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Every day you may make progress.  

Every step may be fruitful.  

Yet there will stretch out before you an ever-lengthening,  

ever-ascending, ever-improving path.  

You know you will never get to the end of the journey.  

But this, so far from discouraging,  

only adds to the joy and glory of the climb. 

 —Winston Churchill 
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ABSTRACT 

 

The development of a novel drug is a long and winded process plagued with challenges 

and pitfalls. Among these, the lack of toxicological or safety knowledge for targets is one 

of the most significant challenges in drug development [1]. In other words, it is very 

difficult to know a priori if the targeting of a protein by a drug will result in the so-called 

undesirable adverse drug reactions (ADRs). Indeed, clinical trials have a high incidence 

of drug attrition due to the severity of ADRs associated with toxicity, which drives up 

costs and limits the development of new therapies for emerging targets [2].  

 

To reduce the risk associated with the development of novel drugs, various approaches, 

including the use of animal models and in vitro toxicology studies, have been used in 

past years [3] [1]. However, in vitro models have high maintenance costs and ethical 

concerns, not to mention that they are not always applicable to human biology [4]. As 

a result, researchers were forced to adapt to new strategies, and the vast majority of 

recent advances are built on computational frameworks.  

The new methodologies applied include various examples of machine learning and deep 

learning, which have been used in target-based predictions, analyses of the underlying 

protein network and interactions, and quantitative structure–activity connections 

studies. The study of protein-protein interactions related to drug discoveries, in 

particular, has attracted important attention in recent years and piqued pharmaceutical 

companies' interest. Indeed, high-coverage protein interaction maps can be used to find 

feasible therapeutic targets from which to develop or repurpose medications (as in the 

case of the COVID-19 drug race), as well as to find specific interactions that may 

contribute to the beginning of drug toxicity as this thesis will focus.  [5] [6] [7] 

 
While methodologies and mechanisms for linking candidate drugs with ADRs are well 

established, the association of ADRs with protein targets is less so but still studied. Two 

recent examples of the latter are the ADReCS-Target database [6], a recent study on 

ADRs generated from clinical trials and post-marketing reports [8] and a peculiar work 

of Kuhn and colleagues [9].  
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The lack of a protein - focused method to assess drug toxicity is one of the main gaps 

that my thesis aims to fill, starting from standardizing the link between ADRs and 

protein targets, in the hope that this information may be used to cut the time and costs 

of pre-clinical studies. As previously stated, there is no clear methodology for obtaining 

ADR-target data; however, this information can be retrieved using drugs as a connecting 

element to identify the link between ADR and proteins. In theory, if drug X produces 

ADR Y and drug X interacts with protein Z, then protein Z is linked to ADR Y. This 

simple assertion, however, is incorrect. 

 

As Kuhn and colleagues demonstrated, most drugs bind to groups of pharmacologically 

similar proteins, such as members of the same protein family [9]. While only one of the 

targets is likely to be responsible for a specific ADR, a direct Target–ADR relationship, 

such as the one used in this oversimplified model, would link each target to every 

possible ADR of the same drug, leading to false positives. To avoid this, the relationship 

must be statistically evaluated, and Kuhn et al. propose a method for identifying 

statistically significant links between ADR and proteins using drugs as connecting 

factors [9]. 

 

Using this prior knowledge, I created the T-ARDIS (Target-Adverse Reaction Database 

Integrated Search) database [10], which attempts to demystify the ADRs-protein targets 

landscape. Since T-ARDIS provides a direct link between proteins and ADRs, the 

question arose as to whether this information can be used to predict potential ADRs 

linked to proteins. The answer was the development of DocTOR (Direct fOreCast Target 

On Reaction – [11]), a target-centric prediction method that uses T-ARDIS information 

to train a combination of machine-learning classifiers to predict whether the 

modulation of a given protein is likely to result in ADR. In some way, all of the 

measurements used in DocTOR exploit network–based information, and thus include 

elements that are intrinsic not only to the protein but also to their associations. 

The accuracy of the obtained models justified their use in identifying problematic 

protein targets at the individual ADR level as well as across a group of related ADRs 

aggregated into common system organ classes. 
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The development of DocTOR led naturally to the final part of my thesis that dealt with 

understanding the molecular basis of the relationship between ADRs using information 

of protein targets underlying such ADRs. The SONG (Side effect On Network Graph) 

analysis allowed the study of relationships between ADRs condensing the vast ADR-

target landscape into a novel network called "Adverse Reactome." As the name might 

suggest, this network translates the ADRs identified by T-ARDIS as nodes and the 

protein shared by the latter as edges. Using a clustering method to extract the relevant 

association of nodes and targets, this approach may be able to shed light on the possible 

role of ADRs associations and the molecular basis of ADRs emergence by extrapolating 

the enriched functions of the identified cluster's proteins.  

All of this work is devoted to assist researchers and pharmaceutical companies in their 

pursuit of safer and more effective drugs.  
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RESUM 

 

El desenvolupament d'un nou fàrmac és un procés llarg i sinuós ple de reptes i esculls. 

Entre aquests, la manca de coneixements toxicològics o de seguretat de les proteïnes és 

un dels reptes més importants en el desenvolupament de fàrmacs [1]. En altres paraules, 

és molt difícil saber a priori si modulació d'una proteïna per part d'un fàrmac donarà 

lloc a les anomenades reaccions adverses als medicaments (RAM). De fet, és en etapes 

avançades dels assaigs clínics que deguda a la gravetat de les RAM part del fàrmacs que 

s’estan investigant s’han de abandonar augmentant d’aquesta manera els costos i 

limitant el desenvolupament de noves teràpies [2]. 

 

Per reduir el risc associat al desenvolupament de nous fàrmacs s’utilitzen diferents 

estratègies com l'ús de models animals i estudis de toxicologia in vitro [3] [1]. Tanmateix, 

els models animals tenen uns costos de manteniment elevats i problemes de tipus ètics, 

sense oblidar que no sempre són aplicables a la biologia humana [4]. Com a resultat, els 

investigadors s’han vist obligats a adaptar-se a noves estratègies i la gran majoria dels 

avenços recents es construeixen en marcs de noves eines computacionals. Aquestes 

noves eines incloent mètodes basats en intel·ligència artificial i s'han utilitzat en 

prediccions basades en anàlisis de la xarxa i interaccions de proteïnes subjacents així 

com estudis quantitatius de estructura-activitat a fàrmacs. L'estudi de les interaccions 

proteïna-proteïna relacionades amb els descobriments de fàrmacs, en particular, ha 

tingut una atenció important en els últims anys i ha despertat l'interès de les empreses 

farmacèutiques. De fet, els mapes d'interacció de proteïnes es poden utilitzar per trobar 

dianes terapèutiques a partir dels quals desenvolupar o reutilitzar medicaments, com 

en el cas més recent durant la pandèmia de la COVID-19 .  [5] [6] [7]. 

 

Tot i que les relacions entre els fàrmacs candidats amb les RAM s’han estudiat 

extensivament, l'associació de les RAM amb dianes terapèutica, es a dir les proteïnes,  es 

quelcom que està menys desenvolupat. De fet hi ha molts pocs recursos disponibles 

comptant entre elles base de dades ADReCS-Target [6], un estudi recent sobre RAM 

generades a partir d'assaigs clínics i informes posteriors a la comercialització [6] i un 
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treball realitzat de Kuhn i col·legues [9]. La manca doncs d'un mètode centrat en 

proteïnes per avaluar la toxicitat dels fàrmacs és una de les principals qüestions i fites 

d’aquesta tesis. Hi ha tot un seguit de bases dades que tenen informació sobre la relació 

entre fàrmacs i RAM. Per altre banda hi han tot un seguit de recursos que classifiquen 

informació sobre proteins i els fàrmacs associats a elles. Per tant, indirectament i en 

teoria, si el fàrmac X produeix el RAM Y i el fàrmac X interacciona amb la proteïna Z, 

aleshores la proteïna Z està vinculada al RAM Y. Aquesta simple afirmació, però, és 

incorrecta. Com s’ha demostrat, la majoria de fàrmacs uneixen a grups de proteïnes 

farmacològicament similars, com ara membres de la mateixa família de proteïnes [9].  

 

Tot i que és probable que només una ó poques proteïnes d’aquesta família sigui 

responsable de la RMA, una relació directa entre proteïna i RMA, com la que utilitza en 

aquest model simplificat, vincularia cada proteïna a totes les possibles ADR del mateix 

fàrmac, donant lloc a falsos positius. Per evitar-ho, la relació s'ha d'avaluar 

estadísticament, i Kuhn et al. Varem proposar un mètode per identificar associations 

estadísticament significatius entre RMA i proteïnes utilitzant fàrmacs com a factors de 

connexió [9].Utilitzant diferent recursos i applicant mètodes estadístics de validació, 

vaig crear la base de dades T-ARDIS (Target-Adverse Reaction Database Integrated 

Search) [11]. T-ARDIS proporciona un enllaç directe entre proteïnes i RMA que han estat 

validades estadísticament.  

 

La següent pregunta que vaig abordar a la meva tesis va ser si la informació continguda 

a T-ARDIS es podia utilitza per predir associacions entre RMA i proteïnes . La resposta 

va ser el desenvolupament de DocTOR (Direct foreCast Target On Reaction – (Galletti 

et. Al – [11])). DocTOR està basat en intel·ligència artificial i prediu si la modulació de 

una proteïna pot donar lloc a RMA.    La informació utilitzada per DocTOR utilitzen 

dades derivades de l’estudi de xarxes d’interacció entre proteïnes de manera que més 

enllà de utilitzar elements intrínsecs també utilitza elements sistèmics. La precisió dels 

prediccions obtingudes per DocTOR justifica el seu ús per identificar dianes de 

proteïnes problemàtiques a nivell RMA individual, així com en un grup de RAM 

agregades en classes d'òrgans del sistemes cos humà. 
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Finalment, el desenvolupament de DocTOR va conduir naturalment a la part final de la 

meva tesi que tractava d'entendre les bases moleculars de les relacions entre RAMs 

utilitzant informació de proteïnes dianes subjacents a aquestes. L'anàlisi SONG (Side 

effect On Network Graph) va permetre l'estudi de les relacions entre RMAs condensant 

l’ampli ventall de tipus de RAM en una nova xarxa anomenada "Adverse Reactome". Com 

el seu propi nom podria indicar, el Adverse Reactome es una xarxa de RMA connectada 

per les proteïnes responsables d’aquest RMAs. L’estudi d’aquest network mitjançant 

estudis de clusterització ha permet extreure conjunts d’associacions rellevant entre 

RMAs i donar pistes per aclarir el possible paper de les associacions de RMAs i les bases 

moleculars de l'aparició de RMAs. A més a més, ha permet extrapolar les funcions 

enriquides d’aquest clústers situant-los en el context global cel·lular. 
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1.1 – Incipit 

 

In this first chapter, I will present all of the fundamental concepts required to 

comprehend the underlying logic of the developed methods, as well as an extensive 

background and literature review necessary to comprehend all of the implications that 

a simple phrase like "I took an Aspirin and now I have stomach ache" may have.  

 

First, I will outline the entire drug discovery process, highlighting the bottlenecks and 

difficulties of this lengthy and costly process. Then I'll focus on network biology, which 

will provide us with the foundation to understand that the proteins involved in our 

research are not single entities, but rather an intricate intertwined system. Following 

that, I will expose all of the databases used as the foundation of my work in this thesis, 

beginning with the drug-ADRs and drug-target sources. The final sections of this 

chapter will be devoted to the statistical theory supporting my methods, ranging from 

clustering and statistical validation approaches to the machine learning theory of the 

predictors used in this study. 
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1.2 - The drug discovery process 

 

The process of bringing a new drug to market is complex and time-consuming, costing 

pharmaceutical companies an average of $2.6 billion and ten years of R&D. [12]. This 

procedure is divided into stages, each with its own set of challenges, deadlines, and costs 

(figure 1). This section will provide a brief overview of the drug discovery process, 

beginning with the "target discovery" phase, which involves in-vitro research to identify 

characteristic molecules in specific diseases, such as nucleic acid sequences or proteins 

that regulate gene expression or intracellular signaling. As obvious as it may appear, not 

every condition-related protein can be chosen as a drug target, and extensive research 

must be conducted before deciding on which protein to focus to ensure that the chosen 

one is "druggable," or capable of being controlled by an external chemical. [13] (Figure 1 

- point A). 

 

After identifying a suitable target, the next step is to develop a compound that can 

interact with the chosen molecule. Conducting careful and precise target validation 

experiments is critical for the success of drug development during this stage, which is 

known as "Lead compound identification".[12] (Figure 1 - point B). This phase entails 

screening experiments to identify naturally occurring molecules that could be 

repurposed as drugs, as well as the development of synthetic compounds that can be 

specifically designed to target the selected molecule while not interfering with other 

cellular processes. 

 

The next stage, or “Lead Optimization”, involves preliminary safety tests performed in 

cell culture to test the drug's mechanism of action [14]. The pharmacokinetics and 

pharmacodynamics of the drug — how it is metabolized and how it affects various 

bodily functions — are also investigated at this step (figure 1 - point C). Following the 

identification of the candidate drug and preliminary testing of its mechanism, the 

latter's safety and efficacy must be improved while dealing with the major issue of off-

target binding. Off-target binding is one of the most serious problems in drug 

development. It refers to the effects that can occur when a candidate drug interacts with 
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molecules other than those for which the drug was designed to bind. This can be 

avoided by computationally redesigning the candidate drugs so that they do not interact 

with molecules other than the target, but at the expense of increased research time.  [15].  

 

While investigating the event of off-target binding, the optimal dosage and 

administration strategy (oral, injectable) are also explored in this phase using two- and 

three-dimensional cell culture platforms and later integrated with preliminary in vivo 

testing to determine if the drug is safe for human trials and performs as expected [14] 

(Figure 1 - point D). To ensure the drug's potential success, preclinical trials must be as 

accurate as possible. At this point, companies have already spent an average of $500 

million on R&D, and a drug failure will cause significant economic harm. As a result, 

more precise toxicology research is conducted using animal models that mimic human 

conditions, such as knockouts or genetically engineered mice. [16] (Figure 1 - point E). 

 

On positive pre-clinical results, before human testing can begin, an Investigational New 

Drug (IND) application must be submitted to the national medicine agency. This 

document typically contains critical information such as toxicity data, manufacturing 

process information, or clinical trial protocols that are being developed for the intended 

human trials.  

Clinical trials may begin following the acceptance of the IND, [17] starting with the test 

of the new drug on 100 or fewer healthy patients to determine the medication's relative 

safety. Simultaneously, various carcinogenicity tests are carried out on Tg rasH2 mice 

[16]. In particular, this animal model is especially helpful in reducing the time required 

for carcinogenicity testing, cutting it from two years to six months. Following positive 

phase I results, the number of patients is increased to 100-500, and the effective efficacy 

of the drug is investigated. 

 

Phase II is designed to assess a drug's efficacy on the illness together with the 

appropriate dosage and frequency of administration. The possibility of serious side 

effects is being closely monitored at this stage, as well as in the next phase, where the 

number of patients will be increased to 1,000-5,000 in order to collect statistically 

significant results at population level. Only about 12% of candidate drugs make it 
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through this stage, which is critical for determining the overall safety and efficacy of the 

new compound. Following the successful completion of clinical studies, a New Drug 

Application (NDA) is submitted to government agencies for review and possible 

approval. The purpose of this document is to demonstrate the drug's safety and efficacy 

based on clinical trial results. (Figure 1 - point F) 

 

Once the NDA is approved, the novel drug is made available to patients, but it is still 

monitored in the general population for any side effects (Figure 1 - point G). This process 

is known as Pharmacovigilance. [17]. Unlike all the information acquired during clinical 

trials, pharmacovigilance data is obtained from patients and healthcare providers, as 

well as other sources such as medical literature and case studies. Pharmacovigilance is 

critical in monitoring drug efficacy and potential complications in the population, as 

seen in the well-known case of thalidomide. [18] 

 

 

 

Figure 1. Drug development process - different steps of the whole drug discovery 

process, from identification of target to post release monitoring. The whole drug 

discovery process can be divided in three macro-steps, the first relates to the Research 

& Development part (dark blue, points A-B-C), the second consist in the pre-clinical 

trials (light blue, points D-E), the third step consist in the human clinical trials (light 

green, point F) and finally the post-marketing surveillance (dark green, point G). 
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1.2.1 - Adverse event definition 

 

Adverse drug events (ADE), side effects (SE) and adverse drug reactions (ADR) are not 

the same thing [19]. In fact, these three words are used interchangeably, despite the fact 

that they have completely distinct connotations (figure 2). An adverse drug event (ADE) 

is defined as "a harm caused by the use of a drug." The term ADE, according to this 

definition, comprises both harm produced by the drug (adverse drug reactions-ADR 

and overdoses) and harm caused by the drug's use (dose reductions and drug therapy 

termination). 

 

An adverse drug reaction (ADR) is defined as a "noxious and unanticipated response to 

a drug that occurs at therapeutic levels, diagnosis, or therapy, or for the alteration of 

physiologic function". In other words, an adverse drug reaction can be defined as “harm 

induced directly by a drug at regular doses and during normal use”, indicating a causal 

relationship between drug and an adverse drug reaction. 

Finally, a side effect is an unwanted consequence that occurs independently of the dose 

when a medicine is taken. Unlike adverse drug events or adverse drug reactions, side 

effects are usually anticipated by the physician, and the patient is informed of the 

potential side effects while on therapy. Some medications are even employed because 

of their negative effects, such as Mirtazapine, which is used in anorexic individuals since 

it has the potential to produce weight gain. In the following sections and discussion, we 

will always refer to adverse drug reactions (ADRs). 
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Figure 2. Side effect (SE), Adverse drug event (ADE), Adverse drug reaction (ADR) 

definition. Side Effects include all harmful events occurring during treatment with a 

drug without the necessity of a causal link between the drug and the reaction. If the use 

of medication is causal for the reaction, the condition is called an adverse drug event. A 

sub form of adverse drug events are adverse drug reactions that are triggered by the 

drug itself despite its appropriate dosage. (Adapted from the work of [19] - figure 1). 
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1.3 – Network Biology 

 

A truly integrated framework investigating the interactions between all bio-molecules 

is essential to completely comprehend the functioning of the human organism. Since 

cellular functions are so intertwined, network analysis is well suited to exploring their 

molecular mechanisms. When applied to biochemical processes, the network's nodes 

may represent proteins, genes, or even illnesses, while the network's edges reflect the 

interactions between these biological entities. 

 

There are several forms of network representations used to investigate human biology: 

● (i) gene regulatory networks: in which nodes are transcription factors and genes, 

while edges represent regulatory connections (Figure 3 A)  

 

● (ii) protein interaction networks: where nodes represent proteins and edges 

represent physical interactions (Figure 3 B);  

 

● (iii) Metabolic networks: networks in which nodes represent metabolites and 

proteins and edges are metabolic activities and finally  

 

● (iv) Disease networks: networks in which nodes represent illnesses and edges 

reflect different kinds of interactions such as genetic variants. 

 

The study of network biology tries to precisely depict biological networks and analyze 

them in order to understand the behavior of a biological system. In the sections that 

follow, I will go through the features of networks and how they might help us better 

understand various biological systems.  
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1.3.1 - Definition of network 

 

A network or graph (G) can be described as a pair G = (V, E), where V is a set of nodes 

(or vertices) and E is a set of paired nodes, whose members are referred to as edges (or 

links) (figure 3). A network may also be defined as a structure that has a set of 

components, some of which are connected. The network's elements are known as nodes, 

and the connections between them are known as edges. As mentioned, in biological 

systems, nodes might represent proteins, genes, or even illnesses, while edges indicate 

the connections between these biological entities.  

1.3.2 - Types of networks 

 

Networks can have different classifications depending on the directionality of the 

relationship represented by the edges. When interactions in a network have a definite 

direction that travels from a source to a destination the network is said to be directed 

and the edges in this case are represented by arrows (Figure 3 A). In contrast, a network 

is undirected when the interactions do not have a definite direction. In this case edges 

are represented by lines.  

Protein – protein interaction networks, for example, are usually undirected since their 

edges indicate relationships between proteins, which may not always follow a certain 

order (Figure 3 B). Metabolic networks, on the other hand, are directed since the edges 

reflect metabolic processes that begin with substrates and terminate with products. 

Finally, gene regulatory networks are also directed since they depict how the expression 

of one gene influences the expression of another.  

 

Networks can also be weighted or unweighted based on whether or not additional 

information is assigned to the edges. The edges in an unweighted network are present 

only if a threshold of evidence for the association is met while weighted networks 

present edges in which the weight indicates a specific aspect of the association. Gene 

co-expression networks, for example, are networks in which the nodes are genes that 

are linked by their expression relationship. These networks can be weighted, displaying 
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the relationship between the expression of two genes in the edge weight; or they can be 

unweighted, displaying just the edges that meet a specified association cutoff point.  

 

 

Figure 3. Graphical representation of a gene regulatory network vs. a protein-

protein interaction network. (A) In a gene regulatory network, nodes represent 

genes or proteins and lines between them regulatory interactions. Regulatory 

networks can be defined as directed networks (B) In a protein-protein interaction 

(PPI) network nodes always represent proteins and the connecting lines of physical 

protein-protein interactions. Since the represented interaction is bivalent, a PPI 

network can be defined as undirected. 
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1.3.3 - Network-based metrics 

1.3.3.1 - Definition of network path 

 

A network path is a connection between two nodes that follows a set number of edges. 

The number of edges involved in the path determines the path's length. A path (P) in 

an undirected graph can be defined mathematically as a sequence of nodes (v): 

 

𝑷 = (𝒗 𝟏 ,… ,𝒗 𝒏 )   Eq. 1 

 

We can also define the concept of shortest path and characteristic path length. The first 

is the path with the fewest edges connecting them (Figure 4), the second equal to the 

mean shortest path length among all network nodes. The latter can be computed as: 

 

𝑎 = ∑
𝑑(𝑠,𝑡)

𝑛(𝑛−1)𝑠,𝑡 ∈ 𝑉    Eq. 2 

 

Where V is the set of nodes in the entire network of size n, and d(s, t) is the shortest 

path between nodes s and t. 

 

Figure 4. A network in which the shortest path between the dark circled nodes has a 

length of four. 
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The shortest path provides valuable information on the relationship between a specific 

node and the rest of the network, making this measurement critical in network research. 

One of the main applications of this measurement relates to identification of disease-

associated proteins. As I’ll explain in the next chapters, disease-associated proteins tend 

to cluster in topological proximity of the network forming the so-called disease modules 

[20] 

 

1.3.3.2 - Centrality measurements 

 

By attributing scores to nodes and edges, centrality measurements provide insight about 

their relevance. Centrality metrics are employed in systems biology to determine nodes 

that play critical roles in biological processes. There are several sorts of metrics that 

account for network centralities and provide varying degrees of priority to the highest 

scoring nodes such as Degree centrality, closeness and betweenness centrality.  

Nevertheless, different metrics of centrality tend to be directly proportional with one 

another, and it has also been demonstrated that hubs tend to have high centrality 

tending to be associated with highly conserved biological functions. [21] 

 

Degree centrality (Figure 5 A, B) refers to the number of edges associated with a node. 

It is defined as  

 

𝐶𝐷(𝑣) = 𝑑𝑒𝑔(𝑣)    Eq .3  

 

Where deg(𝑣) is the degree of the node 𝑣. The degree centrality can be normalized by 

dividing the maximum possible degree in a graph by n − 1 where n is the number of 

nodes in the network under analysis. 

 

The Closeness centrality (Figure 5 C) is computed by calculating the shortest-path 

distance between nodes. In particular, this measure relates how close a node is to the 

rest of the network's nodes.  It can be described as follows:  
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𝐶(𝑢) =
𝑛−1

∑ 𝑑(𝑣,𝑢)𝑣=1
𝑛−1

    Eq. 4 

 

 

Where the shortest-path distance between nodes v and u is defined d(v, u), and the total 

number of nodes in the network is n. This measure is of particular importance since it 

represents the efficiency with which the network's nodes exchange information. 

 

Finally, the betweenness centrality (Figure 5 D) shows the frequency with which the 

node appears in the network's collection of shortest paths. A node's betweenness 

centrality v can be evaluated as:  

𝐶𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡    Eq. 5 

 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 to node 𝑡 and 𝜎𝑠𝑡(𝑣) is the 

number of these shortest paths that passes through 𝑣. In other words, it counts the 

number of times the node of interest appears among all pairs of nodes' shortest 

pathways. Betweenness centrality can be a powerful measure for predicting "bridge" or 

"link" nodes that connect various network modules.  
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Figure 5. Basic concepts of network centralities. (A) Hubs (connector or provincial) 

are nodes that have a high nodal centrality and can be identified using various metrics. 

(B) The number of node neighbors is used to calculate degree centrality. (C) By 

determining the ratio of all shortest paths in the network that incorporate a given node, 

the betweenness centrality quantifies the node's role as a bridge between disparate 

clusters. (D) Closeness centrality measures how quickly a node in a linked graph can 

access all other nodes; the closer a node is to all other nodes, the more central it is.  
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1.3.3.3 - Network modules 

 

Many forms of biological networks have nodes with similar roles or functions 

interacting with one another, forming so-called modules or communities. This concept 

has been expanded to include proteins which relates to diseases development. [22]. 

Within the interactome, three types of modules can be identified (Figure 6). (A) the 

functional module, a neighborhood of nodes with similar or related functions; (B) the 

disease module, a neighborhood of nodes that contribute to cellular functions whose 

disruption results in a specific disease; and (C) the topological module, a locally dense 

neighborhood that clustering algorithms can identify. 

 

Figure 6.  A sample PPIN is used to demonstrate the concept of disease modules. 

Proteins involved in similar biological processes form functional modules in one or 

more topological modules (A, C). A disease module (B) is a protein subnetwork enriched 

with disease-relevant proteins, such as known disease-associated proteins. 
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As a result, identifying modules in a network can be critical in acquiring a deeper 

understanding of module members' biological significance. There are a number of 

metrics and techniques that may be used to determine the degree of clustering of a 

node. 

 

The clustering coefficient (figure 7), for example, reflects the likelihood that two nodes 

that are linked to each other are also directly connected between them (forming a 

triangle) (Figure 6).  The proportion of feasible triangles in a node's neighborhood is 

measured by its local clustering coefficient, which may be computed as:  

 

𝐶𝑖(𝑣) =
2𝐿𝑖

𝑘𝑖(𝑘𝑖−1)
     Eq. 6 

 

Where i is the node with degree 𝑘𝑖 and 𝐿𝑖  is the number of connections between node 

i's neighbors. 

 

 

Figure 7. Representation of the clustering coefficient and degree. Networks have 

nodes with different values of degree and clustering coefficient. (A) Purple node 

presents both a high degree and clustering coefficients. (B) Purple node with low degree 

and clustering coefficient 
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There are also several approaches for automatically identifying modules in a network. 

These algorithms are often divided into two types. The first group comprises algorithms 

that make use of a priori information about nodes, such as connections that's also 

shared by network modules. These nodes are referred to as seeds. These techniques are 

based on the localization of nodes in the surroundings of the defined seeds, in other 

words topologically closer nodes. Methods that identify modules utilizing community 

structure detection algorithms fall into the second group. These approaches examine 

the network's topology and discover regions that have features attributable to modules, 

such as a high within-edge density of connections.  

 

These module identification methods are frequently used to identify disease modules, 

which are groups of proteins related with the same disease. A disease module can also 

be defined as a cluster of nodes that contribute to cellular functions and whose 

disruption causes a specific disease (Figure 7 B). The identification of disease modules 

has become critical for achieving a comprehensive molecular understanding behind 

diseases [20] [23] [24].Several approaches have been developed to this end in order to 

identify such modules. They are roughly divided into two categories: methods based on 

prior knowledge and ab-initio methods. 

 

Prior-knowledge methods as its name indicates covers approaches that make use of pre-

existing knowledge about disease-related genes (also known as seed genes). In a 

nutshell, these strategies seek proteins that are topologically close to those encoded by 

the seed genes. 

This group is further subdivided into three categories: diffusion-based methods, 

community-finding methods, and network neighbor methods. Diffusion-based 

methods are based on the “message passing” theory, releasing signals (known as 

“random walkers”) from the selected seed nodes to the rest of the nodes of the network. 

The nodes closest to the seeds are more often visited by the signals and so are enriched 

with a higher score. One example of this technology can be found in the GUILD software 

package [25]. The algorithm transmit a signal from the seeds to the rest of the network 

and rank each node based on how quickly the message reaches them while taking many 

network features into consideration. 
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The second group of methods, community-finding, is based on the identification of sub-

networks formed by the selected seeds. If the sub-networks found are statistically 

significant, the algorithms proceed to rank each other node in the network trying to 

find new protein candidates that are topologically and functionally connected to the 

rest of the module of proteins and could be included to the sub-network in 

consideration. An example of these methods is the DIAMOnD algorithm [26]. This 

method utilizes an iterative search pattern to determine the relevance of protein 

interactions in the vicinity of the selected seeds (i.e., if the number of interactions is 

higher than a random expectation). Finally, the last type of methods, also called linkage 

method, assumes that proteins that directly interact with other proteins linked to a 

certain disease are more likely to be linked to the same disease themselves. 

 

Ab-initio methods include module identification algorithms that do not rely on prior 

knowledge, such as previously identified disease-associated proteins. These methods 

rely on community structure detection algorithms, such as algorithms based on the 

maximum clique enumeration problem, to find protein regions with a high within-edge 

density of connections. [27]. Identifying disease modules with high accuracy remains a 

challenge, despite the fact that this is a highly-active field of research. 

 

As part of a community effort to develop in this research area, the Synapse platform 

hosted a DREAM competition in 2018 focused on the blind prediction of disease 

modules from various types of networks [28]. Different types of methods (diffusion state 

distance, kernel clustering, modularity optimization, random-walk-based, and local 

methodologies) were among the top performers in this contest, indicating that no single 

approach was superior to the others. One of the top performers was the diffusion state 

distance approach (DSD), which is an enhanced measure of network closeness between 

pairs of nodes and demonstrates the importance of considering the entire topology of 

the network rather than just the local region. In a nutshell the DSD metric is used to 

define a pairwise distance matrix between all nodes, which is then used by a spectral 

clustering algorithm. Using standard graph techniques, dense bipartite subgraphs are 

identified in parallel and combined into a single set [29]. 
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1.4 - Drug-related databases used in this thesis 

 

In chapter 3, I will introduce the T-ARDIS database, a statistical validated compendium 

of drug’s target – Adverse reaction association. The creation of this database relied on 

the exploitation of different pharmacovigilance resources. Pharmacovigilance, as 

previously explained, is the study of the effects of therapeutic products after they have 

been made accessible and marketed to the general public, with the objective of finding 

potentially unreported or under-reported adverse events. Only after a drug has passed 

phase III and is used by the general public in a non-clinical context, the most 

comprehensive profile of its side effects can be generated [30]. One of the major 

reporting bodies for such adverse reactions is the FAERS database (FDA Adverse Event 

Reporting System) [31] together with its Canadian sister database MEDEFFECT [32] and 

the European EMA [33]. T-ARDIS will retrieve drug-ADRs information from such 

repositories together with more reliable resources such as SIDER [34] and OFFSIDES 

[35]. At the same time, databases that compile information on drug – protein 

associations will be mined to extract drugs affinities and targets. In particular, this 

category includes STITCH [36] and drug-target commons [37]. In the next subchapter I 

will explain in detail the databases used and the type of information acquired. 

 

1.4.1 - Adverse reaction terminology database 

 

The Medical Dictionary for Regulatory Activities (MedDRA) is a vocabulary that 

contains over 10,000 medical terms organized in a hierarchical structure. The MedDRA 

nomenclature is characterized by five layers from the most specific (LLT) to more 

abstract concept (SOC) (Figure 8) [38]. MedDRA is constantly updated as new medical 

concepts are introduced or modified. The version adopted in this thesis is the 25.0, 

released on 05/2022. 

 

The highest-level layer of MedDRA, 'System Organ Class' (SOC), comprised 27 terms in 

this version, whereas the lowest level layer, 'Lowest Level Term' (LLT), contained almost 
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80,000 terms. The highest-level layer (SOC) contains the most generic concepts, while 

the terms become more specialized with each layer. The 'Preferred term' (PT) is the 

term typically used in all the drug-ADRs databases to label adverse reactions, mapping 

almost 24.000 conditions. The most specific term (LLT) may include synonyms or 

alternate spellings of the PT, as well as the PT itself. Every PT is primarily assigned to 

one SOC but may also be assigned to numerous additional SOCs on a secondary basis 

(e.g., the PT "Asthma" is identified under its primary SOC "Respiratory, thoracic, and 

mediastinal illnesses" (SOC), but also as a secondary SOC "Immune system disorders" 

(SOC)). Before using this data, a couple of mapping procedures are applied to avoid 

redundancy, such as using only PT as discerning elements for the ADRs and considering 

only primary SOCs associated with the single PT in analysis. 

 

 

Figure 8. The MedDRA 5-level hierarchy demonstrated by using 'common cold' 

as an example (adapted from [38] - Figure 1). 
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1.4.2 - Drug – Adverse Event Databases 

1.4.2.1 - FAERS 

 

As a global reporting organization, the Spontaneous Reporting System is a tangle of 

nomenclature and protocols from many hospitals and countries around the world. The 

FDA is severely hampered by the requirement to standardize and sanitize adverse event 

data due to the variability of the data [31]. Since the majority of reports are filed in free-

text format, text mining became a major issue in collecting and parsing this information. 

Hiring developers or purchasing products to perform text mining can significantly 

increase the cost of a project, especially when combined with the limited nature of data 

and the need to condense report information to no more than one-word responses 

across multiple variables such as sex, date, product, and so on. Furthermore, without a 

defined list of labels shared with all event reporters, drug names can be reported in a 

variety of formats, including generic, brand, abbreviation, and non-standard nouns.  

The openFDA API has addressed this issue by introducing "openfda" fields, which 

provide a standardized version of these field variables [39]. 

 

The openFDA makes use of a multifaceted URL, which may be studied more directly 

from the site. It is possible to get specific endpoint information such as Drug Product 

Labeling, Device Adverse Events, and the NDC Directory, with other relevant data. 

Unfortunately, only one drug at time may be processed, making the use of this utility 

not suitable for my research. 

T-ARDIS, on the other hand, relied on the direct interaction of FAERS quarterly data 

which the organization collected from 2004. The quarterly data files, which are available 

in ASCII or SGML formats, contain different information such as demographic and 

administrative data, drug bureaucratic information, adverse reactions information, 

patient outcome and finally information on the source of the reports.  In total FAERS 

reports more than 67,000 labeling for drugs currently on the market (over-the-counter 

and prescription drugs in the United States, including biological therapeutics and 

generic drugs) and more than 24 million reports on negative side effects since 2003 
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(Figure 8 - shorturl.at/dnrsL). Direct access to this large wealth of information is 

difficult, necessitating several filtering procedures explained in the T-ARDIS chapter. 

 

 

Figure 9. Number of adverse event reports received by FDA for drugs and 

therapeutic biologic products on 03/2022. This data includes the direct voluntary 

reports submitted through the MedWatch program by consumers and the mandatory 

reports from manufacturers. At the moment more than 24 million reports are present.  

 

1.4.2.2 - MEDEFFECT 

 

The Canada Vigilance Program is a post-market surveillance program that gathers and 

evaluates reports of suspected adverse drug reactions (ADRs) to health products sold in 

Canada. This program allows Federal Regulators to track the safety profile of health 

products after they've been approved for sale, ensuring that the benefits continue to 

outweigh the risks. 

Since 1965, the Canada Vigilance Program has been collecting complaints of suspected 

ADRs. Health consumers and healthcare professionals (HCPs), as well as market 

authorization holders (MAHs) who are required to submit reports under the Food and 

Drugs Regulations, voluntarily submit these reports to Health Canada [32]. The Canada 

Vigilance Program Online Database, MEDEFFECT, contains approximately 225,000 

suspected adverse reaction reports that have occurred in Canada since 1965, allowing 

health consumers, HCPs, and MAHs to see the sorts of adverse responses that have been 
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reported to Health Canada [32] The database is updated four times a year to incorporate 

new data which contains suspected adverse reactions to Canadian-marketed health 

items that occur in Canada or North America [32].  

 

1.4.2.3 - SIDER 

 

The SIDER database offers information on marketed drugs as well as adverse drug 

reactions that have been identified. The data is collected from public records and 

product information leaflet [34]. The sample for this research is being gathered from 

three files: "meddra all se.tsv.gz," "meddra all indications.tsv.gz," and "drug names.tsv." 

The names of side effects and indications are copied from the Medical Dictionary for 

Regulatory Activities (MedDRA) [38]. MedDRA refers to the clinical terminology and 

diagnoses that a physician will provide to a patient. To increase the chances of text 

matching potential, these terms are included in both the lower-level term and the 

preferred term. Natural language processing techniques were used to collect adverse 

drug responses and drug pairings from biomedical literature and package inserts for the 

SIDER database. SIDER has been tagged with PubChem and MedDRA identifiers so that 

drug side effects and indications may be tracked immediately. The current version 

(SIDER 4.1) was released on October 21, 2015, matching 139756 Adverse Reaction – Drugs 

pairs. 

 

1.4.2.4 - OFFSIDES 

 

OFFSIDES [35] is a manually curated drug adverse reactions database available at 

http://tatonettilab.org/resources/nsides/. The database contains 438,801 off-label 

effects (those not included on the FDA's official drug label) originating from 1332 

pharmaceutical compounds, as well as 10,097 adverse reactions. On average, 69 "on-

label" adverse events are listed on a drug label. Each medicine had an average of 329 

high-confidence off-label adverse occurrences. For example, the SIDER database, which 

was compiled from medication package inserts, contains 48,577 drug-event 
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relationships for 620 medicines and 1092 adverse events, all of which are included in the 

data mining. OFFSIDES recovers 38.8% of SIDER associations (18,842 drug-event 

associations) from adverse event reports. As a result, OFFSIDES reports connections 

that differ from those found in clinical trials prior to drug approval.  

 

1.4.3 - Drug – target databases 

 

Working with drug-target relationships has proven to be difficult, despite the 

abundance of information available. This is primarily due to a lack of overlap among 

various sources. The data, in fact, is dispersed across multiple databases and 

repositories. This is directly correlated to the fact that drug-target relationships may be 

determined using a plethora of qualitative and quantitative criteria requiring different 

approaches. In vitro experiments have traditionally been used to identify drug-target 

associations. The two main types of experimental procedures usually comprise genetic 

interaction methods, which are based on monitoring gene expression after drug 

application, and direct biochemical and biophysical methods, which are based on 

determining the binding affinity between the target and the drug. 

 

Other techniques may involve different measurements used to determine the intensity 

of the interaction between a medication and its target. Between them, the most applied 

are the inhibition constant (𝐾𝑖), the dissociation constant (𝐾𝑑), the half-maximal 

inhibitory concentration (𝐼𝐶50), and half-maximal effective concentration (𝐸𝐶50). 

Recently, also computational methods such as molecular docking-based methods, 

pharmacophore-based approaches, and machine learning/network-based methods 

have seen widespread application. 

Given this huge number of methods and, consequently, of different repositories, the 

necessity of comprehensive databases arose. Among the most use are the Drugbank 

[40], Matador [41], Therapeutic target database [42], STITCH 5.0 [36] and Drug-target 

commons 2.0 [37] database. The research presented in Chapter 2 relied on Drug-target 

commons 2.0 and STITCH 5.0 that are explained in more detail in the following sections. 
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1.4.3.1 - Drug-target commons 

 

Drug Target Commons (DTC) is a community-driven bioactivity data integration and 

standardized online platform for through mapping, reuse, and analysis of compound–

target interaction profiles (https://drugtargetcommons.fimm.fi/) [37]. End users can 

utilize an application programmable interface (API), database dump, or tab-delimited 

text download options to search, upload, amend, annotate, and export expert-curated 

bioactivity data for further research. DTC version 2.0 offers updated clinical 

development information for the drugs and target gene–disease connections, as well as 

cancer-type indications for mutant protein targets, which are crucial for precision 

medicine. The gene–disease relationships contained in DTC are derived from DisGeNET 

and there are currently 1573 genes linked to 4123 disorders, with 331 514 references 

supporting the connections. Clinical data supports the cancer-type indications for 185 

mutant protein targets gathered from Cancer Genome Interpreter (CGI). The major 

source of bioactivity data in DTC is presently ChEMBL, which is further confirmed by 

the DTC curation team and annotated using the μBAO annotations [37]. Furthermore, 

around 60 000 completely annotated bioactivity values were taken directly from 

scientific publications. The annotation of 204 901 bioactivity data points among 4276 

chemical substances and 1007 different protein targets may finally be found in DTC [37]. 

 

1.4.3.2 - STITCH 

 

STITCH ('search tool for chemical interactions') combines data from metabolic 

pathways, crystal structures, binding assays, and drug-target correlations to create a 

comprehensive picture of chemical interactions [36]. Chemical relationships are 

assessed using extrapolated information from phenotypic outcomes, text mining, and 

chemical structure similarity. STITCH also helps to explore the network of chemical 

relationships, as well as associated binding proteins. The original data sources may be 

traced back to each potential relationship. The database, which shares protein space 

with STRING v10, contains around 9 600 000 proteins and 430 000 chemicals from 2031 

eukaryotic and prokaryotic genomes [36].  
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Manually curated datasets such as DrugBank [40] , GPCR-ligand database (GLIDA) [43], 

Matador [41], the Therapeutic Targets Database (TTD) [42], and the Comparative 

Toxicogenomics Database (CTD) [44], as well as several pathway databases such as the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [45], NCI/Nature Pathway 

Interaction Database[46], Reactome [47], and BioCyc [48], provide a large portion of the 

known interactions stored in STITCH. The datasets of experimentally confirmed 

interactions, such as ChEMBL [49], PDSP Ki Database [50], and Protein Data Bank 

(PDB)[51], are also included in STITCH . 

 

1.4.4 - Proteins and Functional annotation databases  

2.4.4.1 - Gene Ontology 

 

The rapid growth of genomic data has prompted the creation of tools to aid in the 

representation and processing of information on genes, their products, and their roles. 

The Gene Ontology (GO) is one of the most important of these tools. Within the scope 

of the umbrella project OBO (open biological ontologies), GO is being developed in 

combination with a number of biological databases such as FlyBase (Drosophila), the 

Saccharomyces Genome Database (SGD), and the Mouse Genome Database (MGD). 

[52] 

 

The scope of GO is to provide a standardized vocabulary to describe cellular 

components, molecular functions, and biological processes. Actually, GO contains over 

43 thousand GO terms associated with more than 7 million annotations and 1 million 

gene products distributed for over 5 thousand species [52]. Terms are stored in a 

hierarchical structure; in such a manner it is possible to distinguish if one term is more 

general than another or whether the entity defined by one term is a portion of the entity 

denoted by another allowing in deep understanding of functional synergy. GO is divided 

into three disjoint term hierarchies: (i) the cellular component, (ii) the molecular 

function, and (iii) the biological process ontologies. 
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The cellular component terms in GO are the counterpart of anatomy within the medical 

framework. It's designed to help biologists keep track of the physical structure that a 

gene or gene product is linked to. Both the extracellular environment of cells and the 

cells themselves are included in the GO vocabulary. Molecular Function Ontology 

describes the action characteristic of a gene product; terms like ice nucleation, binding, 

or protein stabilization are part of this hierarchy. Finally, biological processes ontology 

describes all those phenomena which are marked by changes that lead to a specific 

result, mediated by one or more gene products. Biological process terms tend to be quite 

specific (i.e., glycolysis) or very general (i.e., death). As one might expect, molecular 

function and biological process terms are strongly intertwined. [52]. The GO terms will 

be widely used during this research as they represent key information on the function 

and relationship of the analyzed proteins. 

 

1.4.4.2 - The KEGG database 

 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a 1995 knowledge-based 

method [45]. KEGG, in particular, employs graphical representation to help understand 

high-order systematic behavior of cells and organisms based on genomic and molecular 

system exploration. KEGG applications range on the different levels of human 

interactome and reactome with particular attention on pathways. Different methods are 

available for each aspect of human biology: 

 

● KEGG GENES: group of gene categories for all fully sequenced genomes and 

some partial genomes, with up-to-date gene function annotations 

● KEGG LIGAND: chemical building block system information for endogenous and 

exogenous chemicals. 

● KEGG PATHWAYS: used to represent molecular relationships and reaction 

networks, such as genetic information processing, environmental information 

processing (signaling), cellular processes and also human diseases. 
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2.4.4.3 The Uniprot database 

 

The Uniprot database [53] is the largest and most complete database for protein 

sequences. The UniProt Knowledgebase, or UniProtKB, is the result of the merger of 

two historical sequence databases: Swiss-Prot and TrEMBL [54]. The first comprises 

"curated" entries, which are protein sequences that have been tested experimentally; 

the second is generated automatically and contains proteins inferred from genomic 

data. Swiss-Prot currently has roughly 550,000 entries, while TrEMBL has around 

195,000,000 (updated at 05/2022). 
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1.5 - Statistical Methods 

 

As the drug – target databases can rely on multiple sources and methods to validate the 

relationship, in the case of drug – adverse reactions it is less clear and thus requires 

statistical methods to assess the significance of associations. Indeed, it is quite critical 

for public health to identify safety signals utilizing huge datasets like FAERS and 

MEDEFFECT. One way to take advantage of this huge mole of data is to statistically 

validate the drug-ADR pairs found. There are several statistical methods available for 

this type of signal detection, including the reporting odds ratio (ROR), the proportional 

reporting ratio (PRR), the multi-gamma Poisson shrinker (MGPS), the Bayesian 

confidence propagation neural network (BCPNN), a Bayesian method based on a new 

information component (IC), the simplified Bayes (sB), or hierarchical models based on 

the Conway–Maxwell–Poisson distribution. Each one of them however is subject to 

different types of confounding factors.  

 

1.5.1 - Likelihood Ratio Test (LRT) Methodology 

 

Among the proposed techniques, the likelihood ratio test-based method (LRT) proved 

to be the most versatile in handling this type of data, managing to control Type-I error 

and false discovery rate (FDR). The LRT approach was firstly proposed by Huang et al. 

[55] and assumes that the number of reports for a drug-adverse event pair follows a 

Poisson distribution. This method was especially designed to find ADR signals for a 

single drug or drug signals for a specific ADR [56]. A likelihood ratio test is a statistical 

test that compares the fit of two models, one of which is the null model and the other 

the alternative model. The likelihood ratio represents how many times more likely the 

data are under one model than the other. This likelihood ratio, or its logarithm, may 

then be used to calculate a p-value or compared to a critical value to determine if the 

null model should be rejected in favor of the alternative model.  
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Thousands of pharmaceuticals products and ADRs are often included in big drug safety 

databases like FAERS and MEDEFFECT, which may be shown as a data matrix with I 

rows (ADRs) and J columns (drugs). The number of instances reported is defined as 𝑛𝑖𝑗 

for each ADR-drug combination (cell (i, j)) in the data matrix. Proceeding with this data 

abstraction, the marginal number of reports for the 𝑖𝑡ℎADR and 𝑗𝑡ℎdrug may be defined 

as 𝑛𝑖.  and 𝑛.𝑗. At this point the grand total number of reports will be defined as 𝑛... The 

resulting table is shown below in table 1. 

 

Table 1. Representation of Drug-ADRs relationships extracted from self-

reporting databases. Each column represents a drug, while each row an ADR. The cells 

contain the number of reports for each drug-ADR pair. 

 

  Drugs 

ADRs  1 … j … J Row 
total 

1 𝑛11 … 𝑛1𝑗 … 𝑛1𝐽 𝑛1. 

2 𝑛21 … 𝑛2𝑗 … 𝑛2𝐽 𝑛2. 

... … … … … … … 

i 𝑛𝑖1 … 𝑛𝑖𝑗 … 𝑛𝑖𝐽 𝑛𝑖. 

... … … … … … … 

I 𝑛𝐼1 … 𝑛𝐼𝑗 … 𝑛𝐼𝐽 𝑛𝐼. 

Column 

total 
𝑛.1 … 𝑛.𝑗 … 𝑛.𝐽 𝑛.. 

 

The IxJ data-matrix may be flattened into 2x2 tables, each corresponding to a single 

ADR, for a single drug J of interest as shown in table 2. 

 

 

Table 2. Single Drug-ADR data extracted from table 1 

 Drug j Other Drugs Row total 

ADR i 𝑛𝑖𝑗 = 𝑎 (𝑛𝑖. − 𝑛𝑖𝑗) = 𝑏 𝑛𝑖. = 𝑎 + 𝑏 

Other ADRs (𝑛.𝑗 − 𝑛𝑖𝑗) = 𝑐 (𝑛.. − 𝑛𝑖. − 𝑛.𝑗

+ 𝑛𝑖𝑗) = 𝑑 

(𝑛.. − 𝑛𝑖.) = 𝑐 + 𝑑 

Column total 𝑛.𝑗 = 𝑎 + 𝑐 𝑛.. − 𝑛.𝑗 = 𝑏 + 𝑑 𝑛.. = 𝑎 + 𝑏 + 𝑐 + 𝑑 

 

Given the definitions on table 2, the 𝐿𝑅𝑖𝑗can be defined as: 
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𝐿𝑅𝑖𝑗 =
(
𝑛𝑖𝑗

𝑛𝑖.
)
𝑛𝑖𝑗

(
𝑛.𝑗−𝑛𝑖𝑗

𝑛..−𝑛𝑖.
)
𝑛.𝑗−𝑛𝑖𝑗

(
𝑛.𝑗

𝑛..
)
𝑛.𝑗     Eq. 5 

 

This function can be easily converted in logarithmic scale using the definition of table 

2.2 as follow: 

 

log𝐿𝑅𝑖𝑗 = 𝑎 ∗ [log(𝑎) − log(𝑎 + 𝑏)]+ 𝑐 ∗ [log(𝑐)− log(𝑐 + 𝑑)]− (𝑎+ 𝑐) ∗

[log(𝑎+ 𝑐) − log(𝑎+ 𝑏 +𝑐 + 𝑑)]     Eq. 6 

 

At this point we can define the maximum likelihood ratio (MLR) as 𝑚𝑎𝑥𝑖𝐿𝑅𝑖𝑗, where 

the maximum is taken over i. However, result more convenient work with its logarithm 

defined as: 

 𝑀𝐿𝐿𝑅 = 𝑚𝑎𝑥𝑖(𝑙𝑜𝑔𝐿𝑅𝑖𝑗).    Eq. 7 

 

The distribution of the MLLR test statistic under the null hypothesis is intractable, 

hence an empirical distribution is obtained using a Monte Carlo approach. Considering 

now the conditional distribution of (𝑛1𝑗, . . . , 𝑛𝑖𝑗)under the sum 𝑛.𝑗, we can define it also 

as a multinomial distribution with parameters 𝑛.𝑗and probabilities (
𝑛1.

𝑛..
, . . . ,

𝑛𝐼.

𝑛..
) or in 

other words as: 

 (𝑛1𝑗, . . . , 𝑛𝐼𝑗)|𝑛.𝑗 ∼ 𝑀𝑢𝑙𝑡 (𝑛.𝑗, (
𝑛1.

𝑛..
, . . . ,

𝑛𝐼.

𝑛..

)).   Eq. 8 

 

The empirical distribution of MLLR under the null hypothesis may now be derived by 

utilizing this multinomial distribution to generate a large number of Monte Carlo 

samples. If the MLLR based on the observed data,  𝑀𝐿𝐿𝑅𝑑𝑎𝑡𝑎, is larger than the threshold 

value of 𝑀𝐿𝐿𝑅0.05 (the upper 5th percentile points of the empirical distribution) the null 

hypothesis is rejected with an alpha=0.05. The ADR associated with MLLR is then the 

most significant signal detected, or in other words the ADR with the largest log LR value. 

In our study, all that was necessary for a drug to be linked to an ADR was for the MLLR 
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to be greater than the threshold. All non-significant associations detected in FAERS or 

MEDEFFECT were discarded.  

 

1.5.2 - Fisher’s exact test methodology for ADR-target pairs 

 

One of the main goals of this research work was to associate drugs target and drugs ADR 

as will be explained in the following chapters. This objective, a part relying on extensive 

data curation, is based also on specific statistical validation of the ADR-target pair 

identified. This statistical significance was calculated following the method proposed by 

Kuhn and colleagues [9]. In a nutshell, the approach computes a contingency matrix for 

each ADR–protein combination and uses Fisher's exact test to get the p-value. The 

method proposed is drug-centric, counting how many drugs present or not the ADR or 

target.  

 

The contingency matrix computed contains the following elements (Figure 10):  

● (i) the number of drugs that presents the given ADR  

● (ii) the number of drugs that binds to the given protein  

● (iii) the number of drugs that presents the given ADR and binds to the given 

protein;  

● (iv) the number of drugs that neither presents the ADR nor binds to the given 

protein  

 

Given the high number of relationships, p-values were corrected for multiple testing 

using the ‘q-value’ module contained in the python package ‘MultyPy’. An ADR–protein 

relationship is accepted if the computed q-value is equal or smaller than 0.05. 
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Figure 10. Schematic representation of Fisher ’s exact test - Set and contingency 

table representation of drugs used for the computation of Fisher exact test. For each 

Target-ADR pair identified the method count: the number of drugs that present the 

given ADR; the number of drugs that bind to the given protein; the number of drugs 

that present the given ADR and bind to the given protein; and the number of drugs that 

neither present the ADR nor bind to the given protein. A p-value is then computed for 

each contingency table. 
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1.6 - Machine Learning Theory 

 

The broad goal of independent automated processes is artificial intelligence (AI). 

Humans are becoming increasingly reliant on Artificial Intelligence in modern life, such 

as quick language processing, malware detection for email, and financial forecast. 

Machine Learning (ML) is a mere tool for developing Artificial intelligence but it’s based 

on a variety of complex and deep analytical methodologies. Prior to the advent of 

machine learning, bioinformatics algorithms and energy functions had to be defined 

manually, which proved difficult for problems such as protein structure prediction given 

the high number of possible variables. [57] [58]. Deep learning and other machine 

learning techniques rapidly became the main tools for such problems, giving their 

ability to learn features of data sets rather than requiring the programmer to define 

them individually. When properly trained, this multi-layered approach allows such 

systems to make sophisticated predictions by combining low-level features to create 

more abstract features, resulting in a more generalized model. 

 

In bioinformatics, machine learning algorithms can be used for prediction, 

classification, and feature selection. Classification and prediction tasks aim to create 

models that describe and distinguish classes or concepts in order to predict possible 

outcomes. Examples of this application are cancer data image recognition or stroke 

diagnosis. [59] [60]. We can define three different types of machine learning based on 

data processing: supervised learning, unsupervised learning, and reinforcement 

learning.  

 

From mapping inputs exploiting a conditional density estimation 𝑝(𝑦𝑖|𝑥𝑖 ,𝐻), the 

supervised learning aims to learn the desired output label.  In this case the training set, 

the data on which the machine learning will acquire information, can be defined as 𝐻 =

{(𝑥𝑖 ,𝑦𝑖)}, 𝑖 = 1,2, . . .𝑁, where  i define the N training sample, 𝑥𝑖 is a N-dimensional 

vector storing the characteristics, or features, of targets such as the size of an image in 

the case of image recognition or analytical values in the case of our biological problem, 

and finally 𝑦𝑖 is a nominal or certain variable. Regression is used to handle simple 
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variable operational issues, whereas classification and pattern recognition are used to 

tackle some variable questions (label prediction of unknown data).  Unsupervised 

learning employs unconditional density estimation to develop a model of a set of data 

samples 𝐻 = {𝑥𝑖}, 𝑖 = 1,2, . . .𝑁, which can be used for decision making, communicating, 

and logic, among other things e.g., clustering methodologies. Finally, Reinforcement 

learning is an effective method for learning behavior in response to reward or 

punishment signals.  

 

Regression, clustering, and classification are the three most common subjects in 

Machine Learning, but in this chapter, we will focus on three different machine learning 

technologies framed in the classification problem. Classification, as previously stated, is 

a supervised learning approach for modeling and predicting categorical variables. In a 

nutshell, the purpose of these algorithms is to learn an x to y mapping form. We can 

distinguish between binary classification and multi-class classification based on the 

number of labels y. For this project we implemented three different binary classifiers, 

Support Vector Machine (SVM), Random Forest (RF) and Neural Networks (NN). 

 

1.6.1 - Support Vector Machine 

 

SVM is a classification algorithm for datasets. An SVM can be described as a hyperplane 

that can reliably distinguish between multiple cases with a maximum margin (Figure 

11). In the case of binary classification, we can distinguish between positive and negative 

labels. A margin can be defined as the distance between the hyperplane and the nearest 

positive and negative sample.  
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Figure 11. Representation of a linear SVM. In the figure are visible the maximum-

margin hyperplane and margins for an SVM trained on two classes of samples. The 

support vectors are samples on the margin. 

 

Mathematically, the binary classification output of a SVM for a linearly separable dataset 

is: 

𝑢 = 𝑤⃗⃗ ⋅ 𝑥 − 𝑏,𝑢 = ±1        Eq. 9 

 

where 𝑤⃗⃗  is a support vector and 𝑥  is an input vector.  

𝐻1and  𝐻2, the nearest points located on the hyperplanes, can be defined as follows: 

 

𝐻1: 𝑤⃗⃗ ⋅ 𝑥 − 𝑏 = 1         Eq. 10 

𝐻2 :𝑤⃗⃗ ⋅ 𝑥 − 𝑏 = −1        Eq. 11 

 

Given the distance formula: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑎𝑥1+𝑏𝑥2+𝑐|

√𝑎2+𝑏2         Eq. 12 

 

the margin m can be defined as follows: 
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𝑚 =
|𝑤⃗⃗ ⋅𝑥 −𝑏|

‖𝑤⃗⃗ ‖2
=

1

‖𝑤⃗⃗ ‖2
       Eq. 13 

 

 

Given the purpose of the binary classification problem, one way to separate the positives 

and negatives is maximizing the margin m as follow: 

 

𝑚𝑎𝑥
𝑤⃗⃗ 

1

‖𝑤⃗⃗ ‖2
         Eq. 14 

 

 

given the defined 𝐻1 (Eq. 10) and  𝐻2 (Eq. 11) the relative constraints are 𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗  ⃗ − 𝑏 ≥

1, 𝑓𝑜𝑟𝑦𝑖 = 1 for positive examples and 𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗  ⃗ − 𝑏 ≤ −1,𝑓𝑜𝑟 𝑦𝑖 = −1 for the negative 

ones. From the combination of the latter, we obtain  

 

𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏) ≥ 1𝑦 ∈ {−1,1}.      Eq. 15 

 

As a result, the maximizing margin can be obtained as follows: 

 

𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

1

2
‖𝑤⃗⃗ ‖2subject to 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏) ≥ 1,𝑦 ∈ {−1,1},∀𝑖  Eq. 16 

 

where 𝑥𝑖⃗⃗  ⃗is the ith training example and 𝑦𝑖⃗⃗⃗  is the label of SVM. At this point, we turn the 

primal function into a Lagrange function using the Lagrange method, 

 

𝐿(𝑤⃗⃗ , 𝑏,𝛼𝑖) =
1

2
‖𝑤⃗⃗ ‖2 + ∑ 𝛼𝑖[1− 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏)]𝑛

𝑖=1   Eq. 17 

 

Taking in consideration Eq. 16 we may obtain the definition of the Primal Problem as  

𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

𝐿(𝑤⃗⃗ , 𝑏, 𝛼𝑖)concerning 𝑤⃗⃗⃗⃗  and 𝑏. However, we must turn this primal problem into a 

dual problem due to the intricacy of the constraints and the uncertainty of the input 

variables. Giving the definition of the Dual function as 𝑔(𝛼𝑖) = 𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

𝐿(𝑤⃗⃗ ,𝑏, 𝛼𝑖)we can 

expose the Dual Problem as follows: 
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𝑚𝑎𝑥
𝛼𝑖≥0

[𝑔(𝛼𝑖)] = 𝑚𝑎𝑥
𝛼𝑖≥0

{𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

{
1

2
‖𝑤⃗⃗ ‖2 + ∑ 𝛼𝑖[1− 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏)]𝑛

𝑖=1 }} Eq. 18 

 

The above function meets the Karush-Kuhn-Tucker (KKT) necessary condition at point 

(𝑤∗⃗⃗⃗⃗  ⃗,𝑏∗, 𝛼𝑖
∗): 

  

𝛻𝑤𝐿(𝑤∗⃗⃗⃗⃗  ⃗, 𝑏∗, 𝛼𝑖
∗) = 𝑤∗⃗⃗⃗⃗  ⃗ − ∑ 𝑥𝑖𝛼𝑖

∗𝑦𝑖 = 0 → 𝑤∗⃗⃗⃗⃗  ⃗𝑛
𝑖=1 = ∑ 𝛼𝑖

∗𝑥𝑖𝑦𝑖
𝑛
𝑖=1            Eq. 19 

 

𝛻𝑤𝐿(𝑤∗⃗⃗⃗⃗  ⃗, 𝑏∗, 𝛼𝑖
∗) = −∑ 𝛼𝑖

∗𝑦𝑖
𝑛
𝑖=1 = 0 → ∑ 𝛼𝑖

∗𝑦𝑖 = 0𝑛
𝑖=1           Eq. 20 

 

Primal Feasibility: 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏) ≥ 1,𝑦 ∈ {−1,1}        Eq. 21 

 

Dual Feasibility: 𝛼𝑖
∗ ≥ 0           Eq. 22 

 

Complementary Slackness: 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏) ≥ 1,𝑦 ∈ {−1,1}      Eq. 23 

 

Taking in consideration Eq. 18 and Eq. 19, the primal problem can be transformed as 

follows: 

 

 𝐿(𝑤⃗⃗ , 𝑏,𝛼𝑖) =
1

2
‖𝑤⃗⃗ ‖2 + ∑ 𝛼𝑖[1− 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏)]𝑛

𝑖=1      Eq. 24 

  

 𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

𝐿(𝑤⃗⃗ ,𝑏, 𝛼) = 𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

{
1

2
‖𝑤⃗⃗ ‖2 + ∑ 𝛼𝑖[1− 𝑦𝑖(𝑤⃗⃗ ⋅ 𝑥𝑖⃗⃗⃗  − 𝑏)]𝑛

𝑖=1 }     Eq. 25 

  

 𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏

𝐿(𝑤⃗⃗ ,𝑏, 𝛼) = ∑ 𝛼𝑖 −
1

2
‖𝑤⃗⃗ ‖2𝑛

𝑖=1                   Eq. 26 

 

from Eq. 18 we obtain:  
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𝑤∗⃗⃗⃗⃗  ⃗ = ∑ 𝛼𝑖
∗𝑦𝑖𝑥𝑖⃗⃗⃗  

𝑛
𝑖=1          Eq. 27 

So: 

𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏,𝜉

𝐿(𝑤⃗⃗ ,𝑏, 𝜉𝑖 ,𝛼𝑖 , 𝛽𝑖) = 

                              ∑ 𝛼𝑖 −
1

2
∑ ∑ 𝑦𝑖𝑦𝑗

𝑛
𝑗=1

𝑛
𝑖=1

𝑛
𝑖=1 (𝑥𝑖⃗⃗⃗  ⋅ 𝑥𝑗⃗⃗⃗  )𝛼𝑖𝛼𝑗             Eq. 28 

  

𝑚𝑎𝑥
𝛼𝑖≥0

[𝑚𝑖𝑛
𝑤⃗⃗ ,𝑏,𝜉

𝐿(𝑤⃗⃗ ,𝑏, 𝜉𝑖 , 𝛼𝑖 , 𝛽𝑖)] = 

                             𝑚𝑎𝑥
𝛼𝑖≥0

∑ 𝛼𝑖 −
1

2
𝑛
𝑖=1 ∑ ∑ 𝑦𝑖𝑦𝑗

𝑛
𝑗=1

𝑛
𝑖=1 (𝑥𝑖⃗⃗⃗  ⋅ 𝑥𝑗⃗⃗⃗  )𝛼𝑖𝛼𝑗 Eq. 29 

 

As a result, the reduced dual (QP) issue based on the 𝛼 -dependent objective function ψ 

is solved: 

 

𝑚𝑖𝑛
𝛼⃗⃗ 

𝜓(𝛼 ) = 𝑚𝑖𝑛
𝛼⃗⃗ 

[
1

2
∑∑𝑦𝑖𝑦𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(𝑥𝑖⃗⃗⃗  ⋅ 𝑥𝑗⃗⃗⃗  )𝛼𝑖𝛼𝑗 − ∑𝛼𝑖

𝑛

𝑖=1

] 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶∀𝑖           Eq. 30 

 

∑ 𝛼𝑖𝑦𝑖 =𝑛
𝑖=1 0         Eq. 31 

 

The slack variable 𝜉𝑖will not appear in the QP function. In the case of non-linear 

classifiers SVM, the output is computed from Lagrange multipliers: 

 

𝑢 = ∑ 𝛼𝑖𝑦𝑖
𝑛
𝑖=1 𝐾(𝑥𝑗⃗⃗⃗  , 𝑥 )− 𝑏         Eq. 32 

 

where 𝐾(𝑥𝑗⃗⃗  ⃗, 𝑥 )is a kernel function. The kernel function is a useful tool for dealing with 

non-linear classifiers. It converts non-linear sample features into a high-dimensional 

space where the relevant features can be linearly distinguished.  The linearly separable 

scenario is used to derive the output of non-linear classifiers.  

 

𝑢 = 𝑤⃗⃗ ⋅ 𝑥 − 𝑏,𝑎𝑛𝑑𝑤⃗⃗ = ∑ 𝛼𝑗𝑥𝑗𝑦𝑗
𝑛
𝑗=1       Eq. 33 
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Other SVM techniques require data in raw input to be transformed into feature vector 

representation, whereas kernel approaches just require a user-specified kernel (Figure 

12). The polynomial kernel, Gaussian kernel, and neural network non-linearities are all 

examples of kernel functions. In this research work we exploit the Radial Basis Function 

kernel. On the two samples 𝑥𝑗⃗⃗  ⃗𝑎𝑛𝑑𝑥  represented as feature vectors in some input space, 

the RBF kernel is defined as: 

 

𝐾(𝑥𝑗⃗⃗⃗  ,𝑥 ) = 𝑒𝑥𝑝(−
‖𝑥𝑗⃗⃗⃗⃗ −𝑥 ‖

2𝜎2
)    Eq. 34 

 

In particular the RBF kernel has a straightforward interpretation as a similarity measure 

since its value decreases with distance and ranges between zero (in the limit) and one 

(when 𝑥𝑗⃗⃗  ⃗ = 𝑥 ).  

 

Figure 12. Representation of the application of kernel function 
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1.6.2 - Tree-based methods 

 

Decision trees can be defined as hierarchical learners made out of a group of basic 

(binary) choices. Breiman et al. [61] developed the tree model for classification and 

regression applications in 1984. Following that, decision trees grew in popularity and 

were frequently used in a variety of machine learning techniques. One explanation for 

their success could be that they have a number of advantages: they are simple to use, 

rapid and adaptable to huge datasets, and they can be constructed in a probabilistic 

manner to account for variability. Instead of attempting to optimize a single 

complicated tree, Ho [61] proposed constructing an ensemble of "weak" decision trees, 

namely random forests, as a result of the formation of ensemble learning. The authors 

of these papers propose injecting randomness into the learning process to build 

decorrelated trees. Acquiring better generalization, the new method demonstrated 

superior accuracy by averaging their predictions. Since then, random forests have been 

successfully used in a wide range of applications, the majority of which have been 

phrased as classification problems.  

 

1.6.2.1 - Decision tree 

 

As already mentioned, the classification problem in a supervised learning environment 

can be defined as a maximum a posteriori probability function 𝑝(𝑦𝑖|𝑥𝑖,𝐻)and given the 

training set 𝐻 = {(𝑥𝑖, 𝑦𝑖)}, 𝑖 = 1,2, . . . 𝑁 we aim at learning the posterior P(x|y). Finding 

and developing a good model for this posterior throughout the entire feature space X is 

a challenging task. A decision tree uses a "divide" and "conquer" technique to solve this 

problem: (a) it uses a series of decisions to form a partition over the input feature space, 

and (b) it calculates P (Y|X) within every layer of this environment.  The concept behind 

decision trees is to make predictions using a series of basic selections. In fact, a decision 

tree model is made up of a set of (binary) decisions that are arranged in a hierarchical 

order (Figure 13).  
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Figure 13. Schematic representation of a binary tree 

 

 

To perform a binary decision, a node 𝑁𝑖from the set N of a tree is equipped with a so-

called splitting function 𝑓𝑖  whose role is to split incoming observations in two subsets 

denotes as 𝑆𝑖
𝑙𝑒𝑓𝑡

𝑎𝑛𝑑𝑆𝑖
𝑟𝑖𝑔ℎ𝑡

. These two subsets represent respectively the left and right 

child of 𝑁𝑖. The splitting function can be represented as follows: 

 

{𝑓𝑖(𝑥) = 0, 𝑥 𝑖𝑠 𝑠𝑒𝑛𝑡 𝑡𝑜 𝑙𝑒𝑓𝑡 𝑓𝑖(𝑥) = 1,𝑥 𝑖𝑠 𝑠𝑒𝑛𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡     Eq. 35 

 

Tree learning can be characterized as an iterative node optimization and splitting. 

Indeed, at each node, a suitable splitting function must be selected first, and then the 

training data must be split and distributed to the left and right children. Several 

parameters must be selected depending on the function class used and during training 

the decision functions at each node are optimized to that end until a stopping criterion 

has been reached. The Iterative splitting of the training data stops once the bottom of 

the tree is reached, and the current node becomes a leaf node. 

 

Usually, the three most common stopping criteria are the (a) maximum tree depth, (b) 

the minimum population per leaf, and (c) the target function's minimum variation. The 

first approach just analyzes the hierarchy's depth, and once that depth is achieved, the 
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iterative splitting ends. The second is based on the amount of training examples arriving 

at a node, with the splitting stopping if the population of training points falls below a 

specified threshold. The last one is about the optimized objective function. If the 

variation is less than a given threshold, it is assumed that splitting the training cases 

yielded no additional information.  

  

1.6.2.2 - Random Forests 

 

Several randomization approaches have been developed to generate decorrelated or 

independent trees. Breiman coined the term "bagging," which is a mix of the terms 

"bootstrap" and "aggregating." Given a training set H, a bootstrap is essentially a fraction 

𝐻𝑝of the whole training set, with or without replacement, where each element has been 

randomly selected using a uniform distribution. The ensemble's trees are then trained 

using a new bootstrap 𝐻𝑝. Finally, averaging is used to combine the predictions from all 

of the separate trees.  Integrating randomness in tree training has several advantages: 

firstly, increasing the levels of randomness reduces the correlation between the different 

trees, resulting in greater generalization; secondly, if the total number of features is 

constrained to be sparse, it enables implicit feature selection from each tree; and thirdly, 

it allows independence from the training set, — in other words, it add robustness to 

noisy data.  

 

Random forests provide a very versatile architecture that allows for the creation of task-

specific objective functions, various splitting functions, and Bayesian models. 

Furthermore, they only have a few hyperparameters: (1) the number of trees and (2) the 

tree depth which are the two most essential random forests’ hyperparameters. 

Increasing the number of trees allows noisy predictions to be averaged out, resulting in 

a monotonic decrease in prediction error. The maximum permissible depth of the tree 

is a critical parameter that must be optimized since it has a direct impact on each tree's 

generalization capacity. Furthermore, while a small tree's prediction will be unreliable 

due to the large amount of heterogeneous data in its leaves, a very deep tree's leaves will 

have very little training data to compute sound statistics. This is directly related to over-
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fitting the training data, such as fitting noisy features, and suffers from poor 

generalization. To avoid this scenario, it’s best to optimize the prediction error curve 

until it reaches a minimum. This minimum corresponds to the optimal tree depth, 

allowing for good modeling and generalization of the observations.  

  

 

1.6.3 - Neural Networks 

 

Serious efforts were invested in establishing mathematical representations of cognitive 

processing in biological systems in the last 30 years. [62]. This research resulted in the 

development of the neural network methodology. While this goal is still a long way off, 

(artificial) neural networks have demonstrated to be among the most effective approach 

in a wide range of problems [63] [64] [65]. A neural network is usually made up of 

numerous units, also known as neurons, that are mathematically described as: 

 

ℎ𝑗(𝑥) = 𝜎{𝑤𝑗 +∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1 }    Eq. 36 

 

where σ is a non-linear activation function, such as the sign, sigmoid, or softmax 

activation function. The activation functions of interest for this research are the 

following: 

 

The logistic sigmoid function: 

 

𝜎(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
                          Eq. 37 

 

The Logistic sigmoid function monotonically maps real numbers to the [0, 1] range, 

making it suitable for modeling binary classification; 

 

The rectified linear function (ReLu): 
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𝜎(𝑥) = 𝑚𝑎𝑥(𝑥,0)         Eq. 38 

 

The rectified linear function (ReLu) currently is one of the most popular activations 

(owing to its biological plausibility, sparsity, lack of vanishing gradients, and 

computational efficiency). 

In the majority of cases, these components are organized into layers, with the outputs 

of one layer directed to the inputs of the next layer by weighted connections, known as 

synapses. Figure 14 represents a three-layered neural network.  

 

Figure 14. Schematic representation of a perceptron. 
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The first is known as input layer, which transmits the initial values 𝑥 = {𝑥1, ⋯, 𝑥𝑛}to the 

second layer. The second layer consists of activation units ℎ𝑛, which take the weighted 

values from the first layer as inputs and output nonlinear transformed values. The 

predicted value y is produced by the third layer, which is made up of a single activation 

unit that takes the weighted outputs of the second layer as inputs. The learning 

procedure of a neural network entails estimating the weights 𝑤𝑖𝑗 that minimize a certain 

loss function using a specific optimization procedure. The backpropagation algorithm 

is the most well-known of all of them. Recent breakthroughs in neural networks, 

commonly called "deep learning," have demonstrated that these models can learn high-

level and very effective data representations on their own. On a range of difficult tasks, 

such as picture classification and speech recognition, neural networks have proven to 

outperform both human operators and state-of-the-art technologies.  

1.6.4 - Evaluation metrics of binary classification models 

 

In this section, we define several evaluation metrics in the case of a binary classification 

problem. These measures will be one of the stepping stones of the empirical analyses in 

the following chapters. In this context, the term classifier will be used to denote the 

model inferred by supervised learning, and replace the target variable y by the term class 

∈ {0, 1}. 

Once a classifier C has been trained and built, evaluating its predictive capability can be 

achieved using an independent test set T of size n (this test set is typically the part of 

the database that was not used to create the model). 

 

𝑇 = {𝑠𝑎𝑚𝑝𝑙𝑒𝑗} = {(𝑥𝑗, 𝑦𝑗)},             𝑗 = 1,…𝑛′  Eq. 39 

 

The most common and straightforward evaluation metric is the accuracy, which is equal 

to the ratio of the number of correctly identified items to the size of the test set:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#{𝑠𝑎𝑚𝑝𝑙𝑒𝑗 :𝐶(𝑥𝑗)=𝑐𝑙𝑎𝑠𝑠𝑗,𝑗=1,…,𝑛′}

𝑛′
   Eq. 40 
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This measure, however, presents two main drawbacks. First of all, it’s strictly 

dependable by the number of objects of each class represented in the test set i.e., one 

class, for example, may be significantly over-represented, resulting in an average 

mistake rate that mostly reflects the rate of properly categorizing objects from this latter 

class.  Secondly, the most common output of a trained model is a class-probability [0, 1] 

for each input vector of features. A threshold must be specified in order to convert this 

into a class prediction. For example, in a binary classification problem, the most typical 

decision is to choose a threshold of 0.5, however this may not always be the best option. 

However, also the case of incorrect prediction has to be taken in consideration, such as 

in the event of negative prediction for positive samples or positive prediction for 

negative samples. In this case we can distinguish between Type I (false positive) and 

Type II (false negative) errors. Given these prediction characteristics, it is then possible 

to derive a contingency table (also known as confusion matrix) (Table 3) to have an 

estimate of this type of error and be able to compute supplementary evaluation metrics. 

 

Table 3. Representation of a confusion matrix or contingency table. Given a 

classifier and a predicted point, there are four possible outcomes. If the point is positive 

and it is classified as positive, it is counted as a true positive; if it is classified as negative, 

it is counted as a false negative. If the point is negative and it is classified as negative, it 

is counted as a true negative; if it is classified as positive, it is counted as a false positive. 

P and N represent the total number of positives points and negative points respectively 

(Adapted from [66] - Figure 1) 

  True class 

  p n 

 
Hypothesized 

class 

Y 
True 

Positives 

False 

Positives 

N 
False 

Negatives 

True 

Negatives 

Column Totals: P N 
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In the contingency matrix we can define different classes of elements based on the 

trueness of prediction. In this thesis to evaluate the model's performance we relied on 

this particular measurement. 

- Accuracy, as stated before; 

- Precision; 

- Recall; 

- Receiver operating characteristic area under curve (ROC AUC); 

- Matthew Correlation Coefficient 

 

The precision, or positive predictive value, is defined as: 

 

𝑃𝑅𝐸𝐶 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
     Eq. 41 

 

where TP is the number of true positives (or the positive labels correctly predicted) and 

FP the number of false positives (the number of labels predicted as positives but in 

reality, negatives). The precision is intuitively the ability of the classifier not to label as 

positive a sample that is negative. 

 

The recall, or sensitivity, represent the ability of the classifier to find all the positive 

cases. It can be defined as: 

 

𝑅𝐸𝐶 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
    Eq. 42 

 

where FN is the number of false negatives (the number of labels predicted as negatives 

but in reality, positives). 

 

A receiver operating characteristic curve, or ROC curve, is a visual representation that 

shows how a binary classifier system's performance changes as the discrimination 

threshold change.  The ROC curve is created by plotting the recall against the false 

positive rate (FPR) at various threshold settings. The FPR is defined as: 
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 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
    Eq. 43 

 

where TN represents the number of true negatives (the negative labels correctly 

predicted). The AUC can also be interpreted as the probability that the classifier will 

assign a higher score to a randomly chosen positive sample than to a randomly chosen 

negative one. 

Finally, the Matthew Correlation Coefficient is a metric for assessing the quality of binary 

and multi-class classifications in machine learning. It accounts for true and false 

positives and negatives, and is widely recognized as a fair metric that can be applied 

even when the classes are imbalanced. The MCC is essentially a -1 to +1 correlation 

coefficient number. A perfect prediction has a coefficient of +1, an average random 

prediction has a coefficient of zero and an inverse prediction has a coefficient of -1. 

Mathematically can be defined as: 

 

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
   Eq. 44 
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1.7 - Summary 

 

In this chapter, we introduced the biological concept of network, drug discovery, 

statistical methods, supervised machine learning, and the possible measures of 

evaluation of such models. It constitutes the basis of our research and we strongly 

believe that the overall methodology “package” is well suited to the biological problem 

at hand. Indeed, there is a strong overlap between the two fields in the tasks they try to 

achieve. The first one is the identification of association between the different drug 

targets and related drug ADRs and the second one is the ability to exploit the underlying 

target biological information to estimate the probability of an unknown protein to elicit 

an adverse reaction when targeted by a drug. In chapter 4, I will discuss the details of 

how to obtain reliable Proteins-Adverse event relationships and how we’re going to 

exploit this information in the supervised-learning framework to obtain reliable 

predictions in chapter 5. Chapter 6 will exploit the acquired knowledge to investigate 

the molecular relationship between the different ADRs and protein targets.  
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2 - OBJECTIVES 
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The underlying theme of this thesis has been the development of novel computational 

tools to aid in the process of drug discovery. Particularly, I have focused my research in 

the identification of target liabilities and early detection of associated adverse reactions. 

Ultimately, the long-term goal is to aid in the development of safer and more effective 

drugs while shortening the time required for preclinical studies. 

 

The first aspect of my thesis has been the mining and uncovering of protein-ADRs 

associations using the vast landscape of pharmacovigilance resources and drug-protein 

research. I hope to advance our understanding of Adverse Reaction-Protein 

relationships by providing resources to organize and analyze both systems. Therefore, 

the first objective of the thesis is:  

 

1. Create a publicly accessible database of statistically validated Adverse reaction-

drug target pairs. At the same time, provide all of the tools for reproducing the 

results obtained locally, allowing for the incorporation of new information and 

data as new database releases are produced. In this way, the database can be kept 

up-to-date and abreast of new data. 

 

This objective involves the following sub-objectives: 

 

● Obtain information on proteins, drugs, and adverse reactions from a variety of 

sources. Linked to this was the identification, study and selection of specific 

databases from which to collect data. 

● Statistically validate the entries from self-reporting databases, extracting only 

meaningful reports. This is particularly important given the heterogeneity and 

patchy quality of these resources.  

● Compile and integrate the data from drug-target and drug-adverse event 

databases 

● Statistically validate the ADR-target pair identified following the method of 

Kuhn and colleagues [9]. 
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● Creating a publicly accessible database to access and query the data, T-ARDIS, 

as well as creating a public repository for users to replicate the database is 

needed. 

 

Due to unforeseen adverse drug reactions, drug discovery attrition rates remain 

astoundingly high, particularly in late clinical trial phases. As a result, not only 

recognizing but also anticipating negative adverse reactions prior to clinical trials would 

help to create safer medicines while avoiding economic losses. In this sense, a predictive 

approach that can foresee potential issues with the development of a novel drug to 

target a given protein will be of special interest. An so, the second objective of my thesis 

is: 

 

2. Develop a method for predicting whether the modulation of a specific protein 

will result in a specific Adverse Reaction. 

 

This objective involves the following sub-objectives: 

 

● Extract proteins linked to a subset of T-ARDIS’ adverse reactions 

● Extract relevant network-based information on associated proteins for each of 

the Adverse reactions chosen (this includes also studying the relationship and 

the identified proteins' interactome neighborhood via GUILDify). 

● Convert the obtained data into an appropriate format and develop a predictive 

model based on three different machine learning approaches for each of the 

selected ADRs. 

● Propose three different consensus scoring functions to combine the models 

obtained from the machine learning methods. 

● Develop an easy-to-use application for accessing and using all the models 

obtained for the research community. 

 

While we can predict and associate proteins with their putative adverse reactions, the 

actual molecular mechanisms of the latter and the phenomenon of associated adverse 

reaction still eludes us. The third objective of my thesis is: 
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3. Investigate the molecular basis of identified adverse reactions studying the 

underlying set shared protein targets from a network perspective. Namely, 

connect different adverse reactions (nodes) if sharing common proteins (edges) 

and perform a number of network-based studies. 

 

This objective involves the following sub-objectives: 

 

● Develop a novel network to integrate all the information of ADR-target 

relationships extracted from T-ARDIS. The resulting network was named 

"Adverse Reactome" to emphasize its nature. 

● Applying different network-based clustering to extrapolate meaningful Adverse-

reaction subsets, defined by the protein shared between them. 

● For each cluster, investigate the molecular function of the identified proteins. 

● Examine the scientific literature for evidence that the disruption of the enriched 

functions can cause the cluster's distinctive adverse reactions. 

● Look into the chemical similarities between the drugs that target the cluster-

associated proteins with the view of identifying any similarities. 
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3.1 - Abstract 

 

As previously stated, unexpected adverse drug reactions (ADRs), associated with drug 

candidates, are a well-known cause of the high dropout rate in drug development. The 

ability to predict adverse reactions when modifying specific protein targets would aid 

in the growth of safer medications without considering the far-reaching commercial 

implications. Still, how to reach this goal is a matter of discussion and an active field of 

research. Indeed, while many databases collect information about drug–target 

interactions for research purposes, and many public resources collect information about 

drugs and adverse drug reactions in the context of pharmacovigilance, databases that 

directly link the relationship between adverse reactions and protein targets are quite 

scarce.  Despite this, given the large amount of raw data available, it appears possible to 

link targets and ADRs by using drug entities as connecting components. 

 

In this chapter, I will discuss T-ARDIS (Target—Adverse Reaction Database Integrated 

Search), a freely accessible database designed to store information about the drug-

adverse reaction relationship. By integrating publicly available databases I created a new 

resource that links statistically significant associations between known ADRs and 

protein targets. This innovative database emerges in response to a growing interest in 

identifying problematic protein targets early in the drug development pipeline, which 

modulation could result in ADRs. The chapter is divided in three parts and major steps 

are described in figure 15. 
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Figure 15. Workflow followed to combine and derive statistical associations 

between proteins and ADR. Drug–ADR and drug–target associations are retrieved 

from relevant databases. Subsequently, statistical association between proteins and 

ADRs is computed as described by Kuhn et al. [9]. 
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The first part will introduce the selection and mining of the databases that are at the 

basis of T-ARDIS development, explaining all the process of filtering, quality-control 

and standardization of entries for both drug-ADR and drug-target databases. The 

second section, which is the heart of T-ARDIS, will focus on statistical validation of the 

identified protein-ADR pairs using the method developed by Kuhn et al [9]. The last 

part will instead describe the relevant ADRs-proteins association discovered in parallel 

with the possible clinical implication. T-ARDIS currently contains about 3000 ADR and 

248 targets, totaling around 17 000 pairwise interactions. Each entry can be found using 

a variety of search criteria, including the target Uniprot ID, gene name, adverse effect, 

and drug name. Furthermore, the database can be redeployed locally via a convenient 

git-hub repository or simply accessed via the available web-service. 

 

  



- 62 - 
 

3.2 - Mining and curation of Databases cleaning 

procedure 

 

The primary sources of information of T-ARDIS comes from many different public 

repositories. The databases used for this study can be divided into three main categories: 

 

● (i) Drug-ADR self-reporting databases: FAERS [31] and MEDEFFECT [32],  

● (ii) Drug-ADR curated data: OFFSIDES [35] and SIDER [34],  

● and finally (iii) Drug-Target databases: STITCH 5.0 [36] and Drug-Target 

commons2.0 [37]. 

 

As I will be explained in the following sections, each of these datasets underwent specific 

filtering and quality-control procedures to standardize and repurpose the information 

for further analysis. The Drug – ADR self-reporting category, in particular, has been 

subjected to extensive data curation and validation, first to standardize the drug names 

contained in FAERS and MEDEFFECT, and then to statistically validate the drug – ADR 

pairs obtained. 

 

3.2.1 - FAERS and MEDEFFECT entries standardization 

 

The original code implemented for the quality-control of the FAERS database was 

developed by Banda and col. [67] in the AEOLUS and OHDSI initiative [68], managing 

to obtain reliable data until the 2015 FAERS release. In the context of T-ARDIS, this code 

has been updated and modified to accept the new format of FAERS and MEDEFFECT 

data until 2021. The drug – ADR standardization process applied is divided into several 

cleaning steps with the primary goal of eliminating duplicate case records and 

implementing standardized vocabularies with drug names mapped to RxNorm concepts 

[69]. All cleaning stages will be explained in detail in the following sections, beginning 

with the cleaning and standardization of FAERS data. 
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As one might expect, the first step is to collect the raw information, which is available 

on the FDA's website in two formats (XML and Comma Separated Values files (CSV)) 

(http://goo.gl/9Lcc65). The files are divided by year, starting from 2004. The data 

coming from 2004 to 2012, in particular, are referred to as LAERS. This distinction is due 

to a significantly different format than the one adopted since September 2012, referred 

in this chapter simply as FAERS. As stated in the introduction chapter, the data stored 

in the LAERS/FAERS data-sets consists of adverse events and medication errors 

voluntarily reported in the United States by healthcare professionals (pharmacists, 

nurses, physicians) and consumers (patients, lawyers, family members). The FDA is 

responsible for compiling all of these reports into a single resource, which given its self-

reporting and unsupervised nature, creates a number of challenges assessing the quality 

of the data, for instances in case of duplications, typological errors, etc. 

 

3.2.2.1 - Data Download and handling 

 

Each of the quarterly FAERS/LAERS data files stored at the FDA website are separated 

into seven independent tables (table 4).  While the format of files remains stable, the 

most significant distinction between LAERS and FAERS datasets are some of the 

essential fields such as isr and case and primaryid and caseid. To efficiently merge and 

compare the information stored in the various files, these fields must be mapped to a 

single unique identifier so that all of the primary report information is preserved, which 

means that any information retrieved can be traced back to its original source. Table 4 

reports the main files available for download from the FDA website as in the original 

paper of Banda et al. [67]. The nomenclature suggests the report’s information type, the 

year (indicated as yy) and year’s quartile (indicated as Qq). Among the different files 

provided, DEMOyyQq tables, which contain patient administrative information, are 

crucial in the missing value imputation and case de-duplication processes. 

 

Table 4. List of retrieved LAERS/FAERS files - Each of the presented files contain 

different report information useful for case deduplication and statistics. yyQq indicates 

the report year and year’s quartile. 
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File name  Description 

DEMOyyQq Contains patient demographic and 

administrative information, each row 

represents an individual event report 

DRUGyyQq  Contains drug information for all 

medications reported for the event report (1 

or more rows per report) 

INDIyyQq Contains all MedDRA terms for the 

indications of use for the reported drugs (0 

or more per drug per event) 

OUTCyyQq Contains patient outcomes for the event 

report (0 or more rows per report) 

REACyyQq Contains all MedDRA terms related to the 

adverse event report (1 or more rows per 

report) 

RPSRyyQq Contains the source of the event report (0 or 

more rows per report) 

THERyyQq Contains drug therapy start dates and end 

dates for the reported drugs (0 or more rows 

per report 

 

 

3.2.1.2 - Missing values and cases de-duplication 

 

Banda et al. perform a very peculiar analysis in order to identify and remove duplicate 

entries and cases [67]. The amount of redundancy in FAERS is directly proportional to 

the number of reports submitted to the FAERS database by patients, medical doctors, 

and pharmaceutical companies. Furthermore, many reports may include multiple 

versions, such as the initial case version, additional follow-up case versions, or even exist 

in the older LAERS dataset as well. As a result, and in order to eliminate redundancy 
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and not miss any single piece of information that could have been added in the various 

reports, the case deduplication algorithm must account for all of these multiple case 

versions. The DEMO files come at hand in this first mapping procedure, containing 

useful information such as the unique report row keys ( isr in LAERS and primaryid in 

FAERS), as well as the various report country codes and administrative information. In 

particular, all four "important" demographic data fields (event date, age, gender, and 

reporter country) must be fully compiled in at least one version of the report case, or be 

completely discarded. With the elimination of report case redundancy, which inflates 

the number of total reports associating a drug with an ADR, the algorithm can now 

focus on the drug’s name standardization.  

 

Given the self-reporting nature of FAERS and MEDEFFECT, there is a significant 

discrepancy in the drug's label names in many reports. This disparity may manifest as 

typological errors, mistyping, or the use of non-standard drug names. To provide a 

standardized framework, the drug names present in the database are extracted and 

mapped into the RxNorm vocabulary using in combination the OHDSI Vocabulary 

version 5 and regular expressions [67]. A second round of standardization of drugs’ 

names is also performed using the FDA's orange book of NDA ingredients, checking the 

report for New Drug Applications (NDAs) codes. Finally, mapped drug names are linked 

to their respective adverse events using the unique report identifiers while unmapped 

drugs are definitely discarded. 

 

MEDEFFECT, despite its different file structure, uses the same cleaning logic. In this 

case, redundancy is removed by modifying the files to look like the FAERS ones and 

checking the unique MEDEFFECT identifier. In a nutshell, the columns in the 

MEDEFFECT files are renamed and ordered to match those in the FAERS files. Once 

this preliminary passage is completed, the MEDEFFECT reports drug’s names are 

extrapolated using the RxNorm and regular expression mapping as described before. 

MEDEFFECT and FAERS data have been treated independently until now in order to 

minimize involuntary redundancy due the report's unique id. After standardizing 

FAERS and MEDEFFECT entries, the data from both databases can be combined and 

subjected to the drug-ADR statistical validation process outlined below. 
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3.2.2 - Self reporting Drug-ADRs validated associations  

 

Following the standardization of drug names and case de-duplication for the FAERS and 

MEDEFFECT databases, statistical validation of the drug-ADR entries retrieved is 

required. For this purpose, the approach proposed by Huang et al. [56], which is already 

outlined in the statistical methods introduction sub-chapter, is used. Only drug–ADR 

associations that are statistically significant, that is, have a likelihood ratio value greater 

than the 5th percentile of the multinomial distribution and are present in both FAERS 

and MEDEFFECT, were kept. Following the Advanced Filtering procedure (see below) 

FAERS yielded approximately 4 million pairwise interactions originating from over 9000 

chemicals and around 17 000 distinct ADR as a result of the curation methodology. From 

a total of over 4000 and 12 000 drugs and ADR occurrences reported respectively in the 

database, 1.5 million drug–ADR connections were discovered instead for MEDEFFECT.  

 

3.2.3 - SIDER and OFFSIDES databases 

 

The information stored in other drug -ADR datasets such as SIDER and OFFSIDES were 

used without any filtering procedures apart from the advanced ones (see below). The 

reason is both databases are already curated and thus do not require any quality check 

actions.  On the one hand, over 108 000 pairwise interactions were mined for a total of 

1344 distinct medicines and 2303 ADRs in the SIDER analysis. On the other hand, 

OFFSIDES produced a huge number of pairwise drug–ADR associations: 1.5 million from 

a total of 2708 and 4368 distinct drugs and ADRs, respectively.  

 

3.2.4 - Advanced Filtering procedures 

 

Another major concern with drug-adverse-reaction databases is that certain ADRs are 

too broad to be specific to body regions, tissues, or basic human biology. As a result, any 

ADR belonging to the following SOCs was rejected, as suggested in the article of  

Ietswaart et al. [70] 
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● General disorders and administration site conditions. 

 

As the name implies, this SOC contains concepts that do not easily fit into any 

one SOC's hierarchy or are non-specific illnesses that affect multiple body 

systems or places. It should be noted that including PTs in this SOC in each 

possible secondary SOC would result in an excessive number of redundancies. 

As a result, the majority of the PTs in this SOC are primarily associated with SOC 

General disorders and administration site conditions, with only minor 

representation in secondary SOCs (e.g., PT Injection site atrophy is primarily 

associated with SOC General disorders and administration site conditions, with 

only minor representation in secondary SOCs).  

 

● Injury, poisoning and procedural complications 

 

This SOC categorizes medical concepts in which there is a major injury, 

poisoning, procedural, or device complication in the medical event being 

reported. In general, all of the events in this SOC appear to be directly 

attributable to trauma, poisoning, and procedural complications, in other words, 

all of the occurrences that are due to an external cause.  

 

● Investigations. 

 

A clinical laboratory test idea (including biopsies), radiologic test concept, 

physical examination parameter, and physiologic test concept (e.g., pulmonary 

function test) are all considered investigations by MedDRA. This SOC only had 

PTs that represented investigation techniques and qualitative results (e.g., PT 

blood sodium decreased, PT blood glucose normal). PT hyperosmolar state, PT 

haemosiderosis, PT orthostatic proteinuria, and PT renal glycosuria are excluded 

from this SOC and can be found in the related 'disorder' SOCs (e.g., PT 

hyperosmolar state, PT haemosiderosis, PT orthostatic proteinuria, and PT renal 

glycosuria).  
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● Neoplasms benign, malignant and unspecified (incl. cysts and polyps) 

 

This SOC is physically classified, with pathologic sub-categories for staging 

benign and malignant neoplasms. 

 

● Product issues 

 

This glossary defines terminology related to product quality, gadgets, 

manufacturing quality systems, product supply and distribution, and counterfeit 

goods.  

 

● Social circumstances 

 

The objective of this SOC is to provide a logical grouping for those aspects that 

may provide insight into personal concerns that may have an impact on the 

reported occurrence. This SOC, in essence, contains information about the 

individual, not the unfavorable occurrence. This SOC contains phrases like PT 

drug addict and PT death of family, for example.  

 

● Surgical and medical procedures 

 

Only terms related to surgical or medical procedures are included in this SOC. 

This SOC is more of a “support” SOC for recording case information and 

developing inquiries due to its nature.  

 

● Infections and infestations 

 

This SOC only gives location-based information on infectious diseases, not 

specific targets.  

 

● Psychiatric disorders 



- 69 - 
 

 

Due to being too wide and/or broad, the following high-level general terms and 

high-level terms were removed from this specific SOC. Depressed mood 

disorders and disturbances, eating disorders and disturbances, impulse control 

disorders not elsewhere classified (NEC), manic and bipolar mood disorders and 

disturbances, personality disorders and disturbances in behavior, psychiatric 

disorders NEC, suicidal and self-injurious behavior NEC, paraphilias and 

paraphilic disorders, and sexual and gender identity disorders NEC were among 

the terms used.  

 

 

3.2.5 - Drug – Target databases  

 

The data regarding drug–protein relationships is mined from two specific databases: 

Drug-Target Commons (DTC) database (https://drugtargetcommons.fimm.fi) [37] and 

STITCH 5.0 [36]. As already mentioned in the introduction chapter, DTC's goal is to 

provide an open-data platform for a community-driven crown-sourcing effort to 

annotate drug–target associations and provide bioactivity information for medications 

such as IC50, EC50, and potency values. DTC’s T-ARDIS version was acquired from 

https:// drugtargetcommons.fimm.fi in April 2021. STITCH, the second database 

considered, contains the majority of drug–target relationships information available, 

combining multiple sources of data into a composite scoring function. T-ARDIS 

includes STITCH version 5, which can be found at http://stitch.embl.de. 

 

The initial databases were subjected to two filtering procedures to ensure that 

biologically/therapeutically relevant relationships were identified and that redundant 

items from the same drug were renamed. At the same time, the Uniprot ID was used to 

ensure that the targets in consideration were the same in both databases. Although DTC 

already provides the Uniprot ID for each drug–target pair stored, this information for 

STITCH entries is obtained programmatically from the Uniprot database [53] using the 

STRING [29] identifying code. 
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Only drug–protein interactions with an IC50 (or EC50) of 100 nM or less were taken into 

account from DTC, obtaining nearly 10,000 drug–target relationships, accounting for 

5007 and 1075 different drug and chemical compounds and proteins (as determined by 

Uniprot IDs). In the case of the drug protein pairs in STITCH are extracted using the 

provided database scoring function with a cut-off of 0.8. Only associations with scores 

greater than the threshold were considered, yielding over 6 million from over 42 000 

chemical compounds (including licensed drugs) and 7264 distinct proteins. 

 

To avoid duplication, the identified drug entries from both databases are unified using 

the InChiKey hash descriptors and the drug's standard name. Furthermore, two other 

filtering procedures were used to increase the reliability of the discovered drug-target 

association: the first easily removed all targets enriched with the GO terms "drug 

catabolic" and "drug anabolic" processes; the second, on the other hand, involved the 

computation of a Tanimoto similarity index for all the drugs targeting the same protein 

and the removal of one of them above a certain threshold. This filtering step helps in 

the event of the same drugs with different names but will have direct consequences 

during the SONG method development in chapter 6. 

 

3.2.6 - Combining different databases increases the coverage 

of associations 

 

As detailed in the preceding sections, the nature, purpose, and level of curation of the 

databases used vary greatly. However, once cleaned and standardized, the obtained data 

can be integrated, allowing access to a massive core of knowledge. The most striking 

example comes from drug-ADR databases, where data integration revealed a common 

set of drugs shared by all databases (figure 16). 
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Figure 16. Upset plot showing the overlap between the different databases 

compiling drug–ADR associations. FAERS, MEDEFFECT, OFFSIDES and SIDER are 

represented as dark red, light blue, green and orange, respectively. 

 

As drug–ADR relationships annotated in OFFSIDES are subsequently added to FAERS 

on new releases, there is a lot of overlap between the two databases. FAERS and 

MEDEFFECT rely on a variety of sources and real-time reporting systems, and they have 

the most drugs–ADRs associations and the highest percentage of unique entries. Over 

4 million pairwise interactions originating from over 9000 compounds and around 17 

000 unique ADR were collected from FAERS through the developed curation approach. 

From a total of over 4000 and 12 000 drugs and ADR occurrences documented in the 
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database, 1.5 million drug–ADR associations were discovered in MEDEFFECT. As 

already stated, SIDER and OFFSIDES, unlike FAERS and MEDEFFECT, feature manually 

selected drug and ADR relationships. When compared to the spontaneous reporting 

databases FAERS and MEDEFFECT, these databases offer fewer associations (between 1 

and 2 orders of magnitude less). Over 108 000 pairwise interactions were mined for a 

total of 1344 distinct drugs and 2303 ADRs in the SIDER analysis. OFFSIDES produced a 

huge number of pairwise drug–ADR associations: 1.5 million from a total of 2708 and 

4368 distinct medicines and ADRs, respectively. FAERS and MEDEFFECT have a higher 

percentage of shared medications amongst the databases in terms of uniqueness of 

information (Figure 16). 

 

The databases describing drug–protein target associations, such as DTC [37] and 

STITCH [36], were the second set of resources examined. The nature of the two 

databases is quite different, which is reflected in the number of associations collected 

from each. After applying the filter outlined in the previous section to DTC, nearly 

10,000 drug–target relationships were found, accounting for 5007 and 1075 different 

drug and chemical compounds and proteins (as per Uniprot IDs), respectively. The 

number of associations in STITCH was substantially higher: more than 6 million from 

over 42 000 chemical compounds (including licensed medicines) and 7264 distinct 

proteins. In terms of shared drugs, the overlap between the two databases was roughly 

1600.   
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3.3 - Statistically validated associations ADR-proteins 

 

Following the standardization and review of all data from the various drug-ADR and 

drug-target databases, the next step is to integrate it using the shared drug name as a 

linking element. This will yield a large number of ADR-protein associations, which, as 

previously stated, contain a large number of non-existent relationships requiring an 

extensive statistical validation. This problem has already been successfully addressed by 

Kuhn and colleagues [9], from which this thesis adapted the method. 

 

In a nutshell, the approach computes a contingency matrix for each ADR–protein pair 

and uses Fisher's exact test to compute the p-value. As already explained, the 

contingency matrix contains the following elements: (i) the number of drugs that 

present the given ADR; (ii) the number of drugs that bind to the given protein; (iii) the 

number of drugs that both present the given ADR and bind to the given protein; and 

(iv) the number of drugs that neither present the ADR nor bind to the given protein. P-

values were corrected for multiple testing using the 'q-value' module in the python 

package 'MultyPy' due to the large number of relationships. If the computed q-value is 

equal to or less than 0.05, the ADR–protein association was accepted (see figure 10).  

 

It's essential to note that self-reporting (FAERS and MEDEFFECT) and curated 

(OFFSIDES and SIDERS) drug–ADR data were considered separately. In the case of 

protein–ADR associations discovered by combining drug–target and drug–ADR (self-

reporting), a total of 998 drugs were unequivocally identified on both sets ( i.e., drug–

target, drug–ADR), producing over 100k statistically significant (i.e., q-value 0.05) 

protein–ADR associations accounting for approximately 3k and 211 different ADRs and 

proteins, respectively. In the second set of drugs–ADR databases, the curated set (or 

non-self-reporting), i.e., SIDER and OFFSIDES, a total of 1135 common drug entities 

were identified between drug–target, yielding approximately 40k statistically significant 

protein–ADR associations, including 537 and 194 ADRs and proteins, respectively.  
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3.4 - Examples of uncovered associations and T-ARDIS 

benchmarking 

 

T-ARDIS, as I ‘ve presented, is a large-scale mining exercise that relies on a fully 

automated pipeline that explores any potential correlations between proteins and 

ADRs. Through different methods it has been possible to statistically find and validate 

significant relationships between protein and ADR utilizing drugs as linking 

components by combining public databases on drug–protein and drug–ADR 

associations. In the next section I will present some of the statistical validated 

interactions found in T-ARDIS and their clinical implication, then I will study T-ARDIS 

results in the optic of protein-ADRs databases ecosystem. 

 

3.4.1 - Examples of uncovered associations  

 

In vitro studies and literature have both corroborated many of the associations stored 

in T-ARDIS. Some of the more eye-catching examples are provided below. 

 

● It is known that the anti-inflammatory drug aspirin (acetylsalicylic acid) inhibits 

the cyclo-oxygenase 2 enzyme found in the stomach mucosa (COX-2 or PTGS2; 

Uniprot ID: P35354). [71]] Aspirin also inhibits the prostaglandin G/H synthase 1 

enzyme (COX-1 or PTSG1; Uniprot ID: P23219). [71]] [72] These secondary 

interactions have been linked to gastritis and bleeding ulcers in several articles 

dating back to 1955. [73] [74] Both the PTGS1 and PTGS2 proteins have 

substantial low q-values when it comes to Peptic ulcer and Peptic ulcer 

hemorrhage ADRs, according to our findings.  

 

● The serotonin norepinephrine reuptake inhibitor Venlafaxine inhibits the 

sodium-dependent serotonin transporter (SLC6A4; Uniprot ID P31645) [75], 

which has been linked to sexual dysfunction [75]. SLC6A4 appears to be highly 
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significantly associated (i.e., q-value 0.05) with a variety of sexual dysfunctions 

(e.g., ejaculation failure and female sexual dysfunction) in our analyses. 

 

● Another example is the interaction between Budesonide and the glucocorticoid 

receptor (Uniprot ID: P04150). ADRs related to Budesonide treatment have 

included respiratory infections, coughs, and headaches in the inhaled form [76], 

and weariness, vomiting, and joint pains in the oral form [76]. A much rarer 

condition, Adrenal insufficiency, has also been identified in the case of the long-

term use of the oral form of budesonide [77] without a specific etiology. T-ARDIS, 

on the other hand, associates this ADR with the previously reported 

glucocorticoid receptor with a highly significant q-value. Furthermore, given its 

importance, the relationship between glucocorticoids and Adrenal insufficiency 

is a hot topic in the current relevant literature. [78] 

 

● The activation of the 5-hydroxytryptamine receptor family by zolmitriptan 

(HTR1A, HTR1B, and HTR1E; Uniprot IDs: P08909, P28222, and P28566, 

respectively) has been linked to hyperesthesia [79]. The association between 

these proteins and hyperesthesia was all significant in our study, with q-values 

of 0.0001, 0.006, and 0.02 for HTR1A, HTR1B, and HTR1E, respectively. It is worth 

noting that Kuhn et al. discovered and validated this association in vitro [9]. 

 

3.4.2 - T-ARDIS benchmark 

 

In a more general framework, the degree of congruence and complementarity between 

ADRs and proteins discovered in T- ARDIS were compared to prior studies. Four 

different datasets have been used to compare the connections discovered in T-ARDIS. 

The first group came from the ADReCS-Target database [6] and consisted of 1710 

protein–ADR top scoring interactions. The second collection comes from Smit et al.'s 

recent work [80], which used an older release of SIDER (ver.3) to extract around 2000 

protein–ADR interactions. The third set is based on a set of 225 pairwise interactions 

that were validated in Kuhn et al.’s work [9]. Finally, the fourth group, which comprises 
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816 protein–ADR relationships, was manually curated from scholarly literature and 

reported in the study by Kuhn et al. [9].  This analysis proved that regardless of whether 

significant or not, the total representation of target–ADR relationships described is low 

(table 5).  

 

Table 5.  Comparison of different datasets and T-ARDIS 

SET # Associations Self-reporting ͣ   Curated ᵇ 

Associations mined 
from the literature in 

Kuhn et al. [9] 

224 27 (4) 17 (6) 

Associations validated 
in vivo in Kuhn et al. [9] 

2170 115 (69) 113 (85) 

Associations described 
in Smit et al. [81] 

2153 340 (48) 297 (167) 

Associations from 

ADReCS database [6] 

816 171 (14) 87 (11) 

 ͣ Associations present in the self-reporting set of T-ARDIS; significant associations 

shown within parentheses (q-values < 0.05). 
ᵇAssociations present in the curated set of T-ARDIS; significant associations shown 
within parentheses (q-values < 0.05). 

 
 

For example, in the self-reporting and curated sets of T-ARDIS, only 12 percent and 8% 

of the target–ADR connections mined from the literature are reported, respectively. 

Overall, the self-reporting set's values vary from 20% to 5%, while the curated set's 

values range from 8% to 5%. There are possible explanations for these low results.  On 

the one hand, the lack of target–ADR correlations in T-ARDIS could be attributed to the 

fact that no safety concerns have been identified in self-reporting (FAERS, 

MEDEFFECT) or curated databases (OFFSIDES, SIDER). It's also possible that no link 

exists between the specified medicine and the target in either of the two databases used 

in this study: DTC and STITCH. Finally, when collecting and merging the databases 

required to compute T-ARDIS, one of the possible reasons could be the robust and 

stringent filtering method applied, as explained in the previous section. As a result, the 

drug–ADR and/or drug–target associations may exist but fail to pass the filtering 
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processes. In any case, these findings demonstrate T-ARDIS' complementary nature to 

other current resources in the field, allowing for a more thorough and fuller picture of 

target–ADR relationships (figure 17). Indeed, these analyses revealed some intriguing 

findings, such as the particular trend of ADRs associated with single proteins. Figure 17 

clearly demonstrates that the number of ADR associated with a given protein target 

varies, but in most cases, the number of ADR associated with proteins is low, both in 

self-reporting and curated datasets. The number of ADRs associated with a given target 

is proportional to the number of drugs identified to target the given protein; as the 

number increases, so does the number of ADRs, with a clearer trend in the case of the 

curated dataset-ARDIS also allowed the identification of unusual proteins linked to a 

large number of ADRs.  Interleukin-8 (Uniprot ID: P10145), endothelin-1 (Uniprot ID: 

P05305), and leptin (Uniprot ID: P41159) were shown to be related with 1532, 933, and 

717 ADRs, respectively, in the protein–ADR connections discovered from the self-

reporting dataset. The 5-hydroxytryptamine receptor 2C (Uniprot ID P28335), the 5-

hydroxytryptamine receptor 1A (Uniprot ID: P08908), and the alpha-2A Adrenergic 

receptor (Uniprot ID: P08913) are the top three proteins in the curated dataset, with 119, 

104, and 98 linked ADRs, respectively (Figure 17). This high number can be explained by 

the biological role that these proteins play. For example, leptin is linked to more than 

150 biological processes (according to GO classification), spanning from signal 

transduction (GO:0007165) to autophagy regulation (GO:0010507).  

 

Figure 17. Bubble plots showing the number of drugs per protein (X axis) vs 

number of statistically significant ADR per protein (Y axis). (A) Distribution of the 

self-reporting set; (B) distribution of the curate set. 
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3.5 - Accessing and querying T-ARDIS 

 

All associations between drugs and proteins, including the original sources, have been 

deposited and compiled in a biological database: T-ARDIS. T-ARDIS can be found at 

http://bioinsilico.org/T-ARDIS providing a quick and easy access to information, 

including the ability to search and filter associations based on customized queries. The 

database can be searched by protein name (Uniprot ID or gene name), drug name, or 

ADR name. The tables that result provide information on the protein–ADR association 

as well as the q-value of the association and parent databases, both drug–protein and 

drug–ADR (Figure 18). 

 

Figure 18. Snapshot of the result page example upon querying by drug “Aspirin”. 

 

The webservice also provides external links to native drug–target or drug–ADR 

databases, as well as protein-related repositories. Users can further filter the resulting 
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table by querying specific drug, ADR, or parent databases (e.g., filtering those 

associations resulting from FAERS). The table can be sorted by q-values to display the 

most significant associations first and downloaded in a variety of formats (simple copy, 

CSV or PDF). Finally, from the home page links, bulk downloads of the database and 

associated scripts to recreate the database are available. 
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3.6 - Summary 

 

This chapter presented an approach to link adverse drug reactions to drug targets by 

utilizing various publicly available databases, a thorough curating methodology, and 

extensive statistical validation. T-ARDIS is a resource that will be useful to drug 

development researchers in both academia and industry, and, as will be highlighted in 

the following chapters, will also aid in the advancement and expansion of the underlying 

theory between proteins and adverse reactions, facilitating the development of a 

machine learning-based predictor based on such a relationship. This new resource will 

be known as DocTOR (Direct fOreCast Target On Reaction) and will be thoroughly 

explained in Chapter 5. SONG (Side Effect On Network Graph), a study on the inter-

relationship and co-morbidities on an ADR-ADR network, will be described further on 

in Chapter 6.  
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4.1 - Abstract 

 

As presented in the previous chapters, Drug discovery attrition rates, particularly at 

advanced clinical trial stages, are high due to unexpected adverse drug reactions (ADRs) 

elicited by novel drug candidates. So not only identifying, as with T-ARDIS, but also 

predicting undesirable ADR produced by the modulation of certain protein targets 

would contribute to developing safer drugs, thus reducing economic losses associated 

with high attrition rates. In this chapter I will describe a target-centric approach to 

predict relationships between protein targets and ADR, rather than the more usual 

drug-centric methods, named DocTOR (Direct fOreCast Target On Reaction). 

 

To this purpose, various machine learning classifiers such as the Support Vector 

Machine (SVM), Random Forest (RF), and Neural Networks (NN) were evaluated. It 

should be noted that different classifiers were developed for each adverse reaction. The 

classifiers, in particular, are not generic predictors of a protein eliciting any ADR, but 

rather a specific ADR. As a result, the predictions are tailored to each individual adverse 

reaction and thus have unique properties. Given this, all of the models developed based 

their training data on the T-ARDIS database, which was used to extract the highly 

significant connections between proteins and ADR. 

 

The features used to train and predict are eight different topological-based features: 

 

● I) The GUILDify network diffusion-based score.  

● II) Several network-based clustering algorithms.  

● III) A functional similarity index 

● IV) Network distance to proteins used in preclinical drug development safety 

panels 

● V) Network descriptors in the form of degree and betweenness centrality 

measurements and conservation. 
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In some way, all of the measures rely on network–based data, and so include elements 

that are fundamental not only to the protein, but also to the network. As a result, the 

proteins are framed within the interactome, and the impact of modifications on nearby 

proteins is evaluated. Specific models were created for each individual adverse reaction 

as well as clusters of ADR within the same system organ class (SOC), allowing the 

analysis to be expanded to a more general anatomical or physiological system, according 

to the MEDDRA nomenclature.  

To assess prediction's reliability, the obtained models were tested against independent 

datasets, including manually curated sources obtained from literature and data 

submitted to the Critical Assessment of Massive Data Analysis (CAMDA) competition, 

in addition to the corpora derived from T-ARDIS benchmarking. Finally, the accuracy 

of a meta-predictor that integrates the predictions of each unique classifier is 

investigated. Based on how the predictions were combined, three different meta-

predictors were developed and evaluated: (I) a jury vote system, (ii) consensus method, 

and (iii) red flag method. 

 

In the next sections I will expose in detail the data extrapolation and feature 

computation, how the different machine learning methods were implemented to obtain 

the highest reliability possible on the predictions and how I combined the results to 

develop the meta-predictors methods. A schematic representation of the overall process 

is depicted in Figure 19 
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Figure 19. Schematic depiction of feature extraction, training and testing 

procedures. Panel (A) indicates the process of extraction of the training dataset from 

T-ARDIS [11]. Panel (B) indicates the process of network expansion of targets extracted 

in (A) using GUILDify [25]. Panel (C) summarizes the process of computation of 

different input features. Panel (D) represents the development of machine-learning 

classifiers. Finally, Panel (E) illustrates the development of the meta-predictors together 

with the testing of the classifiers and consensus functions on the independent dataset. 
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4.2 - Data Extrapolation and Features computation 

4.2.1 - ADRs considered for model construction 

 

T-ARDIS represents the cornerstone of this project, providing the data set for training 

and cross-validating the models. As exposed in chapter 4, T-ARDIS is a database that 

compiles statistically significant proteins-adverse reaction interactions. The data 

contained in the database is divided into two distinct groups: relationships derived from 

self-reporting databases, such as FAERS [31] and MEDEFFECT [32] which contains 

around 17k paired protein-adverse reaction interactions, and relationships derived from 

curated databases, such as SIDER [34] and OFFSIDES [35], which reports around ~3k 

pairwise associations. Given this vast body of knowledge, creating single models for each 

adverse reaction in the database is an impossibly time-consuming and computationally 

demanding task. 

 

As a result, 84 distinct ADR were selected as a representative subset, covering the entire 

spectrum of SOC classes and yielding 434 unique relationships (figure 20). 
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Figure 20. List of selected ADR by System Organ Class. 
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The initial plan set to select at least 5 ADR for each SOC registered in T-ARDIS, but this 

was not always possible, such in the case of Congenital, Familial, and Genetic Disorders 

and Pregnancy, Puerperium, and Perinatal Conditions SOCs (Figure 20). The low 

incidence of ADR in these two specific SOCs is directly related to their rarity in T-

ARDIS. As one might expect, ADR being part of these classes can be extremely 

dangerous, and drugs that might cause them are unlikely to survive phase III [82]. On 

the other hand, given the wealth of independent information and recent clinical interest 

regarding hepatobiliary disorders (see below), it was reasonable to expand the ADR 

under investigation of this specific SOC. 

The ADR have been selected based on their number of proteins association, coverage 

for SOC and presence in external adverse reaction-target databases.  

 

The total number and types of ADR selected was also determined by the information 

available in external independent protein-adverse reaction databases. This is especially 

relevant since the data mined from independent sources will be required for later 

benchmarking. The databases used to determine the ADR subset are identical to those 

used for T-ARDIS benchmarking. As previously stated, these include the in vitro 

interactions derived from Kuhn et al. [9], the dataset from Smit et al. [81], Sayaka et al. 

[83], the ADRECs-Target database [6], and, as a novel source of information, the 

DisGeNet Drug-induced Liver Injury dataset. The latter, in particular, addresses a subset 

of drug-induced liver injuries comprising 12 distinct MEDDRA-defined events ranging 

from "Acute hepatic failure" to "Non-Alcoholic Steatohepatitis." A total of 15k 

interactions were mined by integrating the over 600 different adverse events and 428 

proteins from this compendium. The final ADR were chosen solely on the basis of 

scientific and clinical interest, yielding the 84 ADR already mentioned, which are 

associated with 188 proteins not found in T-ARDIS and thus conforming to an ideal 

independent test-set.  

 

Defining these associations is only the tip of the iceberg. Aside from their critical 

importance in drug discovery, single adverse reaction-protein relationships may not 

contain a lot of information. Indeed, the onset of ADR and diseases, like functions, is 



- 91 - 
 

mediated by a series of molecular interactions between proteins, rather than a single 

one [23]. 

As a result, a broader network perspective is required. By mapping the ADR associations 

discovered on the human PPIN (protein-protein interaction network), the protein's 

topological characteristics, that may define the onset of a specific adverse reaction, can 

be identified. As a result, the primary focus of this study becomes the extrapolation of 

adverse reaction-related protein features via network analysis. 

 

It is critical at this point to define the protein network that will be used to map and 

analyze such information. BIANA [84] and GUILDifyv2 [25] were used to integrate the 

human interactome data used in this study. The data contained in BIANA, in particular, 

were obtained by integrating interactome data from the IntAct [85], DIP [80], HPRD 

[86], BioGrid [87], MPACT [88], and MINT [89] databases, resulting in one of the most 

complete maps of the PPI landscape [84]. The most recent version included 13,090 

proteins (or nodes) and 320,337 connections (or edge).   

 

4.2.2 - Features considered for prediction. 

 

The extensive network analysis of the human PPIN yielded eight distinct features that 

were used to characterize the associated proteins of the 84 ADR chosen. The selected 

features try to exploit all the possible topological characteristics, from message passing 

to shortest path between nodes (Figure 21). 

 

Namely the features employed are: 

 

● GUILDify Score 

● Centrality degree and Betweenness centrality measures 

● Clustering based algorithms 

● A functional conservation score 

● Shortest path to in vitro ADR identified proteins (VIT - Very Important Targets) 
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Figure 21. Network Feature extrapolation. Visualization of network feature 

extrapolation. application of GUILDify message passing method (red nodes and arrows), 

study of clustering analysis (cyan), degree centrality and betweenness centrality 

computation (purple), GO enrichment analysis (yellow), shortest path to VITs (blue 

nodes and arrows). 

 

4.2.2.1 - GUILDify score 

 

GUILDify is a web service that hosts network diffusion-based algorithms that can be 

utilized in a variety of network medicine applications [25]. GUILDify message-passing 

algorithms [25] send a signal from a collection of proteins linked with a phenotype or 

drug (known as seeds) to the rest of the network nodes and grade them based on how 
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quickly the message reaches them while taking many network features into account. 

GUILDify was originally created to prioritize gene-disease correlations and discover 

disease modules [25] [90], but it has lately been used to uncover disease comorbidities 

and medication repurposing possibilities [91]. In this study, GUILDify was used to 

predict protein-adverse reaction correlations. A GUILD score was assigned to each 

protein in the interactome upon expansion based on the adverse reaction's associated 

protein used as seed. The higher the score, the more likely there is a connection between 

the protein and the seeds used to expand it. 

 

4.2.2.2 - Degree and betweenness centrality. 

 

Degree and betweenness centrality are two of the network analysis metrics used as 

features in this research. As already mentioned in chapter two, the betweenness 

centrality can be defined as the number of times a node acts as a bridge along the 

shortest path between two others, whereas the degree centrality is defined as the 

number of edges connecting to a node. In terms of the interactions between proteins, 

both measurements indicate how significant a node is within a network, as well as how 

likely a protein is to be part of a signal cascade and engage in the same biological 

process. The degree and betweenness centrality values were calculated using NetworkX 

[92]. 

 

4.2.2.3 - Clustering-based algorithms 

 

A further representation of the "guilt-by-association" theory is the interpretation of 

"disease module," which is a neighborhood of a molecular network whose components 

are all associated with one or more diseases or risk factors. Disease modules, as 

demonstrated, can be used to identify proteins/genes associated with specific diseases 

[23]. The assumption in the context of ADR is that proteins linked to the same ADR will 

cluster in local regions of the interactome, forming adverse reaction modules.  Two 

different clustering algorithms were used to identify these modules. 
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The first method was the K1 clustering algorithm based on the Diffusion State Distance 

(DSD) metric [29]. The DSD metric is used to define a pairwise distance matrix between 

all nodes, which is then used by a spectral clustering algorithm. Using standard graph 

techniques, dense bipartite subgraphs are identified in parallel. Finally, the results are 

combined into a single set of 858 non-overlapping clusters. 

 

The second clustering method is based on the work of Lefebvre and colleagues [93], and 

is based on modularity optimization, assigning and removing nodes recursively to the 

modules discovered, each time evaluating the loss or gain of modularity. 46 unique 

modules were extracted from the interactome through this methodology. Finally, using 

the NetworkX utility, the "clustering coefficient" for each node in combination with the 

clustering approaches mentioned above was computed [92].  

 

4.2.2.4 - A function conservation index 

 

The use of Fisher's exact test to identify enriched Gene Ontology (GO) functions among 

top ranking proteins is a new feature in the current version of GUILDify [25]. The 

function conservation index, which makes use of this relevant data, determines how 

functionally comparable a protein is to the enriched GO terms subnetwork computed 

by GUILDify. In a nutshell, this value is the result of calculating the Hamming distance 

between two binary vectors indicating the presence or absence of a specific GO term, 

one for the single protein and one for the subnetwork. This information can be 

interpreted as the contribution of single proteins to the enriched network's function, 

and thus how much is responsible for the onset of the Adverse Event if perturbed. 

Mathematically the Hamming distance is expressed as a ratio, with 1 indicating total 

function overlap between the single protein function and the enriched network 

function. 

 

The following example illustrates this index. Given proteins A, B, and C that are linked 

to a specific ADR. Protein A is enriched with four different Molecular Function GO 
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terms, according to Gene Ontology results. The underlying network, derived from the 

expansion of protein A, B, and C, has been enriched with two different molecular 

function GO terms, of which only one is present in protein A. These data can be 

represented as two binary vectors indicating the presence or absence of specific GO 

terms (Table 6). 

 

Table 6. Vector representation of GO terms 

 GO term 1 GO term 2 GO term 3 GO term 4 GO term 5 

Protein A 1 1 1 1 0 

Protein B 0 0 1 0 1 

Network 

enrichment 

0 0 1 0 1 

 

 

{𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐴 = [1, 1, 1,1,0] 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 = [0,0,1,0,1]  

{𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐵 =  [0, 0, 1,0,1] 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =  [0, 0, 1, 0, 1] 

 

We can now compute the Hamming distance between these two vectors, which is 

defined as their XOR operation, 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝐴 ⊕ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑛𝑟𝑖𝑐ℎ . The final value is 

computed counting the total number of 1s in the resultant vector and then expressed as 

the proportion of values that are the same, in this case 0.2. As evident, the same 

operation performed with ProteinB yields result 1. 

Programmatically, the Hamming distance has been computed with the SciPy function 

spatial.distance.hamming 

 

4.2.2.5 - Shortest path to Very Important Targets 

 

Safety panels include proteins and pathways that are well established as contributing 

factors to clinical ADRs representing the bare minimum of targets that qualify for early 

hazard detection, off-target risk assessment, and mitigation. These specific proteins can 

be accessed via the EuroFins Discovery Safety Screen Tier 1 panel, thanks to the work of 
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Whitebread and colleagues [94]. The panel is composed of 48 proteins renamed in this 

research as Very Important Targets (VITs). As one may expect, many of the VITs 

represent network hubs, or proteins that have particular relevance in critical biological 

functions. Indeed, the location of T-ARDIS' adverse reaction associated proteins in the 

human interactome in relation to VITs may provide important insight into the twos' 

relationships. 

The VITs have been mapped in the interactome using the NetworkX utility. At the same 

time the shortest path distance between each of the proteins in our training set and any 

VIT has been computed [92]. As a representative distance between the T-ARDIS 

proteins and the VITs, the value of the first quartile was taken from the overall 

distribution of shortest path distances of any given protein. 
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4.3 - Machine Learning implementation 

 

The method for predicting protein-adverse reaction relationships will be described in 

this subchapter. The strategy proposed, as previously stated, is a network-based 

application, which means it is focused on a topology-oriented collection of eight metrics 

generated for each protein and used as inputs to machine learning classifiers. The three 

types of classifiers used were Support Vector Machine (SVM), Random Forest (RF), and 

Neural Networks (NN). Specific models were trained and tested for each of the 84 ADR, 

as well as models at SOC, which group ADR belonging to the same SOC. 

 

4.3.1 - Positive and negative sets definitions 

 

The positive set, i.e., proteins associated with each of the 84 ADR considered, was 

obtained from the T-ARDIS database [11]. Since the number of positive examples per 

adverse reaction are typically low, the positive set was augmented using the concept of 

close connection. To that end, the DIAMOnD score [26] was calculated for the 

subnetworks associated with the positive set. The proteins forming the new obtained 

subnetwork (i.e., the closest to each other) were then sorted, and those with a 

DIAMOnD score greater than an arbitrary threshold were chosen to form the positive 

set. Multiple DIAMOnD threshold scores, namely at 0.6, 0.7, 0.8, and 0.9, were tested 

to obtain the best result during the training phase. The findings of this comparison can 

be found in the thesis supplementary materials [10]. 

 

Each of the ADR under consideration has its own negative set defined. The DIAMOnD 

criterion was used again, this time by randomly selecting proteins with scores lower 

than the chosen positive threshold. All of the negative sets produced in this fashion 

contain proteins with DIAMOnD scores close to zero, indicating that they are 

completely unrelated to the associated adverse reaction subnetwork (Figure 22). 
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Figure 22. DIAMOnD Distribution for the Negative sets in the case of T-ARDIS 

self-reporting (A) and T-ARDIS controlled (B) datasets. The distribution is 

considered for all the accumulated ADR.  

        

This is simply explained by the fact that the adverse reaction positive subset only 

accounts for a small portion of the overall human interactome.  Also, for this reason, 

during the training and testing phases, various positive:negative case ratios were 

evaluated. Indeed, in addition to using a balanced training set, that is, an equal number 

of positive and negative instances, alternative ratios for training and testing the models 

such as 1:1.5, 1:3, and 1:5 (positives:negatives) were investigated. In parallel with the 

DIAMOnD negative distribution, a simple topological study was also carried out to 

assess the independence of the generated negative sets and their associated positives. 

The obtained distribution confirmed that the majority of negative proteins are at least 

three jumps apart from the positive subsets. (Figure 23) 
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Figure 23. Distribution of negative node shortest path. The shortest path is 

computed taking in consideration as source the negative set nodes and as target the 

adverse reaction associated positives in the case of T-ARDIS self-reporting dataset (A) 

and T-ARDIS curated dataset (B) 

 

4.3.2 - The predictive performance of individual features in 

the Self-reporting and curated datasets        

As input features for the classifiers, eight different variables were considered as 

described in the previous sections. GUILDify scores, network topology (degree and 

betweenness centrality values), a function conservation score, module imputations, and 

distances to proteins in safety panels are among them. In Figure 24 it is shown the 

distribution of the different features for the positive and negative sets. As already 

mentioned, the positive cases (negative cases were selected randomly) were extracted 

from the T-ARDIS database [11] both for the self-reporting and curated sets.  The data 

shown in Figure 24, in particular, derives from the self-reporting set of T-ARDIS. 

 

Starting from the GUILDify rankings, positive and negative nodes present an evident 

overlap, but the positive sets have higher scores and a slightly skewed distribution 

toward high values (Figure 24A). The analysis of centrality-based features also shows a 

significant overlap between positive and negative sets, though positive sets have a more 

skewed distribution towards higher values, especially in the case of betweenness values 

(Figure 24B-C). 
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When quantifying function analysis as distance to enriched function(s) of the set 

(Figure 24D), the proteins in the negative set have larger distances, i.e., no shared 

functions with the GUILDify enriched GO terms, than those in the positive set. In fact, 

the majority of proteins with a value of 1.0 correspond to proteins in the positive set, 

while those with lower values, i.e., no shared GO terms, tend to be proteins in the 

negative set. However, it is fair to say that the overlap is substantial. 

The tendency of functionally and disease-related proteins in the interactome to be close 

(i.e., shorter distances) was also considered as a feature for the prediction. This aspect 

was investigated, as described in the previous section, by using clustering algorithms to 

identify modules in the entire interactome where proteins associated with the same or 

similar ADR are grouped. If the number of modules needed to represent a given 

collection of proteins in an adverse reaction is small, the proteins are likely to share 

modules. Similarly, the presence of a large number of modules indicates that the 

proteins do not belong to the same cluster.  

The K1 algorithm [29] identified 1170 different clusters, many of which were composed 

of three proteins, the smallest amount required to define a module (Figure 24E). As 

shown, proteins in the positive set have fewer clusters, implying that proteins associated 

with ADR tend to belong to a small number of clusters rather than being dispersed 

throughout the interactome. Similarly, the Louvain-Newman method [93], which 

grouped the entire interactome into only 95 distinct clusters, allowing for larger module 

analysis, demonstrated a similar distribution as K1, i.e., the positive set is drawn towards 

lower values (Figure 24F). Finally, in the Clustering Coefficient Analysis (Figure 24G), 

both negative and positive sets have the same value distribution. As a result, this feature 

does not appear to distinguish between positive and negative cases on the adverse 

reaction. 

The distance of given proteins to so-called VITs was the final metric considered as an 

input variable (see previous section). The distance was calculated as the shortest path 

(i.e., the fewest number of links) to any given protein in the panel, using the first quartile 

value after computing all the distances all vs. all (protein in the given adverse reaction 

and proteins in the panel). 
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Once again, the distribution of values varies depending on whether the proteins are in 

the positive or negative sets (Figure 24H). While the most common distance is 2.0, only 

proteins in the positive set have values less than 2, indicating that proteins in the 

positive set are closer to proteins considered critical according to pharmacological 

profiling. 

The analysis of the individual features already shows some promising behaviors with 

individual metrics able to differentiate between both the positive and negative case. 

While individual features are informative, the predictive power could be boosted by 

combining them with a machine-learning classifier. In the next section I will present 

how the different machine learning methods have been implemented and how, for each 

one of the 84 ADR, 12 different models have been obtained by the combination of 

positive threshold and Negative Ratio for a total of 1008 trained models. 
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Figure 24.  Distribution plots of 8 different input variables used by classifiers. 

The values of the positive and negative sets are shown in blue and red respectively in 

panels (A) to (G). Panels (A), (B), (C), (D), (E), (D) and (G) show the distribution of 

GUILDify scores, centrality values, betweenness values, function score, % of clusters K1, 

% of clusters LN, and clustering coefficient values respectively. Panel (H) presents the 
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box-plots and a violin representation of the distribution of the shortest path values on 

the negative (orange) and positive (blue) sets. 

4.3.3 - Features vectorization and model construction 

 

Support Vector Machine (SVM) with nonlinear kernel (radial basis function - RBF), 

Random Forest (RF), and Neural Networks were the three machine-learning (ML) 

classifiers employed in this study (NN). All three approaches were trained using both 

the positive and negative sets described above. Particular ML libraries were used to 

implement the classifiers used in this project. The first is Scikit-learn [95], a free 

machine learning software library for the Python programming language. This package 

has been of particular use as it includes a variety of classification, regression, and 

clustering algorithms, such as support-vector machines and random forests in our case. 

The version used for this project is 1.1.0. The implementation of neural networks 

required the Keras [96] and TensorFlow [97] packages. Keras is a Python API for the 

development of artificial neural networks and acts as front end for the TensorFlow 

library. TensorFlow is a free and open-source machine learning and artificial 

intelligence software library. It can be used for a variety of tasks, but it is most 

commonly used for deep neural network training and inference. The versions used for 

this research are the 2.9.0 for both libraries. 

 

The feature vectorization (i.e., the preparation of training data in a suitable format for 

the ML functions) has been performed using the Pandas python package [98]. Pandas 

is a software library for data manipulation and analysis, written in the Python 

programming language. This package has been especially useful for data structure 

operations such as manipulating and parsing numerical tables, making it indispensable 

for the analysis of large datasets such as this one. The Pandas version used is the 1.4.2. 

The feature vectorization process, as previously exposed, include the selection of 

adverse reaction positive set, filtering for different threshold of the diamond Score 

(𝐷𝑖𝑎𝑚𝑜𝑛𝑑𝑆𝑐𝑜𝑟𝑒 ≥ [0.6,0.7,0.8,0.9]) and the random selection of negative values from 

all the proteins with a diamond score ≤ of the positive threshold. The negative has been 
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also sampled in different ratios with respect to the positive set to increase prediction 

difficulty (1:1,5, 1:3, 1:5). with the panda’s sample function.  

 

4.3.3.1 - Support Vector machine details 

 

The support Vector machine was built using a combination of Pandas [98] and Scikit-

learn [95]. The Pandas package was used to load and parse the training data into a 

suitable format as explained above, while the SVC function with an RBF kernel was used 

for the actual SVM implementation. For the hyperparameters optimization, a 5-fold 

grid-search cross validation was used. This has been obtained with the StratifiedKFold() 

and the GridSearchCV() functions. The StratifiedKFold() provides train/test indices to 

split data in train/test sets and has been applied during the cross-validation process on 

the training data.  The GridSearchCV() function instead is used to train a machine 

learning model with various combinations of training hyperparameters, finding the best 

combination that optimizes a given evaluation metric. 

 

The best approach to a SVM problem requires the optimization of two main parameters 

that will be explored in the GRIDSearchCV() process. The first one is the C 

hyperparameters. As mentioned in Chapter 1, the optimization problem that SVM 

training attempts to solve has two main terms: the first is a regularization term that 

benefits "simpler" weights, and the second is a loss term that ensures that the weights 

correctly classify the training data point. 

The hyperparameter C represents the balance of importance between these two terms. 

If the C value is skewed toward high values, the SVM will prioritize the second term, 

whereas if the C value is low, the SVM will be optimized toward a more general model. 

In the applied optimization procedure, the C value has been explored in the log space 

between -4 and 4. 

 

The Gamma Hyperparameter is the second hyperparameter that must be optimized. 

The Gamma value essentially controls the distance of influence of a single training point 

and its optimization can be applied only when working with multidimensional kernels 
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such as an RBF or Polynomial kernel. Low Gamma values indicate a large similarity 

radius, which results in more points being grouped together; on the other hand, high 

Gamma values require the points to be very close to each other in order to be considered 

in the same group. This parameter has a direct impact on the ability to discriminate 

between points and is crucial in avoiding overfitting. Gamma values have been explored 

with the SVC inner parameter “scale” and in the log space between -4 and 4. 

As with any ML method developed, the use of cross validation in tandem with the 

defined grid search procedures allowed the best model, as well as the adverse reaction 

best combination of positive and negative thresholds, to be identified. 

 

4.3.3.2 - Random Forest details 

 

The RandomForestClassifier() function was used to implement the random forest 

models. As before this function is derived from the Scikit-Learn python package. The 

deployment is similar to the SVM, exploiting the panda’s library for the training set 

preparation and the StratifiedKFold() and Gridsearchcv() functions for the cross-

validation and grid search processes. In this case the total number of estimators (trees) 

and the maximum number of features used for each estimator were the random forest 

hyper-parameters tuned. The total number of estimator tuning is still a point of 

contention in ML theory, and it is strongly related to the single problem under 

consideration [99] 

Following the examples found in literature [99] [100] the total number of estimators is 

explored in the linear space between 64 and 128. The total number of features for each 

estimator are investigated with the “auto” inner validation offered by the 

RandomForestClassifier() function or the option without a maximum number (i.e., all 

the features were used in each estimator).  
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5.3.3.3 - Neural Network details 

 

As already mentioned, the implementation of Neural Network relied on the Keras and 

TensorFlow architectures [96] [97]. Again, training data was prepared using the pandas’ 

package, which allows for easy retrieval and differentiation of positive and negative sets. 

In contrast to the previous two machine learning implementations, which allowed for 

direct hyperparameter tuning, the Neural Network models necessitated the creation of 

a dummy function. This function creates an environment in which all NN 

hyperparameters that need to be tuned can be declared (Snippet 1). 

 

def create_model(neurons=1, optimizer='adam', hidden_layers=1): 

      

  model = Sequential()  # initialize the model 

  model.add(Dense(neurons, input_dim=len(training_df_X.columns),     

                activation='relu')) # add first layer 

 

  for i in range(hidden_layers): 

         # Add one hidden layer 

         model.add(Dense(neurons, activation='relu')) 

 

     model.add(Dense(1, activation='sigmoid')) 

     model.compile(loss='binary_crossentropy', optimizer=optimizer, 

                metrics=['accuracy']) 

     return model 

 

Snippet 1. Code snippet for the dummy Neural Network function. Implemented in 

Python3.9 this code declares all the hyperparameters that need to be tunes such as the 

number of neurons, the optimizer and the number of hidden layers 

 

All the parameters defined in the create_model() function will be investigated and 

enhanced during the grid search procedure. These include the number of hidden layers, 



- 107 - 
 

from 1 to 3 and the number of neurons for each layer, from a minimum of 4 to a 

maximum of 2048. Learning model parameters were also studied including the batch 

size, with the value of 32 or 64 and the number of epochs, 50 or 100. Due to 

computational time constraints, neither the optimizer nor the activation function were 

investigated, instead the implementation relied on the standard SGD optimizer 

function and the relu and sigmoid activation functions. 
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4.4 - Performance score implementation 

 

The testing comes after the training phase in any ML approach. The independent testing 

dataset was obtained from the T-ARDIS benchmarking compendium, as previously 

stated. This dataset contains 188 proteins mined from external sources which are linked 

to the same ADR under investigation. Again, no overlap exists between the training and 

testing sets, implying that none of the proteins extracted externally are included in the 

training set. 

The testing procedure is quite simple; in a nutshell, the proteins associated with each of 

the 84 ADR will be predicted using the appropriate model, and different evaluation 

metrics, as discussed in previous chapters, will be implemented based on the results to 

assess the prediction’s quality. During the testing phase, different scores are used to 

validate the model, as described in sub-chapter 2.7.4. Accuracy, Precision, Recall, 

Receiver operator curve, and Matthew correlation coefficient are easily implemented 

using the Scikit-learn package's functions accuracy_score(), precision_score(), recall_ 

score(), roc_auc_score(), and matthews_corrcoef(). The direct usage is also 

straightforward; in fact, these functions require only the labels of the testing set (in this 

case, 0 or 1 depending on whether the proteins are related to the adverse reaction or 

not) and the predicted label. Based on the evaluation scores obtained for each of the 

machine learning models implemented, only one model is chosen for each of the ADR 

under investigation. 
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4.5 - Single ML methods CV results 

 

As previously stated, each of the models underwent cross-validation during the training 

phase to assess model reliability prior to the effective independent test. This procedure 

was also used for hyperparameter tuning, to see how the model scores changed as the 

metrics varied. The preliminary results of this phase can be used to have an idea of the 

model's performances. The Receiver Operator Curve AUC value distribution derived 

from single classifier cross-validation is shown in Figure 25. To determine the best 

hyperparameters combination, this score was used to rank the various models obtained 

during the cross-validation and GRID search procedures. The different classifiers appear 

to perform well, with the median value exceeding the 0.5 random threshold while the 

best ranking models easily outperform the 0.8 threshold. The top-ranking model for 

each adverse reaction will be chosen as representative and tested against an 

independent set. Figure 26 shows the evaluation results of the testing procedure for the 

single predictors as well as the evaluation scores for the meta-predictors. 

In this case, the differences between the classifiers were minimal, performing similarly 

in terms of Accuracy, Precision, and AUC, though RF appeared to score higher, 

particularly in terms of sensitivity, with the highest value for the third quartile of the 

distribution. In terms of Matthew's Correlation Coefficient (MCC), the values are 

primarily distributed above zero, with the median value hovering around 0.25, 

indicating non-random predictions (Figure 26). 
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Figure 25. Box- and violin plots of the cross-validation AUC results for the three 

different classifiers. The different box-plots show the distribution of the mean AUC 

values for the best models developed for each adverse reaction using the three different 

classifiers: SVM (orange), Random Forest (Blue) and Neural Networks (green). 
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4.6 - Meta predictor implementation and details 

 

To incorporate individual classifier predictions, three voting systems were proposed: a 

jury vote, a consensus score, and a red-flag schema. Since classifiers are binary, they can 

predict whether or not a certain protein is causing a given adverse reaction. Both the 

jury vote and the consensus aim to maximize comparable predictions, whereas the red-

flag focuses on outliers. 

 

The jury vote is simply a tally of the predicted outcomes and is one of the most basic 

voting systems. In a nutshell, given a protein X, if two ML methods predict the protein 

class as 1 - or "adverse reaction linked" and the other method as 0, the ensemble method 

output class will be 1. The consensus score c is more granular, as it uses the posterior 

probability p of each classifier instead of a yes/no answer. As a result, the consensus 

score can be used to rank proteins in the same class, such as those projected to be 

connected to a specific adverse reaction. In particular this method adds the single ML 

class probability multiplied by 1 or -1 depending on whether the prediction is adverse 

reaction-linked or not. If the sum of these values is positive, the ensemble method 

output is 1 or "adverse reaction-linked," otherwise it is 0 or "Not-adverse reaction-

linked." 

 

𝑐 = ∑ 𝑝𝑖
3
𝑖=1 ∗ 𝑐𝑙𝑎𝑠𝑠(𝑖); 𝑖 = [𝑆𝑉𝑀, 𝑅𝐹, 𝑁𝑁]; 𝑐𝑙𝑎𝑠𝑠 ∈ [−1, +1]   eq. 45 

 

Consider protein X once more for a further concrete example. If the SVM model predicts 

the protein class as 1 with a probability of 0.86, the RF predicts it as 0 with a probability 

of 0.63, and the NN predicts it as 1 with a probability of 0.53, the overall consensus 

prediction would be (0.86 * +1) + (0.63 * -1) + (0.53 * +1) = 0.76. Since this value is positive, 

the protein class can be accepted as 1. 

 

Finally, the red flag schema simply accepts as final prediction the one which is not 

common among the different classifiers.  In other words, as opposed to the jury vote 

system, the red flag approach will select as output for the ensemble method class with 
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least predictions. Considering again a protein X, if two ML methods predict the class as 

1 - or “adverse reaction linked” and just one as 0, the ensemble method output class will 

be 0 

  



- 113 - 
 

4.7 - Single predictor vs Meta-Predictor 

 

Since each adverse reaction was assigned three different classifiers, it is possible to 

combine the predictions using the scoring methods described above, resulting in 

improved prediction performance with respect to the single predictor. Indeed, 

Accuracy, Precision, Recall, and AUC increased when compared to individual predictors 

in the jury vote and consensus voting systems (figure 26). Generally speaking, there was 

not only an improvement, but also a gradual shift toward higher values as the 

distribution skewed toward better values. The red flag method, on the other hand, 

caused predictions to worsen. As previously stated, the red flag was designed to detect 

singular projections and to serve as a failsafe in the case of two classifiers that predict 

the same results but with low probability. A similar pattern can be seen in the case of 

MCC values (figure 26). 

Indeed, the distribution of MCC values for jury vote and consensus voting systems was 

more skewed toward higher values when compared to individual predictors, directly 

indicating an improvement of the prediction quality. Lower MCC values ranging from 

0 (random prediction) to negative (inverse) values are seen in the red flag consensus of 

Accuracy, Precision, and Recall. Accepting the most common prediction rather than any 

single predictor is thus a better strategy.  

 

Figure 26. Box- and violin plots for accuracy (ACC), precision (PREC), recall 

(REC), Receiver Operating Area Under Curve (ROC AUC) and Matthew 
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Correlation Coefficient (MCC). Distribution of Accuracy, Precision, Recall and ROC 

AUC values for individual classifiers: NN (green), RF (blue) and SVM (orange) as well as 

meta-predictions: consensus (cyan), jury-vote (magenta) and red-flag (red) 

 

 

4.7.1 - Predicting at SOC level 

 

All of the models in the previous sections were adverse reaction-specific. However, in 

pure terms of applicability, there could be the need also of more generalist predictive 

models while maintaining biological and medicinal significance. This can be obtained 

exploiting the information contained in the MEDDRA classification system, to 

categorize the various ADR into distinct System Organ Classes (SOCs) [38]. Since 

certain MEDDRA reported ADR are very generic or not particular to body regions, 

tissues, or underlying human biology, not every SOC is contained in the database, as 

mentioned in the T-ARDIS publication [11].  

However, as previously stated, the 84 ADR included in this study were chosen 

specifically to cover the entire spectrum of available SOC, being able to be divided into 

18 separate SOCs, with each SOC containing an average of 5 ADR. There is a lot of 

variation in predictions for the accuracy, precision, sensitivity, and MCC scores at the 

single classifier level (Figure 27). When it came to "Respiratory, thoracic and mediastinal 

disorders" predictions were far more accurate than when it came to immunological or 

nervous disorders. 

With the exception of red-flag voting, combining predictors enhanced forecasts in 

general, especially in terms of Recall. However, when compared to predictors acting at 

the adverse reaction level, sensitivity values were often low (figure 27). This fact 

emphasizes how difficult it is to predict at a higher level of abstraction rather than at 

the level of individual ADR.  A similar issue can be found in terms of MCC values (figure 

25). When individual predictions were combined in a jury vote or consensus voting, 

predictions improved, such as in the case of respiratory, thoracis, and mediastinal 

illnesses, which went from an MCC of 0.75 of the best predictors to 0.81 when combined. 
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Figure 27. Evaluation of adverse reaction-protein association predictions of the different classifiers at SOCs level. Accuracy, 

Precision, Recall and ROC AUC values for predictions at SOCs for both individual classifiers (SVM, RF, NN) and voting ( jury vote, 

consensus and red flag).
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4.8 - Discussion 

 

The goal of this study was to develop a method for predicting the potential liability of 

proteins in the context of ADR when they are targeted for therapeutic purposes. By 

analyzing the human interactome, a number of network-based metrics were developed 

to characterize the proteins under investigation. This wide range set of measures was 

then fed into three machine-learning classifiers, which were then combined using three 

different voting methods. Both the individual adverse reaction and SOC prediction 

models performed well, indicating that they can be used to forecast potential protein 

liabilities. 

 

4.8.1 - Classifiers performances 

 

There were eight variables used in the predictions, each representing a different 

characteristic of the proteins under investigation. As illustrated in Figure 24, the level 

of discrimination between positive and negative cases varies with GUILDify scores and 

K1 clustering analyses among top performers and degree centrality and clustering 

coefficient analyses as fewer discriminating factors. This reflects the small-world nature 

of the human interactome. 

 

There were also distinctions among the ensemble classifiers (figure 26 - 27). Under 

training conditions, RF appeared to perform best, but the performance of the different 

classifiers was inferior in some cases for specific ADR, demonstrating the complexity 

and heterogeneity of this biological problem. As a result of the previous discovery, I 

devised a voting method to combine the individual predictors into a meta-predictor. 

With the exception of the red-flag vote, combining the methods produced better 

predictions, as illustrated in Figures 26-27. The jury vote and consensus voting systems 

both worked on the same premise: to improve classifiers that make similar predictions. 

In fact, the jury vote and consensus voting methods perform similarly (figures 25 - 26), 
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but the consensus voting system adds more specificity to the predictions, allowing for a 

more accurate ranking. Indeed, whereas a jury vote will assign a specific protein to a 

class, such as +2; both methods agree that the given protein is associated with a specific 

adverse reaction, the consensus scoring function will provide a quantitative metric that 

can be used to rank proteins within the same class. This feature is critical for 

establishing trust in the DocTOR application's predictions (see below). Finally, the red-

flag voting mechanism, as previously stated, resulted in overall worse predictions. 

However, in certain cases, such as nocturia, neutropenia, or ischaemia adverse reaction, 

this method has been shown to be effective. 

 

Another aspect of this study that was looked into was the nature of the predictions. In 

theory, one of the key achievements of protein-adverse reaction predictions would be 

determining whether targeting a protein will result in an undesirable adverse event, i.e., 

obtain an unique model to predict every adverse reaction. Given however the presence 

and possible concurrence of many different types of ADR, this is quite a difficult subject 

to convert into a predictive model which could lead directly to consider every protein 

linked to any adverse reaction. 

 

This is why the predictive models were adverse reaction-specific; the prediction is not 

whether a protein will cause an undesirable event, but what type of reaction it will cause. 

Nonetheless, ADR can be classified into common SOCs. 

 

Individual ADR are abstracted into a higher entity in this way, allowing for the 

development of more generalist prediction models, such as one that predicts whether 

the targeting of a specific protein is linked to a specific SOC perturbation. Predicting at 

this level resulted in some SOCs outperforming others, as illustrated in Figures 27. 

Moreover, it appears that SOCs with more clearly defined impacted tissues/organs had 

higher systemic representations in their predictions.  
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4.8.2 - Self-reporting vs curated Dataset results 

        

The ML techniques' distribution of scores reflects the varying number of proteins linked 

with ADR in the self-reporting and curated T-ARDIS dataset. Due to the nature of the 

origin databases, the curated set presents a more specific and trustworthy direct 

correlation between targets and ADR, which is useful in the prediction of tissue-specific 

ADR such as Atrial Fibrillation (curated jury score ACC 0.88, PREC 0.88, RECALL 0.88, 

MCC 0.77). However, this has an effect on the dimension of the GUILDify subnetwork 

and, as a result, on the definition of positive set during the training phase, resulting in 

somewhat poorer accuracy and precision for some difficult-to-predict associations such 

as Respiratory Failure (self-reporting jury score ACC 0.722222, PREC 0.7, RECALL 0.77, 

MCC 0.44; curated jury score ACC 0.66, PREC 0.66, RECALL 0.66, MCC 0.33). Overall, 

however, the implemented method proved successful both in the case of single ADR 

and SOC for the controlled dataset as is shown in figure 28 -29. 

 

 

Figure 28. Box- and violin plots for accuracy (ACC), precision (PREC), recall 

(REC), Receiver Operating Area Under Curve (ROC AUC) and MCC for the 

curated dataset. Distribution of ACC, PREC, REC and ROC AUC values for individual 

classifiers: NN (green), RF (blue) and SVM (orange) as well as meta-predictions: 

consensus (cyan), jury-vote (magenta) and red-flag (red) 
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Figure 29. Heatmap of predictions at SOCs for curated dataset. ACC, PREC, REC, ROC AUC and MCC values for predictions at 

SOCs for both individual classifiers (SVM, RF, NN) and voting ( jury vote, consensus and red flag for the controlled dataset. 
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4.8.3 - The DocTOR utility 

 

All of the datasets used in this work, as well as the predictive models and auxiliary scripts 

to carry out the predictions, are available at the Direct fOreCast Target On Reaction 

(DocTOR) application, which can be found at https://github.com/cristian931/DocTOR. 

To explore the potential association between the two, users can submit a list of proteins 

in the form of UNIPROT identification codes and a list of ADR of interest (from the 

available models). For all three distinct classifiers (SVM, NN, and RF) and voting 

methods, the computer will assign a positive or negative class to the protein, as well as 

a probability associated with the chosen class (jury vote, consensus and red-flag). As a 

result, when analyzing the forecast results, users can take into account all of this 

information.  When novel protein targets are identified to be related with certain ADR 

and/or new releases of the T-ARDIS database, the application lends itself to being 

quickly updated, allowing for the addition of new models for new ADR on demand or 

the retraining of current models.  
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4.9 - Summary 

 

In this chapter, I looked at protein liabilities in the context of medicinal development 

from an interactome-centric standpoint gathering information on protein topology in 

the human interactome, insights in relation to certain in vitro verified adverse reaction-

related hotspots and finally function connections. With the obtained features I trained 

three separate machine-learning models using the various variables to predict 84 

different ADR, including a DILI-related subset and 20 different System Organ Classes. 

The models were optimized using grid-search and 5-fold cross-validation, and the 

results were tested on a separate dataset. The effectiveness of the models in both 

training and independent testing validates their use as a future computational tool for 

assessing protein liability at the level of specific adverse reaction type and SOC. Finally, 

I made the data, models, and prediction tool available to the scientific community 

through a GitHub repository. 
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5 - LINKING AND IDENTIFYING THE 

MOLECULAR BASES OF ADRS 

THROUGH SHARED TARGETS: 
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5.1 - Abstract 

 

T-ARDIS opened the door to this project in Chapter 4, allowing statistical correlation of 

ADRs with Protein Targets retrieved from publicly available data-sets. T-ARDIS, unlike 

other resources, enables the use of the largest archives available, yielding a substantial 

amount of data. DocTOR used this information in chapter 5, to train and develop 

machine-learning based tools to predict the likelihood of a protein to elicit an ADR. 

While T-ARDIS deals with known associations (assessed statistically), DocTOR could 

be applied to proteins for which no information is available, i.e., de novo predictions. 

Despite the promising results obtained thus far, this research has not yet investigated 

the actual molecular basis of ADR onset. 

 

I now propose an alternative viewpoint on the T-ARDIS discoveries, which will allow us 

to explore the proteins shared by different ADRs from a different network standpoint. 

In the following sections, I will examine and expand an "Adverse-Reactome," a different 

type of network formed by plotting the various ADRs extracted from T-ARDIS curated 

datasets as nodes and using the shared proteins between them as edges. The resulting 

network will go through a clustering procedure that will aid in identifying specific 

subsets and modules of ADRs linked by peculiar proteins. Investigating the cluster’s 

protein-enriched functions and mining the literature for information, I hope to uncover 

the possible relationship between ADRs and associated protein roles, expanding our 

knowledge, and eventually identifying the molecular perturbation that causes ADRs to 

occur as well as the relationship between ADRs. 
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5.2 - The SONG Network  

 

As exposed in chapter 4, the T-ARDIS methodology was able to mine a wide range of 

adverse reactions-protein relationships. This data contains the information mined from 

two distinct sources. one from self-reported databases and the other, defined 

"controlled" data-set, from more curated databases. Still, even if the proteins-ADRs 

relationships have been uncovered, the precise molecular mechanism of protein 

modulation and how this event is related to the onset of an ADR remains unknown. 

Examining the function of the proteins involved in the various ADRs, on the other hand, 

can help shed light on this problem. However, throughout this research, protein-ADR 

interactions have been regarded as stand-alone relationships, despite the fact that 

functions, and thus ADRs, are carried out finely through the synergy of multiple 

proteins. As a result, the retrieved ADR-protein information must be integrated in a 

more interconnected environment. This could lead to the discovery of seemingly 

unrelated ADRs that are actually linked by a shared biological process. 

 

This idea resulted in the development of the SONG (Side-effect ON Graph) approach. 

Given computational time and demand, this method has been however developed 

limited to the more reliable curated set of T-ARDIS databases, which contains 4k 

statistically significant protein–ADR relationships shared between 537 and 194 ADRs 

and proteins, respectively [11]. Given the SONG method's multi-step nature, the first 

phase revolves around the creation of a network that represents the relationships 

between multiple extracted ADRs, with shared proteins acting as connecting elements. 

The resulting network will be similar to a protein-protein interaction network 

integrating the ADRs as nodes and the proteins they share as edges. The total number 

of shared proteins between two nodes has also been integrated in the network as edge 

score value. As a result, a densely connected network with 537 nodes and 20K edges was 

generated, along with 12 isolated nodes (ADRs that do not share proteins with other 

nodes) (Figure 30), which was then visualized and analyzed using the Cytoscape [101] 

utility. 
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Figure 30. Representation of the Adverse Reactome - The network resulting from 

the integration of T-ARDIS curated dataset, the ADRs are represented as nodes while 

the edges contain the shared proteins. The edge weight is represented by the total 

number of proteins shared between two ADRs. Each different color represents the ADR 

associated SOC.  

 

 

 

The high number of edges in comparison to the small number of nodes demonstrates 

how proteins are commonly shared among the various ADRs and SOCs, explaining the 
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difficulties of predictions during the DocTOR method's development. This, however, 

suggests also the presence of a somewhat shared biological pathway even between 

seemingly unrelated ADRs explaining the possible onset of comorbidities. The "Adverse 

Reactome" also highlights a group of ADRs that share no protein with any other node. 

Thrombotic thrombocytopenic purpura, Pruritus, Premature baby, Ovarian disorder, 

Hypersensitivity, Hypervolaemia, Dermatitis, Cholecystitis, Anaemia megaloblastic, 

Acute pulmonary oedema, and Acute myocardial infarction are all examples. As can be 

seen, the majority of these ADRs are associated with various SOCs and are distinguished 

by a small number of T-ARDIS proteins [11]. Nevertheless, given their unique associated 

proteins, they are ideal candidates for DocTOR future models (to be explored in a later 

section devoted to future perspectives.) 

 

5.2.1 - Clustering application 

 

The more likely method of extracting functional information from the generated 

Adverse Reactome is to use a clustering procedure to identify specific subsets of ADRs 

with similar properties and characterized by the given proteins. The Affinity 

Propagation Clustering Algorithm [102] represent an appropriate choice for the problem 

at hand as it is based on the concept of "message passing" between data points and does 

not require the number of clusters to be a priori specified. Specifically, the algorithm is 

based on a repeated exchange of information between all nodes.  

 

The base algorithm can be explained easily as follows: each data point sends signals to 

all other nodes, passing the information of the relative attraction of each target to the 

sender as a score. Given the attractiveness of the messages received, each target 

communicates to all senders its availability to associate with the sender. The sender 

node signals again to targets modifying the score based on the availability signals 

received before. The message-passing method is repeated until agreement is attained. 

When the sender is paired with one of its targets, that target becomes the exemplar of 

the point. Finally, all points with the same exemplar are clustered together.  
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Mathematically the algorithm proceeds by alternating between two message-passing 

steps, which update three matrices: a similarity (s) matrix, a responsibility (r) matrix, 

and an availability (a) matrix. Results are contained in a criterion matrix (c). These 

matrices are updated repeatedly using four equations, where i and k correspond to the 

rows and columns of the corresponding matrix.  

 

𝑟(𝑖, 𝑘) ← 𝑠(𝑖, 𝑘) − 𝑚𝑎𝑥
𝑘′𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑘′≠𝑘

{𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)}  Eq. 46 

 

𝑎(𝑘,𝑘) ← ∑ 𝑚𝑎𝑥{0, 𝑟(𝑖′, 𝑘)}𝑖′,𝑖≠𝑘     Eq. 47 

 

𝑎(𝑖, 𝑘) ← 𝑚𝑖𝑛{0,𝑟(𝑘,𝑘) + 𝑎(𝑘, 𝑘)}    Eq. 48 

 

𝑐(𝑖, 𝑘) ← 𝑟(𝑖, 𝑘) + 𝑎(𝑖,𝑘)     Eq. 49 

 

In a nutshell, the distances between elements are subtracted to create the similarity 

matrix. The sum of the squares of the differences between variables that make up the 

items are typically used to determine these distances. The algorithm's next step is to 

create an availability matrix with all of its entries set to zero. The responsibility matrix 

is then computed using Equation 46.  Equations 47 and 48 are then used to update the 

availability matrix's diagonal and off-diagonal entries, respectively. Finally applying 

Equation 49 gives rise to the criterion matrix. For each row, the column with the highest 

criterion value specifies the exemplar for that row's item. A cluster is composed of rows 

that have the same exemplar.  

 

The application of this algorithm to the Adverse Reactome identifies 24 clusters and 67 

singletons. Excluding the singletons and clusters with ≤ 3 nodes we remain with 16 

highly connected clusters (Figure 31) 
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Figure 31. Results of the clustering procedure on the Adverse Reactome. The 

clusters are ordered from left to right in a crescent number of nodes, with the largest in 

the leftmost upper denominated as Cluster1. The nodes are classified by colors denoting 

the belonging of a distinct SOC. 

 

 

Preliminary analysis of the clustered network reveals no distinct division between SOCs, 

as already suggested by the original network's high connectivity. The clusters have been 

numbered from left to right, beginning with the largest as Cluster1 to Cluster16 without 

considering, as previously stated, singletons and cluster with less or equal than 3 nodes. 
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5.3 - Functional data enrichment 

 

The discovered modules, as previously stated, are composed of ADRs that share 

distinctive proteins or characteristics. The analysis of the underlying protein function 

may reveal the hidden relationship that characterizes these ADRs. To accomplish this, 

I used g:profiler [103], an online tool for gene functional enrichment.  

 

5.3.1 - g:profiler 

 

g:Profiler [42] is a set of tools that are used in biological entity (gene/protein)-centered 

computational analysis pipelines. It is constituted by several applications, specialized 

for the different aspects of gene functional enrichment analysis: g:GOSt analyzes the 

functional enrichment of single or multiple gene lists, g:Convert converts gene/protein 

IDs between different name-spaces, and g:Orth allows orthologous genes to be mapped 

across species. g:SNPense is a program that connects human SNP identifiers to genes.  

 

The cluster’s associated proteins study has been performed using the g:GOSt utility, the 

primary software specialized in functional enrichment analysis on a user-defined gene 

list input. The utility mines different databases to retrieve functional information and 

finds biological processes, pathways, regulatory motifs, and protein complexes that are 

statistically significantly enriched. The Ensembl database is the primary source of 

information on genes together with the Gene Ontology resources, already introduced 

in this thesis.  

 

On the statistical evaluation point of view, the well-proven cumulative hyper-geometric 

test is used to assess the functional enrichment of the input gene list, analyzing large 

numbers of functional terms that are evaluated at once, together with multiple 

Bonferroni testing corrections.  [103]. This is necessary to reduce the amount of false 

positive findings given the large number of terms evaluated at the same time, e.g., 

around 16 000 GO biological process keywords are taken into account only for the 
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human gene list. On completion, the g:GOSt method provides a result table containing 

information about the enriched terms, overlap sizes and corresponding P-values (Figure 

32). The enriched terms with lowest p-value at level of molecular function and biological 

process are selected as representative of the cluster function. Clusters presenting more 

interactions have been associated with more statistically meaningful functions as will 

be presented in the next subchapters. 

 

 

Figure 32. Example of g:GOSt method output. From this interface it is easy to 

extrapolate the relevant information regarding the enriched terms with the lower p-

value. Moreover, the procedure also highlights the proteins whose enriched function 

has been validated in literature and in vitro (right column). The color mapping is 

available at the g:profile website. [103] 
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5.4 - Uncovered Associations and examples 

 

The proposed approach was successful in linking fundamental functions to the 

development of a diverse set of ADRs. Various clusters have provided enriched functions 

in accordance with the belonging SOC, and the latter's perturbation may be directly 

correlated with the onset of ADRs. The majority of proteins and ADRs are found in 

Cluster 1, which contains 219 of the original network's 537 nodes. Cluster 2 is the second 

largest cluster, with 104 nodes. The other 14 clusters present from a maximum of 22 to a 

minimum of 4 nodes. 

 

Given Cluster1 contained more than half of all possible nodes, another clustering run 

was performed using again the Affinity Propagation Clustering Algorithm. As a result, 

nine new clusters and 23 singletons were discovered. Cluster2 has also been subjected 

to a re-clustering procedure, but with no success. This is almost certainly due to the 

latter's high connectivity. (See Figure 31). In the next sub-section, I'll present some of 

the investigated clusters and their enriched functions, as well as a literature review, in 

order to link finally function perturbation to possible ADR manifestations. 

 

5.4.1 - G-coupled serotonin receptor signaling pathway 

disruption causes multi-organ failure 

 

Cluster 2 is, as previously stated, the cluster with the greatest connectivity presenting 

104 nodes, and 35 distinct proteins. (Figure 33) 
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Figure 33. Cluster 2 resulting network. The nodes are presented without labels for 

visualization issues. The different ADRs are part of  SOCs: Blood and lymphatic system 

disorders (red), Cardiac disorders (brown), Ear and labyrinth disorders (green), 

Endocrine disorders (light green), Eye disorders (dark green), Gastrointestinal disorders 

(dark purple), Metabolism and nutrition disorders (light orange), Musculoskeletal and 

connective tissue disorders (light orange), Nervous system disorders (yellow), Renal and 

urinary disorders (Dark pink), Reproductive system and breast disorders (pink-red), 

Respiratory, thoracic and mediastinal disorders (shocking pink), Skin and subcutaneous 

tissue disorders (violet), Vascular disorders (grey). 

 

Many of the proteins found belong to the ADRA, CALM, CHRM, and HTR families, 

which have already been linked to the most ADRs in T-ARDIS [11]. These proteins serve 
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an important role as receptors in a variety of functions. So, it's no surprise that the 

enriched function indicated by g:profile is the most generic or related to the activity of 

G-coupled receptors. This also explains the high number of ADRs belonging to the most 

disparate SOCs. Given the high number of ADRs, just one for each of the SOC identified 

in this cluster will be brought as example: Thrombocytosis (Blood and lymphatic system 

disorders), Cardiomegaly ( Cardiac disorders ), Hyperacusis (Ear and labyrinth 

disorders), Hypothyroidism (Endocrine disorders), Glaucoma (Eye disorders), Parotid 

gland enlargement (Gastrointestinal disorders), Diabetes mellitus (Metabolism and 

nutrition disorders), Torticollis (Musculoskeletal and connective tissue disorders), 

Tardive dyskinesia (Nervous system disorders), Glycosuria (Renal and urinary disorders, 

but also related to Diabetes onset), Prostatitis (Reproductive system and breast 

disorders), Pleural fibrosis (Respiratory, thoracic and mediastinal disorders), Psoriasis 

(Skin and subcutaneous tissue disorders) and Hypertension (Vascular disorders). All of 

the presented ADR act on a diverse system with different gravity and incidence, however 

in vitro studies have proven their correlation to GPCR modulation (Table 7).  

 

 

Table 7. List of publications for the Cluster2 ADRs 

Adverse Reaction Publication 

Thrombocytosis [104] 

Cardiomegaly [104] 

Hyperacusis [105] 

Hypothyroidism [106] 

Glaucoma [107] 

Parotid gland enlargement [108] 

Diabetes mellitus [109] 

Torticollis [110] 

Tardive dyskinesia [111] 

Glycosuria [112] 

Prostatitis [113] 

Pleural fibrosis [114] 

Psoriasis [115] 

Hypertension [104] 

 



- 135 - 
 

5.4.2 - Perturbation of Smooth muscle Adaptation and 

NADPH binding inficiate multi-level biological functions 

 

One of the studied clusters included a wide range of adverse events that were quite 

difficult to link in an SOC point of view. Cluster 4 (Figure 31) is a small sized cluster 

composed of 15 different Adverse reactions. Between them we can find Abnormal faeces, 

Arthritis, Jaundice cholestatic, Foetor hepaticus, Muscle atrophy, Lenticular opacities, 

Cognitive disorder, Cataract, Myoglobinuria, Dyspepsia, Hepatic necrosis, Lupus-like 

syndrome, Myopathy and Liver disorder.  

 

 

Figure 34. Cluster 4 resulting network. The nodes have been manually grouped by 

SOC to aid visualization. The different ADRs are part of 5 SOCs: Eye disorders (dark 

green), Gastrointestinal disorders (dark purple), Hepatobiliary disorders (radish), 

Musculoskeletal and connective tissue disorders (light orange), Nervous system 

disorders (yellow - central node), Renal and urinary disorders (dark red). 

 

Finding a clear relationship between this subset of ADRs is not an easy task, as many 

are part of different SOC, despite the fact that the majority are part of the hepatobiliary 

system or the musculoskeletal system. (Figure 34). Moreover, the range of different and 

diverse ADRs (e.g., Abnormal_faeces, myopathy) further complicate this task. 
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Nonetheless, the proposed study identified six underlying genes shared by these ADRs: 

CRP, HMDH, COG2, APOB, HMOX1, and NOS3. The g:profiler analysis yielded 5 

different statistically significant GO molecular functions and 4 biological processes 

(figure 35). 

 

Figure 35. g:profiler results for cluster 4 analysis. The lowest p-value were obtained 

for the GO terms GO:0050750 (low density lipoprotein particle receptor binding) and 

GO:0014806 (smooth muscle hyperplasia) 

 

Each one of the ADR has been related with the perturbation for these functions in 

literature or at least with the smooth muscle growth biological process perturbation. 

For example, changing in the bowel smooth muscle has been associated with the event 

of abnormal faeces and muscle hyperplasia has been also  related to Crohn's disease 

[116]. On the other hand, a high level of α-smooth muscle actin has been also identified 

in patients with Arthritis [117]. Given the liver's smooth muscle structure and 

participation in the NADPH binding system, liver degeneration is not surprising when 

smooth muscle adaptation activities are disrupted, as in the cases of Foetor hepaticus, 

Jaundice cholestatic, and Hepatic necrosis. [118] [119] [120]. NADPH binding 

perturbation, on the other hand, may affect the brain and has been linked to cognitive 

impairment in rats [121]. Thus, starting from unrelated ADRs and through the analysis 

of SONG we can derive actionable hypothesis to provide an explanation to the 

molecular basis.  
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5.4.3 - Cyclooxygenase inhibition presents a multi-system 

impact 

 

Cluster 12 is one of the smallest clusters identified (Figure 36). It presents 6 Adverse 

reactions associated between them by just three proteins.  The Adverse reactions 

presented appear to be multi-systemic: Anaphylactoid reaction (being part of the 

Immune system disorders SOC), Hyperkalaemia (part of the Metabolism and nutrition 

disorders SOC), Angioedema, Erythema multiforme, Dermatitis exfoliative (all three 

parts of the Skin and subcutaneous tissue disorders SOC) and finally Vasculitis (part of 

the Vascular disorders SOC).  

 

Figure 36. Cluster 12 resulting network. The nodes have been manually grouped by 

SOC to aid visualization. The different ADRs are part of 4 SOCs: Immune system 

disorders (dark orange), Metabolism and nutrition disorders (orange), Skin and 

subcutaneous tissue disorders (purple), Vascular disorders (grey). 

 

The three proteins have been identified as ACE, PGH1 and PGH2. Following the g:profile 

analysis this sub-network has been enriched with various functions, mainly related to 

prostaglandin-endoperoxide synthase and peroxidase activity molecular functions and 

cyclooxigenase / prostaglandin regulation biological process (figure 36). 
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Figure 37. g:profiler results for cluster 12 analysis. The lowest p-value were obtained 

for the GO terms GO:0004666 (prostaglandin-endoperoxide synthase activity) and 

GO:0014806 (cyclooxygenase pathway). 

 

The literature review reveals a strong link between the disruption of these functions and 

the development of such ADRs, which is mostly due to an inhibitory mechanism. The 

most well-known anaphylactic and anaphylactoid reactions to aspirin, the 

cyclooxygenase inhibitor for excellence, has been extensively investigated [122]. 

Selective COX-2 inhibitors and the onset of Hyperkaliemia have also been proven [123]. 

Angioedema, Erythema multiforme and Dermatitis exfoliative, while being quite 

different adverse Events have been all three again related to a possible COX-2 inhibition 

[124] [125] [126]. Finally, even the event of vasculitis has been related to a COX-2 

inhibition process [127].  
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5.4.4 - The Cluster-1 Analysis 

 

As previously stated, Cluster1 contains more than half of the network total nodes linked 

by 74 unique Uniprots Ids. The functional enrichment procedure performed on the total 

of Cluster1 yielded significant results for very general molecular function like G-coupled 

receptors activity and serotonin receptor activity (Figure 38), such as in the case of 

Cluster2. 

For this reason, it was decided to perform again the clustering procedure on Cluster-1 

which yielded successfully a number of modules or sub-clusters. 

 

Figure 38. Significant molecular functions extracted from the functional 

enrichment procedure of the entire Cluster1’s related proteins. 

 

 

To avoid confusion with the findings of the first clustering round, the new clusters will 

be referred through Cluster 1-1 to 1-8. Even in this situation, the clusters are composed 

of various nodes, ranging from 75 ADRs in Cluster 1-1 to only 3 in Cluster 1-9. (Figure 39) 

Again, no specific distribution of SOCs can be identified. 
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Figure 39. Results of the clustering procedure on Cluster1  - The clusters are 

numbered from left to right in crescent order, with the largest in the leftmost upper 

denominated as Cluster1-1. The nodes are classified by colors denoting the belonging of 

a distinct SOC. 
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The g:profiler analysis proved to be effective even in the case of sub-cluster. However, 

the proteins analyzed are majorly part of the tyrosine-kinase and G-coupled receptor 

family giving the obtained result a more generalist standpoint. Following are the most 

interesting cases that are not part of the mentioned super-families. 

 

5.4.4.1 - Aromatase binding influences multisystemic ADRs onset. 

Cluster 1-3 is one of the largest sub-clusters containing 24 ADRs that share 14 proteins 

mapped to the EGRF, ERBB, IGF1R, MTOR, P53, PGFRB, PGH2, THRB and VGFR2 

families. (Figure 40) 

 

Figure 40. Cluster 1-3 resulting network. The nodes are presented without labels for 

visualization issues. The different ADRs are part of SOCs: Blood and lymphatic system 

disorders (red), Gastrointestinal disorders (dark purple), Hepatobiliary disorders 

(radish), Metabolism and nutrition disorders (light orange), Musculoskeletal and 

connective tissue disorders (light orange), Nervous system disorders (yellow), 

Respiratory, thoracic and mediastinal disorders (shocking pink), Skin and subcutaneous 

tissue disorders (violet), Vascular disorders (grey). 
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The subnetwork has been enriched with Aromatase and oxidoreductase activity with 

the g:profiler method. (Figure 41) 

 

 

Figure 41. g:profiler results for Cluster1-3 analysis - The lowest p-value were 

obtained for the GO terms GO:0070330 (Aromatase activity) and GO:0016712 

(Oxidoreductase activity). Biological processes results are not shown for visualization 

issues. The lowest p-values for the BP are obtained for the GO:0014065 

(phosphatidylinositol 3-kinase signaling) and GO:0042327 (positive regulation of 

phosphorylation). 

 

 

The ADR contained in this cluster ranges from different SOC: Coagulopathy ( Blood and 

lymphatic system disorders), Gastrointestinal disorder, Retroperitoneal haemorrhage, 

Intestinal perforation (Gastrointestinal disorders), Cholangitis (Hepatobiliary 

disorders), Hypernatraemia (Metabolism and nutrition disorders), Musculoskeletal 

pain (Musculoskeletal and connective tissue disorders), Dysgeusia (Nervous system 

disorders), Interstitial lung disease, Epistaxis, Pulmonary toxicity, Respiratory distress 

(Respiratory, thoracic and mediastinal disorders), Alopecia, Skin necrosis, Erythema, 

Rash papular, Nail disorder, Blister, Rash vesicular, Skin disorder (Skin and 
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subcutaneous tissue disorders), Deep vein thrombosis, Angiopathy, Venous thrombosis 

(Vascular disorders). 

 

Again, the literature review manages to link all of the reported ADRs with a perturbation 

of Aromatase or, as present in other clusters, Oxidoreductase Activity. 

        

Table 8. List of publications for Cluster1-3 ADRs 
 
Adverse Reaction Publication 

Coagulopathy [128] 

Gastrointestinal disorder [129] 

Retroperitoneal haemorrhage [130] 

Intestinal perforation [131] 

Cholangitis [132] 

Hypernatraemia [133] 

Musculoskeletal pain [134] 

Dysgeusia [135] 

Interstitial lung disease [136] 

Epistaxis [137] 

Pulmonary toxicity [138] 

Respiratory distress [139] 

Alopecia [140] 

Skin necrosis [141] 

Erythema [142] 

Rash papular [143] 

Nail disorder [144] 

Blister [145] 

Rash vescicular [141] 

Skin disorder [141] 

Deep vein thrombosis [128] 

Angiopathy [146] 

Venous thrombosis [128] 
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5.4.4.2 - Bradykinin binding proved to be linked to inflammatory – 

related ADRs 

 

Cluster 1-8 is one of the smallest sub-clusters constituted by only 5 ADRs and 2 proteins, 

being mapped to the ACE and RENI gene family. The ADRs includes Chronic kidney 

disease, Gout, pemphigus, Flushing and Pulmonary eosinophilia. Even if these ADRs 

belong to different SOCs, it is evident that it can be directly correlated with a 

perturbation of the Renin-Angiotensin pathway, in particular as highlighted by the 

g:profiles results, to the Bradykinin binding. (Figure 42) 

 

 

Figure 42. g:profiler results for Cluster1-8 analysis. The lowest p-value were 

obtained for the GO terms GO:0031711 (bradykinin receptor binding) and GO:0002016 

(regulation of blood volume by renin - angiotensin). 
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In the case of chronic kidney disease in fact it has been proved that chronic 

overexpression of Bradykinin may lead to Kidney injury [147]. Same applies in the case 

of Gout, where an overexpression of Bradykinin receptors may extend the gout 

inflammatory process [148]. The bradykinin mediated inflammatory process appear to 

be at the basis of also the flushing ADR [149] and  Pulmonary eosinophilia [150]. 

 

Even if it was not conclusive, this approach was successful in mining literature and in 

vivo research for clues on the logical sequence drug → protein → perturbation of 

function → ADR. 
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5.5 - Cluster’s related drugs exploration 

 

As we saw in the previous subsections, even seemingly disparate adverse events share 

proteins with common biological functions. At this point, with a new understanding of 

the potential molecular causes of ADR onset, it is reasonable to investigate the physical 

agents that cause this function disruption, i.e., the drugs. Many branded pharmaceutical 

agents are known to act on the same targets through different biochemical pathways or 

mechanical functions (dosage, route of prescription, biological half-life), achieving the 

same results. This is due to the fact that, while the manufacturing methods differ, the 

drug's effective stereochemical components are structurally similar. 

 

This type of redundancy has already been addressed in T-ARDIS, where a chemical 

similarity screening was developed to reduce the number of false positives and 

duplicated drugs. The newly implemented data exploration step will investigate 

whether the drugs linked to the proteins found in the clusters, which also present the 

associated module's ADR, share any physical or chemical properties by utilizing the 

drug information and structure contained in STITCH 5.0. [36] 

 

The drug's structure similarity has been assessed with the RdKit python package [151], 

taking in consideration the drug’s SMILE codes. In particular a pairwise Tanimoto 

scoring index has been performed distinguishing between “intra” and “outra” drugs. On 

the one hand, the 'outra' Tanimoto index is determined by calculating the Tanimoto 

score for drugs that act on different proteins that are still in the same cluster. (Figure 43 

- A). On the other hand, the “intra” Tanimoto index is computed using the Tanimoto 

scores of different drugs that act on the same proteins in the cluster (Figure 43 - B).  
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Figure 43. Definition of “outra” and “intra” Tanimoto Scores. The 'outra' Tanimoto 

index is determined by calculating the Tanimoto score for drugs that act on different 

proteins that are still in the same cluster. (A). The “intra” Tanimoto index is computed 

using the Tanimoto scores of different drugs that act on the same proteins in the cluster 

(B). 

 

Following, the results of this analysis for some of the clusters already mentioned, 

Cluster2, Cluster4 and Cluster12 (Figure 44). 
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Figure 44. Distribution of “intra” ed “outra” Tanimoto scores in the different 

cluster. 

 

The results obtained, as shown in figure 43, are not definitive; both the intra and outra 

approaches revealed a value distribution around the Tanimoto index of 0,3-0,5. Given 

that two drugs can be classified as comparable if their Tanimoto index is greater than 
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0,7, the enriched medications appear to lack structural similarity. This is probably due 

to the fact that structurally similar drugs are already being filtered in T-ARDIS. [11] and 

because, while the catalytic region is shared by all drugs in order for them to bind 

accurately to the target, the rest of the patented drug differ structurally. [2] 
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5.6 - Summary 

 

The proposed SONG analysis was developed to try to answer the question of how ADRs 

occur. While much remains unknown about this subject, it appears that the answer 

must be sought at the molecular level of the drug's protein targets. SONG contributed 

to the effort by providing new perspectives on the mined T-ARDIS ADRs-protein 

relationships with its Adverse Reactome. This new network makes use of graph theory 

to identify specific groups of ADRs that share proteins and topological characteristics. 

The functional enrichment of the identified proteins allowed for a better molecular 

understanding of the potential biological pathway that, if disrupted, could result in the 

module's associated ADRs. While the scientific literature confirmed multiple examples 

of this theory, a study of the structural similarity of drugs targeting protein clusters 

revealed no direct relationships between the analyzed drugs. The reason for this could 

be reconducted directly to T-ARDIS, where similar drugs were removed to increase the 

statistical significance of the findings, and possibly to the various legislation of 

trademarked drugs. Despite this, SONG proved useful in investigating the potential 

causes of ADRs, and while many aspects remain unknown due to a lack of biological 

sources, it may prove to be an excellent tool for other researchers preparing to delve 

into this topic. 
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6 - GENERAL DISCUSSION 
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The relationship between Adverse Reactions and drug targets remains a difficult topic. 

There are several databases that relate ADRs-drugs and drug-protein targets, but the 

information contained still remains dispersed, making it difficult to interpret. Due to 

the obvious cost and research time savings, the ability to link adverse events to specific 

protein targets could be the first step toward more reliable and safer drugs. Statistical 

techniques and machine learning approaches arise in this context, giving tools to 

organize all of the data as well as algorithms to evaluate it and better understand the 

subtle link that connects medicines, the disruption of functions performed by the 

targeted proteins involved and the rise of Adverse Reactions.  My thesis proposal fits 

right in this context, focusing on the development of tools and methodologies to better 

understand the Drug – Protein-ADR associations as well as the possible molecular 

mechanisms that characterize these relationships. From here on out, I'll continue to 

explore my thesis by describing the importance of my study to the area, its limits, and 

possible future advances.  
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6.1 - The T-ARDIS database: “Allons-y” towards the 

identification of ADR-Target relationships 

 

Filling the knowledge gap between drug’s target and Adverse reaction emergence is one 

of the main objectives of this thesis. If correctly applied this information may give rise 

to a trickle-down effect that can directly influence the quality and cut the times of 

pharmaceutical research. For this purpose, as exposed in chapter 4, I developed the T-

ARDIS database [11], a method to statistically identify the relationship between the 

modulation of proteins and the onset of Adverse reactions. The estimation of these 

relationships has been based on the mining, cleaning and filtering of various Drug – 

ADR and Drug – Target databases in tandem with statistical approaches that allowed to 

retrieve only meaningful associations removing misinformation and redundancy. The 

data contained in T-ARDIS has been validated by the existing literature, which supports 

the highly significant connections, i.e., low q-values, identified. This highlights the 

convenient mapping role of T-ARDIS and its discovered relationships can be beneficial 

as guiding evidence for drug repurposing or discovery. 

 

Nonetheless the data contained in T-ARDIS is far from complete, unknown information 

in self-reporting (FAERS, MEDEFFECT) or curated databases (OFFSIDES, SIDER), lead 

directly to no correlations in T-ARDIS. It's also possible that neither of the two drug-

target databases employed in this investigation, DTC and STITCH, finds a relationship 

between the given drug and the target thus reducing the data coverage. This can be 

solved by constantly updating T-ARDIS in line with new database releases or by 

integrating information from other available resources. The database mining, statistical 

inference, and database updating are all entirely automated, ensuring that data is 

merged as it becomes available, further aiding our knowledge of ADR processes.  Apart 

from the basic usage as a data repository, T-ARDIS has been used as a foundation for 

the development of DocTOR and SONG methods proving its value also as launching 

pad for other applications. 
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6.2 - The DocTOR approach: Precise predictions from 

blue black-box methods 

 

While T-ARDIS is a valuable tool, as one of the few repositories investigating the 

relationship between ADRs and proteins, its structure is based solely on information 

found in publicly accessible databases, limiting the amount of data that can be retrieved. 

This can be directly translated to an increase in the amount of missing information and 

associations. DocTOR proposes a machine-learning-based method for predicting the 

association between ADRs and protein targets in order to integrate unknown 

information or to discover novel associations.  

 

The DocTOR utility, in particular, presents itself as a tool for extrapolating relevant 

information from a network-based perspective, employing a combination of network 

and function-based measures to distinguish proteins that are associated with or 

completely unrelated to the various Adverse reactions. Unknown proteins can thus be 

framed as responsible or not for the onset of an ADR without having to mine through 

countless databases or run expensive experiments. DocTOR's power is based on a 

trickle-down strategy starting with the topological and functional information extracted 

from T-ARDIS, which are used as input for three machine-learning classifiers, which are 

in turn integrated by three distinct voting methods. 

 

The model's evaluation methodology endorsed DocTOR performance at both the 

individual ADR and SOC levels, justifying its use as a general tool to predict potential 

protein vulnerabilities. Unfortunately, every approach has its own limitation, and 

DocTOR is no exception, for instance the massive computational power requirements 

for training and testing the models. As explained in chapter 5, this is also the reason 

why this study only managed to create models for 84 different ADR out of the thousands 

available.  Limitations came also from the biological point of view, proving how complex 

are the role of particular proteins in the human interactome. In particular, the worst 

results have been obtained in 17 different ADRs which obtained a negative or equal to 0 

MCC (random predictions). These includes Hyper-coagulation, Ichthyosis, Coordination 
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abnormal, Biliary cirrhosis, Acute hepatic failure, Hyper-ammonaemia, Azoospermia, 

Diplegia, Glucose tolerance impaired, Haemorrhagic diathesis, Hypoacusis, 

Ophthalmoplegia, Renal tubular acidosis, Hepatic failure, Coagulopathy and Ischaemia.  

These ADRs have been linked to 40 of the most highly connected genes in the human 

interactome, including TP53, 5HT1A, ACE, CALM family members, LEP, and IL8 [10]. 

These genes are associated with the majority of basic biological processes and serve as 

the foundation for many functions, making them directly related to the onset of various 

ADRs. 

 

In spite of this, as shown in chapter 5 reliable results have been obtained with the 

different classifier, as in the case of ADR malnutrition where the random forest had the 

greatest results, with 0.95, 0.92, 1.00, and 0.91 for Accuracy, Precision, Recall, and MCC, 

respectively. In the case of ADR febrile neutropenia, however, NN was far and away the 

strongest predictor, with Accuracy, Precision, Recall, and MCC values of 0.80, 0.87, 0.70, 

and 0.77, respectively, compared to a virtually random prediction by SVM and RF (MCC 

0.0). Finally, SVM surpassed the other two ML techniques in additional circumstances, 

such as Nasal Congestion, with an Accuracy of 0.90, Precision of 0.83, Recall of 1 and 

MCC of 0,81, whereas RF and NN barely reached 0.70.   

 

The meta-predictor approach also proved its efficacy, strengthening the obtained 

results from the single ML methods in the case of single ADRs and SOCs as described 

in chapter 5, or at least for the jury vote and consensus systems.  Indeed, the red flag 

method, which performs the worst as evidenced by the various scoring criteria, remains 

one of the main flaws of the implemented procedure. As counterintuitive as it may seem, 

the red flag method represents an attempt to develop a score system that would aid in 

detecting instances where the overall consensus system would fail. As mentioned in 

Chapter 5, this method was useful when two ML techniques implemented agreed but 

with low probability estimates. In addition, the red-flag approach acts as a failsafe in the 

event of an unknown prediction, such as when using the DocTOR utility. 

 

From a tool usage standpoint, DocTOR lends itself to being rather easily updated, 

allowing the user to add new models for new ADRs on demand or retrain existing 
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models when new protein targets are identified to be related with certain ADRs and/or 

given new T-ARDIS database releases. The tool is nicely packed in a git-hub repository, 

so the maintenance and update, as well as the deployment is highly simplified. 

Unfortunately, as already mentioned, updates come with increased computation power 

costs, having to retrain the different features and models. Despite this, researchers will 

be able to use the DocTOR tool in conjunction with in vitro studies to evaluate the 

possible link between protein target modification and the development of ADR, cutting 

down on research time.  
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6.3 – SONG: Echoes from the ADRs’ choirs 

 

As described in Chapter 6, the SONG analysis is a procedure for determining the 

relationships between molecular functions and ADRs. The novel aspect of this approach 

is the unusual way in which T-ARDIS data is exploited, introducing a topological 

perspective on the ADR-protein relationships mined.  This resulted in the development 

of a special network known as the "adverse reactome," which enabled the use of a variety 

of clustering and network-based measurements to identify groups of ADRs and proteins 

with similar properties. The proposed analysis identified 16 highly connected clusters, 

which have been enriched with meaningful functional annotations using the g:profile 

utility [103]. The identified molecular functions proved the direct onset of the ADRs in 

case of perturbation as confirmed by an extensive literature review.  

 

SONG presents the same already discussed limitation of T-ARDIS, since it relies solely 

on the latter's data; missing links between ADRs and proteins, combined with 

constantly expanding knowledge of the human interactome, results in a limited view of 

the possible entire "adverse reactome" thus reducing modules identification. 

 

As the analysis of modules revealed, for instance in the case of Cluster1, another relevant 

limitation of the SONG approach resides in the many proteins that share common 

general functions, such as the previously mentioned G-coupled receptors. Since these 

functions play a critical biological role, their disruption results in an overabundance of 

ADRs, drastically reducing the significance of the associations. 

 

SONG analyses also provide relationships between drugs that target the identified 

protein's modules and elicit the ADRs associated with the clusters. However, the 

computation and analysis of the pairwise Tanimoto index produced inconclusive 

results, highlighting different drug chemical structures. This is primarily because drugs 

with similar structures have already been filtered in T-ARDIS to reduce false negatives 

and redundancy. Another possibility is that patented drug structures differ from one 
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medication to the next due to copyright legislation while retaining the same catalytic 

pocket. 
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6.4 - Future perspectives and implication in the field 

of Protein-ADRs relationships 

 

The identification and prediction of protein-ADR relationships has emerged as a 

powerful approach for limiting the cost and speed of drug discovery research. The 

information retrieved could also be broadened with the goal of better understanding 

the molecular complexity of ADRs and discovering better ways to prevent or exploit 

them, as in drug repurposing [152]. The notion to investigate the link between ADRs and 

protein is not new [7], but the amount of data now available has grown dramatically, 

allowing for a more in-depth understanding of the problem. Nonetheless, there are 

numerous restrictions and difficulties that must be addressed. 

 

The first is (1) how to integrate different types of data to represent an interactome as 

completely as possible; This research highlights how ADRs are a multilayered problem 

that is dependent on the functions and interactions of various genes; a more in-depth 

understanding of the human interactome is the first step in extrapolating reliable 

information for the development of safer drugs. 

 

(2) How to represent the signal of drug-induced network perturbations and the 

resulting ADRs. This thesis does not address the drug's effective activity (i.e., inhibitory 

or activation), including such information will help to better understand how the drugs 

selectively act on the function disruption that causes ADR emergence and how to 

prevent them. 

 

(3) Testing different data architecture approaches; data dimensionality, computing time 

and memory processes are all issues that should not be overlooked. This thesis is a clear 

example of how, no matter how abundant the data, for computational time and 

requirements, only a small subset of ADRs could be analyzed. The future evolution of 

computational approaches, as well as data architectures in general, will undoubtedly 

make analysis faster and more reliable. 
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7 - CONCLUSIONS 
 

  



- 166 - 
 

 

  



- 167 - 
 

In this thesis, I developed a set of networks and statistical-based in silico tools and 

studies to better understand the relationships between Drug’s Adverse reactions and 

Drug’s target. The knowledge’s expansion in the protein-ADR interactions landscape 

has also aided in the investigation of the molecular basis of ADR and ADRs 

relationships. 

 

The following conclusions can be drawn from the various methodologies used and 

results obtained: 

 

● Pharmacovigilance and publicly accessible databases are critical in the study and 

control of the emergence of ADRs; however, the information contained must be 

cautiously used and validated before drawing conclusions 

 

● The T-ARDIS development evidenced that the statistical inference of drug-

protein and ADRs relationships can yield useful information. These associations 

are invaluable for drug discovery and can be further mined to extrapolate unique 

properties useful in a wide range of applications: 

 

○ The T-ARDIS database, a repository of the identified ADR-protein 

relationship, is easily accessible and customizable for the advancements 

of drug discovery. 

 

○ The DocTOR utility, a machine learning compendium which proved that 

ADR linked proteins are rich in topological and functional information, 

allowing them to characterize and mediate the ADR's emergence. These 

features have been used to predict whether or not unknown proteins are 

linked to specifically selected ADRs.  

 

○ The SONG analysis, a network-based  that considers the protein-ADR 

relationship in a more interconnected framework, improving 

understanding of the protein's functional properties and leading directly 

to the molecular basis of ADR and ADRs associations. The information 
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retrieved can be used to improve drug safety and avoid the perturbation 

of particular biological processes. 
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Abstract
The level of attrition on drug discovery, particularly at advanced stages, is very high due to unexpected adverse drug reactions (ADRs) caused
by drug candidates, and thus, being able to predict undesirable responses when modulating certain protein targets would contribute to the
development of safer drugs and have important economic implications. On the one hand, there are a number of databases that compile infor-
mation of drug–target interactions. On the other hand, there are a number of public resources that compile information on drugs and ADR. It is
therefore possible to link target and ADRs using drug entities as connecting elements. Here, we present T-ARDIS (Target—Adverse Reaction
Database Integrated Search) database, a resource that provides comprehensive information on proteins and associated ADRs. By combining the
information from drug–protein and drug–ADR databases, we statistically identify significant associations between proteins and ADRs. Besides
describing the relationship between proteins and ADRs, T-ARDIS provides detailed description about proteins along with the drug and adverse
reaction information. Currently T-ARDIS contains over 3000 ADR and 248 targets for a total of more 17 000 pairwise interactions. Each entry
can be retrieved through multiple search terms including target Uniprot ID, gene name, adverse effect and drug name. Ultimately, the T-ARDIS
database has been created in response to the increasing interest in identifying early in the drug development pipeline potentially problematic
protein targets whose modulation could result in ADRs.

Database URL: http://www.bioinsilico.org/T-ARDIS

Introduction
One of the main major problems faced in drug development
is the lack of toxicology or safety information for targets (1).
This fact results in a high level of attrition of drugs enter-
ing clinical trials due to the severity of adverse drug reactions
(ADRs) associated with toxicity, significantly increasing the
costs and therefore limiting the development of novel drugs
for emerging targets (2). One of the most conventional meth-
ods in past years relied on the use of animal models. How-
ever, animal models imply high maintenance cost and ethical
drawbacks and not always transferable to human biology
(3), and thus computational approaches can provide useful
predictions.

There are a number of approaches that can be used to
decrease the risk associated with the development of novel
drugs from a drug-centric point of view. In-silico approaches
have demonstrated their utility in estimating the toxicity of
drug candidates, exploiting features such as composition,
structure and binding affinity. These methods include var-
ious examples of machine learning and deep learning (4).
Other studies are based on target-based predictions, analy-

ses of the underlying protein network and interactions and
quantitative structure–activity relationships. The latter have
been used to model numerous drug safety endpoints including
drug lethal dose of 50%, the so-called LD50 values, skin/eye
irritation and tissue-specific toxicity, making it one of the
most used parameters for estimating the toxicity of a drug (5).
The use of curated protein target sets, conforming so-called
safety panels, are also used to assess the potential liability of
novel drugs during pre-clinical stages (6). Finally, information
about potential liability of drugs can be also obtained post-
development in the context of pharmacovigilance including
a number of approaches that mine information for a range
of databases such the Food and Drug Administration (FDA)
spontaneous reporting systems database (5, 7, 8).

All the methods presented above are drug-centric, i.e. the
prediction of potential ADR is based solely on the properties
of the drug but not on the putative or known protein targets.
In fact, while there are well-established methodologies and
resources, as shown above, to associate drugs to ADR, it is
less so to associate ADR to protein targets. Examples of the
latter include the ADReCS-Target database (9) and a recent
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study on ADRs compiled from clinical trials and post mar-
keting reports (10). A different take on the issue would be to
identify the link between ADR and proteins, using drugs as a
connecting element. In principle, the idea is very straightfor-
ward: if drug X causes ADR Y and drug X binds to protein Z,
then protein Z is related to ADR Y. This simple statement is,
however, incorrect. As pointed out by Kuhn and colleagues
(11), most drugs bind to sets of pharmacologically similar
proteins, for example, members of the same protein family.
While it is likely that only one of the targets is responsible
for a given ADR, a direct Target–ADR association, as in this
simple approach, would relate each target to each possible
ADR of the same drug, creating erroneous or non-existent
relationships, i.e. false positives. This association needs to
be validated statistically, and the method described by Kuhn
et al. (11) provides a defined path identify statistically signif-
icant associations between ADR and proteins using drugs as
the connecting elements.

T-ARDIS (Target—Adverse Reaction Database Integrated
Search), the database presented here, contains statistically
validated associations between protein targets and potential
ADR derived from the association drug–ADR and drug–
protein. In the first stage, drug–ADR and drug–protein asso-
ciations were mined from different databases. In the case of
drug–protein, the databases included the Drug–Target Com-
mons (12) and STITCH (13) databases. Drug–ADR associa-
tions were mined from FDA Adverse Event Reporting System
(FAERS) (14), MEDEFFECT (15), SIDER (16) andOFFSIDES
(17). Upon mining, by parsing and filtering these databases,
the associations between proteins and ADRs were established
using the method described by Kuhn et al. (11) as described
above. The results are therefore a number of protein–ADR
associations that are statistically significant and that can be of
use as complement to other approaches to identify potential
liabilities associated with protein targets.

Currently, T-ARDIS compiles over 3000 ADRs associated
with over 200 proteins. Users can easily access the data
searching by the drug name (common name), type of ADR
as defined in MedDRA dictionary (18) or the protein
UNIPROT (19) identification code or gene name. The results
are returned in a tabular from listing the principal descrip-
tor for each entry such as the drug name, the target
UniProt ID, gene name, the MedDRA classification for ADR,
together with the results of the statistical validation (P-
value of association and its correction for multiple testing,
q-value, including the contingency table used). Moreover,
it will be possible to access external links to the native
drug target or drug–ADR database, together with related
repositories.

Material and methods
Databases containing drug–ADR information
Four different databases were parsed and mined to iden-
tify drug–ADR associations: OFFSIDES (17), SIDER4.1 (16),
MEDEFFECT (15) and FAERS (14). OFFSIDES is a
manually curated database available at http://tatonettilab.
org/resources/nsides/. SIDER4.1 is a database of drugs, ADR
and indications mined from the FDA drug labels. The ver-
sion used in this study is SIDER4.1 released 21 October
2015 available at http://sideeffects.embl.de/. The FAERS or
AERS is a centralized pharmacovigilance database developed

to integrate the U.S. FDA’s post marketing safety surveil-
lance program. The data stored in this database represent
one of the major repositories regarding drug–ADR relation-
ships, although it requires a curation before that can be
used (see below ‘Curation of FAERS database’). The ver-
sion included in T-ARDIS was last updated in March 2020
and is available at: https://fis.fda.gov/extensions/FPD-QDE-
FAERS/FPD-QDE-FAERS.html. Finally, the MEDEFFECT,
Canada’s sister database of the FAERS. Adverse reaction
reports are submitted by consumers and health profession-
als, who submit reports voluntarily, and manufacturers
and distributors (also known as market authorization hold-
ers), who are required to submit reports according to the
Canadian Food and Drugs Act. The version of MEDEF-
FECT included in T-ARDIS was updated in May 2020
and is accessible at https://www.canada.ca/en/health-canada/
services/drugs-health-products/medeffect-canada/adverse-rea
ction-database/canada-vigilance-online-database-data-extr
act.html.

The adverse event report descriptions are coded as medical
terms as defined in the MedDRA vocabulary and ontology
(18). The entries in MedDRA are reported using five hier-
archical levels of medical terminology, ranging from a very
general System Organ Class (SOC—e.g. gastrointestinal dis-
orders) term to a very specific Lowest Level Term (e.g. feeling
queasy). Each term is linked to only one term on a higher level.
For each drug–ADR database, we manually checked that all
adverse reactions were registered as MedDRA Reaction terms
at Preferred Term (PT) level that describes a single medical
concept. We also used the SOC definition of MedDRA to fil-
ter unspecific ADR (see the ‘Filtering of ADR based on SOCs’
section).

Curation of FAERS and MEDEFFECT databases
Prior to using the data present on the FAERS database, a
curation of the records was performed. This step is required
due to the heterogeneity in the reports as these are uploaded
directly by health-care professionals (physicians, pharmacists,
nurses and others) and other actors (patients, family mem-
bers, lawyers and others.) Thus, the quality of the reports
varies substantially and there are often typos (e.g. misspelled
drug names), missing information and other errors. To obtain
a curated and standardized version of FAERS and MEDEF-
FECT, we relied on a modified pipeline specially developed
for the standardization of FAERS records (20) and adapted
to MEDEFEECT. In particular, this pipeline uses standard-
ized vocabularies with drug names mapped to RxNorm con-
cepts (21) and exploits the demographic information on the
patients in order to remove duplicates. To identify statisti-
cally significant associations between drugs and ADRs, the
method proposed by Huang et al. (22). was applied to
the resulting databases originating from the standardization
pipeline described above. Finally, only those drug–ADR asso-
ciations that are statistically significant, i.e. the likelihood
ratio value is above the 5th percentile of the multinomial
distribution, and present both in FAERS and MEDEFFECT
were kept.

Filtering of ADR based on SOCs
Some of the ADRs reported are very general or not specific
to body parts, tissues or underlying human biology. For this
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reason and as described in (23), any ADR belonging to the
following SOCs were discarded.

General disorders and administration site conditions
As the name suggests, this SOC contains terms that do not
readily fit into the hierarchy of any one SOC or are non-
specific disorders that impact several body systems or sites. To
be noted that representing PTs in this SOC in each potential
secondary SOC would create an inordinately large number
of redundancies. Therefore, most of the PTs in this SOC
are primarily linked to SOC General disorders and admin-
istration site conditions and have limited representation in
secondary SOCs (e.g. PT Injection site atrophy is primarily
to SOC General disorders and administration site conditions
and secondarily only to SOC injury, poisoning and procedural
complications).

Injury, poisoning and procedural complications
This SOC provides a grouping for those medical concepts
where an injury, poisoning, procedural or device complica-
tion factor is significant in the medical event being reported.
As a general rule, in this SOC all the events appear directly
attributed to trauma, poisoning and procedural complica-
tions, in other words, all the events due to an external
cause.

Investigations
For MedDRA, an ‘investigation’ is a clinical laboratory test
concept (including biopsies), radiologic test concept, physi-
cal examination parameter and physiologic test concept (e.g.
pulmonary function test). Only PTs representing investiga-
tion procedures and qualitative results (e.g. PT blood sodium
decreased, PT blood glucose normal) appeared in this SOC.
Terms representing conditions (e.g. hyperglycemia) or mixed
concepts of conditions with an investigation are excluded
from this SOC and can be found in the respective ‘disorder’
SOCs (e.g. PT hyperosmolar state, PT haemosiderosis, PT
orthostatic proteinuria and PT renal glycosuria).

Neoplasms benign, malignant and unspecified (incl.cysts and
polyps)
This SOC is classified anatomically, with pathologic sub-
classifications for staging of both benign and malignant neo-
plasms.

Product issues
This SOC includes terms relevant for issues with product qual-
ity, devices, manufacturing quality systems, product supply
and distribution and counterfeit products.

Social circumstances
The purpose of this SOC is to provide a grouping for those
factors that may give insight into personal issues that could
have an effect on the event being reported. Essentially, this
SOC contains information about the person, not the adverse
event. As an example, terms such as PT drug abuser and PT
death of relative are found in this SOC.

Surgical and medical procedures
This SOC contains only those terms that are surgical or
medical procedures. The nature of this SOC makes it more

of a ‘support’ SOC for recording case information and for
developing queries.

Infections and infestations
This SOC just provides information on location linked to
infectious disorders but not to specific targets.

Psychiatric disorders
The following high-level general terms and high-level terms
were excluded from this specific SOC due to being too gen-
eral and/or broad. These included the terms: depressed mood
disorders and disturbances; eating disorders and disturbances;
impulse control disorders not elsewhere classified (NEC);
manic and bipolar mood disorders and disturbances; per-
sonality disorders and disturbances in behaviour; psychiatric
disorders NEC; suicidal and self-injurious behaviours NEC;
paraphilias and paraphilic disorders and sexual and gender
identity disorders NEC.

Databases containing drug–protein information
Two different databases were used to extract drug–protein
associations. These include Drug-Target Commons (DTC)
database (https://drugtargetcommons.fimm.fi) (12). The DTC
aims at providing an open-data platform for a community-
driven crown-sourcing effort to annotate drug–target associ-
ations and provides information on drugs’ bioactivity such
IC50, EC50 and potency values. The version included
in T-ARDIS was downloaded in April 2021 from https://
drugtargetcommons.fimm.fi. The second database considered
was STITCH (13). STITCH provides a complementary view
on drug–target associations as it relies on different sources of
information combined into a composite scoring function (24).
The version included in T-ARDIS is 5.0 and is accessible at
http://stitch.embl.de.

The starting databases were subjected to two filter steps to
ensure that biologically/therapeutically relevant associations
are captured and that redundant entries originating from the
same drug been named differently. The Uniprot ID was used
to ensure that the target was the same in both databases. DTC
provide already this information for each pair drug–target but
in the case of STITCH the Uniprot ID was retrieved program-
matically from the Uniprot database (19) using the STRING
(25) identification code. In the case of DTC, only drug–protein
association with a reported IC50 (or EC50) of 100 nM or
better was considered. In the case of the STITCH database,
a cut-off of 0.8 was applied, thus only association with a
better score was considered. To avoid redundancy, the drug
entries were unified using the InChiKey hash descriptors and
the drug’s standard name ensuring that not redundant entries
appear in the consolidated dataset.

Statistical association protein–ADR using
drug–protein and drug–ADR relationships
The statistical significance of ADR–protein associations was
calculated following the method proposed by Kuhn et al. (11).
In a nutshell, the method computes a contingency matrix
for each ADR–protein pair and calculates the P-value using
Fisher’s exact test. The elements of the contingency matrix
are as follows: (i) the number of drugs that present the given
ADR; (ii) the number of drugs that binds to the given protein;
(iii) the number of drugs that both present the given ADR and
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bind to the given protein and (iv) how many drugs neither
present the ADR nor bind to the given target. Given the high
number of relationships, P-values were corrected for multi-
ple testing using the ‘q-value’ module contained in the python

package ‘MultyPy’ (26). An ADR–protein relationship was
accepted if the computed q-value is equal or smaller than 0.05.
Figure 1 shows an outline of this annotation approach, from
the mining of individual databases to statistical association.

Figure 1. Workflow followed to combine and derive statistical associations between proteins and ADR. Drug–ADR and drug–target associations are
retrieved from relevant databases. Subsequently, statistical association between proteins and ADRs is computed as described by Kuhn et al. (10).
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Prior to the calculation of protein–ADR statistical asso-
ciations, the drug–ADR databases were divided in two dif-
ferent sets: curated and self-reporting drug–ADR association.
The curated included drug–ADR associations extracted from
SIDER and OFFSIDES, while the self-reporting set included
drug–ADR association from FAERS and MEDEFFECT. The
logic follows on distinguish between these two groups as the
origin of information is very different as mentioned above.
Therefore, the statistical associations between protein–ADR
present in T-ARDIS originate from any of these two sets as
the drug–target associations are common to both, i.e. DTC
and STITCH databases. The unifying entity between drug–
protein and drug–ADR is of course the drug entity, and the
unification between both groups was done the using the drug’s
standard name. To make sure an unequivocal association, a
Tanimoto 2D chemical similarity score was computed with a
cut-off of 0.7 using the Rdkit Conda package (27). Finally,
drugs presenting less than 10 ADRs were also discarded.

In the case of the drug-target databases, a filtering pro-
cedure was implemented as described in Kuhn et al. (11).
First, proteins related to drug metabolism were discarded.
These were selected using the Gene Ontology annotation
(28), and thus proteins belonging to GO terms: GO:0042737
(drug catabolic process) and GO:0017144 (drug metabolic
processes) were discarded. Second, a sequence similarity fil-
ter was implemented to remove highly redundant proteins
using CD-HIT (29) at 90% sequence identity cut-off. A sub-
sequent clustering step was devised to group proteins into
families using a sequence identity cut-off of 70% and fami-
lies with more than 10 members for same drug were excluded
preserving just the association with the centroid of the clus-
ter. Finally, as discussed in Kuhn et al. (11), for each of
the protein–ADR groups, the main target was identified as
reported (30) and the rest of the members of the group were
kept if sharing at least 50% of the drugs binding to the main
target.

Benchmarking datasets
Four different datasets were used to compare the associa-
tions uncovered by T-ARDIS. The first set was extracted from
the ADReCS-Target database (9) from which 1710 protein–
ADR top scoring associations were compiled. The second set
derives from the recent wok by Smit et al. (10) that albeit con-
taining an older release of SIDER (ver.3) was used to extract
circa 2000 protein–ADR associations. The third set relates
to a set of 225 pairwise interactions validated in the work
of Kuhn et al. (11). Finally, the fourth set is a manually
curated set mined for scientific publications presented in the
work by Kuhn et al. (11), which includes 816 protein–ADR
associations (Table 1).

Results
Combining different databases increases the
coverage of associations
We first consider the databases with drug–ADR associations.
As described in the ‘Materials and methods’ section, the
nature and purpose as well as the level of curation of these
databases vary. There is a core of drug–ADR associations,
which are common to all databases (Figure 2). The over-
lap between OFFSIDES and FAERS databases is relatively
high and expected as drug–ADR associations annotated in

Table 1. Comparison of different datasets and T-ARDIS

SET # Associations Self-reportinga Curatedb

Associations mined
from the literature in
Kuhn et al. (11)

224 27 (4) 17 (6)

Associations validated
in vivo in Kuhn et al.
(11)

2170 115 (69) 113 (85)

Associations described
in Smit et al. (10)

2153 340 (48) 297 (167)

Associations from
ADReCD-Target
database (9)

816 171 (14) 87 (11)

aAssociations present in the self-reporting set of T-ARDIS; significant asso-
ciations shown within parentheses (q-values < 0.05).
bAssociations present in the curated set of T-ARDIS; significant associations
shown within parentheses (q-values < 0.05).

OFFSIDES are subsequently added to FAERS on new releases.
FAERS and MEDEFFECT rely on multiple sources and spon-
taneous reporting systems and contain the largest number of
drugs–ADRs associations as well as the largest percentage
of unique entries. Following the curation approach, over 4
million pairwise interactions originating from over 9000 com-
pounds and around 17 000 unique ADR were obtained from
FAERS. In the case of MEDEFFECT, 1.5M drug–ADR asso-
ciations were uncovered from a total of over 4000 and 12 000
drugs and ADR events annotated in the database, respectively.

Unlike FAERS and MEDEFFECT, SIDER and OFFSIDES
contain manually curated associations of drugs and ADRs.
These databases have a lower number of associations when
compared to spontaneous reporting databases FAERS and
MEDEFFECT (between 1 and 2 orders of magnitude less). In
the case of SIDER, over 108 000 pairwise interactions were
mined for a total of 1344 unique drugs and 2303 ADRs.
OFFSIDES yielded a large number of pairwise drugs–ADR
associations: 1.5M associations from a total of 2708 and
4368 unique drugs and ADRs. In terms of uniqueness of infor-
mation, FAERS and MEDEFFECT show a larger percentage
of shared drugs between the different databases (Figure 2).

The second group of databases considered were those
describing drug–protein target associations including DTC
(12) and STITCH (13). The nature of both databases is
rather different and so it is reflected in the number of associ-
ations extracted from each individual database. In the case of
STICH, over 10 000 drug–target associations were retrieved
after applying the filter described in the ‘Materials and meth-
ods’ section accounting for 5007 and 1075 different drug
and chemical compounds and proteins (as per Uniprot IDs).
respectively. In the case of STITCH, the number of associa-
tions was much larger: over 6M from over 42 000 chemical
compounds (including approved drugs) and 7264 different
proteins. The overlap between both databases in terms of
shared drugs was around 1600.

Proteins–ADR relationship from mined drug–ADR
and drug–protein associations
After curation of drug–target and drug–ADR database and
filtering, the associations between proteins and ADRs were
obtained. The association was based on the drug enti-
ties shared among the databases. It is important to stress
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Figure 2. Upset plot showing the overlap between the different databases compiling drug–ADR associations. FAERS, MEDEFFECT, OFFSIDES and
SIDER represented as dark red, light blue, green and orange, respectively.

that self-reporting (FAERS and MEDEFFECT) and curated
(OFFSIDES and SIDERS) drug–ADR sources of informa-
tion were not combined but treated independently. In the
case of protein–ADR associations uncovered from combin-
ing drug–target and drug–ADR (self-reporting), a total of 998
drugs were mapped unequivocally on both sets (i.e. drug–
target, drug–ADR) yielding over 100k statistically significant
(i.e. q-value≤0.05) protein–ADR associations accounting for
around 3k and 211 different ADRs and proteins, respectively.
In the case of the second group of drug–ADR databases,
the curated set (or not self-reporting), i.e. SIDER and OFF-
SIDES, a total of 1135 common drug entities were identified
between drug–target, yielding circa 40k statistically signifi-
cant associations protein–ADR including 537 and 194 ADRs
and proteins, respectively.

The number of ADR associated with a given protein
target varies but in most cases the number of associated
ADR to proteins is low both in the case of data extracted
from the self-reporting and curated dataset (Figure 3). As
expected, the number of associated ADRs to a given tar-
get relates to the number of drugs identified to target the
given protein; as the number increases, the number of ADRs

also increases, albeit with a clearer trend in the case of the
curated dataset (Figure 3B). Nonetheless there are a num-
ber of proteins associated with a large number of ADRs. In
the case of the protein–ADR associations uncovered from
the self-reporting dataset proteins, interleukin-8 (Uniprot
ID: P10145), endothelin-1 (Uniprot ID: P05305) and leptin
(Uniprot ID: P41159) were associated with 1532, 933 and
717 ADRs, respectively. In the case of the curated dataset, the
figures are smaller and among the top three proteins are the
5-hydroxytryptamine receptor 2C (Uniprot ID P28335),
the 5-hydroxytryptamine receptor 1A (Uniprot ID: P08908)
and the alpha-2A adrenergic receptor (Uniprot ID: P08913)
with 119, 104 and 98 associated ADRs, respectively. The
explanation to this high number relates to the biological
role played by these proteins. For instance, leptin is asso-
ciated with over 150 biological processes (as per GO clas-
sification) ranging from signal transduction (GO:0007165)
to autophagy regulation (GO:0010507). Moreover, the dis-
tribution of the number of ADR per target is in line with
the work presented by Kuhn et al. (11) where the statistical
association approach was described and that is the basis of
T-ARDIS.
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Figure 3. Bubble plots showing the number of drugs per protein (X axis) vs number of statistically significant ADR per protein (Y axis). (A) Distribution of
the self-reporting set; (B) distribution of the curate set. Refer to the ‘Material and methods’ section for the description of self-reporting and curated sets.

T-ARDIS associations complement those of other
resources
Association between ADRs and proteins uncovered in T-
ARDIS were compared to previous works to assess the level of
agreement and complementarity. The overall representation
of target–ADR associations described in these four datasets,
i.e. regardless of whether significant or non-significant, is low
(Table 1). For instance, in the case of the set A (target–ADR
associations mined from the literature), only 12% and 8% are
presented in the self-reporting and curated sets of T-ARDIS,
respectively. Overall, the values range from 20% to 5% in the
case of self-reporting set and from 8% to 5% in the case of
the curated set. These relatively low values can be due to two
different causes. On the one hand, the lack of target–ADR
associations in T-ARDIS can be due the fact that no safety
issues have been reported either in self-reporting (FAERS,
MEDEFFECT) or curated databases (OFFSIDES, SIDER). It
could also be that association between the given drug and
target is not present in any of the following two databases
used in this study: DTC and STITCH. On the other hand,
and as described in the ‘Methods’ section, a robust and strin-
gent procedure is followed when compiling and integrating
the databases used to derive T-ARDIS. Thus, the given drug–
ADR and/or drug–target association can be present but do not
succeed to pass the filtering steps. In any case, these results
come to illustrate the complementary nature of T-ARDIS to
that of other resources available in the field and thus achiev-
ing a more comprehensive and complete view of target–ADR
associations.

Examples of uncovered associations
Examples of protein–ADR associations uncovered by the
approach presented here have been confirmed in the litera-
ture. For example, the cyclo-oxygenase 2 enzyme found in
the gastric mucosa (COX-2 or PTGS2; Uniprot ID: P35354)
is inhibited by the anti-inflamatory drug aspirin (acetylsal-
icylic acid). The aspirin also acts against the prostagladin
G/H synthase 1 (COX-1 or PTSG1; Uniprot ID: P23219) (31,
32). These secondary interactions may be the concomitant

cause for gastritis and bleeding ulcer as mentioned in vari-
ous publications even since 1955 (33, 34). In our analyses,
both PTGS1 and PTGS2 proteins are linked to Peptic ulcer
and Peptic ulcer haemorrhage ADRs with significant q-values.

The sodium-dependent serotonin transporter (SLC6A4;
Uniprot ID P31645) is inhibited by the serotonin nore-
pinephrine reuptake inhibitor Venlafaxine, which in turn has
been associated with sexual-dysfunction (35). In our analyses,
SLC6A4 appears highly significantly associated (i.e. q-value
<< 0.05) with a range of different sexual dysfunctions (e.g.
ejaculation failure and female sexual dysfunction).

Another example is illustrated by Budesonide and the
glucocorticoid receptor (Uniprot ID: P04150). Identified
ADRs to budesonide treatment include respiratory infections,
coughs and headaches in the case of the inhaled form and
tiredness, vomiting and joint pains in the oral form. A much
rarer condition, adrenal insufficiency, has been identified in
the case of the long-term use of the oral form of budesonide
(36), which in T-ARDIS appears as a potential ARDs associ-
ated with the glucocorticoid receptor with a highly significant
q-value. Furthermore, the association between glucocorti-
coids and adrenal insufficiency is an active topic of discussion
in the current literature (37).

The activation of the 5-hydroxytryptamine receptor fam-
ily (HTR1A, HTR1B and HTR1E; Uniprot IDs: P08909,
P28222, and P28566, respectively) by zolmitriptan is reported
to cause hyperaesthesia. In our analysis, the association
between these proteins and hyperaesthesis were all significant,
with q-values of 0.0001, 0.006 and 0.02 for HTR1A, HTR1B
and HTR1E, respectively. It is worth mentioning that this
association was identified and validated in vitro by Kuhn et
al. (11). Overall, these examples, by no means a representa-
tive sample, show the usefulness of the data presented here
that can be of use to identify potential liabilities associated
with the targeting of proteins.

Accessing and querying T-ARDIS
All the association between drugs–proteins including the
original sources, i.e. drug–protein and drug–ADR, has
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Figure 4. Snapshot of the result page example upon querying by drug ‘Aspirin’.

been deposited and compiled in a biological database:
T-ARDIS. T-ARDIS is available at: http://bioinsilico.org/T-
ARDIS. T-ARDIS provides a convenient and easy access to
the information including the option of searching and filter-
ing associations based on tailored queries. The database is
searchable by protein (Uniprot ID or gene name), drug or
ADR name. The resulting tables provide information on the
association between protein–ADR as well as the q-value of
the association and parent databases, both drug–protein and
drug–ADR (Figure 4). External links to native drug–target or
drug–ADR databases, together with protein-related reposito-
ries, are also provided. Users also have the option to further
filter the resulting table by querying by specific drug, ADR
or parent databases (e.g. filtering those associations resulting
from FAERS). The table can be also sorted by q-values, so
most significant associations could be shown first. The tables
can be downloaded in the different formats (simple copy, CSV
or PDF). Finally, bulk downloads of the database and asso-
ciated scripts to recreate the database are also available from
the home page links.

Discussion
Predicting associations between protein targets and ADR
is desirable particularly in pre-clinical drug development in
order to identify early in the process potential liabilities and
toxicity-related aspects linked to proteins. Here, we present a
fully automatic, large-scale, analysis to identify potential links
between proteins and ADRs. By integrating public databases
on drug–protein and drug–ADR associations, we have statis-
tically identified significant relationships between protein and
ADR using drugs as connecting elements. Highly significant
associations, i.e. low q-values, are supported in the current
literature and thus proving that uncovered associations could

be useful as guiding evidence. The data compiled in this work
have been deposited in a freely accessible database, T-ARDIS,
which allows a convenient and easy access to the informa-
tion. The mining of the databases, statistical inference and
database updating is fully automatic and thus ensuring that
data will be integrated as become available further facilitat-
ing our understanding of the mechanisms behind ADRs. We
envisage that T-ARDIS represents a resource that will be use-
ful to both academic and industry researchers working on
drug development.
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Drug discovery attrition rates, particularly at advanced clinical trial stages, are high because
of unexpected adverse drug reactions (ADR) elicited by novel drug candidates. Predicting
undesirable ADRs produced by the modulation of certain protein targets would contribute
to developing safer drugs, thereby reducing economic losses associated with high attrition
rates. As opposed to the more traditional drug-centric approach, we propose a target-
centric approach to predict associations between protein targets and ADRs. The
implementation of the predictor is based on a machine learning classifier that
integrates a set of eight independent network-based features. These include a network
diffusion-based score, identification of protein modules based on network clustering
algorithms, functional similarity among proteins, network distance to proteins that are
part of safety panels used in preclinical drug development, set of network descriptors in the
form of degree and betweenness centrality measurements, and conservation. This diverse
set of descriptors were used to generate predictors based on different machine learning
classifiers ranging from specific models for individual ADR to higher levels of abstraction as
per MEDDRA hierarchy such as system organ class. The results obtained from the different
machine-learning classifiers, namely, support vector machine, random forest, and neural
network were further analyzed as a meta-predictor exploiting three different voting
systems, namely, jury vote, consensus vote, and red flag, obtaining different models
for each of the ADRs in analysis. The level of accuracy of the predictors justifies the
identification of problematic protein targets both at the level of individual ADR as well as a
set of related ADRs grouped in common system organ classes. As an example, the
prediction of ventricular tachycardia achieved an accuracy and precision of 0.83 and 0.90,
respectively, and aMatthew correlation coefficient of 0.70. We believe that this approach is
a good complement to the existing methodologies devised to foresee potential liabilities in
preclinical drug discovery. The method is available through the DocTOR utility at GitHub
(https://github.com/cristian931/DocTOR).
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1 INTRODUCTION

Protein–protein interactions are central to all aspects of cell
biology, including processes linked to diseases. The
phenomenal technological development in recent years allowed
the comprehensive charting of the protein–protein interactions
that take place in human cells, the interactome [(Gavin et al.,
2011; Xing et al., 2016; Xiang et al., 2021)]. Indeed, high-quality
and high-coverage protein interaction maps are now available for
a number of model organisms, including humans (Kotlyar et al.,
2022). Such resources present a number of opportunities to the
pharmaceutical industry, which can exploit this information to,
for instance, identify plausible therapeutic targets from which to
develop or repurpose drugs [as in the most recent case of COVID-
19 drug race (Sahoo et al., 2021; Gysi et al., 2021)]. At the same
time, these recent advances have also led to increased efforts to fill
the gap of toxicology or safety information for drug’s targets. This
problem has always crippled the development of novel drugs,
increasing the attrition of the latter entering clinical trials due to
the severity of adverse drug reactions (ADRs) associated with
unforeseen toxicity, directly increasing the cost of research
(Seyhan, 2019).

Currently, several drug-centered approaches exist that can be
used to reduce the risk of ADRs associated with novel drugs
(Basile et al., 2019), such as the use of animal models (Bailey et al.,
2014) and in vitro toxicology research (Madorran et al., 2020).
However, these approaches involve high maintenance costs and
ethical limitations and are not always transferable to human
biology (Singh and Seed, 2021). Many in silico approaches have
also proved to be useful in estimating the toxicity of drug
candidates, exploiting features such as composition, structure,
and binding affinity [(Lo et al., 2018), (Bender et al., 2007)]. These
methods include various examples of machine learning (ML) and
deep learning (Dara et al., 2022). Contributing to these efforts, we
recently described the T-ARDIS database (Galletti et al., 2021).
T-ARDIS is a curated collection of relationships between proteins
and ADRs. The associations are statistically assessed and derive
from existing resources of drug-target and drug-ADR association
(Galletti et al., 2021). Since T-ARDIS provides a direct link
between proteins and ADRs, the question arose of whether
this information can be exploited to predict potential ADR
linked to proteins. Therefore, the major driver of this project
was to develop a target-centric approach to predict whether the
targeting of a given protein target is likely to result in ADR using
the curated information to train machine-learning classifiers.

To that end, different machine-learning classifiers were
assessed including support vector machine (SVM), random
forest (RF), and neural networks (NN). Highly significant
associations between proteins and ADRs were extracted from
T-ARDIS and characterized using 8 different features. These
include the following: 1) the network diffusion-based score
from GUILDify (Aguirre-Plans et al., 2019); 2) several
network-based clustering algorithms [(Cao et al., 2014),
(Blondel et al., 2008)]; 3) a functional similarity index; 4)
network distance to proteins that are part of safety panels
used in preclinical drug development; and 5) network
descriptors in the form of degree and betweenness centrality

measurements and conservation. All of the measurements use
network-based information in some way and hence incorporate
aspects that are intrinsic not only to the protein but also to the
network. As a result, the proteins are framed within the
interactome, and the potential impact of changes on
neighboring proteins is assessed.

According to the MEDDRA nomenclature (Chang et al.,
2017), specific models were built for each individual ADR, as
well as clusters of ADRs within the same system organ class
(SOC), allowing the analysis to be extended to a more general
anatomical or physiological system. Besides the datasets derived
from T-ARDIS to train and test the models, we also benchmarked
our prediction in independent datasets including manually
curated dataset compiled from literature [(Huang et al., 2018),
(Mizutani et al., 2012), (Smit et al., 2021), (Kuhn et al., 2013)—
Supplementary Table S2], including a dataset submitted to the
critical assessment of massive data analysis competition (Aguirre-
Plans et al., 2021). Finally, as three different machine-learning
predictions were developed, we also explored the accuracy of a
meta-predictor that combines the predictions of each individual
classifier. Three different meta-predictors were assessed based on
the way the predictions were combined: 1) jury vote, 2) consensus,
and 3) red flag. While jury vote and consensus scoring function are
similar and seek to promote associations with high scores, red flag
takes into account the divergent opinion.

The proposed method achieves a high level of reliability. For
example, taking into account the undesirable effect of atrial
fibrillation, the resulting model scored high in accuracy (0.88),
precision (0.87), recall (0.85), andMatthew correlation coefficient
(MCC) (0.77) for both the SVM and RF approaches. The neural
network gives slightly lower results with 0.66 accuracy, 0.71
precision, and an MCC of 0.34. The obtained meta-predictors
achieved similar results in jury voting and consensus methods
with accuracy 0.89, precision 0.89, recall 0.88, and MCC 0.78. To
be noted, the reliability of the model is closely related to the
biological complexity and tissue specificity of various ADRs. The
dataset employed in this study as well as the models, meta-
predictors, and accessory scripts are available at https://github.
com/cristian931/DocTOR. Upon installing the application, users
will be able to upload a list of proteins in order to assess their
relationship with the studied ADR.

2 MATERIALS AND METHODS

2.1 Datasets
2.1.1 Training Set
The set used to train and cross-validate the models was derived
from T-ARDIS (Galletti et al., 2021). T-ARDIS is a database that
compiles statistically significant relationships between proteins
and ADRs. As described in original publication, T-ARDIS
undergoes a series of filtering and quality control steps to
ensure a reliable and significant relationship between the ADR
and the protein targets. Depending on the source of ADRs
associations used to derive target ADRs relationships, two
groups were defined: relationships derived from self-reporting
databases FAERS (Kumar, 2018) and MEDEFFECT
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(Re3data.Org, 2014); and relationships derived from curated
databases SIDER (Kuhn et al., 2015) and OFFSIDES (Tatonetti
et al., 2012). Both groups have been used to obtain the training set
used in this work. For the self-reporting dataset, T-ARDIS
currently contains about 17k paired protein–ADR interactions,
including 3k adverse reactions and 300 Uniprot ids. The smaller
curated dataset contains approximately 3,000 pairwise
associations for 537 adverse events and 200 proteins. From the
initial list of approximately 500 ADRs, only the 84 that were best
characterized in terms of number of proteins associated and that
covered the entire range of SOC classes, as defined by MEDDRA
(Chang et al., 2017), were considered, i.e., included at least 5
numbers of ADR per SOC.

2.1.2 Independent Test Datasets
For external validation, we employed five different independent
datasets sourced from literature containing protein–ADR
relationships from Kuhn et al. (2013)—Supplementary Table
S2, Smit et al. (2021), Mizutani et al. (2012) the ADReCs-Target
database (Huang et al., 2018), and the DisGeNet Drug-induced
Liver Injury dataset (Piñero et al., 2019). In particular, the latter
contains a specific subset of liver injuries caused by drugs
composed by 12 different MEDDRA-defined events ranging
from “Acute hepatic failure” to “Non-Alcoholic Steatohepatitis.”

More than 600 distinct adverse events and 428 proteins were
retrieved, resulting in a total of 15 k interactions. Then, the 84
selected ADR were extracted, resulting in 188 associated proteins.
The independent and the training dataset are totally independent
in the sense that they do not share proteins between them on each
particular ADR.

2.2 Protein Network
The protein network, or interactome, used in this study, was
integrated using BIANA (Garcia-Garcia et al., 2010) and
GUILDifyv2 (Aguirre-Plans et al., 2019). The original BIANA
network includes interactomic information from IntAct (Kerrien
et al., 2006), DIP (Wong et al., 2015), HPRD (Keshava Prasad
et al., 2008), BioGrid (Stark et al., 2006), MPACT (Güldener et al.,
2006), and MINT (Ceol et al., 2009) databases. The most recent
version composed of 13,090 proteins (or nodes) and 320,337
interactions (or edges) has been used in this work.

2.3 Features
2.3.1 GUILDify Score
GUILDify is a web server of network diffusion-based algorithms
used for a wide range of network medicine applications (Aguirre-
Plans et al., 2019). The message-passing algorithms of GUILDify
(Guney and Oliva, 2012) transmit a signal from a group of
proteins associated with a phenotype or drug (known as seeds)
to the rest of the network nodes and score them depending on
how fast the message reaches them, taking into account several
network properties. Originally, GUILDify had been developed to
prioritize gene–disease relationships and identify disease modules
(Aguirre-Plans et al., 2019), but it was recently used to identify
disease co-morbidities and drug repurposing options (Aguirre-
Plans et al., 2019; Artigas et al., 2020). In this study, GUILDify
was used as a feature to predict protein–ADR associations. Upon

expansion, a GUILD score was assigned to each protein in the
interactome based on the ADR’s linked protein used as the seed.
The higher the score, the more likely that an association exists
between the protein and the set of seeds used to expand.

2.3.2 Degree and Betweenness Centrality
Degree and betweenness centrality are two network analysis
measures. Degree centrality is the number of edges connected
to a node, while betweenness centrality is the number of times a
node acts as a bridge along the shortest path between two other
nodes. Both measures define how relevant a given node is inside a
network and, in terms of the interactome, how much a protein
tends to be part of a cascade of signals and participate in the same
biological process. Degree and betweenness centrality values were
computed using NetworkX (Ceol et al., 2009).

2.3.3 Clustering-Based Algorithms
Another interpretation of the “guilt-by-association” principle is
the definition of “disease module,” i.e., a neighborhood of a
molecular network whose components are jointly associated
with one or several diseases or risk factors (Choobdar et al.,
2019). As shown, disease modules can be used to identify protein/
genes associated with given diseases (Goh and Choi, 2012). In the
context of ADRs, the assumption is that proteins linked to the
same ADRs would cluster in local regions of the interactome,
forming ADR modules (Guney, 2017).

To identify these modules, two different clustering algorithms
were used. First, the K1 clustering algorithm is based on the so-
called diffusion state distance (DSD) metric (Cao et al., 2014).
The DSD metric is used to define a pairwise distance matrix
between all nodes, on which a spectral clustering algorithm is
applied. In parallel, dense bipartite subgraphs are identified using
standard graph techniques. Finally, results are merged into a
single set of non-overlapping 858 clusters. The second clustering
method is based on the work by Lefebvre and col ((Blondel et al.,
2008)), which is based on modularity optimization, assigning,
and removing recursively the nodes to the modules found, each
time evaluating the loss or gain of modularity. We applied this
method to the interactome, retrieving 46 modules. Together with
clustering approaches mentioned above, we compute for each
node the “clustering coefficient” using the NetworkX utility (Ceol
et al., 2009).

2.3.4 Function Conservation Index
A new feature included in the newer version of GUILDify is the
identification of enriched Gene Ontology (GO) functions
among top ranking proteins using Fisher’s exact test
(Aguirre-Plans et al., 2019). The function conservation
index, which takes advantage of this resource, considers the
functional similarity between a protein and GUILDify’s
enriched GO terms. In a nutshell, this value is the result of
a Hamming distance between two binary vectors that represent
the presence or absence of a specific GO term. The shorter the
distance, the higher the similarity between the given protein
and the enriched functions identified from a set of
protein–ADRs. The scale represents the ratio where a 1
would indicate full overlap of functions.
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2.3.5 Shortest Path to Very Important Targets
Targets and pathways that are now well established as
contributors to clinical ADRs are included in safety panels,
which constitute the minimal lists of targets that qualify for
early hazard detection, off-target risk assessment, and
mitigation. (Bowes et al., 2012a). Here, we considered the
Safety Screen Tier 1 panel of EuroFins Discovery based on the
work by Whitebread and co (Bowes et al., 2012b). This panel is
composed of 48 proteins that we call Very Important Targets
(VITs). We positioned the VITs in the interactome and calculated
the shortest path distance of each one of the proteins considered
in our training set to any VITs using NetworkX (Ceol et al., 2009).
Of the overall distribution of shortest path distances to VITs of
any given protein, the value of the first quartile was considered.
This value represents the relative position of the given protein
with respect to the VITs panel.

2.4 Model Construction
2.4.1 Positive and Negative Sets
The positive set, i.e., proteins related to a given ADR, for each of
the 84 ADRs considered were extracted from the T-ARDIS
database (Galletti et al., 2021). For the purpose of training and
since the number of positive cases per ADR was generally low, the
positive set was augmented using the definition of close
connectivity as follows. The DIAMOnD score (Drozdetskiy
et al., 2015) was computed for the subnetworks associated
with the ADR’s associated proteins extracted from T-ARDIS.
In doing so, we ranked the most immediate neighboring proteins
and selected those with a DIAMOnD score over a certain
threshold to conform to the positive set. Also, multiple
DIAMOnD threshold scores have been tested to obtain the
best result during the training phase, namely, at 0.6, 0.7, 0.8,
and 0.9. Likely, the negative sets were specific to each of the ADRs
under consideration by randomly selecting proteins with a
DIAMOnD score below the given positive threshold. During
the training and testing phase, different ratios of positive and
negative cases were tested to account for class imbalance. Indeed,
besides using a balanced training set, i.e., equal number of positive
and negative cases, to train and test the models, different ratios
including 1:1.5, 1:3, and 1:5 (positives:negatives) were also
considered. Thus, in the end, for each one of the 84 ADRs, 12
different models have been obtained by the combination of
positive and negative thresholds as well as imbalance ratios
resulting in 1,008 trained models.

2.4.2 Features Vectorization and Model Construction
and Training
The approach to predict protein–ADR associations is described
below. In a nutshell, the approach is network-based, i.e., relies on
a network-based set of 8 metrics computed for each protein that
were used as inputs to machine-learning classifiers. Three
different types of classifiers were used: SVM with nonlinear
kernel (radial basis function—RBF), RF, and NN. The
different ML classifiers were implemented in python3.9 using
the following libraries. SVM and RF classifiers were implemented
using the Scikit-learn package (Pedregosa et al., 2011), while NN

made use of the Keras and Tensorflow packages (Abadi
et al.,2015; Gaulton et al., 2017). Specific models were trained
and tested for each of the 84 ADR as well as models at SOC,
i.e., grouping ADRs belonging to the same SOC. A schematic
representation of the overall process is depicted in Figure 1.

Each protein in a given ADR is represented by an 8-
dimensional vector composed by the features described above
(or see Figure 1) that is used as an input to the classifier together
with the labels (positive/negative) in supervised learning. Note
that balanced and unbalanced sets were used, and thus, 4 specific
models were built for each ADR depending on the set used. The
training involved the optimization of a set of parameters using a
grid-search approach and validated with an internal stratified
five-fold cross-validation approach using the Scikit-learn python
package. In the case of SVM classifiers, the grid search included
the gamma and C parameters; for the RF, the maximum number
of features and the depth for each tree; lastly, for the basic model
architecture of NN, an SGD optimizer function was combined
with a relu activation function (for the first layer) and then with a
simple sigmoid activation function. A grid search was used to
optimize the learning rate, number of epochs, number of hidden
layers, and neurons, the same as it was for the other ML
algorithms. Finally, in the case of ML classifiers derived for
SOC, i.e., groups of ADRs, the training and testing was done
in the same way after merging all the elements in each individual
ADR. The training dataset, including the ML classifiers for
individual ADRs and SOCs, can be obtained from https://
github.com/cristian931/DocTOR together with the relative
parameters of the best model for each ADR (Supplementary
Material—NN_parameters.tsv, RF_parameters.tsv, SVM_
parameters.tsv).

2.5 Assessing Performance of Models
The performance of models was assessed using four widely
used statistical descriptors, namely, the accuracy (ACC),
precision (PREC), recall (REC), and MCC calculated using
the Scikit-learn python package (Pedregosa et al., 2011). In
addition, the scores of AUPRC have been computed and
compared to the NPV and PPV values available in the
Supplementary Material S1.

2.6 Combining Predictions: Voting Systems
Three different voting systems were envisaged to integrate the
prediction of individual classifiers: a jury vote, a consensus score,
and a red-flag schema. Both jury votes and consensus seek to
maximize similar predictions, while the red-flag prioritizes
outliers. Jury voting is simply the count of prediction
outcomes. Classifiers are binary and thus will predict whether
a given protein is or is not causing a given ADRs. Each method
exhibits a vote, and the most voted option is selected. The
consensus score c is more granular, namely instead of a yes/no
the posterior probability p of each classifier is used. Therefore, the
consensus score can rank proteins within the same class, e.g.,
predicted to be related to a given ADR. Finally, the red-flag
schema simply accepts as a final prediction the one which is not
common among the different classifiers.
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c � ∑ 3
i�1 pipclass(i); i � [SVM,RF,NN]; class ∈ [−1,+1] 1

3 RESULTS

3.1 Individual Features
Eight different variables were considered as input features of the
classifiers. These include the GUILDify scores, network topology

(degree and betweenness centrality values), a function
conservation score, module imputations, and distances to
proteins belonging to safety panels. In Figure 2, the
distribution of the different features for the positive and
negative sets is shown. As mentioned in the Methods section,
the positive cases (negative cases were selected randomly) were
extracted from the T-ARDIS database (Galletti et al., 2021), both
for the self-reporting and curated sets. The data shown in
Figure 2 derives from the self-reporting set of T-ARDIS. The

FIGURE 1 | Schematic depiction of feature extraction, training, and testing procedures. (A) indicates the process of extraction of training dataset from T-ARDIS
(Galletti et al., 2021). (B) indicates the process of network expansion of targets extracted in (A) using GUILDify (Aguirre-Plans et al., 2019). (C) summarizes the process of
computation of different input features. (D) Represents the development of machine-learning classifiers. Finally, (E) illustrates the development of the meta-predictors
together with the testing of the classifiers and consensus functions on the independent dataset.
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equivalent information for the curated set is shown in
Supplementary Figure S1; Supplementary Material S1.
Likewise, equivalent information, as in Figures 3, 4, is
presented in the Supplementary Material S1.

In the case of GUILDify scores, a high overlap is found, but
nonetheless, the positive sets demonstrate higher scores and a
distribution slightly skewed toward high values (Figure 2A). The
analysis of centrality-based features also indicates a substantial
overlap between positive and negative sets, although positive sets
present amore skewed distribution toward higher values particularly

in the case of betweenness values (Figures 2B,C). A similar situation
is presented when a quantifying function analysis as distance to
enriched function(s) of the set (Figure 2D); the proteins in the
negative set tend to demonstrate larger distances, i.e., no shared
functions with theGUILDify enrichedGO terms, respect to those on
the positive set. In fact, the largest number of proteins with a value of
1.0 correspond to the proteins in the positive set and, conversely,
those with lower values, i.e., no shared GO terms, tend to be proteins
in the negative set. However, it is fair to say that the overlap is
very high.

FIGURE 2 |Distribution plots of 8 different input variables used by classifiers. The values of the positive and negative sets are shown in blue and red, respectively, in
(A–G) and shows the distribution of GUILDify scores, centrality values, betweenness values, function score, % of clusters K1, % of clusters LN, and clustering coefficient
values respectively. (H) presents the box-plots and a violin representation of the distribution of the shortest path values on the negative (orange) and positive (blue) sets.
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The tendency of functionally and disease-related proteins to be
close (i.e., shorter distances) in the interactome was also
considered as a feature for the prediction. As described in the
Methods section, this aspect was studied by applying clustering
algorithms to identify modules in the entire interactome where
the proteins associated with the same or similar ADRs are
grouped. Next, if the number of modules required to represent
a given collection of proteins in an ADR is small, it is likely that
the proteins will share modules. Similarly, a large number of
modules indicate that the proteins do not share the same cluster.
The K1 algorithm (Cao et al., 2014) identified 1,170 different
clusters, many of them composed of 3 proteins, the least amount
for defining a module (Figure 2E). As shown, proteins in the
positive set present a lower number of clusters, meaning that
proteins associated with ADRs tend to belong to a limited group
of clusters, rather than being scattered through the interactome.
Similarly, the Louvain-Newman method (Blondel et al., 2008),

which grouped the whole interactome into only 95 distinct
clusters, allowing the analysis of bigger modules, demonstrated
a similar distribution as K1, i.e., the positive set is drawn toward
lower values (Figure 2F). Finally, in the case of the Clustering
Coefficient Analysis (Figure 2G), in this case, both negative and
positive sets share the same distribution of values. Therefore, this
feature does not seem to provide a clear distinction between
positive and negative cases on the ADR.

The final metric considered as an input variable was the
distance of given proteins to the so-called VITs (see Methods).
The distance was computed in the form of the shortest path
(i.e., lowest number of links) to any given protein belonging to the
panel, taking the value of the first quartile upon computing all the
distances all vs. all (protein in the given ADR and proteins in the
panel). Once again, the distribution of values is different
depending if the proteins are part of the positive or negative
sets (Figure 2H). While the most common distance is 2.0, only

FIGURE 4 | Box- and violin plots for accuracy (ACC), precision (PREC), recall (REC), receiver operating area under curve (ROC AUC), and Matthew correlation
coefficient (MCC). Distribution of accuracy, precision, recall, and ROC AUC values for individual classifiers: NN (green), RF (blue), and SVM (orange) as well as meta-
predictions: consensus (cyan), jury vote (magenta), and red flag (red).

FIGURE 3 | Box- and violin plots of the cross-validation AUC results for the three different classifiers. The different box-plots show the distribution of the mean AUC
values for the best models developed for each ADR using the three different classifiers: SVM (orange), random forest (blue), and neural networks (green).
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the proteins in the positive set would demonstrate values smaller
than 2, therefore showing that proteins in the positive set are
closer to proteins considered critical as per pharmacological
profiling.

3.2 Training and Cross-Validation
The input features described above represent the input variables
to the different classifiers explored in this work. Three different
machine-learning methods were used: NN, SVM, and RF. In
order to define the best parameter values, each classifier was
trained and validated on a 5-fold cross-validation and grid-search
approach.

It is important to mention that specific classifiers were
developed for each ADRs. The classifiers are not generic
predictors of the likelihood of a protein to elicit an ADR,
any, but to elicit a particular ADR, e.g., diarrhoea. Therefore,
the predictions are tailored to the specific ADR (84 considered
in this study) and, therefore, present unique characteristics.
Next, Figure 3 presents the distribution of mean area under
the ROC curve (AUC) calculated for the training and testing as
described (for details on individual classifiers and ADRs refer
to the Supplementary Material S1—Supporting information
7 “cv scores. zip”). In general RF classifiers appear to
demonstrate higher performance with mean AUC values
around 0.85. Also, RF presents a more bell-shaped
distribution of values when compared to SVM and RF. On
the other hand, SVM and NN demonstrate a comparable
performance, with a median AUC around 0.75, although
the first quartile in SVM is slightly better than in NN (0.72
vs. 0.68).

Overall RF appeared to demonstrate the best performance
under training conditions, but in some cases, the performance of
the different classifiers was lower for particular ADRs,
highlighting the complexity and heterogeneity of this
biological problem. For instance, in the case of the ADR
malnutrition, RF achieved the best performance with an
accuracy, precision, recall, and MCC values of 0.95, 0.92, 1.00,
and 0.91, respectively. However, in the case of the ADR febrile
neutropenia, NN was by far the best predictor with an accuracy,
precision, recall, and MCC values of 0.80, 0.87, 0.70, and 0.77,
respectively, against an almost random prediction by SVM and
RF (MCC ~0.0). Finally, SVM outperformed the other two ML
approaches in other cases, such as Nasal Congestion, with an
accuracy of 0.90, a precision of 0.83, a recall of 1, and a MCC of
0.81, while RF and NN barely reached values of 0.70 (see
Supplementary Material S1 for detailed information of
individual performances across all ADR studied).

3.3 Testing on Independent Set
For independent testing purposes, we relied on proteins associated
with the same ADRs retrieved from external sources, as described in
the Methods section. This testing set is formed of 188 different
proteins associated with 84 ADRs. Also, the training and the
testing set do not overlap, meaning none of the 188 proteins
present in the test set were present in the training set. The
proteins associated with each one of the 84 ADRs are predicted
using the respective model, and then, the performance score is
computed based on the results (Figure 4).

Very large differences were not found between the
different classifiers. They appear to perform at a

FIGURE 5 | Evaluation of ADR-protein association predictions of the different classifiers at SOCs level. Accuracy, precision, recall, and ROC AUC values for
predictions at SOCs for both individual classifiers (SVM, RF, and NN) and voting (jury vote, consensus, and red flag).
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comparable level in terms of accuracy, precision, and AUC,
although RF appeared to achieve a higher performance
particularly in the case of sensitivity with the highest value
for the 3rd quartile of the distribution. In terms of MCC,
values are distributed mainly above 0 values with the median
values around 0.25, thus indicating non-random predictions
(Figure 4).

3.4 Combining Predictors
Since three different classifiers were developed for each ADR, the
possibility exists of combining the predictions using consensus
scoring functions. Three different approaches were used as
described in Methods. In terms of accuracy, precision, recall,
and AUC, the values increased when compared to individual
predictors in the jury vote and consensus voting systems
(Figure 4). There was not only an improvement but also a
general shift toward higher values as distributions were skewed
toward higher values. The exception was the red-flag consensus
that resulted in a worsening of predictions. As described in the
Methods section, the red-flag method was devised to identify
singular predictions.

A similar pattern is observed in the case of MCC values
(Figure 4). The distribution of MCC values for jury vote and
consensus voting systems were skewed toward higher values
when compared with individual predictors. Thus, the quality
of the prediction improved when combining individual
predictors. As shown in the of accuracy, precision, and
recall, red-flag consensus decreased resulted in worse MCC
values distributing between 0 (random prediction) and
negative (inverse) values. Therefore, it is a better strategy to
accept the most common prediction rather than any singular
predictor.

3.5 Predicting at SOC Level
The models presented in the previous sections were ADR-
specific. However, we also wanted to develop more generalist
predictive models that at the same time preserve the biological
and medical meaning. For this purpose, we grouped the
different ADRs into specific SOCs as per MEDDRA
classification (Chang et al., 2017). The MedDRA SOC is
defined as the highest level of the MedDRA terminology,
distinguished by anatomical or physiological system,
aetiology (disease origin), or purpose. Also, most of these
describe disorders of a specific part of the body. As
explained in the T-ARDIS manuscript (Galletti et al., 2021),
not every SOC is present in the database due the fact that some
MEDDRA reported ADRs are very general or not specific to
body parts, tissues, or underlying human biology (Ietswaart
et al., 2020). Specifically, in this study, the 84 ADRs considered
were grouped into 18 different SOCs with an average number
of 5 ADRs per SOC. At a single classifier level, a large
variability of predictions was found in terms of accuracy,
precision, sensitivity, and MCC (Figure 5). Predictions were
highly accurate in the cases of “pregnancy, puerperium, and
perinatal conditions” compared to those in the case of immune
or nervous disorders. In general, combining predictors resulted
in improved predictions, with the exception of red-flag voting,

particularly in terms of recall. However, sensitivity values were
generally low when compared to those achieved by predictors
working at ADR level (Figure 4). This fact highlights the
difficulty of predicting at a higher level of abstraction rather
than at individual ADR level.

In terms of MCC values, a similar situation can be observed
(Figure 5). There was an improvement of predictions when
combining individual prediction in a jury vote or consensus
voting, such in the case of respiratory, thoracic, and
mediastinal disorders going from a MCC of 0.75 of the best
predictor to 0.81 when combining.

4 DISCUSSION

In this work, we set to develop an approach to predict the
potential liability of proteins in the context of adverse
reactions when targeted for therapeutic purposes. By
analyzing the human interactome, a range of network-based
metrics were derived to characterize the proteins under study.
This range of heterogeneous measurements was then fed into
three machine-learning classifiers that were in turn combined
using three different voting approaches. The prediction
models both at individual ADRs and SOCs level provided a
reasonable performance that justified its use as a tool to foresee
potential liabilities of proteins. We looked at 84 different ADR
in total, being able to create reliable models for each of them.

4.1 Classifiers Performances
The variables used in the predictions were of eight
accounting for different aspects of the proteins under
study. As shown in Figure 3, the level of discrimination
among positive and negative cases varies with GUILDify
scores and K1 clustering analyses among the top performers
and degree centrality and clustering coefficient analyses as
fewer discriminating features. This reflects the small world
nature of the human interactome (Zhang and Zhang, 2009).
As shown in the results, the performance of the different
classifiers varied, with RF being the overall best performed
predictor under training conditions, although in particular,
ADRs, SVM, and NN were superior. This observation
prompted us to develop a voting system to combine the
individual predictors in a meta-predictor fashion. As shown
in Figures 4, 5, combining the methods resulted in better
predictions with the exception of the red-flag consensus.
Both the jury vote and consensus voting systems followed the
same principle, i.e., to boost coincident predictions among
classifiers. In fact, the level of performance of jury vote and
consensus voting systems are comparable (Figures 4, 5), but
critically, the consensus voting system provides further
granularity to the predictions that allows a finer ranking.
Indeed; however, for instance, a jury vote will place a given
protein in a class, e.g., +1; the two methods will agree that the
given protein might be linked to a given ADR, and the
consensus scoring function, however, will provide a
quantitative measure that can allow the ranking of
proteins within the same class. This aspect is pivotal in

Frontiers in Bioinformatics | www.frontiersin.org July 2022 | Volume 2 | Article 9066449

Galletti et al. Prediction of ADRs

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


order to establish a degree of confidence in the predictions of
the DocTOR application (see below). Finally, as mentioned,
the red-flag voting system resulted in worse predictions
overall. The idea in itself seems counter-intuitive,
i.e., promoting the marginal view. However, a few cases
are found where this strategy was successful such in the
cases of nocturia, neutropenia, or ischaemia ADR (see
Supplementary Figure S1. tsv or Supplementary Figure
S2. tsv). Furthermore, the red-flag approach serves as a
failsafe in the event of an unknown prediction, such as in
the instance of the DocTOR utility (explained below), or
while two ML approaches, while agreeing, report low
probabilities in their respective predictions.

The other aspect to consider in this work was the nature of
the predictions. In theory, one of the major achievements of
protein–ADR predictions would be determining if targeting a
protein would result in an unwanted adverse response,
i.e., ADR. However, this is a very difficult question to turn
into a predictive model, as the types of ADR are very diverse,
and we might end up considering any protein susceptible to
causing an ADR to a certain extent. This is the reason why the
predictive models were ADR-specific, so that the prediction is
not whether a protein might cause an undesired reaction, but
what type of adverse reaction. However, grouping ADRs into
common SOCs is possible. In doing so, individual ADRs are
abstracted into a higher entity, and, thus, more generalist
prediction models can be developed, i.e., a model to predict
whether the targeting of a given protein can be associated to a
specific SOC perturbation. As shown in Figures 5, 6,
predicting at this level resulted in some SOCs
demonstrating better prediction performances than others.
SOCs with more defined affected tissues/organs tended to
demonstrate better predictions that include more systemic
representations. For instance, comparing predictions on the
respiratory, thoracic, and mediastinal disorders vs. immune
system disorders resulted in the former achieving better
performances (accuracy: 0.90 vs. 0.54; precision: 0.93 vs.
0.87; recall: 0.87 vs. 0.10; MCC: 0.81 vs. 0.16). Finally,
researchers also found that better performance at SOCs
related to cases with models already predicted successfully
at the individual ADRs included in the particular SOC.

4.2 Difficult to Predict Adverse Drug
Reactions
On the other hand, given the complexity of the biological
problem, some ADR results are harder to predict. In
particular, the worst results have been obtained in 17
different ADRs which obtained a negative or equal to 0
MCC (random predictions). These includes Hyper-
coagulation, Ichthyosis, Coordination abnormal, Biliary
cirrhosis, Acute hepatic failure, Hyper-ammonaemia,
Azoospermia, Diplegia, Glucose tolerance impaired,
Haemorrhagic diathesis, Hypoacusis, Ophthalmoplegia,
Renal tubular acidosis, Hepatic failure, Coagulopathy, and
Ischaemia. Target on these ADRs included common genes

(Supplementary Figure S6. tsv), such as TP53, 5HT1A, ACE,
members of the CALM family, LEP, and IL8. In particular,
these genes have been already annotated in T-ARDIS as
targets with the highest number of associated ADRs
(Galletti et al., 2021), thus partially explaining prediction’s
inaccuracy.

4.3 The DocTOR Utility
The predictive models and accessory scripts to carry out the
predictions as well as all the datasets employed in this study
are available at the Direct fOreCast Target On Reaction
(DocTOR) application available at https://github.com/
cristian931/DocTOR. The application allows users to
upload a list of proteins in the form of UNIPROT
identification codes and a list of ADRs of interest (from
the available models), in order to study the potential
relationship between the two. The program will assign a
positive or negative class to the protein output and a
probability associated to the given class for all three
different classifiers (SVM, NN, and RF) and voting systems
(jury vote, consensus, and red flag). Users can, therefore,
consider all this information when analyzing the
prediction results. Also, the application lends itself to
being easily updated, allowing the user to add new models
for new ADR on request or retrain existing models when new
protein targets are discovered to be associated with certain
ADRs and/or given new releases of the T-ARDIS database.

5 CONCLUSION

Predicting associations between protein targets and ADR is
desirable, particularly in preclinical drug development, in
order to identify early in the process potential liabilities and
toxicity-related aspects linked to proteins. In this study, we
addressed this problem from an interactome-centric point of
view. Next, we collected a range of protein features, including
their topology characteristic in the human interactome, the
spatial position related to specific in vitro validated ADR-
related hotspots and their function associations. Also, we
trained three different machine-learning approaches to
construct models for 84 different ADRs, including a
specific DILI related subset and 20 different SOCs using
the various features. The models were optimized via grid-
search and 5-fold cross-validations, and the results were
tested in an independent dataset. The analysis of the
performance of the models both under training and
independent testing validated its use as a prospective
computational tool, to assess the liability of proteins both
at the level of specific ADR type and SOC. Finally, we
provided access to the data, models, and predictive tools
through a dedicated GitHub repository for the use of the
scientific community. Researchers will be able to use the
DocTOR utility in combination with in vitro investigations
to assess the potential association between protein target
modulation and the onset of ADR, reducing research time.
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