unsupervised learning algorithm that tries to learn an approximation
of the identity function subjected to several constraints, such as limiting the number of
the hidden units. An autoencoder has two parts, a decoder and an encoder. The output
of the encoder is a representation of the input, whereas the output of the decoder is
the input reconstruction from the encoder representation (Rifai and Muller, 2011). The
autoencoders have been tested and compared with other classical methods, such as
principal component analysis (PCA), to reduce the data dimensionality (Holden and
et al., 2006).
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Depending on the number of hidden units of the autoencoder with respect to the
number of neurons in the input layer, two kinds of autoencoders can be considered.
In the contractive autoencoders (CAE), the number of neurons in the hidden layer is
smaller than the number of neurons in the input layer; therefore, the autoencoder is
forced to learn a short representation of the input. In turn, when the input layer has fewer
neurons than the hidden layer, and a sparsity constraint is imposed, the autoencoder
will still discover an interesting structure in the data (Ng, 2011; Meng et al., 2017). This
kind of autoencoder is called sparse autoencoder (SAE).

A stack of autoencoders is built by chaining the hidden layer activations of one au-
toencoder as inputs for the next one (Bengio et al., 2007). In this way, the autoencoders
generate a hierarchical stack. One of these stacked of autoencoders is composed by
CAEs, and the other one is built using SAEs. Finally, both are linked with each other
using two single feedforward neural networks (Figure 5.11).

The underlying idea for proposing this architecture is to take advantage of the prop-
erties of both classes of autoencoders for compensating the huge difference between
the inputs and outputs. Therefore, the morphological parameters (Γ(m)) are the inputs
of the sparse autoencoder stack. Since these autoencoders expand the information
provided by the morphological parameters, the condition (u′2 > u′0) is satisfied. In
turn, the adaptive controller parameters (θ) are the inputs of the stack of contractive
autoencoders. In this case, the compression of the information is intended, therefore
u2 < u0 (see Fig. 5.11).

Many combinations of these network architectures have been tested in this work.
One of their advantages is the possibility to train each level of the network separately.
However, the obtained conclusion is that if the number of layers is significant for the
contractive autoencoders, the hidden layer activations become saturated as their number
of units is smaller. In turn, the activation of the hidden layers of the stack of sparse
autoencoders tends to zero when the number of layers is more significant. Thus, the
best configuration for the network layout is to use two contractive autoencoders and
two sparse autoencoders to address this problem. The activation function of the hidden
layer for all autoencoders is the logistic function, and the output function is linear.

The last activation layer of the stack of sparse autoencoders is the input of a single
feedforward neural network with u′L units in its hidden layer. The output of this neural
network is the last layer of the stack of contractive autoencoders. The inverse single
feedforward neural network can be trained too. These single networks have a hyperbolic
tangent as an activation function. Both the autoencoders and the single neural networks
use the SCG algorithm for training.
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To properly define each autoencoder that form the proposed stack, it is necessary
to determine the number of neurons in each layer ({{u0, u1, u2}, {u′0, u′1, u′2}, {uL, u′L}})
as well as the parameters that are used for their training.
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Figure 5.11: The proposed deep neural network architecture. It is composed of two
stacks of autoencoders connected by two feedforward neural networks. The parameters
{{u0, u1, u2}, {u′0, u′1, u′2}, {uL, u′L}} are the number of neurons in each layer.

In this particular case, u0 is the weight matrix of the trained adaptive controller
which, as defined, is a 600x3 matrix, i.e. 1800 inputs. The value u′0 is the input
of the sparse autoencoder corresponding to the vector of parameters defining the
morphology of the considered robotic system, in this particular case u′0 = 16. The
possible combinations in the number of neurons in each of the remaining layers causes
the generation of different networks with different performances. A large number of
network setups and training parameters are tested to develop the proper architecture for
the described network. Finally, the number of layers and the regularisation parameters
are fixed for defining each layer’s sparse and contractive autoencoders.

In this way, three networks setups were defined (Mirror1, Mirror2 and Mirror3).
Their settings, together with the parameters used for training each auto-encoder, are
summarized in tables 5.3 and 5.4.

To train and test these architectures, the same partitions are used as for single
layer neural networks in previous section. The results obtained for all the proposed
networks can be seen in table 5.5.
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Table 5.3: Parameters used for training each autoencoder. These are fixed for the three network
setups.

Type CAE CAE SAE SAE

L2. reg 10−6 10−2 10−5 10−5

Sparsity. reg 10−6 10−4 10−5 10−5

Sparsity.prop 10−2 10−2 10−1 10−1

Table 5.4: Distribution of the neurons in the different hidden layers of the autoencoder stacks
and the feedforward neural networks (see Fig. 5.11). The layers u0 and u′0 are common to every
architectures and they have 1800 and 16 neurons respectively.

Neurons

Layer u1 u2 uL uL u′2 u′1

Mirror1 600 300 100 100 300 50

Mirror2 600 150 100 100 150 60

Mirror3 900 300 100 100 300 100

Table 5.5: MSE obtained to test the three proposed networks.

Id MSE

mirror1 (0.527± 0.021)10−3)

mirror2 (0.480± 0.020)10−3)

mirror3 (0.543± 0.043)10−3)
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5.7.2.3 Parrallel feedforward neural network

Thus far, the properties of Γ̂(p) described in section 5.3 have not been considered.
As stated in equation (5.7), Γ̂(p) tends to a multivariate normal distribution with a
diagonal matrix as variance. Therefore, each component of Γ̂(p) can be viewed as an
independent, normally distributed variable, and this applies also to the components of
θ̂ = {γ̂1, γ̂2, · · · γ̂k}. At this point, the problem of discovering the relationship between
Γ(m) and Γ(p) is decomposed into many small problems which have easier solutions.
Formally, equation (5.14) is decomposed into many simpler equations:

γ̂1=e1(Γ(m), ω1) + ξ1; e1(Γ(m), ω1)=Ψ1(Γ(m))Tω1

γ̂2=e2(Γ
(m)
i , ω2) + ξ2; e2(Γ(m), ω2)=Ψ2(Γ(m))Tω2

. . . . . . . . . . . . . . . . . . . . . . .

γ̂k=ek(Γ
(m), ωk) + ξk;ek(Γ

(m), ωk)=Ψk(Γ
(m))Tωk

(5.15)

In this particular case, for each trained robotic system i, a θi has been obtained,

Ψ1(Γ
(m))

ω
1

ω
2

ω
3

ω
k

Ψ2(Γ
(m )) Ψ3(Γ

(m)) Ψk (Γ
(m))

Γ
(m)

θ̂ γ̂2 γ̂3 γ̂kγ̂1

Figure 5.12: Proposed regression problem decomposition into many straightforward regres-
sions.

therefore γ̂i,t is an element of the matrix θi where i ∈ [1, 44271], t ∈ [1, 1800]. Figure 5.12
graphically shows the proposed decomposition. Each of these equations is dealt with
by using a single layer feedforward neural network. Now, 1800 neural networks with
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Table 5.6: Obtained results for the three proposed parallel neural networks

Id MSE

pnn5 (0.254± 0.083)10−3)

pnn10 (0.233± 0.091)10−3)

pnn20 (0.226± 0.093)10−3)

16 inputs and one output can be used instead of one network with 16 inputs and 1800
outputs. These neural networks must be trained in parallel since they share the same
input but have different outputs. In this case, for all networks, the activation function
in the hidden layer is a hyperbolic tangent, and the unique output corresponds to one
weight of the adaptive controller. The input layer is shared by all networks and has
16 units. The architecture of each neural network corresponds to the one shown in
figure 5.10 but with only one neuron in the output layer.

One single neural network is generated for each output, and they are trained
sequentially. In this case, as in the previous ones, it is necessary to tune the best value
of the number of units of the hidden layer. For this reason, three different possibilities
are considered: the networks pnn5, pnn10, pnn20, have in their hidden layer 5, 10 and
20 units respectively. Using the same D dataset partitioning as the previous options,
each of these networks are trained sequentially for each robotic system.

After training, these parallel networks are tested using the test dataset for estim-
ating the mean square error. This process is repeated three times. The best result is
obtained for 20 units in each hidden layer. The obtained results are summarized in
table 5.6.

5.7.2.4 Comparing the obtained results based on sequential test and MSE

In previous sections, three different options have been proposed to solve the re-
gression problem posed. Each proposed alternative has advantages and disadvantages
and produces results that must be compared to determine which of the three options
offers the best solution.

From figure 5.13, it can been concluded that the best option for learning the
relationship defined by equation (equation (5.14)) is the parallel neural networks (pnn20)
with 20 neurons in each hidden layer. Even though the deep network solution (Mirror2)
is close to these results, it does not reach the same precision. The worst behaviour is
that of the single-layer feedforward neural network (SL1).
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Mean square error of adaptive controller estimation weights
comparing proposed methods

SL1 SL2 SL3 mirror 1 mirror 2 mirror 3 pnn 5 pnn 10 pnn 20
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Figure 5.13: Mean square error obtained for different neural network setups. The red line
represents the standard deviation over the three repetitions of the training.

Comparing the three methods and taking the best performance as a base, the
MSE for Mirror2 is around 2.4 times the value of pnn20, and the MSE for SL1 is about 4.7
times the value of the best performance. SL1 is affected by the curse of dimensionality
due to the high dimension of the output.

The problem with using MSE as an index to compare the three proposed network
models lies in the lack of direct translation into how the robotic system is affected when
its morphology is estimated by one method or another. The calculation of MSE simply
indicates the mathematical semblance between the values predicted by the different
networks and the values of the weights obtained for each adaptive controller of each
robotic system from the dataset D. The aim now is to check whether the proposed
methods can learn the relationship between the internal model and the morphological
parameters beyond the MSE value.

To achieve this goal, 500 head setups were selected from the test dataset. Each
one of these robot heads is characterized by its morphology, defined by Γ(m). Using
the proposed machine learning methods, equations (5.13) and (5.14) are modeled to
predict the internal model parameters for each head setup {Bi, θi}.
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For estimating the fixed controller of these 500 head setups, the network configur-
ation with the best performance, as described in section 5.7.1 (20 neurons in the hidden
layer), predicts B̂i from Γ

(m)
i for each head.

In turn, the initial adaptive controller parameters are estimated for different cases:

i Taking their initial values randomly (θ̂o randomly ).

ii Using previously trained weights (with 1000 iterations) (θ̂o trained).

iii Employing the three neural networks described in previous sections with the best
performance for initialising the weights of the adaptive controller (SL1, mirror2 and
pnn20).

It should be remembered that the value of θ̂ represents the parameters of the
internal model, but that they are materialised in the weights of the neural network that
defines the adaptive controller. In addition to the weights, to run the updating process
according to section 3.5.2, the covariance matrix (AAAt = RRRT

t RRRt) and the transformation
of the input vectors (bbbt) are needed. If RRRt and bbbt are not correct, the weight vectors
will diverge quickly. The point is how to initialise the algorithm from the estimation of
the weights. The weights in the training phase are obtained using a gaussian process
where (AAAt = RRRT

t RRRt) is a covariance matrix and bbbt is a vector of the neural network error
transformation. The mean value of the weights in the gaussian process is estimated
using equation (3.57):

WWW t = AAA−1
t bbbt → bbbt = AAAtWWW t

Therefore, given At and Wt, the algorithm would start at the point it was (t), and the
error would start at the same point. In this case, the value of RRRt was not stored when
the training process was finished; however, the neural network has been trained with
an upper bound of the covariance matrix, this is the initial value RRR0 before the training
process. Therefore, that value could be used to estimate bbb0 as bbb0 = RRRT

0RRR0ŴWW t. From here,
as the mean of WWW is close to the probable value of WWW, the gaussian process algorithm
uses the new points to reduce just the variance.

From this, b0 is computed as: b0 = RRRT
0RRR0θ̂XX . Where RRR0 is the initial covariance

matrix used to configure the adaptive controllers prior to the adaptation process and θ̂xx
are the predicted values by each of the models presented.

Each of these 500 robot heads undergo a training process using the estimated
{B̂i, θ̂xxi} for the different five cases. The mean visual error concerning the number
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Figure 5.14: Mean of the visual error for 500 robot head setups during the training process
using the estimations of the fixed controller and the initialization of the adaptive controller from
the morphological parameters for different machine learning procedures

of iterations is shown in figure 5.14. The standard deviation of the visual error for the
training process is depicted in figure 5.15.

These experiments evaluate to what extent the different proposed neural networks
improve the performance of the training process. Using equations (5.13) and (5.14), a
fixed and an adaptive controller are predicted for a particular morphology, and then the
adaptation process continues. In this way, if the prediction were perfect, the adaptation
process should continue at that point. In Figure 5.14 the visual error is used as a
measure of the real performance of the system.

The curve (θ̂0 randomly ) represents the learning curve when there is no previous
information about the system. Additionally, the (θ̂0 trained) curve represents that the
networks start the adaptation process initialising the adaptive controller with previously
trained weights. In this case, the visual error is stabilised after just a few iterations. This
short updating period of the visual error is due to the I-SSGPR algorithm that needs
to update other parameters besides the weights (e.g. the system covariance matrix),
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Figure 5.15: Standard deviation of the visual error for 500 robot head setups during the training
process using the estimations of the fixed controller and the initialization of the adaptive controller
from the morphological parameters for different machine learning procedures

which are initialised to start the training process with the same value for all setups. The
curve (θ0 trained) represents that previous information about the system is known, and
it would virtually continue the training at the point where it was. The more similar a
training curve is to (θ0 trained), the better its performance is.

The learning curves for the three proposed methods lie between (θ0 randomly)
and (θ0 trained). Their relative performances correspond to their mean square error as
previously described in this section.

As expected, (θ0 pnn20) is the most similar to (θ0 trained), whereas the curve for
SL1 yields the worst visual error after the untrained network case, and (θ0 Mirror2) is an
intermediate case. This order is confirmed when the standard deviation is considered.
In the updating process, the standard deviation decreases until a constant value. Fig-
ure 5.15 illustrates how these variations are grouped; indeed, for (θ0 trained) it is very
close to (θ0 pnn20), and similarly for (θ0 Mirror2) and (θ0 SL1). That confirms that the
behavior of the training curves using the values predicted by pnn20 is very similar to (θ0

trained), that uses the trained weights.
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Figure 5.16: Comparison of the three models proposed with the 500 testing robotic heads
considering the average variation in the number of iterations executed in the adaptation process
to reach 1/3 and 1/2 of the maximum visual error

Another exciting way to confront the three architectures is to compare the speed
in reaching a particular visual error of the system; considering the number of average
iterations in the adaptation process, the results expected from the obtained MSE are
more clearly visualised (figure 5.16).

Finally, the results suggest that the pnn20 architecture solves better the problem
posed. In this case, if the estimated weights with the morphological parameters of
each system and the weights of the trained controller within the test set are compared
using the MSE, and this value is represented against the visual error obtained after the
training of each adaptive controller, figure 5.17 is obtained. It can be appreciated that
there exists a clear correlation between them. On the other hand, if the estimation of the
weights is not correct, there should be no correlation between the MSE of the weights
and the visual error.
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Figure 5.17: The MSE {θ0, θ̂0} vs mean visual error resulting from the θ training for pnn20

architecture.
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5.7.2.5 Comparing the obtained results based on model selection information
criteria

In the previous section, the models proposed to solve the problem of learning the
internal model from the parameters defining the morphology of a robotic system have
been compared from a practical point of view. Furthermore, since there is a significant
amount of data available to train the different proposed models, the utilisation of a test
set to evaluate them has been used to assess the performance of the proposals.

The three neural network models have completely different architectures. Although
the same training algorithm has been used for all of them, selecting which model suits
best the problem is not a straightforward task. Thus, the case of neural networks
is a particular case of model selection theory. The weights of the neural networks
are just the parameters that describe the model, and therefore given all the possible
sets of parameters of the various proposed neural networks, the question is to decide
which one fits best the problem posed. However, neuronal networks have a particular
characteristic that must be considered when establishing statistical criteria to evaluate
the goodness of fitting the model’s parameters. Anders and Korn (1999) proposed
several strategies for selecting neural network models based on statistical concepts like
hypothesis testing, information criteria and cross validation methods. The latter has
been used in section 5.7.2.4.

In the current section, information criteria are used to select from the three pro-
posed models: single-layer neural network, a stack of autoencoders and parallel neural
networks which provides the best solution for learning the adaptive controller weights
from the morphology of each robotic system. It is reasonable to think that as the number
of parameters (weights) and complexity of a given neural network grows, the effort to
determine as accurately as possible the parameters most suited to the underlying model
should be greater.

The properties described in section 5.3 related to the maximum likelihood estim-
ator are also valid, given a model like the one used to learn the relationship between
morphological parameters and the internal model of a set of robotic systems that have
experienced a process of adaptation in a shared environment ( equation (5.14)). There-
fore, the maximum likelihood estimator tends asymptotically to a normal distribution with
a variance of σ2

ML for a given number of training samples (u in equation (5.7)). Applying
this to the model for the estimation of the adaptive controller’s neural network weights
from the morphological parameters of v robotic systems, equation (5.7) can be written
as: √

v
(
ŴWW 2 −WWW 2

)
d−→ N

(
0, σ2

MLI
)

(5.16)
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The precision with which each parameter is determined must be higher in order
to maintain the final normal distribution as the complexity of the neural network grows
and, therefore, the number of parameters to be estimated (ŴWW 2) for the same number of
samples (v ) increases. When a model increases complexity, it uses the training data to
adapt the underlying structures, decreasing the bias but increasing the variance.

Training error is not a good estimator of test error. If the complexity of a model
is increased sufficiently, it is possible to achieve zero training error; however, due to
overfitting, the generalisation ability of the system is weak.

The information criteria for model selection attempts to evaluate the fairness of the
fit, i.e. to estimate a measure of σ2

ML, but adds a penalty associated with the complexity
of the model.

A widely used criteria is the Akaike Information Criterion (AIC) (Akaike, 1998)
based on maximum likelihood estimator and Kullback-Leibler distance (Kullback and
Leibler, 1951).

Given a set of models attempting to approximate equation (5.14) and characterised
by a set o parameters α = {SL1,mirror2, pnn20}, AIC is a sum of two terms: the first
one is an estimation of the error of the model and the second one is a term related to
the complexity of the model. In a generic way, AIC expression can be written as (section
7.5 Hastie et al. (2009)):

AICα = ˆerrα + 2
dfα
v
σ̂2
ε (5.17)

where:

• ˆerrα is the expected error. It is an estimation of ξ2 in equation (5.14) for a particular
model α. Typically, this error can be computed as:

ˆerrα =
1

v

v∑
j=1

(
θ − θ̂α

)T (
θ − θ̂α

)
(5.18)

Usually, the calculation of AIC is limited to the training phase to try to predict which
variation in the architecture of the used learning model produces minor errors
and better adapts to the underlying model. This procedure in the training phase
causes an optimistic estimation of ˆerrα because the model adjusts its parameters
to describe the available training data better.

In this case, the results of the different tests performed on the variations of each
architecture used in the cross-validation methods indicate that the architecture
within the same model is more suitable to the regression problem. Therefore, to
estimate the error, the values of the adaptive controller weights corresponding
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to each morphology in the test set and the weights estimated by the different
proposed architectures are used:

ˆerrSL1 = 1
v

∑v
j=1

(
θ(s) − θ̂(s)

SL1

)T (
θ(s) − θ̂(s)

SL1

)
ˆerrmirror2 = 1

v

∑v
j=1

(
θ(s) − θ̂(s)

mirror2

)T (
θ(s) − θ̂(s)

mirror2

)
ˆerrpnn20 = 1

v

∑v
j=1

(
θ(s) − θ̂(s)

pnn20

)T (
θ(s) − θ̂(s)

pnn20

)
Where θ(s) are the values of the weights of the trained adaptive controller from the
test set and θ̂(s)

α is the prediction made by the corresponding neural network using
the morphology parameters of the test set as inputs.

• dfα is related to the number of parameters of the used model to solve the regression
problem. When this model is linear, dα is the number of parameters of the model.
For example, a simple linear model such as Y = Θ0 +XΘ1 would have a value of
dfα = 2. if the model is non-linear, the concept of generalized degrees of freedom
GDF is applied. Considering an additive-error model (equation (5.14)), a general
definition of GDF can be written as:

dfα =

∑v
j=1Cov(θ̂

(s)
α,j, θ

(s)
j )

σ2
α,ξ2

(5.19)

Where σ2
ξ2

is the variance of the additive error of the model:

σ2
α,ξ2

= V ar(θ̂
(s)
α,j − θ

(s)
j )) (5.20)

• The value of σ̂2
ε is an estimate of the noise variance obtained from mean squared

error (MSE) of a low-bias model. In this case, the value of MSE is the one obtained
in the previous section for pnn20 network.

AIC is useful to compare several models. However, this value does not give
information about the performance of a particular architecture to approximate the real
model. Moreover, AIC is strongly dependent on sample size; for this reason, it is worth
calculating AIC differences. In this way, given a set o models α, AIC difference for each
model is:

∆α = AICα −min(AICα) (5.21)

Such differences estimate the relative expected Kullback-Leibler distance between
the real and proposed models. The model estimated to be best has ∆α ≡ min(∆α) ≡ 0.
Therefore ∆α is useful in ranking the models and it is possible to approximate the
likelihood of a model given data (Burnham and Anderson, 2002):
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Parameter

Network
pnn20 mirror2 SL1

p 649,800 2,377,421 910,300
dfα 363,780 135,403 56,975

MSE · 103 0.226 0.480 1.064
AICα 0.347 0.885 1.9218

∆α 0 0.538 1.575
L(α|s) 1 0.764 0.455
wα 0.451 0.344 0.205

Table 5.7: Different performance indicators for model selection are shown with the purpose
of comparing the network architectures. The values of dfα have been computed according to
equation (5.19). p is the total number of parameters (weights and bias) in each architecture.
MSE corresponds to the obtained values in previous section. The indicators AICα, ∆α, L(α|s)
and wα are calculated based on equations (5.17) and (5.21) to (5.23) respectively.

L(α|s) ∝ exp(−1

2
∆α) (5.22)

These likelihoods give an idea of the relative strength of evidence for each model.
To normalize these values, the Akaike weights are defined:

wα =
exp

(
−1

2
∆α

)∑
α exp

(
−1

2
∆α

) (5.23)

These weights are values that identify the evidence that a given alpha model has
the best Kullback-Leibler distance from the proposed set of models within a normalised
range.

Indeed, AIC and its multiple variants give information on how the proposed models
approximate the theoretical model, and in order to perform this comparison with some
guarantee, it is necessary to consider that the data used for estimating the error are the
same for all the models. In all cases, the structure of the error of the model is the same
defined in equation (5.14).

The proposed performance indicators based on information criteria are summar-
ized in section 5.7.2.5. These support the obtained results based on sequential test and
MSE to conclude that pnn20 is the preferred option. Also shown in section 5.7.2.5, the
number of weights and bias (parameters) for each model (p) is appreciably higher than
GDF, being the lowest value for pnn20 and the highest value for mirror2. However, the
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value of GDF is higher for pnn20 than it is for mirror2; this suggests a better exploitation
of the network weights in the case of pnn20

5.7.2.6 Conclusion of comparison

Both the results obtained in the sequential training using the MSE as a comparison
indicator and the results based on information criteria suggest that the model based on a
parallel network with 20 neurons in the hidden layer is the most appropriate architecture
to learn the relationship between the morphology and internal model in the adaptive
controller case.

The key to understanding this behaviour is to analyse the traits of θ, i.e. the
outputs of the proposed neural network models. θ are the final weights of an online
neural network that estimates the adaptive controller for the robot head (Cf ). When the
robot starts to adapt, it is learning the model that is defined by the environment. This
knowledge is partially stored in the weights of the online neural network. Therefore their
values barely change once the model has been learned. These weights correspond to
the maximum likelihood estimator. When Cf is regarded as learned, equation (5.7) is
accomplished, and therefore each weight component is probabilistically independent
of the rest of them. This trait is a particularity that only applies to the parallel network
model. For the other two network models, the weights are statistically related.

5.7.3 Family and individuals of the robotic systems

Because of the results obtained and the ability to model the relationship between
the morphology and the internal model of a robotic system, it is possible to define two
concepts that could systematically describe how a set of robotic systems adapt to an
environment.

Family of robotic systems: The set of robotic systems exhibiting a particular
behaviour in interaction with an environment and sharing the same morphological
parameters defined in a range. In the case studied in the previous section, the family of
robotic systems would be composed of each robotic system whose morphology has
been randomly obtained from table 5.1 and trained in the same environment. Thus, all
robotic heads exhibit the same behaviour and are implemented in the same way.

It seems clear from section 5.6 that in order to mathematically describe a family
of robotic systems, it is necessary to know: the internal model defined by Γ

(p)
i = {Bi ∈

R3×4, θi ∈ R600×3} and the morphology defined by Γ
(m)
i ∈ R16. It must also be kept in

mind how all the family members have been generated from the same set of sparse
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features (Ωm) constituting the adaptive controller and, therefore, the family.

In conclusion, a family of robotic systems can be defined from equation (5.8) on
the basis of these parameters:

F = {Ωm; {Γ(p) = Φ(Γ(m))TW + ξ}} (5.24)

Where W are the trained parameters of proposed solutions from the previous
section. Therefore, the family of robotic systems is defined by parameters common to
all of them together with a function correlating the morphology with the internal model
capable of performing a particular behaviour in a specific environment.

Individual robotic system: A robotic system characterised by belonging to a
specific family of robotic systems (F). Given equation (5.24), an individual must have
the same set of parameters Ωm as the rest of the members of the family. Furthermore,
its morphological parameters should range within the valid limits of the relationship of
the internal model and the morphology. Therefore, an individual belonging to a family of
robotic systems (I ∈ F) can be represented as follows:

I = {Ωm; {Φ(Γ
(m)
i )TW + ξ}} (5.25)

5.8 Applications

5.8.1 Learning improvement for new robot morphologies

When a saccadic robot system with a learned internal model changes its mor-
phology, the internal model has to be learned or tuned again consequently. As can be
deduced from section 5.3, the internal model partially codifies the robot morphology
along with the environment interaction.

Frequently, when an internal model is learned, the inputs and outputs of the robot
system are considered directly or indirectly, whereas the information regarding robot
morphology is omitted because this is implicitly related to the system inputs/outputs.
Most of this information is, however, available by physical measuring.

Robots are usually considered complex systems that must follow a control law to
deal with a particular environment, and therefore learning implies knowing this function.
However, if the behaviour and environment are the same for robotic systems that are
different in morphology, the problem is how to use knowledge regarding how a robotic
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system has been geared for the environment in order to adapt another robot better.

The experiment described in section 5.7.2.4 intends to evaluate the predictions of
different proposals to estimate the internal model. In addition, the experiment shows
(figure 5.14) that the initialisation of the adaptive controller from the estimation of the
weights —given the morphology of the robotic system— improves the performance
of the adaptation in any circumstance. That is, using equations (5.13) and (5.14), a
fixed and an adaptive controller are predicted for a particular morphology, and then the
adaptation process continues. Implicitly, the knowledge of how the 26500 robotic heads
have adapted to the environment is being used to improve —giving a similar head— the
training process.

As indicated in the introduction to this chapter, the availability of a global database
of systems defined with the same set of parameters makes it possible to predict the
internal model in this type of system directly. In this way, they can start adapting to the
environment with previous knowledge, speeding up the learning process.

The problem is posed —using the terminology introduced in section 5.7.3— as
follows: how the knowledge learned from adapting a family of robotic systems to an
environment enhances an individual’s adaptation to that family.

5.8.2 Predicting the internal model with partial knowledge about
morphology

In section 5.4.1, most of the parameters describing the morphology of a robotic
system allowing saccadic movements have been considered. Thus, given a new robotic
system where the morphological parameters are known, it is possible to determine the
internal model using, for example, one of the proposed solutions of section 5.7. However,
not all parameters may be known for the new robotic system, e.g. the dimensions of the
kinematic chain may be known, but for example, the camera’s pixel size could not be
available. This factor would, in principle, preclude the use of the established procedure
for estimating the internal model from morphology.

However, when defining both the concept of a family of robotic systems and
morphology, no fixed value has been established for the number of morphological
parameters used. In the proposed practical case, all the parameters composing the
simulation are known, allowing the creation of the dataset of robotic systems. However,
considering a subset Γ(m)∗ ∈ Γ(m), it is possible to define the family from equation (5.24)
using this subset:
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F = {Ωm; {Γ(p) = Φ(Γ(m)∗)TW∗ + ξ∗}} (5.26)

In the case of the regression function defining the family in equation (5.24), all
morphological parameters are assumed to be known. In contrast, a partial knowledge
of the morphological parameters is present in equation (5.26). However, the internal
parameters inferred from both regressions must be the same for the family to perform in
the environment.

Sixteen morphological parameters have been considered in the proposed robotic
system to illustrate this with an example. There are readily determinable parameters,
such as the length of a specific link of the kinematic chain. However, others, such as
the camera’s nodal point or the pixel size, can be more difficult to measure.

Instead of considering the complete set of parameters represented by the Γ(m),
the distance from the camera nodal point and the pixel size of each camera is not
considered; therefore, the subset Γ(m)∗ is defined with 12 parameters.

Following the procedure of learning the relationship between the morphological
parameters and the internal model using a parallel network, it is possible to estimate
equation (5.24). Actually, in this case, it is not necessary to generate a new dataset
with the unavailable parameters; it is simply necessary to retrain the parallel neural
network (pnn20) but varying the number of outputs from 16 to 12. In this way, WWW ∗ of
equation (5.26) is obtained. The model has been trained without taking into account the
complete set of morphological parameters but just a part of them, and therefore, it is
understandable that the value of ξ∗ is higher than ξ.

It is possible to compare the performance of the approximation that is made of
the internal model of the family of robotic systems when knowledge of morphology is
partial by using the same procedure as in section 5.7.2.4. Figure 5.18 summarizes
results obtained in this comparison. The four curves shown represent the average of
the 500 training curves obtained for 500 robotic systems that are part of the test set
and therefore have not been used for training the parallel network (pnn20) to predict the
internal model.

The values that are used to initialise the weights of the adaptive controller (internal
model) are calculated in four different ways:

1. The initial value of the adaptive controller weights is initialised with random values
according to a normal distribution with zero mean. Thus, in figure 5.18, the blue
curve corresponds to this case.
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initialised with the prediction made by the internal model estimation from the morphology.
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2. The black curve is the one that represents the progress of the training using the
weights at the last point where they were, but resetting the values of the covariance
matrix. This curve represents the theoretical maximum point that could be reached
in the prediction of the internal model.

3. The green line is the curve obtained from the training of the 500 robotic heads
initialised with the prediction of the internal model performed knowing all the
morphological parameters.

4. Finally, the red line in figure 5.18 represents the average training curve of the
robotic systems under study, where their adaptive controllers have been initialised
with the weights predicted from partial knowledge of morphology, i.e. consider-
ing only 12 of the 16 parameters constituting the model of the robotic systems
executing the saccadic movements.

In every curve of figure 5.18, the error bars identifying the variance at different
stages of the adaptation process are shown. As it can be seen, the variance decreases
as the adaptation process progresses in all cases. Furthermore, comparatively the
highest variance corresponds to the random initiation of the weights, and the lowest
variance relates to continuing the training at the point where it stopped. The other two
cases are in between these two extremes. Considering all morphological parameters
makes the variance lower than partially knowing the morphology of the system.

5.9 Bio-inspired model of artificial genotype and
norm of reaction in a robotic system

5.9.1 Introduction

The concepts introduced in section 5.7.3 to define a family of robotic systems
and an individual belonging to a given family have strong parallelism to the concepts of
species and individual belonging to a species in the natural world. This section presents
a model aiming to go beyond simple confrontation. This model is applied to the set of
robotic systems presenting the behaviour under study in this paper.

Nature has created a mechanism for the transmission of information that allows
organisms to improve throughout evolution. This information is encoded in their genetic
material. How this information is decoded in living organisms can be considered
from distinct abstraction levels. The low level regards the biochemistry and molecular
reactions involved. Hence, a gene is a section of a threadlike double-helical molecule
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called deoxyribonucleic acid (Griffiths, 2005). The genes dictate the inherited properties
of a species, and allelic variations cause hereditary variation within the species. The
main elements of form in organisms are proteins. The main task of the living system is
to convert the information contained in the DNA of genes into proteins (Griffiths, 2008).

A higher abstraction level considers how to connect the genetic information (gen-
otype) stored in the DNA molecules with a specific characteristic of a living organism
(phenotype). In the theoretical scheme proposed by evolutionary genetics, development
is the function that maps the genotype onto the phenotype (G→ P ).

It is known that the relationship genotype-phenotype is not one-to-one at the
lowest levels. At higher levels of interaction, such as morphological traits, the genotype-
phenotype relationship is even more complex (Alberch, 1991). Genes can not generate
the structure of an organism by themselves. For a gene to influence a phenotype, it
must act in concert with many other genes and the external and internal environment.
Hence, the G → P map is really G E−→ P (GEP) map. For an understanding of this
concept, it is fundamental to consider the role of phenotype plasticity and the idea of
reaction norm, which are introduced as the basic link relating the three variables (GEP).
Phenotype plasticity is the property of a given genotype to produce different phenotypes
in response to distinct environmental conditions. The fundamental conceptual research
tool in phenotypic plasticity is the idea of norm of reaction (Pigliucci, 2001). Figure 5.19
shows a diagram relating these concepts.

A norm of reaction is a function that relates the environments in which a particular
genotype is exposed and the phenotypes that can be produced. In practice, such a
tabulation can only be made for a partial genotype, a partial phenotype, and some
particular aspects of the environment (Griffiths, 2005).

Frequently, this abstraction level has been used to model evolutionary behaviours in
artificial systems. The G→ P map is usually the basis of bio-inspired genetic algorithms
(GAs). However, such algorithms have been more concerned with imitating the evolution
process results to solve searching and optimisation problems. Genetic algorithms
emphasise the use of a “genotype” that is decoded and evaluated. These genotypes
are often simple data structures (Whitley and Sutton, 2012). Genetic algorithms are a
simple form of evolutionary algorithms EAs. These are composed of four components:
a genotype, G→ P mapping, a set of variation operators, and a user-defined function
to be optimised called a fitness function. The EAs are often classified as “black-box
optimization algorithms” (Doncieux and Mouret, 2014). Overall, this kind of algorithm
proposes that, although evolution manifests itself as a succession of changes in a
species’ features, it is the changes in the genetic material that form the essence of
evolution (Srinivas and Patnaik, 1994). The main idea of these methods is based on
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Figure 5.19: This scheme is an attempt to summarise the genetic concepts from an abstract
point of view to model them. The decoding of genetic material governs the process of the creation
of living beings and their future behaviour. At a low level of abstraction, this process is described
and modelled by biochemical and biological processes. Moving up the level of abstraction, two
types of models can be envisaged: the simplest is to obviate the intervention of the environment
and consider that phenotype and genotype are a one-to-one relationship, this being a Mendelian
approach, and the second possibility is to consider the intervention of the environment in the
process of genetic decoding and therefore that there is a genotype-environment interaction that
produces diverse phenotypes.
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the “genetic blueprint” or a “genetic programme”. In other words, genes determine
phenotypes. This sort of answer bypasses the process of development, which is treated
as an incidental black box with no direct causal relevance to the evolutionary process
(Pigliucci, 2010). From this point of view, changes in the species are produced by
isolated changes in the individuals. In addition, the influence of the environment is
limited to be used merely as a testbed to evaluate the phenotype fitness. Evolutionary
Robotics ER proposes to employ EAs to design robots or, more often, control systems
for robots.

Over millions of years of evolution, living organisms have adapted to different
environments and have competed for survival, allowing them to improve their phenotypic
attributes. From a conceptual standpoint, the information to generate living organisms
has been transmitted in successive generations, improving and diversifying in each
iteration and generating the particular attributes in each species. Nowadays, any
species has the same common phenotype due to evolution because this information is
transferred to the new members by inheritance. Of course, the species’ individuals have
differences that are usually morphological, but the primary mechanism that accounts for
these allelic differences is not a mutation in genes, as in classical EAs.

Transferring these concepts to the world of robotics and making a comparison
with those introduced in section 5.7.3, a parallel between them can be established. The
terms species and individual in biology are equivalent to the terms family and individual
defined for robotics. The morphology and behaviour of a robotic system would be
equivalent to the phenotypic description of a living being. Finally, in this section, an
artificial genotype data structure is proposed to be applied to the field of robotics.

A “species” of the robotic system is used to evaluate the performance of this
artificial genotype. The artificial genotype for each species’ individual is obtained, and it
is used to check the GEP model proposed. The reaction norm of the species’ individuals
is estimated to do this. The proposed artificial genotype shows the same behaviour that
a biological genotype does concerning phenotype plasticity.

5.9.2 Genotype model

In computer science, the concept of data structure allows the modelling of complex
systems where the data and the relationships between them are considered. Thus,
If the genotype is considered from this point of view, it is possible to define a data
structure that manages the information that describes the anatomy and behaviours of
an individual member of a species.
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The biochemical information stored in the DNA strings is converted in some way in
living organisms with their anatomy, physiology and behaviours. In the proposed model,
different types of information are defined according to how this information is encoded in
living organisms. The genotype model proposed transfers this information to parameter
space.

• Allelic information. It is the information stored in DNA which encode amino
acids and proteins directly, so some phenotypes can be determined directly
by this information. This information is encoded by allelic parameters: Γ =

{Γ1,Γ2, ...,Γa} | Γ ∈ Ra, where a is the number of encoded allels.

• Species’ regulatory information. It is related to information stored in DNA
which does not encode amino acids directly but is shared by all individuals of the
species.This kind of data is encoded by the species’ regulatory parameters(SRP).
There are two kinds of SRP parameters:

– The first class is the regulatory parameters of transcription function (RPTF):
W = {W1,W2, ...,Wm, } | Wi ∈ Rt where t is the number of combinations of
the encoded proteins from allelic genes, to encode a functional protein.

– The second class is the combination parameters from allelic (CPFA) and
species’ regulatory information (SRI): ω = {ω1, ω2, ..., ωm} | ωi ∈ Ra,t, b =

{b1,b2, ...,bn} | bi ∈ Rt.

• Species’ functional information. It is the information encoded in DNA which is
transformed into specific species’ phenotypes. The function of this information is
regulatory and regards the control of the functional combination of synthesized
proteins from allelic information which is encoded by the species’ functional para-
meters (SFP): Ω ∈ Rl,m, where l is the number of the environment modifiers and
m is the number of proteins which adjust the obtained phenotype.

• Functional protein configuration. It is a sequence of proteins that are obtained
from the translation function and regulatory species information. These proteins
represent a certain phenotype that the environment can modify. This kind of
information is transferred into parametric space:

– Initial functional protein parameters(FPP 0), these parameters represents
the initial proteins synthesized from species’ genes, but they are going to
be modified by the interaction with the environment. Θ0 = {Θ0

1,Θ
0
2, ...,Θ

0
m} |

Θ0
i ∈ Rn where n is the number of parameters that define a phenotype. The

successive modified sets of functional parameters depend on the consecutive
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environments where the individual has been adapted. This kind of parameters
are named

– adapted functional protein parameters: Θ = {Θ1,Θ2, ...,Θm} | Θ0
i ∈ Rn where

n is the number of parameters that define a phenotype.

The parameter space defined above can be considered as a data structure. Seve-
ral operations can be established for modeling GEP mapping (figures 5.20 and 5.21).
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Figure 5.21: Block schema of genotype model and the relationship with the environment and
phenotype

Hence, a species’ individual has got a genotype defined by the previous structure.
One part is specific for this individual (allelic information). In the biological case, this
information is represented by allelic genes converted into proteins. The transcription
of one gene may be turned on or off by other genes called regulatory genes Griffiths
(2005). In the proposed system, this transcription process is modeled by the transcription
function (equation (5.27)).

Θ0 = Φ(ω, b,Γ)TW (5.27)

Mathematically, the transcription function is a regression model that relates the allelic
information with initial functional parameters. The SRP fit this model and represent the
information shared with every member of this species that accounts for the phenotypic
behaviour.
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Furthermore, proteins encoded by one gene may modify the proteins encoded by
a second gene to activate or deactivate protein function. The equivalent of the latter
proteins is the SFP in the proposed model. The environment can also modify these
proteins through signal transduction. Moreover, proteins encoded by one gene may bind
to proteins from other genes to form an active complex that performs some functions.
This schema of functioning is modelled by a transduction function.

Ŷ = Ψ(Ω,XXX)TΘ (5.28)

This function finally generates a phenotype. From a mathematical point of view, the
transduction function is a recursive regression model, where there are some input cues
(XXX) that are combined with common fixed parameters (Ω) into a nonlinear function Ψ for
all the species individuals and the regression parameters are Θ.

So far, environment adaptation has not been considered. In 1930, Ronald A.
Fisher emphasised (Fisher, 1930) that adaptation is characterised by the movement of
a population towards a phenotype that best fits the present environment. However, this
evolution is produced by changes in the individuals in this population. In the proposed
model, this is considered in the adaptation function.

Θe = Θe−1 +M(Y, Ŷ ) (5.29)

where e is the number of interacting successive environments. This equation has to
accomplish these limit restraints: when e = 0→ Θe = Θ0 and the difference between
Θe−Θe−1 has to tend to zero. The value Y is the optimal phenotype and Ŷ is the current
individual phenotype.

Equation (5.29) expresses a sequence of changes in functional proteins modifying
the phenotype shown by the individual. The motor for these changes is the gap between
the optimal phenotype and the current phenotype expressed in a functional way in the
adaptation function. A first-degree dynamic system has been defined as where the
initial functional protein parameters determine its initial condition. When the individual
is adapted, the gap between Y and Ŷ has to be minimum (Θ∗e). Once at this point,
there might be another adaptation stage for the individual, so Θ∗e generates epigenetic
changes in SRP. These changes are propagated to the descendants improving Θ0

estimation. From an information point of view, environment adaptation is a learning
procedure whose goal is to learn the environment model to better predict the response
to environmental cues.
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Function in GEP GEP model Saccadic Behaviour Model

Transcription
Θ0 = Φ(ω, b,Γ)TW

(5.27
)
{Ωm; {Γ(p) = Φ(Γ(m))TW + ξ}}

(5.24)

Transduction
Ŷ = Ψ(Ω,XXX)TΘ

5.28
Yi = φ(Xi)

TΓ
(p)
i + εi

(5.3)

Adaptation
Θe = Θe−1 +M(Y, Ŷ )

(5.29)
ω̂ωωi = RRR−1

i

(
RRRT
i

)−1
bbbi

(3.57)

Table 5.8: Equivalence between the proposed GEP model and the equations used to predict
the internal parameters of a robotic system from its morphology.

5.9.3 Applying the GEP model to the robotic systems

The comparison between the biological individual-species binomial with the individual-
family of a robotic system introduced in section 5.7.3, has led to the generation of a
model based on how the information stored in the genotype of living beings can be
converted into anatomy and behaviours. In this section, we discuss how the two fields
are connected.

To match the GEP model with the robot families proposed, it is necessary to
identify the transcription, activation and adaptation function. In the case of saccadic
behaviour studied in this work, the robot must learn to change the camera’s position
to gaze at the object. The environment transduction cues are the projection of the
visual stimulus in the robot camera images. They, combined with the proprioception
of the robot, must generate the saccadic behaviour. Thus, the transduction function is
the system controller. If the robotic system had perfectly adapted to the environment,
the projection of the visual point in the images of the cameras would be in the centre,
exactly. So the distance between the actual projection and the image centre could be
considered a gap between the optimal phenotype and the showed phenotype. In the
GEP proposed model, the system controller represented by a transduction function is
modified by an adaptation function depending on the phenotype gap, so the proposed
system controller represented by a transduction function is an adaptive controller.

In the proposed FEL model (section 4.4.2.1), there are two controllers, a fixed one
(B) and adaptive (Cf ), both contributions are the system controller. As B is independent
of the environment, it is possible to apply the G→ P model and B can be estimated from
allelic information (Γ), directly. The Cf controller is implemented by a single-layer neural
network, with seven inputs and three outputs. The environment cues are defined by
these seven inputs (l=7). Gaussian activations using random space features were used
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for the hidden layer. If these random space features are the same for every species’
individual, they are the species’ functional parameters (Ω) because they regulate the
phenotype function. The weights in this network combine the activation functions, as
the transduction function is modified by functional proteins parameters in the proposed
model; hence these weights are Θ. The dimensions of Θ are the number of units in the
hidden layer (n) and the number of outputs (m). The adaptation function is equivalent to
adapt the weights in the neural network.

Finally, the transcription function is another regression model that relates the allelic
information with the initial functional parameters (Θ0). Hence, the regression parameters
can be obtained if Γ and Θ0 are known. The problem is to fix the Θ0 value for each
individual in the species. The summary and comparison of all these equations in this
chapter and the previous one can be seen in table 5.8. Given these considerations, the
genotype model described in figure 5.20 is transformed for the case of the saccadic
behaviour model as shown in figure 5.22.

As shown in figure 5.21, there is a set of parameters that are not specific to
an individual belonging to a species. In nature, these parameters are determined by
millennia of evolution and are encoded in DNA. So the first question is what information
is common to all individuals from a given family of robotic systems. It has emerged
throughout this chapter that how robotic systems adapt to a given environment seems to
be the current nexus of all of them. This information is stored in the weights of the neural
network that has learned the relationship between the morphology and the internal
model of all the individuals that compose the family. It, therefore, seems logical to
assume that the weights of the pnn20 network, which have been learned using the 44271
robotic heads in our dataset (section 5.6), constitute the parameters of the species. In
this way, using all the defined parameters, it is possible to define the artificial genotype
of each individual belonging to a robotic family.

In this way, the procedure to determine the artificial genotype of a family of robotic
systems is represented in figure 5.23.

From the morphological parameters (Allelic Parameters) and the values of the
network centres of the adaptive controller —shared by all the individuals of the family
(Functional parameters)— the relationship between the morphological and internal
model of the family of robotic systems should be determined. For this purpose, each of
the individuals generated is exposed to the same environment.

In this case, the adaptation process is considered successful when several iter-
ations have taken place. In figure 5.23, it corresponds to the final part of the training
curve. This point represents the average visual error shown by the robotic system
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when iterating with the environment and should remain constant if the environment does
not change or no new adaptations are produced. A visual error can be considered a
measure of system behaviour, i.e. it is a phenotypic trait of the system.

Finally, using the established procedure to learn the relationship between morpho-
logy and internal parameters, it is possible to determine the characteristic regulatory
parameters of the species. As a result, 44271 genotypes are generated that describe
each individual of the considered family of robotic systems.

5.9.4 Experiments to evaluate GEP model

In order to evaluate the proposed artificial genotype model, it is necessary to
study how the GEP model performs in the biological environment. When an individual
is placed in one distribution of environments, it produces a resulting distribution of
phenotypes. The relationship between them is regulated by the norm of reaction.
Therefore, each individual in a control population is regulated by the norm of reaction.
The relation between genotype and phenotype is complex: a single genotype may
produce different phenotypes, and the same phenotype may be produced by different
genotypes depending on the environment (Griffiths, 2005).

In any case, the norm of reaction is the function describing this relationship. For
example, studies evaluate how a given trait such as the size and shape of the eyes of
Drosophila fly and the environment temperature can modify them. To estimate the norm
of reaction in genetic analysis, a population with a given genotype, such as cuttings of
the same plant, is exposed to different environments. For example, variations in the
growth place of the plant so that the resulting phenotype —in this case, the height of
the plant— has a direct relationship to the elevation of the land on which the plant has
grown. Figure 5.24 shows the norm of reaction obtained for three individuals of three
different types of Drosophila flies.

In the case of a population or family of robotic systems in which the parameters
composing its artificial genotype shared by all individuals of this species have been
determined, and given an individual belonging to this population (morphological char-
acteristics), it is possible to generate a starting point by employing the transcription
function; so that, once this individual interacts with an environment, it produces an
adaptation process that generates a final phenotype. As seen in section 5.7.2.4, given
a robotic head belonging to a family of robotic systems, it is possible to predict the
initial values of the weights of the adaptive controller. When this head is exposed to an
environment, the neural network comprising the adaptive controller starts to update the
network’s weights based on the interaction with the environment by performing saccadic
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Figure 5.24: Example of norm of reaction obtained for three types of Drosophila flies (Griffiths,
2005)[Chapter 1, pp 19]. The facets are related to the size and shape of the fly’s eyes, the x-axis
shows the constant temperature at which the flies develop.
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movements. The result of this adaptation is a learning curve as shown in figure 5.14,
where the visual error progressively decreases, reaching a final mean value considered
as a phenotype trait.

In order to determine the reaction norm of this family of robotic systems, it is
necessary to have several robotic systems with the same artificial genotype and expose
them to different environments so that they experience a process of adaptation to
generate a final phenotypic trait.

As the environment was defined in section 4.5.2, the geometric centre of the 3D
space involved is a good characteristic for representing it. Therefore, it is possible to
generate different environments by varying just this property and keeping the others
unchanged, e.g. the outer dimensions.

Under these conditions, if the same robotic head with the same artificial genotype is
subjected to an adaptation process in each of the generated environments, it is possible
to determine the norm of reaction of the system from the different final phenotypes
(Visual Error) obtained. This process can be repeated for the 44271 individuals from the
family of robotic systems. For the sake of clarity, three individuals from the control group
are randomly selected, and the obtained pairs of values (phenotype and environment
traits) are represented in figure 5.25. It can be observed that there is a linear correlation.
The mean squared correlation coefficient for the control group is R2 = (0.930± 0.034)

for linear regression of their norms of reaction.
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Figure 5.25: Obtained norm of reaction for three randomly robotic heads

149



Predicting the internal model of a robotic system
from its morphology Conclusion

5.9.5 Conclusion

As can be seen from the comparison between figures 5.24 and 5.25, variation of
the environment causes different phenotypes in the biological systems. In addition, this
behaviour is also replicated to some extent by the robotic systems where an artificial
genotype was defined.

These samples (figure 5.25) represent three robotic systems from the same spe-
cies, which show a specific phenotype after an adaptation process using the explained
model. These results are similar for every robot in the control group, as the value of R2

shows. Beyond the shape of the curves, this experiment shows:

• The proposed genotype model can show different behaviours (different curves) for
each robotic system.

• The relationship between environments and phenotype can be handled (linearly
in this case) by the proposed model.

• In a certain way, phenotype plasticity is achieved by the proposed model. This
model differs from classical genetic and evolutionary algorithms, which only con-
sider allelic information for determining an individual’s phenotype. This key point
is possible because the plasticity of a robot system is achieved without changing
the individual genotype.

5.10 Conclusion

In this chapter, the relationship between the three elements involved in or being
part of the perceptual loop of a robotic system has been studied.

First, the problem has been addressed from the point of view of a robotic system
but considering the environment as a part of it. Then, once the information flows were
identified, finding the relationship among the internal parameters and the morphology
is converted into a regression problem. The aim has been to change the optics of the
problem, i.e. a set of robotic systems is considered sharing morphological parameters
(even if they do not have the same value), trying to adapt their behaviour to the same
environment. This change has allowed the regression problem to be tackled.

We show how, given the morphological parameters of the system, its internal
model can be estimated, as suggested by equation (5.1), and following the hypothesis
that the internal model is an approximation of the environment model. Moreover, if the
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internal model parameters are learned as a MLE, each one of these parameters is
statistically independent ( equation (5.7)).

Learning the internal model of a robotic system from its morphology can be a high-
dimensional regression problem. This situation was indeed the case for a robotic head
implementing a saccadic behaviour we use to verify how the modelled relationship can
be learned in a real problem. To address this problem, the internal model parameters
were decomposed into two sets. The first one is a set of interdependent parameters
for the proposed fixed controller. The estimation for this set was done using a single
layer feedforward neural network. The second one is an independent set of parameters
corresponding to the weights of the adaptive controller, which was implemented using
an online neural network with the I-SSGPR algorithm for its adaptation. In this second
case, three different neural network architectures were proposed. Then, the best model
was selected according to different performance indicators, such as MSE and indexes
for model selection based on information criteria. Also, an experimental evaluation was
conducted using the predictions of the proposed models to improve the online training
process for a new robotic system. We conclude that the parallel neural network had
better performance in all cases than the other two with a smaller number of weights.
The independence condition of the learned weights (equation (5.7)) has proved to be
essential for selecting the proper architecture for the learning tool.

The concept of family and individual applied to robotic systems has been intro-
duced to address the possible applications of this work. It has been shown that the
knowledge of the relationship between the morphological parameters and the internal
model can improve the adaptation of a new robotic system to the environment (sec-
tion 5.8.1). Even though the morphology information is not complete, this improvement
is produced according to the results obtained in section 5.8.2.

In the last part of the chapter, a further step in bio-inspiration has been taken. The
parallel between family species and individuals from the robotics and natural world has
been introduced. Defining a relationship between morphology and internal modelling in
a robotic system has allowed us to establish an artificial genotype model that identifies
each individual and shares common family (species) traits. Furthermore, it has been
shown that this artificial genotype has made it possible to replicate the phenotypic
plasticity of living beings by estimating a norm of reaction of the proposed robotic
system.

In section section 5.1 , machines and self-reconfigurable robots that can modify
their morphology to change their functionality were introduced (Pfeifer et al., 2007).
For them, knowing to rapidly generate their updated internal models after a change in
morphology will greatly enhance their performance, adaptivity and versatility.
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Similarly, in the current trend towards benchmarking and reproducible research
(Bonsignorio and del Pobil, 2015), getting the internal model directly from the morphology
can significantly contribute to effectively implement the same solutions in robot designs
that, being similar, differ in their configuration parameters.

Finally, the greatest potential can be expected in the context of Industry 4.0.
and Cloud Robotics. Cyber-Physical Robotic Systems will have access to big data
in the form of libraries of global datasets; cloud computing for statistical analysis and
learning; as well as collective robot learning (Kehoe et al., 2015). Given the large
variety of existing robot designs –and variations in the parameters of similar designs–
for shared knowledge in the Cloud to be fully operational, internal models should be
readily available there, as pre-computed datasets or as computing service on demand,
so that different robots can take advantage of that knowledge and exhibit a rational
behaviour without extensive learning.
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Chapter 6

Saccadic behaviour for depth
estimation

Beauty is no quality in things themselves: It exists merely in the mind which
contemplates them; and each mind perceives a different beauty.

David Hume, Of the Standard of Taste and Other Essays (1757)

6.1 Introduction

The saccadic movement has been defined, in chapter 4, from an implementation
point of view in a robotic system as a means of exploring the world around us. The
chapter 5 addressed the problem of learning this behaviour by a robotic system, not
exclusively understood as an individual but as a family of robotic systems interacting
with an environment. This chapter presents how small saccadic movements within
bio-inspired behaviour can enhance the perception of the environment by a robotic
system. In particular, this work is focused on the estimation of a cognitive trait such as
depth. Depth perception is the visual ability to perceive the world in three dimensions,
along with the ability to measure how far away an object is. Unfortunately, monocular
vision is poor at determining depth and usually requires stereo vision.
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Depth perception is a characteristic that allows individuals of different species to
better adapt to their environment. This issue is crucial in the field of robotics.

The human visual-oculomotor system is a source of inspiration for solving visual
perception problems in robotics. Many species exhibit behaviours that require accurate
depth estimation in their environments. In particular, primates solve this problem by
the concurrent use of multiple estimators deriving from different visual cues (Chinellato
et al., 2012a).

In robotics, the most popular sensors used to obtain this information are arguably
RGB-D sensors, such as Microsoft Kinect (Han and et al., 2013) and any of its variations
(Liu et al., 2019). They are typically based on the known infrared pattern projection.
This pattern is deformed depending on the environment’s depth round. Then, estimation
of depth is computed, employing these deformations.

In computer vision, several methods and algorithms have been established to
determine a scene’s depth using a single camera or image. For instance, by applying
patches to determine the pose of planes in a single image, it is possible to generate the
depth map with a single image (Saxena et al., 2009). In addition, if the velocity of the
camera is known, the depth map can be deduced(Matthies et al., 1993) from a stream of
images. Recent results about obtaining structure from motion with a monocular camera
are based on feature tracking and triangulation methods (Petersl and Gabriele, 2010),
(Schonberger and Frahm, 2016).

In addition to these methods, novel deep learning approaches use complex neural
network architectures to learn the correlation between an RGB image and its equivalent
RGB-D in an unsupervised way (Poggi and et. al., 2018), (Eigen et al., 2014a). However,
all of these procedures have in common: they only consider the visual cues as inputs,
ignoring the camera’s motion and sometimes even computing it from the images.

RGB-D sensors and deep learning techniques have certain drawbacks. In the
former, objects with absorption in the infrared range are not detected, and these sensors
also have problems outdoors and with reflective and transparent objects. In the case
of deep learning, long training processes along with vast and pertinent datasets are
necessary; moreover, several specific problems arise when this technique is applied in
robotics (Sünderhauf et al., 2018). A summary of all these proposals can be seen in
figure 6.1.

A cognitive process called fixation is common in certain living beings, including
humans. In this process, the visual attention is focused on a point. At first glance,
saccadic movements may not seem to be involved. However these movements play a
controversial role in this process.
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Figure 6.1: Summary of the different approaches referenced and employed in robotics for depth
estimation using a monocular camera.

As discussed in previous chapters, saccadic movements direct the gaze towards
the area of interest so that the information is maximised in the ocular area where there
are more receptors (fovea). Fixation movements are commonly used to understand
and explain cognitive tasks such as reading or visual exploration of a scene. During the
second part of the 20th century, several authors have studied the attention mechanisms
used by human beings. For example, Yarbus (2013) used a famous painting “An
Unexpected Visitor ” by Repin to see what features of the scene the subjects under
study were gazing at, attempting to determine the age of the people in the painting. The
result was that the subjects were focused on the faces of the people. In addition, using
photographs, Mackworth and Morandi (1967) concluded fixations are produced in the
areas where complete information is available.

Subsequently, more precise work has been done to introduce the influence of
semantic content in the exploration of the scene to study the processes of fixation
systematically. Loftus and Mackworth (1978); Gordon (2004) suggest that during
the first moments of visual exploration of a scene, an initial fixation is systematically
produced in order to identify features globally. These first fixations seem to indicate they
are directed towards analysis processes of visual properties beyond semantic search.
Afterwards, the scene is subjected to a detailed foveal analysis by the subject.

This work has been developed in this context of the global fixation process since
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one of the desired visual properties of the scene is its depth. However, if there is no
retinal shift, it is known that the perception fades immediately away. Therefore, small
fixational eye movements are suggested to maintain active perception (Pritchard et al.,
1960). These eye movements can be microsaccades, tremors and eye drifting. However,
it has been considered that this retinal image motion is not enough to determine the
depth sign in reference to the fixation plane, and the direction of the image movement
relative to the observer motion is decisive to obtain this depth sign (Nadler et al., 2008).

Several species use eye movements in coordination with small displacements of
the head during the process of visual fixation to obtain depth information of the gazed
scene (Aytekin and , 2012).

The ’fixation’ process is anything but fix since tiny intersaccadic eye movements
around the gazed location are produced during maintained fixation. A large fraction
of these movements are smooth, but seemingly random changes in eye position oc-
cur so-called ocular drift and ocular tremor, respectively (Krauzlis and et al., 2017).
Moreover, very small saccades (microsaccades) are generated with variable frequency
and amplitude during maintained fixation. Even though microsaccades and saccades
exhibit similar motor characteristics and share a common neural substrate (Ko et al.,
2010), there has been a long controversy over the visual functions of these movements.

Recent studies show that these microsaccades are precisely directed and play a
fundamental role in enhancing visual acuity (Intoy and Rucci, 2020).

Other authors suggest that during maintained fixation, very small saccades (mi-
crosaccades) are generated at regular intervals (Martinez-Conde et al., 2004). As is
also the case with regular saccades, these microsaccades produce visual cognitive sup-
pression during the movement (Irwin, 2003), and therefore they generate strong onset
transients in the visual input stream. These transients benefit from visual processing
due to a generation of a coordinated and synchronised input signal.

These ideas from biology-inspired earlier work in robotics for distance estimation
based on the parallax produced by camera rotations (Santini and Rucci, 2007) and
compensatory head/eye movements (Kuang et al., 2012). In later works, the concept is
extended to depth estimation (Antonelli et al., 2013a). However, although Antonelli and
co-workers based their work on the coordination of the neck and the oculomotor system
to maintain the fixation point, they did not consider microsaccadic movements(Antonelli
et al., 2014),(Antonelli et al., 2016).

In this chapter, a depth estimation algorithm is presented, considering all these
works. This algorithm is based on a series of hypotheses that can be applied to the
fixation process produced by human beings.
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As with many scientific developments, the algorithm originated from the necessity
to determine depth in a particular scenario: A robotic system with an eye in hand camera
operating in a warehouse to pick up objects. The guiding line of research was to mimic
the fixation movements of the human ocular system with a robotic arm to enrich the
visual perception of the environment captured by the robot’s hand camera and then to
use this information to locate and plan the grasping of objects on the stage.

As can be seen throughout this chapter, the use of saccadic or, in this particular
case, microsaccadic movements play an essential role in the development of this
algorithm. Therefore, in this chapter, all the concepts introduced in the previous chapters
are integrated, implementing a behaviour transcending saccadic movement for simple
exploration.

A model is proposed based on a geometric model developed from the decomposi-
tion of the eye movements susceptible to be generated in the fixation process. Depth
estimation is based on the equivalent of the retinal displacement (measured as optic
flow) and the perception itself.

The algorithm derived from the proposed model is tested in simulation, analysing
its limitations and the influence on the environment.

Finally, a robotic system is designed and built to allow the implementation and
testing of the algorithm in a real environment.

6.2 Objectives

The main objective of this chapter is to develop an algorithm for depth estimation
based on the movements that humans produce in the fixation process.

In summary, the objectives to be achieved in this chapter are:

• Based on the geometric study of fixation movements involving microsaccades,
generate a mathematical model to determine the depth of a scene.

• Implement the algorithm developed in simulation and study its performance, as
well as the factors involved in its execution.

• Try to improve with the proposed algorithm the weak points of the RGBD camera
in simulation with transparent objects.

• Evaluate whether the perceptual behaviour originated by the algorithm can be
similar to the human being perception in specific circumstances.
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• Check the proposed algorithm for depth estimation in a real robotic system.

6.3 Model

6.3.1 Model hypothesis

The human fixation mechanisms are the source of inspiration to develop the
proposed model, which is sustained by these hypotheses:

i) An initial fixation process is systematically produced in order to identify visual
features globally in a scene exploration task Loftus and Mackworth (1978); Gordon
(2004).

ii) During the fixation process, head-eye movements can be considered as perturba-
tions around an initial pose. A complex set of coordinated movements implicating
the head and the oculomotor system are generated in the fixation process (Aytekin
and , 2012). These movements aim to maintain the gaze point despite random
displacements of the head and eyes during fixation.

iii) So-called visual suppression occurs during microsaccadic movements (Hafed and
Krauzlis, 2010; Irwin, 2003) to the effect that only in the intersaccadic gaps is visual
information accessible. In consequence, the fixation process can be regarded as
spatial image sampling.

iv) the primary cue for estimating depth and 3D perception is the optical flow produced
by the observer. When it is not the result of external movements, optic flow and
motion parallax are consistent when other depth cues are not available (Fantoni
et al., 2010).

v) The contribution generated by ego-motion signal makes it possible to clarify the
inherent ambiguity associated with the optical flow (Jain and Backus, 2010).

6.3.2 Mathematical model

When the fixation process starts, there is no information available about the depth
of the scene. In any case, this process must start at an initial stimulus point detection
on the retina. Probably, by executing a saccade, the oculomotor system is adapted to
focus this initial stimulus on the fovea. The visual perception (image) that is received by
the visual system at this moment is taken as a reference. At this point begins a series
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Figure 6.2: Example of how microsaccades can affect perception in the fixation process.

of small movements producing active retinal displacement to help maintain the visual
perception stream. Among these movements are microsaccades, which, as indicated in
section 6.3.1, hypothesis ii, the role given to them in this model is not only to generate
displacements in the retina but also to provoke a sampling of the image stream.

In this case, we considere that the shift induced in the retina is produced exclusively
by the generation of eye movements. Therefore, the stage where the fixation process is
taking place remains static.

Due to perception suppression, images are not considered during saccades.
However, when the saccadic movement has just finished, the image received by the
visual system is compared with the reference image and depth perception is updated
with this new information.

In reality, multiple types of movements are involved in the fixation process; mod-
elling them together would complicate the problem excessively. For simplicity, only
microdisplacements of the head and those produced by microsaccades are considered.
In order to focus the problem, the example in figure 6.2 is shown. The desired goal
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Figure 6.3: Simplified scheme to show the sphere of eye movements. These poses result
from head-eye movements. The figure is not scaled, and it just illustrates that there are two
spaces: the space of eye-head movements (a sphere with radius rm) and the microsaccade
space composed by the projections of the endpoint of a microsaccade around the initial gazed
point (radius rg).

is to estimate the distance between the visual sensor and this point (Z0 in figure 6.2)
considering a candle with the point of attention being the end of the flame. The individual,
at first, produces a slight displacement of the head which is immediately compensated
by the oculomotor system, thereby maintaining the point of fixation at the end of the
flame. The current image (orange in figure 6.2)compared with the reference shows a
slight difference due to the shift in perspective. However, if a microsaccade is produced,
resulting in a change in the fixation point, the disparity between the reference image
and the new image is much more significant.

To model this problem in a mathematical form, a range of distances is considered
in the scene defined by a near plane Zn and a far plane Zf perpendicular to the Z visual
system axis. Therefore, depth perception takes place within this range. A schema of the
fixation process behaviour from a geometrical point of view is shown in figure 6.3. The
displacement of a camera can be characterized as shown in figure 6.4 considering the
modelling problem from an engineering point of view.

When t=0, the camera has a pose to look at the gazed point. This is the starting
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Figure 6.4: Schema of the considered camera movements. Initially, the camera is represented
by the {C0} frame of reference. A point P0, with coordinates in {C0} given by {X0, Y0, Z0},
projects onto the image plane with coordinates

{
x0
i , y

0
i

}
and pixel coordinates {u0

i , v
0
i }, which

are computed using the projection matrix K. A roto-translation (RT ) of {C0} results in a
new frame {Ct} and the projection of that point changes to {xti, yti} and {uti, vti}. Its apparent
displacement on the image is given by Of = {Sx, Sy}

point of the fixation process with the initial image of reference I0. Given a point of the
scene (P0) that generates an intensity value in that image and projecting it onto the
image plane, the pixel {x0

i , y
0
i } is obtained. The Z-axis of the visual system is aligned

with the gaze point, and Z0 is the value of the depth in P0, understanding depth here as
the distance from the camera frame of reference {C0} to the perpendicular plane to the
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camera Z-axis containing P0.

After a head movement and a microsaccade (t=t), the gazed point has been
displaced, and the new camera pose is aligned with this new gazed point. The depth
concerning the new camera frame {Ct} has changed. After the microsaccade, visual
perception suppression disappears, and a new image III t is obtained. The original P0

is now Pt with respect to the new camera frame and its projection on the image plane
corresponds to a new pixel position in the image {xti, yti}. An optical displacement
has taken place in the image plane Of = {Sx, Sy}. This value can be estimated by
computing the optical flow between both images.

The aim is to determine the value of Z0 that corresponds to depth sensation in
the fixation point. In order to reach this goal, we define several matrices and vectors in
homogeneous coordinates.

• The pixel coordinates in III t and III0 are defined by vectors mt = [ut, vt, 1, 1]T and
m0 = [u0, v0, 1, 1]T , where u and v are expressed in the centred image coordinates
system.

• A projection matrix is defined: K that is a function of the camera parameters,
mainly of the focal lengths. To simplify the model K = {ki,j,∀i, j ∈ {1, . . . , 4}, i 6=
j =⇒ ki,j = 0 ∧ diag(K) = {f, f, 1, 1}} where f is the focal length of the camera.

• To work in homogeneous coordinates, two matrices are defined depending on
the depth value: H(Z) = {hi,j,∀i, j ∈ {1, . . . , 4}, i 6= j =⇒ hi,j = 0 ∧ diag(H) =

{1/Z, 1/Z, 1/Z, 1}}. Thus, there are two such matrices, one for the initial camera
pose H(Z0) and the other one for the other pose H(Zt).

• Finally, regarding roto-translation matrix between the frames, we consider that the
angular variation is small enough to approximate the rotation by using the skew
matrix M; in addition, the translation matrix T is given by the Cartesian difference
between {C0} and {Ct}. These matrices are defined in (equation (6.1)).

M =


 0 −∆Wz ∆Wy

∆Wz 0 −∆Wx

−∆Wy ∆Wx 0


 ; T =


∆X

∆Y

∆Z


 (6.1)

Where ∆W(x,y,z) is the angular variation in each axis. The roto-translation matrix
RT is defined as a composition in (6.2).

RT =

([
1 + M T

0 1

])
(6.2)
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If the ego-motion signal is known by means of T and M, the new pixel position
in the image plane mt can be computed by using expression (equation (6.3)) from the
reference image pixel position.

mt = H(Zt) · K · RT · K−1 · H(Z0)−1 ·m0 (6.3)

The value of Zt can be obtained from the expression: Pt = RT · P0, and taking
into account that P0 = {u0 · Z0/f, v0 · Z0/f, Z0}, the value of Zt can be calculated with
(equation (6.4)).

Zt = Z0 + ∆Z −X0∆Wy + Y0∆Wx (6.4)

From equations (6.3) and (6.4), it can be concluded that mt is only a function of the
camera parameters (f ), the ego-motion components ({∆X,∆Y,∆Z, ∆Wx,∆Wy,∆Wz})
and the initial depth Z0. When the scene is considered static, the apparent displace-
ment produced in the image of pixel m0 is only originated by ego-motion, therefore
(equation (6.5)) must be satisfied.

m0 = mt −Of (6.5)

However, given that both the ego-motion and the optic flow (Of ) can have an error
in their estimations, we can write:

m0 = m̂t − Ôf + ε −→ ε = m0 − m̂t + Ôf (6.6)

Where ε represents the accumulative error resulting from computing mt using
(equation (6.3)) and also includes the optic flow estimation error. m0 is known since it
is the initial pixel position in the reference image, whereas mt can be calculated from
(equations (6.3) and (6.4)). ε is a vectorial magnitude, and thus, a cost function based
on its module can be defined as (equation (6.7)).

L =
1

2
‖ ε ‖2=

1

2

(
ε2u + ε2v

)
=

1

2

(
(u0 − ût + Sx)

2 + (v0 − v̂t + Sy)
2
)

(6.7)

If it is assumed that the value of Z0 is not correct and the errors corresponding to
optic flow components {Sx, Sy} and ego-motion estimation are approximately constant;
then, the greatest contribution to the value of ε is the undetermined knowledge about Z0.
If Z0 were the optimum value for the cost function defined in (equation (6.7)), it could be
computed using (equation (6.8)).
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Z∗0 = arg min
Z∗0∈[Zn,Zf ]

L = {Z∗0 | ∀α ∈ [Zn, Zf ] : L(α) ≥= L(Z∗0)} (6.8)

Deriving (equation (6.7)) with respect to Z0, the equation (6.9) is obtained:

∂L

∂Z0

= −[m0 − m̂t + Ôf ]
T · ∂m̂t

∂Z0

(6.9)

It is useful to define these expressions to implement (6.9):

fu = uo/f ; fv = vo/f

Vz = (1−∆Wyfu + ∆Wxfv) ; Az =∆Z + Z0Vz

Vy = (∆Wx − fv −∆Wzfu) ; Ay =∆Y − Z0Vy

Vx = (∆Wy + fu −∆Wzfv) ; Ax =∆X + Z0Vx (6.10)

Then, m̂t, m0 and Ôf in (6.9) can be expressed as:

m̂t =

[
f
Ax
Az
, f
Ay
Az
, 1, 1

]T
;

m0 =[u0, v0, 1, 1]T ;

Ôf =[Sx, Sy, 0, 0]T (6.11)

The derivative of m̂t with respect to Z0 can be written as:

∂m̂t

∂Z0

= [Mx,My, 0, 0]T (6.12)

where

Mx =
fVx
Az
− fVz

Ax
A2
z

;

My =
fVy
Az
− fVz

Ay
A2
z

(6.13)

From the above equations, it can be concluded that the value of the derivative of
the cost function depends only on: the initial point coordinates (u0, v0), the variation of
the camera pose (∆X,∆Y,∆Z,∆Wx,∆Wy,∆Wz) and the measured optical flow (Sx, Sy)

in the initial image pixel.

Returning to the example at the beginning (figure 6.2), the mathematical model
indicates that it is possible to estimate an optical flow value in each pixel of the image by
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Measured 
Optical Flow

Z0

Pose
Variation

Estimated
Optical Flow =

Z Value
assumption

Just for Z = Z0

Figure 6.5: This scheme represents the idea behind the mathematical development. A depth
is assumed to be correct in the case that the optical flow predicted by the position variation is
equal to the optical flow measured from comparing the current image with the reference image
to estimate the depth value .

varying the camera position, assuming a certain distance to the fixation point. In turn, it is
possible to estimate a pixel-by-pixel optical flow employing the visual difference between
the current image and the reference image. It must be fulfilled that the estimated optical
flow at one pixel must be equal to the measured optical flow, assuming that both position
variation and optical flow estimates are sufficiently accurate. In addition, only when the
assumed distance is equal to the actual distance (figure 6.5).

Under these conditions, depth estimation has been converted into many independ-
ent optimization problems (one for each image pixel). This fact conditions the method of
optimization to use:

• Even though straightforward stochastic gradient descent (SGD) could solve it;
it would be necessary to define a different learning rate for each optimization
problem since each pixel from the initial image is independent of the rest. Moreover,
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probably this learning rate could depend on the real Z value corresponding to each
pixel. Consequently, gradient-based methods that work at a constant learning rate
are discarded. Instead, the learning ratio must be adapted in each iteration for
each pixel.

• Another aspect to consider is the noise in the signals for the gradient calculation.
Due to the estimation method, the optical flow has inherent variability, especially
in areas with no texture. In addition, the position increase is estimated from
self-perception data which may also present some noise.

A gradient descent method that can deal with these two issues to successfully
compute Z∗0 , is the ADADELTA method (Zeiler, 2012). This algorithm is based on
SGD, but it also introduces several filters in the estimation of the gradient and second
derivatives. These filters can reduce the noise influence.

6.3.3 Depth estimation algorithm

Algorithm 6 Depth estimation
Require: III0,Zn, ρ, σ, ccc0

1: ZZZ(0) ← Zn, t← 0, h,w ← size(III0);
2: GGG0 ← zeros(h,w); ∆GGG0 ← zeros(h,w)

3: loop
4: ccc← HeadEyeMovement()

5: III t ← getNewImage()

6: OFOFOF ← OpticF low(III0, III t)

7: MMM,TTT ← getEgomotion(ccc0, ccc)

8: for i = 1 to h do
9: for j = 1 to w do

10: v ← i− h/2; u← j − w/2
11: gt(u, v,SSS,TTT ,OFOFOF (i, j))← ∂L

∂Z0
{equation (6.9)}

12: GGGt(i, j)← ρGGG(i, j)t−1 + (1− ρ)g2
t

13: τt ←
√

∆G(i, j)t−1 + σ/
√
G(i, j)t + σ

14: ∆GGG(i, j)t = ρ∆GGG(i, j)t−1 + (1− ρ)τ 2
t

15: ZZZ(t)(i, j) = ZZZ(t−1)(i, j) + ∆GGGt(i, j)

16: t← t+ 1

17: end for
18: end for
19: end loop
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The above mathematical formulations inspired by the fixation process are imple-
mented by algorithm 6. The starting point is the reference image (III0), and camera pose
(ccc0) captured at the time of the initial fixation process. Initially, no depth information is
available; therefore, all pixels in the image are assigned the same value Zn. When the
fixation process has begun, the movements of the head and the oculomotor system
generate displacements in the image (III t) and the camera pose (ccct). That is, the mi-
crosaccades used to carry out the sampling. The initial image III0 is correlated with each
newly obtained image III t using the Lucas-Kanade method (Lucas and Kanade, 1981).
The goal of the Lucas-Kanade algorithm is to minimize the sum of the squared errors
between two images, the reference image III0 and the current image III t.

From here, the depth estimation algorithm iterates for each image pixel, updating
the gradient descent computation with the ADADELTA equations.

As the algorithm advances, the received information increases the sense of depth
in the image that corresponds to the initial fixation point. Ultimately, this increase in
information is represented in the algorithm by the term ∆GGGt(i, j), which in turn depends
on the cost function according to equation (6.9). Thus, if there is no optical shift between
the current image and the reference image (III = III0), there is no improvement in depth
estimation knowledge.

From a computational complexity point of view, each pixel is visited once in each
iteration, as shown in algorithm 6. Moreover, the computations made on each pixel
only depend on the state of that pixel in the previous step, the optical flux estimated on
this point and the camera displacement. Therefore, the temporary asymptotic cost in
this part of the algorithm is O(N ), where N is the total number of pixels in the image.
Regarding the asymptotic spatial cost, the complete algorithm must store the resulting
depth image, the optical flux components in each iteration, the initial image, and the
current image. Therefore, the spatial cost has a magnitude of Θ(5N ). This algorithm
is amenable to parallel computing since each pixel is independent of the previous and
current states of the rest of the pixels. This trait allows it to be implemented using
parallel computing techniques on either GPUs or CPUs.

6.3.4 Algorithm parameters

As it can be seen in the description of algorithm 6, it is necessary to set several
parameters for its proper execution: First, Z0 is the initial distance for all image pixels;
second, ρ acts as a low pass filter coefficient for the gradient adaptation and its derivative.
Finally, σ regulates the gain of the gradient variation in each step. Since gradient
descent techniques do not differentiate between local and global minima, selecting
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these parameters is relevant for good quality results.

In addition, if the span of the work area is known, the search limits can be defined
a priori; if the sought minimum lies outside these limits, the algorithm will not converge.
Also, the noise factor affects its performance because the values it generates may be
outside these limits. In such cases, it is necessary to define an action policy for the
pixels in which this phenomenon occurs.

6.4 Experiments in simulation

6.4.1 Simulation setup

Evaluation tests are carried out with the Baxter robot in the Gazebo/ROS simu-
lator. Given the degrees of freedom of Baxter’s head, it is impossible to replicate the
movements of the primate’s oculomotor system. Instead, we use the 7-DOF arm of this
robot with an eye-in-hand camera.

Although some robotic systems described in the literature could perform this task
correctly (Santini et al., 2009; Kuang et al., 2012), the design of the experiments based
on this specific platform was developed in the context of the RoboPicker (Del Pobil et al.,
2017) project for which a low-cost robot is called for, and manipulation takes place in
a confined space. Therefore, the primary function of the arm in our experiments is to
move the camera in such a way that it maintains orientation, and it positions itself in the
same way that a human eye would perform fixational movements.

Baxter’s wrist camera can be configured in several ways. Of all the possible ways,
a resolution of 900x600 pixels and a focal length of 405.7 was chosen. The camera
simulation was set up with the same parameters. In addition, white Gaussian noise
was applied to the image to introduce uncertainty in the optical flow computation. The
standard deviation of this gaussian noise is common to all performed experiments and
is equal to 0.01 pixels.

The space of movements for the camera is specified as a sphere defined by two
parameters: the central point and the radius of movements rm (see figure 6.3). rm is
considered constant to reduce the number of experiments, with a value of 0.015 m
according to the order of magnitude in the experiments of (Aytekin and , 2012). These
authors suggest rm is not uniform, and its value depends on the distance to the fixation
point). A controversial point in the literature is the maximum radius of a microsaccade.
Some studies set this value between 1o and 2o. However, most microsaccades have a
magnitude smaller than 0.5o for many tasks (Rolfs, 2009). The parameter rg is defined
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by the microsaccade amplitude as shown in figure 6.3. rg varies with the fixation point
distance as shown equation (6.14) taking an amplitude of 0.5o.

rg ≈ 0.0088 · d (6.14)

6.4.2 Experimental procedure

Based on the fixation process, the next procedure is used in all experiments:

• An artificial scenario is placed in front of the wrist camera of the simulated Baxter
robot (figure 6.6a) and a starting point of the camera for the fixation process is
selected.

• In order to simplify, three distances are selected for the fixation point in the scenario,
all of them on the same axis Z from the camera. In addition, the microsaccade
radius rg is computed as a function of that distance (equation (6.14)).

• The initial image I0 (figure 6.6c) and pose C0 are saved.

• The depth image of the scene is captured with a simulation of an RGBD camera
placed in precisely the same initial position and with identical resolution as the
RGB camera figure 6.6b.

• The camera starts to move randomly within a sphere of radius rm, maintaining the
fixation point projected onto the image plane within the circle of radius rg. These
displacements are reflected in the generation of successive images (III t) differing
slightly from the reference image (figure 6.6d).

• The successive images (It) and poses (Ct) are compared with the initial image and
pose by applying algorithm 6. As can be seen in the description of the algorithm,
it is necessary to calculate the optical flow between the reference image and the
current image (figure 6.7a). The algorithm generates depth estimations for each
pixel in each iteration (figure 6.7b). Finally, it converges to a resulting depth image
(figure 6.7c) corresponding to the best estimation in all the regions of the proposed
scenario (figure 6.7d).

6.4.3 Evaluation methods

Two kinds of scenarios are tested to evaluate the performance of algorithm 6. The
first scenario is used to study the accuracy of depth estimation and the influence of the
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(a) Baxter robot setup scenario on starting point of the camera
for the fixation process

(b) Depth image used as background directly captured from a
depth camera sensor simulation in the same pose that RGB
camera

(c) RGB initial image captured as reference (III0) (d) Pixel by pixel intensity difference between reference image
(III0) and another captured after micro head random and mi-
crosaccadic movements (IIIt)

Figure 6.6: Different images captured during the execution of the proposed algorithm.
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(a) Estimation of the optical flow between the reference image
(III0) and the current image (IIIt). The colours indicate the dis-
placement vector angle between the two images.

(b) Example of intermediate estimation of the proposed al-
gorithm. In this image the different depth zones begin to dif-
ferentiate but some of them are already clearly visible.

(c) Example of a final depth estimation obtained after running
the algorithm

(d) Example of a representation showing the progress of the
algorithm in reference to the average distance of each of the
objects in the initial image.

Figure 6.7: Different partial results were obtained during the execution of the algorithm to
visualize its evolution.
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algorithm parameters.

To quantitatively estimate the performance of the algorithm, two types of back-
grounds are used. The first one uses the depth image generated by the simulator
(figure 6.6b) as the most accurate depth estimation ground truth. The second back-
ground utilises six squared plates placed in the simulated scenario on which 6 Aruco
Markers are printed et al. (2014). The type of markers and their relative position with
respect to the initial camera location are shown in table 6.1 and figure 6.6c. The error
is estimated from the standard deviation after 30 measures for each marker position
using the Aruco markers detector algorithm. These error values provide information
about the repeatability of the measurement, not its accuracy concerning the background.
Using the Aruco markers, the depth of each marker plane can be estimated. In addition,
each marker encloses an image area where the depth should be approximately the
same. Therefore, applying this mask to the obtained depth image from the algorithm
and computing the mean and standard deviation for each marker area, the result must
be comparable to the distance estimated by the Aruco detector.

Marker
id=101

Marker
id=201

Marker
id=301

(0.509± 0.006)m (0.386± 0.005)m (0.605± 0.004)m

Marker
id=401

Marker
id=501

Marker
id=601

(0.694± 0.003)m (0.866± 0.002)m (1.071± 0.009)m

Table 6.1: Aruco markers used and estimations of the depth from the camera with the Aruco
detector.

The second evaluation scenario comprises several simulated objects with different
shapes and textures in the same setup. Then, the obtained depth image is compared in
each iteration with the real one using the mean square error between them. Several
Aruco markers are also introduced in this scenario to be used as control points.

6.4.4 Experimental tests

The primary objective of the experimental tests is the evaluation of the proposed
algorithm. In addition, secondary goals are intended:

i) Study the influence of the choice of parameters on the performance and results of
the adaptive process.
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ii) Evaluate the effect of a plausible Gaussian error in the inputs of the algorithm.

iii) Validate the algorithm in an environment with ordinary objects.

To avoid shifts in the image due to changes in perspective and to keep the set of control
markers within the scene in all images, three virtual fixation points were selected at
different distances from the initial position of the camera, which is the same for all
experiments d = {0.3, 0.6, 0.9}(m). In addition, any interference produced by choice
of fixation points within the environment is tried to be avoided. Furthermore, it can
be assured that all Aruco markers will appear in almost all images, and therefore it is
possible to track and compare with them in each iteration.

Considering that the final objective is to obtain a depth estimation as similar as
possible to the image generated by the simulation of the depth camera, two of the
criteria used to evaluate the results are the structural similarity index (SSIM) Zhou Wang
et al. (2004) and the global mean square error (MSE), along with the standard deviation
between the depth images in each iteration.

In addition, to check whether differences exist in the algorithm’s performance
depending on the depth, the comparison between the estimation of the distance in the
planes defined by the aruco markers and the one estimated by the algorithm in each
iteration is used. Moreover, the exact position of each plane corresponding to each
marker is known. Thus, this value can be compared to the algorithm’s results for this
region of the environment.

The markers are a redundant way of confirming the algorithm’s performance;
perhaps in simulation, it does not make much sense to use them, but in a real robot
where it is necessary to have physical depth references to evaluate the execution.
Therefore, the results will be comparable in a real robot if these markers are used as a
linking factor.

Finally, a policy regarding the procedure is defined when the estimated value of
the distance lies outside the defined limits of the work area. For example, this can occur
when there is an error in the optical flow estimation or the position variation. One option
was to reset its value to the initial distance or decide not to update the value of Z∗t . After
several tentative tests, this second policy was implemented.

6.4.4.1 Influence of the choice of parameters

It can be observed from the adaptive part of the proposed algorithm that ρ acts
as the smoothing coefficient in an exponential mean filter, both for the gradient square
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and ∆G(i, j)t adaptation. Therefore, the possible noise must modulate the choice of ρ
that the estimation of the gradient and its derivative may present. Furthermore, it can
be assumed that this noise has a similar effect on all depth image pixels; therefore, the
value of ρ is taken as the same for all of them. The σ parameter ((Zeiler, 2012)) has a
regularisation function to prevent a zero value for the denominator of the τt estimate. Its
importance changes depending on the relative value of the estimation of the gradient
square concerning the σ value. The rest of the system variables are defined to study
the influence of both parameters:

• The fixation point is placed at 0.6 m;

• 0.1 m is assigned as the initial value of Z for all pixels in the depth image;

• The displacements of the camera and RGB images are the same for all variations
of the studied parameters.

Under these conditions, the value of ρ is fixed and varied σ and vice versa. The con-
sidered parameter values are σ = {0.001, 0.005, 0.01, 0.05} and ρ = {0.4, 0.5, 0.7, 0.9, 0.99}.
Examples of the obtained results for these tests are shown in figures 6.8 to 6.11

In examining these figures, several observations can be made:

• Comparing all figures, it can be seen that the algorithm converges to a value of
both MSE with an approximately constant standard deviation. Using the SSIM as
a reference also this convergence is produced.

• Comparing figures 6.8 and 6.10, it can be observed that when the value of σ is
constant for any value of ρ, the final convergence point is very similar for all cases
(figure 6.10). However, there is a small variation in variable σ and constant ρ.
Therefore this result suggests that the value of σ affects the final value of MSE
and variance obtained with the algorithm. This result is confirmed by the evolution
plot of the SSIM index where the most stable convergence between all algorithm
runs occurs when sigma is constant.

• Considering the moment when the algorithm reaches the equilibrium point, com-
paring figures 6.8 and 6.10 it is possible intuitively to understand how the value
of ρ affects this point, while in figure 6.8 when ρ is constant this point is more or
less the same in all cases, and when ρ is varied and σ is kept constant this point
changes.

• From the observation of these plots, it can also be seen that the algorithm’s
behaviour is similar in a range of σ and ρ. Beyond this range, the algorithm does
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Figure 6.8: MSE and standard deviation between the background depth image and the estim-
ation made by the proposed algorithm for 60 cm fixation point and different values of σ for a
constant value of ρ = 0.70

not give stable results. For instance, in the case of figure 6.8, it can be seen
that for minimal σ values, the result does not converge in the same way as the
rest. The same behaviour occurs in figure 6.10, where for very high ρ values, the
convergence point is significantly delayed.

As a conclusion, in figure 6.10, the mean of the last 50 iterations is 0.0169± 0.0787m.
Also, these results suggest a behaviour for the influence of ρ for a constant σ, in the
sense that the lower ρ is, the faster the algorithm converges (around 30 iterations for
ρ = 0.4). In principle it seems that the lower σ is, the better the obtained results are
(figure 6.8). This trend, however, has a limit and for a very low σ, the results are poor.

As expected, ρ parameter acts as a filter causing the stabilisation of the final
results in exchange for the number of iterations to reach them. On the other hand,
the behaviour of σ is more complex. As it can be seen in figure 6.8, for a given ρ the
lower the value of σ the better the overall result. However, if σ becomes too small, the
algorithm gets frozen (purple line in figure 6.8). This is also the case for too high values
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Figure 6.9: SSIM index estimation between the background depth image and the estimation
made by the proposed algorithm for 60 cm fixation point and different values of σ for a constant
value of ρ = 0.70

of ρ (green line in figure 6.10). In any case, the choice of σ and ρ should be made jointly
since the closer ρ is to 1 –and, therefore, filters more– the higher the value of σ should
be.

In addition, the influence of the initial value of Zn on the algorithm results is studied.
Thus, the rest of parameters are fixed and the value of Zn is varied. The obtained results
are shown in figure 6.12. It is apparent that the convergence to the final result seems
faster the higher the value of Zn.

Figures 6.12 and 6.13 suggest the initial value Z0 only conditions the moment
of reaching a more or less stable result, but it does not seem to affect the final depth
image.

176



Saccadic behaviour for depth estimation Experiments in simulation

0 20 40 60 80 100 120 140 160 180 200
iteration

10 -3

10 -2

10 -1

10 0

S
T

D
 d

es
vi

at
io

n 
(m

)

Std desviation evolution

0 20 40 60 80 100 120 140 160 180 200
10 -2

10 -1

10 0

M
S

E
 (

m
)

MSE error evolution

 = 0.40,  =0.010  = 0.50,  =0.010  = 0.70,  =0.010  = 0.90,  =0.010  = 0.99,  =0.010

0 20 40 60 80 100 120 140 160 180 200
iteration

10 -3

10 -2

10 -1

10 0

S
T

D
 d

es
vi

at
io

n 
(m

)

Std desviation evolution

0 20 40 60 80 100 120 140 160 180 200
10 -2

10 -1

10 0

M
S

E
 (

m
)

MSE error evolution

 = 0.40,  =0.010  = 0.50,  =0.010  = 0.70,  =0.010  = 0.90,  =0.010  = 0.99,  =0.010

0 20 40 60 80 100 120 140 160 180 200
iteration

10 -3

10 -2

10 -1

10 0

S
T

D
 d

es
vi

at
io

n 
(m

)

Std desviation evolution

0 20 40 60 80 100 120 140 160 180 200
10 -2

10 -1

10 0

M
S

E
 (

m
)

MSE error evolution

 = 0.40,  =0.010  = 0.50,  =0.010  = 0.70,  =0.010  = 0.90,  =0.010  = 0.99,  =0.010

Figure 6.10: MSE and standard deviation between the background depth image and the
estimation made by the proposed algorithm for 60 cm fixation point and different values of ρ for
a constant value of σ = 0.01

6.4.4.2 Additive error influence

The gradient descent algorithm takes advantage of parameters ρ and σ to filter the
noise in the input signals. However, the estimation of the gradient and its derivative is
severely affected by this noise. Therefore, a gaussian error in the image is introduced
in the experiments that directly affects the precision in obtaining the optical flow to
assess this issue’s impact. Furthermore, this error acts on each pixel individually. On
the contrary, estimating the displacement error of the camera affects the calculation of
depth in all pixels.

From this point of view, the same experimental conditions is used, that is,

• Radius of movements (rm = 0.015m)

• Fixation point at distance 0.6 m

• Same captured RGB images and camera displacements. However, in each itera-
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Figure 6.11: SSIM index estimation between the background depth image and the estimation
made by the proposed algorithm for 60 cm fixation point and different values of ρ for a constant
value of σ = 0.010

tion we disturb the camera displacement computations with white gaussian noise
affecting its rotational and translational components, and characterised by standard
deviations φr and φt. The chosen values for φt are φt = {0.0001; 0.00050; 0.0010}
m that represent {1.2%, 6.6%, 13.2%} of the maximum possible displacement re-
spectively.

• The selected values for φr are φr = {0.005◦, 0.1◦, 0.3◦}.

After the execution of the algorithm, the obtained results are shown in figure 6.14.
In addition, grey-scale representations of the final depth images for the best and worst
cases are shown in figure 6.15.

Adding a Gaussian error to the estimation of the camera position affects each pixel
of the final depth image equally; the application of the algorithm is pushed to the limit.
Notwithstanding, in this case, the effects of σ and ρ become more apparent. These
experiments also establish the error limits when applying the algorithm to a real robot.
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Figure 6.12: MSE and standard deviation between the background depth image and the
estimation made by the proposed algorithm for 60 cm fixing point and different values of Z0 for
constant values of ρ = 0.7 and σ = 0.01

The obtained results raise some points for discussion.

i) The lower σ is, it seems that the more robust the performance is in all cases.

ii) Increasing ρ tends to stabilise the algorithm results in some cases, depending on
the value of σ, and with a limit: as in figure 6.10 the algorithm hardly progresses, for
a value of ρ = 0.99.

iii) The uncertainty when the added noise error is too high generates non-valid results.
As it can be seen in figure 6.15 qualitatively, the added error has a manifest influence
on the quality of the results.
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Figure 6.13: SSIM index estimation between the background depth image and the estimation
made by the proposed algorithm for 60 cm fixing point and different values of Z0 for constant
values of ρ = 0.7 and σ = 0.01
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Figure 6.14: MSE with error bars representing standard deviation of the last 20 iterations. The
bars are grouped by the added white noise. Ei = {φt(i), φr(i)}.
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Figure 6.15: Image depth, showing the distance for each pixel scaled in 0-255 range. The
upper image corresponds to the best obtained MSE and on the bottom the worst MSE for all
experiments where white noise error was added to the camera displacement. φr is expressed in
radians and φt in meters
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6.4.4.3 Aruco marker comparison

The purpose of using Aruco markers in the simulation is twofold. First, create
surfaces where the distance to the camera is known, and second, build a scenario that
is easy to test when moving from simulation to reality.

It is straightforward to compare the results in the simulation since the distances
from the markers to the camera frame are perfectly known. It is also possible to check
the predictions that the Aruco algorithm makes for these known distances. In order
to test these errors, the proposed depth estimation algorithm is applied in the same
scenario but only varying the distance of the fixation point and keeping the rest of the
parameters constant for all the tests.

In table 6.2, the obtained results are shown. The first column lists the relative
errors between the estimation of the algorithm and the distance predicted from Aruco
markers. The second column compares the relative errors between the estimation of
the algorithm and the distance given by the simulator.

Representing the difference between the estimated average distance in the area
defined in the image by each Aruco marker and the estimation of the marker position
using the Aruco algorithm, the evolution of the proposed algorithm can be obtained
considering the comparison with the position of the markers. These graphs allow to
study the evolution of the algorithm in a real scenario. An example of this type of plot
can be seen figure 6.16

As suggested in (López-Cerón and Canas, 2016), the accuracy of the Aruco
Markers decays with distance. Table 6.2 shows that the greater the distance from a
given marker, the results generated by the algorithm are closer to the simulator ground
truth than to the values provided by the markers. This result suggests that the proposed
algorithm is less sensitive to error variation with distance than the Aruco markers for
this particular case.

6.4.4.4 Environment with ordinary objects

So far, only a simplified scenario has been considered, which has made it possible
to evaluate the accuracy of depth estimation and the influence of the algorithm para-
meters and noise. All the surfaces involved were planes perpendicular to the camera.
Models of several objects have been chosen (Rasouli and Tsotsos, 2017) in order to
test the effectiveness of the algorithm in other more complex environments. They are
arranged in front of the camera in the same way as the markers.
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Table 6.2: Relative errors between depth estimated by the algorithm and the distance predicted
from Aruco markers, and between the estimation of the algorithm and the distance given by the
simulator, for the six Aruco markers and three fixation distances.

d=30 cm
Aruco difference Simulator difference

M.201 (0.57± 0.60)) % (0.83± 0.68)) %
M.101 (0.57± 0.42)) % (1.64± 0.42)) %
M.301 (0.35± 0.07)) % (0.33± 0.07)) %
M.401 (0.97± 0.10)) % (0.12± 0.09)) %
M.501 (0.61± 0.07)) % (1.04± 0.07)) %
M.601 (2.79± 0.07)) % (1.41± 0.08)) %

d=60 cm
Aruco difference Simulator difference

M.201 (2.30± 0.24)) % (0.52± 0.22)) %
M.101 (0.46± 0.17)) % (1.16± 0.17)) %
M.301 (0.62± 0.09)) % (0.38± 0.09)) %
M.401 (1.05± 0.04)) % (0.28± 0.04)) %
M.501 (1.82± 0.03)) % (0.24± 0.03)) %
M.601 (5.10± 0.13)) % (2.98± 0.14)) %

d=90 cm
Aruco difference Simulator difference

M.201 (1.75± 1.61)) % (1.70± 1.54)) %
M.101 (0.77± 0.21)) % (0.75± 0.21)) %
M.301 (0.59± 0.59)) % (0.59± 0.59)) %
M.401 (0.56± 0.09)) % (0.09± 0.04)) %
M.501 (0.48± 0.17)) % (0.95± 0.17)) %
M.601 (2.36± 0.11)) % (0.10± 0.08)) %

The RGB image for this scenario is shown in figure 6.17a. There are various types
of objects in terms of shape, texture and transparency. The corresponding depth image
as generated by the simulator is shown in figure 6.17b; it will be used as a reference
ground truth image.

The design of these objects has been established to study the behaviour of the
algorithm against a set of shapes, sizes and transparencies that can exist in a real
scenario. For example, choosing the semi-transparent bottle in the simulator but not in
the RGBD image obtained might compromise the proposed algorithm’s performance.

As can be seen in figure 6.17a, three Aruco markers have also been inserted in the
scenario to serve as a control point to check if the distance determined by the algorithm
is in accordance with the distance estimated by the markers. Aruco markers are placed
closer to the camera to avoid estimation error by the variation of the precession of the
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Figure 6.16: Example of the evolution of depth estimate mean for the Aruco regions only, with a
fixation point at 60 cm. The dotted lines are the distances of the markers given by the simulator,
and the dashed lines are the distances estimated by the Aruco algorithm.

markers with the distance.

MSE is used to evaluate the results. In addition, since MSE can yield misleading
results in certain circumstances, SSIM is also employed. Finally, SSIM provides us with
information about the structural similarity between the depth image generated by the
simulator and that estimated by the algorithm.

For these tests, the parameters were given the values for which the best results in
figure 6.15 were obtained without white noise error. Namely, ρ = 0.5 and σ = 0.005.

The evolution of MSE and standard deviation are shown in figure 6.18 with the
expected behaviour. Figure 6.19 illustrates the evolution of SSIM index along the whole
adaptive process. The range of possible values for SSIM extends from 0 to 1, being
more similar the closer it is to 1. In this case, the variability of that index oscillates
between 0.75 and 0.85 at the end of the algorithm iteration for all selected fixation points,
comparing with the ideal depth image represented in Figure6.17b.
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Both the numerical results obtained from the analysis of figure 6.19 and figure 6.18
as well as the qualitative results derived from figure 6.20 show that the proposed
algorithm is able to determine the depth image of a more complex scenario.

Thus, the evolution of SSIM and MSE is analogous and reaches the convergence
value at iteration 40 for all cases. Remarkably, SSIM reaches a value of about 0.80,
which indicates a very high structural similarity with the reference image.

It is also primary to highlight the behaviour of the algorithm concerning non-
textured objects such as the night lamp or the camera, for which the determination of
the optic flow involves more important difficulties. It is also noteworthy the behaviour for
semi-transparent objects —such as the wine bottle or the beer mug handle— where the
algorithm gives good results which could not be obtained, for instance, with standard
depth sensors.
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(a) RGB image of the scenario.

(b) Ground truth depth image.

Figure 6.17: Layout for the experiments with ordinary objects.
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Figure 6.18: MSE and standard deviation evolution with real objects scenario for three different
fixations points at 30, 60, 90 cm.
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Figure 6.20: Gray-scale experimental results for the scenario with ordinary objects and fixation
points at 30, 60 and 90 cm. The units of the gray-scale bar are in meters. The blue lines are
the objects contours computed over background image using an edge detection algorithm. The
aim of these lines is to delimit clearly the different depth areas generated by the objects in the
algorithm results.
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6.4.4.5 Influence of microsaccade movements in the depth algorithm
execution

For studying the influence of microsaccades on the algorithm precision, the value
of the fixation distance is fixed at 60 cm, and maintaining ρ = 0.99, σ = 0.01, the depth
algorithm is tested using a rg = 1.5 cm (figure 6.3) and rg = 1.0 cm which is equivalent
to consider just micro-displacements of the head and no saccadic movements of the
ocular system.

The scenario with the Aruco markers is considered (figure 6.6c) to test the influence
of microsaccades on the algorithm experimentally. Although both MSE and SSIM are
measures providing information on the numerical and structural similarity of the depth
image generated by the algorithm and the background image, to see what local influence
can exist as a function of depth, it is better to use the Aruco markers directly, knowing
these present precision problems as the depth increases.

In this case, a new method of comparison is introduced. The Aruco markers
delimit an area in the image. If this area is overlaid on the depth image generated by
the algorithm, it is possible to determine a depth distribution for the area enclosed by
each marker. Thus, it is possible to obtain a depth profile for the image considering all
these distributions. In addition, using a mixture of 6 Gaussians to approximate them, we
can obtain numerical values describing the mean position and variance of depth in each
marker.

The results can be found in figure 6.21b keeping the fixation point at d=60cm, the
algorithm parameters and executing the algorithm without microsaccadic displacements
(rg = 0). A comparison of these findings with the equivalent ones in figure 6.21a sug-
gests that, apart from improving the time to reach a fine depth estimation, microsaccade
displacements produce a stabilisation of the depth estimation for the further objects.
This issue is in agreement with classical results to the effect that the probability of
microsaccade occurrence increases with the distance of the viewing point from the
mean eye position Rolfs (2009).
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(a) Depth estimation with rg = 1.5 cm
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(b) Depth estimation with rg = 0 cm

Figure 6.21: The first row is the obtained depth map after 198 iterations. The second one
shows the depth histogram in the area of the markers. A mixture of 6 Gaussians to obtain the
mean and standard deviation values is used. Each of these Gaussians should be centred at the
marker distance. The last row represents the evolution of the depth mean for each area during
the algorithm execution.
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6.4.4.6 Ouchi Illusion

The graphic artist H. Ouchi designed in 1977 a static image provoking an alteration
of visual perception in humans (Ouchi, 2013). This image can be seen in figure 6.22.
Small retinal displacements that occur during the fixation process generate a segmenta-
tion of the internal pattern and the movement of this frame. Some observers report an
apparent depth discontinuity, with the centre floating as it moves atop the background
(Spillmann et al., 1993).

Figure 6.22: Ouchi illusion

This region segmentation occurring in depth should be reproduced to some extent
by the proposed algorithm. Therefore, the depth image generated by the simulator and
the one generated by the algorithm when the fixation point is in the centre of the illusion
image should be different.

A scenario is designed as shown in figure 6.23b to test this hypothesis in simulation.
The image with the Ouchi illusion is placed in the centre of the scenario figure 6.23a.
Some Aruco markers are distributed around it as a reference to the algorithm’s perform-
ance outside the Ouchi pattern. The image generated by the simulator of the depth of
the proposed scene can be seen in figure 6.23b.

This experiment aims to determine whether the Ouchi pattern can generate a
differentiation by applying the proposed algorithm for depth estimation between the inner
circular area and the rest of the pattern as it occurs in humans. The image obtained
should be similar to the one shown in figure 6.23b using a standard depth estimation
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(a) Scenario distribution to test the Ouchi Illusion with depth
algorithm

(b) Depth image generated by the simulation. As can be seen,
the Ouchi marker is recognized by the simulator as a uniform
plane. The Arco markers are placed in several depth levels.

Figure 6.23: Ouchi image experiment setup

system, such as an RGBD camera.

In this case, the Gaussian error added to the generation of the images by the
simulator is preserved, as explained in section 6.4.2. However the value of the camera
pose is not distorted. In these conditions, different values of ρ and σ parameters are
tested. Thus, in figure 6.24a, it can be observed the evolution of the mean distance in
each control area defined by the markers for rho = 0.85 and sigma = 0.001.

This result suggests that the algorithm execution is correct since all the positions
of the markers are indicated in figure 6.24b. However, from the first iterations, a
differentiation between the inner circular region of the Ouchi figure is detected. This
differentiation is maintained throughout the algorithm execution (figures 6.24c and 6.24d).
Although the estimation in the areas determined by the markers is progressive and
conforms to the curve of the figure 6.24b, the area around the central circle is constantly
changing, maintaining the differentiation.

The explanation for this effect is based on the proven influence of this perceptual
illusion in determining the optic flow by humans and primates (Fermüller et al., 2000).
The computation of the depth is made based on the estimation of the optical flow at
each point. Therefore, the result is in accordance with the distortion of the optical flow
caused by this illusion.
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(b) Depth distribution of the Aruco marker areas in the last
iteration of the algorithm.
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Figure 6.24: Ouchi experiment results

6.5 Experiments in a real robot

6.5.1 Introduction

The experiments developed so far in this chapter have been conducted in simula-
tion to validate the proposed algorithm for estimating depth from modelling the fixation
process in humans. This algorithm is based on capturing RGB images and estimating
the camera’s position variation considering its perception. For this purpose, the simulator
of a robotic arm integrated into a commercial platform such as Baxter is employed.

Due to the good results obtained during the simulations and their similarity with
the biological case, we present its implementation with a robotic system to simulate the
fixation process.

In order to develop the robotic system to test the algorithm, the following design
principles are considered:
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Table 6.3: Oculomotor system setup according to morphology definition in section 4.3

Left Right

q2 q3 q4 q6 q2 q3 q4 q6

2.2 cm 5.05 cm 0.0 cm 0.7 cm 2.2 cm -5.05 cm 0.0 0.7 cm

f s w h f s w h

12 mm 1.4 µm 800 px 600 px 12 mm 1.4 µm 800 px 600 px

i) The robot should have a two-camera system and be able to execute saccadic
movements with sufficient accuracy to determine the variation of the position of the
cameras.

ii) As described in section 6.3.1, the fixation process involves both eye movements and
microdisplacements of the head; the neck performs this task in humans. Therefore,
the proposed system should generate these movements that affect the whole
oculomotor system equally.

iii) The baseline between the cameras should not be too large for future applications
combining the monocular depth estimation algorithm in each camera together
with the disparity between the two images in order to improve the depth image
information. For this reason, Tombatossals’ head (figure 4.15b) is not considered
for this application since its baseline is 27 cm.

Based on these principles, it was decided to design and build a robotic head
consisting of two elements working in unison for the axis of the fixation process: a two
camera oculomotor system with a Helmholtz setup (figure 4.1) and a modified Stewart
platform to perform the functions of the neck.

6.5.2 Oculomotor system

6.5.2.1 Mechanical and optical design

In chapter 4, several parameters were defined to establish a robotic system with a
Helmholtz setup. Table 6.3 shows the values of these design parameters used to build
the oculomotor system.

As seen in section 6.4.4.2, the accuracy and stability of the camera position estim-
ation is a critical factor for the correct performance of the proposed algorithm. This issue
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(a) Oculomotor system 3D design based on Helmholtz setup. (b) Resulting real oculomotor system

Figure 6.25: Oculomotor system detail

motivated the selection of motors for the oculomotor system allowing for a theoretical
resolution of 0.0015 rad. Three Dynamixel MX28T motors (appendix D,table D.1) are
used to implement the joints of the system.

The main idea is to create a prototype robotic system that can emulate the
movements in the human fastening process. The connecting parts between the joints of
the oculomotor system are produced exploiting the capabilities of 3D printing, bearing
in mind the dimensions of the motors and cameras, including the cable connections
and fixations. Taking advantage of the fixing possibilities offered by this type of motor,
it is only necessary to design three types of parts: the base of the tilt joint, the base
common to the pan joints, and the connections to the cameras.

The optical part of the oculomotor system consists of two IDS UEye Xs (ap-
pendix D,table D.3) cameras, characterized by their small size, allowing them to be
adequately integrated into the designed structure without requiring an increase in the
baseline of the system. The cameras are attached to the structure shown in figure 6.25a.

The main advantage of using this system compared to other arrangements is
practical since it is possible to directly apply all saccadic movement generation systems
developed in chapter 4.

The picture of the system with all the assembled components can be seen in
figure 6.25b.
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6.5.2.2 Oucolomotor system control for saccade generation

For controlling the oculomotor system of this mechanical head in order to execute
saccadic movements, the FEL controller described in section 4.4.2.1 is used. As
mentioned, this architecture is composed of two controllers: a fixed BBB and an adaptive
CCCf . Both must be determined in order to perform the saccadic movement.

However, the training procedure to estimate BBB and CCCf , both in the simulation and
Tombatossals robot described in section 4.4.2.5, was performed by placing a stimulus
in front of the oculomotor system in such a way the perception of the stimulus triggers a
first estimation of the control action by the fixed controller which the adaptive controller
corrects. Therefore, the oculomotor system is placed in front of a screen on which Aruco
markers are projected to solve this problem. When the system is as close to the screen
as possible, the field of vision is effectively covered by the projection. Figure 6.26 shows
the layout of environment and the oculomotor system and how the Aruco markers are
projected to perform the estimation of the controllers.

Figure 6.26: Oculomotor system and environment setup to train the fixed and adaptive controller
from stimuli projected on a TV monitor.

Once it is solved how the stimuli are generated, the fixed controller (BBB) is determ-
ined as indicated in section 4.4.2.3.

For this purpose, two Aruco markers (one for the left and one for the right camera)
are projected in such a way that their projected centre approximately corresponds to the
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centre of the image generated by the cameras.

From this point, the motor babbling process begins, and random shifts are pro-
duced in the three motors that make up the oculomotor system. These displacements,
as indicated in section 4.4.2.3, produce changes in the relative position of the stimulus in
the camera image. In this case, instead of gathering data and performing the adjustment
indicated by equation (4.8), the recursive least square (RLS) was used, as described in
section 3.5. The aim is to be able to evaluate how the controller estimation evolves in
each iteration.

It is possible to appreciate that in the case of the y-axis of the image, there is a
slight deviation from this linear model for the more significant angle variations. However,
it should also be noted that this variation is accurate at the centre of the image, which
is the starting point for the displacements, and therefore it is possible that, as more
extreme points of the image are considered, this variation will deviate from the linear
model.

The results obtained are in accordance with the design of the oculomotor system
developed, in which the optical centre of the image was intended to be at the geometric
centre of the camera rotations.

The maximum angular displacement should be 0.0088 rad to execute the move-
ment considering the maximum angle of the microsaccades used in the experiments
performed in the simulation section 6.4.1,

As can be seen in figure 6.27, the projection of this interval over the range of move-
ments in which the fixed controller has been estimated is a tiny region. Consequently,
it is possible to consider that the behaviour in this interval could be very close to the
linear model, and therefore the estimation of the fixed controller could be a satisfactory
approximation to execute microsaccades.

However, this approximation was made without considering the initial angular
increment of the motors that conform to the oculomotor system’s joints and considering
the image’s centre as a reference for the calculation. In figure 6.27b, it can be seen that
as the angular increment increases, the dispersion in the variation in pixels of the image
grows.

The numerical result (equation (6.15)) of BBB estimation also shows which are the
values that contribute more to the pixel variation in the image:
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(a) Variation of the number of pixels on x axis of the image respect to the increase or decrease of the
joint value in the left camera of the oculomotor system.
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(b) Variation of the number of pixels on y axis of the image respect to the increase or decrease of the
joint tilt value of the oculomotor system.

Figure 6.27: Motor babling results
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 ∆tilt

∆left

∆right

 =

−0.014 1.119 −0.031 1.138
-1.114 −0.007 0.002 −0.003

−0.007 −0.001 -1.139 −0.036


BBB3×4


∆xl

∆yl

∆xr

∆yr

 (6.15)

Therefore, although BBB can be a useful approximation to generate the microsac-
cades, CCCf is estimated as described in section 4.4.2.7. However, instead of using a
robotic arm to move the stimulus in the robot environment, the TV monitor shown in
figure 6.26 is used to provide the stimuli.

The core of the adaptive controller is a single-layer neural network with 300
random features, and it is adapted using the algorithm based Kalman filter (algorithm 1).
The inputs and outputs are as defined in the description of the FEL architecture in
section 4.4.2.1.

In each iteration, the system displays on the TV monitor twenty Aruco markers in
different positions (figure 6.26) each one is different. All of them cover the field of view
of the cameras. The system selects one at a time from the Aruco markers, which are
visible in both cameras. Then, using the approximation of the fixed controller corrected
by the current output of the neural network that forms the adaptive controller, a saccade
is triggered that attempts to centre the target marker on the two cameras. The most
common situation is that, until the adaptive controller is not trained, there is a difference
after saccade movement between the visual position of the stimulus in the camera
images and its centre. The adaptive controller is trained using this visual error. An error
could occur when, for any reason, either in the stimulus selection or the stimulus search
fails. For example, if no marker is detected at the initial position or if the selected marker
is not detected after the saccade, the system ignores this iteration and restarts another
iteration without updating the adaptive controller. Following this procedure results in a
learning curve, as shown in the figure below.

After the training process, a test of 100 iterations was done. In this case, the neural
network was not adapted; just the visual error is estimated. The average value of these
100 iterations is 3.589± 3.041
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Figure 6.28: Learning curve of the adaptive controller training process for the designed oculo-
motor system

6.5.3 Neck system

6.5.3.1 Introduction

As indicated in the discussion of the model of fixation movements in humans
(section 6.3.1), it is necessary to consider the mircrodisplacements of the head in order
to understand the phenomenon in its totality. Therefore, the robotic platform proposed
to implement the depth estimation algorithm must consider some mechanism to allow
the displacement of the oculomotor system developed in section 6.5.2. This function is
performed in humans by the neck.

In robotics, many mechanisms have been proposed to mimic the movements of
the neck of a human being with similar degrees of freedom. A classic example is a
neck developed for iCub robot (Metta et al., 2008). This design has a high performance;
however, it limits the maximum payload (1.5 kg). Typically, the neck is not a critical factor
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in the design of many humanoid robots because it adds complexity and limits the vision
system usually mounted on it (see table 4.1). The way the neck is designed in many
robotic systems is to add the roll pitch and yaw rotations (figure 6.29, not provided by
oculomotor systems based on a Helmholtz setup.

Figure 6.29: Diagram showing different types of neck movement in humans.(Alfayad et al.,
2016)

The presence of a robotic neck often involves attempts to mimic human form
and expressions rather than any functional utility (Hashimoto et al., 2006). On the
other hand, there have been attempts to faithfully reproduce the behaviour of the neck
through complex systems (Cronos robot (Holland and Knight, 2006)). This reference
and many other works base the control of neck movements on tendons. For instance
(Nori et al., 2007) use a central spring-actuated by three tendons which lengths are
adjusted employing three motors. However, in this case, the goal is not to mimic the
physiology as the functionality of the neck.

In this case, the development of the neck system is being considered separately
from the oculomotor system, but systems are integrating the two in a serial motor
assembly (Alfayad et al., 2016; Kim et al., 2004).

Finally, apart from the tendons and motors connected in serial, there is a mechan-
ism based on parallel manipulators enabling the neck movements to be reproduced with
a certain level of precision and simplicity (Lingampally and Arockia Selvakumar, 2017).
This mechanism is precisely the approach that is developed in this work. Specifically, a
robotic neck based on a Stweart platform is designed and developed. The oculomotor
system described in the previous section is subsequently integrated into the platform.
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6.5.3.2 Stewart Platform

A Stewart platform (Furqan et al., 2017) is usually composed of six prismatic
actuators grouped in pairs over a platform’s baseplate mounted above six universal
joints. These actuators are joint to a top plate with other six universal joints. Thus, any
point of the top platform can be moved with 6 degrees of freedom. From the control
point of view, this kind of system has a peculiarity raising interest: their inverse kinematic
can be computed analytically but forward kinematic cannot.

In general, solving the positioning of a system accurately has direct applications to
any industry requiring such precision. Due to Stewart Platform properties, they are used
in many fields; for example, they are widely used in precision surgery robotics (Wapler
et al., 2003), in flight simulator machines, and astronomy to positioning radio telescopes
(Su and Duan, 2000). The industrial applications of this kind of system are related to its
capability of positioning with 6 DOF in a highly accurate way. As a result, they support
classical industrial robots or high precision tasks in electronics or optics industries.

This project aims to develop a cost-effective platform based on off-the-shelf hard-
ware components and 3D-printed elements, allowing us to reproduce the neck move-
ments of human beings in the fixation process. The industrial Stewart platforms often
use linear actuators. However, these can be replaced by rotary motors that could imitate
their behaviour (Szufnarowski, 2013; Patel et al., 2018).

Following the design equations proposed in (Szufnarowski, 2013), a Stewart
platform is assembled. Both the base and the platform are 3D printed parts. Six
Dynamixel AX12A servomotors are used for the rotary joints. The servomotors are
connected to the platform employing rods with universal joints mounted at their ends.
This trait is the most critical part because the quality of these components directly affects
the accuracy of platform positioning.

In figure 6.30a, it can be seen the model developed in 3D, where the essential
components forming the rotary Stewart platform can be seen: the base (triangular part),
the platform (circular part), the six AX12A motors with the piece connected to the rods
and the universal joints linking the entire system. The Stewart Platform finally built can
be seen on the figure 6.30b

6.5.4 Built oculomotor-neck system

The described oculomotor system (section 6.5.2.2) is mounted and fixed over
the neck platform of figure 6.30. As a result, the built robotic system has the 6 DOF
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(a) Neck based on rotary Stewart platform 3D model. (b) Resulting robotic neck

Figure 6.30: Neck system detail

of the neck and three DOF of the oculomotor system; therefore, the total of DOF is
nine. Initially, the kinematic control of the position for one of the cameras seems rather
complex. However, by exploiting the Stewart platform’s ability to compute the joint motor
positions numerically to place the platform reference frame in a given pose, the initial
problem is greatly simplified, i.e. it is reduced to solving two kinematic chains from the
Stewart platform frame to each of the cameras. The result of the union of the oculomotor
system and the Stewart platform acting as a neck can be seen in figure 6.31.

After a calibration process of both cameras separately with the traditional chess-
board method (Wang et al., 2010), the detection of the Aruco markers is used to estimate
the accuracy of the camera pose variation. This parameter is fundamentally involved in
the depth estimation algorithm by the fixation process. In this way, the kinematic model
of the system is tested. The camera’s accuracy depends externally on the resolution
of the camera and the precision of the Marker’s pose and internally on the precision of
the motors and the accuracy of the 3D model used to print the parts composing the
system. The pursued objective is to have a variance in the estimation of the camera
position of a maximum of 0.5 mm because under these conditions —according to the
previous studies performed in simulation (section 6.4.4.2)— the proposed algorithm has
a reasonable behaviour.

It was observed that when the movement of the cameras was executed by the
oculomotor system, after performing 30 repetitions with different position variations, the
variance in the determination of the camera position was 0.3 mm; therefore, it was within
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the range required by the algorithm. However, the variance increased to 1 mm when
the neck displacement was added, out of the acceptable range.

The inaccuracy origin is to be found in the type of motors used in the design of the
platform and the universal joints employed. As a result, future versions of the system
will include more precise motors and components.

In order to use the built system to test the depth estimation algorithm, a third
camera (Raspicam V1.0, appendix D,table D.4) was incorporated into the system
controlled by a Raspberry Pi (Upton and Halfacree, 2014)(see figure 6.31). This camera
captures images of a fixed chessboard in a known position with respect to the platform’s
base. It is possible to determine the chessboard’s position accurately using this camera
with a 1920x1080 resolution. It can determine the actual variation of the platform
position using two consecutive chessboard position readings. It is possible to determine,
together with the model of the oculomotor system, the position of the cameras very
accurately (with a variance of 0.6 mm) using the chessboard’s position as a reference.
However, the lack of precision in the positioning of the platform means the absolute
displacement cannot be controlled within the range of movements needed to produce
the head displacements determined by the parameters of the algorithm.

We decided to verify with the marker reading using the position of the chessboard
as a reference if the displacement of the cameras after the execution of the microsac-
cades and the movement of the neck is within the range defined by the algorithm
parameters; otherwise, the movement is repeated.

A description of the software architecture used to control this system is provided
in appendix B.

6.5.5 Depth estimation test with the real robot

6.5.5.1 Environment setup

To check the data obtained in simulation, objects similar to those employed in
section 6.4.4.4 are used. In addition, transparent objects with different textures and
colours are considered.

These objects are distributed on a table so that even though there may be oc-
clusions, the result from the point of view of depth presents multiple surfaces and
textures to evaluate the algorithm’s behaviour. As commented in section 6.4.1, Aruco
Markers are introduced in the scenario for two reasons: i) to give information on how
the algorithm evolves along the fixation process; ii) one of the markers is used as a
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stimulus to perform the initial saccade.

In figure 6.32, the set of objects and distribution after executing an initial saccade
are shown using as reference the central marker. The images for both the right (fig-
ure 6.32b)and left (figure 6.32a) cameras are shown. The fact that the marker is not in
the centre of both images is due precisely to both images sharing a joint (tilt). Therefore,
even if the employed FEL controller returns a value for this joint, the command sent
to the head is the average of the tilt values returned by both the right and left camera
controllers.

In the case of the cameras employed, they have a smaller field of view than the
simulated cameras and this forces to reduce the maximum distance of the objects and
the number of markers that can be displayed. In addition, if the marker is tiny, the Aruco
detector cannot estimate its position due the resolution of the cameras, or it estimates
it very inaccurately. Considering all these limitations, the maximum depth range is 80
cm, and instead of placing six markers on the image as in the simulations, only three
markers are deployed.

6.5.5.2 Parameter adjustments and fixation process

The system starts from an initial neck position and the vision of the reference
marker in both cameras (not in the centre). The first action is to perform a saccade on
both cameras separately using the independently trained FEL controller.

This action is the starting point of the fixation process. Next, the RGB images
captured after the first saccade (figure 6.32) are used as references to generate the
depth image of the algorithm (III0 in algorithm 6).

A sphere of motions for each camera is defined as proposed in section 6.3.2 to
apply the proposed depth estimation algorithm. First, there is a random increase in the
pose of the neck platform such that the position and orientations of the neck platform
are varied. Then, the ranges in position are defined by this sphere whose radius is
rm = 0.03m. In the simulation, a radius of 0.015 m was used. This radius is enlarged
to minimize the impact on the inaccuracy of the built Stewart platform. Regarding the
orientation, the range is 0.02 radians for each of the rotations.

Once the neck movement is produced according to the new chosen pose (directly
using the Stewart platform equations to calculate the value of the joints to achieve it),
using the model of the oculomotor system and the reference of the chessboard captured
by the camera of the Raspberry pi, the position of the oculomotor system cameras is
estimated, which must be in the range of the selected sphere. If this is not the case,
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another increment of the neck position is produced again until it is achieved.

The experiment is started with values of ρ and σ of 0.85 and 0.01, respectively.
This selection is based on the results obtained in section 6.4.4.2. In addition, bearing
in mind that the error in the camera pose estimation is significantly affected by the
accuracy of the Stweart platform. Therefore, it can be appreciated that it produces
a wide variation in estimating the depth at the three markers. In addition, however, it
shows some oscillation around a central value that may correspond to the distance
estimated by the Aruco algorithm.

The evolution of the estimation produced by the algorithm in reference to the three
Aruco Markers can be seen in figure 6.33. The origin of this error can come from
two sources: the estimation of the optical flow determining the displacement of the
pixels in the image or the estimation of the variation of the camera pose. By observing
figure 6.33, it can be seen that the variation occurring affects the three markers equally
throughout the whole fixation process. Since the optical flow calculation is performed
on a pixel-by-pixel basis, it seems unlikely that all pixels comprising the three marker
regions in the image would exhibit the same type of deviation. It, therefore, seems more
plausible that these variations are affected by the uncertainty in the shift in position.

6.5.5.3 Results

Fortunately, in order to solve the problem posed by figure 6.33, the algorithm allows
to partially filter this noise in the estimation of the camera position. For this purpose,
several experiments were performed with the same scenario and the same starting
position, but increasing the parameter ρ as shown in the simulation of section 6.4.4.2 to
reduce the effect of noise in the depth estimation.

In view of the obtained results shown in figures 6.34 and 6.35, the following
conclusions are suggested:

• The results obtained validate the work carried out in simulation. Qualitatively by
comparing figure 6.20 with figure 6.35, it is possible to determine the similarity of
the results.

• An interesting result is the behaviour of the algorithm in the area of the left camera
where the crystal glass is visible. As predicted in the simulation, the algorithm
can return a result in this area. As can be seen, the grayscale intensity is at the
same level as the marker at its feet. Therefore it suggests that the depth in that
area should be more or less the same. This result is a competitive advantage over
RGBD cameras which are not able to detect transparent objects.
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• The introduction of the Aruco markers in the scene has been confirmed as an
element for depth estimation control when working in the real world. Otherwise, it
would have been necessary to mount on the Stewart platform, in addition to the
designed oculomotor system, an RGBD camera to capture the depth image and
use it to generate a background.

• Quantitatively, it has been verified that the behaviour of the algorithm is similar to
that observed in simulation, albeit the uncertainty in pose estimation of the used
robotic system is much greater than considered in the simulation. Comparing
figures 6.33 and 6.34e, the prediction of the simulation in section 6.4.4.2 is verified.
By increasing the value of ρ in the algorithm, the depth estimation is more stable.

• The robotic system designed and built allows the execution of the movements that
likely occur in a fixation process in humans; therefore, with further improvements,
it can be a helpful tool for future work in this line of research.
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Figure 6.31: Final oculomotor-neck robotic system developed

(a) Left camera (b) Right camera

Figure 6.32: Initial RGB image from both cameras of the built oculomotor-neck system
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Figure 6.33: Evolution of obtained depth estimation in the Aruco Markers regions of the left
camera with the oculomotor-neck robotic system for ρ = 0.85 and σ = 0.0001
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(a) Reference image captured after first saccade for left camera (b) Reference image captured after first saccade for right cam-
era

(c) Result generated by the algorithm after 160 iterations for left
camera

(d) Result generated by the algorithm after 160 iterations for
right camera
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(e) Evolution of the depth estimation from left camera in the re-
gions where the markers used as reference are located.
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(f) Evolution of the depth estimation from left camera in the re-
gions where the markers used as reference are located.

Figure 6.34: Results obtained by the proposed depth estimation algorithm for both cameras
during the fixation process with parameters ρ = 0.99 and σ = 0.001.
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(a) Left camera

(b) Right camera

Figure 6.35: Overlaying the edges of the RGB images on the depth estimation obtained for
both cameras, in order to delimit the contours in the depth image and thus better appreciate how
the algorithm behaves on the different surfaces.
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6.6 Conclusions

In this chapter, from several hypotheses based on bio-inspired models, a mathem-
atical development is proposed leading to an algorithm to estimate the depth of a scene
with a monocular system. This algorithm is supported by two traits: the proprioception
of the movement and the visual displacement between two images estimated through
the optical flow.

We assumed that each image pixel corresponds to an environment point located
at a particular distance. Given a camera displacement, it is possible to estimate the
optical displacement of the pixel in the image from the proposed camera model. This
shift should be equal to the measured optical flow if and only if the assumed distance
is correct. With this approach, the solution involves solving an optimization problem.
Therefore, it is an optimization problem for each pixel in the image. After the first
saccade, which starts the fixation process, the reference image is captured. At this
point, all the movements occurring in the fixation process increase the information about
the scene’s depth.

A series of simulation experiments with various evaluation methods have been
developed to test the performance of the proposed algorithm. We concluded that
the algorithm works well for the conditions imposed in the simulation and has some
tolerance to optical flow noise. However, it is more sensitive to the uncertainty in the
estimation of the pose variance.

Two methods of comparison were used, the depth image generated by the simu-
lator and the introduction of Aruco Markers in the scene to control the distance estimation
to evaluate the results. The first method indicates the deviation of the algorithm from the
correct value in the simulation; however, it has the disadvantage that it is hardly feasible
in the real-world implementation of the algorithm. The algorithm is influenced by the
parameters chosen in the execution time and the noise in the inputs. The accuracy can
be checked using the depth image generated by the simulator and the Aruco markers.

From the performance obtained in simulation by the algorithm, it is possible to
conclude that the microsaccades have two functions: they allow the sampling of images
since this is one of the hypotheses considered when developing the algorithm. They
also improve the perception of depth by increasing the information for the stabilization
of the proposed algorithm.

Optical flow as an essential part of depth estimation has two consequences eval-
uated in the experimental test. First, because RGB images are used, the objects
appearing in the image can show optical flow and, therefore, their depth can be es-
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timated. This phenomenon explains the results obtained for transparent objects in the
simulation and later in a real environment. Second, It has been proven that the algorithm
is also sensitive to the Ouchi illusion, which misleads the perception in such a way that
a non-existent depth separation is produced in an area where it does not really exist.

Although the simulation experiments were performed for a camera mounted on
a robotic arm, an oculomotor-neck robotic system was designed and built to replicate
the fixation process. The built prototype can mimic the microsaccades and the head
displacement occurring during the fixation process with limited accuracy.

Despite using a different robotic system to the one employed in simulation, the
results of the algorithm in an environment with real objects were similar to those obtained
in simulation; however, it was necessary to adjust the parameters to minimize the noise
in the estimation of the pose in the prototype developed.

In conclusion, a monocular depth estimation algorithm was developed by studying
fixation movements where microsaccades play a relevant role. In this chapter, this
algorithm has been formulated and tested both in simulation and in a robotic system
developed ad-hoc, yielding results in accordance with expectations.

6.7 Publications supporting this chapter

• Duran, A.J., del Pobil, A.P., 2019, “Improving robot visual skills by means of a bio-
inspired model”, in Proc. 9th Joint IEEE International Conference on Development
and Learning and on Epigenetic Robotics (ICDL-EPIROB 2019), Oslo, Norway, pp.
25-30. DOI: 10.1109/DEVLRN.2019.8850712.

• Duran, A.J., del Pobil, A.P., 2021, ”Robot depth estimation inspired by fixational
movements”, IEEE Transactions on Cognitive and Developmental Systems. (in
press, on line). Doi: 10.1109/TCDS.2020.3025057.

• Antonelli, M., Duran, A.J., del Pobil, A.P., 2013, ”Application of the Visuo-
Oculomotor Transformation to Ballistic and Visual-Guided Eye Movements”, in
Proc. International Joint Conference on Neural Networks (IJCNN 2013), Dallas,
Texas, USA, pp. 813-820. ISBN: 978-1-4673-6129-3/13.
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Chapter 7

Conclusions and Future work

People ask me to predict the future, when all I want to do is prevent it. Better
yet, build it. Predicting the future is much too easy, anyway. You look at the people
around you, the street you stand on, the visible air you breathe, and predict more of
the same. To hell with more. I want better.

Ray Bradbury,
Beyond 1984: The People Machines

7.1 Conclusions

As a result of applying the methodology presented in chapter 1, various biological
models have been briefly described to generate some proposals of mathematical models,
allowing us to focus on saccadic movements as the central axis of this work, developing
and exploring several applications in the field of robotics. Chapter 2 described the
biological substrate, both physiological and neurological, allowing the generation of
saccadic movements in humans.

An undeniable quality of living beings is their ability to adapt to their environment.
Usually, in robotics, the environment is a nuisance spoiling our perfect algorithms. In
the case of living beings, the environment is just another element of their evolution. For
this reason, in this work, we kept the environment in mind at all times. We chose to
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employ adaptive neural network learning as information becomes available, to have the
appropriate tools to simulate the adaptation of an artificial model to a given environment.
These mathematical tools and their mathematical foundations are described in chapter 3.
In particular, single hidden layer neural networks employing supervised learning are the
essential tool chosen as the core of the models developed in chapter 4 to implement the
saccadic movements in a robotic system. In chapter 3 two algorithms are proposed to
adapt these neural networks, based on the Kalman filter or incremental sparse Gaussian
process regressions.

After an analysis of the two most common configurations (Fick and Helmholtz
setups) to reproduce human eye movements in a robotic system, we selected the
Helmholtz configuration because it allows a sufficiently approximate reproduction of eye
movements and has the advantage over the Fick setup that it requires one less motor
and therefore one less degree of control. Once the configuration of the robotic system
was clear, we proceeded to its parametric characterisation, not for a specific robotic
system, rather by generically describing its morphology. In other words, the Helmholtz
configuration of robotic systems capable of generating saccadic movements is actually
formed by two kinematic chains starting at the base of the system and ending at each of
the cameras that perform the vision function. The length of the links joining each chain
joint is a parameter that can vary from one robotic system to another and define the
robotic system’s final morphology. In robotics, the kinematic part is usually differentiated
from the rest to describe the robotic system. In this case, the vision system is also
included in the morphological definition of the system. This trait means the robotic
system is seen as a whole, where its morphology is defined by its perceivable external
shape and by the parameters differentiating it from other similar systems.

Once the morphology of the robotic system capable of executing the saccadic
movements was defined, we studied how to implement the saccadic behaviour. First,
binocular encoding of the stimuli improved the accuracy of the saccades generated by
the robotic system. Second, two architectures were proposed to generate the control
actions to focus a stimulus in the binocular system through the saccadic movement:
Feedback error learning and Recurrent architecture. The results obtained in the sim-
ulation and the real robot reach rates below 1% of visual error for both controllers,
considering the cameras’ resolution. The visual error of the experimental data in the
test set is close to a generalised extreme value distribution.

The performance gains of these two architectures over others in the literature
suggest them as candidates for implementing saccadic behaviours in our robotic system.
While the Recurrent architecture presents better values of precision in the movements,
the speed of execution of the Feedback error learning architecture converts it into a
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favourite for many of the experiments and algorithms that are described throughout this
work.

In this way, we have already defined a robotic system with a particular morphology
(Helmholtz setup) and that is capable of executing a saccadic behaviour based on a FEL
or RA architecture. However, the environment conditions and modifies the behaviour of
the robotic system. The region of space delimited by six parallelepiped planes, where
virtual punctual stimuli are randomly distributed, is considered as the environment
with which the robotic system interacts. Its geometric centroid can characterise this
environment beyond its volumetric dimensions.

In this way, as long as the appropriate stimulus appears, the robotic system
can develop saccadic behaviour in the defined environment. In order to achieve this,
however, it is necessary to train the system from scratch. When a living being is born,
several pre-programmed behaviours allow the organism to adapt to the new environment
rather than learning. These pre-programmed behaviours are engraved by millions of
years of evolution in the genetic code of living beings. In robotics, on the other hand,
systems tend to have only a few evolutions at best. They are usually unique entities.

In chapter 5, we suggested how the relationship between the internal model, which
is capable of generating a particular behaviour, and the morphology of a set of robotic
systems can be exploited in order to speed up the adaptation of new robotic systems to
a given environment rather than starting from scratch. It has been necessary to use
various mathematical tools to learn the relationship between the internal model and
the morphology to achieve this goal. In order to have a sufficiently large population of
robotic systems to learn this relationship, it has been necessary to train from scratch
around 45,000 robotic heads with the same number of morphological parameters but
with random values within specific ranges. Of the three neural network architectures
tested, the parallel neural network has given the best results in predicting the internal
model of a system by knowing the morphological parameters defining it.

A practical application arising from the results is that partial knowledge of mor-
phology can still improve the learning of a new system. Finally, using bioinspiration, an
artificial genotype has been formulated that in some way characterises each individual
of a species of robotic systems. This artificial genotype is formed by a system-specific
part and another common to the belonging species. This last one is defined based
on the knowledge obtained from the relationship between the morphology and the
internal model of all the individuals of the species. Once initialised, this genotype can
evolve to adapt to other environments. This conclusion has direct implications for the
development of Industry 4.0, where species of robots can use the knowledge acquired
by other robots of the same species about how to interact in a given environment in
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order to develop their initial capabilities which the local environment —where they will
have to work— can modify through the process of adaptation.

For observing whether this model is analogous to the one proposed by analytical
genetics between phenotype, environment and genotype through the concept of reaction
norm, the reaction norm of a set of robotic systems that exhibit saccadic behaviour
and whose artificial genotype has been previously obtained was determined. The
results show a phenotypic variation analogous to that produced by living organisms in a
biological environment.

In the last part of this work (chapter 6), the fixation process was modelled where
saccadic movements play an essential but biologically unclear role in human beings.
From a series of hypotheses involving generated saccadic motions as defined in
chapter 4, an algorithm for estimating the depth image around the fixation point was
designed.

The basic idea developed by this algorithm is that microsaccadic and head move-
ments generate small retinal displacements that are combined with the eye or camera
position variation signal. Thus, each pixel in the image becomes an independent minim-
isation problem between the actual optical displacement and the one predicted by the
retinal displacement calculated from the camera’s position variation, considering that
the object illuminating that pixel is at a certain distance.

As the fixation process combines neck and microsaccades movements, a simula-
tion was developed to evaluate its performance concerning two references: the depth
image estimated in the simulation and a set of markers (Aruco markers) are strategically
placed in the field of view to determine the distance to these regions from the camera.
The latter is decisive to evaluate the algorithm on the real robot.

Simulation tests have shown that the algorithm works, although it is sensitive
to estimating the camera position errors. It has also been observed that the micro-
saccades inherent to the fixation process seem to give some stability to the depth
estimation. The tests performed with semi-transparent objects in simulation gave good
results later confirmed on the real robot.

In addition, the behaviour of the algorithm was observed by means of the Ouchi
illusion, and how this exhibited a differentiation of depth zones similar to the biological
case.

To perform the experiments on a real robot, we needed a system that would allow
the execution of saccadic movements as defined in chapter 4. However, we also needed
a neck that would allow 6 DOF movements. For this reason, we decided to build a

219



Conclusions and Future work Contributions

prototype robotic system based on the conjunction of a rotating Stewart platform and a
saccadic system generator as defined in previous chapters.

The experiments conducted on this robotic system confirm the performance of the
algorithm and its limitations. The primary constraint lies in the need to have adequate
accuracy in the estimation of the camera displacement. On the other hand, one of its
greatest strengths is its ability to detect transparent objects, where RGBD cameras are
unable of doing so.

In summary, three bio-inspired models based on three biological processes centred
on the generation of saccadic movements were developed for implementation in robotic
systems, allowing to:

• Increase their capacity of active vision and exploration through interactive percep-
tion.

• Employ knowledge of how other robotic systems learn to adapt it to a given
environment.

• Increase the perception ability of a robotic system through the combination of
saccadic and other types of movements inspired in visual fixation process.

7.2 Contributions

The work described in this thesis contributes to the development of several useful
and applicable models in the field of robotics and specifically in active vision:

1. We propose two bio-inspired architectures for generating saccadic movements for
active exploration of the environment through interactive perception. In addition,
we parametrised a robotic system capable of generating these movements going
beyond the mere description of the kinematic chains composing it and considering
the specifications of the elements constituting the vision system as part of the set
of parameters defining the morphology of the robot.

2. We developed the concept of an artificial genotype to describe a set of robotic
systems with common morphological characteristics and interacting with the
same environment. This genotype is initiated from the methodology developed to
determine a robotic system’s internal model and morphology. We can obtain this
relationship using single-layer hidden neural networks in parallel.
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3. Based on the hypotheses that microsaccadic movements may play a specific
role in the fixation process in humans, we developed an algorithm for estimating
a depth image using a single camera by minimising the difference between the
optical shift in the image due to fixation movements and the optical displacement
expected when the camera displacement is known.

4. We designed and built a robotic system that allows saccadic movement and
coordinated neck movements. This system is based on a rotating Stweart platform
combined with a Helmholtz system. In addition, we developed the software drivers
for the control of this system.

5. The developed models based on microsaccadic movements and interactive per-
ception have allowed us to generate and improve neural Deep Learning networks
for depth image estimation with a single camera (appendix A).

6. For the implementation of all the proposed algorithms in the employed robotic
systems, we developed a software architecture (appendix B) allowing us to use
modular programming and the execution of parallel processes.

7.3 Future work

The work exposed in this thesis opens up a number of opportunities for future
research lines as well as several open questions that would enhance and expand the
research performed throughout this thesis.

1. One of the possible research lines that can be established is based on the concept
of artificial genotype introduced in this work. Recent studies in biology corrobor-
ate that developmental plasticity plays a fundamental role in the diversification
and specialisation of organisms. We are convinced that this emerging area of
research in biology can contribute to a new paradigm in evolutionary robotics. The
fundamental idea behind it is to overcome the current limitations of evolutionary
robotics in terms of genotype-phenotype decoding, which in the vast majority of
cases is posited as one-to-one correspondence, i.e. genes uniquely determine
phenotypes in such a way that the influence of the environment is limited to the
fact that it is used merely as a testbed to assess the fitness of the phenotype.
This idea contrasts with current knowledge in evolutionary biology, according to
which genotypes of organisms exhibit a capacity to express a range of different
phenotypes in response to different environmental conditions. This behaviour is
known as phenotypic or developmental plasticity and can be visualised through
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norms of reaction, which represent values of a specific phenotypic trait for a set of
environments.

From the proposed artificial genotype model, we estimated a reaction norm for a
species of robotic systems. The results obtained simulate the process according
to a genotype for a robotic system developing in different environments leading to
the expression of different phenotypes, showing behaviour similar to that of living
organisms in terms of their reaction norm.

A possible starting point, supported by several recent studies in evolutionary bio-
logy, is incorporating plasticity mechanisms in the development of robots through
an evolutionary approach, which could be beneficial in obtaining autonomous
robotic systems with a greater capacity to adapt to the environment. Since natural
selection not just selects between genotypes but also between phenotypes, the
phenotype and variation between phenotypes can play an essential role in the
artificial evolution of robots in such a way that the environment not only can serve
to select between the variations produced genetically but also create phenotypic
variation and select between that variation. For this purpose, our artificial genotype
model can provide a starting point.

The idea is that rather than searching for a robot design (genotype) that scores
highest in a specific fitness function under particular environmental conditions,
the winning design will be the one that shows the most remarkable plasticity in
its phenotype. It hence will be more adaptable to changing environmental circum-
stances. This result will have important implications for the practical applications of
autonomous robotic systems: this plasticity or capacity for adaptation will allow the
system to modify its behaviour quickly facing new circumstances in its environment
for which it was not explicitly designed or even, in the case of morphological
plasticity, to redesign it much more efficiently based on its reaction norm, which
will help us predict the optimal traits that the new phenotype should have.

2. Other possible lines of research arise from the contributions made in chapter 6:

• Refinement of the proposed depth estimation algorithm to deal with the
problems posed by noise in estimating the variation of the camera’s position.
It could extend its use to situations where the robotic system experiences
uncontrolled oscillations around an initial point, for example, a hovering
drone, where we can determine its relative displacement concerning an initial
position. Furthermore, use this displacement to generate the depth image.

• The perception of depth in humans comes from the integration of several
cues. Experiments with the ad-hoc prototype developed to replicate fixation
movements have allowed us to estimate the depth image independently
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for each camera. However, this signal could be integrated with the depth
estimation using the disparity generated between the left and right images. A
possible line of research would be integrating these three signals to obtain a
more accurate depth image of the robotic system’s environment.

• The use of the geometric approach to modelling the fixation movement has
allowed the design and integration of a series of depth neural models to
determine the depth image from the variation in the image produced by a
displacement of the camera (appendix A). The refinement of these deep
learning models from the integration of the binocular system could be a
possible research line.

• The result obtained with Ouchi illusion can launch a research line to test the
built robotic system with other optical illusions even parametrised them and
confirming its behaviour is similar to the biological one.
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Appendix A

Deep learning application to
monocular depth estimation in
warehouse automation

A.1 Introduction

As a consequence of the results obtained in the development of an algorithm for
depth estimation based on the oculomotor movements of human beings in the fixation
process (chapter 6), two variables have been identified as fundamental when performing
this task: the proprioception of the pose variation and the optical displacement in the
images. Therefore, a new line of research is proposed to generalise for any circumstance
and bear these two variables in mind.

In the last years, deep learning has become the mainstream paradigm in computer
vision and machine learning (LeCun et al., 2015). Following this trend, more and more
approaches using deep learning have been proposed to address different problems
in sensing for robotics. However, robots pose several challenges for this methodology
that relate to the fact that robot sensing is inherently active (Sunderhauf et al., 2018).
This dynamic nature also offers opportunities that have been exploited for years in the
context of active vision (Bajcsy et al., 2018); for instance, more information can be
extracted from sensory signals by incorporating knowledge about the stable relationship
between them and concurrent motor actions (Bohg et al., 2017). Similarly, spatial and
temporal coherence resulting from embodiment can be exploited, for example, by taking
advantage of the correlation of consecutive images or those taken from slightly different
viewpoints (Sunderhauf et al., 2018). In contrast, data-intensive computer vision relies
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primarily on enormous amounts of decontextualised images.

In this appendix, the relationship between optical flow and camera displacement
(developed in chapter 6) is used to generate neural network models to estimate the
monocular depth of any given scene in a particular context, such as the application of a
robot for picking tasks in a warehouse. The tests performed in simulation in chapter 6
already considered this working scenario, but eventually, due to its bio-inspired basis, it
was tested on a suitable robotic system.

Model-based approaches as employed in chapter 6 are usually opposed to purely
data-driven methods -such as deep learning-, but the use of environment models in
combination with model-free algorithms is a promising trend towards more efficient rein-
forcement learning (Yu, 2018). With this aim, the knowledge of the specific parameters
of our sensor is incorporated into the generic data-driven deep learning techniques.
More specifically, three deep network architectures are proposed in such a way that
information from a modelled and parameterised sensor is considered sequentially in
their design, namely:

i) The estimation of image displacements based on the camera model;

ii) The optical flow estimation based on the correlation of two consecutive images and
the subsequent correlation with the change in camera position;

iii) The estimation of the camera displacement from a depth image.

Consistently incorporating each model improves the results and learning perform-
ance with a considerably smaller data consumption cost of training compared to pure
data-driven deep learning. As can be seen, all these concepts were applied in the
development of the model in chapter 6.

In the case of deep learning for object recognition, some works have taken advant-
age of active vision (Malmir et al, 2017), and even a dataset has been recently proposed
that somehow includes temporal consistency (Lomonaco and Maltoni, 2017). For an
up-to-date compilation of the literature on deep learning in robotics and interactive
perception, see (Sunderhauf et al., 2018) and (Bohg et al., 2017), respectively.

Related work on monocular depth estimation with convolutional neural networks
(CNN) can be categorised according to the number of input images (single or multiple)
and the learning approach (supervised or unsupervised). A multi-scaled deep network
for supervised learning was proposed to infer the depth map from a single image (Eigen
et al., 2014b). Others followed this single-image approach by considering computational
random fields (Liu et al., 2015) or using long short-term memory and recurrent neural
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(a) Baxter robot at Amazon Picking Challenge 2015 (b) Detail of Baxter eye-in-hand camera

Figure A.1: On the left, Baxter robot with UJI RobInLab team at Amazon Picking Challenge
2015. Manipulating items within the confined space of the shelf poses a number of challenges in
terms of visibility and maneuverability. This could not be accomplished with the RGB-D sensor
shown in the image that was mounted on the robot’s elbow. The right-hand image shows a detail
of Baxter’s fully integrated built-in eye-in-hand visual sensor that we propose to use for 3D depth
estimation as a complement to the RGB-D sensor.

networks (Kumar et al., 2018). However, even though it is possible to reconstruct 3D
information from a single image, the performance is not as good as that of networks that
consider several images or take into account the camera motion (Ummenhofer et al.,
2017).

Unsupervised learning techniques have been recently proposed, such as a network
composed of depth and pose networks with a loss function based on warping views
to a target (Zhou et al., 2017); or another based on generative adversarial networks
(Almalioglu et al., 2018).

These deep learning techniques depend on an undetermined scale factor that
converts the generated depth maps into absolute values. Unfortunately, this trait is not
practical for most cases in robotics since an absolute depth map of the surrounding
environment is needed. Pinard et al. have recently pointed out this issue (Pinard et al.,
2018), solving the problem by adding the velocity of the camera as an additional input.
On the other hand, the distances that are handled in (Pinard et al., 2018) and other
related approaches are very different from the working range that we consider since
they are too large and coarse. The reason is that their focus is on localisation tasks,
while the aim of this work is dealing with a maximum distance that is determined by
the working area of the robot for manipulation within the competition’s deep shelves as
opposed to nearly a bird’s eye view in existing datasets.
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Figure A.2: An object is projected onto the image plane of the camera in two consecutive instants
(i, i+1) after a displacement (Ts−>t) taking as reference the frame source (s) of the camera (Ws)
and considering the target (t) frame of the camera (Wt), the displacement of the pixel (pi) in
homogeneous coordinates hx, hy and np (near camera plane), is determined by the difference
between the position of the pixel in the images (i+1) and (i), i.e. pi+1 − pi = (Tt−>spi) − pi. x
and y denote the coordinates of the pixel in the image plane.

A.2 Methodology

In order to evaluate the impact of considering prior and external models (as
designed in chapter 6) in the design of deep neural network architectures, three deep
schemes are developed to solve the depth estimation problem in a robot with an eye-in-
hand camera for manipulation in an online shopping warehouse shelf (figure A.1)

The proposed model in chapter 6 based on human fixation movements uses the
camera model and the relationship between optical flow and camera position variation.
The proposed deep networks integrate this model into their architecture. In figure 6.4,
the displacement of the camera was produced considering that the gaze point was
maintained to a certain degree. In this case, a more generic case is considered, as
shown in figure A.2
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While moving the robot’s hand towards a target object, first the mounted camera
captures a scene of the surroundings (a source image) that is equivalent to capture the
initial image in algorithm 6. Then, the hand moves slightly, and the camera captures a
new scene (a target image ). Simultaneously, a relative pose between those images
(Tt→s) is calculated based on the joint angles measured by the encoders embedded
in the robot’s arm. Besides, the relative pose is converted into a displacement map of
each pixel in the image plane. Therefore, it has the same dimensions as the images.
Let us denote by pi and pi+1 the homogeneous coordinates of a pixel in the images i
and i+1 respectively (see figure A.2). Using a transformation matrix from a target view
to a source view (Tt→s), the displacement of each pixel is defined as follows:

Displacement(x, y) =

∆px

∆py

∆pz

 = pi+1 − pi = (Tt→spi)− pi (A.1)

This displacement is a simplified form of the position variation generated by the fixation
movements used in chapter 6. This case has been simplified because the camera’s roll
pitch and yaw angles hardly change since they are considered parallel or perpendicular
movements to the image.

Based on this configuration, three different arrangements of deep neural network
architecture are proposed:

A.2.1 DepthS neural network

It combines directly on a convolutional neural network the two sources of informa-
tion to generate the depth image, i.e. the two images and the position variation. The
variation of the camera position is transformed using the camera model and the cam-
era’s intrinsic and extrinsic parameters to estimate the displacement of each pixel of
the image concerning the reference frame of the world. Therefore, the neural network
has as input two tensors formed by the two RGB images and a third tensor formed by
the variation in the three axes of each image pixel. The neural network’s output is the
depth image corresponding to the first RGB image in a grayscale of 0 to 255 intensity.
This network is illustrated in figure A.3 and we call this architecture depthS. DepthS is
based on FlowNetSimple Dosovitskiy et al. (2015). First, depthS concatenates these
inputs and convolves them three times before the contracting part. The contracting part
is composed of multiple convolutional layers to abstract feature maps.
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Figure A.3: Detailed architecture of depthS. The three inputs (source image, target image
and displacement map) are convoluted to extract the local features, and then the features
are deconvoluted to generate the depth image. Each box represents a network layer where
convolutional operations occur in the contractive part, and unconvolutional and unpooling
operations are performed in the expanding part.
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A.2.2 DepthC neural network

: This architecture attempts to go a step further in incorporating the model obtained
in chapter 6 into its design. Knowing the existence of a deep neural network capable of
estimating the optical flow given two images (FlowNetCorr (Dosovitskiy et al., 2015)),
the information of the position variation is incorporated into its architecture. In this
network, a type of layer called correlation layer is introduced, which is the basis for
the performance of FlowNetCorr. The fundamental characteristic of this layer is that
it performs multiplicative patch comparisons between two feature maps. The overall
architecture of depthC is shown in figure A.4. First, depthC processes three inputs
with identical streams, a pair of images and a displacement map. Then, feature maps
of the images are combined by the first correlation layer. Subsequently, the product of
the first correlation layer is convolved three times, and it is associated with a feature
map of the displacement at the second correlation layer. Moreover, the product of the
second correlation layer is concatenated with a feature map of a target image denoted
by conv redir in figure A.4. In this way, the feature map generated from the source
image is combined with the features generated from the correlation between the visual
displacement and the target image. Finally, contracting and expanding parts process
the product and generate a final depth map as in depthS.

A.2.3 DepthCSx neural network

This network is the most complex proposal and combines the two previous ones,
and introduces a key factor behind the depth estimation algorithm shown in chapter 6.
This algorithm reached the final result by successive iterations searching for depth
value minimising the difference between the estimated and predicted optic flow. To
transfer this concept is proposed an architecture of a depth neural network, inspired by
FlowNet2 (Ilg et al., 2017), DeMoN (Ummenhofer et al., 2017) and SfM-Learning (Zhou
et al., 2017). This type of network is denoted by depthCSx, where x is the number of
depthS networks used in the network design. First, depthC processes a pair of images
and a displacement map and predicts a first depth map. After obtaining the first depth
map from depthC, depthS processes the following information: a pair of images, a
predicted depth map, a warped image and brightness differences. To effectively link
the first depth map with a pair of images, a warped image and a brightness error Ilg
et al. (2017) Zhou et al. (2017) are introduced. The warped image Ĩw is obtained from a
target view It by projecting pixels onto the source view Is, based on the predicted depth
map D̂ and relative pose T̂t→s and using bilinear interpolation to obtain the value of the
warped image Ĩw at location pt.
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Correlation
 Layer

Figure A.4: Architecture of depthC. The features extracted from the images are processed
by two convolutional branches merged by a correlation layer. The result is convoluted and
correlated with the third stream of features extracted from the displacement map. An example is
shown at the bottom, illustrating how the correlation layer operates.
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Figure A.5: Architecture of depthCSx. DepthC predicts a first depth map, and then depthS
processes a pair of images, the predicted depth map, a warped image and brightness differences
to generate an improved depth map. The structure of depthS is repeated x times so that depth
maps repeatedly.

A.3 Experimental setup

As in chapter 6, the simulator with the Baxter robot is used. In this case, unlike
the scenario described in section 6.4.4.4, no Aruco markers are considered, and the
objects are actually arranged in a random and perhaps meaningless way. The aim is to
expose as many different surfaces to the network as possible for training. Thirty ordinary
objects models are combined and randomly located in front of the robot. A depth camera
simulation placed in the location of the RGB camera was used to capture the depth
images and generate the ground truth. The arm’s movements are limited so that an
initial pose is defined to capture the maximum area of the workspace, and then different
poses are generated into a sphere centred in the initial pose and with a maximum radius
of 5 cm. This restriction is a notable difference with respect to section 6.4.1 where the
radius of movements sphere was 0.015 m. The 6 DoF of the camera are randomly
changed within the limits of this sphere in such a way that the end effector is moved
within these limits while keeping the orientation of the camera unchanged so that only
the translational component will need to be input into the neural networks, reducing in
this way their complexity.
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Figure A.6: Examples of generated scenes for the dataset. The insets show the images
captured by the eye-in-hand camera.

Finally, the proposed resulting dataset comprises 10,000 such elements (for 5,000
scenes with objects on a table and 5,000 in the workspace).

A.4 Experimental tests

The depthS architecture, the depth C and two variations of the depthCSx: depthCS
and depthCSS are considered for the experiments. These networks are trained with the
generated dataset. In one epoch of training and validation set, the networks were first
trained on the 8,000 scenarios in the training set, and the learning was evaluated on the
2,000 scenarios in the validation set. The best weights in the validation were saved for
inference. For the inference, the networks tried to predict depth maps on additional 600
unseen scenarios..

To circumvent overfitting and learn a depth map efficiently, the Adam optimiser
Kingma and Ba (2014), and regularisation techniques were applied. A stochastic
gradient descent method (SGD) was first tested, but the Adam optimiser converged
faster.

As for regularisation in the training process, two techniques were used: L2 reg-
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ularisation gives a penalty on a loss function with the coefficient of a sum of squared
weights. The selected value for L2 regularisation used for training is 10−4. The second
technique is dropout Srivastava et al. (2014). Moreover, a normalisation technique is
also used. In particular group normalisation Wu and He (2018). The size of the group is
configured as 16.

To evaluate the results, several evaluation metrics are computed (Zhou et al., 2017)
(Xu et al., 2018) (Ummenhofer et al., 2017):

• L1-rel calculates a depth error relative to the ground truth.

• L1-inv can relatively increase if there is a large error for small values of depth.

• RMSE, It is the employed evaluation metric in chapter 6

• Finally sc-inv is a scale-invariant error introduced (Engel et al., 2014).

A.5 Experimental results

The training curves of the considered neural networks can be seen in figure A.7.
DepthC outperforms depthS in both training and validation scores. Also, it can be
observed that the training and validation scores converge with a minimal oscillation.
However, the validation scores did not decrease well after around 15 epochs. The
results evaluated with the proposed metrics are shown in table A.1.

Beyond the interest of the proposed approach for our particular application domain,
the results in Table A.1 support the hypothesis that integrating prior knowledge and
sensor models relative to active robotic vision into deep learning can significantly
improve performance. The three neural networks have been trained with the same
number of epochs.

Also, leveraging the camera model in depthS allows us to define the absolute
units of the obtained depth images (Figure A.3); a clear advantage over alternative

Table A.1: Results for error metrics

Network
Error metrics

RMSE (m) L1-rel L1-inv SC-inv
depthS 0.1173 0.1650 3.1450 0.1767
depthC 0.0856 0.1219 0.9603 0.1240
depthCS 0.0766 0.1089 0.7879 0.1183
depthCSS 0.0732 0.1050 0.7649 0.1119
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Figure A.7: Evolution of RMSE for the proposed neural networks during training and validation.
Dashed lines correspond to validation, solid lines to training, and dotted lines represent the sum
of the weighted loss functions.
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deep learning methods, for which a scale factor is needed to estimate the real distance.
For depthS and depthC, the training parameters and procedures are similar. However,
the incorporation in the depthC design of the depth estimation model from optical flow
and the displacements of the camera improves its performance concerning depthS
around 25% (as measured with RMSE). Embedding prior knowledge in depthC from
two previously established rules for the estimation of optical flow from two images and
the correlation of this magnitude with the variation of the camera position allowed us
to define the correlation rules between these elements. The correlation layers extract
features of each input before the layer and link them patch by patch in the layer.

One representative example of the depth maps predicted by DepthS, DepthC,
DepthCS and DepthCSS is displayed in figure A.8 along with the ground truth and the
target image. The monocular camera captured the target image at a given moment. The
ground truth was provided by a simulated depth camera located at the same coordinates
as the eye-in-hand camera. The depth maps are coloured to visualise the distance from
the camera.

A.6 Conclusions

This result is the first approach as the conclusions drawn from the model proposed
in chapter 6 for estimating the depth of a scene by a robotic system through the execution
of fixation movements can be indirectly applied to the design of deep neural networks
performing the same function. Moreover, as can be seen when all the developed
concepts are considered: two images and the camera position variation of the images
(depthS), the optical flow estimation (depthC) and the iteration in the design of the
neural networks (depthCS and depthCSS), an evident improvement in the results is
obtained.

The advantage of using this type of network instead of the algorithm proposed in
chapter 6 is that a trained network only requires the knowledge of two images and the
camera variation to estimate the depth. However, the main limitation that did not occur
in that algorithm is implementing the training in a real system, where capturing the depth
image of the scene from the same point of view as the RGB camera is problematic in a
robotic system like Baxter. Therefore, the background to feed the network is challenging
to obtain, and the effort to create hundreds of different scenarios to have sufficient
variability in the samples is vast.
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Figure A.8: Representative example of depth maps predicted by depthC, depthS, depthCS and
depthCSS. The ground truth and RGB image are also shown. The units of the color bars on the
right are meters. Closer distance is colored in blue and farther distance in red and yellow. The
RMSE value for each pixel is shown in the images in the right column.
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Software architecture to implement
the developed algorithms

B.1 Introduction

Several algorithms have been presented to control saccadic movements and
determine the depth of a scene from fixation movements in this work. In both cases, a
validation on real robotic systems (sections) has been performed. In the case of the
simulations, Matlab was employed for their implementation. However, to deploy the
algorithms in real robotic systems, ROS (Robot Operating System) (Quigley et al., 2009)
was used instead.

ROS can be considered a communications middleware enabling communication
between processes running on the same or remote machines. In addition to this
functionality, a broad set of supervisory utilities allow monitoring the communication
between processes and facilitating the programming of these processes. Among all
the possible middlewares developed for robotics, it seems that ROS has become the
standard for software development in this field.(Elkady and Sobh, 2012).

For ROS to operate as a communications Middleware, it is necessary to define a
computer on which an application (roscore) is launched to control all the connections
between the different machines configuring the ROS network. The different processes
(which in ROS are called nodes) running on different machines connected to the roscore
when they are launched to identify themselves and register the port and IP address
identifying them on the network (figure B.1).

The underlying communication protocol is TCP/IP. However, how messages are
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Figure B.1: ROS network connections schema
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sent between nodes lead to two forms of transmission schemes:

• Publisher/subscriber transmission: This system is based on the producer/con-
sumer model, in which the producer (publisher) posts messages on the network
which may be read by more than one consumer (subscriber). A node (publishers)
advertise its IP and port through the roscore, which assigns it a name (topic) where
it writes messages if any other node (subscriber) is connected to it in reading
form. In figure B.1, the talker node on machine one can send messages to the
listener node on machine 2. This transmission is done directly once the roscore
has informed both of the transmission’s source and destination IP and port.

• Server/client transmission: This system is based on the client/server communic-
ation model. One of the nodes acts as a server, where a client sends requests.
The server performs operations and prepares a response that it sends back to the
client. Unlike the previous model, the communication is completed here until there
is a new request from the client.

In addition to being based on ROS, the developed architecture requires some
features such as:

• It should be modular to reduce the impact of changes in one part of the system
(module) and make more accessible partial tests of the system. However, Consid-
ering this could present several drawbacks as the communication system overload
or the difficulty to synchronize tasks.

• Distributed processing. This feature allows taking the computation out of the robot,
which results in a higher computational capacity. A vivid example is the utilization
of the Raspberry Pi with ROS in the robotic system developed in chapter 6 for
image capture and estimation of the Stewart platform variation independent of the
computer where the rest of the architecture is running, although it is integrated into
it. The main disadvantage of this is that the slowest system or process determines
the system’s speed.

In this appendix, the software architecture used in implementing the different algorithms
in this work is described along with other cases such as the Amazon Robotic Challenge
2015 and 2017. it was in these two competitions that this architecture was really pushed
to the limit.
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B.2 Software architecture description

The developed architecture is based on the module concept. A module is more
than a ROS node or a library of functions. The main goal for using this type of modular
architecture is to facilitate the decomposition of complex tasks in several small tasks,
which are solved independently by each module, in such a way the architecture allows
the coordination in the execution of these simple tasks and results in more or less
complex behaviour.

A module is a ROS node fitting the black-box model, with a specific structure, not
only in the code but also in the parameters and launchers, that allows the standardization
and processing of inputs coming from the environment or other modules and generates
outputs to other modules or actuators (figure B.2). The inputs and outputs could be:
control I/O streams or data I/O streams. The processes and algorithms inside a module
are indifferent to the rest of the system. However, module inputs and outputs must be
well defined. These are the interface with the rest of the system.

MODULEMODULE

Commands

Events

parametersparameters

Data 
message

ROS SYSTEM

Commands

Events

Figure B.2: Module description in software architecture

The control I/O streams in a module could be of two classes: commands or events.
A module can receive commands and events. These could affect the process that
is executing in the module, changing its internal state. In turn, a module can emit
events or send commands to other modules in response to the process it is executing or
requesting information from other modules. In essence, the commands that the module
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can process or the events it can emit are part of the description and definition of the
module and affect the rest of the system since they define the communication interface
of the control signals between the modules.

Non-control data needed by the module to execute the process for which it is
responsible are received or sent through the ROS standard publisher/subscriber com-
munication. A module could be launched independently of the rest of the system.
Therefore it can be tested simulating its inputs, outputs commands and events.

B.2.1 Module commands

A module command is a remote function call, where the function parameters
have a fixed type, and the number of them is limited. The data structure of a module
command is an identifier of the string type and three vectors of integers, float and string
values.

The idea is that this data structure covers most of the possible data or parameters
that can be passed to the remote function. The existence of the structure does not imply
it is necessary to use it entirely, except in the case of the identifier that always has to be
defined since it names the command.

For example, sending an integer and two floats to another module, together
with two tags that identify them, is possible. In addition, if it is desired to send more
complicated data structures, it is possible to encode them in text strings using the JSON
format and send them through the string vector. The response of the remote function to
the command executed on another module different from the one calling has the same
data structure, i.e. an identifier and three vectors. It is a remote function call.

The remote call executed by the command can be of two types, blocking or non-
blocking, so that in the first case, the execution of the calling module is suspended until a
response is received or a timeout is exceeded. In the second case, the sending module
only receives confirmation of the reception of the command by the receiving module
and does not suspend its execution. In figure B.3 you can see how a command works to
control action between two system modules, in this case, a module A that is in charge
of planning a gripping task and a module B that controls how much a gripper is opened
or closed. Module A sends the command with an identifier that must be accepted by
module B and an integer parameter. When the command is sent, module B suspends
its execution while waiting for module B to process the function assigned to it by module
A. When the B process is finished, it sends the response to A, continuing its execution.

Two default commands have to be implemented for all modules:
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Module A
(Grasp Tasks)

Module A
(Grasp Tasks)

Module B
(Gripper control)

Module B
(Gripper control)

time
{{id: open_griper},
   {stringValues:[],
    floatValues:[],
    intValues:[100]}}

Open gripper 
100 steps

{{id: OK},
   {stringValues:[],
    floatValues:[],
    intValues:[]}}

Command Behavior in
Blocking execution mode

Figure B.3: Time sequencing example of sending a command in blocking execution mode
between two modules

• Activation command: This command enables the module functionality. Even
though modules can be launched in active mode by default, they can be sent an
activation command after deactivation.

• Deactivation command: This command suspends the module functionality
without closing the module

Therefore, a module always must have at least two functions to handle these
commands from other modules.

B.2.2 Module events

A module event is a change state signal. It is implemented as a string that
identifies the event and a timestamp. An event is generated by a module when an
internal condition is accomplished, and it is emitted. It is broadcast as many times
as the emitter module wants. In turn, every module can capture events sent by other
modules. The events are stored in a priority queue sorted by timestamp in order of
arrival. It is possible to clear this queue when the module handling the event needs to
do it. In essence, an event is a kind of interrupt signal for the receiver module.

As can be seen in figure B.4, the combination of commands and events enables
the execution of tasks in parallel, and the events act as interrupt signals to synchronize
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Module A
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Module B
(Gripper control)

Module B
(Gripper control)

time
{{id: close_gripper},
   {stringValues:[],
    floatValues:[],
    intValues:[100]}}

Close gripper 
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{{id: OK},
   {stringVales:[],
    floatValues:[],
    intValues:[]}}

Event Behaviour

Detection
Loop

Waiting for an event

Event: {id: detected, Time: 1288947.129032}

Figure B.4: Time sequencing example of command and event combination

them. Thus, a module can have the following behaviours that allow the synchronization
or parallel execution of two processes on the same machine or remote machines:

• A module can wait for an event to arrive before resuming its execution. In this
state, the module can receive information but not process it.

• A module can suspend its execution until several events from different modules
arrive. This procedure allows synchronizing different execution lines launched in a
parallel way.

• The module may be executing its algorithm, and the receipt of an event changes
the algorithm’s state in such a way that the execution thread is changed.

B.2.3 Module parameters

A module parameter is a variable that can modify the execution of the algorithm
or process. However, the module parameters must be defined before the execution of
the module. It is necessary to use a command to modify a parameter at run time. Each
parameter should have a brief description to make easier debugging tasks.
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Parameters

Module A
(Exploration 

Task)

Module A
(Exploration 

Task)

Launching module in the system

Command: 
Change Parameter

Figure B.5: Example of the yaml file with module parameters definition

B.3 Software architecture implementation

Although the module definition gives great freedom when implementing them, it
has been simplified by defining only two module classes:

• Service base modules

• Action primitive module

Following the pursued goal of standardization, these modules have been imple-
mented in C++ as interfaces that must be inherited by the modules to be implemented.
They are the template that forces to implement the methods necessary for executing the
modules as they are defined according to their class (action primitive or service base).

B.3.1 Service base module

From the implementation point of view, the service base module is a process in
which two threads are executed ()figure B.6):

• The main thread (server thread): This keeps the module alive and manages the
commands and events arriving at the module. It parses the initial parameters and
generates the shared parameter workspace (with the other thread).
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• The loop thread: The server thread is created by sharing the parameter workspace
with it. It executes an algorithm in a loop, processing the data messages and
generating events. It can send commands from this thread to other modules.
However, it is not recommended that they are in blocking mode.

Service base schema

Figure B.6: Implementation schema of the server base module

The service base modules can be considered processing modules in the system
architecture. The executing algorithm in the loop thread is processed at a fixed frame
rate. This loop can suspend its execution or re-start using deactivation and activation
commands, respectively. The service base module is launched in activation mode by
default.

These kinds of modules are helpful for processing data streams, such as hardware
data streaming. If any, the module’s output would be at the same frequency at which
the algorithm is executed. A indicated in appendix B.2.1, the commands can modify the
behaviour of the algorithm in the loop thread.

When a service base module is launched in the system, immediately a ROS node
is created. In this way, it is possible to parse the configuration parameters defined in

247



Software architecture to implement the developed
algorithms Software architecture implementation

the module and create a memory space to be shared by the main thread and the loop
thread (figure B.7)

Time

Launch the 
module in 
the system

Load/parse/ 
generate 

parameter 
workspace

Load/parse/ 
generate 

parameter 
workspace

Launch loop 
thread

Launch loop 
thread

Executing 
loop

Executing 
loop

Waiting for 
command

Waiting for 
command

ActivateActivateNo yes

Service base execution pipeline

Create new ROS node

Create ROS node ROS services system

ROS publisher/
subscriber system

Main thread

Loop thread

Figure B.7: Service base module execution pipeline

The main thread then creates and launches the thread loop, which in turn gener-
ates another ROS node. Finally, using the ROS server/client system, the main thread is
kept waiting to receive commands, which, when they arrive, execute a callback in the
thread loop.

In turn, in the thread loop, if the activated flag is enabled, a function is executed
with a constant frequency. Inside this function, it is possible to write the code that
processes the messages and publishes the replies using the ROS publisher/subscriber
system.

B.3.2 Action primitive module

The elements that compose an action primitive module are the same as in the case
of the service base described in figure B.7. The difference is in the execution pipeline.
While the service base creates a loop thread and maintains it until the module is shut
down, in the case of the action primitive module, the created thread is executed only
once, and when it is finished, the main thread is maintained so that it can be executed
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as many times as desired.

A state machine system is integrated into the action primitive modules, so when
the secondary thread is created and executed, the execution of this finite state machine
is started.
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Execution
algorithm

Execution
algorithm
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BlockingBlocking
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Action primitive execution pipeline

Create ROS node

ROS services systemMain thread

Execution thread

Generating 
thread

Generating 
thread

END

Figure B.8: Action primitive module execution pipeline

A feature to keep in mind about action primitive modules is that the thread (or
the associated state machine) can be created and launched in blocking mode so
that the executing command blocks the response to the requesting module. In non-
blocking mode, the command handler returns a confirmation that the thread has been
successfully created but does not block the response to the module that requested the
execution.

The action primitive can be considered as a control program module in the system
architecture. It is like executing a program on demand While the execution thread is
active, the arriving commands can not be handled (except the interrupt command). So,
commands could be used to configure thread execution. There is an option to interrupt
the execution thread defining the interruptions points.

In figure B.9, it can be seen an example of a state machine defined in a module
whose function is to scan the bins of a shelf to find a certain number of objects and
compute the approach vectors for the execution of the grasps. This example is a real
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case used in the Amazon Robotic Challenge in 2015, where this architecture was
successfully used to integrate all the operations performed by a Baxter robot to pick up
objects from a shelf in a warehouse.

B.3.3 Module combination: generating the architecture

Combining the service base and action primitive modules is necessary to execute
a certain task or establish a certain behaviour in a robotic system based on this
architecture. Each one is in charge of solving small parts of the problem enabling
complex behaviour to emerge.

Usually, as shown in figure B.10, the module architecture can be organized in the
form of two layers: the services layer and the primitives’ layer. Typically, the sensors and
actuators of robotic systems emit or receive constant streams of information that can be
handled and processed by base services. These service based modules modify their
behaviour according to the commands they receive from the upper layer composed of
action primitive modules. The services can sample or capture information and send it to
the upper layer employing events or in response to commands.

These command responses or events cause state changes in the active state
machines in the upstream layers, generating new commands and causing an advance
in the desired behaviour.
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Exploration
action primitive module

Figure B.9: Finite state machine defined in an exploration action primitive used in the Amazon
Robotic Challenge in 2015
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Figure B.10: Schema of the proposal combination of service base and action primitive modules
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B.4 Conclusions

This architecture was developed to initially implement the saccadic controllers
described in chapter 4. In addition, it allowed unifying criteria when programming ROS
nodes, which facilitated the development.

Subsequently, it has been successfully used in two large projects involving a wide
range of programmers, such as the Amazon Robotic Challenge in 2015 and 2017.

Finally, it has been implemented in the robotic system developed in this work to
replicate the fixation movements of humans (chapter 6). As can be seen in figure B.11,
to execute this algorithm, it is necessary to deploy several modules controlling each
of the parts of the process, having as coordinator an action primitive module (fixation
process in figure B.11) executing a state machine as shown in figure B.12.
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Figure B.11: Schema of the developed software architecture for depth estimation based on
fixation process (chapter 6)
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Figure B.12: Finite state machine integrated in action primitive module for depth estimation
based on fixation process
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Appendix C

Mathematical fundamentals

C.1 Introduction

This appendix aims to define and develop several practical mathematical concepts
used in various parts of this work. The starting point is Bayesian learning which
allows the development of probabilistic concepts that will lead to the introduction of the
Gaussian distribution and its properties.

C.2 Mathematical notation of scalars, vectors and
matrices

In order to make it easier to follow and reproduce the algorithms presented in this
work, the same notation has been kept to identify the essential elements of algebra,
i.e. scalar values, vectors, matrices and tensors. In this section, an example of each of
them is proposed in order to identify their notation.

• Scalars: Scalars are single numbers and are represented by lowercase Latin or
Greek letters in italics. For example: (x1, x2, . . . , xn) | xi ∈ R.

• Vectors: Vectors are ordered arrays of single numbers. If all of the scalars in
a vector are real-valued then the notation states that the (boldface lowercase)
vector value is a member of the n-dimensional vector space of real numbers, Rn.
To explicitly identify the components of a vector, the scalar notation is used. By
default, in this work, a vector is assumed to be a set of column-ordered scalar and
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therefore these notations are equivalent:

xxx =


x1

x2

...
xn

 = {x1, x2, . . . , xn}T

• Matrices: are rectangular arrays consisting of numbers. if m and n are positive,
that is m,n ∈ N, then an m× n matrix contains mn numbers, with m rows and n
columns. A matrix is denoted with uppercase, boldface Latin and Greek letters:
AAA ∈ Rm×n. Each component of AAA is identified by ai,j.

This is the general notation that has been followed throughout the work; in some cases, it
has not been maintained or has been slightly changed to avoid confusion with elements
not described in it. In these cases, each element has been explicitly defined.

C.3 Probability

Probability is an attempt to measure uncertainty. Often, situations of uncertainty
arise when random experiments or phenomena are performed. The sample space Ω

is the set of all the possible results of the experiment. The elements of Ω are called
elementary events. An event S is any subset of the sample space. Two events S1 and
S2 are incompatible if they do not have any element in common. σ is defined as the set
of all possible events that can occur, and algebraic operations can be used between
these sets. P is said to be a probability function over (Ω, σ) if it meets the Kolmogorov’s
axioms:

1. P (S) > 0;∀S. The value of the probability of an event is always positive.

2. P (Ω) = 1.

3. if S1, S2, . . . , Sn are incompatible events:

P (S1 ∪ S2 ∪ . . . ∪ Sn) =
n∑
i=1

P (Si) (C.1)
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C.4 Probability Rules

C.4.1 Conditional Probability

Let us think of a random experiment and an event of such an experiment, S1.
Initially, a degree of belief or probability is associated with this event P (S1). If previous
knowledge about that experiment had been given, for example, another event S2 oc-
curred, the information about the test result changes our degree of belief in S1. This
new value associated to the event A, P (S1|S2) is defined as conditional probability. The
conditional probability of event S1 , given that another event S2 has already occurred,
denoted by P (S1|S2), is given by the ratio:

P (S1|S2) =
P (S1 ∩ S2)

P (S2)
(C.2)

Two events S1 and S2 are independent if P (S1|S2) = P (S1) or P (S2|S1) = P (S2) or
equivalently P (A ∩B) = P (A)P (B).

C.4.2 Total Probability Rule

When numerous events are involved in an experiment, calculating the probabilities
of all of them increases its complexity excessively. Fortunately, the Total Probability
Rule allows the problem to be broken up into partial calculations. Therefore, let P be
a probability function in a sample space. Let {S1, S2, · · · , Sn ⊂ F} be a partition of the
sample space and let S∗ be any event. Then:

P (S∗) = P (S∗|S1)P (S1) + · · ·+ P (S1|Sn)P (Sn) =
n∑
i=1

P (S∗|Si)P (Si) (C.3)

C.4.3 Bayes’ Theorem

Assume an event Si; it is uncertain whether it has occurred. We desire to estimate
the probability of this event P (Si). Therefore, P (Si) does not represent the probability
that Si occurs but the degree of belief that Si has occurred. In principle, there may be
no data to know the exact value of the probability of Si. Even so, an estimation of that
probability can be given because the context where the event takes place is partially
known, and there is “expert knowledge” to approximate it. This initial value P (Si) is
called a priori probability. Let us assume that there is now new event information Si

through event S∗. In this case, the probability of Si should be updated based on this
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new information and providing a new probability of Si that takes into account S∗, that is,
P (Si|S∗). This probability is known as a posteriori probability.

This probability update is performed through Bayes’ theorem, which in its general
form is given by the following expression:

P (Si|S∗) =
P (S∗|Si)P (Si)

P (S∗)
(C.4)

Bayes’ theorem is a way of reversing the conditional probabilities. In combination
with Total Probability Rule, the equation (C.4), can be written as:

P (Si|S∗) =
P (S∗|Si)P (Si)∑n
i=1 P (S∗|Si)P (Si)

(C.5)

C.4.4 Chain Rule

Given two events Si and S∗, the probability of both occurring at the same time is
expressed by the chain rule:

P (Si ∩ S∗) = P (Si, S
∗) = P (S∗|Si)P (Si) = P (Si|S∗)P (S∗) (C.6)

The chain rule relates joint probability, conditional probability and marginal probability.

C.5 Inference and Bayesian learning

When a phenomenon is observed, a series of hypotheses are established from
these observations. A probability value can be associated with each hypothesis. As
more information is acquired about the phenomenon, the hypotheses that describe its
behaviour could change.

These initial values come from speculation. For example, if we wish to learn how to
detect a pedestrian in a street image, one hypothesis could be whether a specific region
is a pedestrian or not (h). When the first image is received, all the areas defined could
have the same probability of being a pedestrian P (h). However, if it is somehow possible
to identify one of these regions as a possible pedestrian (d) with a probability P (d|h)

that the established hypothesis is fulfilled, the features that define this region should
condition future hypotheses. Therefore, the initial hypothesis h has been modified by
the hypothesis d, i.e. the a posteriori probability P (h|d) can be calculated employing
Bayes’ theorem as follows:

P (h|d) =
P (d|h)P (h)

P (d)
(C.7)
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The information increases with the addition of new hypotheses of what a pedestrian is,
for example, with more images of pedestrians. The a posteriori probability of the initial
hypothesis will be modified by all these new data following Bayes’s theorem:

P (h|d) =
P (d|h)P (h)

P (d, h′)
(C.8)

where P (d, h′) is the joint probability and represents the previous knowledge acquired
about what is or is not a pedestrian. In a discrete way, this probability can be calculated
using the expression:

P (d, h′) =
∑
h′∈H

P (d|h′)P (h′) (C.9)

H is the set of all previous hypotheses about what is or is not a pedestrian, and the
size of H grows exponentially with each new hypothesis incorporated. The resolution of
a problem to relate the new d hypothesis to all the elements from the initial set can be
solved using combinatorics. For this reason, this method is not usually applied directly.

Bayesian inference uses a numerical estimator of the degree of belief in a hypo-
thesis before having observed the P (h) hypothesis and calculates the degree of belief
in the hypothesis after having observed evidence.

C.6 Random variable and probability distribution
models

A probabilistic experiment is considered in a sample space Ω where a probabilistic
function has been defined P (·). A random variable is a function that assigns a value,
usually numerical, to the result of that probabilistic experiment. X : Ω→ R. Depending
on the numerical type of these values, the random variable can be discrete or continuous.

A discrete random variable X can take a countable set of discrete values (x). The
mapping function between these values and their probability is called mass probabilistic
function: p(x) = P (X = x). For discrete variables, this mass function can be estimated
experimentally from samples and using frequency calculations.

A random variable is continuous when its domain is a set of infinite and countless
elements that can only be defined by intervals.

In continuous random variables as opposed to discrete ones, it is impossible
to determine the mass function directly because intervals have an infinite number of
elements. However, the histogram is a representation analogous to the empirical mass
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function that allows us to approximate the probabilities of the values of a continuous
variable.

Therefore, the probability density function of a continuous random variable is
defined as the function f(x) such that for any a, b ∈ R or a, b = ±∞:

P (a < X < b) =

∫ b

a

f(x)dx (C.10)

Probabilistic models estimate mass functions or density functions from several
empirically calculated parameters, assuming that the random variable fits the model.

These model parameters are usually estimated from a set of samples. Therefore,
given a set of data and the assumption that these data follow a particular model defined
by a set of parameters, ultimately, these parameters must be learned to describe the
model.

C.7 Likelihood function

Let x1, x2, . . . , xn be a random sample of a random variable X with a probabilistic
mass function pθ (or with density function fθ). For each particular sample (x1, x2, . . . , xn),
the likelihood function L(θ) is defined as the joint probability (or density) function of X
evaluated in (x1, x2, . . . , xn), with θ denoting a specific parameter value in the parameter
space Θ.

In the case of X being a discrete variable:

L(θ) = L(X|θ) = L(x1, x2, . . . , xn|θ) = Pθ(X = x1, X = x2, . . . , X = xn) (C.11)

When X is a continuous random variable:

L(θ) = L(X|θ) = L(x1, x2, . . . , xn|θ) = L(fθ(x1), fθ(x2), . . . , fθ(xn)) (C.12)

The notation L(θ), indicates that it depends exclusively on the parameters of the
model and not on the data (x1, x2, . . . , xn).

C.8 Maximum likelihood estimation

Let X̂ be a sample of random variable X that follows a likelihood function L(θ)

defined by a parameter value θ in the parameter space. For each particular sample
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{x1, x2, . . . , xn} ∈ X̂, the maximum likelihood estimation (ML) is the value θ̂MLE that
maximises the likelihood function:

LML(x1, . . . , xn|θ̂MLE) = argmax
θ
L(x1, . . . , xn|θ) (C.13)

The specific value of θ that maximises the likelihood function is called maximun
likelihood estimator (MLE), θ̂MLE(X̂).

Let θ = (θ1, . . . , θk) denote a parameter value θ in a k-dimensional parameter
space that is involved in defining the likelihood function of a random variable X, the
procedure for computing the maximum likelihood estimator of θ given a particular sample
(X̂) is:

1. Write down the likelihood function: L(θ) = L(x1, . . . , x2|θ).

2. Define the support or log-likelihood function: l(θ) = lnL(θ).

3. Compute θ̂j so that:
∂

∂θj
l(θ) = 0

4. Check that it really is a maximum, i.e:

∂2

∂θ2
j

l(θ)|θj=θ̂j = 0

In other words, from a set of data or samples, the values of the likelihood func-
tion parameters are being pursued so that the probability of generating these data is
maximum.

C.9 Bayesian learning to estimate model parameters

To learn the parameters of a given model from a set of data that in theory fit that
model, the procedure to be followed is based on Bayesian inference and is always the
same. Given a set of observations DDD = {XXX1,XXX2, . . . ,XXXn} that fits a model defined by
the parameters θ:

1. Define the likelihood function: L(DDD|θ)

2. Specify the a priori probability for the model parameters. A degree of uncertainty
or belief must be defined about the initial values of the model parameters P (θ).
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3. Estimate the a posteriori probability. Using Bayes’ theorem, this probability could
be computed as:

P (θ|DDD) =
L(DDD|θ)P (θ)

P (DDD)
(C.14)

However, taking into account that the term P (DDD) is a normalisation factor that
keeps the probability in the range 0-1, it is possible to write:

P (θ|DDD) ∝ L(DDD|θ)P (θ) (C.15)

Let XXX∗ be an unobserved value, the posterior predictive distribution of XXX∗ is the
conditional probability of XXX∗ given the observed values in the training dataset: P (XXX∗|DDD).
The probability distribution of the estimated model parameters is conditioned by the
observed values of the training dataset: P (θ|DDD). Therefore the posterior predictive
distribution of XXX∗ given DDD is calculated by marginalizing the distribution of XXX∗ given θ
over the posterior distribution of θ given DDD. In the case of a continuous random variable:

f(XXX∗|DDD) =

∫
θ

f(XXX∗|θ,DDD)f(θ|DDD)dθ (C.16)

C.10 Covariance

Given two random variables, the covariance is the degree of relationship between
them. Thus, the covariance, considering the concept of probabilistic independence, can
measure the degree of relationship between two random events characterised by their
random variables and, therefore, their dependence.

If a discrete random variableXXX with a finite number of outcomes x1, x2, . . . , xn, with
associated probabilities p1, p2, . . . , pn , are considered, the expectation of XXX is defined
as:

E[XXX] =
n∑
i=1

xipi (C.17)

In the continuous random variable case:

E[XXX] =

∫
R
xf(x)dx (C.18)

where f(x) is the probability density function of the random variable XXX.
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Under these conditions, given two random variables XXX1 and XXX2, the covariance is
defined as the expected value of the product of their difference between their values
and their individual expectations:

cov(XXX1,XXX2) = E [(XXX1 − E[XXX1])(XXX2 − E[XXX2])] (C.19)

An attractive property of the covariance is its relationship with the dot product
because it has the same mathematical properties. This fact allows the interpretation of
the covariance as a measure of the similarity between the variables considered.

C.11 Gaussian distribution

C.11.1 Definition

Given a random continuous variable XXX, with a probability density distribution
described by equation (C.20), it is called Gaussian or Normal distribution.
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Figure C.1: Gaussian distribution for µ =

0.0 and σ = 1.0.

f(x) =
1√

2πσ2
e−

1
2σ2

(x−µ)2 (C.20)

Where the model parameters (θ) are:

• µ: center of masses or mean.

• σ2: variance.

The shape of this function for the case where µ = 0 and σ = 1.0, is shown in
figure C.1. Many natural phenomena follow this probability distribution, generally all
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kinds of physical measurements. The Gaussian curve is centred on the µ parameter, a
scalar, because a univariate Gaussian is considered. By definition of probability density
function, the area enclosed under the curve should be equal to one.

1√
2πσ2

∫ ∞
−∞

e−
1

2σ2
(x−µ)2 = 1 (C.21)

In order to schematise that the independent variable X follows a normal probability

Figure C.2: Bivariate Gaussian distribution example.

distribution with parameters µ and σ2, the following notation is used:

X ∼ N (µ, σ2) (C.22)

If more than one dimension is considered, e.g. xxx ∈ Rn, the probability function of
an n-dimensional Gaussian distribution is given by this expression:

f(xxx) = |2πΣ|−
1
2 e(−

1
2

(xxx−µ)TΣ−1(xxx−µ)) (C.23)
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Where:

µµµ =

µ1

...
µn

 ; Σ =

σ
2
1,1 . . . σ2

1,n
... . . . ...

σ2
n,1 . . . σ2

n,n

 =

Σ1,1 . . . Σ1,n

... . . . ...
Σn,1 . . . Σn,n

 (C.24)

An example of bi-variate Gaussian distribution is shown in figure C.2. Σ is a
Gaussian covariance matrix, according to equation (C.19) given a vector xxx ∈XXX: ΣΣΣ =

E
[
(xxx− µµµ)(xxx− µµµ)T

]
. This matrix has several important properties:

1. ΣΣΣ is symmetric

2. It is positive semi-definite, i.e. for any yyy vector, yyyTΣΣΣyyy is always non-negative.

3. It is positive definite for a multivariate Gaussian distribution. In other words, for
any positive yyy vector, yyyTΣΣΣyyy is always positive.

Considering these properties, the exponent term in equation (C.23) is always
greater than 0, and its exponential is always less than 1.

There are three properties of the Gaussian multivariate distribution that are im-
portant for understanding operations with random variables that follow a Gaussian
probability density function:

1. The linear combination of two independent Gaussian random variables is Gaus-
sian.

2. The marginal of a joint Gaussian distribution is Gaussian

3. The conditional of a joint Gaussian distribution is Gaussian.

4. The linear transformation of a Gaussian random variable is a Gaussian. Given
xxx ∈ XXX and a matrix AAA and a vector bbb the expected value of the transformation
AAAxxx+ bbb and its covariance can be computed as:

E [AAAxxx+ bbb] = AAAE [xxx] + bbb

cov(AAAxxx+ bbb) = AAAcov(xxx)AAAT
(C.25)

This means that for gaussian distributed variables:

xxx ∼ N (µµµ,ΣΣΣ)⇒ AAAxxx+ bbb ∼ N
(
AAAµµµ+ bbb,AAAΣΣΣAAAT

)
(C.26)

An interesting property of the probability density distribution of a Gaussian model is
when the concept of independence is introduced among the random variables on which
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it is defined. For example, if two independent random variables are assumed to follow
a univariate Gaussian distribution: x1 ∼ N (µ1, σ

2) and x2 ∼ N (µ2, σ
2). Using the

conditional probability rules expressed in appendix C.4, the joint probability of these
random variables can be written as:

P (x1, x2) = N (µ1, σ
2)N (µ2, σ

2)

= (2πσ2)−0.5e−
1

2σ2
(x1−µ1)2(2πσ2)−0.5e−

1
2σ2

(x2−µ2)2

= 1
2πσ2 e

− 1
2((x1−µ1)T (σ2)−1(x1−µ1)+(x2−µ2)T (σ2)−1(x2−µ2))

grouping terms:

P (x1, x2) = (2πσ2)−1exp

1

2

(
(x1 − µ1)

(x2 − µ2)

)T (
σ2 0

0 σ2

)−1(
(x1 − µ1)

(x2 − µ2)

)
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Figure C.3: Representation of two independent and dependent random variables following
Gaussian distributions

Comparing with equation (C.23), the value of ΣΣΣ corresponds to a diagonal matrix:
σ2III. Therefore, given n independent variables that follow a univariate Gaussian distri-
bution, their joint probability distribution is also a Gaussian distribution whose mean is
the vector of means of each of the distributions, and the variance is a diagonal matrix
formed by the variances of each distribution. An example of this distribution can be
seen on the left of figure C.3.

The fact that Σ2,1 = Σ1,2 = 0 implies that knowing x1 does not condition the value of
x2 (figure C.3a). On the other hand —as it is apparent on figure C.3b— if a value for x1 is
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taken, x2 is limited; therefore, they are correlated values. In this case, Σ2,1 = Σ1,2 = 0.5,
and thus, there is a difference in the contribution of each Gaussian variable to the final
joint Gaussian distribution.

C.11.2 Sampling from a Gaussian distribution

Given a Gaussian distribution xxx ∼ N (µµµ,ΣΣΣ), the goal is to obtain values of xxx that
belong to this distribution. In the univariate case, xxx can be written as: x ∼ µ+ σN (0, 1)

and from this expression values of x can be generated. In the multivariate case,
the mean is a vector, and the variance is a square matrix. If this covariance matrix
is decomposed into two triangular matrices using Cholesky factorisation ΣΣΣ = LLLLLLT ,
samples that fit this distribution can be generated using the following expression:

xxx ∼ µµµ+LLLN (0, I) (C.27)

Where µµµ = [µ1, µ2, . . . , µn]T , and LLL is a lower triangular matrix product from Cholesky
decomposition. This operation can be done because the requirements to apply this
decomposition are that the matrix must be square and positive. By definition of the
covariance matrix, both are fulfilled.

C.11.3 Conditional Gaussian distribution

As mentioned above, one of the properties of the Gaussian distribution is that
the conditional of a joint Gaussian distribution is also Gaussian. Thus, given two
random variables xxx1 and xxx2, whose marginal probability density functions are defined
as: f(xxx1) = N (xxx1|µ1,Σ1,1) and f(xxx2) = N (xxx2|µ2,Σ2,2). The joint probability of xxx1 and xxx2

follows a Gaussian with N (µµµ,ΣΣΣ) where:

µµµ =

(
µ1

µ2

)
;ΣΣΣ =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
(C.28)

Sometimes it is useful to employ the concept of the inverse covariance matrix
called the precision matrix:

Λ = Σ−1 =

(
Λ1,1 Λ1,2

Λ2,1 Λ2,2

)
(C.29)
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Where:
Λ1,1 = (Σ1,1 − Σ1,2Σ−1

2,2Σ2,1)−1

Λ1,2 = −(Σ1,1 − Σ1,2Σ−1
2,2Σ2,1)−1Σ1,2Σ−1

2,2

Λ2,1 = −(Σ2,2 − Σ2,1Σ−1
1,1Σ1,2)−1Σ2,1Σ−1

1,1

Λ2,2 = (Σ2,2 − Σ2,1Σ−1
1,1Σ1,2)−1

(C.30)

We wish to calculate the conditioned probability of obtaining xxx1 given xxx2 which, as
previously defined, must also be a Gaussian distribution of the form N

(
µ1|2,Σ1|2

)
, where

it can be demonstrated that (Bishop, 2006):

µ1|2 = µ1 + Σ1,2Σ−1
2,2 (x2 − µ2) = Σ1|2 (Λ1,1µ1 − Λ1,2(x2 − µ2)) (C.31)

Σ1|2 = Σ1,1 − Σ1,2Σ−1
2,2Σ2,1 = Λ−1

1,1 (C.32)

C.11.4 Marginal and conditional Gaussians

Let xxx be a continuous random variable following a gaussian model for its marginal
probability density function f(xxx) = N (xxx|µµµx,ΣΣΣx). Given another continuous random
variable yyy conditioned by xxx, the conditional probability of yyy and xxx is fitted to a Gaussian
Normal distribution: f(yyy|xxx) = N (yyy|AAAxxx+ bbb,ΣΣΣy), where AAA and bbb are parameters of the
model and ΣΣΣy is the co-variance matrix of yyy. The a posteriori probability according to
equation (C.4) is:

f(xxx|yyy) =
N (yyy|AAAxxx+ bbb,ΣΣΣY )N (xxx|µµµx,ΣΣΣx)

f(yyy)
(C.33)

It is fulfilled that the obtained conditional distribution is Gaussian too:

f(xxx|yyy) = N
(
xxx|µµµx|y,ΣΣΣx|y

)
where:

ΣΣΣ−1
x|y =

(
ΣΣΣ−1
x +AAATΣΣΣ−1

y AAA
)−1 (C.34)

µµµx|y = ΣΣΣ−1
x|y
[
AAATΣ−1

y (yyy − bbb) + ΣΣΣ−1
x µµµx

]
(C.35)

In addition, the marginal distribution of the random variable YYY is a Gaussian:

f(yyy) = N
(
yyy|AAAµµµx + bbb,ΣΣΣy +AAAΣΣΣxAAA

T
)

(C.36)

The mathematical deduction of these expressions can be found at (Bishop, 2006).
An intermediate interesting result that is achieved during the derivation of the above
equations, is the one that concerns the joint probability of f(XXX) and f(Y |XY |XY |X):

[
f(xxx)

f(y|xy|xy|x)

]
∼ N

([
µµµx

AAAµµµx

]
,

[
ΣΣΣx ΣΣΣxAAA

T

AAAΣΣΣx AAAΣΣΣxAAA
T + ΣΣΣy

])
(C.37)
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C.12 Introduction to the kernel concept

f 1

f 2

f 3

f (x)

x1 x2 x3 xx*

f *

Figure C.4: Example to introduce the concept of the kernel.

A practical case consisting of three points {x1, x2, x3} following a certain function
or model f(x) is to be assumed. A possible representation of these points can be seen
in figure C.4. We wish to find out the model f(x) assuming that the joint distribution of
the three points is a Gaussian distribution as follows:

f1

f2

f3

 ∼ N

0

0

0

 ,
k1,1 k1,2 k1,3

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3


 (C.38)

If f follows a Gaussian distribution, two close values of x should have close values
of f . As indicated in appendix C.10 the covariance captures this similarity correlation
between the three points. An extended concept of covariance could be to assume a
function k(xi, xj) such that k(xi, xj)→ 0 when the similarity between xi and xj is very
small. Instead, k(xi, xj)→ 1 when xi and xj are very similar. The expression k(xi, xj) is
a kernel function. An example of a kernel function can be the radial function:

k(xi, xj) = e−λ||xi−xj || (C.39)

Therefore, equation (C.38) can be written using kernel notation as: f ∼ N (0, k(xi, xj)).
If the dataset D = {(x1, f1), (x2, f2), (x3, f3)} is considered, given a new value of x∗ we
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could estimate its corresponding value of f∗ which is supposed to belong to the same
model that describes the dataset points. Therefore the new joint probability could be
defined from equation (C.38) as:

[
f

f∗

]
∼ N

0,


k1,1 k1,2 k1,3 k1,∗

k2,1 k2,2 k2,3 k2,∗

k3,1 k3,2 k3,3 k3,∗

k∗,1 k∗,2 k∗,3 k∗,∗


 (C.40)

The above matrix can be summarized using the following equations:

KKK =

k1,1 k1,2 k1,3

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3

 ;kkk∗ =

k1,∗

k2,∗

k3,∗

 ; (C.41)

[
f

f∗

]
∼ N

(
0,

[
KKK kkk∗

kkkT∗ k∗,∗

])
(C.42)

This composition can also be seen in this way:[
f∗

f

]
∼ N

(
0,

[
k∗,∗ kkkT∗
kkk∗ KKK

])
(C.43)

In these conditions the probability of obtaining f∗ from the values of f (p(f∗|f) =

N
(
µf∗|f ,Σf∗|f

)
) can be calculated from equation (C.31) and equation (C.32):

µf∗|f = ���*
0

µx∗ + kkkT∗KKK
−1

(
f −��>

0
µx

)
= kkkT∗KKK

−1f (C.44)

Σf∗|f = k∗,∗ − kkkT∗KKK−1kkk∗ (C.45)

Therefore, the most likely value expected for f∗ given a set of f values from a set of
correlated xxx and x∗ variables is given by the expression:

µf∗|f = E(f∗) = kkkT∗KKK
−1f (C.46)
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Table D.1: MX28T motor specifications. These data have been provided by the motor manufac-
turer.

Item Specifications

MCU ARM CORTEX-M3 (72 [MHz], 32Bit)

Position Sensor
Contactless absolute encoder (12Bit, 360 [°])
Maker : ams(www.ams.com), Part No : AS5045

Motor Coreless(Maxon)
Baud Rate 8,000 [bps] ∼4.5 [Mbps]
Control Algorithm PID control
Resolution 4096 [pulse/rev]
Backlash 20 [arcmin] (0.33 [°])

Operating Mode
Joint Mode (0 ∼360 [°])
Wheel Mode (Endless Turn)

Weight MX-28AR/AT : 77 [g], MX-28R/T : 72 [g]
Dimensions (W x H x D) 35.6 x 50.6 x 35.5 [mm]
Gear Ratio 193 : 1

Stall Torque
2.3 [Nm] (at 11.1 [V], 1.3 [A]
2.5 [N.m] (at 12 [V], 1.4 [A])
3.1 [Nm] (at 14.8 [V], 1.7 [A])

No Load Speed
50 [rev/min] (at 11.1 [V])
55 [rev/min] (at 12 [V])
67 [rev/min] (at 14.8 [V])

Radial Load 1 30 [N] (10 [mm] away from the horn)
Axial Load 1 15 [N]
Operating Temperature -5 ∼+80 [°C]
Input Voltage 10.0 ∼14.8 [V] (Recommended : 12.0 [V])
Command Signal Digital Packet

Protocol Type
TTL Half Duplex Asynchronous Serial Communication with 8bit, 1stop, No Parity
RS485 Asynchronous Serial Communication with 8bit, 1stop, No Parity

Physcial Connection RS485 / TTL Multidrop Bus
ID 254 ID (0 ∼253)
Feedback Position, Temperature, Load, Input Voltage, etc

Material
Full Metal Gear
Engineering Plastic(Front, Middle, Back)
1 Metal(Front)

Standby Current 100 [mA]
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Table D.2: AX12A motor specifications. These data have been provided by the motor manufac-
turer.

Item Specifications

Baud Rate 7843 bps ∼1 Mbps
Weight 53.5g(AX-12, AX-12+), 54.6g(AX-12A)

Dimensions (W x H x D)
32mm x 50mm x 40mm
1.26 X 1.97 X 1.57 [inch]

Resolution 0.29 [°]

Running Degree
0 [°] ∼300 [°]
Endless Turn

Motor Cored
Gear Ratio 254 : 1
Stall Torque 1.5 N*m (at 12V, 1.5A)
No Load Speed 59rpm (at 12V)
Operating Temperature -5 [°C] ∼+70 [°C]
Input Voltage 9.0 ∼12.0V (Recommended : 11.1V)
Command Signal Digital Packet

Protocol Type
Half Duplex Asynchronous Serial Communication
(8bit, 1stop, No Parity)

Physical Connection TTL Level Multi Drop Bus
ID 254 ID (0∼253)
Feedback Position, Temperature, Load, Input Voltage, etc
Gear Material Engineering Plastic(Full)
Case Material Engineering Plastic(Front, Middle, Back)

Table D.3: Ueye XS camera specifications. These data have been provided by the camera
manufacturer.

Item Specifications

Sensor type CMOS color
Shutter System Rolling Shutter
Characteristic Linear
Sensor reading method Progressive scan
Pixel class QSXGA
Resolution 5.04 Mpx
Resolution (hxv) 2592 x 1944 Pixel
Aspect ratio 4:3
DAC 10 bit
Color Depth 8 bit
Optical sensor class 1/4”
Optical surface 3.629 mm x 2.722 mm
Diagonal of optical sensor 4.54 mm (1/3.53”)
Pixel size 1.4 µm
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Table D.4: Rapicam v1.0 camera specifications. These data have been provided by the camera
manufacturer.

Specification Camera Module v1

Size Around 25 × 24 × 9 mm
Weight 3g
Still resolution 5 Megapixels
Video modes 1080p30, 720p60 and 640 × 480p60/90
Linux integration V4L2 driver available
C programming API OpenMAX IL and others available
Sensor OmniVision OV5647
Sensor resolution 2592 × 1944 pixels
Sensor image area 3.76 × 2.74 mm
Pixel size 1.4 µm × 1.4 µm
Optical size 1/4”
Full-frame SLR lens equivalent 35 mm
S/N ratio 36 dB
Dynamic range 67 dB @ 8x gain
Sensitivity 680 mV/lux-sec
Dark current 16 mV/sec @ 60 C
Well capacity 4.3 Ke-
Fixed focus 1 m to infinity
Focal length 3.60 mm +/- 0.01
Horizontal field of view 53.50 +/- 0.13 degrees
Vertical field of view 41.41 +/- 0.11 degrees
Focal ratio (F-Stop) 2.9
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